Nonequilibrium Dynamics in Some Phase
Transitions: From finite to infinite length

A Thesis
Submitted for the Degree of
DocTOR OF PHILOSOPHY

in the Faculty of Science

by

Suman Majumder

THEORETICAL SCIENCES UNIT
JAWAHARLAL NEHRU CENTRE FOR ADVANCED SCIENTIFIC
RESEARCH
Bangalore — 560 064

DECEMBER 2012



To my family



DECLARATION

[ hereby declare that the matter embodied in the thesis entitled “ Nonequi-
librium Dynamics in Some Phase Transitions: From finite to infi-
nite length 7 is the result of investigations carried out by me at the The-
oretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Re-
search, Bangalore, India under the supervision of Dr. Subir K. Das and that
it has not been submitted elsewhere for the award of any degree or diploma.

In keeping with the general practice in reporting scientific observations,
due acknowledgement has been made whenever the work described is based

on the findings of other investigators.

Suman Majumder



CERTIFICATE

I hereby certify that the matter embodied in this thesis entitled “ Nonequi-
librium Dynamics in Some Phase Transitions: From finite to in-
finite length ” has been carried out by Mr. Suman Majumder at the
Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific
Research, Bangalore, India under my supervision and that it has not been

submitted elsewhere for the award of any degree or diploma.

Dr. Subir K. Das

(Research Supervisor)



Acknowledgements

[ am grateful to my supervisor Dr. Subir K. Das for his constant help,
guidance and encouragement throughout my entire Ph.D life.

I would like to acknowledge all the faculty members of TSU - Prof. Shob-
hana Narasimhan, Prof. Srikanth Sastry, Prof. Umesh V. Waghmare, Prof.
Swapan K. Pati, Dr. Kavita Jain and Dr. N.S. Vidhyadhiraja - for the
interesting courses they offered.

Thanks are due to all the past and present complab members - Vikas,
Vishnu, Ashish, Ravi, Nishaj, Dharma and others for their generous help,
whenever needed.

I acknowledge all my labmates Sutapa, Shaista, Prabhat, Saugata, Sub-
hajit, Jiarul and Saikat, for all the scientific and nonscientific discussions.
Apart from them I would also like to thank my other friends in JNCASR,
especially Sarada, Gayatri, Sona, Priyanka and Pralok, for making my stay
in JNCASR enjoyable. A BIG THANK to my longtime friend Arun for being
helpful in difficult times.

I thank CSIR, DST and JNCASR for fellowship and funding.

Finally, T express my deep gratitude towards Sonali for being with me

and my family for their constant support.



SYNOPSIS

Non-equilibrium dynamics in phase transitions, due to variation in tem-
perature (1), pressure (P), etc., is of fundamental research interest both the-
oretically and experimentally. Often, during such transitions, systems move
towards the equilibrium via the formation and usually non-linear growth of
“particle” rich and “particle” depleted domains. Such kinetics for various
transitions have been studied extensively over several decades. Nevertheless,
it appears that the understanding of the phenomena is significantly incom-
plete. In this thesis, we try to answer some of the longstanding questions in
this area via computer simulations.

In computer simulations, often the finite sizes of systems create dif-
ficulty, particularly in situations when there is a diverging length scale, in
drawing conclusions with respect to thermodynamic limit. In the modern day
of advanced and high-power computers, it has been possible to consider very
large system sizes. Inspite of that many basic questions remain unsolved. In
this thesis we intend to appropriately address some of these important basic
facts which were either overlooked or misunderstood in the past. These in-
clude the effect of system sizes in computer simulations of different systems
undergoing phase transitions, e.g., solid-solid, vapor-liquid, etc.; the com-
position and temperature dependence of growth kinetics; correction to the
growth law at small length scale limit; hydrodynamic effects in the kinetics of
phase separation; aging dynamics in such non-equilibrium processes includ-
ing paramagnetic to ferromagnetic transition; etc. In addition, we have also

studied the kinetics of phase separation in more realistic and technologically



relevant systems, viz., in systems under confinement. In our studies we have
used the state of the art Monte Carlo and molecular dynamics simulations
and applied finite-size scaling theory for the purpose of extracting accurate
information from the results thus obtained. Number of our results have been
justified via simple analytical arguments. The thesis consists of six chapters
as briefly discussed below.

First chapter is the Introduction where we discuss all the basic informa-
tion needed for carrying out the work presented in the subsequent chapters
as well as for their understanding. It covers the theoretical foundation of
phase ordering dynamics. Different scaling laws related to the conservation
of order parameter, effect of hydrodynamics, etc., are discussed. It also in-
troduces the aging phenomena in nonequilibrium systems. Further, a brief
account of the “expected” effects of surface on growth kinetics during phase
separation is presented. On the technical side, it describes different simula-
tion techniques, viz., Monte Carlo and molecular dynamics methods. Various
functions, useful for characterizing pattern formation, have been defined. Fi-
nally, methodologies for analysis, in particular the finite-size scaling theory,
have been discussed in reasonable depth. At the end of the chapter a brief
overview of the thesis is also given.

The second chapter discusses the diffusive dynamics of phase separa-
tion in a symmetric solid binary (A+B) mixture with critical composition of
A and B particles, following a quench below the demixing critical tempera-
ture, both in spatial dimensions d = 2 and d = 3. Note that this is the only

mechanism in solids. In this work, in addition to studying pattern formation



and gaining accurate knowledge about the asymptotic growth law, other im-
portant objectives are to obtain information about effects of system size and
early-time correction to the growth law. These questions have been appropri-
ately addressed via successful application of the finite-size scaling technique
to the results obtained from Kawasaki exchange Monte Carlo simulation,
that conserves the order parameter, of the Ising model. The Lifshitz-Slyozov
law for the diffusive phase separation has been confirmed. Our observation
of only weak size effects in such non-equilibrium processes, which defies the
traditional belief, is a significant and welcome message for the computer sim-
ulation community. It has also been shown that the correction to scaling in
the growth law, at small length scale, is negligibly small. We also provide
detailed discussion on the standard methods of understanding simulation
results which may lead to inappropriate conclusions.

In the third chapter, we demonstrate the effects of temperature and
composition on the kinetics of diffusive phase separation. For compositions
close to the co-existence curve one has droplet-like domains of the minor-
ity component. We investigate the curvature dependent correction to the
Lifshitz-Slyozov law during growth of these droplets. In the temperature
dependent study, we observe, at low temperature, a crossover from interface
diffusion to bulk diffusion mediated growth. Amplitude of domain growth
as a function of temperatures is also studied. Furthermore, from finite-size
scaling analysis it has been convincingly shown that the extent of finite-size
effect is independent of the composition and temperature.

In the fourth chapter, we deal with kinetics of vapor-liquid tran-

sition. We have obtained the equilibrium phase diagram for the Lennard



Jones model considered for this study. Domain growth, in this case, is stud-
ied for critical quench. Here our objective is to investigate the influence of
hydrodynamics and establish the universality in kinetics of phase separation
involving liquid-liquid and vapor-liquid phase transitions. A brief period of
slow diffusive growth is observed which is followed by a linear viscous hydro-
dynamic growth that lasts for an extended period of time. This result is in
contradiction with earlier inconclusive reports of late time growth exponent
1/2 that questions the uniqueness of the above mentioned nonequilibrium
universality. We have studied the finite-size effects in this case also and our
observation is found to be consistent with similar studies in solid-solid phase
separation. Our finding of apparently universal finite-size effect in coarsening
phenomena with conserved order parameter is certainly interesting.

The fifth chapter consists of the results for aging in domain coarsening
phenomena with particular emphasis on the vapor-liquid phase transitions
presented in Chapter 4. Other systems considered are solid binary mixtures
and ferromagnetic system. The two-time order-parameter correlation func-
tion is used as a probe to study the aging dynamics. For phase separation
with diffusive kinetics, these correlations are observed to decay in a power-law
manner for which we have estimated the exponent. In the phase separating
vapor-liquid systems, an exponential decay of the auto-correlation function
at the late time was observed which is a striking observation. The latter fact
is related to the hydrodynamic effects dominant at long length scales in fluids
and we have provided analytical justification for that via simple dimensional
argument. We have also estimated the aging exponent for non-conserved

dynamics.



In the last chapter, results from the kinetics of phase separation in
thin films are reported. In thin film basically one of the spatial dimensions is
restricted. This chapter discusses how the domain growth occurs in presence
of such geometric restriction that imposes surface effects. In this case, our
interest has been to study phase separation in solid binary mixtures as well as
in vapor-liquid phase separation using Monte Carlo and molecular dynamics

simulations, respectively.
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Hi=Hy=H=1.0. ... ... ... .. ... ... . .....
2 — d xz cross sections of the snapshots for the same systems
in Fig. 6.3, for y = L/2. Note that A particles are marked
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Laterally averaged order parameter, 1,,(z), vs z (coordinates
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times for the same systems presented in Fig. 6.3. . . . . . ..
Cross-sections of the same systems presented in Fig. 6.3, in
the zy plane for z = D/2. The A particles are marked green
and the B particles are left unmarked. . . . . ... ... ...
Layer-wise scaled correlation functions for different times from
two different layers z = 0 and z = 5 for the film with D = 10.
Layer-wise average domain size vs time plot for three different
layers z = 0,2 and 5 for D = 10 of Fig. 6.3. The solid line

hasaslopeof 1/3. . . .. .. ... Lo L
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6.15

3 — d evolution snapshots of antisymmetric films for a binary
solid mixture with bulk critical composition after quenching
far below the bulk critical temperature. The left frame rep-
resent a film with L = 128 and D = 10 and the right one
corresponds to a film with L = 128 and D = 20. The color
coding is same as in Fig. 6.3. Strengths of the fields are
Hi=10and Ho=—-1.0. . . . . . .. ... ... ... .....
2 —d cross-sectional (in xz- plane) view of the evolution snap-
shots for the systems in Fig. 6.9. Here the A particles are
marked green and the B particles are left unmarked. . . . . . .
Layer-wise averaged order parameter profiles from four differ-
ent times for (a) D = 10 and (b) D = 20 for the antisymmetric
thin films presented in Fig. 6.9. . . . .. . ... ... ... ..
2 —d snapshots in the zy-plane for the central layer of the thin
films presented in Fig .6.9. Here the color coding is same as
in Fig .6.10. . . . . . . . ..
Layer wise (in zy plane) average domain size, £(t), as a func-
tion of time for D = 20 antisymmetric film. We have consid-
ered only the central layer. . . . . . . . . ... ... ... ...
Formation and growth of droplets of A-particles (minority
species) on the preferred surface, in solid binary mixture phase
separation with asymmetric composition. . . . . . . . . . . ..
Nucleation and growth of liquid droplets on a surface that
attracts the particles. This is related to vapor-liquid phase

separation in confined geometry with asymmetric densities. .
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Chapter 1

Introduction

1.1 Phase Transitions

In nature many substances are commonly seen in solid, liquid and gas
phases. Existence of a substance in a particular phase is dependent on certain
thermodynamic conditions defined by temperature, pressure, density or com-
position [1,2]. Thus one encounters transition from one phase to the other by
varying such parameters. Fig. 1.1 shows the basic schematic phase diagram
of a simple chemical substance in the pressure (P) vs temperature (7') plane.
Different phases are marked in the figure. There along various solid lines,
referred to as the coexistence curves, two phases coexist with each other, in
equilibrium. The point at which all the three coexistence lines meet is known
as the triple point where all three phases coexist. Unlike the solid-liquid co-
existence line which extends indefinitely, the vapor-liquid coexistence line
ends at a point called the critical point (P, T..). In the region beyond the

critical point the system exists in a homogeneous one phase state where the
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solid phase
liquid phase

Pressure

critical point

vapor phase

Temperature

Figure 1.1: Phase diagram of a simple substance in the P vs T plane. Dif-
ferent phases are marked. The solid lines correspond to different coexisting
lines (see text for details).

density difference between the liquid and vapor phase is zero. Around the
vicinity of the critical point, number of interesting physical processes occur,
referred to as the critical phenomena [1].

Fig. 1.2 shows the phase diagram (coexistence curve) of the same system
in the temperature vs density (p) plane in the vicinity of the critical point.
Above T, the system is in a single phase with “uniform” density. Inside the
coexistence curve, the system is in a two-phase region of different densities.
The left branch of the curve corresponds to the density of the coexisting
vapor phase and the right branch to the high density liquid phase. From the
diagram it is quite evident that with the increase of 7' the two branches are
approaching each other implying a decrease of the density difference between
the liquid and vapor phases which finally vanishes at T,.. In this context,

it is worth mentioning that for the study of a phase transition one needs
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qp

Figure 1.2: Schematic phase diagram of the substance of Fig. 1.1 in the
temperature vs density plane. The solid line represents the coexistence line.
The box outside the coexistence curve represents a homogeneous system while
the one inside depicts a phase separated state.

to define the so called order parameter. In the context of an order-disorder
transition, e.g., paramagnetic to ferromagnetic transition, above T, (in the
disordered state), the value of this order parameter is zero and below T¢ (in
the ordered state) it has a non-zero value. Such definitions can be constructed
in other transitions also. For example, in the gas-liquid transition the density
difference between the liquid and vapor phase (p; — p,) is the relevant order
parameter which is zero above T, and has nonzero value below 7,.. With the
increase of T', the order parameter vanishes as (T —T.)”, where (3 is a critical
exponent [1,2]. Throughout this thesis we will be dealing only with scalar

order parameter.

The diagram in Fig. 1.2 can also be used to describe the phase diagram
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of a binary mixture (A+B). In this case, the density is replaced by the con-
centration of one of the components (say 24 = Ns/N, where Ny and N are
respectively the number of A particles and total number of particles). Above
T, the system is a homogeneous mixture of A and B particles and below T
(demixing critical temperature) it separates into A- and B-rich phases which
are represented by the right and left branches of the coexisting curve. One
can explain paramagnet to ferromagnetic transition from a similar diagram
as well. Then the critical temperature corresponds to the Curie temperature
above which all the magnetic spins are randomly oriented giving rise to zero
net magnetization. In this case the x-axis should be the magnetization (m)
which is the relevant order parameter for a ferromagnetic transition. Below
the critical temperature, the spins are aligned with each other giving rise to

net non-zero magnetization.

1.2 Domain Coarsening in Bulk Systems

Many of the equilibrium aspects of these phase transitions are well stud-
ied [1,2] and of fundamental importance. Understanding the nonequilibrium
evolution of a system having been quenched from a high temperature ho-
mogeneous phase to inside the coexistence curve is another interesting and
fascinating scientific topic [2-8]. As stated, at high temperature, the system
is in a homogeneous state. If the temperature of the system is suddenly
quenched to a lower temperature, the system falls out of equilibrium and
it starts evolving towards its new equilibrium state which is the phase sep-

arated state or ordered state, if the state point lies inside the coexistence
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curve. This transformation to the new equilibrium takes time and occurs via
the formation and growth of domains of different phases. This is referred to
as the phase ordering dynamics or domain coarsening. In this section we dis-
cuss it for bulk systems. Here we note that for the purpose of studying bulk
properties in computer simulations one applies periodic boundary conditions

to get rid of the surface effects.

N
h

T .
Ll e

~\

Figure 1.3: Schematic phase diagram of a ferromagnetic substance in h — T’
plane. T, is the Curie temperature. Above T, is the paramagnetic state with
zero spontaneous magnetization and below T, is ferromagnetic state, where
the system exhibits spontaneous magnetization.

Let us consider a ferromagnetic substance at a temperature above the
Curie temperature (See Fig 1.3 for a phase diagram of a ferromagnet). It
says that in absence of any external field (h = 0), at high temperature 7" > T,

the system is in disordered state having a zero net magnetization. Below the
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critical temperature, however, the system exhibits magnetization even for
h = 0. Now if the system is quenched from high temperature (17" > T¢)
to a temperature 7' < T., the system will evolve via the formation and
growth of domains of like spins. Similarly when a binary mixture (A+B) is
quenched from the high temperature homogeneous phase to a temperature
below the demixing critical temperature the system falls out of equilibrium
and it approaches the phase-separated state via the formation and growth of
A- and B- rich domains. The dynamics of evolution of these systems is rich
in interesting mechanisms that usually gives rise to a power law growth of

domains [3]:

0t) ~ 1. (1.1)

Here ((t) is the average domain-size at a particular time ¢ and « is the cor-
responding growth exponent which is dependent on the dominant transport
mechanism, system dimensionality, number of order parameter components
and the order parameter conservation law. The scaling laws for some situa-

tions are discussed below.

1.2.1 Growth Laws

In this section we discuss about different growth laws for bulk phase
ordering in d = 3, for scalar order parameters. The evolution of a system
following a quench from homogeneous state to a temperature below the co-
existence curve can be classified into different classes based on the growth

mechanism. The growth laws are different depending upon whether the order
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parameter remains conserved or not. In addition, effect of hydrodynamics
can significantly alter the growth exponent in case of conserved order param-
eter dynamics. Below we discuss different scenarios along with some models

typically used to study coarsening phenomena in corresponding situations.

(a) NonConserved Order-Parameter Kinetics

The paramagnetic to ferromagnetic transition is an example of a coarsen-
ing phenomena with non-conserved kinetics. Here the magnetization (m),
the order parameter, is zero for the paramagnetic state and in the final
equilibrium state, after the quench, it acquires a spontaneous magnetiza-
tion (m # 0) with majority of the spins pointing either up or down. At
the microscopic level this non-conserved evolution can be well described by
implementing the spin flip Glauber kinetics [9] in the nearest neighbor Ising

model given by the Hamiltonian

H=-J Z SZ‘SJ‘; S; = +1, J >0, (12)

<ij>
where S; corresponds to up or down spins and J is the interaction strength.
One can study the evolution via Monte Carlo (MC) simulation [10] of this
model. The evolution snapshots from such a simulation is presented in Fig.

1.4 which shows the growth of domains of like spins with the increase of time.

At the coarse-grained level such non-conserved dynamics is studied via



1.2 Domain Coarsening in Bulk Systems 8

Figure 1.4: Evolution snapshots of domain growth in an Ising ferromagnet
upon quenching to a temperature 7" ~ 0.77, obtained from Monte Carlo
simulation. Black dots in the snapshots mark the location of the up spins.
The times are in units of Monte Carlo Steps (MCS).

solving the time-dependent Ginzburg-Landau (TDGL) equation [3, 5]

dip(7, 1)
dt

= (7, t) + V2(7, 1) — (7, 1), (1.3)

where (7, t) is a coarse-grained space () and time dependent order param-
eter. This equation can be obtained in a phenomenological manner (3,5, 6]

using the Ginzburg-Landau(GL) free energy functional

Fly(r) = / dr|—4*(7) + ¢ (F) + (V7)) (1.4)
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oY OF

—_—=—— 1.5

ot ot (1.5)
in slow dynamics approximation. Eq. (1.3) is referred to as Model A accord-
ing to the Hohenberg and Halperin [11] nomenclature.

For nonconserved evolution, considering the domain growth as a curvature

driven phenomena, one writes down the interface velocity as

a1
This gives
0t) ~ Y2, (1.7)

known as the Cahn-Allen (CA) [12] growth law.

(b) Conserved Order-Parameter Kinetics

For a conserved order parameter dynamics, during the entire evolution,
the sum of the order parameter remains constant. Example of conserved
dynamics is the coarsening in a binary mixture (A+B) after quenching it from
a high temperature homogeneously mixed phase to a temperature below the
demixing critical temperature or a similar exercise in case of a vapor-liquid
transition. Here we discuss the case of a solid binary mixture only.

The kinetics of phase separation in a solid binary mixture is studied via

the Kawasaki-exchange [13] Monte Carlo simulation of the Ising model given
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10°MCS

Figure 1.5: Snapshots showing the evolution of a conserved system obtained
via Monte Carlo simulation of Kawasaki exchange Ising model, upon quench-
ing from a high temperature (7" > T,) state to a temperature 7' ~ 0.57,.. The
black dots mark the location of the up spins and the down spins are left un-
marked.

by Eq. (1.2). Here the up spins correspond to one of the species (say A) and
down spins to the other one. Evolution snapshots from this model are shown
in Fig. 1.5. One can also use continuum dynamical equations, similar to the
TDGL model, to study the phase separation in binary alloys. In this case
one needs to incorporate the condition of conservation of order parameter
which is done via the order parameter continuity equation

dip(r, 1)
dt

—-V.j. (1.8)
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In Eq.(1.8), the current j is defined as j = —V i, u being the chemical poten-
tial that can be obtained from the derivative of GL free energy with respect
to the order parameter. This leads to the Cahn Hilliard (CH) equation [14]

dip(7,t)

= VI ) + V() — (), (1.9)

which is also referred to as model B.
For solids the domain growth occurs via the diffusive transport of materi-
als. In that case one associates the rate of domain growth with the gradient

of chemical potential and writes [3]

S~ Tl (110

where 7 is the A-B interfacial tension. Solving Eq.(1.10) one gets
0(t) ~ 13, (1.11)

This is known as the Lifshitz-Slyozov (LS) [15] growth law. This is the only

expected growth law in solids.

(c) Conserved Domain Growth influenced by Hydrodynamics

In case of solid, hydrodynamics does not play any role. In contrast,
for fluids and polymers, hydrodynamics does play an important role leading
to an advective transport of material, due to which the growth is much
faster [16-20]. The lattice gas (LG) Ising model has been extensively used

to study the gas-liquid phase behavior and static critical phenomena. In the
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LG model one considers a lattice system where a site is either occupied (by
at most one particle) or empty. The kinetic energy of the particles is not
considered and it is assumed that only the nearest neighbors interact which

is given by the Hamiltonian

H = —¢ Z d(ni,n;); € > 0. (1.12)
<ij>

In Eq. (1.12), n; is the occupation number which is 1 if a particle is present
at the ith site and 0 if it is empty. This model is very well studied in the
literature and as already stated above, this is reliable to study the phase
behavior of gas-liquid phase separation. But, in order to study the fluid
dynamics it is not appropriate since it does not account for hydrodynamics.
For the latter purpose, a straight forward method is the Molecular Dynamics
(MD) simulation [21] of a continuous potential model. In MD simulation
hydrodynamics is automatically inbuilt.

Analogous to the coarse-grained continuum dynamical models in the solid
case, there exists a model H [11] for the study of kinetics of fluid phase sep-
aration, where the CH equation is coupled with the Navier-Stokes equation,
the later being introduced to take care of the velocity (¢) field. The equations

for model H are written as [2,3,5,11]

—Wg; Y | 5 5u(i 1) = DV, (1.13)

ONT) 2y — (7 1)+ pl(5.9)). (1.14)

P

where p is the density of the fluid, n is the viscosity, D is a diffusion constant
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and L stands for the transverse component.

Now let us discuss the growth kinetics in a fluid. For fluid, initially the
growth occurs via diffusive mechanism as in solids. But when the domain
size becomes considerably large, the system enters the hydrodynamic regime.
In d = 3, for a critical quench where one expects interconnected domain
structures, to obtain the growth law, the surface energy density (v/¢) is
balanced by the viscous stress[(67nu,/¢), vy being the interface velocity and

n is the shear viscosity]. This gives [2,16]

det) v
_ — 1.15
v dt 6mn’ ( )
from which one obtains
0t) ~t. (1.16)

This is referred to as the viscous hydrodynamic growth. The crossover from
the initial diffusive growth to this linear regime occurs when £(t) > l,;5 ~
(Dn)'/2. At late time, when £(t) > €;,(= n*/(py)), one needs to balance the

surface energy density with kinetic energy density (pv?) to obtain

%(;) _ (%)1/27 (1.17)

the solution of which gives

0(t) ~ %3, (1.18)
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This is referred to as the inertial hydrodynamic growth [2,16]. Thus, domain
growth in fluids with conserved order parameter can be summarized in the

following sequence:

;

/3 (Diffusive Growth),
0(t) =9t (Viscous Hydrodynamic Growth), (1.19)

t?/3  (Inertial Hydrodynamic Growth).

\

However, in case of off-critical quenches, where the droplet-like domain mor-
phology is expected, the growth occurs via motion and collision [22,23] of the
droplets of minority phase in the background of the majority phase. Here
also the growth exponent a has a value 1/3, but the mechanism of growth is

entirely different from LS diffusive growth.

1.2.2 Calculation of average domain size in Computer

Simulation

The coarsening phenomena in general is a self similar process, i.e, struc-
tures at two different times differ from each other only by a change in length
scale, £(t). One investigates this scaling property in the evolution pattern by
looking at certain functions that characterize the morphology of the system.
Examples are the two-point equal time-correlation function, structure factor,
domain size distribution function, etc. All these functions exhibit dynamic
scaling relation [3-5,22,24], arising from the self-similar property, that will

be discussed subsequently.
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The two point equal-time correlation function, C(r,t), is calculated as

— —

O(T, t) = <¢(R7 t)qu)(é + 7, t)> - <¢(R7 t)><¢(§ + 7, t)>7 (1‘20)

where the angular brackets denote statistical averaging. The correlation func-

tions obtained at different times show a scaling of the following form
Cr.1) = Cr/0(1)). (1.21)

where C'is a time independent master function and £(t), as already defined, is
the characteristic time dependent length which is proportional to the average
domain size at the time t. We have used this property as one of the measures
for £(t), in addition to others, as discussed below. The quantity which is
directly measurable in experiments is the structure factor S (E, t), Fourier

transform of C(r,t):
S(it) = / e RO 1), (1.22)
where k is the wave vector. S(k,t) has the scaling form
S(k,t) = £(t)2S(ke(t)), (1.23)

where S is the corresponding master function. In Egs (1.21) and (1.23) we
have assumed that the patterns are isotropic so that the vectors 7 and k
can be replaced by their scalar counterparts. In addition, there has been

significant interest in the domain-size distribution function P(¢4,t). This
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quantity has a scaling behavior

P(lg,t) = €(t)"1P[ty/0(t)]. (1.24)

All the above scaling properties can be used to calculate £(¢). In addition, it
is of much interest to learn the functional form of the master functions. In
this context, significant understanding has been obtained for nonconserved
dynamics. But it remains a major challenge for conserved order-parameter

dynamics.

1.2.3 Aging in Domain Growth

Another important aspect to study in nonequilibrium systems is aging
[25-28]. It is related to the phenomena of increase of relaxation time with the
increase of age of the system, i.e., a younger system relaxes faster than the
older ones. Unlike the standard studies in kinetics of phase separation, where
the main focus is on calculation of different equal-time quantities, here the
probes which are used are two-time quantities, e.g., the two-time correlation
function or the auto-correlation function, C(t,t,), and the auto-response

function, R(t,t,), which are defined as

C(t, tw) = (Y ()Y(tw)) (1.25)
R(t, tw) = 6((t))/0(h(tw)), (1.26)

where t,, is the waiting time or age of the system and t is the observation

time. In the rest of this section, we will focus only on C'(¢,t,,). Fig. 1.6 shows
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Figure 1.6: Schematic representation of behavior of auto-correlation function
C(t,t,) as a function of (¢ — t,,) for different ¢,s. The diagram shows that
C(t, t,) for lower t,, values are decaying faster than the ones with higher ¢,
values.

a schematic diagram of the behavior of C(t,t,) as a function of (t — t,,) for
different values of ¢,,. The picture depicts that as t,, increases C(t,t,,) decays
slower and slower.

Aging properties are of importance for slowly relaxing systems [26, 27|
which includes a wide class of problems starting from structural and spin
glasses to ferromagnetic ordering. A particular focus of the aging study in
nonequilibrium scenario is to find out and understand the scaling behavior,
if any, of the auto-correlation function C(t,t,). In this regard the works

by Fisher and Huse [29,30] are worth mentioning. From the studies of spin
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glass systems they predict a power law behavior of C(t,t,) as a function
of characteristic length. They also provide bounds for the exponents. It is
thought that their works are of relevance to the aging phenomena in broad
varieties of nonequilibrium systems. Following them one can write down the

scaling form for the auto-correlation function in terms of ¢(¢) and ¢(¢,,) as

et~ (10" am

where A\ is an aging exponent.

In this thesis we would have a look on the aging behavior of the phase
ordering systems in general. Of particular interest is the nonequilibrium
evolution during the vapor-liquid transition. The interesting point in the
fluid domain coarsening is the presence of different growth regimes. The
crossovers from one regime to the other are expected to show up in the aging

properties of the system as well.

1.3 Domain Coarsening in Confined Geome-
try

In this section we will discuss about phase separation in confined geometry
with surface effects. Bulk phase separation in fluids and solids are relatively
better understood. Recent developments in nano-structured materials and
thin films have led to consider the effects of geometry or surface in the ki-
netics of phase separation, both theoretically and experimentally [31-38].

Particular interest is in the case when there is preferable attraction from
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the surfaces. For a binary fluid or solid, the surface may attract one of the
components giving rise to the surface enrichment which causes the surface
directed spinodal decomposition (SDSD). In case of vapor-liquid phase separa-
tion one needs to introduce attraction for all the particles. Before discussing
the nonequilibrium phenomena, let us discuss some simple equilibrium as-

pects when a droplet, because of such interaction, has formed on a surface.

JLG

7SG

YSL

Figure 1.7: Schematic diagram showing a liquid droplet sitting on a surface.
Different forces acting along the interfaces are marked by arrows in the figure
and 6, is the contact angle.

Fig.1.7 shows a liquid droplet placed on solid surface. This is related to
vapor-liquid transition but has relevance to other types of transitions also
e.g., solid-solid, liquid-liquid, solid-liquid. The arrows in the figure show the
surface tensions sz, vs¢ and y.q, acting along the solid-liquid (SL), solid-
vapor (SG) and liquid-vapor (LG) interfaces, respectively. Here 6. is the
contact angle that is defined as the angle between solid-liquid interface and

the liquid-gas interface. Now from the force balance equation one can easily
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write down the following equation:

YLG COSQC = YsG — VSL- (128)

This is the celebrated Young’s equation [39]. The value of this angle 6.
decides the morphology. For 0° < 6. < 90° the surface is said to be in a
wetting condition, while for 90° < 6. < 180° it is in a non-wet condition.
The values 6. = 0° and 6. = 180° denote the perfectly wet and perfectly
non-wet situations respectively. Fig. 1.7 shows a wet condition, the non-wet

condition is shown in Fig. 1.8.

non-wetting

Figure 1.8: Schematic diagram showing the non-wet condition of a liquid
droplet sitting on a surface. The corresponding wet condition is shown in
Fig. 1.7.

The analogous Young’s equation for a binary mixture (A+B) can be writ-

ten as

Yap cosb. = YBs — Vas, (1.29)

where v4p5 denotes the surface tension between A and B phases, vp5 between

B phase and the substrate, while 45 is for A phase and substrate. For
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YBs — Yas > Yap A-rich phase covers the surface completely, i.e., forms a
completely wet (CW) morphology whereas for ygs — vas < Yap, both the
phases are in contact with the surface, giving rise to a partially wet (PW)
morphology.

In the nonequilibrium context, a popular coarse-grained continuum dy-
namical model for studying kinetics of phase separation in thin films is due
to Puri and Binder (PB) [40]. Let us consider a binary mixture confined
between two walls (S; and S;) at z = 0 and D. One writes down the GL

free energy functional in this case as

Fly] =

—
I~y
=l

|
1\3|%

+
~| S

+ 0P+ V(]

9z

+
T
U
=y
—N
|

(7,0 — hath(7.0) — 1(5,0) 22 |zo}

NVl N

(5, D)2 — hotb(5, D) + (5. D)a—wwz:D}

LS az

Fy+ Fg, + F,, (1.30)

where Fj is the bulk contribution, whereas Fs, and Fg, are surface contri-
butions. There, V(z) is potential due to the surfaces whose values at the
surfaces are h; and hy. The parameters g and v depend upon temperature
and exchange coupling strengths in the bulk as well as in the surfaces. They
characterize the equilibrium phase diagram of the film. For elaborate ex-
pressions of these quantities, we refer the readers to Ref. [40] . PB obtained

dynamical equations using this functional for both bulk and surfaces. In the
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bulk, the order parameter evolves via the CH equation

Wg? D_s. {VI-v+¢*=Vu+V()]}0<2<D (131)

The evolution of the order parameter at the surfaces is not conserved and is

given as

oY(p,0,t 0

% = h1 + g¥(p,0,t) + vﬁ—flzzo; (1.32)
V(5 D,1) ) o
T = h2 + 9¢(Pa Dat) - ’}/E'z:D' (133)

In the above equations p'is the coordinate in directions parallel to the surfaces
(i.e. perpendicular to the z-axis). These equations are supplemented by the

no-flux conditions at the surfaces:

J.(7,0,t) = {% [—¢+¢3—v2¢+\/(2)]} . =0, (1.34)
J.(p,D,t) = {% [~ + ¢ — V2 + V(2)] } =0 (1.35)

One can also use the “full” molecular field description, using the Kawasaki-
exchange kinetic Ising model [41], to study such phase separation in thin
films. This kind of model is favorable over the Ginzburg-Landau kind of
description as it works well even at temperatures far below the criticality. In
fact, for more accurate study, MC simulations of Ising models with Kawasaki
exchange kinetics can be used with additional terms in the Ising model due

to surface effects. The corresponding Ising Hamiltonian for phase separation
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in confined geometry is given as

H=-JY S8 —J,) SiS;—Hs Y Si—Hs,» i  (1.36)

<ij> <ij> 1€51 1€S2

where J and J; are the interaction strength in bulk and surfaces respectively,
while Hg, and Hg, are the surface fields. This gives a microscopic description
of phase separation of solid binary mixtures in a thin film geometry.

So far we have discussed phase separation with diffusive dynamics in thin
films which holds for solid binary mixture. However, for fluid mixtures, as
already pointed out, hydrodynamics plays a major role. In this case, molec-
ular dynamics simulations will prove to be useful with appropriate surface
conditions. Of course, one can also use Model H by devising reasonable
boundary conditions. It will be interesting to check if the growth laws and
aging properties discussed in the bulk context are also valid in the present

scenario.

1.4 Methodologies

This thesis deals with computer simulations of different microscopic
models. We have studied three different phase transitions, viz., the solid
binary mixture phase separation, the vapor-liquid phase transition and the
paramagnetic to ferromagnetic transition. As mentioned earlier, in solids
hydrodynamics is not important and growth occurs via diffusive transport of
materials which could be mimicked very well by the MC simulations. In this

case, one starts with a lattice containing randomly placed up and down spins
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in the Ising model context. This corresponds to a binary mixture at high
temperature random phase where the A and B species are homogeneously
mixed. Then the system is updated according to the standard Metropolis
algorithm [10]. Note that MC simulations apply also for paramagnetic to
ferromagnetic transition as well. In Metropolis algorithm configurations are
generated by the non-deterministic time evolution using a transition proba-
bility which depends on the energy difference between the final and initial
state. Let us discuss it in general context.

The time dependent behavior of a system can be described by the master

equation

= Y [Pt Waism = Pout) Wi, (1.37)

where P,(t) is the probability of finding the system at state n at time ¢ and
Wi —sm is the transition rate from n — m. At equilibrium, left hand side of

Eq. (1.37) is zero. Hence one gets
Po(t) Wiy = P () Wi (1.38)

This is referred to as the detailed balance. Any transition rate which satisfies
the detailed balance is acceptable. For Metropolis algorithm these are as

follows:

Whom = exp(—AFE/kgT); AE >0 (1.39)

=1 AE <0, (1.40)
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where AE = FE,, — E,. The presence of the argument AFE in the exponen-
tial is justified considering that the relative probability between two states
depends upon it. Note that we have set the time required to make a trial
move to unity. This algorithm is implemented in computer simulations via
the following steps.

(1) A particle i is randomly chosen.

(2) Particle 7 is given a random displacement or exchanged with one of its
neighbors or its identity is changed (equivalent to flipping of a spin) depend-
ing upon the type of dynamics one is interested in.

(3) Difference in energy AFE between the trial state and old state is calcu-
lated.

(4) A random number 7 is generated within the range 0 < r < 1.

(5) If r < exp(—AE/kgT), then the new state is retained.

One Monte Carlo time step (MCS) means N such attempts, where N is the
total number of spins or particles in the system.

For fluids, as mentioned earlier, hydrodynamics plays a major role. Hence
in this thesis, for fluids, we have used molecular dynamics (MD) simulations
to study the kinetics of vapor-liquid phase transition. In MD simulations,
typically one incorporates the interaction between the particles via a smooth
potential and calculates the forces on each particle. After computing the
forces, one needs to solve the Newton’s equations of motion for which several
algorithms have been designed. In this thesis we have used the Verlet velocity

algorithm [21]. The position update for the ith particle in this algorithm is
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given by

7t + At) = 73(t) + 05 (t) At + %At% (1.41)

where 77; is the position, v; is the velocity, fz is the force on the particle and

m; is the mass of the particle. The corresponding velocity update is given as

filt + A8 + fit)

QTTLZ'

Ui (t + At) = 0;(t) + At. (1.42)
It can be shown that these equations are time reversal in nature which pre-
serves the features of the Newton’s Equations of motion.

In our study, we mainly have studied systems in the NVT or canonical
ensemble, due to the need to keep the temperature constant. The above
algorithm in the microcanonical ensemble, however, cannot keep the tem-
perature constant. For that we need to use a thermostat. There are several
thermostats available. In this thesis we have used the Nosé-Hoover thermo-
stat for the purpose of preserving hydrodynamics. Here essentially one solves
the equations

&ri _ fi _

a2~ m, (t)pi; %Sf) = % (Zl:sz/mz — 3N/]€BT> , (1.43)

where () is a fictitious mass of the thermostat and p; is the momentum.
One can appreciate here that due to the introduction of the time dependent
“viscosity” ((t), whenever the temperature (defined by the kinetic energy)
tries to deviate from the assigned value, this quantity adjusts itself in such a

way that the temperature starts coming back towards the desired value. For
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more on this algorithm and others, we refer the readers to Ref. [21].

1.5 Finite-Size Effects in Simulations and Cor-
responding Scaling

In computer simulations we always deal with systems of finite size. Such
systems play a negative role in characterizing the behavior of observables in

thermodynamic limit. Often the results which are expected to follow certain

< L =

Figure 1.9: Schematic diagram showing the definition of equilibrium correla-
tion length £&. The maximum value of the correlation length is always limited
by size of the system during the simulation.

trend, deviate strongly due to finiteness of the system and because of this one
might end up making wrong conclusions. This is referred to as the finite-size
effect. The effect is very destructive in situations when there is a diverging
length scale in a system. A crude way of eliminating this effect is to use larger
and larger system sizes and wait for a situation when results for two different

but large enough systems do overlap. But this method is not “elegant” and
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is not safe to apply to systems with diverging lengths. A popular example
for the latter is critical phenomena where the equilibrium correlation length

t — oo

L/2

Figure 1.10: Schematic diagram showing that the maximum domain size
lmax is limited by the length of the simulation box. The diagram shows
that for 50 : 50 2 — d binary mixture (A+B) the maximum domain area that
can be attained at t — oo is L?/2, where L is the system size.

(&) diverges as

£~ e 7, (1.44)

where v is the corresponding critical exponent and € = |T'—T,|/T., such that
¢ is infinite at T,. In Fig. 1.9, we schematically demonstrate the correlation
length which measures the length over which the particles or spins in a system
are correlated. It is quite easy to understand that & cannot grow beyond the
system size. Thus for a finite system we cannot achieve the infinite length
correlation. Here we must mention that the finite size effects are reasonably
understood in the context of static critical phenomena.

Analogous to the correlation length in critical phenomena, in nonequi-

librium domain coarsening the domain size diverges in the asymptotic limit
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t — oo. In Fig. 1.10, we show that for 50 : 50 2 — d binary mixture the
maximum domain area that the system can attain is L?/2, where L is the
system size. In this nonequilibrium context, the traditional belief regarding
the onset of the finite-size effect was that it appears when the average do-
main size ((t) is an order of magnitude smaller than the system size. With
this anticipation in mind, general trend has been to use larger and larger
system sizes in order to achieve the asymptotic growth law. But we did not
come across any rigorous study that truly quantified the size effects in such
nonequilibrium systems. One of the major goals of this thesis is to point
out the extent of finite size effects in domain coarsening problems. For this
purpose, we have used the finite-size scaling analysis technique [42] which we
discuss below.

This method can elegantly overcome the difficulties of finite-size effects.
This technique has been extensively used in understanding of equilibrium
critical phenomena. There, combining the expected behavior of a quantity in
the thermodynamic limit with the system size, one arrives at certain scaling
relations that contain the size L of the system. Then performing simulations
for different values of L, one can confirm various theoretical predictions in
thermodynamic limit. Despite its popularity in critical phenomena, this use-
ful method is only rarely used in nonequilibrium problems. Here we briefly
introduce it in the critical phenomena context following which we will provide
hints of how to construct it for domain coarsening problems. In subsequent
chapters it will be further discussed.

In critical phenomena, the divergence of a quantity Z, in the thermody-

namic limit, is quantified in terms of the reduced temperature ¢ = |T'—T,| /T,
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as

Z ~ e " (1.45)

Now, for a finite system, to account for the size effect, one introduces a

scaling function Y, to write

Z Y (y)e?, (1.46)

where y = L/ is a dimensionless scaling variable. Note that in the limit
y — 00 (L — oo or € > 0) one should recover Eq. (1.45). Hence Y should
approach unity in that limit. Another important thing is that Y should be
independent of system size. Thus, data coming from different system sizes
should exhibit nice collapse, if, of course, the exponent is chosen correctly.
So, it is advisable that one acquires data for different values of L and use the
exponent as adjustable parameter to obtain data collapse and the value that
accomplishes this purpose describes the behavior of the quantity correctly, in
the thermodynamic limit. Here we note that this type of analysis is applicable
in situations with nice scaling behavior of the observables. We end this
section by mentioning that similar scaling can be constructed for coarsening

problems also, by identifying ¢ with ¢ and e with 1/t [43,44].

1.6 Overview of the Thesis

In this thesis we have studied domain coarsening phenomena, related to

different phase transitions, via computer simulations. Based on the need we
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have used either Monte Carlo or molecular dynamics methods. For the anal-
ysis of the results, in addition to other techniques, we have used finite-size
scaling theory. We have addressed questions related to pattern formation,
domain growth laws and aging phenomena. Systems both in bulk and con-
fined geometries were considered. Below we provide brief summary of results
presented in different chapters.

In the second chapter, we have studied the kinetics of phase separation
in a solid binary mixture with critical composition via Monte Carlo simu-
lations of the kinetic Ising model in both d = 2 and d = 3. In this work
we have successfully demonstrated the usefulness of finite-size scaling theory
to understand simulation results for domain growth. We present results for
morphology and time dependence of domain length. We have confirmed the
Lifshitz-Slyozov (LS) diffusive growth law for conserved order-parameter ki-
netics. Our elegant finite-size scaling analysis showed that the correction to
this growth law, at small length scales, is negligible for this composition. We
have provided analytical argument for that. Finally, we have quite convinc-
ingly demonstrated that the finite-size effects is negligible for such coarsening
problem. All our results have general validity in d = 2 and 3.

The results of Chapter 2 are for fixed composition and temperature. In
Chapter 3, we took up detailed study on the temperature and composition
dependence of kinetics of phase separation in 2 — d Ising model. In the
temperature dependent case, a crucial issue is the difference between growth
laws dominated by bulk diffusion and interface diffusion. In the latter case it
is expected that the growth exponent is smaller than the LS value. Our finite-

size scaling analysis shows that there is signature of small exponent at low



1.6 Overview of the Thesis 32

enough temperature. A contrasting fact between the critical composition and
off-critical composition is that, as opposed to the former, in the off-critical
case one obtains droplet morphology with finite radius of curvature. So,
composition dependent study is more useful to probe any correction to the
growth law at early time. We note here that, for a long time it was thought
that there was strong curvature dependent correction to the growth laws.
Our studies show that at moderate temperature at least, such corrections are
weak even for off-critical compositions. The results are linked with findings
in equilibrium context for an understanding. Thirdly, our observation on
finite-size effects appears to be composition and temperature independent.
In addition, we presented comparative results on morphology also, involving
critical and off-critical mixtures.

The fourth chapter deals with kinetics of vapor-liquid phase separation in
a single component Lennard-Jones fluid. For this study we have used molecu-
lar dynamics simulations. Before getting into the nonequilibrium studies, we
have estimated the phase diagram and critical point for this system. We also
have made preliminary confirmation that this model belongs to the Ising
universality class of equilibrium critical phenomena, as expected. On the
nonequilibrium front, our objective was to find out the effect of hydrodynam-
ics in domain growth as well as to address the question of the general validity
of the weak finite-size effects in bulk phase separation. For the first time we
show the presence of viscous hydrodynamic growth via MD simulation of
vapor-liquid transitions. This confirms that the nonequilibrium universality
of liquid-liquid and vapor-liquid transitions are unique. Our claim about the

observation of hydrodynamic effect is confirmed via various different method
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of analysis. Finally, we find that the observation of weak size effect in case
of solid binary mixture is true in the present case also.

In the fifth chapter we have studied the aging dynamics in various do-
main coarsening problems with particular focus on vapor-liquid transition
of Chapter 4. For the latter system we have seen that at early time the
autocorrelation function obeys the power-law decay. We have estimated the
exponent of this power law which falls within the bound predicted by Fisher
and Huse. At a later time we observed that the above power law decay
crosses over to an exponential behavior. This crossover, we have clarified, is
related to the diffusive to hydrodynamic crossover in domain growth laws.
Further, we have provided analytical understanding of this exponential decay.
Finally, we made interesting comparisons for the aging dynamics involving
vapor-liquid, solid-solid and paramagnetic-ferromagnetic transitions.

In the last chapter, we have studied the kinetics of phase separation in
thin films. We have studied the phase separation in solid binary mixture in
confined geometry via Monte Carlo simulations by modeling the system with
the atomistic Ising model. Our results show that the growth law is consistent
with Lifshitz-Slyozov law. We have also reported preliminary results for off-
critical compositions in solid-solid as well as vapor-liquid systems in contact
with surfaces. The latter systems are of significant relevance in the context

of surface induced heterogeneous nucleation.
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Chapter 2

Kinetics of Phase Separation in
Ising Model with Symmetric

Composition in d=2 and 3

2.1 Introduction

Despite the fact that kinetics of phase separation is introduced in Chapter
1, for the sake of completeness, we discuss some of the basic facts here again.
Also note that the results presented here are almost entirely reproduced
(including text) from References [1,2] for which American Physical Society
has the copyright.

When a homogeneous binary mixture (A+B) is quenched inside the mis-

cibility gap, the system falls out of equilibrium and moves towards its new

38
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equilibrium state via formation and growth of domains rich in A- or B- par-
ticles [3-5]. This coarsening of domains is a scaling phenomenon, e.g., two-
point equal-time correlation function C(r, ), the structure factor S(k,t) and

the domain size distribution function P(¢4,t) obey the scaling relations

Clrt) = C(r/ew)), (2.1)
S(k,t) = 0(t)S(ke(t)), (2.2)
Pllg,t) = ()" P[ey/0(t)], (2.3)

where the average domain size ((t) increases with time (¢) in a power-law

fashion

0t) ~ t°, (2.4)

and C(z), S(y) and P(z) are scaling functions independent of £(t). In Eq.
(2.4), the growth exponent o depends upon the transport mechanism.
For diffusive growth, associating the rate of increase of ((t) with the

chemical potential (u) gradient, one can write [3]

i~ IVl (2.5

o being the A-B interfacial tension. Solution of Eq. (2.5) gives a = 1/3,
known as Lifshitz-Slyozov (LS) law [6]. The LS behavior is the only asymp-

totic growth law expected for phase-separating solid mixtures. However, for



2.1 Introduction 40

fluids and polymers, one expects faster growth at large length scales where
hydrodynamic effects are dominant. For the latter, in d = 3, convective

transport yields additional growth regimes [7,8] with

a = 1, 0t) < Uiy,

= 2/3, U(t)> lin. (2.6)

In Eq. (2.6), the inertial length £;,[~ n?/(po),n and p being the shear
viscosity and mass density] marks the crossover from a low-Reynold-number
viscous hydrodynamic regime to an inertial regime.

In this work we have undertaken a comprehensive study to learn about
the finite-size effects in domain coarsening in Ising model with conserved or-
der parameter dynamics and understand the behavior of growth exponent as
a function of time, via application of finite-size scaling method [9,10], both in
space dimensions d = 2 and d = 3. While originally developed to understand
simulations in equilibrium critical phenomena, finite-size scaling method has
found interesting applications [2,11,12] in nonequilibrium processes as well.
In this chapter, we exploit this method appropriately in the context of diffu-
sive phase separation kinetics to show that for critical quench the LS value
of a sets in very early and the effect of size is very small.

Diffusive domain coarsening in solid binary mixtures has been extensively

studied via Ising model

H=-JY SS; Si=+1,J>0, (2.7)

<ij>
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prototype for a large class of critical phase transitions. Here one can iden-
tify the spin S; = +1(—1) at lattice site ¢ with an A-particle (B-particle).
Note that < ij > in Eq. (2.7) stands for summation over only the nearest
neighbors. One can also study the kinetics of phase separation via dynamical
equations which can be obtained from Ising models in mean field approxima-
tion by using a master equation approach [13,14] with Kawasaki exchange
kinetics [15]. Upon coarse-graining, such equations lead to the Cahn-Hilliard

(CH) equation

= —V2[(7, 1) + V2 (7, t) — 3 (F, 1)), (2.8)

where ¥(7, t) is a coarse-grained time-dependent local order parameter. Note
that such continuum description could also be obtained in a phenomenolog-
ical manner [3,16] using a coarse-grained Ginzburg-Landau(GL) free energy
functional with the requirement of conservation of material. The CH equa-
tion with an added thermal noise is expected to be equivalent to Monte Carlo
(MC) simulations [17, 18] of kinetic Ising models.

In Eq. (2.8), typical distance over which the order parameter is coarse-
grained is of the size of equilibrium correlation length, £. In situations when
one is interested in studying the kinetics in the close vicinity of the critical
point, without focusing on the dynamics at microscopic level, Eq. (2.8)
is computationally very useful in achieving the asymptotic [19] behavior.
However, for deep quenches one needs to incorporate higher order terms
than are usually used in the GL. Hamiltonian. Also at very low temperature,

where ¢ is of the order of a lattice constant, CH equation would not provide
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information of a large effective system size compared to the atomistic Ising
model. Particular focus of this work is to learn finite-size effects and dynamics
at the early stage both of which have received much less attention as opposed
to the identification of domain growth law in long-time limit, despite their
obvious importance both fundamentally as well as technologically, e.g, in
nano-science and technology. In view of that, we choose to revisit kinetics of
phase separation in Ising model via MC simulations.

While MC simulations have been used immensely in the understanding of
nonequilibrium domain growth phenomena both with conserved [11, 12,20~
25] and non-conserved [12,26,27] order parameter, earlier studies of phase
ordering in conserved Ising model with critical (50:50) composition reported
[28,29] estimates of « € [0.17,0.25], deviating drastically from the expected
LS law. Even arguments in favor of logarithmic growth were proposed [30].
Note that these earlier reports were based on MC simulations for very short
period of time where contamination of domain structures due to thermal
noise might not have been taken care of, which could act as a source of
significant error in the measurement of average domain size.

Later, the discrepancy of the previous results with the expected LS behav-
ior was understood to be due to strong corrections to scaling at early time.
To account for this [21] higher order terms in Eq. (2.5) were incorporated to

write

_ i +0(0t)™), (2.9)

which in the long time limit gives a solution oc /3, however, would give
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rise to leading order correction linear in 1//(t) to the instantaneous expo-
nent. Thus LS behavior will be observed only in the limit ¢(t — o0) — oc.
Indeed, consistency with a linear correction was observed for 50:50 binary
mixture [21,22] as well as for multicomponent mixtures [25]. Present work,
however, convincingly demonstrates that the observation of LS value of the
exponent only in the asymptotic limit was misleading and presence of a time
independent bare length in ¢(¢) was responsible for the numerical data ex-
hibiting such trend.

Most of the studies till date, stressed on using large systems, with the
anticipation of strong finite-size effects [31] combined with the expectation
that the LS law will be realized only in the large £(¢) limit. This strategy,
of course, will prove to be useful when there is dynamical crossover as in
domain coarsening in fluids [cf. Eq. (2.6)] where the system size should be
significantly larger than smallest characteristic length scale in a particular
regime. However, consideration of arbitrarily large system sizes restricts the
access of large time scale, particularly for molecular dynamics simulation
of fluid phase separation [32-34]. It is worth mentioning that the typical
system sizes authors consider these days contain number of lattice sites or
particles of the order of million, which is too large, even for present day
computers, to access long time scale that often is a necessity. Such choice of
large systems, in addition to the anticipation of strong finite-size effect, was
often motivated by the expectation of better self-averaging [31], an issue [26]
that needs further attention to be resolved. Thus a judicial choice of system
sizes is very crucial for such problems [35] which in turn requires appropriate

knowledge of finite-size effects [2]. While recent focus has been in more
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complicated systems [36—43] with realistic interactions and physical boundary
conditions, many such basic information as discussed above are lacking even
in a situation as simple as Ising systems.

This chapter is organized as follows. In Sec.2.2, we describe the details of
simulation and finite-size scaling method. Results for both d =2 and d = 3
are presented in Sec. 2.3, while Sec. 2.4 concludes the chapter along with a

discussion of future possibilities in this direction.

2.2 Methods

2.2.1 Details of Simulation and Calculation of observ-

ables

In the MC simulation of Ising model, the conserved order-parameter dy-
namics, where composition of up (A particle) and down (B particle) spins re-
mains fixed during the entire evolution, is implemented via standard Kawasaki
exchange mechanism [15] where interchange of positions between a randomly
chosen pair of nearest neighbor (nn) spins consists a trial move. A move is
accepted or rejected according to standard Metropolis algorithm [17]. One
MC step (MCS) consists of exchange trials over L¢ pairs of spins, L being the
linear dimension of a square (cubic) system. Periodic boundary conditions
were applied in all directions.

Note that with the increase of temperature, accurate measurement of
average domain size becomes difficult due to the presence of noisy clusters

of the size of £(T'). On the other hand, at very low temperature growth is
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Figure 2.1: Left panel: Snapshot of a 2 — d Ising model at T' = 0.857,
obtained from the Monte Carlo simulation via Kawasaki exchange kinetics,
for L = 64 at t = 5 x 103 MCS. Right panel: Same snapshot after removing
the noise via the exercise described in the text. A-particles are marked by
black dots whereas B-particles are unmarked.

hampered by metastability. To avoid the latter problem, we have set the
temperature towards the higher side and calculated all the physical quanti-
ties from pure domain morphology after eliminating the thermal noise via a
majority spin rule. There a spin at a lattice site ¢ was replaced by the sign of
the majority of the spins sitting at ¢ and nn of ¢ (depending upon the noise
level i.e., average size of noise clusters, extension to distant neighbors may
also become necessary). In Fig. 2.1 we demonstrate such filtering process
for a rather high temperature. The left panel corresponds to the original
snapshot from the MC simulation on 2 — d square lattice at T' = 0.857, with
L =64 att =5 x 10> MCS. One can appreciate that presence of substantial
noise elements here would give rise to smaller value of ¢(¢) than the actual.
The right panel of the figure shows the snapshot with pure domain morphol-
ogy obtained after implementing the noise removal exercise described above.

Of course, one should be careful that too many such iterations or considera-

tion of very distant neighbors may alter the basic structure. However, in the
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present case, no such deformation has taken place. All the quantities in our
simulation were calculated by using snapshots with such pure domain struc-
ture. In brief, the advantage of the above procedure could be understood in
the following way. In most aging processes fast, quasi-equilibrium degrees
of freedom co-exist with slow nonequilibrium degrees, leading to an additive
separation of the thermodynamic observables. Our method gets rid of the

faster, equilibrium degrees of freedom.

—
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Figure 2.2: Scaling plot of domain size distribution P(¢y4,t), from different
times, as indicated, for the system in Fig. 2.1. The data were averaged
over 50 independent initial configurations. The solid line verifies exponential
decay of the tail.

In Fig. 2.2 we present the scaling plots of domain size distribution func-

tion, viz., plots of £(t)P(ly,t) vs £4/L(t) where ((t) was calculated from the
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first moment of the normalized distribution P ({4, t) as

o) = / dly LP(0s, 1), (2.10)

with length ¢; being obtained from the separation between two successive
interfaces (between A and B domains) in z-, y- or z- directions. Figs. 2.3
and 2.4 show the scaling plots of correlation function C'(r,t) and its Fourier
transform S(k,t), in accordance with Egs. (2.1) and (2.2), where C(r,t) was

calculated as
C(r,t) = (SiS;); r=1]i—jl. (2.11)

Note that these scaling plots for all the quantities were obtained by using the
values of £(t) obtained from Eq. (2.10). Of course, independently ¢(t) could

be calculated from the decay of C'(r,t) as well the first moment of normalized

S(k,1) as
Clr = ((t),1) = h, (2.12)
and
o) = m. (2.13)

When calculated from a completely noise-free morphology, all the above
mentioned methods for the calculation of £(t) must give results proportional

to each other. When A is set to a rather small value, particularly when the
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Figure 2.3: Scaling plot of correlation function C(r,t) at different times, as
indicated, for the system in Fig. 2.1.
decay length is larger than the average size of the noisy clusters, calculation
of £(t) from Eq. (2.12) is not expected to be affected much by the presence
of noise. The same applies for Eq. (2.13). However, when calculated via Eq.
(2.10), either the distribution up-to the length of average noise size should
be appropriately modified or noise should be completely eliminated. The
latter strategy is more appropriate since it gives better shape to all the form
functions. In our calculation, in Eq. (2.12), h will correspond to first zero of
C(r,t).

All the results presented in Figs. 2.2, 2.3, and 2.4 are obtained from

pure domain morphology and the nice data collapse obtained in each case
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Figure 2.4: Scaling plot of structure factor S(k,t), from different times, as
indicated, for the system in Fig. 2.1. The solid line there corresponds to the
Porod tail.

using the measure of /(t) from Eq. (2.10) speaks for the equivalence of all
the definitions, Eqgs. (2.10), (2.12) and (2.13). The linear behavior of the
tail region in (a) on a semi-log plot is consistent with an exponential decay
of P({4,t). Here the noisy look (oscillatory behavior) at late time or large
domain size limit (which was also observed in other recent studies [44,45]) is
due to lack of statistics when £(¢) becomes of the order of the system size. On
the other hand, the linear look of large wave vector (k) data in (c) confirms

the generalized Porod law [3,46,47]

S(k,t) ~ k=@, (2.14)
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Note that in the present case d = 2 and n = 1 (number of components of
the order parameter). It is worth mentioning that one would have observed

a slower decay of the structure factor had the noise not been removed.

25 1 1 lllllII 1 1 lIlllII 1 T rrrri

£(t)
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Figure 2.5: Average domain size is plotted on a log-scale as a function of time
t. Different symbols correspond to calculation of ¢(t) from different quantities
. circles from P({4,t), squares from first zero-crossing of C(r,t), diamonds
from the first moment of S(k,t). Results presented were obtained from pure
domain structure as demonstrated in the right panel of Fig. 2.1, with L? =
1282 and T = 0.857,. The solid line corresponds to the theoretically expected
t1/3 behavior.

In Fig. 2.5 we present the length scale results obtained from all the above
mentioned methods on log scale, all of which look proportional to each other
as was also clear from the exercise of Figs. 2.2, 2.3 and 2.4. The data at late

times look consistent with the expected exponent o = 1/3. Note that if the
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temperature is sufficiently close to T,, for long enough time the noise might
not have equilibrated to the equilibrium value inside the true domains. In
such a situation, presence of two length scales in the problem may give rise to
misleading value of the exponent if the noise (equilibrium degree of freedom)
is not eliminated and range of fitting is small. Indeed a fitting of the data,
obtained from original snapshots (not shown), at temperature 0.857, to the

form

((t) = C + At*, (2.15)

in the range [0,20000] MCS gives o« = [0.15,0.25] (the value being larger
when /(t) is calculated from (2.12) or (2.13)) which is consistent with earlier
reports [28,29]. On the other hand a similar fitting to the data obtained after
removing the noise gives v = [0.3,0.34] and within statistical deviation, does
not depend upon the range of fitting. This latter result is already suggestive
of absence of strong correction to the scaling. However, since data fitting
is always not a very reliable exercise as will be discussed later, to further
substantiate the claim about small correction to scaling, we take the route of
finite-size scaling analysis that will also be useful in quantifying the finite-size
effect.

Before describing the finite-size scaling technique we put some more words
about the appropriateness and caveats of the noise elimination exercise. In
Fig. 2.6, we show the plots of /(¢) vs ¢, on a double log scale, for two
different temperatures. For both the temperatures we have included results

from noisy as well as noise-free environment. For the lower temperature,
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Figure 2.6: Log-log plot of average domain size, ¢(t), as function of time
for 50 : 50 composition. Results from two different temperatures are shown.
For each of the temperatures we have included results obtained from noisy

and noise-free environments as indicated. All results are obtained from the
domain size distribution functions.

of course, both the curves almost overlap with each other. This is due to
very low level of noise. In addition to the discussion already provided, the
appropriateness of the method can be further appreciated from the following
fact. The equilibrium value of ¢(t) (where the plot flattens) is different for
the two temperatures for the calculation with noise though the system size
L is same for both the cases. Note that since the results are presented for
the same system size, the equilibrium length, henceforth referred to as £y,

should be same for both the temperatures. Indeed, this is the case when
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the calculation is done from configurations without noise. However, at very
early time, when the domains are very small, the noise removal exercise
comes with some problem. In this regime, along with noise, many domains
also get removed. But it could be seen that during very early time, £(t) for
both the temperatures match with each other which is expected if, of course,
the growth amplitude is not significantly different from each other. (This
latter scenario may be true when the presented temperatures are very close
to T,). In view of that, for the purpose of finite-size scaling analysis, we will
combine the £(t) data with noise upto ¢ = 10> Monte Carlo steps (MCS) and

the noise-free data from the rest of the period.

2.2.2 Formulation of Finite-Size Scaling

In equilibrium critical phenomena, the singularity of a quantity Z is
characterized in terms of € = |T'—T,|, temperature deviation from the critical

point, as
7w Zo* m ZiET" 2y = Zo&s" (2.16)
where the correlation length & grows as
§~ §oe", (2.17)

with z and v being the critical exponents. However, for finite values of L any
critical enhancement is restricted and Z is smooth and analytic. Such finite-

size effects may appear as a difficulty in understanding results from computer
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simulations. However, this problem can be tackled by writing down finite-size

scaling ansatz, thus accounting for the size effect, as

Z =Y (x)e =Y (x)E ", (2.18)

In Eq. (2.18), Y(2) is the finite-size scaling function that depends upon the
scaled variable z = L /¢ and is independent of system size. Note that Y and
Y’ differ by a factor originating from different amplitudes Z, and Z{ used in
Eq. (2.16). In further discussion, however, we will remove primes from both
Zy and Y and distinction can be derived from whether the scaling forms are
written in terms of € or &.

At this stage, it is important to ask about the behavior of Y as a function
of x. While for static quantities, such question is already addressed, for
dynamics, where the finite-size effects are found [48] to be much stronger,
there is no appropriate understanding of the variation of Y (x). Nevertheless,

one can write down the following limiting behaviors:

for z — 0 (£ = oo; L < 00), Y(z)~ 2%, (2.19)

such that Z is finite at criticality :

Z ~ L7, (2.20)

Eq. (2.20), when compared with Eq. (2.16), is consistent with the fact that
at criticality £ is the only important length in the problem and it must scale

with varying system size L. Keeping this important fact in mind, in fact,
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Figure 2.7: Plot of average domain size ((t), obtained from Eq. (2.10), for
the 2 — d Ising model, for different system sizes (indicated on the figure) at
T = 0.67,. Definitions of £, and teLq are demonstrated. Data for L = 32 and
L = 64 were averaged over 1000 independent initial configurations whereas
only 40 different initial realizations were used for L = 128. Note that all
subsequent results in this chapter are obtained at the same temperature as
this.

one can write (2.18) as
Z~Y(z)L 7" (2.21)
On the other hand,

for v — 00 (L — 00,e > 0), Y(x)= 2, (2.22)
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so that Eq. (2.16) is recovered in the thermodynamic limit.
With the knowledge of v, Eq. (2.20) can be used to estimate z by calcu-
lating Z at T, for various system sizes. A better strategy however is to study

Z at finite-size critical points TF, such that
Zlgp ~ L7 TE—T, ~ L7V, (2.23)

though true meaning of a critical point can be assigned to T* only in the

limit L — oo.
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Figure 2.8: Demonstration of the scaling behavior (2.29) in d = 2 and 3.

This general discussion about finite-size scaling method could be used to
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construct the similar formalism for nonequilibrium domain coarsening prob-
lem where £(t) is the variable analogous to £ and 1/t to e. In the present
problem, ¢(t) should scale with L, more precisely ly,.x ~ £(t), where, as al-
ready stated, ¢y (L) is the equilibrium domain size and proportional to the
system size L. In Fig. 2.7 we show plots of £(t) vs ¢ for various different
values of L, in d = 2. The flat regions in the plots at late times correspond
t0 £ pax.

At this stage, we would like to quantify the domain growth in an infinite

system as

(it = by + At'™, (2.24)

where ¢ is temperature dependent (so is the amplitude A) and could pos-
sibly be interpreted as the average cluster size when the system becomes
unstable to fluctuations at time ¢y since the quench or the domain length at
to when the system enters the scaling regime. Of course our measurement of
time starts from there, i.e. ¢’ =t — t5. Note that we do not assign a mean-
ing of domain size to this quantity and this should be treated in a manner
similar to a background quantity in critical phenomena that appears from
small length fluctuations whose temperature variation is usually neglected.
Having said that, scaling part in Eq. (2.24) is only At'®. Of course, when
0(t') is significantly large, subtraction of the microscopic length ¢, does not
bring in noticeable difference. However, in computer simulations, where one
deals with small systems, presence of ¢, can bring in completely different

conclusions.
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Eq. (2.24) is valid only in absence of any finite-size effect. For a finite

lmax (L), analogous to (2.18), one can write down the scaling ansatz as
() — by =Y (x)t"™ (2.25)

where now

gmax - gO
xr = t'—o‘ (226)

is the scaling variable. Both in Eqs. (2.25) and (2.26), ¢, is subtracted to
deal with the scaling parts only. By observing (2.16), (2.19) and (2.22) as
well as (2.24), (2.25) and (2.26), one can arrive at the limiting forms of Y (z)

as
Y(z) ~ =, for x — 0(t' = 00, lpax < 00) (2.27)

and
Y(z) = A, for 2 — oco(t' < 00, lpax — 00). (2.28)

Of course, it would again be interesting to learn about the full form of Y (z).
Also, analogous to T'F in critical phenomena, one can define a finite size
equilibration time teLq that is needed to reach /..., as demonstrated in Fig

2.7. Then one can write down a scaling equation analogous to (2.23) as

1/3
[Cmax — Co) ~ 5. (2.29)



2.3 Simulation Results and Analysis 59

This scaling behavior is demonstrated in Fig. 2.8, where we show plots of
lrnax VS tfq on a log scale, in both d = 2 and d = 3. Consistency of the
simulation data with the solid line of the form (2.29) confirms the validity
of this approach. Note that in this figure, we did not subtract ¢y and the
corresponding microscopic time from the abscissa. As will be seen later,
lmax for the systems considered here are significantly larger than ¢y, so one
does not expect a big difference after subtracting. Eq. (2.29) is analogous
to the one used to obtain the equilibrium dynamic critical exponent from

simulations done at criticality [17], viz., the relaxation time 7 ~ L?.

2.3 Simulation Results and Analysis

Having set the methodology in place, in this section we present results
from MC simulation of Kawasaki-Ising model in d = 2 and 3, combined with

the finite-size scaling analysis.

2.3.1 Results in d=2

In Fig. 2.9 we present snapshots during the evolution of an Ising system,
starting from a 50 : 50 random mixture of up and down spins, obtained via
MC simulation at temperature T" = 0.67,.. The times at which the shots
were taken are mentioned on the figure. While the last snapshot corresponds
to a situation when A and B phases are completely separated, the one at
t = 3.5 x 10° MCS represents the situation when finite-size effect began to

enter, which will be clear from subsequent discussion.
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10° MCS

Figure 2.9: Evolution snapshots from different times, as indicated, for the
Kawasaki-Ising model in d = 2 at T' = 0.67,.. The last snapshot corresponds
to a completely equilibrated configuration.

From Fig. 2.7, by observing that the data for smaller systems are fol-
lowing the ones for larger systems almost all the way upto the saturation
value, it is already evident that finite-size effect is rather weak. However, for
a quantitative statement and to gain detail information about the growth
exponent, more sophisticated analysis is called for. Following the discussion
in the previous section, in Figs. 2.10 and 2.11 we plot Y = [{(t') — {o]/t'®
as a function of z/(x + x¢). Note that xy was introduced to see behavior

of Y properly both for small and large . For convenience we set it to 5.
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In this exercise we have varied o and ¢y (or the microscopic time tq associ-
ated with this length) to get optimum collapse of data from different system
sizes. In Fig. 2.10, where £(t) is being used from Eq. (2.10), the optimum
data collapse is obtained for ¢y ~ 4a (average cluster size after 20 MCS since
quench), a being the lattice spacing and o ~ 0.33. Similar exercise when £(t)
is being obtained from Eq. (2.12), as shown in Fig. 2.11), gives @ ~ 0.35 and
ly there corresponds to the same number of MCS after quench. Note that ¢,
in our analysis is a bare length independent of time and the scaling behavior
(2.25) will be obtained when this is chosen appropriately. These numbers, as
expected, provided a constant value of Y'(z) in the region unaffected due to
finite system size, which should be identified with the growth amplitude A
for which we quote 0.29 £ 0.01 (cf. Fig. 2.10).The arrows in Figs. 2.10 and
2.11 marks the location where Y (z) starts deviating from its constant value.
The sharp nature of the crossover is indicative of only small size effect which

we quantify from the location of the arrow marks as

0(t) = (0.75 = 0.05)(ina. (2.30)

Of course, this value is significantly large compared to earlier understanding
and expectation. Note that the snapshot at t = 3.5 x 10° MCS in Fig. 2.9
corresponds to this length.

Here we mention that for very small values of ¢ (upto ~ 10%, data upto
this time are not shown) we had difficulty in getting good quality collapse.
This is due to minor ambiguity about the actual value of ¢ in this time

range. If “noise free” configurations are used the trend of the data is to
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Figure 2.10: Finite-size scaling plot of Y, with ¢y = 3.6 lattice constants (after
20 MCS from the quench time) and o ~ 0.33, as a function of z/(z+z¢); ¢ =
5. This redefinition of the abscissa variable helps seeing the whole range of
x € [0,00]. The continuous curve is a fit to Eq. (2.31) with the best fit
parameters mentioned in the text. The arrow roughly marks the appearance
of finite-size effect.

move upwards with the increase of z. On the other hand there is a downward
trend when results are obtained from noisy configurations. Assuming that the
latter choice is appropriate, this downward trend could be due to correction
to scaling or dominant interface diffusion at early time. Note that in the next
Chapter we will address the problem of interface diffusion in detail. Further,
we mention that the ambiguity about the calculation of £(t) at early time,

which is minor in the present case, can become significant at temperatures
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Figure 2.11: Same as Fig. 2.10 but £(¢) obtained from the first zero-crossing
of C(r,t) [ef. Eq. (2.12)]. In this case £y =~ 2.7 lattice constants (at 20 MCS
from quench) and « ~ 0.35.

In an attempt to learn the full form of Y (x), we construct the following

functional form

B Az
x4+ 1/(p+ q2f)’

Y(z) (2.31)

that has limiting behaviors consistent with (2.27) and (2.28). The continuous

lines in Figs. 2.10 and 2.11 are fits to the form (2.31) with

A~029, p~3, q~6400, 3 =4 (2.32)
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and

A~0.14, p~7, q~13700, 5 =4, (2.33)
thus have the convergence

(x = 0) Y(z) = A[l — fx~"];n =15. (2.34)

Of course, possibility of an exponential correction cannot be ruled out. This
may be compared with much slower convergence of such function in dynamic
critical phenomena [48]. Note that the understanding of finite-size effect
in both equilibrium and nonequilibrium dynamics is a non-trivial task and
significant attention is called for.

To take a direct view of what happens after the corrective measure, in
terms of subtraction of ¢y, has been taken, in Fig. 2.12 we plot [((t) — £o] 3
vs 1/t and £(t)™® vs 1/t for L = 64. A log-scale was used to bring visibility
to a wide range of data. The linear behavior of the data after subtracting
ly, starting from very early time justifies the introduction of ¢, again. The
continuous line there is a plot of the form Az with 4 ~ 39 = 1/43. On
the other hand, notice the strong curvature when ¢, is not subtracted. The
dashed lines marked by 1/t and (1)*? on this figure corresponds to ((t) ~ t'/3
and t'/° respectively. Thus, when ¢, is not appropriately subtracted, only
observing the trend on a log-log plot one may be misled to conclude that there
is gradual crossover from one regime to the other. Even though a surface-

diffusion dominated regime leading to t'/4 growth appears to be missing (at
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Figure 2.12: Plot of [((t') — lo]™ vs 1/t" and £(t)™3 vs 1/t for L* = 642
with £(t) being calculated from Eq. (2.10). The continuous line has slope
39 =1/A3.
least we could not catch) at this temperature, may become prominent at
lower temperature. See Ref [49] for a discussion on crossover from t/* to
t1/3. Note that the exercise here as well as one in Figs. 2.10 and 2.11 , where
Y is very flat from very early time all the way to the moment when finite-size
effect enters, are already indicative of absence of any strong corrections to
scaling.

Before moving ahead for another elegant proof of the evidence for the
absence of negligible corrections to scaling, we pass by showing the scaling

plot of C(r,t) in Fig. 2.13 where good quality data collapse is obtained
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Figure 2.13: Scaling plot of C'(r,t) at T' = 0.67.. Note that ¢(t) was obtained
using Eq. (2.10).

starting from very beginning till £ = 3 x 10° MCS when the finite-size effect

begins. Next we introduce a length ¢, to write

CHY = Ut) — b, = [y — L] + AL, (2.35)

and calculate the instantaneous exponent [21]

_dlnl'(t)]
a; = “dnt] (2.36)
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to obtain

(2.37)

ai:a{l—go_gs}.

(th)
According to Eq. (2.37), when «; is plotted as a function of 1/¢(t"), for
¢'(t") > 0, one expects linear behavior with a y-intercept equal to «. Fig.
2.14 shows such plots for ¢/, = 0.0,3.6, and 5.0, as indicated. The dashed
lines have y-intercept ov = 1/3 and slopes

=4

; (2.38)

m =

In this exercise essentially we have, by force, invoked different initial lengths
into the average domain size because of which one obtains different slopes in
the instantaneous exponent when plotted vs inverse length. The consistency
of the slopes with (2.38) (represented by dashed lines) is interesting. Partic-
ularly the behavior of «; for £, = 3.6, again speaks for the choice of ¢y and
indicates that the LS scaling regime is realized very early. In Fig. 2.15 we
present results with ¢, = 3.6 for various system sizes L? = 162,322 and 642.
In all the cases, «; oscillates around 1/3. This observation, using a system
size as small as L? = 162, stresses against unnecessary attempt to simulate

larger systems.

This result is in strong disagreement with the earlier [21] understanding
of domain coarsening in 2 —d conserved Ising model for critical quench that «
is strongly time dependent and the LS value is recovered only asymptotically

as {(t) — oo. The route to this finite-time correction was thought to be an
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Figure 2.14: Plot of instantaneous exponent «a; as a function of 1/¢'(t') for
three different choices of £ as indicated, with L? = 642. The dashed straight
lines have slopes —1.19,0 and 0.49, respectively. The arrow on the ordinate
marks the value o = 1/3. Note that ¢(t) was calculated from Eq. (2.10).

additional term oc 1/4(¢)® in Eq. (2.5) [cf. Eq. (2.9)], accounting for an
enhanced interface conductivity. Note that a term oc 1/£(¢)® could also be

motivated by introducing a curvature dependence in o as

oli(t)] = (2.39)

) being the Tolman length [50]. However, our observation of negligible cor-

rection to the exponent, starting from the very early time, is consistent with
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Figure 2.15: Plot of oy vs 1/¢/(t') for £, = 3.6 and L? = 162,32% and 642
Here also the arrow on the ordinate marks the value o = 1/3. All data sets
correspond to averaging over 1000 independent initial conditions.

the growing evidence [51,52] that Tolman length is absent in a symmetri-
cal model [53] where the leading correction is of higher order. Also, small
corrections that may be present, coming from the curvature dependence of
the kinetic pre-factor in Eq. (2.5) is beyond the accuracy of data in the
present work. On the other hand, for 50 : 50 composition, since the domain
boundaries are essentially flat starting from very early time, any curvature
dependence is expected to be absent. Thus, we conclude that this misun-
derstanding about the strong time dependence in o was due to the presence

of a time independent length ¢, in ¢(¢) which our analysis subtracts out in
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appropriate way.

5 x 104 MCS
‘ GTEN

10° MCS 6 X 10° MCS

Figure 2.16: Evolution snapshots from different times for 3 — d Ising model
with L? = 32% and T = 0.67,.. A and B particles are marked black and grey
respectively.

2.3.2 Results in d=3

In this subsection we turn our attention to the kinetics of phase separation
in d = 3. Fig. 2.16 shows 3 — d snapshots of the time evolution of Kawasaki-
Ising model at four different times as indicated on the figure where the last
snapshot is clearly seen to have been equilibrated. Analogous to d = 2, all
results presented here were obtained at 7' = 0.6, with T, = 4.51kgT/J in

this case, and the composition was chosen to be 50 : 50 as well.
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Figure 2.17: Plot of /(t), obtained from the first zero crossing of C(r,t), vs
t, for the systems L3 = 163,32 and 643.

In Fig. 2.17 we present direct plots of £(t) as a function of ¢, for L? =
16,323 and 64° where ((t) was calculated from Eq. (2.12). Again, the
finite-size effects look to be small. In Fig. 2.18 we present a plot of Y (x),
using the data in Fig. 2.17, as a function of x/(z + x¢); g = 5. Best data
collapse in this case was obtained for ¢, = 2.5 (10 MCS after the quench,
note that corresponding value of ¢y from Eq. (2.10) is 3.0 and a ~ 0.315)
and « ~ 0.35. Very flat behavior of Y (z), starting from the beginning again
speaks for absence of any strong correction to the growth law. However,
compared to the d = 2 case, one may expect slightly stronger correction here

because of the inherent curvature present in the cylinder like domain objects
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Figure 2.18: Finite-size scaling plot of Y, for the data presented in Fig. 2.17,
vs z/(x + o) with o = 5. Here t5 = 10 (10 MCS from the quench) and
a = 0.35. Appearance of finite size effect, obtained from the arrow mark, is
estimated to be at £(t) ~ 0.7y, in close agreement with the one for d = 2.

o
—_

as opposed to the stripe like structures in d = 2. Possibly because of that
we could not obtain good collapse of data from L? = 16° on top of the ones
presented, since the whole data set for L3 = 16 is from very early time
and suffers from corrections. Onset of finite size effect, as obtained from the
arrow mark where Y (z) deviates from the flat behavior, is in quantitative
agreement with the 2-dimensional situation, as quoted in Eq. (2.30). Here
also the third snapshot in Fig. 2.16 (at ¢ = 10° MCS) is presented at this
onset. A fitting, shown by the continuous line, to the form (2.31) [A = 0.24,

p~4, g~ 13050 and B = 4], again is consistent with asymptotic convergence
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(2.34).
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Figure 2.19: Plot of instantaneous exponent «; vs 1/¢/(¢') with three different
values of ¢, = 0,2.5 and 5. The dashed lines correspond to a = 0.34. The
arrow on the ordinate marks the value a = 1/3. The data presented here

correspond to L = 64 and were obtained from averaging over 150 initial
configurations.

In Fig. 2.19, we present instantaneous exponent «; as a function of 1/¢'(t')
for L? = 64% and three choices of ¢, as indicated. In all the cases, the
exponent fluctuates around mean value 0.34. Note that o estimated from
S(k,t) and P({4,t) are slightly higher and lower, respectively, compared to
the one presented.

The appearance of growing oscillation in «;, seen in Figs. 2.14, 2.15 and
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Figure 2.20: Plot of a; vs 1/¢'(t') for ¢; = 0 showing reduction of noise when
averaged over larger number of initial configurations (IC).

2.19, around the mean value is due to lack of statistics and was also pointed
out by Shinozaki and Oono [31]. The results could be made smoother by
considering a bigger system size [see Fig. 2.15] or averaging over a large
number of systems [Fig. 2.20]. In a finite system, as time increases, for an
extended period of time two large neighboring domains of same sign may not
merge, thus lowering the value of a. After a long time when two large domains
merge, brings in drastic enhancement. This character is in fact visible in the
direct plot of £(t) vs t at late times [cf. L = 128 in Fig. 2.7 and L = 64
in Fig. 2.17]. Note that this oscillation could be a route to an error if one

obtains « from least square fitting without choosing the range appropriately.
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Finally, it will be interesting to know the temperature dependence of ¢, and
amplitude A as well as of finite size effects. All these, however, we leave out

for future work.

2.4 Conclusion

This chapter contains comprehensive study of domain coarsening in
a phase separating system with diffusive dynamics in d = 2 and d = 3.
Various different ways of analysis give results for growth law consistent with
the expected LS exponent o = 1/3. As opposed to the earlier understanding,
correction appears to be very weak, thus LS scaling behavior being realized
very early. Weak finite-size effect is a welcome message which is suggestive
of avoiding large systems, rather focusing on accessing long time scale which
often is necessary for systems exhibiting multiple scaling regimes.

Our observation should be contrasted with an earlier study of Heermann,
Yixue and Binder [11] that reports very strong finite-size effect. However, this
latter study was based on an extremely off-critical composition and should
not be considered to have general validity. Note that due to the expected
presence of correction in such off-critical composition, where droplet like
structures form with finite radius of curvature at early time, the analysis
is more difficult. Also, one should be prepared to encounter stronger size
effect in more complicated situations, e.g., systems exhibiting anisotropic
patterns [36-40, 42, 43].

One may of course ask if the small finite-size effect observed for diffusive
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dynamics is also valid for kinetics of phase separation in fluids. A compre-
hensive study in that direction, for both binary and single-component fluids,
is in progress. In fact, preliminary findings from these latter studies are sug-
gestive of more general validity of the results presented here. Such studies
are important since brute force method of simulating very large systems,
particularly for the study of fluid phase separation via MD simulation, is not
often helpful to access long time scales even with the present day high speed
computers and thus may not bring very conclusive understanding.

A deeper understanding of ¢y requires further study, particularly, how the
system is led to instability is a fundamental question to be asked. Studies
with different initial configurations and quenching to different temperatures
should be able to provide better understanding of this quantity. Even though
scaling corrections appear to be negligible for critical quench due to the
flat nature of the domain boundaries, one expects corrections for off-critical
composition. This expected correction coming from surface tension should
be of higher order than linear for a symmetric model. On the other hand, it
would be interesting to learn about the leading order correction coming from
the kinetic pre-factor.

Finally, we expect the observation, understanding and finite-size scaling
technique used in this work to find relevance in other systems exhibiting
growing length scales, e.g., ordering in ferromagnet, surface growth, cluster-
ing in cooling granular gas, dynamic heterogeneity in glasses, etc. In line of
this work many earlier studies on domain coarsening may need to be revisited
for better understanding which was not possible because of lack of reliable

methods of analysis.
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Chapter 3

Kinetics of Phase Separation in
Solid Binary Mixtures:
Temperature and composition

dependence

3.1 Introduction

In the theoretical literature of kinetics of phase separation, most of the
studies deal with binary (A+B) solid mixtures quenched to a low temperature
along the critical composition line. There one investigates the growth of
average domain size, £(t), of the interconnected A-rich and B-rich domains.

Beyond that, it is also of significant importance to understand the effect of

82



3.1 Introduction 83

temperature (7') as well as composition on the growth law
0(t) ~ At”. (3.1)

The Lifshitz-Slyozov (LS) law [1,2] (o = 1/3) for diffusive growth is
expected to be valid for the situation when one has diffusion in the bulk
(D). In that case, variation of temperature (quench depth) is expected to
bring changes in the growth amplitude A only. On other hand, at very low
temperature, diffusion along interfaces (D;) plays the dominant role. In this
case, one expects a change in the exponent [3-6] from o = 1/3 to a lower
value 1/4. This can be justified via the following arguments [6]. In fact,
the Cahn-Hilliard (CH) equation (see Chapter 1) should be written down
with concentration dependent mobility. A simple form for such mobility, due
to Gemmert et. al. [6], is M (¢) = Dy (1 — ﬁf—;), where § =1 — g—z and
1o is the equilibrium magnetization. At moderate temperatures when D,
and Dy are comparable, one has nonzero mobility in the bulk. On the other
hand, for very low T', D, < D, and in the bulk @ = 1y everywhere. This
gives rise to negligible bulk mobility. However, since 1) = 0 at the interfaces,
one has nonzero mobility of particles there. From a dimensional analysis of
the mobility dependent CH equation, Gemmert et. al. also worked out the
crossover from o = 1/4 to 1/3, as a function of 5. We will provide further
discussion on this later.

In case of composition variation, as one moves from the critical value, the

domain structure no longer remains interconnected. Rather, one observes

growth of droplets of the minority species in the background of the majority
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sea. In case of fluid phase separation, this difference in morphology brings
in striking and important change in the mechanism and thus the exponent
of the growth law [7—11]. In solid binary mixtures, however, one expects the
mechanism to remain same. Here, an interesting objective could be to search
for the correction to the scaling law [12-14], if any, due to the finite radius
of curvature of well defined droplets. Recall that for 50 : 50 composition, we
failed to obtain such finite time correction. We have attributed this to the flat
domain boundary for “all time”. Another possible reason was pointed out
to be the absence of any linear correction term in the curvature dependent
interfacial tension in Ising-like symmetric models. If the former argument,
due to flat interfaces for 50 : 50 composition, is the only reason, then we
expect visible corrections for composition closer to the co-existence curve.

In this work, we have undertaken a detailed study of kinetics of phase
separation in solid binary mixtures via Monte Carlo (MC) [15] simulation of
Kawasaki exchange [16] Ising model in two spatial dimensions (d = 2). We
present results on the effect of variation of temperature as well as that of
composition both on the morphology and growth dynamics. In addition, we
present important results on the finite-size effects due to the variation of these
parameters. To obtain information on the growth law, the corresponding
correction at early time and the finite-size effects, we relied on finite-size
scaling analysis [17, 18], among other techniques.

The rest of the chapter is organized as follows. In Section 3.2, we present
the results for temperature dependence. The composition dependent results
are discussed in Section 3.3. Finally, we conclude the chapter with a brief

summary in Section 3.4.
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Figure 3.1: Snapshots during the evolution of Kawasaki exchange 2—d 50 : 50
Ising model at ¢t = 10> MCS from systems of linear dimension L = 64. Four
different temperatures are included. Only A particles are shown.

3.2 Temperature Dependence

In this section we present results for the kinetics of phase separation
in Ising model with critical composition for various depths of temperature
quench.

In Fig. 3.1, we show the snapshots at ¢ = 10° MCS , from the evolu-
tions at four different temperatures, after quenching a homogeneously mixed
50 : 50 Ising system to the mentioned temperatures below T, the critical

temperature. Two observations are in order. First, the growth is faster for
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higher temperature. Second, the thermal noise, as expected, increases as one
goes closer to T,.. The later poses difficulty in accurate estimation of domain
length ¢. To overcome this problem, we remove the noise, by employing the
majority spin rule [13,14] in the neighborhood of a lattice point, to obtain

pure domain morphology.
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Figure 3.2: Plots of ((t) vs t for three different temperatures, as indicated,
for L = 64. Note that ¢(t) was calculated from domain size distribution
function.

Before presenting further results, we again mention that we have calcu-
lated £(t) from three different methods: (a) From the decay of the correlation

function C(r,t) = (S;S;) — (S;)(S,); 7 = | — j|, more precisely from the dis-

tance when C(r,t) crosses zero for the first time; (b) From the first moment
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of the structure factor S(k,t) (k being the wave vector) which is the Fourier
transform of C(r,t); (¢) Finally, from the first moment, [ dly €4P((y,t), of
the normalized domain-size distribution function P(¢4,t), where ¢, is the
separation between two interfaces in z— or y— directions. Results from all
three different methods are found to be consistent with each other for all
temperatures and composition, differing only by a numerical factor. So, for
the presentation purpose, we will use results from only one of them, viz.,

method (c).
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Figure 3.3: Plots of instantaneous exponents a; vs 1/4(t), for two different
temperatures, each with 50 : 50 composition. The solid lines are guides to
the eye. The arrow on the ordinate marks the value of 1/3.

In Fig. 3.2, we show the plots of £(t) vs ¢, for three different temperatures.



3.2 Temperature Dependence 88

In all the cases same system size has been used. The results are presented
after averaging over 50 independent initial configurations. As already men-
tioned, the equilibration occurs faster for higher temperature. This implies
that, if the exponent is same, the amplitude of growth is larger for higher

temperature. We will investigate it in detail in the following.
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Figure 3.4: Plot of growth amplitude A vs temperature, for 50 : 50 compo-
sition.

din/t
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In Fig. 3.3, we have shown the instantaneous exponent «; [: ] as a
function of 1/¢, for two different temperatures. For both the cases, it can
be appreciated that, in the limit £ — oo, the exponent converges to the LS

value « = 1/3. From the temperature dependent slopes of these numerical

results we can make a guess about the background length ¢, discussed in the
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previous chapter in the context of finite-size scaling analysis. For the sake
of brevity, we do not demonstrate the finite-size scaling analysis. In Fig. 3.4
we present a plot of amplitude A, extracted from the finite-size scaling, vs
T. One observes that A monotonically increases with 7. From the quality
of data, however, it is difficult to figure out if there is any specific critical
behavior of this quantity. Note that all these results correspond to reasonably
high temperatures. Next we present results for low enough temperature to

see if there is any signature of a = 1/4, at early time.
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Figure 3.5: Finite-size scaling plot for 50 : 50 Ising model using ¢(t) data from
three different system sizes at T' = 0.357,.. The values of ¢y and ¢ty are 3.9
and 60 MCS respectively. The value of zy used is 5. Note that our counting
of time starts from ¢, (time since quench) and ¢, is the corresponding length.

From the nature of data at early time, for 7" = 0.357,, in Fig. 2.6,
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it appears that the interface diffusion mechanism at early time is perhaps
giving rise to a smaller value of . In fact we have struggled to obtain even a
reasonable finite-size data collapse of data at early time, for this temperature,
by fixing o« = 1/3, see Fig. 3.5. A good collapse of data is obtained only
for t > 10> MCS. The nonscaling behavior of the data in the time range
[0,10°] and the trend of the early time data coming from the lower side (see
inset) indicates that the exponent is lower at the beginning. This could, of
course, be identified with the “expectation” of & = 1/4 for lower temperature.
However, some important discussion should be in order here.

It is argued that at lower temperature there should be crossover from
a = 1/4 to 1/3. This means that bulk diffusion, which is negligible at
early time becomes significant at late time. This is analogous to saying
that the bulk order parameter is closer to saturation at early time which is
contradictory to the actual fact. In view of that even though our finding
is consistent with crossover in the exponent from 1/4 to 1/3, we feel that a
better argument should be devised to understand this interesting fact.

We end this section by stating that the estimation of finite-size effects
is consistent with the quantitative statement in the previous chapter, for all

temperatures studied.

3.3 Composition Dependence

In this section, we present results for morphology and growth from
the MC simulations of Ising model with various different compositions of up

and down spins (A and B particles). Here all the results are obtained at
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T = 0.531..

.

Figure 3.6: Snapshots obtained during the evolution of a 10 : 90 Ising model
at T'= 0.53T. in a square box of length L = 64. Only A particles are shown.

Fig. 3.6 shows the snapshots during the evolution of a 10 : 90 Ising system
(10 % A and 90 % B) starting from a random initial configuration. Require-
ment of energy minimization and very off-critical composition restricts the
domain geometry of the minority species to droplets. Since the hydrodynam-
ics is unimportant in solid, growth of droplets, after their nucleation, takes
place via diffusion mechanism. As already stated, our objective here is to
find out correction to the LS growth law, if any, at early time, due to finite

radius of curvature of droplets.
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In Fig. 3.7, we show a comparative picture of snapshots from four different
compositions at the same time. It is apparent that as one moves closer to
the symmetric or critical composition, the growth is faster. This is easily
understandable that with the decrease of overall concentration of A particles,

they need to travel longer to get deposited on a domain.

05:95 10:90
w

u.i
P a1

Figure 3.7: Snapshots from the evolution of Ising model at T" = 0.537,, for
four different compositions at ¢t = 10> MCS, with L = 64.

In Fig. 3.8, we show scaling plots of the correlation function, for 10 : 90
composition. Again, the length scale used here was obtained from the first
moment of domain size distribution function. (Note here that in all the cases
we have considered only the average size of A-domains). It is seen that one
obtains good quality data collapse with the increase of time.

In Fig. 3.9, we show the plots for correlation functions from four different
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Figure 3.8: Scaling plots of the correlation functions for 10 : 90 composition
at T' = 0.53T,. The results for all the times were obtained from a system of
size L = 64, after averaging over 100 initial configurations.

compositions for the late time snapshots shown in Fig. 3.7. No scaling
behavior is seen because of the method of calculation of ¢(¢). Recall, we have
used only the A-domains. However, from the definition of C'(r,t), it is clear
that the information of both A-rich and B-rich regions are incorporated in
it. In the inset of this figure, however, we have obtained reasonable data
collapse by using £(t) from the decay of C(r,t), except for the amplitude of
damped oscillation. This discrepancy is due to the fact that integration of
C(r,t) with respect to r is proportional to the sum of the order parameter

which is different for different compositions. Apart from that, reasonable
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collapse of data indicates that the basic structure is same in all the cases.
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Figure 3.9: Scaling plots of C(r,t) using data from three different composi-
tions at T' = 0.53T,, for L = 64. Inset : Same as the main frame but here
((t) was used from the first zero crossing of C(r,t).

In Fig. 3.10, we show £(t) as a function of time for three different composi-
tions, as indicated. Interestingly it appears that the equilibration time ¢, is a
non-monotonic function of composition. Another observation is that the am-
plitude of growth decreases with increasing asymmetry of composition. This
fact explains the former considering that for extreme off-criticality smaller
amount of A particles need to assemble to reach equilibrium. In Fig. 3.11,
we show the instantaneous exponent obtained for the plots in Fig. 3.10. In
all the cases it is seen that in the limit ¢ — oo, there is a tendency of the

data to converge to the LS value av = 1/3.
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Figure 3.10: Plots of £(t) vs t, at T' = 0.537T,, for three different compositions.

The system size for all the cases is L. = 64. Final results were obtained after
averaging over 100 independent initial configurations.
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In Fig. 3.12, we show the plots of £(t) vs ¢ from various different system
sizes, for the composition 10 : 90. Corresponding finite-size scaling analysis
is demonstrated in Fig. 3.13. Best data collapse, that is presented here, was
obtained for ¢y = 1.8 and t; = 80 MCS. Note that here we have fixed « to
the LS value 1/3 again. Reasonable flat nature of the data confirms that
the correction is negligible and if at all present, it is buried in the statistical
fluctuation of the simulation results. Again, from the ordinate of this flat
region, we extract the amplitude of growth. This is plotted in Fig. 3.14.

Further, we have extracted information on the finite-size effects from the
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Figure 3.11: Plots of instantaneous exponent «; vs 1/((t) obtained from the
plots in Fig. 3.10.

deviation of data from flat behavior in the scaling plots. In all the cases it
appears rather weak and consistent with quantitative information provided
in Chapter 2.

Coming back to the point of curvature dependent correction, we revert
to a different analysis below. In our finite-size scaling analysis one may ask
about the ambiguity in the choice of ¢y, however small it may be. To avoid
such criticism, we search for a method where ¢, can be gotten rid of in a

different mathematical way. Writing

0t) = €y + Ate, (3.2)
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Figure 3.12: Average domain size, £(t), is plotted vs ¢ for 10 : 90 mixture.
Results from three different system sizes at 7' = 0.537, are shown.

one obtains

aet) -1
— = = Aot . :
7 14 at (3.3)

By setting a = 1/3, one has

1 3 3/2

In Fig. 3.15, we plot 1/¢3/2 vs t for three different compositions, including

the critical one. In all the cases, numerical results look consistent with linear
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Figure 3.13: Finite-size scaling plot for data in Fig. 3.12. The values of ¢,
and t, are respectively 1.8 and 80 MCS. Note that the value of zy used is 5.
behavior from very early time. The solid lines there are guides to the eye for
which we have used slopes (%)3/2 by taking A from Fig. 3.14.

Despite all these findings, we do not discard the fact that a correction
is present. Our analysis might have failed to capture this aspect because of
statistical fluctuation in the data combined with the fact that the correction

are of higher order in 1/¢ with very small value of prefactor. This argument

stems for the curvature dependent interfacial tension

o(o0)

O = i

(3.5)
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Figure 3.14: Plot of growth amplitude A vs % of A particles. All data points
correspond to T" = 0.53T..

for symmetric models like the Ising one with quadratic leading correction
[19,20]. From equilibrium studies of symmetric binary fluid that belongs to
the Ising universality class of critical phenomena, it is observed that /.. is very
small at temperatures comparable to the present study. For temperatures sig-
nificantly close to T, however, curvature dependent correction to the growth
law may be significant. This statement can be justified from the finding that
¢, diverges at criticality [21]. But, closer to T, study of kinetics of phase
separation is limited by lot of additional difficulties because of mixing of two
diverging lengths, viz., the equilibrium correlation length ¢ and domain size
f. So we leave it as a future task when we acquire better computational
resources. We close this section, with the following comments. Irrespective
of composition, at moderate temperatures, the correction to scaling appears

very small and this contradicts and corrects our previous understandings
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The solid lines have slopes (%)3/ 2,

(0)

about this phenomena of kinetics of phase separation. The finite-size effects

in all the cases appears rather weak.

3.4 Conclusion

We have presented detailed results for the kinetics of phase separation in
solid binary mixtures via Kawasaki exchange Monte Carlo simulation of Ising
model. Results are understood via sophisticated finite-size scaling analysis
and other methods. Important aspects related to the variation of quench

depth and mixture composition are discussed.
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A wide variation of temperatures was considered for the study related to
the influence of quench depth. For temperatures above 0.57,, it is observed
that the growth laws are consistent with Lifshitz-Slyozov (LS) law (o = 1/3)
almost all along. For significantly low temperature, however, at early time,
lower exponent of the growth was noticed which crosses over to the LS value
only at much later time. In this case the early time behavior is consistent
with the prediction for interface diffusion mechanism.

For the composition dependent case, our objective was to search for any
significant correction to the scaling. The finding appears to be against it
which again contradicts many existing studies in the literature. Our obser-
vation, however, is consistent with recent studies in the equilibrium context
involving curvature dependent interfacial tension. Nevertheless, in line of
these equilibrium studies, we expect noticeable corrections for temperatures
close to the critical value. Because of scientific as well as technical reasons,
we, however, leave it as a future problem.

In addition to results and analysis for the growth law, we have presented
interesting results for the pattern formation as well. These patterns were
characterized via calculation of correlation functions and related quantities.
lastly, our observation about the weak finite-size effects appears to be generic

at all temperatures and composition.
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Chapter 4

Phase Behavior and Dynamics
of Vapor-Liquid Phase

Transition

4.1 Introduction

Understanding nonequilibrium evolution during the phase separation in
a system is of fundamental importance [1-4] and of much research interest,
both theoretically and experimentally [5-22]. This phenomena has been in-
troduced in length in the introduction chapter as well as in previous chapters
related to solid-solid phase separation. For the sake of completeness, some of
the issues we discuss here as well, before presenting the results. Note that,
except for the phase behavior, all the results (including text) in this chapter

are reproduced from References [23,24].

104
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Upon quenching from a high temperature homogeneous state to a temper-
ature below the critical point, the system becomes unstable to fluctuations
and starts phase separating with the formation and usually nonlinear growth
of particle rich and particle depleted domains. Such coarsening is a scaling
phenomenon [25], e.g., the shape functions characterizing the morphology

obey the scaling relations [1-3, 20, 25]

C(r,t) = C(r/et)), (4.1)
S(k,t) = 0(t)S(ke(t)), (4.2)
P(tg,t) = £(t) Plea/e(t)], (4.3)

where C(r,t), S(k,t) and P({4,t) are respectively the two-point equal-time
correlation function, structure factor and domain size distribution function.
In Eqs. (4.1-4.3) C(z), S(y) and P(z) are the master functions independent
of time (¢)-dependent average domain-size £(t) that typically grows in a power

law manner

0t) ~ t. (4.4)

The growth exponent «, in Eq. (4.4), depends upon the transport mech-
anism driving the phase separation. For diffusive dynamics, associating the

domain growth with the chemical potential gradient as

de(t)

dt

i
TGE
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~ being the inter-facial tension, one obtains a = 1/3. This is referred to as the
Lifshitz-Slyozov [26] (LS) law. While LS law is the only expected behavior
for phase separating solid mixtures, one expects much faster growth, at large
length scales, for fluids and polymers, where hydrodynamics is important.
Compared to the kinetics in vapor-liquid phase separation, domain coarsen-
ing in binary fluids received much more attention [5-7,11,13,14,19,27-30]
where following consensus for the behavior of late stage growth [31-34] has
been reached in d = 3. Considering a balance between the surface energy
density (v/4(t)) and the viscous stress (6mnuve/l(t), v, being the interface ve-
locity and 7 the shear viscosity) for an interconnected domain structure, one

can write

%’f) — vy = % (4.6)

Solution of Eq. (4.6) predicts a linear growth (o = 1), a picture that holds
for low Reynolds number. However, for £(t) > (;,(= n?/(pY), p being the
density), the inertial length, the surface energy density is balanced by kinetic
energy density pv?, so that

de(t) 1
dt 0(t)1/?

(4.7)

giving o = 2/3. Note that o = 1 is referred to as the viscous hydrodynamic

growth and o = 2/3 as inertial hydrodynamic growth. While crossover from
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diffusive to viscous hydrodynamic regime was observed in molecular dynam-
ics (MD) simulations [19,30] and experiments [35-37], both viscous and in-
ertial growths were observed in lattice-Boltzmann simulations [3].

While nonequilibrium universality for vapor-liquid phase separation is
expected to be the same as the liquid-liquid, rare inconclusive MD simula-
tions that exist [15,38-41] for the vapor-liquid transition report an exponent
a = 1/2 for late time domain coarsening. Thus, even though our recent
focus has turned to systems with realistic interactions and physical bound-
ary conditions [5-11], our basic knowledge and understanding of segregation
kinetics in bulk fluids still remains a challenge. In this chapter, we present
results from large scale MD simulations for kinetics of vapor-liquid phase
separation in a single-component Lennard-Jones (LJ) fluid. This work re-
ports first observation of viscous hydrodynamic growth via MD simulation,
thus computationally confirming that the nonequilibrium universality class
of vapor-liquid and liquid-liquid phase separation is indeed the same as in the
case of equilibrium critical phenomena for both static and dynamic proper-
ties. In addition to exploring the domain growth, in this chapter we have also
investigated the extent of finite-size effects for this class of phase transition
via the application of finite-size scaling analysis technique. An appropriate
knowledge of the finite-size effects helps in the judicial choice of the system
for the direct understanding of the asymptotic growth law so that any unex-
pected deviation is not inappropriately attributed to the deficiency in system
size.

This chapter is divided into following sections. In Section 4.2 we will

describe the model used in this study. Section 4.3 presents results for the
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phase diagram and estimation of critical point for the model. In Section
4.4 we present results from the nonequilibrium evolution during vapor-liquid
phase transition. In Section 4.5 we estimate the finite size effects for such
domain coarsening problem and finally we end the chapter in Section 4.6

with a summary and discussion.

4.2 Model and Method

We consider a model where particles interact via

Virg) = Ulrsy) — Ulre) — (g — 7o) (w) , (4

with

o= (7)"- ()

being the standard LJ potential. In Eqs. (4.8) and (4.9), r;; is the scalar
distance between the ith and jth particles, ¢ is the particle diameter and
¢ is the interaction strength. The cut-off and shifting of the potential at r,.
was used to facilitate faster computation. Further, introduction of the third
term [42] on the right hand side ensures that both the effective potential and
force are continuous at r. which was set to 2.50. All particles were assigned
equal mass m. For the sake of convenience, below we set m, o, € and kp
to unity. The MD runs were performed using the Verlet velocity algorithm
[42,43] with an integration time step of At = 0.0057, 7 = (mo?/e)'/? = 1.

The phase-diagram of the model without the force-correction term is
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known [44], the critical temperature (7.) and critical density (p.) being
1.085 4+ 0.005 and 0.317 £ 0.006 respectively. It is understood, of course,
that the introduction of force-correction will somewhat change the value of
T., which, from our experience [45-47] with a similar model that was used to
study phase-separation in binary mixture, could be somewhat (10% — 20%)
lower. Nevertheless, to be sure and for completeness, we preferred to esti-
mate the phase diagram for the corrected potential which is presented in the

following section.

4.3 Estimation of the Phase Diagram

MD runs were performed at different temperatures in a rectangular box
with dimensions L,, L, and L., where L, = L, = L < L,. Periodic bound-
ary conditions were applied in all directions. We have used NVT ensemble
with fixed density of particles p = 0.3. The Nosé-Hoover thermostat was
used to control the temperature. The choice of such a rectangular box is be-
cause of the fact that it will lead to configuration where the interface between
the vapor and liquid domains will be perpendicular to the xy-plane which,
in turn, will provide significant length in z-direction for both the vapor and
liquid phases so that the co-existing densities can be calculated with better
confidence.

In Fig. 4.1 (a) we have shown the 3 — d snapshot of the equilibrium
configuration obtained after MD simulation at 7" = 0.6 for a rectangular box
with L = 30 and L, = 150. It clearly shows the phase separation between

the high density liquid phase and the low density vapor phase. The interface
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Figure 4.1: (a) 3 — d snapshot of an equilibrium configuration obtained from
MD simulation starting from random initial configuration with L, = L, = 30
and L, = 150 and having density p = 0.3 at 7" = 0.6. (b) 2-dimensional cross-
section of the same snapshot in an xz-plane. Further details are given in the
text.

between the vapor and liquid domains is found to be perpendicular to the
zy-plane, as expected. In Fig. 4.1 (b) we have shown a 2—d zz- cross-section
of the same snapshot for y = L/2.

Our next task is to calculate the equilibrium densities for the liquid and
vapor phases at different temperatures. We have extracted the equilibrium
values of the densities from the density profile of the equilibrium configu-
rations as function of the z-coordinates. The density profile was calculated
by dividing the system into small rectangular boxes of width Az = 2 and
length L along the x and y- directions. In Fig. 4.2, we have shown the
density profiles for three different temperatures as indicated. It is seen that
the density has a reasonably constant high value for small of z and then sud-
denly drops at an intermediate value of z values (except at the beginning)

and remains more or less constant almost till the end. The higher densities



4.3 Estimation of the Phase Diagram 111

0,8 1 I I 1 I I 1 I 1 I I 1 I 1

p(2) —T=2
0.6 0875

0.4 -

02k

1 I 1 1
0 50 100 z 150

O 1 1 1 1 | 1 1 1

Figure 4.2: Density profiles at three different temperatures, as indicated,
for the rectangular equilibrium configurations, obtained via MD simulations
with L, = L, = 30 and L, = 150, for overall density p = 0.3.

here correspond to the liquid phase and the lower ones for the vapor phase
at respective temperatures. From the average of densities in the liquid range
and vapor range, we extract the equilibrium values of the density for the
vapor and liquid phases respectively. It should be noted that here that at
very high temperature, due to strong thermal fluctuations, the estimations
are less reliable.

In fig. 4.3 we show the phase diagram of the model in the temperature
(T') vs density (p) plane. Here we have plotted the equilibrium densities of
the liquid and vapor phases as function of the temperature. One can clearly

see that the density difference between the two phases decreases with increase
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Figure 4.3: Phase behavior of the L.J model under study in the temperature
vs density plane. The solid line corresponds to Eq. 4.11. For details about
the estimation of parameters in this equation see text. The crosses represent
the co-existence diameter.

of temperature. To estimate the critical point the data can be fitted to co-
existence diameter (represented by the crosses in this figure) that behaves

as

PL+ Py

D) = Pc + A(Tc - T)a (410)

where p; and p, are the densities of the liquid and gas phases respectively,
pe is the critical density, T, is the critical temperature and A is a constant.

In addition, the density difference between the two phases (p; — p,) which is
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the order parameter for vapor liquid transition, is fitted to the form
(b1 — ps) = B(T. — T)", (4.11)

where [ is the critical exponent for the vanishing of the order parameter
and B is a critical amplitude. During fitting we set § = 0.325 which is the
value for Ising universality class [43]. In Fig. 4.4 we have shown the plot of
(pi—pg)Y? vs T. The solid line there is a fit to the form (4.11), where we have
used points towards the higher temperature excluding the last two points.
The fitting gives B = 1.22 and 7, = 0.895. Further, from (4.10) we obtain
A = 0.375 and p. = 0.305. The continuous line in Fig. 4.4 corresponds to
Eq. (4.11) with B = 1.22, T, = 0.895 and 3 = 0.325. Nice consistence of the
simulation data with continuous line confirms that this model indeed belongs

to the Ising class. Again, we quote that, for this model

T, = 0.895+0.005, (4.12)

pe = 0.300 = 0.005 (4.13)

4.4 Results for the Nonequilibrium Dynam-
ics

In this section we discuss the main result of this chapter which is the

kinetics of the vapor-liquid phase separation. For our study we have used
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Figure 4.4: Plot of (p — py)/? vs T with 8 = 0.325. The solid there is
obtained from fitting to the form (4.11).

a total 265421 particles, confined in a periodic 3-dimensional cubic box of
linear dimension L = 96, having a density p = 0.3. The temperature was
controlled by using a Nosé-Hoover thermostat (NHT') [43], which is known to
preserve hydrodynamics well. At ¢ = 0 homogeneous initial configurations,
prepared by equilibrating the system at T" = 5, were quenched to T < T,.. All
the results were obtained by averaging over 5 independent runs at a quench
temperature T' = 0.7.

The left frames of Fig. 4.5 are typical 3-dimensional evolution pictures
from two different times where the dots represent particles. They demon-
strate nice interconnected structure of segregating domains growing with

time. The average density of liquid and vapor domains are respectively 0.72
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and 0.02. A direct method to characterize the structure is to calculate the
radial distribution function, ¢(r), from these continuum configurations. How-
ever, we are interested in looking at C'(r,t), its Fourier transform S(k,t) and
P({g4,t) which have been more standard tools in the study of phase order-
ing dynamics. To facilitate the calculation of latter quantities, we map the
continuum snapshots to a lattice one in such a way that a pure domain struc-
ture is obtained where all lattice sites inside a liquid domain have occupancy
one while sites inside the vapor domain have occupancy zero. An appro-
priate renormalization procedure [12,16,19] is applied for this noise removal
exercise. We further map this system into spin-1/2 Ising system where an
occupied lattice site has spin value S; = 1 and for a vacant site S; = —1. The
right frames in Fig. 4.5 show such mapped configurations. In Fig. 4.6 we
demonstrate similar exercise by showing cross-sectional views at two other
times. Which may be difficult to appreciate from the 3 — d snapshots, these
2 —d pictures clearly show that no significant structural change has occurred
during this transformation that can hamper the analysis. Also during the
entire duration of study, we find that the composition of up and down spins
remains conserved within a tolerable limit of 5% fluctuations.

From the mapped configurations, the correlation function C(r) is cal-

culated as

C(r,t) = (S:S;) — (Si)?, (4.14)
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where the angular brackets stand for statistical averaging. The average do-

main size £(t) from the decay of C(r,t) was estimated as

C(r = ((t),t) = h, (4.15)

where h was set to the first zero of C'(r,t). Other methods employed for the

calculation of ((t) are

= 7o 25(/\@) (4.16)
and
0ty = / AlaluP(la,t). (4.17)

In Egs. (4.16) and (4.17), it is assumed that S(k,t) and P (¢4, t) are appropri-
ately normalized. In Eq. (4.17), ¢4 is obtained from the separation between
two successive domain interfaces in x—, y— or z— directions.

In Fig. 4.7, we present the scaling plot of C'(r,t) vs. r/{(t) for which four
different times were chosen, as indicated on the figure. While collapse of data
from the earliest time with the other ones is not good, excellent data collapse
for three later times is indicative that a scaling regime is reached. In Fig. 4.8
we show the scaling behavior of S(k,t) on a log-log plot. The parallel nature
of the tail region to the continuous line confirms consistency with the Porod
law [48,49]. Fig. 4.9 shows the scaling plot of P({4,t) on a semi-log plot
where the linear behavior of the tail region is consistent with an exponential

decay [16,20]. Note that in all the cases, ((t) used was obtained from Eq.
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t =100

Figure 4.5: Left frames show the 3 — d snapshots during evolution of the
vapor-liquid phase separation in a simple Lennard-Jones system, at two dif-
ferent times, as indicated. The total density was set to 0.3 that gives in-
terconnected domain morphology, as seen. The simulation was performed
after quenching a homogeneous system prepared at a high temperature to a
temperature 7' = 0.7. The right panel corresponds to the same snapshots,
but after removing the noise (see text for details) to obtain a pure domain
morphology.

(4.17). The nice data collapse obtained in all the quantities by using ¢(t)
from a single measure speaks about the consistency of different methods.
Henceforth all the results for ¢(¢) will be presented after calculating via Eq.
(4.17), unless otherwise mentioned.

Coming to the central objective of the chapter, viz., quantifying the dy-

namics, in Fig. 4.10 we present plot of ¢(t) vs. t on a log scale. There
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t = 200

Figure 4.6: Cross-sectional view of the same system in zy plane at two other
times. Here also the left frames show the original snapshots and the right
ones show the same after removing noise.

various lines correspond to various growth laws in domain coarsening prob-
lem. While the early time data is more consistent with a diffusive growth
(v = 1/3), there appears a gradual crossover to a faster growth. The inter-
mediate time data, of course, look consistent with t'/? as reported in previous
works [15,38-41] and at a later time there seems to be a further crossover.
However, due to large offset at the crossover region(s), which will be clearer
from further analysis and discussions, we warn the reader not to take this
conclusion seriously. For similar reasons, an apparently t'/3 looking behavior

during early time should also not be taken seriously. In fact, due to this and
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Figure 4.7: Scaling plot of (a) C(r,t) vs r/{(t) where data from four different
times, as indicated, have been collapsed. All quantities were calculated from
noise-free domain structures.

other practical difficulties, it is advisable not to reach a firm conclusion from
looking at the behavior on a log-scale (which, of course, is a standard prac-
tice followed in the literature), unless one has results over several decades in
time and length.

Fig. 4.11 shows a plot of £(¢) vs t on a linear scale where the data starting
from ¢ ~ 100 look quite linear all the way till the end. The deviation from
this linear behavior at early time (¢ < 100) could be attributed to slower

diffusive growth, as discussed above. A fitting to the form,

((t) = A+ Bt*, (4.18)
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Figure 4.8: Scaling plot of £(t)~%S(k,t) vs kf(t) from four different times, as
indicated. The continuous line has a slope of —4 corresponding to the Porod
law.
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however, in the range ¢ € [0,100] gives o = 0.66. Since this diffusive regime
is short lived and also accompanied by gradual crossover to a faster growth
regime, it is in fact not practical to search for growth exponent o = 1/3 in
this region. On the other hand, a similar fitting to the range ¢ e [100, 350]
gives a =~ 0.9, quite consistent with the predictions for viscous hydrodynamic
growth. Note that for ¢ > 350 one hits the finite-size effects for the system
size used in this work. In Fig. 4.12 we present plot of the exponent « as
a function of 1/t; obtained by fitting the data to the form (4.18) in the

range [to,350]. This exercise conclusively says that the exponent at late time
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Figure 4.9: Scaling plot of £(t)P ({4, t) vs £4/¢(t) from four different times, as
indicated. The continuous line represents an exponential decay of the tail.

certainly is larger than 1/2 which was reported earlier.

Note that for t > 350 we expect to see the finite-size effects for this system
size. In Fig. 4.13 we plot the system size L as a function of time ¢, needed for
the domain size to reach the saturation limit. The linear behavior of the data
is again consistent with the viscous hydrodynamic growth. This should be
compared with the corresponding result obtained from Kawasaki-exchange
Monte Carlo simulation of Ising model [51] where, because of diffusive dy-
namics, L should scale as ti® (dashed line) in accordance with the LS law.
This analysis is analogous to the one presented in Chapter 2 [See Fig. 2.8].

Here instead of using ¢,.x we have used L and ¢, is the same as t., of Chapter
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Figure 4.10: Plot of £(¢) vs t on a log-scale. All data were obtained after
removing the noise as described in the text. Here different lines correspond to
growth laws £(t) ~ t'/3, t1/2 ¢2/3 and t, as indicated. Two different symbols

correspond to calculation from P(¢4,t) and S(k,1).

2. While we already have enough evidence for a linear behavior of the time

dependence of ¢(t), for the sake of completeness and to further strengthen our

claim we take the following route which, in addition to being a nice exercise,

could be useful for other complex situations.

In Fig. 4.14 we present a plot of instantaneous exponent «; calculated

as [50]

d[ln £(¢)]

YT T

(4.19)
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Figure 4.11: Plot of /(t) vs t on a linear scale. All data were obtained after
removing the noise as described in the text. The solid line corresponds to
the expected linear growth in the viscous hydrodynamic regime.

vs 1/4(t). Due to the off-set ({y) at ¢t = 0, as discussed in the context of
Fig. 4.10, «; is less than unity for the whole range. However it seems to
be approaching unity in a non-linear fashion. The dashed line there with
an arrow at the end serves as a guide to the eyes. The lower part in this
figure represents the corresponding result obtained from MD simulation by
using Andersen thermostat (AT) [43]. Due to the stochastic nature of this
thermalization algorithm, it is expected that a diffusive growth will be seen

for all time and length scales and indeed is seen. There the dashed line has
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Figure 4.12: Plot of the growth exponent «, as a function of 1/t,, obtained
by fitting the data in (a) to the form (4.18) in the range [ty,350].

the form [12]

a; = é {1 - —} : (4.20)

which says that the observation of v < 1/3 for finite domain lengths is
a mathematical artifact coming due to non-zero value of ¢5 and does not
necessarily mean that the actual exponent is not 1/3 at early time. Coming
to the point of hydrodynamic preserving capability of NHT, of course, much
better thermostats are available these days. However, from the difference seen

for the results coming from NHT and AT, it is clear that NHT is preserving
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Figure 4.13: Plot of system size L vs saturation time t;,. For MD results,
the time is in 10? LJ unit while for MC simulation it is in unit of 10® Monte
Carlo steps.
it rather well. Thus the validity of the methodology adopted in this work is
justified.

Note that in Eq. (4.20) ¢y corresponds to the characteristic length scale
at the beginning of a scaling regime and not necessarily the length at ¢ = 0.
In situations where one does not expect multiple scaling regimes (as is the
case with AT) ¢y can be nicely estimated from a data-collapse experiment in
finite-size scaling analysis [12,51]. But situation is more complex with NHT
due to a crossover to hydrodynamic regime and non-availability of data for

different system sizes. However, considering that the crossover, at time t.,
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Figure 4.14: Plot of instantaneous exponent «; vs 1/¢(t). The dashed line is
a guide to the eyes, while the dotted line corresponds to Eq. (4.20).

under discussion is to a linear regime, confirmation about it could be obtained
by using the following simpler method. To start with, we assume that the
growth obeys a power law behavior as a function of the shifted time ¢’ = t—t.

O() = 0(t) — U(t,) = At (4.21)

and calculate the instantaneous exponent

_d[Inl'(t')]
0 = =T (4.22)
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Eq. (4.21) is invariant under an arbitrary choice of t. if we are in a linear
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Figure 4.15: Plot of a; vs 1/¢'(t') for two different values of ¢, as indicated.
There the horizontal line represents there the linear hydrodynamic growth.

growth regime and one should obtain a constant value o; = 1 for all choices
of t. in the post crossover regime. In Fig. 4.15, we present «; for two different
choices of t.. For t. > 110, «; oscillates around the mean value 1 which is
consistent with the viscous hydrodynamic regime. This oscillation of the data
presented here, is also observed in other studies [12,27]. In a finite system, at
later time only a few domains of comparable size exist which are separated
from each other by large distances. Thus, as time increases, it takes longer

time for them to merge which causes the exponent to come down. Finally
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merging of two huge domains after a long interval suddenly enhances the

value of the exponent.

4.5 Finite Size Effects

After confirming the viscous hydrodynamic growth for the vapor liquid
phase transition, the next task is to investigate the finite-size effect. The
scaling analysis in this context will provide additional confirmation about the
growth laws. We start the discussion about the finite size effect by showing
the length scale plots for different finite system sizes for vapor-liquid phase

separation in Fig. 4.16. From the plot it is clearly visible that the data for
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Figure 4.16: Plot of £(¢) as function of ¢ for different system sizes as indicated.
All the results correspond to temperature 7' = 0.7.
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a smaller system size is following the data of larger system almost all the
way until it attains the equilibrium value of the domain size. This itself is a
signature of weak finite-size effect. But to quantify this effect we again called
for the finite-size scaling analysis [52]. Let us first discuss it in the context of
critical phenomena. Note that, even though the basic concept is same, here
it is done in a way different from the one in Chapter 2.

In critical phenomena, the central quantity of interest is the equilibrium

correlation length & which shows the following singularity at the critical point

£~ e, (4.23)

where € = |T' — T,|/T., T, being a critical temperature. Now let us consider

a thermodynamic quantity X showing the singular behavior

X ~ Xpe™® (4.24)

where the z is corresponding critical exponent. At the critical point, the

singularity of X, as a function of the system size, is characterized as

X = AgL*", (4.25)

where Ag = Xo/(2£)"" and we have used the fact that ¢ = L/2 at T.. Away

from T, one needs to introduce a scaling function Y (y) to write

X =LY (y), (4.26)
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where y is a function of the dimensionless variable L/¢. While, Y (y) = A at
T =T, for the convenient choice y = (L/f)l/” (oc eLVY) and T > T, (L >

€), one must have
Y(y)~y ™™, (4.27)

so that Eq.(4.24) is recovered. Thus, when X L~*/" is plotted vs y, in addition
to collapse of data coming from different system sizes, one should obtain a
power-law behavior with the exponent —x, for y > 0. A deviation from this
power-law, for smaller y, signals the onset of finite-size effects.

In the nonequilibrium domain coarsening problem, a similar finite-size
scaling tool could be constructed by making the obvious identification of 1/¢

with € and £(¢) with £. Then the relation equivalent to Eq. (4.26) is
) =LY(y); y = (L/OY* x LVt (4.28)

Thus, when ((t)L~! is plotted vs y, for large y, a power-law behavior with
an exponent —« should be obtained. For the sake of convenience, we demon-
strate this first for the 2 — d Ising model, quenched to the temperature
T = 0.67..

In Fig. 4.17, we show a trial plot for the scaling behavior contained in Eq.
(4.28) where, of course, we have correctly substituted L by the corresponding
maximum domain length [see Fig. 4.16], /1.y, that represents the equilibrium
limit. We have fixed o = 1/3, as expected for diffusive domain growth in

Kawasaki-exchange Ising model. Here, very poor quality of data collapse
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Figure 4.17: Finite-size scaling plot of £(t), in accordance with Eq. (4.28)
using 3 different system sizes with t; set to zero and ¢, = 0. The results
correspond to conserved 2 — d Ising model at 7' = 0.67..

for large values of y is due to the fact that the systems do not enter the
scaling regime immediately. In fact, after the quench the system requires a
while to become unstable to fluctuations. Of course, this non-overlapping
behavior will not be seen if one has data over many decades in time for
a significantly large system. But this will be prominent for small systems.
Thus, for a correct analysis, one needs to subtract a time ¢y, from ¢ (and
corresponding length ¢y from (., as well as £(t)) to work with only the
scaling part. Note that ¢; is independent of time and is analogous to a weakly

temperature dependent background contribution in critical phenomena. The
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Figure 4.18: Same as Fig. 4.17 but ¢, (thus {y) was varied to obtain the
optimum data collapse. The results correspond to conserved 2 — d Ising
model at T'= 0.67,

correct value of ¢y (and so £y) must correspond to the optimum data collapse.
This is illustrated in the Fig. 4.18 where excellent collapse is obtained for
to = 20. The solid line there has the form y= (a = 1/3) with which, for
y > 0, the simulation results are perfectly consistent. The point of deviation
of the data from this solid line provides us with the information about the
onset of finite-size effects at ¢(t) ~ 0.77¢y,ax which is informative of much
weaker size effects compared to previous understanding. Now we use the
same tool to investigate the size effect in vapor liquid domain coarsening.

In Fig. 4.19, we present the finite scaling plots for the single component
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Figure 4.19: Finite-size scaling plots of length scale data for the single com-
ponent LJ model showing vapor-liquid (VL) transition.

LJ fluid showing vapor liquid phase transition. As discussed, in fluid phase
separation a diffusive domain growth is followed by a linear viscous growth
and further by an inertial regime with an exponent o« = 2/3. Due to the
obvious difficulty in dealing with significantly large system size for a long
time, we are unable to observe the inertial growth. On the other hand, a
gradual crossover to the linear regime from very early time does not allow us
to observe a pure diffusive domain growth. Thus the focus in this exercise
is to obtain a concrete answer for the linear behavior. On this occasion,

a perfect data collapse could be obtained when the correct length (¢.) and
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time (.), corresponding to crossover from diffusive to viscous regime, are
subtracted. In Fig. 4.19, the best collapse is obtained (by fixing o = 1) for
t. = 50 and /. = 12. The consistency of the master curve with the solid line
(y~') provides further confirmation about the linear behavior. We quantify
the appearance of finite-size effects from the point of deviation of the data
from the master curve and is appearing to be at £(t) ~ 0.78(,.,. This speaks
that the size effect is indeed very weak and is appearing at the same point
where it appears for Ising model. Needless to say, the scaling would have
failed if we were able to reach the inertial hydrodynamic regime by running

a much bigger system for significantly longer period of time.

4.6 Conclusion

In conjunction with the phase behavior, we have presented results for
the kinetics of vapor-liquid phase-separation from the molecular dynamics
(MD) simulation of a simple Lennard-Jones fluid using both Andersen (AT)
and Nosé-Hoover (NHT) thermostats. It is observed that NHT is reasonably
useful for studying hydrodynamic effects in the fluid phase separation. A brief
period of diffusive coarsening was followed by a linear viscous hydrodynamic
growth. Our results are in contradiction with few previous MD studies which
reported an exponent much less than unity, however, is consistent with the
results of binary fluid phase separation. One requires much larger system
size to observe the inertial hydrodynamic growth. This we leave out for a
future exercise, in addition to the study of coarsening of liquid droplets for

off-critical quench. For the latter problem one expects single asymptotic
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exponent 1/3 from droplet diffusion-coagulation mechanism [25,53]. Also, as
discussed, MD with AT and a Monte Carlo simulation of the same system
will provide a single diffusive 1/3 growth for all compositions. For off-critical
composition the latter exercise should be able to provide information on the
curvature dependent inter-facial tension which is expected to bring in early-
time correction in the LS law. This will certainly be interesting to compare
with the corresponding results obtained from equilibrium studies [54]. Lastly,
we have quantified finite-size effects in kinetics of phase separation in solid
binary mixtures as well as in vapor-liquid systems. It appears that the size

effects are weak and universal.
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Chapter 5

Aging in Phase Ordering
Systems: Conserved vs
nonconserved order-parameter

dynamics

5.1 Introduction

Study of aging phenomena is crucial to the understanding of dynamics in
a variety of important physical situations [1] and are of much interest both
theoretically and experimentally [2-9]. Glass transition dynamics, nonequi-
librium dynamics related to phase transitions in systems of various types,
e.g., phase separating binary mixtures, magnetic systems exhibiting para- to
ferro-magnetic transition, etc., are some interesting candidates, among oth-

ers. Aging processes are crucial to many applications that include biological

141
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systems [1,4,5]. Typically, to probe such aspect of dynamics [1,10,11], one

uses the auto-correlation function

Ct, tw) = (D7D (7, b)) = (1)) (7 tw)), (5.1)

where ¢ and t,, are respectively the observation and waiting times and (7, t)
is the space (7) and time dependent order parameter. In equilibrium phe-
nomena there is time translational invariance of this two-time quantity with
respect to the choice of t,, and this fact allows one to improve statistics by
time averaging. In nonequilibrium systems, however, decay of such corre-
lations becomes slower with the growing age of the system, i.e, with the
increase of t,,, leading to nontrivial phenomena. There, an appropriate ques-
tion to ask is the scaling form of C(t,t,) in terms of the time-dependent
characteristic length scales, say, average domain size £(t) of up and down
spins in a ferromagnet, as the system tries to attain equilibrium following
the phase transitions. Note that ((t), a single time quantity, often grows in

a power law manner [12-15],

0t) ~ t. (5.2)

Kinetics involving single time quantities in both phase separating systems
and systems exhibiting ferromagnetic ordering have been extensively studied.
A primary difference between these two types is that the dynamics in the
former respects the conservation of order parameter while the latter does

not. Nevertheless, there are significant similarities in the nonequilibrium
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dynamics of the two cases even though they form two different universality
classes [12,14]. On the other hand, the situation with respect to the two-
time quantities is unsatisfactory despite some preliminary understanding of
the scaling behavior of C(t,t,) obtained analytically and computationally
[1,16,17]. The results obtained there in various space dimensions (d) are
seen to be in agreement with the prediction of power-law decay of C'(t,t,),
made in the context of spin glasses [11], despite disagreement in the value
of the exponent. Furthermore, aging in conserved systems did not catch
significant attention, perhaps because of the difficulty, with respect to the
single time quantities, that had been faced relative to the non-conserved
systems to understand the rich physics in the former.

Note that in case of a ferromagnet the growth of £(t) is characterized by
a single asymptotic exponent oo = 1/2, referred to as the Lifshitz-Cahn-Allen
(LCA) law [12,14]. On the other hand, the situation is much complex for con-
served systems. There the value of the exponent can be significantly modified
by the presence or absence of hydrodynamic effects [12,14,18-23]. In solid bi-
nary mixtures, of course, one observes a single exponent o = 1/3, due to the
diffusive mechanism, referred to as the Lifshitz-Slyozov (LS) law [12-15,24].
More interesting cases, however, are those when £(t) exhibits crossover(s)
from one power-law exponent («) to another or to entirely different func-
tional form. Phase separation in fluids is an ideal example of that. It needs
to be seen if the prediction about the power-law decay of C(t,t,,) holds even
in conserved ordering dynamics, including fluids where one has rapid time
fluctuation of density variable, as is well known from the hydrodynamics of

simple liquids in equilibrium [25]. Indeed, hydrodynamics is expected to play
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crucial role at late stages of nonequilibrium growth as well and a crossover
from the diffusive LS behavior to a regime with much larger value of the ex-
ponent (o = 1), referred to as the viscous hydrodynamic regime [12], should
be observed. It is, of course, more challenging and of much general interest
to understand the effect of such crossovers on the two-time quantities such
as the correlation function under discussion.

In this chapter, we report results related to the decay of C(t,t,,) in con-
served systems in d = 3, with particular emphasis on fluid phase transitions.
Two systems in this category are studied, a solid binary mixture and a vapor-
liquid system. The results obtained from these systems are also compared
with the non-conserved case. We make crucial general observation that as a
function of « = ¢(t)/{(t,), the behavior of C(t,t,) can be classified into two

scaling forms. Namely, in absence of hydrodynamics

C(t, ty) ~ a2, (5.3)

while in presence of hydrodynamics

Ot ) ~ e~ (5.4)

Even though the value of the exponent A obeys the bound g < X < d,
predicted by Fisher and Huse (FH) [11], they are different for conserved
and non-conserved systems. Theoretical insight for the understanding of the

exponential decay has been discussed.



5.2 Models and Methods 145

5.2 Models and Methods

For our study in fluids, we adopted a model [21] where particles of equal
mass (m), separated by distance r, in a periodic cubic box of linear dimension

L ( in units of particle diameter o), interact via

u(r) = U(r) = U(r,) — (r — 7.) (Z—U) , (5.5)

for v < r.. In Eq. (5.5), U(r) is the standard Lennard-Jones (LJ) pair
potential with interaction strength e. The cut-off distance r.(= 2.50) was
introduced for faster computation. The last term in Eq. (5.5) removes the
discontinuity in the force after shifting of the LJ potential to 0 at r = r. [26].
This model exhibits a vapor-liquid phase transition with a critical tempera-
ture T, ~ 0.9¢/kp and a critical density p.(= NL—”:,,S)Z 0.3, N being the number
of particles [23]. For the sake of convenience, in the rest of the chapter we
set m, e,0 and kg to unity.

We have performed molecular dynamics (MD) [26,27] simulations to study
aging in this model. To incorporate the hydrodynamic effects in the kinetics
of phase transition, we have have used a Nosé-Hoover thermostat [27] to
control the temperature. In the MD simulations, the Newton’s equations of
motion were solved by applying Verlet velocity algorithm with a time step
At = 0.005 in units of 7 = (mTﬁ)l/ 2. Systems with homogeneous density at
the critical value were prepared at a very high temperature which was then
quenched below T, to study the far-from-equilibrium dynamics.

To make a comparison of our fluid results with those of solid binary

mixture and ferromagnetic growth we have performed Monte Carlo (MC)
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simulations [28] of the Ising model

H=-JY S S=%1; J>0. (5.6)

<ij>
In case of binary solid phase separation, to conserve the order parameter,
we have implemented the standard Kawasaki exchange kinetics [28]. On the
other hand, Glauber spin flip kinetics [28] was employed to study the nonequi-
librium dynamics in ferromagnets. In both these cases time is presented in
units of Monte Carlo steps (MCS). Note that, unless otherwise mentioned,

results correspond to the MD simulations of vapor-liquid transition.

5.3 Results

In Fig. 5.1, we show the evolution snapshots from four different times
after quenching a homogeneous fluid system of critical density to 7" = 0.6.
Growth of the interconnected high (liquid) and low (vapor) density domains
is quite clear from these snapshots. Note that in Ising systems spin is the
variable analogous to density [14]. To quantify the growth of Fig. 5.1, in
Fig. 5.2, we have plotted the average size, £(t), of liquid and vapor domains,
against ¢, on a linear scale, for two temperatures. Note that to facilitate the
calculation of this and other observables in fluid systems, the snapshots were
mapped onto Ising like lattice systems where a site containing a particle was
assigned a spin or order-parameter value +1 and a vacant site was given a

value —1 [21]. Then the values of ¢(t) were obtained from the first moment
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Figure 5.1: Snapshots from four different times during the evolution of a
phase separating fluid system, starting from homogeneous initial configura-
tion, for L = 96, upon quenching it to a temperature 7' = 0.6(~ 0.677).
The system has an overall density p = 0.3(~~ p.).

of the domain size distribution function P(¢4,t) where {4 is the distance be-
tween two successive domain boundaries in x—, y—, or z— directions. The
solid line in Fig. 5.2 acts as a guide to visualize the linear behavior of the
late time data for 7' = 0.7. It should be appreciated that after an initial brief
period of slow (diffusive) growth it crosses over to a linear regime consistent

with the viscous hydrodynamic growth. However, at the higher temperature

(T = 0.8), the diffusive regime extends over a relatively longer length of time.
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Figure 5.2: Plot of average domain size, ¢(t), as a function of time for two
different temperatures as indicated. The dashed straight line there is a guide
to the eyes. All the results are with L = 96 for fluid systems. The method
of estimation of £(t) is described in the text.

Here we emphasize that the hydrodynamic effect is mixed with diffusive do-
main growth from very early time. Thus, to clearly confirm the LS value for
the diffusive growth one needs to choose temperature very close to the critical
value. However, because of mixing of the diverging correlation length with
domain length it becomes challenging to analyze results in the neighborhood
of criticality. On the other hand, while a fast growth due to hydrodynamics,

at the presented temperatures, can be appreciated from these direct plots,

for an unambiguous confirmation of viscous hydrodynamic growth (o = 1),
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we refer the readers to Ref. [21]. Having presented the results on the char-
acteristic lengths and discussion on the possible growth laws, we focus on
the two-time quantity, viz., C(t,t,). As already pointed out, our primary
objective in this chapter is to identify the scaling behavior of C(¢,t,) in a
rather general context and to learn how the crossover in single time quantity
affects its behavior, in particular, the effect of fast hydrodynamic mechanism

in the decay of C(t,t,).
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Figure 5.3: Log-log plots of C(t,t,,), for the fluid case as a function of ¢/¢,, for
different values of the waiting time t,,, as indicated on the figure. The results
are presented from systems of size L. = 96 after averaging over 5 independent
initial configurations at T" = 0.8. The solid lines there are guides to eye to
recognize the power-law decay.

In Fig. 5.3, we present C(t,t,) as a function of ¢/¢,, on a log-log plot.
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Results are shown for a number of different choices of ¢,. All results for
C'(t,t,) are presented after normalizing its value at t/t,, = 1 to unity. Clearly,
no collapse of data for different values of t,, is observed. This is due to the
fact that for smaller values of ¢,, the domain magnetization did not reach its
equilibrium value yet. But presentation of results for only larger values of ¢,
is uncalled for because of the fact that the early time diffusive regime will then
be invisible. Important observations from these plots are the following. There
is a power-law behavior at early time and the range of this power-law behavior
(identified by the straight lines passing through the relevant data points) gets

shorter with the increase of t,,. This latter fact, as already pointed out, is
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Figure 5.4: Plot of C(t,t,) vs t/t, for the same system as in Fig. 5.3, only
for t,, = 2, on a double-log scale.
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because, with the increase of t,,, one gets closer to the strong hydrodynamic
regime. While this power-law decay is consistent with the prediction of FH,
the apparent crossover to a much faster decay is very interesting. Fig. 5.4
shows the plot of C(t,t,) for the same system as in Fig. 5.3, for t,, = 2, as
a function of ¢/t,. There also it is quite evident that a faster non-algebraic
growth is in place at late time. The objective of this work is to obtain a

deeper understanding of this whole phenomena.
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Figure 5.5: Log-log plots of C(t,t,) vs £/¢, for fluid, from two different
temperatures, as indicated, for ¢,, = 10. The continuous curve there is a
corresponding plot for conserved Ising model at T = 0.67,, for L = 64 and
t, = 10. The dashed line has a power-law exponent —2.2. Results from
different temperatures are multiplied by numerical factors to obtain collapse
in the power-law regime.

In Fig. 5.5, we show C(t,t,) as a function of ¢/(,, again on a log-log



5.3 Results 152

plot. This time, instead of different values of /,, at the same temperature,
we present results for different temperatures. The qualitative behavior of the
numerical results is the same as that in Fig. 5.3, viz., for smaller values of
¢/t,, there is power law behavior which deviates with the increase of £/f,,.
The deviation occurs earlier for lower temperature and is consistent with the
fact of Fig. 5.2 that a crossover to the hydrodynamic regime gets delayed with
the increase of temperature. Here, the results from different temperatures
were multiplied by numerical factors to obtain data collapse in the power-
law regime. The apparent mismatch, without these numerical factors, is due
to different equilibrium order-parameter values at different temperatures.
Considering this fact, these numbers should scale as [14] m~2 or (T, —T)~2,
B(= 0.325 for Ising universality class) being the equilibrium critical exponent
for magnetization (m). This is demonstrated in Fig. 5.6.

In Fig. 5.5, in addition to the fluid results, we have also presented result
from the conserved Ising model. The fluid auto-correlation is nicely consistent
with the latter at early time. At late time, while the Ising one continues to
decay in the power law fashion, the fluid correlations deviate, as already
pointed out, towards an exponential behavior. This is interesting that even
in fluids, though at early time, these two time quantities follow power-law,
particularly with the same exponent as the solid binary mixture. This, of
course, confirms the dominance of simple diffusion over hydrodynamics in
this regime. The dashed line in this figure has an exponent —2.2 which is
consistent with FH bound [11]. Here some discussion about the theoretical
prediction of A\ should be in place.

The bounds were obtained via the following arguments [11,16]. A domain
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Figure 5.6: Plot of the numerical factors needed to obtain data collapse in
the power-law regime of data from different temperatures, as a function of
(T.—T), on double log scale. The dashed line there, has a slope of —f, with
B = 0.325.

of size ¢ consisting of only one type of spin has grown to this pure domain
starting from a situation at early time when only random values of spins did
exist. Applying the central limit theorem to the early time scenario, one
obtains the magnetization per unit volume to be ~ ¢~%2 multiplication of
which with the value unity at the later time will provide the lower bound d/2.
On the other hand, consideration of the fact that the bias, that gave rise to
the magnetization £~%2, does not completely go away at late time, provides

the upper bound. Further, Liu and Mazenko used dynamical equations for
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Figure 5.7: Log-log plots of C'(t,t,) vs £/, for conserved and non-conserved
3-d Ising model at T" = 0.67,.. For the conserved case result was obtained
from systems with linear dimension L. = 64 while for the nonconserved case
the dimension is L = 150. In both the cases the value of ¢,, was set to be 10.
The dashed line there has a slope of —2.2.

correlation functions, via Gaussian auxiliary field ansatz, to calculate the
value of A\. In d = 3, their calculation predicted A = 1.675. This and the
existing reliable computer simulations [16,29] are involving non-conserved
order parameter (to the best of our knowledge) in Ising or Cell Dynamical
System (CDS) models [30]. It will be then interesting to make a comparison
between the conserved and non-conserved dynamics.

In Fig. 5.7, we compare the results from the MC simulations of conserved

and non-conserved Ising model dynamics. For the conserved case, from the
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Figure 5.8: Plot of instantaneous exponent \; vs ¢, /¢, for the decay of non-
conserved autocorrelation function.

double-log plot, as already seen, it is quite clear that C(t,t,) decays in a
power-law manner from the very beginning till the extended time regime with
A = 2.2. In contrary, there is continuous change of slope in the non-conserved
case which is consistent with the 2 — d results [1]. Liu and Mazenko [16]
quoted the asymptotic (t — oo) value of the exponent from the CDS model
to be 1.835. In Fig. 5.8, we have presented the instantaneous exponent,
Ai, as a function of ¢, /¢, for the non-conserved case. For an early period
of time, the results show convergence (as depicted by the dashed line with
an arrow head) to the value 1.6 which is consistent with the theoretical

prediction of Liu and Mazenko but differs from the value obtained by them
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from the CDS model simulation. On the other hand, for length beyond
¢ ~ 30, the data show a different trend. Note that the system size chosen
here is large enough (L = 150). From our experience of finite-size effects with
conserved systems [22], we do not think that this is due to any such artificial
effect. If, however, we consider data at late time for an extrapolation, there
is consistency of the asymptotic exponent with the conserved Ising model. In
future we will clarify this point in greater detail. Having pointed out these
important differences between the conserved and non-conserved dynamics,
we move back to the fluid dynamics.

Considering the fact that at early time the decay of the auto-correlation
in fluid is very similar to the conserved Ising case because of the diffusive
dynamics in both the cases, a plot of the fluid data as a function of t/t,
should give an exponent, in the power-law regime, that will be consistent
with @ = 1/3. In fact the exponent extracted from Fig. 5.4 is 0.8 which
when compared with 2.2 from the plot vs. ¢/(,, gives ~ 0.36. However, we
caution the reader that the actual effective growth exponent in this regime
should be a little higher due to the mixing of hydrodynamics, whatever little
its influence may be. But the value, strikingly close to a = 1/3, as quoted

above is due to the fact that the initial length in the form

0(t) = by + At (5.7)

is not subtracted in this analysis [31].

Next we look at the post crossover regime to learn and understand the
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effect of hydrodynamics. In Fig. 5.9, we show the auto-correlations as a func-
tion of ¢/, on a semi-log plot. Two reasonably lower values of temperatures
are considered so that the exhibited behavior can be seen over an extended
window. Very linear looks of both the data sets confirm an exponential be-
havior. In the following we try to understand this important observation

from simple hydrodynamic equations for fluid phase transitions.
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Figure 5.9: Semi-log plots of C(t,t,) vs /¢, for fluids at two temperatures.

The straight line there corresponds to an exponential decay.

According to the definition of the auto-correlation function, it is quite
evident that to get an exponential decay of it, the density fluctuation should

decay exponentially in time. This can be obtained from the order parameter
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evolution equation of model H [12,32]

% + 0.V = DV?pu, (5.8)

where U is the advection field, D is a diffusion constant and p is the chemical
potential. At late time when diffusive mechanism is negligible compared to
hydrodynamics, one can ignore the right hand side of Eq. (5.8). Further,
via the substitutions v = ¢/t = C' = constant and Vi = %, w being the

interfacial width, one obtains

W

5 = U (5.9)

Using the fact that ¢ = ¢, n and o being respectively the shear viscosity
of the background fluid and interfacial tension, one obtains 1 ~ exp (—%5).
Very close to the critical point, one, however, needs to take into account the

complexity due to diverging correlation length.

5.4 Conclusion

In summary, we have presented results for aging dynamics during nonequi-
librium growth in solid binary mixture, ferromagnet and phase separating
fluid. While the results for the first two cases were obtained from Monte
Carlo simulations, molecular dynamics was used for the latter, to incorpo-
rate hydrodynamics. We have pointed out that in absence of hydrodynamics,
the decay of the auto-correlation function, C(t,t,,), in conserved systems fol-

low power-law behavior, the exponent of which falls in the bound predicted
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by Fisher and Huse. The difference of this case with the aging dynamics in
non-conserved systems have been discussed including the possible disagree-
ment in the value of power-law exponent. In the conserved case, the effect of
hydrodynamics is demonstrated. It is shown that there is a crossover from
power-law to exponential decay of C(t,t,). Discussion is provided for the
theoretical understanding of the latter. Our results are very general. Simi-
larity of the results for vapor-liquid transition is also observed for liquid-liquid

transition [32]. We expect these to be confirmed via experiments.
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Chapter 6

Kinetics of Phase Separation in

Thin Films: Atomistic studies

6.1 Introduction

In the previous chapters we have dealt with phase separation in bulk [1],
both for solids and fluids. It is important to mention that recently there
is growing interest to study the kinetics of phase separation in restricted
geometries to understand surface effects [2-6]. In this regard, a particu-
lar problem of interest is to study the kinetics of phase separation in thin
films [2-6]. From technological point of view thin films have a wide range
of applications [7-10] as lubricants, protecting layers, in micro-electronics,
nanotechnology, etc. From scientific point of view, it is challenging due to
the simultaneous presence of surface effects and finite-size effects. Many phe-
nomena differ significantly from bulk behavior when a reduced geometry is

considered. In case of phase separation in thin films, there is interesting
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interplay between the surface effects and bulk phase separation which gives
rise to many complex situations such as wetting, dewetting, layering tran-
sition [11-14], etc., each of which is of longstanding research interest. Such
spinodal decomposition in presence of surface effects goes by the name of

Surface Directed Spinodal Decomposition (SDSD) [15-17].

_ ’

Figure 6.1: Schematic representation of binary mixture phase separation in
a film with symmetric surface fields attracting the A-particles, marked in
green. The B particles are unmarked. The diagram is shown in a plane,
perpendicular to the walls S; and S5. The lateral dimension of the system
is L and the film thickness is D (D < L). The upper part shows the

partially wet (PW) morphology with non-zero contact angle. The lower part
corresponds to the completely wet (CW) scenario.

Let us consider a 50 : 50 binary mixture (A+B), confined between two
surfaces S and S, quenched to a temperature below the critical point. Fig.
6.1 shows schematics to describe situations where there are symmetric fields

applied on the surfaces of a thin film of thickness D. By symmetric field
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B
D

Figure 6.2: Schematic representation of phase separation in a binary mixture
in a thinfilm geometry under antisymmetric fields at the two surfaces. The
color code and dimensions are same as in Fig. 6.1. Here the upper picture
corresponds to partially wet (PW) situation. The lower picture represents
the completely wet (CW) morphology.

we mean that both the surfaces will attract the same particle (say A), with
equal strength to simplify the problem. Under this condition there could be
two possible pictures. First one is shown in the upper part of Fig. 6.1 which
describes a partially wet (PW) situation. Here the A-B interface touches the
surfaces S7 and S, at a non-zero contact angle, 6, [18]. On the other hand, the
lower part describes the other possible scenario which is the completely wet
(CW) morphology. It shows the presence of A-rich layering at the surfaces.
In this case the A-B interface never touches the surfaces. These two scenarios

can arise for a given thin film depending on the wetting transition dictated

by temperature and the applied fields on the surfaces.
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The other interesting case is when the field applied on the surfaces are
anti-symmetric in nature, i.e., one surface attracts A particles and the other
one attracts the B particles, say with equal strengths. The upper picture
in Fig. 6.2 shows the equilibrium morphology for the PW situation in this
case. In the lower part we show the schematic for the CW morphology for
the antisymmetric film. This latter situation shows the presence of a single
interface at the center of the film, parallel to the walls, corresponding to a
contact angle ¢, = 0, with formation of A-rich and B rich layer at the two
surfaces.

Kinetics of phase separation in thin films have been studied for binary
solid mixtures using coarse-grained dynamical models [15,16,19-22]. In this
work we intend to study SDSD via atomistic models. We consider solid
binary mixtures as well as fluids under confinement. While for solid binary
mixture we have considered both symmetric and asymmetric compositions,
for the fluid case (with vapor-liquid transition) we have used only asymmetric
density. The asymmetric case in this context is of relevance for the study of
heterogeneous nucleation [23]. We have studied the binary solid via Monte
Carlo (MC) [24] simulations of the appropriate atomistic Ising model and for
fluid we have used molecular dynamics (MD) [25] simulations to the single
component Lennard Jones (LJ) fluid.

This chapter is organized as follows. We discuss the models and methods
in Sec 6.2. In Sec 6.3 we present the results. Finally, Sec 6.4 concludes the

Chapter with a summary and discussion on future possibilities.
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6.2 Models and Methods

We consider our systems of interest in confined thin film geometry, having
lateral dimensions L, = L, = L and thickness D (D < L), the separation
between two walls S7 and Sy located at z = 0 and z = D respectively. For
solid binary mixtures, ¢- function fields H; and H, are applied on the two
surfaces. The interaction between the particles, in this case, is given by the

simple spin 1/2 Ising model. The full Hamiltonian is written as

H=-JY SSj—JsY SiS;—Hi» Si—Hy» S S;=+1, (6.1)
<ij> <ij> ieS i€Ss

where J, Jg(> 0) are the interaction strengths in the bulk and at the sur-
faces, respectively. If H; = Hs, the thin film is a symmetric one and for
H, = —H,, it is antisymmetric. To simplify the problem, we have considered
J = Js. We have performed MC simulations of this model via the Kawasaki
exchange [26] mechanism which mimics the diffusive transport of materials in
solids. In Kawasaki exchange one picks up a spin randomly and exchanges it
with one of its randomly chosen nearest neighbors. The moves are accepted
according to the standard Metropolis algorithm [24]. During our simulation
we have applied periodic boundary conditions in the x- and y- directions
but not in z-direction (which is the direction perpendicular to the surfaces),
in order to incorporate the surface effects. We start with initial conditions
containing random distributions of A and B particles, which correspond to
the high temperature situation. Then we quench the system to a tempera-

ture T = 0.67., well below the bulk critical temperature (7. = 4.51J/kp).
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Here we note that, in addition to studying the physical processes, an ob-
jective of this work is to verify the popular coarse-grained model, due to
Puri and Binder (PB) [15,16], presented in the introduction, where writing
the boundary conditions is rather nontrivial. Note that at the critical vicin-
ity such models are extremely useful due to the divergence of equilibrium
correlation length. On the other hand, these models have drawbacks for
deep temperature quenches [2]. So, we demonstrate that with present day
computer powers, it is possible to use microscopic models to gain accurate
information at low temperature.

For the vapor-liquid case we have performed MD simulations [25] of the
following model. The particles interact with each other via the pairwise

potential given as

with

e - (7)" (7))

being the standard LJ potential. This model and the corresponding bulk
phase diagram are well described [27] in Chapter 4. Here also we have used
the same values for different model parameters. In the present study, to

introduce the surface effect, we considered a situation where only the surface
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at z = 0 attracts the particles via the following wall potential [28,29]

(5) ~(5) | () o

where 0 < 2z < D and § = ¢/2, introduced to avoid the singularity at the

u(z) = ? {eT

walls, €, is the repulsion by the walls and ¢, is the strength of attraction by
the wall at z = 0. We have considered that both the walls are exerting the
same repulsive force (¢, = ¢/15). This surface potential could be thought
of an integrated LJ potential. As in the previous Chapters, we have set
J, €, m, kg, etc., to unity. Nosé-Hoover thermostat was used to control the

temperature in this case.

D =10 D = 20
103 MCS 103 MCS

10° MCS 10° MCS

Figure 6.3: 3 — d evolution snapshots in thin films with symmetric fields at
the surfaces with the film thicknesses D = 10 and 20, and lateral dimension
L = 128. The snapshots are obtained via MC simulations after quenching
the 50 : 50 solid binary mixtures from the high temperature homogeneous
phase to a temperature deep inside the bulk co-existence curve. The A
particles are marked green and the B-particles are marked in grey. Here
H,=Hy,=H =1.0.
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6.3 Results

6.3.1 Bulk Critical Composition for Solid mixtures
(a) Symmetric Fields

First we present results for symmetric fields, i.e., both the surfaces attract
one of the species (say A), with equal strength (H; = Hy = H = 1). Here
we will present results for two different film thicknesses D = 10 and 20. In
Fig. 6.3, we show the 3 — d snapshots for both D = 10 and 20 with L = 128.

While these 3 — d pictures do not provide a clear view, in Fig. 6.4 we take a

Figure 6.4: 2 — d xz cross sections of the snapshots for the same systems in
Fig. 6.3, for y = L/2. Note that A particles are marked green and B is left
unmarked. From each D values, pictures from three times are shown.

look at the cross-section of the film in the zz plane y = L/2. Let us discuss
the case for D = 10. At an intermediate time, say, t = 10* MCS, one sees
surface enrichment of A-particles. Then at late time it is quite clear that
the layered structures break up to form domains in direction parallel to the
surfaces. Essentially, the time scale of the surface enrichment is faster than

the bulk phase separation leading to a CW morphology at intermediate time,
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Figure 6.5: Laterally averaged order parameter, ,,(z), vs z (coordinates
perpendicular to the direction of the walls) from four different times for the
same systems presented in Fig. 6.3.

even though this may not be the equilibrium structure. At later time, for the
value of H used here, the wetting layers break up and finally the morphology
becomes PW as shown in the last snapshot of Fig. 6.4, for D = 10. This
general picture applies for D = 20 as well. Similar sequence of events were
also observed in studies with PB coarse-grained model [15,16,21,22]. Thus,
our studies confirm the usefulness of such model in this context. Here we
again stress that the PB model is advantageous to use in close vicinity of
criticality where the equilibrium correlation length, &, diverges.

Next we calculate the laterally averaged order parameter profile which
is obtained by taking average of the spins along the xy direction for all the
layers parallel to the surfaces. In Fig. 6.5, we have presented these profiles
from four different times for the systems presented in Fig. 6.3. The profiles
at early time (¢ = 100 MCS) shows the formation of two symmetric waves
which propagates to the center of the film. At little later time (¢ = 10%

MCS) the high value at the surfaces represents the layered structures. At
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Figure 6.6: Cross-sections of the same systems presented in Fig. 6.3, in the
xy plane for z = D/2. The A particles are marked green and the B particles
are left unmarked.

much later time, since the layer structures break up, the profiles show small
values at the surfaces and in the intermediate layers they are very close to

zero. The symmetric nature of the profiles around the center

wav(z) - ¢av(D - Z) (65)

is due to the symmetric fields at the surfaces of the film.

It will also be interesting to study the cross-sections of the systems parallel
to the surfaces, i.e., in the xy-planes. In Fig. 6.6, we present the cross-
sections of the systems in Fig. 6.3, for = = D/2. The snapshot at early

time shows the formation of A-rich droplets due to depletion of A particles
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Figure 6.7: Layer-wise scaled correlation functions for different times from
two different layers z = 0 and z = 5 for the film with D = 10.
in this layer. Recall that at early time there is fast surface enrichment. At
later time, when such metastable wetting layers break-up, share of A-species
increases in the center, leading to more elongated domain morphology.
Next we look at the scaling properties of the layer wise correlation func-
tions and growth laws in such composition fluctuating environment. The

layer wise correlation functions are calculated as
C(r,2,t) = (S(5, 2,)S(5 + 7, 2,1) — (S(, 2, ))(S(G + . 2,1)),  (6.6)

where instead of using ¢ or j as site index we have specified the coordinates
of the spin location inside the bracket. As already mentioned, & is the co-
ordinate in direction parallel to the surfaces. One can define the layer-wise

average domain size from the decay of the C(r, z,t) as

Clr=10,24) = %C(O,z,t). (6.7)
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Figure 6.8: Layer-wise average domain size vs time plot for three different
layers z = 0,2 and 5 for D = 10 of Fig. 6.3. The solid line has a slope of
1/3.

In Fig. 6.7, we have shown the plots of scaled correlation functions at
different times for z = 0 and z = 5 for D = 10. In bulk phase separation these
correlation functions obey a scaling relation C(7,t) = g(r/¢). From these
plots, however, one can see that such scaling is absent because in this case
the morphology obtained at different times are not self-similar in nature. The
comparisons of the plots from different times is analogous to the comparison
of C(r,t) from different compositions in Chapter 3. However, at very late
time reasonable quality of scaling is obtained. In Fig. 6.8 we take a look at
the plots of layer-wise average domain size, £(t), vs time, for three different
layers. The initial non monotonic behavior of the length scale is due to the
formation and breakup of structures at the surfaces. But at late time limit
the growth is found to be consistent with the Lifshitz-Slyozov (LS) [1,30]
growth law (£(t) ~ t'/?), which is the scaling law for the diffusive bulk phase

separation. Note that the time beyond which the LS behavior is observed,
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Figure 6.9: 3 — d evolution snapshots of antisymmetric films for a binary
solid mixture with bulk critical composition after quenching far below the
bulk critical temperature. The left frame represent a film with L = 128 and
D = 10 and the right one corresponds to a film with L = 128 and D = 20.
The color coding is same as in Fig. 6.3. Strengths of the fields are H; = 1.0
and Hy, = —1.0.

the change in layer magnetization is rather small in time as is also reflected

in the scaling plot of the correlation functions in Fig. 6.7.

(b) Anti-symmetric Fields

Here we discuss the results from the binary solid phase separation in an
anti-symmetric thin film. In this case Hg, = —Hg, which means that the
surface S at z = 0 attracts the A particles and the surface at z = D attracts
the B-particles. Here also we have started with homogeneous initial mixtures
of A and B particles with 50 : 50 composition and quenched it well below
the bulk critical temperature.

In Fig. 6.9, we show the 3 — d snapshots for the evolution of anti-
symmetric thin film with D = 10 and 20, as indicated. In Fig. 6.10, we

present the 2 — d cross-section in xz plane for the snapshots shown in Fig.
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D =10

105 MCS

Figure 6.10: 2 — d cross-sectional (in xz- plane) view of the evolution snap-
shots for the systems in Fig. 6.9. Here the A particles are marked green and
the B particles are left unmarked.

6.9. In both the cases, completely wet morphology forms at the end.

Next we take a look at the layer wise order parameter profile for the
above mentioned thin films. In Fig. 6.11, we have shown the plots of the
laterally averaged order parameter for antisymmetric thin films with D = 10
[part (a)] and D = 20 [part (b)]. As pointed out for symmetric thin films,
here also it is important to look at the cross-sections of films in xy planes
since the domains can grow indefinitely in direction parallel to the surfaces.
Fig. 6.12 shows the cross-section of the system in xy- plane for the central
layer of the film. The left part shows the snapshot for D = 10 and the
right one for D = 20. For both of them since the composition is critical
at the center of the film the snapshots in the zy-plane show presence of
nearly interconnected bicontinuous structure as seen during the bulk phase

separation. Here we note that there is a higher level of noise in the thinner
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Figure 6.11: Layer-wise averaged order parameter profiles from four different
times for (a) D = 10 and (b) D = 20 for the antisymmetric thin films
presented in Fig. 6.9.
film. This is due to the following fact. In thin film, critical temperature is
suppressed. Thus, considering the fact that simulations were performed at
the same temperature for both values of D, the thinner one is closer to the
corresponding thin film critical temperature.

Finally, in Fig. 6.13 we show the plot of ¢(¢) vs ¢, from the central layer

for D = 20. The results at late time is consistent with the LS behavior.

6.3.2 Off-critical Compositions or Densities

Because of the preliminary nature of the studies here we stick to present
only the snapshots of evolution here. In Fig. 6.14, we show the evolution
snapshots for the solid off-critical binary mixture with antisymmetric fields.
It is nicely seen that droplets are formed on the preferred surface and they
are growing with time. Similar picture for the vapor-liquid system is shown
in Fig. 6.15. As already stated, these systems correspond to heterogeneous

nucleation in presence of surface. Our next objective would be to understand
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Figure 6.12: 2 — d snapshots in the xy-plane for the central layer of the thin
films presented in Fig .6.9. Here the color coding is same as in Fig .6.10.

the growth dynamics in both the situations and compare them with the bulk
homogeneous nucleation and growth processes (results presented in Chapter
3). It is expected that the time scale of nucleation in presence of surface

would be shorter.

6.4 Conclusion

In conclusion, in this chapter, we have presented results for the kinetics of
phase separation in thin films. Primary results are presented for the binary
solid mixtures. We have observed interesting interplay between the surface
effects and the bulk phase separation. For both symmetric and antisymmetric
fields, at late time when there is scaling in the structural property, it is
observed that the domains grow following the LS law in layers parallel to

the surfaces. In future, we would like to do finite-size scaling analysis to
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Figure 6.13: Layer wise (in zy plane) average domain size, £(t), as a function
of time for D = 20 antisymmetric film. We have considered only the central
layer.

accurately quantify the growth law.

An objective of this study was to show the plausibility of Monte Carlo
simulation in this case and justify the validity of the PB model. The sequence
of events that we observed in these studies is qualitatively consistent with
the coarse-grained PB model. The later, of course, is more useful close to
the critical point.

Finally, we have presented some preliminary results for droplet nucle-
ation and growth on surfaces, for both solid-solid and vapor-liquid systems.
In future, we will elaborate on this. In thin film geometry, many further inter-
esting studies can be done. Kinetics of phase separation under temperature

gradient is one such good candidate.
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Figure 6.14: Formation and growth of droplets of A-particles (minority
species) on the preferred surface, in solid binary mixture phase separation
with asymmetric composition.

Figure 6.15: Nucleation and growth of liquid droplets on a surface that
attracts the particles. This is related to vapor-liquid phase separation in
confined geometry with asymmetric densities.



Bibliography

[1] A.J. Bray, Adv. Phys. 51, 481 (2002).
2] S.K.Das, J. Horbach and K.Binder, Phys. Rev. E. 79, 021602 (2009).
[3] M.J.A. Hore and M. Laradji J. Chem. Phys. 132, 024908 (2010).

[4] R. Siquieri and H. Emmerich, J. Phys: Condens. Matter 21, 464105
(2009).

[5] N. Blondiaux, S. Morgenthaler, R. Pugin, N.D. Sepncer amd M. Liley,
Appl. Surf. Sci. 254, 6820 (2008).

6] J. Liu, X. Wu, W.N. Lennard and D. Landheer, Phys. Rev. B 80,
041403 (R) (2009).

[7] L.D. Gelb, K.E. Gubbins, R. Radhakrishnan and M. Sliwinska-
Bartkoviak, Rep. Prog. Phys. 62, 1573 (1999).

[8] T. Thorsen, S.J. Maerkl and S.R. Quake, Science 298, 580 (2002).
9] A. Meller, J. Phys: Condens. Matter 15, R581 (2003).

[10] E.L. Wolf, Nanophysics and Nanotechnology (Wiley, VCH, Weinheim,
2004).

181



Bibliography 182

[11] J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford

University Press, Oxford, 1982).
[12] P.G. Gennes, Rev. Mod. Phys. 57, 827 (1985).
[13] D. Bonn and D. Ross, Rep. Prog. Phys. 64, 1085 (2001).
[14] MLE. Fisher and H. Wen, Phys. Rev. Lett. 68, 3654 (1992).
[15] S. Puri and K.Binder, Phys. Rev. A 46, R4487 (1992).
[16] S. Puri and K.Binder, Phys. Rev. E 49, 5359 (1994).

[17] R.A.L. Jones, Soft Condensed Matter (Oxford University Press, Ox-
ford, 2008).

[18] T. Young, Philos. Trans.R. Soc. London 95, 65 (1805).

[19] A. Bhattacharya, M. Rao and A. Chakrabarti, Phys. Rev. E 49, 524
(1994).

[20] G. Brown and A. Chakrabarti, Phys. Rev. A 46, 4829 (1992).

[21] S.K. Das, S. Puri, J. Horbach and K. Binder, Phys. Rev. Lett. 96,
016107 (2006).

[22] S.K. Das, S. Puri, J. Horbach and K. Binder, Phys. Rev. E 72, 61603
(2005).

[23] K. Binder, Rep. Prog. Phys. 50, 783 (1987).

[24] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in

Statistical Physics (Cambridge University Press, Cambridge, 2009).



Bibliography 183

[25] D. Frenkel and B. Smit, Understanding Molecular Simulations: From

Algorithms to Applications (Academic Press, San Diego, 2002).

[26] K. Kawasaki, in Phase Transition and Critical Phenomena, edited by
C. Domd and M.S. Green (Academic, New York, 1972), Vol. 2, p.443.

[27] S. Majumder and S.K. Das Europhys. Lett. 95, 46002 (2011).
[28] S.K. Das and K. Binder, Europhys. Lett. 92, 26006 (2010).
[29] S.K. Das and K. Binder, Mol. Phys. 109, 1043 (2011).

[30] I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).



APS Journals

APS Journals

About the Journals
Browse the Journals
Search the Journals
APS Home

Join APS

PACS Scheme
Annual Index

BAPS

Authors

General Information
Submit a Manuscript
Publication Rights
Open Access
Policies & Practices
Tips for Authors

Professional Conduct

Referees

General Information
Submit a Report
Update Your Information
Policies & Practices
Referee FAQ

Advice to Referees

Outstanding Referees

Librarians
General Information
Subscriptions

Online License
Agreement

Usage Statistics

Your Account

Students

Physics
PhysicsCentral
Student Membership

APS Members
Subscriptions
Article Packs
Membership
FAQ

APS News

Meetings and Events

Physical Review Letters, Physical Review, and Reviews of Modern Physics|

American Physical Society

Login | Create Account (what's this?)
RSS Feeds | Email Alerts

APS » Journals » Copyright Policies and FAQ - Journals of The American Physical Society Article Lookup  Journal Search Site Search

APS Copyright Policies and Frequently Asked Questions

What is Copyright?

What does copyright protect?

How is a copyright different from a patent or a trademark?

What is the difference between copyright infringement and plagiarism?

Why should | transfer copyright to APS?

Why should | transfer copyright to APS before the article is accepted for publication by an APS journal?

Does transferring copyright affect my patent rights?

As the author of an APS-published article, may | post my article or a portion of my article on my own website?

What happens if the author has posted an APS-published article on a free access e-print server or on the authors' or institutions' web
pages and subsequently a fee is imposed for access to those sites?

As the author of an APS-published article, may | post my article or a portion of my article on an e-print server?

As the author of an APS-published article, can | post my article or a portion of my article on a web resource like wikipedia or quantiki?

As the author of an APS-published article, will | hold copyright to a "derived work", as described above, even if the original article was
published prior to 1 October 2008?

As the author (or the author's employer) of an APS-published article, may | use copies of part or all of my articles in the classroom?

As the author of an APS-published article, may | use figures, tables, graphs, etc. in future publications?

As the author of an APS-published article, may | include my article or a portion of my article in my thesis or dissertation?

As the author of an APS-published article, may | give permission to a colleague or third party to republish all or part of the article in a
print publication?

e As the author of an APS-published article, may | give permission to a colleague or third party to republish all or part of the article in an
online journal, book, database compilation, etc.?

As the author of an APS-published article, may | provide a PDF of my paper to a colleague or third party?

As a third party (not an author), may | republish an article or portion of an article published by APS?

As a third party, may | use articles published by APS for lecture and classroom purposes?

How do | request permission to republish APS-copyrighted material?

How do | provide a proper bibliographic citation and notice of the APS copyright?

Copyright Transfer Form

What is copyright? http://www.copyright.gov/
Copyright is a form of legal protection for original works of authorship. Copyright covers both published and unpublished works.

What does copyright protect?

Copyright, a form of intellectual property law, protects original works of authorship including literary, dramatic, musical, and artistic works, such
as poetry, novels, movies, songs, computer software, and architecture. Copyright does not protect facts, ideas, systems, or methods of
operation, although it may protect the way these things are expressed. See Circular 1, Copyright Basics, section "What Works Are Protected",
see http://www.copyright.gov/circs/circ1.html#wwp

How is a copyright different from a patent or a trademark?

Copyright protects original works of authorship, while a patent protects inventions or discoveries. Ideas and discoveries are not protected by the
copyright law, although the way in which they are expressed may be. A trademark protects words, phrases, symbols, or designs identifying the
source of the goods or services of one party and distinguishing them from those of others.

What is the difference between copyright infringement and plagiarism?
Copyright infringement occurs when an author's work is reused or republished without the permission of the copyright owner, whether or not
author attribution accompanied the reuse.

Plagiarism occurs when an author's work has been reused or republished in such a manner as to make it appear as someone else's work, e.g.,
without quotation marks and citation of the original work.

Why should I transfer copyright to APS?

Like many other scientific publishers, the American Physical Society (APS) requires authors or their employers to provide transfer of copyright
prior to publication. This permits APS to publish the article and to defend against improper use (or even theft) of the article. It also permits APS
to mount the article online and to use the article in other forms or media, such as PROLA. By the APS transfer agreement, authors and their
employers retain substantial rights in the work, as specified in the agreement (http://forms.aps.org/author/copytrnsfr.pdf) and discussed in this
document.

Why should I transfer copyright to APS before the article is accepted for publication by an APS journal?
Transferring copyright early in the process avoids the possibility of delaying publication if the transfer has to be obtained later in the process. By



the terms of the copyright transfer agreement itself, it has no effect until the paper is accepted by an APS journal. The author retains the
copyright until acceptance, and has the full freedom, for example, to withdraw the paper from consideration by an APS journal and submit it
elsewhere.

Does transferring copyright affect my patent rights?

No. Copyright is separate from any patent rights, and the APS transfer agreement specifically states that patent rights are not affected. However,
you should be aware that submitting a manuscript to a journal without first taking steps to protect your patent rights (e.g., filing for a patent) could
endanger those rights. Consult your patent attorney.

As the author of an APS-published article, may | post my article or a portion of my article on my own website?

Yes, the author or the author's employer may use all or part of the APS published article, including the APS-prepared version (e.g., the PDF from
the online journal) without revision or modification, on the author's or employer's website as long as a fee is not charged. If a fee is charged, then
APS permission must be sought. In all cases, the appropriate bibliographic citation and notice of the APS copyright must be included.

What happens if the author has posted an APS-published article on a free access e-print server or on the authors' or institutions' web
page and subsequently a fee is imposed for access to those sites?

When a fee is imposed, the author must either obtain permission from APS or withdraw the article from the e-print server or Institutional
Repository.

As the author of an APS-published article, may | post my article or a portion of my article on an e-print server?

The author has the right to post and update the article on a free-access e-print server using files prepared and formatted by the author. Any such
posting made or updated after acceptance of the article for publication by APS shall include a link to the online abstract in the APS journal or to
the entry page of the journal. In all cases, the appropriate bibliographic citation and notice of the APS copyright must be included. If the author
wishes to use the APS-prepared version (e.g., the PDF from the online journal) on an e-print server other than authors' or employer's website,
then APS permission must be sought. Similarly, if the author wishes to post the article (any version) on an e-print server that charges a fee for
use, APS permission must be sought.

As the author of an APS-published article, can | post my article or a portion of my article on a web resource like wikipedia or quantiki?
Sites like wikipedia and quantiki are strict about permissions and require that authors hold copyright to articles that they post there. In order to
allow authors to comply with this requirement, APS permits authors to hold copyright to a "derived work" based on an article published in an APS
journal as long as the work contains at least 10% new material not covered by APS's copyright and does not contain more than 50% of the text
(including equations) of the original article.

As the author of an APS-published article, will | hold copyright to a "derived work", as described above, even if the original article was
published prior to 1 October 2008?
Yes. The APS will extend this author right to all papers published in APS journals.

As the author (or the author's employer) of an APS-published article, may | use copies of part or all of my article in the classroom?
Yes, the author or his/her employer may use all or part of the APS-prepared version for educational purposes without requesting permission from
the APS as long as the appropriate bibliographic citation is included.

As the author of an APS-published article, may | use figures, tables, graphs, etc. in future publications?
Yes, as the author you have the right to use figures, tables, graphs, etc. in subsequent publications using files prepared and formatted by you or
the APS-prepared versions. The appropriate bibliographic citation must be included.

As the author of an APS-published article, may | include my article or a portion of my article in my thesis or dissertation?
Yes, the author has the right to use the article or a portion of the article in a thesis or dissertation without requesting permission from APS,
provided the bibliographic citation and the APS copyright credit line are given on the appropriate pages.

As the author of an APS-published article, may | give permission to a colleague or third party to republish all or part of the article in a
print publication?

Yes, as the author you can grant permission to third parties to republish print versions of the article provided the APS-prepared version (e.g., the
PDF from the online journal, or a copy of the article from the print journal) is not used for this purpose, the article is not published in another
journal, and the third party does not charge a fee. The appropriate bibliographic citation and notice of the APS copyright must be included.

As the author of an APS-published article, may | give permission to a colleague or third party to republish all or part of the article in an
online journal, book, database compilation, etc.?
Authors should direct the third party request to APS.

As the author of an APS-published article, may | provide a PDF of my paper to a colleague or third party?
The author is permitted to provide, for research purposes and as long as a fee is not charged, a PDF copy of his/her article using either the
APS-prepared version or the author prepared version.

As a third party (not an author), may I republish an article or portion of an article published by APS?
Yes, APS will grant permission to republish articles or portions of articles (e.g., tables, graphs, excerpts) published by APS. Depending on the
reuse and medium APS has the right to grant permission subject to APS terms and conditions and a fee may be assessed.

As a third party, may | use articles published by APS for lecture and classroom purposes?

Yes, you may use photocopied articles published by APS for lecture and classroom purposes for a single semester without asking permission
from APS. However, if the article becomes part of your course material beyond one semester, you must obtain permission from APS. Also, there
is no limitation on the use of APS articles using links to the material accessible through institutional subscriptions.

How do | request permission to republish APS-copyrighted material?
To request permission to republish APS-copyrighted material, please provide the following information:

Title of journal

. Title of article

1.
2
3. Name of author
4. Volume number, page number (or article identifier), year
5

. Indicate if you are requesting to republish in print, online, CD-ROM, and/or other format



6. Indicate if you wish to republish all or portion of article; if a portion describe the specific material, e.g., figure numbers, excerpt
7. Indicate how the material will be used, e.g., in a book, journal, proceeding, thesis, etc.

8. Indicate the title of the article/thesis/chapter etc., and the name of the publication in which your work will appear

9. Indicate the name of the publisher

10. Indicate whether or not a fee will be charged for the publication
*To prevent clerical error, please include all requests in a single email or letter.

All permission requests must be in writing (email is acceptable). Blanket permissions are not granted. Please note all requests are subject to
APS terms and conditions and a fee may be assessed.

Please allow 5-7 business days for us to respond to a permission request provided all the above information is provided at the time of the
request.

Send all permission requests to:

Associate Publisher
American Physical Society
One Physics Ellipse
College Park, MD 20740
Email: assocpub@aps.org

If your questions have not been addressed and you need further assistance, please call: 301-209-3283.

How do | provide a proper bibliographic citation and notice of the APS copyright?
Provide the following information in this order:

Authors names, journal title, volume number, page number (or article identifier), year of publication. "Copyright (year) by the American Physical
Society."

Further information
For further information about copyright in general, please refer to the Library of Congress FAQ at: http://www.copyright.gov/help/fag/

Journals published by the American Physical Society can be found at http://publish.aps.org/

FAQ Version: October 1, 2008

APS | Journals | Privacy | Policies | Contact Information | Join APS | Feedback

Use of the American Physical Society websites and journals implies that the user has read and
agrees to our Terms and Conditions and any applicable Subscription Agreement. Physical
Review ®, Physical Review Letters ®, Reviews of Modern Physics ®, and Physical Review
Special Topics ® are trademarks of the American Physical Society.



Zimbra suman@jncasr.ac.in

Re: Permission for Copyright

From : suman@jncasr.ac.in Mon, Dec 17, 2012 06:43 PM
Subject : Re: Permission for Copyright
To : editorial <editorial.office@epletters.net>

Dear Caroline Orbann,
Thank you for your reply.

Regards,

Suman Majumder

Theoretical Sciences Unit
Jawaharlal Nehru Centre for Advanced Scientific Research

From: "editorial" <editorial.office@epletters.net>
To: suman@ijncasr.ac.in

Sent: Monday, December 17, 2012 6:27:38 PM
Subject: Re: Permission for Copyright

Dear Dr. Majumder,

In answer to your request, we are pleased to inform you that you are allowed to use material
from

the papers entitled :

Universality in Fluid Domain Coarsening: The case of vapor-liquid transition

by Suman Majumder and Subir K. Das

EPL 95, 46002 (2011)

and
Finite-size effects in dynamics: Critical vs coarsening phenomena

by S. K. Das, S. Roy, S. Majumder and S. Ahmad
EPL 97, 66006 (2012).

The references of the sources must be given (title, year, issue).

Sincerely yours,



Caroline Orbann
Editorial assistant

EPL - European Physical Society
6, rue des Freres Lumiere
68200 Mulhouse

+33 389 32 94 40
+33 389 32 94 49

On vendredi 14 décembre 2012 6:46, suman@jncasr.ac.in wrote:
>p { margin: 0; }

>

>To,

>

>

> EPL Editorial Office

>

>

>Subject : Permission for copyright

>

>

>Dear Sir,

>

>

> | am Suman Majumder , a final year Ph.D student under the
>supervision of Dr. Subir K. Das,

>

>in the Theoretical Sciences Unit of Jawaharlal Nehru Centre for
>Advance Scientific Research,

>

>Bangalore, India. | have two publications in Europhysics
>Letters. Currently | am writting my

>

>thesis and would like to include the results (including text)
>presented in those two papers.

>

> Following are the details of the mentioned publications:

>



>

>

>

> 1. acefont face="Liberation Serif, sans-serif">Universality in

>Fluid Domain Coarsening: The case of vapor-liquid transitiona€/font>
Europhysics Letters, Vol-95, Page-46002, 2011.

>
>
> Authors: Suman Majumder and Subir K. Das
>
>

Affiliation: Theoretical Sciences Unit of Jawaharlal
>Nehru Centre for Advance Scientific Research, Bangalore, India
>
>
> 2.4ceinite-size effects in dynamics: Critical vs coarsening phenomenaa@/font>
> Europhysics Letters, Vol-97, Page-66006, 2012.
>
> Authors: Subir K. Das, Sutapa Roy, Suman Majumder and Shaista Ahmad
> Affiliation: Theoretical Sciences Unit of Jawaharlal Nehru
>Centre for Advance Scientific Reserch, Bangalore, India
>
>
>
> | will be highly obliged if you permit me to use those results
>in thesis. Looking forward to your reply.
>
>
> Yours Sincerely,
>
> Suman Majumder
>Theoretical Sciences Unit
>Jawaharlal Nehru Centre for Advanced Scientific Research
>Phone-+91-080-22082962
>




