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Abstract

As suggested by the title, the research reported in this thesis concerns two problems.
The first (and main) part of the thesis, which consists of Chapters 1 and 2, concerns the

surface-tension-driven instability of rotating liquid columns. This research is motivated by
experimental results reported by Prof. Raghuram Govardhan’s group that concerned the
interaction of a vortex ring with a bubble. The general sequence of events in the experiment
involves the initial capture of the bubble within the low-pressure vortex core, its elongation
along the circumferential direction into a near-toroidal shape, and subsequent break-up
(which also leads to the disruption of the vortex ring in many cases). The authors suggested
a possible instability governing the bubble breakup, and the thesis therefore assesses the
possibility of a linear instability of such a configuration.

In building towards the stability of the vortex-ring-bubble configuration, the thesis first
considers the somewhat classical problem, of the stability of a rotating column of liquid
surrounded by air, in Chapter 1. In the absence of rotation, the problem reduces to the
classical Rayleigh-Plateau analysis. There has been considerable prior work on this problem
in the presence of rotation. Centrifugal forces are expected to destabilize this configuration,
and the necessary and sufficient condition for viscous stability has been derived in earlier
efforts. In contrast, arguments in the literature, based on the inviscid equations, suggest only
a sufficient condition for stability. The clarification of the rather subtle relationship between
the inviscid and viscous stability of a rotating column forms the subject matter of Chapter
1. It is shown, based on the inviscid dispersion relation, that there appear inviscidly stable
islands within the known viscously unstable region in the Weber-number-axial-wavenumber
plane. For each azimuthal wavenumber, there exists a dominant stable island that terminates
in a cusp at a critical Weber number. More interestingly, however, it is shown that there very
likely exists an infinite number of additional and much smaller satellite islands within the
viscously unstable region. The infinite hierarchy of islands that arises is intimately related to
the nature of the rotating column spectrum which comprises a pair of capillary modes and
an infinity of Coriolis modes. In dynamical systems parlance, the finding is equivalent to
an infinite sequence of cusp catastrophes. The existence of inviscid islands has implications
even for the viscous scenario. The growth rate outside the islands must asymptote to an order
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unity value as the Reynolds number approaches infinity, while that within must decay with
increasing Reynolds number. As a result, just above the threshold Weber number, where
there exist a large number of inviscid islands, an increase in axial wavenumber should lead to
a rapid variation in the long-time growth rate for any large but finite Reynolds number.

Chapter 2 moves towards the stability of the vortex-column-bubble configuration via a
sequence of simpler related configurations. The most elementary of these is the configuration
inverse to the rotating liquid column in air examined in chapter 1 – an air column surrounded
by a body of rigidly rotating liquid. This configuration is stabilized by centrifugal forces,
and is, in fact, linearly stable to all perturbations above a fairly modest Weber number.
Thus, such a configuration is too simple to explain the apparent instability observed in the
experiments above, which occurs at fairly large Weber numbers. The next step in complexity
is to confine the rigidly rotating liquid to an annular cylindrical region, with an irrotational
azimuthal flow in the exterior; in other words, the linear stability of a Rankine-vortex-like
configuration, but with an air column embedded within the vortex core. An analysis of this
configuration, however, reveals no instability. The final step in complexity is to incorporate
the self-induced straining flow characteristic of the original vortex-ring-bubble configuration.
For thin rings, this effect may be incorporated via an externally imposed (linear) straining flow
on the above Rankine-vortex-air-core configuration. As in the original case of a vortex ring
(analysed jointly by Moore, Saffman, Tsai and Widnall, and termed the MSTW instability),
an instability is expected as the result of a parametric resonance. The possibility of an
instability of the aforementioned strained configuration may therefore be assessed based on
the dispersion curve intersections in the absence of the strain. Accordingly, the nature of the
dispersion curve intersections which, in addition to the Coriolis mode intersections for the
original vortex ring, now include novel classes of capillary-capillary and capillary-Coriolis
intersections, is studied as a function of the Weber number and the radius ratio of the air
core to the vortex core. It is thereby shown that, unlike the original MSTW instability, the
straining flow is likely to induce a resonance between modes corresponding to azimuthal
numbers of zero and two at large Weber numbers.

The third and final chapter examines the orientation dynamics of spheroids (both prolate
and oblate) in the one parameter family of planar linear flows. The objective is to assess the
effect of fluid inertia on the orientation dynamics. In the inertialess limit, spheroids are known
to rotate along Jeffery orbits in planar linear flows, provided the ratio of vorticity to strain
is above an aspect-ratio-dependent threshold. The degeneracy implied by the existence of
closed orbits in orientation space is resolved with the inclusion of fluid inertia. The effect of
fluid inertia in planar linear flows was analysed earlier within a one-dimensional framework,
that involved the derivation of the orbital drift, with the sign of the orbital drift determining
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the stability of particular Jeffery orbits (for instance, the spinning and tumbling modes).
The one-dimensional analysis, in terms of the Jeffery orbit constant, is only valid when
the inertial drift occurs on a time scale asymptotically long compared to the Jeffery period.
This assumption invariably breaks down in the vicinity of the aforementioned aspect-ratio-
dependent threshold, when the trajectory topology changes from an elliptic to a hyperbolic
type. Thus, the precise nature of bifurcations in the orientation dynamics, in the vicinity of
this threshold, would require an analysis of the full two-dimensional equations comprising
the two Jeffery angles. The third chapter takes the first steps towards characterizing the
sequence of bifurcations that occur for both prolate and oblate spheroids at small but finite
Reynolds numbers. The picture that comes about is considerably more complicated than that
revealed by the earlier one-dimensional analysis.
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Chapter 1

Linear Stability of Rotating Liquid
Columns

1.1 Introduction

In this chapter, we consider the linear stability of a rigidly rotating column. The problem is
classical - the limit of zero rotation corresponds to the Rayleigh-Plateau instability - and has
been well studied since the 1950’s. The pertinent literature generally adheres to derivations
of the necessary and/or sufficient conditions for stability while largely ignoring an analysis of
the complete spectrum which would include the entire ensemble of neutral modes. Although
the neutral modes characterize the oscillatory response of a system to small amplitude
perturbations, the coalescence of neutral dispersion curves may lead to instabilities. In the
following sections, we review earlier works on the instabilities of rotating liquid columns
which focus on unstable modes alone and supplement them with a discussion of the entire
spectrum.

Before delving further into the subject matter, we briefly note the basic premise of a linear
stability analysis and the associated terminology. The objective is to understand the circum-
stances under which a small perturbation may grow exponentially and destabilize the system.
The unperturbed state (henceforth referred to as the base state), that is axially symmetric for
the problem under consideration, is subject to an elementary modal perturbation which is
characterized by its azimuthal wavenumber (n), axial wavenumber (k) and the frequency
and/or growth rate (σ ). Thus, in presence of the perturbation, a given field takes the form:

q = q0 + ε q̃ei(nθ+kz−σt) (1.1)



2 Linear Stability of Rotating Liquid Columns

Fig. 1.1 Three possible variations of the perturbations of a liquid column - axisymmetric
perturbations (left), Planar perturbations (middle) and three-dimensional perturbations (right).

whereq0 pertains to the base state and ε is the amplitude of the perturbation (assumed much
smaller than any other length scale in the problem). σ , which is complex in the general
case, governs the stability of the system. According to the ansatz above, if σ has a positive
imaginary part, the perturbations grow exponentially (unstable perturbations) and decay if
the imaginary part is negative (stable perturbations). If σ is purely real, the perturbations
persist as traveling waves and are termed as the neutral modes of the system.

Based on the azimuthal (n) and axial (k) wavenumber, one can classify the perturbations
into three categories (Figure 1.1)

• Axisymmetric perturbations: n = 0, k ̸= 0

• Planar perturbations: n ̸= 0, k = 0

• Three-dimensional (or Helical) perturbations: n ̸= 0, k ̸= 0

We study in turn the dispersion curves for each of the aforementioned classes of perturba-
tions on an inviscid rotating liquid column. The nature of the dispersion curves are studied
as a function of the relevant dimensionless parameters which include the Weber number
We = ρΩ2a3/γ , where ρ is the density of liquid, Ω is angular velocity of the column, a is the
radius of the column and γ is the coefficient of surface tension. We begin with the simplest
case of a stationary column of liquid.

1.2 The Stationary Liquid Column

In this section we summarize the response of a non-rotating liquid column to the three kinds
of perturbations mentioned above, beginning with the axisymmetric perturbations. This is
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the Rayleigh-Plateau instability which is responsible for the breakup of a (slow) jet into
nearly uniformly sized droplets in response to long wavelength axisymmetric perturbations
(the jet may be made equivalent to a stationary column via a Galilean transformation). This
instability was identified by Plateau who showed that perturbations with axial wavelength
greater than the circumference of the column (λ > 2πa or, if the wavelength is scaled with
the column radius, k < 1) reduce the surface area, and thence the surface energy of the
resulting column. The column therefore continues to deform so as to lower its surface energy,
eventually breaking into droplets. Plateau concluded that the perturbations in a column of
liquid would persist as neutral oscillations if k > 1 and will grow, leading to a column break
up if 0 < k < 1.

Plateau’s analysis was, however, a quasi-static one, and did not account for the inertia
associated with the fluid motion driven by the imposed perturbation. Building on Plateau’s
effort, Rayleigh [13], in 1878, provided a complete linear stability analysis, that accounted
for the effects of both inertia and surface tension, and thereby, calculated the wavenumber
corresponding to the fastest growing perturbation. Rayleigh obtained an explicit expression
for the oscillation frequency (σ ) an axisymmetric perturbation with axial wavenumber (k) as

σ
2 = k(k2 −1)

I1(k)
I0(k)

. (1.2)

where the dimensional frequency (σ∗) and the dimensional axial wavenumber (k∗) have
been scaled as

σ =
σ∗√

γ

ρa3

, k = k∗a

Here, γ is the surface tension, ρ is the density of the fluid and a is the radius of the liquid
column. The stability criterion for the Rayleigh-Plateau instability is immediately evident
from equation (1.2). For k < 1, σ2 < 0 and σ is purely imaginary. This verifies Plateau’s
finding that an instability results if 0 < k < 1. Note that the neglect of inertia in the original
quasi-static arguments of Plateau does not alter the threshold, since the growth (or decay)
rate becomes asymptotically small in the vicinity of the threshold, and so do inertial forces.
For k > 1, one obtains two neutral modes. These findings are summarized in fig. 1.2. The
purely imaginary eigenvalues (dashed orange curves) indicate a stationary growing and a
decaying mode, while the purely real eigenvalues (solid blue curves) indicate neutral modes.
It can be seen from fig. 1.2 that as one crosses the stability threshold, the two neutral modes
transform to a stable and an unstable mode, with the resulting eigenvalues having a vanishing
real part. The resulting eigenvalues have vanishing real parts. This is an example of an
exchange of stabilities bifurcation [1], where the instability is not oscillatory in nature but
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Fig. 1.2 Behaviour of neutral (solid curves), growing (dashed curve) and decaying (dot-
dashed curve) modes with wavenumber (k). The eigenvalues for the orange curves are purely
imaginary and those for the blue curves are purely real.

grows monotonically in time. The simultaneous presence of a growing and a decaying mode,
or a pair of neutral modes which propagate up and down the liquid column, arises from the
time reversibility of the underlying Euler equations.

We can further verify some limiting cases of the dispersion relation 1.2. For k → ∞, one
obtains

σ
2 = k

(
k2 −1

) I1(k)
I0(k)

∼ k
(
k2) ek/

√
2πk

ek/
√

2πk
∼ k3

⇒ σ ∝ k3/2

which denotes the dispersion relation for capillary waves propagating on an infinite plane
interface, with the well known (dimensional) relation σ =

√
γk3/ρ . Hence, in the limit of a

large axial wavenumber (short wavelengths), the neutral modes behave as capillary waves
moving in opposite directions close to the surface of the column. For small k, we have

σ
2 = k

(
k2 −1

) I1(k)
I0(k)

∼ k(−1)
k/2
1

∼ −k2

2
(1.3)

indicating that the growth rates scale linearly with k for small k.
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The dispersion relation (eq. 1.2) allowed Rayleigh to determine the wavenumber corre-
sponding to the fastest growing perturbation (kmax ≈ 0.697, as can be seen from fig. 1.2).
That the maximum growth rate occurs at a finite wavelength implies a characteristic drop size
that would result from the breakup of the jet. This has indeed been verified in experiments
[2]. Considerations of non-linear effects in the analysis leads to the formation of satellite
drops seen in the experiments.

The stationary liquid column is stable to planar and three-dimensional perturbations,
consistent with quasi-static arguments which show that both these classes of perturbations
lead to an increase in the surface area. The general dispersion relation obtained from a linear
analysis, when both k and n are non-zero is [2]

σ
2 = k

I′n(k)
In(k)

(k2 +n2 −1) (1.4)

If n > 1, the eigenvalues are always purely real and the perturbations remain neutral. There-
fore, only sufficiently long-wavelength axisymmetric perturbations can destabilize the system
and lead to droplet formation.

1.3 The Rotating Liquid Column

In this section we analyze the linear stability of a rigidly rotating column of liquid where the
base state is given by

ur = 0

uθ = Ωr

uz = 0

p = p0 +
ρΩ2r2

2

(1.5)

where po is an arbitrary baseline pressure on account of incompressibility and Ω is the
angular velocity of the rigidly rotating liquid column. The governing equations remain
the Euler equations and the continuity equation for an incompressible fluid. The boundary
conditions involve equating the radial velocity of the fluid with radial velocity of the interface
and ensuring continuity of normal stress at the outer surface of the column.
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1.3.1 Axisymmetric Perturbations

The criterion for the stability of a inviscid rotating liquid column to axisymmetric perturba-
tions was first obtained by Hocking [4] as

We σ
2

√
4

σ2 −1
J0(α)

J1(α)
− k

(
k2 −1

)
+We k = 0 (1.6)

where α = k
√

4
σ2 −1 and We = ρa3Ω2

γ
is the Weber number characterizing the relative

importance of centrifugal and surface tension forces. Here, as before, k is scaled with 1/a
but σ is scaled with Ω as opposed to

√
γk3/ρ used in the classical Rayleigh-Plateau analysis.

Taking the scaling into account, one recovers the Rayleigh-Plateau dispersion relation in the
limit We → 0. Using eq. 1.6, Hocking obtained the necessary and sufficient criterion for
stability to be

We < k2 −1. (1.7)

For We = 0, eq. 1.7 reduces to k > 1, the criterion for stability for the Rayleigh-Plateau
problem discussed above. Importantly, eq. 1.7 indicates that, regardless of k, there exists a
critical We beyond which the column becomes unstable. Centrifugal forces are destabilizing
for the rotating liquid column for all k. Thus, for 0 < k < 1, centrifugal forces reinforce the
original Rayleigh-Plateau instability, while for k > 1, there is a competition between the
restoring force of surface tension and the destabilizing centrifugal force. It can be seen that
the range of unstable wavenumbers has increased from 0 < k < 1 for the non-rotating case to
0 < k <

√
1+We in the rotating case.

Neutral Modes

In what follows, we focus on the complete spectrum for the rotating liquid column starting
with the neutral modes. For the stationary column the entire dynamics, which remain
irrotational due to the absence of any base-state vorticity, is described by the pair of modes
(whether neutral, growing or decaying) sketched in fig. 1.2 ; the dynamics of rotational
perturbations, which do not perturb the column surface (such free-surface perturbations
can, in any case, be described by the aforementioned pair of modes) are trivial, and also
have a degenerate character. In contrast, rotation and the associated Coriolis forces renders
the dynamics of vorticity non-trivial. This is reflected in the spectrum for a rotating liquid
column which now contains an infinity of Coriolis-driven modes in addition to the original
surface-tension-driven modes (modified by rotation).
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(a) Dispersion curves for axisymmetric perturba-
tions of a Rankine vortex.

(b) Dispersion curves for axisymmetric perturba-
tions of a rotating liquid column. We = 1.

Fig. 1.3 The rotating liquid column supports an infinity of Coriolis force dominated modes
(akin to those of the Rankine vortex) modified by surface tension and two surface tension
dominated modes modified by rotation.

A classical example of a rotating system that supports a discrete spectrum comprising an
infinite hierarchy of Coriolis-driven modes is the Rankine vortex (there exists an additional
continuous spectrum in this case owing to the irrotational shear outside; see Roy and
Subramanian [9]). The discrete spectrum in this case was first determined by Kelvin [18],
and the Rankine dispersion curves for axisymmetric perturbations are shown in fig. 1.3a.
The corresponding spectrum for a rotating liquid column is shown in fig. 1.3b. The similarity
between the two sets of dispersion curves is apparent. Both systems support an infinite
sequence of Coriolis-driven modes, with the inner dispersion curves (corresponding to
smaller |σ |) modes having an increasingly fine-scaled radial structure. The rotating liquid
column has two additional modes, corresponding to the outermost dispersion curves in fig.
1.3b, that owe their origin to surface tension. We will refer to these as capillary modes modes.
Fig. 1.3b shows the family of Coriolis-driven modes along with the two capillary modes and
their variation with the wavenumber (k) for We = 1. It is apparent from the figure that the
two kinds of neutral modes are not distinguished for small wavenumbers, where rotation
dominates the character of all neutral modes. On the other hand, it can be seen that the
capillary modes (the two outermost modes in fig. 1.3b) follow the k3/2 scaling for large k,
while the Kelvin modes approach σ =±2.

Similarly one may explore the behaviour of neutral modes in the limit of small axial
wavenumbers. The dispersion relation (eq. (1.6)) in the limit σ ,k → 0 , where the slope (m)
of a branch of the dispersion curves is given by m = σ/k, becomes

−m
J0(2/m)

J1(2/m)
=

(1+We)
2We

(1.8)
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which can be solved graphically to obtain the slope of the dispersion curves for small k at
a fixed We. The largest values of |m| correspond to capillary modes. This can be further
simplified for a large modal index (mi) under the assumption that, for higher modes, σ ≪ k
for small k and therefore m ≪ 1. Eq. 1.8 then becomes

m =−1+We
2We

tan(
2
m
)

For a given We, we then have that tan( 2
m)→ 0 and thus σ = ( 2

miπ
)k. The linear variation of

σ with k is thus explicit for large modal indices.
Having analyzed the variation of frequency with wavenumber k, we proceed to analyze

the effect of We on the dispersion curves for the neutral modes (fig. 1.4). If k ≪
√

We+1,
the Coriolis force dominates even the capillary modes and these modes also behave as inertial
modes. It is only for k >

√
We+1 that the effects of surface tension become apparent and

the capillary character of the two modes is seen. It can also be seen from the dispersion
relation (eq. 1.6), that if We ≫ k2 −1, the roots are independent of We and vary only with k.

Growing and Decaying modes

We now look at the growing/decaying modes of the rotating liquid column. As indicated
before, these modes exist for a range of wavenumbers given by 0 < k <

√
1+We. The

variation of growth rate with axial wavenumber k, for a set of We has been shown in fig.
1.5. It is clear that the range of unstable wavenumbers increases with increasing We. Note
that the unstable modes of a rotating column do not emerge as a result of coalescence of
neutral modes, as is the case for the Rayleigh-Plateau instability. The unstable modes of
the rotating column arise independently as the stability threshold is crossed. These modes,
however, have purely imaginary eigenvalues and therefore the exchange of stabilities still
holds i.e the unstable modes grow monotonically without oscillations. Since eigenvalues
have no real part, the state of neutral stability is one of rigid rotation.

The fact that the eigenvalue corresponding to the unstable modes goes to zero (both real
and imaginary parts) at the curve of marginal stability, can be used to obtain the stability
criterion. Taking the limit σ → 0, in the dispersion relation (eq. (1.6)), one obtains

2σ We cot
(2k

σ
− π

4

)
− k(k2 −1)+We k ≈ 0

⇒− k(k2 −1)+We k ≈ 0 (since σ ≪ 1)

⇒We ≈ k2 −1
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(a) We = 0.1

(b) We = 1

(c) We = 10

Fig. 1.4 Variation of the dispersion curves (frequency (σ ) vs axial wavenumber (k)) of the
rotating liquid column with We
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Fig. 1.5 Variation of range of unstable wavenumbers and the maximum growth rate for
We = 1,10,50 and 100 .

which is the criterion for marginal stability, as stated before.
In order to understand the behaviour of unstable modes in the limit of small wavenumbers

(i.e. the behaviour of long wavelength perturbations), replace σ → iσ̂ in eq. (1.6) and
consider the limit σ̂ → 0 and k → 0 but not yet making an assumption regarding σ̂/k. Then,
α ≈ 2ik

σ̂
and the dispersion relation becomes

σ̂

k
=

1+We
2We

I1(2k/σ̂)

I0(2k/σ̂)

Note that real σ̂ now implies growing modes. If σ̂ =C k, then the slope C of the dispersion
relation is determined by the following transcendental relation

C =
1+We

2We
I1(2/C)

I0(2/C)

If one further assumes C ≫ 1, or σ ≫ k, i.e. a case where growth rate is finite at small axial
wavenumber, then the above expression gives

C =

√
1+We

2We
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which can only be large if We ≪ 1. Replacing C with σ̂/k, we get

σ̂ = k

√
1

2We

Rescaling σ̂ with
√

γk3/ρ instead of Ω gives σ̂ = k/
√

2 which is the Rayleigh-Plateau limit.
We therefore have the growth rate for long wavelength perturbations of slowly rotating

columns as
σ̂ =

ik√
2We

Effect of viscosity

The stability criterion remains unchanged for the viscous column under axisymmetric pertur-
bations. This is due to the marginally stable state being that of a rigid rotation. It therefore
follows that viscosity cannot change the stability criteria of the system, as there would be
no viscous stresses acting on a rigidly rotating column. Thus, for the case of axisymmet-
ric perturbations, the viscous stability criterion is identical to the inviscid case, namely
We < k2 −1. Although the range of unstable wavenumbers doesn’t change, viscosity alters
the maximum growth rate and the most unstable wavenumber for a given We. This was
explored by Weidman and Kubitschik [7].

1.3.2 Planar Perturbations

In this section we analyze the response of a rotating liquid column to two-dimensional or
planar perturbations. Physically, this case involves investigation of a wave, that deforms
the originally circular cross section into an n-lobed configuration, running along along the
azimuth of the cylindrical liquid column. All cross-sections of the column deform in an
identical manner so that there is no variation of system properties along the axis of the
column. The Fourier mode ansatz for this case becomes q = q̂(r)ei(nθ−σt) where n is the
integer-valued azimuthal wavenumber.

Before proceeding on to the analysis for the rotating column, we look at the non-rotating
(Rayleigh-Plateau), in which case, such perturbations always increase the surface area of
the column and surface tension, therefore, acts as a restoring force. Thus, in contrast to
axisymmetric perturbations, planar perturbations are always neutrally stable in the inviscid
limit regardless of n. The dispersion relation for planar perturbations is given by

σ
2 = n(n2 −1) (1.9)
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implying that σ is real for all n > 1 (note that n = 1 is a degenerate case, corresponding
to a mere translation of the circular core, so there is no restoring force and σ = 0). For
n ≫ 1, eq. 1.9 can be approximated as σ = n3/2 which is along expected lines since these
are short-wavelength capillary waves propagating along the azimuth.

The linear stability analysis for a rotating liquid column subject to planar perturbation
was first performed by Hocking and Michael[5] in 1959. The authors obtained the following
dispersion relation

(σ − (n−1))2 =
n(n2 −1)

We
− (n−1) (1.10)

In contrast to the axisymmetric case, the dispersion relation is an algebraic (quadratic) one,
and leads to the following pair of eigenvalues:

σ = n−1±
√

n−1
We

(n(n+1)−We) (1.11)

Eq. (1.11) immediately yields the stability criterion for planar perturbations, since the
eigenvalues remain real iff

We < n(n+1) (1.12)

The system therefore becomes inviscidly unstable if We becomes greater than n(n+1). If
We is below the threshold, the system exhibits two neutral modes which physically manifest
as two rotation-modified capillary waves propagating along the azimuth with frequencies
given by eq. (1.11). If the We is small, the frequencies reduce to

σ =±
√

n(n+1)

which, as already seen, is the relation for the non-rotating column. For a finite rotation rate of
the liquid column, one obtains two waves traveling at the speed σ/n. One of these is faster
than n− 1 and the other is slower by the same amount. Note that σ = n− 1 is the planar
mode frequency for the Rankine vortex obtained by Kelvin [18]. At the stability threshold,
both waves travel at the same angular speed, that of the 2D Kelvin mode referred to above.
Above the threshold, the waves continue to travel at the same speed but with the amplitude
of one mode growing and the other decaying with time.

If We → ∞, the eigenvalues reduce to σ = n−1± i
√

n−1 which is the limiting value
of the growth/decay rates of the two modes. We therefore have a pair of modes growing
/decaying with (dimensional) rates proportional to Ω, as expected in an inertially dominated
regime.
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Effect of viscosity

Viscosity has a qualitative effect on the stability of the rotating column under planar perturba-
tions. This was first explored by Hocking [4] in 1960 where he gave the viscous stability
criterion as

We < n2 −1 (1.13)

There are two remarkable properties of equation (1.13). Firstly, we note that the viscous
threshold for instability is less than the inviscid threshold. Viscosity, therefore, hastens the
onset of instability. Secondly, the viscous criterion does not contain the Reynolds number
(Re). The criteria (1.13), therefore, holds as long as there is any finite non-zero viscosity in the
system, but not if the viscosity is exactly zero. These observations warrant a deeper analysis
of the viscous case; as will be seen next, the resulting insight will aid in our understanding of
helical perturbations.

The transcendental dispersion relation for the viscous case as obtained by Hocking [4] is(
α

2 −2n+
2αJ′n(α)

Jn(α)

)(
α

4 −2n
(
n2 −1

)
α

2 +2iReα
2 +ΛRe2)+2n(n−1)2

α
4 = 0

(1.14)
where α2 = iRe(σ −n) and Λ = n(n2−1)

We −n. If one takes the limit Re → ∞, retaining only
the terms of O(Re3) in 1.14, the relation reduces to the following algebraic one

α
4 +2iReα

2 +ΛRe2 = 0 (1.15)

which amounts to a neglect of the infinity of modes that continue to decay at viscous rates as
Re → ∞. The above equation can be directly solved for α2. We get

α
2 =−iRe± iRe

√
1+Λ (1.16)

⇒σ = n−1±
√

n−1
We

(n(n+1)−We) (1.17)

and thus recover the inviscid eigenvalues and inviscid criteria for stability. Hocking further
obtains the leading order viscous correction to the inviscid eigenvalues via a regular perturba-
tion procedure [4]. Letting α2 = α2

1 (1+ ε), where α2
1 =−iRe± iRe

√
1+Λ is the inviscid

root and ε(≪ 1) is the viscous correction and substituting this in the viscous dispersion
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relation (eq. 1.14) yields

ε =
∓2i n(n−1)
Re

√
1+Λ

(1.18)

⇒σ = n−1±
√

1+Λ ∓ 2 in(n−1)(−1±
√

1+Λ)

Re
√

1+Λ
(1.19)

If one considers the root

σ = n−1+
√

1+Λ − 2 in(n−1)(−1+
√

1+Λ)

Re
√

1+Λ
(1.20)

the imaginary part is positive if

−1+
√

1+Λ < 0

⇒1+Λ < 1

⇒Λ < 0

⇒We > n2 −1

which is the viscous criterion for instability, and differs from the inviscid criterion by order
unity. From the viscous dispersion relation, one may obtain the growth rate as a function
of We. This has been plotted in fig. 1.6 for various values of Re. It can be seen that, for
small viscosity (large Re), the system is destabilized at We = n2 −1 and there exists only an
asymptotically small growth rate in the interval n2 −1 <We < n(n+1). In this interval the
growth rate exhibits a non-monotonic dependence on Re. Thus, at a fixed We, the growth
rate initially increases as Re increases from zero, and then starts to decay as Re becomes
asymptotically large.

It is therefore clear that rotational inertia can destabilize a viscous column at a lower
threshold (We = n2 −1) than the inviscid column (We = n(n+1)). Note that the correction
to the inviscid eigenvalues blows up when Λ →−1 or We → n(n+1) which is precisely the
inviscid threshold. This divergence is an artifact of the regular perturbation expansion used
by Hocking, and is suggestive of a different scaling with Re of the viscous growth rate. In
order to recover the growth rate close to Λ =−1, rewrite the viscous dispersion relation as

α
4 +2i Re α

2 +Λ Re2 =
−2n(n−1)α4

α2 −2n+2α
J′n(α)
Jn(α)

+2n(n2 −1)α2 (1.21)

Here, LHS is precisely the inviscid dispersion relation and therefore vanishes for Λ =−1 if
σ = n−1. Setting α2 = i Re(σ −n) and considering only the leading order terms in Re, the
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Fig. 1.6 Growth rate vs We for various values of Re with n = 4. Introduction of a small
viscosity changes the stability criteria discontinuously from We = 20, for the inviscid case, to
We = 15. However, we also see that the growth rate for large Re in the interval 15 <We < 20
are small compared to those beyond We = 20. Also note that the growth rates in this interval
initially increase with increasing viscous effects (decreasing Re) and decrease later. The
scaling of growth rate with Re is shown in fig. 1.7.

above equation reduces as follows

−(σ −n)2 −2(σ −n)+Λ =
2n(n−1)2(σ −n)

i Re
+

2 i n(n2 −1)(σ −n)
Re

(1.22)

Assume σ = n−1+σ ′
r + iσ ′

i and substitute on the LHS of the above equation. Since RHS is
finite at σ = n−1, the equation results in

σ
′
i =

√
2n(n−1)

Re
(1.23)

which is the growth rate close to We = n(n+ 1). Fig (1.7) shows the variation in growth
rate with Re for n2 −1 <We < n(n+1). Note that the growth rate close to We = n(n+1) is
O(1/Re1/2) as opposed to the O(1/Re) growth rate for n2 −1 <We < n(n+1). For large
Re, the growth rate in this intermediate region can be made arbitrarily small as Re increases
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but close to We = n(n+1), the growth rate is always much larger. For We > n(n+1), the
growth rate is an O(1) quantity.

The physical reason for the discontinuous change in the stability criterion, due to viscosity,
may be seen via the pressure and displacement eigenfunctions. For n2 −1 <We < n(n+1),
the phase difference between the pressure and displacement waves is exactly π for the
inviscid case. Addition of viscosity alters this phase difference so that the pressure wave
is not exactly out of phase with the displacement wave and therefore acts to amplify the
displacement. Fig. (1.8) illustrates this.

1.3.3 Three-dimensional Perturbations

As before, we first look at the stationary column under three-dimensional perturbations. The
inviscid dispersion relation for this configuration is

σ
2 = k

I′n(k)
In(k)

(
k2 +n2 −1

)
(1.24)

As for planar perturbations, 1.24 shows the column to be stable for all k provided n ≥ 1.
Thus, the stationary column is stable to all non-axisymmetric perturbations.

The effect of adding rotation to the liquid column is well understood only in the presence
of viscosity. As shown first by Gillis and Kaufman [3], the necessary and sufficient criterion
for the stability of the rotating column in the presence of viscosity is then given by

We < k2 +n2 −1 (1.25)

It is easily seen that 1.25 reduces to the corresponding criteria for viscous planar and
axisymmetric perturbations for n = 0 and k = 0 respectively. For the inviscid case, however,
this criterion has only been shown to be a sufficient one [12], pointing to the possible non-
trivial relation between the inviscid and viscous stability scenarios. The primary contribution
of the remaining part of this chapter is to clarify this relation, which then points towards
the nature of the necessary and sufficient criterion for inviscid stability. As will be seen, the
viscous-inviscid relation indeed turns out to be non-trivial even for this seemingly simple
problem.

The dispersion relation for the inviscid rotating column has, in fact, already been given
by Weidman et al [20] as

α
Jn−1(α)

Jn(α)
−

We
(
4− σ̂2)

We+1−n2 − k2 −n
(

1+
2
σ̂

)
= 0 (1.26)
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Fig. 1.7 Variation of growth rates with Re. The solid lines denote numerically obtained values
from the dispersion relation. The dotted lines indicate the large Re asymptotes from eq. 1.19
and eq. 1.23
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(a) Re = 0.1 (b) Re = 1

(c) Re = 10 (d) Re = 1000

Fig. 1.8 Variation of phase difference between displacement and perturbation pressure with
Re. For large Re, the two are exactly out of phase, thus delaying the onset of instability.

where α = k
√

4
σ̂2 −1. It can be verified that setting n = 0 leads us back to the axisymmetric

relation by Hocking (eq.1.6). In eq. 1.26 σ̂ is the Doppler frequency of the perturbation, i.e.
it gives the angular velocity of the perturbation (σ̂/n) with respect to the column. It relates
to the original frequency σ via the relation σ̂ = σ −n.

In order to analyze the solutions of 1.26, we fix We and use a root finding algorithm to
search for the roots (σ̂ ) while varying k. The character of dispersion curves thus generated
varies based on the We. The figures that follow (fig. 1.9) delineate the We-intervals corre-
sponding to differing nature of the dispersion curves. For the three-dimensional perturbations
under consideration, the dispersion curves are functions of We, k and n, and the figures
therefore show the dispersion curves as a function of k for a fixed We and n. There are four
We-intervals, and an identification of the dispersion curve structure in each of these intervals
is crucial to understanding the stability criterion for the rotating column.

The first regime, We < n2 −1, corresponds to the scenario where the rotating column is
stable regardless of viscosity. Fig. 1.9a shows the two capillary modes (orange) and the first
few of the infinite hierarchy of Coriolis modes. All of these modes are, of course, neutral
owing to the column being stable (as mentioned above). There are no unstable modes in
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this regime. As We is increased, the two capillary branches move toward σ = n−1 on the
k = 0 axis (this can be verified from eq. 1.11). In particular, increasing We causes the upper
capillary branch to move downward and therefore intersect the Coriolis modes.

The second regime, n2 − 1 < We < n(n+ 1), is where, as already seen, the column is
unstable only in the presence of viscosity, but stable in the inviscid approximation. As shown
in fig. 1.9b, the upper capillary branch has moved below the line corresponding to zero
Doppler frequency (σ = n or σ̂ = 0) leading to a coalescence of the capillary branch with a
Coriolis branch at k = k1 = 0.6. This coalescence is accompanied by the pair of eigenvalues
becoming complex-valued for larger k, implying that the column transitions to instability.
Thus, the interval of instability for this regime is given by k1 < k <

√
We−n2 +1.

The third regime includes the interval n(n+1)<We <Wecusp where Wecusp is the We
corresponding to the tip of the shaded region - the cusp, in the k−We plane (for n = 3,
Wecusp ≈ 18 as shown in fig. 1.12c). The shaded regions in fig. 1.12 represent regions where
the system continues to be inviscidly stable but unstable in the presence of viscosity. The
dispersion curves in this regime undergo two coalescences (at k1 = 0.97 and k2 = 0.53),
such that the concerned branch of the dispersion curve now exhibits a fold for k2 < k < k1

(fig. 1.9c). This range of axial wavenumbers between the two coalescences is stable and the
unstable intervals become 0 < k < k2 and k1 < k <

√
We−n2 +1.

Finally, as We is increased beyond Wecusp, the dispersion curve gradually unfolds so that
the unstable region is now given by 0 < k <

√
We−n2 +1 (fig. 1.9d). This general pattern

of the behaviour of dispersion curves holds for all azimuthal wavenumbers (n). Fig. 1.10
shows the aforementioned behavior repeating for n = 4.

The dispersion curves may be stacked upon one another, along the We-axis, so as to
demarcate the regions of stability of the liquid column in the (k−We) space for each n. Fig.
(1.11) shows schematically how this may be achieved. Projection of the folding points of the
dispersion curve onto the k−We plane yields the cusp-shaped region in the k−We plane.
The top branch of the cusp is generated from the projection of the bifurcation point at higher
k, while the bifurcation point at lower k gives the lower branch. The resulting regions for
stability in the (k,We) parameter space for n = 2,3,4 and 10 are given below (fig. 1.12). For
n = 1, however, the picture is different (fig. 1.12a) in that the stable island now extends to
infinity along the We-axis; this singular behavior is not entirely unexpected owing to the
degenerate character of the n =1 perturbation in the limit k → 0. These results are consistent
with the observations of Weidman et al [20], who obtained the growth rates for n = 1,2 and 3
but only for We = 10, missing out on the effect of We on the modes and therefore also on the
stability criteria. In this work, we have generalized their results for all n and We, identified a
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(a) Frequency(ω) vs Axial Wavenumber(k) for Regime-I: We < n2 −1. Only neutral modes exist for
all k. Coriolis force driven modes shown in blue and surface tension driven capillary modes in orange.

(b) Regime-II: n2 −1 <We < n(n+1). System is stable for a range of axial wavenumbers starting
from zero followed by an unstable region. It can be seen that a surface tension driven mode(orange)
interacts with a Coriolis mode(blue) resulting in imaginary eigenvalues (green - real part, red -
imaginary part) and hence unstable modes.



1.3 The Rotating Liquid Column 21

(c) Regime-III: n(n+ 1) < We < Wecusp. Here, two bifurcations can be seen - the first where two
complex eigenvalues (unstable modes) coalesce resulting in two real eigenvalues and the second
where one of the emerging eigenvalue interacts with another real eigenvalue to yield two complex
eigenvalues.

(d) Regime-IV: We >Wecusp. The ’S’ shaped region straightens out and the associated bifurcations
no longer occur.

Fig. 1.9 Variation of dispersion curves across the four stability regimes for n = 3.
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(a) We = 18

(b) We = 22

(c) We = 25

Fig. 1.10 Variation of dispersion curves (σ vs k) across different We regimes for n = 4.
(a)n2 −1 <We < n(n+1), (b) n(n+1)<We <Wecusp and (c) We >Wecusp.
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new mechanism of instability in inviscid rotating columns and provided the necessary and
sufficient criteria for stability of such columns under three-dimensional perturbations.

If one further probes the region close to We = n2−1, a curious property of the dispersion
curves is observed. It turns out that other retrograde branches of the dispersion curves also
result in cusps for We sufficiently close to n2−1. Fig. 1.14 and Fig. 1.15 show this behaviour
for n = 3. Thus, during the course of the upper capillary branch moving downward, it
crosses an infinite number of Coriolis branches, for sufficiently small k, as We crosses n2 −1.
Each of these crossings leads to a coalescence event between the capillary branch and one
of the Coriolis branches, with a transition to instability. This then leads to a stable island
generated, with there appearing to be a one-to-one correspondence between the island and
the particular Coriolis branch that coalesces with the capillary one. The number of stable
islands must rapidly increase as We approaches n2 −1 from above, and correspondingly, the
coalescences occur at progressively smaller k. Thus, in the inviscid scenario, there appears to
be an infinite hierarchy of stable islands, enclosed within the viscously unstable region given
by We > n2 + k2 −1, which decrease in spatial extent rapidly, eventually asymptoting to the
limit point (We,k) = (n2 −1,0).

Studying a strictly inviscid system may seem artificial since any real system will have a
finite viscosity and therefore these results for stability will not hold. However, the regions
of stability obtained for the inviscid column continue to bear a significance for viscous
columns as well. While it is true that a viscous column is unstable regardless of the state
being inside or outside the island (as long as it satisfies We > n2 + k2 −1), the growth rate
within these islands is expected to be small. We recall from Fig. (1.6) and Fig. (1.7) that
growth rate is O(1) if We > n(n+ 1) and proportional to 1/Re if n2 − 1 < We < n(n+ 1).
These two regimes represent regions outside and inside the island, respectively, in the planar
case. Therefore, even in the three-dimensional case, the growth-rate inside the island will
vary as 1/Re and remain O(1) outside it. For liquid columns with large Re, we will then
have a growth rate variation as seen for the Re = 1000 case in Fig. (1.6). It then follows
that, for We close to (but larger than) n2 −1, the long-time growth rate exhibited by a weakly
viscous system will oscillate rapidly, as a function of k; the oscillations are between order
unity growth rates attained between islands and the asymptotically small viscous growth
rates attained within the islands.
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f

k

We

(a) A schematic showing that the projections of the folding points of the dispersion curve onto the
k−We plane yields the region of stability for the system.

(b) An illustration of the cusp catastrophe. The purple and green curves represent two of the three
orange curves shown in (a).

Fig. 1.11 Generation of the cusp from the dispersion curves.



1.3 The Rotating Liquid Column 25

(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5 (f) n = 10

Fig. 1.12 Regions of stability for various n.
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Fig. 1.13 The figure shows a second branch (besides the one illustrated earlier in Fig. 1.9)
that can lead to a cusp formation in the (k,We) plane.
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Fig. 1.14 For We sufficiently close to n2 −1, multiple dispersion curve branches lead to cusp
formation causing alternate stable and unstable regions in the (k−We) space. The associated
(k−We) space is shown in Fig. 1.15
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Fig. 1.15 Sufficiently close to We = n2 −1, there exist multiple (possibly infinite) number of
alternating stable and unstable regions in the parameter space.





Chapter 2

Stability Of Rotating Liquid Columns
With An Embedded Air Core

2.1 Introduction

In this chapter we discuss the stability of a vortex column with an embedded air core. This
study is motivated by a series of experiments conducted bv Jha and Govardhan [6] which
suggest the possibility of a new mechanism for instability in two phase vortex rings (2.1).
Two phase vortex ring here refers to a vortex ring with an encapsulated air bubble. As
mentioned by the authors, an understanding of the interactions of vortical structures with air
bubbles is of fundamental importance to studying two phase turbulence and has industrial
applications such as drag reduction in ships via bubble injection into the stream. In order
to understand such an interaction the authors study an idealization of vortical-structure-air-
bubble interaction and thus consider the interaction of the single air bubble with a vortex
ring. They observe a sequence of events involving the entrainment of bubble into the ring,
the elongation of the bubble to a nearly toroidal shape and finally the destabilization of the
ring along with bubble break up, indicating a possible instability in the configuration. This
work is aimed towards investigation of such an instability.

In order to address the involved scenario of a vortex-ring-bubble interaction, we begin
first with a classical case, that of a non-rotating liquid annulus with an embedded air core,
followed by the case where the liquid annulus is in rigid-body rotation. Next, we analyze the
stability of a configuration with an additional irrotational (azimuthal) flow in the exterior,
that is, of a Rankine vortex with a concentrically embedded air core, and finaly consider the
effects of the self-induced straining field of the ring.
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Fig. 2.1 Sequence of events as a bubble is entrained into the vortex ring and destabilizes the
ring. Fig. (a) to Fig. (c) show the entrainment of the air bubble into the vortex core. Fig.
(d) through (f) show the elongation of the air bubble within the ring. Note that the bubble
elongates to a nearly toroidal shape and therefore allows us to model the system as a vortex
column with an embedded air core. Fig. (g) and (h) demonstrate the breakup of the ring and
the bubble due to a possible instability. Figure taken from Jha and Govardhan [6].

2.2 Air column in liquid

For the case of axisymmetric perturbations, the condition for stability of an air column
surrounded by an infinite body of stationary inviscid liquid (termed the inverse Rayleigh-
Plateau configuration herein) is the same as that for the regular RP instability, namely, k < 1.
This is expected, since the stability criterion is still governed by the original quasi-static
arguments of Plateau, which rely only on surface energy (area) considerations. The fact that
perturbations with wavelengths longer than the circumference of the column decrease the
surface area of the column is a geometric property and hence remains unaffected by which
side of the interface the liquid is. However, the scaling of the growth rate of the unstable
modes (σ) with k, for small wavenumbers, is in stark contrast with the linear scaling of the
regular RP instability (eq. 1.3). For the inverse case, the growth rate for small k scales as
1/ logk.

One may address the above difference in scaling behaviour by arguments involving
the energy balance in the two configurations. Consider first the case of regular Rayleigh-
Plateau configuration. Under axisymmetric perturbations, the average change in radius of the
column is of the order ∆r = ε2/a, ε being the amplitude of the perturbation and a being the
column radius. Therefore, corresponding change in the surface energy per unit wavelength is
∆SE = γε2/ka.
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Fig. 2.2 Comparison of growing / decaying and neutral modes of liquid column in air (orange
and blue) with air column in liquid (red and green).

This change in surface energy balances the perturbation kinetic energy. Assuming a
long-wavelength perturbation (k → 0), from the equation of continuity, one readily obtains
ur/a ∼ k uz, so that ur/uz ∼ O(ka)≪ 1; that is, the radial velocity is much smaller than the
axial velocity for long wavelength perturbations. Since the characteristic length scale of the
perturbation (in both the radial and axial directions) is O(k−1), and is therefore much greater
than O(a), the radial flow is a linear one at leading order. Since the characteristic time scale
of this flow is of order the inverse growth rate, one may write

ur ∝
σεr

a
∼ σε

⇒ uz ∼
σε

ka
≫ ur

which are consistent with the equation of continuity and long wavelength considerations. The
kinetic energy of the perturbation flow, being dominated by the axial velocity, is given by

KE ∼ ρa2

k
σ2ε2

k2a2
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for a column length of order a unit wavelength. Equating this to the surface energy gives one
the expression for the growth rate as

ρa2

k
σ2ε2

k2a2 ∼ γε2

ka

⇒ σ√
γ/ρa3

∼ ka

⇒σ
∗ ∼ k∗

where σ∗ and k∗ are non-dimensionalized forms of σ and k respectively. We therefore
recover the linear scaling of modes for small k for the Rayleigh-plateau instability seen in
Chapter 1.

In considering the energy balance for an air column in liquid, note that the surface energy
estimate of the perturbation remains the same as that for the previous case and we only
need to obtain the new scaling for the perturbation kinetic energy. For the exterior flow, the
radial and axial length scales are both given by the wavelength or k−1 (note that with the
exterior liquid domain being unbounded, the linear-flow simplification for the perturbation
flow is no longer valid). In the limit of long wavelengths, one may approximate the flow
driven by an axisymmetric perturbation as the combination of the radial flow driven by the
expanding or contracting column at a given axial station (this flow having the character of a
2D source/sink on length scales smaller than k−1), and the compensatory axial flow arising
from the equation of continuity. The radial flow varies as 1/r, and since the velocity at the
surface of the column is O(σ .ε), one obtains the following estimate for radial velocity, on
length scales smaller than k−1

ur ∼
σεa

r

From the continuity equation, one has uz ∼ ur/ka. The primary contribution to the perturba-
tion kinetic energy is due to radial velocity and is given by

KE ∼
∫ ka

1
ρ

σ2ε2a2

r2 r dr dθ

⇒ KE ∼ ρσ2ε2a2

k
log(ka)
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Finally, balancing the perturbation surface and kinetic energies yields

ρσ2ε2a2

k
log(ka)∼ γε2

ka

σ
∗

∝
1√

log(k∗)

which is the scaling for long wavelength axisymmetric perturbations of an air column
surrounded by liquid. The variation of the eigenvalues with wavenumber, across the transition
threshold, for both the original and inverse Rayleigh problems is shown in fig. 2.2 for
both, regular and inverted configuration. The inverse logarithmic scaling above causes the
dispersion curves (for the growing and decaying mode) to plummet to the origin (σ ,k)≡
(0,0) much more precipitously than in the original Rayleigh-Plateau instability. Fig. 2.2 also
shows that the growth rate of the unstable mode peaks at a longer wavelength (a smaller k,
k = 0.48) for the inverse Rayleigh-Plateau configuration.

As for the original Rayleigh Plateau case, all perturbations other than axisymmetric ones
(n = 0) remain stable, with the corresponding dispersion relation being given by

σ
2 = k

K′
n(k)

Kn(k)
(k2 +n2 −1) (2.1)

From 2.1, it is clear that σ2 is always positive (and σ real) for n ≥ 1.

2.3 Rotating liquid column with air-core

As a first step towards modeling the dynamics of the vortex-ring-bubble configuration in Jha
and Govardhan [6], we consider the inviscid stability of an annulus of rigidly rotating liquid
with a concentric air core surrounded by a rigid outer boundary (fig. 2.3).

2.3.1 Axisymmetric perturbations

Linear stability of this configuration to axisymmetric perturbations was first analyzed by
Rosenthal [16]. He considered the densities of the inner and outer fluids to be ρ1 and ρ2

respectively, with the radii of the core and outer boundary taken to be a and b, respectively.
We will denote the density ratio ρ1/ρ2 as ρr and the radius ratio a/b as ξ . Note that ρr → 0
would represent an air column surrounded by liquid while ρr → ∞ would indicate the liquid
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a
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Fig. 2.3 Rotating liquid annulus with an embedded air core

column in ambient air analyzed in Chapter 1. The criterion for stability takes the form

k2 +(1−ρr)We2 ≥ 1 (2.2)

where k is scaled with 1/a, ρr = ρ1/ρ2, and We2 =
ρ2Ω2a3

γ
is the Weber number based on the

outer fluid density. The limit of no rotation (We2 = 0) immediately gives k > 1 - the stability
criterion for regular and inverted cases of the Rayleigh-Plateau instability.

Setting ρr → 0 with finite We2 gives the stability criterion for an annulus of liquid with
an air core

k2 +We ≥ 1 (2.3)

The range of unstable wavenumbers is now given by 0 < k <
√

1−We, which is smaller
than that for the case without rotation. Therefore, rotation stabilizes the system, as expected,
since a stable centrifugal equilibrium would have the denser fluid at larger radial distances
(as is the case with the base-state); note that this stabilization holds for any ρr < 1. Returning
to the case ρr = 0, if We > 1, the wavenumber of the perturbation required for instability
becomes imaginary and the system becomes stable to perturbations of all wavenumbers.
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The dispersion relation for a system of two concentric fluids is given by(
k2 −1

)
We2

+1−ρr =
4α

k2 +α2
J0(α)

J1(α)
(ρr +∆) (2.4)

where

∆ =

Y0(αξ )
J0(αξ )

− Y1(α)
J1(α)

Y1(α)
J1(α) −

Y1(αξ )
J1(αξ )

(2.5)

α = k

√
4

σ2 −1 (2.6)

The stability criterion derived from this dispersion relation has been metioned earlier (eq.
2.2). Several qualitative features of the neutral spectrum for this case remain identical to
the single column case. For instance, the largest eigenvalues remain proportional to k3/2 for
large k indicating their being surface-tension-driven. On the other hand, the other primarily
Coriolis-driven-modes are again restricted to the frequency interval σ ∈ (−2Ω,2Ω).

2.3.2 Planar Perturbations

The case of planar perturbations was first explored by Ross [17] who obtained the dispersion
relation

(λ −N)2 +
Nn

(
n2 −1

)
(ρr −1)We2

−N(n+N) = 0 (2.7)

where
λ = σ −n
N = 1−ρr

coth
(

n log
(

1
ξ

))
+ρr

As a check, we note that setting ρr → ∞ yields the criterion for the single rotating fluid
column obtained by Hocking [5].

The stability criterion arising from this dispersion relation is given by

We2 <
1

ρr −1

(
n(n2 −1)

n+N

)
(2.8)

If ρr < 1, i.e. the inner fluid is lighter relative to the outer fluid, the system is stable to all
perturbations. If ρr > 1, the system is destabilized by rotation and the critical Weber number
(We2) for instability is as given in eq. 2.8. Specifically, we can retrieve the planar stability
criteria for a column of liquid surrounded due to Hocking (eq. 1.12) if we consider the limit
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Fig. 2.4 Variation of the eigenvalues with We for planar perturbations of the rotating annulus
with embedded air core. Here, n = 3,ρr = 2 and ξ = 0.5. The solid blue curves represent the
real part and the dotted orange curves represent the imaginary parts of the two eigenvalues.

ρr → ∞, ξ → ∞ but a finite We2ρr. In this case, N =−1 and eq. 2.8 reduces to

We1 < n(n+1)

where We1 = ρ1Ω2a3/γ , which is the Hocking’s criteria. Fig. 2.4 shows the behaviour of
neutral and unstable modes of the system with We1. Note that unstable modes would only
exist if ρr > 1. In fig. 2.4, ρr = 2 , indicating a heavy fluid in a lighter ambient. This is
similar to the configuration analyzed in Chapter 1. Two neutral modes can be seen, one faster
than the column rotation rate and the other slower. Beyond the critical We1, one has two
complex eigenvalues corresponding to a growing and a decaying mode. The real part of these
modes determines the speed with which the disturbance travels along the column while the
imaginary part indicates the growth / decay rate.

The two other parameters affecting the growth rate are the radius ratio (ξ = a/b) and
the density ratio (ρr = ρ1/ρ2). We first look at the variation of growth rates with We1 for
different density ratios for a fixed radius ratio (fig. 2.5). If ρr → ∞, We1 reduces to the planar
single column limit, n(n+ 1). For any finite density ratio, the critical We1 is greater than
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(a) Variation of growth rate with We for various
density ratios at radius ratio equal to 0.1.

(b) Variation of growth rate with We for various
density ratios at radius ratio equal to 0.999.

Fig. 2.5 The figures show the effect of an outer fluid on the instability of a rotating liquid
column for n = 3. As the outer fluid gets heavier, the threshold We1 for instability becomes
larger. If ρr → 1, the threshold We1 tends towards infinity and the column remains stable for
all perturbations.

n(n+1). As expected, the critical We1 required for instability increases as density ratio gets
closer to 1. Besides the critical We1, the growth rate is large if the density ratio is large,
indicating that the instability is driven by the inertia of the rotating fluid. If the density ratio
is large, the critical We1 for stability varies between n(n+ 1) (for ξ → 0) and n2 − 1 (for
ξ → 1).

We can also look at the variation of growth rates for various radius ratios at a fixed density
ratio (2.6). The effect of wall in suppressing the growth rates (for a given density ratio) is
clearly seen in these plots.

We now specialize the general case illustrated by Ross to model a rigidly rotating water
column with an embedded air core, thus setting ρr → 0 and ξ → 0 with We2 being finite.
Physically, this represents the case for an annulus of liquid column with an embedded air
core with the outer wall at infinity. In this case, the dispersion relation 2.7 reduces to

σ̂
2 − n(n2 −1)

We2
− (n+1) = 0 (2.9)

This relation, being a quadratic, yields two roots given by

σ = n+1±

√
1+

n(n2 −1+We2)

We2
(2.10)

Clearly, the eigenvalues are always real indicating the absence of unstable modes (fig. 2.7).
As the radius ratio gets close to one, the wall effects force the two modes to behave in a
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(a) ρr = 10 (b) ρr = 2

Fig. 2.6 Variation of growth rates with We (σi vs We1) for various radius ratiosat fixed density
ratios. As the heavy inner column approaches the wall (ξ → 1), the threshold We decreases
but the growth rates are suppressed.

(a) ξ = 0.1 (b) ξ = 0.5 (c) ξ = 0.999

Fig. 2.7 Variation of the neutral modes (σr vs We2) of the rotating annular liquid column
with radius ratio. As ξ → 1, the modal frequencies tend towards nΩ and the perturbation
flows rotate rigidly along with the column.

rigidly rotating manner at large We. To summarize then, regardless of the nature of the
perturbation considered, a rigidly rotating annular of liquid surrounding a central cylindrical
air core does not admit any instability above a threshold Weber number.

Three-dimensional perturbations of a rotating annulus have been studied by Kubitschek
and Weidman [7]. Owing to the stabilizing influence of the centrifugal force, this configura-
tion does not show the peculiar behaviour seen for the three-dimensional perturbations of a
rotating liquid column noted in Chapter 1.

2.4 Rankine Vortex With Air Core

As the next step towards modeling the interaction of a vortex ring with an air bubble, we add
an irrotational flow to the exterior of the rigidly rotating liquid column. We therefore analyze
the stability of a Rankine vortex with an embedded air core in this section.
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Fig. 2.8 The base state including a rigidly rotating annulus with an irrotational exterior
flow. The relevant non dimensional parameters are the radius ratio (ξ = a/R) and the Weber
number (We = ρΩ2a3/γ) where ρ is the density of the ambient liquid. The inner fluid has
been assumed inertialess.

2.4.1 Axisymmetric Perturbations

The dispersion relation for axisymmetric pertubations of a Rankine vortex with an embedded
air core is given by

σ2α

k2 ∆ =
ξ

We

(
1− k2

ξ
2 −We

)
(2.11)

where

∆ =
αK1(k)(Y0(α)J0(αξ )− J0(α)Y0(αξ ))+ kK0(k)(Y1(α)J0(αξ )− J1(α)Y0(αξ )))

αK1(k)(Y0(α)J1(αξ )− J0(α)Y1(αξ ))+ kK0(k)(Y1(α)J1(αξ )− J1(α)Y1(αξ ))

As in the earlier cases of axisymmetric perturbations, this dispersion relation leads to an
infinite number of modes. As a check on 2.11, it is possible to recover Kelvin’s dispersion
relation for the Rankine vortex in the limit of vanishing air core radius (a → 0). In terms
of dimensionless parameters, this requires taking the limits ξ → 0 and We → 0. Note that
ξ

We =
γ

ρΩ2a2R → ∞ in the limit a → 0. It follows that

αK1(k)(Y0(α)J1(αξ )− J0(α)Y1(αξ ))+ kK0(k)(Y1(α)J1(αξ )− J1(α)Y1(αξ )) = 0
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Further considering ξ → 0 gives

αK1(k)(−J0(α))+ kK0(k)(−J1(α)) = 0 (2.12)

⇒K0(k)J1(α)

K1(k)J0(α)
+

α

k
= 0 (2.13)

which is the dispersion relation for Rankine vortex for axisymmetric perturbations. We now
explore the effect of radius ratio (ξ ) and the Weber number (We) on the eigenvalue spectrum
of this system.

Effect of Weber Number and radius ratio

Fig. 2.9 shows an entire grid of dispersion curves; We varies for a fixed ξ along a column,
and ξ varies for a fixed We along any given row. For We < 1, the system shows a clear change
in behaviour across k =

√
1−We/ξ ; in that, the modes are rotation-dominated for k smaller

than this threshold, while the outer capillary modes recover the usual k3/2 scaling for larger k,
departing from the remaining Coriolis-driven modes. As We increases from 0 toward unity,
the transition k shifts toward 0. For We > 1, the k required for such a transition becomes
imaginary. The two outermost modes are then predominantly driven by surface tension, even
in the regime k → 0. This can be seen in the subplots of fig. 2.9 with We > 1, where the
two outermost modes show a scaling behaviour different from other (Coriolis-force-driven)
modes even for small k. If ξ → 1, the Coriolis force driven modes vanish and only the two
capillary modes remain finite. Fig. 2.10 shows a comparison of the axisymmetric dispersion
curves to the two classical cases - the inverse Rayleigh-Plateau problem and the Rankine
vortex. For the small We considered, one observes the dispersion curves transition from those
of the Rankine vortex for small k, to those of the inverse Rayleigh-Plateau for large k.

2.4.2 Planar Perturbations

The key difference between the present case and the rotating annular liquid column is the
presence of a vorticity interface for the Rankine vortex(the outer boundary of the rigidly
rotating region) which can sustain one inertial wave for a given azimuthal wavenumber as
was shown by Kelvin [18]. Taking this into account, we expect three waves (or modes) for
this system as opposed to two for the rotating annulus (eq. 2.10) - two primarily surface
tension driven modes (akin to those in fig. 2.7c) and one primarily inertial mode akin to the
2D Kelvin wave.

The dispersion relation for this case, therefore, takes the form of a cubic in σ̂(= σ −n)
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Fig. 2.9 Dispersion curves(σ vs k) for axisymmetric modes of a Rankine vortex with air core
and their variation with We and ξ . We increases down the columns and ξ increases along a
row.
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(a) Modes of the Inverted Rayleigh-Plateau configuration (blue) match well with those of
Rankine vortex with air core(red) for large k.

(b) Modes of the Rankine vortex (blue) match well with those of the Rankine vortex with
air core (red) for small k.

Fig. 2.10 Comparison of modes of the Rankine vortex with air core with those of (a)the
Inverted Rayleigh-Plateau and (b)the Rankine vortex. For small ξ , the modes of the Rankine
vortex with air core can be mapped to those of the Rankine vortex for small k and to those of
the inverted Rayleigh-Plateau configuration for large k. For the curves shown here, We= 0.01
and ξ = 0.1.
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(a) ξ = 0.1 (b) ξ = 0.5

(c) ξ = 0.9 (d) ξ = 0.999

Fig. 2.11 Variation of the neutral modes with We for n = 2 (in the reference frame of the
column). For ξ → 1, the frequency of the inertial mode vanishes and the perturbation flow
rotates rigidly with the column. Other two modes are symmetrically displaced about σ = 0
in this limit.

σ̂
3 +ασ̂

2 +(2α +β )σ̂ −αβ = 0 (2.14)

where
α = ξ

2n −1

β =
(
1−n2 −We

) n
We

Being a cubic, it yields three modes, as expected from our earlier arguments. The fact
that two of these modes are modified capillary wave like modes while the third is a modified
Kelvin wave mode becomes explicit if one considers the limit of a small air core relative to
the vortex core i.e. ξ → 0. In this limit, two eigenvalues reduce to

σ = n+1±
√

1+
n(n2 −1+We)

We
(2.15)

which are the modes of the rotating column with an outer wall. The third mode reduces to
σ = n−1 which is the frequency of the 2D Kelvin mode for the Rankine vortex. Fig. 2.11
shows the behaviour of the three eigenvalues with We for varying radius ratios.
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(a) ξ = 0.1 (b) ξ = 0.5

(c) ξ = 0.9 (d) ξ = 0.999

Fig. 2.12 Comparison of the neutral modes of the Rankine vortex with air-core with those of
the rotation liquid column with air core. The ordinate represents the Doppler frequencies.

A comparison of the planar-wave dispersion relation for the Rankine vortex with an
embedded air core, with the rigidly rotating liquid annulus examined earlier, has been shown
in fig. 2.12. For small ξ , the effects of the outer wall are minimal and the capillary wave like
modes of the hollow Rankine match well with the modes of the hollow solid vortex. The
Kelvin mode doesn’t vary with We at small ξ . For ξ → 1, the azimuthal speed of propagation
of the Kelvin wave (σ/n) becomes equal to the angular velocity of the column (Ω). The
perturbation therefore remains stationary with respect to the column. For ξ close to 1, the
capillary waves differ in the two cases. For the Rankine vortex with air core, these modes
continue to propagate with finite non-zero velocities, but for the rotating annulus, the Doppler
frequencies of the modes vanish for large We and the perturbations rotate rigidly with the
core.
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2.4.3 Three-dimensional perturbations

The dispersion relation for this case is given by[
Jm(ηξ )+

χ

ω̂(4− ω̂
2)

(
(ω̂ −2)

m
ξ

Jm(ηξ )− ω̂ηJm+1(ηξ )
)]

[
Ym(η)k0K′

m(k0)−
ω̂Km(k0)

4− ω̂
2

(
(ω̂ −2)mYm(η)− ω̂ηYm+1(η)

)]
=

[
Ym(ηξ )+

χ

ω̂(4− ω̂
2)

(
(ω̂ −2)

m
ξ

Ym(ηξ )− ω̂ηYm+1(ηξ )
)]

[
Jm(η)k0K′

m(k0)−
ω̂Km(k0)

4− ω̂
2

(
(ω̂ −2)mJm(η)− ω̂ηJm+1(η)

)]
(2.16)

where χ = ξ

We(1−m2−ξ 2k2−We). The above relation reduces to the axisymmetric relation
(eq. 2.11) upon setting m = 0 and to the Rankine vortex dispersion relation for three-
dimensional perturbations if one considers the limit of vanishing air core (ξ ,We → 0 such
that ξ

We → ∞). Fig. 2.13 and 2.14 show the effect of varying ξ and We on the dispersion
curves for the three-dimensional perturbations for n = 1 and 2 respectively. It is worth noting
that, for all cases considered thus far, there is a trivial antisymmetry relation between the
dispersion curves for positive and negative n (for the same k).

2.5 Hollow Rankine Vortex with external strain

The final step in our modeling of the interaction of an air-bubble with a vortex ring is to
account for the self-induced straining flow of the vortex ring. Earlier works of Moore and
Saffman [11] and Tsai and Widnall [19] on single phase vortex rings have considered the
effect of a weak self-induced flow (in the limit of thin rings), and identified a parametric
resonance-driven instability in vortex rings, now known as the MSTW instability. For the
original single-phase vortex ring, and in the thin ring approximation (when the ring cross-
section is much smaller than its radius), the self-straining flow may be approximated as a
planar linear extensional flow acting on a columnar vortex. For the present case, therefore, we
consider a weak planar extensional flow acting on a Rankine vortex but with a concentrically
embedded air core within (fig. 2.15). The non-dimensional strength of the straining field is
denoted by ε where the strain-rate has been scaled with the angular velocity of the rigidly
rotating vortex core (Ω). Note that the parametric resonance above refers to the coupling
induced by the linear straining flow between Kelvin modes, of identical frequencies, but with
azimuthal wave numbers separated by 2 (that is to say, the resonating pair is (n,n+2)). While
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Fig. 2.13 Variation of the set of dispersion curves for n = 1 with ξ and We
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Fig. 2.14 Variation of the set of dispersion curves for n = 2 with ξ and We



48 Stability Of Rotating Liquid Columns With An Embedded Air Core

a
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Fig. 2.15 Rankine vortex with air core under a weakly imposed planar-extensional flow. The
relevant non-dimensional parameters are the Weber number (We = ρΩ2a3/γ) and the radius
ratio (ξ = a/R).

n is, in principal, arbitrary, the dominant pair of resonating Kelvin modes that contribute
to the MSTW instability corresponds to n = 1 and −1. It is worth noting that assessing
the possibility of a parametric resonance does not require one to do the actual stability
problem with the straining flow present. As indicated above, the resonating modes are the
original Kelvin modes of the unstrained Rankine vortex, and having identical frequencies.
The existence of such pairs of modes, with azimuthal wavenumbers separated by two, and
with the same axial wavenumber and frequency, is thus a necessary condition for parametric
resonance. A sufficient condition for such modes to lead to an instability is more complicated,
and related to the energy criterion - the appropriately defined perturbation energies associated
with the resonating modes should have opposite signs. Nevertheless, herein, motivated by
the aforementioned necessary condition for resonance, we will examine the nature of the
dispersion curve intersections in what follows, but for the strained Rankine vortex with an
embedded vortex core.

To begin with, we determine the base state flow fields for the aforementioned configura-
tion. The shape of a vortex core deformed under the influence of an external linear straining
flow is exactly known due to Saffman [10], but the deformation of the column in the presence
of an air core has not yet been studied and must be determined as part of the base state. Note
that the original analysis, without the vortex core, can, in fact, be carried out for arbitrary
amplitudes of the straining flow since the deformed vortex core remains elliptic regardless of
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amplitude (above a critical strain-to-core-vorticity ratio, the core deforms continuously, and
there exists no steady state). In contrast, the existence of a central air core, and the action
of surface tension at the air-water interface, implies that the deformation will not remain
elliptic for finite amplitudes. Thus, the analysis that follows is necessarily restricted to a
weak straining flow.

Let the deformed vortex core be given by r = 1+αεe2iθ and the deformed air core be
r = ξ +βεe2iθ , where the radii of the vortex core and the air-core have been scaled with R
and α and β are the (constant) amplitudes to be determined. Owing to the irrotational nature
of the perturbation velocity, the flow fields within the annular vortex core (ξ < r < 1) take
the following general forms

ur = 2ε
(
Ar−B/r3)e2iθ

uθ = r+2iε
(
Ar+B/r3)e2iθ

uz = 0

p = r2/2−1−4iεBe2iθ/r2

(2.17)

The exterior flow (r > 1), being irrotational, can be specified using only a velocity potential
given by

φ = θ + ε
(
Cr2 +D/r2)e2iθ (2.18)

where the constants A, B, and D are to be determined from the boundary conditions. The
constant C is known as it denotes the imposed straining field. We therefore require five
boundary conditions for the determination of the constants, two of these arise at the air-liquid
interface (r = ξ ) (the kinematic boundary condition requiring the fluid element to move with
the interface, and the normal stress balance) and three at the vortex-core interface (r = 1)
(the kinematic boundary condition applied to each of the interior and exterior velocity fields,
and the normal stress balance). This yields the following expressions for the constants
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Fig. 2.16 Variation of the Weber number corresponding to the base state singularity(Wes)
with radius ratio(ξ ).

A =
iλ

2(λ +ξ 4)

B =
iξ 4

2(λ +ξ 4)

C =
i
4

D =
i
4

(
3ξ 4 −λ

ξ 4 +λ

)
α =

λ −ξ 4

2(λ +ξ 4)

β =
−2Weξ

(We+3)(λ +ξ 4)

(2.19)

where λ is given by λ = 3−3We
3+We . It can be shown that the flow fields thus obtained, reduce

to the corresponding fields given by Widnall [19] under the limit ξ → 0. However, for
non-zero ξ , there exists a singularity in the flow fields at λ = −ξ 4 or, along the curve
We =Wes =

1+ξ 4

1− ξ 4
3

. This variation of Wes with ξ is shown in fig. 2.16. We briefly address

the origin of this singularity in the base state before proceeding with the stability analysis.
We first note that a (weak) linear straining flow with 2θ symmetry (the terms proportional

to A in eq. 2.17) would deform the column in a manner similar to that of a planar perturbation
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with azimuthal wavenumber n = 2. It therefore makes sense for us to investigate the case
of a Rankine vortex with air core (without external strain) undergoing small-amplitude
planar oscillations with n = 2. This case was studied in section 2.4.2. The dispersion curves
corresponding to n = 2 have been reproduced in fig. 2.17. In this figure, it can be seen
that Wes in fact denotes the We corresponding to a zero crossing of the lower capillary
branch, as it transitions from a retrograde to a co-grade character. Note that the speed of a
perturbation wave(with azimuthal wavenumber n) traveling along the azimuth is given by
σ/n. It therefore follows that, at We =Wes, the said capillary mode is stationary in the lab
frame and thereby allows the straining flow to deform it further. The continued action of the
straining flow, for an infinite amount of time, leads to divergent amplitudes of deformation.
Note, however, that this singularity is a consequence of our assumption of the deformation
being linear in the strain rate and indicates that, in the vicinity of Wes, the deformation scales
differently; that is to say, the deformation is more sensitive to the imposed straining flow in
the neighborhood of We =Wes, with the amplitude of deformation being stronger than O(ε),
the exact scaling likely determined by a balance involving nonlinear terms. Although the
singularity of the base-state found here is of interest, it may not be relevant to the experiments
that have motivated the current study, since the We’s corresponding to the singular response
remain moderate regardless of the radius ratio (Wes max = 3). We therefore continue the
linear stability analysis with the implicit focus on We’s much greater than Wes (as in the
experiments) for any given ξ with the base-state given by eq. 2.17 and 2.19 while ensuring
that we do not consider We close to Wes for given ξ .

We now continue with the linear stability analysis of the strained Rankine vortex with air
core along the lines of Tsai and Widnall [19]. As mentioned earlier, the MSTW instability
involves a coupling of two individually neutral modes via an external straining flow. Owing
to the the 2θ symmetry of the flow, a coupling of two perturbations of the form n and n+2
is made possible. Physically, we see that a superposition of two waves (n = 1 and −1 with
identical value of k) leads to the formation of a standing wave on the column (fig. 2.18).
Such a column is then deformed at an exponential rate by the straining flow. The possible
parameter values where a resonance of two modes may lead to such an instability are obtained
via intersections among the dispersion curves of the participating modes (fig. 2.19).

In order to investigate a parametric resonance in a strained Rankine vortex with air
core, we now plot the set of dispersion curves for various values of ξ and We and look
for the intersections i.e. possible sites for a parametric resonance. The two possibilities
of parametric resonance presented here are n = −1 and 1 (fig. 2.20) and n = 0 and 2 (fig.
2.21). The original MSTW instability involves studying the dispersion curves of the Rankine
vortex where all modes are driven by the Coriolis force. Consequently the instability arises
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(a) ξ = 0.1

(b) ξ = 0.5

(c) ξ = 0.9

Fig. 2.17 Neutral modes of the Rankine vortex with air core under planar perturbation with
n = 2. The singular Weber number (Wes - denoted by a vertical dashed line in the figure) is
in fact the We corresponding to the zero-crossing of one of the neutral modes. It follows that
the perturbation flow is stationary in the lab frame and therefore allows a large deformation
by the straining flow.



2.5 Hollow Rankine Vortex with external strain 53

(a) n = 1, k = 0.5 (b) n = 1, k = 0.5
(c) Superposition of (n = 1, k =
0.5) and (n =−1, k = 0.5)

Fig. 2.18 Superposition of two modes with n = 1 and n =−1 results in a stationary wave
that can be amplified by a straining flow.

due to the interaction of two Coriolis-force-driven modes. In the present case of Rankine
vortex with air core, there exist two surface-tension-driven modes besides an infinity of
Coriolis-force-driven modes. This leads to new classes of intersections between the two sets
of dispersion curves shown in fig. 2.20 and 2.21. The first class of intersections correspond to
the interaction between a surface-tension-driven and a Coriolis-driven mode and may be seen
in fig. 2.20 and 2.21. The second class of intesections, which correspond to an interaction
between two surface-tension-driven modes, appear only in 2.21. A magnified view of this
intersection appears in fig. 2.22.

The intersections among two surface-tension-driven modes occur for large We and small
k. Since the instability that might result from this intersection would involve long wavelength
perturbations, it is expected that the effects of viscous damping may not be severe. Also, the
We regime in which these intersections occur is comparable to the We’s in the experiments
of Jha and Govardhan [6]. We therefore expect a parametric resonance, arising from these
intersections, in the presence of a straining flow, leading to a new mechanism for instability
in vortex rings with an entrained air-bubble, and serve as a possible explanation for the
vortex-ring disruption and bubble breakup observed in the aforementioned experiments.
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Fig. 2.19 Dispersion curves (frequency (σ ) vs axial wavenumber(k)) for the Rankine vortex
for n = 1(blue) and n = −1(orange). The intersections of the two curves denote possible
parameter values for a parametric resonance leading to the MSTW instability.
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Fig. 2.20 Intersections among dispersion curves corresponding to n = 1 and n =−1. Besides
the intersections of Coriolis-Coriolis modes, an intersection among a surface-tension-driven
and a Coriolis-driven mode can also be seen. Intersections among two surface-tension-driven
modes are absent here.
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Fig. 2.21 Intersections among dispersion curves corresponding to n = 0 and n = 2. Besides
the intersections of Coriolis-Coriolis modes, intersections among a surface-tension-driven
and a Coriolis-driven mode as well as those between two surface-tension-driven modes (for
We ≥ 1) can be seen here.
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(a) Dispersion curves (frequency (σ ) vs axial wavenumber (k)) for n=0 and 2, with We = 10 and
ξ = 0.5. The figure indicates that the surface-tension-driven modes of n=0 and 2 can intersect for
small k.

(b) A zoomed in view of (a) which clarifies the small k intersection of the two surface-tension-driven
modes.

Fig. 2.22





Chapter 3

Inertial Orientation Dynamics of
Spheroids in Planar Linear Flows

3.1 Introduction

Suspensions of anisotropic particles are ubiquitous in both natural and industrial scenarios,
with the associated phenomena ranging in length scales from the microscopic (shape-sorting
in microfluidic devices, for instance) to the geological (the influence of suspended anisotropic
mineral crystals on magma motion, and the contribution of suspended ice crystals to cloud
albedo). The bulk properties of such suspensions are crucially dependent on the orientation
distribution of these particles subject to both external forces (for example, gravity) and
shearing flows.

In this chapter, we will discuss the orientation dynamics of anisotropic particles in planar
linear flows. Small anisotropic particles in any two-dimensional shearing flow see a planar
linear flow on length scales comparable to their size; planar linear flows form a one-parameter
family. The anisotropic particle is modeled as a spheroid with an arbitrary aspect ratio, and
the focus of this chapter is on the effects of weak fluid inertia on the known nature of the
orientation dynamics in the Stokesian realm. Thus, the relevant non-dimensional parameters
are the spheroid aspect ratio (κ), the linear flow parameter (λ ) and the particle Reynolds
number (Re). The aspect ratio κ is defined as the ratio of the axial to equatorial diameter.
Hence, 0 < κ < 1 for oblate spheroids while κ > 1 for prolate spheroids; note that we also
use the the eccentricity (e =

√
1−1/κ2 , for prolate spheroids and e =

√
1−κ2 for oblate

spheroids), which always lies in the interval (0,1), as an alternative to the spheroid aspect
ratio on occasion. The linear flow parameter (λ ) measures the relative magnitudes of strain
and vorticity for the linear flow under consideration, and ranges between -1 and 1; the three
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Exterior Flow Unit Sphere

Flow-gradient plane
Vorticity Axis

Spheroid with its
orientation vector

Fig. 3.1 A spheroid suspended in a planar linear flow. The figure to the left shows the physical
picture while that to the right shows a unit sphere upon which trajectories traced by the
orientation vector (a unit vector) of the rotating spheroid are plotted.

canonical cases being λ =−1 corresponding to solid body rotation, λ = 0 corresponding to
simple shear flow, and λ = 1 corresponding to planar extension. Re = ρ f γ̇L2/µ serves as a
measure of fluid inertia on the scale of the suspended particle; here, L is the spheroid major
axis, ρ f is the density of the ambient fluid, γ̇ is the strain rate and µ is the viscosity. The
analysis in the chapter, as indicative above, is restricted to small but finite Re. The analysis
does not include particle inertia and thus the Stokes number (St = ρpγ̇L2/µ , ρp being the
particle density) is taken to be zero.

The orientation dynamics of a spheroid in the Stokes limit (Re = 0), in simple shear
flow, was first studied by Jeffery, who showed that a spheroid rotates along closed orbits
(termed Jeffery orbits hereafter) in such a flow, with the particular orbit being determined
by the spheroid initial orientation; the shape of the orbits is a function of κ . The orbits are
characterized by an orbit constant C which ranges from 0 to ∞; the limiting orbits C = 0
and ∞ correspond, respectively, to a spinning motion of the spheroid with its symmetry
axis along the ambient vorticity, and a tumbling motion in the flow-gradient plane with the
symmetry axis orthogonal to the ambient vorticity; the general finite-C orbit corresponds to a
three-dimensional precessing motion. Hinch and Leal [8] showed that spheroids continue
to rotate along Jeffery orbits in planar linear flows provided λ is below a critical value
(λc) that is a function of the spheroid aspect ratio; λc = 1/κ2 for prolate spheroids and
λc = κ2 for oblate spheroids. As indicated in fig. 3.1, we interpret the spheroid orientation
dynamics in terms of the trajectories traced by its orientation vector on the unit sphere. From
a dynamical systems perspective, λ = λc correspond to a qualitative change of the trajectory
topology on the unit sphere. From symmetry considerations, and regardless of κ or λ , the
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pair of intersections of the vorticity axis with this unit sphere are fixed points. For λ < λc,
these fixed points are centers, with the closed orbits around them being the aforementioned
Jeffery orbits, the largest of them corresponding to the great circle in which the flow-gradient
plane intersects the unit sphere. For λ > λc, the closed orbits open up via a saddle-node
bifurcation in the flow-gradient plane which leads to two pairs of (diametrically opposite)
stable and unstable nodes, as required by symmetry of the linear flow; additionally, the
vorticity-axis fixed points transform to saddles, as is also required from the conservation of
the Euler characteristic (equal to two for the unit sphere). At λ = λc, one has a degenerate
scenario with the trajectories having a meridional character, and there being a great circle of
(parabolic) fixed points. The bifurcations on each side of λc have been shown in Fig. 3.2.

The orientation dynamics in the Stokesian realm for λ < λc, as described above, leads
to a degenerate scenario owing to the Jeffery orbit of a given spheroid determined by its
initial orientation, and the suspension bulk properties being therefore determined by its
initial preparation. The Stokesian orientation dynamics therefore does not lead to a unique
orientation distribution across the Jeffery orbits. In order to address this problem, Marath and
Subramanian [9] considered the effect of weak fluid inertia on the orientation of spheroids and
thus obtained the leading order inertial correction to Jeffery’s Stokesian formulation (eq.3.15).
The authors show that, as a consequence of fluid inertia, the original Jeffery orbits open up.
For small but finite Re, a weakly inertial spheroid exhibits a slow drift across these orbits.
Under the assumption that the time scale of this inertial drift is asymptotically long compared
to the Jeffery period, the authors formulate a one-dimensional description with the only
dynamical variable being the orbit constant (C). The sign of the orbital drift (dC/dt) dictates
the stability of the spinning and tumbling modes. Thus, dC/dt < 0(> 0)∀C corresponds to
the spinning (tumbling) mode being stabilized for long times. The sign of dC/dt thereby
allowed the authors to demarcate regions in the relevant parameter space (the λ −κ plane)
where the spheroids may undergo spinning or tumbling motions. The authors also identified
regions in the λ −κ plane where dC/dt changes sign across a critical C (C =C∗, say), so
that the unit sphere is now divided into distinct basins of attraction corresponding to the
spinning and tumbling modes, with the basins of attraction demarcated by a pair of unstable
(repelling) limit cycles that, at leading order, are Jeffery orbits corresponding to C = C∗.
Thus, initial orientations corresponding to C <C∗ asymptote to spinning motion for long
times, while those for C > C∗ asymptote to a tumbling motion. Fig. 3.3 summarizes the
spinning-tumbling transitions in the λ −κ plane, based on the one-dimensional orbit constant
analysis. The unit sphere trajectory topology pattern corresponding to these bifurcations is
shown in fig. 3.4.
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Fig. 3.2 The unit-sphere trajectory topology, for spheroids in a planar linear flow, for Re = 0:
oblate spheroids (left) and prolate spheroids (right). The trajectories transition from closed
orbits to open trajectories across λc (= κ2 for oblate and 1/κ2 for prolate spheroids). Figure
taken from [9].

This one-dimensional dynamical picture, however, relies on the assumption of the drift
time being much longer than the Jeffery time - an assumption that invariably breaks down in
the vicinity of λc owing to the divergence of the Jeffery period (this divergence is accompanied
by the transition of the closed orbits to an increasingly meridional character). The one-
dimensional formulation, therefore, cannot resolve the detailed bifurcation scenarios close to
λc and one needs to consider the original two-dimensional system comprising the equations
for the two Jeffery angles. These angles are θ , the polar angle of the spheroid axis with
respect to the ambient vorticity, and φ , the angle between the spheroid axis projected onto
the flow-gradient plane and the flow direction. The analysis of the sequence of bifurcations
characterizing (θ ,φ), that replaces the critical curves λ = κ2 and 1/κ2 in the one-dimensional
formulation, forms the subject of this chapter. In what follows, we present the fixed point
analysis for Jeffery’s equations (eq. 3.1) which govern the orientation dynamics of spheroids
in inertialess flows. Next, we analyze the equations originally derived by Marath and
Subramanian (2018) which account for the effect of weak fluid inertia. ( eq. 3.15).



3.1 Introduction 63

Fig. 3.3 The one-dimensional bifurcation scenario, for a spheroid in a planar linear flow, for
small but finite Re. Figure taken from [9]. The global trajectory patterns corresponding to
the different regimes are shown in fig. 3.4
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(a) λ =−0.90. All trajectories (only one shown)
spiral towards the flow gradient plane - Tumbling

(b) λ =−0.71. A repeller (Jeffery orbit with C
= ∞, shown in yellow) exists on the unit hemi-
sphere.

(c) λ =−0.40. All trajectories (only one shown)
spiral towards the vorticity axis - Spinning

(d) λ = 0.20. A bifurcation in the flow gradient
plane creates a pair of stable / unstable nodes
while simultaneously, a saddle is generated at the
vorticity axis.

Fig. 3.4 Bifurcation scenarios for an oblate spheroid obtained by Marath and Subramanian
[9] discussed in fig. 3.3. Here κ = 0.05, the flow-gradient plane is the x− y plane while
z-axis is the vorticity axis. The figure depicts the trajectory topology on the unit sphere as one
moves along a vertical line in the λ −κ plane; λ increases from −1 towards 1, with κ = 0.05
(an oblate spheroid). The X ,Y and Z axes in the plots above denote the flow, flow-gradient
and vorticity directions, respectively. Each trajectory is composed of a blue and an orange
section. The blue part represents evolution of the initial condition forward in time while the
orange part denotes backward time evolution. The initial condition used for the trajectory
lies therefore at the junction of blue and orange sections.
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3.2 Trajectory topology for Re = 0 (the Stokes case)

The Jeffery equations, valid for spheroids in inertialess linear flows, may be written as

θ̇ =

(
1+λ

4

)
κ2 −1
κ2 +1

sin2θ sin2φ

φ̇ =−
(

1−λ

2

)
+

(
1+λ

2

)
κ2 −1
κ2 +1

cos2φ

(3.1)

Regardless of κ or λ , the fixed points of this system lie either on the vorticity axis or on the
flow-gradient plane. We first look at the fixed points in the flow-gradient plane.

3.2.1 Oblate Spheroids

Fixed points in the flow-gradient plane

We begin with the flow-gradient plane analysis corresponding to θ = π/2. As mentioned
earlier, the Stokesian trajectory topology is qualitatively altered across λ = λc. The fixed
points that appear in the flow-gradient plane do so first in the vicinity of φ = π/2 (the gradient
axis). Thus, we analyze the system 3.1 in the neighborhood of the flow axis, and towards this
end, define:

θ̂ =θ − π

2
φ̂ =φ − π

2

(3.2)

Using these expressions in 3.1, the dynamical system in terms of θ̂ and φ̂ takes the form

⇒ ˙̂
θ = α sin2θ̂ sin2φ̂

˙̂
φ =−

(
1−λ

2

)
−2α cos2φ̂

(3.3)

where α = 1+λ

4

(
κ2−1
κ2+1

)
. Note that θ̂ ,φ̂ ≪ 1 in the neigbourhood of the flow axis. Setting

˙̂
θ = 0 gives (trivially) θ̂ = 0, whereas, using the small φ̂ form for cos2φ̂ in ˙̂

φ = 0 gives

φ̂ =±
(

4α +1−λ

8α

)1/2
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Therefore, φ̂ is real if(
4α +1−λ

8α

)
> 0

⇒ κ2 −λ

(1+λ )(κ2 −1)
> 0 (substituting for α)

⇒ κ
2 −λ < 0 (∵ κ < 1 for oblate spheroids)

⇒ λ > κ
2

Therefore, there exists a critical value of λ given by λc = κ2 beyond which there emerge a
pair of fixed points in the flow-gradient plane via a saddle-node bifurcation. These are given
by

φ̂1,2 =±
(

κ2 −λ

(1+λ )(κ2 −1)

)1/2

(3.4)

Since φ̂ = φ −π/2, the original φ coordinates are given by

⇒ φ1,2 =
π

2
±
(

κ2 −λ

(1+λ )(κ2 −1)

)1/2

(3.5)

The two fixed points, therefore, emerge on either side of φ = π/2. In order to determine the
nature of these fixed points, consider another transformation

φ̃ = φ̂ − φ̂0

θ̃ = θ̂
(3.6)

where φ̂0 = φ̂1,2 corresponds to either of the flow-gradient fixed points. In the neighbourhood
of the fixed point, we have θ̃ ≪ 1 and φ̃ ≪ φ̂0 ≪ 1. Using eq. (3.6) in eq. (3.3), at linear
order, we have [

˙̃
θ

˙̃
φ

]
=

[
4αφ̂0 0

0 8αφ̂0

][
θ̃

φ̃

]
(3.7)

The eigenvalues of the matrix are simply the diagonal entries in this case. Since α =
1+λ

4

(
κ2−1
κ2+1

)
is a negative quantity (owing to the fact that κ < 1 for oblate spheroids), the

eigenvalues are either both negative when φ̂0 > 0 or both positive if φ̂0 < 0. It follows that
(θ ,φ) ≡ (π

2 + κ2−λ

(1+λ )(κ2−1)) is a stable node and (θ ,φ) ≡ (π

2 − κ2−λ

(1+λ )(κ2−1)) is an unstable
node. Owing to the symmetry of the linear flow configuration, there must exist another
stable/unstable node pair on the diametrically opposite end of the great circle in which the
unit sphere intersects the flow-gradient plane, yielding a total of four fixed-points in this
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plane. In summary, no fixed points exist in the flow gradient plane below critical λ (λc = κ2)
while beyond it, there exists two pairs of stable and unstable nodes diametrically opposite to
each other.

Fixed points on the vorticity axis

In a similar manner, we can characterize the behaviour of the fixed points on the vorticity axis.
We begin with the system of equations 3.1 and proceed to linearize in the neighbourhood of
the vorticity axis fixed point, θ = 0. In the neighbourhood, one has θ ≪ 1 but 0 ≤ φ < 2π

prohibiting a linearization in φ . The governing equations, in the limit of small θ then become

θ̇ =

(
1+λ

4

)
κ2 −1
κ2 +1

4θ sinφ cosφ

φ̇ =−
(

1−λ

2

)
+

(
1+λ

2

)
κ2 −1
κ2 +1

cos2φ

(3.8)

Using the Cartesian relations for small θ

x = θ cosφ

y = θ sinφ
(3.9)

transforms eq. (3.8) to [
ẋ
ẏ

]
=

 0
(

κ2−λ

κ2+1

)(
λκ2−1
κ2+1

)
0

[
x
y

]
(3.10)

In Cartesian terms, the vorticity-axis fixed point is given by (0,0) and the associated eigen-
values are

E1,2 =±
[(

κ2 −λ

κ2 +1

)(
λκ2 −1
κ2 +1

)]1/2

(3.11)

For λ < κ2, the eigenvalues are imaginary and the fixed point is a center, whereas, for λ > κ2,
the eigenvalues are real with opposite signs and the fixed point is therefore a saddle. Owing
to the symmetry of the configuration, an identical fixed point exists at the diametrically
opposite end of the unit sphere.

One may now summarize the bifurcation scenario for an oblate spheroid in the Stokes
limit. For λ < κ2, there exist only the two vorticity-axis fixed points, both of which are
centers, with Jeffery orbits occupying the remainder of the unit sphere. As λ increases
beyond κ2, the vorticity axis centers transform to saddles while four fixed points (two pairs
of stable/unstable nodes) emerge simultaneously in the flow gradient plane via saddle-node
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bifurcations at φ = π/2 and 3π/2. Note that, when λ < λc, the two centers have a fixed
point index of 1 each. For λ > λc, the two saddles have a fixed point index of −1 each while
the index is unity for each of the four nodes in the flow-gradient plane, thereby adding up to
2. The Euler characteristic of the sphere, which is the sum of the indices of all fixed points on
the sphere, is thereby preserved on either side of the bifurcation, as must be the case, being a
topological invariant.

3.2.2 Prolate Spheroid

Fixed points in the flow-gradient plane

In a manner similar to the oblate spheroid, we can obtain the bifurcation scenario for the
prolate case. We begin with eq. 3.1 and again restrict ourselves to the flow-gradient plane
(θ = π/2) to begin with. Then, θ̇ = 0 is immediately satisfied and imposing φ̇ = 0 yields

φ0 =±
(

λκ2 −1
(1+λ )(κ2 −1)

)1/2

(3.12)

which is real if λ > 1/κ2. Therefore, two critical points emerge on the flow-gradient plane,
in the vicinity of the flow axis, as λ exceeds the critical lambda λc = 1/κ2. In order to
analyze the fixed points, we linearize the system after using the transformation

θ̂ = θ −π/2

φ̂ = φ −φ0
(3.13)

where θ̂ , φ̂ ≪ 1. As for the oblate spheroids, note that the linearization requires φ̂ ≪ φ0 ≪ 1,
which becomes increasingly restrictive in the vicinity of the bifurcation (λ = 1/κ2). In the
transformed coordinates, one obtains the system of equations as

⇒

[ ˙̂
θ

˙̂
φ

]
=

[
−(1+λ )κ2−1

κ2+1φ0 0

0 −2(1+λ )κ2−1
κ2+1φ0

][
θ̂

φ̂

]
(3.14)

The eigenvalues, being simply the diagonal entries, indicate that the fixed point with negative
φ value in 3.12 acts as an unstable node while that with positive φ value is a stable node.
Symmetry considerations imply that identical fixed points must exist at diametrically opposite
points on the sphere. Therefore, the saddle-node bifurcation results in four fixed points in the
flow gradient plane - two pairs of stable and unstable nodes.
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Fixed points on the vorticity axis

The vorticity axis analysis for the prolate case remains identical to that of oblate, allowing us
to describe the complete bifurcation scenario. If λ < 1/κ2, two centers exist on the vorticity
axis which transform to saddles as λ increases beyond 1/κ2. Simultaneously, a saddle-node
bifurcation in the flow-gradient plane gives rise to two pairs of stable/unstable nodes. The
difference being, that the fixed points emerge on either side of φ = 0 and φ = π as opposed
to φ = π/2 and 3π/2 for the oblate spheroid.

This completes the analysis of the orientation dynamics of spheroids in planar linear
flows, in the Stokes limit, where the trajectory topology on the unit sphere is seen to be
qualitatively altered across λ = κ2 and 1/κ2 for oblate and prolate spheroids, respectively.

3.3 Trajectory topology for small but finite Re

Equations governing the orientation of a spheroid, in planar linear flow with weak fluid
inertial effects (small but finite Re), as first obtained by Marath and Subramanian [9] are

θ̇ =

(
1+λ

4

)
κ2 −1
κ2 +1

sin2θ sin2φ +

Resinθ cosθ

[
F f

1 (ξ0,λ )+F f
2 (ξ0,λ )cos2φ +F f

3 (ξ0,λ )cos2θ+

F f
4 (ξ0,λ )cos4φ +F f

5 (ξ0,λ )cos(2θ −4φ)+F f
6 (ξ0,λ )cos(2θ +4φ)

]
φ̇ =−

(
1−λ

2

)
+

(
1+λ

2

)
κ2 −1
κ2 +1

cos2φ +

Resinφ cosφ

[
G f

1 (ξ0,λ )+G f
2 (ξ0,λ )cos2θ +G f

3 (ξ0,λ )cos2φ+

G f
4 (ξ0,λ )cos(2θ)cos(2φ)

]

(3.15)

where F f
i (ξ0,λ )’s and G f

i (ξ0,λ )’s are as defined in [9].

3.3.1 Oblate Spheroid

Fixed-points in the flow-gradient plane

To begin with, our focus is on fixed points in the flow-gradient plane, and towards this end,
we assume (θ ,φ) ≡ (π/2,φ0). Using this leads to the following transcendental equation
governing φ0
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−
(

1−λ

2

)
+2α cos2φ0 +Resinφ0 cosφ0

[
G f

1 −G f
2 +G f

3 cos2φ0 −G f
4 cos2φ0

]
= 0

Keeping in mind that the saddle-node bifurcation in the Stokesian case occurs at φ0 = π/2
(when λ = κ2), one expects the solution of the transcendental equation to be close to π/2
for small Re. Thus, we set φ0 = π/2+ φ̂0, with φ̂0 ≪ 1, whence one obtains

⇒−
(

1−λ

2

)
−2α(1−2φ̂

2
0 )−Reφ̂0

[
G f

1 −G f
2 −G f

3 cos2φ̂0 +G f
4 cos2φ̂0

]
= 0

⇒−
(

1−λ

2

)
−2α(1−2φ̂

2
0 )−Reφ̂0

[
G f

1 −G f
2 −G f

3 +G f
4

]
= 0

using the small φ̂ form for cos2φ̂ . The above quadratic equation is readily solved, and yields
the following roots

φ̂01,02 =
ReG ±

(
Re2G 2 +4(1+λ )κ2−1

κ2+1
κ2−λ

κ2+1

)1/2

2(1+λ )κ2−1
κ2+1

(3.16)

where G (ξ0,λ ) = G f
1(ξ0,λ )−G f

2(ξ0,λ )−G f
3(ξ0,λ )+G f

4(ξ0,λ ). We thus obtain the az-
imuthal coordinates of the fixed points in the flow gradient plane. Note that the point of
emergence of the fixed points is no longer at φ = π/2, as was the case without fluid inertia.
The fixed points now emerge at

φ01 = φ02 =
π

2
+

ReG

2(1+λ )κ2−1
κ2+1

The final coordinates of the fixed points are therefore

φ01,02 =
π

2
+

ReG

2(1+λ )κ2−1
κ2+1

±

(
Re2G 2 +4(1+λ )κ2−1

κ2+1
κ2−λ

κ2+1

)1/2

2(1+λ )κ2−1
κ2+1

(3.17)
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Fluid inertia, therefore, shifts the points of emergence away from the gradient axis by an
amount of O(ReG ). Furthermore, the coordinates of the fixed points are real when

Re2G 2 +4(1+λ )
κ2 −1
κ2 +1

κ2 −λ

κ2 +1
≥ 0

This gives us a criterion for the flow-gradient bifurcation leading to the emergence of φ01,02.
Let’s say that the critical value of λ required for this bifurcation is λFG1, then it’s given by
the equation

Re2G 2(ξ0,λFG1)+4
(1+λFG1)(κ

2 −1)(κ2 −λFG1)

(κ2 +1)2 = 0 (3.18)

Knowing the coordinates of the fixed points (φ̂01,02), we can now linearize the system
(about (θ̂ , φ̂)≡ (0,0)) and determine their character. The linearized system becomes

⇒

[ ˙̂
θ

˙̂
φ

]
=

[
(1+λ )κ2−1

κ2+1 φ̂0 −Re F 0

0 2(1+λ )κ2−1
κ2+1 φ̂0 −Re G

][
θ̂

φ̂

]
(3.19)

where F = F f
1 −F f

2 −F f
3 +F f

4 −2F f
5 and G = G f

1 −G f
2 −G f

3 +G f
4 . Setting Re = 0 gives

back the Stokes case equations (eq. 3.7). Let E1,2 be the eigenvalues of the matrix in eq. 3.19.
Then

E1 = (1+λ )
κ2 −1
κ2 +1

φ̂0 −Re F (ξ0,λ ) (3.20)

E2 = 2(1+λ )
κ2 −1
κ2 +1

φ̂0 −Re G (ξ0,λ ) (3.21)

Here, φ̂0 is the coordinate of a flow gradient fixed point in the rotated frame (eq. 3.16).
Depending on the sign of the eigenvalues either of the two fixed points (corresponding to
φ̂ = φ̂01,02), may either be a node or a saddle. Substituting φ01,02 in E2 and equating it to
zero gives back the criterion for λFG1. Therefore E2 does not change sign for either of the
fixed points. Substituting φ01,02 in E1 and equating it to zero, yields the following criterion

Re2(G −2F )2 −Re2G 2 −4
(1+λFG2)(κ

2 −1)(κ2 −λFG2)

(κ2 +1)2 = 0 (3.22)

where λFG2 is the critical λ required for the second bifurcation in flow-gradient plane. It can
be seen that, λFG2 > λFG1. Note that the criterion remains the same regardless of whether
one substitutes φ01 or φ02. Therefore, depending on the aspect ratio (κ), E1 may change sign
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for either one of the fixed points, and thereby, the fixed point transforms its character. This
change of sign occurs for mutually exclusive values of κ i.e. there exists a critical aspect
ratio κc (≈ 0.328) such that the transformation involves a bifurcation of φ01 for κ < κc and a
bifurcation of φ02 otherwise.

Based on the fixed point analyses, one may now summarize the fixed point bifurcations
in the flow-gradient plane for small but finite Re. If κ > 0.328 and λ < λFG1, no fixed
points exist in the flow gradient plane. As λ increases beyond λFG1, two fixed points
emerge and move apart from each other along the equator. One of these has two positive
eigenvalues whereas the other has a positive and a negative eigenvalue. Therefore, a saddle-
node (unstable) pair is generated after the first bifurcation. As λ increases beyond λFG2,
both eigenvalues of the saddle become negative and the saddle transforms to a stable node.
The flow-gradient plane thus goes from a saddle-node (unstable) pair to a stable-unstable
node pair. If κ < 0.328, a limit cycle exists in each hemisphere. In this case, the first
bifurcation in the flow gradient plane results in a saddle-node (stable) pair while the second
bifurcation transforms the saddle to an unstable node. The flow-gradient plane thus goes
from a saddle-node (unstable) pair to a stable-unstable node pair.

Fixed points on the vorticity axis

We now proceed to analyze the bifurcations on the vorticity axis in a similar manner. Lin-
earizing about θ = 0 yields the system of equations

⇒

[
ẋ
ẏ

]
=

Re(F f
1 +F f

2 +F f
3 )

(
κ2−λ

κ2+1

)(
λκ2−1
κ2+1

)
Re(F f

1 −F f
2 +F f

3 )

[
x
y

]
(3.23)

The eigenvalues (E1,2) for this system of equations are given by

E1,2 = Re(F f
1 +F f

3 )±

√(
Re2(F f

2 )
2 +

κ2 −λ

κ2 +1
λκ2 −1
κ2 +1

)
(3.24)

which immediately yields two bifurcation scenarios. For λ ’s less than a critical value (say
λV 1), the argument of the square root remains negative and thus the eigenvalues complex.
Since F f

1 (κ,λ )+F f
3 (κ,λ ) remains negative for 0 < κ < 1, the fixed point is a stable spiral

for λ < λV 1.
As λ is increased beyond λV 1, one obtains a pair of real and negative eigenvalues. The

fixed point therefore transitions from a stable spiral to a stable node. Increasing lambda
further (say beyond λV 2) causes one of the eigenvalues to become positive and the fixed point
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therefore transitions to a saddle. The criteria for the first bifurcation, therefore, becomes

Re2(F f
2 )

2 +

(
κ2 −λ1

κ2 +1

)(
λ1κ2 −1
κ2 +1

)
= 0 (3.25)

and that for the second bifurcation becomes

Re(F f
1 +F f

3 )+

√
Re2(F f

2 )
2 +

(
κ2 −λ2

κ2 +1

)(
λ2κ2 −1
κ2 +1

)
= 0 (3.26)

We have thus characterized four bifurcations for the oblate spheroid - two on the flow-
gradient plane and two on the vorticity axis (eqs. 3.18 , 3.22, 3.25, 3.26). Fig. 3.5 shows a plot
of the threshold flow parameters (λV 1,λV 2,λFG1,λFG2), for the aforementioned bifurcations,
as a function of the aspect ratio (κ) for a fixed Re. This figure also shows the limit cycle
emergence and annihilation curves which are (seemingly) unrelated to the analysis above.
The bifurcation thresholds as a function of Re, for an oblate spheroid with κ = 0.1, are shown
in fig. 3.6. The sequence of finite-Re bifurcations obtained thus far have been schematically
illustrated in fig. 3.7 which shows the character of the fixed points generated due to each
bifurcation.

Interior fixed points

We now invoke an argument based on the Euler characteristic of the unit sphere (which is
a topological invariant, and therefore, conserved regardless of bifurcations in the trajectory
topology), to show that between the second flow-gradient plane bifurcation (λFG2- red curve
in fig. 3.7) and the second vorticity axis bifurcation (λ2- orange curve in fig. 3.7) the fixed
points in the flow-gradient plane and those on the vorticity axis cannot by themselves repre-
sent a consistent set of fixed points on the unit sphere. It is known that Euler characteristic
for a sphere must be 2 and hence the fixed point indices for all fixed points on the unit sphere
must add up to two. The fixed point index is 1 for a spiral, 1 for the nodes and -1 for a saddle.
Consider the case without a limit cycle. Starting from the first (lowermost) regime in fig.
3.7, the unit sphere consists only of two spirals and the Euler characteristic requirement is
immediately satisfied. As λ is increased beyond λV 1, two fixed points appear on the flow
gradient plane - a saddle and a node. Due to the symmetry of the configuration, an identical
saddle-node pair exists on the diametrically opposite point on the unit sphere. The sum
of fixed point indices is therefore 2 (due to spirals) + 2 (due to nodes) - 2 (due to saddles)
which adds up to 2. If λ is now increased beyond λFG2, the Euler characteristic requirement
breaks down, as the sum now becomes 2(due to spirals) + 4(due to nodes) which is 6. For
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(a) The general sequence of the bifurcation curves.

(b) A zoomed out version of 3.5a highlighting the bifurcation corresponding to emergence of the limit
cycle (LC1).

(c) A zoomed in version of 3.5a which focuses on the curve corresponding to the vanishing of the
limit cycle (LC2).

Fig. 3.5 The variation of the inertial bifurcation thresholds (relative to the Stokesian threshold
λc = κ2) of an oblate spheroid with κ = 0.1, for Re = 0.5. The figures show both the bifur-
cation curves obtained from the fixed point analysis detailed earlier, and the two thresholds
corresponding to the emergence and annihilation of the limit cycle.
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Fig. 3.6 Effect of fluid inertia on the bifurcation thresholds for κ = 0.1. The Y-axis here
denotes the actual value of λ . It can be seen that the four bifurcations merge onto the lone
Stokesian threshold (= κ2) as Re → 0. With increasing Re, the bifurcation thresholds move
farther apart and the bifurcations appear distinct.

λ > λFG2, one has 4 nodes and 2 saddles and thereby again satisfying the Euler characteristic
requirement. A similar argument can also be made regarding the scenario involving a limit
cycle (keeping in mind that the fixed point index for a limit cycle is 0). This indicates that, for
λFG2 < λ < λV 2, the current picture does not encapsulate all fixed points on the unit sphere.
There must then exist other fixed points, besides the ones on the flow-gradient plane and
the vorticity axis, that our analysis has not yet addressed. We will refer to these as interior
fixed points. In line with the Euler characteristic requirement, the simplest resolution would
be to have a set of four symmetrically located interior saddle points in the parameter space
between λFG2 and λV 2. As we will see, this indeed turns out to be the case.

In order to investigate the interior fixed points, the presence of which is implied by the
above arguments, we now go beyond fixed point analyses and plot the global trajectory
patterns for a fixed Re and aspect ratio (κ), and with varying flow parameter λ . These plots
will allows us to validate the bifurcation scenarios predicted from the fixed point analysis
and examine additional features that arise due to the presence of the aforementioned interior
fixed points. Fig. 3.8 shows a sequence of unit-sphere trajectory topologies for an oblate
spheroid with κ = 0.1, with increasing λ . For illustration purposes, Re has been taken to be
1. The inset on the left shows the four bifurcation regimes determined from the fixed-point
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Sp
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UN SN

UN SN

UN SN
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Fig. 3.7 A schematic of the fixed points, on the flow-gradient plane and on the vorticity
axis, obtained from the analysis of eq. 3.15 for an oblate spheroid with κ = 0.1 (< κc). The
abbreviations used are as follows: Sp - Spiral, SN - Stable Node, UN - Unstable Node and
Sd - Saddle. The fixed point configurations corresponding to the regions between the curves
for λFG2 and λV 2, do not have the indices of the fixed points adding up to the sphere Euler
characteristic (2). There must therefore exist other interior fixed points besides the ones
shown on the vorticity axis and the flow-gradient plane. Note that the fixed point index of a
limit cycle is zero. For the sake of clarity, therefore, the curves corresponding to the limit
cycle origin and annihilation have not been shown in the above figure.
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analysis above, and an additional curve corresponding to the annihilation of the limit cycle.
A black point within the inset denotes the current state of the system in the parameter space,
and thereby, indicates the bifurcation regime corresponding to each global trajectory plot.
The shaded region in the inset indicates the regime where an interior fixed point exists. The
figures on the right show the trajectory topology in the neighborhood of the visible fixed
points. Beginning with a state already described in [9], we introduce new bifurcations not
captured earlier by the one-dimensional model of Marath and Subramanian. The captions
emphasize the key features for each plot.
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(a) λ = 0.004. In the current configuration, the system has a stable spiral at the vorticity axis and a
repelling limit cycle surrounding it. No fixed points exist in the flow-gradient plane.

(b) λ = 0.005. Two fixed points - a stable node and a saddle - marked with red dots emerge in the
flow gradient plane as λ is increased beyond λFG1.
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(c) λ = 0.00555. As λ increases beyond λFG2, a second flow-gradient bifurcation transforms the
saddle (of the original saddle-node pair) into an unstable node, and a new interior fixed point
(together with its mirror image as required by symmetry - not visible) emerges along with the above
transformation of the fixed point. This interior fixed point is a saddle, as expected, due to the Euler
characteristic requirement.

(d) λ = 0.0056. The interior saddle moves and collides with the repelling limit cycle. Note that an
identical collision also occurs on the opposite side of the hemisphere and the repelling limit cycle
therefore collides simultaneously with two saddles in a Heteroclinic Bifurcation.
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(e) λ = 0.006. The repellers on both hemispheres are annihilated due to a heteroclinic bifurcation.
The interior fixed point remains a saddle. The bifurcation does, however, deviates the interior saddle
away from its original meridional trajectory.

(f) λ = 0.008. With increasing λ , the fixed points in the flow-gradient plane continue to move apart,
while the interior fixed point moves towards the vorticity axis.
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(g) λ = 0.011. As λ is increased beyond λ1, the vorticity axis fixed point transitions from a spiral to a
node. For small Re, this bifurcation is difficult to clarify via the trajectory plots.

(h) λ = 0.015. The interior fixed point (a saddle) continues to move toward the vorticity axis. Note,
however, that this movement is not along a meridian (drawn as dotted black lines for reference.)
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(i) λ = 0.016. The interior saddle reaches the vorticity axis and the vorticity axis fixed point transitions
from a stable node to a saddle, as predicted from the fixed-point analysis.

(j) λ = 0.017. No new bifurcations occur henceforth for increasing λ . The one-dimensional model in
[9] predicts this state as λ is increased beyond κ2.

Fig. 3.8 Global trajectory patterns for the oblate spheroid, with κ = 0.1, with increasing
λ . For illustration purposes, Re has been taken to be 1. The inset on the left shows
the four bifurcation regimes determined from the fixed-point analysis and an additional
curve corresponding to the annihilation of the limit cycle. A black point within the inset
denotes the current state of the system in the state space and indicates the bifurcation regime
corresponding to each global trajectory plot. The shaded region in the inset indicates the
regime where an interior fixed point exists. The figures on the right show the trajectory
topology close to the visible fixed points.
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The bifurcation scenario for the case without the limit cycle (and thence without the
heteroclinic bifurcation) has been briefly discussed in Fig. 3.9

(a) λ = 0.488. λFG1 now generates two unstable node - saddle pairs (only one pair visible) in the
flow-gradient plane as opposed to the saddle - stable node pairs in the case with κ < 0.328 (fig. 3.8b).

(b) λ = 0.495. λFG2 now causes the saddle in the flow-gradient plane to bifurcate into a stable node
and two saddles (only one visible) which emerge as interior fixed points. The interior saddle point
retains its meridional trajectory in this case.

Fig. 3.9 Global trajectory patterns for the oblate spheroid, with κ = 0.7, Re = 1, with
increasing λ .
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3.3.2 Prolate Spheroid

Fixed points in the flow-gradient plane

The analysis for the prolate case proceeds along the same lines as that of the oblate spheroids.
We therefore mention here only the key components of the analysis, starting with the
bifurcations in the flow-gradient plane.

To begin with, assume that a fixed point exists in the flow gradient plane so that its
coordinates are given by (θ ,φ)≡ (π/2,φ0) such that φ0 ≪ 1, that is the fixed point lies close
to its value for the inertialess case. Substituting this in the equation for φ̇ (eq. 3.15), we
obtain

−(
1−λ

2
)+2α(1−2φ

2
0 )+Re φ0 G = 0 (3.27)

where α = 1+λ

4
κ2−1
κ2+1 and G = G f

1(ξ ,λ )−G f
2(ξ ,λ )+G f

3(ξ ,λ )−G f
4(ξ ,λ ). The solution to

the quadratic is given by

φ0 =
Re G ±

√
Re2G 2 − 4(1+λ )(κ2−1)(1−λκ2)

(κ2+1)2

2(1+λ )κ2−1
κ2+1

(3.28)

which is real only if

Re2G 2 − 4(1+λ )(κ2 −1)(1−λκ2)

(κ2 +1)2 = 0 (3.29)

The condition for the first bifurcation in the flow-gradient plane which results in two fixed
points is then given by

Re2G 2 − 4(1+λFG1)(κ
2 −1)(1−λFG1κ2)

(κ2 +1)2 = 0 (3.30)

In order to obtain the next bifurcation, we must determine the character of the generated
fixed points. To this end, we linearize the system about (θ ,φ) ≡ (π/2,φ0). Consider the
transformation

θ̂ = θ −π/2

φ̂ = φ −φ0
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so that θ̂ , φ̂ ≪ 1. Linearization about (θ̂ , φ̂)≡ (0,0) yields the system of equations

⇒

[ ˙̂
θ

˙̂
φ

]
=

[
−(1+λ )κ2−1

κ2+1φ0 −ReF 0

0 −2(1+λ )κ2−1
κ2+1φ0 +ReG

][
θ̂

φ̂

]
(3.31)

where F = F f
1 (ξ ,λ )+F f

2 (ξ ,λ )−F f
3 (ξ ,λ )+F f

4 (ξ ,λ )−2F f
5 (ξ ,λ ) and

G =G f
1(ξ ,λ )−G f

2(ξ ,λ )+G f
3(ξ ,λ )−G f

4(ξ ,λ ). The eigenvalues of this system of equation
are simply its diagonal entries. It can be seen numerically, that the eigenvalue −2(1+
λ )κ2−1

κ2+1φ0 +ReG does not change sign for either of the fixed points. The criterion for second
bifurcation is thus obtained by substituting the coordinates of the fixed points (eq. 3.28) in
the other eigenvalue. The criterion becomes

Re2((G +2F )2 −G 2)+
4(1+λFG2)(κ

2 −1)(1−λFG2κ2)

(κ2 +1)2 = 0 (3.32)

We therefore have the criteria for the pair of bifurcations in the flow-gradient plane.

Fixed points on the vorticity axis

The bifurcation criteria for the vorticity axis bifurcations remains identical to the oblate case
and are given by

Re2(F f
2 )

2 +

(
κ2 −λV 1

κ2 +1

)(
λV 1κ2 −1

κ2 +1

)
= 0 (3.33)

Re(F f
1 +F f

3 )−

√
Re2(F f

2 )
2 +

(
κ2 −λV 2

κ2 +1

)(
λV 2κ2 −1

κ2 +1

)
= 0 (3.34)

A plot of λFG1,λFG2,λV 1,λV 2 as given by the expressions 3.30, 3.32, 3.33 and 3.34, and
its variation with κ has been shown in Fig. 3.10. The effect of fluid inertia on the bifurcation
thresholds is shown in Fig. 3.11

Interior fixed points

As for the oblate spheroid, the parameter space lying between the second flow-gradient plane
bifurcation (λFG2 - red curve in fig. 3.10 and 3.11) and second vorticity axis bifurcation (λ2 -
orange curve in fig. 3.10 and 3.11) must include interior fixed points (in addition to those on
the vorticity axis and in the flow-gradient plane) owing to the Euler characterstic requirement.
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Fig. 3.10 Variation of critical λ with κ for a prolate spheroid for Re = 0.5. The Y-axis
denotes deviation from λc(= 1/κ2).

Fig. 3.11 Variation of critical λ with Re for a prolate spheroid with κ = 2.0.
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The difference in the prolate case arises due to a crossing of the two bifurcation curves at
κ ≈ 2.28.

If κ < 2.28, increasing λ (for a fixed κ) causes the second bifurcation at the vorticity axis
(λV 2) to occur prior to the second bifurcation in the flow-gradient plane (λFG2). The interior
fixed points are therefore generated at the vorticity axis and travel towards the flow-gradient
plane with increasing λ . This is in contrast to the oblate case where, with increasing λ

(for fixed Re and κ), the interior fixed points travel from the flow-gradient plane toward the
vorticity axis. The bifurcation scenario in this regime can therefore be summarized as follows.
For λ < λFG1, the vorticity axis consists of an unstable spiral and there are no fixed points
in the flow-gradient plane. As λ increases beyond λFG1, a saddle and a stable node emerge
in the flow-gradient plane. With increasing lambda, the vorticity axis spiral transforms to
an unstable node at λ = λV 1. As λ increases further beyond λV 2, the unstable node at the
vorticity axis bifurcates into a saddle, which remains at the vorticity axis and two unstable
nodes which traverse towards the flow-gradient plane with increasing λ . These interior nodes
coincide with the saddle in the flow-gradient plane at λ = λFG2 resulting finally in two stable
/ unstable node pairs in the flow-gradient plane and saddles along the vorticity axis. Fig. 3.12
illustrates this bifurcation sequence.

For κ > 2.28, the sequence of bifurcations with increasing λ is either λFG1 < λV 1 <

λFG2 < λV 2 (if 2.28 < κ < 2.83) or λFG1 < λFG2 < λV 1 < λV 2 (if κ > 2.83). Although the
two sequences differ in the order of λV 1, the transition of the vorticity axis fixed point from
spiral to a node is inconsequential to the development of interior fixed points. In both these
cases, two fixed points - a saddle and a stable node emerge in the flow-gradient plane as
λ increases beyond λFG1. The saddle further bifurcates into two saddles and a stable node
at λ = λFG2. With increasing λ , the interior saddle approaches the vorticity axis and, for
λ = λV 2, transforms the unstable node at the vorticity axis to a saddle. This sequence has
been briefly demonstrated in fig. 3.13.
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(a) λ = 0.2470. As for the oblate case, we start with a state already described by Marath and
Subramanian [9]. In this state, there are no fixed points on the flow gradient plane and the vorticity
axis fixed point is an unstable spiral.

(b) λ = 0.2490. Two fixed points - a stable node and a saddle emerge in the flow gradient plane as
λ is increased beyond λFG1. Two gray dotted lines denote meridians passing through flow gradient
fixed points for reference.
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(c) λ = 0.2500. As λ increases beyond λV 1, The vorticity axis spiral transforms to an unstable node.

(d) λ = 0.2504. Increasing λ beyond λV 2 causes the unstable node at the vorticity axis to split into
three fixed points - two unstable nodes (only one visible in the figure) and a saddle. The saddle stays
at the vorticity axis and the two unstable nodes move towards the flow-gradient plane.
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(e) λ = 0.25055. As λ increases further, the interior fixed points move toward the flow-gradient plane
along a meridian passing through a fixed point in the flow-gradient plane.

(f) λ = 0.25065. As λ increases past λFG2, two interior nodes collide with the flow-gradient saddle
(one from each hemisphere) and result in an unstable node. In the final configuration, we have two
saddles at the vorticity axis and two pairs of stable and unstable nodes in the flow-gradient plane, as
expected due to the one-dimensional analysis of Marath and Subramanian [9].

Fig. 3.12 Global trajectory patterns for the prolate spheroid, with κ = 0.1, with increasing
λ . For illustration purposes, Re has been taken to be 1. The inset on the left shows the
bifurcation regimes determined from the fixed-point analysis. A black point within the inset
denotes the current state of the system in the state space and indicates the bifurcation regime
corresponding to each global trajectory plot. The shaded region in the inset indicates the
regime where an interior fixed point exists. The figures on the right show the trajectory
topology close to the visible fixed points.
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(a) λ = 0.11076. At λ = λFG2, the saddle in the flow-gradient plane bifurcates to yield an unstable
node in the flow-gradient plane and two interior saddles (only one visible).

(b) λ = 0.11092. With increasing λ , the interior saddles travel toward the vorticity axis, eventually
coalescing with the vorticity axis fixed point at λ = λV 2

Fig. 3.13 Global trajectory topology for a spheroid with κ = 3, Re = 1 and increasing λ . For
prolate spheroids with κ > 2.28, the interior fixed point is a saddle which it emerges from
the saddle in the flow-gradient plane and moves towards the vorticity axis. If κ < 2.28, the
interior fixed point is an unstable node which emerges from the vorticity axis and moves
towards the saddle in the flow-gradient plane (fig. 3.12).
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Re = 0.56 Re = 0.575Re = 0.5

Re = 0.6 Re = 1.0Re = 0.578

Fig. 3.14 Trajectory topology sequence for an oblate spheroid with κ = 0.1, λ = 0.0085 and
increasing Re. Most of the regimes illustrated in Fig. 4 of [14] can be seen here, except the
transformation of the vorticity axis node to a saddle.

3.4 Conclusion

We have presented our findings on bifurcations in trajectory topology of prolate and oblate
spheroids suspended in a planar linear flow. Earlier works by Lundell et al [14] have obtained
similar results via numerical simulations of neutrally buoyant spheroids in simple shear flow.
Fig. 4 in [14] demonstrates the trajectory topology for a neutrally buoyant oblate spheroid
with κ = 0.25, λ = 0 and increasing Re. Fig. 3.14 presents an analogous figure for a light
oblate spheroid (no particle inertia) suspended in a linear flow with κ = 0.1, λ = 0.0085
and increasing Re. Most of the bifurcation regimes defined by Lundell et al in [] can be
seen in this figure. The key difference between the two sequences lies in the order of the
bifurcations. We believe that this difference can be attributed to the absence of particle inertia.
Preliminary work on inclusion of particle inertia in the aforementioned analysis shows that
this is indeed able to alter the order of the bifurcations in fig. 3.14 occur while the nature of
these bifurcations remains unaltered.

In a separate article [15] Lundell et al have summarized the bifurcations of spheroids
suspended in simple shear flows via a Re vs κ plot (Fig. 11 in [15]). This plot includes both,
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Fig. 3.15 A Log-Log plot for Re vs κeq for λ = 0.01 for oblate (left) and prolate (right)
spheroids.

the numerical findings for moderate aspect ratios and analytical results for extreme aspect
ratio spheroids. We have similarly illustrated the bifurcations on the Re vs κeq plane for both
oblate (left) and prolate (right) spheroids in fig. 3.15. Here, κeq is defined as

κeq =
κ2 −λ

1−κ2λ
(3.35)

which maps critical oblate spheroids (κ =
√

λ ) to zero and critical prolate spheroids (κ =

1/
√

λ ) to infinity. On a log axis then, one has critical oblate spheroids to the extreme left,
spherical particles (κ = κeq = 1) in the center and critical prolate spheroids to the extreme
right. The curves in fig. 3.15 denote the asymptotes for these extreme equivalent aspect ratio
spheroids for the bifurcations discussed in this chapter. The usage of κeq will allow us to
generalize this plot to the entire family of planar linear flows. Furthermore, we intend to
include the effects of particle inertia and compare our analytical results to the computational
results in [14]. This will allow us to show that the dynamics required for the bifurcations
obtained in [14] is contained in the equations derived in [9].
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