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Synopsis

This is the synopsis of the thesis titled “Investigations of the role of

spatial dimensionality and interparticle interactions in model glass-

formers”, delivered by Shiladitya Sengupta of the Theoretical Sciences Unit,

Jawaharlal Nehru Centre for Advanced Research, Bangalore, India.

The aim of the present thesis is twofold:

1. To examine the relationship between dynamics, spatial correlations, and

thermodynamics by explicitly computing characteristic time scales, length

scales and the configurational entropy in several model liquids.

2. To explore the dependence of the characteristic time scales on various

control parameters. In addition to the more familiar parameters like tem-

perature and density we study the effect of spatial dimensionality and the

interaction potential.

The thesis is divided into seven chapters. The outline of the thesis is pre-

sented below:

• Chapter 1 introduces to the general area of research described in the thesis.

A brief summary to the phenomenology of the dynamic and thermody-

namic signatures of slow dynamics and the relevant theoretical approaches

are discussed. Also the recent analyses of liquid state properties in terms

of density temperature scaling are briefly introduced.

• Chapter 2 details the definitions of the different quantities computed, the

computational methods used to perform simulations and the description

of the model glass-forming liquids studied.

• Chapter 3 describes an analysis of the dependence on the spatial dimen-

sion of the Adam Gibbs (AG) relation. The AG relation describes the

v



dependence of relaxation times (dynamics) on the configurational entropy

(thermodynamics) and is of central importance in the understanding of

glass forming liquids. Although the AG relation is successful in describ-

ing a wide range of experimental and simulation data, its physical origins

are unclear and a universally accepted satisfactory derivation of the re-

lation is lacking. Specifically, according to the original formulation , the

AG relation has no dependence on spatial dimensionality D while latter

formulations suggest explicit dimensional dependence. Analysis of exten-

sive numerical simulations of a variety of models in 2, 3 and 4 dimensions

indicates that while AG relation works in 3 and 4 dimensions, it breaks

down in 2 dimensions. Further, the deviation from the AG relation in 2

dimensions depends on the nature of the interaction potential.

• Chapter 4 describes the dependence on spatial dimension (D) of the break-

down of Stokes Einstein (SE) relation between diffusion coefficient and

viscosity (relaxation time , an often used substitution). In 3D, the SE

relation is studied in a well-studied model glass-former ( Kob-Andersen

or KA model) using both viscosity and structural relaxation time and is

found to breakdown at low temperature while at high temperature the SE

relation between diffusivity and viscosity is recovered. Using several model

glass-formers the SE relation between diffusivity and structural relaxation

time is found to break down at low T in 2D and 4D as well. The fractional

breakdown exponent is found to be closer to 1 at higher dimension suggest-

ing the SE breakdown is weaker at higher dimension. The SE breakdown

is usually considered to be a consequence of the dynamic heterogeneity

(DH) which develops at low temperatures in a supercooled liquid. DH

is characterized in this work by (i) the dynamical susceptibility (ii) the

KWW exponent and (iii) the fragility. Systems at higher dimension is

found to be more heterogeneous as well as more fragile. While this trend

is consistent with positive correlation between heterogeneity and fragility

claimed previously in 3D, it is opposite to the expectation based on the

dimension dependence of the SE breakdown.

• Chapter 5 analyzes the dependence of fragility on the softness of the inter-

particle interaction. Fragility is a material parameter which measures the

rapidity of change of the viscosity ( or relaxation time) with temperature

and is a useful organizing principle to understand data for a wide range

of glass forming liquids. Fragility can be defined purely from kinetics



(kinetic fragility) as well as purely from thermodynamics (thermodynamic

fragility). By studying three model fragile glass-formers of varying softness

(by tuning the inter-particle interactions) kinetic fragility is found to in-

crease with softness while the thermodynamic fragility is found to decrease

with softness. This apparently contradictory trend is reconciled by tak-

ing into account the softness dependence of the activation energy at high

temperature and the corresponding modification of the thermodynamic

fragility via. the AG relation. Finally, the softness dependence of the high

T activation energy is partially rationalized from the density-temperature

scaling of relaxation times.

• Chapter 6 explores the density-temperature (DT) scaling of relaxation

times and the strong pressure-energy correlation in KA model in 3D and

studies its implication on the density dependence of fragility. Both the

above-mentioned properties are verified in 3D KA model. The strong

pressure-energy correlation is found to rationalize approximately the density-

temperature scaling. The density dependence of kinetic fragility is found

to be consistent but stronger than predicted by DT scaling.

• Chapter 7 analyzes the anomalous behaviour of isothermal diffusion coeffi-

cient in modified Stillinger-Weber (mSW) model. The standard Stillinger

Weber model is a model for silicon and has a 2-body and a 3-body inter-

action s. By changing the strength of the 3-body interaction (measured by

the parameter λ), it is verified that the isothermal diffusivity as a function

of λ goes through a maximum as observed in a previous work. It is shown

that the isothermal pair correlation entropy (S2) as a function of λ also

undergoes a maximum. Thus the anomalous behaviour in diffusivity can

be rationalized from the anomalous behaviour in thermodynamics.
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Chapter 1

Introduction

1.1 Glass forming liquids

1.1.1 Supercooled liquids

Liquids and solids are low temperature phases of matter and are ubiqui-

tous in nature. When a liquid is cooled to temperature below the freezing

temperature, under equilibrium condition, it undergoes a first order phase

transition to a crystalline solid. However a finite amount of time is required

for the development (“nucleation”) of crystalline order (“nucleation time”

τnucleation). Similarly, a finite amount of time (“relaxation time” τrelaxation) is

required for the liquid to reach equilibrium at a given temperature T . The

typical temperature dependence of τnucleation and τrelaxation are schematically

shown in Fig. 1.1(a) (the red and the blue lines respectively). Typically, as

a liquid is cooled, τnucleation goes through a minimum (because it is deter-

mined by the competition between (i) a free energy barrier-crossing prob-

ability which increases monotonically and (ii) the mobility which decreases

monotonically as T decreases) and τrelaxation increases monotonically. Fur-

ther τnucleation > τrelaxation at any given T so that the two curves do not

intersect each other. Thus there is the following interesting possibility : if

a liquid is cooled with a cooling rate such that the amount of time spent

at a given temperature is more than τrelaxation but less than τnucleation then

it can avoid crystallization and can remain in the liquid phase even below

its freezing point. This is the window between the red (non-monotonic) line

and the blue (monotonic) line at any given temperature in Fig. 1.1(a). A

1
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Figure 1.1: Left: The schematic temperature dependence of nucleation time
and relaxation time below equilibrium freezing point (Tm). At any given
temperature, the supercooled liquid exists in the time window between red
(above) and blue (below) curves. Right: The schematic temperature depen-
dence of the chemical potential of crystal (aa

′

) and liquid (bb
′

) phases. At
the point of coexistence S the free energy of liquid and crystal phases are
equal, thus it corresponds to the equilibrium melting / freezing point. The
branch Sb

′

represent the supercooled liquid.

liquid below its normal freezing point is called a supercooled liquid. (Certain

materials have no known crystal phases. In those cases the liquid is consid-

ered to be “supercooled” below some characteristic temperature other than

the freezing point, e.g. the temperature where the dynamics show cross-over

from high temperature behaviour to low temperature behaviour).

1.1.2 Metastability

The free energy of a supercooled liquid is higher than the crystal phase. In

Fig. 1.1(b), aa′ is the chemical potential µ(P, T ) of the crystal phase and

bb′ is that of the liquid phase. They intersect at the point of coexistence S

corresponding to the equilibrium melting / freezing temperature Tm. The

liquid branch sb′ represents the supercooled liquid. A supercooled liquid is

said to be metastable with respect to the crystal phase. A metastable phase

has a finite lifetime (τlife) so that given infinite observation time one would

see the transition to the stable phase. One then needs to specify under

what condition the properties of a metastable system are measurable and

reproducible. This can be specified by comparing three time scales: (i) the
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characteristic time scale of observation (τobs) in an experiment (ii) the longest

relaxation time τ of the system and (iii) the life-time (τlife) of the system.

Consider the case in which τ ≪ τobs. In this case the system can be considered

to be in thermodynamic equilibrium in the sense that the system properties

are expected to be invariant under time translation. Further one requires

the lifetime to be longer than the observation time, τlife > τobs, to measure

the system properties. Hence the situation when a metastable state can be

treated as a reproducible equilibrium state is given by :

τlife >> τobs >> τ (1.1)

The relaxation time τ of a liquid increases monotonically on cooling and it is

feasible that τ may cross-over from being less than τobs to being comparable

and eventually greater than τobs. In this case, the relaxation process corre-

sponding to τ is too slow to measure in the experiment and the system is not

in thermodynamic equilibrium. Further, if τ corresponds to the time scale

of structural relaxation, then the structure of the system will appear to be

frozen in the experiment but observations made at intervals comparable to

the relaxation time τ will yield different results, i.e. the system will “age”.

In other words, the liquid may cross-over from a regime where properties are

invariant under time translation to a regime where properties depend on the

choice of time origin. Such a cross-over takes place near the glass transition.

Supercooled liquids, whose relaxation times are a subject of interest in the

present thesis, obey the condition 1.1 above and are treated as systems with

reproducible properties. However, even if the properties of a supercooled

liquid is measurable reproducibly, rigorously speaking, one should justify

the application of equilibrium statistical mechanics and thermodynamics to

describe a metastable phase. This is because, in the thermodynamic limit, the

relative weight of metastable states to the partition function is insignificant

compared to the most stable state (having the minimum free energy). Thus,

strictly speaking, one should apply appropriate constraints to sum over only

restricted regions of the phase space (see [15, 16] and Chapter 2 of [38]).

These caveats should be kept in mind in studying supercooled liquids or

other metastable states.
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1.1.3 The laboratory glass transition
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Figure 1.2: Definitions of the laboratory glass transition temperature Tg.
Left: The temperature at which the logarithm of viscosity is 13 is the dynamic
measure of Tg. D is a material parameter that determines how non-linear the
rise of logarithm of viscosity with decreasing temperature is. D is defined
by the equation η = η0 exp (DT0/(T − T0)). Right: The temperature at
which the specific heat of the liquid shows a sharp but continuous drop is
the calorimetric measure of Tg.

What happens when a liquid is cooled further and further below its freezing

point? One expects that eventually it will crystallize, which is indeed true

for many liquids. However there are many other liquids which does not

crystallize. Instead their ability to flow reduces to such an extent that on the

timescale of observation in laboratory they stop flowing. This is quantified

by viscosity (discussed in detail later) which can increase by 14 orders of

magnitude by only a modest decrease of temperature (Fig. 1.2(a)). Thus

such a state mechanically behave as an “solid” despite having no obvious

structural difference with the corresponding liquid phase. Such a solid is

called an “amorphous solid” because unlike a crystalline solid, it does not have

any obvious long range structural order. This state is known as the structural

glass and this phenomenon of a liquid transforming into an amorphous solid

upon supercooling is known as the glass transition. It is said to take place at

a material-specific glass transition temperature (Tg) which is usually defined

in the following ways:

1. From the temperature dependence of viscosity: Tg is taken, by convention,

to be the temperature at which the viscosity is 1013 Poise (Fig. 1.2(a))
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(alternatively, the relaxation time is 100s). This is a convenient demarca-

tion line in temperature below which the supercooled liquid is no longer

considered to be in equilibrium. Tg thus defined depends on the cooling

rate to some extent.

2. From the drop of specific heat (CP ): The falling out of equilibrium is

also manifested in the changes in the temperature dependence of ther-

modynamic quantities like volume, specific heat and thermal expansion

coefficient. As the supercooled liquid falls out of equilibrium the number

of degrees of freedom accessed on the experimental time scale is reduced

and consequently the specific heat shows a sharp but continuous drop at

a temperature which is the calorimetric measure of Tg (Fig. 1.2(b)).

1.1.4 Slow dynamics

The glass transition identified from the above criteria depends somewhat on

convention and is known as the laboratory glass transition. It is a kinetic

effect as the phenomenology depends on the cooling rate (discussed in more

detail later). The more interesting question is whether the laboratory glass

transition is a signature of a thermodynamic transition to a new phase of

matter. Even after many years of extensive theoretical and experimental re-

search, the answer to this question is still inconclusive. Although glasses can

be prepared by many different routes [1], the formation by the cooling of the

supercooled liquid from above the glass transition temperature (in a way that

crystallization is avoided) has been studied most extensively. Supercooled liq-

uids which avoid crystallization and form glasses may be called glass forming

liquids. Glass forming liquids in the temperature range between the labo-

ratory glass transition temperature Tg and the equilibrium freezing/melting

point Tm can be studied by equilibrium statistical mechanics and thermo-

dynamics. The dynamics of glass forming liquids become dramatically slow

as Tg is approached from above. This is signaled by a number of signature

properties which will be discussed in the next section. A remarkable aspect

of this phenomenology is that they are sufficiently generic so that materials

with very different chemical properties show similar signatures of slow dy-

namics. Different kinds of materials may be colloidal suspensions, network

forming liquids (e.g. silica - one of the main components of the earth’s crust

and the window glasses), polymers (e.g. industrial plastics) and even metals
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(See e.g. Table 4.2 in [38]). This generality implies that it may be possible

to describe some aspects of the phenomenology in a unified and universal

theoretical framework. To predict the phenomenology of slow dynamics for

glass forming liquids starting from microscopic theories may be considered

the central theoretical aim to study glass forming liquids.

1.1.5 Phenomenology of the slow dynamics

One may ask five fundamental, inter-related and “grand” questions to com-

prehend the complex behaviour of glass-forming liquids as they are cooled.

1. How to predict the conditions under which a liquid avoids crystallization

upon supercooling and forms glass i.e. how to predict whether a given

liquid is a poor or good glass-former?

2. How to understand the dramatic increase in viscosity (slowdown of dy-

namics) as the liquid is supercooled?

3. What is the nature of the glass transition? Is it a thermodynamic transi-

tion?

4. How to characterize structural order in supercooled liquids and glasses

which help rationalize their dynamical and thermodynamic behaviour?

5. What is a satisfactory theoretical framework within which the phenomenol-

ogy of the aging behaviour can be described?

The present thesis deals mainly with the second question. The slowdown of

dynamics in glass forming liquids show diverse phenomenology and excellent

review articles (see e.g. [1–8, 10–12, 71, 72] and the book [38]) are available

discussing various aspects of this phenomenology. Here we briefly discuss

some of the signature properties.

1.2 Thermodynamic signatures of the slow

dynamics

As a liquid is supercooled, the structure and the thermodynamics of a liquid

show characteristic changes which are briefly discussed here. The importance
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of such structural and thermodynamic signatures of the slowdown of dynam-

ics is that one is naturally led to seek an understanding of the rapid rise of

viscosity in terms of structure and thermodynamics.

1.2.1 Structural arrest

Figure 1.3(a) shows the schematic temperature dependence of the volume

of a supercooled liquid [7]. As the liquid is cooled at constant pressure at

a constant cooling rate, there is a sharp but continuous change in the slope

as the glass transition temperature Tg is approached. In other words, the

thermal expansion coefficient αP = 1
V

(

∂V
∂T

)

P
shows a sharp but continuous

drop as the Tg is approached. The sharp drop in αP is a thermodynamic

signature of the structural arrest. Figure 1.3(b) illustrates that the final

volume at a temperature below Tg is less for a slower cooling rate. Not only

that, the glass transition temperature (identified by the temperature where

the slope changes) itself is lower for a slower cooling rate. Thus the glass

obtained depends on the history of preparation. Figure 1.3(b) also illustrates

that if the glass obtained from a given cooling rate is heated up, for T near

Tg, the heating curve is different from the cooling curve if the heating rate is

different. Thus the properties of the system near Tg are also path dependent.

The dependence on cooling rate and path demonstrates that the laboratory

glass transition occurs when the liquid falls out of equilibrium and is kinetic

in nature.

1.2.2 Kauzmann’s paradox

The entropy of any system at a temperature T may be obtained from in-

tegrating the specific heat CP (T ) from a reference temperature Tref (Eqn.

1.2).

S(T ) = S(Tref ) +

∫ T

Tref

Cp

T ′
dT

′

(1.2)

Taking the melting point Tm as the reference temperature and defining

∆S(T ) = SLiquid(T ) − SCrystal(T ) as the excess entropy of the liquid over

the crystal and ∆Cp = CP,Liquid − CP,crystal(T ), one obtains for T ≤ Tm:
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Figure 1.3: Schematic temperature dependence of the volume of a super-
cooled liquid as it approaches Tg. In the right drawing, γ1, γ2, γ3 are cooling
rates and γ

′

is the heating rate. See also text.

Figure 1.4: The temperature dependence of the excess entropy illustrating
the Kauzmann’s paradox. Figure reproduced with permission from [17].

∆S(T ) = SLiquid(T ) − SCrystal(T )

= ∆S(Tm) −
∫ Tm

T

∆Cp

T ′
dT

′

(T ≤ Tm) (1.3)
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Since the specific heat for a liquid is higher than that of a crystal, the excess

entropy of a supercooled liquid decreases with temperature. Further, from

Eqn. 1.3, there may exist a non-zero, finite temperature TK where the dif-

ference vanishes: ∆S(TK) = 0. Thus in the temperature range 0 ≤ T ≤ TK ,

the entropy of the liquid will be lower than that of the crystal. Although

this is very counter-intuitive, it does not violate any known laws of physics.

However, since the crystal entropy tends to zero as temperature approaches

absolute zero, the extrapolated liquid entropy will be negative at zero temper-

ature which violates both the Boltzmann’s definition of entropy and the third

law of thermodynamics. This possibility was pointed out by Kauzmann [17]

and is known as the Kauzmann’s paradox.

The Kauzmann temperature TK may be considered to be the absolute lower

limit at which a material can exist as a liquid. It can be estimated from the

extrapolated temperature dependence of the excess entropy (Fig. 1.4). For

all known liquids, TK < Tg so that the temperature TK is not experimen-

tally accessible by a liquid ( [18,38]). However, one may always hypothesize

that in the limit of infinitely long observation time and infinitesimally small

cooling rate, one may reach arbitrarily low temperature in equilibrium. Thus

there have been various proposals to resolve the paradox. Gibbs and Di-

marzio [36] showed that for a lattice model of polymer, the liquid undergoes

a true thermodynamic phase transition at a finite non zero temperature to

an amorphous phase called the “the ideal glass” (as opposed to the labora-

tory glasses). The phase transition is characterized by the vanishing of the

entropy associated with the number of possible polymer configurations. This

entropy is (approximately) equal to the excess entropy defined in Eqn. 1.3.

This work leads to a possible resolution of the Kauzmann paradox which is

based on the thermodynamic behaviour of the system. Although this sce-

nario of a thermodynamic phase transition to an ideal glass is neither the

only resolution of the Kauzmann paradox nor rigorously demonstrated for

real glass forming liquids, it clearly shows that thermodynamic behaviour,

specifically entropy, plays a central role in determining the phenomenology

of the slow dynamics in glass forming liquids.
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1.2.3 No obvious change in static structure

To emphasize the differences, we compare the glass transition phenomena

with the case of the critical phenomena near the critical point of a second

order phase transition (e.g. liquid-gas) which is well understood. In the case

of the critical phenomena, there is a dramatic increase in the density fluctu-

ations and a divergence of the compressibility as T approaches the critical

temperature Tc. Consequently there are dramatic changes in structural cor-

relations ( [19]). The simplest descriptions of static structural correlations

are given by the the pair correlation function g(r) and the static structure

factor S(q). They contain equivalent information as they are related to each

other by a Fourier transform. As T → Tc, S(q) for q → 0 shows dramatic

increase in magnitude. Similarly the static correlation length obtained from

g(r) becomes comparable to the wavelength of the visible light and leads to

strong scattering of the visible light known as the “critical opalescence”.

In glass forming liquids, unlike the case of critical phenomena, S(q) and

g(r) does not show any dramatic change as T → Tg that can be used to

locate Tg [5]. The g(r) and the S(q) of a glass forming liquid is only weakly

T -dependent and are qualitatively similar below and above Tg. This has

lead to the currently open question of whether and what structural change

and corresponding lengths may be relevant for the glass transition and if

higher order correlation functions capturing more subtle signatures of static

structural correlations are required to describe the glass transition.

1.3 Dynamic signatures of the slow dynamics

The rapid increase in the viscosity and the structural relaxation time is the

most dramatic signature of the slow dynamics. Here we first define viscosity

and various relaxation times. Then we discuss the characteristic dynamic

signatures of the slow dynamics.

1.3.1 Viscosity

Viscosity is a material property that measures the strength of the internal

frictional forces in a liquid and characterizes the ability of a liquid to flow.
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Consider a cube of volume V fixed in space inside a flowing liquid. The con-

tact forces on the faces of the cube by the surrounding fluid can be described

phenomenologically by a stress tensor. In liquids with viscous dissipation,

the stress is proportional to the strain rate (as opposed to an elastic solid

where stress is proportional to strain) and the proportionality constant is the

viscosity (bulk and shear). A phenomenological expression for the viscous

forces can be written down considering the following properties [119]:

1. Viscous forces occur only if different parts of the fluid move with different

velocities i.e., if there are non-zero velocity gradients. Consequently, if

the fluid moves with a uniform, constant velocity then the viscous forces

are zero everywhere.

2. For a fluid rotating with constant angular velocity, viscous forces are zero

everywhere.

Under the above conditions, the most general second rank tensor is given by,

σvisc
ik = η

(

∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)

+ ζδik
∂vl

∂xl

(1.4)

Where ~v is the velocity field of the fluid, i, k represents Cartesian components

and the coefficients η and ζ are the coefficients of shear and bulk viscosities

respectively. If the liquid is assumed to be incompressible, then from the

local continuity equation for mass density, ∂vl

∂xl
= 0 and the viscous forces

are described only by the shear viscosity η. Hence we discuss only the shear

viscosity here. Since the fluid is isotropic, η is scalar. The S.I. unit of viscosity

is Poise.

The methods used to compute the shear viscosity η in the present thesis are

described later in Chapter 2.

1.3.2 Relaxation time

The relaxation time (τ) is the characteristic time that a system takes to go

spontaneously (owing to incessant atomic motions) from a given microscopic

configuration at an arbitrary initial time t = 0 to another completely uncor-

related microscopic configuration. In other words, it is the time taken by the

system to “forget” its initial conditions. One may also define the relaxation
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time as the time taken by a system to return to equilibrium after it was sud-

denly taken out of equilibrium condition at t = 0. It is typically measured

from the decay of appropriate correlation functions.

1.3.3 Shear relaxation time

One may define a relaxation time that is derived from the viscosity. Consider

a situation [20] where Eqn. 1.4 is particularly simple: a liquid is placed

between two parallel solid plates of area A and separation d. One plate is

held fixed and the other is pulled with a velocity v. The shear force required

to sustain that motion in the liquid is given by F = η vA
d

. In terms of shear

stress σ = F/A and shear displacement γ = x/d where x is the relative

displacement of plates in time t, Eqn. 1.4 reduces to (incompressible fluid)

σ = ηγ̇ (1.5)

Maxwell argued [4] that on sufficiently short timescales a liquid behaves like

an elastic solid characterized by an shear modulus G = σ/γ and on longer

timescales a liquid behaves like a viscous fluid. He proposed a generalized

relation to describe all time scales:

γ̇ =
σ̇

G
+

σ

η
(1.6)

If the liquid is given a sudden instantaneous shear displacement from equi-

librium, γ̇(t) = γ0δ(t), then the solution of Eqn. 1.6 gives the relaxation

of stress: σ(t) = σ(0) exp(−t/τshear) where τshear = η/G. By integrating

upto an infinitesimal time immediately after t = 0, one gets σ(0) = Gγ0.

This suggests that G represents the instantaneous value of shear modulus or

equivalently the infinite frequency limit of shear modulus and hence is de-

noted by G∞. The relaxation time describing the relaxation of shear strain

is called the shear relaxation time:

τshear =
η

G∞
(1.7)
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1.3.4 Relaxation of density fluctuations

At a given temperature and density, a liquid can have different processes of

relaxation and hence many different relaxation times. In the present thesis,

we are interested in the structural relaxation which corresponds to long time

dynamics at low temperatures describing the space-time evolution of the slow

degrees of freedom. Ideally, one considers the slowest degrees of freedom to

measure the longest relaxation time of the system (to ensure metastable

equilibrium). However, one does not know a priori all the slow degrees of

freedom. Hence it is usually not possible to determine a priori the longest

relaxation time. Instead one expects that structural relaxation takes place by

spontaneous density fluctuations and hence studies the space-time evolution

of the local density ρ(~r, t) as the relevant microscopic dynamical variable.

1.3.5 Time correlation functions

The relaxation of fluctuations (e.g. density fluctuations) is given by time

correlation functions (e.g. the self intermediate scattering function and the

overlap function) of ρ(~r, t). The usefulness of time correlation functions may

be judged from the following points:

1. It is relatively easy to define and directly compute the real space real time

correlation functions in simulation studies in which positions and momenta

of particles of the system are directly measured. More importantly, infor-

mation on the Fourier transforms of real space-time correlation functions

can be directly obtained in experiments (for example, neutron scattering

and various spectroscopic methods). For this connection with experi-

ments, correlation functions are described both in real space-time and in

wave-vector (~k), frequency (ω) spaces. Using both simulations and ex-

periments, microscopic dynamics of liquids can be directly measured in

quantitative detail.

2. Various transport coefficients like diffusivity and viscosity can be formally

computed as the time integral of certain correlation functions using what

are generically known as Green-Kubo relations.
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Figure 1.5: Schematic representation of the decay of density correlation func-
tion at high and low temperatures.

Here we are interested in the instantaneous local density ρ(~r, t) as the fluc-

tuating variable and discuss the universal features of a typical density cor-

relation function of structural relaxation C(t) expected for a dense, cold

liquid. Here C(t) may be the self intermediate scattering function or the

overlap function. The definitions of different correlation functions used in

the present thesis will be discussed in more detail in Chapter 2.

1.3.6 Signature 1: Non exponential decay of correla-

tion functions at low T

Fig. 1.5 shows that there are qualitative differences between high T and low

T density correlation functions [11]. At high T, the relaxation function is

relatively featureless. At short times (so short that the effect of acceleration

on the velocity can be neglected) the particles move with approximately

constant velocity and C(t) ∝ t2 (ballistic regime) and at longer times C(t)

decays exponentially in one step.

As the temperature is lowered, new features appear in the correlation function

at longer timescales [1,4,7,8,11]. At low T, a plateau appears at intermediate

time scales. The width of the plateau increases as T decreases. Thus the

correlation function shows two step decay. The time window around the

plateau is known as the β relaxation regime and the decay at the longer time
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scale is known as the α relaxation regime. The two step decay implies the

presence of a short time process (β) and a long time process (α) which are

well separated in time at low T. The short time decay is thought to be related

to the vibrational dynamics and the long time decay to the hopping motion

of particles ( [74], [77] and references therein).

In the α regime, the density correlation function decays slower than exponen-

tially. It is empirically described by a stretched exponential function (also

known as Kohlrausch-Williams-Watts function):

C(t, T ) = fc(T ) exp

[

−
(

t

τ(T )

)β(T )
]

(1.8)

Here 0 ≤ β(T ) ≤ 1 is a measure of the deviation from the exponential

behaviour and is called the stretching exponent (also the KWW exponent).

How does one explain the non-exponential relaxation? There are two distinct

interpretations about the origin of the KWW function [21]:

1. In the homogeneous point of view, KWW function represents a single

relaxation process which is intrinsically non-exponential.

2. In the heterogeneous point of view, there is a distribution of relaxation

processes, each of them on its own is exponentially decaying but with

different relaxation times. Consequently, the average effect is a stretched

exponential function:

exp
(

−(t/τKWW )βKWW
)

=

∫ ∞

0

dτρ(τ) exp(−t/τ) (1.9)

where ρ(τ) represents the unknown distribution function of the relaxation

times. Formally Eqn. 1.9 is a Laplace transform of ρ(τ). There is no

closed form expression known for the inverse Laplace transform except for

such special values of βKWW as 0.5 [21].

The debate over which of the above interpretations is correct is not fully

resolved yet (see also section 1.3.9).
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1.3.7 Signature 2: Non Arrhenius temperature depen-

dence of relaxation times and transport coeffi-

cients at low T

The most prominent signature of the slow dynamics of many glass forming

liquids is the dramatic change by as many as 14 − 17 orders of magnitude

in experiment and 5 − 6 orders of magnitude in simulations (with present-

day computing power) in the viscosity (η), self diffusion coefficients (D)and

α relaxation times τα with only a modest decrease in temperature T . Em-

pirically, at relatively high temperatures, the T dependence of α relaxation

times (also of viscosity and self diffusion coefficients) are exponential in 1/T

which is known as the Arrhenius law :

η(T ) = η0 exp(E0/kBT )

τα(T ) = τ0 exp(E
′

0/kBT )

D(T ) = D0 exp(−E”
0/kBT ) (1.10)

where (E0, E
′

0, E
”
0) represent energy barriers which are independent of tem-

perature. They are different for different quantities and also different for

different materials. The prefactors (η0, τ0, D0) formally represent the infi-

nite temperature values of the respective quantities. As the temperature is

lowered, many glass forming liquids show faster than exponential change in

viscosity, self diffusion coefficients and α relaxation times. This is not a sharp

change but a gradual cross-over occurring over a limited T range which is

characteristic of the system (Fig. 1.2(a)). Liquids which show this Arrhe-

nius to non-Arrhenius cross-over are called fragile liquids. Ortho-terphenyl

(OTP) is a typical example. Liquids that obey Arrhenius law down to the

glass transition temperature are called strong liquids. Silica is a prototype

example. From Eqn. 3.1, the energy barrier E(T ) at a given T can be writ-

ten in terms of viscosity, self diffusion coefficients or α relaxation times. Non

Arrhenius behaviour formally implies that E(T ) becomes T dependent which

is written for τα below:



1.3 Dynamic signatures of the slow dynamics 17

E(T )

E0

=
T

E0

ln
τα(T )

A′
= Constant = 1 if Arrhenius

not constant if non-Arrhenius (1.11)

How does one understand the rapid rise in dynamical quantities described

above ? This has proved to be a very difficult question to answer in a sat-

isfactory fashion in terms of microscopic properties of glass forming liquids.

Here we briefly discuss some of the issues which are relevant for the present

thesis. For a fuller discussion see [3, 4, 6–8].

Many different timescales: The dynamics of a glass forming liquid is

characterized by more than one time scales : e.g. hydrodynamic transport

coefficients (translational and rotational diffusion coefficient, shear viscosity)

and α and β relaxation times. Besides, the different experimental techniques

(e.g. for relaxation time measurements - dielectric relaxation, mechanical

shear relaxation, electron spin correlation and nuclear spin lattice correlation

methods) and simulation studies probe different processes and ranges of time

and frequency [7]. It is a remarkable fact that despite wide variations in time

(and frequency) scale and physical processes, the T dependence of the time

scales show similar patterns.

Empirical fitting functions: What is the best possible description of the

T dependence of different time scales measured for a large number of glass

forming liquids ? To answer this question, owing to the absence of a generally

accepted universal microscopic theory, one has to resort to fitting functions

with adjustable fit parameters. There are many such fits with varying degree

of applicability and theoretical basis (see [7] and references therein). Since

the Arrhenius law has two adjustable parameters, the simplest fitting func-

tion to describe non-Arrhenius T dependence requires three such parameters.

However there also exist fitting functions with four or more adjustable pa-

rameters. A simple way to classify the different fitting functions is according

to whether they predict a divergence of relaxation time / viscosity at a fi-

nite temperature. Two of the widely used three-parameter fit functions for

supercooled liquids are the Vogel-Fulcher-Tammann-Hesse (VFTH or VFT)
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law (which is equivalent to the Williams-Landel-Ferry equation [26]):

τ = τ0 exp(
B

T − T0

) (1.12)

and the mode coupling theory (MCT) prediction of power law divergence:

τ = τ0(T − Tc)
−γ (1.13)

An example of a fitting function that does not imply finite T divergence is

the Zwanzig-Bessler law : τ = A exp(E/RT 2). There have been critical com-

parisons of different fitting functions in literature [7, 22–25]. An important

issue is whether a single fitting function can describe the full range of data.

Characteristic temperatures: As a glass forming liquid is cooled from

high T, a number of characteristic temperatures can be identified which mark

qualitative changes in the dynamics of the system. The melting temperature

Tm (when exists) separates the normal liquid from the supercooled liquid.

Below Tm, the change from Arrhenius to non-Arrhenius T dependence of

dynamics occur at a cross-over temperature Tonset. At this temperature,

a qualitative change occur in the way the system samples its configuration

space [47] which is reflected in many properties of the system [68]. Thus

Tonset marks the onset of the slow dynamics. Further down in temperature,

one encounters the temperatures Tc predicted by MCT and T0 predicted by

VFT law where the structural relaxation time (and viscosity) is predicted

to diverge. The divergence at Tc predicted by MCT is not seen in practice

presumably because the mode coupling theory of structural relaxation is in-

complete. The temperature T0 is physically unattainable in liquid state as

the laboratory glass transition temperature Tg is higher than T0 for all known

systems. However, T0 is empirically found to be tantalizingly close in many

glass forming liquids [7] to the Kauzmann temperature TK where the thermo-

dynamic glass transition is predicted due to the vanishing of configurational

entropy.

TK ≈ T0 < Tg < Tc < Tonset < Tm (1.14)
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1.3.8 Signature 3: Decoupling

The dynamics of a glass-forming liquid is commonly described by at least

5 characteristic time scales: the transport coefficients - shear viscosity (η),

translational (D) diffusion coefficient and rotational (τc) correlation time;

and the relaxation times - β and α (long time decay). At high T one finds

various pairs of these quantities are coupled - by coupling we mean that if one

knows the T dependence of one quantity in terms of, say, an empirical fitting

function involving a set of fit parameters, then one can predict the value of

the other quantity using the same set of fit parameters. As the temperature

of the supercooled liquid decreases, those pairs get decoupled. The various

couplings and decouplings are briefly discussed below:

The relation between D and η: The translational diffusion coefficient

(D) of a particle in a liquid can be connected to the shear viscosity (η) of

the liquid by the phenomenological Stokes-Einstein relation (SER). Consider

a spherical particle of radius R and mass m undergoing Brownian motion in

a viscous liquid of friction coefficient ξ at a constant temperature T . The

motion of the particle can be described by the Langevin equation [120]:

m~̈r + ξ~̈r + ~Frandom(t) = 0 (1.15)

where −ξ~̇r is the drag force due to viscosity and ~Frandom(t) is the time-

dependent, fluctuating force by the particles of liquid colliding with the Brow-

nian sphere. The equation of motion can be solved exactly if one assumes the

fluctuating force has zero average: < ~Frandom(t) >= 0 and forces at different

times have δ function correlation: < ~Frandom(t1)~Frandom(t2) >= gδ(t1 − t2).

Einstein derived [122] the relation between the diffusion coefficient (D) of

the Brownian particle and the friction coefficient (ξ) of the liquid at a given

temperature T :

D =
kBT

ξ
(1.16)

This relation is known as the “Einstein relation”. Further, the friction co-

efficient ξ can be connected to the viscosity η of the liquid through Stokes’

formula ( [119], §20):

ξ =
6πηR

m
(1.17)
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(the factor 6 depends on the boundary condition [83]). Combining the two,

we get the “Stokes - Einstein relation” (or the “Stokes - Einstein - Sutherland

relation” as it was independently obtained by Sutherland [121]):

D =
mkB

6πR

T

η
(1.18)

This relation is well-established for a wide range of liquids at high T (above

their melting points) [108]. Another remarkable point is that the Stokes

formula was derived for macroscopic spheres - hence Eqn. 4.1 is expected to

hold for diffusing particles whose radius (R) are much larger than the size

of the liquid particles. However, the relation is known to be applicable for

the diffusion of small tracer particles and even for the self diffusion of liquid

particles [108].

The relation between D and τ : In the literature, in the context of

SER one often studies the relation between the diffusion coefficient and the

relaxation time. In such cases, it is implicitly assumed that the viscosity

is proportional to an appropriate relaxation time - usually the α relaxation

time (τ). We note that the diffusion coefficient D is a single particle property

while the structural relaxation time τ is a collective property of all particles

of the system. Hence a relation between D and τ is far from a trivial one.

One can deduce the relation between D and τ assuming the self van Hove

function is Gaussian which is expected to be true in the diffusive regime (at

all T in the limit of long time):

Gs(r, t) ≡ 〈 1

N

N
∑

i=1

δ(~r − ~ri(t) + ~ri(0))〉

=
1√

2πσ2
exp(− r2

2σ2(t)
) in 3D

Hence its Fourier transform Fs(k, t) is Gaussian in the wave vector k:

Fs(~k, t) ≡
∫

d~rGs(~r, t) exp
(

−ı~k · ~r
)

= exp(−3k2σ2(t)

2
) (1.19)
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In the diffusive regime σ2(t) = 2Dt, hence the Fs(k, t) is also exponential in

t:

Fs(~k, t) = exp(−3k2Dt) (1.20)

If the definition of the relaxation time is such that Fs(k, τ) = 1/e then Eqn.

1.20 implies that

Dτkk
2 = constant (1.21)

The Debye Stokes Einstein relation: We also mention that an analo-

gous relation exists for the rotational diffusion. The rotational correlation

time τc is given by,

τc =
4πR3

3

η

kBT
(1.22)

This is known as the “Debye-Stokes-Einstein” (DSE) relation.

Decoupling of D and η, τ : Several experiments and simulation studies

in the last three decades [84–106, 175] have discovered that in supercooled

liquids, the Stokes - Einstein relation (Eqn. 4.1) and the relation between

D and τ (Eqn. 4.2) break down at low temperature. For simplicity, we do

not distinguish here between the different types of relaxation time, nor do

we distinguish between relaxation times measured by different experimental

methods. The diffusion coefficient can be of probe particles in a liquid solvent

or of the solvent itself. The different ways of representing the SE breakdown

may be summarized as follows:

1. Measured D has weaker T dependence than predicted D from the SER

[86,88,89].

2. The radius parameter R (inversely proportional to Dη/T in the SER)

becomes T dependent and decreases with lowering T [86, 92,94,106,175].

We note that sometimes the T dependence of Dτ/T are reported [86,101,

102] instead of Dη/T .

3. The fractional SE relation, reported variously as D ∝ (η/T )−ξ or D ∝ η−ξ
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or (D/T ) ∝ η−ξ or D ∝ (τ/T )−ξ or D ∝ τ−ξ, with a fractional exponent

ξ describes data well [84,91–93,101–103,105].

4. The derivative ∂(1/Dη)
∂(1/T )

from 1/Dη vs. 1/T plot changes sign from positive

to negative [93]. If the SER is valid then from Eqn. 4.1, ∂(1/Dη)
∂(1/T )

= 6πR
mkB

which should always be positive.

We also note in passing that the relation between the rotational diffusion

coefficient and the viscosity (the DSE relation) is less clear [102]. The DSE

relation is found to be both valid ( [88,89]) and violated [93,102,103] at low

temperatures.

Decoupling of D and τc: If the DSE relation between τc and η is valid

down to Tg [88, 89] then one expects a decoupling between the translational

and the rotational diffusion. This decoupling is represented by showing that

the product Dτc of translational and rotational diffusion coefficients becomes

T dependent.

Decoupling of α and β relaxation times: At high T the β and α pro-

cesses are not separated. However, as the temperature decreases the two time

scales get separated. This is manifested in the dielectric relaxation measure-

ments where the single peak frequency at high T bifurcates into slow (α)

and fast (β) peaks at low T with the slow peak showing non-Arrhenius T

dependence and disappearing at Tg while the fast peak obeying Arrhenius

law down to Tg [8]. The decoupling of β and α processes is also evident from

the decay of time correlation changing from being single-step at high T to

two-step at low T .

1.3.9 Signature 4: Dynamical heterogeneity

The existence of spatially heterogeneous dynamics in glass forming liquids

(also in granular media) is a comparatively recent observation and has gained

much attention in the last two decades [6,13]. Dynamical heterogeneity (DH)

refers to the coexistence of mobile and immobile particles in the system lead-

ing to a spatial distribution of mobility (or equivalently, relaxation time).

The possibility of the spatial heterogeneity of dynamics arises owing to the

non-exponential decay of the correlation function. As discussed in section
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Figure 1.6: Dynamic heterogeneity seen in a three dimensional supercooled
colloid using confocal microscopy. Particles are observed for a time window
of 1000 seconds. For clarity, the fast particles are represented as large spheres
(red and blue) and slow particles as small spheres (violet) although all par-
ticles in the system have the same size. Figure reproduced with permission
from [34].

1.3.6 the non-exponential decay of a correlation function can have either a

homogeneous (single non-exponential decay having a single relaxation time)

or a heterogeneous (a distribution of exponential decays with different re-

laxation times) interpretation. Such a distribution of relaxation times can

naturally occur in the system if the dynamics in different regions of space

are different. To illustrate the difference between homogeneous and spatially

heterogeneous dynamics, consider a movie showing the time evolution of the

system where in addition to the position and velocity, every particle is given

a third label representing its mobility with respect to the initial configuration

at t = 0 (for clarity, mobility which is a single particle property is chosen over

relaxation time). This label is represented by a color defined by an appro-

priate color code. At the start of the movie all particles have the same color

(zero displacement by definition). As the movie progresses, in a dynamically

homogeneous system, characterized by a Gaussian Gs(r, t), the particles con-

tinue to have the same color at any given time t. However, if the system is

dynamically heterogeneous, then different particles will have different color

(mobile and immobile) at any given time t. One may still imagine that at

any given t, the mobile and the immobile particles (with different colors)

form a homogeneous mixture. However, many different types of experiments

and simulation have provided evidences that particles with same color tend
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to cluster together (see Fig. 1.6) - indicative of cooperative motion. Finally,

any given particle at different points of time has different colors i.e. mobility

is not an intrinsic property - the same particle becomes mobile and immobile

at different points of time. Thus DH implies the presence of a characteris-

tic dynamical length scale and an associated characteristic time scale in the

system. The interest in DH lies in the fact that such dynamical length scales

(and also the time scales) increases as the temperature decreases which is

reminiscent of the critical phenomena of the more familiar second order phase

transitions (e.g. liquid - gas) and hence a successful theory of glass transition

should be able to explain it.

One of the earliest evidences of DH was found in multi-dimensional NMR ex-

periments [28]. Later, other experimental methods like photo bleaching probe

rotation experiments [29] and atomic force microscopy probed polarization

noise experiments [30] also detected DH. Simulation studies are particularly

suitable to track single particle motions much analysis of DH has been done

by simulation [31,32]. Finally, DH has also been directly observed from single

particle motions e.g. in the experiments on colloids [33,34] and in simulations

e.g. [35].

In order to analyze DH, an important issue is how to define the mobile

and immobile particles in an unambiguous way i.e. not involving externally

imposed cutoffs which are somewhat arbitrary. Using four point correlation

function [63] is a successful approach to overcome this problem [13]. We will

discuss the definitions of four point functions and the relaxation times and

correlation lengths extracted from them later in Chapter 2.

1.3.10 Signature 5: Aging

We mention briefly a signature of out of equilibrium dynamics in glass-

formers. Aging occurs when the system breaks the time translational in-

variance and the properties of the system depends on its “age” . i.e. the

time elapsed (denoted by tw) since the start of the experiment at t = 0. This

is a hallmark of the system being in out of equilibrium and hence is expected

below Tg when the time window of observation τobs is less than the longest

relaxation time (τ) of the system. The effect of aging is more dramatic in two

time quantities e.g. two point time correlation function Fs(k, t, tw) compared

to one time quantities e.g. energy. In an aging system the properties depend
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on the experimental protocol and new effects like memory and rejuvenation

are observed [12].

1.4 Principles to organize data

1.4.1 Fragility

Figure 1.7: Angell plot of the logarithm of viscosity vs. the scaled inverse
temperature Tg

T
. Inset shows that the Angell plot can be generated using the

VFT fit in Eqn. 6.3. Figure reproduced with permission from [126].

The Angell plot: As emphasized above, the rapid rise of relaxation times

in glass-forming liquids shows a complex and diverse phenomenology. The

so-called Angell plot [1, 27, 126] of logarithm of viscosity (relaxation time)

vs. the scaled inverse temperature Tg

T
provides a useful way to organize and

understand the diverse behaviour (Fig. 1.7). In this representation, strong

liquids, i.e. Arrhenius behaviour, follow a linear curve and fragile liquids, i.e.

non-Arrhenius behaviour, follow a non-linear curve. This can be understood
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by considering a slightly shifted Angell plot of log(η(T )/η(∞)) vs. Tg

T
which,

from Eqns. 3.1 and 1.11, is a plot of y = E(T )
T

vs. x = Tg

T
. Then T = Tg

x

and E(T ) = y(x)
x

. Considering the sign of dE
dT

= y
Tg

(

1 − d ln y
d ln x

)

, we see that

(i) E(T ) = constant corresponds to the straight line y = Ax, (ii) the bent

curves correspond to energy barriers E(T ) increasing with decreasing T .

The usefulness of Angell plot is that, without knowing the energy barriers

E(T ), the experimental viscosity (or relaxation time) data of liquids show two

extreme patterns (strong and fragile) which help to rank liquids continuously

from strong to fragile based on simple geometrical properties of the curves.

Thus the rapidity of rise of viscosity / relaxation times can be quantified and

hence different materials can be quantitatively compared. This is done by

introducing a material specific parameter known as fragility.

The kinetic fragility: The fragility defined from transport quantities and

relaxation times is called the kinetic fragility. There are multiple definitions

of kinetic fragility in the literature which can be classified as based on proper-

ties (i) at a single temperature and (ii) over a broad temperature range [131].

We mention the original definition by Angell as the steepness index in the

Angell plot defined as the slope (m) of logarithm of viscosity or relaxation

time at T = Tg with respect to the scaled inverse temperature x = Tg

T
(Tg is

the laboratory glass transition temperature).

m =

(

d log τ

d(Tg

T
)

)

T=Tg

(1.23)

A kinetic fragility (KV FT ) may also be defined from a VFT fit of the relax-

ation times (or the diffusion coefficients),

τ(T ) = τ0 exp

[

1

KV FT ( T
TV FT

− 1)

]

(1.24)

which is used in the present thesis.

Thermodynamic fragility: The concept of fragility re-frames the ques-

tion about understanding the rapid rise of viscosity (and relaxation times)

into the question about the origin of fragility, a fully satisfactory under-

standing about which has not been reached yet. However, a combination of
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thermodynamic approaches e.g. the Adam Gibbs relation (AG) and the po-

tential energy landscape (PEL) has been quite successful (The AG relation

and the PEL formalism are discussed later). The AG relation explains the

rapid rise of relaxation times in terms of the decrease of the configurational

entropy (Sc). If TSc is linear in T , a thermodynamic index of fragility (KT )

may be defined :

TSc = KT

(

T

TK

− 1

)

, (1.25)

The origin of KT may be understood from the properties of the PEL [128].

Since the kinetic fragility KV FT may be related to the thermodynamic fragility

KT via the AG relation (if it is obeyed by the system), such analysis also

yields insight about the kinetic fragility.

1.4.2 Density-temperature scaling

The previous discussions show that the phenomenology of the slow dynamics

in glass forming liquids is complex. However, recent analyses of many liq-

uids over a wide range of temperatures and densities (pressures) have shown

two interesting properties which considerably simplifies the description of

dynamics.

Hidden scaling: It has been found empirically that relaxation times of

many liquids, when expressed in appropriate units, depend on density (ρ) and

temperature (T ) only through a specific combination implying a “hidden”

density -temperature scaling law in liquids. Roland and co-workers [147–149]

found this combination to be ργ

T
, i.e. τ = f(ργ

T
) where the function f is in gen-

eral unknown and depends on the material. The exponent γ can be found em-

pirically by demanding collapse of relaxation times (or diffusion coefficients)

at different densities (pressures) and temperatures on a single master curve.

For certain class of liquids, it may also be computed from thermodynamic

quantities as will be explained later. Alba-Simionesco and co-workers [130]

also found similar empirical data collapse for relaxation times with the above

mentioned functional form. However, they show that data collapse can also

be obtained with a different form τ = f(ρ−ρ∗

T
) as well. In a separate line

of reasoning, Alba-Simionesco and co-workers [130] propose that the density
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dependence of relaxation times for many liquids can be described by a single

density-dependent parameter, say the activation energy E0(ρ) obtained from

the Arrhenius behaviour at high T . According to their hypothesis, when the

scaled T dependent activation energy at different densities - E(ρ, T )/E0(ρ)

is plotted against T/E0(ρ), one should get a data collapse.

Strong pressure-energy correlation: In model liquids with purely re-

pulsive inverse power law (IPL) potential v(r) ∼ r−n, the instantaneous

potential energy (PE) is proportional to the instantaneous virial (W). This

is a consequence of the scale invariance of the power law nature of the po-

tential [159, 160]. Since U =
∑

i

∑

j>i v(r) and v(r) ∼ r−n hence W =

1
d

(

∑

i ~ri · ∂
∂~ri

)

U = n
d
U where d is the spatial dimension. Hence in IPL liq-

uids, the PE and the virial are exactly correlated.

Schrøder and co-workers have recently shown [146] that many non-IPL liquids

show strong correlation (defined as correlation coefficient > 0.9) between

instantaneous potential energy (U) and virial (W ). Such strong correlation

in non-IPL liquids has been rationalized by approximating the interaction

potential by an effective IPL potential where the power is different from

the repulsive part of the original potential. This is further generalized by

introducing the concept of isomorphs [146].

Connection between the two properties: There is an interesting pos-

sibility that the above mentioned properties are inter-related. Schrøder and

co-workers have shown that the exponent γ in density-temperature scaling of

relaxation time can be predicted from the virial-potential energy correlation.

However, the value of γ computed from virial-potential energy correlation de-

pend on state points. It is also not clear if such strong correlation is obeyed

over the entire liquid phase. Despite these limitations strong pressure-energy

correlation is conceptually interesting as it considerably simplifies the analy-

sis of liquid state properties. In the present thesis, we explore this possibility

of simplification of dynamics by using a scaling relation.
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1.5 The configurational entropy

The configurational entropy is a measure of the number of “independent” (or

uncorrelated) configurations that a system can sample in the configuration

space at a given density and temperature. Intuitively, the configurational

entropy should be inversely related to the structural relaxation time. En-

tropy based theories like the Adam Gibbs (AG) relation and the RFOT aim

to establish such connections quantitatively. However, in order to measure

the configurational entropy one needs to define the idea of “independent

configurations” clearly. The potential energy landscape (PEL) offers a nat-

ural conceptual framework and computational tools to define and measure

configurational entropy of a system. The details of the method is discussed

below.

1.5.1 The potential energy landscape (PEL) formalism

Dynamics in the configuration space: Goldstein [74] emphasized that

the dynamics of viscous liquids at low temperatures can be more easily de-

scribed in terms of the topology of the abstract, high dimensional configu-

ration space than in real space. Although in real space we can directly see

the time evolution of the system, the structural changes with cooling are not

easy to identify. This is manifested in negligible changes in the pair cor-

relation function with cooling. On the contrary, the configuration space is

impossible to visualize for realistic liquids, but Goldstein pointed out that the

qualitative difference between high and low T behaviour of a liquid is clearer

from the potential energy landscape (PEL) perspective rather than from a

real space picture. The PEL is a hypersurface representing the interaction

potential as a function of coordinates of all particles in a ND + 1 dimen-

sional space for a N -particle liquid in D dimensions. A configuration as a

whole is represented by a single point on this hypersurface. The movement of

the point along this hypersurface represents the microscopic dynamics of the

system. The PEL typically have enormous number of local potential energy

minima, known as the inherent structures. Inherent structures are then, by

definition, the configurations with mechanically stable packing of particles.

The crystal phase(s) and crystalline defect configurations also correspond to

local PEL minima and expected to be of lower potential energy than liquid
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local minima. Usually, when discussing inherent structures of liquid phase,

crystalline (both perfect and defects) configurations are excluded.

Owing to the presence of many potential energy minima, the system is re-

quired to overcome the energy barriers to go from one to another minimum.

At high temperatures, the thermal energy kBT is much larger than typi-

cal energy barriers and the system should sample all possible configurations

without needing to overcome barriers. On the contrary, at low temperatures,

when energy barriers are expected to be larger than the thermal energy kBT ,

the system is expected to sample configurations inside one basin most of the

time with occasional jump between basins (a rare event). This picture is

true if the time scales of local sampling and of hopping between basins are

well separated. The two step decay of time-correlation functions supports

this expectation, where the short-time β relaxation time is associated with

time scale of local sampling inside a basin or vibration about the inherent

structure and the long time α relaxation time is associated with the hopping

between basins. The latter is tested in [77] for a model liquid and is shown in

Fig. 1.8 where Fs(q, t) vs. t are plotted for a range of temperatures. The top

panel shows the FsA(q, t) (for only A type particles) computed from the time

evolution trajectories of the liquid obtained from molecular dynamics (MD)

(in which Newton’s laws of motion are numerically solved to obtain the time

evolution trajectories of particles) simulation and a two step decay process is

seen in the temperature range studied. The bottom panel shows the F I
s (q, t)

computed from the “inherent structure trajectories” which are nothing but

a sequence of inherent structures obtained from the MD trajectories in the

top panel by potential energy minimization. In the “inherent structure tra-

jectories” the vibrational dynamics is removed by construction. The F I
s (q, t)

shows a single step decay which is consistent with the expectation that the

time scale of vibrations within a basin and that of hopping between basins

are well separated. Comparing the time scales in the top and the bottom

panel of Fig. 1.8 also shows that the long time α relaxation time is associated

with the process of hopping between basins.

1.5.2 The basin decomposition

It is easy to see that the configuration space can be completely divided into

basins such that each basin have exactly one inherent structure and each
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Figure 1.8: Top: FsA(q, t) vs. t plotted for a model binary mixture (for
only A type particles) at a range of temperatures where Fs(q, t) computed
from MD trajectories. Bottom: F I

s (q, t) vs. t plotted for same temperatures
where F I

s (q, t) computed from inherent structure trajectories obtained from
potential energy minimization of the MD trajectories used in the top panel.
Lines are fits to the stretched exponential form: f(t) = fc exp(−t/τ)β. This
plot shows that at low temperature, relaxation occurs in two steps and the
true (MD) dynamics can be separated into short time vibrational and long
time basin-hopping motion. Figure reproduced with permission from [77].

Figure 1.9: Cartoon of basin decomposition in configuration space and sep-
aration of configurations into local potential energy minima (inherent struc-
tures) and vibration about minima. The black circles represent the inherent
structures in the left drawing. The inherent structures are labeled by energy
in the right drawing.
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configuration in a basin can be uniquely mapped to that inherent structure

(excluding saddle points on the boundary between adjacent basins. But the

total volume of saddle points is vanishingly small compared to the total vol-

ume of configurations). Further, the inherent structures can be labeled by

their energies. The problem of computing the partition function (configura-

tion part) of the whole system is then reduced to computing the partition

function of a single basin plus a one dimensional integral over inherent struc-

ture energies (denoted by eIS). This reduction is known as the basin decom-

position and is illustrated in Fig. 1.9. The canonical partition function of

the system Z(N, V, T ) can be re-written in terms of basin partition function

zbasin(eIS, N, V, T ) :

Z = exp [−βA]

=

∫

eIS

deISΩ(eIS, N)zbasin(eIS, N)

≡
∫

eIS

deIS exp [Sc(eIS, N)/kB] exp [−β(eIS + fbasin)] (1.26)

Where A(N, V, T ) is the total Helmholtz free energy of the system, Sc(eIS, N) =

kB ln Ω(eIS, N) and Ω(eIS, N)deIS denotes the number of inherent structures

in the energy range eIS to eIS + deIS. Thus Sc(eIS, N) is the configura-

tional entropy density. From the above expression, the probability density

of sampling inherent structures with energy between eIS and eIS + deIS at a

temperature T can be written as

P (eIS, T,N) =
exp [−β (eIS + fbasin − TSc)]

exp (−βA)
(1.27)

P (eIS, T,N) may be obtained numerically from the histogram of inherent

structures sampled at a given temperature T . Thus configurational entropy

density Sc(eIS, N) can be numerically computed by inverting Eqn. 1.27

Sc(eIS, N) = ln P + β [eIS + fbasin − A] (1.28)

Although terms on the right hand side of Eqn. 1.28 has temperature depen-

dence, Sc(eIS, N) does not depend on temperature as it represents geometri-

cal features of the underlying potential energy surface which is temperature

independent (but density dependent).
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1.5.3 The basin free energy and the basin entropy

The harmonic approximation: The partition function of a single basin

can be computed analytically by making the harmonic approximation to the

potential energy expanded about the minimum (inherent structure) of a given

basin :

U(~qN) ≃ eIS +
∑

Hiαjβδqα
i δqβ

j eIS=inherent structure energy

Hiαjβ = Hessian matrix of the potential energy U(~qN)

=

[

∂2U

∂qα
i ∂qβ

j

]

IS

(1.29)

The basin partition function: Using the harmonic approximation, the

canonical partition function of a single basin (zbasin(eIS, N, V, T )) can be

written as the product of the partition functions (zharmonic) of 3N one di-

mensional harmonic oscillators (ND in D dimensions) with frequencies (ωi)

equal to the eigenvalues (ω2
i ) of the above Hessian matrix of potential energy

at the inherent structure. The eigenvalues are computed by diagonalizing

the Hessian matrix. This gives 3N (in 3D) independent eigenvalues (ω2
i )

out of which 3N − 3 are non zero. The canonical partition functions of a

one dimensional harmonic oscillator with a non-zero frequency ω and zero

frequency are respectively (mass = 1 for simplicity) :

zharmonic(ω, T, V ) =

∫

dpdq

h
exp

[

−βp2

2
− βω2q2

2

]

=
1

β~ω

zharmonic(0, T, V ) =

∫

dpdq

h
exp

[

−βp2

2

]

=

[

1

h

(
√

2π

β

)

V 1/3

]

≡ z0 (1.30)
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So, under harmonic approximation the basin partition function can be writ-

ten as:

zbasin(eIS, N, V, T ) = exp (−βeIS)

[

3N−3
∏

i=1

1

β~ωi

]

z3
0

≡ exp (−βeIS) exp (−βfbasin) (1.31)

The basin free energy and the basin entropy: Finally, the basin free

energy fbasin and basin entropy Sbasin in the harmonic approximation are

given by (note that the energy of the inherent structure is excluded in our

definition of fbasin, i.e. fbasin is the vibrational component of the basin free

energy):

βeIS + βfbasin = − ln zbasin

βfbasin =
3N−3
∑

i=1

ln (β~ωi) − ln
(

z3
0

)

Sbasin = −∂fbasin

∂T
(1.32)

1.5.4 The average configurational entropy

The average configurational entropy (Sc(N, V, T )) is the average of configura-

tional entropy density sampled at a given temperature and related to Sc(eIS)

as Sc =
∫

deISSc(eIS, N)P (eIS, N, T ). Thus the average configurational en-

tropy explicitly depends on temperature. In the present thesis, it is directly

obtained by subtracting the basin entropy from the total entropy (Stotal, also

called the “bulk entropy”) of the system:

Sc(N, V, T ) = Stotal(N, V, T ) − Sbasin(N, V, T ) (1.33)

which can be obtained from Eqn. 1.26 in saddle point approximation (ẽIS

and similarly for the other quantities denote the values which maximize the
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argument in Eqn. 1.26 and for simplicity kB = 1) :

Z ≃ exp(S̃c) exp
[

−β(ẽIS + f̃basin)
]

A = −T ln Z

Stotal = −∂A

∂T

≃ S̃c −
∂f̃basin

∂T

= S̃c + S̃basin (1.34)

1.6 Entropy based theories of glass transition

There are many theories of glass transition attempting to explain the dra-

matic slow down of dynamics as T approaches Tg from above with varying

degrees of success. Excellent review articles (e.g. [3–5,10]) are available which

gives an overview of different theories. Here we briefly discusses the Adam

Gibbs relation (AG) and the random first order transition theory (RFOT)

which are relevant for the present thesis.

1.6.1 The Adam Gibbs relation

The Adam-Gibbs (AG) relation [36–38, 40] explains the behaviour of the

relaxation time i.e. dynamics in terms of the configurational entropy i.e.

thermodynamics. The AG relation is based on the picture that as the tem-

perature is lowered, the motion of particles in liquids become correlated,

hence relaxation in glass forming liquids occurs through the collective rear-

rangement of “cooperatively rearranging regions” (CRR). The CRRs define

a minimum size of groups of rearranging particles (atoms, molecules etc. de-

pending on the nature of the glass former) such that smaller groups of par-

ticles are incapable of rearrangement independently of their surroundings.

Adam and Gibbs argued that the configurational entropy - the entropy as-

sociated with the multiplicity of distinct arrangements of particles, obtained

by subtracting a “vibrational” component from the total entropy - per par-

ticle Sc(T ) of a liquid varies inversely as the size of the CRR, z(T ), since the

configurational entropy per CRR, S∗, is roughly independent of temperature:
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Figure 1.10: Experimental verification of the Adam Gibbs relation 6.4. Fig.
reproduced with permission from [42].

Sc(T ) =
S∗

z(T )
(1.35)

The further assumption that the free energy barrier for a rearrangement is

proportional to the size of the CRR (∆G = zδµ, δµ = chemical potential

barrier per particle) results in the Adam-Gibbs relation:

τ(T ) = τ(∞) exp

(

S∗k−1
B δµ

TSc(T )

)

= τ(∞) exp

(

C

TSc

)

(1.36)

The Adam Gibbs relation (Eqn. 6.4) has been tested extensively (See Figs.

1.10 and 1.11). In Fig. 1.11 different curves correspond to different densi-

ties. Note that the slope for different densities are different. This point will

be relevant for later chapters of the present thesis) and is quite successful

to account for experimental and simulation data [41–45, 48, 128]. Besides,

combining with the linear T dependence of the quantity TSc (Eqn. 5.3:
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Figure 1.11: Validation of the Adam Gibbs relation in simulation in Kob
Andersen model. Fig. reproduced with permission from [128]. Different
curves correspond to different densities. Note that the slope for different
densities are different. This point will be relevant for later chapters of the
present thesis.

TSc = K
Tk

(T − TK)) the AG relation Eqn. 6.4 predicts the empirical VFT

law Eqn. 1.12,

τ(T ) = τ0 exp

(

A

T − T0

)

(1.37)

provided the VFT divergence temperature T0 is same as the Kauzmann

temperature TK . Experimentally, for many liquids it is found that indeed

T0 ≈ TK ( [42] and Table 4.6, ref [38]), although significant disagreements

are also known.

However, because of the many assumptions, the AG relation is not rigorously

derived and thus not a fully satisfactory theory. Some of the weaknesses [40]

are mentioned below:

1. Although the concept of cooperatively rearranging region (CRR) is a key

ingredient of the theory, it is not clearly defined [5] in the sense that the

theory does not provide any method to estimate the size and shape of

CRR’s.

2. Similarly, the theory does not precisely define the meaning of (metastable)

configurations of a CRR.
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3. AG assumes that configurational entropy of a CRR S∗ is a constant. It

is not obvious why the number of metastable configurations of a region

of size z∗ should be independent of z∗. One may expect that instead it

should be exponential in z∗.

In spite of these deficiencies, the AG relation is of central importance to

understand the behaviour of relaxation times in glass forming liquids.

1.6.2 The random first order transition theory

The random first order transition theory (RFOT) originated in the study

of mean-field models of Ising and Potts spin glasses. Spin glasses are also

disordered systems, like supercooled liquids and structural glasses. However,

there are two important differences: (i) unlike the structural glasses in which

the disorder is self-generated (disorder in the real space positions but not

in the Hamiltonian), in spin glasses the disorder is quenched (disorder in

the Hamiltonian) [2]. (ii) the relevant spin glass models are mean-field like

i.e. the range of interaction is infinite whereas in supercooled liquids and

structural glasses the range of interaction is finite.

In the spin glass models mentioned above, below a finite temperature T = Td,

the free energy develops an exponentially large number of metastable minima.

This is called a transition from the ergodic to the non-ergodic behaviour. The

canonical free energy F (T ) below Td is given by

F (T ) = −kBT ln
∑

k

exp(−Fk/kBT ) = 〈Fk〉 − TSc(T ) (1.38)

where Fk is the free energy of the kth minimum and Sc(T ) which is a measure

of the number of the minima and an extensive quantity, is called the configu-

rational entropy or complexity of the free energy minima. As the temperature

is lowered further below Td, the configurational entropy per spin goes to zero

at a temperature Ts < Td and a thermodynamic transition is said to take

place at this temperature. Note that the above minima refer to the free

energy landscape and not to the potential energy landscape. The potential

energy landscape is independent of temperature but the free energy land-

scape can be different at different tempeatures. Hence there is no conceptual

problem for new minima being “developed” at low temperatures.
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Kirkpatrick, Thirumalai and Wolynes pointed out [39,56–58] the analogy be-

tween this phenomenology of spin glass models to those of supercooled liquids

and structural glasses. The ergodicity breaking temperature Td was associ-

ated with the ideal glass transition temperature (Tc) predicted by mode cou-

pling theory (see Eqn. 1.13) and the thermodynamic transition temperature

Ts with the Kauzmann temperature TK where the configurational entropy of

liquid vanishes [10].

Based on the above analogy if one postulates that the free energy of su-

percooled liquids also develops exponentially large number of minima below

TC then dynamics for T < TC in supercooled liquids can be governed by

transitions between such free energy minima. Wolynes and co-workers have

proposed a mechanism of entropy driven nucleation of one free energy min-

ima inside another [39]. This theory of structural glasses and supercooled

liquids is known as the random first order transition theory (RFOT).

In the RFOT scenario, one considers under what condition a liquid is trapped

in a single metastable state or is able to sample exponentially large number

of such metastable states. Let us assume that initially the liquid is in a

single metastable state. Consider a region of characteristic size ξ(T ). It is

argued in the RFOT (as detailed below) that there is a characteristic length

scale ξ∗(T ) above which such a cluster will be unstable and the liquid will

sample other (exponentially large number of) metastable states. Thus at any

instant of time different regions of the liquid will be in different metastable

states. In other words the liquid is a “mosaic” of exponentially large number

of metastable regions of characteristic size ξ∗(T ).

The transition from one metastable state to others is hindered by formation

of surface at the cost of surface free energy (∆Gs) which explicitly depends

on spatial dimensions (D):
∆Gs

kBT
∝ Y ξθ

kBT
(1.39)

where θ ≤ D is an unknown exponent and Y = surface tension. The driv-

ing force for the transition is the free energy gain (∆Gb) corresponding to

the possibility of sampling exponentially large number of other metastable

minima :
∆Gb

kBT
∝ −TScξ

D

kBT
(1.40)

where Sc is the configurational entropy measuring the number of metastable
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states. Thus in the RFOT scenario the total free energy (∆G) depends on a

characteristic length scale :

∆G(ξ) = ∆Gs + ∆Gb (1.41)

If one uses the argument of the classical nucleation theory, then the free

energy barrier corresponds to the maximum of ∆G in Eqn. 1.41 occurring

at a characteristic length scale ξ∗ :

[

∂∆G

∂ξ

]

ξ∗
= 0

ξ∗ =
θ

D

(

Y

TSc

)1/D−θ

∼
(

Y

TSc

)1/D−θ

∆G(ξ∗) = Y (1 − θ

D
)(ξ∗)θ

∆G(ξ∗) = (1 − θ

D
)
θ

D
Y

(

Y

TSc

)θ/D−θ

(1.42)

Note that (i) the characteristic lengthscale ξ∗(T ) diverges as SC(T ) → 0. (ii)

According to the above scenario, θ is an unknown exponent. Wolynes et al.

argued that [39,60] that θ = D/2 in D dimensions.

Later, Bouchaud and Biroli [40] proposed a re-interpretation of the entropy

driven nucleation picture of Wolynes et al. while keeping the underlying

picture of exponentially large number of free energy minima intact. They

considered a thought experiment in which the liquid is trapped into one

(denoted by α) of the exponentially large number of metastable minima. The

motion of all particles outside a sphere of radius ξ were frozen in the state α.

This provided a boundary condition which acted like an external field for the

thermodynamics of the particles inside the sphere. Configurations in which

the inside particles are also in the state α matched the boundary condition

provided by the outside particles frozen in the state α. Thus they were

energetically more favored than others. The canonical partition function of

the particles inside the sphere was given by :

Z(ξ, T ) ≈
∑

β 6=α

exp

[

−ξDfβ

kBT

]

+ exp

[

−ξDfα

kBT
+

Y ξθ

kBT

]

≈
∫ ∞

0

df exp

[

ξD (TSc − f)

kBT

]

+ exp

[

−ξDfα

kBT
+

Y ξθ

kBT

]

(1.43)
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where fβ was the excess free energy per unit volume in a state β with a

typical and random boundary field. Y ξθ was the relative gain in free energy

in the state α owing to the favourable boundary condition. Sc(f, T ) is the

configurational entropy per unit volume corresponding to the exponentially

large number of the metastable states at the free energy density f . In the

saddle point approximation, the integral in Eqn. 1.43 was approximately

given by the value of the free energy f ∗ which maximizes the argument :

Z(ξ, T ) ≈ exp

[

−
ξDf ∗

β

kBT

]

[

exp

(

TS∗
c ξ

D

kBT

)

+ exp

(

Y ξθ

kBT

)]

From Eqn. 1.44 Bouchaud and Biroli argued that for small ξ (i..e small

cluster of particles) and for θ < D, the second term dominated the partition

function. This implied that the state with the lower free energy is the one in

which the system would lose the configurational entropy to gain the surface

free energy. As ξ increases (larger and larger cluster of particles), eventually

the first term in Eqn. 1.44 would dominate the partition function which then

corresponded to the bulk free energy of the liquid in the mean-field approx-

imation. This implied that for very large ξ, the state with the lower free

energy is the one in which the system would sample all metastable states β

to gain the configurational entropy at the cost of the surface free energy. The

cross-over would occur at a temperature dependent characteristic lengthscale

ξ∗(T ) =

(

Y

TSc

)
1

D−θ

(1.44)

We note that the two definitions of ξ∗ (Eqns. 1.42 and 1.44) are mutually

proportional hence the scaling relation between the free energy barrier and

the lengthscale is the same using either definitions.

Finally, the relation among the relaxation time τ , the characteristic length
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scale ξ and the configurational entropy Sc according to the RFOT becomes,

τ = τ0 exp (∆G/kBT )

∆G ∝ ξψ

= (Y/TSc)
ψ/D−θ

τ = τ0 exp
(

Aξψ
)

= τ0 exp

[

A

kBT

(

Y

TSc

)ψ/D−θ
]

(1.45)

Note that in the Bouchaud-Biroli picture there is a second unknown exponent

ψ and ψ 6= θ in general. (in the literature there are some non-uniformity

about the notations. we follow the notations used in [40]). Eqn. 1.45 is a

generalization of the Adam Gibbs relation - Eqn. 1.36. The spatial dimension

D explicitly appears in 1.45. However, in addition, there are two a priori

unknown exponents θ and ψ in Eqn. 1.45. Hence it is not immediately

clear if Eqn. 1.45 reduces to the Adam Gibbs relation (Eqn. 1.36) or gets

generalized in a D dependent way. This question will be addressed in more

detail in Chapter 3.

1.7 Outline of the thesis

The aim of the present thesis is twofold:

1. To examine the relationship between dynamics and thermodynamics by

explicitly computing the time scales, the length scales and the configura-

tional entropy in several model liquids.

2. To explore the dependence of the characteristic time scales on various

control parameters. In addition to the more familiar parameters like tem-

perature and density we study the effect of spatial dimensionality and the

interaction potential.

The outline of the thesis is presented below:

• In Chapter 2, we detail the definitions of the different quantities com-

puted, the computational methods used to perform simulations and the

description of the model glass-forming liquids studied.
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• In chapter 3, we study the dependence on the spatial dimension of the

Adam Gibbs (AG) relation between the relaxation time i.e. dynamics and

the configurational entropy i.e. thermodynamics by analyzing a variety of

model glass-forming liquids in 2,3 and 4 dimensions.

• In chapter 4, we explore the the dependence on spatial dimension (D) of

the relation among the breakdown of the Stokes Einstein (SE) relation,

the dynamical heterogeneity (by considering direct indicators e.g. χ
peak
4

and βKWW and the fragility by analyzing several model glass-formers in

2,3 and 4 dimensions.

• In chapter 5, we analyze the dependence of fragility on the softness of

the interaction by studying three model fragile glass-formers of varying

softness.

• In chapter 6, we study the density-temperature (DT) scaling of relaxation

times and the strong pressure-energy correlation in the Kob-Andersen

model in three dimensions and their implication for the density depen-

dence of isochoric fragility.

• In chapter 7, we study the unusual behaviour of the diffusion coefficient in

the modified Stillinger-Weber (mSW) model.



Chapter 2

Definitions, methods and

models

After introducing the phenomenology of the glass-forming liquids and the

relevant theories of glass transition, in the present chapter we summarize the

details of the computer simulation in the present study. First, we describe

the relevant definitions and working formulas used to compute the different

quantities of interest. Then we describe the NVT MD algorithm used in the

present study to simulate various glass-formers. Finally, we depict the details

of the model glass-forming liquids studied in the present thesis.

2.1 Definitions

2.1.1 Two point time correlation functions

Consider a system made up of N structureless particles. The instantaneous

local density ρ(~r, t) is given by

ρ(~r, t) =
N

∑

i=1

δ(~r − ~ri(t)) (2.1)

Owing to the local conservation of mass (or number of particles, if we consider

number density instead of mass density), it obeys the continuity equation

∂ρ(~r, t)

∂t
+ ∇ ·~j(~r, t) = 0

44
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with the associated current

j(~r, t) =
N

∑

i=1

~viδ(~r − ~ri(t))

where ~vi is the instantaneous velocity of the ith particle. In general any other

microscopic dynamical variable for N structureless particles can be defined

as

A(~r, t) =
N

∑

i=1

ai(t)δ(~r − ~ri(t))

where ai(t) represents the relevant single particle property under study.

Most widely studied correlation functions are two point correlation functions

which are the simplest possible correlation functions. In real space-time one

defines the van Hove function as

G(~r, t) =
1

ρ
〈ρ(~r, t)ρ(~0, 0)〉

= 〈 1

N

∫

d~r′ρ(~r′ + ~r, t)ρ(~r′, 0)〉

= 〈 1

N

∫

d~r′
N

∑

i=1

N
∑

j=1

δ(~r′ + ~r − ~rj(t), t)δ(~r′ − ~ri(0), 0)〉

= 〈 1

N

N
∑

i=1

N
∑

j=1

δ(~r − ~rj(t) + ~ri(0))〉 (2.2)

where ρ is the average density - the angled bracket representing the “aver-

aging” which can be either over time intervals or over statistical ensembles.

In (supercooled) liquid state, one assumes they equal each other (ergodic

hypothesis).

The Fourier transform of G(~r, t) from the real to the k space is called the

intermediate scattering function F (~k, t):

F (~k, t) =

∫

d~rG(~r, t) exp
(

−ı~k · ~r
)

=
1

N
〈ρ(~k, t)ρ( ~−k, 0)〉 (2.3)
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where

ρ(~k, t) =

∫

d~rρ(~r, t) exp
(

−ı~k · ~r
)

=
N

∑

i=1

exp
(

−ı~k · ~ri(t)
)

is the Fourier transform of the local density. Taking further Fourier transform

to frequency, one gets

S(~k, ω) =
1

2π

∫ ∞

−∞
dtF (~k, t) exp (ıωt) (2.4)

which is called the dynamic structure factor.

G(~r, t) and F (~k, t) can be naturally separated into two terms based on par-

ticle indices. These are called the self (s) and the distinct (d) parts:

G(~r, t) = Gs(~r, t) + Gd(~r, t)

Gs(~r, t) = 〈 1

N

N
∑

i=1

δ(~r − ~ri(t) + ~ri(0))〉

Gd(~r, t) = 〈 1

N

N
∑

i=1

N
∑

j 6=i

δ(~r − ~rj(t) + ~ri(0))〉 (2.5)

F (~k, t) = Fs(~k, t) + Fd(~k, t)

Fs(~k, t) =

∫

d~rGs(~r, t) exp
(

−ı~k · ~r
)

Fd(~k, t) =

∫

d~rGd(~r, t) exp
(

−ı~k · ~r
)

(2.6)

In the present thesis, the dynamics is also studied by another two-point time

correlation function of local density, the overlap function (q(t)) [63–65] which

is defined below.

q(t) ≡
∫

d~rρ(~r, t0)ρ(~r, t + t0)

=
N

∑

i=1

N
∑

j=1

δ(~rj(t0) − ~ri(t + t0)) (2.7)

Here the averaging over time origins t0 is implied. Like F (~k, t), overlap
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function also naturally separates into “self” and “distinct” terms:

q(t) =
N

∑

i=1

δ(~ri(t0) − ~ri(t + t0)) +
∑

i

∑

j 6=i

δ(~ri(t0) − ~rj(t + t0))

Figure 2.1: Illustrating the definition of the “overlap” function q(t).

In the present thesis, we study only the self part of the total overlap function

(that is neglecting i 6= j terms in the double summation) is used, based

on the observation [66] that the results obtained from the self part are not

signicantly different from those obtained by considering the collective overlap

function.

q(t) ≈
N

∑

i=1

δ(~ri(t0) − ~ri(t + t0))

Further, for numerical computation, δ function is approximated by a window

function w(x) which defines the condition of “overlap” between two particle

positions separated by a time interval t [Fig. 2.1]:

q(t) ≈
N

∑

i=1

w(|~ri(t0) − ~ri(t0 + t)|)

w(x) = 1, x ≤ a implying “overlap”

= 0 otherwise (2.8)

Choice of the cutoff a for the overlap function: Eqn. 2.8 implies that

in simulation, the value of the overlap function depends on the choice of the

cutoff parameter a. This parameter is chosen such that particle positions
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separated due to small amplitude vibrational motion are treated as the same

- a is such that a2 lies in the plateau region on the MSD curve. Further,

the choice of a is fine-tuned to maximize the peak height of the dynamical

susceptiblity χ
peak
4 (at a representative intermediate temperature). Here we

show the choice of the cutoff parameter a for the 4D KA and the 2D R10

models in Figs. 2.2 and 2.3 respectively.
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Figure 2.2: Choice of the cutoff parameter a for the overlap function for the
4D KA model taking T = 0.80 as the representative temperature. a = 0.45.

2.1.2 Four point correlation functions

We have also studied the variance χ4(t) of the fluctuation of the overlap

function (χ4(t) - also called the dynamic susceptibility) - defined as,

χ4(t) =
1

N

(

〈q(t)2〉 − 〈q(t)〉2
)

(2.9)

The quantity χ4(t) can be written as an integral to a higher order, four

point correlation function g4(~r, t) [63–65] commonly used in the context of



2.1 Definitions 49

1 10 100 1000
t 

0

5

10

15

<
χ 4(t

,N
,T

)>

eps = 0.30
eps = 0.35
eps = 0.40
eps = 0.45
eps = 0.50
eps = 0.60
eps = 0.70
eps = 0.80
eps = 1.00

2D R10, N=2048, density=0.85
T=0.60

10
0

10
1

10
2

10
3

t 

0

5

10

15

<
χ 4(t

,N
,T

)>

eps = 0.30
eps = 0.35
eps = 0.40
eps = 0.45
eps = 0.50
eps = 0.60
eps = 0.70
eps = 0.80
eps = 1.00

2D R10, N=2048, density=0.85

T=0.65

Figure 2.3: Choice of the cutoff parameter for the overlap function for the 2D
R10 model taking T = 0.60 (top) and T = 0.65 (bottom) as representative
intermediate temperatures. a = 0.40.

dynamical heterogeneity:

g4(~r, t) = 〈ρ(0, 0)ρ(0, t)ρ(~r, 0)ρ(~r, t)〉 − 〈ρ(0, 0)ρ(0, t)〉〈ρ(~r, 0)ρ(~r, t)〉

χ4(t) =

∫

d~rg4(~r, t) (2.10)

In k space, the four point dynamic structure factor S4(k, t) is defined as

S4(k, t) =
1

N

(

〈Q̃(k, t)Q̃(−k, t)〉
)

(2.11)

where Q̃(k, t) is the Fourier transform of the overlap function:

Q̃(k, t) =
N

∑

i=1

exp(ı~k · ~ri(0))w(|~ri(0) − ~ri(t)|) (2.12)

The four point dynamic structure factor S4(k, t) is related to the dynamic

susceptibility χ4(t):

lim
k→0

S4(k, t) = χ4(t) (2.13)

2.1.3 Estimate of the dynamical correlation length

Assuming that the S4(k, t) is described by the Ornstein-Zernicke relation as

it approaches the limit of k → 0 , one may extract a dynamical correlation



2.1 Definitions 50

length ξ from S4(k, t):

S4(k, τ, T ) =
S4(0, τ, T )

1 + (kξ)2
(2.14)

2.1.4 Estimates of the α relaxation time

The structural relaxation time can be extracted from the overlap and the

other two-point correlation functions and χ4(t) in several different ways:

1. At high T , the two-point time correlation functions decay exponentially

C(t, T ) = C(0, T ) exp(−t/τ(T )). As the temperature decreases, the cor-

relation function develops a plateau that is the relaxation process becomes

a multi step process. Then structural relaxation time τ of α regime can be

estimated by fitting the overlap function in the α regime to the stretched

exponential form:

C(t, T ) = C(0, T ) exp(−(t/τ(T ))β(T ))

Here C(t, T ) may be the overlap function (q(t, T )/N), the self intermediate

scattering function Fs(~k, t) or the full intermediate scattering function

F (~k, t).

2. Alternatively, the relaxation time may be estimated from the decay of

two-point correlation functions to a arbitrarily fixed value, usually 1/e:

C(τ, T ) = 1/e (2.15)

3. The main interesting feature in χ4(t) vs. time is that it goes through a

maximum at some characteristic time τ4(T ) and both the peak time τ4(T )

and the peak height χ4(τ4) increases as the temperature decreases [64,67].

This is because by definition 2.9, χ4(t) → 0 when the fluctuation in the

overlap function is low which is the case both in the limit t → 0 when

almost all the particles are inside the cutoff distance a (q(t)/N ∼ 1)

and in the limit t → ∞ when all the particles have moved beyond the

cutoff distance a (q(t)/N ∼ 0). The characteristic time τ4(T ) is called

the characteristic timescale of dynamic heterogeneity. From the present

study as well as previous work [66], it is found that this timescale is
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proportional to α relaxation time obtained from the decay of two point

correlation functions. Hence τ4(T ) may be considered another measure of

the α relaxation time.

χ4(t = τ4) = χmax
4 (T ) (2.16)

2.1.5 The mean squared displacement and the diffu-

sion coefficient

The mean squared displacement (MSD) characterizes the particle-averaged

translational motion in the system. The translational diffusion coefficient

(D) is a transport coefficient which can be computed from the MSD. The

MSD is also a useful quantity to check if the runs are sufficiently long - for a

sufficiently long run the MSD is well into the diffusive (linear t dependence)

regime. D is computed from asymptotic fit of the following form to MSD :

MSD =
1

N

N
∑

i=1

< (~ri(t) − ~ri(0))2 >

lim
t→∞

MSD(t) = 2dDt where d = spatial dimension (2.17)

2.1.6 The non-Gaussian parameter α2(t)

The non-Gaussian parameter α2(t) is defined as [124]:

α2(t) = CD
〈r4〉
〈r2〉2 − 1

〈r2n〉 =
1

N

N
∑

i=1

〈(~ri(t) − ~ri(0))2n〉, n = 1, 2 (2.18)

CD is a spatial dimension (D) dependent coefficient to ensure that α2(t) = 0

when the distribution of displacements is a Gaussian. CD = 1
2
, 3

5
, 2

3
in D =

2, 3, 4 respectively. The time t∗ at which the non-Gaussian parameter α2(t)

is maximum is a measure of the time scale of heterogeneity in the system.
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2.1.7 The shear viscosity η

The shear viscosity η is computed from equilibrium simulation using both

the Green Kubo and the Einstein relation which we briefly discuss below.

Green Kubo and Einstein relations: Let us consider a system of N par-

ticles in volume V and interacting with each other via pair-wise interaction

potential U(rij). At equilibrium, the system is described by the Hamiltonian

H =
N

∑

i=1

p2
i

2m
+

N
∑

i=1

N
∑

j>i

U(rij)

For such a system, the pressure (stress) tensor is given by

Pαβ(t) =
1

V

(

N
∑

i=1

piαpiβ/m +
N

∑

i=1

N
∑

j>i

rijαfijβ

)

where α, β ∈ (x, y, z) denotes Cartesian components. rij = |~ri − ~rj| and

fij = −∂U(rij)

∂rij
.

The shear viscosity η can be computed from the following Green-Kubo rela-

tion involving the auto-correlation function of the pressure tensor:

η =
V

kBT

∫ ∞

0

dt < Pαβ(t)Pαβ(0) > (2.19)

The integral of the stress-correlation function can be related the integral of

the stress tensor as a generalized Einstein relation. Let us define the Helfand

moment Aαβ(t) (following ref. [125]) such that

dAαβ(t)

dt
= Pαβ(t)V

Then
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Aαβ(t) − Aαβ(0) = V

∫ t

0

dt
′

Pαβ(t
′

)

1

V 2
< (Aαβ(t) − Aαβ(0))2 > =

∫ t

0

∫ t

0

dt
′

dt
′′

< Pαβ(t
′

)Pαβ(t
′′

) >

= 2

∫ t

0

dt
′′

∫ t′′

0

dτ < Pαβ(τ)Pαβ(0) >, (τ = t′′ − t′)

= 2

(
∫ t

0

dτ < Pαβ(τ)Pαβ(0) >

)
∫ t

τ

dt
′′

=

(
∫ t

0

dτ < Pαβ(τ)Pαβ(0) >

)

2t(1 − τ

t
)

So that

∫ t

0

dτ < Pαβ(τ)Pαβ(0) >= lim
t→∞

< (Aαβ(t) − Aαβ(0))2 >

2t

1

V 2

Hence the shear viscosity η can be computed from Aαβ as

η =
1

V kBT
lim
t→∞

< (Aαβ(t) − Aαβ(0))2 >

2t
(2.20)

Averaging over different components: Since shear viscosity is a col-

lective property of N particles, numerical accuracy is a big issue when com-

puting shear viscosity using either Eqn. 2.19 or Eqn. 2.20. To improve

numerical accuracy we use the component averaged stress-correlation func-

tion and Helfand moments:

η =
V

kBT

∫ ∞

0

dt < Pαβ(t)Pαβ(0) >avg

< Pαβ(t)Pαβ(0) >avg =
< Pxy(t)Pxy(0) > + < Pyz(t)Pyz(0) > + < Pzx(t)Pzx(0) >

3
(2.21)
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η =
1

V kBT
lim
t→∞

< (Aαβ(t) − Aαβ(0))2 >avg

2t

< (Aαβ(t) − Aαβ(0))2 >avg =
1

3
[< (Axy(t) − Axy(0))2 > +

< (Ayz(t) − Ayz(0))2 > +

< (Azx(t) − Azx(0))2 >] (2.22)

Estimates of the shear viscosity η: The cumulative sum of the com-

ponent averaged stress auto correlation function is taken as the measure of

the integral in Eqn. 2.21. As the stress auto correlation function decays to

zero, the cumulative sum should approach a constant value. An approximate

plateau in the cumulative sum is observed typically around the region when

the correlation function first goes to zero. This value is taken to be the mea-

sure of the shear viscosity η from the Green Kubo relation. The component

averaged Helfand moment is ∝ t2 at short time and crosses over to linear

t dependence at long time. The slope of the component averaged Helfand

moment at long time and in linear regime is taken to be the measure of the

shear viscosity from the Einstein relation.

2.1.8 The Hessian of a two body potential

We derive the general expression for the double derivative H(j, k) of a two-

body potential u(rjk) with respect to the coordinates of the particles j and

k.

H(j, k) =
∂

∂~rj

∂

∂~rk

u(rjk)

∂

∂~rj

≡ î
∂

∂xj

+ ĵ
∂

∂yj

+ k̂
∂

∂zj

where (xj, yj, zj) are the Cartesian coordinates of the particle j in three

dimensions. For a system of N particles in 3 dimensions, the Hessian is a 3N×
3N matrix. However, we first compute the double derivative with respect

to one pair of particles. Next we write down the explicit formula for all the

elements of the Hessian matrix. Finally we generalize for D dimensions. The
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following identities will be repeatedly used:

rjk = [(xj − xk)
2 + (yj − yk)

2 + (zj − zk)
2]1/2

∂rjk

∂xj

=
xj − xk

rjk

≡ xjk

rjk

∂rjk

∂xk

= −xj − xk

rjk

≡ −xjk

rjk

The first derivative is

∂u(rjk)

∂~rk

= î
∂u

∂xk

+ ĵ
∂u

∂yk

+ k̂
∂u

∂zk

î
∂u(rjk)

∂xk

= î
∂rjk

∂xk

∂u(rjk)

∂rjk

(chain rule)

=
−î(xj − xk)

rjk

∂u(rjk)

∂rjk

Similarly for y and z components. Combining them and expressing in vector

notation,

∂

∂~rk

u(rjk) = −∂u(rjk)

∂rjk

r̂jk (2.23)

Now, the second derivative is

∂

∂~rj

(

−∂u(rjk)

∂rjk

r̂jk

)

=

(

î
∂

∂xj

+ ĵ
∂

∂yj

+ k̂
∂

∂zj

)(

−∂u(rjk)

∂rjk

r̂jk

)

We will show details of algebra for the x component only.

î
∂

∂xj

(

−∂u(rjk)

∂rjk

r̂jk

)

=

(

î
∂

∂xj

−∂u

∂rjk

)

⊗ r̂jk +
−∂u

∂rjk

(

î
∂

∂xj

⊗ r̂jk

)

where ⊗ denotes tensor product between two vectors. The first term is

(

î
∂

∂xj

−∂u

∂rjk

)

⊗ r̂jk =

(

î
∂rjk

∂xj

∂

∂rjk

−∂u(rjk)

∂rjk

)

⊗ r̂jk

=

(

îxjk

rjk

−∂2u

∂2rjk

)

⊗ r̂jk

= − ∂2u

∂r2
jk

(
~rjk

rjk

)x−component ⊗
~rjk

rjk

= − 1

r2
jk

∂2u

∂r2
jk

(~rjk ⊗ ~rjk)x−component
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The second term is

−∂u

∂rjk

(

î
∂

∂xj

⊗ r̂jk

)

=
−∂u

∂rjk

(

î
∂

∂xj

⊗ xjk î + yjkĵ + zjkk̂

rjk

)

=
−∂u

∂rjk

(

1

rjk

î ⊗ î + î
∂

∂xj

(
1

rjk

) ⊗ ~rjk

)

=
−∂u

∂rjk

(

1

rjk

î ⊗ î + î
∂rjk

∂xj

∂

∂rjk

(
1

rjk

) ⊗ ~rjk

)

=
−∂u

∂rjk

(

1

rjk

î ⊗ î +
îxjk

rjk

−1

r2
jk

⊗ ~rjk

)

= − 1

rjk

∂u

∂rjk

(I)x−component +
1

r3
jk

∂u

∂rjk

(~rjk ⊗ ~rjk)x−component

where I = î⊗ î+ ĵ⊗ ĵ + k̂⊗ k̂ is the 3×3 identity matrix in three dimensions.

So combining the first and the second term, the second derivative becomes,

H(j, k) =
∂

∂~rj

∂

∂~rk

u(rjk)

=

(

− 1

r2
jk

∂2u

∂r2
jk

+
1

r3
jk

∂u

∂rjk

)

~rjk ⊗ ~rjk −
1

rjk

∂u

∂rjk

I (2.24)
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2.2 Computational methods

2.2.1 The Brown and Clarke algorithm for NVTMD

We have used the Brown and Clarke algorithm for performing the molecular

dynamics (MD) simulation at the condition of constant T, V and N . Here

we describe the details of the algorithm and the checks done to validate the

implementation.

Hoover’s equations of motion: In MD, one solves the Newton’s equa-

tions of motion for each particle. For keeping the temperature constant in

MD simulation, Hoover( [178]) added a velocity dependant damping force

to the interaction forces. The equations of motion for the particle i in the

so-called Hoover dynamics becomes

d~ri(t)

dt
= ~vi(t) ≡

~pi(t)

m

d~vi(t)

dt
=

~Fi(t) − α~vi(t)

m
(2.25)

The constant α is chosen to make the kinetic temperature (T) a constant of

motion. The kinetic temperature (T) is given by

fT

2
=

m

2

N
∑

i=1

~v2
i (2.26)

where f is the no. of degrees of freedom of the N-particle system. At equi-

librium total force is zero and the centre of mass can be set at rest. So in D

spatial dimensions there are D + 1 constraints (D coordinates of the centre

of mass and the kinetic temperature).Hence f = N × D − (D + 1).

Setting
dT

dt
= 0 ⇒ α =

∑ ~Fi · ~vi
∑

~vi · ~vi

= − U̇

2K
(2.27)

where U is the total potential energy and K is the total kinetic energy of the

N -particle system.

The Hoover dynamics is not the same as the Newtonian dynamics. So the
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simulated trajectory should not be same as the physical (Newtonian) trajec-

tory of the system. However, there is a principle of least constraint ( [178])

which says that out of all possible constrained equations of motion, Hoover’s

equation of motion is the one for which the deviation between the simulated

trajectory and the physical trajectory is minimum.

The Brown and Clarke algorithm - derivation: In our implementa-

tion, the equations of motion were integrated using the algorithm given by

Brown and Clarke ( [177]) implementation of the Hoover dynamics. In this

metod, the equations of motion are integrated via the leap-frog scheme [179]:

~vi(t +
∆t

2
) = ~vi(t −

∆t

2
) +

~Fi(t)

m
∆t + O(∆t2)

~ri(t + ∆t) = ~ri(t) + ~vi(t +
∆t

2
)∆t + O(∆t2) (2.28)

Notice that in this algorithm, the initial conditions (positions and velocities)

are not at the same instant. They are offset by ∆t
2

,e.g. ~ri(0) and ~vi(
∆t
2

). The

velocity at the same time step can be written as

~vi(t) ≈
1

2

[

~vi(t −
∆t

2
) + ~vi(t +

∆t

2
)

]

(2.29)

The leap frog algorithm will reduce to the Verlet algorithm ( [179]) if we

define

~vi(t −
∆t

2
) =

~ri(t) − ~ri(t − ∆t)

∆t

Brown and Clarke showed ( [177]) that if one uses the leap frog algorithm

to integrate Hoover’s equation of motion (2.25), then one need not use Eqn.

(2.27) to calculate the constant α. Instead one can use a simple velocity

scaling (presumably cheaper for computation) as described below.

The leap frog scheme for Hoover’s equation of motion (2.25) will be (~ai(t) =

acceleration of particle i at time t)
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~vi(t +
∆t

2
) = ~vi(t −

∆t

2
) + ~ai(t)∆t − α~vi(t)

m
∆t

~ri(t + ∆t) = ~ri(t) + ~vi(t +
∆t

2
)∆t (2.30)

Let us define an intermediate velocity update by

~v
′

i(t) = ~vi(t −
∆t

2
) + ~ai(t)

∆t

2
(2.31)

Now, from (2.29) and (2.30) we get,

~vi(t) =
1

2

[

2~vi(t −
∆t

2
) + ~ai(t)∆t − α~vi(t)

m
∆t

]

= ~vi(t −
∆t

2
) + ~ai(t)

∆t

2
− α∆t

2m
~vi(t)

or,

~vi(t)

[

1 +
α∆t

2m

]

= ~vi(t −
∆t

2
) + ~ai(t)

∆t

2

= ~v
′

i(t)

or,

~vi(t) = β~v
′

i(t)

where

β ≡ 1

1 + α∆t
2m

(2.32)
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Using (2.32) in (2.30) we get,

~vi(t +
∆t

2
) = ~vi(t −

∆t

2
) + ~ai(t)∆t − α~vi(t)

m
∆t

= ~vi(t −
∆t

2
) + ~ai(t)∆t − α∆t

m
β~v

′

i(t)

= ~vi(t −
∆t

2
) + ~ai(t)∆t − αβ∆t

m

[

~vi(t −
∆t

2
) + ~ai(t)

∆t

2

]

= ~vi(t −
∆t

2
)

[

1 − αβ∆t

m

]

+ ~ai(t)

[

1 − αβ∆t

2m

]

∆t

= (2β − 1)~vi(t −
∆t

2
) + β~ai(t)∆t (2.33)

So, α has been replaced by β in the equation of motion. The quantity β is

calculated from (2.26):

T (t) =
m

f

N
∑

i=1

~v2
i (t)

=
m

f

(

N
∑

i=1

~v′2
i (t)

)

β2

Demanding instantaneous kinetic temperature T (t) to be equal to runtemp

Tr we get

β2 =
fTr

m
∑N

i=1
~v′2

i (t)
(2.34)

So finally, the Brown and Clarke scheme of integrating Hoover’s equation of

motion becomes:

~vi(t +
∆t

2
) = (2β − 1)~vi(t −

∆t

2
) + β~ai(t)∆t

~ri(t + ∆t) = ~ri(t) + ~vi(t +
∆t

2
)∆t (2.35)

Implementing in the code: In the code the implementation is done in

the following order:

CALL xupdate(N) ==> r(t)=r(t-dt)+v(t-dt/2)dt

CALL engforce1(u,vir,N) ==> calc a(t)

CALL betacalc(beta,N) ==> calc beta from v(t-dt/2)
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CALL vupdate(beta,temp,ke,N) ==> v(t+dt/2)=(2 beta-1)v(t-dt/2)+beta a(t)

Generating the initial condition: The initial condition for each run is

either random or from square lattice or from a configuration equilibrated at

a higher temperature. At high temperatures, relaxation time is small and

the system quickly equilibrates. For low temperatures, the runs are started

by choosing arbitrary configuration (equilibrated) at a higher temperature.

Checking the reliability of the code:

• The NVT code is tested by reproducing the energy, pressure data of

reference [172]. The data tabulated in tables 2.1 - 2.3 show excellent

matching (difference < 1%).

• The centre of mass velocity is constrained to be zero, which is shown

in Fig 2.4.
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Monitoring Centre of mass velocities 
T=1.0, density=0.714, N=1024

Figure 2.4: The COM velocity is constrained to be zero during initialization.
Here the COM velocities are monitord during MD simulation to check that
the COM is not drifting.
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Table 2.1: Pressure comparison
T density ref [172] Pressure (exact) my Pressure %difference
5.0 0.57567 13.5 13.498 0.01
3.0 0.63375 13.5 13.477 0.17
1.0 0.71435 13.5 13.490 0.07
0.9 0.71943 13.5 13.498 0.01
0.8 0.72466 13.5 13.509 0.07
0.7 0.72991 13.5 13.492 0.06
0.6 0.73532 13.5 13.499 0.01

Table 2.2: Potential energy comparison
T density ref [172] PE my PE %difference
5.0 0.57567 3.0753 3.0742 0.04
3.0 0.63375 3.0503 3.0439 0.21
1.0 0.71435 2.9830 2.9805 0.08
0.9 0.71943 2.9775 2.9767 0.03
0.8 0.72466 2.9716 2.9734 0.06
0.7 0.72991 2.9659 2.9639 0.07
0.6 0.73532 2.9599 2.9594 0.02

Table 2.3: Total energy comparison
T density ref [172] E my E %difference
5.0 0.57567 8.0753 8.0697 0.07
3.0 0.63375 6.0503 6.0411 0.15
1.0 0.71435 3.9830 3.9796 0.09
0.9 0.71943 3.9775 3.8771 2.56
0.8 0.72466 3.7716 3.7738 0.06
0.7 0.72991 3.6659 3.6642 0.05
0.6 0.73532 3.5599 3.5597 0.01

2.2.2 Computation of the total free energy and the

total entropy

A consequence of the second law of thermodynamics is that for a system in

contact with a thermal reservoir so that the temperature (T ), the volume (V )

and the number of particles (N) of the system are held fixed, the Helmholtz

free energy A = U−TS is at minimum when the system is at thermodynamic
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equilibrium and all the information about the equilibrium thermodynamic

properties of the system are contained in the Helmholtz free energy. In the

present thesis, computation of the total entropy S = −∂A
∂T

is required to

compute the absolute value of the configurational entropy. Hence one needs

to compute the total free energy. However, the absolute value of Helmholtz

free energy is not directly measurable in simulation (or in experiments).

Z =
1

N !

∫

d~pNd~rN

hDN
exp

(

−βH(~pN , ~rN)
)

A = −kBT ln Z (2.36)

From Eqn. 2.36 it is clear that free energy is related to the total volume of

the phase space and hence the free energy can not be written as an canonical

average over phase space. Hence, to compute the absolute free energy one

uses indirect methods such as thermodynamic intergration which is discussed

below.

The thermodynamic integration method: We have computed numer-

ically the absolute value of the total (or bulk) Helmholz free energy and the

total entropy by the thermodynamic integration method [79]. In this method

a derivative of the total free energy with respect to either a thermodynamic

variable like density, temperature or other parameters like strength of pertur-

bation of a perturbed Hamiltonian, is computed directly in simulation along

a specified, reversible path. This derivative is then integrated along the spec-

ified path to obtain the difference in free energy of the target state point from

a reference state point. The reference state point is a state point where the

free energy is exactly known either from exact formulas or computed from

other methods. To obtain the absolute value of the free energy at the target

state point the free energy at the reference state point are added to the dif-

ference obtained by the thermodynamic integration. The implementation is

discussed in more detail below.

The path of integration and computational details: Let us consider

that the thermodynamic integration is done along the path shown in Fig.

2.5:

1. A high temperature (Tref ) and the zero density limit of the liquid, where

the system obeys the ideal gas equation of state, is chosen as the reference
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Figure 2.5: The path used for thermodynamic integration is illustrated in
the T − ρ plane.

state point of known free energy of a single component ideal gas. Since

the Hamiltonian of a system can be written as a sum of a kinetic (K) and

a potential part (U) : H(~pN , ~rN) = K(~pN) + U(~rN), hence the Helmholtz

free energy A(ρ, T ) can be written as a sum of an ideal gas term Aid(ρ, T )

(contribution from the kinetic part of the Hamiltonian) and an excess

part Aex(ρ, T ) (contribution from the potential part of the Hamiltonian).

Further, if the system is a binary mixture (multi-component) then one

takes into account the mixing entropy. Hence for a binary mixture, even

at the reference state (0, Tr) the excess free energy is non-zero:

Zbi(0, Tr) =
N !

NA!NB!
Zid(0, Tr)

A(0, Tr) = Aid(0, Tr) + Aex(0, Tr)

Aex(0, Tr) = −Tr ln

(

N !

NA!NB!

)

(2.37)

2. The excess free energy Aex(ρ, Tr) at the target density (ρ) and the high

reference temperature (Tr) is obtained by integrating the excess pressure

Pex along the isotherm at Tr. The integration is done in the present thesis
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numerically by n−point Gaussian quadrature [80] (with n usually 10).

Pex = ρ2

(

∂(Aex/N)

∂ρ

)

N,T

= P − Pid

Aex(ρ, Tr) − Aex(0, Tr) = NTr

∫ ρ

0

dρ

(

βrP

ρ2
− 1

ρ

)

(2.38)

3. Then the excess free energy Aex(ρ, T ) at the target temperature (T ) is ob-

tained by integrating the potential energy from Tr to T along the isochore

at ρ.

U(N) =

(

∂(βAex)

∂β

)

N,ρ

Aex(ρ, T ) = T

(

βrefAex(ρ, Tref ) +

∫ β

βref

dβ
′

U(ρ, β
′

)

)

The temperature dependence of potential energy is empirically obtained

by fitting to the Rosenfeld-Tarazona scaling form [78] U(ρ, T ) = a + bT c:

4. Finally, the total free energy A(ρ, T ) is obtained by adding the ideal gas

free energy at the target density and temperature (ρ, T ) :

A(ρ, T ) = Aex(ρ, T ) + Aid(ρ, T )

Aid(ρ, T ) = NT (D ln Λ + ln ρ − 1)

Λ =
h√
2πT

Here Λ is the thermal de Broglie wavelength, D is the space dimension

and h is Planck’s constant. In the reduced Argon unit for energy, length

and time h = 0.1856 (shown below).

5. The total (or bulk) entropy Stotal at the target density and temperature

(ρ, T ) is obtained by taking derivative of the free energy or equivalently
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using the relation Stotal = U−A
T

Stotal = −∂A(ρ, T )

∂T
∂A(ρ, T )

∂T
= N(d lnΛ + lnρ − 1) + βrAex(ρ, Tr)

+N

(

a(β − βr) +
b

1 − c

(

β1−c − β1−c
r

)

)

−Nd

2
− N

T

(

a + bβ−c
)

∂A(ρ, T )

∂T
=

A(ρ, T )

T
− E(ρ, T )

T
− Nd

2

6. If one is interested to compute the free energy of the stable phase, then one

must be careful to choose the path of integration such that there should

be no first order phase transition at any points along the path. This is

because at a first order transition point the derivative of the Helmholtz

free energy S = −∂A(ρ,T )
∂T

is discontinuous due to the latent heat of trans-

formation.

Value of the Planck’s constant in Argon unit Let h and h∗ be the

magnitude of Planck’s constant in SI and in Argon units respectively. Let

m∗, ǫ∗, σ∗, τ ∗ be the Argon units for mass, energy, length and time respec-

tively. τ ∗ =
√

m∗

ǫ∗
σ∗. Conversion factors are taken from [79], page 42.

h × Js = h∗ × ǫ∗τ ∗

= h∗ × ǫ∗
√

m∗

ǫ∗
σ∗

= h∗ × σ∗√m∗ǫ∗

= h∗ × 0.3405 × 10−9m ×
√

0.03994
kg

mol
× (kB × 119.8K)

6.626 × 10−34Js = h∗ × 35.6519 × 10−34 × Js

h∗ =
6.626

35.6519
≃ 0.186
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2.3 Model definitions and simulation details

2.3.1 Kob Andersen model (two, three and four di-

mensions)

The binary mixture (A80B20) of Lennard Jones particles introduced by Kob

and Andersen [173] is a model glass forming liquid in three dimensions. The

interaction potential of Kob-Andersen model (with correction terms that

make both potential and force to go to zero smoothly at the cutoff) is given

by

Vαβ(r) = 4ǫαβ

[

(σαβ

r

)12

−
(σαβ

r

)6
]

+ 4ǫαβ

[

c0 + c2

(

r

σαβ

)2
]

, rαβ < cutoff

= 0, rαβ > cutoff (2.39)

where α, β ∈ {A,B} and ǫAA = 1.0, ǫAB = 1.5, ǫBB = 0.5, σAB = 0.80,

σBB = 0.88. Units of length, energy and time scales are σAA, ǫAA and
√

σ2

AA

ǫAA

respectively. c0 = −7
(

σαβ

rcutoffαβ

)12

+ 4
(

σαβ

rcutoffαβ

)6

= 0.016266559 and c2 =

6
(

σαβ

rcutoffαβ

)14

− 3
(

σαβ

rcutoffαβ

)8

= −0.001949974 are correction terms to make

the potential and force continuously go to zero at cutoff. The interaction

potential was cutoff at 2.5σαβ. NVT MD simulations were done in square

(2D), cubic (3D) and hypercubic (4D) box with periodic boundary conditions

in canonical (NVT) ensemble for a range of densities and temperatures and

for different system sizes.

2.3.2 Modified Kob Andersen model (A65B35) (two di-

mensions)

In the original Kob-Andersen (KA) model in three dimensions, the com-

position taken was A = 80%; B = 20%. In the modified KA model in two

dimensions, the composition is set to A = 65%; B = 35% (ref: [174]). The in-

teraction potential of Kob-Andersen model (with correction terms that make

both potential and force to go to zero smoothly at the cutoff) remains the

same:
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Figure 2.6: The interaction potential of the KA model(A − A pairs)

Vαβ(r) = 4ǫαβ

[

(σαβ

r

)12

−
(σαβ

r

)6
]

+ 4ǫαβ

[

c0 + c2

(

r

σαβ

)2
]

, rαβ < cutoff

= 0, rαβ > cutoff (2.40)

where α, β ∈ {A,B} and ǫAA = 1.0, ǫAB = 1.5, ǫBB = 0.5, σAB = 0.80,

σBB = 0.88. Units of length, energy and time scales are σAA, ǫAA and
√

σ2

AA

ǫAA

respectively. The interaction potential was cutoff at 2.5σαβ. MD simulations

were done in a 2D square box with periodic boundary conditions in canonical

(NVT) ensemble. The integration time step was in the range dt = 0.001 −
0.006. Temperatures were kept constant using Brown and Clarke algorithm

[177]. Simulations were done at a fixed number density ρ = 1.20 for a range

of temperatures and different system sizes.

2.3.3 R10 model (two dimensions)

It is a model of 50 : 50 binary mixture of repulsive soft disks in two dimen-

sions. This model was used to study mechanical properties of amorphous

solids [171]. The interaction potential is
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Vαβ(r) = ǫ

[

(σαβ

r

)10
]

+ ǫ

[

2
∑

l=0

c2l

(

r

σαβ

)2l
]

, r < cutoff

= 0, r > cutoff (2.41)

where α, β ∈ {A,B} and ǫ = 1.0; σAA = 1.0, σBB = 1.40, σBB = 1.18 6=
σAA+σBB

2
; c0 = −0.806140903539923, c2 = 0.7, c4 = −0.156300219287607.

c0, c2, c4 represent the correction to make the potential vanish at cutoff con-

tinuously upto the second derivative. Units of length, energy and time scales

are σAA, ǫ and
√

σ2

AA

ǫAA
respectively. The interaction potential was cutoff at

1.385418025σαβ. The cutoff is smaller than the other two dimensional mod-

els (Kob-Andersen and R12 model) used in the present thesis. Hence this

model is faster to simulate.
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Figure 2.7: The interaction potential (A − A pairs) of the R10 and R12
models including cutoff corrections.

2.3.4 LJ(p, q) models (three dimensions)

This family of models are binary mixtures of modified Lennard Jones particles

in three dimensions. The interaction potential is



2.3 Model definitions and simulation details 70

Vαβ(r) =
ǫαβ

q − p

[

p

(

rmin
αβ

r

)q

− q

(

rmin
αβ

r

)p]

+ c1r
2 + c2 r < rc = 2.5σαβ

= 0, otherwise

c1 = ǫαβ
pq

2(q − p)

1

r2
c

[(

rmin
αβ

rc

)q

−
(

rmin
αβ

rc

)p]

c2 =
ǫαβ

q − p

[

−
(

p +
pq

2

)

(

rmin
αβ

rc

)q

+
(

q +
pq

2

)

(

rmin
αβ

rc

)p]

(2.42)

where c1, c2 are used to make potential and force to smoothly go to zero at

cutoff and are determined from the conditions :

Vαβ(rc) = 0
(

dVαβ

dr

)

rc

= 0 (2.43)

α, β ∈ {A,B} and rmin
αβ = 2

1

6 σαβ and ǫαβ are respectively the position and

the value of the minimum of the pair potential. Units of length, energy

and time scales are σAA, ǫAA and
√

σ2

AA

ǫAA
respectively ( [133]). In this unit,

ǫAB = 1.5, ǫBB = 0.5, σAB = 0.80, σBB = 0.88. The interaction potential

was cutoff at 2.5σαβ ( [133]). The potential is designed so that for the choice

(q = 12, p = 6), it reduces to Kob-Andersen model.

MD simulations were done in a 3D cubic box with periodic boundary con-

ditions using canonical (NVT) ensemble. The integration time step was in

the range dt = 0.001 − 0.005. Temperatures were kept constant using the

Brown and Clarke algorithm [177]. Simulations were done in the temperature

range T ∈ [0.85, 5] for the LJ(12, 11) model; T ∈ [0.45, 5] for the LJ(12, 6)

model and T ∈ [0.23, 5] for the LJ(8, 5) model respectively. System size were

N = 1500, NA = 1200 (N = total no. of particle, NA = no. of particles of

species A) and the number density was ρ = 1.2 ( [133]). For all models, one

sample per state point above the onset temperature (described below) and

three to five samples per state points below the onset temperature were used

with runlengths > 100τα (τα is the relaxation time).



Chapter 3

The Adam-Gibbs relation for

glass-forming liquids in 2,3 and

4 dimensions

3.1 Introduction

One of the central questions about glass-forming liquids is to satisfactorily

explain the behaviour of relaxation times over the entire range of temperature

where they are observed. At high temperatures (typically above the melting

point), relaxation times obey the Arrhenius law:

ln τ(T ) = ln τ(∞) +
E0

kBT
(3.1)

which may be understood in terms of a transition probability between two

states separated by an energy barrier (’activation energy’) E0 which is inde-

pendent of temperature. However, as the temperature is lowered, many glass-

forming liquids show faster than exponential rise in relaxation times [6–8].

Various theories of relaxation times have been put forward to explain the

super-exponential behaviour. The present study focusses on the predictions

of the Adam Gibbs theory (AG) and the random first order transition theory

(RFOT). According to the AG picture (see Chapter 1), the increase in the

relaxation time with temperature is due to the corresponding decrease in the

71
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configurational entropy Sc(T ) of the liquid :

ln τ(T ) = ln τ(∞) +
S∗δµ

kBTSc(T )

= ln τ(∞) +
C

TSc

(3.2)

where S∗ is the configurational entropy of a cooperatively rearranging region

(CRR) and assumed to be a material constant; δµ is the chemical potential

difference between the two states involved in rearrangement and Sc(T ) is the

configurational entropy per particle of the system.

The AG relation has been extensively tested in the past [41–45, 48, 49, 128].

One of the prototype glass-forming liquids in which AG relation is shown to

be valid [67,128] is the Kob-Andersen model (KA) [173]. In Fig. 3.1 the AG

relation is shown for this model in three dimensions over several orders of

magnitude in relaxation times with many system sizes.

Although the AG theory is well-known and well-tested but it is not well-

understood. There are several ad-hoc assumptions which make the theory

less rigorous. One of the attempts to improve upon the ideas of Adam and

Gibbs is the random first order transition theory (RFOT) of glass transi-

tion [39, 40]. Although both are entropy-based theories, the details of the

underlying physical picture differ. Here we focus on one particular aspect:

whether the relation between configurational entropy and relaxation time is

same or different in different spatial dimensions.

As a consequence of the AG assumption that the configurational entropy of a

CRR S∗ is a constant independent of the size of a CRR, the free energy barrier

of rearrangement ∆G = z∗δµ = S∗δµ
Sc

(z∗ = the smallest possible size (number

of particles) of a CRR) becomes independent of the size of the rearranging

region. Hence, the Adam Gibbs relation is expected to be same in all spatial

dimensions. In order to test this, simulations were done in the KA model in

two dimensions and it was found that there is a systematic deviation (Fig

3.2) from the prediction of AG relation as the relaxation time increases. The

α relaxation time in KA model in both two and three dimensions increases

as system size decreases [67]; so this deviation occurs as the temperature is

lowered and the system size is decreased.

In the RFOT scenario, there is a possibility of explicit dimension dependence
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Figure 3.1: Adam Gibbs relation is valid in the KA model in three dimen-
sions. Color code : Top fig : State points at same system size but different
temperatures have same colour. Bottom fig: State points at same tempera-
ture for different system sizes have same color. [Data taken with permission
from Dr. S. Karmakar.

(see Chapter 1) :

ln τ(T ) = ln τ(∞) +
Aξψ

kBT

= ln τ(∞) +
A

kBT

(

Y

TSc

)
ψ

D−θ

(3.3)

Even though the spatial dimension D explicitly appears in Eqn. 3.3, it does

not necessarily mean that the RFOT prediction is inconsistent with the AG

relation owing to the presence of the two unknown exponents θ and ψ. If

one ignores the temperature dependent prefactor A
kBT

, then Eqns. 6.4 and

3.3 will be mutually consistent if ψ
D−θ

= 1. In the original formulation of the
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Figure 3.2: Systematic deviation from Adam Gibbs relation in KA model in
two dimensions. [Data taken with permission from Dr. S. Karmakar]

AG theory, no exponent is introduced. However, according to the AG theory,

∆G(T ) ∝ z∗. If one replaces z∗ by the characteristic linear dimension (ξ∗)

of a CRR by assuming z∗ ∝ (ξ∗)D then one gets ψAG = D and consequently

from the condition ψ
D−θ

= 1, θAG = 0. In the formulation of the RFOT

as entropy-driven nucleation by Wolynes et al., ψ = θ. However, in the

Bouchaud and Biroli picture [40] θ and ψ are independent exponents and

ψ 6= θ in general. Wolynes et al. further argued [39, 60] that ψ = D/2 in D

dimensions. Thus the original RFOT prediction, although differs from the

Adam Gibbs theory about the values of the exponents, is consistent with

the Adam Gibbs relation. However, attempts to calculate the exponents

either in real systems or models does not present a conclusive picture. By

direct simulation in a model, Cammarota et al. obtained θ = 2, ψ = 1 [60]

which although consistent with AG relation, differs from both the AG and

the RFOT predictions. Independent simulation study in a different model

by Karmakar [51] obtained θ ∼ 2.3 and hence ψ ∼ 0.7 using the condition
ψ

D−θ
= 1. A more extensive study by Capaccioli et al. [59] of 45 glass-forming

liquids show a lot of variation in both θ and ψ [θ ∼ 1.8 − 2.6, ψ ∼ 0.3 − 1.5]

owing to considerable numerical uncertainties and hence is not conclusive

about the exponent ψ
D−θ

. The available exponent values are summarized in

the Table 3.1.
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In view of all the difficulties associated with determining the RFOT expo-

nents directly, the possibility of an explicit dimension dependence of the AG

relation can not be ruled out. Here we address the question of the dimen-

sion dependence of the Adam Gibbs relation by a different route, namely, by

study of models in different (two to four) spatial dimensions. The strategy

of exploring different dimensions is particularly suitable to simulation and

at the same time offers a stringent check on both the Adam Gibbs relation

(Eqn. 6.4) and the range of allowed values of the RFOT exponents.

Source AG exponent ψ
D−θ

θ ψ ψ
θ

AG prediction 1 0 D=3
RFOT prediction 1 D

2
= 1.5 D

2

Capaccioli et al. [59] 0.6-3.25 1.8-2.6 0.4-0.5
Cammarota et al. [60] 1 2 1

Cavagna et al. [61] 1.41
Franz [62] 2

Karmakar [51] 1 2.3 0.7

Table 3.1: The RFOT Exponents θ and ψ from the literature. All values are
for three dimensional systems. Note that the definition of ψ used in [59] is
different from [40], [60] and [61]. Ref. [59] called the exponent θψ what Refs.
[40], [60] and [61] called ψ. Here the definition of Ref. [40] is followed. The

scaling relations are ξ ∝ 1
TSc

1

D−θ ; τ ∝ exp
(

ξ
T

)ψ
; τ ∝ exp

(

(

1
TSc

)
ψ

D−θ

)

. Using

these definitions, the exponent ψ reported in Ref. [59] becomes ψ
θ
. Owing to

numerical uncertainties in the values of exponents we have not converted the
exponent ψ

θ
to our ψ. Ref. [61] calculated only ψ. The value for θ quoted for

Ref. [62] is taken from Ref. [59]. We call the ratio ψ
D−θ

the “AG exponent”.

The values of the AG exponent for Ref. [59] is calculated using
( θ

ψ )θ

D−θ
, using

the extreme values of the exponents reported: 0.6 = 0.4×1.8
3−1.8

, 3.25 = 0.5×2.6
3−2.6

.
If the Adam Gibbs relation is valid then θ + ψ = D, where D is the spatial
dimension.

3.2 Simulation details

We have studied the well-known Kob-Andersen model in 4 dimensions (4D

KA), the modifed (different composition) KA model (2D MKA) and the re-

pulsive soft sphere (V (r) ∼ r−10) model (2D R10) in two dimensions. The
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definitions of each model are given in Chapter 2. Molecular dynamics simu-

lations were done with periodic boundary condition in the canonical (NVT)

ensemble. Temperatures werekept constant using the Brown and Clarke al-

gorithm [177] (See Chapter 2). The integration time step dt was varied

depending on the temperature. Smaller dt was used at higher temperatures.

For good statistics, typically 3 (1-3 in 4D, 3-5 in 2D) independent runs of run-

length ≥ 100τα were performed at each state point. The simulation details

are summarized in Table 3.2.

Table 3.2: Simulation details in the Kob-Andersen model in 4 dimensions
(4D KA), the modifed (different composition) KA model (2D MKA) and the
repulsive soft sphere (V (r) ∼ r−10) model (2D R10) in two dimensions. See
also Chapter 2.

Model System size
N

Density Temperature
range

time step
(dt) range

Relaxation
time range

4D KA 1500 1.60 0.685 - 3.00 0.001 - 0.006 upto O(104)
2D MKA 400-10000 1.20 0.40 -6.0 0.001 - 0.005 upto O(105)
2D R10 200-10000 0.85 0.46 - 5.0 0.001 - 0.006 upto O(105)

3.3 Methods

3.3.1 Choice of density

In supercooled liquids, at low temperatures, a pressure vs. density isotherm

go through a minimum. This minimum density is called the spinodal density.

A spinodal is defined by the condition ∂P
∂V

|T = 0. At a given temperature, the

liquid state is unstable (system has negative compressibility) below the spin-

odal density. The value of the spinodal density increases as the temperature

decreases [69]. The pressure calculated from inherent structure trajectories

as a function of density also show this minimum which may be thought to

correspond to the low temperature limit of the spinodal density. These prop-

erties are shown for KA model in 3D in Fig. 3.3. Any simulation of a system

in (metastable) liquid state must be performed above the spinodal density.

The densities where simulations are done for different models are given in

the Table 3.3.
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Table 3.3: Choice of densities for different models (in units of σ3
AA). The

density value of the 3D KA model is considered a standard in the literature.
The density value of the 2D KA model is taken with permission from [55].

Model Composition Simulation
Density

4D KA 80:20 1.60
3D KA 80:20 1.20
2D KA 80:20 1.20
2D MKA 65:35 1.20
2D R10 50:50 0.85

Figure 3.3: The pressure vs. density isotherms go through minima at low
temperatures in the 3D KA model. “IS” means inherent structure pressure.
Fig. taken with permission from [69].

3.3.2 Characteristic temperature scales

Here we list how the different characteristic temperatures (see Chapter 1)

are determined in the present study.

1. Tonset : The onset temperatures have been obtained from the Arrhenius

plots of the relaxation time (ln τ vs. 1/T ) as well as from the inverse

temperature dependence of the average inherent structure energy.

2. TMCT : We have determined the apparent divergence temperature of the

mode coupling theory from the fit ln τ = a0 − δ ln(T − TMCT ).

3. TV FT : The divergence temperature of the Vogel-Fulcher-Tamman (VFT)

law is obtained from the fit ln τ = a0 +
A

T − TV FT

.
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Table 3.4: Characteristic temperatures (in units of ǫAA

kB
) of different models

in 2,3,4 dimensions. The temperature values for the 2D KA model [50] and
TV FT for the 3D KA [51] model were obtained with permission from Dr. S.
Karmakar. TK and TMCT for the 3D KA model were taken from [70] and [52]
respectively.

Model Density TK TV FT TMCT ∼ Tonset

4D KA 1.60 0.53 0.53 0.65 1.0
3D KA 1.20 0.2976 0.283 0.435 1.0
2D KA 1.20 0.488 0.50 0.94 2.0
2D MKA 1.20 0.251 0.21 0.33 0.8
2D R10 0.85 0.181 0.33 0.43 0.8

4. TK : The Kauzmann temperature at which the configurational entropy

extrapolates to zero is determined from the temperature dependence of

the average configurational entropy using the condition Sc(TK) = 0.

These characteristic temperatures help to chose the temperature range to

simulate, e.g. Tonset serves as the reference temperature to differentiate the

low and the high-T regimes on the temperature axis. The values of different

characteristic temperatures for different models are shown in the Table 3.4).

3.3.3 Characteristic time scales

We have computed the following characteristic time scales (see Chapter 2) :

(i) the self diffusion coefficient. As the systems studied are binary mixtures,

two self diffusion coefficients are possible. The diffusion coefficient of A and

B type particles are found to be proportional to each other. Here we always

report the diffusion coefficients of the A species. (ii) the α relaxation time

is obtained from the decay of the overlap function q(t) using the definition

q(t = τα, T )/N = 1/e and the peak time of the dynamical susceptibility

χ4(t). These two estimates are mutually proportional. In the present study,

we have avoided the stretched exponential fit q(t)/N = A exp(−(t/τ(T ))β(T ))

to determine τ as the fit involves simultaneously determining three unknown

parameters, hence expected to be less reliable than the 1/e definition.

The characteristic time scales are used to check that the runs are done in

equilibrium and long-enough for good statistics by checking at all state points

studied that (i) the overlap function has decayed to zero and (ii) the MSD
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has entered a diffusive regime (MDS ∝ t).

3.3.4 Configurational entropy

We have computed the configurational entropy using the potential energy

landscape formalism (See Chapter 1). The configurational entropy (Sc) per

particle is calculated [69] by subtracting from the total entropy of the system

the vibrational component:

Sc(T ) = Stotal(T ) − Sbasin(T ) (3.4)

As a self-consistency check for the implemented method, we have verified

that the configurational entropy density Sc(eIS) computed at different tem-

peratures fall on the same master curve (for a given system size).

3.4 Characterizations: the Kob - Andersen

model in 4D

3.4.1 Choice of density for the 4D KA model

For KA model in 4D, the pressure and inherent structure pressure isotherms

at a very low temperature T = 0.5 are shown in Fig. 3.4. The spinodal

density is ρ ∼ 1.4. The simulation density is chosen to be ρ = 1.6 which is

safely above this value.

3.4.2 Characteristic time scales of the 4D KA model

The temperature dependence of the MSD of A type particles (majority com-

ponent) and the overlap function have been shown in Figs. 3.5 and 3.6 respec-

tively. They show that as the temperature decreases, the relaxation process

gradually slows down and the relaxation time increases. However, the MSD

is well into diffusive regime and overlap function decays to zero from which

it may be concluded that runs are long enough for measurement. In Fig. 3.7

temperature dependence of χ4(t) is plotted which show that χ4(t) → 0 at
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Figure 3.4: The inherent structure pressure as a function of density goes
through a minimum in the 4D KA model. The simulation density (= 1.6)
is chosen in the region where the inherent structure pressure is greater than
the minimum.

both small and large time limit and goes through a maximum at an interme-

diate time. Also the peak height increases with temperature. The relaxation

times extracted from q(t) using the definition q(t = τα, T )/N = 1/e is found

to be always higher than the dynamical heterogeneity time scale obtained

from χ4(t) peak time. However, these two time scales are proportional to

each other as shown in Fig. 3.8.

3.4.3 Characteristic temperature scales of the 4D KA

model

For the KA model in 4D, the crossover from the Arrhenius to the non-

Arrhenius behaviour occurs at Tonset ∼ 1.0 as shown in Fig. 3.9. The in-

verse T dependence of the inherent structure energy in Fig. 3.9 shows that

the change of system dynamics from landscape-independent to landscape-

influenced regime also occur at around the same Tonset ∼ 1.0. The VFT and

the MCT fits to relaxation times are shown in Fig. 3.10. We find that the

quality of VFT fit is marginally better than that of MCT fit. The Kauzmann

temperature is determined from the extrapolated T-dependence of configura-

tional entropy as shown in Fig. 3.11. The values of different characteristic

temperatures are tabulated in Table 3.4.
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3.4.4 The configurational entropy of the 4D KA model

The total entropy: To calculate the configurational entropy from Eqn.

6.1, one needs to know the total (or bulk) entropy (Stotal(ρ, T )) of the system

which is computed from the total (or bulk) free energy via the thermody-

namic integration (See Chapter 2). The pressure vs. density isotherms at

the reference high Tref and temperature dependence of potential energy (iso-

chore) are shown in Fig. 3.12. To validate the calculation, we check in

Figs. 3.13 and 3.14 that the values of the free energies and the entropies are

independent of the choice of the Tref by using two different reference high

temperatures.

The basin and the configurational entropy: The basin entropy is com-

puted in the harmonic approximation (see Chapter 2). The configurational

entropy Sc(T ) is computed as the difference [Eqn. 6.1] of the total and the

basin entropy. The temperature dependences are shown in Figs. 3.15, 3.16

and 3.11.

The configurational entropy density: By definition, the configurational

entropy density Sc(eIS) is independent of temperature (see Chapter 2). Hence
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Figure 3.8: The relaxation times obtained from the q(t) and the χpeak
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proportional to each other.

Sc(eIS) calculated at different temperatures should fall on the same master

curve. This is verified in Fig. 3.17 as a self-consistency check on the calcu-

lation.
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3.5 Characterizations: the modified Kob-Andersen

model in 2D

3.5.1 Choice of density for the 2D MKA model

The modified KA model at 65 : 35 composition was introduced by Brüning

et al. [173] as a way to avoid crystallization in two dimensions. They chose

the number density ≈ 1.16 such that pressure tends to become zero at zero

temperature when cooling at a constant rate. In order to change as few pa-

rameters as possible, we have kept the density to be same as in the canonical

composition 80 : 20 of KA model in three dimensions. Consequently, we have

simulated the MKA model at the number density = 1.20.

3.5.2 Characteristic time scales of the 2D MKA model

The overlap function and the mean squared displacement: The

temperature dependences of the overlap function and the MSD of A particles

for the 2D MKA 65 : 35 model are shown for system size N = 2000 in Fig.

3.18. We check for good statistics that each run is long enough so that (i)

the overlap function decays to zero and (ii) the MSD is well into the diffusive

regime.

System size dependence of the relaxation time: We show in Fig. 3.19

the system size dependence of α relaxation time in 2D MKA 65 : 35 model,

for later use to compute static length scales. In the case of the KA model

in 3D, it has been found [67] that α relaxation time increases as system

size decreases. The same behaviour is observed in the 2D MKA 65 : 35

model implying this system size dependence to be a characteristic of the α

relaxation. We also show for future reference the τ vs. 1/N plot to extract

the relaxation time in the limit of infinite system size.
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Figure 3.18: The overlap function and the MSD of A particles for the 2D
MKA 65 : 35 model.
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3.5.3 Characteristic temperature scales of the 2D MKA

model

For the 2D MKA 65 : 35 model, the cross-over from the Arrhenius to the

super-Arrhenius T-dependence of the relaxation time occurs at Tonset ≈ 0.8

[Fig. 3.21]. The cross-over from the landscape independent high T to the

landscape dependent low T behaviour also occurs at this temperature [Fig.

3.22(a)].

Although the inherent structure energy is linear with β = 1/T at low T, the

high T behaviour is different from other models, e.g. the KA model at 80:20

composition in two, three and four dimensions and the R10 model in two di-

mensions. Hence we briefly study the temperature dependence of the inher-

ent structure (IS) energy of the 2D KA model for different compositions. We

show in Fig. 3.22(b) that the high temperature behaviour gradually changes

from the more familiar temperature dependence at the 80 : 20 composition

to the less familiar temperature dependence at the 65 : 35 composition.

The divergence temperatures TMCT predicted by mode coupling theory and

TV FT in VFT fit are estimated from Fig. 3.20 and the Kauzmann temper-

ature TK is estimated from Fig. 3.25. The values of different characteristic

temperatures are tabulated in Table 3.4.
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Figure 3.20: The VFT and the MCT fits to the relaxation times at N = 2000
for the 2D MKA model. The values of different characteristic temperatures
are tabulated in Table 3.4.
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Figure 3.22: Fig 3.22(a): The temperature dependence of the average inher-
ent structure energy (per particle) eIS/N for the 2D MKA 65 : 35 model.
The solid line is a fit of the form eIS(T )/N = eIS(∞)/N + σ2

2T
. The bending

at high T is opposite to the KA model at the composition 80 : 20 (two to
four dimensions). Fig 3.22(b): Comparison of the T dep. of the inherent
structure energies at the compositions 80 : 20, 72 : 28 and 65 : 35 for the 2D
Kob-Andersen model show that the change in high T behaviour is gradual.
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3.5.4 The configurational entropy of the 2D MKA model

The total entropy: The total entropy is calculated from the total free

energy using thermodynamic integration (see Chapter 2). Figs. 3.23 show the

pressure vs. density isotherm at the reference high temperature (Tref ) and the

temperature dependence of the average potential energy. The temperature

dependence of the total (bulk) entropy and the total free energy are shown

in Figs. 3.24 for the system size N = 2000.
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Figure 3.23: Left: The average pressure vs. density isotherm at a refer-
ence high temperature T = 16.0. Right: The average potential energy vs.
temperature at density = 1.20. The line is a fit of the form PE = a + bT c.
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Figure 3.24: The temperature dependence of the total (bulk) entropy and
the total free energy for the 2D MKA 65 : 35 model at N = 2000.

The basin and the configurational entropy: The basin entropy is cal-

culated in harmonic approximation using inherent structure formalism (see
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Figure 3.25: The temperature dependence of TSc for the 2D MKA 65 : 35
model at N = 2000. The dashed line is a linear fit of the form TSc(T ) =
KT (T/TK − 1). The Kauzmann temperature TK is estimated from this plot
from the condition TSc(TK) = 0 (by extrapolation) and tabulated in Table
3.4.

Chapter 2). The configurational entropy Sc(T ) is computed as the difference

[Eqn. 6.1] of the total and the basin entropy. The temperature dependences

are shown in Figs. 3.26 and 3.25.

The configurational entropy density: The normalized probabilities of

sampling different inherent structures at different low temperatures are shown

in Fig. 3.27. This shows that the distribution can be well approximated by a

Gaussian. This configurational entropy densities Sc(eIS) at different temper-

atures are shown in Fig. 3.28 to check that the Sc(eIS) computed at different

temperatures fall on the same master curve.
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Figure 3.26: Top: The temperature dependence of the basin and the total
entropy at low temperatures for the 2D MKA 65 : 35 model at N = 2000.
Lines are guide to eyes. Bottom: the temperature dependence of the config-
urational entropy. The line is a fit of the form Sc(T ) = a + b/T .
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on the same master curve validating the computation method.
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3.6 Characterizations: the repulsive soft sphere

(R10) model in 2D

3.6.1 Choice of density for the 2D R10 model

For the R10 model in 2D, we have followed Ref. [171] and have done simula-

tions at a fixed number density = 0.85.

3.6.2 Characteristic time scales of the 2D R10 model

The overlap function and the mean squared displacement: The

temperature dependences of the overlap function and the MSD of A particles

for the 2D R10 model are shown for the system size N = 2048 in Fig. 3.29.

We check for good statistics that each run is long enough so that (i) the

overlap function decays to zero and (ii) the MSD is well into the diffusive

regime.

System size dependence of relaxation time We show in Fig. 3.30 the

system size dependence of the α relaxation time in the 2D R10 model, for

later use to compute static length scales. In the case of the Kob-Andersen

model in 3D, it has been found [67] that the α relaxation time increases as

the system size decreases. The same behaviour is observed in the 2D R10

model indicating that the observed system size dependence is a characteristic

of the α relaxation. We also show for future reference the τ vs. 1/N plot to

extract the relaxation time in the limit of infinite system size.
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of the 2D R10 model at the system size N = 2048. Relaxation times (τ)
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e
. Bottom: the temperature

dependence of the MSD of A particles for the 2D R10 model at the system
size N = 2048.
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estimates of the τ(N → ∞, T ) for the 2D R10 model by fitting lowest three
or four data points to straight lines in the τ vs. 1/N plot.
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3.6.3 Characteristic temperature scales of 2D R10 model

For the R10 model in 2D, the cross-over from the Arrhenius to the super-

Arrhenius T-dependence occurs at the Tonset ∼ 0.8 and is shown in Fig.

3.31. The cross-over from the landscape independent high T to the landscape

dependent low T behaviour also occurs at the onset temperature which is

shown in Fig. 3.32. The divergence temperatures (i) TMCT predicted by

the mode coupling theory and (ii) TV FT in the VFT fit are estimated from

Fig. 3.31. The Kauzmann temperature TK is estimated from Fig. 3.36. The

values of different characteristic temperatures are tabulated in Table 3.4.
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Figure 3.31: Top: Arrhenius fit to high T relaxation time data at N = 2048
for 2D R10 model. The temperature range is 0.46− 4.00, onset temperature
being at ∼ 0.80. Considerable deviation from Arrhenius behaviour at very
high T is seen. Hence Arrhenius fit is done in an intermediate temperature
range where it is a good fit. The value of infinite T relaxation time is 0.381 for
2D R10 model. Bottom: VFT and MCT fits to relaxation time for N = 2048.
The values of different characteristic temperatures are tabulated in Table 3.4.
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3.6.4 The configurational entropy of the 2D R10 model

The total entropy: The total entropy is calculated from the total free

energy using the thermodynamic integration (see Chapter 2). Fig. 3.33 show

the pressure vs. density isotherm at the reference high temperature (Tref )

and the temperature dependence of the potential energy. The temperature

dependences of the total (bulk) entropy and the total free energy are shown

in Fig. 3.34 for a given system size.
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Figure 3.33: Left: The average pressure vs. density isotherm at the refer-
ence high temperatures (T = 3.0). Right: the average potential energy vs.
temperature at the density = 0.85. The line is a fit of the form PE = a+bT c.

The basin and the configurational entropy: The basin entropy is cal-

culated in harmonic approximation using inherent structure formalism (see

Chapter 2). The configurational entropy Sc(T ) is computed as the difference

[Eqn. 6.1 ] of the total and the basin entropy. The temperature dependences

are shown in Figs. 3.35 and 3.36.

The configurational entropy density: The normalized probability dis-

tributions of sampling different inherent structures at different low temper-

atures are shown in Fig. 3.37 which shows that the distribution can be well

approximated by a Gaussian. The configurational entropy densities Sc(eIS)

at different temperatures are shown in Fig. 3.38 to show that the Sc(eIS)

computed at different temperatures fall on the same master curve.
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Figure 3.34: The temperature dependences of the total (bulk) entropy and
the total free energy for the 2D R10 model at N = 2048.

The system size dependence of the configurational entropy: Since

the α relaxation time increases as system size decreases, it is expected via

the Adam Gibbs relation that the configurational entropy per particle should

decrease as system size decreases. This is indeed found for the 2D R10 model

as shown in Fig. 3.39. However, the variation with N is not smooth. To

understand this, the relative contribution of the total and the basin entropy

are shown in Figs. 3.40. It is seen that, with decrease in the system size, the

basin entropy increases smoothly and the total entropy slightly decreases.

The variation in total entropy is not smooth probably because the variation

is comparable to the numerical uncertainty of the computed values.
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Figure 3.35: Top: the temperature dependence of the basin and the total
entropy at low temperature for the 2D R10 model at N = 2048. Lines are
guide to eyes. Bottom: temperature dependence of configurational entropy.
The line is a fit of the form Sc(T ) = a + b/T .

3.7 Dimension dependence in the AG rela-

tion

In the present section, we present evidences that the Adam Gibbs prediction

(Eqn. 6.4) does not work in all spatial dimensions. We also discuss what

are the possible factors responsible for the observed deviation from the AG

relation and whether the RFOT predictions are consistent with our data.
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Figure 3.36: The Temperature dependence of the TSc for the 2D R10 model
at N = 2048. The dashed line is a linear fit of the form TSc(T ) = KT (T/TK−
1). The Kauzmann temperature TK is estimated from this plot and tabulated
in Table 3.4.
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Figure 3.37: The normalized probability distribution (P (eIS, T )) of sampling
inherent structures at different temperatures for the 2D R10 model at the
system size N = 2048.

3.7.1 Effect of changing the spatial dimension

Three and four dimensions: In Fig. 3.41 we show the Adam Gibbs

plots for the Kob-Andersen model in two and four dimensions at the same
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Figure 3.38: The configurational entropy density (Sc(eIS)) at different low
temperatures for N = 2048 shows that the Sc(eIS) falls on the same master
curve validating the computation method.

composition 80:20 (note, however, that the densities are different - in 4D

ρ = 1.6 and in 2D ρ = 1.2). We see that in 4D, the AG relation (solid black

line in Fig. 3.41(a)) is validated over several orders of magnitude. In Fig.

3.41(a), we also show by dashed red line a fit to a generalized AG relation

ln τ(T ) = ln τ(∞) + A/(TSc)
α which is very close to Eqn. 3.3 (differs by

a factor of T ). In this fit, α is a free parameter and we get α ≈ 1. The

evidence of the KA model in four dimensions along with the more familiar

3D KA model (Fig. 3.1) seems to suggest that AG relation does not change

with spatial dimension.

Two dimensions: However, in the 2D KA 80 : 20 model, (Fig: 3.41(b)),

we see a systematic and smooth deviation from the prediction of the Adam

Gibbs relation as the relaxation time increases (see also Fig. 3.2). In Fig. 3.42

we show that (i) systematic and smooth deviations from the AG prediction

are observed in two dimensions in MKA 65 : 35 and R10 models as well. (ii)

the deviations in KA andR10 models are in opposite directions. We discuss

the AG relation in 2D in more detail below.
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Figure 3.41: The Adam Gibbs relation for the Kob-Andersen model holds
in four dimensions but there is a systematic and smooth deviation in two
dimensions. Fig. 3.41(a): The 4D KA 80 : 20 model at the density = 1.60.
The solid line is a fit to the AG relation (Eqn. 6.4) and the dashed line is a
fit to a generalized AG relation : ln τ(T ) = ln τ(∞)+A/(TSc)

α treating α as
a free parameter. Fig. 3.41(b): The 2D KA 80 : 20 model at the density =
1.20. The dashed line is a fit to the AG relation for the largest system size.

3.7.2 Is the observed deviation an finite system size

effect?

The α relaxation time in all models studied here in two and three dimensions

increases as system size decreases. This fact has been used here to access
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Figure 3.42: Systematic deviation from the Adam Gibbs relation is seen in
2D for both the repulsive R10 model and the attractive MKA model. Solid
lines are fits to a generalized AG relation of the form ln τ = ln τ0 + A( 1

TSc
)α

(see also Eqn. 3.3). For the R10 model, the dashed line is a fit according to
the Adam Gibbs relation. The deviation in the attractive and the repulsive
models are in opposite directions. For the 2D MKA model, α = 0.55 for
N = 500 (solid line) and α = 0.62 for N = 2000 (dashed line). For the R10
model, the system size is N = 2048 and α = 2.1 (dashed line).

high relaxation time range by simulating smaller system sizes. But are our

system sizes large enough to study the Adam Gibbs relation? In the 3D KA

model, the α relaxation time is more or less independent of system size for
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N > 600 [67]. Although, the AG relation in the 3D KA model is shown to

be valid using system sizes both below and above 600 (Fig. 3.1). In two

dimensions in the MKA 65 : 35 and the R10 models, the α relaxation time

does not become independent of system size till N = 104 (Figs. 3.19 and

3.30). Hence in two dimensions in all models, the AG relation has been

tested using multiple system sizes. We note that Fig. 3.41(b) for the 2D

KA 80 : 20 model seems to suggest that the deviation from the AG relation

in 2D occurs as the temperature is lowered and the system size is decreased.

However, no such systematic variation is observed for the 2D MKA 65 : 35

and the 2D R10 models. Further, in Fig. 3.43 we show for the 2D MKA

model the system size dependence of the exponent α in the generalized Adam

Gibbs relation : ln τ = ln τ0 + A( 1
TSc

)α (see also Eqn. 3.3). We see that the

extrapolated value of α (≈ 0.7) in the limit of infinite system size is still very

different from the value (=1) predicted by the Adam Gibbs relation.
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Figure 3.43: The system size dependence of the exponent α in the generalized
Adam Gibbs relation : ln τ = ln τ0 + A( 1

TSc
)α (see also Eqn. 3.3) for the 2D

MKA model shows that the extrapolated value of α (≈ 0.7) in the limit of
infinite system size is still very different from the value (=1) predicted by
the Adam Gibbs relation. The solid line is the best power law fit through
the data points. For comparison, we also show (i) a fit where the infinite N
value of α is set to 1 and (ii) a linear fit through the data points.
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3.7.3 What causes the deviation in 2D?

In two dimensions, all models that we have studied show deviation from the

AG relation. However, the nature of deviation is in the opposite direction

for the Kob-Andersen (80:20 and 65:35) and the repulsive soft sphere (R10)

models. This raises the question if the observed deviation is due to the

spatial dimensionality or due to other factors. Here we discuss whether (1)

the presence or the absence of the local orientational order and (2) the nature

of the interaction potential has any role in causing the observed deviation.

Does local orientational order cause the deviation in 2D? It has

been reported recently that the 2D KA 80 : 20 model is prone to form

transient clusters of hexagonally arranged particles having high degree of

local orientational order [174]. Such clusters appear in many supercooled

liquids and have been used to build a scenario of glass transition phenomena

analogous to the conventional critical phenomena [82]. There is a possibility

that the deviation seen in 2D KA 80 : 20 model is due to the underestimation

of the configurational entropy or the overestimation of the relaxation time due

to this ordering. This orientational ordering can be suppressed by changing

the composition of the 2D KA model from the standard value 80:20 to 65:35

[174]. In fact, this was the motivation to chose the modified KA model (2D

MKA). However, as Fig. 3.42(a) shows, this does not suppress the deviation

from the AG prediction. Further, we have tested that the local orientational

order is not significant in the R10 model which also show deviation the

from AG prediction. We also note that another repulsive soft sphere model

popular in the literature as a good glass-former in 2D [172] shows considerable

local orientational order. Hence, by comparing models, we conclude that the

presence or the absence of local orientational order is not a factor controlling

the observed deviation from the AG prediction in 2D.

Does the nature of the inter-particle interaction cause the devi-

ation in 2D? According to the conventional wisdom, the structure of

liquids is mainly determined by the short ranged repulsive interaction and

the longer-ranged attractive part can be considered a a perturbation [161].
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However, whether attractive interaction plays a qualitatively and quantita-

tively different role in determining dynamics of liquids is recently being de-

bated [162, 163]. As the observed deviation in the 2D R10 (purely repulsive

interaction) and the KA (both attractive and repulsive interactions present)

models show deviation in opposite directions, it seems natural that the at-

tractive vs. repulsive nature of the inter-particle interaction plays a role

in causing the deviation. However, we note that in three dimensions, the

AG relation have been verified in both the attractive models (e.g.: the Kob-

Andersen [128] model, the Lewis-Wahnström model for ortho-Terphenyl [48]

and the Dzugutov liquid [53]) and the repulsive models (e.g.: the repulsive

soft spheres [54]). Hence, even if the attractive vs. repulsive nature of the

inter-particle interaction has a role, it is not the only factor causing the

deviation.

3.8 Discussion: is the deviation from the AG

relation consistent with the RFOT?

To determine if the RFOT predictions are consistent with the observed devia-

tions from the AG relation in 2D, we need to compute the RFOT exponents.

To compute the RFOT exponents, in addition to the relaxation time and

the configurational entropy, one needs to compute the characteristic length

scales. Indeed, finding in a glass-forming liquid a characteristic lengthscale

which increases as the temperature decreases, is an important open question

related to the glass transition. There are many proposals in the literature to

extract such a lengthscale. In this section we describe the analyses to extract

two such length scales which are static in nature. (i) We extract a length

scale (denoted here as ξSc) from the finite size scaling of the configurational

entropy. However, the computation of ξSc is computationally demanding. (ii)

Recently, a static length-scale (denoted here as ξλ) has been extracted from

the vibrational properties of the interaction potential, namely, from the first

non zero eigenvalue of the Hessian at the inherent structures [81]. The moti-

vations behind computing ξλ are : (i) it was shown in that ξλ is proportional

to ξSc for the 3D KA model (ii) the scaling relation between ξλ and τα was

claimed to be different for models in 3D with purely repulsive interactions

and models having both attractive and repulsive interactions - which may
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rationalize why the observed deviations from the AG relation are different

for the 2D MKA and the 2D R10 models. (iii) Computing ξλ is cheaper than

computing ξSc.

3.8.1 The static lengthscale ξSc from the configura-

tional entropy

Definitions: To extract a static length scale by performing the finite size

scaling analysis of the configurational entropy, we assume the configurational

entropy to be a scaling function of N/ξ2
Sc: Sc(N, T ) = Sc(∞, T )f(N/ξ2

Sc).

Here Sc(∞, T ) is the configurational entropy at any temperature T in the

limit of infinite system size and f(x) is the unknown scaling function. The

length scale ξSc is obtained by demanding collapse of Sc(N, T ) data at differ-

ent system sizes and temperatures, on a master curve in the Sc(N, T )/Sc(∞, T )

vs. N/ξ2
Sc plot.

Results: ξSc for the 2D R10 model: The scaling plot of the configu-

rational entropy for 2D R10 model from which ξSc is computed, is shown

in Fig. 3.44. The temperature dependence of ξSc for the 2D R10 model is

shown in Fig. 3.51.
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3.8.2 The static lengthscale ξλ from the minimal eigen

values

Definitions: We describe the procedure used in the present study to ex-

tract the lengthscale ξλ. For more details we refer to [81].

1. The density of states P (λ) of the eigen values of the Hessian of the in-

teraction potential at an inherent structure is considered to be composed

of approximately two parts: an elastic or Debye part and an additional

plastic part:

P (λ) ≈ A

(

λ

λD

)
d−2

2

+ B(T )fpl

(

λ

λD

)

(3.5)

The prefactors A and B(T ) gives the relative contribution of each type

of modes. In the computation here, we consider A to be a universal

constant independent of models. We take A = 1/37. The prefactor B(T )

is unknown.

2. Integrating the above equation from zero upto the first non-zero eigenvalue

λmin,

N

∫ <
λmin
λD

>

0

d(
λ

λD

)P (
λ

λD

) = 1

λD ≈ µρ2/d−1 ≈ µ in 2D (3.6)

where λD is called Debye frequency and µ is the shear modulus.

3. Inserting the form for P (λ) the plastic contribution can be written as

G(<
λmin

λD

>) =

[

1

B(T )

(

1

N
− Ad

2
<

λmin

λD

>d/2

)]

(3.7)

and inverting,

<
λmin

λD

>= G−1

[

1

B(T )

(

1

N
− Ad

2
<

λmin

λD

>d/2

)]

(3.8)

4. We define ξd ≡ 1/B(T ). This quantity defines a static lengthscale that

can be extracted by demanding data collapse in the plot of < λmin

λD
> vs.

(

1
N
− Ad

2
< λmin

λD
>d/2

)

.
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5. In 2D, the above equation simplifies to

<
λmin

λD

>= G−1

[

1

B(T )

(

1

N
− A <

λmin

λD

>

)]

(3.9)

So, in order to compute the lengthscale, one needs to compute the ensem-

ble averaged < λmin > and the shear modulus µ (to compute λD).

Results: ξλ for the 2D MKA 65 : 35 and the 2D R10 models: We

show the raw data and the scaling plots to extract ξλ in Figs. 3.45 - 3.46 for

the 2D MKA 65 : 35 model and in Figs. 3.47 - 3.48 for the 2D R10 model.

The temperature dependence of ξλ is shown in Fig. 3.49.
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Figure 3.45: Fig. 3.45(a): The system size dependence of the ensemble
averaged minimal eigenvalue of the Hessian at the inherent structures - 〈λmin〉
for the 2D MKA 65 : 35 model. Fig. 3.45(b): the temperature dependence
of the ensemble averaged shear modulus µ at N = 2000. In two dimensions,
the Debye frequency λmin ≈ µ.

3.8.3 Are ξSc and ξλ independent ?

In [81], it is shown by performing the finite size scaling of Sc using ξλ that the

two lengthscales are ξSc and ξλ mutually proportional in three dimensions.

We test in Fig. 3.50 if the same is true in two dimensions. We find that the

data collapse is poor. The two length scales ξλ and ξSc in the 2D R10 model

are also compared in Fig. 3.51 which shows that they are not proportional.
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Figure 3.46: Scaling of the minimal eigenvalue < λmin > for the 2D MKA
65 : 35 model. The static length scale ξλ is extracted by demanding collapse
of the data in Fig. 3.46(a) onto the same master curve.
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Figure 3.47: Fig. 3.47(a): The system size dependence of the ensemble
averaged minimal eigenvalue of the Hessian at inherent structures < λmin >
for the 2D R10 model. Fig. 3.47(b): The temperature dependence of the
ensemble averaged shear modulus µ (values taken with permission from [81].
In two dimensions, the Debye frequency λmin ≈ µ.

However we emphasize that improved data are required before concluding

anything from these data.
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Figure 3.48: Scaling of the minimal eigenvalue < λmin > for the 2D R10
model. The static length scale ξλ is extracted by demanding collapse of the
data in Fig. 3.48(a) onto the same master curve.
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Figure 3.49: The T dependence of ξλ for the 2D MKA 65:35 model. The
value of ξλ at the highest temperature, T=0.90 is taken to be 1.

3.8.4 The RFOT exponents

In the following analysis we use the static length scale ξλ as defined in section

3.8.2 and equate the characteristic lengthscale ξ of the RFOT to ξλ. In

the RFOT, the free energy barrier for relaxation ∆G depends on the static

correlation length ξλ as ∆G(T ) ∝ ξ(T )ψ which defines the exponent ψ. Hence

the RFOT relation between relaxation time τ(T ) and static correlation length

ξλ(T ) is
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Figure 3.51: Comparison of the static lengthscales ξSc and ξλ for the 2D R10
model. ξsc is multiplied by a constant to match ξλ at the highest available
temperature.

τ(T ) ∝ exp

[

Aξ(T )ψ

kBT

]

(3.10)

We also recall the RFOT relation between the relaxation time τ(T ) and the

configurational entropy Sc(T ):
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τ(T ) ∝ 1

kBT

(

Y

TSc

)
ψ

D−θ

(3.11)

which defines another exponent ψ
D−θ

which we denote by α. Both the RFOT

exponents ψ and θ represents the dependence of energy barrier on lengths,

hence they must be non-negative. From Eqns. 3.10 and 3.11 we get the

upper bounds on ψ as :

ψ

D − θ
≡ α

ψ + αθ = αD

ψ, θ, α > 0

0 ≤ ψ ≤ αD (3.12)

We extract α from a fit of the form ln τ(T ) = ln τ(∞)+A/(TSc)
α (Fig. 3.42.

We extract ψ using two different fit forms as explained below:

Procedure 1: Rewriting Eqn. 3.10 we get,

τ(T )

τ(∞)
= exp

[

Aξ(T )ψ

kBT

]

kBT

(

ln
τ(T )

τ(∞)

)

= Aξ(T )ψ (3.13)

Here we use as the estimate of the relaxation time at any temperature T τ(T ),

relaxation time value in the limit of infinite system size by extrapolating the

finite size data (Figs. 3.30 and 3.19 ). τ(∞) is the relaxation time in the

limit of infinite temperature and obtained from the Arrhenius fit to the high

T relaxation time data at the highest available system size. Whence ψ is

estimated from a linear fit to ln
[

kBT
(

ln τ(T )
τ(∞)

)]

vs. ln ξλ.

Procedure 2: We start with the relation between the relaxation time τ(T )

and the static correlation length ξλ(T ) in a form slightly different from Eqn.

3.10 (by a factor of T ):

τ(T ) ∝ exp

[

(

Aξ(T )

kBT

)ψ
]

(3.14)
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Now at some reference temperature T = T0 we choose the value of the cor-

relation length ξ0 = 1.0, that is we define the correlation length in units of

this length ξ0. So the relaxation time at that temperature will be given by

τ(T0) ∝ exp

[

(

Aξ(T0)

kBT0

)ψ
]

(3.15)

So we have,

ln

(

τ(T )

τ(T0)

)

=

(

Aξ(T )

kBT

)ψ

−
(

Aξ(T0)

kBT0

)ψ

=

(

Aξ0

kBT0

)ψ
[

(

ξ

ξ0

/
T

T0

)ψ

− 1

]

= B

[

(

ξ

ξ0

/
T

T0

)ψ

− 1

]

(3.16)

Here the prefactor B is an unknown. Now ψ can be extracted from fit of

ln τ
τ0

vs. x = ξ
ξ0

/ T
T0

Conclusions: We find that the fitting procedure 2 results in better quality

fit. From Fig. 3.42 α = 0.62 for the 2D MKA 65 : 35 model and α = 2.1 for

the 2D R10 model. So, from the relation 3.12, RFOT predicts that ψ ≤ 0.31

for the 2D MKA 65 : 35 model and ψ ≤ 1.05 for the 2D R10 model. From

Figs. 3.52 - 3.55, however, we find that the computed ψ values does not

satisfy the relation 3.12, which is inconsistent with the RFOT prediction. In

addition, ψMKA > ψR10 contrary to the above expectation.
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Figure 3.52: The RFOT exponent ψ = 3.15 in the 2D MKA 65:35 model
obtained using the fitting procedure 1. ξ0λ = 1 is the value of the correlation
length at an arbitrary temperature to make the X-axis dimensionless.
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Figure 3.53: The RFOT exponent ψ = 1.54 in the 2D R10 model obtained
using the fitting procedure 1. ξ0λ = 1 is the value of correlation length at an
arbitrary temperature to make the X-axis dimensionless.
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3.9 Summary and conclusions

In summary, we examine the validity of the AG relation in different spatial

dimensions by studying model liquids via computer simulations, for the first

time in 2 and 4 dimensions. The Adam-Gibbs relation is valid in 4 and 3

dimensions, but is not obeyed in 2 dimensions and the nature of the devia-

tion from the AG relation depends on the details of the interaction between

particles. The known thermodynamic phase transitions e.g. the description

of the standard critical phenomena is largely independent of the details of

the interparticle interactions. Hence such a lack of universality in the present

case is unexpected and surprising since both the Adam-Gibbs and the RFOT

theories describe the glass transition as a thermodynamic phase transition.

Although an understanding of this observation is lacking at present, they

present constraints that a successful theoretical explanation of slow relax-

ation must meet. Attempts to compute the RFOT exponents from our data

remained inconclusive.



Chapter 4

Breakdown of the Stokes

Einstein relation in 2,3,4

dimensions

4.1 Introduction

The Stokes-Einstein relation (SER) [83,119,120,122] (independently obtained

by Sutherland [121]) is a hydrodynamic relation between the translational

diffusion coefficient (D) of a macroscopic Brownian particle of mass m and

radius R in a viscous liquid and the shear viscosity (η) of the liquid.

D =
mkB

6πR

T

η
(4.1)

(the factor 6 depends on the boundary condition [83]). In the literature

on the SER, Eqn. 4.1, especially in simulations, often the shear viscosity,

which involves costly computations, is replaced by the α relaxation time τ ,

which is computationally cheaper than the shear viscosity. This replacement

is subject to the justification that η and τ are mutually proportional. In

addition, if the self van Hove function Gs(r, t) is Gaussian and the relaxation

time is defined from its Fourier transform Fs(k, t) as Fs(k, τ) = 1/e, then one

may deduce that

126



4.1 Introduction 127

exp(−Dk2τ) = −1/e

Dk2τ = constant (4.2)

The importance of the SE relation is that (i) the SE relation connects a

single particle property to a collective property and (ii) if one knows the

T dependence of one quantity, e.g. viscosity, in terms of, say, an empirical

fitting function involving a set of fit parameters, then one can predict the

value of the other quantity using the same set of fit parameters.

At high temperatures (above melting points), the SE relation is known to

be valid for a wide range of liquids and is also known to be applicable for

the diffusion of small tracer particles and even for the self diffusion of liquid

particles [108]. However, several experiments and simulation studies in the

last three decades [84–106, 175] have discovered that in supercooled liquids

at low temperatures, the relations between D and η, τ (Eqns. 4.1 and 4.2)

break down. In fact this breakdown is so ubiquitous that it is considered

to be a signature of slowdown of dynamics [8] of supercooled liquids as the

laboratory glass transition temperature (Tg) is approached (see Chapter 1).

One wonders if the temperature at which the breakdown occurs (denoted by

TSEB), coincides with already known temperatures characterizing the slow

dynamics. Of course, the SE breakdown is a cross-over phenomena and

thus TSEB is not sharply defined. Besides, the definition of TSEB depends

somewhat on the choice of the way the SE breakdown is represented.

TSEB ∼ Tc ? Extensive experiments using different methods and both self

and tracer diffusion in low molecular weight glass formers like OTP, Silescu

and co-workers [6, 85–87], Ediger and co-workers [88, 90, 91] and Rössler [93]

have shown that the SE breakdown occurs close to Tg : TSEB ≈ 1.2Tg. Here

the definitions of TSEB are: (i) the temperature of cross-over from the SE

relation to the FSE relation [87]; (ii) the temperature at which the measured

D decouples from η/T [86, 88, 90, 91]; (iii) the temperature at which Dτc

starts deviating from constancy [88, 90, 91]; (iv) the temperature at which

the derivative ∂(1/Dη)
∂(1/T )

from 1/Dη vs. 1/T plot changes sign from positive

to negative [93]. In these systems, the apparent divergence temperature Tc

predicted by the mode coupling theory is close to 1.2Tg. For example, for
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OTP, which is a prototype fragile glass former, Tg = 243K [86], Tc ≈ 290K

[123] and the melting point Tm = 329K [123]. Hence these experiments

provide compelling evidences that TSEB ∼ Tc.

TSEB ∼ Tonset ? However, other studies indicate that the SE breakdown

can happen at a much higher temperature. In simulations of Kob-Andersen

liquid and other binary LJ mixtures [94, 106, 175], the breakdown tempera-

ture was found to be close to the onset temperature (Tonset) where system

dynamics crosses over from Arrhenius to non-Arrhenius behaviour. The on-

set temperature in the KA liquid in 3D is ∼ 1.0 and is much higher than

Tc ∼ 0.43. A simulation of the metallic glass Cu33.3Zr66.7 [107] also finds

TSEB ≫ Tc. In these studies, TSEB is the temperature where the radius

parameter R in the SER starts deviating from constancy.

Values of the breakdown exponent: Another interesting question is

the observed values of the breakdown exponent ξ in the fractional SE rela-

tions, which quantifies how strong is the deviation from the SE behaviour.

Besides, a complete theory of the SE breakdown should be able to predict

the breakdown exponent. Table 4.1 below is a representative list (arranged

chronologically) of the values of ξ found in the literature. In most cases the

value of the exponent lies between 0.7 − 0.8. For further compilation, see

also Table I of Ref. [109].

Table 4.1: Breakdown exponents for the fractional Stokes

Einstein relations.

Reference System Relations defining

exponent

Exponent value

G. L. Pollack,

(1981), [84]

Diffusion of Xe

atoms through

aqueous solution of

sucrose

D ∝ η−ξ ξ = 0.63

G. Heuberger and

H. Silescu, (1996)

[87]

Various combina-

tion from a set of

5 tracer molecules

and 10 Solvent

glass formers

D ∝ T/ηξ ξ in the range 0.7−
1.1. Cross-over to

normal (ξ = 1)

SER as T increases.
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Reference System Relations defining

exponent

Exponent value

M. Ediger, (2000)

[6]

OTP Dt ∝ η−αt

(t=translation)

αt = 0.75

Dr ∝ η−αr

(r=rotation)

αr = 1

S. R. Becker, P.

Poole and F. Starr,

(2006) [102]

ST2 water D ∝
(

τ
T

)−ξ
ξ in the range 0.7−
0.8. Cross-over to

normal (ξ = 1)

SER as T increases.

S. Chen et al.,

(2006) [101]

Water D ∝ τ−ξ (τ is

translational relax-

ation time)

ξ = 0.74 in fragile

phase and ξ = 2/3

in strong phase.

F. Fernandez-

alonso et al.,

(2007) [103]

Hydrogen Fluoride D ∝
(

η
T

)ξ
ξ = 0.71. Cross-

over to normal (ξ =

1) SER as T in-

creases.

L. Xu et al., (2009)

[105]

Water D ∝
(

τ
T

)−ξ
ξ = 0.62. Cross-

over to normal (ξ =

1) SER as T in-

creases.

4.1.1 The SE breakdown as an indicator of heterogene-

ity

The predominant view in the literature is that some kind of heterogeneity

which develops as liquids are supercooled, is responsible for the SE break-

down. It is natural to consider the dynamical heterogeneity which develops

as liquids are supercooled to be the origin of the SE breakdown. However we

note that the many different theories proposed to explain the SE breakdown,

e.g. the dynamical facilitation model [110], the random first order transition

theory [111], the shear transformation zone theory [112] and the obstruction

model [109] mutually disagree about the nature and the origin of the hetero-

geneities. In the present thesis our aim is to understand the relation between

the dynamical heterogeneity and the SE breakdown. Here we briefly discuss

phenomenological arguments why the SE breakdown is considered to be an
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indicator of heterogeneity.

In a homogeneous liquid the Gs(r, t) is Gaussian which leads to Dτ =

constant, (Eqn. 4.2), which may be considered as the normal, high temper-

ature behaviour. Similarly, the homogeneous mode coupling theory, which is

one of the most successful microscopic theories of supercooled liquids, pre-

dicts power law T dependence of D and τ with the same exponent and Tc:

D ∝ (T − Tc)
γ, τ ∝ (T − Tc)

−γ leading to Dτ = constant.

One of the earliest theories of the SE breakdown is by Hodgdon and Still-

inger [108] who imagined that the highly viscous supercooled liquid is com-

posed of sparse “fluid-like” regions of low viscosity in a matrix of more viscous

fluid. Thus both D and η are space-dependent. By calculating the viscous

drag force on the diffusing particle in the “fluid-like” region they showed that

the local drag force decreases from the Stokes’ value, hence the local diffusion

coefficient increases. Hence if one uses the bulk viscosity (which is dominated

by the more viscous regions) in the SER, one expects a breakdown. In order

to apply their model to realistic systems and to explain that the transla-

tional diffusion coefficient shows breakdown while the orientational diffusion

coefficient does not, they had to impose certain special properties on their

model. However, Tarjus and Kivelson [96] later gave a simple argument that

the mere existence of domains is a sufficient condition for the SE breakdown.

They considered that there are domains (of unspecified nature) of size L with

a size distribution ρ(L) such that ρ(L)L2dL is the probability of finding a

molecule in a domain of size between L and L + dL. They assumed that the

local relaxation time τ(L) in a domain is size dependent and the measured

α relaxation time (τα) is the average of τ(L):

τL ∝ exp(E(L)/kBT )

τα = 〈τL〉 ∝
∫ ∞

0

ρ(L) exp(E(L)/kBT )L2dL (4.3)

In their picture, the SER is valid inside a domain. However, the translational

diffusion involves passage through many domains. This is the reason that

the average D is different from the SER prediction. Assuming that a diffus-

ing particle performs a random walk across domains and the D(L) changes
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abruptly at interfaces, then neglecting a term involving gradient of D:

D(L) ∝ T/η(L), η(L) ∝ exp(E(L)/kBT )

D = 〈D(L)〉 ∝
∫ ∞

0

ρ(L)D(L)L2dL

∝
∫ ∞

0

ρ(L) exp(−E(L)/kBT )L2dL (4.4)

Unless ρ(L) is a δ function, Eqns. 4.3 and 4.4 lead to a violation of the normal

behaviour Dτ = constant. Tarjus and Kivelson picture of the heterogeneity

may also be interpreted in terms of the existence of a distribution of local

relaxation times. Blackburn et al. [89] argued that the translational diffusion

coefficient D and the rotational correlation time τc measure different moments

of the distribution, thus causing the SE breakdown:

D ∝ 〈1
τ
〉, τc = 〈τ〉

Dτc ∝ 〈τ〉〈1
τ
〉

〈τ〉〈1
τ
〉 = 1 for δ distribution, normal SE

> 1 SE breakdown (4.5)

La Nave et al. showed [180] using the potential energy landscape framework,

that in the 3D KA model the product < D >< 1/D > indeed grows as the

temperature decreases. Swallen et al. [91] argued that since Dτc increases

with decreasing temperature, Eqn. 4.5 implies that the distribution of re-

laxation time should be broader at lower T . The stretched exponent βKWW

provides a measure of the width of the distribution. Let ρ(τ) denote the

distribution of relaxation times τ where each of the local relaxation function

is exponential (with relaxation time τ). The overall correlation function φ(t)

is empirically given by a stretched exponential:

φ(t) =

∫ ∞

0

dτρ(τ) exp(−t/τ) = exp
(

−(t/τKWW )βKWW
)

(4.6)

Using the following two identities [21]:
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∫ ∞

0

dttn−1φ(t) =

∫ ∞

0

dttn−1

∫ ∞

0

dτρ(τ) exp(−t/τ)

=

∫ ∞

0

dτρ(τ)

∫ ∞

0

dttn−1 exp(−t/τ)

=

∫ ∞

0

dτρ(τ)τnΓ(n)

= 〈τn〉Γ(n) (4.7)

∫ ∞

0

dttn−1 exp(
(

−(t/τKWW )βKWW
)

= τn
KWW

∫ ∞

0

yn−1 exp
(

−yβKWW
)

dy

=
τn
KWW

βKWW

Γ

(

n

βKWW

)

(4.8)

we get,

〈τn〉 =
τn
KWW

βKWW

Γ
(

n
βKWW

)

Γ(n)
(4.9)

Using the above formula, we can find the first moment 〈τ〉 and the second

moment 〈τ 2〉. Hence the relative variance, which provides a measure of the

width of the distribution, is given by:

〈τ 2〉 − 〈τ〉2
〈τ〉2 =

1

Γ
(

1
βKWW

)





βKWW Γ
(

2
βKWW

)

Γ
(

1
βKWW

) − Γ

(

1

βKWW

)



 (4.10)

From the RHS, the relative variance depends only on βKWW and Fig. 4.1

shows that it increases monotonically as βKWW decreases.

The above analysis suggests the following interpretation: as the temperature

decreases, heterogeneity (of unspecified nature) develops which leads to the

existence of a distribution of local relaxation times, the width of which in-

creases as T decreases which is manifested as (i) the lowering of βKWW and

(ii) the SE breakdown. In other words, the SE breakdown is a manifestation

of heterogeneity and so also is the lowering of βKWW from 1, hence they

should occur simultaneously.

We note, however, the following two points: (i) the lowering of βKWW does
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not prove the existence of a distribution of relaxation times [21] i.e. liquids at

low temperature can be dynamically homogeneous with a single relaxation

time but inherently non-exponential decay of correlation function and (ii)

some experiments on OTP seem to suggest that βKWW remains in fact con-

stant in the relevant low temperature range (See [91] and references therein).

In that case the width of distribution does not change with temperature

hence Eqn. 4.5 can not explain that the degree of the SE breakdown be-

comes progressively larger as temperature decreases.

0 0.2 0.4 0.6 0.8 1
β

0

2

4

6

8

10
[ 

βΓ
 (

2 
/ β

 )
 / 

Γ 
(1

 / 
β)

   
- 

 Γ
 (

1 
/ β

 )
 ]

   
/  

 Γ
 (

 1
 / 

β)

Figure 4.1: The quantity 〈τ2〉−〈τ〉2
〈τ〉2 vs. β. See Eqn. 4.10 and the accompanying

text.

4.1.2 Other indicators of dynamical heterogeneity

The dynamical heterogeneity can be measured by more direct indicators. In

the present thesis, we have used the following quantities in addition to the

SE breakdown to characterize the dynamical heterogeneity.

Dynamical Susceptibility χ4: The dynamical susceptibility χ4(t) (see

Chapter 1) measures the integral of the four-point correlation function g4(~r, t)

as well as the fluctuation in the two-point correlation function q(t) (overlap

function). Thus χ4(t) is a direct measure of the dynamical heterogeneity.

for supercooled liquids, χ4(t) show a peak at a timescale proportional to the

α relaxation time [67]. The peak of the dynamical susceptibility - χ
peak
4

- is a direct measure of the volume of space correlated during structural

relaxation [13]. Experiments and simulations, typically in three dimensions,

show that χ
peak
4 (T ) grows monotonically as the temperature T is lowered,

which indicates that bigger regions of space are dynamically correlated at
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lower temperature i.e. the dynamical heterogeneity is more prominent at

lower temperature.

Stretched Exponent βKWW : The stretched exponent βKWW is a measure

of how non-exponential the decay of time correlation function (See Chapter

1). As discussed in the previous section, according to the heterogeneous

interpretation of the non-exponential decay, lower value of βKWW implies

stronger dynamical heterogeneity.

Fragility: Fragility (see Chapter 1) is a material parameter that mea-

sures how rapidly the viscosity (or relaxation time) of supercooled liquids

increases as the temperature decreases. Böhmer et al. [126] in their exten-

sive compilation of available literature data found that the kinetic fragility

m (defined from the slope of the Angell plot at Tg) has negative correlation

with the stretched exponent βKWW , i.e., lower βKWW implies more fragile

liquids. This conclusion remains same for both isobaric and isochoric fragili-

ties [118]. Based on the above-mentioned correlation between fragility and

βKWW , fragility can be considered an indicator of the dynamical heterogene-

ity - more fragile systems are more heterogeneous.

However, we note that there are evidences against this correlation as well :

(i) In the experiment on supercooled water confined in nanopore, Chen et

al. [101] observed fragile to strong transition and found fractional SE rela-

tions in both the regimes. However, the breakdown exponent is closer to 1

for fragile water (= 0.74) than that for strong water (= 0.67). (ii) Similarly,

the breakdown exponent computed by Jung et al. [110] using dynamical fa-

cilitation theory was also closer to 1 for a fragile (= 0.73) glass-former model

than for a strong glass-former (= 0.67) model. (iii) In [72] it was shown

that the strong correlation found by Böhmer et al. [126] between the kinetic

fragility and βKWW becomes much weaker if subgroups e.g. only simple and

complex molecular glass-formers are considered. (iv) Dyre also claimed [14]

based on experiments on simple, organic glass-forming liquids that no clear

correlation is present between these two quantities. (v) In the simulation of

ST2 water, Becker et al. [102], observed the breakdown of SE relation at low

T in both strong and fragile regime. However they found that the breakdown

exponent is nearly same for both strong and fragile water.
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4.1.3 Relations among heterogeneity, SE breakdown

and fragility in 3D

Here we summarize the picture that emerges based on the above discussions.

As the temperature decreases, the dynamics of a supercooled liquid becomes

gradually more heterogeneous (bigger χ
peak
4 (T )). This is manifested in the

breakdown of SE relation as well as the value of the stretched exponent

being less than 1 - stronger heterogeneity implies stronger breakdown as well

as lower value of βKWW . Besides, at the same (scaled) temperature, systems

which are more fragile are more heterogeneous. Based on this picture, the

trends expected for the SE breakdown are : (i) lower βKWW implies stronger

SE breakdown as found by Blackburn et al. [89] and (ii) more fragile liquids

show stronger breakdown of SE relation [13].

We, however, emphasize that the above picture is based on experiments and

simulations predominantly in three dimensions and does not tell a priori

about behaviours in other spatial dimensions.

4.1.4 Previous works in other spatial dimensions
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Figure 4.2: Fig. 4.2(a): The breakdown of SE relation in three and four
dimensional hard sphere models show that the SE breakdown is weaker at
higher dimensions. Fig. taken with permission from [116]. Fig. 4.2(b): A
fractional SE relation dimensions. D ∝ τ−ξ is a good description of data in
two dimensions at both low and high temperatures, implying the behaviour is
more complicated in two dimensions. Data taken with permission from [117].
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We briefly discuss previous works on the SE breakdown in other spatial di-

mensions. Eaves et al. [115] studied the SE breakdown in the Kob Andersen

model in three and four spatial dimensions at similar fragility and found

that in both 3 and 4D, a fractional SE relation D ∝ τ−1+w described data

well with the breakdown exponent smaller in 4D (w = 0.14) than in 3D

(w = 0.16) implying that the SE breakdown is weaker in higher dimensions.

Charbonneau et al. [116] also found that the mono-dispersed hard sphere

in 4D show weaker deviation from the MCT prediction (no SE breakdown)

than bi- and poly-dispersed hard sphere models in 3D, see Fig. 4.2(a). In

both the studies, the breakdown of SE relation was reported as the only

indicator of the dynamical heterogeneity and it was concluded that the het-

erogeneity decreases in higher dimensions. In lower dimensions, Perera et al.

have studied the SE breakdown in a binary mixture of repulsive soft spheres

(V (r) ∼ r−12). Their data (see Fig. 4.2(b) ) can be described by a fractional

SE relation D ∝ τ−ξ at low temperatures (ξ = −0.62) as well as at high

temperatures (ξ = −1.49) implying the normal SE relation is not obeyed at

any temperatures. This indicates that the behaviour in two dimensions may

be more complicated than in three and higher dimensions.

4.1.5 Our aim

In the present thesis, based on the observations in three dimensions about

the relations among dynamical heterogeneity, the SE breakdown and the

fragility, we aim to understand how such inter-relations may be generalized

in other spatial dimensions by systematically studying model glass-forming

liquids in 2,3 and 4 dimensions and by considering both the SE breakdown

and direct measures (χ4, βKWW as well as fragility) as indicators of DH.
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4.2 Simulation details

We perform NVT molecular dynamics simulations in the Kob-Andersen bi-

nary LJ mixture at the 80 : 20 composition in 4, 3 and 2 dimensions (denoted

by 4DKA, 3DKA, 2DKA respectively) at number densities ρ = 1.60 (4D),

ρ = 1.20 (3D and 2D). In addition, we have also studied the following models:

(i) the modified Kob-Andersen model in 2 dimensions (denoted by 2DMKA)

at the same number density ρ = 1.20 but a different composition 65 : 35

and (ii) the 50:50 binary mixture of purely repulsive soft sphere potential

(V (r) ∼ r−10, denoted by 2DR10) at a number density ρ = 0.85. The details

of the models are described in Appendix B.

4.3 Validation of the computation of the shear

viscosity η:

The shear viscosity η is computed using the Green Kubo and the Einstein

relations for 3D KA model. Since numerical accuracy is an important issue

we discuss below the computational details and the checks used to validate

the computation:

1. It is checked that both the stress (pressure) tensor and the Helfand mo-

ment tensor are symmetric tensor.

2. The average trace of the stress tensor matches with the average pressure

obtained using virial equation.

3. Both the diagonal and the off-diagonal elements of the Helfand moments

computed using two-point trapezoidal rule and five-point Boole’s rule

matches with each other.

4. It is checked that the Helfand moment tensor has a well-defined linear

regime at long time and the cumulative sum of the stress autocorrelation

function reaches a plateau value around the time when the stress auto-

correlation first decays to zero (See Figs. 4.3, 4.4) .

5. The shear viscosity computed from Green-Kubo relation and from Ein-

stein relation should agree with each other. (See Fig. 4.5 ).
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6. We also compare the shear viscosity values with earlier computations [94,

106,175] for the same system. (See Fig. 4.5 ).

4.3.1 Details of the statistics
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Figure 4.3: Stress correlation function and its cumulative sum at T = 0.55
and T = 3.0. There is an approximate plateau in the cumulative sum around
the time when correlation function first decays to zero. The height of this
plateau is considered to be the value of the shear viscosity.
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Table 4.2: Simulation details for the computation of the shear viscosity for
3D KA model at density ρ = 1.20 and system size N = 1000 using NVT MD
runs. In order to improve numerical accuracy for the integrations involved
(Helfand moment and cumulative sum of stress-auto correlation function),
the time step dt at low T (= 0.003) is taken lower than what has been
used previously (typically dt = 0.005) for other analyses. The number of
time origins in the columns refer to the number of time origins over which
averaging is done at the time point when stress correlation function is less
than zero for the first time (Green Kubo method) and in the linear region
of Helfand moment used to measure slope (Einstein method). This is an
indicator of the quality of statistics.

T No.
of
inde-
pen-
dent
MD
runs

Runlength
(MDsteps,
m=million)

dt
σAAǫ

1/2

AAm
−1/2

AA

No. of time ori-
gins (GK)

No. of
time
origins
(Ein-
stein)

Relaxation
time from
overlap
function

τqt

σAAǫ
1/2

AAm
−1/2

AA

0.55 10 51 m(1
run), 60
m (1 run),
120 m (8
runs)

0.003 > 85000(50m),
> 99900(60m),
> 199900(120m)

> 94400 55.8

0.60 10 60 m 0.003 > 99900 > 94400 23.2
0.65 8 60 m 0.003 > 99900 > 94400 13.1
0.70 10 60 m 0.003 > 99900 > 94400 8.3
0.80 10 60 m 0.003 > 99900 > 98300 4.4
0.90 10 60 m 0.001 > 99900 > 98300 2.8
1.00 10 60 m 0.001 > 99900 > 99500 2.1
1.20 10 40 m (1

run), 60 m
(9 runs)

0.001 > 68300(40m),
> 99900(60m)

> 98600 1.3

1.40 5 60 m 0.001 > 99900 > 99800 0.94
1.80 5 60 m 0.001 > 99900 > 99800 0.62
2.50 5 60 m 0.001 > 99900 > 99800 0.40
3.00 5 60 m 0.001 > 99900 > 99800 0.34
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Figure 4.4: Helfand moment at T = 0.55 in log-log (top) and linear (bottom)
plots . At short time, t dependence is close to quadratic (like ballistic regime
in normal MSD) and at longer time scale crosses over to linear t dependence.
The slope of dashed curve of the form A = ηt fitted in the linear region at
long time gives the shear viscosity η.
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Figure 4.5: T dependence of the shear viscosity in 3D KA model at den-
sity=1.2 from various studies. The shear viscosity obtained from the Green
Kubo (circle) and the Einstein (square) method in the present study are
shown with error bars. The error bars denote standard deviation about
the mean value. It is seen that they match with each other. Further, the
values in the present study are comparable with earlier studies of Affouard
et al. [106] using Green Kubo method (diamond) and S. Ashwin [94] us-
ing Müller-Plathe method (star). The T dependence obtained by Bordat et
al. [175] using Müller-Plathe method (triangle) is somewhat different.
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4.4 Results: Comparison of time scales

Many different timescales (see Chapter 1) are defined to characterize the

slow dynamics and the dynamical heterogeneity in particular. A critical

examination of the inter-relation between different time scales is important

to understand the nature of the dynamical heterogeneity [181]. In studies of

the SE breakdown, the shear viscosity (η) is often replaced by an appropriate

relaxation time (τ). However, to justify such a replacement, one needs to

find the relation between η and τ . By definition, the shear relaxation time

(τshear = η
G∞

, G∞ is the infinite frequency shear modulus) is related to η in a

straightforward way v ia the Maxwell’s relation, but the relation between the

shear viscosity and the α relaxation time (τα) is not obvious. In literature,

there is an implicit assumption that they are mutually proportional, but one

finds an ambiguity whether η ∝ τα (e.g. [72,102,113]) or η ∝ τα

T
(e.g. [114]).

This point is important because (i) the factor of T makes a qualitative as

well as a quantitative difference as we will show below. (ii) If η ∝ τα/T

then the relations Dη/T = constant and Dτα = constant can be treated on

equal footing. Although, we note that the derivations of Dη/T = constant

and Dτα = constant are completely independent and hence no connection

between these two relations is a priori expected. In the present section we

present a systematic comparison of different characteristic time scales using

3D and 4D KA models.

List of the different timescales considered: In the present study, we

consider the following time scales (see Chapter 1 for details):

1. The shear viscosity from the Einstein and the Green-Kubo relations .

2. α relaxation times estimated from (i) the time taken to decay to 1/e of

the initial value of (a) the overlap function q(t), (b) the intermediate scat-

tering function F (k, t), and (c) the self part of the intermediate scattering

function Fs(k, t).

3. The time scale of the dynamical heterogeneity estimated as the time at

which the “dynamical susceptibility” χ4(t) is maximum. This time scale

is another measure of τα.

4. The translational diffusion coefficient D.
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5. The time scale t∗ at which the non-Gaussian parameter α2(t) reaches a

maximum. This time scale is a different measure of the time scale of

heterogeneity.
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Figure 4.6: Top : The component-averaged stress correlation functions (Eqn.
2.21) at different T in 3D KA model. Bottom: The T dependence of the
instantaneous shear modulus G∞ computed as t = 0 value of the stress
correlation function. The solid line is a power law fit of the form G∞ = aT b+c

η 6∝ τshear: First, we compare τshear with η. Fig. 4.6 shows the T de-

pendence of the decay of the stress correlation functions (C(t)). The t = 0

values of the stress correlation functions C(0) give the G∞. Fig. 4.6 also
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shows that G∞ has a significant T dependence. Hence one should not expect

that τshear ∝ η. Fig. 4.7 compares the T dependence of the shear relaxation

time τshear with that of the shear viscosity η and clearly shows that the shear

viscosity and the shear relaxation time are not mutually proportional.
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Figure 4.7: Top: T dependence of viscosity (η) and shear relaxation time
τshear = η/G∞ Lines are guide to eyes. All data sets are matched at T = 0.55.
The shear relaxation time is not proportional to η because G∞ changes with
T . Bottom: α relaxation time is not proportional to the shear relaxation
time. Lines are fit of the form y = mx. Three measures of τα are compared.
k∗ is the value corresponding to the first peak of the structure factor.
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τshear 6∝ τα: Second, we compare in Fig. 4.7 the shear relaxation time

(= η
G∞

) with the α relaxation time measured from the decay of (a) the overlap

function (τqt), (b) the self intermediate scattering function (τFskt(k
∗)) and

(c) the intermediate scattering function (τFkt(k
∗)) (k∗ is the first peak of the

structure factor). We see that the shear relaxation time is not proportional

to the α relaxation time. However, we highlight that Fig. 4.8 shows that the

three measures of the α relaxation time are mutually proportional.

τα ∝ η/T: Third, we show in Fig. 4.8 that empirically τα ∝ η/T is a good

description of data although some systematic deviations can be seen at high

T .

t∗ ∝ (D/T)−1: Fourth, we consider the time scale (t∗) of the maximum

of the non-Gaussian parameter α2(t), which is expected to be related to the

diffusion coefficient. In Fig. 4.9, which is for 4D KA model, by comparing

different time scales and MSD, we show that (i) t∗ can be considered as the

onset time of the diffusive regime which is already noted in literature [31]

and (ii) t∗ ∝ (DA/T )−1. (DA is the diffusion coefficient of the A particles.)

Summary: Finally, in Fig. 4.10, we show the T dependence of the follow-

ing different characteristic time scales in 3D KA model: (a) the self diffusion

coefficients of the A particles D−1
A ; (b) the viscosity in the form η

T
; (c) the

α relaxation times (τqt, τFskt(k
∗), τFkt(k

∗); (d) the time scale τ4 of the het-

erogeneity obtained from the maximum of the dynamic susceptibility χ4(t)

and (e) the time scale t∗ of the heterogeneity obtained from maximum of

the non-Gaussian parameter α2(t). The different data sets are matched at a

low T . It shows there are differences in high T and low T behaviour which

indicates a breakdown of the SER.
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4.5 Results: The dimension dependence of

the SE breakdown

4.5.1 Observed trends

The breakdown of the SER in three dimensions in 3D Kob-Andersen (KA)

model has been reported before [94, 106, 175]. Our data agree reasonably



4.5 Results: The dimension dependence of the SE breakdown 147

10
-4

10
-2

10
0

10
2

M
S

D

t
*

<τ
qt

> (1/e)
<τχ4

>

τ
FsAkt

 (fit)

<D>
-1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0

0.5

1

1.5

α 2

T=0.75
4D KA

10
0

10
1

10
2

10
3

t*

10
-5

10
-4

10
-3

10
-2

D
A

 /
 T

t
*

Exponent = -1.0

4D KA
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Different timescales are shown on the MSD curve. Right: DA/T ∝ t∗ in 4D
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well with these previous works (See Fig. 4.5). Here we study the spatial

dimension dependence of the SER by considering the following models : (i)

2DR10, (ii) 2DMKA (iii) 3DKA and (iv) 4DKA (See “simulation details”

and Appendix B for details). The breakdown of the SE relation is shown in

Figs. 4.11 (2DR10), 4.12 (2DMKA), 4.13(3DKA) and 4.14 (4DKA). We use

the following two representations to plot data:

i) In a DA vs. τα or η
T

plot, by fitting the data to a power law of the form

DA ∝ τ−ξ
α , or DA ∝

(

η
T

)−ξ
we test if the effective exponent ξ is different

from 1 (which is the SER prediction).

ii) From the T dependence of DAτα or DAη
T

we test if these quantities are

constant (SER) or becomes T dependent (breakdown).

From DA vs. τα or η
T

plots, we see that in all spatial dimensions, the low T

data follow a fractional SE relation indicating a breakdown of the SER. The

breakdown exponent is closer to one at higher dimensions indicating that

the SE breakdown is weaker at higher dimensions. In the same dimension

(D = 2), the breakdown exponent is different for different models.

Further, as the temperature increases, there is a clear change of the exponent

value in DA vs. τα or η
T

plots indicating a qualitative difference between

high T and low T behaviour. Surprisingly, in two dimensions, in both the

models, the high T exponent from DA vs. τα is higher than 1. However, in 3

dimensions, the SE relation DA ∝ η
T

is recovered at high T as expected. We
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Figure 4.10: T dependence of different time scales in 3D KA model: (i)
inverse of self diffusion coefficient of A particles (D−1

A ); α relaxation times
measured from (ii) the overlap function τqt, (iii) the Fs(k

∗, t) of A particles
τFsAkt(k

∗); (iv) the F (k∗, t) (τFkt(k
∗)); (v) the heterogeneity time scale from

χ4 (τ4) and (vi) from α2(t) of A particles (t∗) scaled by temperature; (vii)
shear viscosity scaled by temperature (η/T ). k∗ is the value corresponding to
the first peak of the structure factor. The format of plotting is suggested by
the SER (Eqn. 4.1) and testing the proportionality between different time
scales.

note that η and τα are not proportional at high T , hence the exponent from

DA vs. τα at high T is somewhat bigger than 1. Finally, as we go to still

higher dimension (D = 4), the DA vs. τα plot shows the expected relation

(DA ∝ τ−1
α ) at high T .

The above correlation between DA and τα is also reflected in the T depen-

dence of DAτα. Since the diffusion coefficient decreases but the relaxation

time increases as the temperature decreases, there is a competition between

two opposing effects. The respective rates of increase and decrease with T

will exactly cancel each other only if the exponent is 1. Since in 2D, the

exponent is never 1, the quantity DAτα goes through an extremum and is

never constant. Qualitatively same T dependence of DAτα is observed in 3D,
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however the minimum is less pronounced, indicating that in 3D, the break-

down is weaker than in 2D. Finally, in 4D, DAτα = constant at high T as

expected and increases as T decreases as low T .

As a comparison, we also show the behaviour of DA/T vs. τα and the T

dependence of DAτα

T
in the bottom row of each of the Figs. 4.11 (2DR10),

4.12 (2DMKA), 4.13(3DKA) and 4.14(4DKA). The DA/T vs. τα plots show

a fractional SE relation at both low and high T in all dimensions. This is

qualitatively a different behaviour than the DA vs. τα plot which emphasizes

the importance of the temperature factor. Also the value of the breakdown

exponent from the DA/T vs. τα plot is somewhat different from the DA vs.

τα plot. However, the magnitude of the exponents is closer to 1 at higher

dimensions - thus we are led to the same conclusion that the SE breakdown

is weaker at higher dimensions.

The estimates of the breakdown exponents are summarized in Table 4.3.

Figs. 4.11 - 4.14 also show that the temperature of SE breakdown (TSEB),

estimated as the point of interaction of the low T and the high T fit in DA vs.

τα or η
T

plots (and using VFT fits to convert relaxation time to temperature),

is close to the Arrhenius to non-Arrhenius cross-over temperature Tonset in

all dimensions. Thus - at least in NVT simulations - the SE breakdown

occur at a much higher temperature than the divergence temperature Tc of

the MCT (all data are above Tc estimated from the fit of the T dependence

of relaxation time).

4.5.2 Rationalization of the low T exponents from the

AG relation

The fractional SE behaviour at low T can be rationalized by considering

the different dependence of the diffusion coefficient and α relaxation time

on the configuration entropy (Sc). The Adam Gibbs (AG) relation X =

X0 exp( Ax

TSc
), if it is valid, provides a way to test this hypothesis quantitatively

(X represents the dynamics: X = τα, (DA)−1 or (DA/T )−1 in the present

study). Fig. 4.15 shows that the AG relation is valid in KA model in 3 (top

row) and 4 dimensions (bottom row). We see that the slope of (DA)−1 or

(DA/T )−1 vs. (TSc)
−1 is different from that of τα vs. (TSc)

−1. Table 4.3

shows that the observed fractional SE exponent at low T can be interpreted
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Figure 4.11: Plots showing the breakdown of SER in 2DR10 model. Top
left : DA vs. τα plot. Top right: T dependence of DAτα. Bottom left: DA/T
vs. τα plot. Bottom right: T dependence of DAτα

T
. The low T data follow a

fractional SE relation. A clear change of exponent occurs at high T in DA vs.
τα plot, although the high T exponent is bigger than 1. The SE breakdown
occurs at a temperature TSEB closer to the onset temperature Tonset than Tc.
(TSEB estimated as the point of intersection of high T and low T fits; Tonset

is the Arrhenius to non-Arrhenius cross-over temperature; Tc is the MCT
transition temperature. All data points shown here are at T > Tc.)

as the ratio of the slopes in the AG plots in Fig. 4.15.

4.5.3 Summary

To summarize, we show that (i) the SE breakdown in weaker in four di-

mensions than in three dimensions which is consistent with earlier works
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Figure 4.12: Plots showing the breakdown of SER in 2DMKA model. Top
left : DA vs. τα plot. Top right: T dependence of DAτα. Bottom left: DA/T
vs. τα plot. Bottom right: T dependence of DAτα

T
. The low T data follow a

fractional SE relation. A clear change of exponent occurs at high T in DA vs.
τα plot, although the high T exponent is bigger than 1. The SE breakdown
occurs at a temperature TSEB closer to the onset temperature Tonset than Tc.
(TSEB estimated as the point of intersection of high T and low T fits; Tonset

is the Arrhenius to non-Arrhenius cross-over temperature; Tc is the MCT
transition temperature. All data points shown here are at T > Tc.)

[115,116]. (i) The breakdown exponent can be rationalized from the different

scaling of the diffusion coefficient and the relaxation time with the configu-

rational entropy. (iii) The behaviour in two dimensions is more complicated

but consistent with earlier work [117].
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Figure 4.13: Plots showing the breakdown of SER in 3DKA model. Top
left : DA vs. τα and η

T
plot. Top right: T dependence of DAτα and DAη

T
.

Bottom left: DA/T vs. τα and η plot. Bottom right: T dependence of DAτα

T

and DAη
T

. The low T data follow a fractional SE relation. A clear change of
exponent occurs at high T in DA vs. τα plot. The high T exponent (=-1)
expected from the SER is obtained from DA vs. η

T
plot. The SE breakdown

occurs at a temperature TSEB closer to the onset temperature Tonset than Tc.
(TSEB estimated as the point of intersection of high T and low T fits; Tonset

is the Arrhenius to non-Arrhenius cross-over temperature; Tc is the MCT
transition temperature. All data points shown here are at T > Tc.)

4.6 Results: Dependence of the fragility on

spatial dimensions

In this section we characterize the spatial dimension dependence of the

fragility. We estimate the kinetic fragility from the VFT fit to the T de-

pendence of the α relaxation times:
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Figure 4.14: Plots showing the breakdown of SER in 4DKA model. Top left :
DA vs. τα plot. Top right: T dependence of DAτα. Bottom left: DA/T
vs. τα plot. Bottom right: T dependence of DAτα

T
. The low T data follow a

fractional SE relation. A clear change of exponent occurs at high T in DA vs.
τα plot. The high T exponent (=-1) expected for a homogeneous (Gaussian
distribution of particle displacements) system is obtained from DA vs. τα

plot. The SE breakdown occurs at a temperature TSEB closer to the onset
temperature Tonset than Tc. (TSEB estimated as the point of intersection of
high T and low T fits; Tonset is the Arrhenius to non-Arrhenius cross-over
temperature; Tc is the MCT transition temperature. All data points are at
T > Tc.)

τ(T ) = τ0 exp

[

1

KV FT ( T
TV FT

− 1)

]

(4.11)

Fig. 4.16 shows the T dependence of the α relaxation times in five different
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Table 4.3: Estimates of the magnitude of the SE breakdown exponents in
different spatial dimensions D. Notations: (a) ξSE

1 = SE breakdown exponent
obtained from DA vs. τα or η

T
plots; (b) ξAG

1 = ratio of slopes from AG plots
using DA and τα; (c) ξSE

2 = SE breakdown exponent obtained from DA/T
vs. τα plots; (d) ξAG

2 = ratio of slopes from AG plots using DA/T and τα.
High T exponents are obtained from DA vs. τα plots.

D Model
Low T Exponents

High T exponents
ξSE
1 ξAG

1 ξSE
2 ξAG

2

2 2DR10 0.75 - 0.73 - 1.18
2 2DMKA 0.84 - 0.76 - 1.50
3 3DKA 0.83 0.85 0.76 0.75 ≈ 1
4 4DKA 0.90 0.90 0.82 0.84 0.98 ≈ 1

models: (a) the KA model in 2,3,4 dimensions; (b) the modified KA model in

2 dimensions and (c) the repulsive 2D R10 model. It is clearly seen that for

the same model (KA) the kinetic fragility is higher at higher dimensions. This

is also shown in the “fragility plot” in the bottom panel of Fig. 4.16 using a

“simulation glass transition temperature” defined from τ(Tg) = 105 (reduced

unit). The above trend indicates that the systems studied here are more

fragile at higher dimensions. Given the observed trends in 3 dimensions, this

suggests that systems at higher dimension are more heterogeneous. which is

counter-intuitive.

We present the following argument to partially explain this trend. Intu-

itively, fragility should be related to the mechanical stability of the packing

of configurations - a system is more fragile if the packing of microscopic con-

figurations are less stable. Stability of packing reduces if the energy barrier

for rearrangement is less. A less stable packing also implies more number

of configurations sampled by the system i.e. higher configurational entropy.

Thus there are two contributions to fragility: (i) configurational entropy and

(ii) energy barrier for rearrangement. A more precise analysis [128] using the

potential energy landscape formalism showed that for Gaussian distribution

of inherent structures and harmonic approximation for basin entropy, the T

dependence of TSc is linear:

TSc = KT

(

T

TK

− 1

)

, (4.12)
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Figure 4.15: Top row : The Adam Gibbs (AG) relation in 3DKA model using
as the dynamical quantities DA, τα (top left) and DA/T , τα (top right). Bot-
tom row : The AG relation in 4DKA model using as the dynamical quantities
DA, τα (bottom left) and DA/T , τα (bottom right). The slopes are different
for DA, DA/T and τα indicating that the diffusion coefficient has a different
dependence on the configuration entropy than the α relaxation time. Besides
the fractional SE exponent at low T can be interpreted as the ration of the
slopes (Table 4.3).

Eqn. 5.3 defines the thermodynamic fragility KT which represents the con-

tribution of the configuration entropy to the kinetic fragility. The origin of

KT can be understood from the properties (statistics and curvatures of the

potential energy hypersurface at minima) of the minima of the PEL [128]:
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KT =

(

σ
√

α

2
− σ2δS

2NkB

)

+

(

σ
√

α

2
+

σ2δS

4NkB

)

TK

T

≈
(

σ
√

α

2
− σ2δS

2NkB

)

T ≫ TK (4.13)



4.6 Results: Dependence of the fragility on spatial dimensions 157

Specifically, for T ≫ TK , KT is approximately constant and is determined

by (i) the spread of the density of states σ
√

α and (ii) the variation of basin

free energy with inherent structure energy δS.

Fig. 4.17 shows the T dependence of the configurational entropy in all five

models. We see that the thermodynamic fragility increases significantly as

the spatial dimension increases. Further, in Fig. 4.18 we show that the

quantity σ
√

α estimating the width of the configurational entropy density

increases with spatial dimension, which partially explains the increase of the

thermodynamic fragility with increasing spatial dimensions.

The thermodynamic fragility KT can be related to the kinetic fragility KV FT

by combining the AG relation τ = τ0 exp( A
TSc

), the linear T dependence of

TSc (Eqn. 5.3) and the VFT law Eqn. 6.3 to obtain,

KV FT = KT /A if AG relation is valid and TV FT = TK see Table 4.4

(4.14)

Eqn. 4.14 formally resolves the contributions of configurational entropy (KT )

and the energy barrier (A) to the kinetic fragility. Figs. 4.17 and 4.18

shows that the configurational entropy contribution increases with increasing

dimension thus partially explaining the increase in the kinetic fragility at

higher dimensions.

Table 4.4: Characteristic parameters for the models in different dimensions.
TK is the Kauzmann temperature obtained from extrapolating TSc to zero.
KV FT is the kinetic fragility obtained from VFT fit to relaxation times. KT

is the thermodynamic fragility obtained from T-dependence of TSc. A is
the Adam Gibbs coefficient. KAG = KT /A is the estimated kinetic fragility
estimate using AG relation.

Model Density TK TV FT Tg KV FT KT A KAG =
KT /A

4D KA 1.60 0.525 0.530 0.676 0.30 0.972 3.382 0.29
3D KA 1.20 0.28 0.295 0.402 0.21 0.314 1.79 0.17
2D KA 1.20 0.477 0.501 0.852 0.11 0.260 - -
2D MKA 1.20 0.251 0.214 0.361 0.12 0.166 - -
2D R10 0.85 0.181 0.326 0.453 0.22 0.177 - -
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4.7 Results: Direct estimate of heterogeneity

in different spatial dimensions

4.7.1 Estimate of DH from χpeak
4 and αpeak

2

Temperature dependence: Here we report the temperature dependence

of the peak of the dynamical susceptibility χpeak
4 and that of the non-Gaussian

parameter αpeak
2 in different models in Figs. 4.19, 4.20, 4.21 and 4.22. Clearly,

in all dimensions, the peak heights χpeak
4 and αpeak

2 grows as the temperature

decreases. This provides direct evidence that the dynamics is heterogeneous

in all dimensions at least in the range of the present study.
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Figure 4.19: Top row: T dependence of χ4(t) and the peak height χpeak
4 in

2D R10 model. Bottom row: T dependence of the non-Gaussian parameter
α2(t) and the peak height αpeak

2 in 2D R10 model.
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Figure 4.20: Top row: T dependence of χ4(t) and the peak height χpeak
4 in

2DMKA model. Bottom row: T dependence of the non-Gaussian parameter
α2(t) and the peak height αpeak

2 in 2DMKA model.
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Figure 4.21: Top row: T dependence of χ4(t) and the peak height χpeak
4 in

3DKA model. Bottom row: T dependence of the non-Gaussian parameter
α2(t) and the peak height αpeak

2 in 3DKA model.
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Figure 4.22: Top row: T dependence of χ4(t) and the peak height χpeak
4 in

4DKA model. Bottom row: T dependence of the non-Gaussian parameter
α2(t) and the peak height αpeak

2 in 4DKA model.
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Comparison of different models: As the temperature scales are differ-

ent in different models, one needs a dimensionless temperature to compare

the behaviour heterogeneity in different models. Here we use, somewhat ar-

bitrarily, the onset temperature to scale the temperature axis. We estimate

the degree of heterogeneity from the ratio χpeak
4 (T )/χpeak

4 (Tonset). The com-

parison of this degree of heterogeneity for different models are shown in Fig.

4.23. We see that the degree of heterogeneity grows more steeply in 4D than

in 3D for the KA model. This is another evidence that the 4D KA model is

more heterogeneous than the 3D KA model. However, Fig. 4.23 also shows

that this trend does not continue to two dimensions.
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Figure 4.23: Comparison of the degree of heterogeneity in different dimen-
sions using the χpeak

4 as a measure. χpeak
4 scaled by the value at the Tonset is

plotted against temperature scaled by the onset temperature Tonset.

4.7.2 Estimate of DH from βKWW

As a third direct measure of the degree of dynamical heterogeneity, we esti-

mate the stretched exponent βKWW . We have computed βKWW from the self

intermediate scattering function FsA(k, t) for k at the peak of the structure

factor. Fig. 4.24 shows the temperature dependence of FsA(k, t) for different

models. The values of βKWW for different models are compared in Fig. 4.25
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with respect to the dimensionless temperature T/Tonset. We see that (i) for

all models βKWW decreases monotonically with lowering temperature. On

increasing temperature, βKWW approaches 1, albeit at a temperature much

higher than the onset temperature. (ii) At the same dimensionless tempera-

ture, the value of βKWW is lower in 4D KA model than in 3D KA model. This

is another indication that dynamics is more heterogeneous in 4D KA model

than in 3D KA model. (iii) This trend does not continue in two dimensions.
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n) + fc exp(−(t/τα)βKWW ) with 0 ≤ βKWW ≤ 1. n = 2 in 4D
and 3D and n = 1 at low temperatures in 2D.
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Figure 4.25: Comparison of the degree of heterogeneity in different dimen-
sions using the βKWW as a measure.

4.8 Attempts to reconcile the opposite trends

In the present study, the observed trend in the SE breakdown suggests that

the systems in higher dimensions are less heterogeneous. However, the ob-

served trends in the direct indicators of heterogeneity (βKWW , χpeak
4 ) as a

function of (dimensionless ) temperature suggest that the systems in higher

dimensions are more heterogeneous which is not only contradictory but also

counter-intuitive. In an attempt to resolve this opposing trends, we com-

pare the degree of SE breakdown and the degree of heterogeneity in different

models in Fig. 4.26. We estimate the degree of SE breakdown as the ratio
Dτ/T

(Dτ/T )Tonset
. We see that for each model, the degree of SE breakdown is well

correlated with and varies monotonically with the degree of heterogeneity.

The main difficulty of comparing different models is to find the appropriate

dimensionless control variable as a function of which a given indicator of

heterogeneity can be plotted for different models. We argue that it is per-

haps more natural to compare the heterogeneity for different models at the

same time rather than at the same (dimensionless) temperature. Addition-

ally, one may use the absolute value of the relaxation time thus eliminating
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Figure 4.26: Parametric plots of the degree of SE breakdown Dτ/T vs. and
the other direct indicators of DH - (i) βKWW and (ii) χpeak

4 scaled with the
value at the onset temperature.

the ambiguity about choosing appropriate reference temperature to make

temperature dimensionless. In Fig. 4.27 we show the comparison of βKWW
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and χpeak
4 vs. τ for different models. We see that when compared at the same

characteristic time, the systems in higher dimensions are less heterogeneous

at low temperatures. We, however note in Fig. 4.28 when αpeak
2,A is used as a

measure of heterogeneity, 2D systems break this trend.
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Figure 4.27: Comparison of the degree of heterogeneity in different dimen-
sions at the same characteristic time using χpeak

4 and βKWW as direct indica-
tors of heterogeneity. Vertical lines denote the SE breakdown temperatures
TSEB.

4.9 Summary and conclusions

The present study is an attempt to generalize in other spatial dimensions,

the inter-relations among the dynamical heterogeneity, the SE breakdown
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Figure 4.28: Comparison of the degree of heterogeneity in different dimen-
sions at the same characteristic time using αpeak

2,A (taking A type particles
only) as a direct indicator of heterogeneity.

and the fragility which is mainly based on observations in three dimensions.

We have considered five models in 2,3,4 spatial dimensions and have charac-

terized the dynamical heterogeneity using both direct (χ
peak
4 , α

peak
2 , βKWW )

and indirect (the degree of SE breakdown, fragility) indicators. The conclu-

sions are :

1. The data clearly show that the SE breakdown at low temperatures, which

can be represented by a fractional SE relation in all models studied here,

becomes weaker at higher dimensions which can be rationalized in three

and four dimensions in terms of different dependence of the diffusion co-

efficient and the relaxation time on the configuration entropy. This trend

is expected based on earlier works [115, 116]. However, we note that the

description of SE breakdown is somewhat complicated by the fact that

the method of representation of data is important. We also note that

based on the observed trends in 3D, the dimension dependence of the SE

breakdown indicated that systems in 4D are less heterogeneous than in

3D.

2. We have also conclusively shown that the systems at higher dimensions

are more fragile. Similarly, by direct estimates of the dynamical hetero-

geneity from χ
peak
4 , α

peak
2 , βKWW suggest that systems in 4D are more

heterogeneous than in 3D at the same (dimensionless) temperature.



4.10 Future works 169

3. The contradictory trend with dimensions is resolved by comparing the

degree of heterogeneity in different dimensions at constant relaxation

time rather than at constant temperature. At the same relaxation time,

and at low temperatures, all three direct measures of heterogeneity i.e.

χ
peak
4 , α

peak
2 , βKWW clearly show that 4D is less heterogeneous than 3D.

4.10 Future works

• It is interesting to study the k-dependence of the SE breakdown and cal-

culate the Fickian lengthscale for different models.

• In order to pinpoint the relation between the SE breakdown and hetero-

geneity, it is interesting to devise a test by which one can suppress the

heterogeneity in a controlled way and study the effect on the SE relation.

Such test has been discussed in literature [102].

• In order to completely understand the dimension dependence of the kinetic

fragility, one needs to compare the effective energy barriers in different

dimensions, which may be estimated from the relaxation time.



Chapter 5

Dependence of the fragility of a

glass former on the softness of

interparticle interactions

5.1 Introduction

The relaxation times of supercooled liquids rise rapidly as the liquids are

cooled towards their laboratory glass transition temperatures (Tg). The con-

cept of fragility [27, 126], introduced and analyzed extensively by Angell,

quantifies how rapidly relaxation times increase in different materials as tem-

perature decreases. It is a material property and has been proved to be useful

in organizing and understanding the diverse behaviour seen in glass formers.

Fragility can be defined in various ways (see Chapter 1). In the present study,

a kinetic index of fragility (KV FT ) is defined from a VFT fit of the relaxation

times (or the diffusion coefficients),

τ(T ) = τ0 exp

[

1

KV FT ( T
TV FT

− 1)

]

(5.1)

Despite considerable research efforts [126–142], and the observation of many

empirical correlations between fragility and other material properties [133],

a fully satisfactory understanding of fragility has not been reached yet. Such

understanding has been sought, broadly, along two lines. The first is a con-

ceptual understanding of fundamental quantities that may govern fragility.

170
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An example of this kind is the use of the potential energy landscape approach

in combination with the Adam Gibbs (AG) relation [37] between the relax-

ation time and the configuration entropy [Eqn. 6.4] to relate features of the

energy landscape of a glass former to the fragility. The Adam-Gibbs relation

τ(T ) = τ0 exp(
δµS∗k−1

B

TSc

) (5.2)

relates the temperature dependence of the relaxation times to the tempera-

ture change in the configuration entropy Sc, where δµ is an activation free

energy for particle rearrangements, and S∗ is the configurational entropy of

cooperatively rearranging regions invoked in Adam-Gibbs theory (see Chap-

ter 1).

If A ≡ δµS∗k−1
B has no significant role to play in determining the fragility of

a substance, it is the temperature variation of TSc that dictates the fragility.

If the T-dependence of Sc is given by

TSc = KT

(

T

TK

− 1

)

, (5.3)

the Adam-Gibbs relation yields the VFT relation, with the identification

KV FT = KT /A, TV FT = TK . Thus, KT is a thermodynamic index of fragility.

In the potential energy landscape approach [71, 72] configuration entropy

is associated with the number of local potential energy minima or inherent

structures (IS) [76], and can be computed in terms of parameters describing

the energy landscape [128]. Hence thermodynamic fragility can be under-

stood in terms of parameters of the potential energy landscape, namely the

distribution of inherent structures and the dependence of the vibrational or

basin entropy corresponding to inherent structures on theie energies. Al-

though the exact temperature dependence of the configuration entropy de-

pends on detailed properties of the distribution of inherent structures, and

KT is not a constant even in the simplest case, such analysis does yield insight

into the relationship between the energy landscape features and fragility. To

a first approximation, the broader the distribution of energies of inherent

structures, the larger the fragility of a glass former [128]. Going beyond such

analysis, one needs to also understand the behavior of the prefactor A, which

is related to the high temperature activation energy [130, 131, 137, 146]. To
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the extent that the Adam-Gibbs relation quantitatively describes the temper-

ature dependence of the relaxation times, such analysis provides a route to a

fundamental understanding of fragility in terms of the phase space properties

of a substance.

However, such a conceptual understanding does not directly address the de-

pendence of fragility on specific, controllable material properties, an under-

standing that is desirable from the perspective, e.g., of materials design.

The investigation of the dependence of fragility on the nature of molecular

architecture and intermolecular interactions defines therefore a second dis-

tinct line of investigation, which has been pursued by various groups. For

example, Dudowicz, Freed and Douglas [135, 136] have investigated the role

of backbone and side group stiffness in determining the fragility of polymer

glass formers. In another recent example, from an experimental investigation

on deformable colloidal suspensions, Mattsson et al. [141,142] suggested that

increasing the softness of the colloidal particles should decrease the fragility

of the colloidal suspensions, and that such a principle should be more gen-

erally applicable. Indeed, this conclusion is consistent with that of Douglas

and co-workers [135] that the ability to better pack molecules leads to lower

fragilities. In energy landscape terms, one may understand this conclusion

as implying that molecules that pack well together will have narrower distri-

butions of inherent structure energies.

The influence of the softness of interaction on the fragility was also inves-

tigated some time ago via computer simulations of model glass formers by

Bordat et al [133,134]. They considered a binary mixture of particles inter-

acting via generalized Lennard Jones potentials, of the form

V (r) =
ǫ

(q − p)

(

p(
σ

r
)q − q(

σ

r
)p

)

(5.4)

for combinations of the exponents (q, p) of repulsive and attractive parts of

the potential (12,11), (12,6) and (8,5). These combinations, corresponding

to models labeled I, II and III, have decreasing curvatures at the minimum of

the potential, and thus increasing softness. In other words, Model I (12, 11) <

Model II (12, 6) < Model III (8, 5) in increasing order of softness, that is,

Model III (8, 5) is the softest potential [See Figs. 5.1 and 5.2]. By evaluating

the kinetic fragility of these models (the steepness index defined above),

Bordat et al. found that increasing softness of the interaction potential
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increases the kinetic fragility [133,134].

The trend found by Bordat et al. therefore is apparently not consistent

with expectations arising from the other studies mentioned, although the

nature of the changes in the interactions considered are not strictly the same.

In order to understand better the relationship between the nature of the

intermolecular interactions and fragility, in the present work we calculate

the kinetic fragility KV FT using computer simulation data of the diffusion

coefficient, and relaxation times obtained by a number of different means. We

also calculate, using the procedure in [69,70,128], the configuration entropy,

from which we calculate a thermodynamic fragility (KT ). We find that these

two fragilities show opposite trends, with the kinetic fragility increasing with

softness, and the thermodynamic fragility decreasing with softness. In order

to understand this apparent disagreement, we must consider the full form of

the Adam-Gibbs relation, including terms that relate to the high temperature

activation energy. We present our analysis along these lines below.

Figure 5.1: Comparison of pair interaction potential Vαβ without truncation
for the three different potentials used in the present study. rmin

αβ are the
positions of the minima of the interaction potentials.
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Figure 5.2: Comparison of pair interaction potential Vαβ with truncation for
the three different potentials. rmin

αβ are the positions of the minima of the
interaction potentials.
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5.2 Simulation Details

We have studied a 80:20 binary mixture of modified Lennard Jones particles

in three dimensions. The interaction potential is of the form given above

in Eq. 5.4 with a truncation that makes both the potential and force go to

zero smoothly at a cutoff distance rc. The potential and the other simulation

details are described in Chapter 2. The three different models without and

with cutoff are shown in Figs. 5.1 and 5.2 respectively.

5.3 Methods

In this section, we describe the various quantities that have been calculated

and the methods employed for such calculations.

5.3.1 The α relaxation time

The following measures have been used to extract the α relaxation times (see

Chapter 2).

1. Diffusion coefficient (DA) from the mean squared displacement (MSD) of

the A type particles.

2. Relaxation times obtained from (i) the decay of overlap function q(t) using

the definition q(t = τα, T )/N = 1/e. (ii) The characteristic time τ4(T )

at which the dynamical suscetibility χ4(t) is maximum. (iii) The decay

of the self intermediate scattering function Fs(k, t) using the definition

Fs(k, t = τα, T ) = 1/e at k ≃ 2π
rmin

.

Since the relaxation times from q(t), χ4(t) and Fs(k, t) are mutually propor-

tional as shown in Fig. 4.8 in Chapter 4, we discuss further only the time

scale obatined from q(t).

5.3.2 The configurational entropy

The configurational entropy (Sc) per particle, is calculated [69] by subtracting

from the total entropy of the system the vibrational component (see Chapter
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1):

Sc(T ) = Stotal(T ) − Svib(T ) (5.5)

The total entropy of the liquid is obtained via thermodynamic integration

from the ideal gas limit (see Chapter 2). The vibrational entropy (also called

the basin entropy) is calculated by making a harmonic approximation to

the potential energy about a given local minimum [69–72]. The procedure

(see Chapter 2) used for generating local energy minima, and calculating the

vibrational entropy is as outlined in [69,70].

We have also computed the configurational entropy density Sc(eIS) = kB ln Ω(eIS)

where Ω(eIS) is the number density of inherent structures with energy eIS

and to a good approximation may be described by a Gaussian. Equivalently,

Sc(eIS) can be described by a parabola,

Sc(eIS) = α − (eIS − e0
IS)2

σ2
(5.6)

The parameter α denotes the peak value of Sc(eIS) which occurs at energy

e0
IS. Sc(eIS) is zero at eIS = e0

IS ± σ
√

α. Thus σ
√

α is a measure of the

spread of Sc(eIS). We denote the lower root e0
IS − σ

√
α by emin

IS .

In the harmonic approximation to the vibrational entropy, the average value

of IS energy sampled by a system at a given temperature < eIS > (T ) is

predicted to be linear in inverse temperature β = 1/T :

〈eIS〉(T ) = 〈eIS〉(∞) − σ2

2T
(5.7)

where 〈eIS〉(∞) is the extrapolated limiting value of 〈eIS〉 at high tempera-

tures. These parameters which characterizes the potential energy landscape

are tabulated in Table 5.2 for different potentials.

5.3.3 Characteristic temperature scales

We mention briefly how the different characteristic temperatures (see Chap-

ter 1) are determined in the present study.

1. Tonset : The onset temperatures are estimated from the temperature de-

pendence of the inherent structure energies.

2. TMCT : The apparent divergence temperature of the mode coupling theory
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Table 5.1: Characteristic Temperatures

Quantity (12,11) (12,6) (8,5)

Tonset 1.27 0.9 0.42
Tc from (DA

T
)−1 0.77 0.42 0.22

Tc from q(t) 0.77 0.42 0.23
TV FT from (DA

T
)−1 0.59 0.32 0.17

TV FT from q(t) 0.55 0.29 0.16
TK 0.54 0.28 0.16

is estimated from the MCT fit : ln τ = a0 − δ ln(T − TMCT ) to the tem-

perature dependence of both relaxation times and diffusion coefficients.

3. TV FT : The divergence temperature of the Vogel-Fulcher-Tamman (VFT)

law is also estimated from both both relaxation times and diffusion coef-

ficients using ln τ = a0 +
A

T − TV FT

.

4. TK : The Kauzmann temperature at which the configurational entropy

becomes zero on extrapolation is determined from the temperature de-

pendence of the average configurational entropy (Eqn. 5.3) using the

condition Sc(TK) = 0.

The different characteristic temperature scales for different potentials are

tabulated in Table 5.1.

5.3.4 Choice of density

In supercooled liquids, at low temperature, a pressure vs. density isotherm

go through a minimum [69] called the spinodal density. A spinodal is defined

by the condition ∂P
∂V

|T = 0. At a given temperature, below the spinodal

density the liquid state is unstable (system has negative compressibility).

The pressure calculated from inherent structure (IS) trajectories as a function

of density also show this minimum and corresponds to the zero temperature

limit of the spinodal density. Any simulation of system in the (metastable)

homogeneous liquid state must be performed above the spinodal density. In

Fig. 5.3 the IS pressure vs. density isotherms are shown for all models. The

present simulation is done at density ρ = 1.2 which is well above the spinodal

densities for all models.
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Figure 5.3: Inherent structure pressure vs. density isotherms for all models.
The density minimum for IS pressure occurs at ρ = 1.04, 1.09, 1.18 respec-
tively for models I (12, 11), II (12, 6), and III (8, 5). This density defines the
lower bound for simulations of the system in the homogeneous liquid state.
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5.4 Results: the thermodynamic fragility

5.4.1 Inherent Structure energy

The inherent structure energy of a fragile glass forming liquid is approx-

imately constant above a characteristic cross-over temperature Tonset and

show significant decrease with decreasing temperature below Tonset. This

reflects the qualitative change in phase space sampling as temperature de-

creases. The system samples all of the potential energy lanscape (PEL) at

high temperature (above Tonset) hence the average inherent structure energy

is independent of temeprature. However, phase space sampling becomes

“landscape influenced” at low temperature (below Tonset) hence average IS

energy becomes temperature dependant. This behaviour is seen for all the

models in Fig. 5.4. We note that the cross-over temperature Tonset decreases

as the softness increases from models I(12, 11) to III(8, 5). The average IS

energy depends linearly on inverse temperature (β = 1/T ) if (i) the number

density of inherent structures with energy eIS is a Gaussian and (ii) the basin

free energy can be approximated by a harmonic approximation to the poten-

tial energy about a given local minimum. We show in Fig. 5.5 that average

IS energy is indeed linear with 1/T at low temperatures for all models. Fig.

5.5 also provides a more precise estimate of the location of Tonset.

We also compute the distribution of distribution P (eIS, T ) of IS energies

sampled at different temperature and show in Fig. 5.6 that they are well

descibed by a Gaussian for all softnesses.

5.4.2 The configuration entropy

The total entropy

The total (or bulk) entropy (Stotal(ρ, T )) of the system is calculated from

the total (bulk) free energy of the system by thermodynamic integration (see

Chapter 2). Typical pressure vs. density isotherms at Tref and temperature

dependence of potential energies are shown in Figs. 5.7 and 5.8 respectively.

Temperature dependence of the total free energy and the total entropy are

shown in Figs. 5.9 and 5.10. We see that at a given temperature, total en-

tropy increases as softness increases. The calculation is validated by checking
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Figure 5.4: Temperature dependence of the inherent structure energy eIS for
the studied models shifted by the corresponding high temperature limiting
values elim

IS for clarity. The values of elim
IS are −6.003,−6.886,−7.191 for

models I (12, 11), II (12, 6) and III (8, 5) respectively.
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Figure 5.5: Inverse temperature dependence of IS energy shows linear depen-
dence at low T for all softnesses.

that the total free energy and entropy computed using two different refer-

ence high temperatures match at all temperatures to an excellent degree of
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Figure 5.6: Normalized probability distribution (P (eIS, T )) of sampling in-
herent structures at different temperatures for models I,II and III. Inherent
structures are taken from three to five independent samples with runlengths
∼ 100 times longer than α relaxation times. It is seen that distribution is
Gaussian for all state points considered here.
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Figure 5.7: Typical pressure vs. density isotherms for all three models at the
same reference temperature Tref = 5.0. Lines are guide to eyes.

accuracy.

The basin and the configuration entropy

The basin free energy and the basin entropy are computed in harmonic ap-

proximation using the inherent structure approach (see Chapter 1). Fig. 5.10

shows the temperature dependence of the basin entropy for different soft-

nesses. It is seen that at a given temperature, the basin entropy increases as

softness increases.

The configuration entropy Sc(T ) is computed as the difference of the total

and the basin entropy. It is seen from Fig. 5.11 that at a given temperature,

the configuration entropy increases as softness increases. The configuration

entropy density Sc(eIS) is by definition independent of temperature. Hence

Sc(eIS) calculated using the IS formalism at different temperatures (equiva-

lent to sampling different regions of configuration space) should fall on the

same master curve. Further for all models, this master curve is found to be

well approximated by a parabola: SC(eIS) = α − (eIS−e0

IS)2

σ2 . This is shown

in Fig. 5.12 and used to validate the calculation. Here α is the peak value

of SC(eIS) occuring at e0
IS. Various parameters related to the distribution of

inherent structure energies are listed in Table 5.2.
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Figure 5.9: Temperature dependence of total (bulk) free energy for all models
from low T to Tref . Lines are guide to eyes.

5.4.3 Thermodynamic fragility vs. softness

The harmonic approximation of basin entropy predicts that at low temper-

atures well below Tonset, The product TSc(T ) has linear T dependence. Fig.

5.13 shows that indeed, TSc(T ) varies linearly with temperature, which al-

lows us to define TK . The TK values for the different potentials are listed in

Table 5.1. Thermodynamic fragility KT as defined in eqn. 5.3 is computed

from the slope of TSc vs. T/TK . It is found to decrease as the softness of

the interaction potential increases, as shown in Fig. 5.14. Such behavior is

in line with expectations, e. g. from [135,141].
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Figure 5.12: Configuration entropy density Sc(eIS) vs. inherent structure
energy (eIS) for models I, II and III. Configuration entropy densities are
computed at all low T fall on the same master curve because configuration
entropy density is a geometric property of potential energy landscape and
hence independentof temperature. Here this is used to validate the compu-
tational method. Besides, the master curve is expected to be a parabola

which is demonstrated by the fit lines to the form SC(eIS) = α − (eIS−e0

IS)2

σ2 .
Here α is the peak value of SC(eIS) occuring at e0

IS. For clarity, the X axis
is shited by subtracting emin

IS = e0
IS −σ

√
α, the IS energy where SC(eIS) = 0.

The vertical tics on the fitting curves denote the positions of the limitting
value at high T, Sc(e

lim
IS ). The numerical values of different parameters are

summarized in Table 5.2.
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Figure 5.13: Temperature dependence of TSc for the studied models to de-
termine the Kauzmann temperature. TK = 0.54, 0.28, 0.16 respectively for
models I (12, 11), II (12, 6), and III (8, 5). The value of TK from the extrap-
olated crossing of bulk and basin entropies vs. temperature reported in [70]
is TK = 0.2976 and in [51] is TK ∼ 0.29. The TK values obtained from this
plot is used to determine the thermodynamic fragility in Fig. 5.14.

Figure 5.14: Determination of the thermodynamic fragility from the rela-
tion TSc = KT ( T

TK
− 1) for the studied models. KT is the slope of the

linear fit shown. TK is the temperature at which Sc = 0, obtained from
the linear fit shown in Fig. 5.13. Thermodynamic fragility (KT ) values are
0.551, 0.323, 0.211 for models I (12, 11), II (12, 6), and III (8, 5) respectively
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5.5 Results : the kinetic fragility

5.5.1 The mean squared displacement and the time

correlation functions

We first show in Figs. 5.15 - 5.20 the time dependence of (i) the mean

squared displacement (MSD) of A particles (ii) the overlap function q(t) (iii)

the dynamical susceptibility (χ4(t) and (iv) the self-intermediate scattering

function (Fs(k, t)) computed for representative trajectories at different tem-

peratures in increasing order of softness. These plots are used to check that

each trajectory is long enough such that the overlap function decays to zero

and the MSD is well into the diffusive regime.
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Figure 5.15: Representative MSD of A (bigger) particles and the overlap
function for model I(12,11).
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Figure 5.16: Time dependence of χ4(t) and Fs(k, t) for model I (12,11).
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Figure 5.17: Representative MSD of A (bigger) particles and the overlap
function for model II(12,6).
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Figure 5.18: Time dependence of χ4(t) and Fs(k, t) for model II (12,6).
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Figure 5.19: Representative MSD of A (bigger) particles and the overlap
function for model III(8,5).
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Figure 5.20: Time dependence of χ4(t) and Fs(k, t) for model III (8,5).
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5.5.2 Kinetic fragility vs. softness

Kinetic fragility (KV FT ) is estimated by fitting to the VFT form Eq. 6.3 the

diffusion coefficients and the relaxation times.

In Figs. 5.21 and 5.22 (top panels), we show the Arrhenius plot of the dif-

fusion coefficients and the relaxation times from the q(t), plotted against

TK/T . The VFT divergence temperatures TV FT , obtained from VFT fits

to the data for temperatures below the onset temperature, are found to be

close to TK and are listed in Table 5.1. The middle panels of Figs. 5.21 and

5.22 show Arrhenius fits to high temperature data (above the onset temper-

ature), from which activation energies E0 (such that τ(T ) = τ0 exp(E0/kBT )

are obtained. These are listed in Table 5.3, and will be discussed later. In

the bottom panels of Fig. 5.21 and 5.22, we show the effective activation en-

ergy defined as E(T ) ≡ kBT ln(τ(T )/τ0) scaled by E0 (similarly for DA/T ),

plotted against kBT/E0. The usual three-parameter-VFT fits (without as-

suming TV FT = TK) to diffusion coefficients and relaxation times from q(t)

are shown in Fig. 5.23. We also show in Figs. 5.24 and 5.25 the VFT fits

to relaxation times obtained from the χ
peak
4 and the Fs(k, t) for the sake of

completeness. However, we do not use the relaxation times from the χ
peak
4

and the Fs(k, t) for further analyses.

We note in the passing that for model (12, 6) the proportionality E0 ∼ 6Tc

[135] is reasonably well satisfied. However, the ratio E0/Tc decreases from

∼ 7 to ∼ 5 as softness increases.

Next, we calculate the kinetic fragilities KV FT , from diffusion coefficients

and relaxation times, using the divergence temperature TV FT obtained with

TV FT as a fit parameter, as well as using TK estimates from the configu-

ration entropy as the divergence temperatures. The corresponding kinetic

fragilities, labeled KI
V FT and KII

V FT , are listed in Table 5.4, along with the

thermodynamic fragilities KT . We find that the kinetic fragilities increase as

the softness of the interaction potential increases, thus showing a trend that

is opposite to that of the thermodynamic fragility.
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Figure 5.21: Top row: Inverse diffusion coefficient vs. scaled inverse temper-
ature TK

T
. Lines through the data show VFT fits to the data below the onset

temperature. TK estimated from Fig. 5.13 are used as the divergence tem-
peratures in the VFT fits. Middle row: Arrhenius fits to high temperature
data of inverse diffusion coefficient to determine high temperature activation
energies E0. Bottom row: effective activation energy E(T ) (see text) scaled
by E0, plotted against kBT/E0.
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Figure 5.22: Top row: Relaxation time from overlap function vs. scaled
inverse temperature TK

T
. Lines through the data show VFT fits to the data

below the onset temperature. TK estimated from Fig. 5.13 are used as the
divergence temperatures in the VFT fits. Middle row: Arrhenius fits to high
temperature data of relaxation time from overlap function to determine high
temperature activation energies E0. Bottom row: effective activation energy
E(T ) (see text) scaled by E0, plotted against kBT/E0.
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Figure 5.23: Three-parameter, usual VFT fit to diffusion coefficients and
relaxation time from q(t) for all models.
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Figure 5.24: VFT fit to relaxation times from the χpeak
4 (t) vs. temperature

for all models.
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5.6 Adam Gibbs relation and fragility

In order to understand this discrepancy, we consider again the Adam-Gibbs

relation, which relates the kinetic and thermodynamic fragilities. Compar-

ing Eq. 6.3, Eq. 6.4 and Eq. 5.3, we note that the relationship between

the kinetic and thermodynamic fragilities that we may deduce assuming the

validity of the VFT and the AG relations is

KV FT = KT /A (5.8)

and we expect at least the same trend in the two fragilities under the assump-

tion that the term A does not substantially alter the proportionality between

kinetic and thermodynamic fragilities. To assess the degree to which this is

true in our models, we show in Figs. 5.26, 5.27 and 5.28 the Adam-Gibbs

plots of the diffusion coefficient and relaxation times. These plots show that

the coefficient A, obtained from the slopes (and listed in Table 5.3), indeed

varies from one model to the other, decreasing as the softness increases.

Thus, the ratio KT /A shows the opposite trend, increasing as the softness

increases.

We next attempt to understand the dependence of the Adam-Gibbs coeffi-

cient A on the softness of the interaction. First we consider the high temper-

ature Arrhenius behavior of relaxation times, in terms of the Adam-Gibbs

relation. Such Arrhenius behavior can be expected if the configuration en-

tropy effectively becomes a constant, in which case, the high temperature

activation energy will be given by

E0 = AkB/Sc∞ (5.9)

However, the asymptotic high temperature configuration entropy is difficult

to assess directly, as the various available approaches to computing the basin

entropy do not work well in this regime(see e. g. [68]). We thus use the follow-

ing procedure: First, we determine directly from simulations the high tem-

perature limit of the inherent structure energies, elim
IS (see Fig. 5.4 ). Then,

we use the extrapolation of the dependence of the configuration entropy Sc

on the inherent structure energy eIS obtained below the onset temperature

to obtain the high temperature limit of the configuration entropy (see Fig.

5.12), Sc(e
lim
IS ), which do not vary appreciably with softness of interaction,
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Figure 5.26: Adam Gibbs plots for the inverse diffusion coefficient of A parti-
cles and relaxation time from overlap function, for the three models studied.
The activation energy parameter A in Eq. 6.4, obtained from the slopes of
the data shown, are tabulated in table 5.3.
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Figure 5.27: Adam Gibbs relation for different softnesses where the relaxation
time is measured from χpeak

4 time.
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Figure 5.28: Adam Gibbs relation for different softnesses where the relaxation
time is measured from Fs(k, t).

and are listed in Table 5.2 . Table 5.2 also lists Sc(∞), the infinite tempera-

ture value of Sc obtained by extrapolating Eq. 5.3 to infinite temperature, a

procedure that is not justified at temperatures above the onset temperature.

Using these Sc(e
lim
IS ) values, and the activation energies E0 shown in Table
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5.3, we obtain estimates for the AG coefficient

Aest = E0Sc(e
lim
IS )/kB (5.10)

which are shown in Table 5.3. We note in Table 5.3 that E0 values decrease

strongly as the softness of the interactions increases, and with a correspond-

ing moderate increase of Sc(e
lim
IS ), our estimates of Aest agree rather well with

the values obtained directly from the Adam-Gibbs plots. We now designate

the thermodynamic fragility estimates obtained by considering the full form

of the Adam-Gibbs relation as

KAG = KT /A (5.11)

and list them along side the thermodynamic and kinetic fragility estimates

in Table 5.4 . As expected from the above discussion, the “Adam-Gibbs”

fragility estimates (KI
AG in Table 5.4 ) agree rather well with the kinetic

fragilities.

Although the above picture provides a consistent description of the fragilities

from kinetic and thermodynamic data, a question remains regarding the

variation of the high temperature activation energy E0 with the softness

of the interaction potential. To seek some insight into this question, we

consider works in recent years concerning the scaling of the temperature

dependence of dynamic and thermodynamic quantities at different densities

[130, 146, 147]. It has been shown by many groups that a scaled variable

ργ/T , where ρ is the density, captures the density variation of properties in

many liquids. The exponent γ can easily be shown to be n/3 for inverse

power law potentials, where n is the power of the inverse power law, but

even for other liquids, an effective γ has been shown to be derivable by

considering the correlated fluctuations of potential energy and the virial [146].

The exponent γ is obtainable as the ratio of fluctuations. We discuss this

density-temperature scaling in more detail in Chapter 6. Although such a

ratio is state point dependent, a “best fit” value, typically obtained from high

temperature state points, has been shown to effectively describe the scaling

of properties at different densities. Since we do not perform a full analysis

of the density dependence here, we do not estimate the best value of γ but

instead use the value at twice the onset temperature as an indicative value.

Fig. 5.29 shows the fluctuation data from which the γ value is obtained,
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Table 5.2: Potential energy landscape parameters and density tempera-
ture scaling exponents for the studied models. Fit forms used: 〈eIS〉(T ) =

〈eIS〉(∞) − σ2

2T
; SC(eIS) = α − (eIS−e0

IS)2

σ2 .

Quantity (12,11) (12,6) (8,5)
Density minimum for IS pressure 1.04 1.09 1.18

Height of SC(eIS) distribution α 0.863 0.886 0.905
Spread of SC(eIS) distribution α1/2σ 0.816 0.455 0.255
IS Energy where SC(eIS) = 0, emin

IS = e0
IS − σ

√
α -6.457 -7.132 -7.346

〈eIS〉(∞) -5.761 -6.734 -7.098
Limiting value of IS energy elim

IS -6.003 -6.886 -7.191
Sc(e

lim
IS ) 0.69 0.7 0.78

Sc(∞) = KT

TK
1.01 1.14 1.35

Density temperature scaling exponent at 2 × Tonset

γ1 6.09 4.99 3.71
γ2 6.18 5.07 3.89
γ3 6.27 5.15 4.09
ργ1 = 1.2γ1 3.04 2.48 1.97
ργ2 = 1.2γ2 3.09 2.52 2.03
ργ3 = 1.2γ3 3.14 2.56 2.11

and the temperature variation of the exponents. The values of γ we use are

shown in Table 5.2.

Based on the above considerations, we should expect the high temperature

activation energies to be proportional to ργ. Accordingly, we obtain estimates

of the activation energy in the form E0 = E00ρ
γ. These values, shown in Table

5.3, have a weaker temperature dependence than the directly evaluated E0,

and correspondingly, the fragility estimates obtained (shown in Table 5.4),

while showing a smaller decrease with softness, nevertheless decrease with

increasing softness of interaction. A further analysis is needed, therefore, to

elucidate the relevance of these considerations to evaluating the variation of

the high temperature activation energy.
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Figure 5.29: Determination of the density-temperature scaling exponent γ
from the correlation between instantaneous potential energy (U) and virial

(W ). γ1 = 〈∆W∆U〉
〈(∆U)2〉 , γ2 =

√
〈(∆W )2√
〈(∆U)2〉

, γ3 = 〈(∆W )2〉
〈∆W∆U〉 where ∆U = U − 〈U〉

and ∆W = W − 〈W 〉 represent fluctuations about mean of potential
energy and virial respectively. The left panel shows the correlation be-
tween energy and virial at temperatures ≈ 2Tonset, with straight line fits
〈∆W 〉 = γ2(2Tonset)〈∆U〉. The right panel shows the temperature depen-
dent values of γ for the studied models.
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Table 5.3: Comparison of activation energy parameters. A is the activation
parameter in the Adam Gibbs (AG) relation. E0 is the high temperature
activation energy in Arrhenius fit. Sc(e

lim
IS ) is the values of configuration

entropy density at the limiting value of inherent structure energies at high
temperatures. AI

est = E0Sc(e
lim
IS )/kB is the expected value of parameter A

obtained from E0. Eest
0 = E00ρ

γ is the estimate of E0 from density - tempera-
ture scaling of relaxation time where γ2 are the values of the scaling exponent
at twice the onset temperature. AII

est = Eest
0 Sc(e

lim
IS ) is the expected value of

energy barrier A obtained from Eest
0 .

From q(t) From (DA

T
)−1

Model
A E0 AI

est E00 Eest
0 AII

est A E0 AI
est E00 Eest

0 AII
est

(12,11) 2.88 5.67 3.91 4.13 2.85 2.27 3.65 2.52 2.63 1.81
(12,6) 1.79 2.67 1.87 1.34 3.38 2.40 1.35 1.71 1.20 0.85 2.14 1.52
(8,5) 1.02 1.28 1.00 2.72 2.12 0.71 0.83 0.65 1.73 1.35

Table 5.4: Comparison of fragility parameters. KT is thermodynamic
fragility obtained from temperature dependence of TSc(T ). KI

V FT is kinetic
fragility from VFT fit and KII

V FT is kinetic fragility obtained from VFT fit
assuming TV FT = TK . KI

AG = KT

AI
est

is the fragility expected from high tem-

perature activation energy E0 obtained from an Arrhenius fit. KII
AG = KT

AII
est

where the high temperature activation energy is estimated from density-
temperature scaling.

From q(t) From (DA

T
)−1

Model
KT KI

V FT KII
V FT KI

AG KII
AG KI

V FT KII
V FT KI

AG KII
AG

(12,11) 0.551 0.20 0.19 0.14 0.19 0.34 0.24 0.22 0.30
(12,6) 0.323 0.21 0.20 0.17 0.13 0.38 0.26 0.27 0.21
(8,5) 0.211 0.26 0.23 0.21 0.10 0.40 0.32 0.32 0.16
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5.7 Conclusions

To summarize, we have studied the effect of the softness of the interaction

potential on fragility in three model glass formers. We find on the one hand

that the kinetic fragility obtained from diffusion coefficients and relaxation

times increases with increasing softness of the interaction potential, con-

trary to expectations based on earlier studies [135,141]. On the other hand,

a thermodynamic fragility obtained from the temperature variation of the

configuration entropy decreases with increasing softness of the interaction

potential. By taking into consideration the model dependence of the high

temperature activation energy, in addition to the temperature dependence

of the configuration entropy, we define an “Adam-Gibbs” fragility whose

model dependence accurately captures the variation of the kinetic fragilities

that we find. An attempt to rationalize the model dependence of the high

temperature in terms of the scaling of properties with respect to density is

encouraging but fails to fully explain the observed decrease of the fragility

with increasing softness of the interaction potential.



Chapter 6

Density-temperature scaling in

the Kob-Andersen model and

its implication for the fragility

6.1 Introduction

Glass forming liquids show a wide variety of dynamical behaviours (see Chap-

ter 1), typically at low temperatures and high densities (pressures), which

are yet to be satisfactorily described in full detail by any microscopic theory.

However, recent analyses of many liquids over a wide range of temperatures

and densities (pressures) have shown two interesting properties which con-

siderably simplifies the description of dynamics.

Firstly, it has been found empirically that relaxation times of many liquids,

when expressed in appropriate units, depend on density (ρ) and temperature

(T ) through a specific combination only. This implies the interesting possi-

bility of a “hidden” density -temperature scaling law in liquids. Roland and

co-workers [147–149] found this combination to be ργ

T
, i.e. τ = f(ργ

T
) where

the function f is in general unknown and depends on the material. The ex-

ponent γ can be found empirically by demanding collapse of relaxation times

(or diffusion coefficients) at different densities (or pressures) and tempera-

tures on a single master curve. For a certain class of liquids, γ may also be

computed from thermodynamic quantities as will be explained later. Alba-

Simionesco and co-workers [150] also found similar empirical data collapse

for relaxation times with the above mentioned functional form. However,

207
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they also show that data collapse can be obtained with a different form

τ = f(ρ−ρ∗

T
) as well. In a separate line of reasoning, Alba-Simionesco and

co-workers [151] propose the hypothesis that for many liquids the density de-

pendence of relaxation times can be described by a single density-dependent

parameter (occurring as a temperature or energy scale, say E0(ρ)). Accord-

ing to their hypothesis, when the temperature dependent activation energy

(E(T ), obtained by inverting the relaxation time using Arrhenius law) scaled

by E0(ρ) is plotted against temperature scaled by E0(ρ), relaxation times for

different densities should fall on the same master curve.

Secondly, recent works [152–156] have shown that many liquids show strong

correlation (defined as the correlation coefficient > 0.9) between instanta-

neous values of the potential energy (U) and the virial (W ). This correlation

is exact for a class of hypothetical liquids denoted by IPL liquids in which

the interparticle interactions are described by purely repulsive inverse power

law (IPL) potentials: v(r) ∼ r−n. Since v(r) is a homogeneous function of

r, it follows that the instantaneous potential energy is proportional to the

instantaneous virial with the proportionality constant γ = n/D,D = the

spatial dimension. In other words, this is a consequence of the power law

nature of the potential [159, 160]. The density-temperature scaling can also

be straight forwardly shown to be valid for IPL liquids. The observations

of (i) the strong correlation between instantaneous values of the potential

energy and the virial, and (ii) the density-temperature scaling in a non-IPL

liquid is rationalized by approximating the interaction potential of an non-

IPL liquid by an effective inverse power law (IPL) potential where the power

is different from the repulsive part of the original potential. This is fur-

ther generalized by introducing the concept of isomorphs [155]. Schrøder,

Dyre and co-workers have shown that the exponent γ in density-temperature

scaling of relaxation time can be computed from the virial-potential energy

correlation [152–156].

However, two things complicate this picture. First, the values of γ computed

from virial-potential energy correlation depend on state points. Second, Tar-

jus and coworkers have come up with a counter example (WCA version of

the KA liquid) which show strong correlation but not density-temperature

scaling [157,158].

Here, we study the standard Kob-Andersen (KA) model in three dimensions

in the context of the above findings. The key aims of the present study are:
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1. To verify the strong correlation between the instantaneous potential en-

ergy and the instantaneous virial in the 3D KA model.

2. To verify the density-temperature scaling of dynamics. Available lit-

erature results show that in the KA model, the dynamical quantities

(Fs(k
∗, t∗)vs.t∗, χ4vs.t∗) obey density temperature scaling for the entire

time range. Also, relaxation times and diffusion coefficients (τ ∗, D∗) in

appropriate units show density temperature scaling.

3. If the 3D KA model shows both the strong pressure-energy correlation

and the density-temperature scaling, as shown earlier by Schrøder and co-

workers, the main question is then to understand how the thermodynamic

(KAG) and the kinetic fragility (KV FT ) (defined later) vary with density.

6.2 Simulation details

We have studied the Kob-Andersen model [173] which is a 80:20 binary mix-

ture of Lennard Jones particles (see Chapter 2). Molecular dynamics (MD)

simulations were done in a cubic box with periodic boundary conditions in

the constant number, volume and temperature (NVT) ensemble at five den-

sities (ρ = 1.1, 1.15, 1.2, 1.25, 1.35). The integration time step was in the

range dt = 0.001 − 0.005. Temperatures were kept constant using an algo-

rithm due to Brown and Clarke [177]. System size were N = 1000, NA = 800

(N = total number of particles, NA = number of particles of type A). The

temperature range for different densities are shown in Table 6.1. For all state

points, three to five independent samples was used with run lengths > 100τα

(τα is the relaxation time, see Chapter 1). We also tabulate for comparison

in Table 6.2 the density and temperature range of the 3D KA model studied

in earlier works [69,128].

6.3 Definitions of the relevant quantities

6.3.1 The diffusion coefficient and the α relaxation time

The following measures have been used to extract α relaxation times (see

Chapter 2). (i) The self diffusion coefficient (DA) from the mean squared
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Table 6.1: The range of the density and the temperature of the 3D KA model
simulated in the present study.

N Density / σ−3) Temperature
range /
ǫAA/kB)

1000 1.10 0.28 - 2.00
1.15 0.34 - 2.00
1.20 0.435 - 2.00
1.25 0.52 - 2.00
1.35 0.78 - 2.00

Table 6.2: The range of the density and the temperature of the 3D KA
model taken from Sastry [69] to compare diffusion coefficients and the kinetic
fragilities.
Source N Density / σ−3) Temperature

range /
ǫAA/kB)

Sastry, PRL
2000 [69]

256 1.10 ∼ 0.28 − 0.8

1.15 ∼ 0.39 − 0.9
1.20 ∼ 0.5 − 0.9
1.25 ∼ 0.57 − 1.0
1.35 ∼ 0.85 − 1.15
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displacement (MSD) of the A type particles. (ii) The relaxation times

obtained from the decay of the overlap function q(t) using the definition

q(t = τα, T )/N = 1/e.

6.3.2 The configurational entropy

The configurational entropy (Sc) per particle (see Chapter 1), is calculated

[69] by subtracting from the total entropy of the system the vibrational com-

ponent:

Sc(T ) = Stotal(T ) − Svib(T ) (6.1)

The total entropy of the liquid is obtained via thermodynamic integration

from the ideal gas limit and the vibrational entropy is calculated by making

a harmonic approximation to the potential energy about a given local min-

imum [69–72]. The procedure used for generating local energy minima, and

calculating the vibrational entropy is as outlined in [69,70].

We have also computed the configuration entropy density Sc(eIS) = kB ln Ω(eIS)

where Ω(eIS) is the number density of inherent structures with energy eIS

and to a good approximation may be described by a Gaussian. Equivalently,

Sc(eIS) can be described by a parabola

Sc(eIS) = α − (eIS − e0
IS)2

σ2
(6.2)

The parameter α denotes the peak value of Sc(eIS) which occurs at energy

e0
IS. Sc(eIS) is zero at eIS = e0

IS ± σ
√

α. Thus σ
√

α is a measure of the

spread of Sc(eIS).

6.3.3 Fragility

Fragility, is a material parameter which quantifies how rapidly the shear

viscosity, relaxation times and diffusion coefficients rises with temperature

as glass forming liquids approach their (laboratory) glass transition temper-

atures (see Chapters 1 and 5). In the present study the kinetic fragility

is defined from the Vogel-Fulcher-Tammann (VFT) fits to relaxation times
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(and diffusion coefficients):

τ(T ) = τ0 exp

[

1

KV FT ( T
TV FT

− 1)

]

(6.3)

which defines the kinetic fragility KV FT and the divergence temperature

TV FT . We refer to KV FT , which is measured from relaxation times (and

diffusion coefficients), as the kinetic fragility to distinguish from the ther-

modynamic fragility defined later. However, we note that since we have

performed NVT simulations, we have measured the isochoric fragility.

Although easy to define, a fully satisfactory understanding of the funda-

mental quantities that determine fragility has not been reached yet. One

approach along which considerable progress has been made is to connect

fragility to thermodynamic quantities via the Adam Gibbs (AG) relation [37]

between the relaxation time and the configuration entropy (Sc):

τ(T ) = τ0 exp(
A

TSc

) (6.4)

and to use the potential energy landscape approach to relate features of the

energy landscape of a glass former to the configuration entropy and thus to

fragility [128]. If the T-dependence of Sc is given by

TSc = KT

(

T

TK

− 1

)

(6.5)

the Adam-Gibbs relation [Eqn. 6.4] yields the VFT relation, with the iden-

tification KV FT = KT /A, TV FT = TK . Thus, we denote KT as the thermo-

dynamic fragility.

6.3.4 Reduced units appropriate for density-temperature

scaling

The reduced unit system appropriate for the density-temperature scaling is

defined by choosing l = (V/N)1/3 = ρ−1/3 as the unit of length, the mass of

one atom m as the unit of mass and t0 = ρ−1/3(kBT/m)−1/2 as the unit of

time [144,145]. Here N , V , ρ and T are the number of particles, the volume,

the density and the temperature of the system respectively. The conversion

of dynamical quantities from the conventional reduced unit system to this
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Figure 6.1: Conversion factors from the conventional reduced unit system
to the reduced unit system appropriate for the density-temperature scaling,
ρ1/3(kBT/m)1/2 and ρ1/3(kBT/m)−1/2 for τ and D respectively, are O(1)
(with kB = 1,m = 1).

reduced unit system (denoted by ∗) is given by:

τ ∗ = τ/t0 = ρ1/3(kBT/m)1/2τ

D∗ = D/(l2t−1
0 ) = ρ1/3(kBT/m)−1/2D (6.6)

As shown in Fig. 6.1, the conversion factors are O(1). Hence bare relax-

ation time (τ) and diffusion coefficients (D) also show reasonably good data

collapse.

6.3.5 The scaling exponent γ

Recent analyses [147, 150, 155, 156] of liquid state properties show that re-

laxation times at different densities (ρ) and temperatures (T ) are function

of the single combined variable ργ/T . One way to rationalize this empirical

observation is through the concept of isomorphs and the strong correlation

between the instantaneous potential energy (U) and the instantaneous virial

W [155,156]. The correlation is measured in terms of the coefficient

R =
〈∆W 〉〈∆U〉

√

〈(∆W )2〉〈(∆U)2)〉
(6.7)
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where ∆U = U − 〈U〉, ∆W = W − 〈W 〉 represent instantaneous fluctuations

about the mean values of the potential energy and the virial respectively.

A liquid is said to be strongly correlating at a given state point (ρ, T ) if

R ≥ 0.9.

The exponent γ(ρ, T ) can be computed from the fluctuations in the instan-

taneous potential energy and instantaneous virial using three possible defi-

nitions [155]:

γ1 =
〈∆W∆U〉
〈(∆U)2〉

γ2 =

√

〈(∆W )2

√

〈(∆U)2〉

γ3 =
〈(∆W )2〉
〈∆W∆U〉

They are related to each other as γ1 = Rγ2 = R2γ3. For perfect correlation

R = 1, as in the case of an IPL liquid, all definitions are equal to each other.

In general, for 0 ≤ R ≤ 1, γ1 ≤ γ2 ≤ γ3. Representative values of γ1, γ2, γ3, R

are shown in Fig. 6.2 which shows that the exponent values depend on state

points.

If the density-temperature scaling of the form τ(ρ, T ) = f(ργ/T ) holds, the

density dependent activation energy parameters A(ρ) in Adam Gibbs relation

[Eqn. 6.4] and E0(ρ) in the Arrhenius law τ(ρ, T ) = τ(ρ,∞) exp(E0(ρ)/T )

are expected to have the density dependence of the form:

A(ρ) ∼ ργ

E0(ρ) ∼ ργ

which provides another way to compute γ.
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Figure 6.2: Determination of the density-temperature scaling exponent γ
from the correlation between instantaneous potential energy (U) and virial

(W ). γ1 = 〈∆W∆U〉
〈(∆U)2〉 , γ2 =

√
〈(∆W )2√
〈(∆U)2〉

, γ3 = 〈(∆W )2〉
〈∆W∆U〉 where ∆U = U − 〈U〉 and

∆W = W − 〈W 〉 represent fluctuations about mean of potential energy and

virial respectively. R = 〈∆W 〉〈∆U〉√
〈(∆W )2〉〈(∆U)2)〉

is a measure of correlation between

potential energy and virial. The liquid is said to be strongly correlating if
R ≥ 0.9.
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6.4 The density-temperature scaling in the

3D KA model

6.4.1 The Arrhenius plots

Here, we show the Arrhenius fits to relaxation times and diffusion coefficients

to obtain the high temperature activation energy parameters E0(ρ). At very

high temperatures, the data deviates from the Arrhenius law. This trend is

most prominent at the lowest density ρ = 1.10. For the estimation of the

parameters E0 such very high temperatures are excluded.
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Figure 6.3: The Arrhenius fit to relaxation times to estimate high tempera-
ture activation energies E0(ρ).
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6.4.2 Testing the scaling relations

The density-temperature scaling of dynamical quantities in the 3D KA model

has been reported earlier for relaxation times [148] where it was found that τ ∗

vs. ργ/T for all temperatures in the density range 1.15−1.35 follow the same

master curve with γ = 5.1. Similar data collapse for diffusion coefficient is

also reported in an equimolar mixture of LJ(12, 6) model (different from the

KA model) [149]. In Figs. 6.5(a) and 6.5(b) we verify for both the relaxation

time and the diffusion coefficient the density-temperature scaling in the KA

model : τ ∗ = f(ργ/T ), D∗
A = g(ργ/T ) with the same γ = 5.1 for both the

relaxation time and the diffusion coefficient and find that the data collapse

is comparable to [148] for the relaxation time. However, we note that some

data points at lower densities does not fall on the master curve. We discuss

this issue later.

We also test in Figs. 6.7 and 6.8, if the scaling suggested by Alba-Simionesco

et al. in [151] holds in the present model. Surprisingly, we find that re-

laxation times but not diffusion coefficient obey this scaling. This implies

that the T-dependence of relaxation time but not of diffusion coefficient can

be described by a single ρ− dependent parameter. Of course, an empirical

data collapse for the diffusion coefficient can be obtained by introducing a

second ρ− dependent parameter ξ. We have tentatively computed ξ from a

fractional Stokes Einstein relation D/T ∝ τ−ξ where 0 ≤ ξ ≤ 1. However,

this analysis is inconclusive.

6.4.3 Negative virial states

In Fig. 6.9 we show the state points where the pressure and virial are negative

in which case the effective repulsive inverse power law potential may not be

a good approximation to KA model. We find that most of the simulated

state points have positive virial and pressure. Negative virial states are most

abundant at the lowest density but becomes rare as the density increases.

Figs. 6.6(a) and 6.6(b) show that the degree of data collapse improves if the

negative virial states are removed.
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cient of A particles D∗

A = ρ1/3(kBT/m)−1/2 and the reduced relaxation time
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6.4.4 The density-temperature scaling holds for the

entire time range

In Fig. 6.10 we verify the interesting observation [148] that not only the α

relaxation time but also the entire correlation function and the MSD obey

the density-temperature scaling.
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6.5 How does the fragility depend on den-

sity?

If the density-temperature scaling holds the kinetic fragility should be inde-

pendent of density. In our case, given that the density-temperature scaling

holds approximately, we expect that the kinetic fragility should at best be

weakly dependent on density. This expectation apparently contradicts the

findings in an earlier work [128] where it was noted that the kinetic fragility

is bigger at higher densities for the 3D KA model. However, it was noted

by comparing the kinetic and the thermodynamic fragilities that the density

dependence of the kinetic fragility is weaker than that of the thermodynamic

fragility for the 3D KA model. Here we compute the kinetic and the thermo-

dynamic fragility for the 3D KA model taking a bigger temperature range

and system size (N=1000 in the present work compared to N=256 in the

earlier works) than in [128] to see if the density dependence of the kinetic

and the thermodynamic fragilities are consistent with the expectation from

the observed (approximate) density-temperature scaling. Below we describe

the details of the comparison.

6.5.1 Comparison of diffusion coefficients with earlier

works

We have compared the diffusion coefficient data in the present study with

the earlier work [69] in Figs. 6.11 - 6.15 and have found that they agree well.

6.5.2 Comparison of the density dependence of the

fragility

The kinetic fragility values are estimated from the diffusion coefficient data

in Figs. 6.11 - 6.15 using the definition in Eqn. 6.3. The diffusion coeffi-

cient data of the earlier work are taken from Ref. [69]. The thermodynamic

fragility values in the present study are estimated using Eqn. 6.5 from the

temperature dependence of TSc and are shown in Fig. 6.16. Fig. 6.17 shows

the comparison of the density dependence of the kinetic and the thermo-

dynamic fragility for the 3D KA model in the present study and the earlier



6.5 How does the fragility depend on density? 225

0 0.5 1 1.5 2 2.5 3 3.5 4
1 / T 

10
0

10
1

10
2

10
3

10
4

10
5

(D
A

)-1

Present study

ln (D
A

)
-1

 = 3.048 + 0.793 / (T - 0.173)
Sastry, PRL 2000

ln(DA)
-1

 = 2.849 + 0.899 / (T - 0.157)

KA model, density = 1.10

Figure 6.11: Comparison of D−1
A for the 3D KA model at the density = 1.10.

0 0.5 1 1.5 2 2.5 3
1 / T

10
1

10
2

10
3

10
4

10
5

(D
A

)-1

Present study

ln (D
A

)
-1

 = 2.997 + 0.951 / (T - 0.232)
Sastry, PRL 2000

ln(DA)
-1

 = 2.881 + 1.072 / (T - 0.211)

KA model, density = 1.15

Figure 6.12: Comparison of D−1
A for the 3D KA model at the density = 1.15.



6.5 How does the fragility depend on density? 226

0 0.5 1 1.5 2 2.5
1 / T

10
1

10
2

10
3

10
4

10
5

 (
D

A
)-1

Present study

ln (D
A

)
-1

 = 2.961 + 1.154 / (T - 0.297)
Sastry, PRL 2000

ln(DA)
-1

 = 2.965 + 1.198 / (T - 0.292)

KA model, density = 1.20

Figure 6.13: Comparison of D−1
A for the 3D KA model at the density = 1.20.

0 0.5 1 1.5 2
1 / T

10
1

10
2

10
3

10
4

10
5

10
6

(D
A

)-1

Present study

ln (D
A

)
-1

 = 2.948 + 1.366 / ( T- 0.374)
Sastry, PRL 2000

ln(DA)
-1

 = 3.454 + 1.067 / (T - 0.412)

KA model, density = 1.25

Figure 6.14: Comparison of D−1
A for the 3D KA model at the density = 1.25.



6.5 How does the fragility depend on density? 227

0 0.5 1 1.5
1 / T

10
1

10
2

10
3

10
4

10
5

10
6

(D
A

)-1

Present study

ln (D
A

)
-1

 = 2.724 + 2.032 / (T - 0.552)
Sastry, PRL 2000

ln(DA)
-1

 = 3.844 + 1.162 / (T - 0.656)

KA model, density = 1.35

Figure 6.15: Comparison of D−1
A for the 3D KA model at the density = 1.35.

work [128] and shows that (i) the density dependence of the kinetic fragility is

much weaker in the present study which can be understood from the approxi-

mate density-temperature scaling we observe. (ii) The density dependence of

the thermodynamic fragility in the present study agrees well with the earlier

work.

To understand the difference between the present study and the earlier work

in the KV FT values despite good agreement in the D−1
A data, we estimate in

Fig. 6.18 the sensitivity of the estimated KV FT values on the temperature

range by fitting data from the lowest available temperature to a variable

highest temperature. The choice of the highest temperature at each density

varies from the onset temperature obtained from the T-dependence of the

average inherent structure energy to the highest available temperature. We

see that the estimation of KV FT from the VFT fit is sensitive to some extent

on the selection of the temperature range. Thus the relatively high values

of KV FT at higher densities in the earlier work may be attributed to taking

relatively shorter range of temperature for study.

We also study the density dependence of the coefficient A in the Adam Gibbs

relation (Eqn. 6.4). In Figs. 6.20(a) and 6.20(b) we show the Adam Gibbs
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plots at different densities obtained in the present study. The values of A are

estimated from these data.

The density dependence of (i) the Adam Gibbs coefficient A, (ii) the ther-

modynamic fragility KT , (iii) the kinetic fragility KV FT and (iv) the ra-

tio KT /A for the 3D KA model obtained in the present study are summa-

rized in Fig. 6.19 which shows that (i) the power law density dependence of

A ∼ ργA , KT ,∼ ργKT describes data well at higher densities. (ii) The density

dependence of the ratio KT /A (which is an estimate of the kinetic fragility

if the Adam Gibbs relation is valid) is weak which can be understood from

the approximate density-temperature scaling we observe.
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6.5.3 Density-temperature scaling of the Adam Gibbs

relation

Given the observed density dependence of A : A ∼ ργA , the quantity A/TSc is

approximately a function of the form h(ργA/T ) if the configuration entropy Sc

is an isomorphic invariant [155] and hence a function of the form Sc(ρ
γA/T ).

We test this expectation in Fig. 6.21 using the scaling exponent γA = 5.06

obtained from the density dependence of A. We see that at higher densities

one gets reasonably good data collapse in a plot of Sc vs. ργA/T . Based on

this observation one expects that the Adam Gibbs plots at different densities

can be collapsed on a master curve - at least at higher densities where Sc

shows density-temperature scaling. This is shown in Fig. 6.22.

6.5.4 Comparison of the PEL properties with earlier

work

In this section, the potential energy landscape parameters for the 3D KA

model are evaluated and compared against earlier works [68, 69, 128]. The

notations used here are same as in the previous works. We note that there

are systematic differences in the values of the configuration energy density

Sc(eIS) between the present and the earlier work. However, this difference

is numerically insignificant on the scale of the variation with density of the

thermodynamic fragility. Hence the thermodynamic fragility values in the

present and the earlier study agrees well with each other in Fig. 6.19.

Table 6.3: Comparison of PEL parameters with Ref. [68]. See also Figs.
6.24,6.26, 6.27 and 6.28.
Density αref αpresent φref

0 φpresent
0 σref σpresent δf ref δfpresent

1.10 1.020 0.916 -6.579 -6.58 0.312 0.332 0.616 0.633
1.15 0.963 0.838 -6.680 -6.69 0.379 0.395 0.603 0.572
1.20 0.921 0.817 -6.700 -6.70 0.470 0.492 0.455 0.412
1.25 0.875 0.786 -6.642 -6.61 0.550 0.615 0.350 0.256
1.35 0.860 0.772 -6.080 -6.07 0.870 0.901 0.159 0.157
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Figure 6.25: IS energy dependence of the eigenvalues (λi) of the Hessian of
potential at inherent structures. The dependence is considered to be linear
and quantified by the slope of the best linear fit δf .

1.05 1.1 1.15 1.2 1.25 1.3 1.35

ρ / σ
AA

-3

0.2

0.4

0.6

δf
 / 

(k
B

ε A
A

-1
)

Present study (N=1000)
Sastry PCC 2000 (N=256)

3D KA

Figure 6.26: Comparison of the parameter δf (measured from slope in fig.
6.25) with ref. [68].



6.5 How does the fragility depend on density? 236

1.05 1.1 1.15 1.2 1.25 1.3 1.35

ρ / σ
AA

-3

0.8

0.9

1

1.1

α

Present study (N=1000)
Sastry PCC 2000 (N=256)

3D KA
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Figure 6.29: The configuration entropy density Sc(eIS) for the 3D KA model
at ρ = 1.1 are plotted against the inherent structure energy (per particle)
eIS. Symbols represent data points and lines represent parabolas of the form

Sc = α − (eIS−φ0)2

σ2 . Also shown are data and fits from the earlier work.
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Figure 6.30: The configuration entropy density Sc(eIS) for the 3D KA model
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Sc = α − (eIS−φ0)2

σ2 . Also shown are data and fits from the earlier work.
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Figure 6.31: The configuration entropy density Sc(eIS) for the 3D KA model
at ρ = 1.2 are plotted against the inherent structure energy (per particle)
eIS. Symbols represent data points and lines represent parabolas of the form

Sc = α − (eIS−φ0)2

σ2 . Also shown are data and fits from the earlier work.
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Figure 6.32: The configuration entropy density Sc(eIS) for the 3D KA model
at ρ = 1.25 are plotted against the inherent structure energy (per particle)
eIS. Symbols represent data points and lines represent parabolas of the form

Sc = α − (eIS−φ0)2

σ2 . Also shown are data and fits from the earlier work.
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Figure 6.33: The configuration entropy density Sc(eIS) for the 3D KA model
at ρ = 1.25 are plotted against the inherent structure energy (per particle)
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σ2 . Also shown are data and fits from the earlier work.
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6.6 Conclusions

Here we summarize the present study and present the conclusions.

1. We have verified that (i) the dynamical quantities (the MSD, the overlap

function, the diffusion coefficient and the relaxation time) show impres-

sive density-temperature scaling where the scaling exponent γ is obtained

empirically. (ii) There is strong correlation between instantaneous values

of the potential energy and the virial in the 3D KA model. However, the

values of the scaling exponent γ computed from such correlation depend

on the choice of state point.

2. If the density-temperature scaling were perfect then the kinetic fragility

would be independent of density. In an earlier work [128] it was found

that the kinetic fragility has a weak dependence on density and the density

dependence of the kinetic fragility is weaker than that of the thermody-

namic fragility. We show that the difference may be understood from

the density-temperature scaling. However, a weak density dependence

of the kinetic fragility may be expected owing to the presence of imper-

fect density-temperature scaling arising from the sampling of states with

negative virial coefficients etc.

3. In the 3D KA model, the diffusivity is well described by Adam Gibbs

relation (Eqn. 6.4 ) as shown in Fig. 6.20(b). The density dependence

of the coefficient A in the Adam-Gibbs relation is well characterized by

the density-temperature scaling. At higher densities, reasonably good

data collapse can be obtained in a scaled Adam Gibbs plot as well as

for the configuration entropy with a scaling exponent computed from the

density dependence of the Adam Gibbs coefficient A in Eqn. 6.4. It may

be possible to improve the quality of data collapse by fine tuning the γ

values.



Chapter 7

Maxima of diffusion coefficients

in the modified SW model

7.1 Introduction

The phenomenology of dynamical, structural and thermodynamic behaviours

of supercooled liquids is quite complex. Some of the diverse behaviours that

are observed in a (dense) liquid on cooling are discussed in Chapter 1. In

addition, some liquids show “anomalous” behaviours in dynamics, structure

and thermodynamics. Perhaps the most well-known of such anomalies is the

increase in the density of water between 0oC and 4oC under normal pres-

sure. Water and Silicon - both of which are network-forming liquids - are in

fact two well-known examples of anomalous liquids. In view of the complex

behaviours in both “normal” and “anomalous” liquids, scaling relations are

extremely useful to organize and rationalize data because they provide (i)

connections between dynamics, structure and thermodynamics thus offer in-

sights to understand the complex behaviours and (ii) simplified and unified

description of data. The Adam-Gibbs (AG) relation [37] which explains the

rapid rise of relaxation time - a dynamical quantity - in terms of decrease

in configurational entropy - a thermodynamical quantity - is a prominent

example. The Adam Gibbs relation was applied to water to show that the

anomalous behaviour in the diffusion coefficient of water can be related to

the anomalous behaviour of the configuration entropy [45, 167]. Similarly,

Errington et al. observed [164] that the region of water phase diagram which
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shows anomalous behaviour in diffusion coefficient and thermal expansion co-

efficient also show structural anomalies. Thus there are connections between

structural, thermodynamic and dynamic anomalies. In the present chapter,

we study a specific anomaly of the diffusion coefficient in a range of model

tetrahedral liquids. Our aim is to find out to what extent the anomalous be-

haviour in dynamics can be related to the anomalous behaviour in structure

and thermodynamics by applying a scaling relation, namely, the Rosenfeld

scaling relation.

Observation of the anomaly of the diffusion coefficient in previous

work: Stillinger-Weber potential (SW) is a well-known model [166] of liquid

Silicon. The SW model can be written as a sum of two-body (isotropic) and

three-body (anisotropic) interactions:

USW =
∑

i<j

u2(rij/σ) + λ
∑

i<j<k

u3(ri/σ, rj/σ, rk/σ), (7.1)

Here u2 is the two-body term and u3 is the three-body term with λ repre-

senting the strength of the three-body interaction. In the original SW model

for Silicon, λ = 21. Molinero et al. have showed [165] that by tuning λ, the

glass-forming ability of the resulting systems can be tuned. In the course

of this study they have noticed that at fixed pressure and temperature, the

diffusion coefficient (D) as a function of λ always undergoes a maximum.

The present study aims to rationalize this anomalous behaviour using the

Rosenfeld scaling relation.

The Rosenfeld scaling relation: Rosenfeld proposed [168,169], based on

studies in purely repulsive inverse power law and Lennard-Jones potentials,

that the diffusion coefficient expressed in certain units can be related by

simple empirical formula to the excess entropy SE (excess over the ideal gas

value):

D∗ = Dρ1/3(kBT/M)−1/2 ≈ A exp(−bSE) (7.2)

We note that different systems may have different values of A and b [168,169].
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The pair-correlation entropy: The excess entropy SE (computationally

costlier) can be approximated by the pair-correlation entropy S2 (computa-

tionally cheaper) which depends only on the 2-particle distribution function.

The pair-correlation entropy is defined as [170] :

S2

NkB

= −2πρ

∫

[g(r) ln g(r) − g(r) + 1] r2dr (7.3)

In the present study we have used the pair-correlation entropy S2 as a proxy

for the excess entropy SE in the Rosenfeld scaling relation.

7.2 Simulation details:

NPT MD simulations were done for the modified SW model (with varying

λ) using an in-house code optimized for the energy and force calculations at

zero pressure for several λ values in the range λ = 16 − 21.5. At each λ,

simulations were done over a range of densities and temperatures both above

and below the melting points. The range of state points are shown in Fig.

7.1 in ρ − T plane and in Fig. 7.2 in T − λ plane. Note that we report data

in the present study in the reduced units. The units of mass, energy and

length are defined in [166].

1

7.3 Results

Density anomaly: Fig. 7.1 shows that the density anomaly (at zero pres-

sure) in the modified SW model can be tuned by tuning the strength of the

anisotopric part of the SW potential. The density shows monotonic temper-

ature dependence for lower value of λ and shows maxima (no minimum was

found in the temperature range studied) for higher value of λ > 19.5. This

is consistent with earlier work [170].

Anomalous behaviour of the isothermal D: Fig. 7.3 verifies that

the isothermal diffusion coefficient (at zero pressure) indeed shows a non-

monotonic dependence on λ. We have shown the variation of D with λ

for four representative temperatures selected from Fig. 7.2 (solid horizontal
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Figure 7.1: ρ vs. T phase diagram at zero pressure (P = 0) for the mSW
model showing the range of the state points explored in the present study.
The lines connecting the data are guide to eyes. The vertical lines are the
melting temperatures reported in [165] joined by the black line representing
the locus of the melting temperatures at different λ’s demarcating the high
T and the supercooled liquids.

lines). We find maxima in all cases in the range λ ≈ 17.6 − 17.8 indicating

that the positions of maxima vary weakly with temperature.

Pair correlation functions g(r): In Fig. 7.4, the pair correlation func-

tions (g(r)) at zero pressure are shown for different λ at a representative

high (T = 0.069) and a low temperature (T = 0.039). The g(r) shows more

features at higher λ and lower temperature.

Correlation between D and S2: Figs. 7.5 (bare D) and 7.6 (scaled

D∗) test to what extent the diffusion coefficient may be related to the pair

correlation entropy via the Rosenfeld scaling relation. Fig. 7.5 shows that (i)

there is a well defined correlation between D and S2 at all values of λ with

data points being more scattered at higher λ. (ii) However, the functional

form depends on the value of λ. The Rosenfeld scaling relation (linear in the

log-linear scale of Fig. 7.5) describes data better at lower λ, although the

deviations are small at higher λ.
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Figure 7.2: T vs. λ phase diagram at zero pressure (P = 0) for the mSW
model showing the range of the state points explored in the present study.
The black circles and the red squares represent the melting temperatures
reported in [165]. The horizontal lines indicate a number of representative
temperatures chosen to calculate isothermal diffusion coefficients.

Anomalous behaviour of S2: The correlation in Figs. 7.5 and 7.6 sug-

gests that the pair-correlation entropy S2 should also show anomalous varia-

tion with λ which is verified in Fig. 7.7 for four representative temperatures.

At each temperature, a maximum is found in the range λ ≈ 19.9− 20.9. We

note however that (i) at the same temperature, the maximum of S2 occur at

a bigger value of λ than that of D and (ii) the temperature dependence of

the maximum of S2 is stronger than that of D.
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Figure 7.3: The λ dependence of the isothermal diffusion coefficient at zero
pressure (P = 0) shows that this quantity goes through a maximum both
at high and at low temperatures. The lines through data points are fit to
quadratic polynomials. The black vertical lines indicate the position of the
maxima of the fit curves. The maxima of the isothermal diffusion coeffi-
cients occur in the range λ ≈ 17.6 − 17.8 and varies only very weakly with
temperature.
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Figure 7.4: At zero pressure, the λ dependence of the g(r) at two represen-
tative temperatures.
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Figure 7.5: At zero pressure, the plot of the isobaric diffusion coefficient vs.
the pair correlation entropy S2 for different λ. The diffusion coefficient ln D is
linearly correlated with S2 for the lowest two λ = 16.0, 17.0. As λ increases,
the correlation persists but the scatter of data points increases significantly.
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Figure 7.6: At zero pressure, the plot of the reduced isobaric diffusion co-

efficient D∗ = ρ1/3

(kBT/m)−1/2
D vs. the pair correlation entropy S2 for different

λ. Since the conversion factors are O(1), D∗ and D behaves qualitatively
similarly.
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Figure 7.7: At zero pressure, the λ dependence of the isothermal pair corre-
lation entropy S2. This quantity also goes through a maximum both at high
and at low temperatures. The lines through data points are fit to 4th order
polynomials. The black vertical lines indicate the position of the maxima
of the fit curves. The maxima of the isothermal diffusion coefficients occur
in the range λ ≈ 19.9 − 20.9 which is somewhat higher than the maxima of
isothermal diffusion coefficient in the same temperature range.
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7.4 Summary and conclusion

We have studied the anomalous behaviour in dynamics and thermodynamics

at zero pressure over a range of densities and temperatures both above and

below melting temperatures, in a range of model tetrahedral liquids (modified

SW potential) by tuning the interaction potential. The conclusions are :

1. The isothermal diffusion coefficient goes though a maximum as a function

of the potential parameter λ as noted in a previous work [165].

2. The diffusion coefficient at different λ are well correlated with the pair

correlation entropy S2 which is expected from the Rosenfeld scaling rela-

tion. The Rosenfeld scaling relation describe data better at lower values

of λ. At higher values of λ although correlation is poorer.

3. The pair correlation entropy S2 also show an anomalous behaviour as a

function of λ. Thus we may relate the anomalous behaviour in D i.e. to

the anomalous behaviour in S2 i.e. thermodynamics.

Open questions and future works: The following issues are still open

and require further analyses.

1. Whether the scaling relation between the excess entropy and diffusion co-

efficient as in the original Rosenfeld scaling relation, can describe data

better. In other words, one should check to what extent the pair correla-

tion entropy S2 can approximate the excess entropy SE.

2. Whether one sees better data collapse for different λ values with the excess

entropy SE.

3. Whether the scaling relation between the diffusion coefficient and the

configurational entropy yield a better organization of data.



Chapter 8

Conclusions

In the present chapter, we summarize the work done in this thesis, describe

the main conclusions and point to the open questions and future directions.

A major theme of the thesis is to understand to what extent the dynamical

behaviours of supercooled liquids can be described by thermodynamics when

various controlling factors are tuned to change dynamical properties, specif-

ically the α relaxation time of the system. In addition to the more familiar

control parameters like temperature and density, we have explored the effects

of “tuning” higher level parameters like the spatial dimension and the nature

of the inter-particle interactions.

In chapter 3, we examine the validity of the Adam Gibbs (AG) relation

in different spatial dimensions. The AG relation connects dynamics (the

relaxation time) with thermodynamics (the configurational entropy) and is

a central relation to understand the dynamical behaviour of glass forming

liquids. We find that the AG relation is valid in four and three dimensions,

but is not obeyed in two dimensions and the nature of the deviation from

the AG relation depends on the details of the inter-particle interactions.

In chapter 4, we study the inter-relations among the direct measures (dynam-

ical susceptibility, KWW exponent) and the indirect indicators (the break-

down of the Stokes Einstein relation, fragility) of the dynamical heterogene-

ity in different spatial dimensions. We find that as spatial dimensionality

increases, on the one hand the degree of the breakdown of the SE relation

becomes weaker but on the other hand the systems are more fragile. This

251
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contradicts the observation - based on experiments and simulations predom-

inantly in three dimensions - that more fragile systems show stronger break-

down. These correlations have however been questioned. Our results lend

support to such skepticism and suggest that one should exercise caution in

generalizing such trends in different spatial dimensions.

We also point out that our results in chapter 3 and 4 indicates that the

behaviour in two dimensions can be qualitatively different from three di-

mensions. Given the importance of two (and lower) dimensional systems as

model systems of study, one requires further analyses to characterize and

understand the behaviours of two dimensional systems.

In chapter 5 we analyze the effect of the softness of the interaction potential

on fragility in three model glass formers in three dimensions. We find on

the one hand that the kinetic fragility obtained from diffusion coefficients

and relaxation times increases with increasing softness of the interaction

potential, contrary to expectations based on earlier studies [135, 141]. On

the other hand, a thermodynamic fragility obtained from the temperature

variation of the configuration entropy decreases with increasing softness of

the interaction potential. We resolve this apparent contradictory trends by

taking into consideration the softness dependence of the high temperature

activation energy.

In chapter 6 we explore the consequences of the density-temperature scal-

ing and strong pressure-energy correlation properties of the Kob-Andersen

model in three dimensions. We provide evidence that a consequence of the

scaling property which we observe to be valid approximately is that the ki-

netic fragility has much weaker density dependence than the thermodynamic

fragility. Besides, the Adam Gibbs relation at different densities can be scaled

to collapse on a master curve, albeit approximately.

In chapter 7 we analyze the unusual behaviour of the diffusion coefficient in

the modified Stillinger-Weber (mSW) model. We show that the behaviour

of the diffusion coefficient can be correlated with that of the pair-correlation

entropy which is expected from the Rosenfeld scaling relation between diffu-

sion coefficient and the excess entropy. However, we point out that one needs

to test in the mSW model, the observation found in other systems that the

pair-correlation entropy is a good approximation for the excess entropy. Be-

sides one needs to explore whether the AG relation or the Rosenfeld relation
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yields better organization of data. These are open questions and need to be

pursued in the future.
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