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Abstract

The present work concerns the orientation dynamics of anisotropic particles in

viscoelastic fluids. A spheroidal geometry is taken as being representative of an

anisotropic, axisymmetric particle, and the work is an analytical investigation of

the effects of weak inertia and viscoelasticity on the orientation of a spheroidal

particle (both prolate and oblate) of an arbitrary aspect ratio in two canonical flow

situations:

1. A spheroid sedimenting in a quiescent fluid, and

2. A neutrally buoyant spheroid in a simple shear flow

Applications include sedimentation of muds and slurries, processing of cellulose

fiber suspensions in the paper and pulp industry, and processing of filled poly-

meric materials (wherein anisotropic clay particles are typically used as cheap filler

materials).

In the absence of both inertia and viscoelasticity, the orientation dynamics of

a spheroid is governed by the Stokes equations. On account of reversibility, a

sedimenting spheroid continues to retain its initial orientation, while a neutrally

buoyant spheroid in simple shear continues to rotate in an initially chosen (Jef-

fery) orbit. In either case, the particle orientation distribution remains indetermi-

nate as a result. In situations where the characteristics of the motion of a single

anisotropic particle may be applied to the calculation of a bulk property of a dilute

non-interacting suspension of such particles, the aforementioned indeterminacy in

the orientation distribution presents an impediment. In order to eliminate the in-

determinacy, and thereby, arrive at a unique orientation distribution, it becomes

necessary to consider the influence of additional physical phenomena. Possible

candidates for the resolution of the indeterminacy include Brownian motion, pair-

particle hydrodynamic interactions, fluid inertia, viscoelasticity of the suspending

fluid, etc.

The present work focuses on weak fluid inertia and viscoelasticity with a weakly
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viscoelastic fluid being modeled as a second-order fluid in the analysis. It is impor-

tant to note here that even a weak deviation from the Stokes limit will invariably

have a strong cumulative effect over long times precisely due to the above inde-

terminacy. For instance, a weak inertial torque, acting on a sedimenting spheroid,

stabilizes orientations transverse to gravity, while a weak viscoelastic torque ends

up stabilizing the longitudinal (vertical) orientation. In both cases, the indeter-

minacy in the orientation distribution is eliminated. One anticipates a similar

situation for the case of simple shear flow.

The canonical motions of a spheroid referred to above, sedimentation in particu-

lar, are classic problems, and have been extensively investigated, both theoretically

and experimentally, by various authors. The present work analyzes both problems

using a new approach based on the formalism of vectorial spheroidal harmonics.

The formalism was developed by Vladimir Kushch [see Kushch & Sangani (2003)]

and has a structure similar to the well-known spherical harmonics formalism which

owes its origin to Lamb (1932). Unlike earlier approaches, and in a manner similar

to spherical harmonics, the spheroidal harmonics formalism is readily extended to

a multi-particle scenario wherein hydrodynamic interactions between anisotropic

particles may begin to play an important role in determining the orientation dy-

namics. However, as a first step, in this work, the formalism is applied to the

motion of a single particle, and the results obtained compared to those of earlier

investigations.

The formalism, together with the use of the generalized reciprocal theorem, is

first applied to the sedimentation problem, leading to closed-form analytical expres-

sions for the O(Re) inertial and O(De) viscoelastic torques in both sedimentation

and simple shear flow as a function of the spheroid aspect ratio. Here, the Reynolds

number and the Deborah number denote the scaled magnitudes of the inertial and

viscoelastic torques, respectively. Since the two torques act in opposite directions,

a balance of the two leads to a neutral curve, that is, a critical value of De/Re as a

function of the particle aspect ratio [see figures 3.13 & 3.15] that separates regions

where transverse and longitudinal orientations are stable. Despite extensive work

on this classic problem, our fully analytical approach shows some of the earlier re-

sults to be incorrect. In particular, it is shown that the viscoelastic torque always

tends to zero in the limit of an infinitely slender particle for an arbitrary ratio of

the two normal stress differences [see §3.2.1]. In fact, the viscoelastic torque be-
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comes extremely sensitive to changes in the particle aspect ratio in the limit of very

slender particles, and this may be one reason why earlier numerical calculations of

the same turn out to be erroneous [see §3.2.1].

The inertial and viscoelastic contributions to the angular velocity of a neutrally

buoyant spheroid in simple shear flow are currently being calculated. The simple

shear flow problem is inherently more complicated, since the orientation of the

spheroid now changes as a function of time even in the inertialess limit (as the par-

ticle moves along a Jeffery orbit) [see Jeffery (1922)]. Further, unlike sedimentation

where the only stable orientations turn out to the transverse and longitudinal ones,

the more complicated angular dependencies in simple shear flow allow, in principle,

for the existence of stable intermediate orbits (that is, in between the limits of in-

plane tumbling and log-rolling). Significant progress has already been made, and

in the near future, we expect to be able to map out the orientation dynamics in

presence of the (possibly) competing effects of viscoelasticity and inertia. Our aim

then is to obtain an orbit-constant-surface as a function of De/Re and the particle

aspect ratio [see figure 4.1].
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