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For my doctoral thesis, I have used a combination of experiments and simulations to 

investigate the various factors that affect the dynamics and stability of spatially- 

structured as well as spatially unstructured populations. A brief description of my work is 

as follows: 

 

 

Metapopulation stability 
 
 
Although classical population ecology theory treats individuals as being homogeneously 

distributed over space, most natural populations exhibit some degree of spatial structuring 

into metapopulations: ensembles of local populations (henceforth, subpopulations) that 

are connected by migration. Using Ricker-based coupled map lattice simulations, I show 

that the precise spatial arrangement of the subpopulations does not interact with 

migration in determining metapopulation stability. This indicates that the fine-scale 

details of the spatial arrangement of subpopulations can often be safely ignored while 

modeling metapopulation dynamics. In a continuation of this work, I show that, at least 

for systems in which the subpopulations follow Ricker dynamics, maximum 

metapopulation stability is attained at intermediate migration rates, regardless of whether 

the migration rate is density-dependent, density-independent or stochastic. However, 

migration rate can stabilize the dynamics of a metapopulation only when the migration 

events take place very frequently. These results were found to be robust to different 

spatial arrangements of patches. 
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The above studies indicated that a metapopulation would be most stable at intermediate 

rates of migration - a prediction that I tested using laboratory metapopulations of 

Drosophila melanogaster. I show that a low migration rate (10%) stabilizes D. 

melanogaster metapopulations by inducing asynchrony between neighboring 

subpopulations. On the other hand, higher migration rate (30%) synchronizes the 

neighboring subpopulations, thus leading to metapopulation instability. Simulations 

based on a simple non-species specific population growth model (Ricker map) captured 

most features of the data, suggesting that the results are generalizable.  A subsequent 

simulation study indicated that, contrary to the concern raised by some other workers, 

asynchrony at intermediate migration rates is a very likely outcome in real 

metapopulations. 

 

I have also empirically investigated the effects of constant localized perturbations on the 

stability of metapopulations. The experimental data suggests that constant addition of 

individuals to a particular subpopulation in every generation stabilizes that population 

locally, but does not have an effect on the dynamics of the metapopulation in any way. 

Simulations of the experimental system, based on the Ricker map, were able to recover 

the empirical findings, indicating the generality of the results. I also simulated the 

possible consequences of perturbing more subpopulations, increasing the strength of 

perturbations and different rates of migration, but found that none of these conditions 

were expected to alter the outcomes of our experiments. Finally, I show that the main 

results of this study are robust to the presence of local extinctions in the metapopulation.   
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Stability of spatially unstructured populations 
 

Prior studies have indicated that the dynamics of D. melanogaster single populations are 

affected by three major density-dependent feedback loops: larval density acting on 1) 

larval survivorship and 2) adult fecundity, and 3) the effects of adult density on adult 

fecundity. In an experimental study on replicate D. melanogaster single populations, I 

altered the relative strengths of these loops by manipulating the quantity and quality of 

nutrition available to the larvae and the adults. This study led to several insights into how 

the three density-dependent loops interact to shape the dynamics of D. melanogaster 

populations in the laboratory. 

 

In an experimental study, I examined the effects of four different rates of adult mortality 

(control, 20%, 40% and 60%) on the stability of replicate D. melanogaster single 

populations under two different nutritional regimes. When the intrinsic growth rate was 

low, there was no significant effect of different mortality rates on stability. However, 

under high rates of intrinsic growth, the effects of mortality rates on stability varied based 

on the index chosen to quantify stability. Specifically, under high growth rates, the 

variation in population size (as measured by coefficient of variation, CV) across 

generations, decreased monotonically with increasing rates of mortality. However, the 

average one-step fluctuation in population size (as measured by fluctuation index, FI) 

was significantly larger at lower mortality rate (20%). The extinction probabilities of the 

low mortality treatment were also found to be different from the controls. 
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I also investigated the issue of evolution of population stability as a result of selection 

acting on the life history of organisms. Although there were several hypotheses about the 

mechanism of evolution of population stability, none of them had any empirical support. 

A previous study had provided the first experimental demonstration that population 

stability can evolve as a correlated (and not direct) response to selection on life-history 

traits. In a subsequent study, which extends the above work, I show that the evolution of 

one type of stability property (constancy) does not necessarily guarantee that other 

stability properties would also evolve simultaneously. Moreover, manifestation of 

stability properties was found to depend critically on the fine details of the environment 

under which the populations are maintained. 

 

Finally, in another experimental study, I demonstrate that minor variations in pre-assay 

rearing conditions can lead to systematic bias in life-history traits like fecundity. This 

underlines the importance of an often-neglected source of stochastic variations that can 

potentially affect the dynamics of populations, even under controlled laboratory 

conditions. 
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CHAPTER 1 

INTRODUCTION 
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Herbert Spencer (Spencer 1864)) contended that a species or population could persist 

over long periods of time only if the forces governing population growth were in 

equilibrium with those affecting death. This notion of an interaction between various 

forces acting on a population resulting in a balance of numbers, was the precursor of the 

concept of stability in ecology (Mueller and Joshi 2000). In the approximately one-and-a-

half century since Spencer, our understanding of the various factors that affect population 

stability has progressed a great deal, facilitated by a large number of theoretical studies 

on the subject. Despite a strong tradition of laboratory experiments in the early years of 

population ecology (Pearl and Parker 1922, Park 1948, Nicholson 1957, Huffaker 1958), 

many of the insights gained from the theoretical studies have never been empirically 

verified. One reason for this lacuna can be traced back to the 1960s, when the emphasis 

of experimental population ecology shifted to investigating natural populations, 

especially the role of competition and other species interactions in structuring biological 

communities (Kingsland 1995). Single population studies in this period tended to focus 

on whether field populations were density-regulated or not (Kingsland 1995). This shift 

of focus from laboratory to natural systems posed problems for the rigorous verification 

of theoretical predictions, as it is generally difficult, if not impossible, to satisfy the 

assumptions of most theoretical models under natural conditions, leading to difficulties in 

interpreting results where the data do not support the theoretical predictions (Mueller and 

Joshi 2000). The interest in laboratory population ecology was revived in the 1990s, with 

several pioneering studies on systems as diverse as Tribolium (Costantino et al. 1997, 

Henson et al. 2001), protozoans (McCauley et al. 1999), mites (Ellner et al. 2001), 

bacteria (Kerr et al. 2002), Drosophila (Rodriguez 1989, Mueller and Huynh 1994, 
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Mueller et al. 2000)  etc. However, enormous ground still remains to be covered in terms 

of verifying the extant predictions in the theoretical population ecology literature.  

 

The aim of the current study is to narrow down the gap between theoretical and empirical 

studies on population stability. The experiments consist of laboratory studies on small 

populations of a single species, the fruitfly Drosophila melanogaster. The benefits of 

choosing D. melanogaster as an experimental system are many, including relatively small 

generation time, ease of manipulation, and a vast body of extant knowledge about the 

laboratory ecology and life-history of the species (Prasad and Joshi 2003, Mueller et al. 

2005). The theoretical part of the work reported in this thesis comprises of simulations 

based on simple models of population dynamics that are generalizable and have heuristic 

value. Here, unlike many previous studies (e.g. May and Oster 1976, Earn et al. 2000), 

the focus is not on deriving analytical solutions to mathematical models, but to set up 

models with some degree of realism and derive predictions that are relatively 

straightforward to verify against empirical data.  The thesis is divided into two sections: 

section I (chapters 2-5) dealing with stability in spatially structured populations 

(metapopulations) and section II (chapters 6-9) describing the dynamics of spatially 

unstructured populations. 

 

Chapter 2 reports a simulation study on the interaction of migration rate, intrinsic growth 

rate and spatial structuring in shaping the dynamics of metapopulations. This study 

predicted that intermediate rates of migration are likely to stabilize metapopulation 

dynamics, whereas high rates of migration would lead to destabilization of the 



 11

metapopulation dynamics. This prediction was empirically verified using laboratory 

metapopulations of D. melanogaster and the results were shown to be likely ubiquitous 

under natural conditions (Chapter 3). Another simulation study (Chapter 4) dealt with the 

effects of relaxing various simplifying assumptions that had been made in the simulations 

and experiments reported in chapters 2 and 3, respectively. Finally, the last chapter of 

section I investigates the possible role of restricted localized perturbations (pinning) in 

stabilizing the global dynamics of experimental metapopulations. 

 

The four chapters making up section II look at various issues concerning stability of 

single populations. Chapter 6 deals with the evolution of population stability in 

laboratory populations of D. melanogaster and shows, inter alia, how seemingly minor 

features of the environment can have large effects on the manifestation of different 

stability properties. Chapter 7 reports an experiment on the effects of different rates of 

density-independent mortality on the stability of D. melanogaster populations. An 

empirical study on the effects of four different nutritional regimes on the stability of 

fruitfly populations is described in chapter 8. The final chapter of section II empirically 

demonstrates that, even under rigorously controlled laboratory conditions, minor 

variations in pre-assay rearing conditions can lead to systematic deviations in life-history 

traits related to population dynamics, like female fecundity. Since fecundity is intimately 

related to stability determining demographic parameters like intrinsic growth rate, this in 

turn can introduce a hitherto unappreciated component of stochasticity into the dynamics 

of laboratory populations. 

 



 12

In conclusion, the salient findings from the thesis are summarized and possible lines of 

future investigations are discussed in chapter 10. Some of the chapters (2,3,5,9) are 

slightly extended / modified versions of already published manuscripts, while others 

(4,6,7,8) are based on manuscripts in the process of being written up for submission.
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CHAPTER 2 

EFFECTS OF SPATIAL ARRANGEMENT 

The effects of migration rate on metapopulation stability do not depend upon either 
the precise spatial arrangement of the subpopulations, or on the presence of a 
moderate proportion of vacant (uninhabitable) patches in the lattice. 

Dey, S., Dabholkar, S., and Joshi, A. 2006. The effect of migration on 
metapopulation stability is qualitatively unaffected by spatial structuring of among 
patch variation. Journal of Theoretical Biology 238, 78-84. 
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INTRODUCTION 

 

The role of spatial structuring in shaping the dynamics of populations has received 

considerable attention from both theoreticians and experimentalists (for comprehensive 

reviews, see Hanski 1999, Hanski and Gaggiotti 2004). Coupled map lattices (CMLs), 

consisting of two or more simple discrete maps coupled by migration, have been widely 

used to model metapopulation dynamics, and such models predict a spectrum of 

spatiotemporal patterns. The simplest form of a CML consists of two one-dimensional 

maps, such as the logistic or the Ricker equation, connected by migration, and such 

CMLs have been studied extensively using both analytical and numerical methods 

(Gyllenberg et al. 1993, Hastings 1993, Kendall and Fox 1998). In symmetrical two map 

CMLs (i.e. both maps have the same value of the intrinsic growth rate parameter, r) using 

the logistic map, it was seen that when the rate of migration is low, the two patches 

behave as though their dynamics are independent, whereas for high levels of migration 

the system behaves as though it were a single patch (Hastings 1993). However, for 

moderate levels of migration, there are regions in the parameter space where simple 

dynamics (limit cycles) can be observed even in systems where the r-value is high 

enough to yield chaotic dynamics in a single patch (Gyllenberg et al. 1993, Hastings 

1993). This pattern of effects of migration rate on CML dynamics remained qualitatively 

unchanged when the two maps were made asymmetric (i.e. differed in the values of the 

growth rate parameter, r). Kendall & Fox (1998), inter alia, made a detailed numerical 

investigation of the asymmetric case for different rates of migration. They found that high 

levels of migration (> 0.25), together with differing growth rates in the two maps, led to 
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only in-phase attractors. However, under low rates of migration (< 0.25) and different 

growth rates in the two maps, both in-phase and out-of-phase dynamics were possible. 

There was also a qualitative change in the pattern of the dynamics at intermediate levels 

of asymmetry between the maps (Gyllenberg et al. 1993, Kendall and Fox 1998).  

 

In real metapopulations consisting of more than two subpopulations, considerable 

variation in demographic and environmental parameters is expected among 

subpopulations occupying different patches. Moreover, it is possible that differing 

patterns of environmental heterogeneity across patches can give rise to corresponding 

patterns in the spatial arrangement of demographic parameters among subpopulations. If 

such spatial patterns have major effects on metapopulation dynamics, it would constrain 

the applicability of models that do not explicitly consider variation in the spatial 

arrangement of demographic parameters among subpopulations occupying different 

patches. However, in such a case, given that most real metapopulations are expected to 

consist of multiple patches, the number of possible combinations to take into account 

would become unmanageably high. This important issue has not been addressed in the 

past: most previous studies on multi-patch metapopulations assume that all the patches 

have similar parameter values (e.g. Kaneko 1987, 1989, Hassell et al. 1991, Rohani and 

Miramontes 1995; but see also Singh et al. 2004). Given that the variation in the growth 

rate parameter r between subpopulations affects the nature of the dynamics in two-map 

CMLs, I decided to investigate the effect of different spatial arrangements of 

subpopulations varying in r (demographic heterogeneity) on the interplay between 

migration rate and metapopulation dynamics in multi-patch CML models. I also 
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examined whether introducing a moderate proportion of vacant (uninhabitable) patches in 

the lattice (spatial heterogeneity) affected the interaction between migration rate and 

metapopulation dynamics. 

 

 

THE MODEL 

 

I modeled subpopulation dynamics with the Ricker equation (Ricker 1954), 

nt+1′ = nt exp (r ( 1 – nt / K)),                                                  (1) 

where nt represents the population size at time t, and r and K refer to the intrinsic per 

capita growth rate of the subpopulation and carrying capacity of the patch, respectively. 

The behavior of this map has been extensively studied and it is known that the qualitative 

nature of its dynamics depends solely on the parameter r (May and Oster 1976). This map 

is a close relative of the logistic map and can show chaotic behavior for r-values higher 

than 2.692. I studied the behavior of metapopulations consisting of 64 coupled Ricker 

maps arranged in either a one- or a two-dimensional array, with each map having a 

different value of r. Every generation, after reproduction, a constant fraction (m) of each 

sub-population emigrates and gets distributed equally into the neighboring patches. In the 

one-dimensional case, the patches were assumed to be arranged linearly with periodic 

boundary condition (i.e. on the periphery of a circle), with migration possible only 

between immediate neighbors. Thus, the population size for any patch j in generation t 

+1 was given by 

nt+1,j = ( 1 - m ) nt+1, j′ + 0.5 m (nt+1, j-1′ + nt+1, j+1′ ),                 (2) 
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where 

nt,j = Population size in the jth patch at the tth time step, 

rj= Maximal intrinsic growth rate of the population in the jth patch, 

K = Carrying capacity of the patch (assumed to be same for all patches), and 

m = Migration rate (0 ≤ m ≤ 1). 

The size of the entire metapopulation at time t was given by 

where J was the total number of patches in the metapopulation. Similarly, in the two-

dimensional case, the 64 patches were assumed to be arranged on a 8 × 8 square grid with 

migration possible between the four nearest neighbors under periodic boundary condition 

(i.e. on the surface of a torus). 

 

In this study, I simulated three different kinds of metapopulations, differing in the way in 

which r varied across the subpopulations: (1) linear, wherein the r-values of the 

subpopulations increased linearly, (2) alternate, where alternate subpopulations had high 

and low r-values, and (3) random, in which the subpopulations with different r-values 

were distributed randomly on the array. Many simulations, with different ranges of 

possible r-values of the subpopulations, were carried out for each of the three types of 

metapopulation. The mean r of the metapopulations, averaged across subpopulations, 

ranged from 2.25 to 4.95 in different simulations, with the r-values assigned to the 

subpopulations in any one simulation having a range of 1 centered symmetrically around 

the mean (i.e. mean ± 0.5). The r-values of the subpopulations were increased in steps of 

1/J, where J was the total number of patches in the metapopulation. The values of K (= 

(3)                                                                 ,   
1

,�
=

=
J

j
jtt nN
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600) and initial population size, n0,j (=100), were kept constant for all the subpopulations. 

In case of the random arrangement of r-values, I ran several simulations but failed to 

detect any qualitative differences among the results generated and, hence, present here a 

randomly chosen set of figures for the relevant migration rates. 

 

In the case of the two-dimensional lattices, I also investigated the effect of spatial 

heterogeneity on the interplay between migration rate and metapopulation dynamics. 

Spatial heterogeneity was introduced by designating certain randomly chosen patches in 

the lattice as voids, which can be thought to represent uninhabitable patches. Immigrants 

were assumed to be capable of reaching such patches, but were not permitted to 

reproduce there. Consequently, in the subsequent generation, no emigration from these 

voids would occur. The presence of a void in the lattice, thus, considerably affects the 

pattern of migration in the patches surrounding it. While it is clear that introducing an 

arbitrarily large number of voids will alter the dynamics of a metapopulation in such 

models, my purpose was to examine the effects of small to moderate levels of spatial 

heterogeneity on the interplay of migration and metapopulation dynamics. Hence, I 

considered only the effect of introducing between two (~3% of patches) and ten (~16% of 

patches) voids in the 64-patch metapopulations.  

 

All programs were written in QBASIC v 4.5 and run on a Pentium III PC. In each 

individual simulation, equation 2, or its equivalent in the two-dimensional cases, was 

iterated for 1000 time steps, the first 900 values were discarded as transients, and the 

values of Nt (equation 3) for the remaining 100 generations were recorded. Many such 
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simulations, differing in the mean r-value used, were run for each combination of 

migration rate × patch arrangement, and the metapopulation size data (Nt) from all 

simulations of a given migration rate × patch arrangement combination are plotted in 

figures 2.1-2.5 as a function of the mean r for that set of simulations. These figures, thus, 

represent bifurcation diagrams for metapopulation size for different migration rate × 

patch arrangement combinations. I stress that the primary interest in this study was to 

examine the effect, if any, of patterns of demographic and spatial heterogeneity on the 

interplay of migration rate and metapopulation dynamics. Consequently, my focus is on 

total metapopulation sizes and their dynamic behaviour under different migration rate × 

patch arrangement × r combinations. I am not, at this point, interested in examining the 

possibility of localized patterns of spatial synchrony in these systems, although I 

appreciate the importance of such patterns in understanding the population ecology of 

spatially structured systems (Mueller and Joshi 2000, Singh et al. 2004). 

 

 

RESULTS AND DISCUSSION 

 

The bifurcation diagrams of the metapopulations (Fig. 2.1-2.5), with the mean r as the 

bifurcation parameter, reveal that the precise spatial arrangement of the subpopulations 

with heterogeneous r does not lead to major qualitative differences in the dynamics of 

the system for any migration rate. Moreover, there is not much difference in the behavior 

of the system whether one considers a one-dimensional or a two-dimensional lattice.  
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Although figures 2.1-2.5 were plotted for 64-patch metapopulations, the results also hold 

for metapopulations with a smaller number of patches (results not shown), as well as for 

cases when absorbing boundary conditions were applied (results not shown). It should 

also be noted that even different random arrangements of the 64 patches failed to 

produce any discernible difference in the pattern of the dynamics of the metapopulations. 

In other words, the interaction of migration rate with the average growth rate (r) of the 

metapopulation is independent of demographic heterogeneity, or the spatial arrangement 

of subpopulations with different r-values. Introduction of spatial heterogeneity in the 

form of voids (uninhabitable patches) also had no discernible qualitative effect on the 

dynamics of the model metapopulations (Fig. 2.5), suggesting that, at least for the 

functional form of the model and proportion of uninhabitable patches used here, spatial 

heterogeneity does not affect the gross dynamics of metapopulation size, and how it is

 

Figure 2.1. Behavior of the system when r increases linearly across patches, in a one-dimensional 
array. m refers to the fraction that migrates each generation to the two neighboring patches. See 
text for more details. 
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affected by migration rate. It has earlier been shown, albeit for a different class of model, 

that introducing even a small number of voids into a CML can promote asynchrony 

among subpopulations (Singh et al. 2004). Unfortunately, Singh et al. (2004) did not 

report the effect of introducing voids on the interplay between migration rate and 

metapopulation dynamics, making a detailed comparison of my results and those of 

Singh et al. (2004) difficult.  

 

Overall, these results are reassuring because they suggest that the predictions of some 

typically used models of metapopulation dynamics are likely to be quite robust with 

regard to the different spatial arrangements of patches with varying demographic 

parameters, or vacant patches. Such robustness makes results from metapopulation 

models with arbitrary spatial distribution of demographic parameters generalizable to 

 

Figure 2.2. Behavior of the system when r-values alternate between high and low values 
across patches, in a one-dimensional array. See text for more details. 
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real ecological scenarios. Whether the same robustness with regard to metapopulation 

size dynamics is observed for other types of metapopulation models, utilizing different 

functional forms to represent subpopulation dynamics, is a potential avenue of future 

work with important implications for application-oriented modeling. 

 

The other observations from the present study are similar to those observed in case of 

two-patch CMLs (Gyllenberg et al. 1993, Hastings 1993, Kendall and Fox 1998, Singh et 

al. 2004). In case of zero migration (Fig. 2.1-2.5), all patches behave independently, the 

metapopulation as a whole shows complex dynamics, and the range of fluctuation of the 

population numbers is high. For low values of mean r, the metapopulation size Nt does 

not settle into limit cycles, and all values settle down to two distinct bands. Although in a 

mathematical sense, the system seems to be exhibiting a very high period cycle, or even  

 

Figure 2.3. Behavior of the system when r-values are arranged randomly across patches, in a one-
dimensional array. See text for more details. 
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chaos, the statistical periodicity (sensu (Turchin 2003) of the system at this point is likely 

to be much lower. This is because the attractor, at such values of r, often consists of 

distinct regions that are visited by the trajectory in turn, rendering the system statistically 

indistinguishable from one exhibiting low period limit cycles with some amount of noise 

(Turchin 2003). As the mean r increases, the two bands come closer and finally merge. 

At this point, the statistical periodicity of the system is considerably higher and, hence, 

the stability of the system is reduced. With further increase in mean r, Nt fluctuates 

extensively, although remaining limited to a more or less defined range. As the migration 

rate is increased from 1% to 5%, the range of fluctuation of Nt gets reduced at low values 

of mean r, whereas for higher values of mean r, the system settles into simple limit 

cycles. However, in case of the one-dimensional array, as the rate of migration increases 

from 5% to 20%, the system reverts back to the behavior shown in the case when there is 

no migration  (Fig. 2.1 – 2.3). This is probably because by then the system is coupled 

strongly enough to behave more or less like a single patch (Hastings 1993). While the 

 

Figure 2.4. Behavior of the system when r-values are arranged randomly across patches, in a two-
dimensional array. Note that we have presented only the random case here, as the nature of the 
dynamics were similar for the linear and alternate arrangements of r. See text for more details. 



 25

same general pattern holds for the two-dimensional case (Fig. 2.4) too, the reversion to 

dynamics similar to the zero migration case happens at a higher rate of migration. Thus, 

the observation that intermediate rates of migration beget higher stability (Gyllenberg et 

al. 1993, Hastings 1993) seems to be borne out in the multi-patch case too.  

 

One issue that also merits some discussion here is that of transients. The figures 

presented in this work were generated by discarding 900 time steps. It is known that 

sometimes CMLs can lead to very long transient behaviors or supertransients (Hanski 

1999). However, it has been shown, albeit using a model other than the Ricker equation, 

that the range of conditions under which supertransients occur is fairly narrow (Labra et 

al. 2003). To be on the safe side, I iterated a randomly chosen subset of the simulations 

for 10,000 time steps, and plotted only the final 100 values. The resulting figures were 

more or less indistinguishable from the ones presented in this study. Moreover, it has 

often been argued that the timescales under which real populations exist are probably 

much shorter than the model-predicted time required to reach the equilibrium state. Thus, 

 

Figure 2.5. Behavior of the system when ten voids are introduced at random positions in a two-
dimensional lattice with random arrangement of r-values. Note that voids were introduced at the 
same positions for simulations at different values of m. See text for more details. 
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at least sometimes, transients can be of greater value in ecology than the equilibrium 

behavior (for a detailed discussion of this issue, see Hastings 2004). 

 

To summarize, I show that over a large range of mean intrinsic per capita growth rates 

(r), the precise spatial arrangement of patches with varying r, or of vacant uninhabitable 

patches, does not seem to have major qualitative effects on either metapopulation 

stability, or how the metapopulation dynamics is affected by migration rate. In this study, 

unlike many previous ones (Gyllenberg et al. 1993, Hastings 1993, Kendall and Fox 

1998), I used the Ricker equation for modeling subpopulation dynamics. The Ricker 

equation is generally considered a better model for biological populations than the 

logistic, partly because it cannot take negative values. Moreover, it is known to give a 

better fit than the logistic to real life data of the dynamics of several populations (Cheke 

and Holt 1993, Sheeba and Joshi 1998, Ives et al. 2004). If the pattern of results reported 

here holds for other more complex and realistic models of population growth, then one 

might be able to rule out spatial configuration of patch quality as a major factor in the 

determination of the gross dynamic behavior of metapopulations. 
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. CHAPTER 3 

EFFECTS OF MIGRATION RATE 

Low level of migration in a D. melanogaster experimental system 
enhances metapopulation stability via increased among-patch 
asynchrony, and simulations indicate that the phenomenon is likely 
to be ubiquitous among several species in nature. 

Dey, S., and Joshi, A. 2006.  Stability via asynchrony in Drosophila
metapopulations with low migration rates. Science 312, 434-436. 
 
Dey, S., and Joshi, A. 2006. Response to comment on "Stability via 
asynchrony in Drosophila metapopulations with low migration rates." 
Science 314, 420b.  
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INTRODUCTION 

 

Although classical population ecology theory treats individuals as being homogeneously 

distributed over space, most natural populations exhibit some degree of spatial 

structuring. Consequently, ecologists are increasingly focussing on metapopulations: 

ensembles of local populations (henceforth, subpopulations) that are connected by 

migration (Hanski 1999). In particular, the effects of migration rate on dynamics and 

stability of metapopulations have been extensively investigated theoretically (Hanski 

1999). Analytical (Gyllenberg et al. 1993, Kendall and Fox 1998) and simulation 

(Hastings 1993) studies have shown that even a simple system consisting of two 

subpopulations (modeled by a pair of logistic maps) with a constant rate of to and fro 

migration can exhibit rich dynamic behaviour. Subpopulations with high intrinsic growth 

rates (r) and low migration between them behave as though independent, and the ensuing 

dynamics of the metapopulation is complex. At intermediate migration rates, the two 

subpopulations oscillate out of phase (Kendall and Fox 1998), leading to reduced 

amplitude of oscillation and, hence, stability at the metapopulation level. When the 

migration rate is even higher, the dynamics of the subpopulations synchronize, resulting 

in high amplitude chaotic fluctuations in metapopulation size, giving rise to global 

instability. Similar results have been obtained by other workers using a variety of models 

more realistic than the logistic map. For example, a system of coupled Ricker maps can 

be stabilized by low levels of migration due to amplification of local noise under chaotic 

dynamics (Allen et al. 1993) or moderate levels of asynchrony (Ruxton 1994). The 

degree of subpopulation synchrony generally increases with migration rate (Ranta et al. 
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1998, Ripa 2000), although migration rate and environmental noise can interact in 

synchronizing the dynamics (Ranta et al. 1998, Kendall et al. 2000). Potential stabilizing 

effects of migration have also been demonstrated in studies on more complex systems 

(Nachman 1987, Lloyd and May 1996). Although it has been empirically shown that 

migration can stabilize dynamics (Mueller and Joshi 2000, Lecomte et al. 2004), most 

metapopulation experiments have been carried out within the classical extinction-

recolonization framework (Levins 1969) that ignores the dynamics of population size. At 

the same time, laboratory tests of theoretical predictions regarding the effects of 

migration rate on metapopulation dynamics are rare (Mueller and Joshi 2000). 

 

Similarly, despite a large corpus of theoretical studies, the effects of migration rates on 

mean population size have rarely been investigated experimentally. A simulation study of 

coupled Hassell maps on a two-dimensional lattice showed no major change in mean 

population size with increase in migration rate (Ruxton 1996). Using a model with 

different time scales for local and global dynamics, Hanski and Zhang (1993) showed 

that metapopulation size is maximal at an intermediate level of migration, whereas 

subpopulation size decreases monotonically with increase in migration rate. However, a 

model incorporating demographic stochasticity predicted maximum subpopulation size at 

intermediate levels of migration (Nachman 2000). To complicate matters further, a recent 

laboratory study on two-patch metapopulations of a fungus showed that mean 

subpopulation size increases monotonically with increase in rate of migration (Ives et al. 

2004). This result was supported by Ricker map-based simulations that used parameter 

values from the experiments (Ives et al. 2004). However, the fungi used in this study are 
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asexual, have very high growth rate, and suffered no extinctions at the subpopulation 

level during the entire course of the experiment. Lack of replication at the metapopulation 

level, the somewhat restrictive experimental conditions, and the biology of the organism, 

taken together, make it difficult to generalize the findings of this study.  

 

I studied the effects of low (10%) and high (30%) migration rates on the dynamics of 

replicated laboratory metapopulations of the fruitfly D. melanogaster, in a 21-generation 

long experiment. I also performed simulations using a simple non D. melanogaster-

specific model to test whether the experimental results are generalizable, or were due to 

some specific aspect of the ecology or life-history of D. melanogaster cultures. I discuss 

results from the simulations and the experiments in the light of previous theoretical 

predictions and furnish probable reasons for some seemingly anomalous observations. 

Finally, I propose probable mechanisms for the principal finding that low migration rates 

lead to asynchrony among neighboring subpopulations and show that this is a very likely 

outcome under natural conditions. 

 

 

MATERIALS AND METHODS 

 

Experiments 

 

One hundred and eight subpopulations, each represented by a single vial culture, were 

derived from a long-standing, outbreeding laboratory population (JB-1) of D. 
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melanogaster, maintained on a three-week discrete generation cycle. Details of the 

ancestry and regular maintenance regime of this population have been presented 

previously (Sheeba et al. 1998). Each subpopulation was initiated by placing exactly 20 

eggs in a 30 ml glass vial containing ~1 ml of banana-jaggery medium. The flies resulting 

from these eggs were labeled as generation 0, and from that point onwards, no direct 

control was exercised on the density of eggs in a vial. Once the adults started eclosing 

around day 8-9 after egg-lay, they were collected daily in corresponding holding vials. 

The adults were transferred to fresh holding vials every alternate day, until day 18 after 

egg-lay. Extreme care was taken to ensure one-to-one correspondence between egg vials 

and adult collection vials. On day 18, the flies were supplied with excess live-yeast paste 

for three days, to enhance their fecundity. On day 21 after egg-lay, the adult flies were 

censused, subjected to migration, and allowed to lay eggs for 24 hours in vials containing 

~1 ml banana-jaggery medium. After oviposition, the adults were discarded while the 

eggs formed the next generation. This maintenance regime (low larval and high adult 

food levels) has been extensively studied and is known to induce large amplitude periodic 

oscillations in population numbers (Mueller and Huynh 1994, Sheeba and Joshi 1998, 

Mueller and Joshi 2000, Prasad et al. 2003).  

 

Twelve metapopulations, each consisting of nine subpopulations, were set up and sets of 

four metapopulations each were subjected to one of three different migration rates – 

control (no migration; CMs), low (10%; LMMs) and high  (30%; HMMs). The nine 

subpopulations (single vial D. melanogaster cultures) were arranged on the periphery of a 

circle, with each vial exchanging migrants only with its two nearest neighbors i.e. a one-
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dimensional array with periodic boundary conditions. In nature, such metapopulations 

might exist, for example, on the shorelines of lakes or along the edges of ecosystems. 

Migration was manually imposed by removing the required number of flies from a 

subpopulation and distributing them equally to the two neighboring vials, just prior to 

reproduction in every generation. Desired levels of migration were imposed by manually 

moving mated females, as the population dynamics of a sexual species is governed 

largely by the number of females. In order to calculate the number of females to be 

moved, the total count in a vial was halved (i.e. an equal sex ratio was assumed) and 

rounded upwards in case of fractions. This number was multiplied by the desired fraction 

(0.1 or 0.3) and rounded off in both directions to the nearest even integer, to give the total 

number of female migrants. All analyses were performed on total population size (i.e. 

number of males + females) after migration. 

 

During the course of the experiment there were frequent subpopulation extinctions.  A 

subpopulation was deemed extinct when it did not contain at least one male and one 

female fly. When a CM subpopulation became extinct, it was restarted using four males 

and four females from a backup vial. The backup vials were maintained in parallel to the 

three treatments, under high larval crowding and yeast supplement to the adults. There 

were no restarts in the LMMs or HMMs; extinct subpopulation vials remained empty 

until recolonized by migrants from a neighboring subpopulation.  
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Simulations 

 

It has been analytically demonstrated that populations with uniform random spatial 

distribution and scramble competition exhibit Ricker dynamics (Brännström and Sumpter 

2005). Since D. melanogaster cultures more or less satisfy both conditions, I modeled 

subpopulation dynamics with the one-dimensional, discrete version of the Ricker map , 

[nt+1 = nt exp (r(1 – nt / K))] (Ricker 1954), where nt represents the subpopulation size at 

time t, and r and K refer to the intrinsic per capita growth rate of the subpopulation and 

carrying capacity of the patch, respectively. This model is known to give a good fit to 

data from many insect populations (Cheke and Holt 1993), including small laboratory 

populations of D. melanogaster (Sheeba and Joshi 1998). The qualitative behavior of the 

Ricker map is determined solely by one parameter, the intrinsic rate of growth, r, and the 

model exhibits a period-doubling route to chaos with increase in r (May and Oster 1976). 

This model is simple, not D. melanogaster-specific, and widely applicable to many 

species.   

 

In the simulations, a metapopulation consisted of nine linearly arranged subpopulations, 

with nearest neighbor migration under periodic boundary condition. The migration rates 

were restricted to those used in the experiments: no migration (CMs), 10% (LMMs) and 

30% (HMMs). All the subpopulations in a given run had the same value of r with a noise 

term � (0 < � < 0.2; uniform random distribution) added to r for each subpopulation at 

every generation, to simulate stochastic variation in population growth rates. I estimated 

the value of r in D. melanogaster cultures, by fitting the Ricker map to the experimental 
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time series derived from the subpopulations of the CMs. Based on these estimates, I 

simulated the experimental system for r-values of the subpopulations ranging from 2.7 to 

3.0 in increments of 0.02. Since a Ricker map does not take zero values, I stipulated a 

50% probability of extinction when the population size fell below four. Further, all 

extinctions in the controls were reset to a value of eight whereas there was no such 

resetting in the LMMs and HMMs. Each migration rate × r combination of 

metapopulation was simulated 10 times and all statistics were calculated on the first 100 

time steps of the simulated populations. This means that I explicitly looked at the 

transient behaviour of the model, rather than the equilibrium conditions. I consider this 

more ecologically meaningful as often very large number of iterations (supertransients) 

are needed for a coupled map lattice to reach equilibrium (Hastings and Higgins 1994, 

Hastings 2004); numbers that are much larger than the lifetime of any natural population, 

let alone the duration of my experiment. I also performed a series of simulations, based 

on the above framework, to investigate the interaction of stochasticity and variations in 

initial population sizes on the synchrony among neighboring subpopulations.   

 

Measures of stability 

 

I define a population whose size fluctuates with higher amplitude across time to be less 

stable than one that has lower amplitude of fluctuation ("constancy" attribute of stability  

sensu Grimm and Wissel 1997). Although several measures of stability exist in the 

ecological literature (Grimm and Wissel 1997), the two most commonly used ones in 

experimental studies are the S-index (standard deviation of log/ln-transformed data) and 
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the coefficient of variation (CV) of population size over time. However, both these 

statistics had certain undesirable properties that make them unsuitable for measuring 

fluctuation in the present study. For example, in the case of S-index, since log transform 

is undefined at 0, a common feature of ecological data, it is general practice to replace 

zeroes by 1 or use log (Nt+1). This transformation leads to a severe underestimation of the 

true variability, and the more the zeroes, the worse the bias (McArdle et al. 1990). Since 

there were frequent extinctions in the populations in the current study, I decided to avoid 

this measure. Although CV is free from the problem of zero-values, it is a biased estimate 

when the distribution being sampled has a long tail (McArdle et al. 1990 and references 

therein). This is because a long-tailed original distribution leads to a heavily skewed 

distribution of sample variances. This is important in the context of my experiment, as 

exploratory analysis revealed that the distribution of the population sizes in the 

experiment does have a long tail. Moreover, both measures have the undesirable property 

that they are independent of the sequence of values in the time series. Consider two time 

series: 

i) 100, 500, 100, 500, 100, 500.... and, ii) 100, 100, 100, 500, 500, 500..... 

Both time series will have equal values of CV and S-index, yet series i) represents a two-

point limit cycle while series ii) is a system with neutrally stable equilibrium. Thus, the 

differences in dynamics and stability properties of these two time series, leading to very 

different ecological implications, would not be captured by measures such as the CV or 

S-index. 
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To address these issues I introduce a measure of stability, the fluctuation index (FI) of a 

series, given as: 
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where Nt is the population size at time t and N  is the mean population size over T 

generations. FI thus reflects the mean one-step change in population size, scaled by 

average population size over the study duration, and is inversely related with stability: 

higher FI signifies lower stability and vice versa. FI has the several desirable properties 

that makes it suitable for the present ecological experiment. It is a dimensionless quantity 

and hence can be used to compare the stability of even populations with widely differing 

mean sizes. Since it is free from the problem of zero-values, no data transform is needed, 

thus avoiding potential bias. Moreover, by formulation, it takes into account the sequence 

of values in the series and hence is a better measure of fluctuation from generation to 

generation, a phenomenon directly related to the concept of constancy stability (Grimm 

and Wissel 1997). Finally, since FI is not a measure of variability, it should be unaffected 

by the biased distribution of sample variances owing to the long-tailed distribution. 

 

Measures of synchrony and statistical analysis 

 

Presence of long-term trends and temporal autocorrelations in the data complicate the 

quantification of synchrony across multiple time series (Liebhold et al. 2004). 

Correlations arising due to long-term trends in population size can potentially mask the 

synchrony on shorter time scales. On the other hand, presence of temporal autocorrelation 

within the series leads to the violation of the among-sample independence assumption for 
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any parametric test of significance (Buonaccorsi et al. 2001). Several statistics, each with 

its own strengths and weaknesses, have been proposed to measure synchrony across two 

or more time series (Buonaccorsi et al. 2001, Liebhold et al. 2004). In the present study, I 

measure synchrony using cross-correlation at lag zero of first differenced natural log-

transformed data (Bjørnstad et al. 1999). Log-transformation of data makes the variance 

independent of the mean (Sokal and Rohlf 1995), while first differencing the series leads 

to the study of the rates of change, which obviates the need for any further detrending 

(Liebhold et al. 2004). The problem of temporal autocorrelation is taken care of as I have 

multiple time series and a single test for synchrony can be performed using the pairwise 

correlations between nearest neighbors (Liebhold et al. 2004). This leads to the new 

complication that the correlations between the various series (subpopulations) are not 

independent due to migration. However, I used four independent replicate 

metapopulations (random factors), nested within the migration treatments (fixed factor) 

for the analysis of variance (ANOVA). The conclusions drawn are based on the observed 

significance levels of the factor 'migration' which is tested over a denominator term 

reflecting the average variation among replicate metapopulations within migration 

regime. Since the metapopulations themselves are independent of each other, the between 

sample independence assumption of ANOVA is not violated in my analysis. I use the 

same analytical framework for all statistical analyses in this chapter.    

 

In order to check the robustness of my conclusions, I also measured synchrony amongst 

nearest neighbors using two other statistics: 
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1. Cross-correlation of untransformed series values: the Pearson correlation coefficient is 

a very commonly used statistic that provides a direct measure of the synchrony in 

population sizes (Buonaccorsi et al. 2001).  

2. Measure based on number of times two series change in the same direction: the 

number of times two series increase or decrease together, can be used as a measure of 

synchrony between them. In case of multiple series, the average of these values is also 

the proportion of times that pairs of series change in the same direction (Buonaccorsi et 

al. 2001).  

 

 
RESULTS AND DISCUSSION 
 

Experiment 

 

The metapopulations experiencing low levels of migration among subpopulations 

(LMMs), had lower FI in metapopulation size than either the control metapopulations (no 

migration; henceforth, CMs) or those experiencing high levels of migration (henceforth, 

HMMs) (Fig. 3.1A). Nevertheless, the FI for subpopulation size in LMMs was 

significantly higher than in the HMMs or CMs (Fig. 3.1B). Thus, low levels of migration 

caused global metapopulation stability, despite increased local instability in the 

subpopulations. The underlying mechanism was revealed by examining the cross-

correlations at lag zero of first differenced time series of log abundance (ln(Nt+1) - ln(Nt)) 

of  all  possible  subpopulation  pairs  in  a  metapopulation,  following  Bjørnstad  et  al.  
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 (1999). The mean cross-correlation, averaged across all subpopulation pairs, was 

significantly positive in both CMs and HMMs, but close to zero in the LMMs (Fig. 

3.2A). This indicates that in the CMs and HMMs, the subpopulations tended to reach 

peak and trough population sizes together, thus leading to high amplitude oscillations at 

the metapopulation level. However, there was no such synchrony in subpopulation sizes 

in the LMMs, rendering the metapopulation dynamics relatively more stable.  

 

Since migration in the current experiment was confined to the nearest neighbors, I further 

investigated the spatial patterns of subpopulation synchrony, by examining the cross-

correlations for all nearest neighbor pairs. The LMMs showed a significantly negative 

mean   cross-correlation   (Fig.   3.2B), indicating     that    the   immediate    neighboring 

subpopulations were often out of phase, thus confirming some theoretical predictions 
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Figure 3.1. Experimental results. The p-values indicate the significance level from the 
corresponding mixed model ANOVA. The inequalities denote the means that were found 
different at the .05 (*) or .001 (**) level of significance using Tukey's HSD test. CM = no 
migration, LMM = low levels of migration (10%), HMM = high levels of migration (30%). 
Error bars are standard errors around the mean for four replicate metapopulations. (A) Mean 
Fluctuation Index (FI) of LMMs was lower than either CMs or HMMs, indicating higher 
constancy stability. (B) Mean FI of the subpopulations was highest in the LMMs, suggesting 
lower stability at that migration rate. (C) Mean subpopulation size of CMs was higher than both 
LMMs and HMMs, which is unexpected. See text for possible explanations.     
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(Gyllenberg et al. 1993, Kendall and Fox 1998). On the other hand, the CMs and HMMs 

showed significantly positive mean cross-correlations between nearest neighbors (Fig. 

3.2B). Similar conclusions were reached when I considered the two other statistics for 

measuring synchrony between the nearest neighbors. The average cross-correlation 

coefficient of untransformed data, across the nearest neighbors was found to be 

significantly different amongst the three migration treatments (F2,9 = 10.02, p < 0.005). 

The average for the LMMs was found to be negative and significantly different (Tukey's 

HSD, p < 0.01) from CMs and HMMs, both of which were positive in sign. Similarly, 

ANOVA on the statistic measuring the number of times two time series change in the 

same direction suggested that there was a significant effect of migration (F2,9 = 11.08, p < 

0.004) with the LMM subpopulations having the lowest average value for number of 

times the neighboring subpopulations increased or decreased together. Together, these 
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Figure 3.2. Mean (± SE) cross-correlation coefficients from the experimental data. (A) The means 
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bolster the conclusion that in the LMMs, the nearest neighbors are out of phase with each 

other. 

 

While high migration rate is predicted to induce synchrony (positive correlation) between 

the subpopulations (Nachman 1987, Ranta et al. 1998, Ripa 2000), zero migration (as in 

the CMs) is not expected to do the same, particularly under constant laboratory 

conditions. In the absence of migration, the subpopulations are independent of each other 

and their dynamics should not become synchronized except in the presence of external 

environmental forcing (Moran 1953), which is unlikely to occur in the strictly maintained 

constant environmental conditions of the laboratory. However, subpopulations in the 

CMs suffered frequent extinctions, averaging 3.35 out of 9 subpopulations per 

generation. Upon extinction, these subpopulations were restarted by the introduction of 

eight flies from a backup vial. Thus, about a third of the subpopulations in each CM were 

equalized for population size every generation, potentially leading to artifactual positive 

cross-correlations among them. Overall, my results on the effects of migration rate on 

subpopulation synchrony, and therefore metapopulation stability, seem to confirm the 

existing predictions in the theoretical ecology literature.  

 

I also examined the effects of different migration rates on metapopulation and 

subpopulation size. Mean subpopulation and metapopulation size of CMs were 

significantly higher than in the LMMs or HMMs (Fig. 3.1c), contradicting a previous 

study predicting a monotonic increase in population size with increase in migration rate 

(Ives et al. 2004). However, the controls (no migration) employed in that study (Ives et 
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al. 2004) underwent no subpopulation extinctions, whereas subpopulations in the CMs 

went extinct frequently and were restarted by introducing eight individuals. This influx of 

flies from outside is probably the reason behind the increased mean subpopulation size in 

the CMs. Since I examined only two migration rates, it is difficult to compare my results 

with simulations that predict highest metapopulation size at intermediate migration rates 

(Hanski and Zhang 1993, Nachman 2000). However, mean subpopulation size in the 

LMMs and HMMs did not differ significantly, thus contradicting predictions that local 

population size should decrease (Hanski and Zhang 1993) or increase (Ives et al. 2004) 

monotonically with increase in migration rate. This may be because of the specific model 

assumptions and restricted parameter range (Hanski and Zhang 1993), or very different 

experimental protocol than mine (Ives et al. 2004), in those studies. Thus, the effects of 

migration rate on metapopulation and subpopulation size seem to depend critically on 

model assumptions and the biology of the organisms, making it difficult to put forth 

general predictions. 

 

The question now is whether my experimental results reflect a simple effect of migration 

rates on typical population dynamics, or an interaction of migration rate with some 

specific features of the life-history and ecology of D. melanogaster cultures. The 

generality of my empirical results depends largely on the answer to this question. One 

way to address this issue is to simulate the experimental system for a biologically 

relevant parameter range, but using a simple model of population dynamics that does not 

include any specific aspects of the life-history or ecology of D. melanogaster cultures. If 

such a simulation can capture at least the major trends seen in the experimental data, then 
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one can rule out the possibility that the experimental results are largely specific to D. 

melanogaster.  

 

 

Simulations 

 

The simulation of my experiment, with subpopulation dynamics following the Ricker 

map, yielded results very similar to the experimental data. The FI of the LMMs in the 

simulations was lower than both CMs and HMMs (cf Fig. 3.3A and 3.1A), whereas at the 

subpopulation level, FI for LMMs were the highest (cf Fig. 3.3B and 3.1B). The mean all 

pair and nearest neighbor cross-correlations were also found to be similar to the 
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Figure 3.3. Simulation results averaged over 10 independent runs (Error bars represent SE 
around the mean). (A) Mean metapopulation FI were the lowest for LMMs and similar for 
CMs and HMMs (cf Fig 1A). (B) Mean subpopulation FI was the highest for LMMs (cf Fig 
1B). (C) The average subpopulation size of CMs was found the lowest, contrary to the 
experimental findings (Fig 1C). See text for a possible explanation. X-axis labels and 
interpretation of inequalities in the insets are as in figure 3.1. 
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experimental data (cf Fig. 3.2 and 3.4), with nearest neighbors in the LMMs showing 

significantly negative correlations. However, in the simulations, subpopulation size 

exhibited the trend CMs < HMMs < LMMs (Fig. 3.3C), which does not agree with the 

observed trend in the experiment (CMs > LMMs ~ HMMs). Examining the 

subpopulation time series revealed that the number of extinctions in the simulations was 

much less than in the experiment. For example, in simulations with r = 2.8, comparable 

to the estimated r in my CM subpopulations, the mean extinction rate was 0.75 out of 9 

subpopulations per generation, as compared to 3.35 out of 9 for experimental CMs. The 

criterion for subpopulation extinction in the experiment was the absence of at least one 

male-female pair. On the other hand, a subpopulation in the simulations was deemed 

extinct when there were zero individuals, as the Ricker map does not distinguish between 

the sexes. Consequently, there were fewer resets to Nt = 8 in the CM subpopulations of 

the simulations, ultimately leading to lower mean subpopulation size, as compared to the 

 

A
2.7 2.8 2.9

M
ea

n 
C

ro
ss

-C
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

-1.0

-0.5

0.0

0.5

1.0

CM
LMM
HMM

B
2.8 2.9 3.0

Intrinsic growth rate, r

Figure 3.4. Mean (± SE) cross-correlation coefficients from the simulations. (A) The average 
cross-correlation coefficient between all possible subpopulation pairs was found to be close to 
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corresponding empirical observation for the CMs (cf Fig 2A). See text for a possible 
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negative for the LMMs but close to zero for the CMs. This shows that while the LMM 
subpopulations were out of phase with each other, there was little synchrony among the CM 
subpopulations. X-axis labels and interpretation of inequalities in the insets are as in figure 3.1. 



 46

experiments. Overall, I was able to recover almost all the major features of the 

experimental data from Ricker-based simulations in a biologically meaningful parameter 

range. Scramble competition for resources is experienced by animals across a wide range 

of taxonomic groups including most microbes, invertebrates, fishes and amphibians, and 

the Ricker model is known to be a good descriptor of dynamics under this type of 

competition (Brännström and Sumpter 2005). Moreover, similar results have been 

obtained using a suite of other commonly used models of population dynamics including 

the logistic (Gyllenberg et al. 1993, Kendall and Fox 1998), Hassell (Ranta and Kaitala 

2006) and Maynard Smith-Slatkin model (Ranta and Kaitala 2006).  My experimental 

results, therefore, are likely to hold true for a variety of species other than D. 

melanogaster. 

 

Why does asynchrony arise? 

 

 Ranta and Kaitala have pointed out that the observed asynchrony among neighboring 

subpopulations in my experiment could have arisen due to an interaction between 

stochasticity and variation in initial population sizes (Ranta and Kaitala 2006). Using 

simulations based on a two-patch system of coupled logistic maps, they show that 

variations in initial conditions can interact with stochasticity to produce asynchrony. 

Their argument is based on the fact that under low rates of migration, in phase and out of 

phase dynamics form fractal basin boundaries on the initial population size (IPS) space 

and hence, stochasticity can tip a system into a zone of asynchrony.  However, if the two 

types of basins of attraction are evenly distributed, as in some of the panels of (Ranta and 
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Kaitala 2006), then contra Ranta and Kaitala (2006), noise is equally likely to lead the 

subpopulations to either synchrony or asynchrony. This implies that, on an average, one 

would expect neighboring subpopulation sizes to be uncorrelated. Strictly speaking, the 

mechanism proposed by Ranta and Kaitala does not, therefore, explain the statistically 

significant subpopulation asynchrony seen in the experiments. However, this contention 

was based on the results of two-patch metapopulation simulations (Hanski and Zhang 

1993, Ranta and Kaitala 2006). Since the actual outcome of the mechanism suggested by 

Ranta and Kaitala depends on the fine structure of the basin boundaries, one would need 

to refer to a corresponding 9-dimensional IPS space for making similar observations on 

my experimental system. As it is not possible to visualize such a space, I instead looked 

directly at the effects of variation in IPS and stochasticity on the synchrony of 

subpopulations in a 9-patch metapopulation, as used in the experiment. As high migration 

(30%) invariably led to synchrony (positive cross-correlation coefficient of first-

differenced ln-transformed population sizes) under all conditions studied, here I restrict 

myself to reporting the effects of low migration (10%).  

 

 

When IPS varied among subpopulations, both synchrony and asynchrony were observed, 

even without stochasticity (Fig. 3.5A). On introducing noise by adding � (0 < � < .2) to r 

in each patch every generation, as in the earlier simulations, the fraction of IPS 

combinations leading to asynchrony increased (Fig. 3.5B). Increments in either r or the 

level of noise in r further increased the proportion of IPS combinations leading to 

asynchrony. Upon adding a 50% probability of extinction when subpopulation size fell 



 48

below 4, in conjunction with noise in r, asynchrony was observed in almost all the cases  

(Fig. 3.5C). Thus, while differences in IPS can give rise to either synchrony or 

asynchrony (Ranta and Kaitala, 2006, Fig. 3.5A), incorporating stochasticity and 

probabilistic extinction greatly increases the proportion of IPS conditions leading to 

asynchrony. Even if all the IPS are the same, stochasticity in r alone can induce 

asynchrony (Fig. 3.6A), at least for some of the IPS sets, and this proportion increases on 

increasing r, or the noise in r. If probabilistic extinction is added to noise in r, almost all 

IPS sets lead to asynchrony even when all IPS are the same (Fig. 3.6B). These 

observations indicate that in a multi-patch system, stochasticity alone can induce 

asynchrony under low migration rates, and differences in IPS can enhance this effect (cf 
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Figure 3.5. Average nearest neighbor cross-correlation coefficients in 9-patch 
Ricker-based metapopulations, with 10% nearest neighbor migration and periodic 
boundary conditions. The r and K in each subpopulation were fixed at 2.8 and 40 
respectively, and only the first 100 iterations were considered, without discarding 
any transients. The abscissa represents the mean (x) of the normal distribution 
(standard deviation 10x) from which the starting population sizes were drawn. The 
starting values were rounded off to the nearest integer and negative values were 
replaced by zeroes. (A) When the starting population sizes were randomly chosen, 
both synchrony and asynchrony were observed, even in the absence of any other kind 
of noise. (B) When stochasticity was introduced in the form of noise in the parameter 
r, the fraction of cases leading to asynchrony increased. (C) On adding further 
stochasticity in the form of probabilistic extinctions, asynchrony was observed in 
almost all cases, indicating that stochasticity interacts with starting population sizes 
in producing asynchrony. See text for more details of the simulations.     
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Figure 3.6. These simulations were similar to those represented in figure 1, except that the initial 
population size was kept same for all subpopulations. (A) shows that even when all populations are 
started from the same initial point, stochasticity in r is sufficient to lead to asynchrony in several 
cases. (B) shows that adding a probability of extinction results in asynchrony in almost all cases. 
Comparison of figures 3.5 and 3.6 indicate that stochasticity alone can induce asynchrony at least in 
some cases, but its effect is enhanced when there are differences in the starting size of the 
subpopulations. 

  

Fig. 3.6A and 3.5B). Thus, my simulations show that intrinsic growth rate and different 

conditions of stochasticity and IPS can interact in a complex manner to produce out of 

phase behavior in subpopulations. 

In natural metapopulations, stochasticity in demographic parameters, probabilistic 

extinction and variation in IPS are all likely ubiquitous. The current simulations suggest 

that under such circumstances, asynchrony among subpopulations is almost inevitable 

(Fig. 3.5C). One possible reason for this might be that under such conditions the multi-

dimensional IPS space may lose the fractal structure and consist primarily of basins of 

attraction for asynchrony. Thus, the combination of low migration and high 

subpopulation growth rates is very likely to lead to stability via among-patch asynchrony 

in metapopulations in the laboratory or in nature.  
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This study, to the best of my knowledge, is the first rigorous empirical test of the effects 

of different migration rates on fluctuations in metapopulation size. Besides verifying 

several existing theoretical predictions, the results have potential practical implications. A 

major concern in conservation biology is the designing of migration corridors for 

stabilizing the dynamics of populations in isolated, patchy habitats. My results show that 

too much migration can actually increase the amplitude of fluctuations in metapopulation 

size, thus potentially endangering the metapopulation in the long run. However, 

migration in the experiment was confined to the two nearest neighbors, and it is known 

that the dynamics of a metapopulation can vary depending upon the scheme of migration 

(Earn et al. 2000). Moreover, the growth rate of D. melanogaster (and most insects, 

microbes and fishes) is higher than other animals such as mammals and birds, which are 

generally of more concern in terms of conservation. The intrinsic growth rates of 

subpopulations are known to interact strongly with migration rate (Dey et al. 2006a) and 

exact form of density dependence (Ims and Andreassen 2005) in producing observed 

metapopulation dynamics. Therefore, due caution should be exercised while 

extrapolating the results of the present study to natural populations.  



 51

CHAPTER 4 

EFFECTS OF MIGRATION SCHEMES 

The effects of migration rate on the dynamics of metapopulations 
depend on whether migration happens in every generation or not, but 
are otherwise unaffected by migration being density- independent, 
density dependent, or stochastic. 

Dey, S., Biswas, S., Shakarad, M. and Joshi, A. An investigation of 
metapopulation stability under various schemes of migration and spatial 
arrangement of subpopulations.  Manuscript under preparation 
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INTRODUCTION 

 

Although classical population ecology theory treats individuals as being homogeneously 

distributed over space, many natural populations exhibit some degree of spatial 

structuring (Hanski 1999). Consequently, over the last two decades, a large number of 

studies have concentrated on metapopulations: ensembles of local populations 

(henceforth, subpopulations) that are connected by migration (see for a review Hanski 

and Gaggiotti 2004). In particular, many theoretical investigations have focused on the 

effects of migration on metapopulation dynamics (Gyllenberg et al. 1993, Hastings 1993, 

Kendall and Fox 1998, Earn et al. 2000). It has been shown that even a simple system 

consisting of two subpopulations with a constant, density-independent rate of to and fro 

migration can exhibit rich dynamic behavior (Gyllenberg et al. 1993, Hastings 1993, 

Kendall and Fox 1998). Subpopulations with high intrinsic growth rates (r), and low 

migration between them, behave as though independent, and the ensuing dynamics of the 

metapopulation is complex. At intermediate migration rates, the two subpopulations 

oscillate out of phase (Kendall and Fox 1998), thus resulting in stability at the 

metapopulation level. When the migration rate is even higher, the dynamics of the 

subpopulations synchronize, resulting in large fluctuations in metapopulation size.  

However, these results are based on the simplest case of two-subpopulation 

metapopulations and a number of other interesting considerations arise when the number 

of subpopulations is greater than two.  
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Increasing the number of subpopulations beyond two can sometimes lead to changes in 

the subpopulation dynamics (Ylikarjula et al. 2000), although the effects of density-

independent migration rate on the global dynamics  (von Bremen and Udwadia 2002, 

Dey and Joshi 2006b) remain unchanged. Even though each subpopulation might be 

chaotic individually, the metapopulation can exhibit periodic global behavior (von 

Bremen and Udwadia 2002). Moreover, although the dynamics can be altered by the 

scheme of migration (nearest neighbor versus global coupling) (Earn et al. 2000), or by 

the presence of correlated environmental noise (Kendall et al. 2000), there is no 

consistent differential effect of density-dependent or density-independent migration on 

metapopulation dynamics (Ylikarjula et al. 2000). There is also no gross qualitative effect 

of different kinds of spatial arrangements of subpopulations (Dey et al. 2006a).  

 

In the current study, I build on the work of Dey et al. (2006) and investigate whether 

different kinds of migration schemes have any major effects on metapopulation stability. 

I consider metapopulations exhibiting stable point equilibria or low periodicity limit 

cycles to be more stable than metapopulations undergoing more complex limit cycles. I 

show that the effects of migration rate on metapopulation stability are not qualitatively 

altered if the migration rate is density-dependent, or varying stochastically. However, 

there is a marked destabilization of the global dynamics if the migration does not take 

place in every generation. These effects of migration were found to be robust across 

different spatial arrangements (linear, alternate and random; see Methods) of 

heterogeneous subpopulations, differing in their r-values.  
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METHODS 

 
Following Dey et al. (2006), I modeled subpopulation dynamics with the Ricker equation 

(Ricker 1954), 

 

nt+1
' = nt exp (r ( 1 – nt / K)),                                                  (1) 

 

where nt represents the population size at generation t, and r and K refer to the intrinsic 

per capita growth rate of the subpopulation and the carrying capacity of the patch, 

respectively. The qualitative behavior of the Ricker map depends solely on the intrinsic 

growth rate, r, and the map exhibits stable point, limit cycles and chaotic behavior for r <  

2, 2 < r < 2.692 and r > 2.692 respectively (May and Oster 1976). Apart from being 

theoretically well understood, the Ricker map is known to be a good descriptor of the 

dynamics of several natural and laboratory populations (Cheke and Holt 1993, Mueller 

and Joshi 2000, Dey and Joshi 2006b). I studied the behavior of metapopulations 

consisting of coupled Ricker maps arranged in a one-dimensional array, with each map 

having a different value of r. Thus, I explicitly consider environmental heterogeneity, by 

stipulating different parameter values for the local subpopulations. I limit myself to the 

investigation of one-dimensional arrays as it has been shown by an earlier that there is no 

qualitative difference in the dynamics whether the subpopulations are arranged in 1-D or 

two-dimensional arrays (Dey et al., 2006; chapter2). When migration occurs, a fraction 

(m t, j) of the jth subpopulation emigrates and gets distributed equally into the immediate 

neighboring patches. The patches were assumed to be arranged linearly with periodic 

boundary condition (i.e. on the periphery of a circle), with migration possible only 
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between immediate neighbors. In nature, one might expect to find this kind of a system 

on the shores of lakes, or in the case of species living at the margins of ecosystems. The 

population size for any patch j in generation t +1 was given by 

 

nt+1,j = ( 1 - m t, j ) nt+1, j
'
 + 0.5 (m t+1, j-1 nt+1, j-1

' + m t+1, j+1 nt+1, j+1
'
 )              (2) 

 

where nt,j  is the subpopulation size in the jth patch at the tth generation, rj denotes the 

maximal intrinsic growth rate of the subpopulation in the jth patch, K is the carrying 

capacity of the patch (assumed to be same for all patches), and  m t, j is the migration rate 

of the jth patch at the tth generation (0 ≤ m t, j ≤ 1). 

The size of the entire metapopulation at generation t was given by 

 

where J is the total number of patches in the metapopulation.  

 

In this study, I looked at three different kinds of spatial arrangements of subpopulations 

within the metapopulations. These were called  (1) linear, when the r-values of the 

subpopulations increased linearly, (2) alternate, in which alternate subpopulations had 

high and low r-values, and (3) random, where the subpopulations with different r-values 

were distributed randomly on the array. Many simulations, with different ranges of 

possible r-values of the subpopulations, were carried out for each of the three types of 

metapopulation. The mean r of the metapopulations, averaged across subpopulations, 

ranged from 2.25 to 4.95 in different simulations, with the r-values assigned to the 

(3)                                                                 ,   
1

,�
=

=
J

j
jtt nN
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subpopulations in any one simulation having a range of 1, centered symmetrically around 

the mean (i.e. mean ± 0.5). The r-values of the subpopulations were increased in steps of 

1/J, where J was the total number of patches in the metapopulation. The values of K (= 

600) and initial population size, n0,j (= 100), were kept constant for all the subpopulations 

in all simulations. In case of the random arrangement of r-values, I ran several 

simulations but failed to detect any qualitative differences among the results generated 

and, hence, present here a randomly chosen set of figures for the relevant cases. In all the 

figures, the mean r for a simulation is plotted on the x-axis while the corresponding 

metapopulation size at successive generation in that simulation (after discarding the 

transients) is plotted on the y-axis. Thus, these diagrams are analogous to the familiar 

bifurcation diagrams and can be interpreted similarly.  

 

The effects of the following scenarios on metapopulation dynamics were studied: 

 

Density-dependent migration rate: To model the density-dependent rate of migration, a 

quantity �t,j was defined as: 

 

�t,j = nt,j/K 

 

Then, the migration rate m t, j for the jth patch at the tth generation was given as  

 

     m t, j                                                                                              (4) 
 

 

=  �t,j × �  ; �t,j ≤ 1            
= �     ; �t,j  > 1  
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where � is a constant. I examined six different values of �, namely .01, .02, .05, .1, .25 

and .5, for each type of patch arrangement (linear, alternate, and random).  

 

Stochastic migration rate: Here I looked at the effects of stochastically varying the 

migration rate on the dynamics of the population. For this, the migration rates for each 

patch in each generation were sampled from a normal distribution with a mean of m and 

standard deviation of either m/10, m/5 or m/2. 

 

Periodic migration events: In this case, migration was periodic i.e. did not take place 

every generation. Nine different periodicities (� = 2, 3, 4, 10, 15, 20, 40, 50 and 60 

generations) were studied for each migration rate (m t, j = m = .01, .02, .05, .1, .2) × patch 

arrangement (linear, alternate and random) combination.  

 

 

Stochastic migration events: To simulate a scenario where migration at a patch in a given 

generation is a stochastic event (i.e. there is a certain probability that a migration event 

shall take place), I defined a constant � such that 

 

                              m t, j                                                                                                (5) 

 

 

where rand is a random number between 0 and 1, sampled separately for each m t, j, from 

a uniform distribution.  I used the in-built random number generator of QBASIC v 4.5, 

=  m  ; rand  ≤ �  
= 0    ; rand  > �  
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for generating the values of rand. Three values of � namely, 0.99, 0.9 and 0.8, for each 

combination of patch arrangement × m, were investigated in this section. 

 

All programs were written in QBASIC v 4.5. In each individual simulation, the 

appropriate equations were iterated for 500 generations, the first 400 values discarded as 

transients, and the values of Nt (equation 3) for the remaining 100 generations were 

recorded. It has been earlier shown that systems consisting of coupled one-dimensional 

maps can give rise to very long transients, sometimes stretching to millions of iterations 

(Hastings and Higgins 1994, Kaneko 1998, Hanski 1999). This means that here I have 

explicitly looked at the transient behavior of the metapopulations, for which there were 

two reasons. First, an earlier study based on the same modeling framework (Dey et al. 

2006a) did not find any difference in the patterns of figure 4.1, even on rejecting 9900 

iterations as transients. Second, the time-scale of the existence of natural populations is 

far less than the time predicted by the models to reach the steady state. Thus, it has often 

been argued that the behavior of transients is more ecologically meaningful than the 

equilibrium behavior (Hastings and Higgins 1994, Hastings 2004), a view with which I 

concur. 
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RESULTS AND DISCUSSION 

 

For the sake of comparison with previous work (Dey et al. 2006; chapter 2), I begin with 

a brief description of the behavior of the metapopulations when migration happens every 

generation at a constant, density-independent rate of m (0 ≤ m ≤ 1) for the linear 

arrangement of subpopulations (equation 2; Fig. 4.1). In all the figures, I have plotted the 

average of the intrinsic growth rate (r) of 64 subpopulations on the x-axis and the 

metapopulation size over hundred generations on the y-axis. These figures can therefore 

be considered as bifurcation diagrams and can be interpreted as such. In other words, for 

a given value of r, the number of points plotted represents the periodicity of the time 

series: a single point indicating a stable equilibrium, two points indicating a two-point 

limit cycle, and so on. Clearly, by the definition of stability used (Dey et al. 2006a), a 

 

Figure 4.1. Bifurcation diagram of a system consisting of 64-subpopulations arranged on the 
periphery of a circle, with intrinsic growth rate, r, increasing linearly across patches. Nearest 
neighbor migration takes place every generation at a constant rate of m.  Maximum 
metapopulation stability is seen at the intermediate value of m = .05.  See text for more details. 
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larger number of points for a given value of r indicate greater instability. The description 

in the following paragraph is based on the results of Dey et al. (2006) and Fig. 4.1 of this 

study is essentially similar to Fig. 1 of Dey et al. (2006). 

 

When there is no migration, all subpopulations are independent of each other, the 

metapopulation shows complex dynamics, and the range of fluctuations is high. For low 

values of mean r, all values of the population sizes settle into two distinct bands (Fig. 

4.1).  Although the system might be exhibiting chaos or high periodicity limit cycles, 

such a system is statistically indistinguishable from one undergoing a noisy two-point 

limit cycle (Turchin 2003). This is because at such values of r, the attractor consists of 

 

Figure 4.2. Bifurcation diagram of a system consisting of 64-subpopulations arranged on the 
periphery of a circle, with intrinsic growth rate, r, increasing linearly across patches. Nearest 
neighbor migration occurs every generation at a density-dependent rate as given in eq. 4 (see 
text). Higher values of � indicate a higher rate of migration. There is no appreciable difference 
in the dynamics with the case when migration rate is density-independent (fig 4.1). 
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two distinct regions that are alternately visited by the trajectory (Dey et al. 2006a).    On 

increasing mean r, the two bands come closer and finally merge, thus increasing the 

statistical periodicity and instability. As r increases even further, the population size 

fluctuates extensively within a more or less defined range. Increasing m from 1% to 5% 

reduces the range of fluctuation of population size at low values of mean r, whereas the 

system settles into limit cycles or stable points for higher values of mean r.  However, as 

m increases further (5% to 20%), the system reverts back to the zero migration case. It 

has been shown earlier that this pattern is (a) independent of the spatial arrangement of 

the patches, (b) observed even in 2-dimensional lattices, and (c) robust to the presence of 

moderate numbers of empty patches in the lattice (Dey et al. 2006a). 

 

Figure 4.3a. Dynamics of 64-patch metapopulations when migration rate is density-independent, 
but drawn from a normal distribution of mean m and standard deviation of m/10. Comparison with 
fig 4.1 indicates that introducing stochasticity in migration destabilizes the metapopulations, 
without altering the pattern of maximum stability being attained at intermediate migration rates. See 
text for further discussion.  
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Figure 4.3b. Dynamics of 64-patch metapopulations when migration rate is density-independent, 
but drawn from a normal distribution of mean m and standard deviation of m/5. Comparison with 
fig 4.1 indicates that introducing stochasticity in migration destabilizes the metapopulations, 
without altering the pattern of maximum stability being attained at intermediate migration rates. 
See text for further discussion.  
  

Figure 4.3c. Dynamics of 64-patch metapopulations when migration rate is density-independent, 
but drawn from a normal distribution of mean m and standard deviation of m/2. Comparison with 
fig 4.1 indicates that introducing stochasticity in migration destabilizes the metapopulations, 
without altering the pattern of maximum stability being attained at intermediate migration rates. 
See text for further discussion.  
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Spatial arrangement  

 

No major qualitative differences in patterns of metapopulation stability were observed 

under the various spatial arrangements considered (linear, alternate, random). This result 

agrees with a previous study (Dey et al. 2006a) and indicates that the dynamics of 

metapopulations are reasonably robust to differences in how the subpopulations are 

arranged in space. This is reassuring from the point of view of metapopulation modeling, 

as it suggests that the finer details of the precise spatial distribution of heterogeneous 

subpopulations can be typically safely ignored.  

 

Figure 4.4a. Dynamics of a 64-patch metapopulation when density-independent migration events 
take place every � generation at a rate of m = .01When migration events do not take place in every 
generation, the stabilizing effect of migration is lost. The more infrequent the migrations are (i.e. 
higher the values of �) the closer are the pattern of metapopulation dynamics to the zero migration 
(m = 0) case. See text for further discussion.  
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As there were no major differences between the three spatial arrangements, here I restrict 

myself to presenting the results of simulations on the linear arrangement of 

subpopulations (See Methods).  

 

Density-dependent migration rate 

 

Migration rate has been treated as a density-independent constant in most studies on the 

effects of migration on metapopulation dynamics (Gyllenberg et al. 1993, Hastings 1993, 

Kendall and Fox 1998, Dey et al. 2006a). However, this is an unrealistic assumption as 

 

Figure 4.4b. Dynamics of a 64-patch metapopulation when density-independent migration 
events take place every � generation at a rate of m = .02.  
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the rate of migration in a given generation and patch is likely to be a function of the 

present subpopulation density and also subject to stochastic variation.  Therefore, I 

examined the case where migration rate (m) is density-dependent (equation 4) across 

generations and space (Fig. 4.2). Density-dependent migration (Fig. 4.2) did not lead to 

any observable qualitative differences from the case when migration rate was density-

independent (Fig. 4.1). This suggests that, at least for the formulation of density-

dependent migration rate in this study, there is no major difference in the dynamics 

regardless of whether the migration rate is density-independent or density-dependent. A 

previous study (Ylikarjula et al. 2000) investigated several different schemes of density-

 

Figure 4.4c. Dynamics of a 64-patch metapopulation when density-independent migration 
events take place every � generation at a rate of m = .05.  
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dependent and density-independent migration, but did not observe any consistent 

difference in subpopulation synchrony among the different schemes. Unfortunately, 

Ylikarjula et al. (2000) did not report the behavior of the global dynamics, which makes 

direct comparison with the current results difficult. It should be noted here that the 

density-dependent migration scheme used in this work is not one of those used by 

Yliikarjula et al. (2000). Taking together the results of Yliikarjula et al. (2000), Dey et al. 

(2006), and the current work, it seems that whether migration rate is density-dependent or 

density-independent does not make any major differences to the global or local patterns 

of stability in metapopulations.  

 

Figure 4.4d. Dynamics of a 64-patch metapopulation when density-independent migration 
events take place every � generation at a rate of m = .1.  
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This observation implies that at least for modeling natural metapopulations whose 

dynamics approximately follow the Ricker map, it might be safe to consider an average 

density-independent rate of migration, rather than explicitly incorporating a density-

dependent function in the model.     

 

Stochastic migration rate 

I also studied a scenario where migration is density-independent and occurs every 

generation, but with rates that are normally distributed around some constant mean and 

standard deviation. Again, this is a more realistic assumption than the constant rates of 

 

Figure 4.4e. Dynamics of a 64-patch metapopulation when density-independent migration 
events take place every � generation at a rate of m = .2.  
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migration assumed by most previous studies. However, just like density-dependent 

migration rate, stochastic migration rate also did not have any major observable effects 

on the dynamics of the metapopulations (Fig. 4.3a - 4.3c). As expected, increasing the 

standard deviation of the distribution of m destabilized the metapopulations. Despite this 

destabilization, the patterns observed in Fig. 4.1 remained unchanged, and maximum 

stability was obtained for intermediate values of m. However, at very high standard 

deviation (Fig. 4.3c) the maximum stability for high r-values was obtained at m = .02, 

rather than at m = .05, as in Fig. 4.1. Thus, it appears that at least for the kind of variation 

in m that I considered in this study, it is the mean migration rate that determines the 

dynamics of the metapopulations. This observation suggests that knowledge of the mean 

migration rate is probably sufficient to understand the major features of the dynamics of 

metapopulations and is, therefore reassuring from the point of view of modeling real 

metapopulations, at least for systems that approximately follow Ricker dynamics.  

 

Periodic migration  

When migration is periodic, there is a marked change in the dynamics of the 

metapopulation (Fig. 4.4, a-e) for all values of m.  For low values of m (.01, .02), even 

low periodicity (�) is enough to strongly destabilize the metapopulation (cf Fig. 4.1 and 

first three panels of Fig. 4.4a and 4.4b). Even migration every alternate generation (� = 

2) is not sufficient to stabilize the dynamics at the metapopulation level. As � increases, 

the number of migration events taking place within a fixed number of generations goes 

on decreasing, and the metapopulation dynamics increasingly resembles the situation 

when there is no migration at all. Thus, for all values of m, the three panels at the bottom 
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(denoting high values of �) of Fig. 4.4a - 4.4e are almost identical to the zero migration 

case of Fig. 1. However, when m is high (.1, .2; Fig. 4.4d and 4.4e), the amplitude of 

oscillation of metapopulation numbers is greatly increased, particularly for higher values 

of mean r, thus signifying a greater instability. These behaviors at the metapopulation 

level can probably be explained if the periodic migration events are thought to be 

analogous to perturbations in the context of the zero migration case.  Thus, low rates of 

migration (Fig. 4.4a and 4.4b) lead to a smaller degree of perturbation to the 

metapopulation dynamics as a whole, and hence, the dynamics more or less resemble the 

case when there is no migration. However, a high rate of migration would mean a greater 

perturbation to the dynamics of the metapopulation, resulting in a more serious departure 

from the zero migration scenario. If this conjecture were to be true, then one would 

expect the rate at which the overall metapopulation dynamics converges to the zero 

 

Figure 4.5a. Dynamics of a 64-patch metapopulation when there is a 99% probability of 
migration taking place in a particular generation for a given subpopulation. 
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migration case with increase in �, to be different for different values of m.  To be more 

specific, when m is low, it is expected that the rate of convergence would be high and 

vice versa.  Comparing Fig. 4.4a – 4.4e shows that this indeed is the case, and with 

increase in m, there is an observable reduction in the speed with which the overall 

dynamics returns to the zero migration case with increasing �.  

These results indicate that at least for systems that approximately follow Ricker 

dynamics, it is imperative to have very frequent migration among the subpopulations in 

order to beget stability at the level of the metapopulation. This has possible implications 

for management and conservation of those animals in which migration plays an important 

role in stabilizing metapopulation dynamics. However, it is to be noted that even when � 

= 2, the total number of migration events that occur in T generations, is T/2. In other 

words, even for the lowest value of � (= 2) in the present study, a given subpopulation 

 

Figure 4.5b. Dynamics of a 64-patch metapopulation when there is a 90% probability of 
migration taking place in a particular generation for a given subpopulation. 
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sent out and received migrants only in 250 generations out of 500. This begs the question 

as to whether this level of occurrence of migration is just too low to maintain stability in 

the given system, or whether any arbitrarily small departure from the condition of 

migration every generation would also lead to instability.  I deal with this question in the 

next section. 

 

Stochastic migration events 

In this part of the study, migration from a patch in a particular generation was assumed to 

occur with a certain probability. From Fig. 4.5a it is seen that even when this probability 

(�) is as high as 0.99 (i.e. only in 1/100 generations per subpopulation, on average, does 

one expect a migration event to not occur) there is considerable amount of 

 

Figure 4.5c. Dynamics of a 64-patch metapopulation when there is a 80% probability of 
migration taking place in a particular generation for a given subpopulation. 
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destabilization. Limit cycles of low period disappear completely and only high 

periodicity cycles/chaos are observed. This effect is further magnified at � = 0.9 and � = 

0.8 (Figs. 4.5b and 4.5c) wherein the range of oscillations in metapopulation size are also 

increased.  Combining the results of this section and the previous one suggests that 

migration is needed in almost every generation in order to stabilize a Ricker-based 

metapopulation by migration alone. This result sounds a cautionary note towards efforts 

to conserve fragmented populations by creating migration corridors between isolated 

patches. In order to attain stability, it is not only essential that migration occurs at a 

certain (intermediate) rate, but also that the migration events happen sufficiently 

regularly.  

 

To summarize, my results suggest that there is no gross difference in the effects of 

migration rate on metapopulation stability whether migration rate is density-dependent, 

density-independent, or subject to stochastic variation. However, in order to beget 

stability by migration alone, it is essential that migration events take place very 

frequently, preferably every generation. Finally, these results are robust to demographic 

and spatial heterogeneity among the subpopulations. The Ricker map is known to be a 

fair descriptor of dynamics of organisms from a large number of taxa, including microbes 

(Ives et al. 2004) and insects (Cheke and Holt 1993, Sheeba and Joshi 1998, Dey and 

Joshi 2006b). Therefore, apart from their theoretical implications, these results are 

expected to be of general importance to empirical ecologists and conservation planners. 
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CHAPTER 5 

EFFECTS OF LOCALIZED PERTURBATIONS 

Localized perturbations are unlikely to affect the dynamics of real 
biological metapopulations. 

Dey, S., and Joshi, A. 2007. Local perturbations do not affect stability of 
laboratory fruitfly metapopulations. PLoS ONE 2(2): e233. 
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INTRODUCTION 

 

Simple one-dimensional maps can exhibit a variety of dynamic behaviors ranging from 

stable points to limit cycles to chaos (May 1974, 1976), and have been extensively used 

to model the dynamics of single populations. It has been shown that for large ranges of 

parameter values, the dynamics of such maps can be substantially altered by the addition 

(McCallum 1992) or removal (Sinha and Parthasarathy 1995, Gueron 1998) of a constant 

number of individuals every generation. This happens because such perturbations can 

change the slope of the return map at the equilibrium point, thereby affecting the 

dynamics of the population (Stone 1993, Stone and Hart 1999). However, such simple 

models explicitly assume that the individuals in the population are homogeneously 

distributed in space, whereas many real populations exhibit spatial structuring into 

metapopulations: groups of local populations (subpopulations) connected by migration. 

Many methods for stabilizing the dynamics of metapopulations by perturbation have been 

proposed in the context of both ecological (Güémez and Matías 1993, Stone 1993, 

Doebeli and Ruxton 1997, Parekh et al. 1998, Stone and Hart 1999) as well as physical 

(Sepulchre and Bablyonatz 1993, Aranson et al. 1994, Braiman et al. 1995, Grigoriev et 

al. 1997) systems, and some of these proposed algorithms have been empirically verified 

in physical (Hunt 1991, Roy and Murphy 1992) or in-vitro physiological systems 

(Garfinkel et al. 1992, Schiff et al. 1994). However, to the best of my knowledge, there 

has been no experimental confirmation of stabilization of a real biological 

metapopulation by constant perturbation. 
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There are several reasons why experimental studies lag far behind the substantial body of 

theoretical predictions on the issue of metapopulation stabilization by perturbation.  Most 

theoretical studies on the subject have explicitly concentrated on stability in terms of 

amelioration of chaos to get stable points or limit cycles (Güémez and Matías 1993, 

Doebeli and Ruxton 1997, Parekh et al. 1998, Parekh and Sinha 2002). However, since 

real organisms come in discrete (integer) numbers, no real population can exhibit chaos 

in the strict sense, although this does not rule out the possibility of complex dynamics 

(Henson et al. 2001). Moreover, most theoretical treatments assume a large number of 

subpopulations in an ideal, noise free, zero-extinction environment, which is far from the 

reality of actual biological metapopulations.  

 

Here I report a 21-generation long experiment on the effects of localized perturbations at 

the subpopulation level on local and global stability, using two sets of four replicate D. 

melanogaster metapopulations each. Each metapopulation contained 9 subpopulations, 

represented by single vial cultures, arranged on the periphery of a circle, with 30% 

migration in each generation to the two nearest neighbors. In the four pinned (Parekh et 

al. 1998) metapopulations, I perturbed the same subpopulation (henceforth, the pinned 

subpopulation) in every generation by adding a fixed number of flies from outside the 

system, whereas there were no such perturbations in the four control metapopulations. I 

show that although pinning affects the dynamics of the particular pinned subpopulation, it 

has no measurable effects on metapopulation dynamics. I also show that Ricker-based 

simulations capture the patterns observed in the data, indicating that my results are 

generalizable. I further demonstrate, via simulations, that the current findings are robust 
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to the various assumptions made in the experiment regarding the number of pinned 

patches per metapopulation, the strength of pinning, and migration rates. Finally, I 

investigate the effects of the interaction of extinction and pinning in shaping 

metapopulation dynamics and show that my results generally hold even in the absence of 

local extinctions. Since I explicitly focus on indicators of stability that are ecologically 

meaningful and can be measured easily, these results are not only of interest to ecologists 

but have potential practical implications for a conservation biologist trying to develop 

schemes for stabilizing a fragmented population. 

 

MATERIALS AND METHODS 

 

Experimental populations 

 

In this experiment I used eight replicate metapopulations of the fruit fly D. melanogaster, 

each consisting of nine subpopulations. Four of these metapopulations were subjected to 

pinning and the other four acted as controls. The seventy-two subpopulations, each 

represented by a single-vial culture, were derived from a long-standing, outbreeding 

laboratory population (JB-1) of D. melanogaster, whose ancestry and maintenance 

regime has been described elsewhere (Sheeba et al. 1998). Each subpopulation was 

initiated by placing exactly 20 eggs in a 30 ml glass vial containing  ~1 ml of banana-

jaggery medium. The flies that came out of these eggs were designated as generation 0, 

and no direct control was exercised on the egg density in a vial from that point onwards. 

Once the adults started eclosing around day 8-9 after egg lay, they were collected daily in 
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corresponding holding vials containing ~3 ml of medium. The adults were transferred to 

fresh holding vials every alternate day, until day 18 after egg collection. Extreme care 

was taken to ensure one-to-one correspondence between egg vials and adult collection 

vials. On day 18, the flies were supplied with excess live-yeast paste for three days, to 

enhance their fecundity. On the 21st day after collection of eggs, the adult flies were 

sexed, censused, subjected to migration (see below), and allowed to lay eggs for 24 hours 

in vials containing  ~1 ml banana-jaggery medium. After oviposition, the adults were 

discarded while the eggs formed the next generation. This maintenance regime (low 

larval and high adult food levels) has been extensively studied and is known to induce 

large amplitude periodic oscillations in population numbers (Mueller and Huynh 1994, 

Sheeba and Joshi 1998, Mueller et al. 2000, Prasad et al. 2003).  

 

Migration and pinning 

 

Following an earlier study (Dey and Joshi 2006b), the subpopulations (single vial D. 

melanogaster cultures) were arranged on the periphery of a circle, with each of them 

sending out and receiving migrants to and from the two nearest neighbors. This 

arrangement can also be visualized as a one-dimensional linear array with periodic 

boundary condition in terms of migration. Such one-dimensional systems can be found in 

nature on the shores of lakes or on forest edges. Migration (30%) was imposed by 

manually removing the required number of flies from a subpopulation and distributing 

them equally to the two neighboring vials, just prior to reproduction in every generation. 

Only mated females were migrated, as the dynamics of the population of a sexually 
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reproducing organism is chiefly governed by the number of females. In order to calculate 

the number of migrant females, the total count in a vial was halved (i.e. a sex ratio of 1:1 

is assumed) and rounded upwards in case of fractions. This number was multiplied by 0.3 

(i.e. the migration rate) and rounded off to the nearest even integer, to give the total 

number of female migrants. There were frequent extinctions in the subpopulations during 

the course of the experiment. Upon extinction, a vial remained empty until it was 

recolonized by migrants from a neighboring vial.  

 

Pinning was imposed on four metapopulations by introducing eight mated females every 

generation to a designated (pinned) subpopulation just before the census. The flies 

required for this purpose were generated from backup vials that had excess (~ 6 ml) food 

for larvae and yeast supplement for the adults, and were run in parallel with the 

experimental vials. It should be noted that for a particular metapopulation, the same 

subpopulation was pinned in every generation. The average subpopulation size in these 

experiments was found to be ~26 flies.  Thus, the strength of pinning used in this 

experiment is ~33% of the average population size. Given that only mated females were 

migrated, this represents a fairly strong perturbation. Since the pinning flies were 

introduced prior to the census, a 30% migration rate ensured that at least one female was 

migrated to each of the neighboring vials. Thus, the pinning strength can also be 

described as six flies to the pinned vial and one each to the two immediate neighbors. The 

remaining four metapopulations experienced 30% migration but no pinning and, thus, 

served as controls.     
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Measuring stability and synchrony 

 

I considered a population whose size fluctuates with higher amplitude across time to be 

less stable than one that has lower amplitude of fluctuation  ("constancy" attribute of 

stability, sensu Grimm and Wissel 1997). I measured the constancy stability using the 

fluctuation index (FI) (Dey and Joshi 2006b), which is given by: 
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where Nt is the population size at time t and N  is the mean population size over T 

generations. Thus, FI measures the average one-step fluctuation in population size across 

generations, scaled by the mean population size. Since it is a dimensionless quantity, FI 

can be used to compare the dynamics of populations even if they vary widely in size. I 

measured synchrony as the cross-correlation at lag zero of the first differenced time series 

of log abundance [ln (Nt+1) - ln (Nt), where Nt is the population size at time t] of the 

nearest neighboring subpopulations in a metapopulation (Bjørnstad et al. 1999).  

 

Statistical analysis 

 

All data were subjected to a two-way nested mixed model analysis of variance 

(ANOVA), treating replicate metapopulation as a random factor nested within treatment 
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(control/pinned; fixed factor). All statistical analyses were performed using the 

commercially available software, STATISTICA � v 5.0 (Statsoft Inc). 

   

 

Simulations 

 

The simulation study was designed to be as close to the experimental system as possible. 

The subpopulation dynamics were modeled using the Ricker model [nt+1 = nt exp (r(1 – nt 

/ K))] (Ricker 1954), where nt represents the subpopulation size at time t, and r and K 

refer to the intrinsic per capita growth rate of the subpopulation and carrying capacity of 

the patch, respectively. A metapopulation consisted of nine linearly arranged 

subpopulations, with nearest neighbor migration under periodic boundary condition (Dey 

et al. 2006a, Dey and Joshi 2006b). The carrying capacity, K (=25) and the initial 

subpopulation size (=20) were kept invariant for all the simulations.  All the 

subpopulations in a given run had the same value of r with a noise term � (0 < � < 0.2; 

uniform random distribution) added to r for each subpopulation at every generation, to 

simulate stochastic variation in population growth rates. I simulated the experimental 

system for r-values of the subpopulations ranging from 2.0 to 4.0 in increments of 0.1 

and for each value of r, I plotted the means and standard errors of 10 independent runs. 

Estimates of r (mean 2.9; SD .33) and K (mean 25.1; SD 7.2) were derived by fitting the 

Ricker map to the subpopulation time series from the experimental controls (see 

Parameter estimation below). Thus, the chosen parameter range includes the biologically 

relevant range for my laboratory populations of D. melanogaster.  
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Coupled map lattices can have very long transients (supertransients) lasting for thousands 

of iterations (Kaneko 1998), and the behavior of the system during this transient phase 

can be very different from the equilibrium behavior (Hastings and Higgins 1994).  

Although most theoretical studies on coupled map lattices concentrate on the equilibrium 

dynamics (eg. Güémez and Matías 1993, von Bremen and Udwadia 2002), I calculated 

the various metrics estimated in the experiment using data from only the first 100 

iterations, thus concentrating explicitly on the transients.  I consider this to be a closer 

approximation to my experiment, which lasted for 21 generations. Moreover 

concentrating on transient dynamics is also more meaningful ecologically as any real 

population is unlikely to experience a constant environment or, for that matter, even 

survive for thousands of generations in nature (Hastings 2004). 

  

In the simulations seeking to imitate the experimental conditions, the rate of migration 

was kept constant at 30%. Pinning was modeled by adding 8 individuals to the pinned 

subpopulation, in every generation, prior to migration.  Since a Ricker map does not take 

zero values, I stipulated extinction probabilities that were estimated from the time series 

of the controls (Fig. 5.1). For this, I calculated the frequency of extinction (absence of at 

least 1 male and 1 female, before migration) in the next generation (t+1), when the 

population sizes were low (< 10), medium (≥ 10 and <70) or high (≥ 70) in the parent 

generation (t). At an r-value of 2.8, this set of extinction probabilities predicted an 

average of 5.02 out of 9 subpopulations going extinct per generation, which was higher 

than the corresponding estimate from the experimental controls (3.69). I also computed 

the extinction probability profile from the experimental data for bin sizes of <5, 5-70, and 
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>70, and repeated all the simulations with these values of extinction probabilities (data 

not shown). This predicted an average subpopulation extinction rate of 3.3 out of 9 per 

generation, but did not lead to any qualitatively different predictions at the subpopulation 

or metapopulation level from those shown in figures 5.3-5.6. This suggests that my 

simulation results are robust to the way in which the extinction probabilities are 

computed.  

 

I then studied the effects of pinning different numbers of subpopulations (1, 2, 3, 4, 5, 7, 

9), pinning strengths (0, 2, 4, 8, 12, 16 individuals per generation) and migration rates 

(10%, 20%, 30%, 40%) on the metapopulation dynamics. Since it is known that the 

distribution of pinned patches can affect the dynamics (Doebeli and Ruxton 1997), for a 

given level of number of pinned patches (i.e. 1, 2, 3, 4, 5, 7 or 9), the spatial arrangement 

 

Figure 11 
Figure 5.1. Empirically observed extinction probabilities at 
different population sizes. This shows the fraction of times a 
population went extinct in generation t+1, when the population size 
in generation t fell within a particular range in the controls. 
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of the pinned patches was kept similar in all simulations. In all the simulations described 

in this paragraph, the default values of parameters not under investigation were kept 

constant at levels described for the simulations mimicking the experiments.  Thus, for 

example, in the simulations on the effects of pinning different numbers of 

subpopulations, the pinning strengths and migration rates were kept constant at 8 

individuals and 30%, respectively, and so on. 

 

Parameter estimation 

 
The least-squares estimates of the parameters r and K were obtained using the in-built 

Quasi-Newton algorithm of STATISTICA � v 5.0 (Statsoft Inc) and, on an average, the 

model was able to explain ~40% of the variation in the data. While this fraction does 

appear to be somewhat low, note that the subpopulations were also undergoing migration 

in every generation, a fact that was ignored during the modeling procedure, when 

individual subpopulation time series data were fit to the model. Moreover, the sources of 

noise in my model are a) white noise in the parameter r, and b) experimentally derived 

extinction probabilities, whereas a model that explicitly incorporates demographic 

stochasticity (Drake 2005) might be better suited to model extinction prone populations. 

While it would be interesting to compare the parameter estimates derived from such 

detailed models with the estimates obtained in the present study, such an exercise is 

clearly beyond the scope of this thesis. 
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RESULTS AND DISCUSSION 

 

Experiment 

 

The mean fluctuation index, FI (Dey and Joshi 2006b), of the pinned subpopulations was 

significantly lower (F1,3= 180.95, p < 0.0009) than the mean FI of the remaining eight 

subpopulations in the pinned metapopulations (Fig. 5.2A). This indicates that constant 

addition of flies every generation from outside the metapopulation stabilized the pinned 

subpopulation by reducing the fluctuation in its population size over time. I then sought 

to check if this stabilized subpopulation (i.e. the pinned subpopulation) was in turn able 

to affect the dynamics in its neighborhood or not. For this, I divided the pinned 

metapopulation into three groups; each consisting of three subpopulations. The pinned 
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Figure 1 Figure 5.2. Experiment: effect of pinning at the subpopulation level, averaged over four replicate 
metapopulations. (A) The mean FI of the pinned subpopulation was significantly less than the 
mean of the remaining eight subpopulations. (B) There was no difference in the average FI of the 
pinned group (the pinned subpopulation and its two immediate neighbors) and the two 
neighboring groups on either side (No Pin1 and No Pin 2). This suggests that the stabilized 
subpopulation could not stabilize the dynamics of the pinned group vis-à-vis the two neighboring 
groups. Error bars indicate standard errors around the mean in this and all subsequent figures in 
this chapter. 
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group contained the pinned subpopulation and its two immediate neighbors, while the 

other two groups (No Pin 1 and No Pin 2 in Fig. 5.2B) were comprised of the three 

neighboring subpopulations to the right and left of the pinned group respectively. There 

was no significant difference (F2,6 = .64, p = 0.56) between the average FI of the pinned 

group and the neighboring groups (Fig. 5.2B) thus indicating that the reduced FI of the 

pinned subpopulation does not translate into significant stabilization of the pinned group 

vis-à-vis the neighboring non-pinned groups.  

 

I then measured the various attributes of metapopulation dynamics (see Materials and 

methods), like metapopulation stability (Fig. 5.3A), subpopulation stability (Fig. 5.3B), 

synchrony among nearest neighboring subpopulations (Fig. 5.3C), and average 

subpopulation size (Fig. 5.3D), but did not observe any significant difference between the 

control and the pinned metapopulations. Another commonly used measure of population 

stability, namely the coefficient of variation (CV) of population size, was also found to be 

similar in both treatments at the metapopulation (F1,6 = .32, p < 0.59) and subpopulation 

(F1,6 = 1.13, p < 0.33) level. When an extinct patch was defined as one that remained 

empty during breeding after migration had taken place, the total number of subpopulation 

extinctions over 21 generations was considerably less in the pinned metapopulations (39) 

than in the controls (69). However, this is an artifact of the experimental protocol, as all 

three subpopulations in the pinned group of the pinned metapopulation were, by design, 

receiving flies from outside every generation (see Materials and methods) and hence they 

were never scored as extinct. When I considered pre-migration extinction, in the form of 

absence of at least one breeding pair (i.e. 1 male + 1 female) in a subpopulation, there 
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was no difference in number of extinctions per generation between the pinned and control 

metapopulations (F1,6 = .009, p < 0.93), indicating that pinning did not affect the 

persistence of subpopulations. Together, these observations suggest that pinning had no 

effects on stability or, indeed, on any of the other measured attributes of the 

metapopulation. 

 

The above experimental observations could have arisen due to two possible reasons: 

either pinning, at least at the levels used here, genuinely does not affect the dynamics of 
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Figure 5.3. Experiment: effect of pinning at the metapopulation level, averaged over four replicate 
metapopulations. (A) Metapopulation stability and (B) subpopulation stability were measured as the 
fluctuation index (FI) over 21 generations. (C) Synchrony among nearest neighbors was measured as the 
cross-correlation at lag zero of the first differenced ln-transformed values of population sizes. Due to the 
high rates of migration, the subpopulations were found to be in synchrony, as demonstrated by the 
positive cross correlation coefficients. (D) Average subpopulation size. There was no difference among 
the pinned and the control metapopulations in any of the panels, indicating that pinning had no detectable 
effect on metapopulation dynamics.   
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metapopulations, or there are some unique features of D. melanogaster life-history or 

ecology in the laboratory that ameliorate the effects of pinning. In case the second 

hypothesis were true, these results are not likely to be generalizable to other species and, 

hence, would be of limited interest. One way to distinguish between these competing 

hypotheses is to simulate my experimental system with a biologically relevant model of 

population dynamics that is broadly applicable to several species and does not include 

any specific features of D. melanogaster life-history or laboratory ecology. If such a 

model were able to capture at least the general features seen in the experimental data, 

then one would expect these results to be valid for a wide spectrum of organisms.  

 

Simulations 

 

Experimental system 

 

 It has been analytically demonstrated that populations with a random spatial distribution 

and scramble competition follow the Ricker dynamics (Brännström and Sumpter 2005). 

Since laboratory cultures of D. melanogaster exhibit both features, I modeled the 

subpopulation dynamics by the Ricker model (Ricker 1954), a simple one-dimensional 

model of population dynamics, whose qualitative behavior is solely determined by the 

intrinsic growth rate parameter, r (May and Oster 1976).  The Ricker model has been 

shown to be a good descriptor of the dynamics of various types of organisms like 

microbes (Ives et al. 2004), fishes (Ricker 1975) and insects (Cheke and Holt 1993), 

including D. melanogaster (Sheeba and Joshi 1998, Dey and Joshi 2006b). Thus, this 
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model satisfies the criteria of being biologically relevant, not specific to D. melanogaster, 

and widely applicable.    

 

The simulation results were seen to support the experimental observations. The FI of the 

pinned subpopulation in the simulations was found to be lower than the mean of the 

remaining eight subpopulations for a range of r-values (Fig. 5.4A), while the mean FI of 

the pinned group was found similar to or, for some values of r, slightly lower than the 

other groups (Fig. 5.4B). As in the experiments, there were no observable differences in 

the metapopulation FI (Fig. 5.5A), subpopulation FI (Fig. 5.5B) or subpopulation 

synchrony (Fig. 5.5C) between control and pinned metapopulations in the simulations. 

The model predicted a slight decrease in subpopulation size (Fig. 5.5D) in the pinned 

metapopulations, at least for lower values of intrinsic growth rate r, which was not 

observed in the experiments. Overall, these results agree well with the experimental data, 

 

Figure 3 Figure 5.4. Simulations mimicking experiment: effect of pinning at the subpopulation level. (A) 
The FI of the pinned subpopulation was lower than the mean of the remaining eight 
subpopulations, over a substantial range of the intrinsic growth rate parameter, r. (B) There was 
no difference in the average FI of the pinned group and its two neighboring groups. These 
observations agree with the experimental results (cf. Fig 5.1), implying that the experimental 
findings are not specific to D. melanogaster. All data points in this and subsequent simulation 
figures represent average of 10 independent runs. See text for details of simulations. 
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suggesting that the experimental observations are unlikely to be specific to D. 

melanogaster. It is important to note here that these results do not invalidate previous 

theoretical studies on using regular perturbations to stabilize chaotic systems to get limit 

cycles or stable points (Doebeli and Ruxton 1997, Parekh et al. 1998), as those studies 

investigated a different kind of stability altogether. The findings of this study merely 

suggest that, all else being equal, the effects of localized perturbations are unlikely to be 

measurable at the metapopulation level in real biological populations.  

 

Figure 4 Figure 5.5. Simulations mimicking experiment: effect of pinning at the metapopulation level.
Ricker based simulations predicted no difference in (A) metapopulation stability, (B) 
subpopulation stability, and (C) synchrony amongst nearest-neighbors, between the control and 
pinned metapopulations. (D) The simulations suggested a slight decrease in subpopulation size 
for low values of r, which was not picked up by the experiment. Overall, these results agree 
with the corresponding experimental findings (Fig 5.2), indicating that they are likely to be 
applicable to other species.       
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Relaxing experimental assumptions 

 

Studies on laboratory systems generally entail a higher degree of accuracy in 

measurement and better control over noise than is possible in nature. Thus, failure to 

observe an effect of pinning under controlled laboratory conditions indicates that, at least 

under conditions similar to the experiment, pinning is expected to be of limited 

importance in controlling the dynamics of real populations. However, earlier theoretical 

studies have shown that the number of patches pinned, the magnitude of pinning, and the 

migration rate can affect the dynamics of the metapopulation (Doebeli and Ruxton 1997, 

Parekh et al. 1998, Parekh and Sinha 1999, 2002). Since I conducted the experiments 

under a fixed set of conditions � pinning one patch with 8 females in each generation, 

under 30% migration rates � it is natural to ask whether these results would have been  

altered if one or more of these conditions had been different. Moreover, in this study, I 

used unstable D. melanogaster subpopulations that had a high rate of extinction, which 

can also possibly influence the dynamics. Although the ideal way to address these issues 

would have been to conduct more experiments under appropriate conditions, logistic 

constraints prevented me from doing so. Since this and earlier studies (Dey and Joshi 

2006b) have indicated that Ricker-based coupled map lattices are good surrogates for D. 

melanogaster metapopulations, I used the same simulation framework described above to 

investigate the effects of departures from the experimental conditions.  

 

Increasing the proportion of pinned patches did not change the metapopulation FI, at least 

for values of r  < 3 (Fig. 5.6A). For higher values of r, which signifies the chaotic zone in  
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Figure 5 Figure 5.6. Simulations relaxing experimental assumptions: effect of pinning density 
and magnitude on stability. (A) There was no effect on metapopulation FI due to 
pinning greater number of patches for r < 3.  When r  > 3, increasing the proportion of 
pinned patches generally increased FI, although there were no consistent patterns. (B) 
Varying the magnitude of pinning had no effects on metapopulation stability. These 
suggest that the empirical results are robust to departures from the conditions of the 
experiment. 

 

Figure 6 
Figure 5.7. Simulations relaxing experimental assumptions: effect of migration rate on 
stability. Various rates of migration did not have a differential effect on the stability of the 
(A) control and (B) pinned metapopulation, again indicating the robustness of the 
experimental findings. 
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case of the Ricker model, increasing the number of pinned patches generally increased 

the metapopulation FI (hence instability), although there were no distinct patterns.   

 

Altering the pinning strength failed to produce any observable change in the 

metapopulation dynamics (Fig. 5.6B). It has been shown earlier that low and high rates of 

migration reduce and enhance the metapopulation FI, respectively (Dey and Joshi 

2006b). While similar patterns were observed in my simulations, there was no observable 

difference between the control (Fig. 5.7A) and the pinned (Fig 5.7.B) metapopulations. 

Together, these observations suggest that the experimental results are robust and no 

significant changes in the outcome would have been expected, even if the experiments 

were to have been conducted under different conditions of pinning or migration rates. 

 

Absence of extinction 

 

Like most of their natural counterparts, the experimental metapopulations experienced 

frequent local extinctions followed by recolonization from neighboring patches. This 

immediately raises the question as to whether the observed effects of pinning were 

modulated by subpopulation extinctions. I investigated this issue by repeating all the 

above-described simulations in the absence of any extinctions. When there were no 

extinctions, the FI of the pinned subpopulation was found to be slightly less than the 

mean of the remaining eight subpopulations (Fig. 5.8A) for r < 2.6. However, for r > 2.6, 

the pinned subpopulation had a higher FI, which agrees with the findings of a previous 

study that used an individual based model without any local extinction (Solé and 
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Gamarra 1999) but is contrary to the experimental data (Fig. 5.2A) and the earlier 

simulation (Fig. 5.4A). The FI of the pinned group was also higher than the two 

neighboring groups (cf Fig. 5.8B and Fig. 5.4B) for r > 2.6. These observations indicate 

that in the absence of extinction, the effect of pinning on subpopulation dynamics 

interacts with the intrinsic growth rate of the subpopulations. However, in the presence of 

local extinctions, pinning uniformly stabilizes the subpopulation dynamics. 

 

These differences at the subpopulation level, however, did not lead to major changes in 

the results at the metapopulation level (Fig. 5.9A) compared to the case when extinction 

probabilities were explicitly incorporated into the simulations (Fig. 5.5A). Thus, although 

there seemed to be an effect of pinning on the shape of the metapopulation FI profile (cf 

 

Figure 7 Figure 5.8. Simulations with no extinctions: effect of pinning at the subpopulation level.  
(A) The FI of the pinned subpopulation was higher than the mean of the remaining eight 
subpopulations only for r > 2.6. (B) The average FI of the pinned group tended to be 
higher than the two neighboring groups for r > 2.6, although this difference was 
significant only for a comparatively narrow parameter range. Both these results were 
contradictory to the observations from the experiments (Fig 5.1) and the simulations 
mimicking the experiments (Fig 5.3), indicating that the effect of pinning at the 
subpopulation level interacts with the extinction probability. 
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Fig. 5.9A and Fig. 5.5A), there were no systematic differences in the FI of the control and 

the pinned metapopulations. The subpopulation FI (Fig. 5.9B) and the nearest neighbor  

cross-correlation coefficient (Fig. 5.9C) were also seen to be similar in the control and 

pinned metapopulations. Under no extinction, the model predicted an increase in average 

subpopulation size of the pinned metapopulations (Fig. 5.9D) for high values of r (> 3.2), 

 

Figure 8 Figure 5.9. Simulations with no extinctions: effect of pinning at the metapopulation level. 
Although there were qualitative differences in the shapes of the profiles compared to the 
case when extinction probabilities were incorporated (Fig 5.4), there were no systematic 
differences between the control and the pinned treatments in terms of (A) metapopulation 
FI, (B) subpopulation FI, and (C) subpopulation synchrony. However, the average 
subpopulation size (D) of the pinned subpopulations was predicted to be similar to the 
controls for r < 3, which agrees with the experiments (Fig 5.2D), but not the earlier 
simulations (Fig 5.4D). Taken together it can be said that even in the absence of extinctions, 
pinning is unlikely to affect metapopulation dynamics.    



 98

which was again different from the effects under extinction (Fig. 5.5D).  Together, these 

observations suggest that while the subpopulation level dynamics under pinning might be 

affected by the presence/absence of extinction, this difference is unlikely to have a major 

global impact at the metapopulation level. 

 

When there were no extinctions, increasing the number of pinned subpopulations had no 

effects at low values of r but, in general, destabilized the metapopulations by increasing 

the FI for high values of r (Fig. 5.10A).  Although there was a distinct change in the 

profile, and an increase in the overall magnitude of metapopulation FI (cf Fig. 5.10A and 

Fig. 5.6A), the basic observation that increasing the proportion of pinned subpopulations 

generally increased the metapopulation FI remained unchanged. The prediction that 

increasing the density of pinned subpopulations might lead to an observable change in the 

 

Figure 9 Figure 5.10. Simulations with no extinctions: effect of pinning density and magnitude on stability. 
(A) When there are no extinctions, increasing the number of pinned patches was generally found 
to destabilize the metapopulation dynamics, similar to the experimental scenario (5.5A). (B) 
Changing the strength of pinning, however, did not affect the metapopulation stability, although 
there was a change in the FI profile relative to the earlier simulations incorporating extinctions 
(cf. Fig 5.5B). 
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global dynamics, at least for a sizable range of r-values, agrees well with previous results 

(Parekh et al. 1998). Different strengths of pinning (Fig. 5.10B) or different rates of 

migration (Fig. 5.11) did not predict any change in the dynamics, although again there 

was an overall increase in the magnitude of FI. Considering all these observations 

together, it is clear that although extinction plays a crucial role in determining 

subpopulation dynamics, it is not expected to interact with the effects of pinning at the 

metapopulation level, except when there is variation in the density of pinning.  

 

 

CONCLUSIONS 

 

Pinning has been suggested as a possible method for stabilizing populations living in a 

fragmented habitat (Doebeli and Ruxton 1997, Parekh and Sinha 2002). However, my 

 

Figure 10 Figure 5.11. Simulations with no extinctions: effects of migration rate on stability. In the 
absence of extinctions, there were no major differences in the FI of the (A) control and (B) 
pinned metapopulations.  However, there was a change in the profile of the metapopulation 
FI (cf. Fig 5.6), indicating that migration rate can interact with the levels of extinction, 
although it is not expected to interact with pinning to alter the empirically observed patterns 
of metapopulation stability. 
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experiments indicate that, under realistic scenarios, constant localized addition of 

individuals from the outside is not expected to have a major impact on the 

metapopulation dynamics, and my simulations suggest that these experimental 

observations are generalizable. I show that although pinning might interact with 

extinctions in producing the observed dynamics at the subpopulation level, this is 

unlikely to affect the metapopulation dynamics. I predict that when there are no local 

extinctions, increasing the number of pinned subpopulations is likely to destabilize the 

metapopulation in terms of increased fluctuation in metapopulation size. This result is of 

potential interest to conservation biologists planning re-introduction of species into 

natural habitats to boost an extant population, or agricultural scientists trying to eradicate 

a pest. However, I would like to explicitly point out that the results of the present study 

were derived from simulations based on the Ricker model and it is possible that 

metapopulations of species whose dynamics are not well approximated by the Ricker 

might respond differently to pinning (Parekh and Sinha 1999).   
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CHAPTER 6 

EFFECTS OF LIFE-HISTORY EVOLUTION 

Although population stability can evolve as a correlated response to selection on 
traits unrelated to demography, the evolution of one stability property does not 
necessarily guarantee the evolution of other stability properties. 

Dey, S., Prasad, N. G., Shakarad, M. and Joshi, A. 2007. Population stability 
does evolve – or does it? Manuscript under preparation 
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INTRODUCTION 
 

Theoretical studies of simple population growth models predict increasing destabilization 

of the dynamics above a threshold value of intrinsic per capita growth rate (May 1974, 

1976, May and Oster 1976). All else being equal, natural selection should favor the 

evolution of increased intrinsic growth rate, a close correlate of fitness, suggesting that 

real populations should often exhibit unstable dynamics. On the other hand, empirical 

evidence indicates that many natural and laboratory populations tend to exhibit relatively 

stable dynamics (Hassell et al. 1976, Turchin and Taylor 1992, Ellner and Turchin 1995). 

This apparent discrepancy has prompted questions about the proximal mechanisms that 

stabilize population dynamics, and how these mechanisms may evolve in response to 

natural selection at the individual and group levels (reviewed in Mueller and Joshi 2000, 

Mueller et al. 2000).  

 

Traits affecting the value of population growth parameters, and hence population 

stability, have been shown to be genetically variable (Mueller and Ayala 1981a) and, 

therefore, likely to respond to selection at the individual level. However, it is hard to 

imagine how natural selection acting at the level of individuals could lead to the 

evolution of population stability through a decrease in population growth rates, as this 

would require an evolutionary reduction in key fitness components like fecundity or 

survivorship (Mueller and Joshi 2000, Mueller et al. 2000). Theoretical explanations for 

the evolution of population stability include group selection acting through long-term 

persistence, individual selection acting directly on demographic parameters, and the 

evolution of stability as a by-product of life-history evolution (Mueller et al. 2000).  
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In the group selectionist view, less stable populations are expected to go extinct more 

frequently than their more stable counterparts. The resulting empty patches would then be 

recolonized by individuals from more stable neighboring patches, eventually leading to 

the evolution of stability (Thomas et al. 1980, Berryman and Millstein 1989). Such 

theories assume that differences in stability properties among populations are largely 

genetic, and lead to differential rates of extinction. However, if among-population 

variation in stability properties were largely environmental, this mechanism would not 

work. Generally, the set of conditions under which population stability could evolve by 

group selection is fairly restrictive and lacks empirical support (Mueller and Joshi 2000).  

 

It has also been suggested that population stability can evolve through direct selection on 

stability determining demographic parameters such as growth rate components, or their 

sensitivity to density (Hansen 1992, Ebenman et al. 1996). Mueller et al. (2000) put this 

hypothesis to test by rearing 20 populations of Drosophila melanogaster on food regimes 

that induced large and regular fluctuations in population numbers. However, they failed 

to notice any evolutionary change in stability, or in stability determining demographic 

parameters such as the sensitivity of female fecundity to increasing adult density, even 

after 65 generations. Lack of genetic variability in the populations was clearly not a 

limiting factor, since non-demographic traits, such as larval feeding rate, evolved rapidly 

in response to the increased larval density in the experiment within the first 20 

generations (Joshi et al. 2003).  
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The view that stability could evolve as a by-product of life-history evolution suggests that 

tradeoffs among demographic parameters are crucial to the evolution of population 

stability (Turelli and Petry 1980, Mueller and Ayala 1981b, Stokes et al. 1988). For 

example, reanalysis of blowfly population data from Nicholson (1957) suggested that the 

apparent stability in the latter half of that experiment might be explained by the evolution 

of the ability of severely protein-deprived females to lay some number of eggs, albeit at 

the cost of reductions in survivorship and maximal fecundity (Stokes et al. 1988). It was, 

therefore, conjectured that population stability probably evolves as a correlated response 

to selection on life-history traits that are not demographic parameters per se (Mueller et 

al. 2000). This hypothesis was empirically supported by Prasad et al. (2003), using 

populations of D. melanogaster selected for faster development and early reproduction, 

and their corresponding ancestral controls. Using a 20 generation long time series of 

small (single vial) populations derived from these selected and control populations, it was 

shown that the selected populations had evolved increased stability (indicated by a lower 

coefficient of variation, CV, of population size). The stability of the selected populations 

was attributed to their lower preadult survivorship (~78%) and fecundity (~65%) 

compared to the controls; traits that had evolved as correlated responses to selection for 

rapid development over about 125 generations. This study (Prasad et al. 2003) provided 

the first clear experimental evidence in support of any hypothesis pertaining to the 

evolution of population stability.  

 

Any discussion of the evolution of population stability, however, is complicated by the 

context specificity of the notion of stability in population ecology: over 163 definitions of 
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stability are found in the ecological literature, pertaining to about 70 concepts and more 

than 40 different measures (Grimm and Wissel 1997). Most of these definitions fall under 

one of six ‘stability properties’, based on the particular aspect of the dynamics under 

consideration in the given population (Grimm and Wissel 1997). Thus, sensu Grimm and 

Wissel (1997), the study of Prasad et al. (2003) based on the CV of population size, was 

an investigation into the “constancy” (staying essentially unchanged) property of the 

population, whereas theories of the evolution of stability by group selection (Thomas et 

al. 1980, Berryman and Millstein 1989) focused on the “persistence” (not going extinct 

over time) property of the population.  

 

This explicit distinction between the various types of population stability leads me to the 

interesting issue of correlated evolution of different stability properties and raises 

questions as to how evolution of one kind of stability property in a population might 

affect the other stability properties of the same population. Here, I examine this issue by 

analyzing a 36-generation data set, generated from a continuation of the experiment 

reported by Prasad et al (2003). I look at the evolution of constancy and persistence by 

examining the dynamics of population size in 64 small (single vial) populations that were 

derived from large populations of D. melanogaster selected for faster development and 

early reproduction, and their corresponding control populations. I directly measure the 

relevant life-history traits (pre-adult survivorship, female fecundity) in these small 

populations, and also estimate demographic parameters (intrinsic rate of growth, r) by 

fitting a simple model of population dynamics to the census data. I then show (a) how 

constancy and persistence evolve independently as correlated responses to selection on 
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development time, (b) the interplay between these two stability properties, and (c) how 

the manifestation of a stability property can be altered by seemingly trivial details of the 

environment or rearing protocol. 

 

 

MATERIALS AND METHODS 
 

Experimental Populations 

This study used eight long-standing, large (~1800 individuals), outbred populations of D. 

melanogaster. Four of these populations (FEJ1-4) had been selected for faster 

development and early reproduction for ca. 125 generations at the start of this study. The 

other four populations (JB1-4) were matched ancestral controls, the details of whose 

maintenance regime have been described elsewhere (Prasad et al. 2000, Prasad et al. 

2001). The JBs are maintained at moderate densities of 60-80 eggs/~6 ml food at 25oC 

under constant light on a 21 day discrete generation cycle, with no conscious selection on 

pre-adult development time. The FEJs are maintained at similar egg densities, but are 

under selection for faster pre-adult development. Only the first ~20% of FEJ flies 

eclosing in a vial are transferred to population cages for breeding. The flies are 

immediately supplied with yeast paste and the eggs for initiating the next generation are 

collected after three days. Thus, the reproduction of an FEJ fly is conditional upon (a) 

being among the first 20% of flies to eclose in the vial, and (b) its fecundity on day three 

of adult life. Neither the FEJs nor the JBs are under differential direct selection for any 

stability determining demographic trait, or its sensitivity to population density, as they are 

maintained at constant moderate larval and adult densities (Prasad et al. 2003). Moreover, 



 108 

in the discrete generation maintenance regimes used in these experiments, development 

time is unlikely to have a major effect on population dynamics, although it can be an 

important demographic parameter in overlapping generation cultures of D. melanogaster 

(Prasad et al. 2003). 

 

Population Dynamics Experiment    

 

From each replicate FEJ and JB population, I derived eight small populations, each 

represented by a single vial culture, as in Sheeba and Joshi (1998). For this, eight mated 

females per vial were allowed to lay eggs for 24 hours. The adults were then discarded and 

these eggs formed the founder generation. Once the flies started eclosing in the vials, they 

were transferred daily into parallel adult collection vials till day 18 after egg lay, with food 

changes every alternate day. Thereafter, the adults were put into conditioning vials (see 

Food Regime, below) for three days. On day 21 after egg lay, all the surviving adults were 

allowed to oviposit in fresh food vials for 24 hours and these eggs constituted the next 

generation. The adults were then collected, censused and discarded. Thus, the population 

dynamics experiment featured small (single vial) populations that were kept on a 21-day 

discrete generation cycle with no control imposed on egg or adult densities. The experiment 

was terminated after 36 generations, and a preliminary report from the first 20 generations 

of data has been published previously (Prasad et al. 2003).  
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Food Regime 

 

Of the eight small populations derived from each replicate FEJ and JB population, four were 

subjected to a food regime where larval food was limiting (~2 ml per vial) and the adults 

were supplied with excess live yeast paste for three days prior to oviposition (hereafter, the 

destabilized or the LH regime). The other four small populations were subjected to a food 

regime where larval food was not limiting (~6 ml per vial) and the adults were not supplied 

with live yeast paste during the conditioning period (henceforth, the stabilized or the HL 

regime). Thus, there were a total of 32 small populations in each food regime (LH/HL), 16 

each from FEJs and JBs. The LH regime is known to produce high amplitude two-point 

cycles in population numbers, whereas the HL regime tends to reduce the fluctuations in 

population numbers and does not induce limit cycles (Mueller and Huynh 1994, Sheeba and 

Joshi 1998, Mueller and Joshi 2000, Mueller et al. 2000, Prasad et al. 2003).  

 

Extinctions and Restarts     

 

In this study, an extinction was said to occur when not even one fly eclosed in a vial during 

the entire adult collection period. There were no extinctions in the HL regime during the 

entire course of the experiment, but the small populations in the LH regime became extinct 

frequently and had to be restarted in order to continue the experiment. To restart a small 

population that had gone extinct in the population dynamics experiment, four females from 

any of the remaining three small populations from the same selection × replicate large 
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population × food regime combination were used, after the females had oviposited in their 

own vials for 24 hours.  

 

Measures of Dynamics and Stability Properties 

 

Following Joshi et al. (2001), differences in the gross dynamics of the FEJ- and JB-derived 

small populations, as reflected in the return maps (plots of Nt+1 versus Nt), were examined 

by treating Nt+1 as the dependent variable, and assessing whether Nt+1 values for a given 

range of Nt (low: Nt < 5, 70; medium: 5 � Nt < 55, 70 � Nt < 210; high: Nt � 5, 70; for LH 

and HL, respectively) differed between the FEJs and JBs. Since mean and variance for 

population size differed considerably between nutritional regimes (data not shown), separate 

three-way mixed model analyses of variance (ANOVA) were carried out for the data from 

the LH and HL regimes, respectively. In these ANOVAs, pairs of replicate FEJ and JB 

populations were treated as random blocks (1-4, representing ancestry of the FEJ and JB 

populations: FEJi was derived from JBi), whereas selection regime (FEJ / JB) and Nt range 

(low / medium / high) were treated as fixed factors, crossed among themselves and with 

block. 

 

Constancy stability, (sensu Grimm and Wissel, 1997) of the FEJ- and JB-derived small 

populations was measured by the fluctuation index, FI (Dey and Joshi 2006b), defined as  
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where N  is the mean population size over T generations and Nt is the population size in 

generation t. Thus, the higher the FI, the lower the constancy of the population, and vice 
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versa. The FI data were subjected to three-way mixed model ANOVA treating selection 

regime and food regime (LH / HL) as fixed factors, crossed with each other, and with 

random blocks, representing ancestry of the FEJ and JB populations. The FI values from the 

four small populations within each block × selection regime × food regime combination 

were treated as replicate within-cell observations. Constancy stability was also estimated 

using two commonly used measures of stability, the coefficient of variation (CV) of 

population size (Prasad et al. 2003) and the S-index, standard deviation of log10-transformed 

population size (Lewontin 1966, Turchin 2003). 

 

Following Leigh (1981) and Goodman (1987), three different indices were used to estimate 

the persistence stability (sensu Grimm and Wissel, 1997) of a small population in the 

population dynamics experiment: 1) the overall probability of extinction in the small 

population over the span of 36 generations, calculated as the total number of extinctions 

divided by the number of generations, 2) the probability of independent extinctions in a 

small population over the time course of the experiment (i.e. considering all consecutive 

extinctions in a small population as a single extinction event spanning a single generation; 

see Discussion for further details and rationale), and 3) the number of generations before a 

small population became extinct for the first time. Populations going extinct more often, 

undergoing a higher number of independent extinctions, or exhibiting a lower time to first 

extinction, were deemed to be relatively less stable with regard to persistence stability. 

Since all extinctions took place only in the LH food regime, the ANOVA model comprised 

of selection (fixed factor) crossed with block (random factor), with the corresponding 
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persistence index for each of the four small populations in a selection × block combination 

acting as within-cell replications. 

 

Life-History Assays 

 

In order to ascertain whether the earlier observed differences in life-history traits of the FEJs 

and JBs (Prasad et al. 2000, Joshi et al. 2001, Prasad et al. 2001) still persisted after 36 

generations of the population dynamics experiment, pre-adult survivorship and fecundity on 

day 21 from egg lay were assayed on individuals from all FEJ- and JB-derived small 

populations in the LH food regime. Flies for the assays were generated by mixing all the 

four small populations derived from each replicate FEJ or JB population and allowing them 

to oviposit in a population cage. The progeny of these flies underwent another generation of 

cage rearing under identical JB-like conditions to eliminate non-genetic parental effects, and 

the eggs collected from these flies were then used for the various assays. 

 

For measuring pre-adult survivorship, 10 vials, each containing exactly 50 eggs/~6 ml 

food, were set up and the proportion of flies eclosing in each vial was recorded. The flies 

eclosing in these vials were collected and maintained exactly as in the population 

dynamics experiment till day 18, when they were conditioned in the presence of yeast 

(similar to the LH regime). The fecundity of these flies was then measured on day 21 

(their normal day of egg lay in the population dynamics experiment) by setting up 20 

vials per population, each containing one male and one female, and counting the number 

of eggs laid in each vial over a period of 24 hours. The survivorship (after arcsine square 
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root transformation) and fecundity data were subjected to separate two-way mixed model 

ANOVAs with selection regime and block crossed with each other, and the 

corresponding vial values as the replicate within cell observations.  

 

Estimation of Intrinsic Growth Rate 

 

The per capita intrinsic growth rate parameter r was estimated by fitting the Ricker (1954) 

model to the census data. This is a widely used and thoroughly studied model of population 

dynamics, given by 

 Nt+1 = Nt exp (r (1 - Nt / K)), 

where Nt is the population size at time t, and r and K refer to the intrinsic rate of per capita 

growth and carrying capacity, respectively (May 1976, Mueller and Joshi 2000). It has been 

shown analytically that populations with individuals randomly distributed in space and 

experiencing scramble competition follow Ricker dynamics (Brännström and Sumpter 

2005). Moreover, this model is known to fit well to time series data from insect populations 

in general (e.g. Cheke and Holt 1993) and single vial cultures of D. melanogaster in 

particular (Sheeba and Joshi, 1998).   

 

The zero values in the small population size data (extinctions) posed a problem in estimation 

of r as it is biologically impossible for a population to grow after it has become extinct, 

although the model predicts the highest realized growth rate when Nt = 0. Therefore, 

although the size of a small population in the generation in which it went extinct was taken 

as zero, the size of the parent small population for the generation following an extinction 
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was considered to be four, to account for the fact that the small populations were restarted 

with four females after an extinction event. All model fitting was done using the in-built 

Quasi-Newton algorithm of Statistica® (Release 5.0 B, Statsoft Inc.). The ANOVA model 

used to analyze the r-value data was essentially similar to the one used in case of the 

fluctuation index. All multiple comparisons for the various traits subjected to ANOVAs 

were carried out using Tukey's HSD test (Sokal and Rohlf 1995). 

 

 

RESULTS  

 

The summary data on mean Nt+1 from the return maps in the LH and HL regimes (Fig. 6.1) 

clearly show that the FEJ-derived populations maintained a lower Nt+1, on average, than 
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their JB-derived counterparts, when Nt was low. However, mean Nt+1 in the FEJs was higher 

than JBs when Nt was relatively high. This pattern indicates that the FEJs had a lower 

intrinsic growth rate and higher carrying capacity than the JBs. The ANOVAs revealed 

significant selection regime × Nt range interactions for both the HL (F2,6 = 23.95, p < .01) 

and LH (F2,6 = 10.58, p < .05) regimes. Multiple comparisons revealed that all three pair 

wise differences between JBs and FEJs were significant (p < .05) in the HL regime, whereas 

in the LH regime, only the FEJ-JB difference for high Nt was significant at the p = .05 level. 

The FEJ-JB difference at low Nt in the LH regime was, however, marginally significant (.05 

< p < .1), and in a direction consistent with the interpretation of a lower intrinsic growth rate 

in the FEJs. 
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The mean FI of FEJs was significantly lower than that of the JBs (F1,3 = 67.5, p < .01), and 

that in the HL regime was significantly lower than in the LH regime (F1,3 = 203.91, p < 

.001) (Fig. 6.2A). This indicates that in terms of constancy, the FEJ selection regime and the 

HL food regime were more stable than the JB and LH respectively, which corroborates the 

earlier findings of Prasad et al. (2003). The selection × food regime interaction was not 

significant (F1,3 = 0.920, p = 0.408), suggesting that there was no differential effect of food 

regime on the dynamics of the FEJ and the JBs. The FEJs were significantly more stable 

than the JBs in terms of two other measures of constancy, namely CV (F1,3 = 14.977, p < 

.05) and S-index (F1,3 = 26.305, p < .05). Similarly, the constancy stability of HL was found 

to be significantly lower than LH using both CV (F1, 3 =1096.302, p < .001) and S-index  

(F1,3 = 507.884, p < .001), indicating that my results are robust to the measures of constancy 

used. 
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The estimated r-values of the JBs were found to be significantly higher than the FEJs (F1,3 = 

62.08, p < .01), those in the LH regime higher, but not signficantly, than in the HL regime 

(F1,3 = 9.384, p = .054), with no significant selection × food regime interaction (F1,3 = 1.889, 

p = .263) (Fig. 6.2B). These findings can probably be attributed to the significantly higher 

(F1,3 = 25.837, p < .05) mean fecundity of the JBs, as compared to the FEJs, on day 21 after 

egg lay (Fig. 6.3A). There was, however, no significant difference between the pre-adult 

survivorship of FEJs and JBs (F1,3 = 1.909, p = .261) (Fig. 6.3B). Surprisingly, the preadult 

survivorship of the FEJs was found to be marginally higher than the JBs, a result that is 

contrary to earlier observations on these populations (Prasad et al. 2001). 

 

The persistence of the JBs was higher than the FEJs when assessed by the overall extinction 

probability (Fig. 6.4A; F1,3 = 0.522, p = 0.522). On the other hand, the probability of 

independent extinctions in the JBs was greater, implying lower persistence, than in the FEJs, 

(Fig. 6.4C; F1,3 = 1.227, p = 0.349). Similarly, the mean number of generations to first 

extinction in the FEJs was found to be larger than the JBs, again suggesting that the JBs 

were less persistent (Fig. 6.4B; F1,3 = 1.298, p = 0.337). However, none of these differences 

in persistence measures between the FEJs and JBs was statistically significant.  
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DISCUSSION 

 
Constancy 
 

The observed increase in constancy stability of the FEJs (Fig. 6.2A) is presumably a result 

of the change in life-history traits during 125 generations of selection for faster development 

and early reproduction. Although the FEJs and the JBs are maintained under moderate larval 

densities in their respective selection regimes, the small populations derived from FEJs and 

JBs were often under high levels of crowding in the population dynamics experiment. It is 

known that larval crowding prolongs the pre-adult development time of D. melanogaster 

(Bierbaum et al. 1989). Hence, the FEJs, being selected for faster development, would be 

intuitively expected to have an advantage under crowded culture conditions, relative to the 

JBS, by having an increased likelihood of eclosing by the 18thday, when adult collection was 

stopped, an advantage likely to be further magnified by the higher K of the FEJs (Joshi et al. 

2001). Any such advantage would be expected to contribute to an increase in the growth rate 
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of the FEJs, thus destabilizing their dynamics. Moreover, the mean effective population size 

of the FEJs was higher than that of the JBs in both food regimes (data not shown), 

suggesting that the JBs were likely to have undergone more drift-induced inbreeding 

depression, another factor that could contribute to a relatively higher growth rate in the 

FEJs. Yet, despite these two factors, the FEJs were found to have higher constancy stability 

than the JBs, underscoring the conservative nature of my results, and suggesting a 

fundamental difference in the dynamics of the FEJs and JBs, consistent with the return map 

data summarized in figure 6.1.  

 

Although Prasad et al. (2003) invoked lower preadult survivorship of the FEJs as one of the 

probable factors leading to their reduced intrinsic growth rate, the present study showed that 

the preadult survivorship of the FEJs was, if anything, slightly higher than the JBs, although 

the difference was not statistically significant (Fig. 6.3B). This result not only contradicts 

previous findings on these populations (Prasad et al. 2000, Prasad et al. 2001), but also does 

not match with very recent observations (after 235 generations of selection) showing that 

the FEJs have a lower pre-adult survivorship than the JBs (Shampa Ghosh, K. M. Satish and 

Amitabh Joshi unpublished data).  This anomaly can probably be attributed to the fact that 

selection for faster development on the FEJs had been relaxed under the conditions of the 

population dynamics experiment, a scenario expected to lead to reverse evolution (Teotónio 

and Rose 2001) in the FEJs, which could have led to an increase in their pre-adult 

survivorship. Moreover, the pre-adult survivorship was measured on flies that were derived 

from the LH regime, an environment that is characterized by low population sizes and 

frequent bottlenecks. Given the lower effective population size of the JBs, the possibility of 
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greater random genetic drift in the JBs leading to a decrease in their survivorship relative to 

the FEJs also cannot be ruled out. In the present study, the increased constancy stability of 

the FEJs appears to be largely driven by a reduced intrinsic growth rate (Fig. 6.2B), which 

is, in turn, largely due to reduced fecundity of the FEJ females (Fig. 6.3A). 

 
 
Persistence 
 
As noted previously, all extinctions occurred only in the LH regime and, hence, the 

discussion in this section focuses solely on that regime. Generally, populations with a low 

intrinsic growth rate are expected to go extinct at a higher frequency than those with higher 

growth rates (Pimm et al. 1988). This is because such populations would require a longer 

time to recover from a trough in population density and hence would be more vulnerable to 

extinction due to chance factors during those stages (Pimm 1991). This prediction seems to 

be borne out in this experiment as the FEJs undergo more extinctions than the JBs. 

However, on the other hand, this argument stands true only if the population size falls below 

some critical threshold size, at which point environmental or demographic stochasticity 

becomes a powerful enough factor to drive the population to extinction. This is more likely 

to happen for those populations that either have a very low size or fluctuate to a greater 

degree or both (Pimm et al. 1988, Pimm 1991). Although there is not much difference 

between the mean population sizes of FEJs and JBs in the LH regime, the fact that FEJ 

population size undergoes smaller fluctuations than the JBs makes it unlikely that they 

would be going below a threshold population size as many times as the JBs. Thus, the 

higher probability of extinction in the FEJs (Fig. 6.4A) appears to be somewhat counter-

intuitive. 
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However, a clear pattern emerged while looking at the sequence of extinctions in the FEJs 

and JBs. Extinct subpopulations in the experiment were restarted using flies from any of the 

three small populations in the same selection × block × food regime combination, after the 

females had already oviposited for 24 hours for the parent vial. This means that the FEJ 

females, with a lower fecundity (Fig. 6.3A), could probably lay fewer eggs in the 

subsequent 24 hours, compared to the JBs. It has been observed that very low egg densities 

can also drastically reduce larval survivorship, as the medium tends to dry out and become 

unsuitable for the larvae (personal observation). Thus, under such a situation, the 

extinctions in a single vial population over time no longer remain independent of each other 

and, hence, one would expect more sets of consecutive extinction events in the FEJs 

compared to the JBs. When the number of extinctions was recalculated by treating two or 

more extinctions in consecutive generations as a single extinction event, the FEJs turned out 

to have a lower probability of extinctions than the JBs (Fig. 6.4C). The contention that the 

FEJs have a lower tendency to go extinct than the JBs is also supported by the fact that the 

FEJ-derived small populations, on an average, took a larger number of generations to go 

extinct for the first time (Fig. 6.4B). Taken together, these observations suggest that the 

FEJs have a relatively lower inherent tendency to go extinct, than the JBs. However, owing 

to an interaction between their life-history and the food regime described in this study, they 

end up as less persistent than the JBs in terms of overall extinction probability. This finding 

exemplifies the possibility that the manifestation of a stability property may not be 

independent of the environment in which it is expressed.  
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This study also highlights the fact that evolution of one kind of stability property (here, 

constancy) does not necessarily guarantee the evolution of another type (here, persistence). 

As I show in this study, reduced fluctuation in population numbers does not necessarily 

mean that the chances of the same population going extinct are reduced. Therefore, 

particularly in real world scenarios, due caution must be exercised in judging the relevance 

of the measured stability property to the problem at hand.  

 

 

CONCLUSION 

 

I show that constancy stability can evolve as a correlated response to selection on life 

history traits not directly related to the demography of the population. I also show that 

although constancy has evolved as a correlated response in the selected populations, 

persistence has not, with selected populations undergoing a greater number of extinctions 

than the controls. I further show that this result is likely to be an artifact of an interaction 

between food regime and how extinctions were dealt with in the maintenance protocol, 

underscoring the context-specificity of stability attributes of populations. Any statement 

about stability, therefore, should be qualified with a suite of conditions and interpreted 

and extrapolated with due caution. 
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CHAPTER 7 

EFFECTS OF ADULT MORTALITY 

In populations with discrete generations, increasing the rate of adult mortality 
leads to increased stability, via the reduction of growth rates. 

Dey, S. and Joshi, A. Increased rates of adult mortality stabilize the dynamics 
of laboratory populations of D. melanogaster. Manuscript under preparation 
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INTRODUCTION 

 

Although theoretical studies on the dynamics of populations often assume an ideal, noise-

free environment (e.g. Mueller 1988, McCallum 1992), real populations typically face 

varied and frequent perturbations. These perturbations might take the form of 

environmental variation (e.g. fluctuations in temperature, humidity etc.), different biotic 

factors (e.g. predators, pathogens or parasites), behavioral factors (migration), or, 

particularly for economically important species, harvesting. Due to obvious practical 

implications, the effects of harvesting on the dynamics of populations have been widely 

investigated theoretically (e.g. Lande et al. 1995, Engen et al. 1997, Gueron 1998, Jonzén 

et al. 2002), through laboratory experiments (Nicholson 1957, Cameron and Benton 

2004, Fryxell et al. 2005), and in field studies (e.g. Solberg et al. 1999, Milner et al. 

2007), and a large corpus of knowledge exists on the subject (see Getz and Haight 

1989)).  

 

The effects of perturbation on population dynamics can be very complex and may 

depend, among other things, on stage structure (Cameron and Benton 2004), age-

structure (Brauer 1983), environmental noise (Jonzén et al. 2002) and the strategies of 

harvesting (Lande et al. 1995, Fryxell et al. 2005). Due to the application-oriented 

context of harvesting, most empirical studies on the effects of mortality on population 

dynamics (Nicholson 1957, Cameron and Benton 2004, Fryxell et al. 2005) have 

considered overlapping generation populations, with a distinct age- and/or stage-

structure. However, the ecology of an overlapping-generation population can be very 
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different from a discrete generation one, owing to the temporal separation of the various 

life-stages in the latter (Mueller and Joshi 2000).  When adults and juveniles coexist and 

share the same resources, culling a fraction of the adults immediately increases the 

resources available to the juveniles, which in turn may increase their survivorship, and 

hence the growth rate (Cameron and Benton 2004). On the other hand, when the adults 

and the juveniles are separated from each other, the effect of reducing the adult numbers 

in a given generation, on the adult numbers of the next generation, involves a much 

longer time delay, potentially leading to a different kind of dynamics. While there have 

been a few theoretical investigations on the effects of mortality in discrete generation 

systems using different kinds of models (Gueron 1998, Jonzén et al. 2002), the 

predictions from these studies have not been tested empirically.  

 

Here, I first study the effects of different rates of mortality on population stability via 

Ricker-based deterministic and stochastic simulations under discrete generation systems. 

I then verify the predictions from the simulations, using data from a 27-generation 

experiment on replicated laboratory populations of the fruit fly D. melanogaster, 

subjected to three different levels of adult mortality. Although the experiment originally 

included a fourth treatment with no mortality (i.e. controls), unforeseen circumstances 

rendered the control data unusable. Therefore, this study concentrates solely on the 

effects of three different rates of mortality on the dynamics of D. melanogaster 

populations. 
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MATERIALS AND METHODS 

 

Simulations 

 

The effects of mortality were studied by iterating the expression: 

 

Nt+1 = (1-m). Nt exp (r (1 - Nt / K)) 

 

 where, Nt represents the subpopulation size at time t, r and K refer to the intrinsic per 

capita growth rate and carrying capacity of the population, respectively, and m (0 ≤ m ≤1) 

represents the fraction of the adult population that was removed prior to reproduction. 

This expression is derived from the Ricker model, Nt+1 = Nt exp (r (1 - Nt / K)) (Ricker 

1954), which has been extensively studied theoretically (May and Oster 1976). Here, I 

investigated the effects of m-values ranging from 0 to 0.8 at steps of 0.01. The initial 

population size was kept constant (N0 = 20) for all the simulations. For each value of m, 

the above expression was iterated for 100 time steps, and the CV (McArdle et al. 1990) 

and FI (Dey and Joshi 2006b) were computed from the time series. In the deterministic 

simulations, the values of r and K were fixed at 1.8 and 125, respectively, for the 

simulations representing the stabilized regime and at 2.8 and 26 for those representing the 

destabilized regime. These values were chosen based on previous estimates of these 

parameters in the stabilized and destabilized regime from other experiments (see chapters 

6,8). In the stochastic simulations, a noise term � (0 < � < 0.2; uniform random 

distribution) was added to r in every generation, to simulate stochastic variation in 
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population growth rates, and a 50% probability of extinction in generation t+1 was 

stipulated, if the population size in generation t was below 4. I also repeated the 

deterministic and stochastic simulations for different values of r in the relevant ranges for 

the stabilized and destabilized populations, but did not observe any major qualitative 

differences in the results from those presented here. 

 

 
Experimental system 

 

60 single-vial populations of D. melanogaster were set up from a large, outbreeding 

laboratory population (MGB1), the details of whose maintenance regime and ancestry 

have been described elsewhere (Sharmila Bharathi et al. 2007). Each population was 

initiated by placing exactly 50 eggs in a vial and the eclosing adults constituted 

generation 0. Half of these populations were placed in a nutritional regime where the 

larvae received ~1 ml of food and the adults were given live yeast paste for three days 

prior to laying eggs, while in the remaining cultures, the larvae received ~6 ml of food 

and the adults did not get any yeast supplement. It is known that the former nutritional 

regime (LH / destabilized) leads to high growth rates and regular, high amplitude 

oscillations in population numbers, while the dynamics of the latter regime (HL / 

stabilized) is characterized by low growth rates and no periodic oscillations (Mueller and 

Huynh 1994, Sheeba and Joshi 1998, Mueller and Joshi 2000, Mueller et al. 2000, Prasad 

et al. 2003). The populations were maintained on 21-day discrete generation cycles 

following the maintenance protocol of earlier studies (Sheeba and Joshi 1998, Prasad et 

al. 2003, Dey and Joshi 2006b, Dey and Joshi 2007). 
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Mortality and extinctions 

 

The 30 replicate populations in a nutritional regime (stabilized / destabilized) were 

distributed equally among three mortality treatments � low, medium and high � 

representing 20%, 40% and 60% adult mortality, respectively. In each generation, the 

adults were sexed and censused just prior to reproduction. The required fraction (.2, .4 or 

.6) of males and females (separately) were removed manually and the remaining 

individuals formed the breeding population for the next generation. There were several 

extinctions, scored as the absence of at least one male-female pair, in the destabilized 

regime.  In case of extinction, the populations were reset using four males and four 

females from the pool of flies that were removed during the imposition of mortality.  

 

 

Analysis 

 

The constancy stability (Grimm and Wissel 1997) of the populations was measured as the 

coefficient of variation, CV (McArdle et al. 1990) and fluctuation index, FI (Dey and 

Joshi 2006b) of population size over time. The persistence stability of a given mortality 

treatment (low / medium / high) was measured as the number of populations that went 

extinct in each generation, out of the 10 replicate populations in that treatment. The 

parameters of the Ricker model (r and K) were estimated via non-linear regression of the 

untransformed time-series data, using the in-built Quasi-Newton algorithm of the 

commercially available software STATISTICA® v5.0 (Statsoft Inc.). All data, except 
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when specifically stated otherwise, were subjected to two-way ANOVA with two levels 

(stabilized / destabilized) of nutritional regime crossed with three levels (low, medium 

and high) of mortality. Post-hoc tests of significance were performed using Tukey’s 

honest significance difference (HSD) test (Sokal and Rohlf 1995). 

 

 

RESULTS AND DISCUSSION 

 

Simulations 

 

In the stabilized regime, the deterministic simulations suggest that increasing the 

mortality rates in the range used in our experiment would lead to a minor decrease 

followed by a slight increase in CV (Fig. 7.1A), which agrees with previous theoretical 

results based on stochastic models (Jonzén et al. 2002). On the other hand, the FI is 

expected to decrease monotonically with increasing mortality rates in the experimental 

range. However, the magnitude of change in CV or FI is so low (note the Y-axis scale in 

Fig. 7.1A), that this level of difference in the stabilized regimes would be almost 

impossible to detect in experiments, due to the inherent noise in a real population. The 

change in stability with increase in mortality rates is very low in the stabilized regime, 

probably because the magnitude of mortality-induced stabilization depends upon the r-

value of the populations being considered. The Ricker model exhibits a damped 

oscillatory approach to a stable point equilibrium as long as r < 2. Thus, any mortality-

induced decrease in the r-value in the stabilized regime (r = 1.8) is not expected to lead to 
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a change in the pattern of the equilibrium dynamics and hence should not result in any 

major change in CV or FI.   

 

When 2 < r < 2.69, the Ricker model exhibits limit cycles of increasing amplitude with 

increasing r, which in turn leads to increased CV and FI.  Since, in the destabilized 

regime, the r-values are above 2, the mortality-induced reduction in CV and FI via the 

reduction in the value of r should be significant enough to be detectable in experiments 

(Fig. 7.1B). Figure 7.1B predicts that in the destabilized regime, there would be a 

relatively minor reduction in the magnitude of the CV on increasing mortality from 20% 

to 40%, and a more discernible reduction in CV when mortality increases from 40% to 

60%. The reason for this can be understood when one calculates the r-value, after the 

mortality has been imposed. When the growth rate under no mortality is 2.8, the values of 

r under 20%, 40% and 60% mortality are 2.58, 2.28 and 1.88, respectively, which in turn 

represent equilibrium behaviors of 4-point limit cycles, 2-point limit cycles, and stable 
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Figure 7.1. Deterministic simulations of the effects of different rates of mortality on the CV and 
FI of single populations in (A) stabilized regime, r = 1.8, and (B) destabilized regime, r = 2.8. 
When mortality rate (m) is increased, there is very little effect on stability in the stabilized 
regime, but a much greater effect on stability in the destabilized regime (note the difference in 
Y-axis scale between the two panels). See text for possible explanations. 
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point equilibrium for the Ricker model. From the bifurcation diagram of the Ricker 

model (see Fig. 8, May and Oster 1976), it is seen when r decreases from 2.58 to 2.28, 

there is slight decrease in the range over which the population sizes oscillate, which 

explains the reduction in CV in this range. However, when the r-value is 1.88, the 

population quickly reaches stable point equilibrium, and hence shows very low CV.  

 

Since the above simulations are all deterministic, it is natural to ask if these observations 

would hold even in the presence of noise in the dynamics, or population extinctions and 

resets, both of which are expected to be present in laboratory populations of D. 

melanogaster, particularly under high growth rates. In order to answer this question, I 

repeated the simulations shown in Fig. 7.1, with random noise added to the growth rate, 

and a 50% probability of extinction when population size becomes too low (see section: 

Materials and methods for details). All the observations made in case of the deterministic 
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Figure 7.2. Stochastic simulations of the effects of different rates of mortality on the CV and 
FI of single populations in (A) stabilized regime, r = 1.8, and (B) destabilized regime, r = 2.8. 
The noise was added every generation in the form of a 50% probability of extinction when the 
population size falls below 4, and a random noise � (0 < � < .2) to the r-value. Each point 
represents the average of ten independent runs and the error bars denote the standard error 
around the mean. There are no major changes in the stability patterns on the addition of noise 
(cf figure 7.1). 
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simulations in general, continued to hold for the stochastic simulations (Fig. 7.2) as well, 

indicating that adding noise to the system does not change the effects of mortality rate in 

stabilizing the populations. 

 

Note that the precise quantitative relationship with mortality rates differs between the two 

measures of stability and, moreover, depend on the r-values of the populations (Fig. 7.1, 

7.2). Consequently, the pattern of which pair-wise differences among mortality levels 

turn out to be statistically significant is likely to vary among nutritional regimes and 

stability measures. However, the general premise that adult mortality reduces the growth 

rates of the populations should remain valid at all values of r, at least in the context of the 

Ricker model.      

 

 

Experiment 

 

Stability 

 

As expected, there was a significant main effect of nutritional regime on CV (F1,54 = 

638.05, p << .001), and the CV in the destabilized regime was higher than that in the 

stabilized regime (Fig. 7.3). The main effect of mortality on CV was also found to be 

significant (F1,54 = 4.13, p < .02), with the only significant difference being between CV 

under low and high mortality treatments (p < .016). The interaction between nutritional 

regime and mortality rate was also significant (F2,54 = 12.41, p << .01) and a clear 
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difference between the nutritional regimes was observed with respect to the effects of 

mortality rate on CV (Fig. 7.3). Post hoc tests indicated that none of the pair-wise 

differences in the stabilized regime were significant at the p = 0.05 level (Fig. 7.3A). In 

the destabilized regime, on the other hand, all but one (low-medium; p = .49) of the pair-

wise differences were found to be significant (p < .01), and the rank order in terms of 

magnitude of CV was low > medium > high (Fig. 7.3A).  The simulations had predicted 

that in the stabilized regime, changes in the CV of population size with increasing 

mortality would be negligible (Figs. 7.1A, 7.2A), and this prediction is corroborated by 

the experimental data (Fig. 7.3A). Since, even in the absence of mortality, the estimated 

r-values of the stabilized regime populations are generally below 2 (see chapters 6, 8), the 

mortality-induced reduction in r-values is not expected to lead to any difference in the 

dynamics or the CV. However, in the destabilized regime, one expects to see a monotonic 

decrease in CV, with a greater reduction in magnitude when going from 40% mortality to 
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Figure 7.3. Stability of the populations under three different adult mortality treatments: 
low (20%), medium (40%) and high (60%). In this, and subsequent figures of this chapter, 
each bar represents the mean of 10 replicate populations and the error bars represent SE 
around the mean. (A) Coefficient of variation (CV) and (B) Fluctuation index (FI). As 
anticipated from the simulations, there were no significant effects of different mortality 
rates on the stability in the stabilized regime. In the destabilized regime the CV and the FI 
behaved differently with increasing mortality rates.  
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60% mortality, than between 20% mortality and 40% mortality (Figs. 7.1B, 7.2B), and 

the data are consistent with this prediction (Fig. 7.3B).  

 

Unfortunately, the only other laboratory study that systematically investigated the effects 

of different mortality rates on the dynamics of population size (Fryxell et al. 2005), did 

not report the change in variability of population size over time, and hence it is not 

possible to compare their results with the current findings. Another study on stage-

structured populations of soil mites reported an increase in standard deviation on culling 

the adults, accompanied by an increase in growth rates (Cameron and Benton 2004). 

Although Cameron and Benton (2004) did not investigate the effects of systematic 

variation of mortality rates, the fact that adult mortality increased variability of 

population size in their study, is at odds with the empirical observations and simulations 

of the present study. The reason for this discrepancy is most likely the use by Cameron 

and Benton (2004) of an overlapping generation system in which adults and juveniles 

competed for the same food resource. Thus, a reduction in adult number would not only 

reduce adult competition, but also the competition among larvae, which would have an 

immediate effect of increasing the population growth rate. However, in the present study, 

I used a discrete generation system in which the adults and the larvae do not co-exist, and 

hence do not compete for the same resources. This ensures that culling the adults in a 

given generation does not directly increase the growth rate of the population and, thus, 

mortality in my experiment tends to reduce variability in population size. The differences 

between my results and those of Cameron and Benton (2004) underscores the fact that the 

effect of adult mortality on population variability might depend crucially on the relative 
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delays in the feedback loops acting on the various life-history stages (McNair 1995, 

Mueller and Joshi 2000).  

 

In the case of FI, the broad pattern of results was similar to those for CV (Fig. 7.3). There 

was a significant main effect of nutritional regime (F1,54 = 1667.59, p << .001) and, 

expectedly, FI in the destabilized regime was greater than in the stabilized regime (Fig. 

7.3B). As with the CV, the main effect of mortality was significant (F1,54 = 36.89, p << 

.001), as was the nutritional regime × mortality interaction (F2,54 = 21.56, p << .001). As 

noted earlier for CV, the very low levels of differences between the predicted FI-values at 

the three mortality rates in the stabilized regime precludes the possibility of finding 

significant differences in an experiment. Thus, not surprisingly, none of the pair-wise 

differences in FI among mortality rates within the stabilized regime were significant at 

the p = 0.05 level. In the destabilized regime, the rank order of the FI-values (low > 

medium > high; Fig. 7.3B) was as expected from the simulations (Figs. 7.1B, 7.2B), and 

post hoc tests indicated that all but one (medium-high; p =.93) of the pair-wise 

differences were significant  at the p < .01 level. Overall, the experimental results (Fig. 

7.3) are consistent with the gross prediction from the simulations that, all else being 

equal, increasing the mortality rates would enhance the stability of populations under 

discrete generations. 
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Extinction 

 

Since there were no extinctions in the stabilized regime, the discussion in this section 

pertains solely to the dynamics of populations in the destabilized regime. All else being 

equal, a population with greater amplitude of fluctuation in population size across 

generations is expected to hit lower population sizes more often, and therefore, be more 

prone to extinctions, than one with smaller amplitude of fluctuation.  Thus, populations 

with higher FI are expected to be less persistent than those with lower FI. This intuitive 

reasoning seemed to be supported by the experimental data, where the rank order of 

persistence was low < medium < high (Fig. 7.4).  Single-factor ANOVA showed a 

significant main effect of mortality (F2,75 = 3.91, p < .02) and post-hoc tests suggested 

that the high treatment was significantly more persistent than the low treatment (p < .02), 

while none of the other differences were significant at the p = .05 level. Thus, in 
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Figure 7.4. Effects of mortality rates on extinctions. As mortality rates increased, the 
persistence of the populations were also increased, presumably due to the reduction 
in amplitude of fluctuations in population size (cf Fig. 7.3). 
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populations with high growth rates, high mortality rates can enhance persistence by 

reducing the growth rate and, thus, the amplitude of fluctuation in population size.     

 

Growth rates  

 

ANOVA on the estimated Ricker r-values (Fig. 7.5A) indicated that there was a 

significant effect of nutritional regime (F1,54 = 157.84, p << .001), mortality (F2,54 = 

25.17, p << .001) and a significant interaction between the two (F2,54 = 7.95, p << .001). 

As expected, the estimated r-values were higher in the destabilized regime than in the 

stabilized regime. Post-hoc tests indicated that in the stabilized regime, the r-value of the 

high-mortality treatment was significantly (p < .05) lower than the medium and the low 

mortality treatments (Fig. 7.5B), which however did not translate into a significant 

difference in terms of CV or FI, between these treatments (Fig. 7.3). In the destabilized 

 

A

Stabilized Destabilized

M
ea

n 
r

0.0

1.6

3.2
Low
Med
High

B

Stabilized Destabilized

M
ea

n 
K

0

25

100

150

200

Nutritional regime

Figure 7.5. Parameter estimates derived by fitting the Ricker model to the time series of each 
population. (A) Intrinsic growth rate (r), and (B) carrying capacity (K).  These estimates show 
that increased rates of mortality monotonically reduce both r and K in the stabilized regime, but 
the relationship is more complicated in the destabilized regime. 



 139 

regime, the mean r-value of the low mortality treatment was significantly (p < .05) higher 

than the two other treatments, which is consistent with the patterns observed for CV and 

FI.  

 

The mean K of the stabilized regime was higher than the destabilized regime (F1,54 =  

3015.1, p << .001), and the main effect of mortality was significant (F2,54 = 211.16, p << 

.001). Post-hoc tests indicated that all pair-wise differences in the stabilized regime were 

significant (p << .001) while none were significant at p = .05 level in the destabilized 

regime.  

 

 

CONCLUSIONS 

 

In discrete generation populations with high growth rates, increasing the rate of adult 

mortality reduces the growth rates, and, thus, reduces the variability in population size, 

resulting in greater stability in terms of both consistency and persistence (sensu Grimm 

and Wissel 1997). However, the conclusions reached about the precise degree of relative 

stability under different mortality rates is likely to depend on the measure of stability 

used. In populations with low growth rates, the adult-mortality induced differences in 

stability tend to be marginal, and difficult to detect experimentally. Although the 

increased stability in terms of reduced fluctuation in population size with increasing rates 

of adult mortality translated into increased persistence of the populations in this 

experiment, this may not always be the case, as shown in chapter 6. This highlights the 
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fact that the concordance between measures of different aspects of stability is likely to 

depend critically on the underlying mechanism by which the stability is attained in a 

particular ecological context.   
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CHAPTER 8 

EFFECTS OF NUTRITIONAL REGIME 

Varying the quantity / quality of nutrition available to the larvae / adults can alter 
the dynamics of small populations of D. melanogaster by modulating the relative 
strengths of different density-dependent feedback loops. 

Dey, S., Rajamani, M. and Joshi, A. Effects of different nutritional regimes on 
the dynamics and stability of laboratory populations of D. melanogaster. 
Manuscript under preparation 
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INTRODUCTION 

 

Drosophila melanogaster has been a favorite model organism since the early days of 

population ecology (Pearl 1927) and the laboratory ecology of this species has been 

extensively studied (Sang 1949, Chiang and Hodson 1950, Bakker 1961, Prout and 

McChesney 1985), resulting in a rich body of information on the effects of various 

density-dependent factors on the population dynamics of lab cultures (reviewed by 

(Mueller 1985, Mueller and Joshi 2000). For example, it is known that increased larval 

density reduces pre-adult survival (Sang 1949, Chiang and Hodson 1950, Bakker 1961, 

Prout and McChesney 1985), and adult body weight (Chiang and Hodson 1950, 

Robertson 1957, Prout and McChesney 1985, Rodriguez 1989), which in turn reduces 

adult fecundity (Chiang and Hodson 1950, Robertson 1957, Prout and McChesney 1985). 

If the larval crowding is high, the mean amount of food available per larva is reduced. As 

a result, a large proportion of larvae are unable to attain the critical body mass needed for 

successful pupation, thus increasing the larval mortality (Bakker 1961). The mean size of 

the surviving larvae at pupation is also reduced in a crowded culture. Since the body size 

(and hence fecundity) of the adults depends mainly on the amount of resources gathered 

during the larval stage, the adults emerging out of crowded cultures are generally small in 

size and exhibit low fecundity (Chiang and Hodson 1950, Robertson 1957, Prout and 

McChesney 1985). Adult fecundity is also reduced with increasing density of adults in a 

culture (Pearl 1932, Chiang and Hodson 1950, Rodriguez 1989) and this is generally 

attributed to increased interference with egg laying (Pearl 1932). Interestingly, this 

negative effect of adult density on fecundity can be ameliorated by supplying the adults 
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with excess amount of live yeast paste (Mueller and Huynh 1994). Since survival and 

fecundity are the major factors affecting the growth rate of a population, it seems 

plausible that these three density-dependent feedback loops � effects of larval crowding 

on larval survivorship and adult fecundity, and effects of adult crowding on adult 

fecundity � can play a major role in determining the dynamics and stability of D. 

melanogaster populations in the laboratory (Mueller and Joshi 2000). 

 

Several recursion functions for dynamics of D. melanogaster laboratory cultures have 

been proposed that incorporate one or more of these density-dependent feedback 

mechanisms (Mueller and Ayala 1981b, Prout and McChesney 1985, Rodriguez 1989). 

Mueller (1988) explicitly incorporated all three density-dependent feedback mechanisms 

into a single recursion as:   

 

nt+1 = ½ . G(Nt). F(Vnt). W(Vnt). V.nt 

 

where nt and Nt represent the number of eggs and adults in generation t, respectively, 1- V 

is the density-independent probability of larval mortality, W(Vnt) and F(Vnt) are the 

functions representing the effects of larval density on larval survivorship and adult 

fecundity, respectively, and G(Nt) is the function reflecting the effect of adult density on 

adult fecundity. This model remains the most detailed abstraction of D. melanogaster 

dynamics in the literature and gave rise to several interesting predictions that were 

subsequently verified empirically (Mueller et al. 1991, Mueller and Huynh 1994, Sheeba 

and Joshi 1998). One of the most interesting predictions was that the dynamics of D. 
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melanogaster populations could be stabilized or destabilized by altering the strength of 

these three feedback loops. More specifically, it was predicted (Mueller 1988) and 

demonstrated (Mueller and Huynh 1994, Sheeba and Joshi 1998, Mueller et al. 2000, 

Prasad et al. 2003) that a combination of low food available to the larvae and addition of 

live yeast paste to the food available to the adults can lead to regular oscillations in adult 

numbers from generation to generation. On the other hand, excess food available to the 

larvae, together with no yeast supplement for the adults, stabilizes the dynamics and 

reduces the intrinsic growth rate of the populations (Mueller and Huynh 1994, Sheeba 

and Joshi 1998). These observations clearly demonstrate that manipulating the 

quantity/quality of food provided to the larvae/adults can alter the gross dynamics of the 

D. melanogaster populations.  

 

Here I report a 49-generation experiment that systematically investigates the effects of 

four different types of nutritional regimes on the dynamics of single laboratory 

populations of D. melanogaster. I assess the stability properties of these populations and 

investigate the nature of the dynamics via autocorrelations and phase plots of the time 

series at different lags. I also fit two different population dynamics models and a suit of 

response surfaces of different orders, to the population time series and estimate different 

parameters. Based on these, I show that in three of the four food regimes, there is no 

apparent effect of density in generation t-1 on the population size at generation t+1. I also 

propose possible mechanisms for some of the findings of the present study that contradict 

existing observations in the literature.      
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MATERIALS AND METHODS 

 

Experimental system 

 

Thirty-two single vial D. melanogaster cultures were set up from one large outbreeding 

population (JB1). Each culture was initiated (generation 0) with eight male and eight 

female flies, and then maintained on a 21-day discrete generation cycle, similar to that 

mentioned in chapter 6.  Of these 32 cultures, eight each were subjected to one of the 

following food regimes � LL, HH, LH, HL � where the first letter denotes the quantity 

of food provided to the larvae whereas the second letter stands for a qualitative difference 

in the adult nutrition. The L and H, in the context of larval food quantity, refer to ~2 ml 

and ~6 ml of food per 8 dram vial, respectively. In case of adults, the L and H denote the 

absence and presence of live yeast paste during the three-day conditioning period, 

respectively. Thus, as in chapter 6, the LH regime denotes ~2 ml food for the larvae and 

live yeast paste for the adults, the HL regime refers to ~6 ml food for the larvae and no 

yeast paste for the adults, and so on. Two of these regimes (LH and HL) have been 

studied earlier in some detail (Mueller and Huynh 1994, Sheeba and Joshi 1998, Mueller 

and Joshi 2000, Mueller et al. 2000, Prasad et al. 2003), whereas population dynamics 

under the HH regime has been examined in only one earlier study (Mueller and Huynh 

1994). There has been no previous study of population dynamics under the LL regime. 
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Analysis 

 

The constancy stability (Grimm and Wissel 1997) of the populations was measured using 

FI (Dey and Joshi 2006b) and CV (Mueller and Joshi 2000, Prasad et al. 2003), whereas 

the nature of the dynamics was assessed by correlograms. All differences among food 

regimes, except when specifically noted otherwise, were tested using single factor 

ANOVA, and Tukey’s HSD (Sokal and Rohlf 1995) was used for post-hoc comparisons. 

Phase-diagrams (Nt+1 or the ln-transformed growth rate [ln(Nt+1/Nt] against Nt) were 

plotted for exploratory data analysis. The Ricker model (Ricker 1954) and an extension 

of it (Turchin 1990; see below) were directly fit to the time series using the in-built 

Quasi-Newton algorithm of the commercially available software STATISTICA® (Statsoft 

Inc. v5.0). The goodness-of-fit measures achieved by non-linear regression techniques 

are often lower than those observed using linear regression on ln-transformed data 

(Turchin 2003). However, it is also known that such a process leads to severe under-

estimation of the parameter values (Morris 1990), and hence it was not attempted here. 

 

Model 

 

The Ricker model (Ricker, 1954)  

Nt+1 = Nt exp (r (1 - Nt / K))            

assumes that the population density in a given generation is a function of the population 

density in the previous (parental) generation (lag 1). However, it has been shown earlier 

that incorporating higher lags in the Ricker model can significantly improve its fit to time 
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series of natural insect populations (Turchin 1990). Thus, it is conceivable that the 

population density in the grand-parental or great-grand parental generations (i.e. higher 

lags) might influence D. melanogaster dynamics, at least under certain food regimes. I 

investigated this possibility in two ways. First, I fit the model (Turchin 1990, Kaitala et 

al. 1996): 

Nt+1 = Nt exp (r – sN t – l Nt-1)                 

to the time series data. Note that when l = 0, this reduces to the Ricker model with s = r / 

K. Thus, the estimated magnitude of l, relative to estimated s, should provide a crude 

reflection of the relative magnitude of the effect of density at generation t-1 vis-à-vis the 

density at generation t, on the population size at t+1.  

 

I also investigated the effects of the grand-parental generation using the nonlinear time-

series modeling (NLTSM) approach proposed by Turchin (2003). This involves fitting 

linear autoregressive (AR) polynomial models of various orders (p) to the data, and 

selecting the appropriate AR model via sequential-blocks cross-validation. Note that this 

approach only suggests the appropriate process order (i.e. how many generations should 

be incorporated in a model for the time series) and not the actual, biologically relevant, 

model. The NLTSM analysis was carried out using the NLTSM software of Peter 

Turchin, available at http://www.eeb.uconn.edu/people/turchin/NLTSM.htm.  
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RESULTS AND DISCUSSION 
 

Stability 

 

In terms of both CV and FI, the constancy stability of the four regimes was significantly 

different (CV: F3,28 = 212.17, p < .01; FI: F3,28 = 98.41, p < .01) with post-hoc tests 

indicating that all pair-wise differences were significant  at the p < .05 level). The order 

of stability in the four regimes was found to be HL > LL > HH > LH (Fig. 8.1), 

consistent with earlier observations that the HL regime leads to more stable dynamics 

than the LH regime in terms of constancy (Mueller and Huynh 1994, Sheeba and Joshi 

1998, Mueller and Joshi 2000, Mueller et al. 2000, Prasad et al. 2003). However, the 

dynamics in the HH regime were found to be less stable than in the HL regime, which 

contradicts an earlier observation (Mueller and Huynh 1994) that the stability of HL and 
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Figure 8.1. Constancy stability in the four regimes as reflected by (A) CV and (B) FI. Each bar 
represents the mean of eight replicate populations in a regime, and error bars represent SE 
around the mean.. Both indices suggested that the populations in the HL regime were the most 
stable while those in the LH regime were the least stable. All pair-wise comparisons are 
significant. 
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HH (as reflected by the stability determining eigen values) are not different. Possible 

explanations for this discrepancy are discussed later in this section.  

 

Previous theoretical studies predict that the per-capita food available to the larvae, as well 

as the sensitivity of adult fecundity to density, have major effects on the dynamics of the 

populations (Mueller 1988, Mueller and Joshi 2000). In the present study, the first factor 

was directly manipulated via the level of food available to the larvae, while the second 

was indirectly modulated via presence/absence of live yeast paste to the adults. I analyzed 

the effects of larval and adult food level on population stability by treating them as two 

fixed factors, each with two levels (L and H), crossed with each other in a two-way 

ANOVA. In case of CV, there were significant main effects of both larval (F1,28 = 

240.04, p < .01) and adult food level (F1,28 = 396.47, p < .01), but the interaction was not 

significant (F1,28 = .008, p < .93). With respect to FI, the main effects of larval (F1,28 = 

71.97, p < .01) and adult food level (F1,28 = 205.34, p < .01) were significant, and so was 

the interaction (F1,28 = 17.93, p < .01). These two results, as in the previous chapter 

(chapter 7), again highlight the fact that CV and FI measure two different aspects of 

constancy stability, and hence need not necessarily lead to same conclusions about 

stability properties of a population.  

 

Autocorrelations 

 

The correlograms of the time series in the four regimes provided several interesting 

observations (Fig. 8.2). As expected from previous studies (Mueller and Huynh 1994, 
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Mueller and Joshi 2000), the LH populations showed a clear signature of a two-point 

cycle. However, unexpectedly, the populations in the HL and the HH regime also seemed 

to exhibit two-point cycles, which contradicts an earlier study (Mueller and Huynh 1994), 

which found none of the autocorrelation lags in these regimes to be significantly different 

from zero. One of the possible reasons for this discrepancy might be the short duration 

(12 generations) of the previous study (Mueller and Huynh 1994), as a short time series 

can complicate the estimation of higher lag autocorrelation coefficients. The observed 

difference in the dynamics in case of the HH regime can also be possibly attributed to the 

difference in maintenance regime of the populations (bottle cultures on a 28-day cycle) in 

the previous study (Mueller and Huynh 1994) compared to the present one (21-day 
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Figure 8.2. Correlograms of time series in the four regimes, each averaged over the eight
replicate populations.  Error bars represent 95% CI around the mean. As expected, the LH 
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possible reasons for this observation in the case of HH (see text), currently we have no 
explanation for the two-point limit cycles in HL. No particular trend was observed in the LL 
dynamics. 
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cycle). A greater age of the adults at the time of egg lay in a 28-day cycle would reduce 

the per-capita fecundity of the females on the day of egg collection, as compared to the 

females in a 21-day cycle culture. Consequently, the growth rates of populations under a 

28-day cycle is expected to be lower than those under a 21-day cycle, thus giving rise to 

more stable dynamics. Given that supplying yeast is expected to destabilize the dynamics 

of D. melanogaster cultures, it is intuitive to expect that the HH regime would lead to 

more destabilized dynamics than the HL regime. It is interesting to note here that 

although it did not show up in correlograms, the HH time series of Mueller and Huynh do 

show regular oscillations (see Fig. 4 of (Mueller and Huynh 1994), and the stability 

determining eigen values estimated by Mueller and Huynh (1994) were not significantly 

different between the HH and the LH regime. However, the anomalous limit cycles 

observed in the case of the HL regime of the present study contradict several earlier 

studies that have noted the lack of periodicity in HL dynamics (Mueller and Joshi 2000, 

Mueller et al. 2000, S. Dey unpublished data), and currently there is no explanation for 

this discrepancy. 

 

Phase Plot 

 

The plot of Nt+1 vs. Nt  (Fig. 8.3) suggested that the nature of the dynamics was similar in 

the HL and the LL regimes whereas the LH dynamics resembled that in the HH regime. 

In other words, the nature of the phase plot was being determined by the type of adult 

nutrition, i.e. the sensitivity of female fecundity to adult crowding. The HH and the LH 

phase plots had the characteristic L-shape indicative of two-point limit cycles.  However, 
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there were no observable patterns in the LL and HL plots, suggesting the presence of 

either considerable noise or a higher order dynamics, or both. In the case of the LL and 

HL data, there was a linear decrease in ln [Nt+1)/Nt)] with increasing Nt (Fig. 8.4), 

implying that a first order exponential function might be suitable for modeling these data 

(Box and Draper 1987, Turchin 1991). The linear relationship of ln (Nt+1) with Nt also 

indicates that the lack of any apparent relationship between the Nt+1 and Nt for the LL and 

HL regimes (Fig. 8.3) was probably due to the presence of noise in the dynamics. The 

slight curvature in the plots, particularly in the case of LH and HH (Fig. 8.4), suggested 

 

Figure 8.3. Phase plots of Nt+1 vs. Nt for the four nutritional regimes, each pooled over the eight 
replicates in a regime. The HH and LH plots indicate regular oscillations in population size, 
while no clear patterns are observable in case of the LL and HL. This suggests that the main 
determinant of the dynamics in these populations was the adult density-dependent feedback on 
female fecundity, which was modulated in the current study via the presence/absence of live 
yeast paste, leading to a contrast between the L and H regimes experienced by adults but not 
larvae. 
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that a theta-Ricker model (Thomas et al. 1980) with � < 1 might improve the fit to the 

data (Turchin 2003). However, during the parameter estimation process of the theta-

Ricker model, the minimizing algorithm either failed to converge or sometimes led to 

absurd values, particularly in the HH regime. Therefore, I limited the model-fitting 

endeavors to the Ricker map and its extension.   

 

 

 

 

Figure 8.4. Phase plots of ln [Nt+1/Nt] vs. Nt for the four nutritional regimes, each pooled 
over the eight replicates in a regime. The LL and HL plots are linear and monotonically 
decreasing, indicating that a first order exponential model might be suitable for these data. A 
slight curvature in the LH and HH plots indicated that fitting a theta-Ricker model might
improve the fit in these cases. However, preliminary data-fitting exercises ruled out the 
possibility of using a theta-Ricker (see text).   
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Parameter estimation 

 

There were significant differences among the estimated Ricker-r values among 

populations from the four nutritional regimes (F3,28 = 24.22, p < .01) and post-hoc 

comparisons  indicated that LL~HL < HH~LH   (p < .01, Fig. 8.5A). This is consistent 

with the observation that it is the type of adult nutrition that seems to be the major 

determinant of the dynamics in these populations (Fig. 8.3). Moreover, the estimated r-

values in the HL regime were in the range that predicts damped oscillations in population 

numbers (May 1976). This result agrees with a previous analysis (Turchin 1991) of 

dynamics of D. melanogaster populations (Rodriguez 1989) maintained on a regime 

similar to the HL regime of this study. 
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Figure 8.5. Estimates of (A) r and (B) K, obtained by fitting the Ricker model to individual time 
series. Each bar represents the mean of eight replicate populations in a regime, and error bars 
represent SE around the mean. The r-values of HH and LH were significantly greater than those 
in LL and HL. This suggests that it is the adult nutrition, which chiefly determines the growth 
rates of these populations. The K-value of the HH regime was found to be significantly lower than 
that of the HL regime, which contradicted a previous study (see text for possible explanations).  
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Although there was no significant difference between the r-values in the HH and LH 

regimes (Tukey’s HSD, p = .24), the FI in the HH regime was significantly lower than 

that in the LH regime (Fig. 8.1B). This highlights the fact that the correspondence 

between r and FI is not very good in the region of high r-values, where there is a 

transition from low-periodicity limit cycles to high-periodicity limit cycles or chaos. This 

is because, by virtue of its formulation, the FI of a population undergoing a two-point 

limit cycle within a particular upper and lower bound, will be more than the FI of a 

population undergoing a higher periodicity limit cycle within the same upper and lower 

bounds of population size.   

 

The estimated K-values of the populations in the four regimes were also found to be 

significantly different from each other (F3,28 = 490.25, p <.01, Fig. 8.5B) and all pair-

wise differences were also significant (p < .01), except the one between LL and HH 

which was marginally non-significant (.05 < p < .06). This contradicts an earlier 

observation by Mueller and Huynh (1994), who had found the carrying capacity of HH 

cultures to be greater than HL cultures. This discrepancy might be explained by the 

above-mentioned differences between their study and the present one. 

 

I also fit an extension of the Ricker map (see section: Materials and methods), involving 

an extra lag, to the population time series from the four regimes (Fig. 8.6 A). The values 

of estimated r from the extended model were significantly different from each other (F3,28 

= 9.73, p < .01), again showed the same rank order (LL~HL < HH~LH) as in the case of 

the Ricker estimated r-values, and the relevant differences were statistically significant at 
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p < .01. The values of s, the coefficient of the first lag, showed a significant main effect 

(F3,28 = 12.44, p < .01, and the post-hoc tests indicated that the s-value in the LH regime 

was significantly greater (p < .01) than those in all other regimes, with none of the other 

differences being significant (Fig. 8.6 B). This suggests that the density-dependent effects 

of the population size of the parental generation (i.e. Nt) were maximal in the LH regime 

as compared to the other regimes. This is intuitively expected due to the high fecundity of 

the LH regime females, and the intense competition for food among the LH larvae, which 

makes the effects of addition/subtraction of each extra female much more substantial for 

the dynamics, compared to the other regimes, where either the female fecundity is lower 

(LL) or the larval competition is less (HH), or both (HL).  
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Figure 8.6. Estimates of (A) r and (B) s, and (C) l, obtained by fitting an extension of the Ricker model to 
individual time series. Each bar represents the mean of eight replicate populations in a regime, and error 
bars represent SE around the mean. The estimates of r again showed the same relationship, LL~HL 
significantly less than HH~LH, as with the Ricker r. The magnitudes of the l-values were very low, 
relative to the s-values, suggesting that the role of the density of the grand parental generation (Nt-1) in 
determining the size of the offspring generation (Nt+1) is probably negligible.  
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The values of l, i.e. the coefficient of the second lag (Nt-1) were not significantly different 

from one another (F3,28 = 1.66, p < .20; Fig. 8.6c) and more importantly, the l-values 

were about an order of magnitude less than the corresponding s-values, (cf Fig. 8.6B and 

8.6C). The increase in goodness-of-fit with the extended Ricker model (mean R2 = .22) 

was also found to be marginal when compared to the Ricker model (mean R2 = .19). 

Taken together, these two observations suggest that the effects of incorporating an extra 

lag in the Ricker model is negligible, which in turn indicates that the density in the grand-

parental generation (Nt-1) is unlikely to significantly affect the population size of the 

offspring generation (Nt+1), and agrees with previous findings on data from laboratory 

cultures of D. melanogaster (Turchin 1991). This observation was also supported by the 

NLTSM analysis, which indicated that in case of the LL, HH and HL, considering the 

 

Figure 8.7. Frequency of the estimated process order, p, from the NLTSM analysis. The LL, HH 
and HL regimes clearly show a dominance of p = 1, suggesting that a first order model would be 
sufficient to model these data. However, the LH regime shows a preponderance of p = 2, 
suggesting that the population size at generation t-1 plays a greater role in determining the 
dynamics of these populations. 
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population size of the parental generation should be sufficient for the purpose of 

modeling the time series (Fig. 8.7). This is evident by the highest frequency of the first 

order (p = 1) for these three regimes. However, in case of the LH regime there was 

predominance of p = 2, suggesting that incorporating a second lag might be called for. 

Although the extended Ricker model did not do a better job in fitting the LH data, it is 

interesting to note that the magnitude of l was the highest in the LH regime (Fig. 8.6), 

again indicating that there seems to be a fundamental change in the dynamics of these 

populations mediated by the different food regimes.        

 

The observation that the extended Ricker model does not improve the fit to data is in 

contrast with a previous study in which parameters of this model were estimated for 

natural insect populations, and the coefficients of the second lag were seen to be of 

similar magnitude, or sometimes even greater than, the coefficients of the first lag 

(Turchin 1990). One possible reason for this might be the fact that natural populations 

generally have overlapping generations and, hence, the effects of the grand-parental 

generation tends to linger longer and affect the dynamics more than it would be in a 

discrete generation culture. In fact, in laboratory D. melanogaster populations maintained 

with overlapping generations, it has been shown that the adult density in a particular 

generation can affect the fecundity of the flies two generations later (Shorrocks 1970). I 

also note here that formal methods, like the Akaike Information Criteria (AIC) and 

Bayesian Information Criteria (BIC), exist for choosing the best model among a suite of 

models with different numbers of parameters (Draper and Smith 1998, Johnson and 

Omland 2004). However, in this study, the improvement of goodness-of-fit with the 
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extended Ricker model was so marginal compared to the Ricker model, that I did not 

perform explicit model selection tests. The values of R2 obtained for the Ricker are 

actually poor, particularly given that the data represents dynamics of laboratory 

populations. This indicates that either there was a large amount of noise in the system, 

which reduced the fit between the model and the data, or, that the Ricker model is not a 

good descriptor of D. melanogaster dynamics. High degree of noise is expected in the 

present study as small, single-vial cultures are liable to have greater demographic 

variation as compared to the larger populations used in previous studies (Rodriguez 1989, 

Mueller and Huynh 1994). However, in spite of this, there was a good correspondence 

between the parameters estimated by fitting the Ricker model and the qualitative behavior 

expected in those parameter zones, suggesting that the Ricker model was a fair descriptor 

of the fly dynamics in the present study.  

 

 
CONCLUSIONS 

 

Varying the quantity / quality of nutrition available to the larvae / adults can alter the 

dynamics of small populations of D. melanogaster by modulating the relative strengths of 

different density-dependent feedback loops. The empirical data suggests that of the three 

major density-dependent feedback loops in D. melanogaster, the effect of adult density 

on adult fecundity seems to be the main determinant of the qualitative nature of the 

dynamics. Model-fitting exercises indicate that the population size at generation t-1 does 

not play a major role in determining the population size at generation t+1, and hence can 
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probably be ignored while modeling the dynamics of D. melanogaster populations 

maintained on discrete generation cycles.  
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CHAPTER 9 

EFFECTS OF MICRO-ENVIRONMENTAL 
CONDITIONS 

Variation in micro-environmental conditions can systematically bias the 
measurement of life-history traits, and act as a source of stochasticity in the 
experiments. 

Dey, S., Dey, S., Mohan, J., and Joshi, A. 2006. Micro-environmental 
variations in pre-assay rearing conditions can lead to anomalies in the 
measurement of life-history traits. Journal of Genetics 85, 53-56. 
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INTRODUCTION 

 

Experiments in ecology and evolution often involve the measurement of traits related to 

the life-history, such as fecundity, stress resistance and duration of various life stages. 

Since any such trait is expected to exhibit some variance around the mean, a meaningful 

point estimate can only be derived by taking an average over a large number of replicate 

measurements. Although all replicates within a treatment should ideally be identical to 

each other in every respect, it is often impossible to realize this in practice. For example, 

if one needs to measure the fecundity of a large number of adults, it might not be feasible 

to procure/generate all of them from a single source/batch such that they share a common 

environment during pre-assay rearing. The effects of such pre-assay variation in macro-

environmental factors on life-history traits have been well studied empirically in 

laboratory systems such as Drosophila (Mueller 1985, Service and Rose 1985, 

Chippindale et al. 1993, Borash and Ho 2001, Prasad et al. 2003). However, such 

variation is not expected to be a severe problem under laboratory conditions, as it is 

possible to exercise strict control over most known sources of macro-environmental 

variation, such as temperature, light and food, across batches. Nevertheless, one still 

needs to address possible effects on assayed traits of differences across batches in micro-

environmental factors, which include all those elements that cannot possibly be 

controlled by an experimenter. For example, in case of a Drosophila system in the 

laboratory, this might include, inter alia, density of microflora on the food or minor 

differences in the space available to the flies; factors that are normally ignored as of 

trivial import.  
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In this study, I directly examine the possible effects of micro-environmental variation 

while generating experimental organisms on the measurement of a life-history trait. I 

assay fecundity in the fruit fly Drosophila melanogaster by allowing replicate single 

pairs (one male and one female) to lay eggs for varying lengths of time. I find that the 

temporal pattern of cumulative fecundity is anomalous when all flies in a particular egg-

lay duration treatment are derived from a single vial. I conduct another experiment to 

show that the anomalous patterns tend to disappear as a consequence of differences due 

to micro-environmental variation getting averaged out when the flies subjected to a 

particular egg-lay duration treatment are derived from different vials. I compute an index 

that reflects this parent vial specific effect, and use it to generate predictions about the 

expected number of eggs laid over time. I then perform a third experiment to 

independently verify these predictions and find good agreement between the predicted 

and observed values. These results demonstrate the importance of randomizing across 

pre-assay micro-environmental conditions before assaying any life-history related trait. 

 

 

MATERIALS AND METHODS 

 

Derivation of the flies 

 

All experiments were conducted on a large outbred population of D. melanogaster, the 

so-called JB1 that has been maintained in the laboratory on a three week discrete 

generation cycle for more than 200 generations. Details of the maintenance protocol of 
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these flies have been described elsewhere (Sheeba et al. 1998) and are not relevant to the 

present study. Eggs were collected from the JB1 population by placing a petri plate 

containing banana-jaggery medium in the population cage for 24 hours. The eggs were 

then distributed into 16 vials, each containing 70-80 eggs in ~ 6 mL of media. The 

medium in each vial was obtained from a single cooked batch. The adult flies eclosing in 

these vials were transferred to fresh media vials on day 12, 14 and 16, post egg 

collection. All flies that eclosed from a particular vial were collected together and strict 

one-to-one correspondence was maintained between the egg vials and the adult collection 

vials. On day 18 after egg collection, the flies were put into vials containing ~ 6 mL of 

media, for three days. Eight of the 16 vials were supplied with excess live yeast paste to 

boost female fecundity, while the remaining eight vials did not get any nutritional 

supplement. Thus, all flies in a particular vial (henceforth, parent vial) ultimately came 

from the same egg vial and presumably experienced similar micro-environmental 

conditions during their pre-adult and adult stages, especially during the three day 

conditioning period. On day 21 after egg collection, these flies were distributed into 

fecundity vials for measuring the number of eggs laid over different durations of egg-

laying window.   

 

Experiment 1 

 

Twenty fecundity vials, each containing one male and one female fly in ~2 ml of 

medium, were derived from each of the eight unyeasted parent vials. The flies were then 

allowed to lay eggs in these vials for durations of 1, 2, 3, 4, 5, 6, 7 or 8 hours. All 20 
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fecundity vials that were set up from a particular parent vial were allotted to the same 

egg-lay duration treatment. At the end of the assigned time, the adults were discarded and 

the number of eggs laid in each vial was counted manually under a binocular microscope. 

A similar protocol was followed for measuring the fecundity of flies from the yeasted 

parent vials, with the exception that only ten fecundity vials were set up from each parent 

vial. 

 

Experiment 2 

 

In this experiment, sixteen egg vials, each containing 200-300 eggs were set up, and the 

flies were handled as explained above (see Derivation of flies) until day 21 after egg-lay. 

For both unyeasted and yeasted treatments, seven fecundity vials containing 1 male and 1 

female each, were obtained from each parent vial. Seven different durations of egg-lay 

window, between one to seven hours, were studied in this experiment. Eight fecundity 

vials, one from each parent vial, were allotted to each egg-lay duration in the case of both 

unyeasted and yeasted treatments. As before, the number of eggs laid in each vial during 

the egg-lay duration was recorded, after discarding the adults. Thus, experiment 2 

differed from experiment 1 in that parent vial was not confounded with egg-lay duration 

but crossed with it.  
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Performance Index 

 

Using the data from experiment 2, I calculated a statistic that I call the performance 

index, in the following way: 

 

Here, Si denotes the performance index of the ith parent vial, T is the total number of egg-

lay window durations studied (7 in experiment 2), fi,t is the number of eggs in the 

fecundity vial belonging to ith parent vial and tth  egg-lay duration window, and Nt is the 

mean number of eggs laid in the tth egg-lay window, averaged across all fecundity vials in 

that window. This statistic, calculated separately for each parent vial, gives us an estimate 

of the relative fecundity of the pairs of flies that belonged to a particular parent vial vis-a-

vis flies from other parent vials. When a particular value of Si is multiplied by any Nt, I 

get a prediction for E[fi,t,], the expected number of eggs laid by the flies from the ith 

parent vial over an egg-lay duration window of t hours. A third experiment was 

conducted simultaneously to test these predictions arising out of experiment 2. 

 

Experiment 3 

 

The design of this experiment was similar to that of experiment 1 in that all the fecundity 

vials in a given egg-lay window were derived from a single parent vial. However, there 

were two major differences: (a) the sixteen parent vials used in this experiment were the 

same ones that were used in experiment 2, and (b) each egg-lay duration treatment 
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consisted of ten fecundity vials in both the unyeasted and yeasted treatments. The number 

of egg-lay window durations studied was seven, as in experiment 2.  

 

 

RESULTS AND DISCUSSION 

 

Experiment 1 

 

In this experiment, I was measuring the number of eggs laid by single D. melanogaster 

females over an increasing duration of egg-lay. Intuitively, one would expect this number 

to increase up to a certain point of time and then plateau out. However, under no 

circumstances would one anticipate a reduction in the cumulative number of eggs laid 

over successively increasing lengths of time, as seen in this experiment (Fig. 9.1). Here I 

note that there almost seems to be a regular oscillation (two-point cycle) in the mean 
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Figure 9.1. The mean number of eggs laid across successive lengths of time in the two 
treatments, (A) Unyeasted and (B) Yeasted, in experiment 1. Since this number is cumulative, 
the observed trends are unexpected. See text for possible explanations.  
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fecundity of the yeasted flies (Fig. 9.1B). However, this is most probably a coincidence, 

as all the means arising out of different egg-lay duration are independent of each other by 

design in this experiment. Such anomalous results can possibly arise if there is large 

variation in fecundity among individuals, or alternatively in the presence of some random 

environmental noise affecting the fecundity vials. These explanations, nevertheless, are 

unlikely in the present case, as the standard errors across the mean (fecundity) were 

found to be small (Fig. 9.1) and macro-environmental factors were strictly controlled. 

The observed pattern of cumulative fecundity (Fig. 9.1) could also potentially result from 

micro-environmental variation leading to a systematic increase or decrease in the 

fecundity of all pairs of flies that came from a particular parent vial. Experiments 2 and 3 

were specifically designed to test this hypothesis. 

 

Experiment 2 

 

In this experiment, each fecundity vial in a particular egg-lay window was derived from a 

different parent vial. Therefore, in terms of the mean number of eggs laid in a given 

duration, any major parent vial specific variation, if present, is expected to be smoothed 

by averaging across parent vials within egg-lay window durations. On the other hand, in 

case there was major among-individual variation in fecundity, one could anticipate some 

anomalous pattern, as observed in experiment 1. The same argument applies to any 

random environmental noise affecting the fecundity vials differently, although such an 

event is unlikely in the controlled laboratory conditions under which the experiments 

were run.  
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In experiment 2, the mean number of eggs laid over successively longer durations of time 

increased initially up to ~ 4 hours and then leveled off (Fig. 9.2). This result rules out 

individual variation or random environmental noise as potential causes of anomaly in 

experiment 1, but does not directly implicate micro-environmental variation among 

parent vials for the same. To prove that micro-environmental variation can indeed lead to 

systematically aberrant cumulative fecundity patterns, I calculated the performance index 

(Si) as mentioned above (see Materials and methods: Performance Index). This statistic is 

an average score for the fecundity of flies that came from the same parent vial, relative to 

the fecundity of flies from other parent vials. Thus, Si is expected to reflect the 

component of variation due to parent vial specific differences in micro-environment. 

Since the same parent vials were used in experiment 2 and 3, I was able to generate 

independent predictions for the mean number of eggs in a time-window in experiment 3. 

For this, I used the product of Si and Nt (from experiment 2) for the corresponding egg-

lay window of t hours in which the ith parent vial was tested in experiment 3. 

 

 

Figure 9.2. The mean number of eggs (Nt) laid across successive lengths of time in the two 
treatments, (A) Unyeasted and (B) Yeasted, in experiment 2. These curves are closer to the 
intuitive expectations and thus rule out individual variations and random noise as causes of the 
observed patterns in experiment 1.  
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Experiment 3 

 

There was considerable agreement between the predicted and the observed values of 

mean fecundity across different egg-lay window durations (Fig. 9.3) and a chi-square test 

detected no significant difference between the two in either regime (unyeasted, �2
(6) = 

3.93, p = 0.69; yeasted, �2
(6) = 4.24, p = 0.64). This ability of Si to successfully predict the 

mean fecundity in experiment 3, indicates that micro-environmental variations can 

systematically affect life-history traits of organisms. It is worth noting that by mimicking 

the design of experiment 1, I again confront some anomalous patterns in the unyeasted 

regime (Fig. 9.3A). However, no such clear aberrations are observable in the yeasted 

regime (Fig. 9.3B), which most probably happens to be a fortuitous event.  
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Figure 9.3. The mean number of eggs across successive lengths of time in the two treatments 
(A) Unyeasted, and (B) Yeasted in experiment 3, along with the corresponding predictions from 
experiment 2. There are no significant differences between the predicted and observed numbers 
of eggs. 
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CONCLUSIONS 

 

This study demonstrates the artifactual anomalies that can potentially arise due to non-

random sampling across the micro-environmental conditions over which the experimental 

organisms have been reared before an assay of life-history related traits. Unfortunately, 

this aspect is not always taken care of while setting up experiments in ecology or 

evolution, and most often not reported clearly in the literature. Similar artifactual results 

might arise while measuring other life-history related traits too, as fecundity is known to 

be correlated with a host of life-history attributes (Prasad and Joshi 2003). It is 

noteworthy that this study was conducted in the laboratory under constant temperature, 

humidity and light, and all flies were treated similarly as far as practicable. It is difficult, 

if not impossible, to maintain such rigorous standards of control in field or quasi-natural 

studies. Thus, one cannot over emphasize the need for randomization across pre-assay 

micro-environments before assigning individuals to different experimental treatments for 

measuring trait values. 
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CHAPTER 10 

CONCLUSIONS 
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This thesis examined several issues in single-species population and metapopulation 

dynamics, using a combination of simulations and experiments on small laboratory 

populations of D. melanogaster. While stability remained the main focus of attention in 

most chapters, I also addressed other issues like synchrony in spatially structured 

populations and effects of minor variations in assay conditions on life-history traits 

important to population dynamics.  

 

My simulations indicate that the effects of migration rate on metapopulation stability do 

not depend upon the precise spatial arrangement of the subpopulations in the lattice, 

suggesting that metapopulation models are robust to variation in spatial arrangement of 

patch quality (Dey et al. 2006a; chapter 2). I also show that for any given arrangement of 

the patches, maximum stability occurs when the migration levels are intermediate, a 

result that agrees well with previous studies on two-map coupled map lattices 

(Gyllenberg et al. 1993, Hastings 1993, Kendall and Fox 1998). I further demonstrate that 

these patterns of metapopulation stability at different migration rates are not altered by 

migration being density-dependent or density-independent (chapter 4). In both cases, 

maximum metapopulation stability is attained at intermediate migration rates (5%) 

whereas lower or higher migration rates lead to instability. This pattern is consistent even 

when migration rates are made stochastic, although there is an overall destabilization of 

the metapopulations. Even a 1% probability of migration events not occurring in every 

generation is enough to promote metapopulation instability. Importantly, all these results 

were found to be robust to demographic and spatial heterogeneity among patches. 
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The above simulations, and previous theoretical results on two-map coupled map lattices 

(Gyllenberg et al. 1993, Kendall and Fox 1998), suggested that the amplitude of 

fluctuation of metapopulation sizes is reduced under low migration rates (5-10%) but not 

under higher migration rates.  I verified this prediction using replicate laboratory 

metapopulations of D. melanogaster subjected to different migration rates. Low 

migration stabilized metapopulation dynamics, while promoting unstable subpopulation 

dynamics, by inducing asynchrony among neighboring subpopulations (Dey and Joshi 

2006b; chapter 3). On the other hand, as predicted, high migration synchronized 

subpopulation dynamics, thereby destabilizing the metapopulations. Contrary to some 

theoretical predictions (Hanski and Zhang 1993, Ives et al. 2004), increased migration did 

not affect average population size. I also simulated the experimental system using a 

simple non-species specific population growth model (Ricker model), and was able to 

recover most of the features of the empirical data. This suggests that the experimental 

results were not caused by some unique aspect of D. melanogaster biology, but can be 

attributed to the effects of migration. The Ricker model is known to be a good descriptor 

of the dynamics of several kinds of organisms. Moreover, a subsequent simulation study 

using other widely used models of population dynamics like the Hassell model or the 

Maynard Smith - Slatkin model, corroborated the observation that low migration rates 

lead to asynchrony among neighboring subpopulations (Ranta and Kaitala 2006). Thus, 

the phenomenon of low migration rates promoting metapopulation stability seems to be 

applicable to a large number of systems. 
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This leads to an important question: why does low migration promote asynchrony among 

subpopulations? Ranta and Kaitala (2006) proposed that the observed asynchrony in my 

experiments was due to a fortuitous choice of initial population sizes interacting with 

stochasticity that is inherent in any biological system.  Their hypothesis implied that 

asynchrony among subpopulations arose as a matter of chance, and hence was at odds 

with the statistically significant asynchrony observed in my experiments. This apparent 

anomaly can be resolved by noting that Ranta and Kaitala’s (2006) arguments are based 

on simulations of a 2-patch system whereas I had used 9-patch metapopulations for both 

my simulations and experiments. Using a 9-patch metapopulation simulation, I then 

showed that in the presence of noise, asynchrony among subpopulations is an extremely 

likely event, even if there are no differences in the initial population sizes (Dey and Joshi 

2006a; chapter 3). Thus, real metapopulations, which are generally noisy and extinction-

prone, are very likely to exhibit asynchrony under low migration rates. Although these 

results reinforce the generality of the finding that low migration rate stabilizes 

metapopulation, at least under the conditions of the experiments and the simulations, it is 

yet unclear as to what causes this asynchrony. Currently, I have no answer to this 

question, and must propose this as an interesting avenue for further work. It would also 

be interesting to perform these experiments on populations undergoing overlapping 

generations, as that would be a closer approximation of many natural systems. Simulation 

studies indicate that migration and spatial correlation interact with each other to produce 

different patterns of population synchrony (Kendall et al. 2000), and it would be 

interesting to test these predictions using the kinds of experiments described in chapter 3. 
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Several studies in the past had predicted that it would be possible to alter the dynamics of 

metapopulations by localized perturbations to the subpopulations (Doebeli and Ruxton 

1997, Parekh et al. 1998, Solé and Gamarra 1999). However, my experiments on D. 

melanogaster metapopulations suggested that constant addition of individuals to a 

particular subpopulation in every generation stabilizes that population locally, without 

any detectable effect on metapopulation dynamics and stability (Dey and Joshi 2007); 

chapter 5). Ricker-based simulations of the experimental system corroborated the 

experimental observations, thus suggesting that the results were not D. melanogaster 

specific. Further simulations investigating the effects of perturbing a larger number of 

subpopulations, increasing the strength of perturbations, and varying the rate of 

migration, suggested that the empirical results were robust to changes in any of these 

conditions. One reason for the discrepancy between the predictions of previous 

theoretical studies and my results could be the presence of local extinctions in my 

experimental populations. However, I also showed that the main results of my study are 

robust to the presence of local extinctions in the metapopulation. What then led to the 

apparent differences between the predictions of the previous theoretical studies and the 

current work? One possible reason might be the fact that, in all previous studies, 

stabilization of a population consisted of the dynamics changing from chaotic to simpler 

limit cycles or even single-point equilibria. However, owing to the short length of 

ecological time series, coupled with the inherent noise in any real population, it is almost 

impossible to figure out whether a given empirical time series is chaotic, or stable with 

some amount of noise. Thus, from a purely pragmatic point of view, I found it more 

worthwhile to measure stability in terms of coefficient of variation (CV), or fluctuation 
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index (FI), and thus my results, strictly speaking, do not invalidate the previous studies. 

The simulations presented in this study of constant localized perturbations (Dey and Joshi 

2007) lead to several interesting observations, which might be worthwhile to investigate 

in more detail in the future. However, several of these theoretical results hold only for 

values of intrinsic growth rate that are difficult to obtain using a Drosophila system. 

Thus, one would need to work with a system with a much higher growth rate, say 

microbes or protozoa, in order to validate these predictions. 

 

Several theories had been proposed to explain the mechanism of evolution of population 

stability by natural selection (Mueller and Joshi 2000). All these theories remained 

empirically untested, till it was shown that selection on traits not directly related to 

demography could promote population stability by reducing the growth rate (Prasad et al. 

2003). A more detailed analysis of an extended time-series from the same experiment 

(Prasad et al. 2003), along with direct measurements of fecundity and survivorship, 

corroborated the earlier findings (chapter 6). The analysis also showed that evolution of 

one type of stability (in this case, reduced amplitude of fluctuation of population size), 

does not necessarily lead to manifestation of another kind of stability (namely, 

persistence). This sounds a cautionary note for population management practitioners, that 

it might be dangerous to consider one kind of stability as a surrogate for another. 

 

Experiments in population ecology are often performed on organisms with overlapping 

generations. While being closer to the real conditions experienced by most species, a 

population with overlapping generations has more complex dynamics due to the 
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juxtaposition of different age / stage classes. Thus, it is possible that the model 

predictions derived for systems with continuous generations might be very different from 

those obtained for models under discrete generations. This intuitive reasoning was borne 

out in a study of effects of different rates of mortality on the dynamics and stability of 

populations undergoing discrete generation cycles (chapter 7). Ricker-based simulations 

suggested that with increasing mortality rates, the growth rates of the populations would 

be reduced, and hence the stability would increase. The empirical data generally 

supported these predictions, although the inferences on stability differed depending on 

the measure of stability being used (namely, CV or FI). These observations differed from 

the predictions of overlapping generation systems that mortality would enhance growth 

rates and destabilize populations (Cameron and Benton 2004), thereby highlighting the 

difference between the dynamics of populations undergoing overlapping and discrete 

generations. Interestingly, the persistence stability of the populations undergoing 

different rates of mortality was in the same rank order as the constancy stability of these 

populations. However, as noted above, this may not always be the case and it would 

probably be wiser not to substitute one stability measure for another.       

 

Many earlier studies, both theoretical and empirical, had shown that the dynamics and 

stability of D. melanogaster populations would be affected by the quantity and quality of 

food provided to the larvae and the adults, respectively (Mueller and Huynh 1994, 

Sheeba and Joshi 1998, Mueller and Joshi 2000, Mueller et al. 2000, Prasad et al. 2003). I 

investigated this issue in detail by studying the dynamics of single populations under four 

different kinds of nutritional regimes (chapter 8). The empirical results broadly 
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conformed to the findings of previous studies, and model-fitting exercises indicated that 

under a discrete generation system, the population size in generation t-1 does not play a 

major role in determining the population size at generation t+1. This is again at variance 

with previous studies on natural populations with overlapping generations, where 

population sizes at up to four earlier lags were shown to be of importance for modeling 

the dynamics of serial-transfer systems (Mueller 1985). One potential avenue of future 

work is to consider models other than the Ricker, and their corresponding extensions into 

higher time lags, and fit them to the time-series data generated from the present 

experiment. It would be interesting to investigate if these other models also lead to the 

same observation that the effects of generation t-1 on the population size at generation 

t+1 are minimal.  

 

Chapter 9 was a slight digression from the main theme of population dynamics and 

stability, and was concerned with the measurement of life-history traits in the presence of 

micro-environmental variation in culture conditions: minor variation in environmental 

conditions that are impossible to control and generally judged to be too small to have any 

effects on the measurement of traits. However, I found that micro-environmental 

conditions could actually systematically bias the measurement of traits like fecundity, and 

hence act as an hitherto unappreciated source of stochasticity in experiments (Dey et al. 

2006b). Thus, it is recommended that micro-environmental factors should be averaged 

out as far as practicable, by judicious experimental design.  
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In conclusion, the work reported in this thesis has verified several existing predictions 

using a laboratory system and, in some cases, shown that these predictions are likely to 

be generalizable across a wide range of conditions. On the other hand, the simulations 

and the experiments of this study have also led to some new observations, which remain 

unexplained as of now, but hopefully, would succumb to the inquisitive attention of 

ecologists in the near future. 
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