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Synopsis

Technological growth has often been fueled by the discovery of materials exhibiting exotic
properties and improved efficiency. With advances in computational resources and sci-
entific theories, materials can be designed and their response to external stimulii can be
determined through computer simulations. To this end, first-principles Density Functional
Theory-based simulations have become powerful tools that enable accurate estimation of
properties of materials. They permit prediction of the stability of new materials and their
properties under the influence of external fields, and at the same time, provide access
to atomistic information that is not readily accessible to experiments. In addition, these
simulations can be used to evaluate their applicability in devices.

Behaviour of materials is determined by various couplings between electronic charge,
spins and lattice degrees of freedom (phonons). All real materials inherently possess lattice
imperfections or defects, which influence their electronic, optical, mechanical and thermal
properties. Understanding of the impact of defects on the properties of the material,
and the possibility of synthesizing crystalline materials with a good control over defect
concentration permits material scientists to tailor the material properties and develop
applications with improved functionality and reliabilty. Effects of defects can be quite
significant in the stability and properties of low dimensional materials.

We have used a combination of first-principles calculations, modeling and Landau
theory to (a) determine the effects of defects on the properties of bulk and 2-dimensional
materials such as graphene, solid solution of graphene-hexagonal boron nitride, oxides and,
(b) determine the origin of multiferroic behaviour in bulk oxides, 2-dimensional chalco-
genides and elemental solids, and explore how it is influenced by defects. The thesis is
divided into two main sections. The first part consisting of chapters 3, 4, and 5 focuses
on the theoretical analysis of how defects and disorder influence technologically impor-
tant properties of multifunctional materials such as oxides, elemental solids, graphene and
solid solutions of graphene-hexagonal boron nitride systems. The second part consisting
of chapters 6 and 7 explores the emergence of ferroelectricity and multiferroic behaviour in
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bulk oxides and 2-dimensional materials such as a monolayer of MoS2 and elemental sele-
nium. In addition, we establish the inevitable role played by anti-site defects in emergence
of multiferroic behaviour in (Al,Ga)FeO3 compounds.
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Chapter 1

Introduction

Technological growth has often been fueled by the discovery of materials exhibiting exotic

properties and improved efficiency. With advances in computational resources and sci-

entific theories, materials can be designed and their response to external stimulii can be

determined through computer simulations. To this end, first-principles Density Functional

Theory-based simulations have become powerful tools that enable accurate estimation of

properties of materials. They permit prediction of the stability of new materials and their

properties under the influence of external fields, and at the same time, provide access

to atomistic information that is not readily accessible to experiments. In addition, these

simulations can be used to evaluate a material’s applicability and use in devices.

The physical laws that govern the properties of solids are well understood on the mi-

croscopic scale, and are described by the motion of atoms and electrons in the system

(also known as first-principles methods). Since quantum mechanics governs the motion of

electrons and atoms, most physical properties of a material in principle can be determined.

However, evaluating and connecting the microscopic details of a solid to its macroscopic

properties is a challenging task. The break-through in first-principles computational tech-

niques was due to the Kohn-Sham [1] formalism of the density functional theory [2]. With

advances in computational power, algorithms of first-principles techniques, most of the

physical properties of materials can now be estimated with reliable accuracy. Some of

these properties include electronic structure, stress, magnetic state, polarization, elastic

1



2 Chapter 1.

constants, vibrational frequencies, forces and bulk modulii, etc.

Behaviour of materials at the microscopic level is determined by various coupling be-

tween electronic charge, spins and lattice degrees of freedom (phonons) (see Figure 1.1).

All real materials inherently possess lattice imperfections or defects, which influence their

electronic, optical, mechanical and thermal properties. Effects of defects can be quite

significant in determining the stability and properties of low dimensional materials in

particular.

Figure 1.1: Coupling between various degrees of freedom in a material.

We have used a combination of first-principles calculations, modeling and phenomeno-

logical (e.g. Landau) theory to determine (a) effects of defects on the properties of bulk

and 2-dimensional materials such as graphene, solid solution of graphene-hexagonal boron

nitride, ternary oxides and, (b) the origin of multiferroic behaviour in elemental solids,

2-dimensional chalcogenides and bulk oxides, and identify the role of defects (see Figure

1.2). The thesis is divided into two main sections. The first part, consisting of chapters 3,

4, and 5.1 & 5.2, focuses on the theoretical analysis of how defects and disorder influence

technologically important properties of multifunctional materials such as oxides, elemen-

tal solids, graphene and solid solutions of graphene-hexagonal boron nitride systems. The

second part consisting of chapters 5.3, 6 and 7, explores the emergence of ferroelectricity

and multiferroic behaviour in bulk oxides and 2-dimensional materials such as a monolayer

of MoS2 and elemental selenium. In addition, we establish the inevitable role played by

anti-site defects in emergence of multiferroic behaviour in (Al,Ga)FeO3 compounds.
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Figure 1.2: Schematic of main theme of thesis depicting the inter-relationship between de-
fects in materials, and the emergence of ferroelectricity and multiferroic behaviour through
coupling between various degrees of freedom.

1.1 Defects

Certain defects are necessary for the existence of individuality.

Johann Wolfgang von Goethe

Perfect crystals are very seldom found in nature. The properties of crystals are determined

solely by their composition and crystal structure. However, all real materials inherently

exhibit lattice imperfections or defects. Defects typically become a part of a material

during its synthesis or treatment processes, and affect its electronic, optical, mechanical

and thermal properties. Understanding of the impact of defects on the properties of the

material, and the possibility of synthesizing crystalline materials with a good control over

defect concentration is crucial for material scientists to tailor the material properties and

develop applications with improved functionality and reliabilty.

1) Surface
2) Stacking fault
3) Grain boundary
4) Domain wall4) Anti−site

2) Impurity
1) Vacancy

3) Interstitial

3 D

1) Void
2) Precipitate

2 D

1) Dislocation

2) Disclination

Line defects
1 D

Planar defects
0 D

Point defects Bulk defects

Figure 1.3: Classification of defects based on dimensionality.
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Crystal lattice defects can be classified by their dimensionality as point, line, planar and

bulk defects (see Figure 1.3). Point defects are 0-dimensional and involve isolated sites in

the crystal structure. These defects include substitutional dopants, vacancies, interstitial

impurities and anti-site defects. Line defects or dislocations are 1-dimensional defects

introduced by Volterra in 1905, and are further classified into edge and screw dislocations.

Surfaces, stacking faults and grain boundaries are examples of surface or 2-dimensional

planar defects. The 3-dimensional defects (bulk defects) involve changes in the periodicity

of the crystal over a finite volume. They include small volumes of different crystal structure

or precipitates, as well as large voids or inclusions of second-phase particles.

Defect formation typically costs energy, and one expects that defect formation would

be energetically unfavourable. However, defect formation is also accompanied by a change

in the configurational entropy of the system which can lead to stabilization of defects in a

crystal at elevated temperatures. Their stability is governed by the Gibb’s free energy (G),

and change in Gibb’s free energy (∆G) at temperature T is given by ∆G = ∆H−T∆S (see

Figure 1.4). Where ∆H is the enthalpy of defect formation, and ∆S is the accompanying

change in the configurational entropy. Formation of a defect leads to increase in the

configurational entropy of the system, and the equilibrium concentration of defects at

finite temperatures is determined by the minimum of the Gibbs energy of the system.

∆H

∆G

E
ne

rg
y

Concentration of defects

S∆−T

Figure 1.4: Defect Thermodynamics. Schematic of variation in Gibbs free energy (G),
enthalpy (H) and configurational entropy (S) with concentration of defects. Dotted line
indicates the equilibrium concentration of defects at finite temperature T.
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Though defects are considered undesirable for certain physical properties of the sys-

tem, defect engineering aims at manipulating these crystalline defects in order to control

the behaviour of the material. Here is a quick overview of the effects of defects on physical

properties solids. The diffusion rate of atoms in a solid is controlled by vacancy concen-

tration [3,4], whereas extrinsic defects such as interstitial [5] or substitutional dopants [6]

control the electrical properties of semiconductors, and increase the mechanical strength of

alloys [7]. The strength and ductility of metals [8,9] are controlled by line defects such as

edge and screw dislocations. The motion of these dislocations leads to plastic deformation

of materials at lower stresses, and explains why crystals have lower strengths than the the-

oretically predicted values. Surfaces (planar 2-dimensional defects) are favourable sites for

adsorption of molecules and atoms. Bulk defects include dispersants which may be grains,

polygranular particles or large precipitates distributed through out the microstructure.

Microstructure containing dispersants exhibits modified mechanical strength [10, 11] and

electrical conductivity [12], which can be quite different from average of the properties of

the dispersant and host phase.

Our work investigates the effects of point defects on the electronic properties and struc-

tural stability of two dimensional materials and bulk oxides. We show that multiferroic

behaviour in (Al,Ga)FeO3 oxides is a consequence of anti-site defects in these compounds.

Our calculations also reveal that the switching of polarization in MoS2 under experimen-

tally achievable external fields is due to the presence of defects (domain walls) in the

monolayer.

1.2 Ferroelectrics

Ferroelectrics are typically insulators that exhibit a macroscopic electric polarization aris-

ing from spontaneous ordering of electric dipoles which can be controlled with external

electric and stress fields. Ferrroelectrics transform from the high temperature paraelectric

phase (with inversion symmetry) to the low temperature spontaneously polarized state

(with broken inversion symmetry) across a transition temperature. These materials find

applications in sensors, actuators and memories [13–15]. The first known ferroelectric was
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the Rochelle salt, and its ferroelectricity was investigated in depth by Joseph Valasek [16].

However, Rochelle salt possesses a complex structure and is also unstable against dehy-

dration. The breakthrough in ferroelectrics came from the discovery of ferroelectricity in

potassium dihydrogen phosphate (KH2PO4) in 1935 by Busch and Scherer [17]. KH2PO4

has a relatively simple structure with ferroelectricity arising as a result of ordering of hy-

drogen bonds. The second world war triggered the interest in ferroelectrics, mainly for its

use in sonar systems to detect submarines and other military applications, which led to

the discovery of barium titanate (BaTiO3) [18–20]. This discovery demonstrated for the

first time that ferroelectricity could exist in oxide materials with relatively simple crys-

tal structures, and that it was not always associated with hydrogen bonding. The most

significant development in the theory of ferroelectricity occurred in 1960 with the formu-

lation of the soft-mode description of the ferroelectric transition made independently by

Cochran [21] and Anderson [22]. The theory explained that the ferroelectric phase tran-

sition is accompanied by softening of a transverse optic phonon mode, which freezes to

distort the paraelectric phase, giving rise to a ferroelectric structure at a low temperature.

Table 1.1: Comparison between ferroelectrics and ferromagnets. The off-centering of the
B cation in ABO3 compound breaks the inversion symmetry of ferroelectrics. Whereas,
the arrow at the B cation site in ferromagnets (eg. BiFeO3) corresponds to the magnetic
moment that breaks the time reversal symmetry.

Ferroelectrics Ferromagnets

Broken symmetry Inversion Time Reversal

Order parameter Polarization (P) Magnetization (M)

Structure
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An important signature of a ferroelectric is the breaking of inversion symmetry (which

gives rise to a switchable spontaneous polarization) of the paraelectric structure at the

ferroelectric transition temperature (see Table 1.1). Similarly, the magnetic analogues of

ferroelectrics i.e. ferromagnets, that exibit spontaneous magnetization in the absence of

external magnetic fields, have broken time reversal symmetry below their magnetic tran-

sition temperature (see Table 1.1). The systems which exhibit both ferroelectricity and

magnetism simultaneously are known as magnetoelectric-multiferroics. The magnetiza-

tion in such materials can be controlled by external electric fields, and polarization with

external magnetic fields.

From symmetry considerations, it is known that there are 21 non-centrosymmetric

crystalline point groups in solids, of which 20 are piezoelectric. Out of these piezoelectric

point groups, there are 10 that have a spontaneous electric polarization which varies

with temperature, hence making them pyroelectric. Some of the pyroelectric materials

are ferroelectric, of which only a small fraction of compounds are multiferroic. Due to

symmetry restrictions and the need for complex chemical requirements for a material to

be ferroelectric/multiferroic, these materials are mostly oxides with complex chemical and

crystal structures. For example, ferroelectric BaTiO3, PbTiO3 and KNbO3 etc. and

multiferroic BiFeO3, YMnO3 and TbMnO3 etc.

Ferroelectrics or multiferroics can be classified based on the fundamental mechanism

through which inversion symmetry is broken. They can be classified as proper and im-

proper ferroelectrics. In proper ferroelectrics, the polarization depends linearly on the

degrees of freedom (electronic charge, electronic orbitals and phonons) relevant to the

transition. For example, the breaking of inversion symmetry by a polar optical phonon

associated with the displacement of the A/B-cation of the cubic perovskite (ABO3) struc-

ture. Ferroelectricity in BaTiO3 is an example of B-cation off-centering, whereas BiFeO3

and PbTiO3 get polarized due to A-cation off-centering. On the other hand, improper

ferroelectrics are those in which polarization arises as a secondary order i.e. the polar-

ization non-linearly couples with another degree of freedom. For example, ferroelectricity

arising due to the breaking of inversion symmetry by charge ordering (LuFe2O4 [23]),
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orbital ordering (SrCrO3 [24]), magnetic ordering (TbMnO3 [25]) or due to coupling of

zone-boundary phonons (YMnO3 [26,27]) is improper ferroelectricity. We have used first-

principles calculations to understand the emergence of unexpected improper ferroelectric-

ity and multiferroic behaviour in relatively simple (not complex oxide) materials such as

elemental selenium, monolayer of MoS2 and bulk (Al,Ga)FeO3 compounds.

1.3 Overview of the Thesis

The objective of this thesis is to elucidate the physical properties and the behaviour of

two dimensional as well as bulk materials with and without structural irregularities, using

first-principles density theoretical calculations. The materials studied in this thesis are

not only technologically important, but are also fundamentally interesting as they exhibit

unusual phenomena which involve fascinating physics.

In chapter 2, we describe first-principles methods used in the work presented in the

thesis. We first briefly lay the foundations of density functional theory (DFT), and then

describe various methods used to calculate the response of a system to external pertur-

bations. We start with discussion of Hohenberg-Kohn theorems and their implications,

and then proceed to the Kohn-Sham approach which replaces the many body problem

by an auxiliary independent particle problem. The approximations that form an inherent

part of the formalism of DFT are discussed, and a self consistent scheme used to solve

the Kohn-Sham equations will also be presented. We then proceed to discuss the var-

ious techniques that evaluate the system’s response to external perturbations. Finally

the chapter ends with a discussion on the Self Consistent Ab Initio Lattice Dynamics

(SCAILD) method developed by Petros Souvatzis et al. [28] to study the lattice dynamics

at finite temperatures.

In chapter 3, we present analysis of the effects of a topological defect i.e. the Stone-

Wales (SW) defect on properties of graphene in the first part, and solid solution of

graphene-boron nitride in the second. We have carried out an in-depth study of effects of

SW defects on the structure and electronic & vibrational spectra of graphene, and identi-

fied the signatures of SW defects in Raman spectra and electronic density of states. We



1.3 Overview of the Thesis 9

present a quasi-continuum constitutive model which captures the mechanism of buckling

of graphene associated with a SW defect based on the coupling between in-plane optical

vibrational modes and the out of plane flexural mode. We have shown that the SW de-

fects lead to a shift in the Dirac cone of graphene in k-space due to coupling of electronic

structure with optical phonons. In the second part of the chapter, we discuss possible con-

figurations of SW defects that occur at the interface between graphene and boron-nitride.

We observe that the formation energies of SW defects at the interface are comparable

to that in graphene, and the two-dimensional sheet buckles on the introduction of SW

defects. Finally, we discuss effects of SW defects on adsorption of CO2 and CH4 gases at

the graphene-boron nitride interface.

In chapter 4, we first analyze the stability of (a) an unusual 2H polytype of silver

observed in experiments, and (b) the stability of the 4H polytype and its transformation

from 4H to 3C structure. The first part of this chapter explores various possible factors

such as defects, impurities, strain and anharmonic interactions that may control the sta-

bility of the 2H polytype at finite temperatures. We show that the 2H polytype has a

rather flat energy landscape, and its metastablity most likely arises due to the configura-

tional entropy at finite temperatures. In the second part, we also predict the P-T phase

diagram of the 3C and 4H polytypes of silver, and investigate the instability of electronic

structure of the 4H polytype with respect to a Charge Density Wave (CDW), and discuss

the possible mechanisms of the transformation from 4H to 3C polytype through formation

of stacking faults.

In chapter 5, we discuss the effects of anti-site defects on electronic, magnetic and

vibrational properties of ferrimagentic (Al,Ga)FeO3 orthorhombic oxides. Specifically,

from the interplay between anti-site defects and vibrational spectrum of AlFeO3, we show

that a strong spin-phonon coupling in these compounds leads to the observed anomalies in

its Raman spectrum. Lastly, we elucidate the role played by anti-site defects on the origin

of spontaneous polarization in (Al,Ga)FeO3 compounds, which makes them multiferroic.

Using a phenomenological theory, we explain the observed polarization arising from the

magnetic order and spin-phonon coupling. We demonstrate that anti-site defects play
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an important role in the emergence of multiferroic/magnetoelectric behaviour in these

compounds.

In chapter 6, we predict the emergence of robust ferroelectricity in a monolayer of

the 1T form of MoS2 as it undergoes a charge density wave transition from metallic to a

semiconducting state. Our analysis shows that it originates from the nested geometry of

electronic Fermi surface, and through a strong coupling of d−orbitals of Mo with valley

phonons that induce an effective electric field. We use Landau theory to elucidate the

improper nature of ferroelectricity predicted here. Our prediction of a 2-dimensional

ferroelectric semiconductor may open up a new class of nano-scale dipolectronic devices

based on 1T-MoS2.

In chapter 7, we first describe the mechanism governing the emergence of multiferroic

behaviour in elemental selenium. Its multiferroic behaviour is shown to be a consequence

of its electronic topology, symmetry of its quasi-one dimensional chiral structure, and

the coupling of phonons with electric field and spins. We show that Se possesses a half

quantum of polarization i.e. electronic Berry phase of π, and associated metallic surface

states and even number of band crossings making it a weak topological insulator. We use

a Landau theory to uncover a new route to magnetoelectric behaviour in semiconductors

with a chiral structure. In the second part, we show that the chiral structure of selenium

makes it an optically active material in THz frequencies. We trace the origin of this optical

rotatory ability to the magnetoelectric coupling that arises essentially from phonons that

generate magnetic flux and couple with electric fields.



Chapter 2

Methods

Electrons and nuclei are the fundamental particles that determine most properties of

atoms, molecules, thin-films and bulk materials. Many of the physical properties of mate-

rials can be determined from the derivatives of (difference between) the energy (which is

the sum of electrostatic nuclear interaction energy and many-electron ground state energy

) as a function of an external perturbation. For example, first derivatives of energy w.r.t.

strain, magnetic field and atom positions give stress, magnetization and forces respec-

tively. Whereas elastic constants, magnetic susceptibility and interatomic force constants

are the second derivatives of energy w.r.t. strain, magnetic fields and atomic positions

respectively.

In this chapter we discuss the theoretical method that has been employed in this thesis

to determine the physical properties of materials. It is a quantum mechanical approach

in which one considers the electrons to be in their ground state (i.e. adiabatic or Born

Oppenheimer Approximation) for a given configuration of nuclei. In Section 2.1, we de-

scribe the ab-initio method(s) used to determine the total energy of the system. Section

2.2 describes a method i.e. the frozen phonon method to calculate the vibrational fre-

quencies as an alternative to using Density Functional Perturbation Theory (DFPT). The

Linear response theory or DFPT used to determine the response of a system to external

perturbation is described in Section 2.3. Lastly, we describe a new quasi-harmonic method

(SCAILD) developed by Souvatzis et al. [28] in Section 2.4 to calculate the vibrational

11
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spectrum as a function of temperature.

2.1 First-principles Methods

To find the quantum mechanical ground state of a system of electrons and nuclei, we start

with a many body Hamiltonian given by,

Ĥ =− ~2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1
2

∑
i6=j

e2

|ri − rj |

− ~2

2MI

∑
I

∇2
I +

1
2

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(2.1)

where ~ is the Planck’s constant, me and MI are the masses of electron and Ith ion

respectively, e is the charge of an electron, and ZI is the charge of the Ith ion. ri and RI

are the position vectors of ith electron and Ith ion respectively. The first and the third

terms in equation 2.1 are the kinetic and potential energies of electrons. Whereas, fourth

and fifth are the kinetic and potential energy of ions. The second term describes the

interaction between ions and electrons, and is treated as an external potential (Vext), and

also includes external perturbations such as electric or magnetic fields. Since MI >> me

and electrons being very fast as compared to nuclei, they are expected to follow nuclear

motion instantaneously i.e. they always remain in their ground state. This is known as

the Born-Oppenheimer approximation [29] or the adiabatic approximation. The many

body wavefunction of equation 2.1 can be approximated as the product of electronic and

nuclear wave functions,

Ψ(R, r) =
∑

n

φn(R)ψn(R, r), (2.2)

where ψn(R, r) is the electronic wavefunction dependent on the nuclear positions {R},

and φn(R) are nuclear wavefunctions independent of electronic positions. The time inde-

pendent Schrödinger’s equation is given by,

ĤΨ(R, r) = εΨ(R, r). (2.3)
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Substituting equation 2.1 and 2.2 in 2.3 we get,

− ~2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1
2

∑
i6=j

e2

|ri − rj |
+

1
2

∑
I 6=J

ZIZJe
2

|RI −RJ |

ψn(R, r)

= Enψn(R, r),

(2.4)

and

[
− ~2

2MI

∑
I

∇2
I + En

]
φn(R) = εφn(R). (2.5)

The Born Oppenheimer approximation hence reduces the problem to solving for the elec-

tronic ground state (equation 2.4) for a given set of ionic positions. For a system with Ne

number of electrons, ψn(R, r) is a many body wavefunction which cannot be solved ex-

actly, and hence other approximations have to be employed to solve the eigenvalue problem.

2.1.1 Hohenberg and Kohn theorems

In 1964, Hohenberg and Kohn [2] proposed a new approach to solving the ground state

properties of an electron gas in an external potential. The two theorems that constituted

their ground breaking work can be stated as follows:

Theorem 1

The external potential Vext(r) of an interacting gas of electrons can be uniquely deter-

mined, except for an constant, by the ground state particle density no(r).

Since all the properties are related to the energy differences, the constant shift of

energy does not affect the estimation of properties.

Theorem 2

A universal functional for the energy E[n] interms of the density n(r) can be defined, valid

for any external potential Vext(r). For a given Vext(r), the exact ground state energy of
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the system is the global minimum of E[n], and the density that minimizes it is the exact

ground state density no(r).

Based on the above two theorems, we can see that the problem of functions of 3Ne

number of variables in equation 2.4 has been reduced to functions of only 3 variables in

n(r). Since the total energy is now a functional of only the density, the theory is known

as the Density Functional Theory (DFT). The total energy functional (EHK [n]) is given

by,

EHK [n] =T [n] + Eee[n] +
∫
drVext(r)n(r) + Eion−ion,

=FHK [n] +
∫
drVext(r)n(r) + Eion−ion.

(2.6)

Here T [n] and Eee[n] are the kinetic and potential energies of electrons, respectively,

and Eion−ion is the Coulomb ion-ion interaction energy. The functional FHK is universal

since it is only a functional of the density. However, the these theorems do not provide a

practical way to determine the FHK [n] functional or the ground state density no(r). Kohn

and Sham in 1965 proposed an anstaz to determine the ground state density no(r).

2.1.2 Kohn-Sham ansatz

Kohn and Sham [1] gave a formalism that mapped a given many body interacting system

to an auxiliary system which is a fictitious non-interacting system with exactly the same

ground state density. Thus, solution of the non-interacting problem gives the ground state

charge density of the real system, which can be used to determine its total energy and

hence its physical properties.

In the Kohn-Sham formulation, the total energy functional can be written as,

EKS [n] =Ts[n] +
1
2

∫
drdr′

n(r)n(r′)
|r− r′|

+
∫
drVext(r)n(r) + EXC [n] + Eion−ion,

=Ts[n] + EHartree[n] +
∫
drVext(r)n(r) + EXC [n] + Eion−ion,

(2.7)

where EHartree and EXC are the Hartree and exchange correlation contributions to the

total energy. Many body effects of exchange and correlation are grouped into the EXC
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term. The charge density n(r) in the Kohn-Sham formalism is given by,

n(r) =
Ne/2∑
i= 1

ψ∗i (r)ψi(r), and Ne =
∫
dr n(r), (2.8)

where ψi(r) are the single electron wavefunctions in the Kohn-Sham formalism. The

Kohn-Sham single particle Hamiltonian, and the Kohn-Sham equations are:

HKS = − ~2

2me
∇2 + VKS(r), where

VKS(r) =
∫
dr′

n(r′)
|r− r′|

+ Vext(r) + VXC [n(r)], and

HKS ψi = εi ψi.

(2.9)

The self consistent scheme used to solve the Kohn-Sham equations is illustrated in Figure

2.1. On subtracting equation 2.6 from 2.7, EXC can be estimated as,

EXC [n] =T [n]− Ts[n] + Eee[n]− EHartree, and

VXC [n(r)] =
δEXC [n]

δn
.

(2.10)

The exchange correlation energy functional is not exactly known, and hence the accu-

racy is limited by the approximations made in the formulation of the functional. Local

density approximation (LDA) [1] and generalized gradient approximations (GGA) [30,31]

are the two commonly used approximations that determine the accuracy of a solution.

In LDA, the exchange correlation energy density is the same as that of a homogenous

electron gas of that density. In GGA, on considers the exchange correlation energy den-

sity as a function of both, the density and the gradient of density, and can be a marked

improvement over LDA [32,33].

The next approximation in the DFT is that of the pseudopotential. It is known that

most of the properties of a system are determined by its valence electrons with little

or no contribution from its core electrons. The pseudopotential approximation exploits

this aspect of solids, and replaces the core electrons and the nucleus with an effective

potential which mimics how the valence electrons experience the potential of the nucleus
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VKS(r) = Vext(r) + VHartree(r) + V (r)XC

Calculate effective potential

∆2
KS (r)]        = ψi(r)ε i(r)ψi[−1/2    + V

Solve KS equations

n(r) = Σ |Ψ     |
i i

(r) 2

Calculate electron density

Output quantities

Energy, forces, stresses, eigenvalues, ...

nnew(r) = nold(r) ?
Self−consistent?

nnew(r) = (1−x) n(r) + x nold(r)

nold(r)
Initial guess

No

Yes

Figure 2.1: Self consistent scheme used to solve the Kohn-Sham equations.

due to screening by the core electrons. The core electrons are hence ‘frozen in’, and are

considered along with the nucleus as a rigid core. Since Vext diverges at the nucleus, the

electronic wavefuctions near the nucleus exhibit very large oscillations. This makes their

representation and hence the computational time and cost unfeasible for large systems.
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A pseudopotential circumvents this problem by replacing the strong ionic potential by a

weaker pseudopotential that works on the pseudo wavefunctions instead of the valence

wavefunctions.

The pseudopotential is constructed by considering a cutoff radius (rc), the region within

rc is the core region and the one beyond it is the valence region (refer to Figure 2.2). The

actual (all electron) valence and pseudo wavefunctions are the same beyond rc, whereas in

the core region, the pseudo wavefunctions are constructed such that the eigenvalues and

scattering properties are conserved. The total charge of each pseudo wave function is equal

the charge of the actual wave function in a normconserving pseudopotential, whereas ultra-

soft pseudopotentials [34] relax this criterion. However, ultrasoft pseudopotentials require

a augmentated charge in the core to conserve total charge. The advantage of ultrasoft

pseudopotentials over normconserving is that it reduces computational cost significantly,

while maintaining transferrability.

rr

Ψpseudo

V pseudo

Ψ

Z/rV~

c

Figure 2.2: Ψ is the real wavefunction in the Coulomb potential (blue) and Ψpseudo is the
pseudo wavefunction (red). The real and the pseudo wavefunction and potentials match
above the cutoff radius rc.

2.1.3 Basis sets

There are three methods used to calculate the Kohn-Sham electronic wavefunctions in

materials. All three methods are equally accurate provided they are applied carefully and
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are converged. These methods are distinguished based on the basis sets used to expand

the independent-particle wavefunctions in the Kohn-Sham formalism. The commonly

used basis sets are plane waves, atomic orbitals or a combination of both (known as mixed

basis).

Plane waves are used widely for their simplicity, absence of Pulay correction [35], and

are a natural basis for description of bands in sp-bonded metals and semiconductors. The

KS wavefunction [ψi(r)] in the plane wave basis can be expanded as follows,

ψi(r) =
∑
k,G

Ci(k−G)ei(k−G)·r. (2.11)

G are the reciprocal lattice vectors and k the wavevectors. In theory, an infinite number

of k-points (belonging to Brillouin zone) can account for the infinitely many unit cells

in extended systems. However, using a finite mesh of k-points makes it computationally

feasible, under the condition that the total energy is converged with respect to the mesh

size. Similarly for G, the number of reciprocal lattice vectors can be limited by including

all those vectors which satisfy the condition,

~2

2me
|k + G|2 ≤ Ecut. (2.12)

The cutoff energy (Ecut) is increased until the calculated total energy converges.

The atomic orbital basis captures the essence of atomic-like features of wavefunctions of

molecules and solids. Mixed basis is a more general basis where the atomic-like features are

incorporated near the core, and smoothly varying (plane waves) away from the nucleus [36].

We have employed plane wave basis in our first-principles calculations.

2.2 Frozen Phonons

Phonons are collective vibrations of atoms/ions in a crystal. Under the Born-Oppenheimer

Approximation the electrons are in their ground state, and hence the total energy is only

a function of ionic positions, E({RI}). The adiabatic motion of the ions lies on the Born-

Oppenheimer energy surface given by E({RI}). The amplitude of vibrations is assumed
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to be small as compared to the interionic spacing. With both the above assumptions, we

can label the position of Ith ion by RI , and its displacement by uI such that RI = R +

uI . Here, R is the equilibrium position of the Ith ion i.e. the position at which the forces

acting on the ion are zero. The potential energy of the system on Taylor expansion in u

is given by,

V = Vo +
∑
I,α

∂E

∂RI,α

∣∣∣
u=0

uIα +
1
2

∑
I,J,α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
u=0

uIαuJβ +O(u3). (2.13)

The term linear in u is the force exterted on an ion when all ions placed in their equilibrium

positions (R). Since there is no net force on any ion in its equilibrium position, the linear

term in u vanishes. Ignoring the constant term Vo and O(u3), equation 2.14 has only the

quadratic term, and the force constant matrix KIJ,αβ is given by,

V =
1
2

∑
I,J

∑
α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
u=0

uIαuJβ ,

=
1
2

∑
I,J

∑
α,β

KIα,Jβ uIα uJβ .

(2.14)

Solving the equation of motion for harmonic oscillator we get,

MI
∂2uIα

∂t2
=−

∑
J,β

KIα,Jβ uJβ . (2.15)

uIα has the following time dependence

uI(t) = ûIe
iωt. (2.16)

and hence equation 2.15 reduces to,

ω2MI ûIα =
∑
J,β

KIα,Jβ ûJβ . (2.17)

Solving the above eigenvalue equation gives the frequencies (ω) and eigenvectors (û) of the

phonons. For a system with N atoms, the force constant matrix is 3N x 3N dimensional

and has 3N number of modes. The structural stability of a crystal is determined by the
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value of its phonon frequencies. In a stable system, the excitation of any phonon mode

with frequency ω increases the energy of the system i.e. Mω2 > 0. In an unstable

system, finite amplitude of certain (unstable) phonon modes results in lowering of total

energy of the system i.e. Mω2 < 0, thus implying that ω is imaginary.

In the frozen phonon approach, the total energy and/or forces are calculated by dis-

placing the atoms (i.e. freezing in the atomic displacements). Then the relevant quantities

are defined as numerical derivatives of displacements using the following equation,

KIα,Jβ ≈−
∆FI,α

∆RJ,β
,

≈−
∆FI,α

2 τ
,

(2.18)

where τ is the amplitude of ionic displacement that is frozen in. ∆FI,α is the change in

the force acting on the Ith ion in the α direction when the Jth ion is displaced by ±τ in the

β direction (∆RJ,β= 2τ). To determine the phonons at wavevector q using frozen phonon

method, the inequivalent planes of atoms are displaced perpendicular to the direction of

(q) and the force acting on all atoms (see equation 2.18) have to be calculated. For q 6=

0, the number of unit cells required to express the displacements should be commensurate

with the wavevector. This increases the supercell size, and hence the computational cost

and time. Density Functional Perturbation Theory is a technique that overcomes this

drawback of the frozen phonon method.

2.3 Density Functional Perturbation Theory

Density Functional Perturbation Theory (DFPT) is a linear response technique used to

compute the second derivatives of the ground state energy w.r.t. external perturbation

λ ≡ {λi}. The first and second derivatives of the ground-state energy read as

∂E

∂λi
=
∂Eion−ion

∂λi
+

∫
dr
∂Vext(r)
∂λi

n(r),

∂2E

∂λiλj
=
∂2Eion−ion

∂λiλj
+

∫
dr
∂2Vext(r)
∂λiλj

n(r) +
∫
dr
∂n(r)
∂λi

∂Vext(r)
∂λj

.

(2.19)
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The electron density response ∂n(r)/∂λi appearing in equation 2.19 can be evaluated by

linearizing equation 2.8 as

∆n(r) =2Re
Ne/2∑
i = 1

ψ∗i (r)∆ψi(r). (2.20)

Here ∆n(r) ↔ ∂n(r)/∂λ in the linear approximation. The variation, ∆ψi(r) can be

evaluated by standard first-order perturbation theory:

(HKS − εi)|∆ψi〉 =− (∆VKS −∆εi)|ψi〉,

(HKS − εi)|∆ψi〉 =− P̂empty ∆VKS |ψi〉,
(2.21)

here, ∆VKS is the change in the effective Kohn-Sham potential, and the first-order vari-

ation of the Kohn-Sham eigenvalue (εi) is ∆εi = 〈ψi|∆VKS |ψi〉. P̂empty is the projector

onto the empty states manifold, and given by the projector onto the occupied states as

follows

P̂occ =
Ne/2∑
i = 1

|ψi〉〈ψi|; P̂empty = 1− P̂occ. (2.22)

The variation in the Kohn-Sham potential is given by,

∆VKS(r) =∆Vext(r) + e2
∫
dr′

∆n(r′)
|r− r′|

+
dVXC

dn

∣∣∣
n=n(r)

∆n(r). (2.23)

By selfconsistently solving the set of linear equations 2.21 (for ∆ψi) and equation 2.23

(for ∆VKS), ∆n can be evaluated using equation 2.20. On reaching a reasonable accuracy,

∆n is used to evaluate the second derivative of total energy using equation 2.19.

DFPT is used to evaluate the phonon frequencies by calculating the second derivatives

of energy w.r.t. atomic positions (refer to equation 2.14, where the perturbation is the

displacement of ions). DFPT is also used to calculate the Born effective charges (Z∗i,α,β)

which are mixed second derivatives of total energy w.r.t. uniform static electric field (εα)
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and the zone center TO modes (uiβ) given by,

Z∗i,α,β = − ∂2E

∂εα∂uiβ
. (2.24)

One of the greatest advantages of DFPT over other non-perturbative methods for

calculating phonon frequencies of crystalline solids (such as the frozen-phonon method) is

that within DFPT, the responses to perturbations at arbitrary wave vectors q (which are

incommensurate with the underlying crystal periodicity) can be calculated. This avoids

the use of supercells, allows the calculation of phonon frequencies at arbitrary q, and

makes the intensity of the calculation essentially independent of the phonon wavelength.

2.4 SCAILD

In DFPT or frozen phonon methods, phonons frequencies are calculated under the har-

monic approximation i.e., there exists no scattering between phonons; i.e. the terms of

order (u3) and higher are ignored (since the oscillations are small) in the calculation of

the force constant matrix (refer to equation 2.13). However, there are many physical phe-

nomena such as thermal expansion, thermal conductivity and even structural stability of

certain crystals that can only be explained by the inclusion of anharmonic terms in the

ionic interaction energy. Self Consistent Ab Initio Lattice Dynamics (SCAILD) [28] is

an approach used to capture the effects of anharmonic interaction between ions, and has

successfully predicted the correct structures of group IV elements which stabilize in the

bcc phase due to entropy at high temperatures [37, 38]. The formalism of this method is

briefly explained here.

The displacement vector ûI in equation 2.16 can be expressed as,

ûI =
1√
MN

∑
q,s

ϑq,sξq,se
iq·RI , (2.25)

where ξq,s is the eigenvector at wavevector q and eigenmode s, and ϑq,s is the new canonical

coordinate. At high enough temperature, the canonical coordinate ϑq,s can be replaced
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with a real number

ϑq,s ≈ ±
√
〈ϑ2

q,s〉,

≈ ±

√
~
ωq,s

[
1
2

+ n̄

(
~ωq,s

kBT

)]
,

(2.26)

where, n̄ is the Bose-Einstein distribution function. Thus, equation 2.14 reduces to a mean

field potential VMF

VMF =
1
2

∑
q,s

ω̄2
q,sϑ

2
q,s, (2.27)

with

ω̄2
q,s =ω2

q,s

1 +
1
2

∑
q1,q2

∑
s1,s2

A(q,q1,q2, s, s1, s2)
ϑq1,s1ϑq2,s2

ϑq,sω2
q,s

+ ...

 , (2.28)

where A(q,q1,q2, s, s1, s2) is the coefficient of the third order term in equation 2.13, and

is given as

A(q,q1,q2, s, s1, s2) =
1

(MN)3/2

∑
R,RI ,RJ

∑
α,β,γ

∂3E

∂Rγ∂RI,α∂RJ,β

ξq,s,γ ξq1,s1,α ξq2,s2,β e
i(Rq+RIq1+RJq2).

(2.29)

The phonon frequencies ω̄q,s can be expressed as a function of forces

Fq(= −
∑

s

Mω̄2
q,sϑq,sξq,s) as

ω̄2
q,s =− 1

M

ξq,sFq

ϑq,s
(2.30)

The self-consistent cycle used in SCAILD method for solving equations 2.27 to 2.29 is as

follows:

1. A supercell calculation is carried out to estimate the frequencies ωq,s and eigenvectors

ξq,s.

2. The frequencies ωq,s and eigenvectors ξq,s are then used in equation 2.25 and 2.26 to
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evaluate ûI of the supercell. The ± signs are chosen at random with equal probability

for either sign, and the atoms are displaced according to ûI .

3. The Hellman-Feynman forces are calculated on the displaced atoms of the supercell

by an ab-initio code.

4. From the fourier transform of forces and using it in equation 2.30, a new set of

eigenvalues ω̄q,s are calculated.

5. From the eigenvalues of step 4 a set of symmetry restored frequencies Ωq,s(i) =

1, ..., N are calculated.

Ω2
q,s =

1
mq

∑
S∈S(q)

ω̄S−1q,s, (2.31)

where S(q) is the symmetry group of the wavevector q, and mq the number of

elements of the group. The mean value of all iterations supplies a set of frequencies

ωq,s,

ω2
q,s =

1
N

N∑
i=1

Ω2
q,s(i) (2.32)

The new set of frequencies in equation 2.32 are then used in step 2 to calculate a new

set of displacements, and the cycle is continued until self-consistency is reached. The set

of ωq,s obtained after achieving self consistency with a reasonable accuracy are the new

frequencies which include the effects of anharmonic terms in the ionic interaction energy.

In the case of dynamically unstable systems, the imaginary frequencies ωq,s are replaced

with the absolute value |ωq,s| in step 2, keeping the rest of the procedure the same. This

method has correctly predicted the stability of group IV elements such as Ti, Zr, Hf in

the bcc phase at temperatures of 1293 K, 1188 K and 2073 K respectively [38]. We utilize

the SCAILD method to estimate the phonon dispersion and hence the dynamic stability

of 2H-polytype of silver at room temperature, which is explained in detail in Chapter 4.
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Graphene

3.1 Stone-Wales Defects in Graphene: A First-principles

Analysis Of Its Vibrational and Electronic Signatures ∗

3.1.1 Introduction

Exotic electronic and thermal properties [40] of Graphene (a two dimensional/2D hon-

eycomb lattice of carbon atoms) have opened doors to new physics and technological

applications [41–43]. According to the Mermin-Wagner theorem, the long wavelength

fluctuations destroy the long range order in 2D materials [44]. However, the anharmonic

coupling between bending and stretching modes [45] suppress these fluctuations and give

rise to strong height fluctuations (rippling). Since rippling has been observed experimen-

tally in graphene [46] and also has a significant impact on its transport properties, a deeper

understanding of its origin is required. The height of ripples purely due to thermal fluc-

tuations [47] is grossly underestimated in theory. Ripples or out-of-plane deformation of

graphene can originate also from defects [48,49], adsorption of molecules [50] and in-plane

strain [51].

We explore the effects of an intrinsic defect like Stone-Wales (SW) defect on the rip-

pling behaviour of graphene. An SW defect in graphene is obtained by 90o rotation of a

∗This work has been published in part in Physical Review B [39]. Copyright (2012) by the American
Physical Society.

25
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C-C bond, and formation of an adjoining pair of pentagons and heptagons. SW defects

have been observed experimentally [52], and are formed in graphene when under irradi-

ation or during rapid quenching from high temperature. Since an SW defect does not

involve application of external stress or adsorption of foreign atoms/molecules, its effect

on structural deformation leads to sort of intrinsic to rippling behavior of graphene. We

use quasi-continuum analysis to show that the origin of structural instabilities leading to

rippling associated with SW defects in graphene [53] is in the coupling between in-plane

strain and Raman active G bands.

We also investigate SW defects for a possible opening of a band gap in the electronic

structure of graphene, to make it better suitable as a semiconductor for use in transistors.

Previous studies [54,55] report opening of a band gap at the Dirac point due to an array of

SW defects. We show that the effects of SW defects on the electronic structure are quite

subtle and need deeper understanding. This chapter aims at using first-principles analysis

and simple models to explore the effects on a SW defect on (a) structure and vibrational

properties, (b) electronic structure, and finally (c) identification of its signatures in both

vibrational and electronic spectra of graphene.

3.1.2 Computational Methods

Our first-principles calculations were based on density functional theory (DFT) as imple-

mented in the Quantum ESPRESSO [56] code with a plane wave basis set. The interaction

between ionic cores and valence electrons was captured with an ultra-soft pseudopoten-

tial [34]. Exchange-correlation energy of electrons was treated within a Local Density

Approximated (LDA) functional of Perdew-Zunger (PZ) parameterized form [57] which

has been effectively used in previous works [58, 59]. Energy cutoff of 30 Ry was used for

the truncation of plane wave basis representing wave functions, and 180 Ry for that used

to represent charge density. Structures were determined through minimization of energy

until Hellman-Feynman forces on each atom were smaller than 0.03 eV/Å in magnitude.

The 2D sheet was simulated using a supercell geometry, with a vacuum layer of 10 Å

separating adjacent periodic images of the sheet. The supercell size was varied from 3x3
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to 8x8 with one SW defect in the supercell to simulate different SW defect concentrations

(i.e. 11.11% to 1.56%). With decreasing supercell size, the in-plane distance between the

periodic images of a defect decreases, and their effective concentration increases. Bril-

louin zone integrations were sampled over a 3x3x1 mesh of k-points for a 7x7x1 supercell.

The dynamical matrices and phonons for pristine graphene unit cell at the wavevectors

on a mesh were determined using DFT linear response as implemented in the Quantum

ESPRESSO package. The phonon calculations were carried out with a uniform 21x21x1

mesh of k-points in self consistent field (scf) calculations, and dynamical matrices were

determined over a mesh of 7x7x1 k-points.

3.1.3 Structure and Vibrational Spectrum

(a) (b)

(c)

Figure 3.1: (a) Structure before relaxation and (b) after relaxation of graphene with SW
defect. (c) Variation in SW defect formation energy with decreasing concentration of
defects. The supercell size is given on the x axis in (c), i.e. separation between the defects
(d). Dotted line (black) denotes the data from first-principles calculations whereas solid
line (red) is the fit. Copyright (2012) by the American Physical Society [39]).
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The in-plane rotation of C-C bond by 90o involved in the formation of a SW defect (also

known as a topological defect), transforms 4 hexagons into two pentagons and two hep-

tagons (see Figures 3.1a and 3.1b). A pair of pentagons and heptagons makes a dislocation

in graphene, and SW defect forms a dislocation dipole with two dislocations of opposite

burgers’ vector separated by the shortest possible distance. Mechanical and electronic

properties [49, 60] are significantly affected by the orientation of the pentagon/heptagon

with respect to the armchair or zigzag edges of the graphene sheet (boundary conditions).

Due to periodic boundary conditions employed in our simulations (i.e. a periodic array

of SW defects), our results are immune to edge effects particularly at low concentrations,

but the anisotropy of SW defects is captured by them.

Table 3.1: Structure of graphene with an SW defect: before and after relaxation. Copy-
right (2012) by the American Physical Society [39]).

Property Before After Difference

Pressure (kbar) 2.77 5.95 115%

Bond length (Å) 1.41 1.31 -7.1%

Bond angle 140o 115.5o -18.2%

Upon structural relaxation, the rotated C-C bond at the centre of the SW defect

shortens from 1.4 Å to 1.31 Å (see Table 3.1 and Figures 3.1a and 3.1b). This compares

well with compression from 1.42 Å to 1.32 Å as reported by Jie Ma et al. [53]. Upon

relaxation, the bond angle at the apex of the pentagon reduces from 140o to 115.5o i.e.

≈ by -18.5%. These changes in the bond length and bond angle impose a stress, that

varies from 2.77 kbar before relaxation to 5.95 kbar after relaxation for 2.04% defect

concentration. Tensile and compressive stresses develop along and perpendicular to the

direction of the rotated bond, respectively. As reported in the earlier work [49], a graphene

nano-ribbon reduces this in-plane stress by out of plane buckling (i.e. by forming a non-

planar structure). The formation energy of a SW defect reduces by a factor of 2.24 (also
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due to structural relaxation), which is equivalent to a lowering of energy by ≈ 6.4 eV.

The formation energy of a SW defect in a 7x7 supercell is ≈ 5.16 eV. We note that the

formation energy of an SW defect is dependent on its concentration, i.e. the in-plane

separation between the defects, the boundary conditions and the periodicity of the SW

defects. From our simulations (involving a periodic array of SW defects), we find that

the interaction between two SW defects is repulsive, implying that SW defects would

minimize energy by maximizing the separation between them. This interaction energy

falls off as 1/d2, and its coefficient is proportional to the shear modulus for graphene

(refer to equation (5) in the previous work [61]). The formation energy reaches a constant

value of 4.66 eV at the limit of infinite separation (see Figure 3.1c). Even though the

formation energy of SW defects is high, these defects do form during synthesis or under

irradiation (by electrons) and have been observed experimentally [52].

(a) (b)

Figure 3.2: (a) Phonon density of states of pristine graphene and graphene with SW defect
(for 2.04 % concentration of defects). Light blue and black denote phonon density of states
for pristine graphene and graphene with SW defect respectively. (b) Eigen-displacements
of optical and acoustic modes in graphene. Copyright (2012) by the American Physical
Society [39]).

The structural changes accompanying a SW defect in graphene lead to changes its

vibrational spectrum, and can be identified in its Raman spectra. A SW defect in graphene

is reflected in changes in its vibrational spectrum leading to unstable and high frequency

defect modes (see Figure 3.2a). Phonons associated with G and D bands of graphene are
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scattered by an SW defect, reflected in changes in their frequency and eigen-displacements

near the SW defect. We analyze this with the spectrum obtained with frozen phonon

calculations (at Γ-point) for a 7x7 supercell with SW defect concentration of 2.04% (i .e.

1 defect per 7x7 supercell). Due to BZ folding, the D band at K-point in the BZ of the

unit cell gets folded back onto the K-point in the BZ of 7x7 supercell. Since the BZ of 7x7

supercell is small, its K and Γ-points lie rather close to one another, and this makes the

atomic displacements in the eigen-vectors of phonons in a given branch for K and Γ-points

to be similar. Hence, we consider that the D band of a 7x7 supercell with a defect is

very similar to the one of its Γ-point phonon modes. We project the normal-modes of

graphene with SW defect onto those of pristine graphene to indentify the G and D bands

in graphene. This is achieved by calculating an overlap or correlation matrix given by,

Sαβ = 〈eα|e′β〉, (3.1)

where e′β is the eigen-vector of graphene with SW defect and eα is the eigen-vector of

pristine graphene. The G and D bands of graphene with SW defect are identified as those

with the largest overlap with the G and D eigen-vectors of pristine graphene (see Figure

3.3).

The doubly degenerate in-plane stretching mode, i.e. G band of frequency 1582 cm−1

dominates the Raman spectrum of pristine graphene. The D band (defect mode) at the

frequency of 1350 cm−1 at K-point is a mode that becomes Raman active in the presence

of defects. The defect concentration in graphitic materials is typically characterized using

the ratio of integrated Raman intensities of D band and G band. We show that the fre-

quencies of G and D bands shift with varying defect concentration. Atomic displacements

in the D band are localized at the SW defect, while those in the G band are excluded at the

defect (refer to Figures 3.3a to 3.3c). Symmetry equivalence of the x and y directions in

the hexagonal lattice is broken by the anisotropy of the SW defect, lifting the degeneracy

of G band. While the D band hardens from 1324 cm−1 to 1337 cm−1, frequency of the

G band lowers noticeably from 1582 cm−1 to 1544 cm−1 for vibrations with atomic dis-

placements along the rotated C-C bond, and from 1582 cm−1 to 1556 cm−1 for vibrations
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perpendicular to the rotated C-C bond.

(a) (b)

(c) (d)

Figure 3.3: Raman active phonon modes of graphene scattered by an SW defect (for
2.04 % concentration of defects). G band: (a) mode with atomic displacements along the
unrotated C-C bonds, of frequency ≈ 1556 cm−1, and (b) mode with atomic displacements
perpendicular the unrotated C-C bonds, of frequency≈ 1544 cm−1. (c) D band is attracted
to the SW defect and its frequency hardens to ≈ 1337 cm−1. (d) Highest frequency defect
mode of graphene with an SW defect. This mode at 1861 cm−1 involves stretching of
the stiff rotated C-C bond at the centre of the defect. Copyright (2012) by the American
Physical Society [39]).

The red shift in G band found here is consistent with earlier reports [55], however

no explanation for the observed shift in frequencies had been reported. We explain the

softening of G band and hardening of D band frequencies in terms of the structural changes

occurring at the SW defect. The rotated C-C bond at the centre of SW defect is 7% shorter,

and hence it is stiffer than the unrotated C-C bonds. The stiffness of this bond is evident

from the high frequency defect mode (of frequency 1861 cm−1, and compares well with

reported value [53]) which is entirely localized to the rotated bond of the defect (see Figure

3.3d). The stress built up by the bond contraction is released to the bonds surrounding

the SW defect. Hence, the stiffness of bonds in the neighbourhood of the defect is less as

compared to that of the rotated C-C defect bond. As a result, the D band localized at
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the SW defect hardens, and G band excluded by the defect softens.

Table 3.2: Frequencies of G and D Raman active modes in graphene with varying defect
concentrations. Vibrations of G1 band are perpendicular and vibrations of G2 band are
parallel to the rotated C-C bond of the SW defect. Copyright (2012) by the American
Physical Society [39]).

Supercell size G1 G2 D
(cm−1) (cm−1) (cm−1)

Pristine graphene 1582 1582 1324

3x3 1599 1783 1277

5x5 1577 1526 1367

7x7 1556 1544 1337

We have carried out similar analysis of the vibrational spectrum of graphene with

higher defect concentration, i .e. one defect in a 5x5 supercell. This too shows a similar

behaviour i.e. the softening of G band, and hardening of the D band (refer to Table 3.2).

The magnitude of frequency shifts of G and D bands in this case is larger, due to higher

concentration of SW defects, i .e. 4%. The frequency of the G band lowers and splits into

1577 cm−1 and 1526 cm−1, for vibrations along the unrotated C-C bond and along the

rotated C-C bond respectively. In the case of the 3x3 supercell, i .e., 11.11% concentration

of defects, the average distance between SW defects becomes comparable to the length

scale at which these modes are scattered, and hence they show contrasting behavior. The

G band hardens to 1783 and 1599 cm−1, for vibrations along the rotated C-C bond and

along the unrotated C-C bond, respectively. On the other hand, the D band softens to

1277 cm−1 (refer to Table 3.2).

Two phonon modes appear with imaginary frequencies in the vibrational spectrum of

graphene with an SW defect, revealing its structural instablility. These two phonon modes

involve out-of-plane displacement of atoms and cause the graphene with an SW defect to

buckle. One mode has sine wavelike (≈ 65i cm−1) (odd) deformation and the other has
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cosine wavelike (≈ 53i cm−1) (even) deformation (for 7x7 supercell with 1 SW defect).

These modes will be referred to as odd and even unstable modes (refer to Figure 3.4a,

3.4b and 3.4c, 3.4d) respectively.

(a) (b)

(c) (d)

Figure 3.4: Phonon modes that lead to structural instability of graphene with an SW
defect (for 2.04 % concentration of defects). (a) and (b) are two views of the atomic
displacements of the odd mode with frequency ≈ 65i cm−1. (c) and (d) are two views of
the atomic displacements of the even mode with frequency ≈ 53i cm−1. Copyright (2012)
by the American Physical Society [39]).

Earlier theoretical study [53] supports our findings of odd and even unstable phonon

modes. On freezing in small eigen-displacements of the lower energy unstable mode i.e.

odd mode followed by structural relaxation, the graphene sheet with SW defect buckles i.e.

becomes non-planar. The difference in z co-ordinate of positions of the highest and lowest

carbon atoms is 1.3 Å, and the energy gained by buckling is ≈ 280 meV (i.e. 17.6 mJ/m2

for 7x7 supercell with 1 SW defect). This compares well with the GGA estimate of 253

meV (for 8x8 supercell with 1 SW defect) and 1.40 Å, as reported in the earlier work [53].

An experimental estimate of the out of plane deformation is ≈ 10 Å for suspended
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graphene [46]. Our results shows that the rippling behavior associated with SW defects

is at a shorter length scale, and with a smaller amplitude (of out of plane deformation).

However, the physical origin of ripples due to SW defects or suspended graphene is the

same i.e., coupling of out of plane displacement with in-plane strain [47]. In the case of

higher defect concentration, i .e. one defect in a 5x5 supercell (3x3 supercell), amongst the

two unstable modes with odd and even symmetry, the odd mode is more stable than the

even mode. Since the two modes differ in frequency by only 6i cm−1 (9i cm−1), we expect

the system ripples through a linear combination of both the unstable modes.

We now present a quasi-continuum analysis that helps (a) understand the origin of

these rippling instabilites and (b) explore if they survive in the infinite size limit. In the

continuum limit, the buckling arises out of the coupling between optical modes and strain

fields. Let ox, oy, oz and ax, ay, az represent displacements of atoms in a C-C bond

associated with optical and acoustic modes in the x, y and z directions respectively (see

Figure 3.2a). A linear combination of ox and oy displacements of carbon atoms represent

the bond rotation that gives an SW defect (see Figure 3.6a). The strain εαβ that preserves

the invariance of hamiltonian under rigid body rotation of a 2D sheet is given as [51],

εαβ =
1
2

(
∂aα

∂xβ
+
∂aβ

∂xα
+
∂az(r)
∂xα

∂az(r)
∂xβ

)
, (3.2)

where α, β= x, y, z.

Using symmetry, energy of the coupling between strain (acoustic modes) and optical is

given by,

H(o− ε) =
∫∫

dxdy[g1(o2x(r)εxx(r) + o2y(r)εyy(r)) + g2(o2y(r)εxx(r) + o2x(r)εyy(r))

+4g3ox(r)oy(r)εxy + g4o
2
z(r)(εxx(r) + εyy(r)].

(3.3)

Since ox and oy are non-zero for a system with SW defect, a part of the first term

gives,

g1o
2
x

(
∂az(r)
∂x

)2

. (3.4)
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For a wave with wave vector ‘q’,

aα(R) = eiq.Rεα,

where ε the eigen-vector of the acoustic mode and R is the supercell lattice vector. In the

long wavelength limit,

o2x

(
∂az(r)
∂x

)2

= g1o
2
xq

2a2
z, (3.5)

o2x

(
∂az(r)
∂x

)2

=
1
λ2
g1o

2
xa

2
z, (3.6)

where λ is the wavelength and q=2π
λ . The parameter g1 is proportional to the change in

frequency of oy or ox mode with εyy or εxx strain in pristine graphene. From first-principles

calculation we get, g1 ≈ -0.99 eV/Å2. Since g1 < 0, we see that the G band (ox and oy)

softens with in-plane strain (equation 3.6). In the long wavelength limit, it represents

the out of plane deformation of graphene due to SW defect, i.e. the flexural mode which

becomes unstable. Thus, coupling between optical modes and inplane strain in the system

leads to rippling of graphene in the presence of SW defect.

Earlier works [62–65] report spatial confinement of electrons in graphene due to strain

induced strong pseudo-magnetic fields. A similar effect of pseudo-magnetic field is expected

from the rippling of graphene with an SW defect due to in-plane strain (equation 3.3),

which too gives rise to a pseudo-magnetic field (Bps). We use the formulation of Kim

et. al. [65] to estimate the magnitude of Bps produced by the out of plane rippling of

graphene. We approximate the deformation field (sz) associated with the odd mode (refer

to Figures 3.4a and 3.4b) as follows,

sz(x, y) = ao exp

(
− y

2

σ2
y

)
sin(qx), (3.7)

where σy gives the extent of localization of the ripple, along direction perpendicular

to the direction of the rotated C-C bond at the center of the defect (i.e. ‘y’ direction or
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the heptagonal axis), and ao is the maximum out of plane displacement of carbon atoms

(0.7 Å). We have used σy to 7 Å, the distance between the opposite vertices of the two

heptagons along the direction perpendicular to the rotated C-C bond at the centre of the

SW defect (refer to Figure 3.4b). q is the wave vector associated with the periodicity of

the deformation along the direction of the rotated C-C bond at the center of the defect

(i.e. ‘x’ direction or the pentagonal axis), and directly proportional to the square root of

concentration of SW defects in graphene. The pseudo-magnetic field is given by,

Bz
ps(x, y) =

tβ

e vF

2a2
oe

−2y2

σ2
y q2 y cos2(qx)

σ2
y

+
4a2

oe
−2y2

σ2
y y sin2(qx)
σ4

y

−8a2
oe

−2y2

σ2
y y3 sin2(qx)
σ6

y

+ 2a2
o

e
−2y2

σ2
y q2 y

σ2
y

(cos2(qx)− sin2(qx))

 .

(3.8)

Here t= 2.8 eV is the electron hopping energy between the nearest π orbitals, and β ≈

2-3 is a dimensionless coupling parameter [65] for the lattice deformation. vF is the Fermi

velocity and e the electronic charge. Thus, Bps produced by the buckling is proportional

to the concentration of SW defects, i.e. inversely proportional m2 (m is the supercell

size). For supercells of size greater than m= 25 (low defect concentrations), the value

of 1/m2 becomes small and peak value of Bps becomes a constant. Also, the maxima

of the pseudo-magnetic field shifts to the pentagonal axis located half way between the

two adjacent defects for low concentration of SW defects, from the heptagonal axis for

high concentrations. Our estimate of the peak value of Bps for defect concentrations of ≈

1011cm−2 is approximately 65 Tesla, comparable to the Bps in a nanobubble of length 4

nm and height 0.5 nm which is of the order of 100 T [62].

3.1.4 Electronic Signatures of SW Defects

On comparing the electronic density of states (see Figure 3.5) of pristine graphene with

that of graphene with SW defects, it is clear that SW defects give rise to a defect band ≈

0.5 eV above the Fermi level [66]. The width and height of this band is dependent on the



3.1 Stone-Wales Defects in Graphene 37

concentration of defects in the sample. The pz orbitals of the carbon atoms of the rotated

C-C bond at the centre of the SW defect, contribute predominantly to this defect band.

With increasing defect concentration, both the density of states and the width of the defect

band increase. This defect band is hence useful for the experimental characterization of

SW defects, and their concentration in graphene.

Figure 3.5: Electronic density of states (DOS) of graphene with an SW defect per m x
m periodic supercell (for varying concentration of defects). The defect band due to SW
defect is at ≈ 0.5 eV above the Fermi level. The width and density of states of the defect
band increases with increasing SW defect concentration. The DOS for different supercells
with varying sizes is scaled to that of 1x1 supercell. Copyright (2012) by the American
Physical Society [39]).

Previous studies report opening of a band gap with the inclusion of SW defect in

4x4 [54] and 5x5 [55] supercells of graphene, and is contradictory to our finding of zero

band gap for the same supercells. We have therefore carried out a detailed investigation of

the electronic structure of graphene with an SW defect for varying supercell sizes (ranging

from 3x3 to 8x8 unit cells). Due to BZ folding, the sizes of supercells fall under three

categories: (3m)x(3m), (3m+1)x(3m+1) and (3m+2)x(3m+2) where m is an integer. We

label supercells as 3m, 3m+1 and 3m+2. We refer to k-points in the unit cell BZ with

subscript ‘uc’ and k-points in the supercell BZ with subscript ‘sc’. High symmetry Kuc

and K′
uc-points fold onto Γsc in the case of 3m-supercell. For 3m+1 and 3m+2 supercells,

the (Kuc,K′
uc) fold onto (Ksc,K′

sc) and (K′
sc,Ksc) points respectively.

The SW defect potential (VSW (r)) is defined as,
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VSW (r) = V KS
SW (r)− V KS

pristine(r), (3.9)

where V KS
SW (r) and V KS

pristine(r) are the Kohn-Sham potentials of graphene with and

without SW defect respectively. Due to periodic boundary conditions, VSW (r) is periodic

with the supercell i .e.

VSW (r) = ΣGscVSW (Gsc)eiGsc·r, (3.10)

where Gsc is the reciprocal space lattice vector of the supercell. Since an SW defect

is anisotropic, it breaks the symmetry of the lattice, which is reflected in the electronic

energy states. Effects of the SW defect potential on the electronic states can be estimated

through perturbation theory. Since we are interested in the possible opening of a gap, we

focus on the degeneracy at the Dirac point. The first order correction to the energy of

degenerate electronic states with wave vectors q and q′ is given by,

∆Eq,q′ = 〈uqe
iq·r|VSW (r)|uq′e

iq′·r〉, (3.11)

∆Eq,q′ = 〈uq|ΣGscVSW (Gsc)ei(Gsc-(q-q′)·r)|uq′〉, (3.12)

where uq(r) is the cell periodic part of the Bloch function of the supercell. ∆Eq,q′ is non-

zero iff (q-q′) is a reciprocal lattice vector belonging to the supercell. For a pristine 3m

supercell the Kuc and K′
uc-points fold onto Γsc-point, hence the Dirac cone appears at Γsc.

When (q, q′)= (Kuc, K′
uc), q-q′= Γsc − Γsc= 0. Hence, ∆EΓsc,Γsc 6= 0 by symmetry and

the degeneracy at the Dirac point breaks. The two degenerate bands thus have energies

E ± ∆E, opening a gap of ≈ 0.288 eV (≈ 0.01 eV) in 3x3 (6x6 supercells) (see Figures

3.6c and 3.6f) at Γsc.

For 3m+1 and 3m+2 supercells, the Kuc-point folds onto Ksc and K′
sc-points respec-

tively. Here, (Kuc-K′
uc)= ± (Ksc-K′

sc), is not a reciprocal lattice vector of the 3m+1 or

3m+2 supercell. Therefore, ∆EKuc,K′
uc is zero for these two cases, i.e. there exists no
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(a) (b)

(c)

(d)

Figure 3.6

coupling between the degenerate states at Ksc and K′
sc-points. This implies that no gap

opens at the Dirac points in the electronic structure of graphene with SW defect in these

supercells. However there is a shift in the Dirac points from Ksc in the BZ to Ksc ± δksc,

corresponding to opening of a gap at Ksc that closes at Ksc ± δksc. We now determine its

origin in the structure of the SW defect. The coupling of electronic states at the Fermi

level of graphene with its Γ-point phonon modes [67, 68], and lead to the observed shifts
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(e)

(f)

Figure 3.6

in the Dirac cone from K to Ksc ± δksc. The 90o bond rotation involved in the formation

of SW defect can be expressed as a linear combination of Γ-point phonon modes (localized

to a unit cell) of pristine graphene as mentioned earlier, with optical modes ox and oy

(see Figure 3.6b) giving non-zero contribution. This coupling of ox and oy displacements

associated with an SW defect with electronic states at the Fermi level lead to a shift in

the Dirac points. However oy displacement opens up a gap at the shifted Dirac point.

The shifts are shown in Figure 3.6b by pink and blue dots. Magnitude of the shift is

proportional to the SW defect potential VSW [69], i .e. the deformation potential of ox

and oy modes.

Though the SW defect breaks the rotational symmetry in the system, the reflection

symmetry x̄yz and xȳz are still preserved (with the origin at the centre of the rotated

bond). While the reflection symmetry is retained by the ox mode, it is broken by the

oy mode (in Figure 3.6b lower panel, refer to only the pink (light grey) or blue (dark

grey) dots). Thus, the Dirac cones shift according to ox displacements and a gap opens
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(g)

(h)

Figure 3.6: Electronic band structure of (a) pristine graphene; shows zero band gap. (b)
top panel shows atomic displacements (left ox and right oy) and bottom panel shows
shift of Dirac points from K and K′-points (left for ox and right for oy) in the BZ of the
supercell. Pink and blue solid circles correspond to the shift in the Dirac points on the
reversal of displacements i .e. ±o. Band structure of graphene with SW defect in (c) 3x3
supercell, (d) 4x4 supercell, (e) 5x5 supercell, (f) 6x6 supercell, (g) 7x7 supercell and (h)
8x8 supercell is shown along two different directions in the reciprocal space. Copyright
(2012) by the American Physical Society [39]).

up at the points corresponding to oy displacements. Due to difference in BZ folding for

3m+1 and 3m+2 supercells, the Dirac cone shifts are opposite in direction for the two

cases. 3m+1 follows pink (light grey) and 3m+2 follows blue (dark grey) as shown in

Figure 3.6b left panel. Since the authors of previous works [54, 55] did not investigate

the band structure along these symmetry inequivalent directions in the reciprocal space,

the subtlety of anisotropic shifts in the Dirac point was missed. This led the authors to

mistakenly conclude opening of a gap in graphene with SW defects. Thus, SW defects

lead to opening of a band gap only for a 3m supercell, whereas the Dirac cones are shifted

from the high symmetry K and K′ points in the BZ for 3m+1 and 3m+2 supercells.
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We also studied the shift in the Dirac cone with concentration of SW defects. Con-

centration of SW defect was varied by including only one defect per supercell of size 3x3,

4x4, 5x5, 6x6, 7x7 and 8x8 (see Figures 3.6c to 3.6h). All the three types of configura-

tions (3m)x(3m), (3m+1)x(3m+1) and (3m+2)x(3m+2), are present in these choices of

supercells. For configurations with 3x3 and 6x6 supercells containing a SW defect, a gap

of ≈ 0.288 eV and ≈ 0.01 eV respectively opens up at Γsc (see Figures 3.6c and 3.6f).

The band gap decreases with decreasing SW defect concentration due to weakening of

VSW . For (3m+1)x(3m+1) supercells, the gap closes along the K to M direction i.e. the

Dirac cone shifts from K-point towards M-point in the BZ (see Figures 3.6e and 3.6f).

On the other hand, the Dirac cone shifts from K-point towards the Γ′-point in the BZ of

(3m+2)x(3m+2) supercell (see Figures 3.6d and 3.6g). We find that the extent of shift

δksc increases with decreasing size of the supercell. For an infinitely large supercell with

lattice constant l, the supercell reciprocal lattice vector is given by 2π/l. This implies that

the reciprocal lattice vectors are arbitrarily small in length (since l → ∞), and ∆Eq,q′ 6=

0 for (q,q′)= (Ksc,K′
sc) (refer to equation 3.12). This implies that a band gap opens

up at Ksc, but will be vanishingly small since decreasing defect concentration implies a

decreasing band gap. As the rotated bond in the SW defect equivalent to freezing in of

the ox vibrations, the gap will be shifted from Ksc to Ksc ± δksc (where δksc → 0 as l

→∞). Thus for an infinitely large supercell with an SW defect, a vanishingly small band

gap will open up at Ksc ± δksc (where δksc is infinitesimally small in magnitude).

Our work, along with other works [54,55], involves a periodic array of SW defects. But

in practice, SW defects are randomly distributed in a real sample. While our results should

be applicable to determine the effects of randomly distributed SW defects on vibrational

spectrum of graphene, our analysis of electronic spectrum needs to be interpreted with

care. Each carbon atom in graphene forms three C-C bonds with its nearest neighbours,

and the angle between any two C-C bonds is 120o. Depending on which of these three

bonds is rotated, the SW defects formed can have three different orientations. All the

three orientations of the SW defect lead to shifts in the Dirac points, and the shifts are

such that they too are rotated by 120o. When the C-C bond along x axis is rotated by 90o,
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the Dirac point shift is along K-M direction in the BZ (as shown in Figure 3.6b lower left

panel). Whereas, the rotation of the other two bonds leads to shift of Dirac points along

K-M′ and K-M′′ directions in the BZ (see Figure 3.6b). Assuming that the SW defect

concentration is large enough, a band gap will open up at the K-point for a real sample

with all the three orientations of SW defects, and the gap will be shifted towards M or M′

or M′′-points in the BZ. For a real sample (with non-periodicity arrangement of all three

SW defect orientations), a gap is expected to open up at K-point which will reduce and

close along K-M or K-M′ or K-M′′ directions in the BZ.

3.1.5 Conclusions

From first-principles, we have determined signatures of an SW defect in the vibrational and

electronic properties of graphene. We showed that the G band gets scattered away by the

SW defect and softens, and the D band that is attracted/localized at the defect hardens.

Since SW defects are hopping defects, their effects on the Raman spectrum of graphene

are enhanced w.r.t. adatoms and vacancies [70]. Hence, the G and D band frequency

shifts can be used to characterize SW defects in graphene from Raman spectroscopy.

An SW defect gives rise to two structural instabilites, which are seen in the imaginary

frequencies in the phonon spectrum of graphene. The origin of these unstable modes

has been identified from our quasi-continuum analysis as the coupling of in-plane optical

modes with strain in the system. One of these modes shows out of plane cosine wavelike

deformation and the other shows sine wavelike deformation. These instabilities are shown

(using a quasi-continuum model) not to vanish in the infinite size limit, and be responsible

for the intrinsic rippling of graphene due to SW defects.

Previous studies SW defects involving their effects on the electronic structure of graphene

were carried on systems with 3m+1 [54] and 3m+2 [55] supercells. Since the symmetry

non-equivalent directions in Brillouin zone were inadequately explored, these studies were

misled to conclude a band gap opening. We find (a) opening of a band gap for 3m super-

cells, and (b) a vanishing band gap with shifted Dirac point in the BZ of 3m+1 and 3m+2

supercells. Our study highlights the subtlety in the electronic structure of graphene with
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an SW defect due to its anisotropy. Our analytical and computational studies prove that

effects of SW defects on electronic structure of graphene are dependent on the supercell

size and the orientation of the SW defect. A defect band arises in the electronic structure

of graphene about 0.5 eV above the node of the Dirac cone. The width and density of

states of this defect band increase with increasing concentration of defects, and hence can

be used for experimental characterization of SW defects in graphene.

3.2 Graphene- Boron Nitride (C-BN) †

3.2.1 Introduction

To make graphene a zero band gap semiconductor with high carrier mobility (∼ 10,000

cm2/Vs) at room temperature [40], suitable for use in transistors, it is desirable to open up

a band gap [72]. A solid solution of hexagonal BN (h-BN) and graphene results domains

of BN in the matrix of graphene [73, 74], and subsequently in interesting changes in its

electronic properties [75] such as band gap opening. The size, shape and interfaces (zigzag

or armchair) made by BN domains with graphene, critically determine the properties of

the C-BN. Zigzag (ZZ) interface of C-BN has localized edge states at the graphene edge,

which are absent in armchair (AC) interfaces. Due to the electric field arising from the

polarity of a BN domain, these edge states conditionally give rise to half metallicity in

graphene [76]. Hence, we study variation in the band gap with different concentrations of

h-BN for both zigzag and armchair interfaces.

Ribbon-like domains of BN embedded in the graphene matrix making AC interfaces

are non-magnetic (NM). Whereas, similar ribbon-like domains of BN making ZZ interface

with graphene are anti-ferromagnetic (AFM) half-metals when the number of zigzag chains

of BN are ≥ 6 and, the number of zigzag chains of C are ≤ 8 [76]. Due to a slight mismatch

between the C-C and B-N bond lengths, we expect that defects are likely to form at the

C-BN interface. This is interesting because a common known SW defect does not form

readily in h-BN. One of our goals here is to assess whether a topological defect such as

†This work has been published in part in Journal of Materials Chemistry A. [71]-Reproduced by
permission of The Royal Society of Chemistry (2013).
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an SW defect can form possibly at the interface of graphene and BN (C-BN). To study

the effects of SW defects on both non-magnetic (SC1) and magnetic (SC2) configurations,

we have considered two supercells with varying widths of graphene and BN stripes. Since

the defect states typically arise at the Highest Occupied Molecular Orbital (HOMO) and

Lowest Unoccupied Molecular Orbital (LUMO), and get localized to the SW defect, we

expect these defect sites to adsorb gases effectively. To this end, we study the efficacy of

such interfacial SW defect sites to adsorb CO2 and CH4 gas molecules.

In this chapter, we explore the changes in (a) electronic structure of graphene doped

with varying concentration of h-BN, (b) structural and electronic changes changes accom-

panied by SW defects at ZZ and AC interfaces, and (c) the gas adsorption capability of

C-BN with SW defects.

3.2.2 Computational Methods

See section 3.1.2 for details of the first-principles calculations. Here, we employed the

Local Density Approximation (LDA) [1] with Caperley- Alder functional for exchange

correlation energy [77].

For the AC interface, unit cell of SC1 consisted of 3 AC chains of graphene and 3 AC

chains of BN along y direction. Supercells SC1 and SC2, were constructed by repeating

the unit cell 4 times and 5 times along x axis respectively. Brillouin zone integrations

were carried out with a 3x3x1 mesh of k-points for both SC1 and SC2. Similarly for the

ZZ interface, unit cell of SC1 consisted of 4 ZZ chains of graphene and 4 ZZ chains of BN

(both with ZZ edges) and SC2 consists of 5 ZZ chains of graphene and 9 ZZ chains of BN,

both along y direction. Supercells SC1 and SC2, were constructed by repeating the unit

cell 6 times and 5 times along x axis respectively. Brillouin zone integrations were sampled

over a 3x3x1 and 12x5x1 mesh of k-points for SC1 and SC2 respectively. Since magnetic

calculations critically depend on the k-point sampling, a large number of k-points were

considered for SC2, which shows a stable AFM state without the SW defect.

In simulations of gas adsorption, we include semiempirical dispersion interactions

(vdW) within the Grimme [78] scheme, along with a generalized gradient approximation
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(GGA) [30] to exchange correlation energy of electrons and ultrasoft pseudopotentials [34]

to represent interaction between ionic cores and valence electrons. Supercell SC1 with an

AC interface was considered for the gas adsorption study at the SW defects. Integrations

over Brillouin zone for SC1 was sampled over a 3x3x1 mesh of k points.

3.2.3 Chemical ordering of boron and nitrogen atoms in graphene

Monte Carlo simulations [79–81] and recent experiments [82] predict formation of BN do-

mains in graphene. When the ratio of number of boron to nitrogen atoms is ≈ 1 (B/N=

1), C1−x(BN)x shows segregation of BN islands in graphene (for carbon rich samples) or

graphene islands in BN matrix (for BN rich samples) [71, 80]. For nitrogen rich samples

however, carbon atoms get dispersed into the BN lattice [80], favoured by energetically

favourable C-N bonds. Depending on the kinetics involved in experimental synthesis of

C-BN however, some degree of randomness in chemical ordering of B and N is expected.

Table 3.3: Cohesive energies of SZ and SD for different compositions (with GGA estimates
in paranthesis). [71]-Reproduced by permission of The Royal Society of Chemistry (2013).

Concentration (x)
Energy (eV/atom)
SZ SD

0 -9.45 (-8.66) -9.45 (-8.66)

0.083 -9.45 -9.41

0.166 -9.48 (-8.68) -9.41 (-8.60)

0.25 -9.52 -9.45

0.333 -9.56 (-8.74) -9.45 (-8.64)

0.417 -9.60 -9.50

1.0 -9.97 (-9.10) -9.97 (-9.10)
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We have simulated two types of chemically ordered periodic supercells of Cx(BN)1−x.

In the first one (SZ configuration), we replace zigzag chains of BN by zigzag chains of

graphene chains (refer to Figure 3.7d). The chemical ordering in SZ configuration is

such that the zigzag chains of BN are adjacent to one another, i.e. a zigzag stripe of

graphene in h-BN. In the second case (SD configuration), a pair of boron and nitrogen

atoms were replaced with two carbon atoms at a time such that they form segregated

carbon islands [80] (where the largest domain is 5 Å x 6 Å in size) in BN matrix, which

also maintains the stoichiometry, i.e. the ratio of B/N= 1.

From the cohesive energies of SZ and SD configurations for different concentrations

(see Table 3.3), we conclude that configurations with domains of carbon atoms in h-

BN sheet are not as energetically favourable as those with zigzag interfaces between BN

and graphene, since the number of energetically less favourable C-N and C-B (where

bonds stability is given by B-N >C-C >C-N >C-B >B-B >N-N [81]) are more in the

SD configurations. Since interface energy of armchair edge is 0.39 eV/Å as compared to

0.58 eV/Å of the zigzag edge, armchair interface is even lower in energy than the zigzag

interface between BN and graphene. However, the disorder in the positions of substituted

atoms and associated entropy favor formation of graphene domains over zigzag stripes in

experimentally synthesized CxBN1−x [80].

3.2.4 Variation of band gap with concentration: Cx(BN)1−x.

The electronic properties of C-BN are naturally affected by the domain structure. In BN-

rich systems, the segregated carbon domains give rise to narrow quantum-dot-type energy

bands just above and below the Fermi level in the midgap region of BN. In contrast,

nitrogen rich C-BN ( B/N < 1) exhibit a narrow half-filled band (disorder band) at the

Fermi level. The width of which is dependent upon the disorder associated with carbon

atoms in the BN matrix. The width of this disorder band decreases with increase in the

ordering of carbon (order corresponds to the formation of a crystalline structure of C

atoms) in BN [80].

We have determined the electronic gap as a function of concentration for the two types



48 Chapter 3.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

1

2

3

4

5
E

g 
(e

V
)

C
x
(BN)

(1-x)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 

0

1

2

3

4

5

E
g 

(e
V

)

C
x
(BN)

(1-x)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 

0

1

2

3

4

5

E
g 

(e
V

)

C
(1-x)

(BN)
x

(d)

Figure 3.7: Variation of band gap (Eg) of h-BN doped with graphene for different doping
fractions (x). (a) and (b) are for SZ and SD configurations respectively. (c) denotes the
variation of band gap of graphene doped with BN in the SD configuration, and (d) shows
the SZ supercell periodically repeated along x and y directions for CxBN1−x (the black
curve denotes a single SZ supercell). [71]-Reproduced by permission of The Royal Society
of Chemistry (2013).

of domain structures (SZ and SD). A polar interface of BN with graphene is formed in the

SZ configuration due to the zigzag interface, and the electric field induced by the B and N

edges opens a gap between the electronic states at the zigzag edges of graphene [76]. The

band gap increases with increasing concentration of BN, as expected. From the calculated

band gap of SZ-system with varying concentration of carbon (see Figure 3.7a), we observe

that the band gap decreases rapidly as the concentration of graphene (x) increases beyond

0.17. This is because (a) electric field responsible for opening the gap decreases as the
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concentration of carbons increases and (b) electronic states of graphene dominate the

electronic structure near the fermi level, and percolate.

As compared to the SZ configuration, the decrease in band gap of the SD configuration

with x is gradual (refer to Figure 3.7b). The sudden increase in band gap at x= 0.25 arises

from the formation of a six membered hexagonal ring of carbon atoms. A configuration

with a domain is more favourable or stable than a random configuration [80], hence exhibits

a larger band gap [83]. Similarly, we have simulated graphene lattice with domains of BN

(i.e. C(1−x)BNx) in the SD configuration (refer to Figure 3.7c). As expected, the band

gap vanishes at x= 0, and increases with increasing concentration of BN, i.e. the size of

BN domain.

3.2.5 Structure of SW defects at the C-BN interface

An SW defect in C-BN involves an in-plane 90o rotation of a carbon-carbon (C-C), boron-

nitrogen (B-N), carbon-boron (C-B) or carbon-nitrogen (C-N) bond, resulting in the for-

mation of a pair of pentagons and heptagons (pair of 5/7 dislocations). Since the formation

of an SW defect in pure h-BN is unfavourable, SW defect is more likely to form at the

armchair or zigzag interfaces of C-BN.

The heirarchy of energetic stability of the bonds, B-N >C-C >C-N >C-B >B-B >N-

N [81] (energy increases from BN to NN), implies that larger the number of B-N and C-C

bonds, greater is the stability of the structure. We have used this heirarchy to explain the

stability of different types of SW defects at C-BN interfaces. Configurations with armchair

interfaces are denoted as ‘AI’ and those with B or N terminated zigzag interfaces by ZIB

or ZIN respectively. Since the structure at the interface of SC1 and SC2 configurations is

the same, we discuss here bonding and formation energies of various defect configurations

only for SC1 (the same arguments work for SC2).

We investigate three configurations of an SW defect with C-C (AIC), C-B (AIC) and

C-N (AIN ) bond rotations (refer to Figures 3.8a, 3.8b and 3.8c). The formation energy

of an SW defect in these three configurations is 4.29 eV, 4.66 eV, 5.66 eV respectively

(refer to Table 3.4). Since AIC has a larger number of C-C bonds, it has greater stability.
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(a) (b)

(c)

Figure 3.8: Configurations of SW defects at the AC interface. (a) AIC : C-C bond rotated,
(b) AIB: C-B bond rotated, and (c) AIN : C-N bond rotated. Colour code: C= yellow,
B= blue and N= pink. [71]-Reproduced by permission of The Royal Society of Chemistry
(2013).

Though AIN has more C-N bonds than AIB, it is less stable since the most stable bond

(i .e. BN bond) in AIN and AIB is stretched by 6.6%, and unstretched relative to its

equilibrium bond length respectively (refer to Table 3.5 for bond lengths).

Two configurations at the nitrogen terminated interface are ZINN (C-N bond rotated)

and ZINC (C-C bond rotated) (refer to Figures 3.9a and 3.9b respectively), and the other

two configurations at the boron terminated zigzag interface are ZIBB (C-B bond rotated)

and ZIBC (C-C bond rotated) (refer to Figures 3.9c and 3.9d respectively). The forma-

tion energies for ZINN , ZINC , ZIBB and ZIBC are 4.48 eV, 4.34, 5.77 eV and 4.38 eV

respectively (refer to Table 3.4). ZIBC and ZINC are more stable than ZIBB and ZINN

since they have larger number of C-C bonds at the defect. ZINN is more stable than ZIBB
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(a) (b)

(c) (d)

Figure 3.9: Configurations of SW defects at the ZZ interface. (a) ZINN : nitrogen ter-
minated C-N bond rotated, (b) ZINC : nitrogen terminated C-C bond rotated, (c) ZIBB:
boron terminated C-B bond rotated and (d) ZIBC : boron terminated C-C bond rotated.
Colour code: C= yellow, B= blue and N= pink. [71]-Reproduced by permission of The
Royal Society of Chemistry (2013).

since the C-N bond in ZIBB is stretched by ∼ 6% which leads to increase in the formation

energy (refer to Table 3.5 for bond lengths).

The formation energies of SW defect at the C-BN interfaces and graphene are compa-

rable [85] (refer to Table 3.4 for both SC1 and SC2). However, most configurations in SC2

have larger formation energies than that of SC1. The larger number of BN chains in SC2

leads to an increased potential difference across the graphene stripe which in-turn increases

the formation energy of an SW defect at the interface (except for ZIBC and ZINC). The

bond rotation for ZIBC and ZINC happens inside the graphene sheet, and hence does not

drastically affect the B or N terminated edge. Therefore the formation energies of ZIBC
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Table 3.4: Formation energy of SW defect at C-BN interface. [71]-Reproduced by permis-
sion of The Royal Society of Chemistry (2013).

Configuration

Formation Energy
SC1 SC2
(eV) (eV)

AIC 4.29 4.71
AIB 4.66 5.29
AIN 5.66 6.02
ZIBB 5.77 6.34
ZIBC 4.38 4.04
ZINN 4.48 4.92
ZINC 4.34 3.94

and ZINC are smaller than the other configurations. As for SC1 and SC2, the formation

energies of ZIBC and ZINC are smaller in SC2 than in SC1. It can be reasoned that the

decrease in the formation energy is due to larger graphene nanoribbon in SC2. Our work

shows that the likely presence of SW defects at the C-BN interfaces (C1−x(BN)x) and

their stability is determined by the type of bonds involved and the associated strain.

3.2.6 Electronic structure of C-BN interface: effects of SW defects

Band gap opens up in graphene by breaking of its A-B sublattice symmetry. In h-BN, a

band gap opens up at the Dirac point due to breaking of this symmetry. As seen earlier,

the magnitude of this band gap C-BN and distribution of mid-gap states depend upon the

number of B and N atoms doped in graphene [86]. As electron-hole symmetry is preserved

due to substitution of equal number of B (holes) and N (electrons) atoms, the electronic

states above and below Fermi energy level is nearly symmetric (refer to Figures 3.10a and

3.10b). With excess of N relative to B (or excess of B relative to N) the electron-hole

symmetry is broken, and the system becomes n-type (or p-type).

There are electronic states mainly localized at the ZZ edges of graphene, and are
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Table 3.5: Bond lengths at the C-BN interface in Å. The equilibrium bond lengths are
d(C-B)= 1.54 Å, d(C-N)= 1.34 Å, d(C-C)= 1.42 Å, d(B-N)=1.45 Å [84]. [71]-Reproduced
by permission of The Royal Society of Chemistry (2013).

Configuration
SC1 SC2

C-B C-N C-C B-N C-B C-N C-C B-N

AIC
1.55 1.39 1.31 - 1.55 1.39 1.31 -

1.45 1.45
1.47 1.47

AIB
1.42 1.4 1.42 1.45 1.40 1.41 1.42 1.46
1.53 1.51

AIN
1.54 1.29 1.46 1.55 1.54 1.29 1.46 1.55

1.39 1.39

ZIBB
1.41 1.42 1.44 1.47 1.40 1.41 1.44 1.46
1.54 1.54

ZIBC

1.57 - 1.33 - 1.58 - 1.34 -
1.42 1.42
1.45 1.45
1.46 1.48

ZINN
1.53 1.31 1.39 1.47 1.52 1.30 1.40 1.46

1.39 1.39

ZINC

- 1.40 1.33 - 1.41 1.34 -
1.42 1.42
1.44 1.43
1.46 1.47

absent in the AC edges [87]. These edge states give rise to magnetism in graphene nano-

structures with ZZ edges [88]. A ZZ graphene nanoribbon has an AFM ground state

[89] where the opposite edges have anti-parallel spins, and the system turns half-metallic

upon application of an in-plane external electric field [90]. On embedding ZZ graphene

nanoribbon between ZZ BN nanoribbon, the potential drop across the B-terminated edge

to the N-terminated edge generates an in-plane electric field and the system turns half-

metallic, which is determined by a critical number of ZZ chains of graphene (n), and BN

(m). Systems with n≤ 8 and m≥ 6 are expected to show half-metallicity [76]. Hence,

SC1 is non-magnetic with a direct band gap, while SC2 is a half-metallic anti-ferromagnet
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Table 3.6: Band gaps observed in all the AC and ZZ configurations of SC1 and SC2. [71]-
Reproduced by permission of The Royal Society of Chemistry (2013).

Configuration
SC1 SC2
(eV) (eV)

pristine AC interface 1.3 1.4
AIC 0.97 1.2
AIB 1.09 1.2
AIN 0.24 0.3

pristine ZZ interface 0.4 half-metal
ZIBB 0.25 metal
ZIBC 0.24 metal
ZINN 0.13 metal
ZINC 0.2 metal
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Figure 3.10: Electronic Density of States (DOS) plots for SC1 without SW defect. (a)
AC interface (b) ZZ interface. SC1 in (a) consists of 3 AC chains of graphene and 3 AC
chains of BN, and 4 ZZ chains of graphene and 4 ZZ chains of BN in (b). [71]-Reproduced
by permission of The Royal Society of Chemistry (2013).

(refer to Figure 3.10b and 3.11b).

Now, we present the effects of SW defects on these properties. For SC1, a band gap

persists in the system even with the inclusion of a SW defect (refer to Table 3.6). Since all

the configurations included here have equal number of B and N atoms, the electron-hole

symmetry is preserved (see Figure 3.10) and the conduction and valence band states are

symmetrically distributed around the Fermi level. Also, visualization of charge density
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(a) (b)

Figure 3.11: Electronic Density of States (DOS) plots for ZZ interface of SC2 without
SW defect under the generalized gradient approximation: (a) NM configuration and (b)
AFM configuration. The NM configuration is metallic and the AFM configuration is half-
metallic. In (b) the up spin and down spin channels are denoted by positive and negative
values of DOS respectively. The up spin channel is conducting whereas, there exists a gap
in the DOS for down spin channel, making zig-zag interface of SC2 half-metallic. SC2
consists of 5 ZZ chains of graphene and 9 ZZ chains of BN. [71]-Reproduced by permission
of The Royal Society of Chemistry (2013).

shows that the states above and/or below the Fermi are localized at the defect (refer

to Figures 3.12 and 3.13), making these defects good adsorption sites for ad-atoms and

impurities.

All the configurations corresponding to SC1 are non-metallic. We now investigate

their charge density distribution for the highest occupied molecular orbitals (HOMO) and

lowest unoccupied molecular orbitals (LUMO) (refer to Figure 3.12 and 3.13). In the case

of zigzag interfaces without defects, the HOMO and LUMO states are localized at the

boron and nitrogen terminated interfaces respectively. At the interface, the ‘p’ orbitals of

B, N, and C mix giving rise to four sets of bands which are the bonding and antibonding

states between C-B and C-N. The anti-bonding C-N band lies just above Fermi level and

the bonding C-B band lies just below it (Figure 3.10), and leads to localization of HOMO

and LUMO states at the interface. However with the inclusion of a SW defect, the HOMO

state and LUMO states get localized at the defect for ZIB edge and ZIN edge, respectively.

The same holds for armchair interfaces. The HOMO and LUMO states get localized at

the defect for AIC , AIB and AIN configurations. This localization is more pronounced for

AIN , and leads to higher formation energy of the SW defect.
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(a)

(b)

(c)

Figure 3.12: Charge density plots of HOMO (left panel) and LUMO (right panel) for
configurations (a) AIC , (b) AIB and (c) AIN in SC1. The HOMO and LUMO of all
the three configurations are localized to the SW defect. SC1 consists of 3 AC chains of
graphene and 3 AC chains of BN. Colour code: C = yellow, B= blue and N= pink. [71]-
Reproduced by permission of The Royal Society of Chemistry (2013).

The AC configurations of SC2 type exhibit band gaps in the presence or absence of

SW defects. However, the ZZ configuration without a SW defect shows metallic behaviour

in the NM state (refer to Figure 3.11a). Due to potential difference generated by the

C-N and C-B edges, graphene zigzag nanoribbons embedded in zigzag BN nanoribbons

turn half-metallic [76]. In the AFM state, the up spins conduct and down spins show a
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(a)

(b)

Figure 3.13: Charge density plots of HOMO (left panel) and LUMO (right panel) for con-
figurations (a) ZIBB and (b) ZINN in SC1. The HOMO and LUMO of ZIBB configuration
in (a) are localized to the defect and nitrogen edge respectively. Whereas the LUMO and
HOMO of all the ZINN configuration in (b) are localized to the defect and boron edge
respectively. SC1 consists of 4 ZZ chains of graphene and 4 ZZ chains of BN. Colour code:
C= yellow, B= blue and N= pink. [71]-Reproduced by permission of The Royal Society
of Chemistry (2013).

finite energy gap in its electronic structure (half-metallicity, refer to Figure 3.11b). The

AFM state is 15.4 meV higher in energy than the NM state, and in contrast to previous

theoretical calculations [91]. This discrepancy is due to the LDA exchange-correlation

energy functional used in our calculations. Our calculations with GGA show that the

AFM configuration is 10.1 meV lower in energy than the NM configuration.

To check for magnetic ground states we have initialized the spins of the C atoms parallel

(FM) and anti-parallel (AFM) on the opposite edges for all defect configurations. Out of all

the defect configurations of SC2 supercell with zig-zag interfaces, only ZINN configuration
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Table 3.7: Energy and magnetic moments (µ) in the NM, FM and AFM configurations
in ZINN supercell of 140 atoms. [71]-Reproduced by permission of The Royal Society of
Chemistry (2013).

Configuration Energy total µ absolute µ
(eV/atom) (µB/cell) (µB/cell)

NM -170.36 - -
FM -170.36 0.13 0.23

AFM -170.36 0.04 0.07

converged to both FM and AFM states with negligible magnetic moment per supercell

(refer to Table 3.7). However, the energies of the NM and the magnetic configurations

are about the same, indicating that the magnetic moment may be an artefact of the

calculations. Thus, SW defects annihilate half-metallicity and have a weakening effect on

magnetism in C-BN systems.

3.2.7 Gas adsorption studies

Based on experiments, Kumar et. al. [71] report energies of adsorption of CO2 and CH4

on C-BN is ≈ 14-19 kJ/mol (at coverage of 7 and 3.7 wt % of CO2 and CH4, respectively).

Since the HOMO and LUMO of C-BN are localized to the SW defect, we explore the effects

of a SW defect on the gas adsorption capabilities of C-BN. We choose two configurations,

AIC and AIN in SC1, which have the minimum and maximum formation energies. The

adsorption energy (Eads) of CO2 and CH4 gas molecules on C-BN was estimated with,

Eads = − [EComplex − (EC−BN + EGas)] , (3.13)

where EComplex, EC−BN and EGas are energies of C-BN and gas molecule complex, C-BN

and of an isolated gas molecule respectively. We simulated adsorption of CO2 and CH4

gases at various sites near the pentagonal ring of the SW defect.

On the introduction of a SW defect, the C-BN sheet becomes dynamically unstable
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and hence it bends [39]. For a planar sheet with SW defect with no symmetry breaking

displacement (i.e. out of plane deformation) or field (such as a molecule), the system

remains planar. However, on the introduction of a gas molecule, the symmetry breaks

and the sheet bends. The extent of bending or the height difference between the most

displaced atoms is ≈ 1.2 to 1.8 Å, and the energy gained (only due to bending) is 63

kJ/mol. We now consider the adsorption energies w.r.t. the bent C-BN sheet.

(a) (b)

Figure 3.14: Relaxed structures of CO2 on (a) AIC and (b) AIN . Colour code: C = yellow,
B= blue, N= pink and O= green. [71]-Reproduced by permission of The Royal Society of
Chemistry (2013).

For one CO2 molecule per cell, which corresponds to ∼ 3.6 wt%, adsorption energies

are 19 kJ/mol and 22 kJ/mol for AIC and AIN configurations respectively (refer to Figure

3.14). The shortest distance of an atom of CO2 molecule is 3.25 and 3.14 Å respectively

for AIC and AIN configurations. For a CH4 molecule (1.35 wt %), the adsorption energies

are 34 kJ/mol and 17 kJ/mol with distances between molecule and C-BN sheet of ∼ 2.73

Å and 2.75 Å for AIC and AIN configurations respectively (refer to Figure 3.15). The

adsorption energies of CH4 and CO2 at the defect sites are approximately 1.5 times the

adsorption energy at a non-defective site. This is because, the electronic states of the

molecules interact more strongly with the defect electronic states which are localized in

the plane of C-BN, and relatively more extended in the direction perpendicular to the

plane (where the molecular states lie).

We note that the contribution of Van der Waals interactions to the adsorption energy

is ∼ 20-25 kJ/mol. From the electronic density of states (DOS) of these structures, we
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(a) (b)

Figure 3.15: Relaxed structures of CH4 on (a) AIC and (b) AIN . Colour code: C= yellow,
B= blue, N= pink and H= green. [71]-Reproduced by permission of The Royal Society of
Chemistry (2013).

find that the interaction of molecules with the C-BN layer results in the shifting of states

that are just above the Fermi level towards it. Since all the configurations with CO2 and

CH4 show similar trends in the nature of the DOS, we only discuss the interaction of CO2

with C-BN in the AIC configuration. From the DOS of C-BN with and without CO2

(see Figure 3.16), the contribution of the CO2 molecule to the total DOS is projected out

(Figure 3.16, the HOMO states of C-BN+CO2 and CO2 were aligned with the HOMO of

C-BN with zero as the Fermi level of C-BN). The binding between CO2 and the C-BN

layer is strong, when the CO2 molecule is placed near the sites that contribute to the

LUMO of AIC (refer to Figure 3.12a and Figure 3.14a). A noticeable change is observed

in the peaks of the bands in C-BN which overlap with those of CO2 (at ∼ 3.5 eV and ∼

-5 eV in Figure 3.15), confirming the existence of weak overlap of wavefunctions of CO2

and C-BN at the SW defect leading to stronger binding and a decrease in the band gap of

∼ 0.1 eV for CO2 on AIC . This is because the defect electronic states are localized in the

plane of C-BN, but relatively more extended in the direction perpendicular to the plane.

3.2.8 Conclusions

We predict the occurance of SW defects at these interfaces with formation energies ranging

from 4 to 6 eV, and comparable to that of a SW defect in graphene. Formation energy

of SW defect in ZINC and ZIBC configurations is lower than that in graphene, reflecting
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Figure 3.16: Electronic Density of States (DOS) plots for CO2 adsorbed on the SW defect
in the SC1 configuration. Red filled curve (grey) is the projected DOS of CO2 molecule
on C-BN, green (grey) curve is the DOS of C-BN without molecule and black curve is the
DOS for C-BN + CO2. [71]-Reproduced by permission of The Royal Society of Chemistry
(2013).

the strong probability of SW defect formation at the C-BN interface. The variation and

trends in the formation energies of SW defects at different interfaces (AC and ZZ) can

be understood in terms of the type of bonds involved and associated strain. Secondly, we

note that SW defects eliminate or weaken the half-metallic properties of C-BN systems.

We find that the adsorption of CO2 and CH4 gases at defects in C-BN is 1.5 times

stronger than that at an interface without defects. The adsorption energy of these gases is

∼ 14-34 kJ/mol (at coverages of 3.6 and 1.35 wt % of CO2 and CH4, respectively) for C-

BN with SW defects, as compared to 14-19 kJ/mol (at coverage of 7 and 3.7 wt % of CO2

and CH4, respectively) for C-BN interface without defect. Hence, SW defects at C-BN

interfaces improve its gas storage capabilities, and should be exploited for enhancement

in adsorption efficiencies of these materials.
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Chapter 4

Silver

4.1 Stability of 2H polytype ∗

4.1.1 Introduction

Silver (Ag) in its bulk form has the FCC structure, with (ABCABC...) periodic stacking

of its close-packed (111) planes, which is also known as the 3C structure. Polytypes are

structures that involve different stacking sequence of these close-packed planes. However,

these polytypes differ in their electronic and mechanical properties, and provide diversity

to their applications. For eg. silicon carbide has more than 170 known polytypes, among

which the important ones (3C, 2H, 4H and 6H) differ in their electronic and optical prop-

erties [93, 94]. The most commonly observed polytypes of Ag are 4H [95] and 9H [96]. In

recent experiments, Chakraborty et al. [92] have synthesized an interesting 2H (ABAB...)

polytype of silver with anomalously large inter-planar spacing (almost 35% larger than

the one in its bulk FCC phase). We use first-principles calculations to investigate stability

of this reported 2H structure with lattice parameters a= 2.83 Å and c= 6.38 Å. We have

assessed the local stability of this 2H polytype through determination of phonon disper-

sion and estimated a critical uniaxial tensile strain above which the structure becomes

unstable at T= 0 K. Electronic origin of this can be traced to Peirel’s instability emerging

∗This work has been published in part in Journal of Physics: Condensed Matter [92]. Copyright (2011)
by Institute of Physcis (IOP).
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at a critical strain indicating that the system would double its periodicity to attain stabil-

ity. Further, phonon spectra were obtained using SCAILD at T= 400 K to check for the

stability of the experimentally observed 2H polytype due to anharmonic effects at finite

temperature. Based on these, we suggest a possible mechanism of its stability.

4.1.2 Computational Methods

See section 3.1.2 for details of the first-principles calculations. The exchange-correlation

energy of electrons was treated within a GGA functional of Perdew Burke Ernzerhof

parametrized form [30]. In the investigation of the stability of 2H structure with interca-

lated oxygen or extended defects, a 4x4x1 supercell was constructed and the integration

over the Brillouin zone were sampled a 3x3x6 mesh of k-points. The Density Functional

Perturbation Theory (DFPT) calculations were carried out for two atoms basis cell with

a uniform 6x6x4 mesh of k-points in self consistent field (scf) calculations, determining

the dynamical matrices using DFPT over a mesh of 3x3x2 k-points. For lattice dynamical

analysis at finite temperature, we used the Self Consistent Ab Initio Lattice Dynamics

(SCAILD) code of Souvatzis et al. [28], interfacing it with QE to obtain phonons using

DFPT.

4.1.3 Stability: intercalating impurities?

Since the films studied here are grown in gaseous (N and O) ambiance, we first explore if

trapping of any impurities of N or O between two close-packed planes of the 2H polytype

(intercalation) can give rise to stability of the observed 2H polytpe with the unusually

larger inter-planar separation. We use a 4x4x1 supercell and place impurities (or defects)

interstitially far from one another, one above the A plane and the other above the B plane,

amounting to an impurity concentration of 6.25%. While this is much larger than that

possible in the films in experiments, our goal is to study its effects on the structure noting

that they may be overestimated. Use of such a supercell allows us to use a smaller (3x3x6)

mesh of k-points.

Our simulations with structural relaxation resulted in structures (see Figure 4.1) that



4.1 Stability of 2H polytype 65

(a) (b)

(c) (d)

Figure 4.1: Structure of 2H polytype of silver intercalated with oxygen and nitrogen
impurities. Structure with (a) O and (b) N impurity before relaxation. Structure with
(c) O and (d) N impurity after relaxation. Colour code: Ag= green, O= red and N=
blue. Note that the structure distorts completely and loses all the symmetries of 2H after
relaxation. Copyright (2011) by Institute of Physcis (IOP) [92].

are significantly distorted and have a much lower symmetry than the parent structure of

the 2H-polytype. These should have been readily noticed in structural characterization

in experiments. Chemically, our results are understandable as each of the close-packed

planes of silver when far from each other, would be chemically active and interact with

impurites like N and O strongly. Hence, we exclude the possibility of intercalated N and

O (or silver) as a possible cause for stability of the 2H structure with anomalous c= 6.38

Å.

4.1.4 Thermal Stability

To explore whether the observed 2H structure could be possibly stabilized by thermal fluc-

tuations or vibrational entropy, we undertook SCAILD [28] based calculations of phonon

dispersion at T= 400 K using a 3x3x2 supercell of observed 2H polytype. In this mean-field

analysis of phonons, the lattice structure is still preserved and renormalized frequencies of

phonons are obtained. Such an approach has been successful in showing how a few BCC
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Figure 4.2: Calculated phonon dispersion curves for (a) the 2H polytype of Ag at 400 K.
Also shown are calculations at 0 K for the 4H polytype with (b) optimized parameters (a
= 0.292 nm, c = 0.967 nm), and (c) experimental parameters (a = 0.283 nm and c = 1.0
nm). Copyright (2011) by Institute of Physcis (IOP) [92].

metals which are unstable at T= 0 K become stable due to thermal entropy at high tem-

perature. Our SCAILD calculations show that the unstable modes (modes with imaginary

frequencies) persist in phonon dispersion at 400 K (see Figure 4.2a). A similar analysis

at T= 1000 K showed imaginary frequencies (unstable modes), suggesting that thermal

fluctuations or entropy are not adequate in stabilizing the observed 2H structure.

4.1.5 Local stability of 2H polytype

Finally, we determine the largest inter-planar separation a 2H polytype can have while

maintaining its local stability (at 0 K). A structure is locally unstable, if it is not a local

minima of energy, i.e. any structural distortion through atomic displacements lowers its

energy. While the forces on each atom in the relaxed structure vanish within a toler-

ance, the stucture can still be unstable if the second derivative of energy with respect to

certain atomic displacements is negative. Precise information of such unstable structural
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(a) (b)

(c) (d)

(e)

Figure 4.3: Calculated phonon dispersion curves for the 2H polytype of Ag for different
values of uniaxial strain (εzz), corresponding to different values of the c-parameter: (a)
εzz= 0, c= 4.72 Å, (b) εzz= 0.09, c= 5.147 Å, (c) εzz= 0.13, c= 5.32 Å, (d) εzz= 0.14, c=
5.38 Å, and (e) εzz= 0.35, c= 6.38 Å. Copyright (2011) by Institute of Physcis (IOP) [92].

distortions can be efficiently obtained from phonon dispersion of the structure, in which

they manifest as modes with imaginary frequencies ω2 < 0. This means that the struc-

ture is a saddle point with respect to atomic displacements corresponding to the unstable

mode. Thus, to investigate local stability of the 2H polytype as a function of inter-planar

distance, we obtained phonon dispersion of the 2H-polytype as a function of inter-planar

separation (see Figure 4.3).



68 Chapter 4.

For a fixed in-plane lattice constant a, we changed the interplanar distance amounting

to deforming the 2H polytpe uniaxially. Phonon dispersion of the 2H polytype as a func-

tion of interplanar spacing (d), shows no unstable modes for uniaxial strain (εzz) from 0

(d= 2.36 Å)≤ εzz ≤ 0.09 (d= 2.57 Å). For εzz > 0.09, a transverse optical (TO) branch

exhibits an onset of instability (see Figure 4.3b) at M point. At higher strain εzz> 0.13,

a transverse acoustic TA branch also becomes unstable (see Figure 4.3c). We find weakly

unstable modes in the phonon dispersion of the experimentally observed structure with

value of inter planar spacing (d= 3.19 Åand εzz = 0.35, see Figure 4.3e).

Electronic origin of the structural instability can be traced to the Fermi surface of the

structure with d= 2.57 Å i.e. εzz= 0.09. The fermi surface is hexagonal (see Figure 4.4a

and 4.4b); its two-dimensional nature means there is little bonding across the close packed

planes, and hence the structure will not conduct along c-axis. Fermi surface clearly exhibits

NESTING between its opposite surfaces supporting Peirels instability in the structure.

The nesting wave vector corresponds to the M point, which is the wave vector of instability

we found above. Structural distortion associated with the unstable M-mode leads to cell

doubling along one of its in-plane lattice vector with atomic displacements along z-direction

(which alternate in sign in neighbouring unit cells), thus effectively reducing the interplanar

distance between A and B planes (see Figures 4.4c and 4.4d) by almost 10 %. Calculated

phonon dispersion of this distorted cell-doubled structure using DFPT clearly shows that

the instability at M point weakens upon distortion. However, the structure still remains

unstable (see Figure 4.4e). We repeated this process of freezing in the distortions of the

unstable modes of the structure in Figures 4.4c and 4.4d and find that (a) the instabilities

further weaken, and (b) effective interplanar distance reduces, and (c) symmetry of the

2H polytype is reduced to some extent.

4.1.6 Metastability of the 2H polytype

We now present a possible scenario for the metastability of the observed 2H polytype

with anomalously large inter-planar spacing. The analysis of in-plane phonon modes at
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Figure 4.4: Views of the Fermi surface (a) from the top, and (b) at an angle, clearly
indicate flat surface nesting. (c) Top view, and (d) side view of the lattice distorted by
M point phonon that conserves AB stacking symmetry. The distortion in the z-direction
leads to a reduction in the spacing between the A and B planes. (e) The phonon dispersion
of the crystal lattice distorted by the M point phonon mode. Copyright (2011) by Institute
of Physcis (IOP) [92].

the M point of the 2H polytype, reveals that the modes remain hard or harden with

increasing inter-planar spacing (d), reflecting an increased strength of in-plane bonding

among the atoms (see Figure 4.3). On the other hand, the modes with out-of-plane atomic
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displacements soften rapidly as d increases, and their band width at the Γ-point reduces

from 10 meV in the optimized structure to just 3 meV in the observed structure. As

pointed out earlier, the structural instability is led by the z-polarized modes at M point

and followed by the modes at K and L points, while those at A point remain stable.

Since, M and K points lie in the ‘ab’plane, and L and A out of it, this reflects also on

the 2D nature of the region in the Brillouin zone in which structural instabilities develop.

Hardening of the modes with in-plane displacements and softening of the others can be

understood in terms of strengthening of in-plane bonds, while the instabilities at the M

point arise from Fermi surface nesting.

As thermodynamic arguments based on the vibrational contribution to free energy,

possible structural distortions and impurity intercalation cannot explain the occurrence of

the 2H polytype with large d, we suggest that it arises from truly special kinetic conditions

(the unusually slow growth process). It is reasonable to conclude that its metastability is

probably due to the relatively large configurational entropy that is expected from a rather

flat energy surface with shallow wells and low bumps (small energy barriers and shallow

energy wells) associated with very soft and marginally unstable (< 5 meV) vibrational

modes seen in our calculated spectra. This becomes particularly relevant when we allow

the structure to distort using eigenvectors of modes at M point. Hopping between these

shallow energy minima allows the apparent inter-planar distance to be small kinetically

(over short time scales) while it remains large when seen as a thermodynamic average. In

a way, the structure resembles an ‘ordered glass’ or an ‘ ordered supercooled liquid’, which

is metastable for a much shorter time than the typical time scale of a glass, which is not

surprising as it is quite ordered.

Based on the fact that gold (rather than silver) has been known to exhibit a planar

structure in both clusters and complexes, we might expect the ‘graphitic’ 2H polytype to

be comparatively more stable in the case of gold. This encouraged us to also determine

the energetics of the 2H, 3C, 4H, and 6H polytypes of gold. The structures were fully

relaxed with respect to atomic positions and lattice vectors, and their cohesive energies

determined. We find expectedly that 3C is the most stable structure, while the other
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polytypes lie within a few meV/atom of 3C. The order of stability (binding energy) is 3C

>6H >4H >2H, which is just the same as found in the case of silver. The values of the

cohesive energy per atom of 3C, 6H, 4H, and 2H polytypes of gold are 0 meV, 1.2 meV, 2.0

meV, and 4.9 meV, respectively, with 3C as the reference. In comparison, our estimates of

the cohesive energies per atom of the silver 3C, 6H, 4H, and 2H polytypes are 0 meV, 0.9

meV, 1.3 meV, and 2.3 meV, respectively. Based on the energetics, we predict that the

occurrence of 2H polytype is more likely in silver than in gold, although it is metastable

in both cases.

4.1.7 Conclusions

On examining the possible stability of the large-c 2H polytype of silver using extensive

simulations of energetics and lattice dynamics, we find that the structure is not inherently

stable, and cannot be stabilized by increasing the temperature or intercalation of atoms

such as N or O. Weak instabilities in the final distorted 2H structure that are evident our

local stability analysis, suggests an energy surface that is rather flat with respect to many

modes. This feature of the energy surface makes a large contribution to configurational

entropy, and is likely to be a possible cause for meta-stability of the observed 2H polytype

with unusually large c−constant. We thus conclude that the observed 2H polytype of

silver is a metastable structure, in a way similar to supercooled liquid state but exhibits

a reasonably good long-range order.

4.2 4H polytype †

4.2.1 Introduction

In addition to the 2H polytype, the 4H polytype (ABACABAC...) of silver has been exper-

imentally synthesized by Chakraborty et al. [92]. The observed 4H polytype is metastable,

and makes a transition from 4H to 3C structure between the temperature range of 433 K

†This work has been published in part in Journal of Physics: Condensed Matter [97, 98]. Copyright
(2014) by Institute of Physcis (IOP).
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to 443 K. Though there exist extensive accounts on polytypism and polytypic phase tran-

sitions in literature [99], the origin of such large periodicities in polytypes, and the nature

of these transitions are not fully understood. The one most commonly observed feature

that appears to link all polytypes is the presence of stacking faults [99]. The creation and

periodic arrangement of stacking faults (which are deviations from the ideal stacking se-

quence of the crystal structure) are known to give rise to polytypes [100]. Hence, we have

explored the possible mechanisms of this transition through instability of the structure to

form stacking faults by estimating the contribution of vibrational entropy to stacking fault

energy using first-principles analysis, and predict the P-T phase diagram of the 3C and

4H polytypes of silver. We have also investigated the instability of electronic structure of

the 4H polytype with respect to a Charge Density Wave (CDW).

4.2.2 Computational Methods

See section 3.1.2 for details of the first-principles calculations. The exchange-correlation

energy of electrons was treated within a Generalized Gradient Approximated (GGA) func-

tional of Perdew Burke Ernzerhof parametrized form [30]. Stacking fault was introduced in

a supercell of 1x1x3 dimensions with a stacking sequence of ABAC ABAB ABAC. All the

Brillouin zone (BZ) integrations were sampled over a 9x9x3 and 9x9x1 mesh of k-points

for pristine and faulted structures, respectively. All the Brillouin zone (BZ) investigations

were sampled over a 9x9x3 and 9x9x1 mesh of k-points for pristine and faulted structures

respectively. Such a choice was made after verifying that a larger mesh of k-points, e.g.

15x15x5, has no significant impact on the results obtained. For example, the energy of the

4H polytype with respect to the 3C polytype obtained with 9x9x3 and 15x15x5 k-meshes

were 1.3 meV/atom and 1.5 meV/atom, respectively. Not only do the energy differences

converge within ≈ 0.2 meV/atom with respect to k-mesh sampling, we also find no sig-

nificant change in the electronic Fermi surface and band structure of the 4H polytype

calculated with a 15x15x5 mesh. This justifies our use of a 9x9x3 mesh of k-points sam-

pling the BZ integrations for the pristine structures. In the case of the faulted structures,

we use a 9x9x1 mesh because the corresponding Brillouin zone is shorter by a factor of 3
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along c-direction.

To determine phonons and dynamical matrices at the wavevectors on a mesh, we

have used DFT linear response as implemented in the Quantum ESPRESSO package.

The dynamical matrices of pristine and faulted silver were calculated on a q-point grid

of 2x2x2 and 2x2x1, respectively, and Fourier interpolated onto a much finer mesh to

determine free energy in the quasi-harmonic approximation.

4.2.3 Electronic structure of pristine 4H polytype

Figure 4.5: Electronic structure of pristine 4H polytype. Left panel shows the band
structure and right panel shows the projection of the density of states (DOS) on the 4d
and 5s orbitals of silver. Note that the d orbitals constitute a flat band below the Fermi
level, and the band width is approximately 3 eV. Here, all the energies are scaled with
respect to Fermi level. Copyright (2014) by Institute of Physcis (IOP) [97].

The electronic structure of the pristine 4H polytype along high symmetry direction in

reciprocal space (refer to Figure 4.5) shows that the main contribution to the relatively

flat band about 3 eV below the Fermi level comes from the 4d orbitals of silver. The 5s

orbitals, on the other hand, contribute to bands crossing at the Fermi level and hence to

the metallic nature of silver. The Fermi surfaces constituted of the four bands crossing

the Fermi level (refer to Figure 4.6) show no nesting for bands 2, 3 and 4. However there

is a weak nesting between the vertices of the hexagonal Fermi surface of band 1. On a

closer look (refer to Figure 4.6b) we observe that the edges of the hexagon are curved, and
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(a) (b)

(c) (d)

Figure 4.6: Fermi surface plots of pristine 4H polytype of silver. (a) Top view and (b)
side view of band number 1, (c), (d) and (e) are the top views of band numbers 2, 3 and 4
respectively. Note that for band number 1, there is no nesting between the vertices of the
hexagonal Fermi surface due to curved edges. Copyright (2014) by Institute of Physcis
(IOP) [97].

that the nesting between the edges is not over a significant interval in k-space. This is in

contrast with the recently discovered 2H polytype of Ag, for which more significant Fermi

surface nesting was observed [92]. From the phonon dispersion of pristine 4H polytype

(refer to Figure 4.7), we conclude that 4H polytype is locally stable as it does not exhibit

any unstable modes (i.e. imaginary frequencies). Since the 4H polytype is structurally
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stable and does not exhibit Fermi surface nesting, we eliminate the possibility of structural

transition or occurrence of a charge density wave (CDW) in the system.

In the Hagg notation the 4H configuration is given by [+ − − +]n corresponding to

an ABACABAC... stacking, while the 3C phase is given by [+ + +]n corresponding to

an ABCABC... stacking. From the DFT calculations, we find that the energy of the 3C

phase is slightly lower (i.e. ≈ -0.46 meV/atom) than that of the 4H phase. The relatively

higher stability of 3C-Ag is attributed to the higher density of stacking faults (i.e. higher

number of sign flips in the Hagg) associated with 4H-Ag.
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Figure 4.7: Phonon dispersion of pristine 4H polytype of silver. Observe that all the
phonon frequencies are real, which imply a locally stable structure. Copyright (2014) by
Institute of Physcis (IOP) [97].

4.2.4 Do stacking faults drive the structural phase transition?

In experiments, it was observed that the 4H polytype of silver makes a phase transition

to the 3C polytype at ambient pressure between the temperature range of 433 K to 443

K. We explore whether stacking faults can lead to such a transition from 4H polytype to

3C polytype.

In the 4H polytype with ABAC stacking sequence, the only possible stacking faults have

sequences ABAC ABAB ABAC and ABAC ACAC ABAB. In Hagg notation, 4H polytype

is [+ - - +]n and the two stacking faults correspond to + - - + + - + - + - - + (ABAC

ABAB ABAC) and + - - + - + - + + - - + (ABAC ACAC ABAC), which implies that
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both are equivalent. Henceforth we consider only the stacking fault with ABAC ABAB

ABAC stacking sequence. The stacking fault energy [γs(T= 0 K)] associated with this

planar defect at 0 K is ≈ 3.3 mJ/m2. While the 4H polytype is stable against formation

of stacking faults at 0 K, the low stacking fault energy suggests that wide faults should

be present in 4H polytype. We now explore a possibility of stabilization of the stacking

fault in 4H polytype due to vibrational free energy (Fvib) at finite temperatures. The

vibrational free energy is calculated as, [101]

Fvib(T ) =
kBT

Nq

∑
q

∑
i

log

[
2sinh

(
~ωqi

2kBT

)]
, (4.1)

here, kB, ~ and T are the Boltzmann constant, Planck’s constant and temperature

respectively. Nq denotes the number of wavevectors in the Brillouin zone (BZ) at which

the frequencies are calculated, and q the wavevector. i denotes the mode of vibration

(i=1 to 3Na, Na is the number of atoms). ωqi corresponds to the phonon frequency at

wavevector q and ith mode of vibration. In the calculation of free energy, we have omitted

the zero frequency, acoustic modes at Γ-point.
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Figure 4.8: Variation in stacking fault energy of 4H polytype with temperature. Red
(grey) and black curves denote γs(T ) and ∆Fvib(T ), respectively. Note that the vibra-
tional contribution to the free energy at 0 K is higher than that of stacking fault energy.
Copyright (2014) by Institute of Physcis (IOP) [98].

We estimate the variation in stacking fault energy as a function of temperature using
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γs(T ) = γs(0) + ∆Fvib(T ). Where, ∆Fvib(T ) is the difference between the vibrational free

energy of faulted and pristine structure obtained using Equation (1). As T → 0 K, we

observe that ∆Fvib(T ) ≈ 5 mJ/m2 (is larger than γs(0)), i.e. the vibrational free energy

too does not stabilize the faulted structure at 0 K. At finite temperatures, the energy

of the stacking fault continues to increase with temperature (refer to Figure 4.8). In

the temperature range of the phase transformation (433 K to 443 K), the stacking fault

energy is ≈ 0.039 J/m2, implying that the faults in 4H polytype will become narrower with

temperature. Since 4H is a more faulted structure relative to 3C, it implies that the 3C

structure is favoured over the 4H structure at higher temperature. Our results show that,

faulted 4H polytype is locally stable but, it remains higher in energy than the pristine 4H

polytype for T > 0 K. Hence, we conclude that the transition of 4H to 3C polytype of

silver between the temperature range of 433 K to 443 K is probably not driven by stacking

faults.

4.2.5 Phase diagram of 3C and 4H polytype

4H3C

T

PPc = 3.4 GPa

Figure 4.9: Phase digram for 3C and 4H polytypes of silver. Note that 4H polytype makes
a transition to 3C polytype under 3.4 GPa pressure at 0 K. P and T denote pressure and
temperature respectively. Copyright (2014) by Institute of Physcis (IOP) [98].

We have explored the possibility of a structural phase transition due to application of

external pressure. We estimate a critical pressure of 3.4 GPa (at 0 K) for the system to

make a phase transition from the 3C to 4H polytype. With the available data at 0 K and
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P= 0 GPa, we guess a P-T phase diagram for the 3C and 4H polytypes of silver (refer

to Figure 4.9). From the phase diagram, it is evident that the experimentally observed

phase transition (at ambient pressure and within the temperature range of 433 K to 443

K) cannot be explained with just thermal fluctuations and other atomistic mechanism

maybe responsible this phase transformation.

4.3 Conclusions

We show that the pristine 4H polytype of silver is locally stable, and does not exhibit

Fermi surface nesting. Thus, it is stable against displacive structural transition and the

formation of a CDW. Secondly, the observed transformation of 4H polytype to 3C polytype

of silver is unlikely through the formation of stacking faults or soft modes. We believe

that other mechanisms such as local -ve pressures (since we estimate a negligible change

in volume at critical pressure i.e. ∆V ≈ 0.01 Å3/atom) need to be explored to understand

the 4H to 3C transformation.
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Oxides

5.1 Effect of anti-site disorder on structural, electronic and

magnetic properties of Al1−xGaxFeO3
∗

5.1.1 Introduction

Al2O3, Ga2O3 and Fe2O3 are known to crystallize in the rhombohedral structure, and

their metastable orthorhombic phases are also known to exist [103]. Surprisingly the

stable structures of AlFeO3 and GaFeO3 belong to the non centrosymmetric polar space

group with an orthorhombic (Pna21) structure. Since AlFeO3 and GaFeO3 are reported to

be ferrimagnetic, piezoelectric and magnetoelectric at low temperatures [104–107], these

materials are also likely to exhibit multiferroicity. In view of their unusual properties,

using first-principles density functional theory based calculations, we have attempted to

understand how magnetic ordering in MFeO3 (M = Al, Ga) and related properties

depend sensitively on the disorder at the cation site. The tendency of cations to disorder,

its origin and the associated properties are traced to the local structure and ionic sizes. A

strong coupling between the structure and the spin at the Fe sites, arising from anti-site

disorder is suggested to be responsible for observed magnetocapacitive response [108].

∗This work has been published in part in Journal of Solid State Chemistry [102]. Copyright (2011) by
Elsevier.
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5.1.2 Computational Methods

Our first-principles calculations were based on density functional theory (DFT) with a

spin-density dependent exchange correlation energy approximated with a generalized gra-

dient approximated (GGA) (PerdewWang 91 (PW 91)) functional form [31] as imple-

mented in the Vienna ab initio Simulation Package (VASP) [109–112]. The projector

augmented wave (PAW) method [113] was used to capture interaction between ionic cores

and valence electrons. An energy cutoff of 400 eV was used to truncate the plane wave

basis and integrations over the Brillouin were sampled over a 4x4x4 mesh of k-points.

Structure was optimized to minimum energy using Hellman-Feynman forces, while main-

taining the lattice constants at their experimental values. Minimum energy states with

different magnetic ordering were obtained through appropriate initialization of the spins

on Fe sites.

5.1.3 Structure

(a) (b)

Figure 5.1: (a) Orthorhombic and (b) Corundum structures of AlFeO3. Copyright (2011)
by Elsevier [102].

We examine the crystal structure of AlFeO3. Its space group is Pna21 with a unit

cell consisting of 8 formula units (40 atoms) refer to Figure 5.1a. There are four different
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Wyckoff sites of cations labelled Fe1, Fe2 (predominantly occupied by iron), Al1 and

Al2 (predominantly occupied by aluminum). The oxygen environment of Al1 forms a

regular tetrahedron, while other sites have distorted octahedral coordination; with higher

distortion for the Fe1 and Fe2 sites. The occupancy factors of the (taken from Ref. [104])

cation sites are given in Table 5.1. Cation site disorder here means occupation of Fe

site by an Al cation or vice-versa, which arises from an interchange of Al and Fe atoms

in the perfectly ordered structure. From the observed occupancies of cation sites at low

temperatures, disorder arises with highest probability through interchange in the positions

of Fe and Al cations at Fe2 and Al2 sites respectively. We have simulated the disordered

structure (D) obtained by interchanging one Al at Al2 site with one Fe atom at Fe2 site

(in one unit cell, amounting to 12.5 % anti-site defects), along with the perfectly ordered

structure (O). Symmetry of the structure permits a non-zero polarization along the c-axis,

consistent with the known piezoelectric properties.

Table 5.1: Occupancy factors of AlFeO3 at room temperature (RT) and at T= 30 K (taken
from [104]). Copyright (2011) by Elsevier [102].

cation site Occupancy by Fe Occupancy by Al

Fe1 (RT) 0.777 0.223
Fe1 (30) 0.803 0.197
Fe2 (RT) 0.764 0.236
Fe2 (30) 0.751 0.249
Al1 (RT) 0.095 0.905
Al1 (30) 0.105 0.895
Al2 (RT) 0.340 0.660
Al2 (30) 0.310 0.690

5.1.4 AlFeO3: Disorder, Magnetic Ordering and Stability

From our results for energies of ferromagnetically and antiferromagnetically ordered states

of AlFeO3 (see Table 5.2), it is clear that the antiferromagnetic state (AFM) is noticeably

more stable than the ferromagnetic (FM) one in the chemically ordered case. Noting
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that there are eight Fe ions with six-fold coordination in the unit cell, an estimate of the

exchange coupling in a model with nearest neighbour interaction of constant spins is about

0.076 eV, significantly higher than the experimental magnetic transition temperature. This

is rationalized through closer examination of the magnetically ordered states: magnetic

moments on various Fe ions change significantly (see Tables 5.3 and 5.4) with change in

their magnetic ordering, resulting in Fe3+ in the low-spin state in the FM-ordered state.

Table 5.2: Energetics of magnetic configuration. Copyright (2011) by Elsevier [102].

order/ disorder
Total energy of magnetic configuration (eV)

AlFeO3-FM AlFeO3-AFM GaFeO3-AFM

ordered -297.02 -300.67 -270.71

disordered -298.59 -300.09 -270.45

Thus, interpretation of the estimate of exchange interaction is a bit tricky when com-

pared with experimental magnetic transition. As the low-spin state of Fe3+ is known to be

rare in nature, FM state of AlFeO3 is indeed much higher in energy than the AFM one. A

rather interesting change is seen in our analysis when we introduce the anti-site disorder

between Fe2 and Al2. First of all, the difference in energies of FM and AFM states (see

Table 5.2) becomes much smaller with an estimated strength of the nearest neighbour

exchange interaction of about 0.031 eV, which is much smaller than that (0.076 eV) in the

chemically ordered configuration. Secondly, the magnetic moments (see Tables 5.3 and

5.4) of the Fe ion located only at the Al2 site change significantly, indicating its low-spin

state in the FM ordering. Our result for the strength of exchange interaction in this case in

comparison with experimental Tc is an overestimate, typical of DFT calculations. We note

that the magnetic moment on each Fe3+ ion varies with the site in both the AFM and FM

states, and in this sense the system is ferrimagnetic with a rather small effective magnetic

moment, as seen experimentally. The energy of the lowest energy magnetic ordering in
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the disordered case is 0.58 eV higher than that in the ordered case, giving an estimate of

energy of an anti-site defect. Interestingly, FM ordering in the disordered state is lower in

energy than the FM ordering in the chemically ordered state.

Table 5.3: Total magnetic moments. Copyright (2011) by Elsevier [102].

order/disorder
Total magnetic moment (µB)

FM AFM

ordered 7.80 0.058

disordered 22.87 -0.002

Table 5.4: Magnetic moments on individual Fe ions (µB). Copyright (2011) by Elsevier
[102].

Atom no. Cation site
Magnetic moment (µB)

FM AFM

order disorder order disorder

1 Fe1 1.26 3.85 3.59 3.69
2 Fe1 1.26 -3.20 3.59 3.40
3 Fe1 1.26 3.12 3.59 3.71
4 Fe1 1.26 3.77 3.59 3.58
5 Fe2/Al2 0.50 1.27 -3.57 -3.72
6 Fe2 0.50 3.70 -3.57 -3.59
7 Fe2 0.50 3.66 -3.57 -3.58
8 Fe2 0.50 3.81 -3.57 -3.54

We now examine these results in terms of the electronic and atomic structure and how

they are affected by anti-site disorder. Fe3+ ion has an [Ar] 3d5 electronic configuration,

and an octahedral crystal field results in a splitting of the degeneracy of its d state into

t2g and eg states. Hund’s coupling (intra-atomic exchange interaction) breaks the spin
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degeneracy, and all 5 d electrons occupy states with the same spin. For the d5 configu-

ration, superexchange interaction via O is strongly anti-ferromagnetic, particularly when

Fe − O − Fe bond angles are close to 180o. Hence, the ground state exhibits an AFM

ordering. Ideally, such electronic structure would give a magnetic moment of 5 µB per

Fe ion corresponding to the high-spin state. Our simulations, however, give a moment of

about 4 µB per Fe ion due to a strong hybridization between the d−states of Fe and the

p−states of O (see Figures 5.2 and 5.3), similar to that in BiFeO3 [114]. We note that

we have not included any on-site correlation (Hubbard U = 0), and hence the d−band

widths are expected to be overestimated. If the crystal field splitting is larger than the

exchange coupling, Fe3+ can be in the low-spin state (see Figures 5.2 and 5.3), as seen in

our simulations of (a) FM state in the chemically ordered case, and (b) Fe populating Al2

site of the FM state in the disordered case. In the AFM states and chemically disordered

FM state (except for the Fe populating Al2 site) however, Fe3+ is always in the high-spin

state irrespective to its site, consistent with its greater stability.

Figure 5.2: High-spin and low-spin state. Copyright (2011) by Elsevier [102].

This is also reflected in a small gap in the electronic structure (see Figure 5.3), which

is typically underestimated in DFT calculations. We point out that the simulated gap

may become more pronounced when on-site correlation (through Hubbard U correction)

is included. A non-zero density of states at the Fermi energy in the AFM state of the

disordered case arises from the states localized on Fe3+ at Al2 site and is not expected to
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Figure 5.3: Electronic density of states for (a) AFM state and (b) FM state. Positive
values are for up spin and negative for down spin. Ordered state is shown in red and
disordered state is shown in blue. Copyright (2011) by Elsevier [102].

make it metallic. Finally, a larger exchange energy Exc in the disordered FM state than

that in the ordered FM state is responsible for its high-spin state and its greater stability.

Table 5.5: Fe-O and Al-O bond lengths (Å). Copyright (2011) by Elsevier [102].

state
Chemically ordered Chemically disordered

L(Fe-O) L(Al-O) L(Fe-O) L(Al-O)

FM

1.87 1.90 1.85 1.86
1.87 1.92 1.93 1.87
1.97 1.93 1.95 1.91
2.04 1.96 1.97 1.95
2.06 1.96 1.97 2.02
2.11 2.02 1.99 2.05

AFM

1.83 1.88 1.90 1.85
1.89 1.90 2.02 1.86
1.99 1.92 2.02 1.90
2.10 1.94 2.03 1.95
2.18 1.95 2.05 2.05
2.24 1.97 2.09 2.07

We now examine the relation of structure and magnetic ordering with anti-site disorder.
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From the bond lengths of oxygen to Fe and Al ions at the Fe2 and Al2 sites (see Table

5.5), a characteristic feature becomes evident. The Fe2 site prefers dichotomous (bi-modal

distribution) of bond lengths while the Al2 site exhibits uniformity in bond lengths. In

the relaxed structures (see Tables 5.3 and 5.5), we observe that the bond lengths change

considerably with the change in magnetic ordering implying a strong spin-phonon coupling

in the system (note that we report bond lengths for Fe and Al are at Fe2 and Al2 sites

respectively in the ordered state; Fe and Al are at Al2 and Fe2 sites respectively in the

disordered state). Our results clearly bear that (a) a high-spin state of Fe3+ is energetically

favorable (lower) than the low-spin state, and (b) Fe-O bonds are longer when Fe3+ is in the

high-spin state, which are hence linked with disorder intimately. As the Shannon-Prewitt

radius of Fe3+ in the low-spin state is close to that of Al3+ in octahedral coordination,

only Fe3+ at the Al2 site takes the low-spin state and Fe3+ at other sites are in the high-

spin state, hence the FM state in the disordered case is significantly lower in energy. This

results in longer Fe-O bond-lengths of the high-spin configuration, reflected in the Fe-O

bonds of the AFM state with Fe3+ taking the high-spin state.

We have also determined energetics of AlFeO3 in perovskite and corundum (see Figure

5.1b) structures. While Fe is found to prefer A site (in the perovskite structure) with a

high-spin state and G-AFM ordering, the energy of the cubic perovskite structure is almost

3 eV/f.u. higher than the observed one (chemically ordered AFM state of orthorhombic

structure). Secondly, Fe3+ randomly occupying Al sites in the corundum structure takes

the low spin state (due to size mismatch), and hence AlFeO3 in the corundum structure is

higher in energy by about 84 meV/f.u. than the ordered AFM state of the orthorhombic

structure. Thus, we believe that the stability of the observed structure is to be partly due

to the distinct sites associated with Al and Fe, giving just the right space to Al and Fe

consistent with their size.

5.1.5 GaFeO3: Disorder, Magnetic Ordering and Stability

Because of the mismatch in the ionic radii of Fe3+ in high-spin state and Al3+, anti-site

disorder in AlFeO3 is relatively weak. In contrast, the radius of Fe3+ in high-spin state is
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close to that of Ga3+ (R= 0.62 Å) in octahedral coordination, hinting a greater degree of

anti-site disorder in GaFeO3. From our calculations on GaFeO3 we find that (a) its AFM

state is lower in energy than the FM one in both the ordered and disorderd cases with a

slightly larger magnetic moment in the latter, (b) within a DFT-description, FM ordering

does not occur in a self-consistent solution in the chemically disordered state. (c) In the

AFM state, magnetic moments at Fe1 and Fe2 sites are not of the same magnitude giving

a weak total magnetic moment effectively. (d) The energy difference between the AFM

states in the disordered and ordered cases is only 32 meV/f.u. (as opposed to 73 meV/f.u.

of AlFeO3). Thus, we expect anti-site disorder in GaFeO3 to be more prominent than in

AlFeO3. Electronic structure of GaFeO3 is qualitatively similar to that of AlFeO3.

5.1.6 Conclusions

Our first-principles analysis shows (i) greater anti-site disorder in GaFeO3 than in AlFeO3

due to better matching of ionic radii of Fe and Ga, (ii) weak magnetic total moment arising

from the difference in effective magnetic moments of Fe3+ at Fe1, Fe2 and Al2 sites, and

(iii) the presence of strong spin-phonon coupling arising from a large difference in ionic

radii of Fe3+ in high and low spin states (0.645 and 0.55 Å respectively). Both disorder

and magnetic properties are intimately related to the local structure that can be explained

in terms of ionic sizes. Spin-phonon coupling demonstrated here is shown to manifest more

strongly in the presence of disorder, and hence the corresponding magnetocapacitive ef-

fects are expected to be pronounced in GaFeO3, as found experimentally [108]. In a solid

solution of GaFeO3 and AlFeO3, additional disorder associated with low-spin states of

Fe3+, Al and Ga should give even more spectacular magneto-capacitive effects. Disorder

in heterovalent cations is well-known to give diffuse dielectric response or relaxor proper-

ties in ferroelectrics [115]. In MFeO3, while disorder occurs among ions of the same charge

(Fe3+ and Al3+), their magnetic spins (Fe being magnetic and Al being non-magnetic)

coupling with its structure are distinct. Hence, we conclude that the introduction of dis-

order and its intimate coupling of spin with the structure (spin-phonon coupling) are key

to the properties of MFeO3 and should give rise to a characteristic frequency-dependent
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magneto-capacitive response [108].

5.2 Effect of anti-site disorder on spin-phonon coupling, and

its signatures in the Raman spectrum of AlFeO3
†

5.2.1 Introduction

Applications of magneto-electric materials require them to exhibit their couplings to re-

sponses at and above room temperature, which is often not realized in many multifer-

roics/magnetoelectric materials. In this context, AlFeO3 exhibiting ferrimagnetism and

magnetoelectric coupling with a paramagnetic to ferrimagnetic transition temperature Tc

∼ 250 K [104] is very promising. Another attractive feature is its environment friendly

nature as compared to other lead based multiferroics. In AlFeO3, cations occupy four

distinct crystallographic sites: cations Fe1, Fe2 and Al2 with octahedral coordinated of

oxygen, whereas Al1 with tetrahedral coordination. Structural analysis of AlFeO3 [104]

shows significant distortion of the FeO6 octahedra, while oxygen tetrahedron around Al1

is quite regular. The disorder in the occupation of the cation sites, and the difference

between octahedral radii of Fe3+ and Al3+ ions cause the local deformation of lattice.

Hence, vibrational properties that depend on the structure, also depend on the magnetic

state of the sytem, and are central to magnetoelectric behavior of many multiferroics. In

particular, Raman spectroscopy has proved to be a powerful probe to investigate magnetic

ordering induced phonon renormalization where the observed phonon anomalies below the

magnetic transition temperature are associated with strong spin-phonon coupling.

A strong spin-phonon coupling and magnetic ordering induced phonon renormalization

were evident in the experimental observations of Khatri et. al. [116]. These include, (a)

anomalous temperature dependence (i.e. sudden change or hardening of modes across Tc)

of many Raman modes with frequencies below 850 cm−1 (refer to Figure 5.4a), particularly

†This work has been published in part in Physical Review B [116]. Copyright (2012) by the American
Physical Society.
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(a)

(b)

Figure 5.4: Temperature dependence of (a) the first-order phonon modes S4, S7-S10, S13,
and S14, and (b) high frequency S15 mode. Note that S8 mode hardens with temperature,
and S15 mode disappears above Tc. Solid lines are the linear fits above and below Tc. This
work has been done by Khatri et al. [116]. Copyright (2012) by the American Physical
Society.

near the magnetic transition temperature Tc ∼ 250 K, and (b) the appearance of a broad

mode near 1250 cm−1 only below Tc attributed to the two-magnon scattering (see Figure

5.4b). We have carried out first-principles analysis to understand the emergence of these

anomalies through determination of the phonon spectrum and its coupling with spin.
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5.2.2 Computational Methods

See section 5.1.2 for details of the first-principles calculations. Dynamical matrix and

phonons at the Γ-point (q = 0,0,0) were obtained with a frozen-phonon method with

atomic displacements of ± 0.04 Å. Numerical errors associated with Fourier mesh in our

calculations break symmetry of the dynamical matrix weakly and introduce an error of

about ±12 cm−1 in phonon frequencies.

5.2.3 Results and Discussion

It is known that AlFeO3 exhibits disorder associated with occupancy of Fe and Al sites,

with most common occurrence of anti-site disorder being between Fe2 and Al2 sites [104].

This disorder is taken into account by exchanging the site positions of an Fe atom at Fe2

site with an Al atom at Al2 site. We have also considered the anti-site disorder between

Fe1 and Al2 sites. From the energetics, we find that the AFM state is the most stable

for system with either type of anti-site disorder between Fe and Al. The AFM state with

Fe1-Al2 anti-site disorder is higher in energy as compared to the AFM state with Fe2-Al2

anti-site disorder by 5.7 meV/atom, corroborating greater occurrence of anti-site disorder.

To facilitate a meaningful comparison with experimental Raman spectra, we simulate the

structure with experimental lattice constants, and relax internally the atomic positions

using conjugate gradients algorithm.

To understand the interplay between disorder, magnetic ordering and phonons, we

determine phonons at Γ-point for a chemically disordered structure with non-magnetic

(NM), FM and AFM ordering (see Figure 5.5). The spin-phonon coupling is analysed by

examining how normal modes evolve with the magnetic ordering by examining the corre-

lation matrix between phonon eigenmodes of AlFeO3 in two different magnetic states. In

the absence of spin-phonon coupling, the phonons would be unaffected by changes in the

magnetic order, and hence only the diagonal terms would be non-zero in the correlation

matrix. Non-zero off-diagonal elements of the correlation matrix clearly uncover the cor-

respondence between eigenmodes in different magnetic orders. For example, it determines
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Figure 5.5: Distribution of phonons at Γ-point for AFM, FM and NM orderings with Fe2-
Al2 anti-site defect. A Gaussian broadening of ∼ 4 cm−1 has been used here. Copyright
(2012) by the American Physical Society [116].

which phonon modes of the AFM state relate to phonons of the FM state, giving a quanti-

tative idea of mixing between modes due to spin-phonon coupling. The spin-hamiltonian

has the form:

H =
1
2

∑
i,j

Ji,j,
−→
S i
−→
S j , (5.1)

where, Jij is the exchange interaction between ith and jth ising spins Si and Sj . Only

considering the nearest neighbour and isotropic interaction, we reduce Jij to J . The change

in J due to spin phonon coupling is given by the second-order Taylor series expansion of J

w.r.t. amplitude of atomic displacements (uνΓ) of the νth Γ-phonon mode of the magnetic

state,

J(uνΓ) = Jo +−→uνΓ (∇uJ) +
1
2
−→uνΓ (∇2

uJ) −→uνΓ, (5.2)

Substituting equation 5.2 in equation 5.1, and summing over all modes gives,

H =
1
2

∑
i,j

∑
ν

[
Jo +−→uνΓ (∇uJ) +

1
2
−→uνΓ (∇2

uJ) −→uνΓ

]
·
−→
S i
−→
S j . (5.3)
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Here, Jo is the bare spin-spin coupling parameter, ∇uJ corresponds to the force exerted

on the system due to change in magnetic ordering from its ground state magnetic config-

uration, and ∇2
uJ is proportional to the change in phonon frequency (∆) of νth Γ-phonon

mode due to change in magnetic ordering. From the spin-hamiltonian (see equation 5.1),

energies of a single pair of spins in AFM and FM states are given by, EAFM = −Jo|S|2

and EFM = Jo|S|2 respectively. The difference in the energies of AFM and FM states

is directly proportional to Jo. The unit cell of AlFeO3 used in our simulation contains

8 Fe ions where, the ith Fe ion is connected to zi number of other Fe ions. This gives,

Jo = (EFM − EAFM )/(
∑

i

zi · 8 · |S|2); here S= 5/2 and EFM − EAFM ∼ 1.5 eV from

first principles calculations. Our estimate of the exchange coupling parameter Jo is thus 6

meV. This value is in good agreement with the one estimated from the two-magnon peak

observed in Raman spectrum reported by Khatri et al. [116].

Assignment of the modes in Raman spectrum of a polycrystalline sample is tricky. In

our theoretical analysis, we have listed only those calculated phonon frequencies which

are close in frequency to the experimentally observed Raman active phonon modes (refer

to Table 5.6). In the presence of anti-site disorder, many of the phonon modes which lie

in the vicinity of the experimentally observed Raman active mode can be Raman active.

We assume the correlation between the experimentally observed modes which exhibit

anomalies at magnetic transition and calculated spin-phonon coupling for modes with

frequencies in the vicinity of the observed modes, and carry out the mode assignment (see

Table 5.6).

∇uJ (J1) is the coupling parameter derived from force acting on ions due to change in

magnetic ordering. This is a measure of one-phonon-spin coupling (see Figure 5.6). From

the change in structure with change in magnetic order from AFM to FM, it is apparent

that all phonon modes couple (with varied degree) to the spin at the lowest order! In the

configuration with Fe2-Al2 anti-site disorder, the modes that show significant coupling to

spin at the first order (J1) are S3, S7, S8, S9 and S11 (refer to Figure 5.6a). The largest

coupling is shown by mode S11 which experimentally shows low intensity [116]. In spite

of the mode being less populated or less Raman active, it contributes considerably to spin
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Table 5.6: List of the experimental observed frequencies at 5 K and calculated frequencies
in AlFeO3 for disordered AFM (Fe2-Al2 anti-site disorder) state. Copyright (2012) by the
American Physical Society [116].

Mode Assignment Experimental ω (cm−1) Calculated (cm−1)

S1 156 154
S2 178 179
S3 198 197
S4 268 270
S5 328 331
S6 380 379
S7 425 425
S8 453 453
S9 498 499
S10 587 581
S11 650 654
S12 698 691
S13 738 733
S14 826 807

S15 (Two-magnon) 1240
S16 (Overtone) 1450

S17 (Second-order) 1560
S18 (Overtone) 1660

phonon coupling at first order. We have carried out a similar analysis for non-magnetic

(NM) and AFM states to estimate parameters proportional to the first and second order

coupling parameters respectively. In Figure 5.6b, we see that modes, S1, S2, S5, S8, S10

and S11 couple to spin strongly at the first order. The maximum deviation of these fre-

quencies from their experimental values is about 30 cm−1, and the mode S1 exhibits the

strongest spin-phonon coupling.

We next present results of the calculations for the anti-site disorder between Fe1 and

Al2 sites. From the energetics we find that the AFM state is most stable for the configu-

ration with anti-site disorder between Fe1 and Al2. This state is slightly higher in energy

w.r.t. AFM state with Fe2-Al2 anti-site disorder by 5.7 meV/atom. The state with FM



94 Chapter 5.

(a)

100 200 300 400 500 600 700 800
ω (cm)

-1

0

1

2

3

4

5

6
J 1 (

ar
b.

 u
ni

ts
)

S3
S5

S8 S9

S11

(b)

100 200 300 400 500 600 700 800
ω (cm)

-1

0

2

4

6

8

10

12

J 1 (
ar

b.
 u

ni
ts

)

S1
S2

S5

S8 S10
S11

S13

(c)

100 200 300 400 500 600 700 800
ω (cm)

-1

0

1

2

3

4

5

6

J 1 (
ar

b.
 u

ni
ts

)

S2

S3 S6
S10

S11

(d)

100 200 300 400 500 600 700 800
ω (cm)

-1

0

2

4

6

8

10

J 1 (
ar

b.
 u

ni
ts

)

S1

S2

S8 S10
S11

S6

Figure 5.6: First-order spin-phonon coupling (J1) in different magnetic states. (a) FM-
AFM and (b) NM-AFM states with Fe2-Al2 anti-site disorder. (c) FM-AFM and (d)
NM-AFM states with Fe1-Al2 anti-site disorder.

ordering with Fe1-Al2 anti-site disorder is more stable than the FM configuration with

Fe2-Al2 anti-site disorder in the configuration by 29.3 meV/atom. From the normal mode

analysis of FM ordered state with anti-site disorder between Fe1 and Al2 sites, we find an

unstable mode of sizeable imaginary frequency of ∼ 390 cm−1, a clear indication of the

strong spin-phonon coupling in the system. First order (J1) couplings of spin with lattice

degrees of freedom for change in magnetic ordering from FM to AFM (with anti-site dis-

order between Fe1 and Al2 sites) are given in Figure 5.6c. It is observed that modes S2,

S3, S6, S10 and S11 couple to the spins at the lowest order, with S2 and S11 exhibiting

rather strong coupling with the spin. The analysis of the spin-phonon Hamiltonian for

the NM and AFM state shows that modes S1, S2, S6, S8, S10 and S11 (see Figure 5.6d)

couple to the spins at the lowest order.

Denoting ∇2
uJ as J2, the change in phonon frequency (∆) of the λth Γ- point phonon
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mode is given by

∆λ =
1

2µλωλ

∑
ν

−→uνΓ J2
−→uνΓ. (5.4)

Here, µλ and ωλ are the reduced mass and frequency of the λth phonon mode at Γ, respec-

tively. We note that large ∆ implies stronger spin-coupling. We carried out calculations

for both types of disorder: Fe2 at Al2 site (Fe2-Al2) as well as Fe1 at Al2 site (Fe1-Al2).

For Fe2-Al2 type disorder, Figure 5.7a and Figure 5.7b show the changes in the Γ-point

phonon frequency (∆) between FM and AFM and NM and AFM states respectively. The

corresponding changes for Fe1-Al2 disorder are shown in Figure 5.7c and Figure 5.7d.
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Figure 5.7: Second-order spin-phonon coupling (J2) in different magnetic states. (a) FM-
AFM and (b) NM-AFM states with Fe2-Al2 anti-site disorder. (c) FM-AFM and (d)
NM-AFM states with Fe1-Al2 anti-site disorder [116].

In case of Fe2-Al2 anti-site disorder, ∆ and hence J2, which corresponds to correlations

between phonons of FM/NM state with AFM state (see Figure 5.7) is high for modes

with frequencies in the neighbourhood of modes S1, S4 and S10 for FM-AFM coupling

(see Figure 5.7a) and modes S4, S8, S11 and S12 (see Figure 5.7b) for NM-AFM state
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coupling. We note that J2 for NM-AFM state coupling is not exactly spin-phonon coupling

parameter as in the case of FM-AFM state coupling, but here it denotes the change in

phonon frequencies in going from NM state to AFM ordering. In Figure 5.4a modes close

to S4, S7, S8 and S10 show sharp changes in frequency at the transition temperature Tc

suggesting their strong coupling with spin, consistent with our first-principles calculations.

Another interesting observation from Figure 5.7b is that the mode with frequency near S8

(438 cm−1) shows increase in frequency (by ≈ 130 cm−1) in going from AFM to the NM

state at Tc, and is consistent with experimental observations of Khatri et al. [116].

We now discuss the effect of Fe1-Al2 anti-site disorder. Figure 5.7c and Figure 5.7d

correspond to correlation between phonons of FM/NM state with AFM state, respectively.

For the change in magnetic ordering from FM to AFM state, modes near S10 and S11

(see Figure 5.7c) couple strongly to spin at the second order. In comparison, modes close

to S4 and S5 (see Figure 5.7d) show large second order coupling for a change from NM

to AFM ordering. Mode S4 shows a significant hardening in going from the AFM state

to the NM. We have thus confirmed the existence of strong spin-phonon coupling and the

anomalous hardening of the S8 mode due to strong spin-phonon coupling at the second-

order (J2) in AlFeO3 with Fe2-Al2 anti-site disorder in going from AFM to NM ordering.

We have listed modes coupling to spins at the second order (J2) for different anti-site

disorder configurations in different magnetic states in Table 5.7.

Table 5.7: List of modes coupling to spins at the second order (J2) for Fe1-Al2 and Fe2-Al2
anti-site disorder configurations in different magnetic states.

anti-site disorder
Mode

FM-AFM NM-AFM

Fe1-Al2 S10, S11 S4, S5
Fe2-Al2 S1, S4, S10 S8, S11, S12

Another mode that exhibits a remarkable T-anomaly is S15 (second order Raman).



5.3 Al1−xGaxFeO3: Multiferroic behaviour 97

The vanishing of the S15 mode above Tc (250 K) suggests that it may be associated with

two-magnon Raman scattering. From the energy of the two-magnon band, an estimate of

the nearest-neighbor exchange coupling parameter Jo can be made. If deviations in spins

are created on the adjacent sites, the two-magnon energy is given by Jo(2 ·S ·z−1), where

S is the spin on the magnetic site (Fe3+ here, with S= 5/2) and z (z= 6) is the number

of the nearest neighbours to that site. Using ω = 1240 cm−1 (at 5 K), the estimated

value of the exchange parameter Jo is ∼ 5.3 meV. This value is close to our first-principles

calculations of Jo ≈ 6 meV, confirming that the S15 peak is two magnon peak which

disappears above Tc.

5.2.4 Conclusions

We explored the richness in effects of (Al, Fe) anti-site disorder on phonons and magnetic

ordering. We have shown that strong coupling between the spin and lattice degrees of

freedom lead to the observed hardening and phonon anomaly involving disappearance of

modes above the magnetic transition temperature. Results in this work suggest that the

strong spin-phonon coupling is the key to understand the underlying physics responsible

for various exotic physical phenomena in these materials.

5.3 Magnetoelectric and Multiferroic nature of GaFeO3, AlFeO3

and related oxides‡

5.3.1 Introduction

GaFeO3, AlFeO3 and related oxides are ferrimagnetic exhibiting magneto-dielectric ef-

fect [102, 106, 107]. There has been no evidence to date for ferroelectricity, and hence

multiferroicity in these oxides. Recent experiments by Rana et. al. have shown that these

oxides as well as oxides of the composition Al1−x−yGax Fe1+yO3 are multiferroic in na-

ture [117]. AlFeO3 and GaFeO3 exhibit spontaneous polarization with peak pyroelectric

currents at 103 K and 90 K respectively (see Figure 5.3.1). We argue that a possible

‡This work has been published in part in Solid State Communications [117]. Copyright (2012) by
Elsevier.



98 Chapter 5.

origin of this observed ferroelectricity is in the broken inversion symmetry in ordering of

collinear magnetic moments particularly as a consequence of anti-site disorder. We report

first-principles calculations to corroborate this scenario of the mechanism of the observed

ferroelectricity.

Figure 5.8: Variation of electric polarization (P) as a function of temperature at +ve and
-ve poling for (a) AlFeO3 and (b) GaFeO3 (after leakage subtraction) along with the effect
of a 4 T magnetic field. This work has been done by Saha et al. [117]. Copyright (2012)
by the Elsevier.

5.3.2 Computational Methods

See section 5.1.2 for details of the first-principles calculations. Minimum energy states

with different magnetic ordering were obtained through appropriate initialization of the

spins on Fe sites, simulating a unit cell containing 8 formula units (f.u.) of GaFeO3 i.e. a

unit cell of 40 atoms.
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5.3.3 Results and Discussion

Since the experimental sample is polycrystalline, precise crystallographic direction of its

spontaneous polarization cannot be determined from the results of pyroelectric measure-

ments. We present an argument purely based on symmetry and disorder to explain a

possible origin of the observed ferroelectricity. GaFeO3 belongs to an orthorhombic struc-

ture with a non-centrosymmetric space group (Pna21). In this structure, polarization

along z-axis can be non-zero because of lack of inversion symmetry, and there is no sym-

metry that involves a reflection in xy plane. We note that Pz is not switchable (cannot

be reversed on the application of electric field of opposite direction).

Table 5.8: Magnetic moments on individual Fe ions (µB) in the ordered and disordered
AFM state. Copyright (2012) by Elsevier [117]
.

Atom no. Cation site
Magnetic moment (µB)

ordered disordered

1 Fe1 3.62 3.71
2 Fe1 3.62 3.51
3 Fe1 3.62 3.70
4 Fe1 3.62 3.62
5 Fe2/Ga2 -3.59 -3.75
6 Fe2 -3.59 -3.62
7 Fe2 -3.59 -3.61
8 Fe2 -3.59 -3.59

However, the anti-site disorder between Fe and octahedral Ga sites is known to be

present in the experimental samples. In the absence of such disorder, magnetic ordering

of GaFeO3 in its ground state is antiferromagnetic (AFM): Fe at Fe1 and Fe2 sites have

antiparallel spins. We note that the effective interaction among Fe at Fe1 sites (or Fe at

Fe2 sites) is ferromagnetic, whereas that between Fe at Fe1 and Fe2 sites is antiferromag-

netic, and is expected to lead to magnetic frustration in GaFeO3. One of the symmetry

operations of Pna21, (x,y,z+1/2), transforms a pair of Fe1 sites to the other of Fe1 sites.
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Figure 5.9: (a) Magnetic structure of GaFeO3, without anti-site defect and (b) with anti-
site defect. Red represents Fe1 sites and pink Fe2 sites. (a) In the ordered state, magnetic
moments on Fe1 sites are equal and opposite to Fe2 sites. Hence they donot break in-
vsersion symmetry in ‘ab’ plane. (b) Due to anti-site defect, one of the Fe at Fe2 site
is displaced to the Ga2 site. Also the magnetic moments at the four Fe1 or Fe2 sites
no longer remain equal. The inversion symmetry in ‘ab’ plane is broken which permits
spontaneous polarization in the same plane. (c) Forces acting on the ions when the system
goes from AFM to paramagnetic state. Forces are proportional to the first order spin-
phonon coupling (∆) responsible for non-zero spontaneous polarization in (Al,Ga)FeO3.
(d) Variation of polarization with temperature within our spin-phonon coupling theory.
The temperature variation of magnetization and frequency was approximated from the
Landau theory of phase transitions. It is evident that system shows non-zero polarization
below TN in the presence of disorder [117].

As the magnetic moments of Fe at all the Fe1 sites are equal and opposite of those at Fe2

sites (refer to Table 5.8 and Figure 5.9), the magnetic structure preserves C2z rotational
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symmetry. Thus, it has the planar inversion symmetry (x,y,z) in the xy plane, and cannot

have Px, Py 6= 0.

The most likely anti-site disorder exists between Fe and Ga at Fe2 and Ga2 sites due to

nearly same ionic radii of Fe3+ (0.65 Å) and Ga3+ (0.62 Å) in octahedral coordination [102].

We have simulated this disorder by interchanging one of Fe at an Fe2 site with one Ga at

Ga2 site in a single unit cell (which corresponds to 12.5 % of anti-site defects) in the AFM

state (where Fe at Fe1 and Ga2/Fe2 have antiparallel spins). Though the ordered state

is energetically more favourable than the disordered state, the difference in their energies

is only 32 meV/f.u. [102]. Due to this anti-site defect with Ga at Fe2 site and magnetic

frustration, magnetic moments on Fe ions at the four Fe1 sites no longer remain equal and

the same holds for Fe at Fe2 sites (refer to Table 5.8 and Figure 5.9b). Such magnetic

order breaks the inversion symmetry at least locally in ‘ab’ plane and permits a non-zero

polarization in the ‘x’ and ‘y’ directions.

We note that the inversion symmetry is broken due to anti-site disorder even in the

absence of magnetic ordering in the system. This leads to non-zero polarization in ‘x’ and

‘y’ directions. But the polarization induced purely by the anti-site disorder is not switch-

able. Al1−xGaxFeO3 compounds exhibit a strong spin-phonon coupling [102], which is

manifested in anomalies in their Raman spectra close to magnetic transitions [116]. Due

to the unequal magnetic moments developed on the Fe ions in the presence of anti-site

defects, unequal forces are exerted on the ions which lead to small structural distortions.

These non-centrosymmetric structural distortions due to spin-phonon coupling are switch-

able with field, and induce a switchable non-zero Px and Py. We consider a phonon (µ)

coupling strongly with the spin. It involves oxygen displacements and softens with de-

creasing temperature [116]. Its first order spin-phonon coupling (∆) is reflected in the

forces on atoms due to change in magnetic ordering (refer to Figure 5.9c).

We now give a phenomenological theory to explain the observed polarization arising

from magnetic order and spin-phonon coupling. Let ωµ, Z∗µ and uµ denote the frequency,

mode effective charge and displacements of the ions associated with µ which couples to

spin. M and E are magnetic order parameter and applied electric field respectively. The
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expression for the free energy (F ) is:

F = −∆M(T )uµ +
1
2
ωµ(T )2u2

µ − Z∗µEuµ. (5.5)

For T < TN , minimizing the free energy w.r.t. uµ

uµ =
Z∗µE + ∆M(T )

ωµ(T )2
. (5.6)

Polarization (P ) associated with structural distortion can be obtained as:

Ω · P = Z∗µuµ =
Z∗2µ E

ωµ(T )2
+

∆Z∗µ
ωµ(T )2

M(T ), Ω is the volume. (5.7)

First and second terms in equation 5.7 are the dielectric and spin-phonon coupling

contributions to polarization respectively. The polarization induced due to spin-phonon

coupling is thus directly proportional to the magnetic order parameter (M(T )), first order

spin-phonon coupling (∆), and inversely proportional to square of the phonon frequency

(ω2(T )). Within Landau theory one can show,

M(T ) ∝ (TN − T )
1
2 ,

and

ωµ(T )2 ∝ |(TP − T )|.

Here, TN and TP are the Neil temperature and temperature of peak in pyroelectric current

respectively. This dependence of polarization on magnetization, spin-phonon coupling and

frequency of phonon gives a non-zero value of polarization at temperatures below TN (TP

<TN , refer to Figure 5.9d). Such magnetostriction is expected to give rise to observable

electromagnons [118] in these compounds. To estimate this, we have carried out first-

principles calculations of the structure with the magnetic configuration obtained with
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time-reversed spins. We find that changes in structure involve rather small displacements

of ions (∼10−3 Å) and are within the errors in DFT calculations indicating a rather weak

ionic contribution to magnetoelectric coupling.

From the temperature dependent polarization estimated from pyroelectric current mea-

surements, we note that it is non-zero well above TP , and magnitude of the pyroelectric

current even 60 K above TP is comparable to its values at low temperatures. Thus, the

pyroelectric current that is switchable with electric field clearly shows a broken inversion

symmetry well above TP . Within the model which we use here to explain the observed

results, a non-zero polarization arises from the broken inversion symmetry associated with

magnetic ordering that occurs at a higher temperature (TN ). However, magnitude of

such a polarization is typically rather small [25], of the order of 0.05 µC/cm2), and is

even smaller in the present case due to partial cancellation due to disorder. Once the

magnetic order becomes strong enough, phonons make an additional contribution to po-

larization (and pyroelectric current), and giving rise to a maximum in pyro-current at

TP . In this sense, (Al,Ga)FeO3 seems to go through another improper transition at lower

temperatures. While the leakage currents are likely to affect the pyroelectric current mea-

surements on a polycrystalline sample, it would have increased with temperature which is

not observed in the measurements, thus supporting our model of the origin of polar order.

The pyroelectric measurements of spontaneous polarization can be used to obtain an

insight into the main contributors to ferroelectricity. These measurements of Ps in GaFeO3,

show an asymmetry w.r.t. the poling field applied during sample cooling (see Figure

5.3.1b). Unlike Px and Py, the sign of the pyroelectric current due to non-switchable Pz

does not change on reversing the poling field. Hence, the spontaneous polarization which

has both switchable (Px and Py) and non-switchable (Pz) contributions gives rise to this

asymmetry. The difference in the total polarization of positively poled and negatively

poled sample gives an estimate of contribution from pyroelectric change in Pz, which is

∼ 0.075 µC/cm2. Since the remainder of the polarization comes from Px and Py, our

observation of switchable spontaneous polarization (i.e. ferroelectricity) in GaFeO3 is

quite robust. Thus, the ferroelectricity in GaFeO3 is induced by non centrosymmetric
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magnetic ordering which emerges from inherent magnetic frustration in these compounds,

arising from the anti-site disorder and spin-phonon coupling.

5.3.4 Conclusions

We have shown that the anti-site disorder in Al1−xGaxFeO3 systems breaks the inversion

symmetry in the ‘xy’ plane, and leads to non-zero inplane polarization. This polarization

however has (a) a non-switchable part due to anti-site defects themselves, and (b) switch-

able part coming from the structural distortions induced by spin-phonon coupling. Thus,

a strong interplay between spin, structure and anti-site defects induces ferroelectricity, and

hence multiferroic behaviour in these oxides. Our Landau-like phenomenological theory

shows that observed polarization is non-zero below the Neel temperature and arises from

non-centrosymmetric magnetic order and spin-phonon coupling.



Chapter 6

Emergence of Ferroelectricity at a

Metal-Semiconductor Transition

in 1T Monolayer of MoS2
∗

6.1 Introduction

While two dimensional (2D) materials like graphene and MoS2 are promising for high

speed-low power nanoelectronic devices, incorporation of a smart functional property like

ferroelectricity can significantly enhance the range of their applications to sensors, actu-

ators and memories [13–15]. Ferroelectrics are typically insulators that exhibit a macro-

scopic electric polarization arising from spontaneous ordering of electric dipoles which can

be controlled by external electric and stress fields. In ultra-thin films however, ferroelectric

dipoles perpendicular to the film surface are suppressed by their depolarizing field and fer-

roelectricity has been shown to disappear below film thicknesses of 24 Å in BaTiO3 [119],

12 Å in PbTiO3 [120] and 10 Å in polymer films [121]. While truly 2D materials such as

graphene [40], BN [75] and MoS2 [122] have not been explored for ferroelectricity, they

are attractive for (a) addressing the fundamental issue of 2D ferroelectricity, and (b) a

possible combination of ferroelectricity and semiconducting transport properties relevant

∗This work has been published in Physical Review Letters [162]. Copyright (2014) by the American
Physical Society.
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to applications. Among these, MoS2 holds a special promise for being a 2-dimensional fer-

roelectric semiconductor, as it exhibits polytypes with rich electronic structure [123] and

a moderate band gap [124], and has been used effectively in a field effect transistor [125].

6.2 Computational Methods

See section 3.1.2 for details of the first-principles calculations. Exchange-correlation energy

of electrons was treated within a GGA functional of PW91 parameterized form [31]. To

determine the dynamical matrices and phonons for the unit cell at the wavevectors on a

mesh, we used DFT linear response as implemented in the Quantum ESPRESSO package.

These phonon calculations were carried out with a uniform 10x10x1 mesh of k-points in

self consistent field (scf) calculations, and the dynamical matrices were determined over

a mesh of 3x3x1 k-points for a unit cell. For the 3x3x1 supercell, the self consistent field

(scf) calculations were carried over a 6x6x1 mesh of k-points and dynamical matrices were

determined over a mesh of 2x2x1 k-points. The group theoretical analysis was carried out

with the help of ISOTROPY package [126] and Bilbao Crystallographic Server [127].

6.3 Polytypes of MoS2

Mo

S y

x

(a) (b)

Figure 6.1: Structure of polytypes of MoS2 monolayers. Top view of the structure of
monolayers of MoS2 in (a) 2H polytypical form with triangular prismatic (six-fold) coor-
dination of Mo atoms and two on-top triagnular lattices of sulphur atoms, and (b) c1T
polytypical form with octahedral coordination of Mo atoms. To distinguish between the
two S planes, the S atoms in the top plane are denoted by a smaller radii than the bottom
plane ones.

The common two-dimensional form of MoS2 has the 2H structure [128] with a honeycomb
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lattice decorated by Mo at every alternate site and a pair of S atoms centered at each

of the other sites [see Figure 6.1a], exhibiting electronic structure with a band gap of

1.8 eV [124]. Though a monolayer of 2H-MoS2 is non-centrosymmetric, its polarization

vanishes due to other symmetries of the structure, and it is not particularly interesting in

the context of ferroelectricity that arises from breaking of structural inversion symmetry

with temperature or pressure. Monolayers of MoS2 can also be synthesized [129,130] in the

1T structure (see Figure 6.1b), in which the two sulphur lattice planes are staggered such

that each Mo site becomes the center of inversion making 1T -MoS2 a promising candidate

for ferroelectricity.

We investigate here a possible existence of ferroelectricity in metal chalcogenides

through analysis of the electronic and structural stability of their 1T polymorph, with

a focus on MoS2. We present group theoretical analysis to identify order parameters, and

derive the form of a Landau free energy function that is relevant to low-energy symmetry

breaking structural distortions of the 1T polymorph using ISOTROPY package [126] and

Bilbao Crystallographic Server [127]. Inputs to this analysis are derived from accurate

first-principles calculations based on density functional theory (DFT).

6.4 Electronic structure of 1T-MoS2

q

q

q

(a) (b)

Figure 6.2: Electronic structure of 1T-MoS2. (a) Electronic structure showing dispersion
of energy with Bloch vector (k) of c1T structure and (b) its Fermi surface exhibiting a
weak nesting between sides of the triangular pockets centered at K and K ′. The nesting
vectors (q) are denoted by red, blue and green arrows.
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With a closely knit network of edge-shared MoS6 octahedra, the centrosymmetric 1T

(c1T ) structure of MoS2 is metallic, evident in the calculated electronic structure (see

Figure 6.2a, we note that the bands at the Fermi level arise from 4d-orbitals of Mo). Its

Fermi surface (see Figure 6.2b), which separates the occupied valence and unoccupied

conduction states of electrons as a function of Bloch wave vector, consists of packets

centered at the corner (K) and center (Γ) of the Brillouin zone, each having a three-fold

rotational symmetry. The Fermi surface exhibits weak or hidden nesting i.e., many points

on the surface are connected by a common nesting wave vector; in this case the three

nesting vectors q = K + δK (see Figure 6.2b) form an equilateral triangle centered at the

valley point K. The average of these three vectors is exactly the valley point K. Since the

degeneracy of electronic states associated with nesting of the Fermi surface can be lifted

to lower the energy by a spontaneous symmetry breaking field such as a charge density

wave [131] or structural distortion, we expect the c1T form to be unstable.

6.5 Vibrational spectrum of c1T -MoS2 and properties of its

cell tripled state

y

x

S

Mo

(a) (b)

Figure 6.3: Structural instabilities of the centrosymmetric 1T (c1T ) structure of MoS2.
(a) Phonon dispersion of the c1T structure, with inset showing a zoomed in view of the
unstable modes near K point (the strongest instability is at q = K + δK). (b) Atomic
displacements associated with unstable mode at K-point that lead to the cell tripling
transition.

Indeed, the calculated phonon dispersion of the c1T structure (see Figure 6.3a) exhibits

unstable modes (w2 < 0, w being frequency). Although the strongest instabilities are
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at points close to the nesting q-vectors, q = K + δK’s (see inset of Figure 6.3a), almost

equally unstable mode (of K3 symmetry) at K is doubly degenerate. Thus, there are two

modes at K that point to lower the energy through distortion of the c1T structure, as

opposed to competing single mode of comparable strength at the Fermi surface nesting

vectors (K + δK’s). As a result, the lowest energy structure is obtained by freezing in

the K3 mode (modulation of the c1T structure). Along with a symmetry-related mode

(K ′
3) of the same frequency at K ′, its overall degeneracy is 4. It involves predominantly

Mo displacements in the plane of MoS2 that leads to Mo-trimerization, analogous to

dimerization arising from a Peirel’s instability in 1-dimension (see Figure 6.3b).

z

x

y

x

S

Mo

(d)

(a) (b)

(c)

Figure 6.4: Structure and properties of d1T -MoS2. (a) Trimerization of Mo atoms in the
distorted low symmetry 1T form with

√
3 x

√
3 unit cell. (b) Electronic structure and (c)

vibrational spectrum of d1T MoS2. (d) An isosurface of the difference in charge densities
of ferroelectric d1T state with up polarization and the c1T state. Green colour denotes
negative charge and blue denotes positive charge. The broken inversion symmetry in the
charge density difference confirms ferroelectricity in the cell-tripled ground state structure.

As expected, a K3-distortion of the c1T structure leads to a lower symmetry cell tripled

structure (we call it d1T , see Figure 6.4a), that is energetically 0.23 eV/f.u. lower than

c1T , with reduction in Mo-Mo bond length from 3.19 Å to 2.97 Å. Trimerization of Mo is

consistent with the observed 1T-structure [129,132]. As the d1T structure is energetically
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0.59 eV/f.u. higher than the 2H structure, stabilization of the 1T polymorph against the

2H-MoS2 requires special consideration in experiment [133]. As the mechanism of this

instability involves lifting of degeneracy of the nested Fermi surface, a gap of 0.7 eV opens

up in the electronic structure (see Figure 6.4b) marking a metal to semiconductor transi-

tion. Phonon dispersion of the resulting d1T structure establishs it as a local minimum of

energy and confirms its structural stability (see Figure 6.4c).

Table 6.1: In-plane Born effective charges (Z∗α,β, α, β= x,y) of d1T -MoS∗2.

Atom direction x y

Mo x 1.7 0.0
y 0.0 -5.0

Mo x -3.5 2.9
y 2.9 0.1

Mo x -3.5 -2.9
y -2.9 0.1

S x 1.9 0.0
y 0.0 1.2

S x -1.6 0.0
y 0.0 -1.6

S x 1.1 0.4
y -0.4 1.0

S x 1.4 -0.3
y -0.3 1.7

S x 1.1 -0.4
y 0.4 1.0

∗ Note that the volume factor in estimation of polarization and dielectric constants is
(
√

3/2)a2
o(c/2) (where c/2 = 6.2 Å) and c is the bulk lattice constant of c1T -MoS2.

We now make specific predictions for experimental validation of the MIT and structural

transition in 1T -MoS2. Increased local and energetic stability of the d1T structure leads
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to hardening of Raman active E1
2g and A1g modes from 246 cm−1 and 327 cm−1 of c1T to

312 cm−1 and 407 cm−1 respectively. The frequency of A1g mode of 2H-phase (405 cm−1)

is close to that of d1T (407 cm−1), the E1
2g mode of the d1T (312 cm−1) is much softer (by

≈ 70 cm−1) than that of the 2H-phase (381 cm−1), and is thus a clean Raman signature

to detect the d1T structure. The signatures of MIT are typically reflected in the response

of a material to electric field [134], and we focus on the semiconducting d1T phase and

determine (a) the force felt by an ion due to applied field given by the Born effective charge

(Z∗), and (b) electronic dielectric constant (ε∞). We find a highly anomalous Z∗ of Mo

ion (-5), and that of all S to be +2.0 (for an in-plane electric field, see Table 6.1). Even the

sign of these charges is counter-intuitive (nominal charge of Mo being +4 and S being -2),

and its origin can be traced through band-by-band decomposition to the d−states of Mo

just below Fermi energy, which are also involved in opening of a gap through trimerization

of Mo atoms. Secondly, our calculations show that most of the contribution to static

dielectric constant (εxx= 15.87, εyy= 15.76 and εzz= 1.77) comes from electrons (ε∞xx=

12.30, ε∞yy= 12.30 and ε∞zz= 1.77), reflecting on their fundamental role in the mechanism

of MIT and the structural instability.

From the difference in charge density of the d1T and c1T structures (see Figure 6.4d),

we find a change in charge density localized only on one of the sulphur atoms showing

that the d1T structure is clearly non-centrosymmetric. Berry phase calculations reveal a

spontaneous polarization of ≈ 0.28 µC/cm2 (0.18 µC/cm2 on the application of dipole

correction to eliminate the fictitious field arising out of the continuity of electrostatic

potential at the supercell boundary) along the z-axis, while the in-plane polarization van-

ishes. The structural distortion of a K3 mode involves a periodic array of dipole moments

that average to a vanishing polarization. Thus, a nonzero polarization has to arise from

a nonlinear coupling of K3 mode with polar mode [26]. Note that the volume factor in

estimation of polarization and dielectric constants is (
√

3/2)a2
o(c/2) (where c/2 = 6.2 Å),

and c is the bulk lattice constant of c1T -MoS2.
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Figure 6.5: Atomic displacements defining the order parameters of Landau theory. Dis-
placement of Mo atoms associated with order parameters (a) η1, (b) η2, (c) η3 and (d) η4,
that capture the properties of valley (K3) phonons (note that displacement of S atoms are
not shown here), and yield trimerization of Mo atoms, (e) η5 is the polar Γ−2 phonon re-
sponsible for polarization, and (f) η6 has the full symmetry of c1T structure, representing
Γ+

1 phonon of the c1T and out-of-plane expansion of the monolayer. Atomic displacements
are denoted by green arrows. Copyright (2014) by the American Physical Society [162].

6.6 Landau Theory

We now use symmetry analysis within a Landau theory to derive a precise form of the

coupling responsible for ferroelectricity in the d1T structure. With centrosymmetric c1T

as the reference structure, free energy is expressed as a symmetry invariant Taylor series

in the relevant structural distortions, called order parameters, that connect c1T to a d1T

structure. Symmetrized combinations [126] of K3 and K ′
3 modes form two sets of primary

order parameters S = ({η1, η2} and {η3, η4}), giving trimerization of Mo (see Figure 6.5).

The polar mode Γ−2 is the secondary order parameter, η5, which involves out-of-plane
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Table 6.2: Transformations of Γ−2 mode i.e. η5 and K3 and K ′
3 modes, i.e. ({η1, η2, η3, η4})

under the generators of the P3̄m1 space group (164) describing the high-temperature c1T
phase.

E 2C3 3C2’ I 2S6 3σd

Γ−2 1 1 -1 -1 -1 1
K3 2 -1 0 0 0 0
K3’ 2 -1 0 0 0 0

displacement of sulphur sublattices relative to the Mo sublattice inducing a polarization

along z-axis. Another secondary order parameter (η6) is associated with changes in the

effective thickness of the 1T monolayer, i.e. Γ+
1 mode with the full structural symmetry

of c1T (see Figure 6.5f), for simplicity we omit the contribution of the Γ+
1 mode in our

analysis here). The transformations of Γ−2 , K3 and K ′
3 modes under the generators of the

P3̄m1 space group (164) describing the high-temperature c1T phase are given in Table

6.2.

Free energy is written as a symmetry-invariant Taylor expansion in order parameters

{η1, η2, η3, η4, η5}:

F = g12[(T − Tc)/Tc] (η2
1 + η2

2 + η2
3 + η2

4) + g22 η
2
5

+ g13 (η3
1 − 3 η1 η

2
2 + η3

3 − 3 η3 η
2
4)

+ g23 η5(η2
1 + η2

2 − η2
3 − η2

4)

+ g14 [(η2
1 + η2

2)
2 + (η2

2 + η2
3)

2 + (η2
3 + η2

4)
2 + (η2

4 + η2
1)

2

+ (η2
3 + η2

1)
2 + (η2

4 + η2
2)

2 − 2η4
1 − 2η4

2 − 2η4
3 − 2η4

4]

+ g24
[
(η2

1 + η2
2)

2 + (η2
3 + η2

4)
2
]

+ g34 η5(η3
1 − 3 η1 η

2
2 + η3

3 − 3 η3 η
2
4)

+ g44 η
2
5(η

2
1 + η2

2 + η2
3 + η2

4) + g54 η
4
5.

(6.1)

where Tc is the Curie temperature, and gαβ ’s are coefficients that are determined from
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first-principles calculations (see Table 6.3). Minimization of free energy in the {η1, η5}

subspace gives

η5 = − g23
2g22

η2
1, (6.2)

clearly showing that the polarization is induced as a quadratic function of η1 which becomes

non-zero below the transition temperature (implying improper nature of ferroelectricity).

Table 6.3: Landau coefficients (g).

coefficient value

g12 0.7095 eV/Å2

g22 7.8636 eV/Å2

g13 −0.4459 eV/Å3

g23 0.8906 eV/Å3

g14 3.8614 eV/Å4

g24 −2.5110 eV/Å4

g34 1.0326 eV/Å4

g44 2.7749 eV/Å4

g54 0 eV/Å4

The coefficients (g) in Landau free energy function are obtained by fitting to first-principles
calculations, i.e. by freezing in various amplitudes of η’s and obtaining the total en-
ergies. The Free energy expression (F ) is then fit to the total energies obtained from
first-principles. Note that g22 is 4.3059 eV/Å2 in the absence of depolarizing field.

We have thus shown that d1T-MoS2 is an improper ferroelectric, where the primary

order parameter is the unstable modes with K3 symmetry and the polarization (P) is

the secondary order parameter (corresponding to polar mode with Γ−2 symmetry) that

arises from its non-linear coupling with the K3 mode. The depolarization field does not

influence the primary ordering of the K3 mode which gives most of the energy gain through

distortion of the structure. Once the primary ordering occurs, the secondary order (of

polarization) is guaranteed by symmetry even if the energy gain associated with it is
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small. In fact, there is no instability associated with polarization, and the depolarization

field only slightly hardens the Γ−2 mode. Thus, the further energy gain associated with

it is reduced by the depolarization field, but the dominant mechanism of the instability

involves K3 mode. In the case of d1T MoS2, the gain in energy by K3 mode distortion

(0.42 x 10−2 eV/Å3) is much larger than the depolarizing energy (0.16 x 10−5 eV/Å3).

Thus, the depolarizing field does not succeed in suppressing the single domain ferroelectric

state. This is also evident in our calculated phonon dispersion of the d1T structure, which

exhibits no instabilities (see Figure 6.4c). These arguments are quite similar to the ones

detailed in the work on the presence of thickness limits in improper ferroelectrics by Na

Sai et al. [135], which we find realized in 1T -MoS2. Note that, the effects of depolarizing

field are included in g22.

The temperature dependence of polarization (Figure 6.6a, where P ∝ η5 and dielectric

susceptibility χ is ∝ 1/∂2E
∂P 2 at {η1 to η5} which minimize Landau free energy at a given

temperature) predicted by the Landau theory (a) is almost linear reflecting on its geometric

or improper origin [26, 27] of ferroelectricity, and (b) exhibits a weak discontinuity at the

transition temperature, slightly above Tc. The latter and accompanying change in the

slope of dielectric susceptibility at the transition reveal its first order character arising

from the cubic dependence of free energy on η1 (see Figure 6.6b). The dielectric anomaly

is quite distinct from the one in conventional (proper) ferroelectrics. A mean field estimate

of the transition temperature, obtained from the energy well-depth of 0.23 eV/f.u. is well

above room temperature, but is bounded above by the temperature of stability of 1T

polymorph.

The nontrivial geometry and symmetry of the 4-dimensional structural subspace

{η1, η2, η3, η4} are essential to establish the existence of states with opposite polarization

and switchability, and hence the ferroelectricity of d1T structure (see Table 6.4). In the

{η1, η2} plane, we find three minima of energy (see Figure 6.6b and Figure 6.6c) corre-

sponding to symmetry equivalent d1T structures with polarization of the same sign, Pz

≈ 0.22 µC/cm2 (comparable to our estimate from first-principles). These semiconducting

states are separated from each other by semi-infinite lines corresponding to metallic states
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Figure 6.6: Ferroelectric transition behavior, Landau free energy landscape and metal-
lic states of d1T . (a) Polarization (P) and dielectric susceptibility (χ) as a function of
temperature, derived from Landau theory. (b) Variation of Landau Free energy (F) with
η. F is minimized w.r.t c where η= {η1, η2=

√
3 η1, η3= 0, η4= 0, η5= c}. Note that,

cubic dependence of free energy on η i.e. the first order nature of the phase transition is
reflected in the two unequal minima. (c) Contour plot of Landau free energy as a func-
tion of {η1, η2, 0, 0,−0.039} at T= 0 K, and structures corresponding to the local minima
each of which involves trimerization of Mo. Semi-infinite blue lines in the {η1,η2} plane
correspond to metallic states.

(see Figure 6.6c). Application of inversion symmetry transforms a d1T structure in the

{η1, η2} plane to that in the {η3, η4} plane with reversed polarization.

6.7 Polarization switching

Our free energy based estimate of the intrinsic coercive field (Ec) to switch the sign of

polarization is unrealistically large. In most ferroelectrics, switching is facilitated by nu-

cleation and growth of domains of polarization at heterogeneously distributed defect sites.



6.7 Polarization switching 117

Table 6.4: Contribution of η1 to η5 to the ferroelectric up and down polarized states,
obtained by projecting structural distortions of the d1T state on the order parameters
(see Figure 6.5). η1 to η4 are the primary order parameters, and η5 is the secondary order
parameter.

order parameter up polarization down polarization

η1 0 -0.323
η2 0 -0.559
η3 -0.323 0
η4 -0.559 0
η5 0.047 -0.047

We now explore the structure and properties of domain walls that are relevant to po-

larization switching under experimental conditions. The domain wall energy (Dw) was

estimated by subtracting the energies of up and down polarized domains from the configu-

ration with both up and down polarized domains. The area was calculated as the product

of length of domain wall and c/2 (where c is the lattice constant along ‘z’ direction of bulk

MoS2).

Dw =
E(domain configuration)− E(up state)− E(down state)

domain wall length× c/2
. (6.3)

Our estimate of Dw that separates domains of up and down polarization of d1T (see Figure

6.7a) structure is ≈ 7.7 mJ/m2, quite comparable to that of ferroelectric BaTiO3 [136].

Estimation of coercive field is quite challenging even for simpler, conventional ferro-

electrics like BaTiO3. In fact, the intrinsic coercive (switching) field (which is easier to

estimate) is always much larger than that measured in experiments, as the mechanism of

switching at the intrinsic coercive field involves homogeneous nucleation of domains of op-

posite polarization. Such field can be estimated from Landau theory, and its estimate from

the Landau theory presented here is indeed unrealistically large. Polarization switching in

most ferroelectrics is based on heterogeneous nucleation and growth of domains, in which

defects (extrinsic mechanism) act as the nucleating seeds. To estimate such the coercive
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Figure 6.7: Ferroelectric domain wall in 1T -MoS2. (a) Structure of the domain wall (blue
dashed line) between up and down polarized states of d1T . (b) Variation of Khon-Sham
potential at the interface of up and down polarized domains. The energy barrier at the
domain wall (marked with dashed lines) separating domains with opposite polarization is
≈ 0.13 eV. This barrier is estimated by taking the macroscopic average of the Kohn-Sham
potential in the ‘yz’ plane for every point on the line perpendicular to the domain wall (i.e.
‘x’ direction), which gives the variation in the Kohn-Sham potential across the interface
of up and down polarized domains.

field of MoS2, we used its most common defect, the S vacancy [137]. From the simulations

with a large supercell containing vacancy, we find that the size of such a point defect in

MoS2 is about 12-16 Å. Using this, the domain wall energy and spontaneous polarization

in the model by Shin et al. [138], our estimate of the realistic coercive field (within an

order of magnitude) in d1T MoS2 is about 2.3 x 107 V/cm. While this is still 10 times

higher than the coercive field of a conventional ferroelectric like BaTiO3, it is achievable

in realistic MoS2 devices [125].
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Figure 6.8: Schematic of logic gates. (a) X-NOR and (b) NAND logic gate. G1 and G2
are the gate electrodes, and G0 is the electrode for the offset voltage. Solid blue arrows
indicate direction of polarization.

We find a barrier of 0.13 eV in the electrostatic potential (see Figure 6.7b) at the domain

wall, which can be used to alter the electron transport in 1T -MoS2 channel. For example,

an XNOR gate (see Figure 6.8a and Table 6.5) can be developed using a field effect

transistor (FET) with d1T MoS2 as a channel and two gate electrodes in series, whose

voltages control the dipolar structure. When both the gates are at the same potential, the

single domain of 1T -MoS2 carries a large current (on state). On the other hand, opposite

potentials at the two gates stabilize a domain structure carrying little current (off state).

Based on the same principle, NAND and OR gates can be realized in an FET device with

three gate electrode (see Figure 6.8b and Table 6.6). Since the semiconducting channels

in these devices are made of monolayers of d1T -MoS2, they involve the coupling between

the dipoles (polarization) and electrons, and we term them as dipolectronic devices.
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Table 6.5: Truth table for XNOR gate. VG1 and VG2 are the potentials at the G1 and G2
gate electrodes respectively.

VG1 VG2 Output

+V +V on
+V -V off
-V +V off
-V -V on

Table 6.6: Truth table for NAND and OR gates. VG1 and VG2 are the potentials at the
G1 and G2 gate electrodes respectively. VG0 is the offset potential at G0 electrode∗.

Gate VG0 VG1 VG2 Output

NAND

+V +V +V on
+V +V -V on
+V -V +V on
+V -V -V off

OR

-V +V +V off
-V +V -V on
-V -V +V on
-V -V -V on

∗ Change in the voltage at offset gate G0 leads to transformation from NAND to OR gate.

6.9 Conclusions

Our work establishes that ferroelectricity in d1T -MoS2 is a robust consequence of symme-

try of K3 modes whose instability originates from the degeneracy of Fermi surface and a

strong electron-phonon coupling [139], which is also known to be relevant to the compet-

ing instabilities of superconductivity [140] and charge density waves [131, 141] in layered
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dichalcogenides. Experimental observation of trimerization of Mo atoms in the d1T struc-

ture by Wypych et al. [129] is in agreement with our structure. We show that there exists

a non-linear coupling between the structural distortion leading to the trimerization of Mo

atoms and the polar Γ−2 mode of 1T-MoS2 that gives rise to switchable polarization in its

monolayer. Hence, we expect this work to be a stimulant to extensive experimental in-

vestigations for finding the presence of ferroelectricity in a monolayer of 1T-MoS2. While

opening up a small bandgap desirable for high mobility and on/off ratio of a transistor, the

electron (carriers) - phonon (dipoles) coupling is the key to the novel dipolectronic devices.

Furthermore, the vicinity of the d1T structure to an MIT makes it attractive for use in

devices based on electro-resistive properties as well as in chemical sensors and catalytic

structures. Also, 2-dimensional heterostructures consisting of d1T interfacing with 2H

polymorphs of MoS2 can introduce more functionality in its devices [125]. Our symmetry

analysis applies equally well to 1T form of other transition metal (M) di-chalcogenides,

MX2 (M= Mo, W and X= S, Se), which may exhibit richness of such properties.
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Chapter 7

Selenium

7.1 Multiferroic behaviour in elemental Selenium∗

7.1.1 Introduction

Magnetoelectric multiferroics are materials in which ferromagnetism and ferroelectricity

coexist. Since the ferroelectric and magnetic orders are intrinsically coupled in multi-

ferroics, these materials are of great technological interest and have been a subject of

intense research. Due to the mutually exclusive nature of ferromagnetism and ferroelec-

tricity (mainly in oxides [143]), along with symmetry restrictions and conflicting chemical

requirements, very few materials exhibit multiferroic behaviour. A possible solution is

offered by systems in which different ions or functional groups are responsible for differ-

ent types of ferroic order. In such ‘Type-I’ multiferroics, magnetism and ferroelectricity

originate independently from different sublattices (e.g., BiFeO3) [114,144] and necessarily

exhibit a weak coupling. In ‘Type-II’ multiferroics, on the other hand, ferroelectricity is

induced by certain types of non-collinear (e.g., cycloidal) spin order that breaks inversion

symmetry. Such systems (that include certain rare earth manganites) [25, 145] show a

strong coupling between the ferroelectric and magnetic order parameters.

Very recently, a particularly interesting connection has been suggested between multi-

ferroic systems and topological insulators [146,147]. We show that elemental selenium is a

∗This work has been published in part in Scientific Reports [142]. Copyright (2013) by Nature Pub-
lishing Group.
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Figure 7.1: (a) Magnetic hysteresis curves for a bunch of parallel Se microrods at three
temperatures spanning the magnetic ordering temperature. (b) Ferroelectric hysteresis
curve for Se microrods at 4 K. (c) Shift in magnon mode frequencies (M1 and M2) with
applied DC electric field, recorded at 4 K. The phonon mode at 232 cm−1 shows very
little field dependence. This work has been done by Pal et al. [142]. Copyright (2013) by
Nature Publishing Group.

3-D insulator with quasi-1-D structure, which exhibits quantized polarization (non-trivial

topological invariant) and hence a surface charge. The spontaneous magnetic ordering of

this surface charge gives rise to magnetoelectric coupling, hence making elemental sele-

nium the simplest material to exhibit magnetoelectric coupling with a novel origin i.e.

non-trivial electronic topology.

One of the earliest known elemental semiconductors and photoconductors, Se, has

an unusual, quasi-one-D, chiral structure. However, it has attracted little attention as a

potential multiferroic. The crystal structure of trigonal Se (space group P3121) consists



7.1 Multiferroic behaviour in elemental Selenium 125

of parallel, helical atomic chains with three atoms per unit cell. The atoms within a helix

are covalently bonded, and the weakly coupled helical chains are arranged on a hexagonal

lattice. With a 4s2 p4 configuration, Se was so far believed to be an insulator with no

magnetic ordering. However experiments carried out by Pal et. al. [142], found evidence

for both magnetic and ferroelectric order in Se microtubes below ≈ 40 K (see Figure

7.1). Their experimental study suggests that the magnetic ordering occurs mainly at the

crystal surface, and they clearly observe magnetoelectric coupling from the dependence of

frequency of magnon modes on the applied electric field (see Figure 7.1c).

We use first-principles simulations to show that elemental Se is indeed multiferroic.

This property of Se arises from its complex, chiral structure and a non-trivial electronic

topology. In this chapter, we discuss (a) electronic structure and topology of Se, and (b)

present a Landau like theory which describes the origin of magnetoelectric coupling. We

thus give a theory of the possible origin of multiferroic behaviour in elemental selenium.

7.1.2 Computational Methods

See section 3.1.2 for details of the first-principles calculations. The spin-density dependent

GGA to exchange-correlation function (Perdew, Burke and Ernzerhof [30]) and ultrasoft

pseudopotentials [34] were used to represent the interaction between ionic cores and valence

electrons. Spin polarized calculations were performed using the GGA+U method with

U= 1 eV and 5 eV. Electric polarization was determined using the Berry’s phase approach

[148]. Integrations over the Brillouin zone were sampled over 5x5x5 and 6x6x1 meshes of

k-points for bulk and slab calculations, respectively. Some of the subtle results (e.g., Berry

phase polarization) were reproduced with LDA [1], and HGH pseudopotentials [149] and

energy cutoff of 70 Ry using ABINIT package [150,151].

7.1.3 Electronic structure and topology of Se

From our first-principles calculations we estimate the structural parameters: a = 4.47

Å and c = 5.04 Å, within 3% of their reported values. We find an indirect band gap

of 1.1eV, which is underestimated with respect to the experimental value by ≈ 41% (a
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known limitation of the DFT method). For bulk Se, our calculations with local spin or

magnetic moments on Se sites initialized with ferromagnetic (FM) and antiferromagnetic

(AFM) ordering resulted in a state with vanishing magnetic moments, confirming our

expreimental prediction [142] that bulk Se is non-magnetic.

(g)

(b)(a) (c)

(d) (e) (f)

(h) (i)

Figure 7.2: Isosurfaces of spin density of Se chains of different length with (a) FM ordering
in 2 atom chain, (b) FM and (c) AFM ordering in 4 atom chain, (d) FM ordering in 5
atom chain, (e) FM and (f) AFM ordering in 6 atom chain, (g) FM ordering in 7 atom
chain, (h) FM and (i) AFM ordering in 8 atom chain. In all the cases, it is evident that the
magnetic moments are localized and confined to the end atoms of the chains. Copyright
(2013) by Nature Publishing Group [142].

We next investigated the possible presence of magnetic moments in 2-8 atom, helical

chains of Se, initialized with different types of magnetic order along the chains. For all

except the 3-atom chains, the self-consistent electronic ground state clearly exhibits an

ordering of magnetic moments, with the moments confined at the ends of the chains (see

Figure 7.2). For odd-atom chains, the initial AFM state de-evolved into a FM state, while

even-atom chains exhibit stable ordering of both AFM and FM types, with very similar
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energies. Thus the observed magnetism can originate from the surface or boundary of Se.
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Figure 7.3: Electronic structure of Se (001) slab with 10 atomic planes in (a) a non-
magnetic configuration with metallic nature due to surface states, (b) ferromagnetic con-
figuration, and antiferromagnetic configuration obtained with U= 5 eV, exhibiting a band
gap. Iso-surfaces of spin-density in (d) antiferromagnetic configuration and (e) ferromag-
netic configuration, revealing the magnetic moments localized at the surface. Copyright
(2013) by Nature Publishing Group [142].

To simulate the (001) surface, we have studied slabs consisting of 10 and 11 atomic

planes separated from its periodic images by a vacuum of 1 nm along c-direction and

initialized with AFM and FM ordering of spins at its surface. The non-magnetic state of
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the slab exhibits a metallic electronic structure (see Figure 7.3a), and the bands crossing

the Fermi energy are localized at the surfaces. As Se is quasi-one-dimensional, we expect

this electronic structure to be unstable possibly with respect to magnetic ordering. Noting

that magnetism in graphene nano-ribbons arising from its edge states is stabilized by

on-site correlation [152], we simulated the Se slab by including on-site correlation with

Hubbard U= 1 eV to 5 eV, and initial states with AFM and FM ordering. For all the

Hubbard U values, magnetic moments and the nature of electronic structure (with band

gap increasing with U) of the selenium slab remain qualitatively the same (see Figure 7.4).

In contrast to bulk Se, the self-consistent solution exhibits non zero (≈ 0.5 µB/atom) local

magnetic moments on the surface atoms even after structural relaxation. The relaxed

structures with AFM and FM configurations are energetically the same, implying only

a weak interaction between the moments at the opposite slab surfaces as expected. A

band gap opens up in the electronic structure upon magnetic ordering at the Se slab

surfaces (see Figures 7.3b and 7.3c), and the visualization of the spin-density iso-surfaces

(see Figures 7.3d and 7.3e) clearly shows that the surface states are responsible for the

magnetic character of the slabs. An increase in the on-site correlation energy U results in

further stabilization of the surface spins and their ordering.

The robustness of the surface states of the Se slab and their resemblance to the local-

ized states at the end of single helical chains of Se prompt us to trace their origin to the

electronic topology [153] of bulk Se. As Se has a quasi-one-dimensional structure, we note

that the relevant topological invariant is essentially the Berry phase of occupied electronic

states, which is essentially the polarization [154]. Symmetry considerations predict zero

polarization in the ab plane as well as along the c-axis of bulk Se. Berry-phase calculations

confirm the former expectation, but predict a half-integer quantum polarization, Pz = e/A

along z-axis (e= electronic charge, A= unit cell area). This does not violate symmetry

principles, since polarization (as a Berry phase) can be estimated only within an integer

quantum polarization. Thus, P and −P (obtained by applying inversion symmetry or a

two-fold rotation along an axis in the ab-plane in case of Se) may differ by an integer

quantum polarization (= eR/Ω); hence a half-integer quantum polarization is allowed by



7.1 Multiferroic behaviour in elemental Selenium 129

(a)

Γ K M Γ-3

-2

-1

0

1

2

3
E

 -
 E

F (
eV

)

(b)

Γ K M Γ-3

-2

-1

0

1

2

3

E
 -

 E
F (

eV
)

Up spins
Down spins

(c)

Γ K M Γ-3

-2

-1

0

1

2

3

E
 -

 E
F (

eV
)

Up spins
Down spins

Figure 7.4: Electronic structure of Se (001) slab with 10 atomic planes in (a) a non-
magnetic configuration with metallic nature due to surface states, and (b) ferromagnetic
configuration,and (c) antiferromagnetic configuration obtained with U= 3 eV, exhibiting
a bandgap. Copyright (2013) by Nature Publishing Group [142].

symmetry even in centrosymmetric systems. We believe bulk Se is the only system known

so far to exhibit a half-integer quantum electronic polarization (i.e. the electronic structure

of bulk Se has an overall Berry phase of π) and its total (ionic + electronic) polarization

remains invariant upon any shift in the origin. This would naturally support electronic

charge at the surfaces and consequently the magnetism. Ordering of spins at the surface

breaks the two-fold symmetry (C2x) of Se (see Figure 7.3d) and gives rise to a switchable

polarization. This necessarily implies that the ferroelectric and magnetic ordering tem-

peratures are close or identical, in conformity with experimental observations [142]. Such

magnetically induced polarization, though small, inherently involves a strong magneto-

electric coupling. The emergence of multiferroic behaviour in selenium microtubes/slab

can be best understood from the flow of ideas shown in Figure 7.5.

We point out that Se is a weak topological insulator (TI), being a 2-D array of 1-D

insulators with nontrivial topological invariant. This is reflected in an even number of
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breaks two fold
rotational symmetry

Spin polarization of surface charges: magnetism

Magnetoelectric coupling (       )χ ME 

Multiferroic behaviour

Magnetism induced switchable polarization
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P . n (surface charges)σ = z

Figure 7.5: Flowchart depicting the emergence of multiferroic behaviour in Se microtubes
from half quantum of polarization.

band crossings at the Fermi energy (see Figures 7.3 and 7.4) in the electronic structure of

the non-magnetic state. As a result, its surface states are not as robust against disorder

as those of a strong 3-D TI. Finally, as the topological invariant of bulk Se is linked to its

structure and forced by its symmetry, it should be considered a crystalline TI.

7.1.4 Origin of the magnetoelectric effect: spin-charge-phonon coupling

It is observed that the Raman active E phonon mode at 232 cm−1 in trigonal Se shows no

dependence on external electric field. On the other hand, the magnon modes that appear

in the Raman spectrum below 40 K are depend strongly on the external electric field. We

now present an analysis of the phonons and their coupling with spin and electric field to

explain the experimental observations (see Figure 7.1c). Our theoretical estimates of the

phonon frequencies of bulk Se (217 cm−1 for the E mode and 89 cm−1 for an IR-active

A2 mode) are in reasonable agreement with experimental observations (232 cm−1 and 82

cm−1, respectively [142]). The Hellman-Feynman forces on Se atoms in the non-magnetic

state with atomic structure obtained by minimizing energy of the ferromagnetic state give

the lowest order spin-phonon coupling. Projecting these onto the phonon eigenvectors,
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we establish that the Raman-active E mode at 217 cm−1 exhibits the largest spin-phonon

coupling, while the lower energy E mode at 128 cm−1 shows noticeable but weaker cou-

pling with spin. This spin-phonon coupling is responsible for the concurrent anomalies in

magnon and phonon modes seen in the Raman spectra near the magnetic ordering temper-

ature. Though the three Se atoms in the trigonal crystal cell are symmetry equivalent and

homopolar, an external electric field does couple to its lattice (phonons) due its non-trivial

symmetry (see Table 7.1). The tensorial character of the coupling of electric field with

the atomic displacements (Born dynamical charges) permits a nonzero dynamical charge

Z for Se atoms positioned on the x-axis, with the electric field also along x-axis, e.g., Zxx

= 0.70.

Having established the coupling of phonons with spin and electric field based on ex-

perimental and first-principles theoretical evidence, we express free energy of Se surface as

a function of spin (S), phonon coordinate (u) and electric field (E), using a Landau-like

theory:

F =
1
2
Ku2 − ZEu− LSu+ JS2, (7.1)

where K = µω2 is the phonon spring constant, Z is the dynamical charge, L is the spin-

phonon coupling and J , the exchange coupling. Minimizing energy with respect to u, we

obtain the effective free energy:

Feff = − Z2

2K
E2 +

(
J − L2

2K

)
S2 − ZL

K
ES, (7.2)

where the three terms on RHS are the phonon contribution to the dielectric constant, the

phonon-renormalized exchange coupling and the phonon-mediated linear magnetoelectric

coupling respectively. We note that magnon frequency is determined by the effective

exchange coupling.

Since this linear theory does not explain the electric field dependence of magnon fre-

quency (a third order effect), we consider the third order coupling of a phonon with the

electric field: H = α u2 E, with α = − ∂Z
2∂u . We determine α by distorting the structure
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Table 7.1: (Top) The mode effective charges (Zm) of Raman active E mode of bulk Se
with an undistorted structure. (Centre, Bottom) Changes in the mode effective charges
(Zm

distorted - Zm
undistorted) of a distorted structure obtained by freezing in the atomic dis-

placements of the relevant Raman active E modes. Copyright (2013) by Nature Publishing
Group [142].

Mode effective charges
of the undistorted structure

Mode frequency (cm−1) x y z

128 0.142 1.293 0.000
128 1.293 -0.142 0.000
217 0.016 -0.117 0.000
217 0.117 0.016 0.000

Change in mode effective charges
on freezing E mode at 128 cm−1

x y z

128 -0.090 0.004 0.017
128 0.028 -0.093 -0.006

Change in mode effective charges
on freezing E mode at 217 cm−1

x y z

217 0.027 0.018 -0.046
217 -0.017 -0.031 0.021

with the atomic displacements (u) by ≈ 1% of the lattice constant and estimating the

Born dynamical charges of phonons using DFT linear response. Interestingly, lower en-

ergy modes exhibit the strongest third order coupling with electric field, while α of the

Raman-active E mode is relatively much weaker (see Table 7.1). This explains the ob-

served independence of the E mode (at 217 cm−1) on electric field. The exchange coupling
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renormalized by lower energy modes, can be shown to change with electric field as:

L2

2K

(
1− 2

αE

K

)
.

In this model, the observed dependence of magnon frequency on electric field originates

from the third order phonon–electric field and linear spin-phonon couplings.

7.1.5 Conclusions

surface spinelectric field

electronic topology

Multiferroic Se
Magnetoelectric coupling

chiral structure

phonons

Figure 7.6: Schematic of emergence of magnetoelectric coupling in Se microtubes. Note
that the emergence of magnetoelectric coupling requires the presence of surface spin.

The emergence of multiferroic behaviour in a non-magnetic, elemental semiconductor is

quite astonishing. Indeed, ferroelectricity and magnetism are neither expected, nor ob-

served in bulk Se. Our work suggests that the chiral arrangement of Se atoms leads to

a coupling between the lattice and electric field, while the spin-polarized surface arises

from its unique electronic structure with non-trivial topology, reflected in the Berry phase

of π. This highly unusual coupling of its lattice with the electric field, surface spins or

magnetic excitations allows elemental Se to acquire multiferroic properties, observable

only in low-dimensional samples (see Figure 7.6). Significantly, our work uncovers a new

route to multiferroic behaviour that is not strongly restricted by symmetry, and indicates

that similar magnetoelectric surface properties could well emerge in other semiconductors

with low-symmetry chiral space group. At the same time, our observations provide strong
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support to the recent experimental investigations that have shown multiferroicity in Se

microtubes.

7.2 Optical Rotation in Selenium

7.2.1 Introduction

Trigonal bulk Selenium is an anisotropic and strongly covalent crystal with three atoms

per unit cell. It consists of hexagonally stacked helical chains with their axis parallel to the

c-axis of the crystal. The strong covalent bonding between atoms of the same chain, and

weak inter-chain interaction gives rise to its crystal anisotropy. This non-trivial structure

of trigonal bulk selenium is responsible for its interesting vibrational and optical properties.

Unlike cubic silicon, germanium or carbon, selenium exhibits infrared active phonons

due to its non-trivial chiral structure and the presence of more than 2 atoms in its unit

cell [155]. From the symmetry analysis, there exist three infrared (IR) active phonon

modes, two of which are degenerate (E symmetry optical modes) and couple with electric

field in the ‘x’ and ‘y’ directions, and the third one (A2 symmetry optical mode) couples

to the electric field along ‘z’ direction. Although the system is homopolar, it exhibits IR

active phonons due to its chirality, evident in non-zero Born effective charges [155]. Using

first-principles theoretical analysis we show that selenium optically rotates the plane of

polarization of light propagating in directions perpendicular to the chains. This optical

rotatory ability of selenium can be traced to magnetoelectric coupling which arises from

the coupling of electric field to phonons (even in the absence of surface spins). Similar

property was predicted by Lombardi et. al. [156] for chiral molecules.

7.2.2 Computational Methods

We based our theoretical analysis on first-principles within density functional theory

(DFT) with a Generalized Gradient Approximation (GGA) and Perdew Burke and Ernzer-

hof [30] functional for exchange correlation energy as implemented in the ABINIT [150,151]
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code. An energy cutoff of 70 Ry was used in truncating the plane wave basis in represen-

tation of Kohn-Sham wavefunctions. The Brillouin zone integrations were sampled over

a 9x9x9 mesh of k-points. The phonons at the zone center and Born effective charges of

bulk trigonal selenium, were determined using DFT linear response as implemented in the

ABINIT package [150,151].

Table 7.2: Born effective charges on all the three Se atoms.

Atom number Direction of Direction of electric field
displacement

x y z

1 x 0.70 0.00 0.00
y 0.00 -0.70 -0.74
z 0.00 -0.38 0.00

2 x -0.35 -0.61 0.64
y -0.61 0.35 0.37
z 0.33 0.19 0.00

3 x -0.35 0.61 -0.64
y 0.61 0.35 0.37
z -0.33 0.19 0.00

7.2.3 Relation between Z∗ and χ

Even though all the Se-Se bonds in selenium are covalent and all the positions symmetry

equivalent, external electric field couples to lattice vibrations due to its non-trivial chiral

structure. We consider Se structure with its axis of the helical chains parallel to ‘z’

direction i.e. the c-axis of the crystal. The maximum magnitude of Born effective charge

(Z∗) is 0.74 |e| (refer to Table 7.2). Lattice vibrations at 89 cm−1 (ωz) and two degenerate

modes at 128 cm−1 (ωx and ωy) couple to electric field (E) in ‘z’, ‘x’ and ‘y’ directions

respectively (see Figure 7.7). In the presence of an external electric field, the atoms

are displaced according to the eigen displacements of the respective phonon mode, and
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electric dipole moments induced on the Se atoms also point in the same direction as their

displacements (refer to Table 7.2 and Figure 7.7).

(a) (b)

(c)

Figure 7.7: Bulk phonon modes of selenium that couple with electric field applied along
(a) ‘x’, (b) ‘y’ and (c) ‘z’ directions. Phonon modes that couple to electric fields along
‘x’ and ‘y’ directions are degenerate and are at 128 cm−1. The phonon mode at 89 cm−1

couples to electric field along ‘z’ direction, and involves rotation of Se helical chain about
its axis.

We first derive the relation between magnetoelectric coupling (χ) in chiral media and

optical rotation as a consequence of coupling of the lattice with external electric field (i.e.

non-zero Z∗). Let E be the electric field of the electromagnetic wave. We assume that the

direction of propagation is in the ‘xy’ plane, and hence electric field can be expressed as

E= Eo ei(ωt−k·r) (sinθ cosφ x̂+sinθ sinφ ŷ+cosθ ẑ), where θ and φ are polar and azimuthal

angles in the spherical co-ordinate system. k is the propagation vector in the ‘xy’ plane

(i.e. k = kx x̂ + ky ŷ). From the orthogonality condition of k and E for electromagnetic

waves we arrive at the relation, φ = tan−1(kx/ky).

From the Born effective charges of Se atoms, we estimate the electric dipole moments
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of atoms as follows,

pi,α =
∑
β

Z∗i,αβ ui,β, (7.3)

where α and β are cartesian directions, (x, y, z). Z∗i,α,β is the Born effective charge

tensor of the ith atom, and ui,β the displacement of the ith atom in the β direction.

Expressing the displacement uiβ in terms of Born effective charges and electric field we

get,

ui,β =
∑

γ

Z∗i,γβ Eγ

µγ(ω2
γ − ω2)

, (7.4)

where ωγ and µγ are the frequency and the reduced mass of the IR active phonon mode

that couples to electric field in γ direction. ω is the frequency of incident light. Hence,

the electric dipole moment expression can be written as,

pi,α =
∑
β,γ

Z∗i,αβ Z
∗
i,γβ

Eγ

µγ(ω2
γ − ω2)

. (7.5)

1

2

3

Figure 7.8: Arrows indicate the position vectors of Se atoms with respect to the centre of
the helix.

Let r1, r2 and r3 be the in-plane position vectors of the three Se atoms with respect
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to the central axis of the helix (see Figure 7.8), and R the radius of the helix.

r1 = −R x̂,

r2 = −R (−1
2
x̂+

√
3

2
ŷ),

r3 = −R (−1
2
x̂−

√
3

2
ŷ).

(7.6)

We estimate the magnetic field ‘Bi’ magnetic field induced by the motion of each atom

‘i’ using the Biot-Savart law as follows,

B =
∑

i

Bi

=
∑

i

µo

4π
q[vi × ri]

r3i
,

=
∑

i

µo

4π
[dpi

dt × ri]
r3i

,

=
∑

i

µo

4π
[iωpi × ri]

r3i
, from E = Eoe

i(ωt−k·r) and equation 7.5.

(7.7)

The system is mono-atomic and the magnitude of forces acting on all the atoms are

the same (see Figure 7.7). Hence, the magnitude of electric dipole moment on each atom

under the influence of an electric field in a particular direction (Eα) is the same, i.e. |pi|=

p for a given α direction.

To simplify the derivation (of the relation between Z∗ and χ), we consider the effect

of electric field in ‘x’, ‘y’ and ‘z’ directions independently and estimate the magnetic field

(B) induced at the centre of the helix (selenium molecule of three atoms in the bulk chiral

structure) by the electric field.
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(1) For Ex 6= 0 and Ey = Ez = 0 (i.e. θ = 90o and φ = 0o), we get atom by atom

contribution to magnetic field.

B1 =
µo

4π
[iωp1 × r1]

r31
,

=
µo

4π
iωp1R[x̂×−x̂]

R3
,

= 0.

B2 =
µo

4π
[iωp2 × r2]

r32
,

=
µo

4π
iωp2R[(−1

2 x̂−
√

3
2 ŷ)×−(−1

2 x̂+
√

3
2 ŷ)]

R3
,

=
µo

4π
iω

√
3

2 p

R2
ẑ.

B3 =
µo

4π
[iωp3 × r3]

r33
,

=
µo

4π
iωp3R[(−1

2 x̂+
√

3
2 ŷ)×−(−1

2 x̂−
√

3
2 ŷ)]

R3
,

=
µo

4π
−iω

√
3

2 p

R2
ẑ.

⇒ B = B1 + B2 + B3 = 0

(7.8)
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(2) For Ey 6= 0 and Ex = Ez = 0 (i.e. θ = 90o and φ = 90o)

B1 =
µo

4π
[iωp1 × r1]

r31
,

=
µo

4π
iωp1R[−ŷ ×−x̂]

R3
,

=
µo

4π
−iωp
R2

ẑ.

B2 =
µo

4π
[iωp2 × r2]

r32
,

=
µo

4π
iωp2R[(−

√
3

2 x̂+ 1
2 ŷ)×−(−1

2 x̂+
√

3
2 ŷ)]

R3
,

=
µo

4π
iω 1

2p

R2
ẑ.

B3 =
µo

4π
[iωp3 × r3]

r33
,

=
µo

4π
iωp3R[(

√
3

2 x̂+ 1
2 ŷ)×−(−1

2 x̂−
√

3
2 ŷ)]

R3
,

=
µo

4π
iω 1

2p

R2
ẑ.

⇒ B = B1 + B2 + B3 = 0

(7.9)
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(3) For Ez 6= 0 and Ex = Ey = 0 (i.e. θ = 0o and φ = 0o)

B1 =
µo

4π
[iωp1 × r1]

r31
,

=
µo

4π
iωp1R[−ŷ ×−x̂]

R3
,

=
µo

4π
−iωp
R2

ẑ.

B2 =
µo

4π
[iωp2 × r2]

r32
,

=
µo

4π
iωp2R[(

√
3

2 x̂+ 1
2 ŷ)×−(−1

2 x̂+
√

3
2 ŷ)]

R3
,

=
µo

4π
−iωp
R2

ẑ.

B3 =
µo

4π
[iωp3 × r3]

r33
,

=
µo

4π
iωp3R[(−

√
3

2 x̂+ 1
2 ŷ)×−(−1

2 x̂−
√

3
2 ŷ)]

R3
,

=
µo

4π
−iωp
R2

ẑ.

⇒ B = B1 + B2 + B3,

B = −i µo

4π
3ωp
R2

ẑ,

(7.10)

Hence, only the electric field component along ‘z’ direction gives rise to non-zero magnetic

field (also along z). Having established this, we now proceed to calculating the magnetic

field induced by electric field in ‘z’ direction in bulk selenium.

Since trigonal bulk selenium is composed of parallel helical chains, we can approximate

a helical chain of Se atoms to a solenoid. Hence, the magnetic field induced by the electric
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field along the helical axis (i.e. the ‘z’ direction) is given by,

B = µo n I,

= µo
3
c

dp/dt
2πR

,

= µo
3
c

iωp
2πR

,

= −i µo

4π
6ωp
Rc

ẑ,

B = 2 | B1 + B2 + B3 |
R

c
, from equation 7.10.

(7.11)

Here, I is the current flowing through the solenoid, and n is the number of turns per unit

length, and c is the lattice constant along the direction of helical axis. The negative sign

of B is due to current I flowing in ‘-ẑ’ direction. The magnetoelectric coupling (χ) can be

defined as

χ = −i∂B
∂E

, from the Tellegen form of constitutive relationships [157],

= −i∂Bz

∂Ez
,

χ = −µo

4π
6ω
Rc

∂p

∂Ez
,

(7.12)

where p is the magnitude of electric dipole moment of any one of the Se atoms, when

electric field is applied in ‘z’ direction (same as the arrows in Figure 7.7c), and ‘-ve’ sign

indicates that the induced magnetic field is in a direction opposite to the applied electric

field. On substituting equation 7.5 in equation 7.12 for atom 1 (refer to Table 7.2) we get,

χ = −µo

4π
6ω
Rc

Z∗1,y,y Z
∗
1,z,y

µz(ω2
z − ω2)

. (7.13)
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7.2.4 Polarization rotation

In chiral media, the Tellegen form of constitutive relationships is very convenient for single

frequency electromagnetic waves [157].

D = εE− iχH,

B = µH + iχE,
(7.14)

here χ is defined as a parameter that describes the chiral properties of the medium. It is

clear that χ= -i ∂B/∂E, and is same as the magnetoelectric coupling constant in equation

7.12. In the case of trigonal bulk selenium, only the phonon mode at 89 cm−1 i.e. the

mode coupling with Ez field induces a non-zero magnetic field (refer to equation 7.10).

For any arbitrary direction of applied electric field, only the ‘z’ component of E gives

rise to non-zero magnetic field, and therefore non-zero magnetoelectric coupling. The

magnetic field induced by the rotatory motion of the helix (see Figure 7.7c) is along the

‘z’ direction (Bz), and perpendicular to the incident magnetic field (Bxy= Bx + By). The

resultant magnetic field (B̃) is the sum of Bxy and Bz, which implies that the direction

of polarization of magnetic field rotates as the IR radiation passes through the crystal.

Along with B̃, the electric field of incident electromagnetic wave also rotates (since E and B̃

are perpendicular in electromagnetic radiation), and hence selenium exhibits polarization

rotation. The extent of this rotation is given by [157],

φ = χωl,

φ

l
= χω

=
µo

4π
6ω2

Rc

Z∗1,y,y Z
∗
1,z,y

µz(ω2
z − ω2)

, from equation 7.13 (within the -ve sign),

(7.15)

where φ is the angle of rotation, χ is the magnetoelectric coupling, ω is the frequency

of the incident radiation, and l is the distance traversed by electromagnetic radiation

in the crystal. Figure 7.9 shows the variation of φ/l with varying frequency of incident

electromagnetic radiation (ω = 0.1 to 6 THz). We have substituted R= 1 Å, c=4.95 Å,

Z∗= 0.74e C, ωz= 89 cm−1= 2.67 THz. Since trigonal bulk selenium is mono-atomic, the
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reduced mass of a phonon mode is same as the mass of a single atom [158] i.e. µz= mass

of Se= 78.96 x 1.67 X 10−27 kg. The angle of rotation diverges as ω approaches ωz, and

φ/l ≈ -3.3o/mm at ω = 2.7 THz. In the limit ω → 0, i.e. the polarization rotation vanishes

in the low frequency limit. But in the high frequency limit i.e. ω →∞, φ/l→ -0.08o/mm,

implying a constant optical response of trigonal bulk selenium in the high frequency limit.

The intrinsic absorption of selenium occurs at 375 THz with rotation as much at 300o/mm

[159], and at 88 THz with rotation of 4.8o/mm [160]. It is important to note that these

responses are at much higher frequencies and are due to electronic excitations [161], as

compared to the mechanism we predict, which is due to IR active phonons in the far

infrared region. This is essentially the Vibrational Circular Birefringence (VCB) [156]

in trigonal bulk selenium using first-principles calculations and simple electromagnetic

theory.
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Figure 7.9: Variation in the angle of rotation (per unit length) i.e. φ/l with frequency of
incident electromagnetic radiation. The electric field of the incident radiation is along the
axis of the Se helical chain.

7.2.5 Conclusions

We propose a theory in which polarization rotation in the far infrared region of the electro-

magnetic spectrum originates from IR active phonons of trigonal bulk selenium. The IR

active phonon at 89 cm−1 couples to the electric field along the helical axis, and gives rise

to non-zero AC magentoelectric coupling. This coupling leads to rotation of polarization
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of electromagnetic waves, and explains the optical activity of trigonal bulk selenium in

far IR region. We have shown that the AC magnetoelectric coupling arises from its chiral

structure (which gives rise to IR active phonons), and not due to surface spins which are

necessary to explain the emergence of DC magnetoelectric coupling in Se microtubes/slabs.

Our observations can be summarized in the flowchart shown in Figure 7.10.

Chiral structure

Homopolar solid
IR active phonons

Optical rotation

from phonons

χzz

Magnetic field
induced

AC Magnetoelectric coupling
from phonons:

Figure 7.10: Flowchart depicting the emergence of magnetoelectric coupling and polariza-
tion rotation in trigonal bulk Se. Note that, the magnetoelectric coupling arises purely
due the chiral structure of bulk Se, and does not involve surface spins.
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Chapter 8

Summary

The central theme of this dissertation has been to elucidate the role played by defects

in the modification of physical properties and behaviour of two dimensional as well as

bulk materials. The compounds studied in this thesis are not only technologically impor-

tant, but are also fundamentally interesting as they exhibit unusual phenomena involving

fascinating physics. We have employed a combination of first-principles density theoreti-

cal calculations, modeling and phenomenological (eg. Landau) theory in our analysis to

achieve this task.

We show that Stone-Wales (SW) defects in graphene and at the interface of a solid so-

lution of graphene-boron nitride (C-BN) have comparable energies of formation, implying

that SW defects are also very likely to form at C-BN interfaces (in contrast to their absence

in hexagonal boron nitride). The coupling between electronic degrees of freedom, and the

structural deformation associated with an SW defect leads to a shift in the Dirac cone

from K to K+δk in graphene. Whereas, the localization of Highest Occupied Molecular

Orbital and Lowest Unoccupied Molecular Orbital at the SW defect, leads to an increased

adsorption of CH4 and CO2 gases at the C-BN interface.

We have also studied stacking faults and their effects on polytypism in silver. In this

work, we provided a possible explanation for the existence and stability of experimentally

synthesized metastable 2H (with an unusually large c-constant) and 4H polytypes of silver.

Our work shows that nesting of the Fermi surface, and unstable vibrational modes of the
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2H polytype are responsible for its rather flat energy surface. This feature of the energy

surface makes a large contribution to configurational entropy, and is likely to be a possible

cause for metastability of the observed 2H polytype (with an unusual c-constant). On the

other hand, it is observed in experiments that the 4H polytype makes a transition to 3C at

433 K. Though the exact mechanism of this phase transition is still unclear, our analysis

has shown that stacking faults in the 4H polytype do not drive the phase transition, and

other mechanisms such as local structural fluctuations and associated negative pressures

should be explored to explain it.

We have shown that anti-site defects in (Al,Ga)FeO3 compounds give rise to unequal

magnetic moments on the Fe ions, leading to the breaking of the in-plane inversion sym-

metry of the structure. This gives rise to a finite in-plane spontaneous polarization (which

is switchable by external electric field) due to a strong spin-phonon coupling in these com-

pounds. Thus, we provide a new mechanism for the emergence of multiferroic behaviour

in (Al,Ga)FeO3, which is solely dependent on the presence of anti-site defects.

Our work on the 1T-polytype of MoS2 highlights the strong coupling between its

electronic and structural degrees of freedom. The 1T polytype of MoS2 corresponds to

a stacking fault (slip in one of the S atom planes) in its ground state (2H) structure.

Nesting of the Fermi surface of 1T-MoS2, and the instability in its vibrational spectra lead

to a structural phase transition that gives rise to improper ferroelectric behaviour in the

faulted structure. Hence, our work shows that a strong coupling between electrons and

phonons gives rise to an unexpected yet robust ferroelectricity in a monolayer of MoS2,

making it the thinnest known ferroelectric [162].

Our work shows that the chiral arrangement of atoms in trigonal selenium gives rise

to coupling between its lattice and external electric field. The spin-polarized surface in

selenium arises from its unique electronic structure with non-trivial topology, reflected in

the Berry phase of π, and these surface spins couple with its IR-active phonons. This

highly unusual coupling of lattice with the electric field and surface spins gives rise to

magentoelectric coupling and multiferroic behaviour in low dimensional samples (such as

slabs or microtubes) of selenium. On the other hand, the AC-magnetoelectric coupling in
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trigonal bulk selenium is quite different, and arises from the coupling of its chiral structure

(phonons) with external electric field. This leads to rotation of the plane of polarization

of light (optical rotation) passing perpendicular to the chiral axis of the bulk.

We have summarized the work in this thesis in a schematic (see Figure 8) that brings

out the commonality and central theme of the topics covered. In summary, we highlight

how the influence of defects on the coupled motion of electronic (charge and spin) and

structural degrees of freedom (phonons and strain) give rise to unexpected physical phe-

nomena and fascinating behaviour of a material.

MoS2

Defect

Graphene
+ C−BN defect

fault
Stacking

3(Al,Ga)FeO
defect

Anti−site Spin−phonon
coupling

Multiferroic

Stacking
fault

Selenium Surface
Electronic

freedom

Coupled
degrees of Material

Stone−Wales

phonons
topology and

Phonons and 
Fermi surface

nesting

coupling
phonon
Electron−

Silver Polytypism

Property

of gas
Adsorption

spectra
and phonon
Electronic

Ferroelectricity

IR−rotation

Magnetoelectric
coupling and

Buckling,

Figure 8.1: Schematic summarizing our work presented in the thesis.
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