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Chapter 1

Introduction

Defects in crystals are not just a subject of scientific curiosity rather an im-

portant ingredient of solid-state science. This realization is because of the

interesting structure-sensitive properties of crystalline solids emanating from

the presence of a small concentration of imperfections in an otherwise perfect

lattice. Practically, all the mechanical properties of materials are strongly

influenced by crystal defects. The complex nature of their study stems from

their tendency to lower the symmetry of the lattice, and their occurrence in

varying length scales in the real crystals. Disorderliness of a periodic lattice

in the vicinity of a few atoms or lattice sites is termed as a point defect, and

a topological imperfection extending through the crystal forms a line or a

planar defect.

The most important one-dimensional or linear defect is a dislocation. The

concept of dislocation as an elastic singularity, first introduced by Volterra

(1907), forms a starting point of theory of dislocations. Its acceptance as a

1
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physical entity is marked by the description of edge dislocation by Taylor,

Orowan and Polanyi in 1934, and screw dislocations by Burgers in 1939. The

presence of stacking faults as an unbounded planar defect in layered struc-

tures was conceptualized by Landau and Lifschitz in 1937. In 1949, Heiden-

reich and Shockley and Frank introduced the concept of bounded stacking

fault, where the edge of a fault or the junction of two different faults is called

the partial dislocation. Frank, in 1951, introduced the concept of Burgers

vector to define a dislocation line and its core structure in a real crystal [1].

The dislocation core, which extends up to a few lattice spacing, is a re-

gion of singularity where the continuum elasticity theory cannot be applied.

The core properties control the mobility of dislocations, thus influencing the

mechanism of plastic deformation in materials [2]. The need to understand

the phenomenon of crystal plasticity has necessitated the accurate descrip-

tion of dislocation core structure on the atomic scale.

The underlying theory for the study of physics of materials at the atomic

scales is quite well established. First-principles techniques based on quan-

tum density functional theory (DFT) allow material-specific understanding

of local structural and electronic properties at the ground state. The real dif-

ficulty arises in connecting the details of electronic-structure calculations at

the atomic scale to the macroscopic behavior of materials, as observed in ex-

periments. Further, to extend the knowledge of the ground-state properties

to finite temperature analysis of crystal defects, by calculating vibrational

contributions to free energies, forms an important part of this thesis.
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In this thesis, the analysis of mechanical behavior in three technologically

important classes of materials is categorized as: (a) study of deformation-

induced polymorphism in HCP metals, and (b) investigation of the deforma-

tion mechanisms in Ni3Al relevant to Ni-based superalloys, and (c) faults in

three FCC metals viz. Al, Cu and Ni, at the ground state and finite temper-

atures.

In Chapter 2, an overview of first-principles quantum-mechanical methods

based on density functional theory (DFT) and density functional perturba-

tion theory (DFPT) is presented. This includes Born Oppenheimer approxi-

mation, Hohenberg and Kohn theorems, and Kohn and Sham equations. The

algorithm to solve the Kohn-Sham equation for self-consistency and deter-

mination of ground state properties is briefly discussed. In the later part of

the chapter, I will present two approaches for the calculation of phonons in

crystals viz. frozen phonon method and linear response method, and discuss

their applicability and limitations.

In Chapter 3, I will present a study of deformation-mechanism in an in-

dustrially significant hexagonal-closed packed metal, Titanium, known for its

exceptionally superior specific strength and excellent corrosion resistance [3].

Two major mechanisms are responsible for deformation in HCP metals: de-

formation twinning and ordinary dislocation plasticity [4]. For the samples

with size in micrometer i.e. d >1µm, the twinning controls the mechanical

behavior of these metals, but for sub-micrometer samples i.e. d <1µm, stud-

ies have demonstrated the dislocation-mediated deformation [5] with strong
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crystal-size effects. Thus, in the domain of present work, I focus on the study

of high-density generalized stacking faults and their strain-mediated interac-

tions in titanium, leading to very stable deformation-induced polymorphs of

titanium. Corroborating the existence of polymorphs in Ti, this work pro-

ceeds with unraveling the concept of polymorphism in other HCP metals.

Further, a detailed atomic-structure analysis of titanium polymorphs affirms

their distinction from the FCC stacking faults in HCP structure.

In Chapter 4, I will present a holistic study of deformation mechanism of

L12 structure of Ni3Al (γ’-phase in Ni-based superalloys) with temperature

from 0K to 80% of its melting temperature (∼1330K ). The L12 structure

of Ni3Al is a major constituent conferring high-temperature strength to the

superalloy. Additionally, the γ’-phase shows an increase in the yield strength

with temperature up to 800oC (also known as yield stress anomaly, YSA) [6].

The experimental results attribute this phenomenon to the process of cross-

slip from {111} octahedral plane to {001} cube plane (Kear and Wilsdorf

1962, Mills, Bauc and Karnthaler 1989). The driving force for the anomaly

in flow stress behavior is still debated. First-principles calculations of slip

on different crystallographic planes of Ni3Al have been carried out [7–9], but

the effects of temperature on the flow stress have not been determined. The

first-principles analysis of anisotropy of slip process in Ni3Al, along with the

estimation of temperature-dependent fault energies, described in this thesis,

is by far the prime study which predicts the possible cause of yield strength

anomaly in Ni3Al at elevated temperatures.
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In Chapter 5, I will present an ab initio study of dislocation-mediated

planar faults in FCC metals at ground state and elevated temperatures. The

feasibility of slip along a particular slip system is determined in terms of the

fault energies, local stability, and the atomic structural changes associated

with the faulted configurations introduced in the wake of the slip process.

Considering the technological relevance, three FCC metals viz. Al, Cu and

Ni are considered as model elements for this study. The relevance of this

analysis to the observed mechanical behavior in these metals is uncovered,

particularly through our estimates of vibrational contributions to fault ener-

gies as a function of temperature, from 0K to 80% of their respective melting

temperatures. Finally, in Chapter 6, I will conclude with a general discus-

sion.



Chapter 2

Theoretical Formalism

Materials are composed of nuclei bound together by electrons. Since the typ-

ical energy scales for electrons far exceed those associated with the degrees of

freedom of the massive nuclei, the lowest energy ground state of the electrons

determines the structure of the nuclei, thus precisely reckoning the ground

state material-properties viz equilibrium crystal structure, charge density,

phase transition between structures, and many others. This keystone con-

cept has guided the the development of accurate, robust methods to treat

electronic ground state, hence understanding the structure of materials at

the atomic scale.

By far, the most widespread approach for ’first-principles’ quantitative cal-

culations of material-structure and properties is density functional theory

(DFT). This chapter discusses the formulation of density functional the-

ory, and the underlying independent-particle approximations to address real

many-body problems of electrons in materials.

6
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Further, the response of a material to external stimulus, namely, the dis-

placements of nuclei, can be studied from their vibrational spectrum, mea-

sured experimentally by inelastic neutron scattering, infra-red absorption,

etc. Theoretically, this response can be determined through changes in elec-

tronic energies (Etotal), forces on the nuclei (FI), and force constants (CIJ)

with changes in atomic positions, leading to the calculation of full phonon

dispersion curves. The later part of this chapter reviews two approaches of

phonon calculations, namely, frozen phonons and linear response [10].

2.1 Introduction

The fundamental hamiltonian for a system of electrons and nuclei is given

by:

Ĥ = − ~
2

2me

∑

i

∇2
i −

∑

i,I

Zie
2

|ri −RI |
+

1

2

∑

i 6=j

e2

|ri − rj|
,

−
∑

I

~
2

2MI

∇2
I +

1

2

∑

I 6=J

ZiZJe
2

|RI −RJ |
(2.1)

The terms on the right-hand side of Eq. 2.1 represent, in order, the kinetic

energy of electrons, Coulomb interactions between electrons and the nuclei,

the Coulomb interactions between pairs of electrons, kinetic energy of nuclei,

and Coulomb interactions between pairs of nuclei. The nuclear kinetic energy

can be ignored, considering the mass MI to be infinity, relative to that of

electrons. This is called the Born-Oppenheimer or adiabatic approximation.

Within this approximation, the nuclear dynamics does not cause electronic

transitions, thus allowing the total wavefunction to be written as a product
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of electronic and nuclear wavefunctions:

Ψs({r, R}) =
∑

i

χsi(R)Ψi({r, R}); s = 1,2,3 ... are the states of coupled system

(2.2)

where χsi(R) are the nuclear wavefunctions, and Ψi(r, R) defines a complete

set of eigenfunctions for electrons at each {R}.

For each electronic state i, the nuclear wavefunctions are determined by:

[−
∑

J

~
2

2MJ

∇2
J+Ui({R})−Eni]χni({R}) = 0; n = 1,2,3... are the nuclear states

(2.3)

and the many-body wavefunctions for the electrons, ψ({ri}) are obtained by

solving time-independent Schrödinger equation:

ĤΨi({ri}) = EΨi({ri}) (2.4)

Here, the electronic hamiltonian is given as:

Ĥ = T̂ + V̂ext + V̂int + EII (2.5)

with kinetic energy operator for electrons (T̂ ), potential acting on electrons

due to the nuclei (Vext), and electron-electron interactions (Vint). The three

terms can be written as:

T̂ =
∑

i

− ~
2

2me

∇2
i , V̂ext =

∑

i,I

VI(|ri −RI |), V̂int =
e2

2

∑

i 6=j

1

|ri − rj|
(2.6)
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and EII denotes the classical interactions of nuclei with one another.

The ground state wavefunction Ψo, the state with lowest energy, can be

determined by minimizing the total energy with respect to all the parame-

ters in Ψ({ri}), with the constraint that Ψ must obey the particle symmetry

and conservation laws. While all the other terms in Eq. 2.6 are exactly

known in terms of Ψ, the exact value of electron-electron Coulomb interac-

tions, Vint cannot be computed, and thus need to be approximated. Two

independent-particle approaches, non-interacting and Hartree-Fock, assume

that the electrons are uncorrelated, and approximate electron-electron inter-

actions in two different ways. While the latter includes the interaction terms

in the energy, the ’non-interacting’ theories have some effective potential

that incorporates some effect of real interaction, without an interaction term

explicitly included in the effective hamiltonian. Density functional theory

involves a non-interacting hamiltonian with an effective potential approxi-

mating the effects of exchange and correlation between electrons.

2.2 Density Functional Theory

Density functional theory is a theory of correlated many-body systems, hav-

ing close associations with independent-particle methods. The works of

Hohenberg-Kohn in 1964, and Kohn-Sham in 1965 have led to the formu-

lations of DFT, which has now become the basis of present-day methods for

treating electrons in atoms, molecules, and condensed matter.
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2.2.1 Hohenberg-Kohn theorems

The two theorems proposed by Hohenberg and Kohn set the basis to formu-

late density functional theory as an exact theory of many-body systems.

Theorem I: For any system of interacting particle in an external potential

Vext(r), the potential Vext(r) is determined uniquely by the ground state par-

ticle density, no(r), except for a constant. Thus all properties of the system

can be completely determined, once the ground state density no(r) is known.

Theorem II: A universal functional for the energy E[n] in terms of the

density n(r) can be defined, for any external potential, Vext(r). For any

particular Vext(r), the exact ground state energy of the system is the global

minimum value of this functional, and the density n(r) that minimizes the

functional is the exact ground state density no(r). The total energy func-

tional, as uniquely determined by n(r), is given by:

EHK [n] = T [n] +

∫
d3rVext(r)n(r) + Eint[n] + EII (2.7)

A functional FHK [n], which includes kinetic and potential energies of inter-

acting electron system, can be defined as:

FHK [n] = T [n] + Eint[n] (2.8)

Thus, if the functional FHK [n] is known, then by minimization of total en-

ergy with respect to n(r), the exact ground state density and energy can be

determined.
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The operational difficulty in the above formulation is that there is no known

way to extract kinetic energy directly from the density . When represented in

terms of a set of N wavefunctions, the derivatives of kinetic energy as a func-

tion of number of electrons are discontinuous at integer occupation numbers.

This implies that the exact functional will vary in a non-analytic manner as

a function of number of electrons. This leads to Kohn-Sham approach, where

kinetic energy is treated in terms of orbitals and interaction terms explicitly

modeled as functionals of the density.

2.2.2 Kohn-Sham Ansatz

The approach proposed by Kohn and Sham for electronic structure calcu-

lations is to replace the original many-body problem by an auxilliary inde-

pendent particle problem. The density of the original system is assumed to

be equal to that of non-interacting system, and the interactins are incorpo-

rated into an exchange-correlation functional of the density. The auxiliary

hamiltonian of the system has a kinetic operator and an effective local po-

tential, Vσ
eff (r) acting on an electron of spin σ at a point r. The Kohn-Sham

Schrödinger-like equations can be expressed as :

(Hσ
KS − εσi )ψ

σ
i (r) = 0 (2.9)

where the εi are the eigenvalues, and Hσ
KS is the effective hamiltonian

Ĥσ
KS = −1

2
∇2 + V σ

KS(r), using Hartree atomic units (2.10)
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The expression for the ground state energy functional can be written as:

VKS = Vext(r) + VHartree(r) + VXC(r) (2.11)

where EHartree is the self-interaction energy of density n(r). The density of

the system is given by:

n(r) =
∑

σ

Nσ∑

i=1

|ψσi (r)|2 (2.12)

and the kinetic energy Ts, as a functional of orbitals, is given by:

Ts =
1

2

∑

σ

Nσ∑

i=1

∫
d3r|ψσi (r)|2 (2.13)

The total electronic energy, EKS given by:

EKS = Ts[n]+

∫
drVext(r)n(r)+

1

2

∫
d3rd3r′

n(r)n(r’)

|r− r’| +EII+EXC [n] (2.14)

when minimized with respect to either the density n(r), or the effective po-

tential Vσ
eff (r) leads to the ground state of the system. The only crucial

ingredient that needs to be determined for obtaining the exact solution for

the Kohn-Sham equations (Eq. 2.9-2.11) is the exchange-correlation func-

tional EXC , the approximations to which are discussed below.

2.2.3 Exchange-correlation functionals

In the Schrödinger equation, the motion of each electron is coupled to the

motion of every other electron through Coulomb repulsions among them.



2.2 Density Functional Theory 13

This repulsion lowers the electrostatic energy, and the energy reduction is

termed as the exchange-correlation energy of the system. The exchange-

correlation potential, VXC in the effective hamiltonian (Eq. 2.10) is given

by:

VXC =
δEXC

δn(~r)
(2.15)

Hence, the accurate approximations of EXC are necessary to obtain ground

state energy and density. Kohn and Sham proposed a non-emperical ap-

proximation using exchange-correlation energy per electron, εuniformxc (n) of

an electron gas of uniform density n. This is called ’local density approxima-

tion’. The real system with nonuniform density is assumed to locally consist

of infinitesimal volume elements, each with a uniform electron density. This

leads to the following relation for EXC :

ELDA
XC [n] =

∫
d3rn(~r)εuniformxc (n(~r)) (2.16)

This approximation is exact for uniform density and correct and accuarate

for systems with spatially-varying density.

To make these functionals more accurate, the idea of exchange-correlation

energy in terms of density, n(~r), can be extended to include additional exact

constraints into the approximations. Adding a second element, the gradient

of density, gives rise to ’generalized gradient approximation (GGA)’ of the

exchange-correlation functional, which is expressed as:

E
approx
XC [n] =

∫
d3rn(~r)εapproxxc (n(~r),∇n(~r) (2.17)
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2.2.4 Solving Kohn-Sham equations

The set of Schrödinger-like one-electron equations i.e. Eqs 2.9-2.11, need to

be solved such that the Veff (r) and density n(r) are consistent. The steps

involved in solving these equations to acheive self-consistency are as under:

1. Consider a trial electron density, n(r).

2. Calculate Veff (r) using Eq. 2.11.

3. Solve for electron wavefunctions (Eq. 2.9 and 2.10).

4. Calculate a new electron density using Eq. 2.12.

5. Check for the convergence of n(r). If achieved, calculate total energy

EKS (Eq. 2.14), forces, stresses, and eigenvalues, otherwise reiterate the

calculations from Step 2.

2.3 Force and stress from electronic structure

2.3.1 Force theorem

The force theorem, derived by Feynman in 1939, states that the force on the

nucleus is strictly in terms of the charge density, independent of the electron

kinetic energy, exchange, and correlation. In electronic structure theory, this

is termed as ”Hellmann-Feynman theorem”. The force FI acting on a nucleus

RI is given as:

FI = − ∂E

∂RI

= −
∫
d3rn(r)

∂Vext(r)

∂RI

− ∂EII

∂RI

(2.18)
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It is important to note that Eq. 2.18 follows if the electron density is held

constant to first order as the nucleus moves.

2.3.2 Stress calculations

In the condensed matter, the state of a system is specified by the forces on

each atom and the stress. The forces that act upon (or through) the surface

of the element, due to the surrounding material contribute to the stresses

transmitted throughout the volume of the element. Strain is deformation of

a material that causes a displacement u of a point ri → r’i, as a function of

the coordinate r. The strain tensor uαβ, can be defined as:

uαβ =
1

2
(
∂uα
∂rβ

+
∂uβ
∂rα

) (2.19)

over cartesian indices, α,β. In quantum mechanics, if a system is in equi-

librium and the strain is homogeneous over macroscopic regions, the macro-

scopic average stress tensor σαβ is defined in terms of energy and strain tensor

ǫαβ per unit volume as:

σαβ = − 1

Ω

∂E

∂ǫαβ
(2.20)

The stress-strain relations describe elastic phenomena in materials. For ex-

ample, the elastic constants are given by:

Cαβ;γδ =
1

Ω

∂2Etotal

∂uαβ∂uγδ
= −∂σαβ

∂uγδ
(2.21)

Further, the above definition of stress (Eq. 2.20) with the assumption of

homogeneous strains holds good when the energy of the system be minimum
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with respect to all internal degrees of freedom. But for the calculation of

actual stress in real materials, one must impose an additional requirement

that the force on each nucleus vanishes, FI = 0, in presence of the strain.

The displacement at which this condition is satisfied is defined as:

us,α =
∑

β

ǫαβτs,β + uints,α (2.22)

The first term represents uniform scaling of space, rα → (δαβ + ǫαβ)rβ, r

being any vector in space. The second term shows the deviations, or ”in-

ternal strains”, which are crucial for understanding stress-strain curves in

low-symmetry systems. The calculation of these internal strains is one of the

key areas where theory adds information to the theory of elasticity, given

the difficulty in resolving the atomic positions in a strained systems through

experiments.

2.4 Pseudopotentials

The idea behind construction of pseudopotentials is to replace the strong

Coulomb potential of the nucleus and the effect of tightly bound core elec-

trons by an effective ionic potential acting on the valence electrons. The

aim of pseudopotential theory is to find effective potentials that represent

the scattering over the desired energy range. Most present-day electronic

calculations are based on ’ab initio norm-conserving pseudopotentials’ and

’ultrasoft pseudopotentials’.
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2.4.1 Norm-conserving pseudopotentials (NCPPs)

The norm-conserving pseudofunctions ψPS are normalized and are solutions

of model potential chosen to reproduce the valence properties of an all-

electron calculations. The orthogonality condition:

〈ψσ,PSi |ψσ′,PS
j 〉 = δi,jδσ,σ′ (2.23)

needs to be satisfied so that the Kohn-Sham equations has the same form:

(Hσ,PS
KS − εσi )ψ

σ,PS
i (r) = 0 (2.24)

To be defined as a good ab initio pseudopotential, it is required that the

NCPP equals the atomic potential outside the ”core region“ of radius Rc, the

logarithmic derivatives of the all-electron and pseudo wavefunctions agree at

Rc, the first energy derivative of the logarithmic derivatives of the pseudo-

and ’real’ wave functions agree at Rc, and the norm-conservation condition

is satisfied.

2.4.2 Ultrasoft pseudopotentials

Ultrsoft pseudopotentials accurately calculate the effective potential by a

transformation that re-defines the problem in terms of a smooth function, and

an auxilliary function around each ion core that represents the rapidly varying

part of the density. The condition of norm-conservation is relaxed. Thus, the

critical radius Rc much larger than for the norm-conserving pseudopotential

can be chosen, while maintaining the desired accuracy.
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2.5 Calculation of Phonons

Vibrational spectra provide wealth of information about the lattice-dynamical

behavior of solids. Accurate information on the force constants, static dielec-

tric constants, piezoelectric constants, electron-phonon interactions etc. can

be provided by theory of phonons, which is ultimately a part of electronic

structure. The total energy, within Born-Oppenheimer approximation, can

be viewed as a function of the positions of the nuclei E({Ri}). The two

approaches in the calculation of phonons using first-principles theory are:

(1) Direct calculation of total energy as a function of the positions of the

atoms (frozen phonon method)

(2) Perturbative approach involving calculations of the derivative of energy

(response function method)

2.5.1 Frozen phonons

In frozen phonon method, a small, but finite perturbation is frozen in the

system, and the total energy and forces are calculated with nuclei “frozen” at

positions {RI}. The forces on atoms can be calculated within the framework

of density functional theory, which makes it a direct approach for phonon

calculations. Then, the force constant matrix elements defined by numerical

dervatives of displacements as calculated as :

CI,α;J,β ≈ −∆FI,α
∆RJ,β

(2.25)
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and dynamical matrix D̃I,α;J,β is computed from the force constant matrix

as:

D̃I,α;J,β = CI,α;J,β
1√

MIMJ

(2.26)

Phonon frequencies and eigenvectors are obtained by digonalization of the

dynamical matrix. However, this technique determines phonon dispersion

curves for a crystal only with large ”supercell” calculations, whose size de-

pends on commensurability of perturbation, hence increasing the computa-

tional cost of phonon calculations at lower q-points.

2.5.2 Density Functional Perturbation Theory

Perturbative theory involves systematic expansion of hamiltonian Ĥo+λ∆Ĥ

in the powers of the perturbation. The first order expressions depending on

unperturbed wavefunctions and ∆Ĥ to the first-order are given as the ’gen-

eralized force’ on an atom. To obtain the interatomic force constants (IFCs),

we needs to compute second derivatives of ground state energy with respect

to the perturbation i.e. nuclear displacements, which can be calculated using

efficient electronic structure methods. This is given by:

∂2E({R})
∂RI∂RJ

=

∫
∂n(r)

∂RJ

∂V[R](r)

∂RI

dr+ δIJ

∫
n(fr)

∂2V[R](r)

∂RI∂RJ

dr+
∂2EN({R})
∂RI∂RJ

(2.27)

The linear response of the charge density with respect to atomic positions

can be calculated as:

∂n(r)

∂RI

= 4Re

N/2∑

n=1

ψ∗
n(r)

∂ψn(r)

∂RI

(2.28)
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The derivatives of KS orbitals, ∂ψn(r)
∂RI

are calculated as:

(HSCF − ǫn)
∂ψn(r)

∂RI

= −(
∂VSCF (r)

∂RI

− ∂ǫn

∂RI

)ψn(r) (2.29)

with first-order derivative of self-consistent potential given as:

∂VSCF (r)

∂RI

=
∂V[R](r)

∂RI

+ e2
∫

1

|r− r′ |
∂n(r

′

)

∂RI

dr
′

+

∫
δυxc(r)

δn(r′)

∂n(r′)

∂RI

dr
′

(2.30)

and first-order derivative of the KS eigenvalue, ǫn, expressed as:

∂ǫn

∂RI

= 〈ψn|
∂VSCF

∂RI

|ψn〉 (2.31)

The Eqs. (2.28-2.30) form a set of self-consistent set of equations for cal-

culation of response to an external perturbation, Vext. The solution of the

linear system can be obtained by employing efficient iterative techniques

such as conjugate gradients or the steepest descents. These calculations can

be carried out for obtaining phonon dispersion curves for any material, and

show nearly perfect agreement with experiments. Other information derived

from the phonon calculations includes phonon density of states and electron-

phonon coupling.



Chapter 3

Deformation induced

polymorphism in HCP metals:

First-principles analysis

3.1 Introduction

In recent years, investigation of deformation mechanisms in single crystals

of micrometer dimensions has been the focus of attention of numerous ex-

perimental studies [4, 5, 11–14]. The phenomenon of plastic flow is particu-

larly intriguing in hexagonal-close-packed metals, because of fewer number

of available slip systems at room temperature than in BCC and FCC met-

als. Deformation twinning is known to be the key mode of deformation in

HCP metals with sample sizes in micrometer i.e. d ≥ 1.0µm [4, 15]. As the

sample size is lowered to submicron length i.e. d ≤ 1.0µm, the slip-mediated

deformation is a prominent mechanism with strong crystal size effects on the

21
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flow stress and dislocation behaviors. A recent study by Yu et al. [5] revealed

a controlled plastic flow in the presence of very high stresses in the necked

region of a Ti-5 at.% Al alloy. Their HRTEM study showed an increase in

the basal stacking faults confirming the effect of sample size on the transition

of deformation mode from twinning to ordinary dislocation plasticity (ODP)

and the likelihood of cross-slip in HCP metals.

First-principles quantum-mechanical methods are increasingly used in material-

specific exploration of deformation anisotropy in materials [16, 17]. The ef-

ficacy of theoretical studies is particularly advantageous over experiments

where the stresses developed in the system result in differential strains in

atomic layers, in addition to the homogeneous strain [18]. Additionally,

the results show excellent agreement with the experiments on small-volume

single-crystal samples, because of (a) lower concentration of imperfections

prior to loading, and (b) experimental stress levels approaching the ideal

strength of the material [14,19]. This provides an impetus for the theoretical

study of planar faults in hexagonal-closed-packed metals at the atomic scale

to understand their underlying deformation behavior. Exceptionally superior

high specific strength of Titanium, showing dislocation-mediated plastic flow

in submicron-sized samples, has led us to focus on the energetics of stacking

faults and local structural transformations accompanying these faults.

As a model system of the present investigation, we choose the basal (0001)

plane of α-Titanium. We present a remarkable finding of the existence of
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deformation-induced polymorphs of Ti, stabilized by strain-mediated inter-

actions between stacking faults on the basal plane. The relevance of c
a
ratio

in determining the nature of slip phenomenon in HCP metals has guided our

search for similar polymorphs in other HCP metals. A Landau-theoretical

desription of structural signatures of titanium polymorphs in terms of homo-

geneous and inhomogeneous strain is presented to develop an understanding

of these polymorphs, in reference to HCP structure of titanium.

3.2 Computational Details

Our calculations are based on first-principles density functional theory (DFT)

and plane-wave pseudopotential method as implemented in Quantum ESPRESSO

[20] (QE). The ionic core-valence electron interactions are represented with

ultrasoft pseudopotentials [21] and electronic exchange-correlation energy is

approximated with a generalized gradient approximation (GGA) as parametrized

by Perdew-Wang [22] for titanium, Perdew-Burke-Ernzerhof [23] for beryl-

lium, yttrium, and lanthanum, and with a local density approximation (LDA)

as parametrized by Perdew-Zunger [24] for magnesium and zinc. The choice

of these functionals is based on the availability of reliable pseudopotentials

with QE, and physical results do not depend on them. Kohn-Sham wave

functions are expanded in a plane-wave basis set truncated with energy cut-

off of 30 Ry (and a corresponding cutoff of 240 Ry for charge density). In-

tegrations over Brillouin Zone (BZ) are sampled with a uniform (20x20x12)

k-grid for the bulk hcp structures, and the atomic structures are relaxed us-

ing Broyden, Fetcher, Goldfarb, Shanno (BFGS)-based algorithm until the
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Hellman-Feynman forces on each atom are lower than 0.001 Ry/bohr. Su-

percells with six unit cells of HCP structure stacked along the c-axis are

used in generating planar faults on the basal (0001) plane, and atomic and

cell relaxations are carried out to equilibrate the structures with respect to

all the degrees of freedom. Energies of the new structures of Ti relative to

that of HCP Ti are confirmed using ABINIT [25] implementation of DFT

with a norm-conserving pseudopotential, [26] and a local density approxima-

tion to exchange-correlation energy functionals as parameterized by Perdew-

Wang [27].

Dynamical matrices and phonon frequencies of Ti polymorphs are obtained

using the DFT linear response [28] method (Quantum ESPRESSO imple-

mentation), at q-points on a uniform (2x2x1) mesh in the BZ. Assuming

a weak dependence of phonon frequencies on the changes in volume as a

function of temperature (justified by a small thermal expansion coefficient),

vibrational contribution to free energy is estimated within a harmonic ap-

proximation [29,30] given by

Fvib = Etotal +
kBT

Nq

∑

q,i

log

[
2 sinh

(
~wiq

2kBT

)]
(3.1)

where Nq is the number of q-points on (20x20x12) mesh in the BZ, and

ωiq is the frequency of ith normal mode at wavevector q, obtained using

Fourier interpolation of dynamical matrices at the (2x2x1) mesh of q-points

computed with DFT linear response.
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3.3 Results and Discussions

3.3.1 Study of faults on (0001) plane of titanium

The extent of deformation on a crsytallographic plane is determined by the

generalized stacking fault vector ~f, given by ~f = x~a1 + y ~a2, where ~a1, ~a2 are

cell vectors of the plane, and (x ≤ 1, y ≤ 1) are fractional displacements. An

example of a fault with~f = 1
2
~a1+

1
3
~a2 on the basal (0001) of a supercell of Ti

is shown in Fig. 3.1. The energetics of faults in crystals are studied by ob-

Figure 3.1: Faulted configuration with ~f = 1
2
~a1 +

1
3
~a2 on the basal (0001)

plane of titanium

taining a generalized stacking fault energy surface (or the γ-surface), which

represents the energy cost of displacing one semi-infinite block of the crystal

relative to the other as a function of a fault vector~f in a plane (Vitek, 1968).

The fault energies on the basal plane of titanium are calculated with (x, y)

on a uniform (6x6) mesh, and then Fourier interpolated to obtain energy of
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a fault of an arbitarary vector ~f (see Fig. 3.2a).

0 0.2 0.4 0.6 0.8 1
Generalized Displacement Vector (f)

0

0.1

0.2

0.3

0.4

0.5

0.6

γ 
(J

/m
2 )

(0001)[1100]
(0001)[1120]
(0001)[2020]

USF

ISF

(b)

Figure 3.2: Fault energetics on basal (0001) plane of titanium: (a) γ-surface,
(b) Generalized stacking fault energy curves

A few special points on the γ-surface provide insight into the energetics of

dislocation nucleation and mobility on a plane, highlighting plastic defor-

mation anisotropy in a material. The local minimum in the γ-surface gives

the intrinsic stacking fault (ISF) energy, which is an indirect measure of the

width of stacking fault on that particular plane. The configuration of min-

imum energy barrier (a saddle point) required for a dislocation partial to

nucleate is the unstable stacking fault (USF).

The generalized stacking fault energy curves (Fig. 3.2b) extracted as sec-

tions of the γ-surface on the basal plane of Ti exhibit highly directional

nature of the slip. The energy of an FCC fault along the (0001)[11̄00] slip

system of Ti is 315 mJ/m2 (12.23 meV/atom) which corresponds well with

the experimental value of 310 mJ/m2 [31]. Our calculations also show a

local minimum along [202̄0] with a significantly low energy of 69 mJ/m2,

and an energy barrier of 153 mJ/m2 along the same direction. We refer to
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these configurations as the ISF and USF configurations, respectively on the

(0001)[202̄0] slip system of titanium.

3.3.2 Strain-mediated interactions of planar faults

Finding relatively high energy barriers, we optimized the faulted structures

with respect to all the degrees of freedom through full (concurrent atomic

and cell) relaxations. Because of the small (nano-scale) supercell, with c

= 6co ≈ 2.7nm, the strain-mediated interactions propagate to the adjacent

planar faults, leading to the changes in cell vectors. Thus, it is not possible to

define a definite fault vector ~f of the final relaxed structure, and correspond

a GSF energy (φ~f). If the size of the supercell were large (c → ∞), the

cell-relaxation should not change the displacement vector of slip, and hence

the γ-surface. The exception to this size-dependent behavior occurs in the

case of FCC stacking fault configuration in HCP Ti. The fault vector is

essentially unchanged i.e. ~f = 2
3
~a1 +

2
3
~a2, and the atomic layers away from

the fault show negligible displacements, indicating the formation of a shear

step with no deformation in the cell volume (see Fig. 6.1).

Surprisingly, such variable-cell relaxation of nano-scaled structures has re-

vealed three inequivalent structures with energies comparable to that of pris-

tine HCP titanium (see Table 5.1)! The morphology of these structures

show sliding in all the atomic planes, thus exhibiting no structural similar-

ities with the localized nature of stacking faults in crystals (Fig. 6.1). To
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Figure 3.3: Atomic displacements (dfaultedn = |~rn|faulted - |~rn|ideal) in faulted con-
figurations on cell-relaxation

Table 3.1: Energies and structural parameters of new structures using QE
with reference to HCP titanium

∆E c-vector (in units of ao)

(meV/atom) cx cx cz

HCP Ti 0 0.0 0.0 9.478

Structure I 0.78 0.834 0.0 9.499

Structure II 1.06 0.916 0.001 9.492

Structure III 1.15 0.501 0.685 9.499

develop further credibility in these unexpected results, we carried out struc-

tural relaxations using ABINIT [25] with these three structures as the initial

guess. The final relaxed structures are indeed the same as those obtained

using QE, within the typical DFT errors, and have energies essentially the

same as that of pristine HCP titanium (Table 3.2). Henceforth, we call these

novel structures as the ’deformation-induced polymorphs’ of titanium.

In comparison with the pristine HCP titanium, the estimated bulk moduli,

surface energies (Table 3.3), and the electronic density of states (e-DoS) (see

Fig. 3.4) of the polymorphs are nearly the same. The density of states at the
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Table 3.2: Energies and structural parameters of new structures using
ABINIT with reference to HCP titanium

∆E c-vector (in units of ao)

(meV/atom) cx cx cz

HCP Ti 0 0.0 0.0 9.494

Structure I 0.074 0.828 0.0 9.522

Structure II 0.073 0.912 0.00 9.514

Structure III 0.074 0.498 0.679 9.523

Fermi energy increases in polymorph III, but is nearly unchanged in poly-

morph I and II, with respect to HCP titanium. The coordination number of

each atom in the three polymorphs remains 12, indicating the preservation

of the local structural coordination.

Further, we use the distributions of bond lengths, D(b), to highlight im-

portant structural differences amongst the polymorphs (Fig. 3.5). The c
a

ratio of titanium (∼1.582) deviates from the ideal value for HCP structure

(1.633), which results in different in-plane and out-of-plane bond lengths.

Thus, D(b) of the HCP titanium contains two peaks (δ-functions), A and

B, at 2.87 Å and 2.93 Å, corresponding to out-of-plane and in-plane bond

lengths respectively, as a reflection of a non-ideal c
a
ratio. The D(b) functions

of the titanium polymorphs exhibit significant changes in the out-of-plane

bond lengths (Fig. 3.5), suggesting a link between the c
a
ratio of titanium

and the structural features of these polymorphs.
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Figure 3.4: Electronic DoS of Ti structures: HCP and polymorphs

Table 3.3: Bulk properties of Ti polymorphs

Surface Energy Bulk Modulus

(J/m2) (GPa)

Pristine Ti 1.93 117

Polymorph I 1.92 116

Polymorph II 1.92 116

Polymorph III 1.93 115
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Figure 3.5: Bond length distribution in titanium polymorphs. A and B peaks
correspond to out-of-plane and in-plane bond lengths respectively
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3.3.3 Generality of existence of polymorphs in HCP

metals

To probe the generality of these results, and establish possible existence of

these polymorphs in other HCP metals viz. yttrium, beryllium, lanthanum,

magnesium, and zinc, we obtained the minimum-energy structure of poly-

morph II of each of these metals, and identified the structural features that

correlate with their c
a
ratio. In each of these metals, the atomic structure of

polymorph II is generated by shear deformation along the basal plane, with

fault vectors analogous to that of polymorph II of titanium, and structural

optimization with respect to all the degrees of freedom is carried out, result-

ing in an energy minimum. We then estimate the energy of polymorph II,

relative to that of the HCP structure, for each of of these metals. Our results

strikingly reveal the existence of energetically stable deformation-induced

polymorphs in HCP metals, except for zinc probably due to its unsually high

c
a
ratio (Table 3.4).

The local changes in the atomic structure of the polymorph II for each of

these HCP metals are summarized in Table 3.5, classifying the differences

in terms of c
a
ratio and the valence orbitals involved in bonding. Interest-

ingly, the new structure of zinc shows significant structural transformation

with reference to the HCP structure (see Table 3.5), changing the overall c
a

ratio towards its ideal value, with an energy cost of ∼1.86 meV/atom. Such

relatively higher energies reflect a weaker tendency of polymorphism in zinc,

in contrast to that in the other HCP metals.
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Table 3.4: Energies of polymorph II of HCP metals

HCP metal c
a
value Energy

Difference (∆E)

(meV/atom)

Y 1.55 0.1

Be 1.57 0.28

Ti 1.58 1.0

Mg 1.62 0.5

La 1.61 0.46

Zn 1.87 1.86

Table 3.5: Trends in bond length distributions in polymorph II of HCP metals
and correlation with c

a
ratio and valence orbitals

s, p orbitals d orbitals

c
a
<1.633

Negligible changes in the in-plane bond lengths

Be: Insignificant change in the
out-of-plane bond lengths,

Y and Ti: contraction and ex-
pansion in out-of-plane bond
lengths

Mg: Out-of-plane bond
lengths approaching the
in-plane bond lengths

La: Significant spread in the
out-of-plane bond lengths

c
a
>1.633

–

Zn: increase in in-plane bond
lengths, decrease in out-of-
plane bond lengths, c

a
ratio ap-

proaching the ideal value
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Figure 3.6: Bond length distributions in polymorph II of HCP metals: (a)
yttrium, (b) beryllium, (c) lanthanum, (d) magnesium, and (e) zinc. A and
B peaks correspond to out-of-plane and in-plane bond lengths respectively
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3.3.4 Temperture-dependent stability of polymorphs

of titanium

In light of the technological relevance of titanium in structural applications,

we now focus on the analysis of three of its polymorphs. Negligible difference

in energies of these polymorphs relative to that of HCP titanium prompts the

evaluation of their structural stability as a function of temperature. Vibra-

tional spectra of the three polymorphs confirm their local structural stability

(Fig. 3.8), and bear the signature of spread in the out-of-plane bond lengths

in the frequencies at the wavevector (0,0,1
2
) i.e. A-point of the Brillouin zone.

The three optical phonon modes (doubly degenerate modes of in-plane dis-

placements, and a third mode of out-of-plane displacements) at the Γ-point

in the unit cell of HCP titanium (Fig. 3.7) are correlated with the eigen-

vectors of the normal modes in the polymorphs, by calculating a correlation

matrix as

Sµν = 〈eµ|e′ν〉, (3.2)

where eµ is the eigenvector of µth mode of HCP titanium, and e’ν is the

eigenvector of νth mode of a polymorph, both determined for the 12-atom

supercells.

Analysis of the normal modes with maximum overlap with the normal modes

of HCP titanium shows softening of the modes corresponding to the in-plane

atomic displacements, and hardening of the modes representing out-of-plane

atomic displacements (Table 5). This can be readily understood from the
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Figure 3.7: Vibrational Spectrum for bulk Ti

Figure 3.8: Vibrational spectra for (a) polymorph I, (b) polymorph II, and
(c) polymorph III

slight increase in the in-plane bond lengths of all the polymorphs, and a de-

crease in the out-of-plane bond lengths in polymorph III, evident from D(b)

of titanium structures (see Fig. 3.5). Note the hardest optical mode of poly-

morph III. Furthermore, the elastic constants obtained through a long wave-

length limit (q → 0) of transverse acoustic phonons along the ΓA- segment
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Table 3.6: In-plane and out-of-plane frequencies (in cm−1) at Γ-point

Frequency (in cm−1)

In-plane Out-of-plane

Mode I Mode II Mode III

Pristine HCP 184 185 204

Polymorph I 150 154 210

Polymorph II 148 152 211

Polymorph III 147 147 216

seem to be lower for all the polymorphs, indicating an increased tendency of

strains along c-direction in the polymorphs.
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Figure 3.9: Vibrational contributions to free energies of polymorphs relative
to HCP structure

Temperature-dependent vibrational free energies of the polymorphs relative

to the HCP structure (Fig. 3.9), obtained within a harmonic approximation,

reveal a monotonous increase in free energy of polymorph I, rendering it

relatively less stable as T increases. This is in contrast to polymorph II and

III, whose vibrational free energies tend to increase their stabilty with an

increase in temperature from 0 to 1000 K.
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3.3.5 Structural Analysis

We now establish a Landau theoretical picture of the polymorphs that con-

cisely describes their structures as a distortion of the reference HCP titanium.

The structures of these polymorphs arise from a combination of (a) localized

slip (at ~c = 6co, in the present study), originating from the initial slip ~fon the

basal plane, (b) average displacements of A and B sublattice sites in each

of the primitive cells, spatial variations of which give the inhomogeneous

strain, and (c) internal strains associated with inter-sublattice displacements

of atomic planes A and B. Homogeneous strain in the cell, ǫxz, is obtained

in the elastic regime as:

ǫxz =
cx

6c0
(3.3)

cx and co being the x-component and z-component of c-vector of polymorph

and HCP titanium respectively. In polymorph III, the strain has both xz-

and yz- components, and this is appropriately generalized (see Table 6).

To separate the inhomogeneous deformation into acoustic phonons (inhomo-

geneous strain) and optical phonons (internal strain), we define two degrees

of freedom for each unit cell, i (i = 1 to 6, in the present study):

ai =
uAi + uBi

2
(3.4)

oi =
uAi − uBi

2
(3.5)

where u is the x-component of atomic displacement. The ai describes the

average displacement of adjacent A and B atomic planes relative to that in the
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HCP structure, and oi describes the relative displacements of adjacent A and

B atomic planes in a polymorph. To compute ai and oi, we first filter out the

contributions of homogeneous strain on the atomic positions (using relation

3.3). This is done by representing atomic positions in a polymorph in reduced

(crystal) coordinates, and obtaining upn = dpn-d
o
n, d

p
n and don being the atomic

positions in crystal coordinates of n atoms (n = 1 to 12, in the present study)

in a polymorph and HCP structure respectively. The a
(s)
i obtained using

Equation 3.4, represent a displacement field of the inhomogeneous strains

in the system, and contain linear and periodic components of the atomic

displacements (see Fig. 3.10).
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Figure 3.10: Displacement field of acoustic phonons (inhomogeneous strain)

We further isolate the linear part of atomic displacements by using,

ãi = ai − i ∗ (ǫ′xz)(co)− ā (3.6)

where ǫ′xz is responsible for the linear part of the a
(s)
i , and ā is the average of

a
(s)
i . It is important to note that the slope of linear part of a

(s)
i is negative
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(Table 6), signifying that ǫ′xz partly compensates the homogeneous deforma-

tion (Eq. 3.3), thus imparting structural stability to the polymorphs. ãi
(s)

are periodic after 12-atomic planes, and show distinct inhomogeneous strain

patterns for each of the three polymorphs (see Fig. 3.11a). These ãi
(s), when

Figure 3.11: Inhomogeneous displacements in Ti polymorphs

represented in Fourier space (Fig. 3.12a), indicate relative weights of the

acoustic phonons of different wavevectors (given in the units of π
6co

), co being

the height of the unit cell of HCP titanium in the real space. We find that the

acoustic phonons in these polymorphs are dominant at q ∼ 0.6 π
6co

, similar to

that in martensitic phases of shape-memory alloys.

Figure 3.12: Inhomogeneous displacements in Ti polymorphs in Fourier space
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The periodic displacement field of optical phonons o
(s)
i (Equation 3.5), sig-

nifying internal strains built in the polymorph relative to the HCP struc-

ture, show an average value of around 0.1 for the three polymorphs (see

Fig. 3.11b). Fourier analysis (Fig. 3.12b) reveals the dominance of optical

modes at wavevector, q → 0, associated with the internal strains which show

primarily long-wavelength variations.

3.4 Conclusions

Our theoretical results affirm the continuous nature of plastic flow at nanoscales

in HCP metals, as reported for single-crystal Ti-5 at.% Al alloy [5]. This in-

creased plasticity is attibuted to the occurrence of polymorphs of HCP met-

als with an exception of Zn, resulting from the interations of planar faults at

nanoscale, and with ∼ 0 energy cost of formation, relative to the respective

hcp structures. The morphology of these long periodic polymorphs show a

combination of homogeneous and inhomogeneous strain, and internal strain,

having negligible correspondence with the local structure of stacking faults

in crystals. This strongly indicates the ’deformation-induced polymorphism’

is yet another mechanism contributing to plasticity in submicrometer-sized

HCP metals, at low- and elevated temperatures.



Chapter 4

Temperature-dependent

stability of stacking faults on

(001) and (111) planes of

Ni3Al: First-principles analysis

4.1 Introduction

Nickel-base superalloys form a class of unique high-temperature materials,

suitable for extensive applications in components of gas turbine blades and

vanes in aircraft engines, and heat exchangers [32]. The strengthening of

these superalloys is achieved from coherent precipitation of nano-scale γ’-

phase of Ni3Al (L12 structure) in γ-phase of Ni (FCC structure) [33, 34].

The ordered phase Ni3Al, having superior creep-rupture properties, plays

a significant role in conferring strength to the superalloy. Interestingly,the

41
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yield stress of Ni3Al increases with increasing temperature, which further

augments its importance in high-temperature technological applications [32].

The dislocation structure of Ni3Al is characterized by anti-phase boundaries

(APB) [7, 35, 36] on {111} and {001} planes, 1
3
〈121〉 superpartials bound-

ing an intrinsic stacking fault (SISFs) [37, 38], and 1
6
〈121〉 Shockley partials

bounding a complex stacking fault (CSFs) [39] on the {111} planes. The

anomalous yield stress has been studied with theoretical models based on

experimental observations [40–46] and slip mechanisms based on atomistic

simulations [6]. It is attributed to the interplay between thermal activation

and cross-slip from the {111} octahedral plane to {001} cube plane. Addi-

tionally, the anisotropy of APB energies on the two planes, and high CSF

energy have been suggested as the main driving force for this unusual high-

temperature behavior. The nature of the underlying mechanism of slip at

elevated temperatures is not clear and provides an impetus to first-principles

study of high-temperature energetics of planar faults in Ni3Al.

Atomistically, the energetics of slip at 0K can be estimated by employing

the concept of generalized stacking fault (GSF) energy surface (or the γ-

surface), as originally proposed by Vitek(1968). The γ-surface represents the

energy cost of shearing one-half of the perfect crystal relative to the other

as a function of generalized displacement (f) in the plane. This has been

analyzed by Rice suggesting that the energy released during dislocation nu-

cleation is proportional to the unstable stacking fault energy (γusf ) or the

minimum energy barrier for slip along a particular direction [47]. The slip
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process at finite temperatures can be analyzed by calculating energies of pla-

nar faults, taking into account the contributions of lattice vibrations to free

energies [30]. This knowledge appears promising in resolving the cause of

anomalous yield stress in Ni3Al.

Our goal here is to study the energies of planar faults at 0K and at fi-

nite temperatures, and to associate the trends in the fault energetics with

the unique flow behavior in Ni3Al. To realize this goal, the remainder of the

paper is organized as follows: Section 2 reviews the details of first-principles

quantum mechanical methods employed in this study. In Section 3, we dis-

cuss the geometrical details of the unit cells employed for calculation of fault

energies. The energetics of faults, and their corresponding influence on the

electronic structure and phonon frequencies are discussed in Section 4. In

Section 5, we estimate the change in fault energies as a function of temper-

ature, taking into account the vibrational contributions to free energies. We

conclude in Section 6, with a physical implication of the present theoretical

study in the explanation of deformation process at finite temperatures.

4.2 Computational Details

Our calculations are based on first-principles density functional theory (DFT)

and plane-wave pseudopotential method as implemented in Quantum ESPRESSO

(QE) [20]. The ionic core-valence electron interactions are modelled using

ultrasoft pseudopotentials [21] and electronic exchange-correlation energy is

approximated with a local density approximation (LDA) as parameterized
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by Perdew-Zunger [24]. Kohn-Sham wave functions are expanded in a plane-

wave basis set truncated with energy cutoff of 30 Ry (and a corresponding

cutoff of 240 Ry for charge density). Integrations over Brillouin zone are

sampled with a uniform (8x8x8) k-grid for the bulk Ni3Al, and the atomic

structures are relaxed using Broyden, Fetcher, Goldfarb, Shanno (BFGS)-

based algorithm until the Hellman-Feynman forces on each atom are lower

than 0.001 Ry/bohr. Fault energetics on (111) and (001) planes of Ni3Al

is determined by structural relaxations of the faulted supercells, generated

by expansion of unit cells along [111] and [001] directions, as explained in

Section 3.

Dynamical matrices and phonon frequencies of faulted structures of Ni3Al are

obtained using the DFT linear response [28] method, (Quantum ESPRESSO

implementation), on a uniform mesh of (2x2x1) q-points. Assuming a weak

dependence of volume as a function of temperature, vibrational contributions

to free energies are estimated within a harmonic approximation [29,30] given

by

Fvib = Etotal +
kBT

Nq

∑

q,i

log

[
2 sinh

(
~wiq

2kBT

)]
(4.1)

where Nq is the number of q-points on a finer mesh in the Brillouin zone,

and ωiq is the frequency at wave vector q obtained using Fourier interpolation

of dynamical matrices at the (2x2x1) mesh of q-points obtained with DFT

linear response.
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4.3 Geometry and the γ-surface

The unit-cell geometries of L12 crystal structure of Ni3Al along [001] and

[111] directions, subsequently used for study of fault energetics on (001) and

(111) planes, are shown in Fig. 4.1 and 4.2. Supercells with three unit cells

along [111]-direction i.e. 36-atom system, and four unit cells along the [001]-

direction i.e. 16-atom system are generated, and energies are calculated at

fault vectors (f i) in the symmetry-irreducible wedges.

Figure 4.1: Unit cell of Ni3Al for study of fault energetics on (111) plane,
viewed (a) perpendicular to (111) plane, (b) along [111] direction. The tri-
angle delineated in green (in (b)) shows symmetry-irreducible wedge used in
calculation of fault energies.

The stacking fault energies (SFEs) are determined with:

γSFE =
Efaulted − Epristine

Area
(4.2)

The discrete SFEs are, then, Fourier interpolated over uniform (4x4) and

(6x6) grids on (001) and (111) planes respectively, to obtain the generalized

stacking fault (GSF) energy surfaces or the γ-surfaces.
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Figure 4.2: Unit cell of Ni3Al for study of fault energetics on (001) plane,
viewed (a) perpendicular to (001) plane, (b) along [001] direction. The tri-
angle delineated in green (in (b)) shows symmetry-irreducible wedge used in
calculation of fault energies.

4.4 Results and Analysis

Our theoretical prediction of lattice constant of bulk Ni3Al (3.47Å) is un-

derestimated by 2.5% compared to the experimental results (3.56Å) [48],

which is within the typical DFT-LDA error. Inclusion of the spin polariza-

tion results in no change in the lattice constant of bulk Ni3Al. The phonon

frequencies over the entire k-point range are positive, confirming the local

stability of the bulk Ni3Al (Fig. 4.3). The phonon spectrum agrees well with

the theoretical calculations by Isaev et al. and Wang et al [49,50], and is also

in good agreement with experimental spectrum [51] along Γ-X and Γ-M di-

rections, but shows discrepancy along Γ-R segment. As already pointed out

by Isaev et al., this is due to numerical instability, which may be resolved by

increasing the convergence parameter in the calculation of force constants.

However, this phonon spectrum is acceptable, as we focus on the changes in

free energies associated with the phonon frequencies upon the introduction
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of planar faults.
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Figure 4.3: Vibrational spectra of bulk Ni3Al

4.4.1 Slip at 0K

The γ-surface on the (111) plane of Ni3Al (see Fig. 4.4) highlights the [11̄0]

direction as the energetically feasible slip direction with a minimum energy

barrier of 0.37 J/m2 at ∼ 1
4
[11̄0], on the path to an anti-phase boundary

(APB) configuration at 1
2
[11̄0] with a formation energy of 0.227 J/m2. Our

estimate of the APB(111) energy is higher than the experimental value of

0.180 J/m2 [38,44] and that calculated by Mahesh et al. [36], but is close to

the earlier theoretical findings of Mryasov et al. [6] and Rosengaard et al. [7].

The atomic structure of APB(111) shows no change in the coordination num-

ber of atoms, and negligible difference in the electronic density of states at en-

ergies close to Fermi energy (EF ) with respect to the bulk Ni3Al. The phonon

density of states (Fig. 4.5a) highlight the local stability of the APB(111), and

also reveals hardening of the high energy modes, pointing at the strength-

ening effects of APB(111) during the deformation process. Also, the density
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(a) (b)

Figure 4.4: Fault energetics on (111) plane of Ni3Al: (a) γ-surface, (b) con-
tour plot

of modes in the frequency range, 100 <ω >150, increases APB(111). The

stiffening of high-energy modes and softening of low-energy modes can be

qualitatively mapped to the compression and elongation of bonds in the re-

laxed structure with reference to the bond lengths in the pristine Ni3Al, as is

evident from the distribution of bond lengths (D(b)) in APB(111) (Fig. 4.5b).

The symmetry of (111)[11̄0] GSF energy curve about the 1
2
[11̄0] and the

local stability of the APB(111) confirm the occurrence of dislocation dipoles

on the (111) plane [40,42], and the feasibility of dissociation reaction:

ao[11̄0] →
ao

2
[11̄0] + APB +

ao

2
[11̄0] (4.3)

at the onset of slip along (111)[11̄0] slip system.

Further, low energy of the ISF(111)[12̄1] configuration (0.081 J/m2) with respect

to the APB(111)[11̄0] suggests an additional pathway for the initial slip along
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Figure 4.5: Structural features of APB(111)[110], (a) vibrational density of
states, (b) density of bond lengths

[11̄0] direction, and an occurrence of dissociation reaction on {111} plane:

ao[11̄0] →
ao

3
[12̄1] + SISF +

ao

3
[21̄1̄] (4.4)

These dislocation partials occur on two {111} planes, aligned at 60o to each

other, enclosing an intrinsic stacking fault. Our estimate of the ISF energy

is higher than the experimental value of 0.015 J/m2 [38, 43], but is close to

the earlier theoretical results of Mryasov et al. [6]. The ISF configuration

derives its lower energy from its atomic structure, that maintains the nearest

neighbors of each atom and shows negligible changes (within ± 0.02Å) in the

bond lengths on relaxation with respect to the bulk Ni3Al. The local stabil-

ity of this structure is confirmed from its vibrational spectrum (Fig. 4.6b),

showing positive frequencies over the entire q-point range. The electronic

structure of the ISF configuration, with ABC‖BCABC type stacking, shows

a slight increase in the electronic density of states at Fermi energy (Fig. 4.6a)

relative to that of the pristine Ni3Al.
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Figure 4.6: Electronic and atomic structural features of ISF(111)[12̄1], (a) vi-
brational spectrum, (b) electronic density of states

The proposed mechanism of formation of SISFs along [12̄1] direction on the

basis of energy difference between the APB[11̄0] and ISF[12̄1] configurations

presents no insight into the nucleation of dislocation partial at ∼ 1
6
[12̄1]

(i.e. unstable stacking fault configuration) with a high energy of about 0.464

J/m2. Delving further, we find that the vibrational spectrum shows phonon

instabilities at the Γ-point i.e. q=(0,0,0) (see Fig. 4.7a) of the USF configu-

ration, with the eigendisplacements of atoms localized at the fault plane (see

Fig. 4.7b). As suggested by Clutterbuck et. al. [52], the phonon instabilities

significantly reduce the stress required for slip along a direction. This signi-

fies that, in the case where phonon instabilities occur, the energy required

for nucleating a dislocation partial is lower than the unstable stacking fault

energy along that direction. The lowering of energy barrier because of the

vibrational effects affirms the splitting of dislocation along [11̄0] into two

dislocation superpartials along 〈121〉 with the formation of ’superdislocation

intrinsic stacking fault’, SISF at 1
3
[12̄1] in Ni3Al [38].

Furthermore, taking into account the asymmetry of energetics along the [12̄1]
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(a) (b)

Figure 4.7: Phonon instability in USF configuration on (111) plane of Ni3Al,
(A) vibrational spectrum, (b) eigenvectors of unstable phonons

direction, there is a possibility of dissociation of 1
2
[1̄10] dislocation into two

partials viz 1
6
[1̄21̄] and 1

6
[2̄11] with an approximate fault energy of 0.237 J/m2,

leading to lowering of the elastic strain energy. The resulting structure is

locally stable, as is evident from the phonon density of states (Fig. 4.8),

and shows a slight increase in the frequency of high energy modes from 362

cm−1 to 381 cm−1 with reference to the bulk Ni3Al. This can be related to

the change in bond lengths around the fault plane, similar to that in the

APB(111) structure. This correspondence with the APB(111), along with the

close energetics, owes to the similar changes in the local atomic structure

causing Al atoms to become the nearest neighbors in both the structures.

The local stability of this configuration with the fault vector 1
6
[1̄21̄] confirms

the feasibility of formation of Shockley partials (or complex stacking fault,

CSF) in Ni3Al:

ao

2
[1̄1̄0] → ao

6
[1̄21̄] +

ao

6
[211̄] (4.5)

We now analyze the γ-surface on the (001) plane (Fig. 4.9) to determine the
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Figure 4.8: Vibrational density of states of 1
6
[1̄21̄] configuration on (111)

plane of Ni3Al

feasibility of slip along this plane. The extremal points on the (001) γ-surface

highlight the USF energy i.e. minimum energy barrier of 1.35 J/m2 along

1
2
[11̄0] direction, with a relatively low ISF energy of ∼0.093 J/m2 at 1

2
[11̄0].

The ISF energy agrees well with the experimental results of Sun et al. [53]

and earlier theoretical estimates [36]. This ISF configuration corresponds to

the APB on the (001) plane at 1
2
[11̄0], which preserves the nearest-neighbor

coordination of the pristine Ni3Al.

(a) (b)

Figure 4.9: Fault energetics on (001) plane of Ni3Al: (a) γ-surface, (b) con-
tour plot

Analyzing the local atomic structure of the USF configuration, we find a

decrease in the coordination number of atoms to 10, along with a significant
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compression in bond lengths, essentially localized near the fault plane (Fig.

4.10a). These structural changes lead to phonon instabilities at the wavevec-

tors (0,0,0) and (0,0,1
2
) i.e. Γ- and Z-point in the Brillouin Zone respectively,

as evident from its vibrational spectrum (Fig. 4.10b). Similar to the USF(111)

structure exhibiting phonon instabilities, the calculated energy barrier height

along (001)[11̄0] slip system is not indicative of the energy required to nu-

cleate a dislocation. Nevertheless, the energy barrier along [11̄0] direction is

significantly higher for a primary slip to occur on (001) plane at low stresses.

Figure 4.10: Structural features of APB(001)[110], (a) density of bond lengths,
(b) vibrational spectrum

Contrary to this high energy barrier, the low ISF energy of ∼0.093 J/m2

favors the occurrence of slip on the (001) plane. This is further supported by

the local atomic structure showing no change in the nearest-neighbor, and

minimal change in inter-atomic bond lengths. As a result, the local stability

of this configuration is maintained (see Fig. 4.11b) over the entire Brillouin

Zone. The slightly higher energy of this configuration with a distinct atomic

structure, compared to the pristine Ni3Al, correlates with increase in the

electronic density of states close to Fermi level (see Fig. 4.11a). The energy
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of APB configuration on (001) plane suggests the feasibility of occurrence of

this structure during the slip process, but does not provide insight into the

mechanism of transition of octahedral {111} to cube {001} slip in Ni3Al. To

understand this as possibly a temperature-dependent slip process, we study

the fault energies as a function of temperature, by estimation of vibrational

contributions to their free energies.

Figure 4.11: Electronic and atomic structural features of ISF(001)[11̄0], (a)
electronic density of states, (b) vibrational spectrum

4.4.2 Analysis of planar faults at finite temperatures

Vibrational free energy of APB(111)[11̄0] is slightly positive (∼ 4 mJ/m2) rel-

ative to the pristine Ni3Al structure, and increases with increase in temper-

ature (see Fig. 4.12 and 4.13a). This indicates that the APB(111)[11̄0] forma-

tion is feasible at lower temperatures, owing to relatively lower energy barrier

along the [11̄0] direction, but as the temperature increases, the dissociation

of [11̄0] to form SISF and CSF will be more pronounced. The ISF(111)[12̄1]

energy shows a monotonous decrease in vibrational free energy from 0K to

80% of the melting temperature of Ni3Al (Fig. 4.13b), signifying widening

of the stacking faults as a function of temperature, as observed by Lours et
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al. [45]. The wide stacking faults decrease the tendency of a dislocation to

cross-slip, thus inhibiting the movement of dislocation. This increases the

flow stress on (111) plane of Ni3Al.

Contrarily, the free energy of CSF decreases with temperature, suggesting

an increased rate of dissociation of 1
2
[11̄0] dislocation into Shockley partials

along [1̄21̄] direction. The fault energy of these partials remains high (∼220

mJ/m2) at higher temperatures indicating narrow stacking faults. This in-

creases the probability of cross-slip from (111)[11̄0] slip system to (001)[11̄0],

with the formation of APB(001)[11̄0].

Further, the decrease in free energy of APB(001)[11̄0] (Fig. 4.12 and 4.13c)

as a function of temperature supports the transition of slip process from oc-

tahedral ({111}) plane to cube ({001}) plane. The increase in dislocation

density along the (111) plane and (001) plane in tandem, further leads to

locking of dislocation, thus influencing the overall flow stress behavior of

Ni3Al.

4.5 Conclusions

The fault energies on (111) and (001) planes of Ni3Al show a feasibility of

initial slip along (111)[11̄0] slip system. Two types of dissociation reactions

are possible energetically, (1) formation of superdislocation intrinsic stack-

ing faults, and (2) formation of Shockley partials. These dislocation partials

determine the flow stress behavior of Ni3Al at elevated temperatures. The
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Figure 4.12: Temperature-dependent vibrational free energies of faults rela-
tive to pristine Ni3Al

Figure 4.13: Fault energies of, (a) APB(111)[11̄0] (increase by 5 %), (b)
ISF(111)[12̄1] (decrease by 14 %), and (c) APB(001)[11̄0] (decrease by 20 %),
when the temperature increases from 0 to 1330 K

increase in yield strength in Ni3Al as a function of temperature is because

of the activation of slip on both {111} and {001} planes, due to widening
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of stacking faults and tendency of a dislocation to cross-slip, leading to de-

creased mobility of dislocations.



Chapter 5

Temperature-dependent

stability of stacking faults in

FCC metals: First-principles

analysis

5.1 Introduction

The mechanism of plastic deformation in a material is governed by energetics

of nucleation and movement of a dislocation, and the nature of its interactions

with other dislocations [2]. Along a particular slip system of a crystal, the

energy of the strain field associated with a dislocation is proportional to the

square of its Burgers vector [54]. As a result, the plausibility of activation of

{111}〈110〉 slip system in FCC metals should be apparently higher than that

along the {111}〈121〉 slip system. Secondly, the tendency of a dislocation to

58
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dissociate into two or more dislocations can assist in reduction of the total

strain energy of the system. Heidenreich and Shockley [55] suggested an

example of one such dislocation reaction on the {111} plane of FCC metals:

ao

2
[101̄] → ao

6
[21̄1̄] +

ao

6
[112̄], in terms of Burgers vectors (5.1)

The resulting dislocation partials enclose a stable stacking fault, with a con-

dition that the decrease in energy due to dissociation must be greater than

the increase in interfacial energy of the faulted region [54]. The stacking fault

energy of a material influences the dislocation structure, thus affecting the

defect density, strain-hardening rate, and high-temperature creep strength.

Lower stacking fault energy leads to wider stacking faults which hinder the

dislocation mobility, leading to an increased density of twins which act as

dislocation sources [56, 57]. The lesser tendency of the dislocations to cross

slip due to wider stacking faults reduces the rate of dynamic recovery, hence

enhancing the creep strength of the material [58, 59].

The concept of generalized stacking fault (GSF) energy surface (or the γ-

surface), which represents the energy cost of shearing one-half of the perfect

crystal relative to the other as a function of displacement (f) in the plane,

originally proposed by Vitek(1968), has been extensively used to study the

energetics of dislocation nucleation and slip in crystals. The GSF energy

surface has been analyzed further by Rice, showing that the energy release

rate of dislocation nucleation is proportional to the unstable stacking fault

energy (γusf ) or the minimum energy barrier during slip along a particular
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direction [47]. The GSF energy curves, obtained as sections of the γ-surface

represent directional anisotropy of slip on a plane, and indicate the energy

barrier configurations (saddle points), and an intrinsic stacking fault config-

uration (a local minimum). Prompted by the experimental evidence [60, 61]

for the presence of stacking faults along {111}〈121〉 slip system in FCC met-

als, extensive theoretical studies [62–66] have been carried out using different

interatomic potentials to understand the mechanism of slip along [12̄1] direc-

tion. Nevertheless, it is pertinent to understand the energetics of slip over

the entire {111} plane of FCC metals, and gain insight into the local atomic

structural changes upon the introduction of the planar faults.

Also, the temperature-dependent stacking fault energies are crucial in the

understanding of slip process during warm working of a material, i.e. upto

70 - 80 % of the melting temperature, and also determining the creep be-

havior. The vibrational contributions to free energies at finite temperatures

have been shown to effectively capture the phase diagram [67], changes in

the stacking faults [68–70], and energetics of points defects. Though Hickel

et al. have studied temperature-dependent intrinsic stacking fault energies

in Ni, most of the earlier first-principles study of faults are at 0K. In the

present work, we calculate vibrational free energies of faults on (111) plane

of FCC metals to estimate their temperature-dependent barrier heights and

stacking fault energies.

The aim of our work is two-fold, (1) to understand the slip process in terms

of the local stability and energetics of faults along [11̄0] and [12̄1] directions
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on the (111) plane of FCC metals, and (2) to obtain temperature-dependent

fault energies by calculating the vibrational contributions to free energies.

Considering technological importance and applicability, we focus here on

three FCC metals, viz aluminum, copper and nickel.

We describe the first-principles computational methods in Section II. The en-

ergetics of faults, and their reflections in the electronic structure and phonon

frequencies are discussed in Section 3. In Section 4, we estimate the change

in fault energies as a function of temperature, taking into account the vibra-

tional contributions to free energies. We conclude in Section 5, discussing

physical implications of the present analysis and a possible explanation of

deformation process at finite temperatures.

5.2 Computational Details

Our calculations are based on first-principles density functional theory (DFT)

and plane-wave pseudopotential method as implemented in Quantum ESPRESSO

[20] (QE). The ionic core-valence electron interactions are modelled using

ultra-soft pseudopotentials [21] and electronic exchange-correlation energy is

approximated with a generalized gradient approximation (GGA) as parametrized

by Perdew-Burke-Ernzerhof [23] for aluminum, Perdew-Wang [22] for cop-

per, and with a local density approximation (LDA) as parameterized by

Perdew-Zunger [24] for nickel. Kohn-Sham wave functions are expanded in

a plane-wave basis set truncated with energy cutoff of 30 Ry (and charge

density with a corresponding cutoff of 240 Ry). Integrations over Brillouin
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zone are sampled with a uniform (15x15x8) k-grid for a 3-atom unit cell with

its c-vector oriented along [111] direction of FCC metals, and atomic struc-

tures are relaxed using Broyden, Fetcher, Goldfarb, Shanno (BFGS)-based

algorithm until the Hellman-Feynman forces on each atom are lower than

0.001 Ry/bohr. Supercells were constructed by tripling this cell to simulate

planar faults. By tilting the c-vector of the supercell, a fault or localized

shear deformation is introduced along [11̄0] and [12̄1] directions on the (111)

plane. Atomic relaxations in these faulted supercells are carried out to at-

tain minimum energy structures, and generalized stacking fault energies are

calculated using:

EGSF =
Efaulted − Epristine

Area
(5.2)

Dynamical matrices and phonon frequencies in the faulted structures of Al,

Cu, and Ni are obtained using the DFT linear response [28] method on a

uniform mesh of (3x3x1) q-points. Assuming a weak dependence of volume

as a function of temperature, and hence ω(T), vibrational contributions to

the free energies are estimated within a harmonic approximation [67,68] given

by

Fvib = Etotal +
kBT

Nq

∑

q,i

log

[
2 sinh

(
~wiq

2kBT

)]
(5.3)

where Nq is the number of q-points on (20x20x7) mesh in the Brillouin zone,

and ωiq is the frequency at wave vector q obtained using Fourier interpolation

of dynamical matrices determined on the (3x3x1) mesh of q-points using DFT

linear response.
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5.3 Results and Analysis

Our theoretical estimates of lattice constants of Al, Cu and Ni are 4.05 Å, 3.63

Å, and 3.43 Å, within typical DFT errors of the corresponding experimental

values at room-temperature [71]. Phonon dispersion of the 3-atom unit cells

of bulk Al, Cu, and Ni along the [111] direction (see Fig. 5.1) show real

frequencies over the entire Brillouin Zone, confirming their local stability

(see Fig. 5.2). The Γ-A(0,0,1
2
) segment representing the height of the cell

along [111]- direction in the reciprocal space reduces to one-third in the

supercell, owing to Brillouin zone folding. The changes in this segment on

the introduction of planar faults are the fingerprints of structural changes

occurring in the faulted configurations of Al, Cu, and Ni.

(a) (b)

Figure 5.1: FCC unit-cell with ABCABC stacking along [111] direction, (a)
front view, and (b) view along [111] direction. The shortest Burgers vector
is ao

2
[11̄0], ao: lattice constant of conventional unit cell
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Figure 5.2: Phonon Spectra of bulk Al, Cu and Ni

5.3.1 Analysis of planar faults at 0 K

The generalized stacking fault energy curves on the (111) plane of Al, Cu and

Ni (see Fig. 5.3) show directional anisotropy, with no local minimum along

[11̄0], and a local minimum i.e. intrinsic stacking fault configuration and a

minimum energy barrier i.e. unstable stacking fault configuration along [12̄1]

direction. The minimum energy barriers, and ISF energy on the (111) plane

of Al, Cu and Ni are tabulated in Table 1.

The comparable energy costs of nucleation of dislocation along [11̄0] and

[12̄1] directions in Al suggests the feasibility of slip along [11̄0] direction,

contrasting to the nature of fault energetics in Ni. The slip in Al along

[12̄1] direction results in an intrinsic stacking fault of energy comparable

to the barrier height with
γisf
γusf

ratio close to unity. This implies a higher
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Figure 5.3: Generalized stacking fault energy curves for [11̄0] and [12̄1] di-
rections on (111) plane of Al, Cu and Ni

tendency of propagation as a full dislocation along [12̄1] direction than as

dislocation partials with an enclosed stacking fault, supporting the suggestion

of Swygenhoven et.al. in terms of the energy cost of a trailing partial after an

initial dislocation partial has been nucleated [63]. In Cu, the energy barriers

of slip along [11̄0] and [12̄1] directions suggest that the (111)[11̄0] slip system

is more favorable, but a very low intrinsic stacking fault energy suggests the

Table 5.1: Stacking fault energies in Al, Cu and Ni

γisf γusf γisf
γusf(mJ/m2) (mJ/m2)

Al 162, 166†, 165#, 146§ 181, 151§ 0.90

Cu 42, 45†, 33§ 149, 173§ 0.27

Ni 117, 125†, 120§, 121Φ 148, 172§, 230Φ 0.79

Values in bold: Present work
†γexperimental [72],

#Lu et al. [2], %Swygenhoven et al. [63], ΦAditi et al. [73]
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dissociation of 1
2
[11̄0] dislocation into 1

6
[12̄1] partials with a stacking fault,

overcoming the high energy barrier of unstable stacking fault at ∼ 1
12
[12̄1].

Our estimate of
γisf
γusf

value of 0.79 for Ni corresponds with that obtained

using MishinFarkas Ni potential (0.69) [63], does not agree with the earlier

reported DFT value of 0.53 [73]. This inconsistency in
γisf
γusf

value with ear-

lier results makes it infeasible to interpret the fault energies in Ni in terms

of propagation as a full dislocation along [12̄1], as in Al, or as dislocation

partials, like in Cu. Elastic strains i.e. the ratio of the fault vector at the

onset of dislocation nucleation to the length of Burgers vector along [12̄1]

direction in Al, Cu, and Ni are ∼0.25, ∼0.16, and ∼0.25, agreeing well with

the results of Ogata et al. [74] for Al and Cu.

Electronic density of states (e-DoS) in Al, Cu, and Ni show interesting fea-

tures near the Fermi level. In Al, there is an increase in the density of states

close to Fermi level in the USF and ISF configurations along [12̄1] direction

(see Fig. 5.4), suggesting an increased conductivity upon the introduction

of faults. This is in contrast with Cu, where the density of states near the

Fermi Level in the ISF configuration significantly change relative to that in

pristine Cu. The e-DoS of faulted Ni is nearly the same as that of pristine

Ni.

Next, we discuss the deformation mechanism on the {111} planes of Al, Cu,

and Ni at 0 K by understanding the local atomic structures, and analyze

the electronic and vibrational signatures of the faulted configurations at the
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Figure 5.4: Electronic density of states in pristine and faulted structures of
Al, Cu and Ni

extremal points of the GSF curves (Fig. 5.3).

5.3.2 Al

In Al, the energetic feasibility of slip along [11̄0] and [12̄1] directions is fur-

ther confirmed by the local stability of minimum energy barrier configurations

along both these directions, with the fault vectors 1
4
[11̄0] and ∼ 1

8
[12̄1] respec-

tively. This is evident in density of phonon states with only real frequencies

in the two configurations (Fig. 5.5a). The softening of phonon modes (i.e.

an increased density of modes with frequencies below 125 cm−1) upon the

introduction of planar faults, in reference to the bulk Al, suggests their dom-

inance in the vibrational free energies of the system at higher temperatures.

Furthermore, analysis of the distributions of bond lengths, D(b) for the two
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Figure 5.5: Comparison of energy barrier configurations along [11̄0] and [12̄1]
directions on (111) plane of Al: (a) phonon density of states, (b) distribution
of bond lengths, D(b). The dashed line, in (b), shows bond length of pristine
Al.

configurations (Fig. 5.5b) reveal greater contraction and expansion of bonds

resulting from slip along [11̄0] direction, along with a decrease in coordina-

tion number of atoms on the fault plane to 11. The local stability of this

configuration supports the experimental observation by Wert. et al. showing

tendency of single slip in Al along (111)[101̄] system [75].

Analysis of the minimum energy configuration i.e. ISF along [12̄1] direc-

tion shows negligible change in the bond lengths i.e ±0.006 Å, with reference

to that in pristine Al. The vibrational spectrum (Fig. 5.6) of this structure

reveals the preservation of the local stability, and shows an increase in the

frequency of high-energy optical modes at the Γ-point to ∼310 cm−1 from

281 cm−1 in the pristine Al.
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Figure 5.6: Vibrational spectrum of ISF configuration of Al

5.3.3 Cu

The lower energy of the slip along [11̄0] direction as compared to the energy

barrier along [12̄1] on the (111) plane of Cu prompts the need to analyse

the local structure of the configuration at 1
4
[11̄0] and find an origin of the

occurrence of the dissociation partials at 1
6
[12̄1]. The phonon DoS of the

configuration with f = 1
4
[11̄0] shows local stability at the Γ-point (Fig. 5.7a),

and hardening of high-energy optical modes, relative to that at the Γ-point

of pristine Cu. The local stability seems to arise from the rearrangement

of atoms away from the fault plane, leading to only weak contraction and

expansion of the bonds (Fig. 5.7b), preserving the coordination number of

atoms in the structure.

This suggests that the occurrence of stacking faults along [12̄1] direction in

Cu, resulting from the dissociation of perfect dislocation along 1
2
[11̄0] into

Shockley partials [54], is owing to a very low energy of the ISF configuration,

in addition to the decrease in elastic strain energy. The ISF configuration is

locally stable as reflected by ω ge 0 over the Brillouin Zone (Fig. 5.8), with
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Figure 5.7: Energy barrier configuration along [11̄0] direction on (111) plane
of Cu: (a) phonon density of states (red curve shows v-DoS at Γ-point), (b)
distribution of bond lengths, D(b). The dashed line, in (b), shows bond
length of pristine Cu

change in the bond lengths within ±0.004 Å as compared to that in pristine

Cu. A very low energy of the ISF structure supports the formation of wide

stacking faults in Cu, consistent with the experiments [60].
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Figure 5.8: Vibrational spectrum of ISF configuration in Cu

The origin of formation of dislocation partials along (111)[12̄1] system in

Cu still remains unresolved, given the high unstable stacking fault energy

along the [12̄1] direction. Vibrational spectrum of the USF configuration

(Fig. 5.9a) shows structural instabilities at Γ-point and at wavevector (0, 0,
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Figure 5.9: Local instability in Cu, (a) Vibrational spectrum of USF config-
uration, (b) and (c) eigenvectors of unstable modes at Γ- and A- point

1
2
) i.e A-point, with an imaginary frequency of ∼47 cm−1i. The occurrence

of local instability in the USF structure signifies that the energy barrier is

overestimated, and thus is not indicative of the energy release rate during the

dislocation nucleation along [12̄1] direction. This suggests the feasibility of

nucleation of dislocation partials along [12̄1] direction, and formation of the

stacking faults on the (111) plane of Cu. Further, the unstable modes involve

eigendisplacements parallel to the fault plane (Fig. 5.9b and c), indicating

the tendency of this configuration to attain a local minimum through shear

distortion. The basis for this lattice instability lies in the local decrease in

the coordination of atoms close to the fault plane to 11, with minimal change

in the atomic planes away from the fault.

5.3.4 Ni

The mechanism of slip on the (111) plane of Ni is relatively straightforward

owing to significant difference between the energy barriers along [11̄0] and

[12̄1] directions. The local stability of the USF and ISF configuration, as

is evident from their vibrational spectra (see Fig. 5.10a and 5.10b), further

favors the feasibility of formation of dislocation partials along [12̄1] in Ni.
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The local coordination number of atoms is maintained with no significant

change (within ±0.034 AA) in bond lengths in the USF structure.

Figure 5.10: Vibrational spectra of (a) USF, and (b) ISF configurations of
Ni

5.3.5 Analysis of planar faults at finite temperatures

We compare the temperature-dependent stability of three FCC metals, viz

Al, Cu, and Ni, by estimating the vibrational contributions to free ener-

gies (Fvib) of their ideal structures from 0 K to about 80% of their melting

temperatures (see Fig. 5.11). Our results correspond well with the earlier

calculations by Alfè [76] on temperature-dependent vibrational free ener-

gies in bulk Al with phonon frequencies obtained using small displacement

method. The free energy curves confirm the room temperature (∼300 K )

and high-temperature structural stability of bulk Al, Cu and Ni.

The change in the vibrational free energies of the faulted structures as a

function of temperature is indicative of their stability and relative feasibilty of

their occurrrence during the process of deformation at elevated temperatures.

The energy barriers in Al decrease from 214 mJ/m2 to 167 mJ/m2 along
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Figure 5.11: Temperature-dependent vibrational free energies of bulk Al, Cu
and Ni

[11̄0], and from 175 mJ/m2 to 134 mJ/m2 along [12̄1], indicating a decrease

by about ∼23 % when the temperature increases from 0 to 750 K (Fig.

5.12a). This is comparable to the decrease in the USF energy (γusf ) for Ni,

for temperature ranging from 0 K to 80 % of its melting point (Fig. 5.12b).

The ISF energies (γisf ) of Al, Ni and Cu show a decrease by 30%, 57%

and 71% due to vibrational effects (see Fig. 5.13), signifying an increased

tendency of formation of dislocation partials, leading to widening of stacking

faults in these metals, when the temperature is increased from 0 K to 80 %

of their melting temperatures.

5.4 Conclusion

The intrinsic stacking faults along [12̄1] direction on the (111) plane is seen

to be generic to the FCC metals but their occurrence stems from different

slip pathways, depending on local stability of the intermediate fault configu-

rations. The vibrational spectra show increase in the density of soft phonon
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Figure 5.12: Comparison of the temperature-dependent energy barriers in
(a) Al, and (b) Ni. The barrier height decreases by ∼23 % in Al along both
the directions (from 0 to 760 K ), and ∼20 % in Ni along [12̄1] (from 0 to
1390 K )

Figure 5.13: Temperature-dependent intrinsic stacking fault energies of (a)
Al, (b) Cu, and (c) Ni. ISF energies decrease by 30%, 71% and 57% in Al,
Cu, and Ni. Temperature range: 0 K − 80% TM

modes (with frequencies ∼100 cm−1)in the faulted structures of each of these

metals, signifying their dominant contributions to vibrational free energies

at high temperatures. The vibrational contributions to free energies result
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in decrease in the stacking fault energies by 30%, 71% and 57% in Al, Cu,

and Ni, respectively, when the temperature is increased from 0 K to 80 % of

their respective melting points.



Chapter 6

Summary and Conclusions

The interplay of physical entities namely stress, strain and temperature is

shown in Fig. 6.1. This thesis details the first-principles study of stress-

response in the form of strain ǫ, planar faults and nanoscale polymorphs in

three classes of materials namely HCP metals, Ni3Al and FCC metals.

Figure 6.1: Interplay between stress, strain and temperature in materials

• The study of long-period nanoscale polymorphs in HCP metals, as pre-

sented in Chaper 3, can find its far-reaching relevance to experiments

76
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in understanding the deformation mechanisms in small-dimension sam-

ples.

• The single-crystal nano-precipitates of γ’ in γ-phase, known to confer

high-termperature strength to nickel based-superalloys, form an impor-

tant ingredient for turbine blades. The understanding of temperature-

dependent deformation mechanism in γ’-phase Ni3Al through the study

of anisotropy of planar faults in Ni3Al, as discussed in Chapter 4, ex-

plains the possible mechanism resulting in anomalous yield stress be-

havior of Ni3Al.

• Analysis of temperature-dependent dislocation motion has been the

motivation for study of planar faults in Al, Cu and Ni. The study,

presented in Chapter 5, has led to two key points, (1) the energy of

unstable displacement on the γ-surface need to be considered with cau-

tion, and (2) the stacking fault energies of Al, Cu and Ni significantly

decrease with temperature, indicating a decrease in flow stress in these

metals.
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