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Abstract

The success of the Moore’s law in computing has led to many technological and scientific oppor-
tunities. The emerging exascale computing with its immense computational power can address
several outstanding scientific problems. The primary challenge for utilizing the potential of
these highly distributed computing architectures for large scientific application is to successfully
handle the intensive floating point computation coupled with large data movements. It is thus
imperative that successful algorithms exploit extreme parallelism and careful management of the
data movement. In the past three decades, the lattice Boltzmann models have been established
as viable alternatives for simulating fluid flows. They are highly amenable to parallelization
due to their local nature, and can therefore efficiently utilize modern supercomputing clusters.
Furthermore, they also tend to be more effective in terms of memory bandwidth utilization –
an important bottleneck in high performance computing.

The lattice Boltzmann method constructs a simplified kinetic picture on a lattice designed to
capture the physics of macroscopic flow through simple local micro-scale operations. A number
of limitations of this method have been attributed to the loss of thermodynamic consistency while
transitioning from the continuum to the discrete dynamics. This thesis attempts to review a
few important features of continuum thermodynamics, such as the second law, in the framework
of the lattice Boltzmann model. The entropic lattice Boltzmann models restore Boltzmann’s H
theorem (a generalization of the second law) to the discrete dynamics by numerically solving a
nonlinear equation. The key innovation in this thesis is the construction of closed form analytical
solutions to this nonlinear equation, thus, substantially reducing the computational requirement.
This guarantees the numerical stability of the model in a computationally efficient manner.
Furthermore, the discrete H theorem is also proved for the generalized quasi-equilibrium collision
model equipped with two relaxation times.

For incorporating the temperature dynamics in a manner faithful to the kinetic theory, a
numerically stable and thermodynamically consistent discrete velocity model is studied. The
kinetic diffuse boundary conditions for the model is proposed. Simulations of various canonical
test cases related to thermal and compressible hydrodynamics are performed, from which it is
demonstrated that the proposed model remains numerically stable and is therefore capable of
simulating compressible thermohydrodynamics.

vii
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Chapter 1

Introduction

1.1 Motivation

Fluid flows are constitutive to a wide variety of scientific and engineering problems, owing to the
fact that they encompass a vast range of spatial and temporal scales. An accurate prediction of
the fluid flow has innumerable commercial applications in turbomachinery, petrochemical indus-
tries, hydraulic machines, inkjet printing, as well as is of great scientific interest for multiphase
flows, non-Newtonian flows, hydrodynamic instability and transition to turbulence (Dixon &
Hall, 2013; Oliemans, 2012; Batchelor, 2000; Leal, 2007). Fluid dynamics becomes crucial dur-
ing scenarios that require knowledge of flows over an aortic stenosis, designing artificial heart
valves, and predicting extreme weather patterns such as cyclones, floods, hurricanes. Addition-
ally, a quick prediction of the atmospheric flows can lead to the prior knowledge of the expected
rainfall, which will reduce losses in the regions that are dependent on the rain for the purpose
of agricultural irrigation.

Although seemingly disparate, the various flows in the continuum regime, irrespective of
the spatial and temporal scales, are similar and are governed by the Navier-Stokes-Fourier
(NSF) equations (Batchelor, 2000). These equations can be simplified and solved to obtain a
closed form solution for a large class of problems (Leal, 2007). However, they do not render a
general solution for many realistic engineering and scientific problems, particularly in the case of
turbulent flows where the nonlinearity of the NSF equations gives rise to chaotic beahviour. One
has to, therefore, resort to numerical methods to solve them. The direct numerical simulations
(DNS), where all the scales of the flow are resolved, are the most reliable numerical approaches
for solving the NSF equations. However, the DNS of many realistic flows such as the turbulent
flows requires grid sizes that are often too large (Pope, 2000). With the existing approaches, it is
widely accepted that DNS of turbulent flows will be feasible only after a decade (Thantanapally
et al., 2013a; Slotnick et al., 2014; Larsson & Wang, 2014). Thus, one looks for viable alternates
to it such as the turbulence models. They reduce the computational load by modeling the subgrid
phenomena and projecting it onto a coarse grid. However, the choice of these turbulence model
is problem specific and hence these models lack universality.

Furthermore, the numerical modeling of many phenomena such as cloud dynamics turns
out to be particularly challenging due to the mutual interaction of nonlinear physical processes
occuring at widely different scales. At the micrometer scale the physics of cloud formation
involves water vapour condensing to form liquid droplets or ice crystals, nucleation on aerosol
particles, their growth and interaction, which is termed as “cloud microphysics”, while at the the
kilometer scale there are large scale air motions, wind, pressure patterns, and thermodynamic
interactions, which is called “cloud dynamics” (Houze Jr, 2014). The phenomena at the two
scales are coupled, for example, the latent heat released during the condensation of water vapour
drives the circulation in the atmosphere, sometimes causing instabilities that lead to severe
weather conditions (Kuo, 1965). For a brief review of numerical cloud models the reader is
referred to Guichard & Couvreux (2017). Many widely used numerical models explicitly simulate
unsteady convective clouds via large eddy simulation of the Navier-Stokes equations coupled with
parametrized bulk modeling of the microphysics (Thompson et al., 2004; Guichard & Couvreux,
2017). Despite significant advances, the modeling of cloud microphysics is still an open problem
with the most important gaps being our lack of understanding of the microphysics and the
limitations of numerical models in representing the known microphysics (Khain et al., 2000).

1
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Further progress requires both better physical models of the various phenomena as well as
enhanced capability to perform numerical simulations of turbulent flows. A uniform framework
based on physics based models capable of simulating both the microphysics as well as the large
scale dynamics is highly desired.

In the past three decades, the lattice Boltzmann method (LBM) has come up as a viable
alternative for simulating fluid flows. In contrast to the conventional numerical methods that
directly discretize and solve the NSF equation, the LBM solves a discrete kinetic equation which
produces the NSF equations in the macroscopic limit. It is routinely used for fluid dynamic
applications as wide-ranging as fluid turbulence, gaseous microflow, soft matter, polymer dy-
namics, relativistic flows, multiphase flows, etc. (Adhikari et al., 2005; Mendoza et al., 2010;
Aidun & Clausen, 2010; Yudistiawan et al., 2010; Singh et al., 2013; Benzi et al., 2013; Mazloomi
et al., 2015; Namburi et al., 2016; Dorschner et al., 2016a; Geier et al., 2017). The method is
based on the Boltzmann equation which tracks the evolution of single particle probability dis-
tribution function in the phase space. It constructs a simplified kinetic picture on a lattice
designed to capture the physics of macroscopic flow through simple local micro-scale operations
(Chen & Doolen, 1998; Succi, 2001). It has has met with significant success because of its
ease of implementation due to the nonlinearities being localized. It is simple but highly paral-
lelizable and can therefore efficiently utilize modern supercomputing clusters, which are often
quite heterogeneous. Furthermore, it also tends to be more efficient in terms of memory band-
width utilization, an important bottleneck in high performance computing (Aidun & Clausen,
2010; Shet et al., 2013). Due to these attractive features, the lattice Boltzmann method gained
tremendous success and is now a well established tool for simulating isothermal incompressible
hydrodynamics.

It should be noted that within a few years of its introduction, the application of LBM
had been successfully extended to flows with particle suspensions, two-phase flows and phase
transitions, binary mixtures, and gaseous microflows at moderate Knudsen numbers (Shan &
Chen, 1993; Ladd, 1994; Yudistiawan et al., 2010; Ansumali et al., 2006; Arcidiacono et al.,
2006). The current LBMs can integrate any equation of state to simulate phase transitions in
a thermodynamically consistent manner (Swift et al., 1996; Yuan & Schaefer, 2006; Mazloomi
et al., 2015). This is due to the fact that the LBMs, being a mesoscopic tool, are especially
useful for complex systems where the macroscopic governing equations are not available whereas
the microscopic physics is known (He & Doolen, 2002).

Despite their simplicity and versatility, the inceptive lattice Boltzmann models faced two
issues:

• They lacked a consistent methodology for modeling the temperature dynamics, which
restricted their applicability to isothermal flows. Some progress was made starting with the
work of Alexander et al. (1993), but the thermal lattice Boltzmann models remained less
robust than their isothermal counterparts (McNamara et al., 1997). Efforts to circumvent
this problem led to the introduction of the double distribution function models, where one
set of distribution function solved the isothermal hydrodynamics and the other set solved
the macroscopic energy equation for the temperature dynamics (Shan, 1997; He et al.,
1998b). The drawback of such models was that a faithful representation of the particle
picture of the kinetic theory was compromised.

• They were difficult to use for problems such as turbulence where very sharp gradients
can exist if the simulations are under-resolved. The rise of numerical instability was
attributed to the violation of the H theorem (which states that in any irreversible process
the entropy is a non-decreasing function of time) (Karlin et al., 1999; Succi et al., 2002b),
and was mitigated by reinstating the H theorem to the discrete time dynamics (Ansumali
& Karlin, 2000; Boghosian et al., 2001; Ansumali & Karlin, 2002c; Boghosian et al., 2003).
The resulting models, called the entropic lattice Boltzmann models (ELBM), were found
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to be capable of simulating high Reynolds number flows (Chikatamarla & Karlin, 2013a;
Namburi et al., 2016; Atif et al., 2017, 2018).

1.2 Entropic lattice Boltzmann model

The entropic lattice Boltzmann model (ELBM) is an alternate methodology, which restores the
H theorem for discrete space-time evolution (Karlin et al., 1998; Wagner, 1998; Karlin et al.,
1999; Chen & Teixeira, 2000; Boghosian et al., 2001; Succi et al., 2002b; Ansumali et al., 2003;
Boghosian et al., 2003). It was a paradigm shift for computational fluid dynamics where the
numerical stability of a hydrodynamic solver was enforced by insisting on adherence to the
thermodynamics at the discrete time level (Succi et al., 2002b). The ELBM is accepted as
a viable tool for simulation of turbulence, multiphase flows, as well as microflows due to its
unconditional numerical stability (Ansumali et al., 2006; Aidun & Clausen, 2010; Chikatamarla
& Karlin, 2013b; Mazloomi et al., 2015; Atif et al., 2017).

The ELBM requires an additional step known as the entropic involution step. It involves
a numerical search for the solution to a highly nonlinear equation. Considerable efforts have
been made to ensure the correctness and efficient implementation of this step (Ansumali &
Karlin, 2000, 2002a; Tosi et al., 2006; Chikatamarla et al., 2006; Brownlee et al., 2007; Gorban
& Packwood, 2012). However, there is scope for a better theoretical understanding of the ELBM
if one is able to obtain a analytical solution to the nonlinear equation. For example:

• The analytical solution could be understood as an implicit model of the unresolved scales of
the flow via the thermodynamic entropy, and may provide a new insight into the sub-grid
modeling of turbulence.

• It will help enhance the efficiency of the ELBM by avoiding a numerical search for the
path length.

Therefore, an analytical solution to the nonlinear equation is highly desirable.

To summarize, before the applicability of the LBM can be extended to realistic multiscale
scenarios, the following concerns need to be addressed:

• How to model the complete macroscopic thermohydrodynamics using only a single distri-
bution function in a manner faithful to the kinetic theory?

• How to construct the the discrete equilibrium for these models? What are the requirements
on the parameters of such models?

• How to obtain an analytical solution to the nonlinear equation in the ELBM?

• Could the analytical solution be interpreted as an implicit model of the unresolved scales
of the flow? This will provide a new insight into the subgrid modeling of turbulence via
the thermodynamic route.

1.3 Outline of the thesis

The lattice Boltzmann models, which are based on the discrete velocity models of the kinetic
theory, are described in this thesis. The thermodynamic consistency is crucial for constructing
such models so that they display nonlinear numerical stability along with the correct thermo-
hydrodynamic behaviour (Atif et al., 2017, 2018). This thesis broadly answers two questions:

• Can the discrete time H theorem be established in an analytically tractable manner? We
show that not only it is possible but once can write a closed form solution to a highly
nonlinear equation.
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• What are the constraints on the discrete velocity set so that the accurate thermohydrody-
namic behaviour is recovered as the macroscopic limit of the model kinetic equation?

• How to write the equilibrium distribution for any discrete velocity model such that the
positivity of the equilibrium distribution is preserved?

The overall organization of the thesis is as follows:
In Chapter 2, a brief introduction to the kinetic theory of gases is presented and the important

properties of the Boltzmann equation are discussed. Following Maxwell’s and Boltzmann’s
routes, the Maxwell-Boltzmann distribution is derived and some of its important properties
are discussed. A few simplifications of the Boltzmann’s collision kernel that retain its essential
properties, yet are simple enough to implement are also described along with the H theorem
associated with each of them.

In Chapter 3, the constraints on the parameters of any discrete velocity model of the ki-
netic theory necessary to obtain the correct thermohydrodynamics are derived. Firstly, the
constraints due to the isotropy and independence from preference to any direction are discussed.
Next, the moment chain and the macroscopic limit of the discrete kinetic equation (Boltz-
mann Bhatnagar-Gross-Krook) is discussed, followed by the derivation of the constraints on the
discrete equilibrium distribution. A systematic approach for deriving the discrete equilibrium
distribution and its series expansion is discussed. These series expansions tend to become neg-
ative at large Mach number or temperature deviations, however, they are useful for analyzing
the macroscopic limit of the model.

In Chapter 4, the lattice Boltzmann model, which falls under the category of the discrete
velocity models but is discrete in space and time too, is presented. A few collision models
used in the lattice Boltzmann model are then discussed, followed by a brief discussion on the
recently developed crystallographic lattice Boltzmann model, its computational cost and the
parallelization strategy.

In Chapter 5, a systematic approach to obtain the bounds on any convex functions upto
the desired accuracy is formulated. This approach is based on quadrature rules and the bounds
obtained can be interpreted as rational or Padé approximations to the convex function. The lower
order quadrature rules provide loose bounds on the function, while the higher order ones provide
sharper bounds. The Hermite-Hadamard inequality, which also provides upper and lower bounds
on convex functions, is proved using only convexity arguments (Niculescu & Persson, 2007).
Using the proposed approach of constructing the bounds, the Hermite-Hadamard inequality is
extended. These bounds become useful while proving the discrete time H theorem for the lattice
Boltzmann models.

In Chapter 6, the entropic lattice Boltzmann model (ELBM), a nonlinearly stable discrete
space-time methodology, that guarantees adherence to the H theorem is presented. The geomet-
ric interpretation of the entropic involution step, which is the backbone of the ELBM is given.
The entropic involution step involves solving a highly nonlinear equation, that is conventionally
done by using iterative methods. A novel methodology which replaces the entropic involution
step with an exact solution to the nonlinear equation is proposed. This exact solution is found
by exploiting the various bounds on the convex functions given in Chapter 5. Simulations of
the one-dimensional shock tube show that there is no appreciable difference between the results
obtained from exact solution and the iterative solution. However, the exact solution avoids
expensive iterations and is thus computationally less expensive than the iterative solution. Fur-
ther, via the simulations of the classical lid driven cavity and flow past NACA0012 airfoil it is
demonstrated that the proposed methodology is well suited for simulating interior as well as
exterior flows. The simulations exhibit good match with the results available in the literature.

In Chapter 7, an energy conserving lattice Boltzmann model based on sixty-seven discrete
velocities is introduced. The kinetic diffuse boundary conditions for the model is proposed.
Simulations of various canonical test cases related to thermal and compressible hydrodynamics
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are performed, from which it is demonstrated that the proposed model remains numerically
stable and is thus capable of simulating thermohydrodynamics.

In Chapter 8, the lattice Boltzmann model for nonideal fluids and multiphase flows is re-
visited. The coexistence curve from the nonideal interactions given by the van der Waals,
Carnahan-Starling, and Peng-Robinson equation of state are obtained. A discretization scheme
that reduces the magnitude of the spurious currents and remains stable for larger liquid-vapour
density ratios is proposed. Simulations of canonical test cases like deeply-quenched liquid vapour
system, Laplace’s law and Taylor’s droplet deformation are performed to benchmark the model.
Finally, the simulations of binary droplet collision are performed.

In Chapter 9, an outlook for the present work is discussed.





Chapter 2

Kinetic theory of gases

Classical thermodynamics provides a phenomenological description of the macroscopic state of
any system at equilibrium in terms of measurable quantities such as the temperature, heat,
work, entropy, etc. (Callen, 1998). Considering the fact that all systems are composed of
microscopic particles such as the atoms and molecules, it should be possible to obtain the
macroscopic behaviour from the motion of the microscopic particles. The kinetic theory provides
the statistical description of the macroscopic dynamics at the molecular level (Cercignani, 1988;
Liboff, 2003).

At the heart of the kinetic theory lies the famous Boltzmann equation (Grad, 1949). It
describes the statistical behaviour of a thermodynamic system even away from equilibrium.
The Boltzmann equation and its various simplications have long been employed as a model for
fluid dynamics. These simplications are two fold:

• The complexity of the collision kernel given by Boltzmann becomes a hindrance in the
numerical simulations as well as in the theoretical analysis of initial and boundary value
problems. Several simplications for the collision kernel such as the Bhatnagar-Gross-Krook
(BGK) (Bhatnagar et al., 1954), Fokker-Planck (Lebowitz et al., 1960; Singh & Ansumali,
2015), quasi-equilibrium model (Ansumali et al., 2007a) have been proposed. These models
retain the basic features of the Boltzmann collision kernel, while they end up sacrificing
some other features. For example, the Prandtl number given by Boltzmann’s kernel is 2/3,
while that of BGK is 1 and Fokker-Planck is 3/2 (Singh & Ansumali, 2015). However, in
both BGK and Fokker-Planck it is known how to tune the Prandtl number to arbitrary
values (Thantanapally et al., 2013b; Singh et al., 2016).

• The original description given by Boltzmann dealt with continuous velocity space, i.e.,
the particles could attain any velocity in the range of −∞ to ∞. It has been shown that
discrete velocity models (DVMs), where one assumes that the particles can move only
in a predecided set of directions, with as few as six directions can capture the structure
of the shock wave (Broadwell, 1964). The lattice Boltzmann model which falls into the
broad category of DVMs, is a well accepted model for hydrodynamics. In 2-dimensions, it
requires as few as nine discrete velocities to capture macroscopic hydrodynamics.

The objective of both the simplications is to get rid of unnecessary microscopic details, and keep
only the information pertinent to the macroscopic dynamics.

In this chapter, we will review the basic concepts of the continuous kinetic theory as well
as the simplified collision models. Furthermore, we also discuss discrete velocity models and
simplified collision models. The chapter is arranged as follows: In Section 2.1, we introduce the
single particle probability distribution function and its moments in the context of macroscopic
thermohydrodynamics. In Section 2.2, we discuss the Boltzmann equation and its important
properties. In Section 2.3, we follow Maxwell and Boltzmann’s derivation of the equilibrium
distribution and discuss its important properties. Finally, in Section 2.4, we discuss some of the
widely used alternatives to the Boltzmann’s collision kernel.

2.1 Distribution function and its moments

In the kinetic theory, one considers a collection of N identical point particles where each indi-
vidual particle is undergoing a constant and random motion. In the hard-sphere model, these

7
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particles undergo collision if they try to occupy the same location at the same instant. The
smallest length scale at the molecular level is known as the mean-free path lmfp. This is defined
as the the average distance traveled by the particles between successive collisions. Similarly, the
smallest time scale present in the system is the mean-free time, which is defined as the average
time spent by particles between successive collisions. The Knudsen number (Kn = lmfp/Lref) is
defined as the ratio of the mean free path and the characteristic macroscopic length scale Lref

of the system. In the limit of Kn→ 0, the fluid behaves as a continuum. As the Knudsen num-
ber increases the flow becomes rarefied and gradually transitions to a free-molecular regime.
Our domain of interest is Kn � 1, where the fluid can be modeled as a continuum and the
macroscopic hydrodynamic equations predict the accurate behaviour of the system.

Instead of attempting a detailed description of the trajectory of each individual particle in
the phase space, the kinetic theory provides the statistical description of their motion. The
central quantity of interest is the single particle probability distribution function f(x, c, t) with
fdc being probability of finding a particle moving with velocity in the range c to c+ dc at time
t and location x. It is convenient to define bilinear action between two functions of molecular
velocity φ(c) and ψ(c) as

〈φ, ψ〉 =

∫
dcφ(c)ψ(c). (2.1)

In D-dimensions, the hydrodynamic fields such as mass density ρ, the velocity u, and the energy
density E are related to the moments of the distribution function

〈
f,

{
1, c,

c2

2

}〉
= {ρ, ρu, E}, (2.2)

with E = E+ρu2/2, where the internal energy E = Dp/2, and p is the thermodynamic pressure.
The ideal gas equation of state p = ρ θ relates the thermodynamic pressure with the temperature.
Here, θ = kBT/m is the scaled temperature T , with kB as the Boltzmann constant and m as
the mass of the particle, hereafter assumed to be unity. Here onwards the fluctuating velocity is
defined as ξξξ = c−u and we restrict our discussion to three dimensions (D = 3) unless otherwise
stated. Other relevant quantities in thermal hydrodynamics are the stress tensor σαβ = 〈f, ξαξβ〉
and the heat flux qα =

〈
f, ξαξ

2/2
〉
, where the symmetrized traceless part Aαβ for any second

order tensor Aαβ is

Aαβ =
1

2

(
Aαβ +Aβα −

2

3
Aγγδαβ

)
. (2.3)

It is often convenient to rewrite the stress tensor as σαβ = 〈f, cαcβ〉 − ρuαuβ − pδαβ and the
heat flux as qα =

〈
f, cαc

2/2
〉
− uα (E + p) − uβσαβ. For subsequent uses, we also define third

moment Qαβγ = 〈f, ξαξβξγ〉 with its traceless part as

Qαβγ = Qαβγ −
2

5
(qαδβγ + qβδαγ + qγδβα) . (2.4)

Similarly, we define the contracted fourth moment Rαβγζ =
〈
f, ξ2ξαξβ

〉
, its traceless part Rαβ =

〈f, ξ2ξαξβ〉 and its trace R =
〈
f, ξ4

〉
.

2.2 The Boltzmann equation

The Boltzmann equation describes the time evolution of the distribution function f(x, c, t) under
the action of external forces and internal collisions. One of the first assumptions in deriving the
Boltzmann equation is that the collisions occupy only a very small time and that the gas is
sufficiently dilute that only binary collisions are important (Chapman & Cowling, 1970). In
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explicit form, the Boltzmann equation is (Cercignani, 1988)

∂f

∂t
+ cα

∂f

∂xα
+ gα

∂f

∂cα
= J (f, f) , (2.5)

where gα is the acceleration due to external force and J is the collision kernel. The left hand
side of the equation describes the time rate of change of the distribution function in an elemental
volume due to the flux of particles across the bounding surfaces, and the right hand side repre-
sents the binary collisions among particles which leads to particles jumping from one elemental
volume to another in the velocity space.

It is evident that just after the collision, the particles are correlated because of the conserva-
tion of the mass, momentum, and the energy. However, these correlations decay exponentially
and therefore the probability of the two correlated molecules undergoing another collision is ef-
fectively zero. The Boltzmann equation relies on the famous molecular chaos (“Stosszahlansatz”)
assumption which asserts that the velocities of the colliding particles before collision are uncor-
related, i.e.,

f12 (x1, c1,x2, c2, t) = f (x1, c1, t) f (x2, c2, t) . (2.6)

The collision operator with molecular chaos approximation is

J =

∫
dc2

∫
dk k1

[
f(c1)f(c2)− f(c)f(c′)

]
, (2.7)

where c1 and c2 are pre-collisional velocities, c′ and c are post-collisional velocities, dk repre-
sents an element of the solid angle, and the function k1 captures the collision cross section and
magnitude of relative velocity of the colliding particles.

A few important properties of the Boltzmann equation are listed below:

1. Collisional invariants: The binary collisions are assumed to be elastic in nature and do
not alter the mass, momentum, and energy of the system, therefore,

〈
J ,
{

1, c, c2
}〉

= {0,0, 0} . (2.8)

Thus, the local (in position space) hydrodynamic fields can change only due to redistribu-
tion of particles in position space.

2. Conservation laws: Taking the moments of the Boltzmann equation (Eq.(2.5)) and using
Eq.(2.8) one obtains the macroscopic conservation laws as

∂tρ+ ∂α(ρuα) = 0,

∂t(ρuα) + ∂β (ρuαuβ + pδαβ + σαβ) = ρgα,

∂tE + ∂β [(E + p)uβ + σβγuγ + qβ] = ρuαgα.

(2.9)

It should be noted here that the conservation laws emerge from the set of collisional
invariants only and should hold irrespective of the form of the collision term. This feature
of the Boltzmann equation allows to obtain the same set of macroscopic equations from
various other forms of the collision terms. It is also evident that the conservation laws are
consistent with the equations of continuum mechanics.

3. Zero point of the collision: The Maxwell-Boltzmann distribution fMB,

fMB = ρ

(
3ρ

4πE

) 3
2

exp

[−3ρξ2

4E

]
. (2.10)

is the solution to the equation
J (f, f) = 0. (2.11)
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This implies that when f = fMB

f(c)f(c′) = f(c1)f(c2), (2.12)

which is known as the condition of detailed balance, i.e., for every pair of particles with
velocities c, c′, that collide and attain the velocities c1, c2 there is an opposite pair of
particles with the velocities c1, c2 that collide and attain the velocities c, c′.

4. H theorem: Boltzmann extended the second law of thermodynamics to non-equilibrium
situations by defining the H-function as

H(t) =

∫
dc1f(c1) log f(c1). (2.13)

The derivative of H with respect to t is

∂H
∂t

=

∫
dc1

∂

∂t
(f(c1) log f(c1)) =

∫
dc1

∂f(c1)

∂t
(1 + log f(c1)). (2.14)

Assuming the absence of external forces (gα = 0), and substituting the Boltzmann equation
in the above equation yields

∂H
∂t

= −∂J
H
α

∂xα
+ Γ(B), (2.15)

where the entropy flux JHα 〈f log f, cα〉 and the entropy production is

Γ(B) =

∫
dc1

∫
dc2

∫
dk k1

[
f(c1)f(c2)− f(c)f(c′)

]
(1 + log f(c1)). (2.16)

The entropy flux does not contribute to the total entropy production of the system with
appropriate boundary conditions (say, a specular wall or periodic boundaries). In the
entropy production term, we interchange the coordinates of c1 and c2 to obtain

Γ(B) =

∫
dc1

∫
dc2

∫
dk k1

[
f(c1)f(c2)− f(c)f(c′)

]
(1 + log f(c2)) , (2.17)

Adding the Eqns. (2.16) and (2.17), and dividing by 2 one obtains

Γ(B) =
1

2

∫
dc1

∫
dc2

∫
dk k1

[
f(c1)f(c2)− f(c)f(c′)

]
(2 + log f(c1) + log f(c2)) .

(2.18)
Similarly, we interchange the dummy variables c1 ↔ c and c2 ↔ c′, add the resulting
entropy production to the above equation and divide by 2 to obtain final form of entropy
production as

Γ(B) =
1

4

∫
dc1

∫
dc2

∫
dk k1

[
f(c1)f(c2)− f(c)f(c′)

]
log

f(c)f(c′)

f(c1)f(c2)
. (2.19)

It is seen that the production of entropy is always negative, because the logarithm is
positive or negative depending on whether f(c)f(c′) is larger or smaller than f(c1)f(c2),
and is always opposite in sign to the term in square brackets. Hence, the entropy is a non-
increasing quantity in time (Chapman & Cowling, 1970; Reichl, 1999). Therefore, the H
function keeps decreasing until the Maxwell-Boltzmann distribution is achieved at which
point it attains a minima. The H theorem states that for any solution of the Boltzmann
equation, H function is a non-increasing function of time, i.e., Γ(B) ≤ 0. The equality
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holds when the distribution attains the Maxwell-Boltzmann form, where Γ(B) = 0 due to
Eq.(2.12).

5. Entropy at equilibrium: The thermodynamic entropy is well defined for both equilib-
rium and non-equilibrium states (Cercignani, 1997)

SB = −kBH[f ]. (2.20)

which is proportional to negative of the H at equilibrium. Therefore, Boltzmann regarded
the H theorem as a non-equilibrium generalization of the second law of thermodynamics
(which states that the thermodynamic entropy is a non-decreasing function of time). The
entropy of a monoatomic ideal gas at equilibrium can be obtained by substituting f = fMB

in the above relation and evaluating the integral
∫
dcfMB log fMB as

Seq
B = ρkB

[
log

1

ρ

(
4πE
3ρ

)3/2

+
3

2

]
. (2.21)

However, the second law is a property of an N -particle density function for any possible
dynamics, whereas, the H theorem is derived as a Lyapunov functional of the kinetic
equation. In classical thermodynamics, the temperature T is defined as

1

T
=
∂Seq

B

∂E , (2.22)

provided the number of particles and the volume is constant. Similarly, it can be seen that
the scaled temperature θ follows

1

θ
= −∂H[fMB]

∂E . (2.23)

It will be shown in Chapter 3 that the thermodynamically consistent discrete velocity
models satisfy this relation between the internal energy, entropy, and temperature.

2.3 The Maxwell-Boltzmann distribution

In the previous section, it was highlighted that the Maxwell-Boltzmann distribution is the zero
point of the collision where the condition of detailed balance is achieved, and that at this state
the entropy production term vanishes. In this section, we will follow Maxwell’s and Boltzmann’s
derivation of this distribution and will list some of its important properties.

2.3.1 Maxwell’s derivation

Maxwell’s derivation of the equilibrium distribution was based only on the principles of isotropy
and independence of orthogonal directions. He considered a system of N identical hard-sphere
particles left for a long enough period of time so as to attain equilibrium, and sought to find the
average number of particles with velocity in a given interval (Maxwell, 1860).

In a co-moving reference frame, let the number of particles with peculiar velocity in the
interval (ξα, ξα + dξα) be Nf̄(ξα), where f̄(ξα) is a function yet to be determined. Maxwell
assumed that the velocity ξx in x-direction of a particle will not affect its ξy, ξz, the velocities
in y, z-directions, and vice versa, as they are independent to each other. Then, the number of
particles with velocity in the interval (ξx, ξy, ξz) to (ξx + dξx, ξy + dξy, ξz + dξz) is

Nf̄(ξx)f̄(ξy)f̄(ξz)dξx dξy dξz, (2.24)
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i.e., the number of particles in an element of volume dξxdξydξz, therefore the number of particles
in unit volume is

Nf̄(ξx)f̄(ξy)f̄(ξz). (2.25)

Since the system is independent from preference to a direction,

f̄(ξx)f̄(ξy)f̄(ξz) = φ(ξ2
x)φ(ξ2

y)φ(ξ2
z ). (2.26)

Further, realizing that the choice of the coordinate is perfectly arbitrary, Maxwell postulated
that the number of particles should be a function of the magnitude of the vector only, i.e.,

f̄(ξx)f̄(ξy)f̄(ξz) = φ
(
ξ2
x + ξ2

y + ξ2
z

)
. (2.27)

Solving the above equation, one finds

f̄(ξα) = C exp(Aξ2
α). (2.28)

If A > 0, the number of particles becomes a diverging quantity and hence become infinite,
therefore A < 0 which implies A = −1/a2, where a is some constant, thereby making the
number of particles with velocity in (ξα, ξα + dξα)

NC exp

(
− 1

a2
ξ2
α

)
dξα. (2.29)

Integrating the above expression from ξα = −∞ to ξα =∞ and equating it to the total number
of particles, we find that C = 1/(a

√
π). Therefore,

f̄(ξα) =
1

a
√
π

exp

(
−ξ

2
α

a2

)
. (2.30)

From the above expression, the following properties of f̃ are deduced:

1. The number of particles with velocities in the interval (ξx, ξy, ξz) to (ξx+dξx, ξy+dξy, ξz +
dξz) is

N

(a
√
π)3

exp

(
−ξ

2

a2

)
dξ. (2.31)

2. The number of particles with speed in (ξ, ξ + dξ) is

4N

a3
√
π
ξ2 exp

(
− ξ

2

a2

)
dξ. (2.32)

This is depicted in Figure 2.1 for N = 1000, from where it is seen that for a system with the
same number of particles at equilibrium, as a increases the distribution becomes broader.

3. The average value of peculiar speed of all the particles in the system is 2a/
√
π.

4. The average value of ξ2/2 is 3a2/4. Since we know that the average of ξ2/2 is 3θ/2 we
obtain a =

√
2θ, substituting which we obtain the familiar form of the Maxwell-Boltzmann

distribution (Eq.(2.10)).
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Figure 2.1: The distribution of molecular speed as predicted by Maxwell for various parameters.

2.3.2 Boltzmann’s route

Boltzmann defined the local H function as

H[f ] =

∫
f(x, c, t) log f(x, c, t)dc. (2.33)

The equilibrium distribution is the minimizer of the H function under the constraints of mass,
momentum, and energy conservation,i.e.,

∫
dc fMB = ρ,

∫
dc cκf

MB = ρuκ,

∫
dc c2fMB = 3ρθ + ρu2. (2.34)

The constrained minimization is performed by getting the absolute minimum of the function

Ξ =

∫
dc
(
f log f + µf + ζκξκf + γξ2f

)
, (2.35)

where µ, ζκ, γ are the Lagrange multipliers associated with the mass, momentum, and energy
conservation respectively. Evaluating dΞ/df and equating it to zero, one obtains the equilibrium
distribution

fMB = exp
(
−µ− ζκcκ − γc2

)
= K exp

[
−γ
(
cκ +

ζκ
2γ

)2
]
, (2.36)

where K = exp[−µ+ ζ2
κ/(4γ)]. Imposing the mass, momentum and energy conservation on the

above expression, one obtains

ζκ = −2γuκ, K =
ρ

(π/γ)3/2
, γ =

1

2θ
, (2.37)

substituting which we obtain the familiar form of the Maxwell-Boltzmann distribution

fMB = ρ

(
m

2πkBT

)3/2

exp

[
−m(cκ − uκ)2

2kBT

]
. (2.38)

The procedure to evaluate discrete equilibrium for DVMs is similar, where the discrete H func-
tion is minimized under the constraints of mass, momentum, and energy conservation.
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2.3.3 Properties of the Maxwell-Boltzmann distribution

For subsequent uses, following properties of the Maxwell Boltzmann distribution fMB are listed
here:

1. It is the minimizer of the local H function under the constraints of mass, momentum, and
energy conservation.

2. The first few moments of the fMB are the collisional invariants, i.e.,

∫
dc fMB = ρ,

∫
dc cαf

MB = ρuα,

∫
dc c2fMB = 3ρθ + ρu2, (2.39)

and the higher moments are

σMB
αβ = 0, qMB

α = 0, QMB
αβγ = 0, RMB

αβ = 0, RMB = 15ρ θ2. (2.40)

3. log fMB is a collisional invariant since

log fMB = −µ− ζκcκ − γc2, (2.41)

is a linear combination of the conserved moments.

4. fMB, a zero of the collision kernel J , satisfies the condition of detailed balance, i.e.,

f(c1)f(c2) = f(c)f(c′). (2.42)

5. The entropy production vanishes when f = fMB.

6. fMB is symmetric about cα = uα, which implies

fMB(c,u) = fMB(−c,−u). (2.43)

7. fMB is always positive.

These properties of the Maxwell-Boltzmann distribution need to be respected while simplifying
the collision kernel or while constructing DVMs in order to have a faithful representation of the
kinetic theory.

2.4 Collision Models

In the hydrodynamic limit, the continuum Navier-Stokes-Fourier (NSF) description emerges not
only from the detailed kinetic description, but also from its simplified models. These simpli-
fied models make the numerical simulations of hydrodynamics efficient by discarding irrelevant
information of the collisions. Here, we list some of the widely used collision models.

2.4.1 Bhatnagar-Gross-Krook model

A collision model used widely due to its simplicity is the Bhatnagar-Gross-Krook (BGK) model
(Bhatnagar et al., 1954). This model exploits the fact that the role of collisions is to relax the
distribution function to its equilibrium fMB. This model assumes that all moments relax at the
same rate τ which physically corresponds to the mean free time. The collision term for this
model reads

JBGK =
1

τ

(
fMB(ρ,u, θ)− f

)
, (2.44)
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where the time parameter τ is the relaxation time over which the distribution functions relax to
the equilibrium state. This model provides a qualitatively correct dynamics of the Boltzmann
equation. It has the same collisional invariants, conservation laws, and the zero point of the
collision as the Boltzmann kernel.

The H theorem: This model satisfies the H theorem, with the entropy production as

Γ(BGK) = 〈JBGK, log f〉 =
1

τ

∫
dc
(
fMB(ρ,u, θ)− f

)
log f

=
1

τ

∫
dc
(
fMB(ρ,u, θ)− f

)
log

f

fMB
+

1

τ

∫
dc
(
fMB(ρ,u, θ)− f

)
log fMB,

(2.45)

where the second term is zero because of conservation of collisional invariants, hence

Γ(BGK) =
1

τ

∫
dc
(
fMB(ρ,u, θ)− f

)
log

f

fMB
≤ 0, (2.46)

where, we have used the inequality

(X − Y ) log
Y

X
≤ 0. (2.47)

However, because of presence of only one time scale τ , the thermal diffusivity (αT = τθ)
and the momentum diffusivity (ν = τθ) cannot be fixed independently. Therefore, an important
limitation of the model is the constraint on Prandtl number, which is restricted to unity. Many
modifications of BGK model, with the aim to model non-unitary Prandtl numbers are available
in the literature. The quasi-equilibrium models (Gorban & Karlin, 1994; Levermore, 1996), the
ellipsoidal BGK model, which satisfy the H theorem (Holway Jr, 1966; Andries et al., 2000),
and the Shakhov model (Shakhov, 1968) are three such examples.

2.4.2 Quasi-equilibrium model

The Prandtl number predicted by the BGK model is unity as opposed to 2/3, the value predicted
by the Boltzmann equation. This limitation emerges due to the fact that unlike Boltzmann
dynamics, BGK dynamics assumes that all higher order moments relax with the same rate.
This can be fixed if different moments are made to relax at different rates via a time-scale
hierarchy (Gorban & Karlin, 1994). The main idea is to divide the set of independent moments
of the distribution function f into three parts

M(f) = {MSlow(f),MQuasi−slow(f),MFast(f)}, (2.48)

where MSlow(f) are the set of conserved moments. The higher order moments MQuasi−slow(f)
and MFast(f) are not conserved. In order to introduce the time-scale hierarchy in a thermody-
namically consistent manner, the quasi-equilibrium distribution f∗ is defined as the minimizer of
the H function under the constraint ofMSlow(f) andMQuasi−slow(f) being conserved, therefore,

MSlow(f) =MSlow(f∗), MQuasi−slow(f) =MQuasi−slow(f∗). (2.49)

The precise choice of the quasi-slow moment depends on the physical context (Ansumali et al.,
2007a). The collision term is modeled by two-step relaxation as:

JQE =
1

τ

[
f∗
(
MSlow,MQuasi−slow

)
− f

]
+

1

τ1

[
fMB (ρ,u, θ)− f∗

(
MSlow,MQuasi−slow

)]
,

(2.50)
where τ and τ1 are the two relaxation times. Thus, in the quasi-equilibrium model the relax-
ation to equilibrium is split in two steps: in the first step the distribution function relaxes to
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Figure 2.2: The trajectory for relaxation to equilibrium as per various collision models: the
solid black curve represents the Boltzmann’s collision kernel, the dashed blue line represents the
BGK collision while the dash-dotted red lines represent the quasi-equilibrium model. Here, f
is the pre-collisional state, f∗ is the quasi-equilibrium and f eq is the equilibirum state, whereas
Hi are the isoentropy levels.

the quasi-equilibrium state with a faster relaxation time τ , and in the second step the quasi-
equilibrium relaxes to the equilibrium state with slower relaxation time τ1. In case τ = τ1, the
quasi-equilibrium model reduces to the BGK model. It has the same collisional invariants and
conservation laws as the Boltzmann kernel. The availability of two relaxation time scales allows
fixing the thermal diffusivity independent of the kinematic viscosity (Ansumali et al., 2007a).

The H theorem: This model also satisfies the H theorem, with the entropy production as

Γ(QE) = 〈JQE, log f〉 =

∫
dc

[
1

τ
(f∗ − f) +

1

τ1

(
fMB (ρ,u, θ)− f∗

)]
log f

=
τ1 − τ
τ1τ

∫
dc (f∗ − f) log f +

1

τ

∫
dc
(
fMB (ρ,u, θ)− f∗

)
log f

=
τ1 − τ
τ1τ

∫
dc (f∗ − f) log

f

f∗
+

1

τ

∫
dc
(
fMB (ρ,u, θ)− f∗

)
log

f

fMB

+
τ1 − τ
τ1τ

∫
dc (f∗ − f) log f∗ +

1

τ

∫
dc
(
fMB (ρ,u, θ)− f∗

)
log fMB,

(2.51)

where the last two terms are zero because of the conservation of moments, hence

Γ(QE) =
τ1 − τ
τ1τ

∫
dc (f∗ − f) log

f

f∗
+

1

τ

∫
dc
(
fMB (ρ,u, θ)− f∗

)
log

f

fMB
≤ 0, (2.52)

is non-positive as long as τ ≤ τ1. Here, it should be noted that in continuous velocity space, the
quasi-equilibrium collision kernel is not applicable for Pr > 1, since

∫
dc f∗ =

∫
dc ρ exp

[
−µ− ζκcκ − γc2 − λκc2cκ

]
, (2.53)

is a diverging quantity. However, the discrete velocity models are free from such issues.
Figure 2.2 compares the trajectory for relaxation to equilibrium for the Boltzmann, BGK

and quasi-equilibrium collision kernels.
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2.4.3 Fokker-Planck model

Fokker-Planck model by Lebowitz et al. (1960) models the relaxation to equilibrium as diffusive
dynamics in velocity space. The collision term for the Fokker-Planck model is

JFP =
1

τFP

∂

∂cα

(
ξαf + θ

∂f

∂cα

)
. (2.54)

This model is thermodynamically consistent and leads so the same set of collisional invariants,
macroscopic conservation laws, and zero of the collision as the Boltzmann equation (Singh et al.,
2016).

The H theorem: The Fokker-Planck model satisfies the H theorem, with the entropy
production as

Γ(FP) = 〈JFP, log f〉 = − 1

τFP

∫
dξ

(
ξα +

θ

f

∂f

∂cα

)
∂f

∂cα
=

3ρ

τFP
− θ

τFP

∫
dξ

1

f

∂f

∂cα

∂f

∂cα
≤ 0,

(2.55)

owing to the identity

∫
dξf

(
∂ log f

fMB

∂ξα

)2

=

∫
dξ

[
1

f

∂f

∂cα

∂f

∂cα
+ f

∂ log fMB

∂cα

∂ log fMB

∂cα
− 2

∂f

∂cα

∂ log fMB

∂cα

]

=

∫
dξ

[
1

f

∂f

∂cα

∂f

∂cα
+
f

θ2
+ 2

ξα
θ

∂f

∂cα

]
= −3ρ

θ
+

∫
dξ

1

f

∂f

∂cα

∂f

∂cα
≥ 0.

(2.56)

A limitation of this model is that it restricts the Prandtl number to 3/2. A variation of
the Fokker-Plank model for independently tuning the transport coefficients and the equation of
state was proposed in Singh & Ansumali (2015). The Fokker-Planck model is useful for gaseous
microflows at intermediate Knudsen numbers (Singh et al., 2016)

2.5 Conclusion

In this chapter, we have reviewed the basics of the kinetic theory of gases. We have discussed
the basic properties of the Maxwell-Boltzmann distribution that will play a central role while
constructing the discrete equilibrium for discrete in velocity space kinetic theory. We have
discussed a few collision models along with their H theorems. In the next chapter, we will
discuss the Boltzmann BGK model in more detail and derive its macroscopic limit.





Chapter 3

Discrete kinetic modeling of
thermohydrodynamics

The molecular velocity c is continuous in the kinetic theory of gases, whereas in the discrete
velocity models (DVM) it is restricted to a set c = {c1, · · · cNd} consisting of Nd vectors (Broad-
well, 1964; Monaco & Preziosi, 1991). Once the discrete velocity set is defined, one can create a
discrete analogue of the collision term. In order to study the binary collision dynamics, Broad-
well (1964) chose the discrete form of Boltzmann type binary collision term. In LBM, one
typically chooses BGK type relaxation dynamics. For any DVM, there are two questions that
need to be addressed: What is the equilibrium distribution for the DVM, and, how to ensure
recovery of the hydrodynamic moments for small Nd?

The Maxwell-Boltzmann distribution fMB has a great significance in the continuous kinetic
theory (Chapman & Cowling, 1970; Liboff, 2003). In the previous chapter, we derived the
Maxwell-Boltzmann distribution as the minimizer of the Boltzmann’s H functional under the
constraint of collisional invariants being conserved. However, if one aims to construct a dis-
crete velocity model (DVM) of the kinetic theory that retains the most important properties of
continuous kinetic theory, the discrete equilibrium distribution f eq

i is necessarily different from
fMB
i (the Maxwell-Boltzmann distribution evaluated at discrete points). This is because the

moments of fMB show departure from the moments of fMB
i (Shan & He, 1998a; Ansumali et al.,

2003), i.e.,
∫
dc fMB 6=

Nd∑

i=1

fMB
i ,

∫
dc cαf

MB 6=
Nd∑

i=1

fMB
i ciα. (3.1)

The error in evaluating the moments are introduced because one is approximating an integral
(see Figure 3.1) and a pointwise approximation is not expected to preserve the integral quantities.
Of course, the errors can be minimized by keeping the number of discrete velocities very large.
However, for computational efficiency and tractability one would like to recover the properties
of the continuous kinetic theory with as few discrete velocities as possible. In LBM, one looks
at discrete velocity models such that

∫
dcψ(c)f =

Nd∑

i=1

ψifi, (3.2)

at least for lower order polynomials ψ(c). The above equation can be understood as calculat-
ing the moments via generalized Gaussian quadrature. It was demonstrated by Boghosian &
Coveney (1998) that by demanding the first three moments and the trace of the fourth mo-
ment of the discrete equilibrium distribution match the corresponding moments of the Maxwell-
Boltzmann distribution, the macroscopic equations thermohydrodynamics could be recovered.

The discrete equilibrium distribution is constructed as the minimizer of the discrete H func-
tional under the constraint of collisional invariants being conserved (Ansumali et al., 2003).
The aim of this chapter is to emphasize the conditions on f eq

i that are necessary to obtain
the Navier-Stokes-Fourier (NSF) equations as the hydrodynamic limit of the discrete kinetic
equation. These conditions manifest in the form of restrictions on the moments of f eq

i . This
restriction on the moments further dictates whether the choice of the discrete velocity set is
acceptable. In this chapter, we first demonstrate that the moments of f eq

i should be the same as

19



20 Chapter 3. Discrete kinetic modeling of thermohydrodynamics

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

c

fMB(ρ = 1, u = 0.1, θ = 1)

Figure 3.1: Finding the discrete equilibrium by evaluating the Maxwell-Boltzmann distribution
at discrete points does not conserve the moments. In the figure, the area beneath the curve
represents the density, which is different for the Maxwell-Boltzmann distribution and discrete
equilibrium as Maxwell-Boltzmann distribution at discrete points.

the moments of fMB
i in order to have correct thermohydrodynamic limit of the discrete kinetic

equation. We then derive the conditions on the discrete velocity set that lead to the correct
form of the moments of f eq

i .
This chapter is organized as follows: In Section 3.1, we discuss the restrictions on the discrete

velocity set due to the arguments of isotropy and independence from preference to any direction.
In Section 3.2, we derive the moment chain associated with the discrete kinetic equation, i.e.,
the Boltzmann BGK equation, and, in Section 3.3 we derive the conditions on the equilibrium
moments that are required in order to obtain the NSF equations as the hydrodynamic limit of the
Boltzmann BGK equation. In Section 3.4, we derive the series expansion of energy conserving
discrete equilibrium distribution and obtain the restrictions on the discrete velocity set. Finally,
in Section 3.5, we derive the discrete equilibrium by minimizing the discrete H functional.

3.1 Discrete velocity models

In any DVM, one restricts the molecular velocity to a few chosen directions that constitute
a discrete velocity set c = {c1, · · · cNd}. The central quantity in any DVM is the discrete
population set f = {f1(x, t), · · · fNd(x, t)}, understood here as a vector in the Nd dimensional
vector space. We define the bilinear action between two vectors φ(ci) and ψ(cj) as

〈φ, ψ〉 =

Nd∑

i=1

φi ψi. (3.3)

To avoid preference to any specific direction, one imposes a few restrictions on the discrete
velocity set c (Yudistiawan et al., 2010; Shet et al., 2013):

1. The discrete velocity set is chosen such that for each vector ci ∈ c, the vector −ci is also
present in the set.

2. For each vector with components (ci1, ci2, ci3), all the permutations

{(ci2, ci1, ci3), (ci1, ci3, ci2), (ci3, ci1, ci2), (ci2, ci3, ci1), (ci3, ci2, ci1)}

are also member of the velocity set. This also allows us to assort the discrete velocity
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energy shells, each shell containing the velocities with equal magnitude (Karlin et al.,
1999).

Here, it is interesting to note that Maxwell’s original derivation of fMB was based on the
arguments of spatial isotropy and independence of the equilibrium distribution from preference
to a specific direction (Maxwell, 1860). The above two conditions imply that for any veloc-
ity vector with components (ci1, ci2, ci3) ∈ c, we must have all the vectors with components
(±ci1,±ci2,±ci3) ∈ c. These conditions ensure that in the discrete case with any vector φ(c2)
we have

〈
φ, c2n

x

〉
=
〈
φ, c2n

y

〉
=
〈
φ, c2n

z

〉
,

〈
φ, c2n

x c
2m
y

〉
=
〈
φ, c2n

y c
2m
z

〉
=
〈
φ, c2n

z c
2m
x

〉
,

〈
φ, c2n

x c
2m
y c2p

z

〉
=
〈
φ, c2n

y c
2p
z c

2m
x

〉
=
〈
φ, c2p

x c
2m
y c2n

z

〉
,

〈
φ, c2n+1

x

〉
=
〈
φ, c2n+1

y

〉
=
〈
φ, c2n+1

z

〉
= 0,

(3.4)

where n and m are the natural numbers. These conditions render the velocity set spatially
isotropic and independence from preference to any particular direction. In this thesis, we only
consider the discrete velocity sets which satisfy the above constraints.

3.2 The Boltzmann BGK equation

The time evolution of the distribution function in the dilute gas limit is given by the Boltzmann
equation (Chapman & Cowling, 1970; Cercignani, 1988). However, a simplified model called the
Boltzmann Bhatnagar-Gross-Krook (BGK) model is widely known to be sufficient to describe
Navier-Stokes-Fourier dynamics (Bhatnagar et al., 1954)

∂tf (x, c, t) + (c · ∇)f (x, c, t) = −1

τ
[f (x, c, t)− f eq(ρ (x, t) ,u (x, t) , θ (x, t))] , (3.5)

with τ as the collisional relaxation time and the equilibrium distribution f eq. In the continuous
case f eq is taken as fMB, however, in the discrete case f eq should be the minimizer of the discrete
H function. In this section, we distinguish between f eq and fMB to highlight properties of f eq

of any discrete velocity model which are needed to derive Navier-Stokes-Fourier equations. The
conservation laws obtained upon integrating the Boltzmann BGK equation are

∂tρ+ ∂α(ρuα) = 0,

∂t(ρuα) + ∂β (ρuαuβ + pδαβ + σαβ) = 0,

∂te+ ∂β ((e+ p)uβ + σβγuγ + qβ) = 0.

(3.6)

These equations contain higher order moment such as the stress tensor and the heat flux. The
evolution of the stress tensor obtained by taking the second moment of the kinetic equation
(Eq.(3.5)) is (see Appendix A for detailed derivation)

∂tσαβ + uγ∂γσαβ + ∂γQαβγ + σαβ∂γuγ + 2σγβ∂γuα + 2p∂βuα +
4

5
∂βqα =

1

τ

(
σeq
αβ − σαβ

)
.

(3.7)
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Similarly, the evolution of heat flux obtained by taking the third moment of the kinetic equation
[Eq.(3.5)] is (see Appendix A for detailed derivation)

∂tqα +
1

2
∂β

(
Rαβ +

1

3
Rδαβ

)
+Qαβγ∂γuβ + ∂β (qαuβ) +

7

5
qβ∂βuα +

2

5
qα∂βuβ +

2

5
qβ∂αuβ

−5

2

p

ρ
∂αp−

σαβ
ρ
∂βp−

5

2

p

ρ
∂θσαθ −

σαβ
ρ
∂θσβθ =

1

τ
(qeq
α − qα) .

(3.8)

These evolution equations form the moment chain and can be seen to contain one higher moment
than the moment whose evolution they represent, i.e., the evolution of density contains momen-
tum, the evolution of momentum contains the viscous stress, and so on. In the continuous case
this chain goes on to infinity, while in the discrete case the moment chain closes at a finite level
and forms a set of Nd coupled partial differential equations (Cercignani, 1988; Ansumali et al.,
2007b; Broadwell, 1964).

3.3 Hydrodynamic limit of the Boltzmann BGK equation

In this section, we derive the hydrodynamic limit associated with the Boltzmann BGK equation.
The description is kept generic so that it is valid for the continuous (in velocity) Boltzmann BGK
equation as well as its discrete velocity analogues. As the aim of the section is to construct
an energy conserving discrete velocity model, we intend to highlight the conditions on the
discrete equilibrium distribution required to recover the Navier-Stokes-Fourier equations as the
hydrodynamic limit of the kinetic equation. In order to obtain the hydrodynamic limit from
the equations in the moment chain, following the Chapman-Enskog procedure, we expand the
distribution function and the time derivative as

f = f (0) + τf (1) +O(τ2), (3.9)

∂t = ∂
(0)
t + τ∂

(1)
t +O(τ2). (3.10)

The non-conserved moments M fast are also expanded about their respective equilibriums in
order of τ as

M fast = M eq(ρ,u, θ) + τM (1) +O(τ2), (3.11)

where M fast =
{
σαβ, qα, Qαβγ , Rαβ, R

}
. Keeping in mind the objective of obtaining the Navier-

Stokes-Fourier equations at the zeroth and first order of τ , a number of comments can be made:

• The velocity evolution obtained upon performing algebraic manipulations on the Eqns.(3.6)
is

∂tuα + uβ∂βuα +
1

ρ
∂αp+

1

ρ
∂γσαγ = 0, (3.12)

in which at O(1) we obtain

∂
(0)
t uα + uβ∂βuα +

1

ρ
∂αp+

1

ρ
∂β

(
σeq
αβ − σMB

αβ

)
= 0, (3.13)

from where we see that Euler dynamics upto O(un−1) is obtained provided σeq
αβ − σMB

αβ =

O(un). It is typical to demand that σeq
αβ − σMB

αβ = O(u4).

• The temperature evolution can also be obtained upon performing algebraic manipulations
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on the Eqns.(3.6)

∂tθ + uα∂αθ +
2

3
θ∂βuβ +

2

3ρ
σαβ∂αuβ +

2

3ρ
∂αqα = 0, (3.14)

in which at O(1) we obtain

∂
(0)
t θ + uα∂αθ +

2

3
θ∂βuβ +

2

3ρ

(
σeq
αβ − σMB

αβ

)
∂αuβ +

2

3ρ
∂α
(
qeq
α − qMB

α

)
= 0, (3.15)

from where we see that the Euler dynamics uptoO(un−1) is obtained provided σeq
αβ−σMB

αβ =

O(un) and qeq
α − qMB

α = O(un).

• From the evolution of stress given by Eq.(3.7), after ignoring σeq
αβ − σMB

αβ terms, we have
at O(1)

∂γ

(
Qeq
αβγ −QMB

αβγ

)
+ 2p∂βuα +

4

5
∂β (qeq

α − qMB
α ) = −σ(1)

αβ , (3.16)

from where it can be seen that the accurate form of the viscous stress is recovered upto
O(un−1) if qeq

α − qMB
α = O(un) and Qeq

αβγ −QMB
αβγ = O(un).

• Similarly, after substituting RMB = 15ρ θ2 in the evolution of heat flux given by Eq. (3.8),
we have at O(1)

∂
(0)
t

(
qeq
α − qMB

α

)
+

1

2
∂β

(
Req
αβ −RMB

αβ

)
+

1

6
∂α
(
Req −RMB

)
+
(
Qeq
αβγ −QMB

αβγ

)
∂γuβ

+∂β
[(
qeq
α − qMB

α

)
uβ
]

+
7

5

(
qeq
β − qMB

β

)
∂βuα +

2

5

(
qeq
α − qMB

α

)
∂βuβ

+
2

5

(
qeq
β − qMB

β

)
∂αuβ +

5

2
p ∂αθ = −q(1)

α ,

(3.17)

from where it can be seen that the Fourier’s law is recovered till O(ηn−1) if Req −RMB =
O(ηn), Qeq

αβγ −QMB
αβγ = O(ηn) and qeq

α − qMB
α = O(ηn) where η = θ/θ0− 1. Also, the above

equation at uα = 0 becomes

1

6
∂α
(
Req −RMB

)
+

5

2
p ∂αθ = −q(1)

α , (3.18)

from where it can be seen that the main source of error in the Fourier’s law is the term
Req −RMB.

Therefore, in order to recover the Navier-Stokes-Fourier equations accurately we require the
Knudsen number Kn = τcs/Lref to be small, and the equilibrium moments of any DVM to mimic
as closely as possible the moments of the Maxwell-Boltzmann distribution. The RD3Q67 model
discussed later in this thesis will have

σeq
αβ − σMB

αβ = O(uαuβη
3), qeq

α − qMB
α = O(u3η3), Req −RMB = O(η4). (3.19)

3.4 Energy conserving discrete equilibrium distribution

The link between the series expression for the discrete isothermal equilibrium and the Maxwell-
Boltzmann distribution is well understood (Shan & He, 1998a). In this section, we first derive
the series expansion for the isothermal equilibrium at arbitrary velocities from the Maxwell-
Boltzmann distribution. We then invert the argument and construct the series expansion for
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the energy conserving equilibrium at arbitrary temperatures and zero velocity from the Maxwell-
Boltzmann distribution.

The discrete isothermal distribution f eq(ρ,u, θ0) from the Maxwell-Boltzmann distribution
is obtained in two-steps (Shan & He, 1998a). First, the local Maxwell-Boltzmann distribution at
θ = θ0 is projected to a finite basis expansion around a global Maxwell-Boltzmann distribution
with zero velocity and reference temperature θ0 to obtain

f̂ eq (ρ,u, θ0, c) = ω(c)
N∑

n=0

1

n!
a(n)H(n)(c), (3.20)

where ω(c) = fMB (ρ = 1,u = 0, θ0, c), H
(n)(c) are the orthogonal Hermite polynomials, and

a(n) are the coefficients of expansion. Notice that even the expanded version is consistent with
the requirement that conserved moments of the equilibrium distribution are preserved (Shan &
He, 1998a). The series expansion of the isothermal (θ = θ0) equilibrium is then obtained as

f̂ eq (ρ,u, θ0, c) = ρω(c)

(
1 +

c · u
θ0

+
(c · u)2 − u2θ0

2θ2
0

+
(c · u)3 − 3θ0u

2(c · u)

6θ3
0

)
. (3.21)

The above expression is the series expansion around u = 0, but is still continuous in ve-
locity space. To obtain the series expression corresponding to discrete velocities, a quadrature
evaluation is performed following the Gaussian quadrature

∫
dcφ(c)ω(c) =

∑

i

wiφ(ci), (3.22)

with wi as weights and ci as nodes. The Hermite coefficients for the discrete velocity model
then become

a(n) =

∫
dcω(c)

f̂ eq (ρ,u, θ0, c)

ω(c)
H(n)(c) =

∑

i

wi
f̂ eq (ρ,u, θ0, ci)

ω(ci)
H(n)(ci). (3.23)

For efficient computation, we define a transformation f eq
i (ρ,u, θ0) = wif̂

eq (ρ,u, θ0, ci) /ω(ci),
and hence the discrete equilibrium is written as

f eq
i (ρ,u, θ0) = ρwi

(
1 +

ci · u
θ0

+
(ci · u)2 − u2θ0

2θ2
0

+
(c · u)3 − 3θ0u

2(c · u)

6θ3
0

)
. (3.24)

The above expression for discrete isothermal equilibrium conserves the mass and momentum.
Here, one needs to use the following properties of the weights:

∑

i

wi = 1,
∑

i

wiciαciβ = θ0δαβ,
∑

i

wiciαciβciηciζ = θ0∆αβηζ , (3.25)

and that the odd moments of weight are zero. Here ∆αβηζ = δαβδηζ + δαζδβη + δαηζδβζ is the
fourth-order isotropic tensor.

Following the same idea as the isothermal case, we now find f̃ eq
i (ρ,u = 0, θ), the discrete

equilibrium distribution at zero velocity and arbitrary temperature. We first write the local
Maxwell-Boltzmann distribution as a product of the global Maxwell-Boltzmann distribution
f̃ eq (ρ,u = 0, θ, c) and a function of molecular velocity c as

f̃ eq (ρ,u = 0, θ, c) = ρ
ω(c)

(1 + η)
3
2

exp

(
c2η

2θ0(1 + η)

)
, (3.26)
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where η = θ/θ0−1. The equilibrium at non-zero velocity can be written as an expansion around
this zero velocity state. Now, performing a quadrature evaluation followed by expanding and
collecting the terms with like powers of η one obtains

f̃ eq
i (ρ,u = 0, θ) = wiρ

[
1 +

η

2θ0
(c2
i − 3θ0) +

η2

8θ2
0

(
c4
i − 10c2

i θ0 + 15θ2
0

)

+
η3

48θ3
0

(
c6
i − 21c4

i θ0 + 105c2
i θ

2
0 − 105θ3

0

)
+

η4

384θ4
0

(
c8
i − 36c6

i θ0 + 378c4
i θ

2
0 − 1260c2

i θ
3
0 + 945θ4

0

)

+O(η5)

]
.

(3.27)

Notice that the momentum associated with f̃ eq
i is zero by construction as odd-order moments

of any DVM are zero. The requirement that f̃ eq
i conserve mass and energy, i.e.,

〈
f̃ eq,

{
1, c2

}〉
= {ρ, 3ρθ} , (3.28)

is satisfied upto O(η4) if we impose following conditions on the weights (see Appendix A.5 for
derivation)

〈
w,
{

1, c2, c2c2, c2c2c2, c2c2c2c2, c2c2c2c2c2
}〉

=
{

1, 3θ0, 15θ2
0, 105θ3

0, 945θ4
0, 10395θ5

0

}
. (3.29)

The above conditions on wi, ci, θ0 constitute indispensable constraints on the parameters of any
DVM in order to have energy conservation and dynamics accurate upto O(η5) .

There is, however, one issue with these series expansions. The positivity, an essential fea-
ture of the Maxwell-Boltzmann distribution, is not guaranteed for the series expansions and is
violated at large velocities and temperature deviations (Ansumali et al., 2003). The positivity
is guaranteed if one evaluates the Lagrange multipliers and then finds the discrete equilibrium,
which is explained in the forthcoming section. However, the appropriate series expansion of such
equilibrium distributions must be the same as the series expansions given by Eqs.(3.24),(3.27).
We also note that the methodology presented in this section differs from McNamara et al. (1997);
Vahala et al. (1998); Chikatamarla & Karlin (2006) in not using single expansion in two variables
(velocity and deviation from reference temperature).

3.4.1 Definition of temperature in the discrete kinetic theory

In this section, we show that the thermodynamic relation between entropy, internal energy, and
temperature is obeyed by the discrete velocity model too. We start with the Maxwell-Boltzmann
distribution Eq.(2.10) at zero velocity

fMB(ρ, u = 0, E , c) = ρ

(
3ρ

4πE

) 3
2

exp

[−3ρc2

4E

]
, (3.30)

with the internal energy E = (3/2)ρθ. The local Maxwell-Boltzmann distribution is written as
a product of the reference state ω(c) = fMB(ρ = 1, u = 0, E0, c) and a function of molecular
velocity c as

f̂ eq(ρ, u = 0, E , c) = ρω(c)

(E0

E

)3/2

exp

[
−3ρc2

4E +
3c2

4E0

]
. (3.31)
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Following the same procedure as above, H[f̂ eq(ρ, u = 0, E , c)] becomes

H[f̂ eq(ρ, u = 0, E , c)] =

∫
dcω(c)

f̂ eq

ω(c)
log f̂ eq =

∑
wi

f̂ eq
i

ω(ci)
log f̂ eq

i (3.32)

We employ the transformation f̃ eq
i (ρ, u = 0, E0) = wif̂

eq (ρ, u = 0, E0, ci) /ω(ci), which using
Eq.(3.31) gives

f̃ eq
i = ρwi

(E0

E

)3/2

exp

[
−3ρc2

4E +
3c2

4E0

]
. (3.33)

Under this transformation, Eq.(3.32) becomes

H[f̂ eq(ρ, u = 0, E , c)] =
∑

f̃ eq
i log

f̃ eq
i ω(ci)

wi
=
∑

f̃ eq
i log

f eq
i

wi
+
∑

f̃ eq
i

[
3

2
log

3ρ

4πE0
− 3c2

4E0

]

=
∑

f̃ eq
i log

f̃ eq
i

wi
+

[
3

2
ρ log

3ρ

4πE0
− 3E

2E0

]
, (3.34)

where substituting f̃ eq
i from Eq.(3.33) one obtains

H =
∑

f̃ eq
i

[
log ρ+

3

2
log
E0

E −
3ρc2

4E +
3c2

4E0

]
+

[
3

2
ρ log

3ρ

4πE0
− 3E

2E0

]
(3.35)

= ρ log ρ+
3

2
ρ log

E0

E −
3ρ

2
+

[
3

2
ρ log

3

4πE0

]
. (3.36)

Taking a derivative of the above expression with respect to E , one obtains

∂H
∂E = − 3ρ

2E = −1

θ
. (3.37)

Typically, Eq.(3.33) involves some errors depending on the discrete velocity models that have
been ignored here.

3.5 Discrete entropic equilibrium

In this section, the discrete equilibrium distribution is derived such that the positivity is guar-
anteed. It is demonstrated that its series form is the same as the series expansions derived in the
previous section. We begin with the discrete convex entropy function of the Boltzmann form

H =

Nd∑

i=1

fi

(
log

fi
wi
− 1

)
,

and construct the discrete equilibrium as its minimizer under the constraints of local conser-
vation laws (Karlin et al., 1998; Boghosian et al., 2003; Wagner, 1998; Chen & Teixeira, 2000;
Karlin et al., 1999; Succi et al., 2002b; Ansumali et al., 2003; Ansumali & Karlin, 2005). This
constrained minimization can be performed by getting absolute minimum of the functional

Ξ =

Nd∑

i=1

[
fi

(
log

fi
wi
− 1

)
+ µ̂fi + ζκciκfi + γc2i fi

]
, (3.38)

where µ̂, ζκ, γ are the Lagrange multipliers associated with mass, momentum and energy re-
spectively (Ansumali & Karlin, 2005; Ansumali et al., 2003). Solving the minimization problem
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∂Ξ/∂f = 0, one obtains the equilibrium distribution as

f eq
i = wiρ exp(−µ− ζκciκ − γc2i ), (3.39)

where for convenience we have transformed the Lagrange multiplier µ̂ = µ − log ρ. Note that
this form of the discrete equilibrium distribution guarantees the positivity. For every discrete
velocity model, one finds the Lagrange multipliers with high accuracy to preserve the positive
form of equilibrium (Chikatamarla et al., 2006).

The five Lagrange multipliers and thus the equilibrium populations f eq
i are found in the

explicit form if the system of five equations representing mass, momentum, and energy conser-
vation

Nd∑

i=1

f eq
i {1, ciα, c2

i } = {ρ, ρuα, ρu2 + 3ρθ}, (3.40)

were explicitly invertible.

3.5.1 Special cases: D1Q3, D2Q9, D3Q27

For a few special cases such as the D1Q3 model (and its higher dimension extensions D2Q9 and
D3Q27) the Lagrange multipliers can be evaluated in explicit form (Ansumali et al., 2003). For
the isothermal D1Q3 model, the discrete velocity set is {−1, 0, 1} with reference temperature
θ0 and weights {1/6, 4/6, 1/6}. Therefore,

f eq
i = wiρ exp(−µ− ζκciκ), (3.41)

which gives

f eq
−1 =

1

6
AB, f eq

0 =
4

6
A, f eq

1 =
1

6

A

B
, (3.42)

where A = ρ exp(−µ), B = exp(−ζκ). The mass and momentum conservation constraints

ρ =
1

6
A

(
1

B
+ 4 +B

)
, ρu =

1

6
A

(
B − 1

B

)
, (3.43)

can be solved to obtain

A = ρ
(

2−
√

1 + 3u2
)
, B =

2u+
√

1 + 3u2

1− u . (3.44)

Therefore, the general formula for discrete entropic equilibrium in D dimensions is written as

f eq
i = wiρ

D∏

α=1

(
2−

√
1 + 3u2

α

)[2uα +
√

1 + 3u2
α

1− uα

]ciα
. (3.45)

It can be seen that the equilibrium is positive for all uα < 1.
However, other than these special cases the explicit solutions are not known. Therefore, one

often uses a numerical route to compute the Lagrange multipliers and thus find the entropic
equilibrium (Frapolli et al., 2015; Dorschner et al., 2016a,b). For numerical methodologies to
solve for the Lagrange multipliers the reader is referred to Namburi (2017).

3.5.2 Perturbation series of the entropic equilibrium

We now derive the expansion of the entropic equilibrium as a perturbation series around a
reference state. The series serves two purposes:
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1. In any numerical methodology of finding the equilibrium distribution, the series provides
a good guess for the Lagrange multipliers (and thus allows faster convergence to the true
entropic equilibrium).

2. The series form can be employed to analyze the hydrodynamic limit.

We use this approximate polynomial form of the equilibrium to derive the moments of the
equilibrium and comment on its accuracy.

As pointed out earlier, the system given by Eqns.(3.40) does not render an explicit solution.
Therefore, we try to evaluate the explicit solution at a reference state of mean velocity u = 0.

We define the Lagrange multipliers at this reference state as µ(0), ζ
(0)
κ , γ(0), the equilibrium

distribution is f̃ eq
i ≡ f

eq
i (ρ,u = 0, θ) = wiρ exp(−µ(0)−ζ(0)

κ ciκ−γ(0)c2
i ), and the five conservation

equations reduce to

Nd∑

i=1

f̃ eq
i {1, ciα, c2

i } = {ρ, 0, 3ρθ} ≡ {ρ, 0, 3ρθ0(1 + η)}, (3.46)

where η = θ/θ0−1. In the above system of equations, one can group together the terms of discrete
velocities ci with the opposite discrete velocities −ci terms in the momentum conservation
equations and find the solution ζ(0) = 0. Hence we obtain

f̃ eq
i ≡ f

eq
i (ρ,u = 0, θ) = wiρ exp(−µ(0) − γ(0)c2

i ). (3.47)

However, the other two Lagrange multipliers µ(0) and γ(0) can still not be evaluated in the
explicit form. Therefore, we choose another reference state with θ = θ0 within this reference
state. At the new reference state we define the Lagrange multipliers as µ(0,0), γ(0,0), and it is
trivial to check that µ(0,0) = γ(0,0) = 0 satisfies the mass and the energy conservation condition.
We first construct the perturbation series for f̃ eq

i around this reference state. To this effect, we
expand the Lagrange multipliers around µ(0,0) and γ(0,0) in powers of η

µ(0) = µ(0,0) + ηµ(0,1) + η2µ(0,2) + η3µ(0,3) + · · · ,
γ(0) = γ(0,0) + ηγ(0,1) + η2γ(0,2) + η3γ(0,3) + · · · .

(3.48)

Substituting Eq.(3.48) in Eq.(3.47) one obtains

f̃ eq
i = wiρ

(
1− η

[
µ(0,1) + γ(0,1)c2

i

]
− η2

[
µ(0,2) + γ(0,2)c2

i −
1

2

(
µ(0,1) + γ(0,1)c2

i

)2
]

+ · · ·
)
,

(3.49)

with the requirement that 〈
f̃ eq, {1, c2}

〉
= {ρ, 3ρθ0(1 + η)}. (3.50)

The Lagrange multipliers evaluated by comparing the terms at every orders of η on the both
sides of Eq.(3.50) are

µ(0) =
3

2
η − 3

4
η2 +

3

6
η3 − 3

8
η4 +O(η5),

γ(0) = − 1

2θ0
η +

1

2θ0
η2 − 1

2θ0
η3 +

1

2θ0
η4 +O(η5),

(3.51)

provided wi satisfy the constraints in Eq.(3.29). The procedure is general enough and can be
used to find the series expansion for f̃ eq

i upto any arbitrary order in η. The expression accurate
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upto O(η4) is

f̃ eq
i = wiρ

[
1 +

η

2θ0
(c2
i − 3θ0)+

η2

8θ2
0

(
c4
i − 10c2

i θ0 + 15θ2
0

)
+

η3

48θ3
0

(
c6
i − 21c4

i θ0 + 105c2
i θ

2
0 − 105θ3

0

)

+
η4

384θ4
0

(
c8
i − 36c6

i θ0 + 378c4
i θ

2
0 − 1260c2

i θ
3
0 + 945θ4

0

) ]
,

(3.52)

provided the lattice parameters satisfy conditions given in Eq.(3.29). Notice that the above
expression is same as the Eq.(3.27) evaluated in Section 3.4.

The next step is to derive the equilibrium distribution at non-zero velocity by expanding the
Lagrange multipliers in ε (representing smallness of the Mach number) as

µ = µ(0) + εµ(1) + ε2µ(2) + ε3µ(3) +O(ε4),

ζκ = ζ(0)
κ + εζ(1)

κ + ε2ζ(2)
κ + ε3ζ(3)

κ +O(ε4),

γ = γ(0) + εγ(1) + ε2γ(2) + ε3γ(3) +O(ε4).

(3.53)

Substituting the above expressions in Eq.(3.39) and collecting terms with like powers of ε one
obtains

f eq
i = f̃ eq

i

(
1− ε

[
µ(1) + ζ(1)

κ ciκ + γ(1)c2
i

]
− ε2

[
µ(2) + ζ(2)

κ ciκ + γ(2)c2
i

−1

2

(
µ(1) + ζκ

(1)ciκ + γ(1)c2
i

)2
]

+ · · ·
)
.

(3.54)

The mass, momentum, and energy conservation requirements

〈
f eq, {1, cα, c2}

〉
= {ρ, ρuαε, 3ρθ + ρu2ε2}, (3.55)

are compared at various orders of ε to find the Lagrange multipliers

µ = µ(0) + ε2µ(2) +O(ε4),

ζκ = ζ(0)
κ − ε

uα
θ

+ ε3
u2uα
θ2
A+O(ε4),

γ = γ(0) +O(ε4).

(3.56)

where A =
〈
f̃ eq
i , c

2
ixc

2
iy

〉
/(3ρθ2) − 1/3, provided an additional isotropy condition at the eighth

order 〈
w, c4cαcβcγcκ

〉
= 63θ4

0∆αβγκ, (3.57)

is imposed. Substituting the Lagrange multipliers in Eq.(3.54), we obtain the expression for
discrete equilibrium accurate upto O(ε3)

f eq
i =f̃ eq

i

{
1 +

uαciα
θ
− u2

2θ
+

1

2

(uαciα
θ

)2
+

1

6

(uαciα
θ

)3
− u2uαciα

2θ2
(1−A)

}
. (3.58)

The moments of the equilibrium distribution are

〈
f eq, {1, cα, c2, cαcβ, c

2cα}
〉

=
{
ρ, ρuα, 3ρθ + ρu2, ρθδαβ + ρuαuβ +O(uαuβη

3), 5ρθuα + ρu2uα +O(u3η3)
}
,

(3.59)
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and they match the moments of the Maxwell-Boltzmann distribution upto a high accuracy. Any
discrete velocity model whose equilibrium distribution satisfies the above condition will have
correct thermohydrodynamic limit. The 41 velocity model of Chikatamarla & Karlin (2009) and
the off-lattice 27 velocity model of Yudistiawan et al. (2010) have sixth order isotropy imposed
on the moments of their weights.

3.6 Conclusion

In this chapter, we have derived the constraints on the parameters wi, ci, θ0 of any DVM in order
to have a faithful representation of the continuous kinetic theory. These constraints are

〈
w,
{

1, c2, c2c2, c2c2c2, c2c2c2c2, c2c2c2c2c2
}〉

=
{

1, 3θ0, 15θ2
0, 105θ3

0, 945θ4
0, 10395θ5

0

}
. (3.60)

We have also demonstrated that the moments of the Maxwell-Boltzmann distribution need to be
imitated by the discrete equilibrium distribution to obtain the correct thermohydrodynamic limit
of the kinetic equation. The above constraints along with

〈
w, c4cαcβcγcκ

〉
= 63θ4

0∆αβγκ allows
the discrete entropic equilibrium to imitate the moments of the Maxwell-Boltzmann distribution
upto high accuracy as

〈f eq, 1〉 =
〈
fMB, 1

〉
, 〈f eq, cα〉 =

〈
fMB, cα

〉
,
〈
f eq, c2

〉
=
〈
fMB, c2

〉
, (3.61)

〈f eq, cαcβ〉 =
〈
fMB, cαcβ

〉
+O(u2η3),

〈
f eq, c2cα

〉
=
〈
fMB, c2cα

〉
+O(u3η3). (3.62)

In Chapter 7, we will show that the above constraints can be satisfied on a crystallographic
lattice with sixty-seven discrete velocities, which will be employed to simulate various canonical
test cases related to thermohydrodynamics.



Chapter 4

The lattice Boltzmann model

The lattice Boltzmann model (LBM) aims to construct a simplified kinetic picture on a lattice
designed to capture the physics of macroscopic flow through simple local micro-scale operations
(Succi, 2001; Chen & Doolen, 1998; Aidun & Clausen, 2010). This highly efficient and easily
parallelizable method is routinely used as an alternative numerical method for applications as
wide-ranging as fluid turbulence, gaseous microflow, soft matter, polymer dynamics, relativistic
flows, etc. (Chen & Doolen, 1998; Thantanapally et al., 2013a; Singh et al., 2013; Thampi et al.,
2013b; Mendoza et al., 2010; Benzi et al., 2013; Chen et al., 2004; Ansumali et al., 2007b; Chen
et al., 1992; Qian et al., 1992; Lallemand & Luo, 2000; Aidun & Clausen, 2010; Chen & Doolen,
1998; Benzi et al., 1992; Higuera et al., 1989; Succi, 2001; Succi et al., 2002b; Namburi et al.,
2016; Yudistiawan et al., 2010; Ladd, 1993; Adhikari et al., 2005).

However, the lower order LBMs have so far been a successful methodology only for incom-
pressible isothermal hydrodynamics and gaseous microflow in slip flow regime. Extensions of
LBM for thermohydrodynamics and compressible flows are relatively less successful so far (Mc-
Namara et al., 1997). While the higher order extension of the LBM for weakly compressible but
isothermal situations show promising results for turbulence (Chikatamarla et al., 2010) and the
thermal models in incompressible regime are well established, a uniform framework for thermo-
hydrodynamics valid for compressible flows are not fully developed yet. Typically, higher-order
LBMs also perform much better for resolving complex phenomena such as Knudsen boundary
layer (Sofonea, 2006; Ansumali et al., 2007b; Ambruş & Sofonea, 2012). Recent works have
indicated that even in the case of turbulence, better performance is obtained due to the fact
that the hydrodynamic limit of the higher-order LBM is cubically correct and thus Galilean
invariant to the leading order (Frapolli et al., 2016b; Namburi et al., 2016). This topic of higher
order lattice Boltzmann models will be the subject of Chapter 7.

An important realization in the subject was that the nonlinear stability in the method could
be restored by enforcing the thermodynamics inherent in the original Boltzmann description
(Karlin et al., 1998; Wagner, 1998; Karlin et al., 1999; Succi et al., 2002b; Ansumali et al., 2003;
Ansumali & Karlin, 2005). These class of models known as the entropic lattice Boltzmann model
(ELBM) constitute a discrete space-time kinetic theory that ensures nonlinear stability via the
discrete time version of the second law of thermodynamics (the H theorem). The entropic
formulation leads to nonlinear stabilization of standard LBM in context of flows with sharp
gradients and highly non-equilibrium situations (Succi et al., 2002b; Aidun & Clausen, 2010;
Karlin et al., 1998; Boghosian et al., 2003; Wagner, 1998; Chen & Teixeira, 2000; Karlin et al.,
1999; Succi et al., 2002b; Ansumali et al., 2003; Ansumali & Karlin, 2005).

In this chapter, we first derive the discrete in space and time evolution of the populations.
We then review the methodology to construct lower order lattice Boltzmann models which are
effective in the context of isothermal incompressible flows. It is followed by a brief discussion
on the collision operators used regularly in LBM and the recently developed LBM based on a
crystallographic grid (Namburi et al., 2016). This chapter is organized as follows: In Section
4.1 we review the derivation of discrete evolution of populations from the discrete in velocity
Boltzmann BGK equation. In Section 4.2 we discuss the constraints on lattice parameters
required to obtain the correct hydrodynamic limit. In Section 4.3 we briefly review some of the
collision models other than the BGK model used in LBM. Finally, in Section 4.4 we discuss the
crystallographic grid and its advantages in the context of hydrodynamic simulations.

31
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4.1 From continuous to discrete space-time

Similar to other DVM, in LBM the velocity space is discretized into a discrete velocity set
c = {ci, i = 1 · · ·Nd} with the populations fi as the basic working element. The discrete
velocity set has to satisfy certain isotropy conditions discussed previously in Chapter 3. The
discrete in velocity Boltzmann BGK equation reads

∂tfi(x, t) + ciα∂αfi(x, t) = Ωi(fi(x, t)), (4.1)

where Ωi is the collision operator given by

Ωi(fi(x, t)) =
1

τ
[f eq
i (ρ(x, t),u(x, t), θ(x, t))− fi(x, t)] ,

and fi are populations corresponding to discrete velocity ci, f
eq
i is the discrete equilibrium

distribution, and τ is the collisional relaxation time. However, unlike other DVMs, the LBM
builds the kinetic theory in discrete space and time too. In the forthcoming subsections, we will
obtain the fully discrete in space and time evolution of populations from the Eq.(4.1).

4.1.1 Time discretization

The Eq.(4.1) constitutes a set ofNd coupled partial differential equations. It has two natural time
scales: τ associated with collisional relaxation, and the one associated with sound propagation.
The time scale of sound propagation is much larger than that of collision. In order to have a
numerically efficient scheme it is desirable to have large time steps, i.e., ∆t� τ .

The left hand side of Eq.(4.1) is (∂t + cα∂α)fi, which corresponds to the derivative along a
characteristic, hence a solution is obtained from the integration along the characteristics (He &
Luo, 1997a,b; He et al., 1998a). The formal solution can hence be written as

fi(x+ c∆t, t+ ∆t) = f(x, t) +

∫ s=∆t

s=0
Ωi(fi(x+ c∆t, t+ ∆t))ds. (4.2)

The integral is approximated via the trapezoid rule to obtain the implicit relation

fi(x+ c∆t, t+ ∆t) = f(x, t) +
∆t

2
[Ωi(fi(x+ c∆t, t+ ∆t)) + Ωi(fi(x, t))] +O(∆t3). (4.3)

In order to make it explicit, we define a transformed variable gi as

gi(x, t) = fi(x, t)−
∆t

2
Ωi(fi(x, t))

=

(
1 +

∆t

2τ

)
fi(x, t)−

∆t

2τ
f eq
i [ρ(x, t),u(x, t), θ(x, t)].

(4.4)

Notice that the conserved moments of fi and gi are the same, i.e.,

〈g, 1〉 = 〈f, 1〉 = ρ, 〈g, cα〉 = 〈f, cα〉 = ρuα,
〈
g, c2

〉
=
〈
f, c2

〉
= 3ρθ + ρu2, (4.5)

hence geq
i = f eq

i . By substituting gi in Eq.(4.3) we obtain

gi(x+ c∆t, t+ ∆t) = gi(x, t) +
2∆t

2τ + ∆t
[geq
i (ρ(x, t),u(x, t), θ(x, t))− gi(x, t)] . (4.6)

The conserved moments are the moments of the transformed variable gi, but the non-conserved
moments like stress tensor or the heat flux need to be evaluated as moments of fi as per their
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defintion. For example, the stress tensor σαβ and the heat flux qα are available as

σαβ = 〈f, ξαξβ〉 =
2τ

2τ + ∆t
〈g, ξαξβ〉 , qα =

〈
f,

1

2
ξ2ξα

〉
=

2τ

2τ + ∆t

〈
g,

1

2
ξ2ξα

〉
. (4.7)

Here onwards, the transformed variable gi will be called fi, and the thermohydrodynamic mo-
ments will be evaluated as explained above.

4.1.2 Space discretization

The physical space is discretized into a series of grid nodes that together comprise a lattice. At
any node on the lattice, the neighboring nodes are located at distance of ∆x = mci∆t, where m
is a natural number (Succi, 2001; Chikatamarla & Karlin, 2009). Figure 4.1 depicts the lattice
connections in a D2Q9 model, where each neighbouring point is at a distance of x+ ci∆t.

Figure 4.1: Discretization of physical space in LBM. The discrete velocity ci at any node x on
the lattice connects to the neighboring nodes at x+ci∆t, where ∆t is the discrete time between
successive collisions.

The particularly attractive feature of LBM is that the neighbouring points are located at a
distance of x+ci∆t. This allows for construction of a numerically efficient and easily paralleliz-
able algorithm, where Eq.(4.6) is implemented as a two step procedure:

1. Streaming/Advection: Here, fi streams along the direction of respective discrete ve-
locities. This is written as

fi(x + ci∆t, t+ ∆t) = f∗i (x, t). (4.8)

2. Collision: The populations collide at each node and relax towards local equilibrium

f∗i (x, t) = fi(x, t) + αβ (f eq
i (ρ,u, θ)− fi(x, t)) , (4.9)

where α = 2, and β = ∆t/(2τ + ∆t) is related to the kinematic viscosity ν via relaxation
time τ = ν/θ0, with θ0 as the reference temperature.

The entropic formulation of LBM has an extra step where α is calculated as the root of the
entropy estimate

H[f(x, t) + α (f eq(ρ,u, θ)− f(x, t))]−H[f(x, t)] = 0, (4.10)

where H is a convex entropy function. It restores the thermodynamic consistency embedded in
the Boltzmann description (Ansumali & Karlin, 2005) and ensures the H theorem for discrete
space-time formulation, and thus leads to a nonlinearly stable solver that is effective in the
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Discrete velocity D3Q15 D3Q19 D3Q27

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/9 1/18 2/27

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) - 1/36 1/54

(±1,±1,±1) 1/72 - 1/216

Table 4.1: Weights corresponding to discrete velocities for the basic models.

context of flows with sharp gradients. Thus, entropic LBM is quite suitable for the case of
thermal and compressible flows where gradients can be sharp (McNamara et al., 1997).

4.2 Discrete isothermal equilibrium

The choice of the discrete equilibrium distribution is considered crucial in LBM. It has to ensure
that the macroscopic hydrodynamics equations recovered upon Chapman-Enskog expansion of
the Boltzmann BGK equation agree with the Navier-Stokes equations. The discrete isothermal
equilibrium is required to conserve the mass and momentum (energy conservation is ignored
here), i.e.,

〈f eq, {1, c}〉 = {ρ, ρu}, (4.11)

and was historically evaluated by projecting the Maxwell-Boltzmann distribution on the Hermite
basis to obtain a computationally appealing polynomial expression Chen et al. (1992); Benzi
et al. (1992); Shan & He (1998b)

f eq
i (ρ,u) = wiρ

[
1 +

uαciα
θ0

+
uαuβ
2 θ2

0

(ciαciβ − θ0δαβ)

]
, (4.12)

where the reference temperature θ0, the velocities ci and the weights wi are lattice dependent
parameters with

wi > 0, 〈w, 1〉 = 1. (4.13)

Substituting Eq.(4.12) into Eq.(4.11) the parameters wi, ci, θ0 are constrained as

〈w, cαcβ〉 = θ0δαβ ⇒
〈
w, c2

〉
= 3θ0, (4.14)

where we have used the conditions on moments of weights as specified by Eq.(3.4).
In addition to Eq.(4.11), f eq

i should satisfy a few other constraints in order to recover correct
hydrodynamics for low Mach isothermal flows. For example, it is important to ensure that the
second moment of f eq

i is the same as that obtained from the Maxwell-Boltzmann distribution,
i.e.,

〈f eq, cαcβ〉 = ρuαuβ + ρθ0δαβ, (4.15)

which adds another constraint

〈w, cαcβcγcκ〉 = θ2
0∆αβγκ ⇒

〈
w, {c2c2

x, c
4}
〉

= {5θ2
0, 15θ2

0}, (4.16)

where ∆αβγκ = δαβδγκ + δαγδβκ + δακδβγ is the fourth order isotropic tensor. The well-known
models like the D3Q15, D3Q19, and D3Q27 satisfy these conditions. They have θ0 = 1/3 and
the weights corresponding to their discrete velocities are tabulated in Table 4.1.

As pointed out in Chapter 3, it is evident that in the limit of τ → 0, the zeroth order
hydrodynamic equation is the Euler equation. The Navier-Stokes dynamics is correctly recovered
provided

〈f eq, cαcβcγ〉 = ρuαuβuγ + ρθ0 (uαδβγ + uβδαγ + uγδαβ) . (4.17)

Due to the absence of the cubic term in Eq.(4.12), the above condition is satisfied only up to
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linear order by widely used lower order lattice Boltzmann models (Qian & Zhou, 1998). This
condition on third moment can be fulfilled if the discrete equilibrium distribution is of the form
(Shan & He, 1998b; Ansumali & Karlin, 2005; Chikatamarla & Karlin, 2009; Vahala et al., 1998)

f eq
i (ρ,u) =wiρ

[
1 +

uαciα
θ0

+
uαuβ
2 θ2

0

(ciαciβ − θ0δαβ) +
uαuβuγciγ

6 θ3
0

(ciαciβ − 3θ0δαβ)

]
. (4.18)

The above expression and Eq.(4.17) impose further restriction on the weights as

〈w, cαcβcγcκcζcη〉 = θ3
0∆αβγκζη ⇒

〈
w, {c2c2

xc
2
y, c

4c2
x, c

6}
〉

= {7θ3
0, 35θ3

0, 105θ3
0}, (4.19)

where ∆αβγκζη is the sixth-order isotropic tensor. However, only very high order models are
known to satisfy such constraint in 3-dimensions (Chikatamarla & Karlin, 2009).

As discussed previously in Section 3.5, the polynomial expression given by Eq.(4.18) can
attain negative values for large velocities. The entropic equilibrium ensures positivity of the
equilibrium populations and is now accepted to be more robust and stable way of constructing
the discrete equilibrium distribution (Ansumali et al., 2003; Ansumali & Karlin, 2005). However,
the constraints on the lattice parameters remain the same regardless of which form of equilibrium
is used. Here, we remind that a closed form expression [see Sec. 3.5.1] for the discrete entropic
equilibrium can be obtained for the D1Q3, D2Q9, D3Q27 lattices. However, a numerical route
is employed to find the discrete equilibrium for other lattices.

To summarize, the procedure for constructing models for low Mach isothermal hydrodynam-
ics is to find discrete velocities ci on the lattice whose corresponding equilibrium f eq

i mimics
the moments of the Maxwell-Boltzmann distribution. The conditions that are considered in-
dispensable for the velocity space discretization, which lead to cubically correct hydrodynamics
are

〈w, {1, cαcβ}〉 = {1, θ0δαβ},
〈w, {cαcβcγcκ, cαcβcγcκcζcη}〉 = {θ2

0∆αβγκ, θ
3
0∆αβγκζη}.

(4.20)

The zero-one-three model proposed by Chikatamarla & Karlin (2006) satisfies Req = RMB +
O(u4), and was is suitable for isothermal and weakly compressible flows. Another excellent
methodology to construct lattices takes the quadrature route and is employed to propose various
models in two and three dimensions in Sbragaglia et al. (2009); Shan (2010).

4.3 Other collision models in LBM

The BGK approximation is used widely in the continuous kinetic theory as well as in the LBM
due to its simplicity. However, due to the single relaxation time approximation in the BGK
model, the Prandtl number is fixed at unity. A similar limitation exists for the gaseous mixture
where Schmidt number has a fixed value. Various approximations for the collision operator have
been proposed in order to have arbitrary values of the transport coefficient (Chen et al., 2010;
Soe et al., 1998; Luo & Girimaji, 2002; Asinari & Karlin, 2010; Luo & Girimaji, 2003; Ansumali
et al., 2007a; Thantanapally et al., 2013b). However, an important progress in the field was
the realization that although the hydrodynamic limit of different collision models are the same,
they exhibit different numerical stability behavior. Thus, a great deal of effort was made to
identify collision models with better numerical stability (d’Humières, 2002; Lallemand & Luo,
2000; Thantanapally et al., 2013b; Karlin et al., 2014). In this section, we briefly review some
of the collision models often used for LBM simulations.
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4.3.1 Quasi-equilibrium collision

The quasi-equilibrium collision kernel (Gorban & Karlin, 1994; Levermore, 1996), a two relax-
ation time model where different moments relax at different rates, was discussed for the contin-
uous kinetic theory in Section 2.4.2. For completeness, we briefly discuss the quasi-equilibrium
model in the context of LBM in this section. This model allows one to achieve arbitrary values
of the transport coefficients and thereby tune the Prandtl number (Pr). The central idea is to
divide the set of independent moments into three parts

M = {MSlow,MQuasi−slow,MFast}, (4.21)

whereMSlow = {ρ,u, θ} are the set of conserved moments, andMQuasi−Slow andMFast are the
set of non-conserved moments. The relaxation rate ofMQuasi−Slow is slower than that ofMFast

(Gorban & Karlin, 1994). The choice of the quasi-slow and the fast moments depends on the
physical context (Ansumali et al., 2007a). For example,

MQuasi−Slow =

{
qα, Pr < PrBGK

σαβ, Pr > PrBGK,
(4.22)

where qα, σαβ are the heat flux and the stress tensor respectively.
The collision kernel for the quasi-equilibrium model is

Ωi =
1

τ

[
f∗i

(
MQuasi−slow

)
− fi

]
+

1

τ1

[
f eq
i (ρ,u, θ)− f∗i

(
MQuasi−Slow

)]
, (4.23)

where τ and τ1 are two relaxation times which allows fixing two independent transport coeffi-
cients. For this model, the thermodynamic consistency in terms of H-theorem dictates τ ≤ τ1.
The quasi-equilibrium state f∗i

(
MQuasi−slow

)
is the minimum of the H-function with slow and

quasi-slow moments being conserved. Figure 4.2 depicts the quasi-equilibrium collision kernel,
where f is the pre-collisional state, f eq is the equilibrium state, and f∗ is the quasi-equilibrium
state. The relaxation from f to f∗ takes time τ , followed by the relaxation from f∗ to f eq which
takes time τ1.

H1

H2

feq

H2 < H1

f

f∗

Figure 4.2: Sketch of of quasi-equilibrium collisional relaxation.

It should be noted that in the continuous kinetic theory, this model is limited to Pr > PrBGK
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due to the presence of the quasi-equilibrium state f∗
(
MQuasi−slow

)
in the collision term,

f∗
(
MQuasi−Slow

)
=

{
exp

(
−µ− ζκcκ − γc2 − χαc2cα

)
, Pr < PrBGK

exp (−µ− ζκcκ − ψαβcαcβ) , Pr > PrBGK,
(4.24)

where µ, ζ, γ, ψ, χ are the Lagrange multipliers associated with mass, momentum, energy, stress
tensor, and heat flux respectively. For Pr < PrBGK, the moments of f∗ written as

∫
dc cmf∗i

(
MQuasi−Slow

)
, where m ≥ 0, (4.25)

cannot be evaluated because the integral diverges (tends to infinity) as c→ −∞. However, the
discrete kinetic theory does not encounter such a limitation because the integrals are replaced
by summation over a finite velocity set, hence, are always finite.

4.3.2 Multiple relaxation time collision

As stated earlier, the BGK collision model restricts the relaxation of all the moments to the
same rate thereby limiting the Prandtl number to unity. Unlike the lattice Boltzmann BGK
formulation, in a multi-relaxation model each higher order moment has its own relaxation time.
The relaxation time parameters are carefully chosen so as to separate the time scales at which
different moments relax. As most of these relaxation times have no physical significance in
the context of incompressible hydrodynamics, many of these rates are set arbitrarily to achieve
optimal stability (Higuera et al., 1989; Lallemand & Luo, 2000). The evolution of population
reads as (d’Humières, 2002)

f̃ (x + c∆t, t+ ∆t)− f̃ (x, t) = −M−1Ŝ [m̃(x, t)− m̃eq(x, t)] , (4.26)

where M is a transformation matrix mapping vector f̃ in velocity space to a vector m̃ in moment
space. Here, Ŝ = M · S ·M−1 is a collision matrix diagonal in moment space whose eigenvalues
are the inverse of the relaxation times which lie between 0 to 2. Hence, m̃ = Mf̃ and f̃ = M−1m̃.
The size of the vector m̃ is dictated by the number of moments corresponding to the discrete
velocity model in consideration.

The streaming takes place in the velocity space, and the collision is executed in moment space
by mapping the populations onto it. The eigenvalues of Ŝ are such that non-conserved moments
relax faster than the conserved ones. For a comprehensive review of the MRT based collision
models the reader is directed to Coreixas et al. (2019). Due to the improved numerical stability
of these models, they are heavily used in numerical simulations (Aidun & Clausen, 2010). The
improved numerical stability is due to the choice of the relaxation time of each non-conserved
moment. One of the drawbacks of these models is that for 3 dimensions or higher-order lattices
the number of relaxation parameters that need to be fine-tuned becomes large and thus the
computational efficiency is affected (Coreixas et al., 2019).

4.3.3 Karlin-Bösch-Chikatamarla (KBC) collision

This model, popularly known as the KBC model, exploits the Gibb’s principle which states
that optimal (equilibrium) states are points of entropy maximum under relevant constraints.
Here, the equilibrium state is constructed by maximizing the entropy under the constraints of
over-relaxation of hydrodynamic stresses. Therefore, constructing the equilibrium state does not
require any tunable parameter setting (Karlin et al., 2014). The kinetic equation is remodeled
as

fi (x + ci, t+ 1) = (1− β) fi (x, t) + βfmirror
i (x, t) , (4.27)
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where the mirror state is written as a linear combination of kinematic part (ki), shear part (si)
and the remaining higher order moments (hi). The mirror state is

fmirror
i = ki + (2seq

i − si) + [(1− γ)hi + γheq
i ] , (4.28)

where the relaxation parameter γ is computed by maximizing the entropy in the post collision
state as the root of

∑

i

∆hi ln

[
1 +

(1− βγ) ∆hi − (2β − 1) ∆si
f eq
i

]
= 0, (4.29)

with ∆hi = hi − heq
i and ∆si = si − seq

i . This model shows remarkable improvement in the
stability behavior and thus in recent years is increasingly being used for turbulence simulations
(Frapolli et al., 2018)

4.4 Crystallographic lattice Boltzmann model

Historically, the lattice chosen for the LBM has been the simple cubic (SC) lattice which demands
that the grid is refined near the solid body or in zones of extreme flow variations (Filippova &
Hänel, 1998; Succi et al., 2002a). It was recently shown that the optimal discretization of
position space for the LBM is a body centered cubic (BCC) arrangement of grid points, which
led to a new class of models called crystallographic LBM (Namburi et al., 2016). Figures 4.3
and 4.4 depict the building blocks and the links of a BCC lattice in two and three dimensions
respectively. It comprises of two simple cubic (SC) lattices displaced by a distance of 0.5∆x in
each direction. The two grids are connected via discrete velocities as shown in the figures.

Figure 4.3: Building block of a crystallographic lattice in two dimensions, simple cubic links
(left) and body-centered links (right) are depicted here.

Another well known fact in the computer graphics literature is that the volume representation
(or rendering) is better on the BCC lattice (Entezari et al., 2009). As the BCC grid is more
points at the boundaries, it was also found to represent the boundaries well. To illustrate the
difference between SC and BCC lattices, Table 4.2 depicts various rendered images on them.
Like the traditional SC grids, the BCC grid also preserves the ease of streaming along the links
while increasing the local accuracy. A comment about parallelization of BCC grid is in order:
while parallelizing a BCC grid, we need to communicate outgoing populations of two layers (in
the SC grid outgoing populations from only one layer are communicated). This is illustrated
in the Figure 4.5, where the black lines (solid and dashed) represent the computational grid
and the red lines represent the dummy grid. Before implementing the advection routine, the
outgoing populations from the computational grid of the Processor A are copied to the dummy
grid of Processor B and vice versa. We then implement the advection routine as usual.

The number of grid points for which data needs to be communicated (at every face) for
parallelization on a BCC grid of size 2N3 is at least 2N2. On the other hand, for a standard
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Figure 4.4: Building block of a crystallographic grid in three dimensions, simple cubic links
(left), face-centered cubic link (middle) and body-centered links (right). The dashed grid is
offset by a distance 0.5∆x in each direction.

Lattice Sphere Ellipsoid RBC

SC

BCC

Table 4.2: Representation of a sphere, an ellipsoid, and cut-section of a red blood cell (RBC)
on a SC and BCC lattice at the same resolution. It is seen that the BCC lattice used by
crystallographic LBM represents local curvatures in a more efficient manner as compared to the
SC lattice used by the conventional LBM.

simple cubic grid of size (21/3N)3 the number of grid points for which data needs to be com-
municated is (21/3N)2. Thus, there is ∼ 26% increase in data traffic for the BCC method as
compared to the SC based method. This cannot lead to any noticable performance change in
communication speed as typical data size for communication in LBM is in the range of ∼ 20
MB even for problem size as large as 2563 per node while a modern communication network
(InfiniBand) is capable of transfering more than a GB per cycle. Thus, similar to the standard
LBM cost of communication is negligible even for BCC based LBM.

Additionally, the the artificial closure on the third order moment of single speed models
(D3Q19, D3Q27), i.e., 〈

f, c3
α

〉
= c2 〈f, cα〉 , (4.30)

is avoided due to the crystallographic nature of the lattice. This effect plays an important role
for nonvanishing Knudsen numbers where capturing the Knudsen boundary layer is necessary
(Ansumali et al., 2007b). Here, due to rarefaction effects a slip velocity develops in the regions
near the wall and hence a deviation from the Navier-Stokes solution is witnessed.
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Processor A Processor B

Figure 4.5: Communication between two processors on a crystallographic grid.



Chapter 5

Discrete Time H theorem: Some
Sharp Inequalities

The discrete timeH theorem for the lattice Boltzmann model requires bounds on theH function.
This requires approximation of log(1 + y) for y ∈ (−1,∞) via sharp inequalities. Indeed, in
statistical physics and information theory, logarithm is one of the recurring elementary functions
to represent entropy. Boltzmann and Gibbs entropy are perhaps the two most widely used
example. Other representative examples are the Fermi-Dirac, the Bose-Einstien, the Tsallis,
and the Burg form of the entropy (Burg, 1967; Tsallis, 1988; Wehrl, 1978). Another example of
such a function is the so called offset logarithmic integral Li(y) defined as

Li(y) =

∫ y

2

1

log z
dz. (5.1)

This function often appears in number theory (Abramowitz & Stegun, 1965). Similar integrals
are found in applications of exponential integrals related to quantum field theory, Gibbs phe-
nomena, and solutions of Laplace equations in semiconductor physics [see (Hörmander, 1971;
Zee, 2010; Sofo, 2016) and references therein]. Another interesting example from financial math-
ematics is ‘The Rule of 72’. It is an approximation to the time required for an investment to
grow by a factor of n, compounded at an interest rate of r% per period (Meadows, 2008). The
exact time required is

T =
lnn

ln(1 + r/100)
, (5.2)

which for n = 2 is T ≈ 72/r. These approximations can be made more accurate if the the
bounds on such functions are known in polynomial and rational form.

In this chapter, we investigate the various polynomial and rational function based inequalities
for a class of such functions. The methodology used for obtaining such bound is to rely on the
fact that for the integrals where integrand has certain geometric feature such as convexity, one
can find bounded approximation in a systematic fashion. The key idea is to contrast the area
under a special class of functions such as convex functions with its approximations in terms of
polynomials or rational functions. The motivation for the same is due to a less discussed aspect
of the Hermite-Hadamard inequality for convex functions F (z) i.e.,

∫ b

a
F (z)dz ≤ b− a

2
[F (a) + F (b)] . (5.3)

The above inequality has a simple geometric interpretation that the trapezoid approximation for
the integral is always an over-estimation due to the fact that for convex function [see Figure 5.1].
Here, we remind that the trapezoid rule is a basic technique for evaluating a definite integral by
approximating the area under the curve as a trapezium and calculating its area. The inequality
follows from the basic definition of a convex function that each point on the chord joining any
two points (a, F (a)), (b, F (b)) on convex function F (z) lies above the function, i.e.,

λF (a) + (1− λ)F (b) ≥ F (λa+ (1− λ) b) . (5.4)

This is also known as Jensen’s inequality and is depicted in Figure 5.1 (area of the trapezoid is
(b− a)[F (a) + F (b)]/2). It is evident from the figure that inequality follows from the convexity

41
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of integrand.
Here, we review the generalization of this law and their applications in mathematical physics.

While many of these generalization are increasingly better understood in mathematical litera-
ture (Bessenyei, 2008; Franjić & Pečarić, 2011; Franjic & Pecaric, 2012), applications of these
generalizations are mostly not there. In subsequent sections, we illustrate how several important
functions such as log(1 + y) or offset logarithmic integral Li(y) can be approximated in a sys-
tematic fashion using their integral representation. To do so, we often resort to convexity of the
integrand. We illustrate that approximating the integral via quadrature provides a systematic
procedure to obtain upper and lower bound for a class of function. Final result shows that at
least for the logarithm, Padé approximation has an alternate interpretation.

z

F
(z
)

a b

(a, F (a))

(b, F (b))

Figure 5.1: All the points on the chord joining any two points (a, F (a)), (b, F (b)) on convex
function F (z) lie above the function.

In what follows, we begin with the integral definition of log(1 + y), i.e.,

log(1 + y) =

∫ y

0

1

1 + z
dz, (5.5)

where the integrand is an 2n-convex function, i.e., its even (2n) derivatives are positive. An
additional feature of the above integrand is that its odd (2n+1) derivatives are negative. Indeed,
we deal with generic integral of the form

f(y) =

∫ y

a
F (z)dz, (5.6)

where the integrand is an 2n-convex function. As stated earlier, such functions often appear in
scientific applications.

This chapter is organized as follows: in Section 5.1, we review some of the commonly dis-
cussed bounds for logarithm. In Section 5.2, we give the proof of the classical Hermite-Hadamard
inequality using convexity arguments. In Section 5.3, using the bounds on log(1+y) we propose
an extension of the Hermite-Hadamard inequality. Along with each bound we also remark on
the error associated with it and the domain of its validity. Finally, in Section 5.4 we list some
positive definite functions that are used in the context of the discrete time H theorem.

5.1 Bounds on the logarithm

In this section, we briefly review commonly discussed bounds for logarithm, and get a first
idea about them by evaluating their errors at y = −0.5,−0.25, 0.25, 0.5. These values of y
are a reasonable representation of the nondimensional departure of the populations from the
equilibirum. To begin with we remind that one of the elementary bounds on the log is (Love,
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Figure 5.2: Known upper and lower bounds on log(1 + y).

1980)

y

1 + y
≤ log(1 + y) ≤ y, y > −1, (5.7)

which implies that the upper bound on log(1 + y) is provided by F (y) = y line (Figure
5.2). However, this bound is too weak to be useful as an approximation as the errors at y =
−0.5,−0.25, 0.25, 0.5 are 45%, 15%,−10%,−18% for the left inequality and for−28%,−13%, 12%, 23%
the right inequality respectively. Indeed, we do know a better bound (Topse, 2007)

2y

2 + y
≤ log(1 + y) ≤ y(2 + y)

2(1 + y)
, y > 0 {reverse for− 1 < y < 0}. (5.8)

This is a better approximation as at y = −0.5,−0.25, 0.25, 0.5 the errors are approximately
−3.9%,−0.68%,−0.4%,−1.3% for the left inequality and 8.2%, 1.3%, 0.8%, 2.7% for the right
inequality respectively. Finally, we also have much stricter upper bound in terms of the sqrt
function as

log(1 + y) ≤ y√
1 + y

, y > 0, (5.9)

which gives only 2%, 0.3%, 0.20%, 0.68% error at y = −0.5,−0.25, 0.25, 0.5 respectively. Finally,
it should be mentioned that if we restrict our attention to a subset of real line, we do know
better approximation. For example in range of y ∈ (0, 0.45), we have (Kozma, 2018)

log(1 + y) ≥ y − y2

2
+
y3

4
, 0 ≤ y ≤∼ 0.45, reverse elsewhere, (5.10)

which gives an error of −5.3%,−0.87%,−0.2%, 0.2% at y = −0.5,−0.25, 0.25, 0.5 respectively.
One can also write the Taylor series of log(1 + y) as

log(1 + y) =

∞∑

k=1

(−1)k+1 y
k

k
≡ y − y2

2
+
y3

3
− y4

4
+ · · · . (5.11)

We highlight that in the domain y ∈ (−1, 0) each term of the above series is negative definite.
In this domain, log(1 + y) is itself negative and is summation of an infinite number of negative
terms. Therefore, any finite truncation of the series is always larger than log(1 + y), i.e.,

log(1 + y) <
N∑

k=1

(−1)k+1 y
k

k
. (5.12)
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Figure 5.3: Plots of log(1 + y) and its Taylor series expansion truncated at N = 2, 5.

y log(1 + y) t2(y) % Error in t2(y) t5(y) % Error in t5(y)

-0.9 -2.30259 -1.3050 -43.32 -1.8301 -20.51

-0.5 -0.69315 -0.6250 -9.831 -0.6885 -0.6644

-0.1 -0.10536 -0.1050 -0.3421 -0.1054 -0.0002

-0.01 -0.01005 -0.0100 -0.0033 -0.01005 0.0000

Table 5.1: The functions log(1 + y), t5(y), t2(y) and their associated errors.

The above inequality provides an upper bound on log(1 + y) for y ∈ (−1, 0). For illustration,
we consider two truncations of the above series t2(y) and t5(y) truncated at N = 2 and N = 5
respectively, where

t2(y) = y − y2

2
, (5.13)

t5(y) = y − y2

2
+
y3

3
− y4

4
+
y5

5
. (5.14)

Figure 5.3 shows the graph of log(1 + y), t2(y), t5(y) in the domain y ∈ (−1, 0). The values
of functions log(1 + y), t5(y), t2(y) and their associated errors for a few representative y are
tabulated in Table 5.1. It is seen that t5(y) has smaller error as compared to t2(y) and is hence
a tighter bound on log(1 + y). This methodology can be extended to construct even tighter
bounds on log(1 + y) by considering more terms in Eq.(5.12).

5.2 The Hermite-Hadamard inequality

The Hermite-Hadamard inequality plays an important role in the theory of convex functions
and its applications to other fields. This inequality states that for any convex function F (z)

F

(
a+ b

2

)
≤ 1

b− a

∫ b

a
F (z)dz ≤ 1

2
[F (a) + F (b)] . (5.15)

As discussed in the introduction, the right hand side of the inequality follows from convexity
of the integrand and trapezoid approximation of the integral. To prove the left inequality we
rewrite the integral as

1

b− a

∫ b

a
F (z)dz =

1

b− a

∫ (a+b)/2

a
F (z)dz +

1

b− a

∫ b

(a+b)/2
F (z)dz, (5.16)
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and introduce a parametric representation via the transformation (Niculescu & Persson, 2007)

z(s) =

{
a+b

2 − s b−a2 a ≤ z ≤ a+b
2

a+b
2 + s b−a2

a+b
2 ≤ z ≤ b

(5.17)

With these transformations, the integral in Eq.(5.16) is re-written as

1

b− a

∫ b

a
F (z)dz =

∫ 1

0

1

2
[F (A) + F (B)] ds, (5.18)

where

A =
(a+ b)− s(b− a)

2
, B =

(a+ b) + s(b− a)

2
.

Also, from the Jensens inequality [Eq.(5.4)] for λ = 1/2 one obtains

F

(
A+B

2

)
≤ 1

2
[F (A) + F (B)]. (5.19)

Integrating the above equation for s = 0 to s = 1, we have

∫ 1

0
F

(
A+B

2

)
ds ≤

∫ 1

0

1

2
[F (A) + F (B)] ds. (5.20)

Recognizing that the right hand side of Eq.(5.18) is the same as right hand side of Eq.(5.20),
one obtains

∫ 1

0
F

(
A+B

2

)
ds ≤ 1

b− a

∫ b

a
F (z)dz, (5.21)

where substituting A and B gives

F

(
a+ b

2

)
≤ 1

b− a

∫ b

a
F (z)dz. (5.22)

Therefore, using only the convexity arguments we have shown that the Hermite-Hadamard
inequality provides both upper and lower bounds on any convex function. The upper bound
is just the integral approximated via the trapezoid rule and the lower bound is the integral
approximated as the value of the function at the midpoint.

Finally, when we apply Eq.(5.15) on Eq.(5.5), we get

2y

2 + y
≤ log (1 + y) ≤ y(2 + y)

2(1 + y)
. (5.23)

Similarly, from Eq.(5.15), for F (z) = log z, a = 1, b = y, we have

log
1 + y

2
≤ y

y − 1
log y − 1 ≤ log

√
y, (5.24)

and for F (z) = 1/ log z, a = 2, b = y, we have

log
2

y + 2
≤ Li(y)

y − 2
≤ log

√
2y

(log 2)(log y)
. (5.25)

This provides the motivation that quadrature rules can be exploited to construct bounds on
integral of convex functions.
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5.3 Extended Hermite-Hadamard inequality

In the previous section, we demonstrated that the Hermite-Hadamard inequality provides useful
upper and bounds for convex functions. We also highlighted that the upper bounds given by the
Hermite-Hadamard inequality is the approximation from the trapezoid rule, which is the lowest
order member of the Newton-Cotes quadrature family. Similarly, the lower bound provided
by the Hermite-Hadamard inequality is the approximation of the function as the value at the
midpoint, which is the lowest order member of the Gauss-Lengendre quadrature family. In this
section, we show that the Hermite-Hadamard inequality can be extended for positive 2n-convex
functions by exploiting the sharper bounds from higher order quadratures.

5.3.1 Newton-Cotes quadratures

The general expression for the Newton-Cotes quadrature is written as

∫ y1

y0

F (z)dz = I(n)
NC +R

(n)
NC, (5.26)

where I(n)
NC is the approximation and R

(n)
NC is the residue for nth order quadrature. Here, in order

to integrate a function over an interval [a, b], the interval is divided into n equal parts of length
(b− a)/n. We then find the fitting polynomial and integrate it over the interval to approximate
the area under the curve. The trapezoid rule (n = 1), 1/3 Simpson’s rule (n = 2), and Boole’s
rule (n = 4) fall under this category (Abramowitz & Stegun, 1965).

In what follows, we show that the residues associated with all these quadratures are negative,
therefore the approximations obtained provide upper bounds on the integral of the 2n-convex
function. We also observe that among these three quadrature rules, the higher order quadrature
provides sharper bounds on the integral. We begin by briefly reviewing the algebraic formulae
of the trapezoid, 1/3 Simpson’s, and Boole’s rule.

• Trapezoid rule: The trapezoid rule for evaluating the integral is depicted in Figure 5.4(a)
and is given by (Abramowitz & Stegun, 1965)

∫ y0+H

y0

F (z)dz = I
(1)
NC −

H3

12
F (2)(ξ), (y0 < ξ < y0 +H), (5.27)

where

I
(1)
NC =

H

2
[F (y0) + F (y0 +H)] .

• 1/3 Simpson’s rule: Here, the interval is divided into two equal parts and the area is
approximated as the integral of a quadratic polynomial. It is given by

∫ y0+H

y0

F (z)dz = I
(2)
NC −

H5

90 · 25
F (4)(ξ), (y0 < ξ < y0 +H), (5.28)

where

I
(2)
NC =

H

6

[
F (y0) + 4F

(
y0 +

H

2

)
+ F (y0 +H)

]
.

Figure 5.4(b) depicts the 1/3 Simpson’s rule.

• Boole’s rule: Here, the interval is divided into four equal parts and the area is approxi-
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Figure 5.4: Residue (hatched area) from Newton-Cotes quadratures is negative and progressively
decreases in magnitude with increase in the order of quadrature. Here, we show the Trapezoid
rule (top left), 1

3Simpson’s Rule (top right), Boole rule (bottom), and Pm are interpolating
polynomials with m points.
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mated by integral of a quintic polynomial. It is given by

∫ y0+H

y0

F (z)dz = I
(4)
NC −

8H7

945 · 47
F (6)(ξ), (y0 < ξ < y0 +H), (5.29)

where

I
(4)
NC =

H

90

[
7F (y0) + 32F

(
y0 +

H

4

)
+ 12F

(
y0 +

H

2

)
+ 32F

(
y0 +

3H

4

)
+ 7F (y0 +H)

]
.

Figure 5.4(c) depicts the Boole’s rule.

As F (z) is a 2n-convex function, its even derivatives F (2n)(ξ) are positive, hence, the residues
associated with all above quadratures are negative. Therefore, all the three approximations
over-estimate the integral and provide upper bounds to it, i.e.,

∫ y0+H

y0

F (z)dz ≤ I(1)
NC,

∫ y0+H

y0

F (z)dz ≤ I(2)
NC,

∫ y0+H

y0

F (z)dz ≤ I(4)
NC. (5.30)

Evaluating the integral in Eq.(5.6) for F (z) = 1/(1 + z) via the above three quadratures,
one obtains (Khattri, 2009)

I(1)
NC(y) =

y

2

[
1 +

1

1 + y

]
,

I(2)
NC(y) =

y

6

[
1 +

8

2 + y
+

1

1 + y

]
,

I(4)
NC(y) =

y

90

[
7 +

128

4 + y
+

48

4 + 2y
+

128

4 + 3y
+

7

1 + y

]
.

(5.31)

The percentage error associated with each expression is tabulated in Table 5.2. Figure 5.5
shows the plot of log(1 + y) and the expressions in Eq.(5.31). It is observed that the residues
are negative and their magnitude progressively decreases with increase in order of quadrature,
i.e., in other words higher order quadratures provide sharper bounds. Therefore,

log(1 + y) ≤ I(4)
NC(y) ≤ I(2)

NC(y) ≤ I(1)
NC(y). (5.32)

If required even tighter bounds can be constructed by considering even higher order quadratures.
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Figure 5.5: log(1 + y) compared with its bounds from Newton-Cotes quadrature.
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y log(1 + y) I(4)
NC I(2)

NC I(1)
NC %∆I(4)

NC %∆I(2)
NC %∆I(1)

NC

0.01 0.009950 0.009950 0.0099503 0.0099505 0.00 0.00 0.00165

0.1 0.095310 0.095310 0.0953102 0.0954545 0.00 0.00 0.15146

1.0 0.693147 0.693147 0.6944444 0.75 0.0039 0.1871 8.2021

10.0 2.397895 2.504881 2.9292929 5.454545 4.4616 22.1610 127.47

Table 5.2: log(1 + y) and I(n)
NC and their associated errors. %∆I(n)

NC = (I(n)
NC/ log(1 + y)−1)× 100

y log(1 + y) I(3)
GL I(2)

GL I(1)
GL %∆I(3)

GL %∆I(2)
GL %∆I(1)

GL

0.01 0.0099503 0.0099503 0.0099503 0.0099502 0.00 0.00 -0.00083

0.1 0.0953102 0.0953102 0.0953101 0.0952381 0.00 -0.00004 -0.07563

1.0 0.6931471 0.6931471 0.6923077 0.6666667 -0.0036 -0.12111 -3.8203

10.0 2.3978953 2.3978952 2.1686747 1.6666667 -2.9131 -9.55924 -30.4946

Table 5.3: log(1 + y) and I(n)
GL and their associated errors. %∆I(n)

GL = (I(n)
GL/ log(1 + y)−1)× 100

5.3.2 Gauss-Legendre quadrature

In this section, we evaluate the integral in Eq.(5.6) via Gauss-Legendre quadrature and show
that the residue associated with each approximation in positive and hence the approximations
provide lower bounds on log(1 + y) in y ∈ [0,∞).

0 2 4 6 8 10
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0.5

1

1.5

2

2.5

y

F
(y
)

log(1 + y)

I(3)
GL(y)

I(2)
GL(y)

I(1)
GL(y)

Figure 5.6: log(1 + y) compared with its bounds from Gauss-Legendre quadrature.

Approximating the integral in Eq.(5.6) via n point Gauss-Legendre quadrature one obtains
(Abramowitz & Stegun, 1965),

∫ y0+H

y0

F (z)dz = I(n)
GL(y) +

H2n+1(n!)4

(2n+ 1)[(2n)!]3
F (2n)(ξ), (5.33)

where

I(n)
GL(y) =

H

2

n∑

i=1

wiF (yi).

Here wi, yi are weights and abscissas, ξ is a point inside the domain and F (2n) is even derivative
of an 2n-convex function. We begin by reviewing the algebraic forms of the first few members
of the Gauss-Legendre quadratures:

• One point (n = 1): The one point Gauss-Legendre quadrature for evaluating an intergral
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from y0 to y0 +H is ∫ y0+H

y0

F (z)dz = I(n)
GL(y) +

H3

24
F (2)(ξ), (5.34)

where

I(1)
GL(y) =

H

2
w0F

(
y0 +

H

2

)
, w0 = 2.

• Two point (n = 2): The two point Gauss-Legendre quadrature is

∫ y0+H

y0

F (z)dz = I(2)
GL(y) +

H5

6912
F (4)(ξ), (5.35)

where

I(2)
GL(y) =

H

2

[
w1F

(
y0 +

H

2
+

H

2
√

3

)
+ w2F

(
y0 +

H

2
− H

2
√

3

)]
, w1 = w2 = 1.

• Three point (n = 3): The three point Gauss-Legendre quadrature is

∫ y0+H

y0

F (z)dz = I(3)
GL(y) +

H7

2016000
F (6)(ξ), (5.36)

where

I(3)
GL(y) =

H

2

[
w0F

(
y0 +

H

2

)
+ w1F

(
y0 +

H

2
+
H

2

√
3

5

)
+ w2F

(
y0 +

H

2
− H

2

√
3

5

)]
,

w0 =
8

9
, w1 = w2 =

5

9
.

(5.37)

As F (z) is a 2n-convex function, its even derivatives F (2n)(ξ) are positive, hence, the residues
associated with all above quadratures are also positive. Therefore, all the three approximations
under-estimate the integral and provide lower bounds to it, i.e.,

∫ y0+H

y0

F (z)dz ≥ I(1)
GL,

∫ y0+H

y0

F (z)dz ≥ I(2)
GL,

∫ y0+H

y0

F (z)dz ≥ I(4)
GL. (5.38)

Evaluating the integral in Eq.(5.6) for F (z) = 1/(1 + z) via the above three quadratures,
one obtains

I(1)
GL(y) =

2y

(2 + y)
,

I(2)
GL(y) =

6y + 3y2

6 + 6y + y2
,

I(3)
GL(y) =

60y + 60y2 + 11y3

60 + 90y + 36y2 + 3y3
.

Figure 5.6 depicts the various approximations I(n)
NC from n point Gauss-Legendre quadrature

compared with log(1 +y), and the percentage error associated with each expression is tabulated
in Table 5.3. It is seen that the higher order quadratures provide sharper lower bounds, i.e.,

I(1)
GL(y) ≤ I(2)

GL(y) ≤ I(3)
GL(y) ≤ log(1 + y), y > 0. (5.39)
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However, in the interval y ∈ (−1, 0) the bounds from Gauss-Legendre quadrature show opposite
behaviour, i.e.,

log(1 + y) ≤ I(3)
GL(y) ≤ I(2)

GL(y) ≤ I(1)
GL(y), −1 < y < 0. (5.40)

5.4 A few positive definite functions

In this section, we list a few positive definite functions and their domain of validity that are
obtained by using the bounds on log(1 + y) proposed in the previous sections. In the interval
y ∈ (−1, 0), using Eq.(5.12) we define

G1(y) = (1 + y)

[
− log(1 + y) + y − y2

2

]
> 0, (5.41)

G6(y) = (1 + y)

[
− log(1 + y) + y − y2

2
+
y3

3
− y4

4
+
y5

5

]
> 0. (5.42)

In the interval y ∈ [0,∞), using Eq.(5.32) we define

G2(y) = (1 + y)
[
− log(1 + y) + I(1)

NC

]
≥ 0, (5.43)

G7(y) = (1 + y)
[
− log(1 + y) + I(3)

NC

]
≥ 0, (5.44)

and in the interval y ∈ (−1,∞), using Eq.(5.39) and Eq.(5.40) we define

G3(y) = y
[
log(1 + y)− I(1)

GL

]
≥ 0, (5.45)

G8(y) = y
[
log(1 + y)− I(3)

GL

]
≥ 0. (5.46)

In the subsequent chapters, we will show that these functions play a crucial role in proving
the discrete time H theorem.





Chapter 6

Discrete Time H theorem: Single
relaxation time entropic lattice
Boltzmann model

The lattice Boltzmann model (LBM) is an efficient kinetic formulation of nonlinear hydrody-
namic phenomena in terms of a discrete set of populations restricted on lattices with appropriate
symmetries (Frisch et al., 1986; Chen et al., 1992; Ansumali et al., 2003). The Navier-Stokes
dynamics emerges from this kinetic model by an appropriate choice of discrete equilibrium that
respects macroscopic constraints (McNamara & Zanetti, 1988; Qian et al., 1992; Benzi et al.,
1992). Historically, the approach of choosing the equilibrium from macroscopic dynamics in
LBM emerged as a computationally attractive alternative to the Boolean particle dynamics of
the lattice gas model (Frisch et al., 1986; McNamara & Zanetti, 1988; Higuera et al., 1989).
However, this top-down approach of LBM lost many desirable features of the lattice gas such as
the unconditional numerical stability, the H theorem and consequently the faithful representa-
tion of microscopic Boltzmann dynamics (Karlin et al., 1999; Succi et al., 2002b). The absence
of discrete time H theorem results in the growth of numerical instabilities in standard LBM.
This often makes simulations with low viscosity and/or large spatial gradients for hydrodynam-
ics and large density ratios for multiphase flows unstable (Karlin et al., 1999; Succi et al., 2002b;
Mazloomi et al., 2015).

The entropic lattice Boltzmann model (ELBM) is an alternate methodology, which restores
the H theorem for discrete space-time evolution (Karlin et al., 1998; Wagner, 1998; Karlin et al.,
1999; Chen & Teixeira, 2000; Boghosian et al., 2001; Succi et al., 2002b; Ansumali et al., 2003;
Boghosian et al., 2003). It was a paradigm shift for computational fluid dynamics where the
numerical stability of a hydrodynamic solver was enforced by insisting on adherence to the
thermodynamics at the discrete time level (Succi et al., 2002b). The ELBM is accepted as
a viable tool for simulation of turbulence, multiphase flows, as well as microflows due to its
unconditional numerical stability and has shown remarkable improvement over the traditional
LBM (Ansumali et al., 2006; Aidun & Clausen, 2010; Chikatamarla & Karlin, 2013b; Mazloomi
et al., 2015; Atif et al., 2017).

The ELBM requires an additional step known as the entropic involution step. It involves a
numerical search for the discrete path length corresponding to jump to a mirror state on the
iso-entropic surface. Considerable efforts have been made to ensure the correctness and efficient
implementation of this step (Ansumali & Karlin, 2000, 2002a; Tosi et al., 2006; Chikatamarla
et al., 2006; Brownlee et al., 2007; Gorban & Packwood, 2012). However, there is scope for a
better theoretical understanding of the ELBM if one is able to obtain a closed form expression
for the discrete path length. For example:

• The variable discrete path length could be understood as an implicit modeling of the
unresolved scales of the flow via the thermodynamic route, and may provide a new insight
into the sub-grid modeling of turbulence.

• It will enhance the efficiency of the ELBM by avoiding a numerical search for the path
length.

• It will resolve the ambiguities in the implementation of ELBM. It should be noted that
for some rare events, the details of which will be given later, the entropic involution step
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has no solution, and hence there is no unique definition of the path length (Gorban &
Packwood, 2012).

In this chapter, we reformulate the ELBM and obtain a closed form analytic solution for
the discrete path length. The essential idea is to relax the entropy equality condition used in
ELBM and replace it with the constraint that entropy must increase within a discrete time
step. The simplicity of the exact solution removes the computational overhead and algorithmic
complexity associated with ELBM. The proposed methodology is devoid of indeterminacy due
to its exact nature. This chapter is organized as follows: In Sec.6.1 we briefly review the
entropic lattice Boltzmann model. In Section 6.2 we describe the entropic involution step in its
traditional form and derive its near-equilibrium limit. In Section 6.3, we propose a methodology
to construct exact solutions for the path length. In Section 6.4, we perform a detailed comparison
of the behaviour of the exact solutions, the ELBM and the BGK. In Section 6.5 we present the
simulation of a NACA0012 airfoil at Reynolds number 2.88× 106, and in Section 6.6 we derive
the expression for turbulent viscosity corresponding to the analytic solution.

6.1 Entropic lattice Boltzmann model

In this section, we introduce the LBM and its entropic formulation in D dimensions. For
completeness, we reiterate some of the definitions made in Chapter 2. As stated earlier, in
LBM, one defines a set of discrete velocities ci, i = 1, · · · , N such that they form links of a space-
filling lattice (Succi, 2001), and at every lattice node x and time t a set of discrete populations
f(ci,x, t) ≡ fi. Here, the set of populations fi is understood as a vector f = {f1, f2, · · · , fN} in
the N dimensional phase space, where N is the number of discrete populations. We define the
bilinear action between two functions of discrete velocities φ and ψ as

〈φ, ψ〉 =

N∑

i=1

φiψi. (6.1)

Analogous to continuous kinetic theory, the hydrodynamic variables such as the mass density ρ,
velocity u, and the scaled temperature θ are defined as

ρ = 〈f, 1〉 , ρu = 〈f, c〉 , ρu2 +Dρθ =
〈
f, c2

〉
. (6.2)

The evolution of populations for a time step ∆t is written as two step process:

1. The discrete free-flight as

f(x+ ci∆t, t+ ∆t) = f∗(x, t), (6.3)

which shifts the populations in position space. Similar to free flight of molecules, this step
preserves entropy.

2. The collisional relaxation towards the discrete equilibrium given by

f∗(x, t) = f(x, t) + αβ
[
f eq(Mslow(x, t))− f(x, t)

]
, (6.4)

often modeled by a single relaxation model of Bhatnagar-Gross-Krook (BGK) (Bhatnagar
et al., 1954) with mean free time τ . Here Mslow(x, t) = {ρ(x, t),u(x, t), θ(x, t)} are the
collisional invariants. Often for isothermal LBMs, θ(x, t) is disregarded from Mslow(x, t).
For the standard LBM, α = 2, whereas in the entropic LBM α is treated as a variable
and evaluated at each point and time step such that the H theorem is satisfied. This is
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discussed in detail in Sections 6.2-6.3. The dimensionless discrete relaxation parameter β,

β =
∆t

2τ + ∆t
, (6.5)

is bounded in the interval 0 < β < 1. Notice that β = 1 implies τ = 0. Since the kinematic
viscosity ν = τθ, β = 1 implies that there is zero dissipation in the system.

It should be noted that the discrete free-flight that denotes the convection process leads to no
dissipation (thus no entropy production) (Wagner, 1998). The collisional relaxation, however,
has non-zero entropy production due to relaxation of the populations towards the equilibrium
values but is entirely a local event.

Historically, the discrete isothermal equilibrium at a reference temperature θ0 was chosen as
(Qian et al., 1992)

f eq
i = wiρ

[
1 +

uαcα
θ0

+
uαuβ
2θ2

0

(cαcβ − θ0δαβ)

]
, (6.6)

which was sufficient to recover the Navier-Stokes dynamics upto O(u2). However, this polyno-
mial form of discrete equilibrium permits the populations to attain negative values thus making
the simulations numerically unstable (Karlin et al., 1999; Succi et al., 2002b). A method that
resolves the issue of non-positive form of equilibrium distribution is to construct the discrete
equilibrium f eq as the minimizer of the convex function, known as the H function, under the
constraint that the mass density, the momentum density, and the energy density (ignored for
isothermal scenarios) are conserved (Karlin et al., 1999; Boghosian et al., 2001). The H function
was taken in Boltzmann form as (Karlin et al., 1999; Ansumali et al., 2003; Ansumali & Karlin,
2005)

H[f ] =

N∑

i=1

fi log
fi
wi

=

〈
f, log

f

w

〉
, (6.7)

with weights wi > 0. The discrete entropic equilibrium thus obtained is of the form

f eq
i = wiρ exp

(
−µ− ζαciα − γc2i

)
, (6.8)

where µ, ζα, γ are the Lagrange multipliers. For the D1Q3 model, and its higher dimension
extensions D2Q9, D3Q27 the discrete isothermal equilibrium in the explicit form is

f eq
i (ρ, uα, θ0) = wiρ

D∏

i=1

(2−
√

1 + ũ2
α)

[
2ũα/

√
3 +

√
1 + ũ2

α

1− ũα/
√

3

]ciα/√3θ0

(6.9)

where ũα = uα/
√
θ0. However, for most models the Lagrange multipliers cannot be evaluated in

explicit form and need to calculated numerically. The series expansion of the entropic equilibrium
provided the lattice is sufficiently isotropic was obtained in Chapter 3 as

f eq
i =f̃ eq

i

[
1 +

uαciα
θ
− u2

2θ
+

1

2

(uαciα
θ

)2
+

1

6

(uαciα
θ

)3
− u2uαciα

2θ2
(1−A)

]
, (6.10)
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where A =
〈
f̃ eq
i , c

2
ixc

2
iy

〉
/(3ρθ2)− 1/3, and

f̃ eq
i = wiρ

[
1 +

η

2θ0
(c2
i − 3θ0) +

η2

8θ2
0

(
c4
i − 10c2

i θ0 + 15θ2
0

)
+

η3

48θ3
0

(
c6
i − 21c4

i θ0 + 105c2
i θ

2
0

− 105θ3
0

)
+

η4

384θ4
0

(
c8
i − 36c6

i θ0 + 378c4
i θ

2
0 − 1260c2

i θ
3
0 + 945θ4

0

)
+O(η5)

]
,

(6.11)

for models that satisfy Eqs.(3.29). Here η = θ/θ0 − 1, and it can be seen that f̃ eq
i (ρ, uα, θ =

θ0) = wiρ and that Eq.(6.10) is the same as Eq.(6.6) upto O(u2).

6.2 The entropic involution

The existence of the entropy function H, accompanied with the entropic equilibrium derived
in a variational fashion, provides an opportunity for creating a nonlinearly stable numerical
method (Karlin et al., 1999; Succi et al., 2002b). As the convection process [Eq.(6.3)] does not
lead to entropy production, a nonlinearly stable LBM can be achieved by making the collisional
relaxation to equilibrium [Eq.(6.4)] adhere to the H theorem, or in other words, by ensuring
that the entropy production during the collision is non-positive.

The collision step given by Eq.(6.4) is understood in geometric terms as follows: in an N
dimensional phase space, starting from the pre-collisional state f one covers a path length of
αβ in the direction of f eq − f to arrive at the post-collisional state f∗, i.e.,

f∗ = f + αβ[f eq − f ], (6.12)

Here, we have dropped the position and time coordinates x, t as the collision step is local in
position space and instantaneous. In the standard LBM, α = 2, however, in ELBM α deviates
from its standard value of 2 and is found such that the H theorem is satisfied.

We now define a mirror state

fmirror = f + α(f eq − f), (6.13)

which is essentially f∗ from Eq. (6.12) with β = 1. Recall that β = 1 is a zero dissipation state,
therefore,

H[fmirror] = H[f ]. (6.14)

Hence, starting from f and moving in the direction of f eq − f the maximum allowable path
length that could be covered is α, beyond which H will begin to increase, and the H theorem
will be violated. This is depicted in Figure 6.1 where the circles are iso-entropic contours and
H1 > H2 > H3 > H[f eq]. The path length α is evaluated numerically by solving the nonlinear
equation Eq. (6.14) for α (Ansumali & Karlin, 2002a; Tosi et al., 2006; Chikatamarla et al.,
2006). Once the path length α and therefore the mirror state are known, the post-collisional
state is found by the linear contraction

f∗ = fmirror − α(1− β)[f eq − f ] = f + αβ[f eq − f ]. (6.15)

Since 0 < β < 1, it is guaranteed that

H[f∗] < H[fmirror]. (6.16)

To summarize, the ELBM ensures adherence to the H theorem in the collision by first “over-
relaxing” the populations to an isentropic (zero dissipation) mirror state followed by adding
dissipation which ensures a non-positive entropy production (Karlin et al., 1999).
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ααβ

H1

H2

H3

f eq

f

fmirror
f∗

Figure 6.1: The entropic involution step: Hi are different entropy levels (H1 > H2 > H3).
Triangle denotes the polytope of positivity. Note that the pre-collisional state f and the mirror
state fmirror are at the same entropy level. The post collisional state f∗ is at a lower entropy
level.

6.2.1 Discussion on the over-relaxation

The over-relaxation of the populations is an important feature of the discrete dynamics as it
allows one to achieve any desirable time steps independent of the relaxation time. In Figure 6.1,
all the states on the line segment fmirror − f eq are over-relaxed states, while those on the line
segment f eq − f are under-relaxed. A numerical scheme via the first order Euler discretization
of the Boltzmann BGK equation is possible. It reads as

f(x+ c∆t, t+ ∆t) = f(x, t) +
∆t

τ
[f eq − f(x, t)] +O(∆t2)

=

(
1− ∆t

τ

)
f(x, t) +

∆t

τ
f eq. (6.17)

It displays unconditional numerical stability if ∆t � τ . This is an under-relaxing scheme and
corresponds to α < 1 as the discrete dynamics never crosses the equilibrium state. The H
theorem for this scheme is trivially satisfied as the post-collisional state is a convex combination
of the pre-collisional state and the equilibrium state.

For flows with a large Reynolds number, the viscosity is small and hence τ → 0. As the
under-relaxation requires ∆t � τ , it also sets a severe restriction on the time step, i.e., τ →
0 ⇒ ∆t → 0. However, for faster convergence it is desirable to have large time steps, thus a
numerical scheme which permits ∆t� τ is desirable. The over-relaxation schemes allow ∆t� τ
and correspond to α > 1.

6.2.2 Near equilibrium limit of the entropic involution

In a well resolved simulation, the entropic involution step gives the solution α = 2. This is seen
in what follows. The dimensionless departure from the equilibrium is defined as

xi =
f eq
i

fi
− 1. (6.18)

As all fi, f
eq
i are positive, xi ∈ (−1,∞). Here, the lower limit is due to the extreme case of one

of the f eq
i → 0, whereas the upper limit is due to one of the fi → 0. The equilibrium distribution



58 Chapter 6. Discrete Time H theorem: Single relaxation time entropic lattice Boltzmann model

of the populations f eq
i is

f eq
i = wi exp(−λ− ζκciκ − γc2i )⇒ wi = f eq

i exp(λ+ ζκciκ + γc2i ), (6.19)

where wi is weight specific to discrete velocity ci (i = 1...N). The Lagrange multipliers λ, ζκ, γ
are calculated by imposing the conservation of mass, momentum and energy respectively (in an
isothermal setting γ = 0). Therefore, from the form of H from Eq.(6.7) we have

H[fmirror]−H[f ] =

〈
fmirror, log

fmirror

w

〉
−
〈
f, log

f

w

〉
. (6.20)

Substituting fmirror from Eq.(6.13) in the above equation we obtain

H[fmirror]−H[f ] =

〈
f + α(f eq − f), log

f + α(f eq − f)

w

〉
−
〈
f, log

f

w

〉
, (6.21)

which upon using the definition of xi from Eq.(6.18) gives

H[fmirror]−H[f ] =

〈
f(1 + αx), log

f(1 + αx)

w

〉
−
〈
f, log

f

w

〉

= 〈f(1 + αx), log (1 + αx)〉+

〈
f(1 + αx), log

f

w

〉
−
〈
f, log

f

w

〉

= 〈f (1 + αx) , log (1 + αx)〉 − α
〈
f, x log

w

f

〉
.

(6.22)

Substituting wi from Eq.(6.19) one obtains

H[fmirror]−H[f ] = 〈f, (1 + αx) log (1 + αx)〉 − α
〈
f, x log

f eq exp(λ+ ζκciκ + γc2i )

f

〉

= 〈f, (1 + αx) log (1 + αx)〉 − α 〈f, x log(1 + x)〉 − αλ 〈f, x〉
− αζκ 〈f, xcκ〉 − αγ

〈
f, xc2

〉
(6.23)

where we have substituted f eq
i /fi = 1 + xi and the underlined terms are zero because

〈f, x〉 =
∑

i

(f eq − fi) = ρ− ρ = 0,

〈f, xcκ〉 =
∑

i

(f eqciκ − ficiκ) = ρuκ − ρuκ = 0,

〈
f, xc2

〉
=
∑

i

(f eqc2
i − fic2

i ) = ρe− ρe = 0.

(6.24)

Therefore, the path length α is the root of the equation

H[fmirror]−H[f ] = 〈f, (1 + αx) log (1 + αx)〉 − α 〈f, x log(1 + x)〉 . (6.25)

In a well resolved simulation, the dimensionless departure of populations from the equilibrium
is small, i.e.,

|xi| � 1. (6.26)

Hence, expanding the logarithms about xi = 0 via Taylor series one obtains

H[fmirror]−H[f ] = α
(α

2
− 1
) 〈
f, x2

〉
+O(x3).
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Thus, for small departure from the equilibrium, the non-trivial root of H[fmirror]−H[f ] = 0 is
α = 2. Therefore, the ELBM reduces to the standard LBM.

Illustration via D1Q2 lattice
We derive the expanded form of Eq.(6.25) for the D1Q2 lattice (Mohamad & Kuzmin, 2012).
This is a one dimensional lattice that has only 2 discrete velocities c1 = {1} and c−1 = {−1}.
It lacks degree of freedom to model hydrodynamics, however, is simple enough to show the
analytical form of H[fmirror]−H[f ],

∆H ≡ H[fmirror]−H[f ] = f1(1 + αx1) log(1 + αx1)− αf1x1 log(1 + αx1)

+ f−1(1 + αx−1) log(1 + αx−1)− αf−1x−1 log(1 + αx−1).
(6.27)

For this lattice, f eq
1 = f eq

−1 = ρ/2, therefore, x1 = ρ/(2f1)− 1, x−1 = ρ/(2f−1)− 1, substituting
which in the above equation one obtains

∆H =
[
f1 + α

(ρ
2
− f1

)]
log

[
1 + α

(
ρ

2f1
− 1

)]
− α

(ρ
2
− f1

)
log

(
ρ

2f1

)

+
[
ρ− f1 + α

(
−ρ

2
+ f1

)]
log

[
1 + α

(
ρ

2(ρ− f1)
− 1

)]
− α

(
−ρ

2
+ f1

)
log

(
ρ

2(ρ− f1)

)
,

(6.28)

where we have substituted f−1 = ρ − f1 from the mass conservation constraint. The above
equation is further simplified by introducing the scaled population f̃1 = fi/ρ as

∆H
ρ

=

[
f̃1 + α

(
1

2
− f̃1

)]
log

2f̃1 + α(1− 2f̃1)

2(1− f̃1) + α(2f̃1 − 1)
+ log

[
1 + α

(
1

2(1− f̃1)
− 1

)]

+f̃1 log

[
1− f̃1

f̃1

]
.

(6.29)

From the above equation, we see that the complexity associated with the Eq.(6.25) makes it
difficult to obtain a solution even for the simplistic D1Q2 lattice. This problem aggravates for
more complicated lattices.

6.2.3 Indeterminacy in the entropic involution

There exists another important structure in the phase space: the polytope of positivity (Gorban
& Packwood, 2012). It is the region inside which all the populations are positive but outside
of which one or more populations become negative. The involution step exhibits no solution
when the iso-entropic surfaces are partially outside the polytope of positivity (entropy level H1

in Figure 6.1). This is due to the presence of the logarithm in the entropy function which cannot
be defined when one of the populations is negative. It should be noted that these events are rare
and even if one encounters such cases it is known how to construct the path length (Ansumali
& Karlin, 2002a; Mazloomi M. et al., 2015).

Illustration via D1Q3 lattice
We illustrate via D1Q3 lattice the rare scenario where the mirror state is not defined. The
D1Q3 lattice has three populations f1, f2, f3. The mass conservation constraint requires that
f1 +f2 +f3 = ρ, a plane in the phase space on which the entire discrete dynamics is constrained.
Figure 6.2(a) shows the triangular section of the plane inside which all the populations are
positive, and outside of which one or more populations become negative. Figure 6.2(b) represents
a scenario where the mirror state is not defined as one of the populations is negative, hence the
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(ρ, 0, 0)

(0, ρ, 0)

(0, 0, ρ)

f1

f2

f3

f2 < 0

f1 < 0

f3 < 0

(a) The polytope of positivity.

f eq

f

fmirror

f1 < 0

f2 < 0

f3 < 0

(b) Mirror state lies outside the polytope of
positivity.

Figure 6.2: (a) The triangular section of the plane inside which all the populations are positive,
and outside of which one or more populations become negative. (b) Representation of a pre-
collisional state f for which the mirror state is not defined.

mirror state cannot be defined.

6.3 Exact solution to the path length: Essentially entropic lat-
tice Boltzmann model

As discussed in the previous section, the discrete path length α is available as the non-trivial
root of the equation

H[fmirror]−H[f ] = 〈f, (1 + αx) log (1 + αx)〉 − α 〈f, x log(1 + x)〉 = 0. (6.30)

The above equation is highly nonlinear and is typically solved by a combination of bisection and
Newton-Raphson method (Ansumali & Karlin, 2000, 2002c). Considerable efforts have been put
in to ensure that the correct solution is obtained in an efficient manner (Ansumali & Karlin,
2002a; Tosi et al., 2006; Chikatamarla et al., 2006; Brownlee et al., 2007).

In this section, we present an alternate construction of ELBM where the discrete path length
α is known in explicit form and has no indeterminacy. The key idea is to obtain α by directly
considering the natural criterion of monotonic decrease of H with time (Atif et al., 2017). This
implies solving an inequality

∆H ≡ H[f∗]−H[f ] < 0. (6.31)

The inequality, by construction, accepts multiple solutions. For example, when α ≤ 1 the
inequality is trivially satisfied as the new state is a convex combination of the old state and the
equilibrium (Wagner, 1998). However, one is interested in over-relaxed collision, where the new
state is no longer a convex combination of the old state and equilibrium. This corresponds to
the real solutions of Eq.(6.31) in the range 1 < α <∞ (Karlin et al., 1999). Among the multiple
solutions of the inequality, we are looking for the maximal path length α such that

∆H → 0. (6.32)

As in ELBM, the solution should reduce to standard LBM close to equilibrium (α = 2). Indeed,
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the present methodology is valid for both discrete velocity models of LBM as well as the contin-
uous in velocity Boltzmann-BGK equations, where the summation in the bilinear action needs
to be replaced by appropriate integrals.

The general idea behind obtaining an analytical expression for the path length α is as follows:
we intend to split ∆H into two parts,

∆H = H(α) +H(B), (6.33)

where H(B) is chosen such that it is non-positive, and H(α) is a polynomial. The polynomial

H(α) = 0, (6.34)

is solved for the path length α. The discrete time H theorem is satisfied as H(B) is non-positive
and contributes to the entropy production, i.e.,

∆H = H(B) ≤ 0. (6.35)

A word of caution is in order here. As stated earlier, the inequality ∆H ≤ 0 by construction
accepts multiple solutions. These solutions are not identical but differ in two ways:

1. Not all the solutions reduce to the standard LBM (α = 2) in the limit of xi → 0. Our
interest is only in the solutions that reduce to the standard LBM for xi → 0.

2. The entropy production corresponding to each solution dictates its dissipative nature, i.e.,
as the magnitude of H(B) increases the dynamics becomes more and more dissipative. This
is the reason why we are interested in the solution such that ∆H → 0. This point will be
elucidated in the forthcoming section, where we will derive two expressions for α, one of
which will be more dissipative than the other.

Applying the same procedure as given in Eqs.(6.22)–(6.23), we have from Eq.(6.31),

∆H = H[f∗]−H[f ] =

〈
f∗, log

f∗

w

〉
−
〈
f, log

f

w

〉
(6.36)

where by substituting f∗i = fi(1 + αβxi) [Eq.(6.4) and Eq.(6.18)] one obtains

∆H =

〈
f, (1 + αβx) log

f (1 + αβx)

w

〉
−
〈
f, log

f

w

〉
. (6.37)

Upon substituting wi from Eq.(6.19), the above equation is rewritten as

∆H = 〈f, (1 + αβx) log (1 + αβx)〉 − αβ
〈
f, x log

w

f

〉

= 〈f, (1 + αβx) log (1 + αβx)〉 − αβ 〈f, x log(1 + x)〉 .
(6.38)

Further, we introduce a decomposition of distributions f in terms of the departure from equi-
librium as (Gorban et al., 1996)

Ω+ = {fi : xi ≥ 0} and Ω− = {fi : −1 < xi < 0}.

This asymmetry of the range of x is crucial in the subsequent derivation of the exact solution.
With this decomposition, we also partition the bilinear action into two partial contributions

〈f, ψ〉Ω± =
∑

fi∈Ω±

fiψi.
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Under this decomposition, the Eq.(6.38) becomes

∆H = 〈f, (1 + αβx) log (1 + αβx)〉Ω− + 〈f, (1 + αβx) log (1 + αβx)〉Ω+

− αβ 〈f, x log(1 + x)〉Ω− − αβ 〈f, x log(1 + x)〉Ω+ .

(6.39)

We now derive the solutions to ∆H ≤ 0 by splitting the Eq.(6.39) into a polynomial and an
entropy production term as explained above.

6.3.1 Lower order solution

Before deriving the analytical expression for the path length, we list some non-negative functions
from Chapter 5:

G1(y) = −(1 + y) log(1 + y) + y +
y2

2
− y3

2
> 0 y ∈ (−1, 0), (6.40)

G2(y) = −(1 + y) log(1 + y) + y +
y2

2
≥ 0 y ∈ [0,∞), (6.41)

G3(y) = y log(1 + y)− 2y2

2 + y
≥ 0 y ∈ (−1,∞). (6.42)

Upon adding and subtracting the same terms, Eq. (6.39) is written as

∆H = 〈f, (1 + αβx) log (1 + αβx)−A1〉Ω− + 〈f,A1〉Ω−

+ 〈f, (1 + αβx) log (1 + αβx)−A2〉Ω+ + 〈f,A2〉Ω+

−αβ 〈f, x log(1 + x)−A3〉 − αβ 〈f,A3〉 ,
(6.43)

where

A1 = αβx+
α2β2x2

2
− α3β3x3

2
,A2 = αβx+

α2β2x2

2
,A3 =

2x2

2 + x
.

Now, identifying that 〈f, x〉Ω+ + 〈f, x〉Ω− = 〈f, x〉 = 0 due to conservation laws, the above
equation is re-organized as

∆H =

〈
f, (1 + αβx) log (1 + αβx)−A1︸ ︷︷ ︸

−G1(αβx)

〉

Ω−

+

〈
f, (1 + αβx) log (1 + αβx)−A2︸ ︷︷ ︸

−G2(αβx)

〉

Ω+

− αβ
〈
f, x log(1 + x)−A3︸ ︷︷ ︸

G3(x)

〉
− αβ

〈
f,

2x2

2 + x

〉
+ α2β2

〈
f,
x2

2

〉

︸ ︷︷ ︸
M

−α3β3

〈
f,
x3

2

〉

Ω−︸ ︷︷ ︸
N

.

(6.44)

We now consider the terms M,N which are split as

M≡ α2β2

〈
f,
x2

2

〉
≡ α2β

〈
f,
x2

2

〉
+ α2β(β − 1)

〈
f,
x2

2

〉
,

N ≡ α3β3

〈
f,
x3

2

〉

Ω−
≡ α3β

〈
f,
x3

2

〉

Ω−
+ α3β(β2 − 1)

〈
f,
x3

2

〉

Ω−
.

(6.45)

Hence, Eq.(6.44) is written in a compact form as

∆H = αβH1(α) +H(B), (6.46)
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where

H(B) = −〈f,G1(αβx)〉Ω−
− 〈f,G2(αβx)〉Ω+

− αβ 〈f,G3(x)〉+ α2β(β − 1)

〈
f,
x2

2

〉

− α3β(β2 − 1)

〈
f,
x3

2

〉

Ω−
, (6.47)

and

H1(α) = −α2

〈
f,
x3

2

〉

Ω−
+ α

〈
f,
x2

2

〉
−
〈
f,

2x2

2 + x

〉
. (6.48)

Due to non-negative nature of the functions G1, G2, G3 in their respective domains [Eqs.(6.40)-
(6.42)] and β < 1, all the terms in Eq.(6.47) are non-positive, hence,

H(B) ≤ 0. (6.49)

The positive root of the quadratic equation

H1(α) = 0, (6.50)

is easily found. Therefore, from Eq.(6.46)

∆H = H(B) ≤ 0. (6.51)

As H1(0) < 0 < H1(2), a root of Eq.(6.48) bounded in (0, 2) exists. It is given by

α =
1−

[
1− 8Θ−

(
1− Θ++Θ−

2 + Γ
)] 1

2

2Θ−
, (6.52)

where

Θ± =

〈
f, x3

〉
Ω±

〈f, x2〉 , Γ =

〈
x4

4+2x

〉

〈f, x2〉 .

Upon expanding the αLower and ignoring O(Θ2
±) terms one obtains its limit

lim
xi→0

αLower = 2−Θ+ + 3Θ− = 2−Θ + 4Θ−, (6.53)

which has the limiting value of 2, the path length for standard LBM. It is evident that αLower < 2.
Henceforth, the path length given by Eq.(6.52) will be called αLower because it is constructed
by employing lower order bounds on the logarithm.

6.3.2 Higher order solution

In this section, we derive the path length α by exploiting the sharper bounds on the logarithms.
We first list some non-negative functions:

G6(y) = −(1 + y) log(1 + y) +G9(y) > 0 y ∈ (−1, 0), (6.54)

G7(y) = −(1 + y) log(1 + y) + (1 + y)I(3)
NC ≥ 0 y ∈ [0,∞), (6.55)

G8(y) = y log(1 + y)− yI(3)
GL ≥ 0 y ∈ (−1,∞). (6.56)
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where G9(y) = y+ y2/2− y3/6 + y4/12− y5/20 + y6/5. Following the same methodology as the
previous section we add and subtract the same terms from Eq. (6.22) to obtain

∆H =
〈
f, (1 + αβx) log (1 + αβx)−G9(αβx)︸ ︷︷ ︸

−G6(αβx)

〉
Ω−

+
〈
f, (1 + αβx)

(
log (1 + αβx)− I(3)

NC(αβx)
)

︸ ︷︷ ︸
−G7(αβx)

〉
Ω+

−αβ
〈
f, x
(

log(1 + x)− I(3)
GL(x)

)〉

︸ ︷︷ ︸
−αβG8(x)

+
〈
f, (1 + αβx)I(3)

NC(αβx)
〉

Ω+
+
〈
f,G9(αβx)

〉
Ω−

− αβ
〈
f, xI(3)

GL(x)
〉
.

(6.57)

The underbraced terms in the above equation are negative definite and contribute to the entropy
production H(B). The last three terms, after factoring out αβ, form a quintic polynomial like
equation Ĥ(α),

Ĥ(α) = −
〈
f,
α2β2x3

6
− α3β3x4

12
+
α4β4x5

20
− α5β5x6

5

〉

Ω−
+

〈
f,
αβx2

2

〉
−
〈
f,

2α2β2x3

15

(
2

4 + αβx

+
1

4 + 2αβx
+

2

4 + 3αβx

)〉

Ω+

−
〈
f,

60x2 + 60x3 + 11x4

60 + 90x+ 36x2 + 3x3

〉
,

(6.58)

the solution to which is the desired path length. The above equation has at least one positive
root as Ĥ(0) < 0 < Ĥ(∞) which can be found using any numerical method. In order to preserve
the computational efficiency of the model, in the next section, we solve the above equation by
converting it into a quadratic.

6.3.3 Solving the higher degree polynomial

In this section, we solve Eq.(6.58) by converting it to a quadratic. The conversion to a quadratic
is performed by extracting a few negative terms from the Eq.(6.58). These extracted terms then
contribute to the entropy production H(B).

As stated earlier, the Eq.(6.58) has a positive root since Ĥ(0) < 0 < Ĥ(∞). We assume that
upper and lower bounds on the root α exist. A suitable choice for the lower bound is αLower

while the upper bound h will be later evaluated. Therefore,

αLower < α < h, (6.59)

where Converting Ĥ(α) to a quadratic is a two step procedure and is explained in the following
subsections.

Exploiting the lower bound

Using the lower bound αLower, in Eq.(6.58) we split the term

−
〈
f,

2α2β2x3

15

(
2

4 + αβx
+

1

4 + 2αβx
+

2

4 + 3αβx

)〉

Ω+

≡ −
〈
f,

2αβ2x3

15

(
2

4
αLower

+ βx

+
1

4
αLower

+ 2βx
+

2
4

αLower
+ 3βx

)〉

Ω+

−
〈
f,

2αβ2x3

15

({
2

4
α + βx

− 2
4

αLower
+ βx

}

+

{
1

4
α + 2βx

− 1
4

αLower
+ 2βx

}
+

{
2

4
α + 3βx

− 2
4

αLower
+ 3βx

})〉

Ω+

, (6.60)
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α

f(α)
H1(α)

H(α)
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Ĥ(α)
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H1(0)

H(0)

Figure 6.3: Behaviour of Eqs.(6.48),(6.58),(6.61),(6.63),(6.64) near the positive root.

where each term in curly braces is positive (as αLower < α) thereby making the second term
negative. Here, recognizing that the negative term contributes to the entropy production H(B),
we obtain the quintic polynomial H̃(α),

H̃(α) = −α2β2

〈
f,
x3

6
− αβx4

12
+
α2β2x5

20
− α3β3x6

5

〉

Ω−
+ α

[〈
f,
x2

2

〉
−
〈
f,

2αLowerβ
2x3

15

(
2

4 + αLowerx

+
1

4 + 2αLowerx
+

2

4 + 3αLowerx

)〉

Ω+

]
−
〈
f,

60x2 + 60x3 + 11x4

60 + 90x+ 36x2 + 3x3

〉
.

(6.61)

Essentially, while converting Ĥ(α) to H̃(α), we have shifted the negative definite terms in
Eq.(6.60) to the entropy production, hence, the curve for H̃(α) lies above Ĥ(α) (see Figure 6.3).
It follows that an upper bound on the root of Ĥ(α) will also serve as the upper bound for the
root of H̃(α).

Exploiting the upper bound

Using the upper bound h, in Eq.(6.61) we split the term

−
〈
f,
α2β2x3

6
− α3β3x4

12
+
α4β4x5

20
− α5β5x6

5

〉

Ω−
≡ −α2β2

〈
f,
x3

6
− hβx4

12
+
h2β2x5

20
− h3β3x6

5

〉

Ω−

− α2β2

〈
f,−(α− h)βx4

12
+

(α2 − h2)β2x5

20
− (α3 − h3)β3x6

5

〉

Ω−
, (6.62)

where the second term is negative, due to xi < 0, xi ∈ Ω− andα < h. Now, substituting
Eq.(6.62) into Eq.(6.61) and again recognizing that the negative terms contribute to the entropy
production H(B), we obtain the quadratic in α,

H(α) = −α2β2

〈
f,
x3

6
− hβx4

12
+
h2β2x5

20
− h3β3x6

5

〉

Ω−
+ α

[〈
f,
x2

2

〉
−
〈
f,

2αLowerβ
2x3

15

(
2

4 + αLowerx

+
1

4 + 2αLowerx
+

2

4 + 3αLowerx

)〉

Ω+

]
−
〈
f,

60x2 + 60x3 + 11x4

60 + 90x+ 36x2 + 3x3

〉
.

(6.63)

The above quadratic has a positive root αHigher as H(0) < 0 < H(∞) which is the desired path
length.
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It remains to specify the upper bound h. For this we consider the quadratic equation
H2(α) = H(α)|h=0,

H2(α) = −α2β2

〈
f,
x3

6

〉

Ω−
+ α

[〈
f,
x2

2

〉
−
〈
f,

2kβ2x3

15

(
2

4 + kx
+

1

4 + 2kx
+

2

4 + 3kx

)〉

Ω+

]

−
〈
f,

60x2 + 60x3 + 11x4

60 + 90x+ 36x2 + 3x3

〉
,

(6.64)

whose positive root is α2. Therefore, H2(α2) = 0 and

H(α2) = α2
2β

2

〈
f,
hβx4

12
− h2β2x5

20
+
h3β3x6

5

〉

Ω−
+H2(α2). (6.65)

As H(0) < 0 < H(α2), a root of H(α) lies in the interval (0, α2) (see Figure 6.3). Hence, a
suitable choice for the upper bound is h = α2. The positive root of Eq.(6.63) will henceforth be
called αHigher and has the limit

lim
xi→0

αHigher = 2 +

(
4β2

3
− 1

) 〈
f, x3

〉

〈f, x2〉 . (6.66)

Unlike αLower, which was always less than 2, no such comment can be made about αHigher. Thus
αHigher mimics an important feature of the ELBM where the path length fluctuates about the
BGK value of 2.

6.3.4 Implementing the exact solution

The post-collisional populations are updated via the routine

f∗i = fi + αβ[f eq
i − fi], (6.67)

where the path length α needs to be evaluated at each grid point. We begin by calculating

xi =
f eq
i

fi
− 1, (6.68)

where i = 1 → N for a lattice with N discrete velocities. To evaluate a summation on one of
the sub-divisions Ω− or Ω+ we sum over the populations in the concerned sub-division. For
instance, to calculate

a1 =

〈
f,
x3

2

〉

Ω−

the pseudo-code is:

1: a1 = 0
2: for each integer i in 1 to N do
3: if xi < 0 then
4: a1 = a1 + fi ∗ x3

i

5: end if
6: end for
7: a1 = a1 ∗ 0.5
8: Return a1

To find the path length α we execute the following steps:
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• Step 1: Find the |xi|max with maximum magnitude and minimum xmin
i amongst all xi.

1: if |xi|max < 1e− 3 then
2: α = 2
3: else
4: Proceed with Steps 2 to 5
5: end if

• Step 2: Find αLower available as the positive root of the Eq.(6.48)

αLower =
−b1 +

[
b21 − 4a1c1

] 1
2

−2a1
=

2c1

b1 +
[
b21 − 4a1c1

] 1
2

, (6.69)

[to avoid numerical issues while dealing with small numbers we have multiplied the root
with its conjugate (Press et al., 1992)], where,

a1 =

〈
f,
x3

2

〉

Ω−
, b1 =

〈
f,
x2

2

〉
, c1 =

〈
f,

2x2

2 + x

〉
. (6.70)

1: Find a1, b1, c1

2: if a1 < 0 & b1 > 0 & c1 > 0 then
3: αLower from Eq.(6.69)
4: else
5: αLower = 2
6: end if

• Step 3: Find the upper bound h available as the positive root of the Eq.(6.64)

h =
2c

b+ [b2 − 4a2c]
1
2

, (6.71)

where

a2 = β2

〈
f,
x3

6

〉

Ω−
, c =

〈
f,

60x2 + 60x3 + 11x4

60 + 90x+ 36x2 + 3x3

〉
,

b =

[〈
f,
x2

2

〉
−
〈
f,

2αLowerβ
2x3

15

(
2

4 + αLowerx
+

1

4 + 2αLowerx
+

2

4 + 3αLowerx

)〉

Ω+

]
,

(6.72)

1: Find a2, b2, c2

2: if a2 < 0 & b > 0 & c > 0 then
3: h from Eq.(6.71)
4: else
5: h = 2
6: end if

• Step 4: The path length αHigher is found as the positive root of the Eq.(6.63)

αHigher =
2c

b+ [b2 − 4ac]
1
2

, (6.73)
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where

a = β2

〈
f,
x3

6
− hβx4

12
+
h2β2x5

20
− h3β3x6

5

〉

Ω−
(6.74)

1: Find a
2: if a < 0 & b > 0 & c > 0 then
3: α = αHigher from Eq.(6.73)
4: else
5: α = 2
6: end if

• Step 5: (Rare events) Although, the exact solution to the path length is always found,
we need to ensure that the post collisional populations do not become negative due to
the boundary conditions or in the case of of extremely under-resolved situations. To this
effect, an extra step might be required. We again stress that these situations are extremely
rare. The maximum permitted value of the path length such that all the post collisional
populations remain positive is αmax = −1/(βxmin

i ). Therefore,

1: if α > αmax then
2: α = 0.9αmax

3: else if α < 1 then
4: α = 1.
5: end if

6.4 Comparison with ELBM and BGK

Having obtained the exact solutions for the path length (αLower, αHigher) we compare their be-
haviour with BGK (α = 2) and iterative ELBM (αELBM). To this effect, we consider three well
known setups: the one dimensional Sod shock tube, the lid driven cavity, and the doubly peri-
odic shear layer. It is illustrated here that αLower is more dissipative than αHigher and hence is
not the ideal choice for hydrodynamics. Nevertheless, it is useful for the construction of αHigher

as demonstrated in the previous section.

6.4.1 Sod shock tube

In order to compare the behaviour of αLower, αHigher with αELBM, we consider the one dimensional
shock tube using the D1Q3 lattice. In this setup, the domain is initialized with step density as
f eq(ρ = 1.5, u = 0) in the left half of domain and f eq(ρ = 0.75, u = 0) in the right half. The
presence of a sharp discontinuity in the density initial condition at the center of the domain
generates a moving compressive shock front in the low density region and rarefaction front in
the high density region. These two fronts leave behind in the tube a central contact region of
uniform pressure and velocity (Laney, 1998).

The density, velocity, and entropy profiles shown in Figure 6.4 illustrate that the numerical
oscillations are sharply reduced in the case of αLower (which is indicative of its dissipative nature),
whereas for BGK, αHigher, and αELBM the oscillations are prominent.

Figure 6.5(a) compares αLower and αELBM. It is evident that the path lengths show departure
from α = 2 (BGK value) only in a narrow region compressive shock front and the rarefaction
front. It can also be seen that the value of αLower is always smaller than 2, while that of αELBM

fluctuates about 2. In Sec.6.6, we demonstrate that departure of α from 2 can be interpreted
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Figure 6.4: Density (left column), velocity (middle column) and entropy (right column) plots
from LBGK, αLower, αHigher, αELBM at time t = 500 for viscosity ν = 1.0× 10−5.

as a turbulent viscosity correction νT . Figure 6.5(b) plots νT /ν0, from where it is seen that at
the location of the shock front the turbulent viscosity correction for αLoweris more than 250% of
the kinematic viscosity ν0, while that of αELBM is only ∼ 47%. Figure 6.6(a) compares the path
length from αHigher and it is seen that for this setup αHigher exhibits smaller fluctuations than
the αELBM. Figure 6.6(b) shows that the turbulent viscosity correction for αELBM is ∼ 47%,
whereas for αHigher it is ∼ 42%.

6.4.2 Lid driven cavity

In this section, we consider the time evolution of enstrophy, defined as square of the vorticity,
for a lid driven cavity at a Reynolds number (Re) of 5000 using the D2Q9 lattice. For this
setup, the LBGK (α = 2) is numerically unstable at smaller grid sizes of 64 × 64, 96 × 96, and
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Figure 6.6: Comparison between αHigher and αELBM for the Sod shock tube.

64× 64 96× 96 128× 128

αHigher 2± 0.00179 2± 0.00080 2± 0.00039

αELBM 2± 0.00177 2± 0.00073 2± 0.00029

Table 6.1: Region around the LBGK value of α = 2 where 90% of the points lie. It is seen that
as the grid size increases the region becomes narrower.

128×128, however, it becomes stable at a larger grid of size 256×256. The entropic formulations
αLower, αHigher, αELBM are stable at all grid sizes. We compare the enstrophy obtained from BGK
at grid size 256× 256 with that of αLowerαHigher, αELBM at 96× 96 and 128× 128 in Figure 6.9.
It is evident that the enstrophy predicted by αELBM, αHigher and BGK are comparable, while
that of αLower lies much below. Therefore, we conclude that the solution provided by αLower is
dissipative. This is attributed to the high magnitude of H(B) in Eq. (6.51) due to loose bounds
on the logarithms.

Here, we would like to establish that there is no significant difference between the path
lengths αHigher and αELBM. To this effect, we analyze the lid driven cavity for three different
grid resolutions and show that the instantaneous values of αHigher and αELBM show insignificant
difference. We simulate the lid driven cavity at Re = 5000 and Mach number (Ma) = 0.05 using
αHigher for 1000 convection times. From the populations thus obtained, we evaluate αHigher and
αELBM on the entire grid, and plot their distribution in Figure 6.7. It is evident that αHigher

and αELBM show insignificant deviation at all grid sizes. From Figure 6.7 and Table 6.1 it can
also be seen that as the grid size increases the distribution of the path lengths becomes narrower
and more points lie closer to the LBGK value of α = 2.

Further, Figure 6.10 depicts the iso-vorticity contours for the lid driven cavity at Reynolds
number of 5000 for various grid sizes using αHigher. It is seen that even extremely under-resolved
grids remain numerically stable and give correct large scale structures. However, at coarse
resolutions like 64 × 64 and 96 × 96 the finer structures are distorted. The finer structures
become correct at a slightly higher resolution of 128 × 128. It should be repeated here that
at grid size of 128 × 128 the LBGK (α = 2) is numerically unstable. In Figure 6.11, we plot
the velocities along vertical and horizontal centerlines and show a good match with Ghia et al.
(1982).

We also briefly investigate the idea that the path length αLower could be exploited as a guess
value for the iterative root finder. To this effect, we calculate the first iterate αIterate1 and
compare it with αELBM. Figure 6.12 depicts αIterate1−αELBM for the three grid sizes. It is seen
that the difference is insignificant in the bulk of the domain and becomes ∼ O(10−3) only near
the top and right walls.
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Figure 6.7: Distribution of αHigher and αELBM for lid driven cavity at Reynolds number 5000
and Mach number 0.05. Grid sizes are 64× 64 (top), 96× 96 (middle), 128× 128 (bottom). The
difference between the distribution of αHigher and αELBM is seen to be insignificant. The solid
black lines denote the region inside which 90% of the points lie. The locations of the solid lines
are tabulated in Table 6.1.
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Figure 6.8: Distribution of αHigher − αELBM for lid driven cavity at Reynolds number 5000 and
Mach number 0.05. Grid sizes are 64×64 (left), 96×96 (center), 128×128 (right). The difference
between the distribution reduces as the grid size increases.
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Figure 6.9: Comparison of time evolution of global enstrophy Ω̄ between αLower, αHigher, αELBM

for the lid driven cavity at Re = 5000 and Ma = 0.05. The BGK solution is at a grid size of
256 × 256, however, αLower, αELBM are at 96 × 96 (left) and 128 × 128 (right). Here, t∗ is time
non-dimensionalized via the convective time scale. The dissipative nature of αLower manifests in
the form of reduced enstrophy.
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(a) 64× 64 (b) 96× 96

(c) 128× 128

Figure 6.10: Iso-vorticity contours for the lid driven cavity at Reynolds number of 5000 for
various grid sizes.
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Figure 6.11: Velocity profiles for the lid driven cavity at Reynolds number of 5000 and Mach
number 0.05 for various grid sizes.



74 Chapter 6. Discrete Time H theorem: Single relaxation time entropic lattice Boltzmann model

0.0005

0.001

0.0015

0.002

 

  

0.0005

0.001

0.0015

0.002

 

  

0.0005

0.001

0.0015

0.002

 

  

Figure 6.12: Distribution of αIterate1 − αELBM for lid driven cavity at Reynolds number 5000
and Mach number 0.05. Grid sizes are 64 × 64 (left), 96 × 96 (center), 128 × 128 (right). The
difference between the distribution reduces as the grid size increases.

6.4.3 Doubly periodic shear layer

In this section, we compare the behaviour of αLower, αHigher with the BGK by considering the
setup of doubly periodic shear layer (Minion & Brown, 1997). The initial velocity field comprises
of two shear layers given by

ux(y) =

{
U0 tanh[(4y − 1)/w], y ≤ 1/2

U0 tanh[(3− 4y)/w], y > 1/2
(6.75)

uy(x) = U0δ sin[2π(x+ 1/4)], (6.76)

where w = δ = 0.05, U0 = 0.04 and x, y are nondimensionalized coordinates. The viscosity is
calculated from the Reynolds number which for the present case is fixed at 3× 104. It is known
that for this setup, the numerical disturbances may lead to formation of spurious vortices in the
braids at poor grid resolutions (Minion & Brown, 1997; Coreixas et al., 2017).

Figure 6.13 depicts the iso-vorticity contours for αLower, αHigher at grid size of 256× 256 and
for BGK at 1024 × 1024 obtained after one convection time. A qualitative comparison of the
three plots reveals that the vortex structure is smudged for αLower, while the vortex structure of
αHigher on a grid of 256×256 is the same as that of BGK at 1024×1024. A quantitative analysis
of the flow is performed by measuring the change in global enstrophy over time and is plotted
in Figure 6.14. It is evident that αHigher on a smaller lattice behaves the same as the BGK on
a much larger lattice, while αLower exhibits dissipation that manifests in the form of reduced
enstrophy. Finally, in Figure 6.15 we show the magnitude of the path lengths αLower, αHigher,
from where it evident that while αLower always remains smaller than 2, αHigher fluctuates about
2. This again corroborates the dissipative nature of αLower.

6.5 Flow past NACA-0012 airfoil

As the exact solution for the path length inherits nonlinear stability of ELBM and provides
significant speedup for entropic solvers, model free simulations of turbulence or multiphase
flows for complex scientific and engineering applications with existing computational resources
becomes a distinct possibility. Flow over aerodynamic geometries at realistic Reynolds number
is considered a challenging problem due to the complex turbulence phenomena involved and
high resolution required to capture the flow properties (Hosseini et al., 2016). To this effect
simulation of viscous flow over a NACA-0012 airfoil at 10◦ angle of attack(AoA) and Reynolds
number 2.88×106 and Mach 0.05 is performed using the RD3Q67 model with 6000 points along
the chord (Ch) on a grid of size 28Ch × 14Ch × 13. Figure 6.16(a) shows the coefficient of
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Figure 6.15: Path length from the two schemes after one convection time on a grid of size
256× 256.

pressure(Cp) compared with experiment (Gregory & O’reilly, 1973) and Figure 6.16(b) shows a
snapshot of instantaneous vorticity field. A NACA-0012 airfoil in stall (Figure 6.16(c)) is also
simulated at Reynolds number 5× 104 and Ma 0.1 using 1600 points along the chord on a grid
of size 28Ch× 14Ch× 321. 1

6.6 Entropic route to modeling the subgrid viscosity

In this section, we demonstrate in the limit xi → 0 the exact path length can be interpreted
as a form of sub-grid model (Malaspinas et al., 2008; Karlin et al., 2015). For this purpose we
consider from Eq.(6.53) the simplified departure of α from 2, i.e., α = αLower = 2 − Θ. From
the Chapman-Enskog expansion we know the relation of the kinematic viscosity ν,

ν = θτ = θ∆t

(
1

αβ
− 1

2

)
.

The path length α dictates whether the kinematic viscosity is larger or smaller than the base
viscosity ν0, where

ν0 = θ∆t

(
1

2β
− 1

2

)
. (6.77)

A path length smaller than 2 implies an addition of viscosity that in turn smooths the gradients,
whereas, a path length larger than 2 corresponds to removal of viscosity which sharpens the
gradients (Karlin et al., 2015). The turbulent viscosity correction νT is then found as

νT = ν − ν0 = θ

(
τ +

∆t

2

)
Θ

2−Θ
. (6.78)

From Grad’s 13 moment approximation f = fMB (1 + Ωijk), where

Ωijk =
σijξiξj

2pθ
− qkξk

pθ

(
1− ξ2

5θ

)
,

1The airfoil simulations were performed by Chakradhar Thantanapally in SankhyaSutra Labs, Bangalore
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fMB is the Maxwell-Boltzmann distribution, ξi is the peculiar velocity, p is the pressure, θ is
the temperature, σij is the traceless part of symmetric stress tensor and qk is the heat flux. We
evaluate the two integrals,

∫ ∞

−∞
fx2dξ =

∫ ∞

−∞
fMB (1− Ωijk) ΩabcΩdefdξ =

1

2pθ
σklσlk −

1

p2θ
σjkσkmσmj , (6.79)

∫ ∞

−∞
fx3dξ =

∫ ∞

−∞
fMB (1− 2Ωijk) ΩabcΩdefΩxyzdξ = − 1

p2θ
σklσlmσmk +O(σ4), (6.80)

where assuming minute change in temperature, O(q2) terms have been ignored. Substituting
σ = ρτθS, S being the strain rate tensor and recognizing that S scales as ∇u, which is negligible
for well resolved lattices we find the viscosity correction as

νT = −τθ
(
τ +

∆t

2

)
SijSjkSki

SmnSnm + τSabSbcSca
≈ −τθ ∆t

2

SijSjkSki
SmnSnm

, (6.81)

as for hydrodynamic applications ∆t � τ . Notice that for very fine grid resolutions (∆t → 0)
the viscosity correction vanishes. The above expression for turbulent viscosity resembles the one
previously seen in Malaspinas et al. (2008). It is also similar to Smagorinsky’s model where the
turbulent viscosity νT is

νT = (c∆x)2
√
SijSji, (6.82)

in that, both scale like the strain rate tensor and also distinct from it because of emergence of
the third invariant of the symmetrized strain rate tensor. (Smagorinsky et al., 1965; Deardorff,
1970)

6.7 Conclusion

To conclude, this new exact solution is a step forward in the theoretical development of ELBM.
The methodology to construct the exact solutions αLower and αHigher can be extended to derive
other expressions for the path length. However, we find that αHigher is sufficient for hydrody-
namic applications. The more dissipative solution αLower could also be employed to model very
viscous flows in the vicinity of walls. In Appendix C, the discrete time H theorem is proved for
the quasi-equilibrium model, which extends the second law to discrete dynamics for non-unitary
Prandtl number flows.

Furthermore, this essentially entropic LBM provides an important first step in providing
statistical mechanics route to sub-grid scale modeling. For example, using discrete entropic
space-time dynamics for Boltzmann BGK equation, we have shown that the correction to vis-
cosity νT is

νT = −τθ ∆t

2

SijSjkSki
SmnSnm

, (6.83)

where Sij is the strain rate tensor (Malaspinas et al., 2008; Chikatamarla et al., 2006). This
emergence of the third invariant of symmetrized strain rate tensor is distinct from Smagorinsky’s
model for turbulent viscosity. Though physically appealing (Meneveau, 2011), further detailed
numerical and theoretical analysis of current framework are needed to establish usefulness of
this approach for theoretical sub-grid modeling. Finally, we highlight the fact that entropic
formulation of continuous (in velocity space) BGK model provides a new discrete dynamical
system analogue of Boltzmann dynamics. Thus, a Boltzmann like framework extends the second
law to discrete dynamical systems too.



Chapter 7

Lattice Boltzmann model for
compressible thermohydrodynamics

The initial lattice Boltzmann models were developed for simulating isothermal incompressible
hydrodynamics. However, their domain of applicability was extended to thermal flows soon
afterwards (Alexander et al., 1993; Shan, 1997). In general, the thermal LBMs fall into three
categories:

1. The passive-scalar approach (Bartoloni et al., 1993; Shan, 1997) relies on the fact that
the temperature behaves like a passive scalar provided viscous heat dissipation and com-
pression work done by the pressure are negligible. Here, an extra distribution function is
employed to solve the passive-scalar equation for temperature. These models were only
capable of simulating compressible flows in the incompressible limit, and gave rise to un-
physical phenomena for turbulent flows (Guo et al., 2002).

2. The most popular methodology for simulating thermal flows in the LBM are the double
population models where one models hydrodynamic on one set of population and solves the
energy dynamics on the other (He et al., 1998a). However, these models have been largely
restricted to incompressible flows. As extension for compressible hydrodynamics requires
multispeed models where one of the established model has 41 velocities (Chikatamarla &
Karlin, 2009), a double distribution function approach would require at least 56 velocities
(15 for energy dynamics). Furthermore, these models contain gradient operator term (that
are non-trivial to evaluate numerically) in the evolution equation for the temperature and
imposing the boundary conditions are non-trivial, and thus the simplicity of the isothermal
LBM had been compromised (Peng et al., 2003).

3. The multispeed approach is a generalization of the isothermal LBM (Alexander et al.,
1993), where one adds additional velocities to the basic LBM to acquire higher order
isotropy and obtain the correct temperature dynamics. This requires a higher order model
with equilibrium distribution which includes higher-order velocity terms. Even though this
is a theoretically feasible approach, previous multispeed models suffered severe numerical
instability and the working range for temperature variation was narrow (McNamara et al.,
1997).

In the recent years, multispeed models have witnessed a revival even for isothermal hydro-
dynamics. The motivation behind these models is their better accuracy in the velocity space
that is relevant for microflows and enhanced numerical stability in turbulent flows due to better
Galilean invariance (Chikatamarla et al., 2006; Chikatamarla & Karlin, 2009). Most of these
higher order models starts from the fact that the LBM is a low Mach number discretization
(using Guasss-Hermite quadrature) of the Boltzmann equation with BGK approximation for
the collision (Abe, 1997; He & Luo, 1997a,b; Shan & He, 1998b; Ansumali et al., 2003; Yudisti-
awan et al., 2010). A number of multispeed Cartesian lattices have been constructed using the
quadrature approach by Shan (2010) which ensure an accurate evaluation of moments of the
distribution (Shan et al., 2006).

It is intriguing that conventional multispeed thermal models are unstable while multispeed
isothermal models developed in recent years have shown better stability for turbulent flows
(Chikatamarla et al., 2010). The recent multispeed entropic models are also stable for both

79
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thermal and turbulent flows (Frapolli et al., 2014, 2015). In these models, an expansion of local
equilibrium distribution around the rest state is performed. For the thermal multispeed models,
an additional expansion around reference temperature is also performed. These models explic-
itly impose sixth and/or eighth order isotropy of the zero velocity and reference temperature
equilibrium (Yudistiawan et al., 2010; Chikatamarla & Karlin, 2009). The enhanced stability
of these entropic thermal models suggests that the instability is related to the way the discrete
equilibrium is constructed. Starting from the formal entropic equilibrium, it was shown by An-
sumali & Karlin (2005) that one should first construct equilibrium at zero velocity but non-zero
variation in temperature followed by expansion in Mach number around this state. One would
expect such an expansion to be more stable than a direct two variable expansion in Mach and
temperature deviation. Finally, it is conjectured that the working temperature range does not
change substantially for entropic models unless eighth order isotropy is imposed and the narrow
temperature range is related to the way the discrete velocity models are constructed. In this
chapter, we validate the stability of a higher order multispeed model with sixty-seven discrete
velocities for various canonical cases of compressible thermohydrodynamics.

This chapter is organized as follows: In Section 7.1 we will derive a higher-order RD3Q67
model which satisfies the eighth order isotropy conditions. In Section 7.2 we propose imple-
mentation for kinetic diffuse boundary condition for higher order crystallographic models. We
then employ the RD3Q67 model to simulate compressible and thermal flows and demonstrate
its accuracy and stability. We consider a number of setups, beginning with simple transient
hydrodynamics in Section 7.3 and steady state heat conduction in Section 7.4. In Section 7.5
we simulate a few test cases like Sod shock tube, thermoacoustic convection and the classical
Rayleigh-Bénard convection.

7.1 The RD3Q67 Model

In Chapter 4, it was shown that in order to get the correct thermohydrodynamic limit, the
moments of equilibrium distribution must match the moments of the Maxwell-Boltzmann dis-
tribution. The conditions on the moments of the equilibrium are translated to constraints on
the weights, discrete velocities, and the reference temperature θ0 of the lattice. To summarize,
the constraints are

〈w, {1, cαcβ}〉 = {1, θ0δαβ},
〈w, {cαcβcγcκ, cαcβcγcκcζcη}〉 = {θ2

0∆αβγκ, θ
3
0∆αβγκζη},〈

w, {c4cαcβcγcκ, c
10}
〉

= {63θ4
0∆αβγκ, 10395θ5

0},
(7.1)

which using Eq.(3.4) are written in the explicit form as a system of ten equations

〈w, 1〉 = 1,
〈
w, c2

〉
= 3θ0,

〈
w, c4

〉
= 15θ2

0,
〈
w, c2c2

x

〉
= 5θ2

0,〈
w, c6

〉
= 105θ3

0,
〈
w, c2c2

xc
2
y

〉
= 7θ3

0,
〈
w, c4c2

x

〉
= 35θ3

0,〈
w, c8

〉
= 945θ4

0,
〈
w, c4c4

x

〉
= 189θ4

0,
〈
w, c10

〉
= 10395θ5

0.

(7.2)

As the total number of constraints is ten, we will require eight energy shells that when combined
with w0 and θ0 will make a total of ten unknowns. The eight energy shells chosen are 3 SC, 2
FCC and 3 BCC. The set of Eqs.(7.1) has many solutions and we accept the one that satisfies the
condition that all wi are real and positive. The discrete velocities and the weights corresponding
to each shell are listed the Table 7.1, and the relevant energy shells are depicted in Figure 7.1.
The eighth order moments of the weights that are not imposed in the model with their respective
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(a) SC1,SC2,SC3 (b) BCC 1
2
,BCC1,BCC 3

2

(c) FCC2,FCC3

Figure 7.1: The energy shells in RD3Q67 model.

Shells Discrete Velocities (ci) Weight(wi)

0 (0, 0, 0) 0.062612244873699

SC1 (±1, 0, 0) , (0,±1, 0) , (0, 0,±1) 0.07078157740182597

SC2 (±2, 0, 0) , (0,±2, 0) , (0, 0,±2) 0.018477181295835005

SC3 (±3, 0, 0) , (0,±3, 0) , (0, 0,±3) 0.001159725348044425

FCC2 (±2,±2, 0) , (0,±2,±2) , (±2,±2, 0) 0.003016018666364516

FCC3 (±3,±3, 0) , (0,±3,±3) , (±3,±3, 0) 0.000023115090889762186

BCC1
2 (±0.5,±0.5,±0.5) 0.005042859365786889

BCC1 (±1,±1,±1) 0.03854231746999835

BCC3
2 (±1.5,±1.5,±1.5) 0.0012157288848419236

Table 7.1: Energy shells and their corresponding velocities with weights for RD3Q67 model,
θ0 = 0.7487399237215752.
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percentage error are

〈
w, c8x

〉
= 104.260789709991 θ4

0, %error = 0.70%,
〈
w, c6xc

2
y

〉
= 13.5316387022748 θ4

0, %error = 9.79%,
〈
w, c4xc

4
y

〉
= 13.5316387022748 θ4

0, %error = 9.79%,
〈
w, c4xc

2
yc

2
z

〉
= 1.77468903818019 θ4

0, %error = 40.84%.

The series approximation of the equilibrium distribution for the set of discrete velocities is

f eq
i = f̃ eq

i

(
1 +

uαciα
θ
− u2

2θ
+

1

2

(uαciα
θ

)2
+

1

6

(uαciα
θ

)3
− u2uαciα

2θ2
(1−A)

)
, (7.3)

where A = 0.085582531 η3 θ2
0/θ

2, η = θ/θ0−1 and f̃ eq
i accurate upto O(η4) is given by Eq.(3.27).

The equilibrium moments for this model are

〈f eq
i , ciαciβ〉 = ρθδαβ + ρuαuβ

(
1− 9

2
A
)

+
3

2
A ρu2 δαβ, (7.4)

〈
f eq
i , c

2
i ciα

〉
= 5ρθuα + ρu2uα

(
1− 3

2
A− B

)
, (7.5)

where B = 0.018853638 η4 θ3
0/θ

3. From the relation σeq
αβ = 〈f eq

i , ciαciβ〉 − ρuαuβ − pδαβ one
obtains

σeq
αβ =

3

2
Aρ(u2δαβ − 3uαuβ), (7.6)

and from the relation qeq
α =

〈
f eq
i , c

2ciα/2
〉
− uα(E + p)− uβσeq

αβ we have

qeq
α = ρu2uα

(
−3

2
A+

1

2
B
)
, (7.7)

and
Req(u = 0) =

∑
f̃ eq
i c

4
i = 15ρθ2 + 6.051158073ρθ2

0η
4. (7.8)

From Eq.(7.6) and A we see that the error in σeq
αβ is of O(u2η3), Similarly, from Eq.(7.7) and

B the error in qeq
α is of O(u3η3), while the error in Req(u = 0) from Eq.(7.8) is of O(η4).

The viscosity for this model is µ = τp and the thermal conductivity is κ = (5/2)µ. Further,
as pointed out earlier in Eq.(3.18) the main source of error in the Fourier’s law is the term
containing (Req − RMB), which for the current model is 6.051158073ρη4θ2

0. The error could be
reduced by taking into account this deviation via correction of thermal conductivity. This is
shown in Section 7.4.1. The form of corrected thermal conductivity is

κ =
5

2
µ

(
1 + 1.613642153η3 θ0

θ

)
. (7.9)

It is evident that as θ → θ0 ⇒ η → 0, and hence the correction in thermal conductivity vanishes.

7.2 Kinetic boundary condition

In this section, we will present the kinetic diffuse boundary condition (Gatignol, 1977; Ansumali
& Karlin, 2002b; Sbragaglia & Sugiyama, 2010; Meng & Zhang, 2014) and its implementation
for the proposed model. This boundary condition assumes that upon encountering the wall the
populations completely forget their history. It also assumes that the time spent by the population
inside the wall is negligible as compared to any characteristic time. Here, for illustration we will
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Figure 7.2: Populations at each layer that see the top wall and need to be repopulated post
streaming are listed in Table 7.2.

Layer Incoming populations f Ii,Lk Total number

L1 (0,−1, 0), (±1,−1,±1) 23
(0,−2, 0), (±2,−2, 0), (0,−2,±2)
(0,−3, 0), (±3,−3, 0), (0,−3,±3)

(±1.5,−1.5,±1.5), (±0.5,−0.5,±0.5)

L2 (0,−1, 0), (±1,−1,±1) 19
(0,−2, 0), (±2,−2, 0), (0,−2,±2)
(0,−3, 0), (±3,−3, 0), (0,−3,±3)

(±1.5,−1.5,±1.5)

L3 (0,−2, 0), (±2,−2, 0), (0,−2,±2) 14
(0,−3, 0), (±3,−3, 0), (0,−3,±3)

(±1.5,−1.5,±1.5)

L4 (0,−2, 0), (±2,−2, 0), (0,−2,±2) 10
(0,−3, 0), (±3,−3, 0), (0,−3,±3)

L5 (0,−3, 0), (±3,−3, 0), (0,−3,±3) 5

L6 (0,−3, 0), (±3,−3, 0), (0,−3,±3) 5

Table 7.2: Incoming populations at each layer near the top wall.

consider the top wall with the normal in y-direction. The boundary condition for other walls
is formulated in the same manner. For higher-order and crystallographic models, such as the
one proposed in the previous sections, populations from multiple layers constitute the outgoing
set of populations and need to be properly identified. Note that the incoming and outgoing
populations are reflection of each other about the wall.

For the RD3Q67 model, at each wall we encounter six layers Lk, k = 1...6 (see Figure 7.2)
that have populations missing post streaming and need to be refilled. These layers Lk are at a
distance of 0.25∆x+ 0.5(k − 1)∆x. The total number of incoming/outgoing populations at the
layers L1 to L6 are 23, 19, 14, 10, 5, 5 respectively. The incoming populations are listed in Table
7.2. The outgoing populations fO

i,Lk
, k = 1...6 are diffused into the wall and are reflected back

in form of a new distribution f I
i,Lk

, k = 1...6. The magnitude of incoming populations f I
i,Lk

is
updated via the relation
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f Ii,Lh(x, t) =

∑
k=1,3,5

∑
fO
i,Lk

(x, t)|ciy|∑
k=1,3,5

∑
f eq
i,Lk

(ρw,uw, θw)|ciy|
f eq
i,Lh

(ρw,uw, θw), h = 1, 3, 5,

f Ii,Lh(x, t) =

∑
k=2,4,6

∑
fO
i,Lk

(x, t)|ciy|∑
k=2,4,6

∑
f eq
i,Lk

(ρw,uw, θw)|ciy|
f eq
i,Lh

(ρw,uw, θw), h = 2, 4, 6,

(7.10)

where i are the populations at each Lk corresponding to Table 7.2, ρw = 1 and the uw, θw
are wall velocity and temperature respectively. The above prescription conserves the mass
flux at the boundary. The minor fluctuations introduced in mass due to difference

∑
(fO
i,Lk
−

f I
i,Lk

) are eliminated by manipulating the stationary population f0 at each node. However,
the implementation of the complex boundary conditions (any thing other than bounce-back) is
a non-trivial open question. Extensions of the bounce-back boundary condition for imposing
temperature and velocity are the diffuse bounce-back boundary condition (Krithivasan et al.,
2014) or the boundary condition proposed by Frapolli et al. (2016a). We leave the extension of
kinetic diffuse boundary condition as subject of subsequent studies with the following suggestion
as possible remedy

f Ii,Lh(x, t) =
∑

j

fO
j,Lh

(x, t)|cj · n|∑
f eq
j,Lh

(ρw,uw, θw)|cj · n|
f eq
i,Lh

(ρw,uw, θw), h = 1..6. (7.11)

In the above equation, each outgoing population contributes individually to each incoming pop-
ulation.

7.3 Hydrodynamics: Start-up of simple shear flow

In this section, we consider the start-up flow of fluid situated between two parallel plates due
to sudden movement of the plates. These tests are used to assess the accuracy of transient
dynamics. We consider two cases:

• Case (A): at t = 0 the plate at y = 0 begins to move with a constant velocity Uwall in
x-direction. The other plate at y = H is kept stationary. The analytical expression for
velocity profile is (Leal, 2007)

ū(ȳ, t̄) = (1− ȳ)−
∞∑

n=1

2

nπ
exp(−n2π2t̄) sinnπȳ, (7.12)

where the non-dimensionalized variables ū = u/Uwall, ȳ = y/H and t̄ = tν/H2 with ν
as the kinematic viscosity. The solution for velocity profile at sufficiently long time is
ū(y, t =∞) = 1− ȳ.

• Case (B): at t = 0 the plate at y = 0 begins to move with a constant velocity −Uwall

and other plate at y = H begins to move with a constant velocity Uwall. The analytical
expression for velocity profile is (Appendix B.1)

ū(ȳ, t̄) = ȳ +
∞∑

n=1

1 + cosnπ

nπ
exp(−n2π2t̄) sinnπȳ.

These setups were simulated on a grid of size 8 × 128 × 8 points with wall imposed in y-
directions and periodic boundary condition in the other two directions. The velocity of the
moving wall was taken to be Uwall = 0.02. The kinematic viscosity was chosen such that the
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Figure 7.3: Non-dimensionalized mean planar velocity profiles obtained from RD3Q67 at various
diffusion times compared against the analytical solution.

Reynolds number Re = UwallH/ν = 512. The mean planar velocity at various times is compared
against the analytical solution given by Eq.(7.12) in Figure 7.3 and is found to be in good
agreement.

7.4 Heat conduction: Steady state

In this section, we consider the steady state for the heat transfer in one and two dimensions.
The first two subsections simulate a fluid at rest with only one wall heated, while the third
subsection studies the effect of the viscous heat dissipation due to a moving heated wall.

7.4.1 One-dimensional heat conduction

We consider the steady state for the heat transfer in fluid confined to a one-dimensional domain
of height H. The top wall at y = H is subjected to a constant elevated temperature θtop

and the bottom wall at y = 0 is maintained at θ0. The steady state temperature profile is
θ = θ0 + (θtop − θ0)y/H. The simulations were performed on a grid of size 8 × 32 × 8 and
Knudsen number Kn = 10−3. The relaxation time τ is related to Kn via Kn = τcs/H, where
the sound speed cs =

√
(5/3)θ. The temperature profiles for various values of the temperature

jump are given in Figure 7.4. It is seen that the model is accurate and stable for temperatures
elevations as high as 50% of θ0. Further, from the Figure 7.5(a) plots the L2 norm for various
grid sizes and reveals second order convergence.

As pointed in Eq.(7.9), the corrected thermal conductivity is expected to reduce the error.
Figure 7.5(b) contrasts the L2-norm obtained using the thermal conductivity correction to that
obtained without using the correction. It is evident that for lower values of θtop the L2-norm
remains almost the same while for higher values it decreases upon using the thermal conductivity
correction.

7.4.2 Two-dimensional cavity heated at the top

We consider another simple heat transfer problem in a two-dimensional box of length L and
width W subjected to an elevated temperatures at the top wall as represented in Figure 7.6.
The simulations were performed on a grid of size 256× 128× 8 with ∆θ = 0.10 θ0 at Kn = 10−3.
The rapid heating at the top wall will initiate thermoacoustic convection in the early stages of
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Figure 7.6: Sketch representing the geometry of the two-dimensional box and the imposed wall
temperatures.
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Figure 7.7: Steady-state conduction in a two-dimensional plate. The solid lines are the analytical
solution of the conduction equation while the symbols are from simulations.

the simulation, which will be discussed in later sections. We study the system at steady state
where the only mode of heat transfer is pure conduction.

The analytical expression for the normalized temperature θ̄(x, y, t = ∞) is found as the
steady state solution of conduction equation (see Appendix B.2 for details)

θ̄(x, y, t =∞) =
2

π

∞∑

k=1

1− cos(kπ)

k
sin(kπx)

sinh(kπy)

sinh(kπW/L)
. (7.13)

The mean planar temperature profiles at x = 0.1, 0.25, 0.5 and y = 0.25, 0.5, 0.75 are represented
in Figures 7.7a,7.7b respectively and are found to match well with the analytical solution.

7.4.3 Viscous heat dissipation

In this section, we consider the steady-state of flow induced by wall at y = H moving with
a constant horizontal velocity Uwall and maintained at a constant elevated temperature θhot.
The lower wall at y = 0 is kept stationary at a constant temperature θcold(< θhot). This setup
is well suited to validate the effect of viscous heat dissipation. Each layer of fluid drags the
layer adjacent to it due to friction which results in the mechanical energy being converted to
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Figure 7.8: Mean planar temperature profiles obtained from RD3Q67 at steady state compared
against the analytical solution.

thermal heating, and therefore, the heat produced affects the temperature profile in the bulk.
The analytical solution for the temperature profile is (Bird et al., 2015)

θ − θcold

θhot − θcold
=

y

H
+

Ec

2

y

H

(
1− y

H

)
, (7.14)

where the Ec = U2
wall/(cp∆θ) is the Eckert number that represents the ratio of viscous dissipation

to heat conduction with cp as the specific heat at constant pressure and ∆θ = θhot− θcold is the
temperature difference between the two walls.

Simulations were performed for Ec = 0.5, 2.0, 5.0 on a grid size of 24× 128× 24 with Uwall =
0.02 and ∆θ calculated according to respective Eckert numbers. The walls were maintained at
temperatures θ0 + 0.5∆θ and θ0 − 0.5∆θ with periodic boundary condition in the other two
directions. The normalized mean planar temperature profile at steady state is compared against
the analytical solution given by Eq.(7.14) in Figure 7.8 and is found to be in agreement. This
suggests that the thermal transport phenomenon is modeled correctly.

7.5 Compressible thermohydrodynamics

A variety of problems of practical interest have velocity and temperature dynamics coupled to-
gether. This coupling makes it nontrivial for any fluid solver to represent the physics accurately.
The aim of this section is to benchmark the proposed model for thermal and compressible flows.
The setups chosen are the Sod shock tube – a widely used test for the accuracy of compress-
ible solvers, the thermoacoustic convection – which has the presence of various time and length
scales, and the Rayleigh-Bénard convection- a standard test case for thermal flows (Frapolli
et al., 2014).

7.5.1 Sod shock tube

We study the time evolution of a one-dimensional front in Sod’s shock tube. This is considered
to be a standard test case to check the accuracy and stability of compressible flow solvers. The
setup consists of an initially quiescent fluid in the two regions L and R. The two regions located
in x = −0.5 to 0.0 and x = 0.0 to 0.5 respectively are separated by an interface at x = 0 across
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Figure 7.9: The figure shows the variation of density (ρ), velocity(u), and pressure (P ) along
the tube for the Sod’s shock test. The figure contrasts RD3Q67 simulation results from run A
(left) and B (right) with NSF equations at t∗ = 0.2.

which the density and pressure have a jump. The initial condition is given by



ρL
uL
pL


 =




1
0
1


 ,



ρR
uR
pR


 =




0.125
0

0.1


 . (7.15)

The presence of a sharp discontinuity in the initial condition at the center of the domain generates
a moving compressive shock front in the low density region and rarefaction front in the high
density region. These two fronts leave behind a central contact region of uniform pressure and
velocity (Laney, 1998).

As a test case we consider the reference viscosity µ = 10−5. The simulations were performed
on a coarse grid A of size 500 × 8 × 8, and a refined grid B of size 2000 × 8 × 8. The periodic
boundary conditions were implemented in y, z−normal directions and standard bounce back in
x-normal direction. The time scale is chosen based on the length of the domain and speed of
sound in the right section of the domain. The simulations were run till the nondimensional time
t∗ = 0.2, which is much earlier than the time required for either of the fronts to hit the wall.
The nondimensional time is defined as t∗ = tcsR/Lref where csR is the speed of sound in the
right section of the domain.

Figure 7.9 contrasts the density, pressure and velocity obtained from the present model with
those from the direct integration of Navier-Stokes-Fourier equations. Simulations on the coarse
grid show oscillations in the region of discontinuity. The contact region shows a minute jump in
the pressure and there exists a small discrepancy in velocity at the tail of the expansion front.
It is evident that the speed of the shock is accurately captured by the model.
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Figure 7.10: Temperature, density and pressure profiles for thermoacoustic convection at various
times. Here t̄ = tν/H2. The symbols are obtained from simulation while the lines are from the
solution to the NSF equations.

7.5.2 Thermoacoustic convection

Thermoacoustic convection refers to the convective currents set up in a compressible fluid due
to rapid heating of one of the walls (Larkin, 1967; Parang & Salah-Eddine, 1984; Huang & Bau,
1997). It manifests in the form of a pressure wave initiated at the heated wall that is reflected
back and forth in the domain until it gets dissipated by viscosity. The thermally induced motion
is known to enhance the heat transfer relative to pure conduction by addition of a convective
mode (Larkin, 1967). As the steady state is attained the convective mode gradually dissipates
and conduction becomes the dominant mode of heat transfer (Spradley & Churchill, 1975). The
numerical modeling of thermoacoustic phenomenon is considered a challenging problem due to
the presence of multiple time and length scales.

The simulation is performed in a box of height H with walls at the top and the bottom and
periodic in the other two directions. The grid size is 8× 128× 8 with θhot = 1.01θ0, θcold = θ0,
and utop = ubottom = 0. The viscosity is calculated from the Knudsen number Kn = 10−4.
To benchmark the results, the compressible Navier-Stokes-Fourier (NSF) were solved using the
scheme of Larkin (1967) subjected to the boundary conditions

u(y = 0, t) = u(y = H, t) = 0,

θ(y = H, t) = θhot,

θ(y = 0, t) = θcold,

(7.16)
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and initial condition ρ(y, t = 0) = ρ0, u(y, t = 0) = 0 and θ(y, t = 0) = θcold. Figure 7.10
compares the temperature, density, and pressure profile obtained from the RD3Q67 simulations
with solution to NSF equations and they are found to be in agreement. This suggests that the
current model is well suited for studying the various compressible flows.

7.5.3 Rayleigh-Bénard convection

Rayleigh-Bénard convection is considered to be an important benchmark for the thermal models
(Shan, 1997). The setup consists of a horizontal layer of viscous fluid confined between two
thermally well conducting parallel plates kept at a distance L. An adverse temperature gradient
is maintained by keeping the bottom plate at an excess temperature θbottom, while the top plate
is at a lower temperature θtop. The flow is driven by the temperature induced unstable density
gradients in the presence of external force field (usually gravitational field). The fluid in contact
with the heated bottom plate becomes less dense due to which it experiences a buoyant force
and ascends. On coming in contact with the cold top plate, it becomes more dense and starts
to descend. This continuous motion of the fluid leads to formation of adjacent convective cells
between the plates, within which the fluid moves in closed paths (Landau & Lifshitz, 2013).

The dynamics is characterized by the non-dimensional Rayleigh number (Ra), that represents
the strength of buoyancy driven inertial force to the viscous force and is defined as

Ra =
gyβ̂∆θL3

ναT
, (7.17)

where gy is the gravity in the negative y-direction, β̂ = −1/ρ(∂ρ/∂T )P is the thermal expansion
coefficient, ∆θ is the temperature difference between the two walls, ν is the kinematic viscosity
and αT is the thermal diffusivity. Below a certain critical Rayleigh number (Rac ≈ 1708) where
the heat transfer is purely conductive in nature, a steady solution exists that has zero velocity
in the entire domain and has a linear temperature profile

θ = θbottom −∆θ
y

L
. (7.18)

However, when Ra is increased above the critical value, this solution becomes unstable to small
disturbances and the convection currents are set up. As Ra is increased further, the flow becomes
turbulent in nature.

To model Rayleigh-Bénard convection in the LBM framework, one needs to incorporate the
buoyancy and gravitational effects. This is done in the collision step via a forcing term Fi. The
update of populations is

fi(x + ci∆t, t+ ∆t) = fi(x, t) + αβ[f eq
i (ρ, û, θ̂)− fi(x, t)] +

(
1− αβ

2

)
∆tFi, (7.19)

where

û =
1

ρ
〈f, c〉+

∆t

2
g, θ̂ =

〈
f, c2

〉
− ρû2

3ρ
, (7.20)

and g = {0,−gy(ρ − ρ∞)/ρ, 0}, ρ∞ is the reference density, and α = 2 is the single relaxation
time standard LBM. For high Ra, α needs to be computed from the entropic formulation of
LBM in order to suppress the disruptive numerical instabilities (Atif et al., 2017). The force
term is

Fi =
f eq
i (ρ, û, θ̂)(ci − û) · g

θ̂
. (7.21)

It should be pointed that the alternate ways to evaluate the hydrodynamic moments involve
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(a) Ra = 1.0× 104 (b) Ra = 3.0× 104

(c) Ra = 1.5× 105 (d) Ra = 1.0× 107

Figure 7.11: Temperature field for the Rayleigh-Bénard convection. The lines represent iso-
temperature contours of temperature normalized from 0 to 1 in steps of 0.05.

averaging the moments before and after collision (Mazloomi et al., 2015) or shifting them (Sbra-
gaglia et al., 2009) are subject of further research.

2-dimensional simulations

The 2-dimensional simulations were carried on a grid size of 256× 128× 8 with θbottom = 1.05θ0

and θtop = 0.95θ0. Temperature boundary conditions at the top and the bottom walls were
imposed and periodic boundary conditions were applied in the other two directions. Any initial
perturbation provided to the system triggers the instability. Following He et al. (1998a), the
setup was initialized with a sinusoidal perturbation of the temperature field and left to evolve
till two diffusion times. The Nusselt number (Nu) and the temperature contours at the steady
state are independent of the initial perturbation provided to the system. Figure 7.11 depicts the
iso-temperature contours for 2D Rayleigh-Bénard convection at various Ra. For quantitative
analysis, we calculate the Nusselt number which is the measure of heat transfer in the system
and represents the ratio of net heat transfer to the conductive heat transfer

Nu = 1 +

〈
uy θ̃
〉

αT∆θ/H
, (7.22)

where αT is the thermal diffusivity, and 〈·〉 represents average over the entire domain of flow.
Here, θ̃ = θ̂− (θbottom−∆θy/L) is the deviation from the temperature distribution in the static
state (Schumacher, 2009; Clever & Busse, 1974). In Figure 7.12, the Nusselt number obtained
from current simulations are shown to have a good agreement with Clever & Busse (1974) and
the empirical power law Nu = 1.56 (Ra/Racr)

0.296 (Shan, 1997). It should be reminded that this
correlation itself is valid till Ra ∼ O(105), above which the Nusselt-Rayleigh scaling changes
(Toppaladoddi et al., 2017).
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Figure 7.12: Nu vs Ra, triangles are from current simulation, squares are from Ref.(Clever &
Busse, 1974), line is empirical power law Nu = 1.56(Ra/Rac)

0.296.

3-dimensional simulations

The 3-dimensional simulations were performed at Ra = 2.5×106 on grids of size 320×160×320
and 480 × 240 × 480, and at Ra = 1.0 × 108 on Grid C of size 640 × 640 × 640. Temperature
boundary conditions at the top and the bottom walls were imposed with θbottom = 1.05θ0 and
θtop = 0.95θ0, and periodic boundary conditions were applied in the other two directions. For
Ra = 2.5× 106, Figure 7.13 compares the nondimensional mean planar profiles of temperature
and velocities with Kunnen et al. (2009) and Lavezzo et al. (2011). It is seen that the mean
planar temperature shows a good match for both the grid resolutions, whereas the temperature
fluctuations show a good match only for the grid with higher resolution. The velocity fluctuations
match only qualitatively, but it is evident that as the grid resolution is increased the profiles
show lesser deviation from Kunnen et al. (2009). Similarly, it can be seen from Figure 7.14 that
for Ra = 1.0 × 108 the mean planar temperature shows a good match with that of Vashishtha
et al. (2018), but the temperature fluctuations suggest that higher grid resolution is required for
LBM to quantitatively match the fluctuations. The Nusselt number obtained for Ra = 2.5×106

is 11.45, while that of Ra = 1.0× 108 is 29.38. Figure 7.15 visualizes the temperature profile for
the two cases.

In Figure 7.16, a grid convergence study performed at Ra = 104 shows second order con-
vergence of the scheme. To test the accuracy of the model at large temperature deviations, a
Rayleigh-Bénard simulation performed at Ra = 104 on a grid size of 256 × 128 × 8 with top
wall temperature 0.5θ0 and bottom wall temperature 1.5θ0 gave a Nusselt number 2.6797. The
Nusselt number for wall temperatures (1 ± 0.05)θ0 was 2.6426, while the empirical power law
suggests the Nusselt number to be 2.6321. Hence, the 50% temperature run gave an error of
1.8% whereas the 5% temperature deviation gave an error of only 0.4%. This suggests that the
accuracy of the model is not compromised at large temperature deviations.

7.6 Outlook

In this chapter we have demonstrated that the RD3Q67 model exhibits accurate thermohy-
drodynamic behaviour with a high degree of accuracy and is therefore capable of simulating
compressible and thermal hydrodynamics. Several test cases were simulated it was found to
be nonlinearly stable for a wide range of parameters. The test cases confirm that the model
correctly captures viscous heating, shocks, heat conduction and compressible hydrodynamics.
The test case of thermoacoustic convection shows excellent agreement with the NSF equations
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Figure 7.13: Mean planar profiles for Ra = 2.5× 106 averaged over ∼10 eddy turnover times.
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(a) Temperature at the vertical center planes for Ra =
2.5× 106

(b) Iso-temperature contours near the walls for
Ra = 108

Figure 7.15: Visualizations of the temperature profile.
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Figure 7.16: Grid convergence study for Ra = 104 reveals second-order convergence. The
converged NuR is 2.6311 with 360 points in the vertical direction. The line is the fitted curve.
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at the diffusive time scales. Some preliminary studies have shown that it also reproduces cor-
rect behaviour at acoustic time scales, which is a subject for further research. As the model
is nonlinearly stable it opens up the possibility to study turbulent thermal flows such as the
turbulent Rayleigh-Bénard convection. Recently, a Nusselt-Rayleigh scaling of Nu−1 ∝ Ra0.483

was demonstrated (Toppaladoddi et al., 2017) by considering rough walls. The ultimate test
for the stability and accuracy of the model is its capability to capture this scaling which occurs
when Ra→ 1013 (Zhu et al., 2018).

In Section 7.4, we considered only the steady state of the two-dimensional cavity heated at
the top. From Section 7.5.2, it is known that rapid heating/cooling of one of the walls of a
cavity containing a compressible fluid will initiate convective currents that lead to enhancement
of the net heat transfer over conduction. An avenue for further research is to quantify this
enhancement for various Prandtl numbers, aspect ratios of the cavity, and time varying wall
temperatures. The limitation on the Prandtl number is due to the BGK collision model and can
be addressed by using quasi-equilibrium models (Ansumali et al., 2007a; Thantanapally et al.,
2013b).



Chapter 8

Lattice Boltzmann model for
nonideal fluids

The standard lattice Boltzmann method leads to an ideal gas equation of state. Several vari-
ations to simulate nonideal fluids have been proposed (Gunstensen et al., 1991; Shan & Chen,
1993; Swift et al., 1995; He et al., 1998b; Ansumali, 2011). Most of the mentioned approaches
model the microscopic physics and the interfacial dynamics at the mesoscopic level at an af-
fordable computational expense. The LBM is considered advantageous for multiphase flows as
it maintains a stable interface (typically a few grid points wide) and does not require explicit
interface tracking. Shan & Chen (1993) considered the microscopic interactions between the
nearest neighbours to model the collision operator for which the surface tension could be main-
tained automatically (Chen & Doolen, 1998). The interaction potential controlled the form of
the equation of state of the fluid and gave rise to phase separation, however, the surface tension
could not be freely adjusted (He & Doolen, 2002). Among the various multiphase models, of
particular interest is the free-energy model (Swift et al., 1995) as it allows for surface tension
to be independent of the viscosity in addition to being thermodynamically consistent. Recently,
the entropic lattice Boltzmann model was extended for multiphase flows to control the spurious
currents at the liquid-vapour interface thereby opening the possibility to simulate large density
ratios (Mazloomi et al., 2015).

At the macroscopic scale, the multiphase LBMs can be considered diffuse interface models.
These models smoothen the discontinuity at the interface over a thin but numerically resolvable
layer (Jacqmin, 1999; Qiao et al., 2018). The fluid properties transition over this layer smoothly
as opposed to singular interfaces which have a sharp discontinuity. The surface tension is
transformed into a volumetric forcing (Lee & Fischer, 2006) and is spread over the diffused
interfacial region. An undesirable feature of the diffuse interface in LBM manifests in the form
of the spurious currents that develop in the vicinity of the interface (Lee & Fischer, 2006; He &
Doolen, 2002). In the case of a two-dimensional droplet immersed in a quiescent medium, the
spurious currents form a pattern of eight eddies around the droplet (see Figure 8.1). Several
attempts have been made to identify their origin and to alleviate these currents (Lee & Fischer,
2006; Shan, 2006). The departure of the LBM simulations from the theoretical phase densities
and the magnitude of the spurious current depends upon the liquid-vapour density ratio, the
equation of state, and the surface tension. Often they have been attributed to the violation of
Gibbs-Duhem equality due to the discrete derivative operator (Wagner, 2006). It was mentioned
by Wagner (2006) that an open problem in this field is the identification of a discrete derivative
operator that preserves the Gibbs-Duhem equality at the interface.

In this chapter, we propose an alternate way of treating the discrete derivative such that
the violation of Gibbs-Duhem relation at the interface is reduced. We show that this way of
discretization leads to accurate liquid vapour phase densities and reduces the spurious currents.
This chapter is organized as follows: we first review a few well known equations of state for
nonideal fluids in Section 8.1. In Section 8.2, we discuss the van der Waals theory of a single
component two-phase fluid followed by the equations of hydrodynamics. In Section 8.3, we dis-
cuss the methodology to incorporate nonideal effects in the kinetic theory and lattice Boltzmann
model. It is followed by a brief review of evaluating second and fourth-order derivatives on a
lattice and the justification of the choice of stencil employed to evaluate derivatives in Section
8.4. In Section 8.5, we propose a thermodynamically consistent discrete derivative operator that
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Figure 8.1: Spurious currents around a two-dimensional droplet organize in a pattern of eight
eddies.

reduces the spurious currents and demonstrate its accuracy by comparing with theoretical phase
densities. In Section 8.6, to prove the stability of the model we compare the phase densities ob-
tained from a deeply-quenched liquid-vapour system with their corresponding theoretical values.
In Section 8.7 we validate that the Laplace’s law is obeyed and use it to calculate the surface
tension and also study the deformation of a droplet in a simple shear flow. Finally, in Section 8.8,
we extend the entropic formulation of LBM to two-phase flows and simulate collisions between
two droplets.

8.1 Equations of state

An equation of state (EoS) correlating the phase densities, the temperature, and the pressure
of a fluid in equilibrium state via the functional form

f(p, ρ, θ) = 0. (8.1)

The simplest EoS is the ideal gas equation of state for which p = ρkBT/m. A number of other
EoS for real fluids are found in the literature, such as the van der Waals, Carnahan-Starling,
Peng-Robinson, Redlich-Kwong, Redlich-Kwong-Suave, Patel-Teja, etc [for details see Smith
et al. (1996)]. In this section, we list a few EoS widely employed in the lattice Boltzmann
models along with their critical parameters.

1. Van der Waals (vdW) EoS: This is the simplest two parameter cubic equation of state
and is given by

p =
ρθ

1− ρb − aρ
2, (8.2)

where a, b are positive parameters related to the molecular attraction and exclusion volume
respectively. The first term captures the effect of non-vanishing sized particles while the
second term represents the intermolecular attraction. The parameters are

a =
27bθc

8
, b =

1

3ρc
, (8.3)
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are found by solving Eq.(8.2) and the system of equations

∂p

∂ρ

∣∣∣∣
θ=θc

= 0,
∂2p

∂ρ2

∣∣∣∣
θ=θc

= 0, (8.4)

at the critical point. The critical compressibility factor Zc = pc/(ρcθc) predicted by this
EoS is 0.375 whereas for a real fluid it is typically less than 0.3.

2. Carnahan-Starling (CS) EoS: This is an improvement of the vdW EoS where the fluid
particles are approximated as hard spheres with intermolecular attractive forces. It is
given by (Carnahan & Starling, 1969)

p = ρθ
1 + η + η2 − η3

(1− η)3
− aρ2, (8.5)

where η = ρb/4, and

a =
bθc

0.377332
, b =

0.521772

ρc
.

The critical compressibility factor Zc = pc/(ρcθc) predicted by this EoS is 0.359.

3. Peng-Robinson (PR) type EoS: This EoS has been widely recognized for predicting
the accurate liquid density (Qiao et al., 2018). The original Peng-Robinson EoS had van
der Waals like repulsive part which we replace with Carnahan-Starling like repulsive part.
It also had an acentric factor in attractive part that is ignored here. Therefore,

p = ρθ
1 + η + η2 − η3

(1− η)3
− aρ2

1 + 2ρb− ρ2b2
, (8.6)

where a, b are van der Waal like critical parameters and η = ρb/4. The critical parameters
are

a = 1.851427622
θc
ρc
, b =

0.353748714

ρc
. (8.7)

The critical compressibility factor Zc = pc/(ρcθc) predicted by this EoS is 0.276.

8.2 Thermodynamics of a single component two-phase fluid

In this section, we consider an isothermal system of a nonideal fluid. Van der Waals modified
the free-energy density by incorporating terms that are large only when the density gradients
are significant (van der Waals, 1979; Rowlinson & Widom, 1982). Therefore, the underlying
free-energy functional Ψ(x) is of the form

Ψ(x) =

∫
[F(ρ(x)) + I(∇ρ(x),∇2ρ(x), ...)]dx, (8.8)

where ρ is the density, F is the bulk free-energy, and I is the interfacial free-energy. The
interfacial free-energy I(∇ρ(x),∇2ρ(x), ...) is approximated to the lowest order as (Rowlinson
& Widom, 1982; Wagner, 2006)

I(∇ρ(x),∇2ρ(x), ...) =
κ(ρ)

2
|∇ρ(x)|2. (8.9)
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For simplicity, κ(ρ), related to the surface tension, is taken constant. With this definition, the
excess free-energy is the surface tension σ

σ =

∫ ∞

−∞

κ

2
|∇ρ(x)|2dx. (8.10)

The above model of free-energy is the simplest model that gives two stable phases provided F
has two minima and was first formulated by van der Waals (van der Waals, 1979).

The macroscopic mass and momentum conservation equations are given by (Lee & Lin, 2005;
Suryanarayanan et al., 2013)

∂tρ+ ∂α(ρuα) = 0, (8.11)

∂t(ρuα) + ∂β

[
pδαβ + ρuαuβ + σαβ + σ

(κ)
αβ

]
= 0, (8.12)

where σαβ is the viscous stress tensor

σαβ = −ρν (∂βuα + ∂αuβ) +
2

3
ρν∂γuγδαβ, (8.13)

where ν is the kinematic viscosity, and σ
(κ)
αβ takes the form

σ
(κ)
αβ = κ

[(
−1

2
∂γρ ∂γρ− ρ∂2ρ

)
δαβ + {∂αρ ∂βρ}

]
. (8.14)

and accounts for the interfacial stresses. The term within the curly braces in the above expression
is known as the van der Waals stress (Rowlinson & Widom, 1982).

The nonlocal pressure tensor (also known as Korteweg’s stress tensor) derived from the
above description is consistent with the definition of the free-energy functional and is written as
(Korteweg, 1901; Evans, 1979; Swift et al., 1996)

Pαβ =
[
p− κ

2
∂γρ ∂γρ− κρ ∂2ρ

]
δαβ + κ∂αρ ∂βρ, (8.15)

where δαβ is the Kronecker delta and

p = ρµ0 −F , (8.16)

is the equation of state describing the nonideal fluid, with µ0 = ∂F/∂ρ as the bulk chemical
potential. The net chemical potential µ can also be derived by Euler-Lagrange variational
minimization of Eq.(8.8) (Rowlinson & Widom, 1982)

µ =
δΨ

δρ
= µ0 − κ∂2ρ, (8.17)

and is related to the pressure tensor via the Gibbs-Duhem equality

∂βPαβ = ρ∂αµ. (8.18)

For a continuous system, the Gibbs-Duhem equality is trivially satisfied. However, it gets
violated for a discrete system due to the definition of the discrete derivative which leads to
thermodynamic inconsistency.

8.3 Incorporating nonideal effects in lattice Boltzmann

As stated earlier, the standard lattice Boltzmann leads to an ideal gas equation of state, i.e., the
particles are devoid of any intermolecular attraction and occupy negligible volume. To incorpo-
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rate the deviation from the ideal gas the intermolecular attraction, the repulsion between the
particles due to their non-vanishing size, and the interface dynamics needs to be modeled. Swift
et al. (1996) first suggested the implementation of Korteweg’s stress in the lattice Boltzmann to
model the nonideal contribution and the interface dynamics in a thermodynamically consistent
manner. In LBM framework, the attractive and repulsive parts are added as a force term. In
order to do so, one begins with the Boltzmann BGK equation for an isothermal nonideal gas
(He et al., 1998b)

∂fi
∂t

+ ciα
∂fi
∂xα

=
f eq
i (ρ,u, θ0)− fi

τ
+ Fi, (8.19)

where the forcing term Fi is given by

Fi =
gnid
α (ciα − uα)

θ0
f eq
i (ρ,u, θ0). (8.20)

The nonideal contributions are captured in gnid
α ,

gnid
α = −1

ρ
∂βP

nid
αβ , P nid

αβ = Pαβ − ρθ0δαβ. (8.21)

The above form of gnid
α , known as the pressure formulation, is sufficient to incorporate the

nonideal interactions and the Korteweg’s stress tensor in the lattice Boltzmann model (Lee
& Lin, 2005; Lee & Fischer, 2006; Mazloomi et al., 2015). Alternatively, by exploiting the
Gibbs-Duhem relation one can write the chemical potential formulation as (Lee & Fischer, 2006;
Suryanarayanan et al., 2013)

gnid
α = −∂αµnid, (8.22)

where µnid = µnid
0 − κ∂2ρ.

The Eq.(8.19) is integrated along the characteristics using the trapezoid rule to obtain the
discrete (in space and time) evolution of populations as

f̃i(x+ ci∆t, t+ ∆t) = f̃i(x, t) + αβ[fi
eq(ρ,u, θ0)− f̃i(x, t)] +

(
1− αβ

2

)
∆tFi, (8.23)

where f̃i is a transformation of the populations fi defined as

f̃i = fi −
∆t

2τ
[fi

eq(ρ,u, θ0)− fi]−
∆t

2
Fi, (8.24)

β = ∆t/(2τ + ∆t) and α = 2 for the standard LBM. For the entropic LBM the parameter
α needs to be computed such that the dynamics is in compliance with the H theorem. The
macroscopic variables are calculated as

ρ =
∑

i

f̃i, uα =
1

ρ

∑

i

f̃iciα +
∆t

2
gnid
α . (8.25)

It is worth noticing that the Eq.(8.23) does not conserve momentum. The change in momen-
tum at each site during a time step is obtained by multiplying Eq.(8.23) with ciα and summing
over all directions as

ρuα(t+ ∆t)− ρuα(t) = ∆tρgnid
α . (8.26)

In fact, this change in momentum is due to the nonideal nature of the fluid and leads to two
stable phases separated by an interface. However, the global momentum of the system should
be exactly conserved provided no net momentum exchange occurs at the boundary (Shan &
Chen, 1993). This is an important feature of the discrete dynamics, satisfied by the pressure
formulation [Eq.(8.21)] but not by the chemical potential formulation [Eq.(8.22)]. It is known
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that the chemical potential formulation is more accurate than the pressure formulation and leads
to smaller spurious currents (Lee & Fischer, 2006; Suryanarayanan et al., 2013). However, the
thermodynamic consistency requires that the global momentum should stay preserved. This
will be elaborated in the forthcoming sections, where we propose an alternate formulation that
is similar to the chemical potential formulation but preserves global momentum.

8.4 Evaluating derivatives on a lattice

In this section, we briefly review the way to evaluate the discrete gradients and Laplacian in an
isotropic manner. The discrete derivative is defined as

∇αψ =
1

θ̂0∆t

∑

i

ŵiciαψ(x+ ci∆t). (8.27)

Here, ŵi are the weights of the lattice with discrete velocities ciα and ψ is the function whose
derivate needs to be calculated. The above definition can be understood as follows: we consider
the Taylor expansion of Qα =

∑
i ŵiciαψ(x + ci∆t)/(θ̂0∆t) (Thampi et al., 2013a; Ramadugu

et al., 2013),

Qα ≡
1

θ̂0∆t

∑

i

ŵiciαψ(x+ ci∆t) =
1

θ̂0∆t

[
ψ(x)

∑

i

ŵiciα + ∆t
∂ψ

∂xβ

∑

i

ŵiciαciβ

+
∆t2

2

∂2ψ

∂xβ∂xγ

∑

i

ŵiciαciβciγ +
∆t3

6

∂3ψ

∂xβ∂xγ∂xκ

∑

i

ŵiciαciβciγciκ

+
∆t4

24

∂4ψ

∂xβ∂xγ∂xκ∂xη

∑

i

ŵiciαciβciγciκciη

+
∆t5

120

∂5ψ

∂xβ∂xγ∂xκ∂xη∂xν

∑

i

ŵiciαciβciγciκciηciν +O(∆t6)

]
.

(8.28)

The odd-order moments of weight are zero due to symmetry of the underlying lattice and further
simplification of Qα leads to

Qα ≡
1

θ̂0∆t

∑

i

ŵiciαψ(x+ ci∆t) =
∂ψ

∂xα
+

∆t2θ̂0

2

∂

∂xα
∂2ψ +

3∆t4θ̂2
0

8

∂

∂xα
∂4ψ +O(∆t6),

(8.29)

assuming the lattice is sufficiently isotropic. The emergence of the derivatives of ψ is seen on
the right hand side of the above equation.

The second-order gradient is hence

∇(2)
α ψ =

1

θ̂0∆t

∑

i

ŵiciαψ(x+ ci∆t). (8.30)

The fourth-order gradient is written as

∇(4)
α ψ =

1

θ̂0∆t

∑

i

ŵiciαψ(x+ ci∆t)−
θ̂0

2
(∆t)2∇α(∇2ψ). (8.31)
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The Laplacian can also be evaluated as

∇2ψ =
2

∆t2θ̂0

[∑

i

ŵiψ(x+ ci∆t)− ψ(x)

]
. (8.32)

Here, it remains to justify the choice of stencil for calculating derivatives. From Eq.(8.29) it is
evident that the discretization errors are proportional to θ̂0 =

∑
ŵic

2
ix of the chosen stencil. For

the crystallographic grid, the 15 velocity stencil comprising of the discrete velocities

ci = {(±1, 0, 0), (0,±1, 0), (0, 0,±1), (±0.5,±0.5,±0.5)}, (8.33)

is found to have the least θ̂0 = 1/6 with ŵ0 = 14/36, ŵSC = 1/36 and ŵBCC = 2/36, therefore is
the ideal choice for computing derivatives.

8.5 Discrete derivative operator

As discussed earlier, for a continuous system the Gibbs-Duhem relation is trivially satisfied.
However, for a discrete system it gets violated, i.e.,

∂̃αPαβ 6= ρ∂̃βµ, (8.34)

where ∂̃α represents the discrete derivative operator (Wagner, 2006). This is the reason why
the two formulations, namely the pressure and the chemical potential show different accuracy,
stability, and spurious currents.

The chemical potential formulation is more accurate and has smaller spurious currents as
compared to the pressure formulation (Lee & Fischer, 2006). However, one of its drawback is
that the global momentum is not conserved. This is further explained in what follows: In the

pressure formulation in one dimension, the second-order discrete derivative ∂̃
(2)
α at the nth grid

point is written as

∂̃(2)
α Pαβ =

1

2∆xα
[Pαβ(n+ 1)− Pαβ(n− 1)] . (8.35)

With appropriate boundary conditions (say periodic), one can sum over the entire domain to
show that

N∑

n=1

[Pαβ(n+ 1)− Pαβ(n− 1)] = 0. (8.36)

The local change of momentum from Eq.(8.26) is ∆tρgnid
α . The global momentum conservation

upon using Eqs.(8.21),(8.35),(8.36) follows as

N∑

n=1

∆tρgnid
α = −

N∑

n=1

∆t∂̃(2)
α P nid

αβ = − ∆t

2∆xα

N∑

n=1

[
P nid
αβ (n+ 1)− P nid

αβ (n− 1)
]

= 0. (8.37)

However, for the chemical potential formulation the net global momentum is

N∑

n=1

∆tρgnid
α = − ∆t

2∆xα

N∑

n=1

ρ(n)
[
µnid(n+ 1)− µnid(n− 1)

]
, (8.38)

which is non-zero.
Fundamentally, this lack of momentum conservation is emerging due to the violation of the

Leibniz rule. For this analysis we ignore the interfacial terms which will be added separately.
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The bulk nonideal pressure using the thermodynamic relations is written as

pnid = µnid
0 ρ−Fnid. (8.39)

Taking the discrete derivative of the above equation one obtains

∂̃αp
nid =

{
µnid

0 ∂̃αρ
}

+ ρ∂̃αµ
nid − ∂̃αFnid, (8.40)

where the left hand side is the pressure formulation which conserves the global momentum. The
term in curly braces on the right hand side is the chemical potential formulation which does
not conserve the global momentum because the other two terms (although they cancel in the
continuous case) are ignored in the discrete chemical potential formulation. It is interesting to
note that if one defines the discrete derivative as

∂̃α(AB) = A∂̃αB +B∂̃αA, (8.41)

A,B being arbitrary functions, the Leibniz rule as well as the global momentum conservation
holds.

Therefore, the global momentum conserving new formulation using Eq.(8.40) is written as

ρgnid
α = −

[
ρ∂̃(2)

α µnid
0 + µnid

0 ∂̃(2)
α ρ− ∂̃(2)

α Fnid + κ∂̃
(2)
β Iαβ

]
, (8.42)

where the interfacial stresses Iαβ are given by

Iαβ =

[
−1

2
∂γρ ∂γρ− ρ ∂2ρ

]
δαβ + ∂αρ ∂βρ. (8.43)

Ideally, one would prefer to work with the fourth-order discrete derivatives [Eq.(8.31)] but they
lead to violation of the global momentum conservation. One can, however, use the fourth order
discrete derivative for ∂̃αFnid, for which we use a convex combination of the second and fourth
order discrete derivative. This brings us to the final form of gnid

α

ρgnid
α = −

[
ρ∂̃(2)

α µnid
0 + µnid

0 ∂̃(2)
α ρ− η∂̃(2)

α Fnid − (1− η)∂̃(4)
α Fnid + κ∂̃

(2)
β Iαβ

]
. (8.44)

The above route to calculating the discrete derivative is thermodynamically consistent, preserves
the global momentum, and has a parameter η ∈ [0, 1] that will be selected such that errors are
minimized.

For a one-dimensional system, a backward error analysis of Eq.(8.44) reveals that

−ρgnid
x = ρ∂xµ

nid
0 + µnid

0 ∂xρ− ∂xFnid + κ∂(2)
x Ixx + ∆E,

= ρ∂xµ
nid + ∆E,

= ∂xP
nid + ∆E,

(8.45)

where ∆E is the error term. The net surface tension in the discrete system is a combination of
the interfacial terms and the numerical errors due to the discretization. For this analysis we set
κ = 0, therefore, only the numerical errors contribute to the surface tension. Hence, we obtain
the error term as

∆E =
∆t2θ0

2

[
ρ∂3

αµ0 + µ0∂
3
αρ− η∂3

αF
]

+
3∆t4θ2

0

8

[
ρ∂5

αµ0 + µ0∂
5
αρ− ∂5

αF
]
. (8.46)
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Figure 8.2: Nondimensional error for the proposed discretization scheme for various η. It is seen
that η = 1/2 is the best choice as it shows the least fluctuation.
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Figure 8.3: Liquid vapour densities of the van der Waals fluid for various formulations at different
reduced temperature θ∗ = θ/θc. The same plot is represented on the linear scale (left) and the
logarithmic scale (right) to emphasize the error in density of the gas phase.

Assuming a density profile (Lee & Fischer, 2006)

ρ(x) =
ρLiq + ρGas

2
+
ρLiq − ρGas

2
tanh(x), (8.47)

the nondimensional error is calculated and shown in Figure 8.2 for the van der Waals EoS at
θ/θc = 0.85 for η = 0, 1/2, 1. It is evident that both η = 1 and η = 0 show larger fluctuations
while η = 1/2 shows the least fluctuation. The parameter η can be further fine tuned to improve
the accuracy, but for this work we restrict ourselves to η = 1/2.

To demonstrate the accuracy of the present model, we simulate a one dimensional interface
of a van der Waals fluid on a grid of size 192× 4× 4 using the RD3Q41 model (Namburi, 2017).
Figure 8.3 shows the densities from the pressure formulation, chemical potential formulation,
and the current scheme for three η values. It is evident that the current scheme predicts the
values of phase density that matches with the theoretical Maxwell’s construction values. From
Figure 8.4 and Table 8.1, it can be seen the maximum magnitude of the spurious current is also
reduced upon using the current formulation. Here, it should be pointed out that although η = 0
gives smaller spurious currents than η = 1/2, it succumbs to numerical instabilities at a higher
θ/θc = 0.87.
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Figure 8.4: Spurious currents of the van der Waals fluid for various formulations at different
reduced temperature θ∗ = θ/θc.

gnid
α Peng-Robinson [Eq.(8.6)] Carnahan-Starling [Eq.(8.5)]

Pressure 6.376× 10−3 4.317× 10−3

Chemical potential 5.139× 10−3 4.281× 10−3

Current, η = 1.0 4.765× 10−3 5.565× 10−3

Current, η = 0.5 2.790× 10−3 3.706× 10−3

Table 8.1: Discretization scheme and the maximum magnitude of spurious current for various
EoS on a grid of size 80× 80× 4 for various EoS at θ/θc = 0.9 using the model RD3Q41.

8.6 Quenching of a liquid-gas system

Quenching of a liquid-gas system exhibits phase separation and has been widely accepted as
a test for thermodynamic consistency and stability of a multiphase lattice Boltzmann model
(Wagner & Pooley, 2007). For θ < θc the system shows phase separations where in the initial
stages tiny bubbles of the liquid phase surrounded by the ambient gaseous phase are formed.
As time progresses, the bubbles merge to form a stable structure, typically, a lamellar film, a
cylindrical micelle, or a spherical droplet [see Figure 8.6]. Figure 8.5 shows the liquid and gas
density obtained from RD3Q41 model compared against the theoretical values obtained from
Maxwell’s equal area construction, whereas Tables 8.2 and 8.3 list the values. It is seen that the
model accurately recovers liquid-gas bulk densities hence is confirmed to be thermodynamically
consistent.

8.7 Laplace law and Taylor’s deformation test

In this section, we validate the proposed model for Laplace’s law and Taylor’s droplet deforma-
tion using the Peng-Robinsion type EoS [Eq.(8.6)]. According to Laplace’s law, the inside of a
stationary droplet has an excess pressure proportional to the surface tension

Pi − Po =
σ

R
, (8.48)

where Pi, Po are the pressures inside and outside the droplet respectively, σ is the surface tension,
and R is the radius of the droplet. Figure 8.7 shows setup for the Laplace’s test and the value
of surface tension σ obtained for two different values of κ.

The dynamics of a fluid drop suspended in another fluid was studied by Taylor (1934). He
found that the deformation of the droplet for a small Reynolds number (Re) was only a function
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Figure 8.5: Equilibrium liquid and gas density ρ/ρc = ρ∗ obtained from RD3Q41 model for
Carnahan Starling EoS (left) and Peng-Robinson type EoS compared against their respective
Maxwell equal area construction at various θ/θc = θ∗.

θ/θc ρliq (Theory) ρliq (Simulation) ρgas (Theory) ρgas (Simulation)

0.97 1.46 1.45 0.609 0.606

0.95 1.61 1.61 0.510 0.506

0.92 1.79 1.79 0.403 0.392

0.90 1.90 1.91 0.348 0.367

0.88 2.00 2.01 0.301 0.319

0.85 2.14 2.17 0.242 0.252

0.83 2.22 2.28 0.209 0.226

0.80 2.35 2.44 0.166 0.195

0.78 2.43 2.53 0.142 0.175

Table 8.2: Liquid and gas densities obtained from the proposed model compared with their
corresponding Maxwell construction values for Carnahan-Starling EoS.

θ/θc ρliq (Theory) ρliq (Simulation) ρgas (Theory) ρgas (Simulation)

0.98 0.596020 0.614147 1.52725 1.54784

0.96 0.470612 0.491011 1.80422 1.83313

0.94 0.388844 0.399548 2.04273 2.06202

0.92 0.323261 0.336633 2.26023 2.28755

0.90 0.270872 0.284398 2.46917 2.49955

0.88 0.227217 0.241209 2.67433 2.70833

0.86 0.192037 0.204709 2.88048 2.91812

0.84 0.161138 0.171122 3.08956 3.12229

0.82 0.135434 0.144691 3.30622 3.35708

0.80 0.112238 0.118079 3.53471 3.58065

0.78 0.092664 0.098171 3.78422 3.88181

Table 8.3: Liquid and gas densities obtained from the proposed model compared with their
corresponding Maxwell construction values for Peng-Robinson type EoS.
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Figure 8.6: Deeply quenched liquid gas system forms a stable structure, typically a lamellar
film, a cylindrical micelle, or a spherical droplet. Here, smaller droplets merge to form larger
droplets.
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Figure 8.7: Laplace law: setup (left) and relation between pressure, surface tension, and radius
(right).
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Figure 8.8: Taylors deformation test: A representation of the deformed droplet (left), and plot
of D versus Ca (right).

of the nondimensional capillary number (Ca) and the viscosity ratio (λ) of the two fluids. In
this setup, we consider a liquid droplet of density ρLiq and radius R0 in equilibrium with its
corresponding gas phase of density ρGas confined between two parallel plates. The plates are a
distance H apart and moving with a velocity uw in opposite directions, due to which the droplet
experiences a shear rate γ̇ = 2uw/H. Assuming slow flow of a viscous fluid, Taylor (1934)
derived the deformation D of the droplet from the spherical shape as

D =
Rmax −Rmin

Rmax +Rmin
=

19λ+ 19

16λ+ 16
Ca, (8.49)

where the capillary number Ca is

Ca = R0ρGas νGas
γ̇

σ
. (8.50)

It can be seen that Re of the fluid motion is small

Re = ρGas γ̇
R2

0

νGas
=

R0

ν2
Gas

σCa. (8.51)

The viscosity ratio λ is fixed to 1, and the surface tension is σ = 0.0186 corresponding to
κ = 0.001. The droplet radius R0 = 24∆x, while the height is H = 96∆x and νGas = 0.147 with
∆x = 1. It can be seen that for small Ca ranging from 0.01 to 0.2, the Re is small as it ranges
from ∼ 0.2 to ∼ 4. Figure 8.8 shows a schematic of the deformed droplet and the comparison of
the deformation parameter D compared with Taylor’s estimate. The simulations show a good
match with the theory which suggests that the dynamics is modeled accurately.

8.8 Droplet Collision

We employ the proposed multiphase model and the Carnahan-Starling EoS (Carnahan & Star-
ling, 1969) to simulate binary droplet collision as it offers interesting outcomes depending upon
the control parameters (Mazloomi et al., 2015). Three particular outcomes observed upon col-
lision at various Reynolds number, Weber number and the impact parameter are coalescence,
stretching separation, and reflexive separation (Inamuro et al., 2004).

The setup consists of a rectangular box of 160∆x × 200∆x × 200∆x with two liquid phase
droplets of diameter D0 = 45∆x and interface width 5∆x located in the ambient of gas phase
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(a) t = 0.0 (b) t = 0.044 (c) t = 0.053 (d) t = 0.071

(e) t = 0.102 (f) t = 0.133 (g) t = 0.191 (h) t = 0.289

(i) t = 0.444 (j) t = 0.600 (k) t = 0.702 (l) t = 1.027

Figure 8.9: Head-on collision between two droplets at ρliq/ρgas ≈ 13, Re = 297.03 and We=
19.47.

with a distance of 30∆x between their centres. At t = 0, they are imparted a relative velocity
U0 = 0.2∆x/∆t towards each other. The liquid phase having a density of ρliq/ρc = 2.412 is in
equilibrium with the gas phase of density ρgas/ρc = 0.185 at θ/θc = 0.8. The chosen value of
κ = 0.001a∆x2 corresponds to a surface tension σ = 0.223. The kinematic viscosity of the liquid
phase νliq = 0.0303, hence, Reynolds number (Re) and the Weber number (We) are

Re =
U0D0

νliq
= 297.03, We =

ρliqU
2
0D0

σ
= 19.47. (8.52)

For calculating α required for the entropic formulation of LBM, we rewrite Eq.(8.23) as

f̃i(x+ ci∆t, t+ ∆t) = f̂i(x, t)+αβ[f̂i
eq

(ρ,u, θ0)− f̂i(x, t)], (8.53)

where the transformed populations f̂i = f̃i+ ∆tFi and f̂ eq
i = f eq

i + (∆t/2)Fi. These transforma-

tions allow us to define xi = f̂ eq
i /f̂i−1 and compute the path length α as detailed in Chapter 6.

Figure 8.9 shows head-on collision between two droplets in thermodynamic equilibrium with the
ambient. Similarly, Figure 8.10 shows collision between two droplets with their centers offset by
a distance of 0.9D0.

8.9 Conclusions

In this chapter, we have proposed a thermodynamically consistent discretization of the forcing
term for multiphase LBM which predicts accurate phase densities. The issue of spurious currents
in multiphase LBMs was discussed and it was demonstrated that accurate discretization schemes
reduce the magnitude of spurious currents. We have validated the proposed model for a number
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(a) t = 0.0 (b) t = 0.027 (c) t = 0.036 (d) t = 0.049

(e) t = 0.076 (f) t = 0.089 (g) t = 0.120 (h) t = 0.164

(i) t = 0.222 (j) t = 0.276 (k) t = 0.311 (l) t = 0.556

Figure 8.10: Offset collision between two droplets at ρliq/ρgas ≈ 13, Re = 297.03 and We= 19.47.
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of canonical test cases. The maximum density ratio at which the model remains stable for a
closed form Peng-Robinson type EoS is ∼ 50. However, as shown in Mazloomi et al. (2015),
series form of equation of state could be employed to attain even higher density ratios.



Chapter 9

Outlook

TheH theorem, an essential feature of the continuum kinetic theory, is explored in the context of
the discrete space-time kinetic theory. The entropic lattice Boltzmann model (ELBM), developed
about two decades ago, restores the H theorem to the discrete dynamics, thus rendering the
simulations unconditionally numerically stable even on grossly under-resolved grids (Karlin et al.,
1999; Boghosian et al., 2001). Despite significant progress, an analytical expression for the
solution to the nonlinear equation in ELBM was lacking. In this thesis, we have developed a
methodology to obtain such an analytical expression. There are three distinct advantages of this
methodology: firstly, it provides an alternate kinetic route to modeling the subgrid phenomenon,
secondly, it circumvents the need to iteratively solve the nonlinear equation thus reducing the
computational cost associated with the ELBM, and lastly, it allows one to control dissipation
depending on the scenario.

Further, a thermodynamically consistent higher-order RD3Q67 model has been validated
for canonical test cases related to compressible thermohydrodynamics. By simulations of the
Rayleigh-Bénard convection it has been shown that this model remains numerically stable for
large Rayleigh numbers. This makes it a viable candidate to study scenarios involving natural
convection and atmospheric flows. A discretization scheme has been proposed and validated
for multiphase lattice Boltzmann model. This thermodynamically consistent scheme predicts
accurate phase densities and results in reduced spurious currents. Furthermore, the discrete
time H theorem is also proved for the generalized quasi-equilibrium collision model (Ansumali
et al., 2007a), to address flows with non-unitary Prandtl number.

As far as the modeling of subgrid phenomena is concerned, the widely employed large eddy
simulation (LES) based approaches assume that the small scales are in equilibrium (Premnath
et al., 2009). They instantaneously dissipate all the energy transferred from the large scale, a
mechanism modeled by eddy-viscosity, and are understood as a filtering on fluctuating turbu-
lence (Malaspinas & Sagaut, 2012). The essentially entropic LBM discussed in this thesis is a
kinetic route that circumvents the empirical modeling of subgrid phenomena, while adaptively
filtering out fluctuations at a reduced computational expense. The entropic LBM seems to be
an attractive alternate to the conventional way of simulating fluid flows. This is due to the fact
that typically for engineering applications the direct numerical simulation turns out to be com-
putationally unaffordable. On the other hand, the Reynolds averaged Navier-Stokes equations
provide information only at the mean flow level, while the filter width in the large eddy simula-
tion is problem dependent (Pope, 2000). It should be noted that the energy conserving RD3Q67
model studied in this thesis solves the compressible thermohydrodynamics. Hence, any simu-
lation in addition to velocity fields will also give the correct density fluctuations, temperature
field, and the acoustics.

In order to get an estimate of the computational requirement, we consider the simulation of
flow past a bluff body of dimension ∼ 1m × 1m × 1m at a Reynolds number Re ∼ 105 − 106

and Mach number Ma ∼ 0.05 − 0.1, the required grid size to be simulated should be ∼ 10m ×
10m×10m. The Kolmogorov scale η for such a flow is η ∼ Lref/Re3/4 ≈ 0.1mm. The essentially
entropic LBM which acts like an implicit adaptive subgrid model can be demanded to work at
a resolution of 2mm (similar to the resolution required by LES). For such a system, the total

113
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number of grid points N is

N ∼ 10m× 10m× 10m

2mm× 2mm× 2mm
= 1011.

For estimation, let us consider the standard D3Q27 lattice, hence assuming single precision
we have a RAM requirement of 27 × 4 Bytes × 1011 ≈ 10TB. It is known that bottleneck for
LBM simulations is the data movement, where 6 memory operations per point per iteration per
discrete velocity is considered a lower estimate (Shet et al., 2013). Therefore, the total amount
of data movement requirement is

6
Operations

discrete velocity − point
× 27 discrete velocity × 4Bytes× 1011points ≈ 60TB (9.1)

per iteration.
The clusters available in the market by the end of 2019 will be based on Intel Cascade

Lake that offers 24 channels per node and a frequency of 2.9GHz, and AMD EPYC Rome that
offers 16 channels per node and a frequency of 3.2GHz. Hence, a reasonable estimate of the data
movement for a 200 node cluster is

16 channels per node× 3GHz× 8Bytes× 200nodes ≈ 70TB/sec. (9.2)

From Eqs.(9.1)-(9.2), approximately 1 sec per iteration is required. The total ∼ 105 iterations
are typically required for an engineering simulation. Therefore, the total time required for a
typical simulation is

105 iterations× 1 sec/iterations = 105sec ≈ 1 day. (9.3)

A number of petascale clusters of such configuration are being commissioned worldwide, includ-
ing three exascale clusters (Cray, 2019). The rapid advancement of technology will ensure that
in the next few years we will have enough computational resources to use the RD3Q67 model
for realistic engineering simulations.

A natural derivative of the present work is to consider extending theH theorem to the various
class of collision models. For example, if the methodology can be extended to the Boltzmann
dynamics with a forcing model, an analytically tractable H theorem can be formulated for
multiphase physics too. In Appendix C, we have proved the discrete time H theorem for the
generalized quasi-equilibrium model. The H theorem for the quasi-equilibrium collision with a
forcing model also requires further research. To this effect, the shifted equilibria (Sbragaglia
et al., 2009) can be used to introduce a forcing term into the quasi-equilibrium model, or the
ellipsoidal BGK model. The ellipsoidal BGK model replaces the Maxwellian in the BGK model
with an anisotropic Gaussian (Holway Jr, 1966) and satisfies the H theorem too (Andries et al.,
2000). It has Prandtl number as a free parameter with the restriction that it should be larger
than 2/3, a range that encompasses a large number of fluids. Such models can be employed to
study body force driven flows involving nonideal fluids at various Prandtl numbers.

There are multiple ways to incorporate the nonideal interactions into the lattice Boltzmann
model (Shan & Chen, 1993; Wagner, 2006; Ansumali, 2011). These nonideal interactions lead
to phase separation of the fluid into liquid and vapour phases. However, most works perform
this phase transition in an isothermal setting. A few other works have a secondary distribution
function to track the evolution of the temperature (Zhang & Chen, 2003; Gonnella et al., 2010).
The approach with shifted equilibrium, which gives the correct macroscopic thermohydrody-
namic limit can be directly employed to simulate flows with phase transitions. This will open
up the possibility to model convection in multiphase flows.
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Clouds exert a direct influence on our day to day life. They are essential elements in metre-
ology, weather forecasting, rainwater chemistry, agriculture, air traffic control, and the general
circulation of the atmosphere, besides others (Yau & Rogers, 1996). The basic phenonmenon
behind cloud formation is as follows: the water vapour evaporated from the earth’s surface,
primarily from the oceans, gets transported over long distances due to the atmospheric motions.
It begins to ascend to higher altitudes because of encounter with a geographical barrier or the
radiative heating of the atmosphere. At higher altitudes, as the temperature decreases the air
tends to become saturated, thus leading to formation of visible clusters of tiny droplets condensed
on small aerosol particles, which may remain in the liquid form or freeze to form ice crystals
depending on the temperature. Collision and coalescence of smaller droplets lead to formation of
larger drops that precipitate in the form of rain, snow, and hail (Khain & Pinsky, 2018). Thus,
the formation, growth, and the precipitation of the atmospheric clouds involves amalgamation of
many physical processes such as compressible turbulent flow, convection, radiative heat transfer,
phase transition, nucleation and droplet interaction.

A fundamental understanding of the clouds is considered an important area of the atmo-
spheric sciences. Clouds have a direct impact on the earth’s energy budget, weather, and climate
by blocking the sun’s incoming radiation or by absorbing the thermal infrared radiation emitted
by the earth’s surface. Clouds cause rainfall, and are considered a key component in the hydro-
logical cycle. Understanding clouds can lead to an accurate prediction of weather patterns, and
can help prepare governments and farmers in advance to avoid loss of life and property. The
study of cloud physics involves phenomena at two widely different scales: at the micrometer
scale there is water vapour condensation to form liquid droplets or ice crystals, nucleation on
aerosol particles, their growth and interaction, which is termed as “cloud microphysics”, while
at the the kilometer scale there are large scale air motions, wind, pressure patterns, and ther-
modynamic interactions, which is called “cloud dynamics” (Houze Jr, 2014). The phenomena
at the two scales are coupled, for example, the latent heat released during the condensation of
water vapour drives the circulation in the atmosphere, sometimes causing instabilities that lead
to severe weather conditions (Kuo, 1965).

The lattice Boltzmann model, being a mesoscopic tool, is especially useful for systems where
the macroscopic governing equations are not available but the microscopic physics is known (He
& Doolen, 2002). The models proposed in this thesis can handle phase transition, two-phase
flows, large Reynolds number flows and natural convection. Therefore, they can be used to de-
velop a kinetic route to a physics based multiscale cloud model. The computational requirement
for a cloud dynamics simulation for an area of 100km × 100km × 100km with a resolution of
2m× 2m× 2m is similar to flow past a bluff body as discussed above.





Appendix A

Evolution of the
thermohydrodynamic moments

We begin with the Boltzmann BGK equation

∂tf + ∂β (fcβ) = Ω(f), (A.1)

where Ω(f) = (f eq − f)/τ is the collision kernel, with τ as the relaxation time. We define the
peculiar velocity ξα = cα − uα, and the integral

∫
fψ(ξ)dξ = 〈f, ψ(ξ)〉 . (A.2)

The various moments can be found as
〈
f,

{
1, ξα, ξαξβ,

1

2
ξ2, ξαξβξγ ,

1

2
ξ2ξα, ξ

2ξαξβ, ξ
4

}〉
=

{
1, 0, pδαβ + σαβ,

3

2
p,Qαβγ , qα, Rαβ, R

}
.

(A.3)
The traceless part Aαβ of any second order tensor Aαβ is defined as

Aαβ =
1

2

(
Aαβ +Aβα −

2

3
Aγγδβα

)
. (A.4)

We also define

Qαβγ = Qαβγ −
2

5
(qαδβγ + qβδαγ + qγδαβ), (A.5)

and

Rαβ = Rαβ −
1

3
Rδαβ. (A.6)

Multiplying the Eq.(A.1) with φ(ξ) one obtains

∂t (fφ(ξ))− f∂tφ(ξ) + ∂β (fcβφ(ξ))− fcβ∂βφ(ξ) = Ω(f)φ(ξ). (A.7)

Applying the chain rule and integrating over the velocity space one obtains

∂t 〈f, φ(ξ)〉 − 〈f, (∂tξα)∂ξαφ(ξ)〉+ ∂β 〈f, (ξβ + uβ)φ(ξ)〉 − 〈f, cβ(∂βξα)∂ξαφ(ξ)〉 = 〈Ω(f), φ(ξ)〉 .
(A.8)

Now substituting ∂tξα = ∂t(cα − uα) = −∂tuα and ∂βξα = ∂β(cα − uα) = −∂βuα we get

∂t 〈f, φ(ξ)〉+ (∂tuα) 〈f, ∂ξαφ(ξ)〉+ ∂β 〈f, ξβφ(ξ)〉+ ∂β [uβ 〈f, φ(ξ)〉]
+ (∂βuα) 〈f, cβ∂ξαφ(ξ)〉 = 〈Ω(f), φ(ξ)〉 . (A.9)

A.1 Evolution of density

Substituting φ(ξ) = 1 in Eq.(A.9) we obtain the evolution of density (the continuity equation)
as

∂tρ+ 0 + 0 + ∂α (ρuα) + 0 = 0. (A.10)
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A.2 Evolution of velocity

Substituting φ(ξ) = ξγ in Eq.(A.9) we obtain the evolution of velocity as

0 + ∂tuγ +
1

ρ
∂β (pδγβ + σγβ) + 0 + uβ∂βuγ = 0. (A.11)

A.3 Evolution of pressure, temperature, and the stress tensor

Substituting φ(ξ) = ξγξκ in Eq.(A.9) we obtain

∂t [pδγκ + σγκ] + 0 + ∂βQβγκ + ∂β [uβ (pδγκ + σγκ)] + (∂βuα) 〈f, cβ(ξκδαγ + ξγδακ)〉

=
1

τ

(
σeq
γκ − σγκ

)
. (A.12)

Substituting cβ = ξβ + uβ and integrating further we obtain

∂t [pδγκ + σγκ] + ∂βQβγκ + ∂β [uβ (pδγκ + σγκ)] + (pδβκ + σβκ)∂βuγ + (pδβγ + σβγ)∂βuκ

=
1

τ

(
σeq
γκ − σγκ

)
.

(A.13)

Taking the trace (i.e., multiply with δγκ) of the above equation we obtain

3∂tp+ 3uβ∂βp+ 5p∂βuβ + 2∂βqβ + 2σβκ∂βuκ = 0, (A.14)

which gives the evolution of pressure as

∂tp+ uβ∂βp+
5

3
p∂βuβ +

2

3
σβγ∂βuγ +

2

3
∂βqβ = 0. (A.15)

Substituting p = ρθ in the evolution of pressure and rearranging the terms one obtains

∂tθ + uβ∂βθ +
2

3
θ∂βuβ +

2

3ρ
σβγ∂βuγ +

2

3ρ
∂βqβ + θ [∂tρ+ ∂β(ρuβ)] = 0, (A.16)

where the term in square braces is zero because of Eq.(A.10). Therefore, we obtain the evolution
of temperature as

∂tθ + uβ∂βθ +
2

3
θ∂βuβ +

2

3ρ
σβγ∂βuγ +

2

3ρ
∂βqβ = 0. (A.17)

Multiplying Eq.(A.15) with δγκ and subtracting from Eq.(A.13) one obtains

∂t [pδγκ + σγκ] + ∂βQβγκ + ∂β [uβ (pδγκ + σγκ)] + (pδβκ + σβκ)∂βuγ + (pδβγ + σβγ)∂βuκ

−
[
∂tp+ uβ∂βp+

5

3
p∂βuβ +

2

3
σβγ∂βuγ +

2

3
∂βqβ

]
δγκ =

1

τ

(
σeq
γκ − σγκ

)
, (A.18)

which can be simplified as

∂tσγκ + ∂β [uβσγκ] + ∂βQβγκ −
2

3
δγκ∂βqβ + p∂κuγ + p∂γuκ −

2

3
pδγκ∂βuβ + σβκ∂βuγ + σβγ∂βuκ

− 2

3
δγκσβγ∂βuγ =

1

τ

(
σeq
γκ − σγκ

)
. (A.19)
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Rearranging the terms in the above equation we obtain the evolution of the stress tensor as

∂tσαβ + uγ∂γσαβ + ∂γQαβγ + σαβ∂γuγ + 2σγβ∂γuα + 2p∂βuα +
4

5
∂βqα =

1

τ

(
σeq
αβ − σαβ

)
.

(A.20)

A.4 Evolution of the heat flux

Substituting φ(ξ) = ξ2ξα/2 in Eq.(A.9) we obtain

∂tqα + (∂tuβ)

[
5

2
pδαβ + σαβ

]
+

1

2
∂βRαβ + ∂β(qαuβ) + (∂βuα)

〈
f,

1

2
ξ2(ξβ + uβ)

〉

+ (∂βuγ) 〈f, ξαξγ(ξβ + uβ)〉 =
1

τ
(qeq
α − qα) , (A.21)

which after substituting ∂tuβ from Eq.(A.11) is further simplified as

∂tqα−
(
uκ∂κuβ +

1

ρ
∂βp+

1

ρ
∂κσβκ

)[
5

2
pδαβ + σαβ

]
+ qβ∂βuα +

1

2
∂βRαβ + ∂β(qαuβ) +Qαβγ∂βuγ

+
3

2
puβ∂βuα + uβ(pδαγ + σαγ)(∂βuγ) =

1

τ
(qeq
α − qα) , (A.22)

where upon rearranging the terms we obtain the evolution for heat flux as

∂tqα +
1

2
∂β

(
Rαβ +

1

3
Rδαβ

)
+Qαβγ∂γuβ + ∂β (qαuβ) +

7

5
qβ∂βuα +

2

5
qα∂βuβ +

2

5
qβ∂αuβ

−5

2

p

ρ
∂αp−

σαβ
ρ
∂βp−

5

2

p

ρ
∂θσαθ −

σαβ
ρ
∂θσβθ =

1

τ
(qeq
α − qα) .

(A.23)

A.5 Constraints on the weights of DVM

It has been demonstrated that the moments of the discrete equilibrium f eq
i should mimic the

corresponding moments of the Maxwell Boltzmann distribution fMB in order to obtain the
correct equations of compressible thermohydrodynamics. The moments of the zero velocity
Maxwell-Boltzmann distribution f̃MB = fMB(ρ = 1,u = 0, θ) can be calculated from Gaussian
integrals

∫ ∞

0
dxx2n exp (−ax2) =

√
πa2n+1

2n+1
(2n− 1) · (2n− 3) · (2n− 5) · · · 3 · 1, (A.24)

as
∫
dcf̃MB

{
1, c2, c4, c6, c8, c10

}
=
{

1, 3θ, 15θ2, 105θ3, 945θ4, 10395θ5
}
. (A.25)

The discrete equilibrium f̃ eq
i (ρ = 1,u = 0, θ0) at zero velocity and reference temperature θ0 is

f̃ eq
i (ρ = 1,u = 0, θ0) = wi. (A.26)

Hence, the moments of weights should mimic moments of the Maxwell-Boltzmann distribution,
i.e.,

〈
w,
{

1, c2, c4, c6, c8, c10
}〉

=
{

1, 3θ0, 15θ2
0, 105θ3

0, 945θ4
0, 10395θ5

0

}
. (A.27)





Appendix B

Analytical solutions

B.1 Analytical Solution for transient Couette/conduction

We evaluate some integrals for later use,

∫ 1

0
sin2 nπy dy =

1

2
,

∫ 1

0
y sinnπy dy = −cosnπ

nπ
,

∫ 1

0
sinnπy dy =

1− cosnπ

nπ
.

The equation we require to solve is

∂φ̄

∂t̄
=
∂2φ̄

∂ȳ2
,

with boundary and initial conditions as

φ̄(y, 0) = 0.5 all ȳ,

φ̄(0, t̄) = 0, t̄ > 0,

φ̄(1, t̄) = 1, t̄ > 0.

Here¯represents non-dimensional quantities and φ is velocity or temperature. The steady state
solution is φ̄ = ȳ. The deviation of actual field from the steady state can be written as

φ̂ = φ̄− ȳ.

The governing equation, boundary condition and initial condition in terms of the deviation
become

∂φ̂

∂t̄
=
∂2φ̂

∂ȳ2
,

with
φ̂(y, 0) = 0.5− ȳ all ȳ,

φ̂(0, t̄) = 0, t̄ > 0,

φ̂(1, t̄) = 0, t̄ > 0.

Using the separation of variables, the solution that vanishes for t→∞ is

φ̂ = (c1 sin(nπȳ) + c2 cos(nπȳ)) exp(−λt̄),

where λ is the eigenvalue and c1, c2 are constants that remain to be determined. Now, c2 =
0 follows form the boundary condition at ȳ = 0. The boundary condition at ȳ = 1 yields
eigenvalues

λ = n2π2 for n = 1, 2, 3...

The general solution that satisfies the governing equation and boundary condition can then be
written as

φ̂ =

∞∑

n=1

An exp(−n2π2t̄) sinnπȳ.
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The coefficients An that satisfy the initial condition are now evaluated.

0.5− ȳ =

∞∑

n=1

An sinnπȳ.

It follows

An =

∫ 1
0 (0.5− ȳ) sinnπy dy
∫ 1

0 sin2 nπy dy
=

1 + cosnπ

nπ
.

Therefore,

φ̄ = ȳ +

∞∑

n=1

1 + cosnπ

nπ
exp(−n2π2t̄) sinnπȳ.

B.2 Analytical Solution for 2D Transient Conduction

The governing equation is
∂φ̄

∂t̄
=
∂2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
,

with boundary and initial conditions as

φ̄(x̄, ȳ, 0) = 0 all ȳ,

φ̄(0, ȳ, t̄) = 0, t̄ > 0,

φ̄(1, ȳ, t̄) = 0, t̄ > 0,

φ̄(x̄, 0, t̄) = 0, t̄ > 0,

φ̄(x̄,W/L, t̄) = 1, t̄ > 0.

We first find the steady state solution, for which we substitute φ̂(x, y) = X(x) · Y (y), hence

− 1

X

d2X

dx2
=

1

Y

d2Y

dy2
= λ2.

The general solution is found as

X = c1 cos(λx) + c2 sin(λx),

Y = c3 exp(−λy) + c4 exp(λy).

Using the boundary condition φ̄(0, y) = 0, φ̄(x, 0) = 0, one obtains c1 = 0 and (c3+c4)c2 sin(λx) =
0. Hence c3 = −c4 and

φ̄(x, y) = c2 sin(λx) · c4(exp(λy)− exp(−λy)).

From the boundary condition at (1, y) we obtain λ = nπ and therefore

φ̄(x, y) =
∞∑

n=1

Cn sin(nπx) sinh(nπy).

Now, exploiting the boundary condition φ̄(x,W/L) = 1, one obtains

φ̄(x,W/L) = 1 =

∞∑

n=1

Cn sin(nπx) sinh(nπW/L).
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Multiply with sin(mπx),

Cn =
1

sinh(nπW/L)

∫ 1
0 sin(mπx)dx
∫ 1

0 sin2(mπx)dx
=

2(1− cos(mπ))

mπ
.

The steady state solution is found as

φ̄∞ =
2

π

∞∑

k=1

1− cos(kπ)

k
sin(kπx)

sinh(kπy)

sinh(kπW/L)
.

The deviation from transients is φ̂ = φ̄− φ̄∞. In terms of deviation, the governing equation
and initial and boundary conditions become

∂φ̂

∂t̄
=
∂2φ̂

∂x̄2
+
∂2φ̂

∂ȳ2
,

with boundary and initial conditions as

φ̂(x̄, ȳ, 0) = −φ̄∞ all ȳ,

φ̂(0, ȳ, t̄) = 0, t̄ > 0,

φ̂(1, ȳ, t̄) = 0, t̄ > 0,

φ̂(x̄, 0, t̄) = 0, t̄ > 0,

φ̂(x̄,W/L, t̄) = 0, t̄ > 0.

Using φ̂ = T (t) ·X(x) · Y (y) and separation of variables, we have three equations as

∂2X

∂x2
+ λ2X = 0, X(0) = 0, X(1) = 0

∂2Y

∂y2
+ κ2Y = 0, Y (0) = 0, Y (W/L) = 0

∂T

∂t
+ (λ2 + κ2)T = 0.

Therefore, λ = mπ and κ = nπL/W

φ̂n = exp(−(m2 + n2L2/W 2)π2t) · c1 sin(mπx) · c3 sin(nπL/Wy)

Hence,

φ̂ =
∞∑

m=1

∞∑

n=1

Amn exp[−(m2 + n2L2/W 2)π2t] · sin(mπx) · sin(nπL/Wy)

Now, we need to find Amn such that initial condition is satisfied. At t = 0,

−φ̄∞ =

∞∑

m=1

∞∑

n=1

Amn sin(mπx) sin(nπL/Wy).

Multiply with sin(pπx) sin(qπL/Wy) and integrate over x = 0..1; y = 0..W/L. The surviving
terms are m = p, n = q. Hence
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∫ W/L

0

∫ 1

0
−φ̄∞ sin(mπx) sin(nπL/Wy)dx dy = Amn

∫ W/L

0

∫ 1

0
sin2(mπx) sin2(nπL/Wy)dx dy.

Using

φ̄∞ =
2

π

∞∑

k=1

1− cos(kπ)

k
sin (kπx)

sinh(kπy)

sinh(kπW/L)

one obtains

Amn = − 8

π

L

W

∞∑

k=1

1− cos(kπ)

k sinh(kπW/L)

∫ W/L

0

∫ 1

0
sin(mπx) sin(nπL/Wy) sin(kπx) sinh(kπy)dx dy,

so m = k and,

Amn = − 4

π

L

W

1− cos(mπ)

m sinh(mπW/L)

∫ W/L

0
sin(nπL/Wy) sinh(mπy)dy

or,

Amn = − 4

π

L

W

1− cos(mπ)

m sinh(mπW/L)

[
mπ sin(nπL/Wy) cosh(mπy)− nπL/W cos(nπL/Wy) sinh(mπy)

(m2 + n2L2/W 2)π2

]W/L

0

or,

Amn =
4

π2

L

W

1− cos(mπ)

m sinh(mπW/L)

nL/W cos(nπ) sinh(mπW/L)

m2 + n2L2/W 2

or,

Amn =
4

π2

L2

W 2

1− cos(mπ)

m

n cos(nπ)

m2 + n2L2/W 2
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C.1 Discrete timeH theorem for the generalized quasi-equilibrium
model

The discrete evolution of populations using the generalized quasi-equilibrium collision kernel [see
Section 4.3.1] for Prandtl number Pr < 1 is

fi(t+ ∆t) = fi(t) + αβ[f̂i − gi(t)], (C.1)

where α = 2 is the standard path length and

f̂i =

(
1− τ

τ1

)
f∗i (ρ, u, θ, q(f)

α ) +
τ

τ1
f eq
i (ρ, u, θ). (C.2)

For the case of Pr < 1, the heat flux q
(f∗)
α ≡

〈
f∗, c2cα

〉
is conserved by the quasi-equilibrium

state, i.e., q
(f∗)
α = q

(f)
α , where

q(f)
α =

〈
f, c2cα

〉
+ ∆t

2τ1

〈
f eq, c2cα

〉

1 + ∆t
2τ1

. (C.3)

It can be seen that f̂i is a convex combination of f∗i and fi. Therefore,

H[f eq] < H[f̂ ] < H[f∗] < H[f ], (C.4)

as the equilibrium state has the least entropy, and the quasi-equilibrium state (f∗) is at lower
entropy level than the pre-collisional state f . The equilibrium state f eq

i and the quasi-equilibrium
state f∗i are found as minimizer of the H functional under appropriate constraints as

f eq
i = wi exp(µ+ ζαciα + γc2i ), (C.5)

f∗i = wi exp(µ+ ζαciα + γc2i + φαc
2
i ciα). (C.6)

For the entropic formulation the path length needs to be evaluated such that H(t + ∆t) <
H(t). Hence,

∆H ≡ H[f + αβ(f̂ − f)]−H[f ] ≤ 0. (C.7)

Consider Boltzmann’s H-functional H[f ] = 〈f, log (f/w)− 1〉 . Substituting this form of H[f ]
and w from Eq.(C.5) in Eq. (C.7) we see that

∆H = 〈f, (1 + αβx) log (1 + αβx)〉 − αβ
〈
f̂ − f, log

w

f

〉

= 〈f, (1 + αβx) log (1 + αβx)〉 − αβ τ
τ1

〈
f eq − f, log

f eq

f

〉
− αβ

(
1− τ

τ1

)〈
f∗ − f, log

f eq

f

〉

(C.8)

125



126 Appendix C.

where x = f̂/f − 1. Multiplying and dividing the last term with exp(φαc
2cα) one obtains

∆H = 〈f, (1 + αβx) log (1 + αβx)〉 − αβ τ
τ1
〈f, y log(1 + y)〉

− αβ
(

1− τ

τ1

)〈
f∗ − f, log

f eq exp(φαc
2cα)

f exp(φαc2cα)

〉

= 〈f, (1 + αβx) log (1 + αβx)〉 − αβ τ
τ1
〈f, y log(1 + y)〉 − αβ

(
1− τ

τ1

)
〈f, z log(1 + z)〉

+ αβ

(
1− τ

τ1

)〈
f∗ − f, φαc2cα

〉

= 〈f, (1 + αβx) log (1 + αβx)〉 − αβ τ
τ1
〈f, y log(1 + y)〉 − αβ

(
1− τ

τ1

)
〈f, z log(1 + z)〉

+ αβ

(
1− τ

τ1

)
φα

[
q(f∗)
α −

〈
f, c2cα

〉]

(C.9)

where y = f eq/g − 1, z = f∗/g − 1. Substituting
〈
f, c2cα

〉
from Eq.(C.3) one obtains

∆H = 〈f, (1 + αβx) log (1 + αβx)〉 − αβ τ
τ1
〈f, y log(1 + y)〉 − αβ

(
1− τ

τ1

)
〈f, z log(1 + z)〉

+ αβ

(
1− τ

τ1

)
φα∆t

2τ1

[〈
f eq, c2cα

〉
− q(f)

α

]
.

(C.10)

Following the same idea as Section 6.3, the lower order solution for the path length is
evaluated as the root of the quadratic equation H1(α) = 0,

H1(α) = −α2

〈
g,
x3

2

〉

Ω−
+ α

〈
g,
x2

2

〉
− τ

τ1

〈
g,

2y2

2 + y

〉
−
(

1− τ

τ1

)〈
g,

2z2

2 + z

〉

+

(
1− τ

τ1

)
φα∆t

2τ1

[〈
f eq, c2cα

〉
− q(f)

α

]
= 0. (C.11)

The above quadratic is similar to Eq.(6.48) with the addition of one term to the constant part.
It should be noted than in the case of small departure from equilibrium fi → f eq

i , we have:

• From Eq.(C.3), q
(f)
α →

〈
f eq, c2cα

〉
, therefore, the last term in the Eq.(C.11) vanishes.

• From Eq.(C.4), f∗i → f eq
i and thus f̂i → f eq

i . Therefore, xi → 0, yi → 0, zi → 0. Hence,
Eq.(C.11) becomes like Eq.(6.48) and α→ 2 limit is recovered.

The numerical implementation of the above formulation of discrete time H theorem for the
generalized quasi-equilibrium model will be part of future studies.
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