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Chapter 1

Introduction

For the last few decades materials science has been the at the frontier of technological

development. Today’s computer age requires the development of efficient and “smart”

materials to gain faster and quicker control over data processing and probing. This drive

is further fueled by the demand for developing novel materials that permit ever-increasing

storage density. The broad aim of this thesis is to understand and tailor the physics and

chemistry of technologically important materials using first principles methods, particu-

larly in the areas of information storage and semiconductor electronics. In this context,

we have tried to develop strategies to (1) control the magnetic properties of metal surfaces

to obtain new magnetic ordering, and (2) tune the chemical properties of semiconductor

surfaces to obtain new surface morphologies. While magnetic metal surfaces are poten-

tial candidates for spintronics applications, semiconductor surfaces are already used for

electronics applications, e.g., for the fabrication of integrated circuit chips.

In this thesis, we have primarily used density functional theory (DFT) to study the

ground state properties of systems. Such properties include the relative stability of differ-

ent phases, formation energy, surface stress, magnetic anisotropy energy, adsorption and

co-adsorption energies, energy barriers, etc. Moreover, the results from DFT are used as

inputs in order to calculate (a) the activation barriers for the minimum energy path for

a (complex) chemical reaction using the nudged elastic band (NEB) method, and (b) the

1



2 Chapter 1

Gibbs free energy of a system at finite temperature and pressure using the ab initio atom-

istic thermodynamics (AIAT) method. These methods are briefly discussed in Chapter

2.

The work in the thesis is divided into two parts: Part A deals with the magnetic

properties of surfaces (Chapters 3, 4, and 5), while Part B deals with the chemical properties

of surfaces (Chapters 6 and 7).

The motivation behind Part A of the thesis is provided by the desire to make mate-

rials for magnetic and spintronics devices. The search for such materials has been given

a boost by the discovery of the giant magnetoresistance (GMR) [1, 2] and tunnel magne-

toresistance (TMR) [3] effects, and the subsequent commercialization of GMR and TMR

by IBM through the application as magnetic read heads of computer hard drives (where

magnetization pointing up and down corresponds to ‘1’ and ‘0’ bits, respectively). In such

memory devices, thin films of magnetic materials can be used as (high-speed) read/write

heads. Devices made of such materials can have non-volatile memory by retaining the

state of the memory cell when the power is turned off, in contrast to the volatile mem-

ory in a standard dynamic random access memory (dRAM) device. In addition, such

memory devices require negligible power-consumption. Generally, magnetic thin films are

composed of one or more magnetic elements and show enhanced properties compared to

their bulk counterparts, due to the broken (crystal) symmetry and reduced coordination at

the surface. As a result of this, hybridization between the orbitals of the surface atoms is

decreased, leading to band narrowing. By the Stoner criterion [4], this can lead to a greater

tendency toward band splitting (to majority and minority bands) and thus an increase in

magnetic moments. Moreover, these magnetic thin films generally exhibit large magnetic

anisotropy energy. This makes them good candidates for applications in non-volatile mag-

netic memory devices. Also, in these systems, the Dzyaloshinskii-Moriyainteraction [5, 6]

can sometimes give rise to exotic noncollinear magnetic structures, which can possibly be

used in applications such as magnetic motors and magnetic switching devices [7, 8]. Both

the magnetic anisotropy energy and the Dzyaloshinskii-Moriya interaction arise due to

spin-orbit coupling, which couples the spin and lattice degrees of freedom. In this thesis,
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we have theoretically predicted the stability of a new magnetic thin film system, and shown

that at least one phase in this system is a good candidate to exhibit a spin spiral state. We

also obtain insight into the factors governing the atomic and magnetic structure of such

alloys. We give below a brief summary of each Chapter of Part A.

In Chapter 3 of this thesis, we study the electronic and magnetic properties of a thin

film consisting of a monolayer of Cr on Ag(100). We find that the Cr atoms want to

go to sub-surface when placed on Ag(100), in order to reduce the surface energy of the

system. By comparing the energetics of different magnetic configurations, we find that the

Ag/Cr/Ag(100) system wants to have antiferromagnetic ordering. The magnetic moments

on Cr atoms, however, reduce by only 3% on going from the surface to the sub-surface layer.

Further, we observe that new surface states appear due to Cr deposition on Ag(100). The

calculated band structure is in excellent agreement with data from experimental angle-

resolved photoemission spectroscopy (ARPES).

In Chapter 4, we investigate the structural and magnetic properties of surface alloys

of Mn-Au on Ru(0001). By comparing the nonmagnetic and (ferro) magnetic cases, we

find that magnetism increases the miscibility of the surface alloys. Three possible driving

forces for the structural stability are considered: (i) band energy, (ii) magnetic energy

and (iii) elastic energy. We find that the most favored atomic structures can be simply ex-

plained by invoking the effective coordination number (ECN). In the nonmagnetic case, the

lowest-energy structures have high ECN, which lowers the band energy. In contrast, when

magnetism is turned on, the lowest-energy structures have low ECN, since this maximizes

magnetic moments and thus lowers the magnetic energy. The elastic energy is also shown

to be reduced in the case of ferromagnetic surface alloys compared to their non-magnetic

counterparts; this result can be explained by the magneto-volume effect, which reduces the

surface stress significantly.

In Chapter 5, we extend our study to noncollinear magnetic states, and compute the

magnetic ground state of two surface alloys: FeAu2/Ru(0001) and MnAu2/Ru(0001). For

both systems, we find that the lowest-energy magnetic configuration corresponds to a
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left-rotating spin spiral, in which the sense of rotation is determined by the Dzyaloshinskii-

Moriya interaction. These spirals are lower in energy than the ferromagnetic configu-

ration by 3–4 meV per nm2. The primary reason for the stability of the spin spiral

in FeAu2/Ru(0001) is found to be the asymmetric exchange interaction (Dzyaloshinskii-

Moriya interaction), whereas the spin spiral in MnAu2/Ru(0001) is stabilized mostly by

symmetric exchange interactions. We also find that FeAu2/Ru(0001) has a significantly

high magnetic anisotropy energy, of the order 1 meV per Fe atom. By comparing with the

corresponding freestanding alloy monolayers, we find that the presence of the Ru substrate

plays a significant role in determining the magnetic properties of the surface alloy systems.

The motivation for Part B of the thesis is provided by the microfabrication of semi-

conductor devices. With the continual drive to miniaturize electronic components, it has

become necessary to have the ability to carve out fine features on semiconductor surfaces.

At present, this is done using mainly a gas mixture containing a halogen as the etchant,

and the desired morphology is obtained using a mask [9,10]. An alternative way of etching

at small length scales could be by initially patterning the surfaces by directed self-assembly

of molecules [11], which then etch the substrate in the required pattern. In this thesis we

explore ways through which such patterning can be achieved easily; we also study the chem-

ical processes that take place during etching, in order to gain an atomistic understanding.

We give below a brief summary of each Chapter of Part B.

Chapter 6 deals with developing strategies to tune patterning conditions by co-adsorpti-

on of gases. Earlier work had shown that it is possible to pattern the Si(100) surface by

depositing Br2; however, the patterns of interest can only be obtained at very low pressures

and in a very narrow range of the phase diagram. In this chapter we explore whether it

is possible to extend the domain of stability of such patterns, and/or obtain additional

patterns, by co-adsorbing Br2 with H2. We have obtained co-adsorption energies and the

surface phase diagram as a function of the chemical potentials and partial pressures of the

two gases. To do this, we have used density functional theory calculations in combination

with ab initio atomistic thermodynamics. Over large ranges of bromine and hydrogen

chemical potentials, the favored configuration is found to be either one with only Br atoms
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adsorbed on the surface, at full coverage, in a (3× 2) pattern, or a fully H-covered surface

in a (2× 1) structure. However, we also find new patterns due to co-adsorption, as well as

regions of the phase diagram where there are configurations with either only Br atoms, or

Br and H atoms, arranged in a two-atom-wide zigzag pattern with a (4 × 2) surface unit

cell. Most interestingly, we find that by co-adsorbing with H2, we bring this pattern into a

region of the phase diagram corresponding to pressures that are significantly higher than

those where it is observed with Br2 alone. We also derive a simple equation explaining

why the pattern moves to higher partial pressures upon co-adsorption.

In order to gain an atomistic picture of etching, in Chapter 7 we have studied the

process by which atoms are removed from the Si(100) surface by Br2, via the formation

of SiBr2. We have considered two different etching conditions depending on the coverage

of molecular bromine (θBr): (a) conventional etching (at θBr ≤ 1) and (b) supersaturation

etching (at θBr > 1). For both these cases, etching of Si(100) is found to occur via

a complex sequence of reactions, featuring one or more intermediate precursors. The

barriers for these reactions are calculated either by the nudged elastic band or by the

constrained minimization methods. Comparing the effective activation barriers for Br2

with the corresponding values for Cl2 (obtained in an earlier study) at both etch conditions,

we find that Br2 is a better etchant than Cl2, i.e., many of the barriers are lower in the Br2

case than in the Cl2 case. This is primarily due to the fact that the Si-Br bond is much

weaker than the Si-Cl bond. Most importantly, we observe that the effective etch barrier for

supersaturation etching is lower compared to the effective barrier for conventional etching.

This counter-intuitive result is explained by the large steric interactions of the Br atoms.

The main findings of the thesis are summarized in Chapter 8, and an outlook for future

directions of research is presented.

The thesis also contains three appendices. In Appendix A, the relaxed configurations

obtained for the Mn-Au/Ru(0001) surface alloys in Chapter 4 (41 nonmagnetic configura-

tions and 41 magnetic configurations) are shown pictorially. In Appendix B, we discuss

the applicability of the (magnetic) force theorem while calculating energies of the spin spi-

rals of surface alloys on Ru(0001). In Appendix C (presented on a CD-ROM) we present
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animated movies displaying the etching processes dealt with in Chapter 7.



Chapter 2

Methodology

2.1 Introduction

The underlying theoretical framework used in this thesis is based on density functional

theory (DFT). DFT is a powerful method for the calculation of ground state properties,

e.g., the total energy and various related observables of a N -electron system. Among

different approaches of DFT, two techniques are used in the thesis: (i) a method that makes

use of plane-wave (PW) basis sets in conjunction with pseudopotentials (PPs) (ii) the full-

potential linearized augmented plane-wave (FLAPW) method. Both these approaches are

discussed briefly in this chapter. The results from DFT calculations are used as inputs

for two other methods: (i) the ab initio atomistic thermodynamics method (AIAT) and

(ii) the nudged elastic band (NEB) method. Brief descriptions of both these methods are

also included here. While the AIAT method combines DFT with thermodynamics so as

to enable one to calculate the Gibbs free energy of a system, the NEB method is used

to obtain the activation barrier for a reaction pathway connecting two stable geometries

obtained using DFT.

2.2 Density Functional Theory (DFT)

The time-independent N -body Schrödinger equation is given by:

7
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Φ({R}, {r})

(2.1)

= Etot Φ({R}, {r}),

where me and e represent the mass and charge, respectively, of a free electron; MI and ZIe

denote the mass and the charge, respectively, of a nucleus I; ri and RI are the position

of the ith electron and Ith nucleus, respectively; and ~ is Planck’s constant divided by 2π.

The first two terms of Eq. (2.1) represent the kinetic energy of the electrons and nuclei,

respectively, while the last three terms denote the Coulomb interactions between electrons

and nuclei [also called the external potential, Vext(r)], electrons and electrons, and nuclei

and nuclei, respectively. The wavefunction Φ({R}, {r}) is given by:

Φ({R}, {r}) = Θ({R}) Ψ(r1, r2, . . . , rN ), (2.2)

here,Θ andΨ represent the nuclear wavefunction and an (antisymmetric)N -electron wave-

function, respectively. Etot is the energy eigenvalue of the Hamiltonian given in Eq. (2.1).

Being much lighter than the nuclei, the electrons move much faster than the nuclei.

Due to this, the motion of the nuclei [the second term on the left-hand-side of Eq. (2.1)]

can be ignored when calculating the ground state electronic structures. This is called

the Born-Oppenheimer (adiabatic) approximation [12]. Applying this approximation, the

electronic wavefunction can be solved for fixed positions of the nuclei. Even with this

approximation, solving Eq. (2.1) becomes a computationally daunting task and “exact”

numerical solutions are only feasible for small systems (small N values).

To overcome this problem, the density functional theory (DFT) method maps the N -

body interacting problem onto an effective non-interacting single-body problem. In doing

so, DFT reduces the complexity of the problem drastically, as the basic variable is no longer

Ψ with 3N variables [see Eq. (2.2)], but the corresponding electron density n(r) with only
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three variables [see Eq. (2.5) below]. The theoretical breakthrough of the DFT formalism

is based on the Hohenberg-Kohn theorems and the subsequent Kohn-Sham formalism.

2.2.1 Hohenberg-Kohn theorems

Hohenberg and Kohn [13] were the first to formulate DFT as an “exact theory of many-

body systems”. They showed that the density n(r) contains the same information about

the N -body system as does the wavefunction Ψ, where Ψ is the ground state wavefunction

of the system. The relationship between the density and the ground state properties of the

system is given in terms of two theorems [14]:

• Theorem 1 – “For any system of interacting particles in an external potential Vext(r),

the potential Vext(r) is determined uniquely, except for a constant, by the ground

state particle density n0(r).”

• Theorem 2 – “A universal functional for the energy E[n] in terms of the density n(r)

can be defined, valid for any external potential Vext(r). For any particular Vext(r),

the exact ground state energy of the system is the global minimum value of this

functional, and the density n(r) that minimizes the functional is the exact ground

state density n0(r).”

Mathematically, this means that for every potential Vext(r) there exists a functional

E[n]:

E[n] ≥ E[n]n=n0
and E[n]n=n0

=

(
F [n] +

∫
drVext(r)n(r)

)

n=n0

, (2.3)

where F [n] is the universal functional of the ground state density n0. The remarkable

consequence of these theorems is that in principle, it is possible to obtain all the ground

state observables without determining Ψ explicitly.

2.2.2 Kohn-Sham equations

Hohenberg and Kohn provided an existence proof of DFT, note however that the energy

functional E[n] is unknown to us. In practice, applications of DFT became feasible with



10 Chapter 2

the formulation of the Kohn-Sham (KS) equations [15]. The KS equations map an inter-

acting many-body system onto a system with non-interacting electrons which experience

an effective potential Veff due to all the other electrons. This is done by introducing an

auxiliary wavefunction ΨKS, which satisfies the following equation:

ΨKS(r1, r2, . . . , rN ) =
1√
N !

det (ψν(rν′))ν,ν′ with

∫
dr ψν′(r)

†ψν(r) = δν,ν′ , (2.4)

where ν and ν ′ are the band indices. {ψν(r)} is the set of auxiliary single-electron wave-

functions and δν,ν′ is Kronecker delta. The electronic charge density n(r) can be defined

as:

n(r) =
∑

ν(occ)

ψν(r)
†ψν(r), (2.5)

where the sum is over all occupied states.

Now if we denote the energy contributions coming from the last term on the left-hand-

side of Eq. (2.1) as EEwald, and the contributions coming from the rest of the terms as E,

such that Etot = E + EEwald, then from the Hohenberg-Kohn theorem one can write:

F [n] = Ekin[n] + EH [n] + Ex̃c[n], (2.6)

thus, E[n] = Ekin[n] + Eext[n] + EH [n] + Ex̃c[n], (2.7)

where Ekin is the kinetic energy of the interacting system, such that Ekin = Ts[n] =
∑

i

〈
Ψ| − ~

2

2me
∇2

i |Ψ
〉
. Eext, EH and Ex̃c are the energies corresponding to the external

potential (Vext), the Hartree potential (VH) and the exchange correlation potential (Vxc),

respectively. VH and Vxc are given by:

VH(r) = e2
∫

n(r′)

|r− r′| dr
′, (2.8)
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and

Vxc(r) =
δEx̃c[n(r)]

δn(r)
, (2.9)

where Ex̃c is the energy due to the exchange-correlation interaction. Eq. (2.7) can be

rewritten as:

E[n] = Ts[n] +

∫
drVext(r)n(r) +

e2

2

∫
dr dr′

n(r)n(r′)

|r− r′| + Ex̃c[n]. (2.10)

Within the KS approach the first term on the right hand side of Eq. (2.10) (i.e., the kinetic

energy) can be written as:

Ekin[n] = Ts[n] ≃ T0[n] + E
(1)
kin[n], (2.11)

where T0[n] =
∑

i

〈
ΨKS| −

~
2

2me
∇2

i |ΨKS

〉
is the kinetic energy of the non-interacting sys-

tem and E
(1)
kin[n] is a correction term and can be approximated by a simple expression.

Then Ex̃c[n] can be written as:

Ex̃c[n] = Exc[n]− E
(1)
kin[n] = Exc[n]− (Ekin[n]− T0[n]) . (2.12)

Thus, Eq. (2.10) can be rewritten as:

E[n] = T0[n] +

∫
dr Vext(r)n(r) +

e2

2

∫
dr dr′

n(r)n(r′)

|r− r′| + Exc[n,m]. (2.13)

The KS equations can now be written as:

[−~
2

2me
∇2

i + Veff (r)

]
ψν(r) = ǫνψν(r), (2.14)

where ǫν are the single-electron eigenvalues of the KS equations and Veff (r) = Vext(r) +

VH(r)+Vxc(r). The ground state energy of the system of N -electrons with ions at positions

RI can be obtained by solving Eq. (2.14). However, the exact form of the functional Exc[n]
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is unknown. Below in Section (2.2.5), we describe ways to approximate this functional.

2.2.3 Spin-polarized Kohn-Sham equations

The formalism described above does not include effects arising from the magnetic interac-

tions in a solid. In order to do so, it is necessary to include the magnetization density m(r)

along with the electron density n(r) [16]. Then the generalized form of the KS equations

becomes:

[−~
2

2me
∇2

i + Veff (r) + σ ·Beff (r)

]
ψν(r) = ǫνψν(r), (2.15)

where σ = (σx, σy, σz) are the Pauli spin-matrices. Veff is the sum of Vext, VH , and Vxc,

while Beff is the effective magnetic field consisting of two terms:

Beff (r) = Bxc(r) +Bext(r), where Bxc(r) =
δExc[n(r),m(r)]

δm(r)
, (2.16)

and Bext(r) is the external magnetic field (if present). Similar to the charge density n(r)

[see Eq. (2.5)], a magnetization density m(r) can be defined in terms of single-particle

Kohn-Sham wavefunctions:

m(r) =
∑

ν(occ)

ψν(r)
†
σψν(r). (2.17)

The total electronic energy in this case can be written as

E[n,m] = 2T0[n] +

∫
dr Vext(r)n(r) +

e2

2

∫
dr dr′

n(r)n(r′)

|r− r′| + Exc[n,m]. (2.18)

For collinear magnetic cases, e.g., for ferromagnetic and antiferromagnetic systems,

Eq. (2.15) can be represented as a diagonal Hamiltonian when ψν is expressed as two-

component spinors, one each for spin-up and spin-down electrons:
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ψν(r) =



ψ
(1)
ν (r)

ψ
(2)
ν (r)


 . (2.19)

Such a representation leads to two independent KS equations, as the spin-up and spin-

down problems can be decoupled, since the Hamiltonian becomes diagonal in spin space.

In this case, the total energy and all the other related observables become functionals of

both the electron density n(r) and the magnitude of the magnetization density |m(r)|, or

equivalently in terms of spin-up [n↑(r)] and spin-down [n↓(r)] densities as:

n(r) = n↑(r) + n↓(r) and |m(r)| = n↑(r)− n↓(r). (2.20)

Another equivalent way to include magnetic interactions into the DFT formalism is via

the density matrix approach. The advantage of using this approach is that both collinear

and noncollinear magnetism can be taken into account. Note that the spin-up and spin-

down problems cannot be solved separately in the case of noncollinear magnetism. The

energy functional of a general magnetic system can then be expressed in terms of the

density matrix ρ,

ρ =
1

2
(nI2 + σ ·m) =

1

2




n+mz mx − imy

mx − imy n−mz,


 (2.21)

or equivalently,

ραβ(r) =
1

2
(n(r)δαβ +m · σαβ) =

∑

ν(occ)

ψ(α)
ν

∗
ψ(β)
ν , where α, β ∈ 1, 2, (2.22)

and I2 is the 2×2 identity matrix. In this case the effective potential V can also be written

as:

V = VeffI2 + µBσ ·Beff . (2.23)

In the case of a collinear calculation, the direction of Beff can be chosen to be along the
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z-axis for numerical simplicity.

2.2.4 Relativistic Kohn-Sham equation

To take into account the relativistic effects of the electrons it is necessary to solve the Dirac

equation instead of the Schrödinger equation. Staring from the Dirac equation, a relativistic

density functional theory is developed [17]. The relativistic Kohn-Sham equation is given

by:

(
cα · p+ βmec

2 + Veff (r) +Bxc · σ
)
ψν(r) = Eνψν(r), (2.24)

where c is the velocity of light, p is the momentum operator, Eν = ǫν +mec
2 is the sum

of the eigenvalue and the rest mass energy, and α and β are 4× 4 matrices given by:

α =



0 σ

σ 0


 (2.25)

and

β =



I2 0

0 −I2


 . (2.26)

ψν is the 4-component vector:

ψν(r) =




ϕ↑
ν(r)

ϕ↓
ν(r)

χ↑
ν(r)

χ↓
ν(r)




. (2.27)

where ↑ and ↓ denote the spin-up and spin-down electrons, respectively, and ϕν and χν

are large and small components of the wavefuntion, respectively.

The Hamiltonian in Eq. (2.24) can be rewritten as the sum of three terms: the Hamil-

tonian of the spin-polarized KS equations HSP , the contributions coming from spin-orbit
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interaction HSO and the contribution coming from the relativistic terms other than the

spin-orbit (mass-velocity, Darwin, and non-hermitian)H1. In the scalar relativistic approx-

imation HSO is neglected. This is particularly useful in the case of the collinear magnetic

structures with spin-quantization axis parallel to the z-axis, since the scalar relativistic

Hamiltonian HSP +H1 becomes block-diagonal.

2.2.5 Exchange-correlation functionals

The first approximation that goes into DFT is the approximation for the exchange-correlation

(XC) functional. The simplest one is the local density approximation (LDA), where the

XC functional is given by [18]:

ELDA
xc [n(r)] =

∫
n(r) fxc (n(r)) dr, (2.28)

where fxc(n(r)) is the exchange-correlation energy density of a homogeneous electron gas.

It is important to note that fxc is not a functional, but a function of n(r). In this case the

function fxc depends locally upon the density. For magnetic systems, the LDA approach

has been modified by taking into account the magnetization density m(r) along with the

electron density n(r). This modified approach is called the local spin density approximation

(LSDA). The LSDA XC functional can be written as:

ELSDA
xc [n(r),m(r)] =

∫
n(r) fxc (n(r), |m(r)|) dr, (2.29)

As the function fxc depends locally upon the densities at a point r, it depends only on the

magnitude of the magnetization density.

In order to deal with systems with (rapidly) spatially varying densities, improvements

to the LDA have been suggested, which are called generalized gradient approximations

(GGAs) [19, 20]. For collinear magnetization densities, this approximation has a form

given by:

EGGA
xc [n(r),m(r)] =

∫
n(r)fxc (n(r), |∇n(r)|, |m(r)|, |∇m(r)|) dr. (2.30)
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Note that putting m(r) = 0 in Eq. (2.30) one can obtain the EGGA
xc for non-magnetic

system.

These approximations have their own advantages and limitations. For instance, LDA

and LSDA are known to overbind and hence results in smaller lattice constants for bulk

materials, whereas GGA usually corrects this effect. However, the GGA is known to

underbind which results in larger lattice constants. Some properties, such as magnetic

moments, are often better estimated using the GGA.

2.2.6 Calculating the total energy

The total electronic energy is given by the functional given in Eq. (2.18). In terms of

eigenvalues of the KS equations, this equation can be rewritten as:

E[n,m] = T0[n,m] +

∫
dr Vext(r)n(r) +

e2

2

∫
dr dr′

n(r)n(r′)

|r− r′| + Exc[n,m],

=
N∑

ν=1

ǫν − Edc, (2.31)

where Edc is called the double-counting term.

Finally the total energy Etot [see Eq. (2.1)], which is used to extract the structural,

magnetic, and chemical properties of a material, can be calculated as Etot = E + Eewald,

where Eewald is the energy due to the Coulomb interaction between atomic nuclei.

2.2.7 Basis sets

Solving the KS equations become feasible in a periodic solid via expansion of the KS

wavefunctions ψk,ν(r) in terms of a complete set of known functions:

ψk,ν(r) =
∑

i

cik,ν φi(k, r), (2.32)

where φi(k, r) are called the basis functions. cik,ν are the expansion coefficients of the

wavefunction and i represents the number of basis functions taken into account.
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Such an expansion translates the eigenvalue problem of Eq. (2.15) to an algebraic

eigenvalue problem of dimension i:

(H(k)− ǫkν S(k)) ck,ν = 0 ∀ k ∈ BZ, (2.33)

where BZ refers to the Brillouin zone. H(k) and S(k) are the Hamiltonian and overlap

matrices, respectively, and they can be written as:

H(k) = Hn,n′

(k) =

∫

Ω
φ†n(k, r) H φn′(k, r) dr, (2.34)

and

S(k) = Sn,n′

(k) =

∫

Ω
φ†n(k, r) φn′(k, r) dr, (2.35)

where Ω is the volume of the unit cell. Both H(k) and S(k) are either Hermitian or real

symmetric matrices, depending on the point symmetry of the crystal structure.

In this thesis, we have used two types of basis sets (1) plane-wave basis sets (in con-

junction with pseudopotentials) and (2) linearized augmented plane-waves (LAPW) (in the

full-potential linearized augmented plane-waves method). Below we briefly discuss these

basis sets.

A. Plane-wave basis set

The wavefunction given in Eq. (2.32) can be expanded in terms of plane-waves such that:

ψk,ν =
∑

|k+G|≤Kmax

ck+G,ν exp[i(k+G) · r], (2.36)

where G represents the reciprocal lattice vectors, k is a wavevector in the first Brillouin

zone, and ν is the band index. For a periodic lattice the basis in Eq. (2.36) forms a finite

and discrete basis set (restricted by the value of Kmax) and such truncation is possible due

to the fact that the Fourier component of the potential decreases fairly rapidly. The value

of Kmax can be chosen by specifying a maximum possible value of the kinetic energy Ecut
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at each k, such that

~
2

2me
|k+G|2 < Ecut, (2.37)

This is similar to restricting oneself to only a certain number of G vectors at each k point.

The error in energy Etot arising from the truncation can be reduced by increasing the value

of Ecut. In a simple estimation, the number of plane-waves (Npw) related to Ecut at the

zone-centre is given by:

Npw =
4π

3ΩBZ
(
√
Ecut)

3, (2.38)

where ΩBZ is the volume of the first Brillouin zone.

B. LAPW basis set

Here we describe the LAPW basis set. In the LAPW method, real space is divided into

two regions: (i) spheres that are centered around each atom, called the muffin-tins (MTs)

and (ii) the remaining regions in space, called the interstitial region [see Fig. 2.1]. These

MTs are chosen such that two MT spheres do not overlap.

Muffin-tin 

Interstitial

µ 

µ' 

Figure 2.1: Schematic diagram showing division of space in the LAPW method. Maroon and blue
spheres represent the muffin-tins (MTs) of two types of atoms. The radii of the MT spheres for the
two atoms are denoted as µ and µ′, respectively. The gray region is called the interstitial region.

For conceptual simplicity, one can work with a local coordinate frame for each MT

sphere. Let us consider the µth MT sphere located at R(µ). An arbitrary vector r can be

expressed in the local coordinate frame of the µth MT sphere (in spherical polar coordi-

nates) by r − R(µ) = r(µ)(sinθ(µ)cosϕ(µ)êx + cosθ(µ)sinϕ(µ)êy + cosθ(µ)êz). The LAPW

basis function in the local frame of the MT sphere can be written as:
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φG(k, r) =





exp[i(k+G) · r] interstitial region

∑

l,m

Yl,m(θ(µ), ϕ(µ))
(
A

(µ)
l,m(k) u

(µ)
l (r(µ)) +B

(µ)
l,m(k) u̇

(µ)
l (r(µ))

)
muffin-tin sphere µ,

(2.39)

where Yl,m are the spherical harmonics. l and m are the orbital angular momentum quan-

tum number and magnetic quantum number, respectively. ul’s are the regular solutions of

the radial Schödinger equation:

(−~
2

2me

∂2

∂r2
+

−~
2

2me

l(l + 1)

r2
+ V (r)− ǫl

)
rul(r) = 0. (2.40)

u̇l are the radial derivatives of ul. ǫl are called the energy parameters. They are determined

during the self-consistency cycle from the average band energies. It is generally sufficient

to describe one value of ǫ
(µ)
l for each pair of l and µ values. The coefficients A

(µ)
l,m and B

(µ)
l,m

are determined from the continuity conditions of both ul and u̇l at the boundary of the µth

MT sphere. Note that these basis truncations are not orthogonal and care has to be taken

during diagonalization of the Hamiltonian. These basis sets are used in periodic crystals.

C. LAPW basis in slab geometry

For surfaces, one has to use a supercell so as to ensure negligible interactions between the

two periodic images along one of the three axes. In order to describe a surface thus requires

a very large supercell and a large number of basis functions. To avoid such scenarios an

extension of the LAPW basis set is introduced in Ref. [21]. In such cases, the surface is

simulated by a film/slab which is periodic and infinite along two directions, but finite along

the third direction. This is done by introducing another region called the vacuum region,

which is extended to infinity along the direction normal to the surface (see Fig. 2.2). The

basis functions in those regions are constructed from a solution of the Schrödinger equation

with aymptotically decaying potential.

The problem is solved by noting that the Bloch theorem holds only in two-dimensions.

Let us consider a slab that is periodic in the x and y directions and truncated along the z

direction (see Fig. 2.2). The unit cell (shown by blue) for this slab is extended to infinity
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in the z direction due to the finite size of the slab in that direction. We can represent the

in-plane components of a vector (along x and y) as “‖” and the out-of-plane component

of a vector (along z) as “⊥”. The interstitial region extends from −D/2 to D/2 along the

z direction. For greater variational freedom, k⊥ is defined not in terms of D, but in terms

of D̃, such that k⊥ =
2πM

D̃
with D̃ > D.

In this case the modified LAPW basis set can be written as:

φG(k, r) =





exp[i(k‖ +G‖)r‖] exp[ik⊥z] interstitial region

∑

l,m

Yl,m(θ(µ), ϕ(µ))
(
A

(µ)
l,m(k) u

(µ)
l (r(µ)) +B

(µ)
l,m(k) u̇

(µ)
l (r(µ))

)
muffin-tin sphere µ

exp[i(k‖ +G‖)r‖]
(
A

(η)
vac(k‖) u

(η)
vac(rz) +B

(η)
vac(k‖) u̇

(η)
vac(rz)

)
vacuum region η,

(2.41)

x

zvacuum

vacuum

muffin tin

interstitial

D/2

D/2

-D/2

-D/2

Figure 2.2: Schematic diagram showing division of space in LAPW slab calculation. The slab
is periodic in the x and y directions and truncated in the z direction. The unit cell, shown by
blue, is periodic along x and y directions, whereas in the z-direction, it is extended to infinity. The
interstitial region extends from −D/2 to D/2. For greater variational freedom, D̃ is choosen greater

than D such that k⊥ =
2πM

D̃
, where M is an integer.
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2.2.8 Plane-wave and pseudopotentials method

The plane-wave basis functions are conceptually simple as well as have numerous numerical

advantages. As the basis does not depend on the atomic positions (unlike localized basis

sets), it is possible to calculate the charge density for different systems with the same degree

of accuracy. In addition, being orthogonal and diagonal in momentum space, the plane-

waves make the integration of the Poisson equation for the computation of the Hartree

potential very simple. However, the fast oscillations of the valence wavefunctions near the

nuclei requires a huge number of basis functions to accurately describe the properties of

the system. The energies corresponding to the core electrons (i.e., the electrons residing

very close to the nuclei) differ by orders of magnitude from the energies of the valence

electrons. Being very tightly bound to the nuclei, the core electrons do not change their

energy significantly while going from atoms to solid. However, such environmental changes

are enough to change the energies of the valence electrons, significantly.

Thus one can simplify Eq. (2.15) by eliminating the degrees of freedom associated with

the core electrons. This leads to a mapping of an all-electron frozen-core problem to an

equivalent problem involving valence electrons only. Such a mapping enables us to replace

the “true” nuclear potential with a “pseudopotential” such that (i) the lowest eigenvalues of

T+Vps are equal to the all-electron eigenvalues of the valence electrons, where T and Vps are

the kinetic energy and the pseudopotential, respectively, (ii) the “pseudo” wavefunctions φl

are nodeless and both φl and
∂φl
∂l

are differentiable, (iii) φl is identical with the all-electron

wavefunction sufficiently far away from the nucleus, i.e., beyond a chosen core radius rc.

The pseudopotential which satisfies these conditions consists of two terms: an attractive

Coulomb term and a short ranged repulsive term which invokes the orthogonality condition

of the pseudo wavefunctions and the core wavefunctions.

Initially the construction of the pseudopotentials relied on the fact that the total in-

tegrated “pseudo charge-density” calculated from φl, and the corresponding all-electron

charge density are equal inside the core radius. Such psedopotentials are called norm-

conserving pseupotentials. Though such pseudopotentials are transferable (independent of

the chemical environment of the atoms), for some elements a very large plane-wave cutoff
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was required due to the highly peaked pseudo wavefunctions. In order to reduce the size

of the basis set and to have smoother wavefunctions, D. Vanderbilt [22] proposed an al-

ternative way to construct a pseudopotential and this is called the ultrasoft psedopotential

formalism. By this approach one can obtain a smoother wavefunction and thus a smaller

size of basis set, at the cost of producing an “augmented charge” to have an overall norm-

conservation to take into account the valence charge density in the core region accurately.

There are several advantages of using pseudopotentials. When using a plane-wave basis

set the size of the basis set reduces drastically, which leads to a reduction of the size of the

Hamiltonian needed to be diagonalized to solve the KS equations. Moreover, the Coulomb

singularity at the origin can be avoided by the construction of the psedupotential. However,

one must take into account the non-linear core corrections [23] for elements where the core

and the valence wavefunctions overlap considerably.

In this thesis we have performed calculations using this method in all the chapters

except for Chapter 5. We have used the Quantum ESPRESSO package for all these calcu-

lations [24].

2.2.9 Full-potential linearized augmented plane-wave (FLAPW)

method

Here, we describe an all-electron method for solving the KS equations called the full-

potential linearized augmented plane-wave (FLAPW) method. The wavefunctions used in

this method can be expanded in terms of a localized basis set which is dependent on the

positions of the atoms (described in Section 2.2.7). This method is an improvement on the

augmented plane-wave (APW) and linearized augmented plane-wave (LAPW) methods. In

the APW and LAPW methods, the potential is approximated to be spherically symmetric

inside the MT spheres and (in many implementations) the interstitial potential is set as

a constant; such constructions of the potential are called shape-approximations. In the

FLAPW method, the LAPW basis set is used by taking into account the full-potential

and charge density, i.e., without considering any shape-approximations in the interstitial

region and the muffin-tin regions.
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Such a generalization is achieved by expanding the potential in similar fashion as the

wavefunction:

V (r) =





∑
G V G

I eiG·r interstitial region

∑

l,m

V
(l,m)
MT Yl,m(r̂) muffin-tin sphere µ,

(2.42)

where V G
I eiG·r is the warped interstitial potential. The potential V

(l,m)
MT Yl,m(r̂) takes care

of both the spherical and non-spherical parts of the potential. Note that the APW/LAPW

methods use a constant interstitial potential and a spherical potential inside the muffin-

tins. This technique could not have been possible without a technique for obtaining the

Coulomb potential for a general periodic charge density without shape-approximation [25].

This method is used in Chapter 5 of this thesis to perform calculations on spin spirals.

We have used the FLAPW method as implemented in the FLEUR package [26].

2.2.10 Solving the Kohn-Sham equations self-consistently

Since the Hamiltonian in the KS equations depends on the density, which is what we need

to determine, one needs to solve the KS equations self-consistently to obtain the ground

state density, n0.

In Fig. 2.3, we present a flow chart for solving the KS equations given in Eq. (2.15)

self-consistently. Starting from initial guess densities n(r) and m(r) (or equivalently ραβ)

for a periodic system with atomic charges {Zi} and atomic positions {Ri}, the density-

dependent potentials VH(r) and Vxc(r) are calculated. Next, the eigenstates of the KS

equations are obtained. The Bloch theorem is applied for periodic systems and the Brillouin

zone is sampled by a finite mesh of wavevectors {k} (see Section 2.2.11). So, for each of

these k points the equation

Hψk,ν = ǫk,νψk,ν (2.43)

is solved in the subspace restricted by lattice-periodic functions. At the end of the self-

consistent cycle, the output densities are obtained by summing over all the occupied states
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system: {Zi} and {Ri}

Inital guess:
ραβ = 1

2 (n(r)δαβ +m · σαβ)

Compute spin-dependent po-
tential VH(r) + Vext(r) + V σ

xc

For all k points:
solve KS equations
- diagonalize H

Compute output density ραβ =
∑

ν φ
(α)
ν

∗

φ
(β)
ν with α, β ∈ 1, 2
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Done

ni+1(r)

No

Yes
Y
es

st
ru
ct
u
ra
l
o
p
ti
m
iz
a
ti
o
n
d
es
ir
ed
?

new {R}

No

Figure 2.3: Flow chart showing the self-consistency and geometric optimization loops for the
iterative solution of the KS equations. i labels the iteration. Here σ can take values ±1.

at all k points. At this stage convergence of the total energy and/or density is checked. If

convergence is not achieved, then a new charge density is calculated by mixing the newly

obtained output charge density with the old input charge density. (Note that convergence

is difficult to achieve if one uses only the newly obtained output densities.) Various mixing

schemes can be utilized, e.g., simple linear mixing:

ni+1
in = (1− α) niin + α niout (2.44)
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where α is the mixing parameter and i labels the iteration. The resultant density is again

used for the calculation of the potentials and for solving the KS equations. This iterative

cycle goes on until converged densities are obtained. Once self-consistency is achieved, one

calculates the total energy Etot (see Section 2.2.6).

2.2.11 k-point sampling and smearing technique

Fig. 2.3 shows that in order to obtain ψk,ν the KS equations are solved (iteratively) at

each k point in the Brillouin zone. To calculate the electron density n(r) and other related

quantities, in general, integration of functions over all the k points in the Brillouin zone is

required. Mostly these integrations are over the occupied states only. Such a quantity can

be written as:

1

ΩBZ

∫

BZ

∑

ν(occ)

gν(k) dk. (2.45)

Numerically the integration in Eq. (2.45) is performed on a discrete mesh of k points

in the Brillouin zone. Thus the integration gets replaced by a summation and there are

several ways to perform this summation, e.g., using a Monkhorst-Pack mesh [27], special

points [28,29] and the tetrahedron method [30,31]. In fact using symmetry one can further

consider only those k points belong to the irreducible Brillouin zone (IBZ), where each k

is assigned a weight w(k). Thus Eq. (2.45) becomes:

1

ΩBZ

∑

k∈IBZ

∑

ν(occ)

gν(k)w(k) dk. (2.46)

In order to obtain faster convergence, one can consider fewer k points by using the

smearing technique, especially for metallic systems. DFT being a zero-temperature method,

a sharp step function describes the occupation of electronic states below and above the

Fermi energy. However, using a smearing technique, one can use a smoothly varying func-

tion for the occupation of states near the Fermi energy. Some of the existing techniques

for doing theis are: Gaussian smearing [32], Methfessel-Paxton smearing [33] and Marzari-

Vanderbilt smearing [34].
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2.2.12 Calculation of the physical properties and some technical details

Once the self-consistent charge density n and total energy Etot are calculated, one can

extract various ground state properties of the system. Below we describe the procedures

to calculate some such properties which are calculated in this thesis. In addition, we also

discuss some of the technical issues when calculating the spin spirals.

A. Forces and the Hellmann-Feynman Theorem

In Fig. 2.3, we have also shown the flow chart for the structural optimization. Structural

optimization involves the minimization of the forces acting on all or some of the atoms. In

principle, these forces can be calculated using the Hellmann-Feynman theorem [35]. Thus,

the force acting on the Ith ion can be given by:

FI = −∂ 〈H(R)〉
∂RI

,

= − ∂

∂RI
〈Ψ|H(R)|Ψ〉 ,

= −
〈
∂Ψ

∂RI
|H(R)|Ψ

〉
−
〈
Ψ|∂H(R)

∂RI
|Ψ

〉
−
〈
Ψ|H(R)| ∂Ψ

∂RI

〉
,

= −
〈
Ψ|∂H(R)

∂RI
|Ψ

〉
−H

[〈
∂Ψ

∂RI
|Ψ

〉
+

〈
Ψ| ∂Ψ
∂RI

〉]
(2.47)

= −
〈
Ψ|∂H(R)

∂RI
|Ψ

〉
−H

[
∂

∂RI
〈Ψ|Ψ〉

]
(2.48)

= −
〈
Ψ|∂H(R)

∂RI
|Ψ

〉
, since 〈Ψ|Ψ〉 = 1. (2.49)

The Eq. (2.49) holds for orthogonal basis set such as plane-waves. In such situations, since

Ψ does not depend on R explicitly, the derivative of Ψ with respect to RI vanishes. The

advantage of using the Hellmann-Feynman theorem is that to perform only a single-shot

calculation (rather than multiple calculations) at a given geometry of the system.

For localized basis sets which are centered around the atoms (like the one used in

FLAPW method), in addition to Hellmann-Feyman forces other terms are required to

obtain forces that are tangential to the energy surface. Such additional forces are called
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Pulay forces [36].

B. Calculation of Stress

To calculate the stress tensor σ, the derivative of the total energy (E) with respect to

the strain (ǫ) can be calculated by making use of the Hellmann-Feynman theorem, such

that [37]

σα,β = − 1

ΩBZ

∂Etot

∂ǫα,β
= − 1

ΩBZ
〈Ψ| ∂H

∂ǫα,β
|Ψ〉, (2.50)

where α and β are the Cartesian indices, and H and Ψ are the Hamiltonian and total

wavefunction of the system, respectively. When using a plane-wave basis set, the converged

value of stress generally is achieved at higher values of Ecut [see Eq. (2.37)] than those

required for the convergence of the total energy.

C. Calculation of Magnetic Moments

The calculation of the total magnetic moment of a system is straightforward once the self-

consistent charge densities n↑ and n↓ are obtained. The total magnetic moment mtot is

given by:

mtot =

∫ EF

−∞
(n↑(r)− n↓(r)) dr, (2.51)

where EF is the Fermi energy of the system. Moreover, to obtain the contribution coming

from each atom of the system one can employ different methods depending on the basis

set used in a calculation. In the case of a plane-wave basis set, one can project the total

wavefunction onto the atomic wavefunctions in order to obtain the atom-wise contributions

to the magnetic moments. In the case of a LAPW basis set, the magnetic moment per

atom can be calculated by obtaining the wavefunction inside the MT spheres of a given

atom.
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D. Spin-orbit Coupling

As mentioned in Section 2.2.4, one of the important consequences of a relativistic treatment

is the spin-orbit coupling. The real space and the spin space get coupled via this interaction.

The spin-orbit operator can be written as:

HSO =
1

2m2
ec

2
σ · (∇Veff )× p̂, (2.52)

where p̂ is the momentum operator. Near the atomic core, Veff can be approximated by

its spherically symmetric average, i.e., Veff (r) = Veff (r). So, Eq. (2.52) can be written as:

HSO ∼ 1

2m2
ec

2r
σ · ( d

dr
Veff )r× p̂ =

1

2m2
ec

2r
σ · ( d

dr
Veff )L̂ = v(r)σ · L̂, (2.53)

where L̂ is the angular momentum operator.

Note that in the FLAPW method used in this thesis, the spin-orbit interactions are

only taken into account inside the MT spheres. This approximation is justified as the

relativistic effects are only significant near the nucleus and diminish rapidly as one moves

away from the nucleus.

E. Generalized Bloch Theorem

The Bloch theorem states that if an electron is moving in a potential which is periodic

in space, then the wavefunction of the electron is given by,

ψk,ν(r) = eik·ruk,ν(r), (2.54)

where ψk,ν(r) is the wavefunction of the electron with wavevector k and band index ν and

uk,ν(r) is a lattice periodic function such that uk,ν(R + r) = uk,ν(r), and R is a lattice

vector. The Bloch theorem enables us to perform calculations for a periodic system within

the chemical (primitive) unit cell.
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When magnetization is taken into account the wavefunction ψk,ν(r) becomes a two-

component spinor and the potential in that case is given by Eq. (2.23). In general, in

the presence of spin-orbit coupling and dipolar interactions, the spin and spatial degrees of

freedom couple, thus, the Bloch theorem no longer remains valid. However, when spin-orbit

coupling is neglected, the spin space and spatial space are decoupled.

In the case of a homogeneous spin spiral [see Chapter 5], the magnetization on each

atom remains the same while the relative orientation of the spins changes by a constant

angle from atom to atom. This means, in the absence of spin-orbit coupling, all the atoms

in a spin spiral are equivalent as they all have the same local environment. In principle, a

large supercell is required to take into account such structures, although only commensu-

rate structures can be addressed. However, the generalized Bloch theorem enables one to

perform such calculations (both commensurate and incommensurate) within the chemical

unit cell by defining a generalized translation which is a combination of a translation in

real space and a rotation in spin-space. Below, we give a proof of the theorem [38].

Let us consider a spin spiral with anticlockwise rotation angle ϕ = q·Rn, where q is the

wavevector of the spin spiral and Rn is the position of the atom n. Then, the Hamiltonian

H of the system satisfies the following relation,

H(r+Rn) = U(ϕ)H(r)U†(ϕ), (2.55)

where U(ϕ) is an unitary rotation operator. Now, we can define a generalized translation

Tn that combines a lattice translation and a spin rotation. Note that these translations

(Tn) do not belong to the usual space group but are members of the spin space group.

Applying a generalized translation to Hψ yields

TnH(r)ψ(r) = U(−ϕ)H(r+Rn)U
†(ϕ)U(−ϕ)ψ(r+Rn),

= H(r)U(−ϕ)ψ(r+Rn),

= H(r)Tnψ(r). (2.56)
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So, the generalized translation commutes with the Hamiltonian. It can be shown that the

generalized translation operators satisfy the following relation:

TnTm = TmTn = Tn+m, (2.57)

Thus, in a similar spirit to the proof of the Bloch theorem, it follows that the eigenstates

can be chosen such that,

Tnψ(r) = U(−ϕ)ψ(r+Rn) = eik·Rn , (2.58)

Eq. (2.58) can be equivalently written as:

ψk,ν(r) = e(iσzq·r/2)eik·r.



u↑k,ν(r)

u↓k,ν(r)


 . (2.59)

F. Local force theorem

Andersen’s force theorem [39, 40] states that the difference in total energy due to a small

perturbation can be calculated non-self-consistently from the self-consistent potential of the

unperturbed Hamiltonian and can be given by the difference in the sum of the (Kohn-Sham)

eigenvalues of the perturbed and unperturbed states. In the case of a magnetic system

the theorem can be applied to calculate the energy difference between two structures with

slightly different magnetization directions, e.g., to calculate the energy difference between

spin spirals of different wavelengths, or the magnetic anisotropy energy. Let us explain

this below:

Let us consider the KS equations for a Hamiltonian H such that

H[n0]ψν,n0
= ǫν,n0

ψν,n0
, (2.60)

where n0 is the ground state density. If we perturb the system slightly, the resultant

Hamiltonian can be written as H1 = H + δH, where δH is very small. In general some

such perturbation would change the density of the system, such that H1 = H1[n1]. By
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using the force theorem one can write the difference in energy between the perturbed and

the unperturbed system δE as the difference in the sum of eigenvalues of the occupied

single-electron states (band energies) calculated with the unperturbed potential/density.

Mathematically, one can write:

δE =
∑

ν

ǫFT
ν,n1

−
∑

ν

ǫν,n0
, (2.61)

where ǫFT
ν,n1

is the eigenvalue of the perturbed Hamiltonian, which has the same density as

the unperturbed Hamiltonian, such that H1[n0]ψν,n1
= ǫFT

ν,n1
ψν,n1

.

The local force theorem does not hold if the perturbation is too large, e.g., perturbation

which changes the size or shape of the unit cell.

2.3 Ab Initio Atomistic Thermodynamics

The total energies obtained from ab initio DFT calculations correspond to properties of

a system at zero temperature and pressure. If we want to go beyond this regime and

want to study the behavior of the system at finite temperature T and pressure p, we can

use the results obtained from DFT as inputs into a technique called ab initio atomistic

thermodynamics. Below we describe this method briefly.

Using ab initio atomistic thermodynamics, it is possible to construct a thermodynamic

free energy function in terms of environmental variables such as T and p. When T and

p are kept fixed during a process, the relevant thermodynamic quantity of interest is the

Gibbs free energy G(T, p), which can be expressed in terms of the chemical potentials

of the constituent atoms or molecules of the system. As an example, let us consider a

semiconductor surface in contact with “realistic” gas-phase environments. Semiconductor

surfaces often exhibit reconstruction due to rearrangement of the surface atoms (see Sec-

tion 6.2). In the presence a of gas-phase environment, the surface may interact with the

surrounding in order to saturate the dangling bonds on the surface. (This can be achieved

in a molecular beam epitaxy growth by varying the partial pressure of the gases.) In such

a reaction, the chemical potential µ measures the “rate of change” of G with respect to
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the number of adsorbate atoms/molecules. Thus µ determines the tendency of a substance

toward a reaction; with the tendency depending on the difference between values of the

chemical potentials of reactants and products. This difference vanishes when the system

is in thermodynamic equilibrium. When the system achieves thermodynamic equilibrium,

a stable mixed phase can be obtained, where the gases are adsorbed on the surface. The

resulting surface Gibbs free energy can be expressed as the sum of the contributions of

electronic, translational, rotational, and vibrational degrees of freedom. For a surface, the

translational and rotational free energies can be neglected, so the Gibbs free energy has

only two major contributions, coming from electronic and vibrational degrees of freedom.

This allows one to incorporate atomistic details, i.e., the information on the potential en-

ergy surface (PES), in the calculation of thermodynamic potential functions like the Gibbs

free energy. The surface Gibbs free energy γ, of such a system with surface area S, can be

defined as: [41, 42]

γ(T, {pi}, {Ni}) =
1

S

[
Gm(T, {pi}, {Ni})−

∑

i

µiN i

]
, (2.62)

where Gm is the total Gibbs free energy of the mixed system, which is the sum of the

vibrational energy and the total energy Etot of the mixed system. pi, µi, and Ni are

the partial pressure, chemical potential (of an atom/molecule) and the total number of

atoms/molecules of species i, present in the system.

For a multi-component system, several gases may come in contact with the surface. In

addition, the gas-phase reactions can change the environmental conditions for the surface.

However, one can imagine a situation where the gas reservoirs are separately in thermal

equilibrium with the surface, but not with each other. Such a case is called “constrained

thermodynamics”. This is valid when the gas-phase reaction between the gas reservoirs is

prohibited or at least minimal. The system being very close to equilibrium, one can still

invoke ab initio atomistic thermodynamics to obtain an idea about the probable phase

space and to identify regions where kinetics may control the material properties.

We have employed this method in Chapter 6 in order to obtain the phase diagram of
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the Si(100) surface due to co-adsorption of two gases, Br2 and H2. There we also have

listed the limitations of using this method in the context of the co-adsorption.

2.4 Nudged Elastic Band

In order to obtain the energy barriers of a chemical reaction (see Chapter 7), we have

used the nudged elastic band (NEB) method [43]. First-principles molecular dynamics (as

formulated by Car and Parrinello in 1985) determines the kinetics and the equilibrium

properties of a system that occur on time scales comparable with the characteristic time

scale of the microscopic dynamics (some picoseconds). In such cases, the relevant kinetics

is determined by the energy barriers that are low compared to the typical thermal fluctua-

tions. When the energy barriers are larger than the thermal fluctuations, then the system

spends more time within its stable states, so the transition (to overcomes the barrier) oc-

curs only rarely. Such phenomena, named as “rare events”, can no longer be studied by

molecular dynamics and new numerical techniques to deal with such phenomena are called

for.

The study of “rare events” in the context of a chemical reaction narrows down to

the identification of a transition state. The transition state on going from reactants to

products can be obtained by finding the saddle point in the PES that separates two minima

corresponding to the stable states (reactants and products). However, finding the saddle

point of a PES numerically is a challenging task. In the NEB method, a path connecting

the reactants (often called the “initial” state) and the products (often called the “final”

state) is considered to consist of a set of configurations (as a first guess, they are linearly

interpolated between reactants and products) connected by springs of zero rest-length.

These interpolated configurations are relaxed simultaneously to obtain the minimum energy

path (MEP). The MEP is a path in the configuration space; along this path the components

of the forces orthogonal to it are zero. This path is nothing but the reaction pathway

for a chemical reaction. The MEP contains the saddle point, which is identified as the

configuration having the highest energy along the path, and this configuration is called the
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transition state. This saddle point divides the MEP q, into two branches which correspond

to two steepest-descent trajectories away from the saddle point q(s = s∗), s being the

arbitrary reaction coordinate in the configuration space such that s ∈ [0, 1]. This condition

can be written as:

dq(s)

ds
=





∇V (q(s)) if s < s∗,

−∇V (q(s)) if s > s∗.

For steepest descent, the components of forces orthogonal to the MEP must be zero.

Thus, if τ(s) represents the normalized tangent vector at any point of the MEP, then the

expression for the orthogonal force can be written as:

F(q)true⊥ = ∇V (q(s))− (∇V (q(s)) · τ(s))τ(s) = 0. (2.63)

To solve Eq. (2.63), the reaction coordinate s is first made discretized and the MEP

is represented on this discretized mesh. This discretized path q(s), which was initially

represented as a “chain of images”, describes an elastic band. Note that an equivalent

condition to Eq. (2.63) is also obtained for discrete s values.

Such a process avoids collapse of the images into the two stable minima due to the

change in inter-image distances during the minimization process. Along with the “true”

forces, the images also feel a “virtual” force due to the springs, F(q)elastic. However, due to

the bending of the springs a component of F(q)elastic can appear which is orthogonal to the

path. A convergence problem arises due to this and this effect is called “corner cutting”.

In order to avoid such a situation, the elastic forces are projected along the tangent to the

MEP:

F(qi)
elastic
‖ = −κτ(s)((2qi − qi+1 − qi−1) · τ(s)), (2.64)

where the index i represents a discrete point on the path, and κ is the spring constant. qi

is called the ith image. This technique of projecting spring forces along the path is called

“nudging” the elastic band. A solution is obtained when a chain of images satisfy Eq. (2.63)
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in the presence of springs, where the evolution of each image found by the steepest-descent

algorithm, with the forces acting on the image qi at any time is given by:

F(qi) = F(qi)
true
⊥ + F(qi)

elastic
‖ . (2.65)

The role of the “virtual” springs is to keep the images on a chain equispaced. The

solution is converged to give an equal inter-image distances. The value of the elastic

constant also does not matter as long as the projection is non-zero.

2.4.1 Climbing image NEB

The technique described above gives the MEP as a solution. However, the configura-

tion corresponding to the transition state is not guaranteed. Henkelman, Uberuaga and

Jónsson [44] developed a technique to obtain an image at the saddle point. This is the

called climbing-image (CI) scheme as the image corresponding to maximum energy [q(s∗)]

is forced to move up-hill along the path tangent and down-hill along all the directions

perpendicular to the path tangent. This is obtained by setting the force on this image as:

F(q(s∗)) = Ftotal(q(s∗)) + F(q(s∗))elastic‖ (2.66)

= −∇V (q(s∗))− kτ(s∗)((2qi − qi+1 − qi−1) · τ(s∗)).

The CI-NEB is a very useful method as it provides the activation energy barrier and the

transition state coordinates, at the end of a path optimization.
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Part A

Magnetic Properties of Surfaces





Chapter 3

Electronic and magnetic structure

of thin films: Cr deposited on

Ag(100)

3.1 Introduction

Monolayers of transition metals (3d, 4d, 5d) grown on noble metal substrates are good

models to study two-dimensional magnetism. Since 3d orbitals are comparatively less

localized than 4d and 5d orbitals, the 3d transition metals show itinerant magnetism.

Among the 3d transition metals, the magnetic properties of Cr are very sensitive to the

coordination number and symmetry of the crystal, as it has half-filled 3d bands. It has been

shown that a monolayer of Cr on Cu(111) and on Au(111) has a 120◦ Néel structure [45,46],

while Cr/Au(100) favors c(2×2) antiferromagnetic ordering [47]. In all these cases, the Cr

atoms show very large magnetic moments due to negligible hybridization of Cr 3d bands

with the coinage metal d bands. Using density functional theory, in this chapter we have

studied the structural, magnetic and electronic properties of Cr deposited on Ag(100).

39
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3.2 Previous Studies

When a metal A is deposited on another metal B, the stability of the combined system

depends on the relative surface energy of the A and B surfaces. Cr having a larger surface

energy (2400 mJ/m2) compared to that of Ag (1250 mJ/m2), formation of a monolayer

of Cr on Ag(100) was expected to be unfavorable. In spite of this, in order to find a

(metastable) system which exhibits two-dimensional magnetism, there have been several

experimental and theoretical studies performed on Cr deposited on the Ag(100) surface

addressing the following questions: (1) is it possible to grow a flat monolayer of Cr on

Ag(100) at certain growth condition? (2) what is the magnetic configuration of the system

when Cr deposited on the Ag(100)? The growth of Cr on Ag(100) had drawn huge attention

due to the possibility of no intermixing at the interface, as there exists a large miscibility

gap above the melting point in the phase-diagram of Cr-Ag alloys.

The early experiments [48] suggest that indeed no alloying takes place when Cr is

deposited on Ag(100) at room temperature and epitaxial Cr can be grown on Ag(100)

[49, 50]. However, films grown at this temperature do not form a perfect monolayer as

a bilayer of Cr starts to form before completion of the first layer. Upon increasing Cr

concentration, the simultaneous formation of different multilayers was observed. This type

of growth is explained by the low mobility of adatoms at room temperature, favoring a

growth mode described by random deposition models [51].

However, upon increasing the substrate temperature to 430–450 K, Krembel et al.

showed that an ordered flat monolayer of Cr can be grown on Ag(100) [52–54]. They also

showed that their LEED images exhibit a weak but distinct c(2×2) structure, which arises

due to the exchange scattering of low-energy electrons from a structure having antiferro-

magnetic ordering [55]. The stability (of the metastable state) of flat Cr monolayer on

Ag(100) was attributed to the presence of two-dimensional antiferromagnetic ordering. At

the initial stages of growth, Cr was shown to form large two-dimensional islands with area

proportional to the Cr coverage. Upon increasing the Cr coverage to ∼ 1 ML, these islands

were shown to cover the whole surface and thus, a flat monolayer of Cr was formed on the
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surface. During growth, the Cr adatoms deposited in the second layer of the island quickly

diffuse towards the edges of the two-dimensional island, where they stick, to sustain further

growth of the flat monolayer. However, at high temperature (> 500 K) Cr deposition of

Ag(100) leads to agglomeration (formation of three-dimensional islands) of Cr atoms on

Ag(100).

The formation of a c(2×2) antiferromagnetic Cr monolayer on Ag(100) is in agreement

with the theoretical calculations of Blügel et al. [56, 57], where they have shown that the

antiferromagnetic configuration is favored by ∼ 435 meV per Cr atom with respect to the

ferromagnetic configuration. A very large magnetic moment of Cr was also reported (∼

3.8 µB) by these authors. However, the theoretically calculated band structure [58] and

the experimental ARPES spectra did not seem to agree very well.

A confusion regarding the structure of Cr on Ag(100) arose when scanning tunnel-

ing microscopy (STM) experiments failed to observe a flat monolayer structure of Cr on

Ag(100) [59]. Upon preparing a sample at 440 K, the authors of Ref. [59] showed that

irregular two-dimensional islands of Cr on Ag(100) were formed. Further, their LEED

images did not show any signature of a c(2 × 2) structure. Moreover, Lawler et al. [60]

showed from their STM measurements that even though at low temperature the growth

is characterized by multilayer formation, at high temperature an Ag overlayer starts to

cover the Cr monolayers. This picture was supported by Steadman et al. [61] who showed

that monolayer platelets of Cr get covered with Ag at high temperature. At 430 K, the Cr

monolayer was also reported to intermix partly with the Ag overlayer. In an attempt to

get rid of the confusion regarding the LEED structure, Hanf et al. [62] had repeated the

experiment and were able to reproduce a weak c(2× 2) signal. In addition, they suggested

the existence of c(2 × 2) Cr domains and multilayer patches made of p(1 × 1) Ag islands

on top of a mixed Cr-Ag phase.

In spite of all these studies, we believe that till date no conclusive study has been

performed to determine the structural and magnetic properties of Cr deposited on the

Ag(100) surface. The confusion arises due to (i) two groups reporting different LEED pat-

terns and (2) no STM data having been obtained to support the existence of Cr monolayer



42 Chapter 3

on Ag(100) surface. It is also surprising that no theoretical investigation seems to have

carried out so as to obtain an understanding of the stability of the subsurface Cr monolayer

on Ag(100). In order to develop a better understanding, we revisit the problem by per-

forming both experiments (performed by our collaborators in the group of K. S. R. Menon)

and theoretical calculations.

3.3 Experimental Motivation

Recently, low energy electron diffraction (LEED) and angle resolved photo emission spec-

troscopy (ARPES) experiments have been performed for Cr deposition on Ag(100), by
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Figure 3.1: (a)LEED images from Cr deposited on Ag(100) at room temperature for a primary
electron energy Ep of 40 eV indicating sharp p(1× 1) spots. The surface Brillouin zone and corre-
sponding symmetry directions are marked. (b) LEED images for Ep = 23 eV at room temperature
showing absence of half-order spots. (c) LEED image from Cr deposited on Ag(100) grown at 428
K (Ep = 40 eV) showing weak c(2×2) half-order spots along with integer-order spots. (d) For Ep

= 23 eV, clear half-order spots are observed. A line profile along the half-order spots (-1/2, 1/2)
and (1/2, 1/2) (boxed region) is shown in (e) for clarity. (f) Average intensity variation of the
half-order spots at 23 eV (Ep ) with sample temperature confirming the AFM order with a Nèel
temperature TN of ∼ 455 K. Images provided courtesy of K. S. R. Menon.
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our collaborators in the group of K. S. R. Menon [63]. At 428 K, the LEED images (see

Fig. 3.1) are shown to consist of four half-order spots, presumably confirming a c(2 × 2)

antiferromagnetic structure at low energies (23 eV). However, above the Néel temperature

of Cr (∼ 455 K), the intensity corresponding to these spots disappears [see Fig. 3.1(f)];

this confirms that the c(2× 2) LEED structure is related to the magnetic properties of the

Cr atoms. In addition, by varying the Cr concentration, they are able to show that the

intensity of the half-order spots becomes maximum at 1.2 ML Cr thickness. By perform-

ing ARPES experiments for the Ag(100) surface both before and after the Cr deposition,

they were able to show the appearance of new bands on the ARPES spectra after the Cr

deposition. These results also suggest that a monolayer of Ag covers the flat monolayer of

Cr at 428 K with some degree of Cr-Ag intermixing.

In this Chapter, by performing DFT calculations, we want to address the following

questions: (1) does Cr stay on the surface or does it go subsurface? (2) what is the

magnetic structure and how does it change with Cr position? (3) how does the electronic

structure change on Cr deposition?

3.4 Calculation Details and Systems

All the calculations were performed using spin-polarized density functional theory (DFT)

as implemented in the Quantum ESPRESSO code [24]. A plane-wave basis set was used to

expand the electronic wavefunctions. The kinetic energy cutoffs for the wavefunctions were

set to 40 Ry, while the cutoffs for the related charge densities were set to 400 Ry. Ultrasoft

pseudopotentials [22] were used to describe the ion-electron interactions. A generalized

gradient approximation with the Perdew-Burke-Ernzerhof form was used to approximate

the exchange-correlation functional [20].

A 15 atomic layer thick slab of Ag(100) was used to model the surface of Ag(100). We

have considered four different atomic configurations of the slab upon putting Cr mono-

layers on Ag(100) symmetrically (on both the top and bottom surfaces of the slab):

(1) Cr/Ag(100), where each surface of Ag(100) had a Cr monlayer as an overlayer, (2)



44 Chapter 3

1Ag/Cr/Ag(100), where each surface of Cr/Ag(100) system was covered by a monolayer

of Ag, (3) 2Ag/Cr/Ag(100) with two Ag layers covering each surface of Cr/Ag(100), and

(4) 3Ag/Cr/Ag(100), where each surface of Cr/Ag(100) was buried under three layers of

Ag. In order to be able to compare the energies directly, for each of these cases we have

considered a slab with 17 atomic layers. To minimize the interaction between the periodic

images along the direction normal to the surface, a vacuum separation of 17.8 Å was used.

For geometric optimization the Broyden-Fletcher-Goldfarb-Shanno algorithm was used;

all the atoms of the slab except the middle three layers were allowed to relax until the

Hellman-Feynman force on these atoms was less than 0.001 Ry/a.u. along each Cartesian

direction. For Brillouin zone sampling, Monkhorst-Pack grids [27] were used which were

commensurate with an (11× 11× 1) sampling for the 1× 1 surface unit cell. The Marzari-

Vanderbilt smearing technique [34] was used, for faster convergence, with smearing width

set equal to 0.001 Ry.

For all the calculations, the in-plane lattice constant of the slab was kept fixed at the

experimental lattice constant of Ag (= 4.09 Å). Before proceeding to perform calculations

on Ag/Cr/Ag systems, we have calculated the band structure of Ag(100) (by taking a

21 monolayer thick Ag slab) along the high symmetry directions of the two-dimensional

square Brillouin zone [see Fig. 3.2(a)]. Two surface states are found to appear in the bulk

band gap in the vicinity of the X point and are highlighted in blue color. These results are

in good agreement with previous studies [64, 65].

Ag has a face-centered (fcc) crystal structure, while Cr crystallizes in the body-centered

cubic (bcc) structure. The lattice constant of Cr is 2.88 Å. The in-plane Ag-Ag distance

in Ag(100) is (4.09/
√
2 =) 2.89 Å [a 1 × 1 surface unit cell is shown in Fig. 3.3(a) by an

orange square; note that this unit cell is rotated by 45◦ with respect to the fcc surface

unit cell]. Due to the negligible mismatch between the surface lattice constants of Ag(100)

and Cr(100), it is possible for the Cr monolayer to be pseudomorphic to Ag(100), i.e., the

lattice constant of the Cr monolayer will be in registry with that of the Ag(100) surface.

For all the four systems described above, calculations are performed for both ferromag-

netic (FM) and antiferromagnetic (AFM) configurations. The AFM configurations for all
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Figure 3.2: (a) shows the calculated band structure. The surface states that appear in the bulk
band-gap are highlighted in blue. (b) shows the high-symmetry points in the square Brillouin zone.

(a) Ag(100): 1× 1 cell (b) Cr/Ag(100):
√
2 ×

√
2

cell

Figure 3.3: (a) and (b) show the top view of the atomic arrangements in the Ag(100) and
Cr/Ag(100) systems. The green, dark gray, and light gray spheres represent the Cr, first sub-
strate layer and second substrate layer Ag atoms, respectively. The primitive surface unit cells are
indicated by solid orange lines.

four systems are shown in Fig. 3.4, where the red arrows indicate the direction of spins. In

order to directly and accurately compare the energetics of the FM and AFM configurations,

as well as of different systems, we have performed all the calculations using a
√
2 ×

√
2

surface unit cell [see Fig. 3.3(b)].

In order to compare our computed band structure with the experimental ARPES data,
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(a) Cr/Ag(100), side view (b) Cr/Ag(100), top view

Figure 3.4: The side view (a) and the top view (b) of the atomic structure of Cr/Ag(100) in
the antiferromagnetic configuration. The green and gray spheres represent the Cr and Ag atoms,
respectively. The red arrows indicate the direction of the spins. Note that here we have shown the
spins pointing in-plane; however, the out-of-plane directions of spins are also equivalent within the
present calculation.

one needs to employ a “band unfolding” scheme if the ground state of the system is an-

tiferromagnetic, i.e., when the primitive (chemical) unit cell is not sufficient to describe

the system and use of a supercell becomes mandatory. Below we describe the details of

the method to unfold band structures of DFT supercell calculations with proper spec-

tral weight. In addition, we also describe a procedure to obtain atom-wise-projection of

the bands. Combining these two methods, one can obtain meaningful insights into the

experimental ARPES data by performing DFT calculations.

3.4.1 Unfolding of band structure

Use of a supercell becomes indispensable in DFT calculations when the crystal symmetry

changes, e.g., due to doping by impurities, lattice distortions, vacancies, or when the system

exhibits a charge density wave, spin density wave, or orbital ordering. With the increase

in the supercell size, the corresponding size of the Brillouin zone (BZ) decreases. Thus the

first BZ of the primitive cell (PBZ) gets folded into the BZ of the supercell (SBZ). The
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bands in the SBZ do no match with the experimental ARPES data due to the folding; thus,

they are not very informative. So, the unfolding of the band structure corresponding to the

supercell becomes essential. The theory behind the band unfolding methodology is given

in Refs. [66–69]. Here, we only present a brief summary regarding the implementation in

a DFT plane-wave basis set method.

In order to describe the method of unfolding, let us denote all the wave-vectors in the

PBZ and SBZ as k and K, respectively and the volumes of the PBZ and SBZ as ΩPBZ and

ΩSBZ. For each K of the SBZ, there are NG number of GSBZ vectors of the supercell that

satisfy the following equation [70],

ki = K+Gi
SBZ where i = 1 . . . NG, (3.1)

where ki is any vector in the primitive BZ and NG =
ΩPBZ

ΩSBZ
.

Let us consider the single-particle Kohn-Sham states of the supercell ψSC
K,m; these can

be obtained by solving the KS equations self-consistently by performing calculations using

supercell. When using a plane-wave basis, one can write:

|ψSC
K,m〉 =

∑

{GSBZ}

cK−GSBZ,m|K−GSBZ〉, (3.2)

where m is a band index, |K − GSBZ〉 represents the plane-wave basis functions, and

cK−GSBZ,m are the plane-wave expansion coefficients. Similarly, the single-particle Kohn-

Sham states of the primitive ψPC
k,ν are written as:

|ψPC
k,ν〉 =

∑

{GPBZ}

ck−GPBZ,ν |k−GPBZ〉 (3.3)

where ν is the band index in the primitive cell. Note that the set of vectors {GPBZ} is

only a subset of {GSBZ}. Thus, Eq. (3.2) can be rewritten as:

|ψSC
K,m〉 =

∑

{GPBZ}

ck−GPBZ,m|K−GPBZ〉+
∑

{GSBZ 6=GPBZ}

cK−GSBZ,m|k−GSBZ〉 (3.4)
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Our aim is to obtain the {GPBZ} from the given set of {GSBZ}. This can be obtained

by employing a condition:

GSBZ ·A = 2πM ∀{GSBZ}, (3.5)

where M is an integer and A is a lattice vector of the primitive unit cell. Eq. (3.5) gives

non-zero contributions only for {GPBZ}.

The probability of |ψSC
K,m〉 having the same character as a primitive cell state with

wave-vector k is given by the spectral weight PK,m(k). The spectral weight then can be

obtained as [70]:

PK,m(k) =
∑

ν

〈|ψSC
K,m|ψPC

k,ν〉|2. (3.6)

As we are interested in obtaining the band structure in the PBZ, we can ignore the second

term in Eq. (3.4). Then, from Eqs. (3.3) and (3.4) we can write

PK,m(k) =
∑

{GPBZ}, ν

|cK−GPBZ,ν |4. (3.7)

As we will see below in Section 3. 5. 2, the spectral weight P is very useful to extract rich

physics of the system, which is absent in the folded band structure.

3.4.2 Projected bands

To obtain the contributions coming from the atomic states to the bands, one can write

ψSC
K,m as

ψSC
K,m =

∑

q

Aqφq, (3.8)

where {q} is the set of good quantum numbers. φq is the atomic orbital of the state q

and Aq’s are the coefficients. The probability of the wavefunction ψSC
K,m having the same
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character as a wavefunction φq is given by:

|〈φq|ψK,mSC〉|2 = |Aq|2 (3.9)

Note that here we have assumed that all the calculations are performed in the supercell.

3.4.3 Unfolded projected bands

Now to obtain the contributions coming from the atomic states to the unfolded bands, one

has to calculate the probability of the primitive cell wavefunction ψk,νPC having the same

character as a wavefunction φq. Thus, this projection can be written as:

|〈φq|ψk,νPC〉|2 = |〈φq|ψK,mSC〉〈ψK,mSC |ψk,νPC〉|2 = |Aq|2 PK,ν(k) (3.10)

In section 3.5.2, we employ this method to obtain the band structure in order to compare

with the experimental ARPES data.

3.5 Results

First, we examine the role of magnetic ordering in determining the relative stability of the

four systems considered in this study. In this work, we have restricted ourselves to collinear

magnetic ordering, i.e., ferromagnetic (FM) and antiferromagnetic (AFM) ordering. In

Section (3.5.2), for the lowest energy system, we compare our results with experimental

LEED images and ARPES data.

3.5.1 Stability and magnetic ordering

We have obtained the optimized geometries of all four systems considered here in both FM

and AFM configurations. Table. 3.1 shows the tabulated values of the relative stability of

different structures, with respect to the lowest energy structure (∆E). We find that the

most energetically favorable structure is 1Ag/Cr/Ag(100). This indicates that Cr prefers

to be buried below one monolayer of Ag. Comparing the FM and AFM configurations
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System Results for magnetic structures
FM AFM

∆E mFM
Cr ∆E mAFM

Cr

(meV/Cr atom) (µB) (meV/Cr atom) (µB)

Cr/Ag(100) 850 4.70 476 4.42
1Ag/Cr/Ag(100) 437 4.13 0 4.30
2Ag/Cr/Ag(100) 498 4.86 4 4.22
3Ag/Cr/Ag(100) 501 4.87 49 4.26

Table 3.1: Energetics of ferrromagnetic (FM) and antiferromagnetic (AFM) configurations of Cr
on Ag(100) systems studied here. ∆E denotes the energy of a given configuration with respect to
the lowest energy configuration, i.e., AFM configuration of 1Ag/Cr/Ag(100). mCr is the magnetic
moment per Cr atom in a given system.

for this structure, we find that 1Ag/Cr/Ag(100) favors AFM ordering over FM ordering.

The AFM structures of 2Ag/Cr/Ag(100) and 3Ag/Cr/Ag(100) lie higher in energy than

1Ag/Cr/Ag(100) by only 4 meV/Cr atom and 49 meV/Cr atom, respectively. Interest-

ingly, we find that for all the systems, the AFM structure lies lower in energy than the

corresponding FM structure.

In Fig. 3.5 we have plotted dij ’s, the interlayer distances between the ith and jth layers

for all the systems studied here. As we have used a symmetric slab, we have only shown

the interlayer distances up to d78. For a given system, the interlayer distances are found

to be independent of the magnetic configuration of the system. For all the systems, the

interlayer distances are observed to be sensitive to the position of the Cr atoms in the slab,

due to the interface effects.

In order to find out the reason behind the greater stability of the AFM configura-

tions in comparison to the FM configurations, we have plotted the projected density of

states (PDOS) per Cr atom in Fig. 3.6. Positive and negative values indicate the PDOS

corresponding to the majority and minority spins, respectively. The red and blue curves

represent the FM and AFM configurations, respectively. Two important features are ob-

served when we compare the FM and AFM configurations of a given system: (i) the

majority states for Cr atoms in the AFM configuration (shown by red dashed lines) near

the Fermi energy (EF ) are narrower compared to the majority states of the Cr atoms in

the FM configurations (shown by blue solid lines) and (ii) the center of the majority states
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Figure 3.5: The variation of interlayer distances for (a) Cr/Ag(100), (b) 1Ag/Cr/Ag(100), (c)
2Ag/Cr/Ag(100), and (d) 3Ag/Cr/Ag(100) in both the ferromagnetic (FM) [shown by blue circles]
and the antiferromagnetic (AFM) [shown by pink squares] configurations.

in the AFM configurations lie lower in energy than the corresponding states in the FM

configuration. Both these facts indicate that the majority band-center of the Cr atoms in

the AFM configurations lies lower in energy than the corresponding band-center in the FM

configurations; this explains the lowering of energy in the AFM configurations compared

to the FM configurations. As the minority states lie mostly above EF in all the cases, their

contribution is negligible in the energy lowering.

In Table. 3.1 we have also listed the magnetic moments per Cr atom (mCr) in all these

structures. Intuitively, one might expect thatmCr would decrease as the Cr monolayer goes

deeper and deeper into the substrate due to larger and larger hybridization with Ag layers.

Surprisingly, we find that mCr does not get reduced significantly as the Cr monolayer goes

subsurface. By plotting the projected density of states (PDOS) of the Cr 3d orbitals and

the Ag 4d orbitals (belonging to the Ag layers both above and below the Cr layer) in
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Figure 3.6: The projected density of states (PDOS) of the Cr atoms in (a) Cr/Ag(100), (b)
1Ag/Cr/Ag(100), (c) 2Ag/Cr/Ag(100), and (d) 3Ag/Cr/Ag(100) for the ferromagnetic (FM)
[shown by blue solid lines] and the antiferromagnetic (AFM) [shown by red dashed lines] config-
urations, respectively.

the AFM configurations for all the systems (see Fig. 3.7), we find that below EF , the 3d

majority states of Cr (green curve) are well separated in energy from the 4d majority states

of the nearest neighbor Ag atoms (gray filled curve). This indicates a weak hybridization

between the 3d orbitals of Cr and the 4d orbitals of Ag. For this reason, Cr atoms are

able to retain a large magnetic moment even for the 3Ag/Cr/Ag(100) system, the induced

magnetic moments on the Ag atoms being negligible (0–0.03 µB). Note that the magnetic

moments obtained by us are larger in magnitude than the values reported for Cr/Ag(100)

by Blügel et al. [71]; however, the difference between the magnetic moment in the FM and

the AFM cases are the same in our calculations and theirs.

Thus, we find that one monolayer of Cr wants to go to subsurface on Ag(100) and that

the most stable structure is 1Ag/Cr/Ag(100). The Cr atoms prefer AFM ordering rather
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Figure 3.7: The projected density of states (PDOS) of the Ag 4d states (shown by gray filled curve
for the layer above the Cr monolayer and by red dashed lines for the layer below the Cr monolayers)
and the Cr 3d states (shown by solid green lines) in the antiferromagnetic configuration of (a)
Cr/Ag(100), (b) 1Ag/Cr/Ag(100), (c) 2Ag/Cr/Ag(100), and (d) 3Ag/Cr/Ag(100).

than FM ordering. For this lowest energy configuration, below we compare our results

with the experimental results obtained from LEED and ARPES data.

3.5.2 Comparison with experimental results

Let us first focus our attention on the experimentally obtained LEED images (see Fig. 3.1).

The LEED images show both integral and half-integral spots upon deposition of Cr when

the sample is grown at 428 K. The half-order spots originate from the antiferromagnetic

exchange interaction of the low energy electrons [72,73]. From our calculation, we find that

the lowest energy structure is the AFM 1Ag/Cr/Ag(100). Thus, the appearance of the half-

integral spots can be attributed to the c(2× 2) AFM configuration of 1Ag/Cr/Ag(100).

Next, we compare our calculated band structures with the ARPES data obtained for
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Figure 3.8: (a) shows the calculated band structure of bare Ag(100) along the high symmetry
lines Γ-X-Γ. (b) shows the ARPES data along the same path for bare Ag(100). Experimental
data provided courtesy of K. S. R. Menon. EF denotes the Fermi energy. The gray scale in (a)
represents the amount of projection.

bare Ag(100) surface in Fig. 3.8 along the high-symmetry lines Γ-X-Γ. The band structure

shown in Fig. 3.8(a) is projected on the first three surface layers of the Ag(100) slab (both

top and bottom). The gray scale represents the amount of projection from the atoms of

these layers; while “white” color represents the bands with highest projection, “black”

color represents the bands with zero projection. Note that as we have used the (1 × 1)

unit cell for this calculation, no unfolding was required. We find that the calculated band

structure is in good agreement with the ARPES data obtained for bare Ag(100) surface.

In Fig. 3.9, we have plotted the calculated band structures, along with the second

derivative of the experimental ARPES data obtained for AFM 1Ag/Cr/Ag(100). In this

case, the unfolding of the band structure from the Brillouin zone of the
√
2×

√
2 unit cell

[shown by the dashed square and high symmetry points Γ′, X′ and M′ in Fig. 3.9(b)] to

the Brillouin zone of the primitive 1×1 cell [shown by the solid square and high symmetry

points Γ, X and M in Fig. 3.9(b)] cell was necessary as one cannot by any means define an

antiferromagnetic configuration in the primitive chemical unit cell. Here, the color scale

represents the amount of projection of the atomic states corresponding to the states of the

top two layers of the slab, (i.e., the overlayer Ag atoms and the second layer Cr atoms)

onto the unfolded bands [calculated using Eq. (3.10)]; while “red” color represents the
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Figure 3.9: (a) shows the calculated band structure of antiferromagnetic 1Ag/Cr/Ag(100) along
the high symmetry lines Γ-X-Γ. The surface states at X are denoted by S1, S2, S3, S4 and S5. (b)
shows the surface Brillouin zone corresponding to the 1 × 1 cell (solid square and high symmetry
points Γ, X and M) and

√
2 ×

√
2 cell (dashed square and high symmetry points Γ′, X′ and M′).

(c) shows the second derivative of ARPES data along Γ-X-Γ for 1Ag/Cr/Ag(100). Experimental
data provided courtesy of K. S. R. Menon. EF denotes the Fermi energy. The color scale in (a)
represents the amount of projection of the atomic states.
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bands with highest projection, “darkblue” color represents the bands with zero projection.

The majority and minority bands are found to be degenerate in the entire energy range

considered here. We find that the band structure gets modified significantly and additional

surface states appear in the bulk band gap of Ag [compare Figs. 3.8(a) and 3.9(a)] due to

the presence of Cr. We denote these surface states as S1, S2, S3, S4 and S5, with band

edges E − EF at −0.72 eV, −1.18 eV, −1.58 eV, −1.87 eV and −2.02 eV, respectively.

Comparing Figs. 3.9(a) 3.9(c), we find that the agreement with the calculated band

structure of 1Ag/Cr/Ag(100) is very good, except for one state with band edge E − EF

at ∼ 0.8 eV, i.e., S1. The intensity of S1 appears to be very high in the experimental

data; however, we do not observe such a high intensity for this state in the calculated band

structure. Upon taking into account the projections from the Ag layers which are below

the Cr layer, we did not observe any change in the intensity of S1. In fact, we will see

below that S1 originates primarily from the Cr atoms. As the experimental results suggest

that some degree of intermixing of Ag and Cr is possible; it may be that the high intensity

of S1 arises from Cr atoms in the surface layers, which are present due to the intermixing.

Next, we analyze the electronic properties of the surface states S1–S5 by using the

projected density of states (PDOS), and charge density profiles. As these new surface

states appear in the bulk band gap of Ag at the high symmetry point X, we have restricted

ourselves to this high symmetry point, while analyzing the electronic properties. We find

that for all the states at X, the contribution to the PDOS coming from the Cr layer is almost

the same as the total contribution of that state. This confirms that the new surface states

originate from the Cr layer. For both the majority and minority spins, we find that all the

surface states are two-fold degenerate states, except for S3, which is a 4-fold degenerate

state. Only a few Cr 3d-orbitals are found to be responsible for the formation of these new

surface states. This is clearly visible from the charge density profiles shown in Fig. 3.10

corresponding to the majority spins, with a isosurface value of 0.001 e/(a.u.3); for the

minority spins, one can obtain similar charge density profiles by interchanging the states

corresponding to the two Cr atoms in the
√
2×

√
2 unit cell Cr1 and Cr2. We find that the

state S1 mainly originates from the Cr1 3dx2−y2 , the state S2 mainly originates from the
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(a) S1, top view (b) S2, top view (c) S3, top view (d) S4, top view (e) S5, top view

(f) S1, side view1 (g) S2, side view1 (h) S3, side view1 (i) S4, side view1 (j) S5, side view1

(k) S1, side view2 (l) S2, side view2 (m) S3, side
view2

(n) S4, side view2 (o) S5, side view2

Figure 3.10: The top and side views of charge density profiles (red) corresponding to the surface states for AFM 1Ag/Cr/Ag(100) system. The
top view correspond to the x-y plane, while the side view1 and side view2 correspond to the y-z plane and x-z plane, respectively. The green and
gray spheres represent the Cr and Ag atoms, respectively. The isosurface value (shown by red) for the charge density is 0.001 electron/a.u.3.
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Cr1 3dz2 and Cr2 3dxy, S3 mainly originates from the Cr1 3dyz, S4 mainly originates from

the Cr1 3dz2 and S5 mainly originates from the Cr1 3dxy. From Fig. 3.10, we also find that

charge densities corresponding to these states decay as one moves from away from the Cr

layer, both into the bulk and into the vacuum.

In order to find out how the charge densities of the surface states decay into the vacuum,

we have plotted the planar average of the charge density for all the surface states in Fig. 3.11

for AFM 1Ag/Cr/Ag(100), as a function of distance along the z-direction. We find that

except for S3, all the surface states have a small peak just above the surface Ag layer,

with a decaying behavior into the vacuum. The peaks corresponding to the S4 and S5

surface states are higher than the peaks corresponding to S1 and S2. At the position of the

Cr layer, we find that the charge density is maximum for all the surface states; however,

we find an exception for S3. As S3 mostly contains the 3dyz state [as can be seen from

Figs. 3.10(c), 3.10(h) and 3.10(m)], the planar average of charge density for this state has

a peak both above and below the center of the Cr atoms on the second layer. We also

clearly see evidence that all the surface states decay into the bulk beyond the fourth layer.
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Figure 3.11: Variation of the planar average of the charge density (corresponding to the charge
density profile shown in Fig. 3.10) as a function of distance along the z-direction for all the sur-
face states of the AFM 1Ag/Cr/Ag(100) for the majority spins. The gray and green filled circles
represent the position of the Ag and Cr atoms of the slab along the z-direction.
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3.6 Summary

Using density functional theory, we have studied the structural, magnetic and electronic

properties of Cr deposited Ag(100). We find that Cr wants to go subsurface on Ag(100).

Considering different subsurface positions of the Cr monolayers, we find that the lowest

energy structure is the one where the Cr monolayer is buried under one monolayer of Ag.

Moreover, we find that in all the systems considered by us, Cr favors antiferromagnetic

ordering. The 3d–4d hybridization between the Cr and Ag atoms is observed to be sig-

nificantly small, even when the Cr monolayer is four layers deep into the substrate; this

is why these systems attain large magnetic moments. Several surface states appear in the

bulk band gap of Ag(100) due to Cr deposition. Our results are in excellent agreement

with LEED images. By obtaining the projected unfolded bands of AFM 1Ag/Cr/Ag(100),

and comparing with the projected band structure of Ag(100), we find that new surface

states appear in the bulk band of Ag due to Cr deposition. By analyzing our results, we

find that these new states arise purely from Cr 3d states. The calculated band structures

of bare Ag(100), as well as of AFM 1Ag/Cr/Ag(100) are in very good agreement with the

experimental ARPES data.
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Chapter 4

Origins of stability of magnetic

surface alloys: a case study of

MnxAu1−x on Ru(0001)

4.1 Introduction

In the previous chapter, we have studied the magnetic properties of an ultrathin film of A

deposited on B, where A and B are magnetic and non-magnetic elements, respectively. In

this chapter, we focus our attention on systems where two elements A and B are deposited

on a non-magnetic substrate C. The resulting ultrathin films form surface alloys of the

type, A-B/C, or more specifically, AxB1−x/C.

4.2 Surface Alloys

Bulk alloys are three-dimensional systems where two or more elements a form solid ho-

mogeneous mixture. Similarly, surface alloys are two-dimensional systems where two or

more elements form an alloy restricted to the surface layer alone. These alloys display

atomic level mixing. Initially, these materials were thought to be stabilized primarily by

the relief of surface stress due to substrate-mediated strain interactions [74]; examples of

61
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such systems of type A-B/C are monolayers of Cu-Ag and Pd-Au on Ru(0001) [75–77] and

a monolayer of Pb-Sn on Rh(111) [78].

In the case of the surface alloy of A-B/B, Mn-Cu/Cu(001), Wuttig et al. showed

that magnetism (arising from the Mn atoms) was the driving force for the stability of the

alloy [79]. By performing DFT calculations, the authors showed that interdiffusion of the

Mn atoms into the substrate Cu(001) was preferred over surface alloy formation, when

magnetic interactions were switched off [79,80].

It is important to note that surface alloys are different from alloy surfaces; the latter are

formed due to the truncation of bulk alloys. Alloy surfaces may show different stoichiometry

compared to their bulk counterparts. Surface alloys, on the other hand, are ultrathin layers

on the surface which display alloying in the surface alone, i.e., not in the bulk.

4.3 Previous Studies

It is well known that Fe and Mn have different magnetic properties. The magnetic ordering

in bulk Fe is ferromagnetic, while in bulk α-Mn the ordering is noncollinear antiferromag-

netic [81]. While Fe and Au are bulk–immiscible, Mn and Au form bulk bimetallic alloys.

These alloys exist in different stoichiometric ratios e.g., MnAu, Mn2Au, MnAu2, MnAu3,

MnAu4, Mn2Au5, and Mn3Au5 [82–89]. Mostly these alloys show antiferromagnetic or-

dering of the spins on Mn atoms, with the exception of helimagnetic and ferromagnetic

ordering for MnAu2 [82, 89] and MnAu4 [86], respectively.

A recent experimental and theoretical study by Mehendale et al. [90] showed that the

Fe-Au/Ru(0001) system forms a long-range ordered bimetallic surface alloy, which gets

stabilized by magnetism. On switching off the magnetism, the miscibility was dramati-

cally decreased. The authors also showed that at every concentration the structure with

the lowest energy was the one with the highest magnetic moment. This is particularly in-

teresting as Fe and Au are bulk–immiscible. Interestingly, on going from Fe-Au/Ru(0001)

to Fe-Au/Mo(110) [91], the results changed dramatically. The enthalpies of formation of

surface alloys were reduced, and the tendency toward long-range ordering disappeared.
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The reasons for this differing behavior were also traced back to magnetism: in particular,

the fact that Ru atoms tend to get spin polarized parallel to Fe atoms, whereas Mo atoms

get polarized antiparallel. In this work, we wish to explore the origins of the stability of

ultra-thin surface alloys of Mn-Au on Ru(0001), using DFT calculations.

This class of magnetically stabilized surface alloys of type A-B/C, where the substrate

C has an intermediate lattice constant between those of A and B, provides us the oppor-

tunity to investigate various mechanisms in operation and to obtain significant insights

into the effect of the interplay between these mechanisms. This could be achieved by sys-

tematically trying out different combinations of materials. The understanding thus gained

can then be leveraged to design surface alloys with desired properties. In this regard, it is

important to note that in previous work [90–92], the following quantities had been varied,

(i) magnetic moments on ferromagnetic A, (ii) size of non-magnetic B and (iii) substrate

C. The results from the first two studies provide ways to gauge the relative importance of

magnetic and chemical interactions, along with the stress-relief mechanism. On the other

hand, the latter study underlines the importance of magnetism by comparing the proper-

ties of Fe-Au/Ru(0001) and Fe-Au/Mo(110). As the magnetic moments on the Fe and Ru

atoms align parallel in Fe-Au/Ru(0001), while the moments on the Fe and Mo atoms align

antiparallel to each other; these two systems behave completely differently (∆H twice as

large for the former as for the latter, and also, the former shows long-range ordering, but

not the latter). Now, we want to explore what happens when we change the nature of

magnetic interactions between A atoms by replacing Fe with Mn in Fe-Au/Ru(0001).

In this work, using DFT we will attempt to gauge the relative importance of three

contributions to the alloy formation energy of Mn-Au/Ru(0001): the band energy, the

magnetic energy, and the relief of surface stress. In contrast to many studies on alloys

which make use of cluster expansions and attribute the stability of particular structures to

dominant contributions from particular terms in the cluster expansion, here we will attempt

to rationalize the appearance of certain favored structures using physical arguments.
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4.4 Calculation Details and Systems

All the calculations were performed using spin-polarized DFT as implemented in the Quan-

tum ESPRESSO package [24], which uses a plane-wave basis set. The plane-wave cutoffs

for the expansion of the electronic wavefunctions and the related charge densities were set

as 40 and 400 Ry, respectively. Ultrasoft pseudopotentials [22] were used to describe the

ion-electron interactions, while the exchange-correlation functional was approximated by a

generalized gradient approximation of the Perdew-Burke-Ernzerhof form [20]. To be able to

separate out the effects of magnetism, we have performed both spin-polarized calculations

and non-spin-polarized calculations (with spin-polarization suppressed).

To mimic the surface, we have used a slab geometry consisting of six atomic layers

of Ru stacked in hexagonal closed packed (hcp) fashion along the [0001] direction, with

a monolayer of MnxAu1−x on the top surface, where x is the concentration of Mn. In

order to minimize the interaction between periodic images along the direction normal to

the surface, a vacuum separation of about 17.4 Å was used.

To obtain optimized structures, the Broyden-Fletcher-Goldfarb-Shanno algorithm was

used; the atoms on the overlayer and the adjacent three substrate Ru layers were allowed

to relax until the Hellmann-Feynman force on each atom of these layers was less than 0.001

Ry/a.u. along each Cartesian direction. The surface stress tensor was calculated using the

Nielsen and Martin approach [37].

For Brillouin zone sampling, we have used Monkhorst-Pack k-point grids [27] commen-

surate with an (8×8) sampling for the (1×1) surface unit cell. To achieve faster convergence

we have used the Marzari-Vanderbilt smearing technique [34] with smearing width equal

to 0.01 Ry.

Use of these parameters leads to a Ru bulk lattice constant of 2.74 Å, which compares

well with the experimental value of 2.70 Å [93]. For bulk Mn in the α-Mn structure, we

have taken the nearest neighbor distances from Ref. [94].

For all our calculations we have allowed relaxation of the pseudomorphic single layer of

MnxAu1−x placed on the Ru(0001) substrate, as well as of single-component monolayers
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of Mn on Ru(0001) or Au on Ru(0001); the slab with the overlayer is assumed to be

in hcp stacking. As Ru is known to be a hard material, the diffusion of the overlayer

atoms into the substrate is considered to be unlikely and is therefore not considered. For

the alloy structures, different atomic arrangements of the overlayer atoms are taken into

account by considering all possible periodic structures containing two, three, four, and

five atoms per surface supercell, and several containing six atoms per surface supercell

(see Appendix in Ref. [91] for the algorithm used to generate these). In this way, for

MnxAu1−x/Ru(0001), with x (= 0.17, 0.2, 0.25, 0.33, 0.4, 0.5, 0.6, 0.67, 0.75, 0.8 and 0.83), 41

different structures are obtained; these are shown in Appendix A to this thesis. Further, for

each structure, calculations are performed for both non-magnetic (NM) and ferromagnetic

(FM) configurations.

Our substrate is oriented such that the x- and y-axes correspond to the [1000] and

[0110] directions, respectively, and the z-axis is [0001], which is perpendicular to the surface

plane. We have divided all the structures, according to their structural similarities, into

the following eight groups (see Appendix A):

(A) structures having a single-atom-wide stripe of Mn atoms, separated by Au atoms,

along the x-axis,

(B) structures having a more-than-one-atom-wide stripe of Mn atoms along the x-axis,

(C) structures having a single zigzag stripe of Mn atoms along the y-axis,

(D) structures having a more-than-one-atom-wide zigzag stripe of Mn atoms along the

y-axis,

(E) structures having isolated Mn atoms surrounded by Au atoms,

(F) structures having Mn dimers surrounded by Au atoms,

(G) a structure having a labyrinth-like pattern,

(H) structures with isolated Au atoms surrounded by Mn atoms.
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4.5 Results

Here, we examine the energetics of alloy formation for surface alloys of the composition

MnxAu1−x/Ru(0001), with 0 ≤ x ≤ 1. We wish to first verify whether mixed phases are

favored over phase-segregated ones. Second, we wish to estimate the relative importance of

three types of interactions that can promote the formation of surface alloys: (i) band energy,

also sometimes referred to as cohesive interactions, (ii) magnetic interactions, (iii) elastic

interactions, more specifically the relief of surface stress that arises from the mismatch

in size between overlayer atoms and the substrate. Here, we restrict ourselves to the

ferromagnetic (FM) and the non-magnetic (NM) configurations when examining these

issues.

4.5.1 Optimized structures

We have obtained the optimized geometries of all the structures considered here of Mnx-

Au1−x/Ru(0001), by performing non-spin-polarized and spin-polarized calculations for the

NM and the FM configurations, respectively.

Considering the single-component monolayers, we find that for Au/Ru(0001), the first

interlayer distance dAu
o1 (between the Au overlayer and the first Ru substrate layer) is

expanded by 14% with respect to dRu
bulk, the bulk interlayer separation in Ru, whereas for

Mn/Ru(0001), dMn
o1 is contracted by 12% in the NM case, but by only 0.4% in the FM case.

The expansion (contraction) is expected, since Au (Mn) atoms are larger (smaller) than

Ru atoms. Note that dMn
o1 increases by ∼ 13% on going from the NM to FM configuration;

it is well-known that spin-polarization increases the effective sizes of atoms.

In the case of the surface alloys, the overlayer is found to be considerably buckled, with

the Mn atoms lying closer to the Ru substrate than the Au atoms. Since the overlayer is

buckled, we cannot define a single interlayer distance, but can compute the value of do1 for

different atoms, by considering the difference in the z-coordinates of atoms in the overlayer

and first substrate layer. For Mn atoms, we find 1.81 Å ≤ do1 ≤ 2.15 Å when considering

NM configurations, and 2.14 Å ≤ do1 ≤ 2.21 Å when considering FM configurations. Once
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again, we observe an enhancement of dMn
o1 in the FM case due to the magneto-volume effect;

we will come back to this point further below while discussing the effective coordination

number.

We quantify the buckling of the alloy overlayer by db ≡ dAu
o1 − dMn

o1 . We find that

permitting spin polarization significantly reduces buckling: db ranges from 0.33 Å to 0.52

Å for NM configurations, but varies from 0.20 Å to 0.33 Å in the case of FM configurations.

The buckling of the overlayer is of particular interest since it can significantly enhance

the Dzyaloshinskii-Moriya interaction (see Chapter 5), which is an asymmetric exchange

interaction between the magnetic atoms (Mn) acting via the non-magnetic atoms (either

Au or Ru) [95].

4.5.2 Formation energy

In order to gauge the effect of magnetic interactions on MnxAu1−x/Ru(0001), we have first

computed the energy difference between the NM and the FM configurations, ∆EFM−NM,

for every structure considered by us [see Fig. 4.1(a)]. We find that ∆EFM−NM < 0 al-

ways, i.e., for all our structures, ferromagnetism is always favored over the non-magnetic

configuration.

Two features of Fig. 4.1(a) are immediately striking and demand explanation: (i)

|∆EFM−NM| increases with x, the relative concentration of Mn – this is to be expected

because as the relative proportion of Mn atoms increases, so does the magnetic moment,

and thus the energy lowering due to spin polarization, (ii) structures of a given type are

clearly grouped together in this graph. Roughly speaking, the points seem to fall into three

clusters (shown by brown dashed lines): one consisting of structures of types A, C, E, F

and G (in all these structures, on average, a Mn atom has a rather large proportion of Au

nearest-neighbors (NNs), and |∆EFM−NM| is found to be large), a second cluster consisting

of structures of type B and D (in these, on average, a Mn atoms has a large proportion of

Mn NNs and |∆EFM−NM| is found to be smaller) , and a third cluster consisting of struc-

tures of type H. While we could use hand-waving arguments, invoking the number of Mn

NNs, to explain the clustering seen in this graph, we will instead postpone the discussion
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Figure 4.1: Energetics of nonmagnetic (NM) and ferromagnetic (FM) phases of
MnxAu1−x/Ru(0001). (a) shows the energy difference ∆EFM−NM between the FM and NM config-
urations for all the structures, and, (b) and (c) show the variation of formation energy ∆H as a
function of x, for the NM and the FM configurations, respectively. The three brown dashed solid
lines in (a) are guides to the eye, showing the clustering of types of structures. The black dashed
and the solid lines in (b) and (c) indicate the NM and FM convex-hulls, respectively. The big
black circles represent the lowest energy structures at each concentration, x. See the text for the
description of the structures types A-H.

until we can put it on a more quantitative footing by discussing the effective coordination

number (ECN), coupled with our results for magnetic moments.

To find out whether MnxAu1−x forms stable alloys on Ru(0001) or not, we have next



4.5 Results 69

calculated the formation energy of the alloy with respect to phase-segregation to the single-

component phases of Mn/Ru(0001) and Au/Ru(0001). The formation energy ∆H, is given

by:

∆H = E(MnxAu1−x/Ru)− xE(Mn/Ru)− (1− x)E(Au/Ru), (4.1)

where E(X) is the total energy of system X. A negative (positive) value of ∆H implies

the formation of a stable (unstable) surface alloy. Note that to reduce errors arising from

finite Brillouin zone sampling, the same supercell and k-point grid were always used when

calculating the energies of all three systems in Eq. (4.1).

In Figs. 4.1(b) and 4.1(c), we have plotted the formation energy ∆HNM and ∆HFM,

for all the structures in the NM and the FM configurations, respectively. It is interesting

to note that: (i) in some cases ∆HNM is positive, whereas ∆HFM is always negative, (ii)

|∆HFM| ≫ |∆HNM|, and (iii) in general, the lowest energy structures differ in the NM and

FM cases (except for a few phases at large x).

Findings (i) and (ii) show that, as has been found previously for the Fe-Au/Ru(0001)

system [90, 91], here too magnetism contributes strongly to the miscibility of the surface

alloys of MnxAu1−x/Ru(0001).

At each x, a black circle indicates the structure having the lowest ∆H. In order to

come to the conclusion in point (iii) above, we look at the black circles in Figs. 4.1(b) and

4.1(c), whereupon we see that in the NM configuration, these structures are of type A,

B, D, and H, whereas in the FM configuration, they are of type C, E, F, and H. So, the

structural preferences appear to be very different for the NM and the FM configurations,

especially for 0 < x < 0.75; only at a very high concentration of Mn (for x ≥ 0.75), does

the lowest energy structure in the NM and the FM configuration become the same (type

H).

To determine which of these lowest energy structures of MnxAu1−x/Ru(0001) are stable

with respect to phase segregation, we have computed the NM and FM convex hulls [shown

by the black dashed and the solid lines in Figs. 4.1(b) and Fig. 4.1(c), respectively]. Note
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that out of the 41 structures considered by us, only four NM configurations and ten FM

configurations lie on their respective convex hulls; the remaining configurations can be

expected to phase-segregate to the two nearest phases lying on the convex hull.

In Figs. 4.2 and 4.3, we have shown the relaxed atomic geometries corresponding to

the lowest energy NM and FM structure at each x [see large black circles in Fig. 4.1(b)

and Fig. 4.1(c)]. Those structures that lie on the convex hull are indicated with a ⋆. Note

that at x = 0.83 the lowest energy FM structure lies only 2.7 meV/surface atom above

the tie line of the convex hull. As in the case of Fe-Au/Ru(0001) [91], we find that in the

NM configuration, striped structures featuring alternating stripes of Mn and Au atoms are

most favored (see Fig. 4.2). In contrast, in the FM configuration, for low x, phases with

(a) x = 0.17 (b) x = 0.2 (c) x = 0.25 (d) x = 0.33 (⋆)

(e) x = 0.4 (⋆) (f) x = 0.5 (⋆) (g) x = 0.6 (h) x = 0.67 (⋆)

(i) x = 0.75 (j) x = 0.8 (k) x = 0.83

x

y

Figure 4.2: The top views of the lowest energy structures of ∆HNM vs. x curve of
MnxAu1−x/Ru(0001) [Fig. 4.1(b)] are shown above. The blue and the golden spheres represent
the Mn and Au atoms, respectively, while the black dots represent the Ru atoms of the first sub-
strate layer. The structures that fall on the NM convex-hull are indicated by a ⋆ mark.
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(a) x = 0.17 (⋆) (b) x = 0.2 (⋆) (c) x = 0.25 (⋆) (d) x = 0.33 (⋆)

(e) x = 0.4 (⋆) (f) x = 0.5 (⋆) (g) x = 0.6 (⋆) (h) x = 0.67 (⋆)

(i) x = 0.75 (⋆) (j) x = 0.8 (⋆) (k) x = 0.83

x

y

Figure 4.3: The lowest energy structures of ∆HFM vs. x curve of MnxAu1−x/Ru(0001) [Fig.
4.1(c)] are shown above. The blue and the golden spheres represent the Mn and Au atoms, respec-
tively, while the black dots represent the Ru atoms of the first substrate layer. The structures that
fall on the FM convex-hull are indicated by a ⋆ mark.

one or two isolated Mn or Au atoms become lower in energy than the striped phases.

4.5.3 Effective coordination number and the competition between band

energy and magnetic energy

In this section, we wish to gain a physical understanding of why different kinds of structures

are favored in the NM and FM situations, as well as the origins of the stability of the surface

alloys. In order to do so, we need to examine the number of neighbors of each type that

Mn atoms, in particular, have in different structures, and how far away they are. Simply

counting the number of nearest neighbor atoms (of any type) would not suffice, yielding a

nominal coordination number of nine for any surface atom on a hcp(0001) surface. Instead,
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it is of considerable utility to define the effective coordination number of an Mn atom, given

by [96]:

ECN(Mn) =

M∑

i=1

ρTi
(|ri|)

N∑

j=1

ρbulkMn (|rj |)
, (4.2)

where in the numerator, the sum is taken over all the neighboring atoms i, of type Ti, at a

distance |ri| from an Mn atom in the overlayer. In the denominator, the sum is taken over

all the neighboring Mn atoms j, at a distance |rj | from an Mn atom of bulk Mn. ρT (|r|) is

the atomic charge density at a distance |r| from the nucleus of an isolated atom of type T ,

while M and N are the number of nearest neighbors of the Mn atom under consideration,

in MnxAu1−x/Ru(0001) and bulk Mn, respectively. In MnxAu1−x/Ru(0001), an Mn atom

can, in general, have three types of atoms as nearest neighbors, i.e., T can be any one of

Mn, Au or Ru. When computing the denominator in Eq. (4.2), we have considered the

α-Mn structure, which is the zero-temperature phase of bulk Mn. In those structures that

contain more than one kind of symmetry-inequivalent Mn atom, we compute ECN(Mn)

by taking an appropriately weighted average over the different kinds of Mn atoms. For

notational convenience, in the rest of this manuscript, we will suppress the index “Mn”

when discussing the effective coordination number, i.e., ECN ≡ ECN(Mn).

The ECN reflects the ambient electron density at the site of an Mn atom, in the spirit

of the embedded atom model or effective medium theory [97–99]. It decreases when bond

lengths increase (e.g., when neighboring atoms are of larger size, or upon switching on

exchange interactions) and/or when the number of nearest neighbors is reduced (e.g., on

going from the bulk to the surface). It also reflects the type (Mn, Au or Ru) of neighbors.

The ECN provides an ideal tool for examining two of the principal interactions that

compete in determining the stability of surface alloys, viz., the band energy Eb and mag-

netic energy Em. When the ECN is large, hybridization is enhanced, and the bandwidth is

increased. As a result, Eb ≡
∫ EF=0

−∞ ǫn(ǫ) dǫ becomes large, where ǫ runs over the electronic

energies, n(ǫ) is the electronic density of states, and EF is the Fermi energy (set equal to
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Figure 4.4: The variation of ECN, the effective coordination number of the overlayer Mn atoms,
as a function of Mn concentration x for (a) the nonmagnetic (NM) and (b) the ferromagnetic (FM)
configurations of MnxAu1−x/Ru(0001). (c) shows the variation of the Mn magnetic moments MMn,
as a function of x in the FM configuration. The points which lie on the NM and the FM convex
hulls (in Fig. 4.1(b) and Fig. 4.1(c), respectively) are shown by large black circles. See text for
description of structure types A-H. Note that the y-axis scale is different in (a) and (b).

0). Note that with this definition, Eb < 0. Note also that a large ECN would imply a

broad and low n(ǫ), and thus a low value of nNM(EF ), the (non-magnetic) density of states

at the Fermi energy. According to the Stoner model, this would disfavor ferromagnetism.

In contrast, when the ECN is low, the bandwidth is decreased, and exactly the reverse

arguments apply. Thus, in such a situation, Eb would be small and Em = −IM2 would

tend to be large, where I is the Stoner parameter, and M is the magnetic moment.

Let us first consider the non-magnetic (NM) case. In such a situation, Em = 0, and

therefore Eb prevails. One should therefore observe a tendency for the structures with

highest ECN to be favored always, in the NM case. In Fig. 4.4(a), we have plotted our

results for ECN vs. Mn concentration x, for the NM configurations. The structure found
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to have the lowest energy at each x has been circled in black. We find that for almost

every x, our expectation is borne out: the most energetically favored NM structure also

has the highest ECN. The only exceptions occur at x = 0.5 and x = 0.67, for each of which

the structure that lies lowest in energy, while having a very high ECN, does not have the

highest value of ECN among all the structures considered. In order to explain these two

exceptions, we will (further below) examine the values of surface stress.

We recall that the phases that appeared in the NM convex hull featured more-than-

one-atom-wide stripes of Mn atoms, running along either x or y. In these structures, Mn

atoms have several Mn NNs. Also, an examination of Figs. 4.2(d)–4.2(f) and 4.2(h) will

show that Mn-Mn distances are reduced considerably in such structures (resulting in a

“clustering” of Mn atoms), compared to the Ru-Ru NN distance in the substrate. For

these reasons, the ECN is significantly enhanced in these structures, and Eb (and therefore

∆HNM) becomes large and negative.

One would normally expect the structures with isolated Mn atoms to have lower

values of ECN compared to the striped structures. However, we find that in the NM

case the structures of type A (single stripes of Mn atoms along x-axis) and E (isolated

Mn atoms surrounded by Au atoms) have almost the same values of ECN. This is be-

cause increases/decreases in ECN due to neighbors in the surface plane are offset by de-

creases/increases in ECN due to longer/shorter bonds to substrate Ru atoms. For example,

at x = 0.25, the (1× 4) structure [see Fig. A1(c) in Appendix A] of type A has dMn
o1 = 1.94

Å, while the (2× 2) structure [see Fig. A.9(d) in Appendix A] of type E has dMn
o1 = 1.81 Å.

We now examine how the scenario changes in the ferromagnetic (FM) case. In Fig. 4.4(b)

we have shown how the ECN changes with x for the various structures considered by us,

in the FM case. The very first thing we notice when comparing with Fig. 4.4(a), which

plotted similar data for the NM case, is that the values of ECN have decreased [note that

the y-axis scale is different in Figs. 4.4(a) and 4.4(b)]; this is because of the expansion of

bond-lengths due to the magneto-volume effect. Second, we see that as for the NM case,

striped structures tend to have larger values of ECN than structures that feature isolated

atoms of one type surrounded by atoms of the other type. Third, and most importantly,
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we see that the position of the black circles (denoting the structures with lowest energy at

each concentration x) is completely reversed in the FM case, compared to the NM case.

Whereas we had seen above that in the absence of magnetic interactions, structures with

high ECN were favored, now it is clear that upon turning on magnetism, structures with

low ECN are favored. At every single value of x, the structure with the lowest energy is

also the one with the lowest ECN, with the exception of two values of x, where the lowest-

energy structure has either the second-lowest ECN (at x = 0.4) or the third-lowest ECN

(at x = 0.5). However, we note that in these cases, the difference in ECN between the

low-lying structures is very small, and given the assumptions made in calculating the ECN

(such as approximating the ambient electronic charge density as the sum of the atomic

charge densities of NNs), we do not consider these differences to be significant.

As briefly discussed above, a low value of ECN will lead to a high (non-magnetic)

density of states at EF , and this in turn will, by the Stoner argument, lead to a high

magnetic moment. Unambiguous evidence of the validity of this argument is provided by

Fig. 4.4(c), where we have plottedMMn, the magnetic moment per Mn atom, as a function

of Mn concentration x. We see a clear correlation between the effective coordination of

Mn atoms, as plotted in Fig. 4.4(b), and their magnetic moment, as shown in Fig. 4.4(c).

Crucially, we see that at every single value of x, the lowest energy structure also has the

largest value ofMMn. Similar behavior has also been observed previously in the case of the

Fe-Au/Ru(0001) system [90], though there the supporting evidence in the form of the ECN

was not established. The trend shown in Figs. 4.4(b) and 4.4(c) shows that the magnetic

interactions Em are dominating over the band energy Eb in the Mn-Au/Ru(0001) system,

and provide a driving force for surface alloy formation. Additional evidence of this was

already provided above by the fact that |∆H| increased significantly on going from the NM

to the FM case [see Figs. 4.1(b) and (c)].

One particular case that brings out the importance of the magneto-volume effect is the

relative position of structures of type B (more-than-one-atom wide stripes of Mn, oriented

along the x-axis; drawn as orange squares) and type H (isolated Au atoms surrounded by

Mn atoms; drawn as black dots) in Figs. 4.4(a) and (b). When the atoms in the surface
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layer do not move significantly away from the hcp hollow sites (as happens in the FM case),

structures of type B and H have very similar values of ECN. However, in the NM case, for

structures of type H, we notice that there is perceptible “clustering”, so that groups of Mn

atoms come much closer together [see, e.g., Figs. A.15(a)–(g) in Appendix A]. As a result,

for such structures the value of ECN increases, and becomes larger than for structures of

type B.

4.5.4 Role of surface stress

It has long been known that surface stress can play an important role in the formation of

surface alloys, and indeed it was long believed that the relief of surface stress provided the

main driving force for mixing at the surface [74]. We have computed the surface stress for all

the systems considered in this study. Since we used asymmetric slabs, where the overlayer

was deposited on only one side of the Ru(0001) substrate, this was done by subtracting

out the surface stress due to the clean bottom surface. The sign convention used here is

that positive/negative values of surface stress denote compressive/tensile stress.

The theoretically computed NN distances in bulk Mn, Au and Ru are 2.47, 2.96 and

2.68 Å, respectively. Thus (ignoring, temporarily, the fact that the effective size of a

surface atom can be expected to be different from that of a bulk atom) one may expect

that a monolayer of Au/Ru(0001) would be under compressive stress, but a monolayer of

Mn/Ru(0001) would be under tensile stress. Indeed, upon carrying out the computations

on Au/Ru(0001), we find that it is under compressive stress, with σxx = σyy = 0.26 eV/Å2.

In contrast, a NM monolayer of Mn/Ru(0001) is under tensile stress, with σxx = σyy =

-0.64 eV/Å2. In the FM case, since the effective size of Mn atoms at the surface increases,

this reduces the size mismatch between the substrate Ru atoms and the overlayer Mn

atoms, and these numbers are shifted upward, with σxx = σyy = 0.24 eV/Å2.

Since the two end-components have stress of opposite sign, this suggests that it should

be favorable to form mixed phases of Mn and Au on the Ru(0001) substrate, thereby

reducing the surface stress. In Fig. 4.5 we show how the diagonal components of the

surface stress tensor vary with Mn concentration x, for the various structures considered
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Figure 4.5: Plot of xx-component and yy-component of the surface stress tensor σ of
MnxAu1−x/Ru(0001) as a function of Mn concentration x in the NM [(a) and (b)] and the FM [(c)
and (d)] configurations. The structures which lie on the NM and the FM convex hulls (in Fig. 4.1(b)
and Fig. 4.1(c), respectively) are shown by large black circles.

by us, for both NM and FM configurations. Note that in the NM case, the surface stress

goes to zero for x ∼ 0.25, whereas in the FM case, the surface stress goes to zero for x ∼ 0.5.
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Note also that the range of values of surface stress exhibited by the various structures in

the FM case is much smaller than in the NM case, and the onset of ferromagnetism has

also, in most cases, considerably reduced the magnitude of the surface stress.
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Figure 4.6: Plot of xx-component vs. yy-component of the surface stress tensor σ of
MnxAu1−x/Ru(0001) in the NM [(a) and (b)] and the FM [(c) and (d)] configuration. The
σxx = σyy line is indicated by the dashed line. The structures which lie on the NM and the FM
convex hulls (in Fig. 4.1(b) and Fig. 4.1(c), respectively) are shown by large black circles.

Our results for surface stress clearly reflect the type of structure. In Figs. 4.6(a) and

(b) we have plotted σyy vs. σxx for the NM case, for the striped structures and isotropic

structures, respectively. We see in Fig. 4.6(a) that most of the points lie in the third

quadrant, reflecting biaxial tensile stress. Moreover, those structures (types A and B) that

consist of stripes running along the x direction, can only relieve stress along the y direction,

and therefore have |σxx| > |σyy|. The reverse is true for structures (types C and D) with

stripes running along the y direction, which therefore have |σyy| > |σxx|. For isotropic

structures, as expected [see Fig. 4.6(b)] we have σyy = σxx.

We are now in a position to address the question of why we had two “exceptions”, in the

NM case, to the rule that for each Mn concentration x, the highest ECN corresponded to

the lowest energy. The first exception occurred at x = 0.5, where the (3×
√
3)-C2 structure
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of type D had the highest ECN, but the (1× 4) structure of type B had the lowest energy.

On examining Fig. 4.6(a), we see that the former structure has an anisotropic surface stress

tensor, whereas the latter has a nearly isotropic surface stress tensor. We believe that this

is the reason why the latter structure is favored over the former. Similarly, at x = 0.67,

the (1 × 3) structure of type D has the highest ECN but an anisotropic surface stress

tensor, whereas the (3×
√
3)-C2 structure of type B has an almost isotropic surface stress

tensor and the lowest energy. We note that there are other well-known cases, such as the

herringbone reconstruction of Au(111) [100], where the ground state structure of a surface

is driven by the tendency to make the surface stress more isotropic.

In Figs. 4.6(c) and 4.6(d) we have plotted σyy vs. σxx for the FM case, for striped and

isotropic structures, respectively. As before, the lowest energy structures have been circled

in black. Comparing with Figs. 4.6(a) and 4.6(b), we note many points corresponding to

the striped structures along the x-axis have moved from the third quadrant to the second

quadrant: the stress along the y-direction is now compressive, whereas in the absence of

magnetism it was tensile, this is again because the effective size of Mn atoms has increased

due to the presence of magnetism. More importantly, this increase in the effective size of Mn

atoms has reduced the magnitude of surface stress considerably; the points in Figs. 4.6(c)

and 4.6(d) lie much closer to the origin than do the points in Figs. 4.6(a) and (b). Thus

for the Mn-Au/Ru(0001) system, magnetism promotes mixing in two ways: (i) since Mn

atoms can increase their magnetic moments in the mixed structures, as compared to the

phase-segregated phase, Em favors the formation of surface alloys with high moments, (ii)

the magneto-volume effect increases the relative size of Mn atoms and thus reduces the

surface stress in mixed phases.

4.6 Summary

Using DFT calculations, we have shown that MnxAu1−x/Ru(0001) forms stable surface

alloys. The stability of the alloy has been examined in the light of the band energy, the

magnetic energy and the stress-relief mechanism. We show that both the band energy
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and the magnetic energy are related to the effective coordination number (ECN); while

band energy increases as the ECN increases, the magnetic energy increases as the ECN

decreases. We see very clearly that different structures are favored in the absence and

presence of magnetism. In the non-magnetic case, at each composition, the structure

with the highest ECN is favored. In a complete reversal, upon turning on ferromagnetic

interactions, at each composition, the structure with the lowest ECN is favored. As the

ECN is rather quick and easy to estimate, this provides a convenient rule of thumbs when

trying to assemble possible structures that need to be considered when studying surface

alloys. Our analysis show that stability of this alloy is primarily dominated by magnetism.

Magnetism promotes mixing in MnxAu1−x/Ru(0001) by increasing the magnetic moments

in the alloy phases as compared to the phase-segregated phases and also by helping to

reduce the surface stress in the alloy phases via the magneto-volume effect.

Though only ferromagnetic configurations are considered here, it is possible to have an-

tiferromagnetic coupling between Mn atoms of MnxAu1−x/Ru(0001). In the next chapter,

we consider such antiferromagnetic ordering for one of the alloy composition: MnAu2-

/Ru(0001). In addition, we also consider the possibility of having a non-collinear magnetic

structure for this system, such as spin spiral.



Chapter 5

Searching for spin spirals: surface

alloys FeAu2/Ru(0001) and

MnAu2/Ru(0001)

5.1 Introduction

The spin-orbit interaction in magnetic systems leads to the possibility of stabilizing

exotic non-collinear magnetic structures, such as spin spirals induced by the Dzyaloshinskii-

Moriya (DM) interaction [5, 6]. The recent emergence of the field of spintronics has led

to additional interest in such systems. As an example, it has been suggested that the

spin torque arising from the flow of a spin-polarized current through a system where the

spins are arranged in a chiral fashion can lead to various phenomena such as the switching

of magnetization, and microwave emission [7, 8]. The spin-orbit interaction can also lead

to obtaining magnetic structures with significantly enhanced magnetic anisotropy energy

(MAE) [101]. The MAE is defined as the energy barrier that has to be overcome to orient

the magnetization oppositely, along the easy axis, by rotating it through a hard axis; for

information storage applications, it is crucial that it should have a high value, so that

stored data is not lost through thermal fluctuations. In this chapter, we use ab initio

density functional theory to explore such issues for ultrathin surface alloys, created by the

81
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co-deposition of two elements on a substrate. In particular, we obtain the magnetic ground

states of two surface alloy systems: FeAu2/Ru(0001) and MnAu2/Ru(0001), by exploring

the phase space of both collinear (ferromagnetic and antiferromagetic) and noncollinear

magnetic structures of these alloys.

5.2 Spin Spirals

In a spin spiral, the moments on all magnetic atoms have approximately the same magni-

tude, but their direction rotates by a phase factor as one proceeds from one atom to the

next, along the direction of propagation. Each spin spiral is characterized by a wavelength

λ, where λ = 2π/|q|, q being the wavevector. So, for a spin spiral with wavevector q, the

magnetic moment of a magnetic atom at position R is given by:

m(R) = m




sinα cos(q ·R)

sinα sin(q ·R)

cosα



, (5.1)

where m is the magnitude of the magnetic moment, and α is the cone angle of the spin

spiral.

In order to describe a spin spiral, in addition to a wavevector q, one must specify an

axis about which the spins rotate. In helical spin spirals, this axis of rotation is parallel to

q, whereas in cycloidal spin spirals, it is perpendicular to q. Symmetry arguments predict

that, on an isotropic surface, cycloidal spin spirals will always be lower in energy than

helical spin spirals [95,102]. In planar spin spirals, the spins are confined to a plane normal

to the rotation-axis; the Dzyaloshinskii-Moriya interaction is expected to be largest in

such a situation [5, 103]. Further, in homogeneous spin spirals, the relative angle between

neighboring spins is always a constant, whereas for an inhomogeneous spin spiral, the

relative angle between neighboring spins can vary. In this study, we restrict ourselves to

considering only homogeneous, cycloidal, planar spin spirals.
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5.3 Our Motivation

Only a few thin-film systems have been shown to display a spin spiral ground state: single

and double layers of Mn on W(110) [104,105], a single monolayer of Mn on W(001) [102], a

double monolayer of Fe on W(110) [106], and a PdFe bilayer on Ir(111) [107]. It is therefore

appealing to see whether alloying can lead to more systems of this kind.

In this study, we focus on two supported surface alloy systems, FeAu2/Ru(0001) and

MnAu2/Ru(0001). In order to better distinguish those effects that arise from the presence

of the Ru substrate, we also consider two hypothetical systems, viz., a freestanding FeAu2

monolayer, and a freestanding MnAu2 monolayer, both maintained at a nearest-neighbor

spacing equal to that in bulk Ru. Ru crystallizes in the hexagonal close packed (hcp)

structure, and thus the Ru(0001) surface has a triangular lattice, which offers an ideal

substrate to study magnetic frustration, that can lead to a variety of interesting magnetic

structures. Fe and Mn are both magnetic elements, but while bulk Fe is ferromagnetic,

bulk α-Mn is non-collinear antiferromagnetic at room temperature [81]. Moreover, while Fe

and Au are bulk-immiscible, Mn and Au form bulk alloys, such as MnAu2, which displays a

helical arrangement of the spins on Mn atoms [82,89]. When a monolayer of Fe is deposited

on Ru(0001), the resulting Fe/Ru(0001) system has a 120◦ Néel state [108]. In contrast,

Mn/Ru(0001) displays a row-wise antiferromagnetic structure [109]. FeAu2/Ru(0001) has

been shown, both experimentally and theoretically [90], to have a pseudomorphic (
√
3×

√
3)

structure, with long-range-order. In this structure, the Fe atoms in the overlayer constitute

a triangular superlattice, and every Fe atom is surrounded by six Au atoms [see Fig. 5.1(a)].

It has been shown, by density functional theory calculations, that this structure is stabilized

primarily by magnetism rather than stress relief [90]. MnAu2/Ru(0001) has a similar

structure, with the Fe atoms replaced by Mn atoms. We have shown in Chapter 4 that

this structure is also stable against phase-segregation. The presence of Au and Ru atoms

is interesting for our purpose, since they are expected to enhance spin-orbit coupling, and

thus increase both the DM interaction and the MAE.

The outline of this chapter is as follows. In Section 5.4, we describe the four systems on
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which we have carried out our calculations. Next, in Section 5.5.1, we lay out the relevant

formalism, describing separately each of the three main contributions to the total energy,

viz., the symmetric exchange energy, the Dzyaloshinskii-Moriya energy, and the magnetic

anisotropy energy. Next, in Section 5.5.2, we give the technical details of our calculations.

Our results are presented in Section 5.6. Section 5.7 contains a discussion of our results.

We present a summary in Section 5.8. In Appendix B to this thesis, we discuss issues

related to the applicability of the force theorem.

5.4 Systems

As mentioned above, in order to clearly separate out the effects of the substrate, we per-

form calculations on XAu2 layers (X = Fe or Mn), both with and without the Ru(0001)

substrate. Thus, we have studied four systems: (A) freestanding FeAu2 monolayer, (B)

freestanding MnAu2 monolayer, (C) FeAu2/Ru(0001), and (D) MnAu2/Ru(0001). Note

that in all four cases, the in-plane nearest-neighbor spacing is fixed as equal to the experi-

mental value for Ru(0001) = 2.70 Å [110].

(a)

kx

ky

Γ

K

M

(b)

Figure 5.1: System geometry in real and reciprocal space: (a) shows the top view of the alloy
monolayer, XAu2, (X = Fe or Mn) on Ru(0001). The dark (red) and light (yellow) spheres represent
X and Au atoms, respectively. The black dots indicate the topmost layer of the Ru atoms, for
those systems in which the Ru substrate is present. (b) shows the corresponding hexagonal surface
Brillouin zone and the high symmetry points Γ, M, and K.

Fig. 5.1(a) shows the top view of all four systems. The corresponding surface Brillouin

zone, along with high symmetry points, is shown in Fig. 5.1(b). When computing spin

spirals with wavevector q, the Γ point (zone center) corresponds to the ferromagnetic
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state, K corresponds to a row-wise antiferromagnetic state, and M corresponds to a 120◦

Néel state. Points in the interior of the Brillouin zone correspond to general spin spirals.

5.5 Method

5.5.1 Formalism

The total energy of a spin spiral of wavevector q is given by the sum of three terms:

Etotal(q) = ESE(q) + EDM(q) +Kavg. (5.2)

In Eq. (5.2), the first term on the right-hand-side, ESE, is the energy due to the symmetric

exchange arising from the Heisenberg-type exchange interaction. The second term, EDM,

arises from the Dzyaloshinskii-Moriya interaction. The third term, Kavg, denotes the

average value of the MAE over one wavelength λ of the spin spiral. In the absence of

spin-orbit coupling, only the first of these three terms would be present (magnetic dipole-

dipole interactions in low-dimensional systems generally being very weak). Note that

though pseudo-dipolar exchange is also symmetric, here we only focus our attention on the

Heisenberg-type symmetric exchange interactions. Throughout this chapter, the zero of

energy is defined such that ESE(q = 0) = 0. As |q| = 2π/λ, we can also write Eq. (5.2) as

a function of λ−1. Below, we describe each of the terms contributing to the total energy

in Eq. (5.2).

A. Symmetric Exchange Energy ESE

If we consider a system consisting of spins {Si}, on lattice sites i, then one can write the

contribution to the total energy from the symmetric Heisenberg exchange interaction as:

ESE = −
∑

i<j

Jij(Si · Sj), (5.3)

where the sum runs over all pairs of distinct lattice sites i and j, and Jij is the exchange

coupling constant. Note that this interaction is symmetric with respect to the exchange



86 Chapter 5

of spins between different lattice sites. If Jij > 0, ∀{i, j}, the system has a ferromagnetic

ordering; on the other, if Jij < 0, for at least one {i, j}, the system has an antiferromagnetic

ordering. However, a spin spiral state can be obtained when interactions beyond nearest

neighbors become relevant. In addition to the 2-spin interactions (as in the Heisenberg

model), higher order spin interactions can also give rise to noncollinear structures like spin

spirals. The interaction involving four lattice sites {i, j, k, l} can be expressed as:

H4-spin = −Kijkl [(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk) + (Si · Sk)(Sj · Sl)] , (5.4)

and

Hbiquad. = −Bij(Si · Sj)
2, (5.5)

where Kijkl and Bij are the hopping intergrals for 4-spin and biquadratic interactions. The

contribution to the total energy arising from H2-spin +H4-spin +Hbiquad. is denoted here as

ESE.

To calculate ESE for a spin spiral with wavevector q 6= 0 requires, in principle, the

use of a supercell. This would hugely increase the computational time, especially for spin

spirals of long wavelength. However, the use of supercells can be avoided by making use of

the generalized Bloch theorem [111]; this permits one to carry out all calculations making

use of the chemical unit cell.

There are two possible approaches for calculating ESE. The quicker, but less accurate

way, is to make use of Andersen’s force theorem, also referred to as the magnetic force

theorem or frozen force theorem [112]. This states that the change in energy due to the

presence of a small perturbation can be calculated non-self-consistently from the eigenvalue

sum, if the self-consistent solution of the unperturbed Hamiltonian is known. It is generally

assumed that the force theorem can be applied for most small perturbations, and can be

used, e.g., to calculate the energy difference δESE between two spin spirals of slightly

different wavelengths, or the MAE.

The more time-consuming, but also more accurate, approach for calculating ESE is to
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perform fully self-consistent calculations. In this approach, the ground state electronic and

magnetic densities (n0, m0) are calculated self-consistently for each spin spiral, so as to

yield a precise value for the energy difference δESE between two spin spirals of different

wavelengths.

Given the wide use of the force theorem in calculations of magnetic structure, it would

be of interest to obtain some insight into its domain of applicability, and to examine how

accurate results obtained using it, are. For this reason, we have used both the force theorem

and self-consistent approaches in this study, and present a comparison of results obtained

using the two techniques.

B. Dzyaloshinskii-Moriya Energy EDM

In an inversion-asymmetric system, such as a surface, not only the symmetric exchange

interaction, but also the antisymmetric exchange (DM) interaction becomes important,

and can play a crucial role in determining the magnetic ground state of the system [5, 6].

The energy due to the DM interaction can be written as:

EDM =
∑

i<j

Dij · (Si × Sj), (5.6)

where Dij is the DM vector, and the sum runs over distinct lattice sites {i, j}. It has

been shown that depending on the symmetry of a system, some or all components of D

may vanish [95]. The non-zero components of D can be obtained from performing spin

spiral calculations with varying q along different crystallographic directions. For planar

cycloidal spin spirals on a surface, such as those considered in this study, the component

of D along q vanishes by symmetry. However, non-zero components of D, which are

orthogonal to q, may exist. For example, if q lies along the x-axis ([110] direction), the

non-zero components of D can be Dy and Dz, whereas, if q lies along the y-axis ([110]

direction), then the non-zero components can be Dx and Dz [see Fig. 5.1(a)]. Note that

we find that the freestanding FeAu2 and MnAu2 monolayers remain completely flat, i.e.,

display no buckling, and thus, by symmetry, the DM interaction is absent for these systems.
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To obtain EDM, one can solve the Dirac equation self-consistently. To do this one would,

in principle, need to use large supercells, as the generalized Bloch theorem breaks down

in the presence of spin-orbit coupling. However, to deal with this problem, a technique

has been developed [113] to obtain EDM within the chemical unit cell, treating the spin-

orbit coupling as a small perturbation to first order. We have employed this method for

calculating EDM.

C. Magnetic Anisotropy Energy K

The magnetic anisotropy energy (MAE) is the height of the energy barrier that has to be

overcome to reverse the direction of the spin along the easy axis, and is given by:

K = Ehard-axis − Eeasy-axis, (5.7)

where Ehard-axis and Eeasy-axis are the total energies of the system with magnetization along

the hard-axis and the easy-axis, respectively, in the plane of rotation of the spins. The

MAE (K) has two contributions, KSO and Kdip, arising from the spin-orbit (SO) coupling

and the magnetic dipole-dipole interaction, respectively.

To calculate the value of KSO, one has to include the energy ESO arising from SO

coupling in Eq. (5.7). One can perform either self-consistent calculations or use the force

theorem to obtain the value of ESO. We have used both methods and compared the results.

The value of Kdip is calculated by taking the difference between the magnetostatic

energy Edip along the hard-axis and the easy-axis obtained from the SO calculation. Note

that the magnetostatic dipolar interaction by itself would always favor a situation where

the spins lie in-plane. The Edip of a magnetic dipole at position R0 with moment M0 due

to the presence of other dipoles at position {Ri}i 6=0 with moments {Mi}i 6=0 is given by:

Edip =
µB

2

2

∑

i 6=0

(Mi ·M0)R
2
i0 − 3(Ri0 ·Mi)(Ri0 ·M0)

|Ri0|5
where Ri0 = Ri −R0. (5.8)
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To obtain the total magnetostatic energy of the whole system along a magnetization

direction, Eq. (5.8) has to be evaluated for each dipole. Note that in the case of a bulk

system, Edip depends on the macroscopic shape of the system (and gives rise to shape

anisotropy); however, for magnetic thin-films, such as those considered in this study, Edip

depends only on the local orientation of the magnetic moments. This is because the sum

in Eq. (5.8) converges only if the magnetic lattice is infinite in less than 3 dimensions.

5.5.2 Calculation details

We have used density functional theory (DFT) as implemented in the Fleur code [26],

which is based on the Full-potential Linearized Augmented Plane-wave (FLAPW) method

[see Section 2.2.9]. Exchange-correlation interactions were treated using a generalized

gradient approximation of the Perdew-Burke-Ernzerhof form [20]. The muffin-tin radii of

Mn, Fe, Au and Ru were set equal to 2.56, 2.32, 2.42, and 2.32 a.u., respectively. The

cutoff for the ℓ-value of the basis set consisting of spherical harmonics was fixed at 12,

in order to expand the wavefunction inside the muffin-tins, while the ℓ-cutoff for the non-

spherical part of the Hamiltonian was chosen to be 8. The plane-wave cutoff for the basis

set used to expand the electronic wavefunction in the interstitial region was 3.6 a.u.−1;

this was increased to 4 a.u.−1 when calculating the MAE, in order to achieve the increased

accuracy necessary here. For the charge density and the exchange-correlation part of the

potential, the plane-wave cutoffs were 12.3 a.u.−1 and 10.3 a.u.−1, respectively.

We have considered two collinear magnetic configurations: ferromagnetic (FM) and

row-wise antiferromagnetic (AFM). For the freestanding XAu2 monolayer systems, the

chemical (primitive) unit cell contains three atoms: one X atom and two Au atoms. All

the calculations for the XAu2 alloy monolayers were carried out within this unit cell,

except while performing collinear magnetic calculations for the antiferromagnetic (AFM)

state. For these calculations a rectangular supercell, containing two X atoms and four

Au atoms, was used. All the atoms were relaxed until the forces on each atom were less

than 1 mHa/a.u. In both the FM and row-wise AFM configurations, we found that the

freestanding FeAu2 and MnAu2 monolayers remained completely flat upon relaxation, i.e.,
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no buckling was observed.

For the XAu2/Ru(0001) systems, the Ru(0001) substrate was modeled by a slab con-

taining six atomic layers of Ru. For geometric optimization and MAE calculations, a

symmetric slab was used, in which the alloy monolayer was placed on both sides of the

slab. When optimizing geometries, the alloy layers and the first two Ru layers were allowed

to relax, with the same force convergence criterion as used for the freestanding monolayers.

To calculate ESE and EDM in an inversion-asymmetric environment, an asymmetric slab

was used, in which the alloy monolayer was deposited on only the upper surface of the

six-layer Ru slab.

We found that for XAu2/Ru(0001), the atoms on the overlayer buckled upon relaxation,

in both FM and row-wise AFM configurations. Being larger, the Au atoms relax further

away from the substrate, while the smaller X atoms remain closer to the substrate; the

degree of buckling is quite significant. In order to quantify the degree of buckling, we

computed db = dAu−dX , where dAu and dX are the z coordinates of the Au and X atoms,

respectively. We found that for FeAu2/Ru(0001), db = 0.38 Å for both FM and AFM

configurations, while for MnAu2/Ru(0001), the values of db were 0.22 Å and 0.27 Å in the

FM and row-wise AFM configurations, respectively. This buckling plays an important role

in the DM interaction, as we will see further below.

The interlayer distance along the z-direction between the X atom and the first Ru layer

is 2.12 Å for FeAu2/Ru(0001) and 2.30 Å for MnAu2/Ru(0001). The larger value in the

latter case can be attributed to the presence of larger magnetic moments on Mn atoms

than on Fe atoms (as shown in Table 5.1 below).

The different contributions to the total energy in Eq. (5.2) differ in magnitude, and

thus require differing degrees of accuracy. For this reason, we have separately checked the

convergence of each of these contributions, with respect to the density of Brillouin zone

(k-point) sampling. In all cases, a smearing of width 0.001 Ha was used to improve the

convergence, except for the calculation of MAE, where a smaller smearing width of 0.0001

Ha was used.
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5.6 Results

We first perform collinear magnetic calculations; these are useful not only because they

might correspond to the magnetic ground state, but because the relative energies of FM

and AFM states help one to gauge the likelihood of obtaining non-collinear states such as

spin spirals. We then go on to perform calculations on spin spirals with wavevectors q

along high-symmetry directions of the Brillouin zone.

5.6.1 Collinear magnetic structures

We have considered two collinear magnetic configurations: (i) FM and (ii) row-wise AFM,

for all four systems under study. These calculations were carried out using 132 k‖-points in

the irreducible part of the surface Brillouin zone for FeAu2/Ru(0001) and MnAu2/Ru(0001),

while for FeAu2 and MnAu2 monolayers 128 k‖-points were used in the irreducible Brillouin

zone.

For the freestanding FeAu2 monolayer, we find that the FM configuration is lower

in energy than the AFM configuration, whereas for the freestanding MnAu2 monolayer,

the reverse is true. The energy difference between the two collinear magnetic structures

considered, ∆EAFM−FM, is 64 meV per Fe atom, for FeAu2, and −70 meV per Mn atom,

for MnAu2. However, when deposited on the Ru(0001) substrate, the ferromagnetic state

is lower in energy for both the Fe and Mn surface alloys; the value of ∆EAFM−FM is

found to be 62 meV per Fe atom for FeAu2/Ru(0001), and 19 meV per Mn atom for

MnAu2/Ru(0001). The fact that the stability of the magnetic structure switches from

being row-wise AFM for the freestanding monolayer, to FM for the deposited monolayer,

for MnAu2, is already an indication that the presence of the Ru substrate can play an

important role in determining the magnetic properties of the system.

In Table 5.1, we have listed the magnetic moments for the different types of atoms

in the row-wise AFM (for MnAu2 monolayers) and FM (for the other three systems)

configurations. As expected, the magnetic moments of the Fe and Mn atoms are higher in

the freestanding monolayers, where the atoms have a lower coordination than when they
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Table 5.1: The magnetic moments on the various atoms in the alloy layer, and the top two layers
of the substrate (where present), for the collinear ground state of the four systems studied. Ru(1)
and Ru(2) atoms lie in the first and second layer, respectively, of the Ru substrate. See the text for
the description of Ru(2)-I and Ru(2)-II.

Atom Magnetic moments (µB)
FeAu2/Ru FeAu2 MnAu2/Ru MnAu2

Fe/Mn 2.88 3.2 3.75 ±4.14
Au 0.02 0.04 0.02 ±0.02
Ru(1) 0.00 – −0.09 –
Ru(2)-I −0.03 – −0.02 –
Ru(2)-II −0.11 – −0.07 –

are deposited on the Ru substrate. We find that the magnetic moments on the Au atoms

tend to be aligned parallel to the X atoms, implying a ferromagnetic interaction between

them, whereas, in general, the magnetic moments on the Ru atoms in the substrate are

aligned opposite to those of the X atoms. Note that there are two inequivalent types of

Ru atoms in the second layer of the substrate, labeled as Ru(2)-I and Ru(2)-II; these are

situated directly below X and Au atoms, respectively.

Note that the values of the magnetic moments for MnAu2/Ru(0001) differ slightly from

the values reported in Chapter 4. The discrepancy presumably arises from the different

techniques used to calculate the magnetic moments: while a plane-wave pseudopotential

method was used to calculate the values in Chapter 4, here we have used the FLAPW

method. In the former method, individual atomic moments are obtained by projecting the

system’s wavefunctions onto the wavefunctions of isolated atoms, whereas in the latter, the

atomic moments are calculated by integrating the spin-polarized charge densities inside the

muffin-tin radius of a given atom.

In Fig. 5.2, we have plotted the local density of states (LDOS) for the FM FeAu2/Ru-

(0001) and MnAu2/Ru(0001) as a function of E − EF, where EF is the Fermi energy of

the system. In the upper panels [see Figs. 5.2(a) and 5.2(b)] the LDOS of the overlayer

atoms shown; the solid lines represent the LDOS per X atom and the filled curves show

the LDOS per Au atom. In the two lower panels [see Figs. 5.2(c) and 5.2(d)], the LDOS

per Ru(1) atom (solid lines) and per bulk-like Ru atom (filled curve) are plotted. In both

the systems, the LDOS per X atom shows large exchange splitting. On the other hand,
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Figure 5.2: The spin-polarized local density of states (LDOS) for ferromagnetic [(a) and (b)]
FeAu2/Ru(0001) and [(c) and (d)] MnAu2/Ru(0001): The top two panels show the LDOS for the
atoms constituting the overlayer, while the bottom two panels are for the substrate atoms. “Ru(1)”
denotes Ru atoms in the topmost substrate layer, while “Ru-bulk” denotes atoms in the middle of
the six-layer Ru substrate. The dashed vertical line indicate the position of the Fermi level EF.

the Au and Ru(1) show very small spin-polarization and thus these atoms have only very

small magnetic moments (see Table 5.1).

5.6.2 Spin spiral calculations for XAu2/Ru(0001)

We now proceed to the question of primary interest for us, viz., whether the two supported

systems, FeAu2/Ru(0001) and MnAu2/Ru(0001), exhibit a spin spiral ground state. While

doing this, we have made use of the optimized geometry obtained for the collinear ferro-

magnetic state. In presenting these results, we have separated out each contribution to the

energy [see Eq. (5.2)] of the spin spiral.

A. Results for Symmetric Exchange Energy ESE

As mentioned earlier, we have obtained ESE(λ
−1) using two possible approaches, the force

theorem (FT), and self-consistently (SC). Let us first consider the results obtained using

the former approach. For this we have used a very dense k‖-point mesh containing 6400

points in the full Brillouin zone. Since we know that the FT approach should be valid
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only for small perturbations, we perturb about a SC solution corresponding to the FM

state (i.e., q = 0), and restrict ourselves to regions of the Brillouin zone in the vicinity of

the zone center. In particular, we consider |λ−1| ≤ 0.32 nm−1 along the [110] direction,

and |λ−1| ≤ 0.75 nm−1 along [110]. Our results are shown by the open circles in Fig. 5.3.

[Note that as the relation ESE(−λ−1) = ESE(λ
−1) holds for both systems, we have only

shown the results for λ−1 > 0]. Interestingly, we find that for MnAu2/Ru(0001), the graphs

suggest that even with symmetric exchange interactions alone, a spin spiral state would be

favored over the ferromagnetic state. However, for FeAu2/Ru(0001), the ground state in

this approximation remains the FM state.
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Figure 5.3: Dispersion of symmetric exchange energy ESE for small λ−1, for [(a) and (b)]
FeAu2/Ru(0001) and [(c) and (d)] MnAu2/Ru(0001), along high-symmetry directions in the sur-
face Brillouin zone. The open circles are the results from the force theorem (FT) calculations. The
filled circles are results from the self-consistent (SC) calculations and correspond to the zoomed-in
regions of the top panel of Fig. 5.4.
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Next, we proceed to verify these FT results by performing more accurate SC calcu-

lations. For these, we have used 512 and 800 k‖-points when sampling the irreducible

Brillouin zones for FeAu2/Ru(0001) and MnAu2/Ru(0001), respectively. These results are

shown by the filled circles in Fig. 5.3. Somewhat surprisingly, the results obtained now are

quite different, especially for MnAu2/Ru(0001). The difference in energy between a spin

spiral state and the FM state is now considerably reduced.
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Figure 5.4: Results from SC calculations for variation of exchange energy EHE, and magnetic
moments M on the different atoms, along high symmetry directions of the surface Brillouin zone,
for (a) FeAu2/Ru(0001) and (b) MnAu2/Ru(0001). EHE is given in meV per X atom, and M is
given in µB per atom. See the text for the convention used in labeling atoms.

This suggests that results using the FT approach cannot always be trusted, and the

force theorem must be used with considerable caution. This point is discussed further in

the Appendix B to this thesis.

We now go on to use the SC approach to compute ESE throughout the Brillouin zone,

along high-symmetry directions. These results, along with results for the variation of

magnetic moments, are shown in Fig. 5.4. In this figure, ΓK and ΓM lie within the first

Brillouin zone, while KM′ belongs to the second Brillouin zone. On examining this figure,
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we see that for FeAu2/Ru(0001), the lowest value of ESE is at the Γ point (see the top two

panels of Fig. 5.4). In contrast, for MnAu2/Ru(0001), the lowest value of ESE corresponds

to a spin spiral with λ−1 = 0.12 nm−1 along the ΓM direction. This is more evident from

Fig. 5.3(c) (see the solid line and filled circles). Note however that: (i) the difference in

ESE between the FM state and the spin spiral state is small, and (ii) to obtain the final

result for ground state magnetic structure, we have yet to add the other two contributions

EDM and Kavg, to ESE.

The magnetic moments of the X atoms, MX , (shown by the stars in the middle panel

of Fig. 5.4) vary only slightly as q changes. The induced moments on the Au, Ru(2)-I

and Ru(2)-II atoms can be either positive (ferromagnetically aligned) or negative (anti-

ferromagnetically aligned), depending on the value of q; however the magnitude of these

induced moments is small.

B. Results for Dzyaloshinskii-Moriya Energy EDM

We next calculate EDM(λ−1) for FeAu2/Ru(0001) and MnAu2/Ru(0001). For all the spin

spirals considered by us, the relation EDM(−λ−1) = −EDM(λ−1) holds, where positive and

negative values of λ−1 correspond to right-rotating and left-rotating spirals, respectively.

We have obtained the different components of D by varying q along the [110] direction,

with −0.25 nm−1 < λ−1 < 0.25 nm−1, and along the [110] direction with −0.42 nm−1 <

λ−1 < 0.42 nm−1. The calculations were performed using 6400 k‖-points in the full surface

Brillouin zone. Our results are presented in Fig. 5.5. For both FeAu2/Ru(0001) and

MnAu2/Ru(0001), we have found that EDM always favors left-rotating spirals, we have

therefore shown only the negative λ−1 region in this figure.

Our results for EDM(λ−1) for FeAu2/Ru(0001) and MnAu2/Ru(0001) are shown by the

open and filled squares, respectively, in Fig. 5.5. We find that the magnitude of EDM is

significantly larger for FeAu2/Ru(0001) than it is for MnAu2/Ru(0001) (the reason for this

will be discussed below); note that this was however also true of the magnitude of ESE, and

that for negative λ−1 these two terms have opposite sign, leading in both cases to a similar

compensation of energies. Further, EDM(λ−1) is found to be linear for FeAu2/Ru(0001),



5.6 Results 97

-0.2 -0.1 0

λ-1 
 in nm

-1

-3

-2.5

-2

-1.5

-1

-0.5

0

E
D

M
 (

m
eV

) 

-0.45 -0.3 -0.15 0

λ-1 
 in nm

-1

FeAu2/Ru(0001)

MnAu 2/Ru(0001)

linear fit

along [110]
along [110]

(a) (b)

Figure 5.5: EDM, contribution from the Dzyaloshinskii-Moriya interaction, to the total energy
along (a) [110] and (b) [110] for FeAu2/Ru(0001) and MnAu2/Ru(0001).

along both the [110] and [110] directions, for the range of λ−1 considered here. However,

we can see that this is clearly not true for MnAu2/Ru(0001), where EDM(λ−1) is found to

deviate from linear behavior for λ−1 & −0.19 nm−1, along both directions. In the region

where EDM varies linearly with λ−1, we fitted our data to straight lines (see the black lines

in Fig. 5.5), so as to obtain the components of D along different directions. We obtain Dx

and Dy by fitting along the [110] and [110] directions, respectively; we find that the Dz

component always vanishes. For FeAu2/Ru(0001), we obtain the values of Dx and Dy to

be 6.40 meV nm and 6.94 meV nm, respectively, whereas for MnAu2/Ru(0001), the values

of Dx and Dy are found to be 1.17 meV nm and 1.12 meV nm, respectively.

We have also extracted the contributions to D that arise from each kind of atom [113],

focusing on the X, Au, Ru(1) and Ru(2) atoms, as the DM interaction is expected to

be significant only near the surface. [Note that here, by the contribution of the Ru(2)

atoms we mean the average contribution of the Ru(2)-I and the Ru(2)-II atoms.] These

atom-wise contributions are depicted graphically in Fig. 5.6. It is interesting to note that

for both FeAu2/Ru(0001) and MnAu2/Ru(0001), the largest (positive) contributions arise

from the Au atoms. The contributions coming from the X atoms also always enhance D,

but the magnitude is much smaller compared to those from the Au atoms. The Ru(1) and

Ru(2) atoms have contributions reducing D, except for MnAu2/Ru(0001), where Ru(1)
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Figure 5.6: Atom-wise contributions to non-zero components of D for (a) FeAu2/Ru(0001) and
(b) MnAu2/Ru(0001). Along [110] Dy 6= 0 = Dx, while along [110] Dx 6= 0 = Dy. X, Au and
Ru(n) indicate the magnetic atom (Fe or Mn), Au atom and n-th layer Ru atoms, respectively,
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contributes additively. There are two possible ways in which two magnetic atoms can

interact through the DM mechanism, either directly, or involving a third, “non-magnetic”

atom [114]. In our case, this third atom could be either Ru or Au. Our results suggest

that it is this latter, three-site mechanism that is dominant in our case. The much larger

contribution from Au atoms is in accordance with the large spin-orbit coupling in Au

and the strong buckling of the overlayer. The larger buckling in FeAu2/Ru(0001) than

MnAu2/Ru(0001) also leads to a stronger contribution to D.

C. Results for Magnetic Anisotropy Energy K

The third contribution to the energies of spin spirals on FeAu2/Ru(0001) and MnAu2/Ru-

(0001) consists of the magnetic anisotropy energy K. For both these systems, we have

calculated the energy barriers for a rotation of the magnetic moment in the xz and yz

planes, which are given respectively by:
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K110 = E(θ = θhard1 , ϕ = 0)− E(θ = θeasy1 , ϕ = 0),

(5.9)

K110 = E(θ = θhard2 , ϕ = π
2 )− E(θ = θeasy2 , ϕ = π

2 ),

(5.10)

where E is the energy, obtained including spin-orbit interactions, and the moments on the

X atoms are constrained to point along the direction specified by the angles (θ, ϕ); the

polar angle θ is measured from the surface normal and the azimuthal angle ϕ is measured

from the x-axis [see Fig. 5.7]. The easy and hard axes for the two rotations are specified

by the angles θeasyi and θhardi . K has two contributions: KSO and Kdip, which arise from

spin-orbit interactions, and magnetic dipolar interactions, respectively.

θ

ϕ

x

y

z

Figure 5.7: The side view of the system XAu2/Ru(000), where X = Fe or Mn, showing the polar
and azimuthal angles θ and ϕ, respectively.

Let us first consider KSO, which can be calculated in two possible ways: either self-

consistently (SC) or by using the force theorem (FT). To check the applicability of the FT

for the calculation of the MAE of the systems considered here, we first compute as a test

the quantity Ktest = E(θ = π
2 , ϕ = 0) − E(θ = 0, ϕ = 0), using both approaches. The

number of k-points required for a converged SC calculation is 256 in the full Brillouin zone,

while 4096 k-points are needed for the FT calculations. For FeAu2/Ru(0001), we obtain

Ktest = 1.14 and 0.93 meV per Fe atom, from the FT and SC approaches, respectively;
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the corresponding values for MnAu2/Ru(0001) are 0.18 meV and 0.19 meV per Mn atom.

Based upon this, we conclude that results for KSO using the two approaches are likely to

agree to the desired degree of accuracy. Henceforth, we have used the FT to calculate all

the values of KSO reported in this section.

We now proceed to vary θ, keeping ϕ fixed at a constant value ϕc, which is equal to

either 0 or π
2 , when determining KSO along the [110] and [110] directions, respectively. We

define

E⊥(θ, ϕc) = ESO(θ, ϕc)− ESO(0, ϕc). (5.11)

In Fig. 5.8(a), we have plotted our results for E⊥ for FeAu2/Ru(0001) and MnAu2/Ru(0001),

with ϕc = 0. The results for the two systems are quite different. For FeAu2/Ru(0001),

the highest value of E⊥ occurs for θ = 0, and the lowest value for θ = π
2 , whereas for

MnAu2/Ru(0001), the angles corresponding to the highest and lowest values of E⊥ are

reversed. This suggests that (assuming that the contribution from dipolar interactions

is small; this remains to be verified below) the position of the hard and easy axes is in-

terchanged in the two systems studied here. It is also interesting to note that KSO is

significantly higher for FeAu2/Ru(0001) than for MnAu2/Ru(0001).

We have also shown, in Fig. 5.8(b), how the orbital moment per X atom changes as θ is

varied. One observes a sinusoidal variation, though the amplitude of variation is small. We

find that, for both systems, the highest and lowest values of orbital moment occur when

the magnetization is along the hard-axis and the easy-axis, respectively. Note that this

contradicts the prediction of Bruno [115]. The prediction is based on the assumption that

the majority and minority d-bands are well separated by the exchange interaction; though

this is true for the X atoms, for the Ru atoms this assumption does not hold true.

Next, we consider Kdip, which arises from the magnetostatic interaction between the

magnetic moments. We find that the contributions to K from dipolar interactions are sig-

nificantly smaller than those from the spin-orbit interaction, especially for FeAu2/Ru(0001);

for this reason the easy axis is determined by the spin-orbit interaction. Our results for
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Kdip are listed in the fourth column of Table 5.2. As dipolar interactions always favor an

in-plane axis for ferromagnetic configurations, the negative sign of Kdip in Table 5.2 for

MnAu2/Ru(0001) indicates that the easy axis of the system is out-of-plane.

Finally, the total value of K is obtained by adding KSO and Kdip (see the last column

in Table 5.2). We also obtain Kavg, the average value of K in the (110) and (110) planes

[see Eq. (5.2)]; in all the cases studied here, Kavg =
∫ π
0 Ksin

2θdθ = K/2. We find that the

easy axis lies in-plane for FeAu2/Ru(0001), but out-of-plane for MnAu2/Ru(0001).

Table 5.2: Results for magnetic anisotropy energy K, along with KSO and Kdip, the contri-
bution due to spin-orbit coupling and magnetic dipole-dipole interaction, respectively, along two
high-symmetry directions, for XAu2/Ru(0001).

X direction KSO Kdip K
(meV per X atom)

Fe [110] 1.14 0.04 1.18
[110] 1.18 0.04 1.22

Mn [110] 0.18 −0.06 0.12
[110] 0.14 −0.06 0.08
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D. Results for Etotal

Having obtained the values of ESE, EDM and Kavg, we are now finally in a position to

calculate the total energy Etotal for FeAu2/Ru(0001) and MnAu2/Ru(0001). In Fig. 5.9,

the values of ESE and EDM are shown by (red) filled circles and (green) open squares, and

the value of Kavg is shown by (blue) thick dashed lines. The final values Etotal, obtained

by adding these three terms, are shown by the stars and the solid black curves fit to them.
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Figure 5.9: Variation of total energy (Etotal) as a function of λ−1 for [(a) and (b)]
FeAu2/Ru(0001) and [(c) and (d)] MnAu2/Ru(0001) along [110] and [110]. The insets in (a)
and (b) are zoomed in areas using the same scale as in (c) and (d).

For FeAu2/Ru(0001), we find that along the [110] direction, the most energetically

favorable state is a left-rotating spin spiral with λ−1 = −0.14 nm−1, this is lower in energy

than the FM state by 0.06 meV per Fe atom [see Fig. 5.9(a)]. Along [110], a spin spiral
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of λ−1 = −0.15 nm−1 becomes lower in energy than the FM state by 0.17 meV per Fe

atom [see Fig. 5.9(b)]. Thus the latter spin spiral, with a wavelength of 6.7 nm, is the

lowest-energy magnetic ground state for FeAu2/Ru(0001). However, it is only very slightly

lower in energy than the FM state.

Similarly, the two lower panels of Fig. 5.9 show the various contributions to the energies

of spin spirals on MnAu2/Ru(0001). We see that a left-rotating spin spiral with λ−1 =

−0.12 nm−1 along [110] is lower in energy than the FM state by 0.28 meV per Mn atom,

while a left-rotating spin spiral with λ−1 = −0.08 nm−1 along [110] is lower in energy than

the FM state by 0.17 meV per Mn atom. Of these, the former, with a wavelength of 8.5

nm, is the magnetic ground state.

along [110]

along [110]_

FeAu2
/Ru(0001) 

MnAu2
/Ru(0001) 

Figure 5.10: The left-rotating spin spirals of FeAu2/Ru(0001) and MnAu2/Ru(0001) surface
alloys. The red and yellow spheres indicate the X (X = Fe or Mn) and Au atoms, respectively. The
Ru surface is shown as a reflecting mirror. The black arrows on the X atoms represent the direction
of the magnetic moments.

In Fig. 5.10 we show the left-rotating spin spirals of FeAu2/Ru(0001) and MnAu2/Ru-

(0001).
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5.6.3 Comparison with freestanding alloy monolayers of XAu2

In order to gauge what effect the Ru substrate has, we now repeat the previous calculations,

but for freestanding XAu2 alloy monolayer systems, i.e., in the absence of the Ru substrate.

As before, we present separately the contributions to the total energy from each term in

Eq. (5.2).

A. Results for Symmetric Exchange Energy ESE

We have calculated ESE for freestanding FeAu2 and MnAu2 monolayers. From the already

presented calculations on collinear magnetic structures (see Section 5.6.1 above), we have

seen that both FeAu2 and MnAu2 freestanding monolayers remain flat upon relaxation,

i.e., no buckling is observed. We now restrict ourselves to calculating ESE self-consistently

(SC) for flat freestanding monolayers (see also Appendix B to this thesis). For this, we

have used 78 k-points in the irreducible Brillouin zone.
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Figure 5.11: Energy dispersion ESE for freestanding monolayers of FeAu2 [shown by gray (red)
dots] and MnAu2 [shown by dark (blue) dots]. The ground state magnetic structure for FeAu2 is
ferromagnetic (minimum at Γ), whereas that for MnAu2 is row-wise antiferromagnetic (minimum
at M).

Fig. 5.11 shows our results for ESE along high-symmetry directions of the Brillouin zone

for both FeAu2 and MnAu2 freestanding monolayers. We find that the lowest ESE states

are FM for FeAu2 – see the large red dots – and row-wise AFM for MnAu2 – see the small

blue dots. Thus, for the freestanding alloy monolayers, we find that the collinear magnetic

states are lower in energy than the spin spiral states. Note that for flat monolayers, EDM

is identically zero. So, upon going from freestanding alloy monolayers to surface alloys on



5.6 Results 105

Ru(0001), the magnetic ground state changes from FM to a spin spiral state in the case of

FeAu2/Ru(0001), while for MnAu2/Ru(0001), the ground state changes from a row-wise

AFM state to a spin spiral state.

B. Results for Dzyaloshinskii-Moriya Energy EDM

Though the freestanding XAu2 monolayers do not show any buckling, in order to be able to

compare the asymmetric exchange coupling between the X and Au atoms with and without

the substrate, we have obtained the value of D as a function of the buckling parameter

db of the freestanding monolayers of XAu2. We have taken db to be 0.5, 1.0 and 1.5 Å.

Further, in order to better enable a comparison with the corresponding systems on the Ru

substrate, we have also considered db to be 0.38 Å (for the FeAu2 monolayer) and 0.22 Å

(for the MnAu2 monolayer); these values correspond to the values of db for the overlayer

in the XAu2/Ru(0001) systems.

In Fig. 5.12, we have plotted our results for Dx and Dy, as a function of the buckling

parameter db, for freestanding FeAu2 and MnAu2 monolayers; the component Dz vanishes

in all the cases considered here. For purposes of comparison, the values of Dx and Dy

for the corresponding XAu2/Ru(0001) systems are shown by dashed and dotted lines,

respectively. We find that for FeAu2 monolayers, the values of bothDx andDy at db = 0.38

Å are much smaller than the corresponding values for FeAu2/Ru(0001). In contrast, for

MnAu2 monolayers, the values of Dx and Dy at db = 0.22 Å are similar to the values for

MnAu2/Ru(0001). It is therefore difficult to reach any general conclusions about the effect

of the Ru substrate; it is apparently system-dependent, since the magnetic interactions

between the Fe and Ru atoms differ from those between the Mn and Ru atoms. We also

observe that for the alloy monolayers, the values of Dx and Dy can differ a lot, whereas

the values are almost the same for the XAu2/Ru(0001) systems.

For FeAu2/Ru(0001) the largest values of Dx and Dy occur for db = 0.5 Å, while for

MnAu2/Ru(0001), we find that the values are the largest at db = 1.0 Å. We observe that

two competing effects determine the magnitude of D: (i) a geometrical effect that enhances

its value with increasing buckling and (ii) the influence of the distance between X and Au,
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Figure 5.12: The variation of Dx and Dy as a function of overlayer buckling db for freestanding
monolayers of (a) FeAu2 and (b) MnAu2. Along [110] Dy 6= 0 = Dx, while along [110] Dx 6= 0 =
Dy. The dashed and dotted lines correspond to the values of Dx and Dy, respectively, in the case
of FeAu2/Ru(0001) and MnAu2/Ru(0001). Note that the y-axis scale is different in (a) and (b).

that decreases D if the X-Au distance is too large. This is in line with the model of Levy

and Fert [114] for the DM interaction.

C. Results for Magnetic Anisotropy Energy K

We have calculated the value of the magnetic anisotropy energy K for freestanding mono-

layers of XAu2. Test calculations show that results obtained using the FT and SC methods

are comparable. We therefore continue to calculate KSO by using the FT. The calcula-

tions are performed using 4096 and 6400 k‖-points in the Brillouin zone of the FeAu2 and

MnAu2 monolayers, respectively.

In Fig. 5.13(a), we have plotted our results for E⊥(θ, ϕc = 0) vs. θ. The small red

dots and large blue dots show the results for freestanding FeAu2 and MnAu2 monolayers,

respectively. We have fitted E⊥ to sin2θ (solid line). The positions of the minimum and
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Figure 5.13: The variation of (a) E⊥(θ, ϕc = 0) and (b) orbital moment of the X atom as a
function of the polar angle θ for FeAu2 and MnAu2 freestanding monolayers. The easy axis lies
along the direction of minimum E⊥(θ, ϕc = 0).

maximum values of E⊥ are seen to be the same as in the presence of the Ru(0001) substrate,

and are again opposite for the two different X. However, the values of KSO are found to

have become significantly larger in the absence of the Ru substrate (see Table 5.3).

From Fig. 5.13(b), we see that the value of the orbital moment perX atom is the highest

along the easy-axis for the freestanding monolayers of FeAu2 and MnAu2. This behavior

differs from the trend seen in the XAu2/Ru(0001) systems, though it is consistent with the

prediction of Bruno [115]. The values of orbital moments are larger for the freestanding

monolayers than the corresponding values on the deposited monolayers. This quenching of

the orbital moments is an effect of the crystal field of the substrate.

Table 5.3: Values of KSO and Kdip, the contributions to MAE due to spin-orbit coupling and
dipole-dipole interaction, respectively, for freestanding XAu2 monolayers. µz and µx are the orbital
moments when magnetization points along z- and x-axis, respectively.

X KSO Kdip µz µx
(meV per X atom) (µB)

Fe 2.1 0.05 0.12 0.15
Mn 1.8 −0.08 −0.09 0.02
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We find that the value of KSO does not differ appreciably in the [110] and [110] direc-

tions; it is 2.1 meV per Fe atom for the FeAu2 monolayer, and 1.8 meV per Mn atom for

the MnAu2 monolayers. Note that the direction of the easy axis differs in the two cases,

for the former it is in-plane, while for the latter it is out-of-plane.

Next, we have obtained the values of Kdip for the freestanding alloy monolayers of

XAu2; once again we do not find an appreciable difference between our results for the

[110] and [110] directions. For FeAu2 monolayers the value of Kdip is 0.05 meV per Fe

atom, compared to the value of 0.04 meV per Fe atom for FeAu2/Ru(0001) (see Table 5.2).

The values of Kdip for MnAu2 and MnAu2/Ru(0001) are −0.08 and −0.06 meV per Mn

atom, respectively (again, the negative sign implies out-of-plane easy axis). The slightly

higher values of Kdip for the freestanding monolayers arise from the higher values of the

magnetic moments.

5.7 Discussion

5.7.1 Relative contributions of different terms to Etotal

It is interesting to note that the primary reason for obtaining the spin spiral ground states

is different for FeAu2/Ru(0001) and MnAu2/Ru(0001). By examining Fig. 5.9, we see

that for FeAu2/Ru(0001), it is the DM interaction that is chiefly responsible for stabilizing

the spin spiral ground state over the FM state. In contrast, for MnAu2/Ru(0001) the

predominant role is played by the symmetric exchange interaction. One reason why the

DM interaction is stronger in the case of FeAu2/Ru(0001) is the larger value of the buckling

parameter db in this system. From comparison with the unsupported alloys it can be seen

that, in addition, the chemical nature of the magnetic element and its modification by the

Ru substrate by bonding (charge transfer) also have an important influence on the strength

of this interaction. The propensity of symmetric exchange to favor spin spirals is indicated

by a small value of ∆EAFM−FM; we have already seen above that this quantity is smaller

for MnAu2/Ru(0001) than FeAu2/Ru(0001).
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5.7.2 Role of Au

It was mentioned earlier that Fe/Ru(0001) shows a 120◦ Néel structure [108] and Mn/Ru(0001)

shows a row-wise AFM structure [109]. In this study, we see that the magnetic interaction

changes in these systems, due to the presence of Au in the overlayer, and the systems are

driven toward a spin spiral ground state in FeAu2/Ru(0001) and MnAu2/Ru(0001), due

to complex magnetic interactions. From Section (5.6.3B), we also see that due to the large

spin-orbit coupling constant of Au atoms, the DM interaction mainly acts via these atoms,

rather than the Ru atoms. On the other hand, it is the Ru substrate that makes the Au

contribution very different in the Fe and Mn systems. The large additive contribution of

the Au atoms toward the DM parameter thus helps to lower the energy of a spin spiral

compared to the FM state, especially in the case of FeAu2/Ru(0001).

5.8 Summary

In summary, we have performed ab initio density functional theory calculations to obtain

the magnetic ground states of two surface alloys: FeAu2/Ru(0001) and MnAu2/Ru(0001).

By considering both collinear and non-collinear magnetic structures, we have found that

the magnetic ground state for both systems corresponds to a left-rotating spin spiral. For

the Fe system the spiral propagates along the [110] direction with a period of 6.7 nm,

while in the Mn alloy it is along [110] and has a period of 8.5 nm. In the former case,

the spin spiral is stabilized by the Dzyaloshinskii-Moriya interaction, whereas in the latter

case it is primarily stabilized by the symmetric exchange interaction. These results show

that magnetic surface alloys constitute a new class of systems that can be explored for the

existence of spin spirals. However, in the two particular systems considered in this work,

the spin spiral states are only slightly lower in energy than the ferromagnetic state, by 0.17

and 0.28 meV per Fe and Mn atom, respectively.

We have seen that the strength of the DM interactions is very sensitive to the buckling

of the overlayer. Of the two surface alloy systems considered in this study, FeAu2/Ru(0001)

has a buckling that is almost twice as large as that observed in MnAu2/Ru(0001), and the
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values of Dx and Dy are larger by a factor of ∼6–7. For a monolayer on a substrate,

the buckling is fixed, being determined by the size mismatch between the overlayer and

substrate atoms. However, when one considers surface alloys of the type AB/C, as in

this study, one has more parameters to play with, since the buckling depends not only

on the size difference between the overlayer atoms and the substrate, but also on the size

difference between the two overlayer constituents A and B. One therefore has the ability

to tune the buckling, and thus the strength of the DM interaction, over a wider range; this

can be made use of as a way of further stabilizing spin spirals.

We also find that FeAu2/Ru(0001) has a significantly high magnetic anisotropy en-

ergy, of the order of 1 meV per Fe atom, with an in-plane easy-axis. On the other hand,

MnAu2/Ru(0001) has a magnetic anisotropy energy that is smaller by an order of magni-

tude, and an out-of-plane easy axis. Upon comparing these values of the MAE with those

obtained for the corresponding freestanding monolayers, we find that for both the systems,

the presence of the substrate does not alter the direction of the easy-axis, but reduces the

magnitude of the MAE considerably.

By comparing with the corresponding freestanding alloy monolayers, we find that the

presence of the Ru substrate plays a crucial role in determining the magnetic properties of

the surface alloy systems and Au atoms in the overlayer promote chirality in these systems.

Our results underline the need for considerable caution when applying the magnetic

force theorem in calculations of magnetic structures, when small energy scales are involved.

Most importantly, we wish to underline that our work shows that bimetallic magnetic

surface alloy systems of the type AB/C, such as those studied here, allow one to play

with and tune the Dzyaloshinskii-Moriya interaction, thus allowing one to access novel

magnetic structures such as spin spirals. Such surface alloys, which contain a heavy atom

in the topmost layer, give one a way to tune the DM interaction via the structure, in

contrast to A/B thin-film systems. This leads to the possibility of manipulating the spin

spiral via electric fields or adsorbates.
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Chapter 6

Tuning patterning conditions by

co-adsorption: Br2 and H2 on

Si(100)1

6.1 Introduction

In this chapter, we have attempted to develop a strategy to tune surface morphology

by patterning using molecular self-assembly. Atomic-scale patterning of semiconductor

surfaces can have important applications in the microfabrication of integrated circuits [117–

120]. Patterned surfaces can also be used as templates for overlayer growth and controlling

liquid crystal orientations. The existing techniques that are used to form ordered patterns

on semiconductor surfaces [121] are scanning tunneling microscopy (STM), electron beam

lithography, focused ion beams and reactive ion etching [122–124]. Though STM can

provide fine control over atomic-scale features [125,126], for very large-scale manufacturing,

it becomes ineffective and impractical. In contrast, while the other three techniques can

be used in industrial applications, fine control over the surface morphology at the atomic

length-scale has yet to be achieved.

For the efficient design of an electronic device, uniform generation of features is required.

1This work has been published in Ref. [116]

113
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This can be achieved by directed self assembly, and this approach is being actively pursued

in the electronics industry today. At present, there are several strategies being employed,

but the basic idea is to form guiding patterns via conventional immersion lithography, and

then use self-assembling systems to form regular patterns. These regular patterns are then

etched using reactive ion etch processes; halogen chemistries are usually used for silicon

and metal etches. It would be ideal if these two steps, of patterning and etching, could

somehow be combined, e.g., if the patterning could be achieved by the self-assembly of

halogen molecules on a semiconductor surface. Motivated in part by such considerations,

in this chapter, we have focused our attention on the patterning due to co-adsorption of

Br2 and H2 on the Si(100) surface.

6.2 Surface Reconstructions of Si(100)

(a) Top view of c(4 × 2)
reconstruction

(b) Top view of (2 × 1)
reconstruction

x

y

(d) Side view of c(4 × 2)
reconstruction

(e) Side view of (2 × 1)
reconstruction

x

z

Figure 6.1: The atomic arrangement of Si(100) surfaces for c(4× 2) and (2× 1) reconstructions.
(a) and (b) show the top views, and (c) and (d) show the side views of the surface reconstructions.
The Si atoms in the topmost layer, and the remaining Si atoms, are represented by dark gray and
light gray spheres, respectively.

Being a cheap yet high-quality material, silicon is the most widely used material in the
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semiconductor industry. Si surfaces are known to show various reconstructions due to the

rearrangement of surface atoms. For example, Si(100) exhibits either a (2× 1) reconstruc-

tion (at high temperatures) or a c(4×2) reconstruction (at low temperatures) [127], Si(110)

exhibits a (16× 2) reconstruction [128], and Si(111) shows a very complicated 7× 7 recon-

struction [129]. Among these, Si(100) is characterized by the presence of a relatively simple

reconstruction, consisting of rows of dimers forming a ladder-like structure (in all the fig-

ures in this chapter, we assume that the dimers, i.e., the rungs of the ladder, are oriented

parallel to the x-axis). The formation of these dimers saturates one of the dangling bonds

of the surface Si atoms, leaving one unsaturated dangling bond per atom. These dangling

bonds are chemically active sites for adsorption. The dimerization on Si(100) leads to an

asymmetric c(4 × 2) geometry at low temperature due to alternate buckling of nearest

neighbor dimers, both along the dimer row (along the y-axis), and the direction perpendic-

ular to the dimer row (along the x-axis) [see Fig. 6.1]. At high temperatures, STM images

show an apparently symmetric (2 × 1) reconstruction due to a flip-flop mechanism of the

dimers [130].

6.3 Previous Studies

Halogens are known to produce interesting patterns when deposited on the Si(100) sur-

face [117,131,132]. Except for fluorine [133,134], all the halogens form ordered structures

on Si(100). As the atomic radius increases from chlorine to iodine, the size of the adsor-

bate halogen atoms gradually becomes larger than that of the underlying Si atoms. This

results in steric interactions between the adsorbate atoms, which play a significant role in

generating patterns for bromine and iodine adsorbates. Being small in size, hydrogen does

not show such steric interactions when it is deposited on the Si(100) surface. However,

we will show in this chapter that the presence of hydrogen can still play a crucial role,

helping to generate new patterns and extend other patterns into a region of phase space

that is more easily achievable experimentally. We note that hydrogen molecules are used

for etching along with halogens [10].
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There has been a previous density functional theory (DFT) study of the patterning of

the Si(100) surface by bromine alone [118]. In this work, the authors considered a number

of possible structures of dissociated bromine molecules adsorbed on the Si(100) surface.

Their ab initio calculations of energetics were extended to determine the range of stability

of various competing geometries with respect to bromine chemical potential, by calculating

the surface free energy. In order to achieve patterning by a chemically reactive adsorbate

such as bromine, one would like to obtain a stable adsorbate geometry that consists of a

pattern, i.e., that does not simply consist of a uniform and full monolayer coverage of the

substrate by adsorbate atoms. These previous authors found that over most of the range

of bromine chemical potential considered by them, the most favored structure was either

the clean surface without any adsorbed bromine, or a (3× 2) pattern with full monolayer

coverage. The unit cell of the (3×2) structure, which originates from an adsorbate-induced

transformation of the surface, can be considered to consist of two single-monolayer steps,

with all dangling bonds saturated with bromine atoms [see Fig. 6.2(j)]. More interesting,

from the patterning point of view, is a c(4× 2) structure at half coverage, where alternate

dimers (in a staggered fashion on alternate dimer rows) are saturated with bromine atoms

[see Fig. 6.2(f)]. However, the range of stability of this structure was found to be extremely

narrow. Also, this structure is stable only at extremely low pressure. We should, however,

note that such a structure has been observed in STM experiments on this system [135],

though it has been reported that very careful experiments were needed to observe this [118].

We now wish to see whether the domain of stability for patterns of this sort can be extended,

or new patterns can be formed, by co-adsorption of two gases.

Several authors have studied adsorption, diffusion and desorption of hydrogen on Si(100)

[136–141]. Three stable phases have been observed in STM experiments when atomic hy-

drogen is present in the gas-phase [142–144]. While (1×1) and (2×1) [see Figs. 6.2(m) and

6.2(k)] structures can be obtained at double- and single-monolayer coverage, respectively,

a (3 × 1) structure [see Fig. 6.2(l)] can only be observed on a specially prepared Si(100)

surface. In a previous study [145], the author had calculated the free energy with respect

to the atomic hydrogen chemical potential, and had reported that all three structures were
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stable within the range of chemical potential considered.

Here, we want to address the following questions: (1) can we obtain new patterns by

co-adsorbing Br2 and H2 at finite temperature and pressure? (2) can we extend the range of

stability of patterns with Br2 by co-adsorbing H2? (3) what is the condition for extending

the phase-stability to readily achievable experimental conditions by co-adsorption?

In this work, we are interested in equilibrium thermodynamics, and therefore restrict

ourselves to computing the total energies of minimum-energy configurations, rather than

energy barriers, which would be needed for a study that also included kinetics. However,

one particular energy barrier is of interest to us: the activation barrier for atomic hydrogen

and bromine, when adsorbed on Si(100), to combine to form hydrogen bromide. This has

been shown to have a very high value, ∼ 3.0 - 3.5 eV [146]; we therefore believe we are

justified in considering hydrogen and bromine to be co-adsorbed on the surface, rather

than resulting in the formation of hydrogen bromide.

6.4 Computational Details

Our ab initio calculations have been performed using density functional theory (DFT)

as implemented in the Quantum-ESPRESSO package [24]. A plane-wave basis set with

a cutoff of 30 Ry was used to expand the electronic wave functions, and a cutoff of 300

Ry for the charge densities. The ion-electron interactions were treated by using an ul-

trasoft pseudopotential [?], while the exchange-correlation functional was approximated

by a generalized gradient approximation of the Perdew-Burke-Ernzerhof form [20]. These

parameters lead to a calculated bulk lattice constant for Si of 5.466 Å, which is in good

agreement with the value of 5.47 Å reported earlier [118], as well as the experimental value

of 5.43 Å. In order to obtain optimized geometries, the Broyden-Fletcher-Goldfarb-Shanno

algorithm was used, until all components of the Hellmann-Feynman forces on the atoms

being relaxed were less than 0.025 eV/Å.

The Si(100) surface was modeled by a slab geometry with eight atomic layers of sil-

icon. A vacuum separation equivalent to 11 atomic layers was used, so as to minimize
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the interaction between periodic images. In order to mimic the bulk, the atoms of the

seventh and eighth Si layers were kept frozen at their bulk positions; all other atoms were

allowed to relax. Each Si atom on the lower surface of the slab was passivated with two

hydrogen atoms, which saturate the dangling bonds. To capture the c(4×2) surface re-

construction of Si(100), we have used a 4×2 surface supercell which includes four dimers

on the upper surface. For this supercell a 2× 4× 1 Monkhorst-Pack grid [27] was used to

generate the k-point mesh for the Brillouin-zone sampling; the Marzari-Vanderbilt smear-

ing technique [34] was used with the smearing width set equal to 0.005 Ry. We found

that the dimers buckle on the clean Si(100) surface giving rise to a dimer bond-length

and tilt-angle of 2.36 Å and 19◦, respectively, which are comparable with the values of

2.28 Å and 17.4◦ reported earlier [137]. To take into account various configurations of the

co-adsorbed surface, the supercell size in the x-y plane was varied up to 4×4. For the

calculation of the chemical potential of an isolated molecule, the zero-point energy (ZPE)

was calculated by taking into account the vibrational contribution at the Brillouin-zone

centre. The vibrational frequencies were calculated by the density functional perturbation

theory method [147,148].

6.5 Results

6.5.1 Density functional theory calculations

In Fig. 6.2, we have shown all the thirteen configurations considered by us, for adsorption

of one pure species alone. These configurations are labelled as P1, P2, . . ., P13. In these,

the coverage θ varies from 0.25 to 2.0. The adsorbate atoms are represented by large

black spheres, while the silicon atoms of the first substrate layer are shown by small dark

gray spheres and the remaining silicon atoms are represented by small light gray spheres.

Notice that for θ < 1, there are bare dimers present on the surface, while for θ ≥ 1, all

dimers have atoms adsorbed on them. Due to steric effects, configurations P12 and P13

are not favored in the case of bromine, therefore these are only considered in the case of

hydrogen adsorption. In previous studies, for adsorption of molecular bromine on Si(100),
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configurations P6 and P10 were found to be the two minimum energy configurations that

appeared in the phase diagram, with the former being energetically favorable for only a

very narrow range of bromine chemical potential [118]. For the case of atomic hydrogen

adsorption on Si(100), configurations P11, P12 and P13 were found to be the minimum

energy configurations [145].

We have also studied co-adsorbed structures, labelled C1, C2, . . ., C18 (see Figs. 6.3

and 6.4). Both bromine and hydrogen molecules generally dissociate upon adsorption on

the Si(100) surface and usually saturate the dangling bonds on the same dimer. However,

three kinds of exceptions can be imagined: one is where the two dangling bonds on a

dimer are saturated by one H atom and one Br atom (see, e.g., configurations C3 and C6

in Fig. 6.3); another [149] is where only one Si atom of a dimer is saturated by an adsorbate

atom, leaving the other Si atom unsaturated (see e.g., C6 and C7 in Fig. 6.3). A third

exception is an adsorbate-induced modification of the surface, which results in some silicon

atoms on the surface having two dangling bonds, to which adsorbate molecules can bind

(see e.g., C8 to C10 in Fig. 6.4). Note that, except for full-monolayer coverages, we haven’t

considered any configurations where two neighboring (along x) dimers in two consecutive

rows are occupied by Br atoms, since these are disfavored by steric interactions.

The adsorption energy (Eads) and the co-adsorption energy (Eco-ads), per adsorbate

atom, are defined as:

Eads =
1

2NA
(Esystem − Eclean −NAEA), (6.1a)

Eco-ads =
1

2Ntot
(Esystem − Eclean −NAEA −NBEB), (6.1b)

where Esystem and Eclean are the total energy of the slab with and without the adsorbates,

respectively. EA (EB) is the sum of the total energy and the zero-point energy of molecule

A (B) in the gas phase. Here we are assuming that the contributions from the zero-

point energies of the clean and adsorbate-covered surfaces mostly cancel out. Within a

surface-supercell, the total number of A (B) molecules present on the upper surface of the
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slab is denoted as NA (NB), and Ntot represents the total number of adsorbate molecules

present on the upper surface, i.e., Ntot = NA + NB. Eclean is the total energy of the

slab without the adsorbates present. Note that in calculating Eclean, the upper surface

is taken as having a c(4 × 2) reconstruction. Therefore, appropriate modifications, e.g.,

incorporating the chemical potential of Si atoms, have to be made to Eq. (6.1) when

considering configurations such as C8 to C13, where the unit cell size and the density of

Si atoms on the upper surface differ from those in the configurations with the (4× 2) unit

cell. The factor of 2 in the denominator in Eq. (6.1) indicates that Eads and Eco-ads are

defined as a quantity per atom, rather than per molecule. Note that a negative (positive)

value of Eads and Eco-ads would refer to bound (unbound) states for the adsorbates.

In Table 6.1 we have listed our values for Eads, obtained using Eq.( 6.1a). In addition,

we have also tabulated the relative stability (δE) of each configuration, with respect to

the lowest energy configuration at that coverage. The co-adsorption energies are listed in

Table 6.2, with corresponding values of δE.

We first consider our results for the pure phases. Let us examine the configurations P1

to P4, at a coverage θBr = 0.25. These allow us to compare the relative importance of two

effects: steric interactions, and having areas of the surface that are covered with patches

of bare Si(100) with alternately buckled dimers, for convenience we will refer to these as

ABD patches [150]. The configurations P1, P2 and P3 all have 3/4 of the surface covered

with ABD patches, whereas P4 has only 1/2 of the surface covered with an ABD patch.

However, the distances between bromine atoms (that are not on the same dimer) also vary

between the different configurations, being least in P1, and increasing in the order P2, P4

and P3. Thus steric interactions are highest in P1 and lowest in P3. We find that P4 lies

highest in energy, suggesting that having a relatively low proportion of the surface covered

with an ABD patch carries a higher energetic cost than the steric repulsion between Br

atoms on consecutive dimers in a row; note however that the energy differences between

P1, P2, P3, and P4 are small. P1, P2 and P3 all have the same proportion of the surface

covered with an ABD patch, and as expected, of these, P1, which has the largest steric

repulsion, lies highest in energy. The situation is rather similar for hydrogen, in that P4,
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(a) P1, θ = 0.25 (b) P2, θ = 0.25 (c) P3, θ = 0.25 (d) P4, θ = 0.25

(e) P5, θ = 0.5 (f) P6, θ = 0.5 (g) P7, θ = 0.5 (h) P8, θ = 0.66

(i) P9, θ = 0.66 (j) P10, θ = 1.0 (k) P11, θ = 1.0 (l) P12, θ = 1.33

(m) P13, θ = 2.0

x

y

Figure 6.2: Top views of the atomic arrangement of Si(100) surfaces with pure (single component)
adsorbates at different coverages θ. Only the first eleven configurations were considered for bromine
adsorption, whereas all thirteen configurations were considered for hydrogen. The adsorbate atoms,
Si atoms in the topmost layer, and the remaining Si atoms, are represented by large black, small
dark gray, and small light gray spheres, respectively. Note that a non-integral number of unit cells
is shown for P8, P9, P10 and P12.

with the smallest ABD patch, lies highest in energy. However, for hydrogen, where the

adsorbate atoms are small in size, steric effects are absent, and thus it is no longer true

that P1 lies higher in energy than P2 and P3.

For both bromine and hydrogen, at θ = 0.5, we find that P7, in which only one Si
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Table 6.1: Adsorption energies Eads of Br2 or H2 on Si(100) for different configurations at various
coverages θ. Relative energies δE are calculated with respect to the lowest energy configuration at
that coverage. A blank in the last column indicates that only one configuration is considered at that
coverage.

Coverage Config. Unit cell Eads δE
eV/atom meV/(1× 1)

Pure phases

θBr = 0.25 P1 (4× 4) −2.13 2.2
θBr = 0.25 P2 (4× 4) −2.14 lowest
θBr = 0.25 P3 (4× 4) −2.13 0.5
θBr = 0.25 P4 (4× 2) −2.12 2.7
θBr = 0.5 P5 (4× 2) −2.10 9.8
θBr = 0.5 P6 (4× 2) −2.12 lowest
θBr = 0.5 P7 (2× 2) −1.93 95.7
θBr = 0.66 P8 (3× 2) −2.11 lowest
θBr = 0.66 P9 (3× 2) −2.07 28.0
θBr = 1.0 P10 (3× 2) −2.09 lowest
θBr = 1.0 P11 (2× 1) −2.07 21.0

θH = 0.25 P1 (4× 4) −1.06 lowest
θH = 0.25 P2 (4× 4) −1.05 3.5
θH = 0.25 P3 (4× 4) −1.04 4.3
θH = 0.25 P4 (4× 2) −1.04 4.8
θH = 0.5 P5 (4× 2) −1.07 lowest
θH = 0.5 P6 (4× 2) −1.04 14.2
θH = 0.5 P7 (4× 2) −0.84 115.0
θH = 0.66 P8 (3× 2) −1.04 lowest
θH = 0.66 P9 (3× 2) −1.04 0.1
θH = 1.0 P10 (3× 2) −1.06 10.9
θH = 1.0 P11 (2× 1) −1.07 lowest
θH = 1.33 P12 (3× 1) −0.82
θH = 2.0 P13 (2× 1) 0.98 unbound

atom on the dimers is saturated by an adsorbate atom, lies highest in energy of the three

configurations considered by us. For bromine, the remaining two configurations, P5 and

P6, once again allow us to see the competition between steric effects and the presence of

ABD patches: if the former effect were dominant, one would expect P6 (where there are

lower steric interactions but no ABD patch) to be lower in energy, whereas if the latter

were dominant, P5 (where the ABD patch covers half the surface but there are large steric

interactions) should be lower in energy. Note, however that compared to the configuration

P1 at θBr = 0.25, steric interactions are higher in P5. In P1, every Br atom has one
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nearest-neighbor (NN) Br atom on the same dimer, and one next-nearest-neighbor (NNN)

Br atom on the neighboring dimer (along the y axis) in the dimer row. However, in P5, in

addition to the NN Br atom, there are two NNN Br atoms along y; for this reason, steric

interactions now prevail slightly over the effect of having ABD patches, and P6 is slightly

favored over P5. Once again, for hydrogen, the steric effects are absent, and the ABD

effect prevails, and thus P5 is favored over P6.

At θ = 0.66, we find that P8 is favored over P9 for bromine, due to steric effects. In

P8 each Br atom has a NN Br atom at a distance of 4.00 Å, a NNN Br atom at 4.43 Å,

and a 3rd-NN Br atom at 4.52 Å. In contrast, in P9, each Br atom has a NN Br atom at

3.83 Å, and two NNN Br atoms at 4.08 Å. Thus, we see that the distances between Br

atoms are shorter in P9 than in P8, the former therefore has greater steric repulsion, and

lies higher in energy. However, in the case of hydrogen adsorption, these steric effects are

not present, and P8 and P9 are almost degenerate in cornenergy.

At θ = 1.0, as no bare Si(100) regions are exposed, the ABD effect is absent. This

again allows us to examine the importance of steric effects for bromine but not hydrogen.

In P11, a Br atom has four Br neighbors at distances of 3.8 – 3.9 Å, with steric repulsions

between them. However, in P10, because of the corrugated nature of the surface, there are

only three Br neighbors at a distance of 3.8 – 3.9 Å, and the next-nearest Br neighbors are

at a distance > 4.3 Å. Thus, for bromine adsorption, P10 is lower in energy than P11. We

find the difference in energy between P10 and P11 to be 21 meV per (1 × 1) cell, which

is in agreement with the previously reported value of 15 meV/(1× 1) [118]. For hydrogen

adsorption, these steric interactions are absent; but P10 requires the additional energy of

restructuring the Si surface from the c(4 × 2) to the (3 × 2) reconstruction. As a result,

for hydrogen adsorption, P10 is higher in energy than P11.

The adsorption energy of hydrogen is found to vary from −1.06 eV/atom at θ = 0.25,

to −0.82 eV/atom at θ = 1.33. This may be compared with a low-coverage value of

−0.98 eV/atom reported by a previous author [141]. For θ = 2.0, Eads becomes positive

(unbound); note that this is true with respect to molecular hydrogen in the gas phase, but

not with respect to atomic hydrogen in the gas phase [145]. Bromine binds more strongly
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(a) C1,θBr = 0.5,
θH = 0.25

(b) C2, θBr = 0.5,
θH = 0.25

(c) C3, θBr = 0.5,
θH = 0.25

(d) C4, θBr = 0.5,
θH = 0.25

(e) C5, θBr = 0.5,
θH = 0.25

(f) C6, θBr = 0.5,
θH = 0.25

(g) C7, θBr = 0.5,
θH = 0.25

x

y

Figure 6.3: Top views of different configurations considered for co-adsorption of Br2 and H2 on
Si(100) for Br-rich phases, with θBr+ θH < 1.0. The Br, H, Si atoms in the topmost layer, and the
remaining Si atoms, are represented by large red, small blue, small dark gray, and small light gray
spheres, respectively. The H-rich configurations can be obtained by interchanging the large red and
small blue atoms.

to the Si(100) surface than hydrogen does. At θ = 1.0, we find Eads for bromine to be −2.09

eV/atom, which compares well with a previously reported value of −2.13 eV/atom [151].

For co-adsorbed surfaces with θ = θBr + θH < 1, we have considered both (θBr=0.5,

θH=0.25) and (θBr=0.25, θH=0.5); for each of these cases we have considered seven con-

figurations (see configurations C1 to C7 in Fig. 6.3). For both the cases we found the C1

configuration to be the lowest in energy among all the configurations considered here. Let

us first consider the Br-rich case, i.e., (θBr=0.5, θH=0.25). Out of seven Br-rich surfaces,

C4 to C7 are higher in energy than C1, C2 and C3. This is due to steric repulsion between

bromine atoms on consecutive dimers (along the y direction) in C4 and C5. C4 lies lower

in energy than C5 because of the presence of an ABD patch in C4. Again, C6 and C7,

where only one Si atom on the dimers is saturated by an adsorbate atom, lie highest in

energy. The three lowest energy configurations lie close in energy. In C1 and C2, all Br

atoms have only one Br NN, at a distance of 3.9 Å, however in C3, some Br atoms have

two NN Br atoms at 3.8-3.9 Å. Thus there is increased steric repulsion in C3, leading to a
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higher energy. For the H-rich phases, five configurations, C1 to C5, are almost degenerate.

Note that C4 and C5 are closer in energy for the H-rich case than the Br-rich case. This

is because in the H-rich case, the energy lowering effect of the ABD patch in C4 is offset

by the increased steric repulsion between the Br atoms on neighboring dimers along the y

direction. As before, C6 and C7, with single adsorbate atoms adsorbed on dimers, are the

most disfavored configurations.

Table 6.2: Co-adsorption energies Eco-ads of Br2 and H2 on Si(100), for different configurations
at various coverages θ. Relative energies δE are calculated with respect to the lowest energy con-
figuration at a given coverage. A blank in the last column indicates that only one configuration is
considered at that coverage.

Coverage Config. Unit cell Eco-ads δE
θBr θH eV/atom meV/(1× 1)

θ < 1

0.5 0.25 C1 (4× 4) −1.79 lowest
0.5 0.25 C2 (4× 2) −1.79 1.7
0.5 0.25 C3 (4× 2) −1.78 8.3
0.5 0.25 C4 (4× 4) −1.76 20.2
0.5 0.25 C5 (4× 2) −1.75 26.8
0.5 0.25 C6 (4× 2) −1.72 50.6
0.5 0.25 C7 (4× 2) −1.70 75.0

0.25 0.5 C1 (4× 4) −1.43 lowest
0.25 0.5 C2 (4× 2) −1.43 1.4
0.25 0.5 C3 (4× 2) −1.43 0.1
0.25 0.5 C4 (4× 4) −1.43 2.0
0.25 0.5 C5 (4× 2) −1.43 3.7
0.25 0.5 C6 (4× 2) −1.36 53.8
0.25 0.5 C7 (4× 2) −1.33 75.4

θ ≥ 1

0.33 1 C8 (3× 2) −1.09
0.66 0.66 C9 (3× 1) −1.34 lowest
0.66 0.66 C10 (3× 1) −1.00 447.2
0.66 0.33 C11 (3× 2) −1.78
0.33 0.66 C12 (3× 2) −1.43 lowest
0.33 0.66 C13 (3× 2) −1.42 4.9
0.5 0.5 C14 (4× 2) −1.62 lowest
0.5 0.5 C15 (2× 2) −1.62 0.8
0.5 0.5 C16 (2× 1) −1.59 24.8
0.5 0.5 C17 (4× 2) −1.59 25.6
0.25 0.75 C18 (4× 4) −1.35

For co-adsorbed surfaces at θ ≥ 1, we have considered three configurations at θ = 1.33
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(a) C8, θBr = 0.33,
θH = 1.0

(b) C9, θBr = 0.66,
θH = 0.66

(c) C10, θBr = 0.66,
θH = 0.66

(d) C11, θBr = 0.66,
θH = 0.33

(e) C12, θBr = 0.33,
θH = 0.66

(f) C13, θBr = 0.33,
θH = 0.66

(g) C14, θBr = 0.5,
θH = 0.5

(h) C15, θBr = 0.5,
θH = 0.5

(i) C16, θBr = 0.5,
θH = 0.5

(j) C17, θBr = 0.5,
θH = 0.5

(k) C18, θBr = 0.25,
θH = 0.75

x

y

Figure 6.4: Top views of different configurations considered for co-adsorption of Br2 and H2 on
Si(100), with θBr+θH ≥ 1.0. The Br, H, Si atoms in the topmost layer, and the remaining Si atoms,
are represented by large red, small blue, small dark gray, and small light gray spheres, respectively.

and eight at θ = 1.0 (see configurations C8 to C18 in Fig. 6.4). Of those combinations of

θBr and θH for which we have considered more than one configuration, we first consider

(θBr=0.66, θH=0.66). Here, in C9, Br atoms have one Br NN at a distance of 4.12 Å, while

in C10, they have two Br NNs at distances of 3.23 Å and 3.39 Å. Thus, for steric reasons,

C9 is favored over C10. Next, for (θBr=0.33, θH=0.66), we compare C12 and C13. In the

former, the Br atoms have one Br NN at a distance of 3.97 Å, whereas in the latter, they

have two Br NNs at distances of 3.82 Å and 3.91 Å. Therefore, C12 is lower in energy than

C13. Finally, we consider (θBr=0.5, θH=0.5). C14, with atoms of the same type on every

dimer, is the most favored. The higher cost of the heteropolarity of the adsorbates on
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dimers in C15 is however offset by the lowering of electrostatic energy in the checkerboard

arrangement here. C16 and C17 have higher steric interactions between Br atoms and

therefore lie highest in energy.

The total energies obtained from ab initio DFT calculations are valid at zero tem-

perature and pressure. Moreover, using them we can only compare configurations which

contain the same number of adsorbate molecules of each type. If we want to go beyond

this to obtain stable phases at finite temperature T and pressure p, allowing the number

of adsorbate molecules to vary, we have to extend the work presented in this Section by

using it as input into a treatment using ab initio atomistic thermodynamics.

6.5.2 Ab initio atomistic thermodynamics: construction of Gibbs free

energy

Let us consider a system consisting of the clean Si(100) surface and two gas reservoirs, one

each for hydrogen and bromine molecules, kept at temperature T . We restrict ourself to

“constrained thermodynamics” of the system, where the bromine and hydrogen reservoirs

are separately in thermal equilibrium with the Si(100) surface, but not with each other.

This emphasizes the fact that the gas-phase reaction between the two reservoirs is prohib-

ited. When the system achieves thermodynamic equilibrium, a stable co-adsorbed phase

can be obtained. The surface Gibbs free energy γ, of a co-adsorbed phase with surface

area S, can be defined as: [41, 42]

γ(T, {pi}, {Ni}) =
1

S
[Gco-ads(T, {pi}, {Ni})−

∑

i

µiN i], (6.2)

where Gco-ads is the total Gibbs free energy of the co-adsorbed system, which is the sum of

the vibrational energy and the total electronic energy Eco-ads of the co-adsorbed system.

pi is the partial pressure of species i. µi is the chemical potential of an atom (molecule)

and Ni is the total number of atoms (molecules) of species i. (For pure phases, Gco-ads will

be replaced by the corresponding quantity for a one-component adsorbate, Gads.) Further,

we can define the stability of the co-adsorbed surface with respect to clean Si(100), and
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write the relative surface free energy as:

∆γ(T, {pi}, {Ni}) = γ(T, {pi}, {Ni})− γclean(T, {pi}, {Ni}), (6.3)

where

γclean(T, {pi}, {Ni}) =
1

S
[Gclean(T, {pi}, {Ni})− µSiNSi − µH2

N lower
H2

]. (6.4)

Gclean and N lower
H2

in Eq. (6.4) denote the total Gibbs free energy of the slab without any

adsorbates on the upper surface, and the total number of passivating hydrogen molecules

present on the lower surface, respectively. For this study we have neglected the contribution

to the free energy from atomic vibrations. As we take a difference of the free energies [see

Eq. (6.3)], there will be a partial cancellation of the vibrational contributions from the

co-adsorbed surface and the clean Si(100) surface [41, 152].

Before proceeding along these lines, one should however be aware of the limitations

of this approach. Of course, the phase diagram cannot yield any configurations other

than those considered in the DFT calculations. We are not including the vibrational con-

tribution to the free energy of the surfaces; neglect of these may lead to slight shifts in

transition pressures and temperatures, though qualitative features of the phase diagram

should remain unchanged. In addition, we have not included the contributions from the

configurational entropy, which may become important at low coverage. Finally, our treat-

ment does not include any consideration of kinetic effects, which will however be present

in actual experimental scenarios. In experimental situations the coverage of adsorbates

is often determined by kinetics rather than thermodynamics. In such cases a formalism

based on the grand canonical ensemble may not be appropriate.

6.5.3 Limits of chemical potential

The chemical potential of a molecule X2 in the gas phase can be defined as the change of

Gibbs free energy per molecule, and for a single molecule can be written as:
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µX2
= Egas

X2
+ EZPE

X2
+∆µX2

(T, p), (6.5)

where Egas
X2

and EZPE
X2

are the total energy calculated by DFT, and the zero-point energy of

the molecule in the gas phase, respectively. The last term in Eq. (6.5) is the contribution

arising from all other degrees of freedom. Assuming that the ideal gas law holds for the

molecules in the gas phase, one can write [41]:

∆µX2
(T, p) = µX2

(T, p0)− µX2
(T 0, p0) + kBT ln(p/p

0), (6.6)

where T 0 and p0 denote the ambient temperature and pressure, and kB is the Boltzmann

constant. The difference between the first two terms on the right hand side of Eq. (6.6)

can be obtained from the thermochemical tables [153]. As ∆µX2
(T, p) contains all the

effects of temperature and pressure, we can express the Gibbs free energy as a function of

∆µX2
(T, p), instead of µX2

(T, p).

The adsorbate chemical potential cannot be varied indefinitely in an experiment. Theo-

retically, we can determine the allowed range of chemical potential of an adsorbate molecule

at T = 0 [41, 42]. We assume that the limits do not change within the range of tempera-

ture and pressure considered here. The upper limit of the chemical potential is the limit

beyond which the gas phase of the molecule starts to condense. At the upper limit, the

chemical potential of a molecule becomes equal to the total energy in the gas phase, since

∆µX2
= µX2

− Egas
X2

+ EZPE
X2

= 0. On the other hand, the lower limit sets the boundary

beyond which the clean Si(100) surface becomes more stable than the co-adsorbed surface.

This leads to a condition where ∆µX2
overshoots the binding energy of the molecule on the

surface. The upper and lower limits can also be called “adsorbate-rich” and “adsorbate-

poor” gas-phase environments. Combining these two limits, we get the following criterion,

EX2

bind < ∆µX2
< 0, (6.7)

where EX2

bind is the binding energy of a single molecule on the surface. Below the lower
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limit one should obtain the clean Si(100) surface to be the most stable phase.

6.5.4 Thermodynamic analysis: phase diagram

To obtain the range of stability (phase diagram) of the co-adsorbed phases, we have calcu-

lated ∆γ as a function of adsorbate chemical potentials ∆µBr2 and ∆µH2
, using Eqs. 6.3

and 6.6, for the phases considered at T = 0. Note that only the lowest energy configuration

at each coverage is included in the thermodynamic analysis.

The allowed range of chemical potentials per bromine and hydrogen molecule is obtained

as follows: −4.28 eV < ∆µBr2 < 0, and −2.14 eV < ∆µH2
< 0. We have however varied

∆µBr2 and ∆µH2
slightly below the lower limit, in order to verify that we obtain the clean

Si(100) surface in this region. In Fig. 6.5(a) we have plotted the surface Gibbs free energy

∆γ, as a function of ∆µBr2 and ∆µH2
. For each configuration, the plane given by Eqs. 6.3

and 6.6 is plotted using the numerical results from the DFT calculations. At each value

of (∆µBr2 , ∆µH2
) the lowest lying configuration is then determined to yield the phase

diagram shown in Fig. 6.5(b). We find that there are five pure phases and six co-adsorbed

phases present in the phase diagram; however three of these (C11, C18 and Br-rich C1)

are present as only very narrow lines in the phase diagram. A fourth phase C9 appears in

a tiny region at the top of the phase diagram.

Let us concentrate first on the ∆µBr2-axis of Fig. 6.5(b), and compare with previous

results on the adsorption of molecular bromine alone. Within the allowed range of ∆µBr2 ,

we observe three stable patterns: over a broad range, the lowest free-energy configuration

is P10 (with θBr=1.0), and over a much narrower range, it is P6 (with θBr=0.5). While

these two phases appear in the phase diagram of previous authors [118], we obtain an

additional stable phase, viz., P2 (with θBr=0.25), also with only a narrow range of stability.

This configuration was not considered by the previous authors. Note that the zero of the

chemical potential of bromine is defined differently in our work and theirs. Note also

that the ranges of stability of P2 and P6 could conceivably increase if contributions from

configurational entropy were included.
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Figure 6.5: Phase diagrams: (a) shows the surface Gibbs free energy ∆γ of different configurations
as a function of adsorbate chemical potentials (∆µBr2 , ∆µH2

) and (b) shows the two-dimensional
surface phase diagram in the ∆µBr2 -∆µH2

plane. Different colors correspond to different configu-
rations. Chemical potentials for each molecule are converted into a pressure scale at two different
temperatures, 300 K and 600 K. (c) and (d) show a zoomed in view of the regions R1 and R2
indicated by the dotted black rectangles in (b).
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Next, we focus on the ∆µH2
-axis in order to determine the stable phases of the hydrogen-

covered surface. We find that there are two stable phases, which are the P11 configuration,

with θH = 1.0, and the P12 configuration, with θH = 1.33. Note that no phase with θH < 1.0

appears to be stable. In a previously published study [145], the author had reported three

stable phases, P11, P12 and P13 with θH = 1.0, 1.33 and 2.0, respectively. However, we

find that P13 has a positive adsorption energy, i.e., is not bound. There are two possi-

ble sources of the discrepancy between the results of Ref. [145] and ours: (i) the earlier

results are referenced to atomic hydrogen, not molecular hydrogen, (ii) in this very early

study, extremely low plane-wave cut-offs were used, which could possibly lead to numerical

inaccuracies.

Over most of the range of ∆µBr2 and ∆µH2
, we find that the stable phases are either

P10(Br) [light green in Fig. 6.5(b)], which contains bromine alone, or P11(H) [blue in

Fig. 6.5(b)], which contains hydrogen alone; these were obtained also in the adsorption

of the one-component gases. There is a small range where the stable phase is P2(Br)

[cornflower blue in Figs. 6.5(b) and 6.5(c)]; this is a patterned arrangement, consisting

of zigzag lines of pairs of Br atoms running along the x direction, successive lines are

separated by 15.47 Å. There is a narrow line of C18 (magenta), which is similar to P2(Br),

except that the bare Si areas of P2(Br) are H-covered in C18. There is a small (purple)

region where we find P6(Br), which is also a patterned configuration, with a checkerboard

arrangement of Br atoms [see Fig. 6.2(f)]. There is also a fairly substantial (yellow) region

of the phase diagram corresponding to the co-adsorbed structure C14, which is similar to

P6(Br), except that there are also H atoms present [see Fig. 6.4(g)]. Thus, by co-adsorbing

with hydrogen, we have managed to extend the range of chemical potentials of bromine over

which one can get such a pattern. There are two very narrow lines (red and black) where

one obtains C11 and C1(Br-rich), respectively. C1(Br-rich) is similar to C14 and P6(Br)

in the arrangement of the Br atoms, and C11 is an interesting pattern, with a grid-like

arrangement of Br atoms, though given its very narrow range of stability, it may be difficult

to stabilize this configuration in experimental conditions. At the top of the phase diagram

(i.e., ∆µH2
close to 0) we find one pure phase, P12(H) (dark green) with θH = 1.33, and
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two co-adsorbed phases, C8 (orange) and C9 (dark gray). The C8 configuration consists

of Br atoms arranged in a rectangular checked pattern and C9 has alternating Br and

H stripes. We thus see that, by co-adsorbing hydrogen with bromine, we have not only

increased the range of chemical potentials over which we can obtain certain patterns, we

have also obtained a greater diversity of interesting patterned arrangements of the bromine

atoms. However, we should note that several of the patterns of interest here lie only very

slightly lower in energy than other competing configurations at the same coverage, and it

may therefore be difficult to observe them experimentally. For example, P6(Br) lies only

slightly lower in energy than P5(Br), C14 is close in energy to C15, and P2(Br) to P3(Br).

To shed more light on the phase diagram, we have plotted the pressure variations along

with the adsorbate chemical potentials at two temperatures, 300 and 600 K. To obtain the

pressure scale from a given chemical potential scale, we have used Eq. (6.6). The difference

between the first two terms on the right hand side of Eq. (6.6), i.e., µX2
(T, p0)−µX2

(T 0, p0),

is obtained from the thermochemical table [153]. The value of this for bromine molecules is

−0.66 eV and −1.47 eV at 300 K and 600 K, respectively, whereas for hydrogen molecules

the value at 300 K is −0.31 eV, and the value at 600 K is −0.75 eV. From the pressure and

temperature scale in Fig 6.5(b), one can see that at ambient pressure of both the molecules

only the P10(Br) configuration is favored, with θBr = 1.0. It is of interest to see under

what conditions the patterned configurations P6(Br), which contains only bromine, and

the very similar C14, which contains co-adsorbed bromine and hydrogen, can be obtained.

When only bromine is adsorbed, in order to obtain P6(Br), one needs a pressure of about

10−60 atm at 300 K and 10−24 atm at 600 K. However, when bromine and hydrogen are

co-adsorbed, it is possible to obtain the corresponding patterned configuration C14 over

a range of higher partial pressures of bromine and hydrogen, e.g., at pBr2 ∼ 10−40 atm

and pH2
∼ 10−14 atm at 300 K, or at pBr2 ∼ 10−18 atm and pH2

∼ 10−8 atm at 600 K;

such conditions are much more accessible to experimental techniques. Similarly, the co-

adsorbed configuration C18 is observable at higher pressures than the corresponding pure

Br configuration P2(Br). Thus we see that by co-adsorbing bromine and hydrogen, not only

have we extended the area of phase-space in which we can obtain patterned configurations
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of interest to us, we have pushed up the pressures at which these can be achieved into a

region that is much easier to attain experimentally.

6.5.5 Condition for extending the range of stability of pure bromine

phases to higher pressure regime

We now attempt to understand why co-adsorption with hydrogen extends the region of

phase stability to higher pressures than those at which the corresponding pure bromine

configuration is stable. To do this, we examine why the slopes of the relevant co-existence

boundaries in Fig. 6.5 (e.g., between C11 and C14, or between C14 and C18) are positive.

Eq. (6.3) for a configuration Ci can be rewritten as:

∆γCi =
1

S
(2NCi

totE
Ci
co-ads −NCi

Br2∆µBr2 −NCi
H2

∆µH2
), (6.8)

where NCi
Br2

and NCi
H2

are the total number of adsorbed bromine and hydrogen molecules

per area S in configuration Ci, respectively, and NCi
tot = NCi

Br2
+NCi

H2
. Along a co-existence

boundary between two configurations Ca and Cb, ∆γCa = ∆γCb, and the equation of the

co-existence boundary therefore becomes:

(NCa
Br2 −NCb

Br2)∆µBr2 + (NCa
H2

−NCb
H2

)∆µH2
= 2(NCa

totE
Ca
co-ads −NCb

totE
Cb
co-ads). (6.9)

The slope of the co-existence boundary between Ca and Cb in the ∆µBr2-∆µH2
phase

diagram is therefore given by:

m =
NCb

Br2
−NCa

Br2

NCa
H2

−NCb
H2

=
θCb
Br − θCa

Br

θCa
H − θCb

H

, (6.10)

where θCi
Br and θCi

H are the coverages of Br and H, respectively, in configuration Ci. In

any situation where the sum of the coverages of the two adsorbates is the same in the two

co-existing phases, i.e., θCa
Br + θCa

H = θCb
Br + θCb

H (=1 for {P10(Br),C11}, {C11,C14}, {C14,
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C18}, {C18,P11(H)}), on substituting into Eq. (6.10), we getm = +1, i.e., the co-existence

boundary has a positive slope, which is why the phase extends to higher pressures. Note,

however, that such an analysis alone would not suffice to tell us that co-adsorption would

allow us to extend patterns to higher pressures. We need our ab initio results in order to

determine that these phases appear in the phase diagram at all.

In the phase diagram, there are several phase boundaries between the eleven config-

urations; at each phase-boundary the surface may undergo an order to disorder phase-

transition till a new stable pattern with different adsorbate concentrations gets stabilized.

If the surface becomes disordered near phase transitions, then the configurational entropy

also contributes significantly to the surface Gibbs free energy; this leads to smearing of the

phase boundaries. As a result, near phase-boundaries, the surface may not show any long-

ranged order, while local ordering may be present. Several of the phases that appear in

our phase diagram, e.g., C1(Br), C11 and C18 may not show long-ranged ordering as they

exist over a very narrow range of adsorbate chemical potentials. Note that we find that

the surface goes from the P6(Br) configuration (θBr=0.5, θH=0) to the C14 configuration

(θBr=0.5, θH=0.5) via the intermediate configuration C1 (θBr=0.5, θH=0.25). Similarly,

the transition between the P10 configuration (θBr=1.0) and C14 configuration (θBr=0.5,

θH=0.5) proceeds via the intermediate configuration C11 (θBr=0.66, θH=0.33). Transitions

such as these might occur in a continuous fashion.

6.6 Summary

In summary, we have studied the co-adsorption of Br2 and H2 on Si(100) and predicted the

stability of the co-adsorbed phases by using density functional theory calculations in com-

bination with ab initio atomistic thermodynamics. By considering different configurations

with varying coverages of adsorbates on the surface, and comparing the surface Gibbs free

energy as a function of adsorbate chemical potentials, we are able to predict the ranges of

stability of various phases at different temperature and pressure.

When comparing the energies of different possible configurations at a given coverage,
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we have seen clearly the importance of two dominant effects in determining the relative

energetics of competing structures. One is steric interactions that always disfavor con-

figurations where Br atoms are too near each other, except when they are on the same

dimer. The other is a tendency to favor configurations which expose regions of the bare

Si(100) surface that are large enough to feature areas where alternately buckled dimers

(ABD) are present. These two effects seem to compete with each other, with the former

prevailing at high Br coverage, and the latter at low Br coverage. It is also clearly seen

that configurations in which an adsorbate atom is bound to only one of the two atoms of

a dimer pair, lie very high in energy.

Over a large range of bromine and hydrogen chemical potentials, the favored configura-

tion is found to be one with only bromine atoms adsorbed on the surface, at full coverage,

in a (3 × 2) pattern. However, we also find regions of the phase diagram where there are

configurations with either only bromine atoms, or bromine and hydrogen atoms, arranged

in an interesting pattern with a (4 × 2) surface unit cell. In these the bromine atoms are

arranged, in pairs, in a checkerboard fashion on the Si(100) dimers. Most interestingly, we

find that by co-adsorbing with hydrogen, we manage to bring this pattern into a region

of the phase diagram corresponding to pressures that are significantly higher than those

where it is observed with bromine alone. This makes this pattern much easier to achieve

in experimental conditions. Other interesting patterns occur in small areas of the phase

diagram, such as zigzag lines of bromine atoms, alternating stripes of bromine and hydro-

gen, and a rectangular checked pattern. As halogen-covered Si(100) surfaces are known

to undergo spontaneous etching, it would be interesting to find out what happens to the

co-adsorbed surface, and whether etching occurs here.
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Ab initio modeling of etching:

conventional and supersaturation

etching of Si(100) by Br2

7.1 Introduction

In the previous chapter, we have studied a way to tune the morphology of Si(100) by

patterning using molecular self-assembly. Here, in this chapter, we focus our attention on

obtaining a modified morphology of the Si(100) surface by etching with molecular bromine.

Dry plasma etching is a crucial process in semiconductor microfabrication [154, 155].

In this process, the target material is bombarded with a plasma containing an electrically

neutral mixture of molecules, atoms, ions and electrons [156]. These remove some part

of the target material, so as to create desired features. Halogen plasmas are known to

yield a high etch rate [157, 158]. For various applications in very large scale integration

(VLSI), as well as dynamic random access memories (dRAMs) and microelectromechanical

systems, high aspect ratio trenches with straight edges are desirable [156]. In order to

achieve such anisotropic features, chlorine and bromine plasmas are preferred over fluorine

plasmas [159]. Another desirable property for an etchant is that it should remove the

material being etched selectively over the mask or the underlying film; bromine displays

137
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a higher etch rate and a greater selectivity for etching silicon over silicon dioxide, when

compared to chlorine [9]. In order to be able to tune etching conditions so as to optimize

yield while retaining control over fine features, it is desirable to have a theoretical atomistic

understanding of the underlying processes.

Etching is said to be “spontaneous” if secondary ionization or bombardment with elec-

tron beams is not used during the etching process [117, 160]. While there have been a

number of theoretical studies that investigate the spontaneous etching of Si(100) by chlo-

rine [161–163], till date, no such theoretical study appears to exist for bromine. Due to

the lack of theoretical studies on bromine, the barriers for etching by Br2 were heretofore

assumed to be the same as those for Cl2 [164]. However, there are two main reasons that

make this assumption possibly inaccurate: (1) chlorine binds more strongly to the Si(100)

surface than bromine [151], so the energy required to break Si-Cl bonds is expected to be

more than that needed for breaking Si-Br bonds (as we will see below, this bond breaking

is a necessary step to commence etching), and (2) there are stronger steric interactions

between bromine atoms on Si(100) than between chlorine atoms [118]; this might facilitate

etching at high coverage. These two facts suggest that the etch barriers might be lower in

the case of Br2 than Cl2. Therefore, in this study, using ab initio density functional theory,

we have investigated the formation of SiBr2 during spontaneous etching of Si(100) by Br2

in the conventional (θBr ≤ 1) and supersaturation (θBr > 1) etching regimes. For each of

these cases, we have compared our results with the results obtained for Cl2 in Refs. [161]

and [162], and tried to obtain an atomistic understanding of the origins of the differing

behaviors of Br2 and Cl2 as etchants.

7.2 Previous Studies

Although etching has been performed for many centuries, experimental insight into the

detailed atomic-scale mechanism had been achieved only with the advent of powerful sur-

face probes like scanning tunneling microscopy (STM). Together with thermal desorption

spectroscopy (TDS) [also known as temperature programmed desorption (TPD)], STM
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can provide information about the reaction mechanism of etching by capturing the change

in surface morphology as a function of temperature and bias voltage, at different values

of the adsorbate coverage θ. While STM provides information about the evolving surface

morphology as well as the post-etching morphology of the surface, TPD allows one to

determine etch products and overall etch rates. Intuitively, one might think that the etch-

ing process roughens the surface to a degree where a probe like STM cannot distinguish

between different etching regimes. However, quite contrary to this, STM images exhibit

definite shapes/structures on Si(100) produced by etching with halogens [158].

Previous experimental studies on etching by Br2 have shown that both the surface

morphology and the etch products vary as a function of temperature [117,165–167]. These

studies showed that mainly two different types of surface structures can be present, irrespec-

tive of the temperature of the surface: (a) single-layer deep etch pits consisting of missing

dimer atoms, or more extended vacancy islands produced due to the removal of surface Si

atoms, and (b) one-dimensional chains and two-dimensional islands due to Si regrowth on

the surface. Except at low temperatures, at all temperature ranges, an anisotropic surface

morphology was observed due to etching; the shape anisotropy was shown to arise from

the preferential etching by Br2 along the dimer row direction (here “row” refers to the

ladder-like structure made by the dimers) [167]. Once a missing atom or a dimer vacancy

is created on the surface, it destabilizes the nearby Si atoms of the same row, and this

leads to an extension of the vacancy lines and etch pits [158]. While SiBr2 was observed to

form at high temperatures (∼ 750-1100 K) as a volatile etch product, SiBr3 and SiBr4 were

shown to be the dominant etch products at low temperatures (∼ 350-700 K). However, a

higher etching yield was achieved at higher temperatures (∼ 900 K) [166].

Similar experimental studies have also been performed for Cl2 [168–170]. Moreover,

significant insight into the intermediate stages of etching processes by chlorine have been

provided by the theoretical studies of Wijs et al. [161,162], where the authors have shown

that at low coverage, monochloride-dichloride isomerization occurs by breaking the dimer

bond. In this process, one chlorine atom hops from one Si atom to the other Si atom of the

same dimer, thus giving rise to a SiCl2(a) unit attached to one of the Si atoms of a dimer.
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Next, the chlorine-free Si atom of the dimer, often called the “Si bystander”, diffuses away

on the surface, thus facilitating the stability of the SiCl2(a) unit on the surface by impeding

the reverse reaction. These results agree well with experimental investigations which show

that the maximum etch rate for this system can be obtained at θCl = 0.8 ML, and that the

etch rate eventually decreases at higher coverage due to the lack of availability of vacant Si

sites for diffusion [171, 172]. Nakayama et al. [173] showed that this decrease of etch rate

is not as pronounced in the case of bromine due to an adsorbate-mediated transformation

from the (2× 1) to the (3× 1) phase at high bromine coverage.

The above mechanism proposed by Wijs et al. [161, 162] can explain the occurrence

of etching when θCl ≤ 1 (this is called the conventional etching regime). However, re-

cently [174, 175], a finite etch rate and novel etching pathway for the spontaneous super-

saturation etching (SSE) of a fully chlorine-passivated surface were reported. Intuitively,

one might think no etching could occur on a fully-saturated surface due to the absence

of dangling bonds which can bind the etchant atoms. However, a dangling bond can be

created on the surface due to the desorption of a Cl atom via a phonon-activated electron-

stimulated desorption (PAESD) process [176,177]. This process is the key step to commence

supersaturation etching on the Si(100) surface. The newly created dangling bond on the

Si atom then mediates the dissociation of an impinging Cl2 molecule, leading to the satu-

ration of the dangling bond and insertion of the other chlorine atom on the same Si atom,

or on the bridge site of the same dimer, or on the Si atoms of the second substrate layer.

The authors suggested that etching occurs due to the diffusion of the inserted Cl atom

on the surface, leading to the formation of SiCl2(a) precursors, which finally desorb. The

advantage of SSE over the conventional etching (θCl ≤ 1) is that the surface morphology is

free of Si regrowth islands which generally roughen the surface uncontrollably. Till date,

no such experiments have been done for Br2; to the best of our knowledge.

Partly motivated by these studies, we here address the following questions: (1) Are

etching barriers different for Br2 compared to Cl2? (2) If yes, why do Br2 and Cl2 behave

differently? (3) Is supersaturation etching of Si(100) by Br2 feasible?
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7.3 Steps in Etching Reaction

The complex process of etching of Si(100) by halogen molecules consists of three main

reaction steps [158]:

(i) The dissociative adsorption of the halogen molecules on the surface, where an etchant

halogen molecule dissociates into two halogen atoms and gets adsorbed at chemically

active dimer sites on the surface.

(ii) The formation of intermediate precursors, such as SiXn(a) (where X = Cl or Br; n=

1–4), on the surface by breaking one or more Si-Si and Si-X bonds.

(iii) The desorption of volatile SiXn by breaking further Si-Si bonds.

Note that in some cases, the step (ii) might be comprised of several sub-steps.

7.4 Computational Details

All the calculations have been done using ab initio density functional theory (DFT) as

implemented in the Quantum ESPRESSO package [24]. We have used the same values for

all the parameters as in Chapter 6 (see Section 6.4).

To calculate the activation barriers for the complex (intermediate) steps in the etching

process, the climbing image nudged elastic band (NEB) method [44] was employed, espe-

cially when the reaction coordinates are not known. We first geometrically optimized the

“initial” (refers to the reactant) and “final” (refers to the product) configurations using

DFT. Then, using the NEB method, the minimum energy path of a reaction going from

the initial configuration to the final configuration was obtained, along with the transition

state. The total number of configurations generated, including the initial and the final

configurations was 12 for all the intermediate reaction steps. This number was chosen such

that the generalized distance between two consecutive images in the configuration space is

less than 1.5 a.u. For the calculations of the diffusion barrier, a constrained minimization

(CM) scheme was employed; in this case the reaction coordinate was taken to be the dis-

tance traversed on the surface by the atom being diffused. We again used the CM method
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to calculate the desorption barrier, and the distance between the volatile molecules and the

surface was varied up to 3.5 Å above the surface, in order to ensure negligible interactions

between the two in the final state.

7.5 Results

Etching of Si(100) by Br2 is a thermally activated process; this indicates that the system

mostly stays near the minima of the potential energy surface (PES) and occasionally ex-

plores configurations with higher energy with the help of the energy provided by thermal

fluctuations. Thus, during a reaction, on going from reactants to products, the system has

to overcome an activation barrier and the configuration corresponding to the top of this

barrier is called the “transition state” of the reaction. For such a reaction, the (empiri-

cal) relation between the reaction rate constant (k) and the temperature is given by the

Arrhenius expression:

k(T ) = ν exp

(
− E∗

kBT

)
(7.1)

where ν is the prefactor (depends on temperature), E∗ is the activation barrier, kB is

Boltzmann’s constant, and T is the temperature at which the reaction takes place. If

ν and E∗ are known, one can calculate the rate constant of the reaction at a particular

temperature. In order to obtain the rate (r) of a reaction, one has to invoke reaction

kinetics. The rate laws connect the rate of a reaction to the concentration of the reactants

(θ) through the rate constant (k). For a multistep reaction like etching, the rate of the

overall reaction has to be obtained. In a multistep reaction, the “slowest” reaction (with

the largest activation barrier) is called the “rate-limiting step”, and the overall rate of the

reaction becomes equal to the rate of this step. Below we calculate the energy barriers for

conventional etching (in Section 7.5.1) and supersaturation etching (in Section 7.5.2). The

reaction rates for the rate-limiting steps are also obtained.
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7.5.1 Conventional etching

For the calculation of low and high coverage etching of Si(100) by bromine, we have taken

a 4 × 4 and a 6 × 3 surface unit cell, respectively. The coverages for molecular bromine

(θBr) are taken as 0.125 (low coverage) and 0.94 (high coverage). First, let us consider

etching at low coverage.

The first step of the etching reaction is the adsorption of Br2 on Si(100). Br2 disso-

ciatively absorbs on Si(100) and saturates the dangling bonds of the Si atoms. For this

study, we have restricted ourselves to considering the c(4×2) reconstructed Si(100) surface.

Herrmann and Boland [135] showed that at low temperature, the dissociation of Br2 can

lead to two types of geometries: (1) saturation of two nearby Si atoms of adjacent dimers

of the same dimer row and (2) saturation of the Si atoms of the same dimer. However, the

results obtained in Chapter 6 suggest that the latter geometry is likely to be more stable

energetically than the former, due to having a larger proportion of alternating buckled

dimer (ABD) patches of bare (Br-free) surface; the STM images obtained by Rioux et

al. [165] are in agreement with this result. Therefore, we have calculated the adsorption

energy (Eads) of Br2 upon saturating the Si atoms of a dimer [see Figs. 7.1(a) and 7.1(e)].

The adsorption reaction can be written as:

Si(100) + Br2(g) ⇋ 2SiBr− Eads, (7.2)

where “(g)” represents the gaseous state. The adsorption energy is defined as the energy

difference between the reactants and the product of the reaction presented in Eq. (7.2).

The value of Eads is calculated to be -2.12 eV per Br atom. A negative value of Eads

suggests that this reaction is exothermic.

The second step is the monobromide-dibromide isomerization (see Fig. 7.1), which is

the crucial step for the etching reaction [161, 178]. During this process, one Br atom

(shown as red spheres) jumps from one Si atom (shown as dark gray spheres) to the other

Si atom of the same dimer by first breaking the Si-Si (dimer) bond and then breaking one

of the Si-Br bonds. As a result a “dibromide” SiBr2(a) unit is formed [see Figs. 7.1(d) and
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(a) 1st image (initial
state), side view

(b) 4th image, side
view

(c) 7th image (transi-
tion state), side view

(d) 12th image (final
state), side view

(e) 1st image (initial
state), top view

(f) 4th image, top view (g) 7th image (transi-
tion state), top view

(h) 12th image (final
state), top view
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Figure 7.1: Isomerization reaction for low coverage (θBr = 0.125) etching of Si(100) by Br2.
(a)-(d) show side views and (e)-(h) show top views of how the atomic positions change as the
isomerization reaction proceeds. The red, dark green, dark gray and light gray spheres represent Br
atoms, Si(s) atoms, Si atoms in the topmost layer and the remaining Si atoms, respectively. (i)
shows the activation barrier (∆E∗

f ) for the reaction. See Appendix C for a video file depicting the
isomerization reaction.

7.1(h)]. “(a)” denotes the precursor state that is attached to the surface. This reaction

can be written as:

2SiBr ⇋ SiBr2(a) + Si(s)−∆E∗
f (7.3)
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where Si(s) is the Si bystander atom that has been shown in Figs. 7.1(d) and 7.1(h)

as a green sphere. Note that this newly created Si(s) atom has two dangling bonds.

Fig. 7.1(i) shows the variation of relative energy as a function of reaction coordinate.

This plot indicates that isomerization is an activated process and the activation barrier

(∆E∗
f ) for isomerization is 1.89 eV. From this figure it is also clear that the formation

energy [Ef , the energy difference between the reactants and products of the reaction given

by Eq. (7.3)] of the SiBr2(a) is 1.22 eV and this reaction is endothermic. These values

indicate that the barrier for the reverse isomerization reaction (∆E∗
−f = ∆E∗

f − Ef ) is

0.66 eV. As ∆E∗
−f < ∆E∗

f , it might seem that the formation of SiBr2(a) by isomerization

is very unlikely, and as a result, no etching is likely to occur in this pathway. However,

the formation of SiBr2(a) strongly depends on the third reaction step, which reduces the

probability of the reverse isomerization reaction occurring.

As Si(s) is chemically active, it can act like an “adatom” on the surface and can diffuse

on the surface to saturate the dangling bonds. Wijs et al. [161] showed that in the case

of Cl2, the diffusion barrier for Si(s) along the dimer row direction (through the channel

between two consecutive dimer rows) is lower than the corresponding barrier along the

direction perpendicular to the dimer row. For Br2, we have plotted the relative energy

as a function of the distance ds between the original and the displaced position of Si(s)

in Fig. 7.4(a), where ds is taken to vary along the dimer row direction. We find that the

diffusion barrier [∆Ediff(1)] is 1.17 eV. As ds increases further, the barrier for diffusion of

Si(s) [∆Ediff(2)] becomes 0.69 eV. Note that the latter barrier is similar in magnitude to

the barrier for diffusion of a Si adatom on the clean Si(100) surface (∼ 0.6 eV) [179]. The

Si(s) atom can finally get attached to a step edge or can form Si regrowth islands on the

surface. Based on statistical probability, one can rule out the chances of Si(s) coming back

to its original position at low coverages. So, the stability of the SiBr2(a) increases due to

the diffusion of Si(s); the reverse reaction gets inhibited by the absence of the Si(s) atom.

By comparing the values of ∆Ediff(1) and E
∗
−f , we find that the barrier for the reverse

isomerization is 0.51 eV lower than the barrier for the diffusion process. However, the

constrained minimization method, which was used to obtain ∆Ediff(1), always gives an
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(b) 1st image (initial
state)

(c) 5th image (d) 7th image (transi-
tion state)

(e) 11th image (transi-
tion state)

(f) 17th image (final
state)

Figure 7.2: Barriers for Si(s) diffusion for low coverage (θBr = 0.125) etching of Si(100) by Br2.
(a) show the barriers for diffusion (∆Ediff(1) and ∆Ediff(2)). Top views of the atomic configurations
corresponding to the initial, transition state (TS), and final states are shown in (b)-(f). The red,
dark green, dark gray and light gray spheres represent Br atoms, Si(s) atom Si atoms in the topmost
layer and the remaining Si atoms, respectively. See Appendix C for a video file depicting the diffusion
process.

upper-bound to the activation energies. At a high enough temperature (∼ 750-1100 K),

where SiBr2 forms, the thermal fluctuations in the system may be expected to facilitate

the diffusion reaction to occur.

Once the SiBr2(a) becomes stable, the final step involves the formation of the volatile

SiBr2(g) by breaking the Si-Si backbonds, which are the bonds that connect the first and
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second layer Si atoms. The desorption reaction can be written as:

SiBr2(a) ⇋ SiBr2(g)−∆E∗
des. (7.4)

Note that this is also an activated process. We have obtained the desorption barrier

(∆E∗
des) to be 2.63 eV per SiBr2 molecule. This barrier is equal to the value of the energy

difference between the reactant and the product of the reaction presented in Eq. (7.4). As

soon as the SiBr2 desorbs from the surface, a dimer vacancy gets created due to etching.

This creates a defect on the surface and such defects can facilitate further etching of the

surface.

Next, we will turn our focus toward conventional etching at high coverage. As θBr

increases, the number of dangling bonds on the surface decreases. In such cases, the path

(through the channel between two consecutive dimer row) for diffusion of Si(s) becomes

no longer available. For Cl2, Wijs et al. [161] proposed an alternative way to make the

SiCl2(a) stable at full coverage (θCl = 1). By considering the possibility of hopping of a Cl

atom from a nearby Si atom to a Si(s) site, they had shown that the energy required for

such hopping is 0.9 eV. Their calculation suggests that the desorption energy in that case

becomes 3.5 eV. Here, we propose yet another alternative reaction pathway for etching

at a high coverage (θBr = 0.94). Recently, it has been shown [176, 177] that Br atoms

can desorb from the fully-saturated surface via a phonon-activated electron-stimulated

desorption (PAESD) process. Such a process gives rise to single Br-free Si atoms on some

dimers [see Fig. 7.3(a)] and can permit a possible reaction pathway for etching at high

coverage. The Br atoms on one of the adjacent dimers (of the same dimer row) of this

now Br-free Si atom can go through isomerization and form the SiBr2(a) and Si(s) [see

Eq. (7.3)]. We find that the hopping of a Br atom from the Si atom which is nearer to the

dangling bond created by PAESD is more favorable than hopping of the other Br atom [see

Fig. 7.3(d)]. In this case, we find that the values of ∆E∗
f and Ef to be 2.04 eV and 1.51

eV, respectively [see Fig. 7.3(i)]. This leads to the value of ∆E∗
−f to be 0.53 eV. However,

Si(s) can diffuse along the dimer row direction and get attached to the Br-free Si atom of
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(a) 1st image (initial
state), top view

(b) 4th image, top
view

(c) 7th image (transi-
tion state), top view

(d) 12th image (final
state), top view

(e) 1st image (initial
state), side view

(f) 4th image, side
view

(g) 7th image (transi-
tion state), side view

(h) 12th image (final
state), side view
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Figure 7.3: Isomerization reaction for high coverage (θBr = 0.94) etching of Si(100) by Br2.
(a)-(d) show top views and (e)-(h) show side views of how the atomic positions change as the
isomerization reaction proceeds. The red, dark green, dark gray and light gray spheres represent
Br atoms, Si(s) atom, Si atoms in the topmost layer and the remaining Si atoms, respectively. (i)
shows the activation barrier (∆E∗

f ) for the reaction. See Appendix C for a video file depicting the
isomerization reaction.

the next dimer [see Fig. 7.4(d)]. The diffusion barrier ∆Ediff is calculated to be 1.07 eV.

Note that in this way Si(s) gets displaced by 1.3 Å away from its original position. This

diffusion consequently increases the stability of SiBr2(a). We find the value of ∆Edes is

2.61 eV per SiBr2 molecule. We observe that even in this case a dimer vacancy gets created

on the surface due to etching at high coverage. There is a possibility that the Si(s) atom
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eventually diffuses to the lower terrace, partially filling up the etch-pit.

Thus, we find that the conventional etching commences by creating either a dimer

vacancy or a single atom vacancy on the surface [165]. Once these defects are created on the

surface, they elongate with time and result in dimer vacancy lines or single-atom vacancy

lines. However, due to the unrestrained diffusion of Si(s) atoms, the etch morphology can

not be controlled during conventional etching.
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Figure 7.4: Diffusion of Si(s) for low coverage (θBr = 0.94) etching of Si(100) by Br2. (a)
shows the barrier for diffusion (∆Ediff). Top views of the atomic configurations corresponding to
the initial, transition state (TS), and final states are shown in (b)-(d). The red, dark green, dark
gray and light gray spheres represent Br atoms, Si(s) atom Si atoms in the topmost layer and the
remaining Si atoms, respectively. See Appendix C for a video file depicting the diffusion process.

In Table 7.1, we compare the results obtained by us for low and high coverage etching

with Br2. We also compare these values with the results obtained by Wijs et al. [161,162]

for Cl2. First, by examining the results obtained above, we find that the values of the

activation energies do not differ significantly on going from low to high bromine coverages.

A slight increase in Ef and ∆E∗
f on going from low to high coverage may originate from
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Table 7.1: Comparison of the calculated barriers for conventional etching of Si(100) [both at high
and low adsorbate coverage] between Br2 and Cl2. Numbers for Cl2 are taken from Refs. [161,162].
All values are in eV.

Quantity low coverage high coverage
Cl2 Br2 Cl2 Br2

Ef 1.4 1.22 1.3 1.51
∆E∗

f 2.1 1.89 – 2.04

∆E∗
−f = ∆E∗

f − Ef 0.7 0.66 – 0.53

∆Ediff 0.6-1.0 0.69-1.17 0.9 1.07
∆Edes 3.2 2.63 3.5 2.61

the stronger steric interaction at high coverage. Upon comparing the results for Br2 and

Cl2, we find that at low coverage, the values of Ef , ∆E
∗
f and ∆Edes are lower for Br2

compared to Cl2. The largest difference is found for ∆Edes, which is lower by ∼ 0.6 eV

and ∼ 0.9 eV at low and high coverage, respectively, for Br2 compared to Cl2. For ∆Ediff ,

the value for Br2 is observed to be larger than the value for Cl2 by only 0.1–0.17 eV. These

results suggest that the overall activation energy is lower in the case of Br2 as compared to

Cl2. However, the rate of the reaction also depends strongly on the prefactor ν, reaction

kinetics and the rate-limiting reaction. Below we try to deduce the rate of the reaction for

conventional etching. Note that the coverages used in the calculations are slightly different

for Cl2 and Br2 at high coverage; for Cl2, θCl = 1.0 and for Br2, θBr = 0.94.

Flowers et al. [180] showed from their TPD data that the desorption of SiBr2 for con-

ventional etching (θBr ≤ 1.0) is consistent with first-order reaction kinetics. The reaction

barrier was observed to be almost unchanged with respect to temperature and the value

was found to be 2.64 eV per SiBr2 desorption. The prefactor ν was found to be 2 × 1015

s−1. From Table 7.1, one can clearly see that this value is in excellent agreement with

the value of ∆Edes. Comparing all the values of activation barriers, we also see that the

activation barrier is the largest for the desorption process. This implies that the desorption

is the rate-limiting process. For Cl2, the desorption barrier is 3.2 eV (at low coverage).

Considering that the overall etching process by a halogen is a first-order reaction, it is easy

to show that the rate of etching by Br2 is at least 104 times faster than that by Cl2 at low

coverage. Note that due to the lack of availability of the value of ν for Cl2, we have taken
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it to be the same as that for Br2 in calculating the rate of the reactions.

In order to confirm whether or not the reaction mechanism discussed above would be

the most likely reaction pathway for etching in the conventional regime or not, we have

considered another pathway where etching commences by breaking Si-Si backbonds. The

activation barrier is found to be 4.2 eV in that case; this is almost twice as large as the

required energy barrier for breaking the Si-Si dimer bond and the Si-Br bond. Hence, we

conclude that etching is likely to follow the first pathway discussed above.

7.5.2 Supersaturation etching

Next we consider the possibility of supersaturation etching of Si(100) by Br2. For this, we

have chosen a 6 × 4 surface supercell. We first consider the adsorption of a Br2 molecule

on an almost fully-saturated surface with one Br-free Si atom per supercell that has been

created by the PAESD process. For Cl2, Weaver and co-workers [174, 175] suggested that

the Cl-free Si atom (generated by PAESD) mediates the dissociation of any incoming Cl2

molecule; one Cl atom of the molecule saturates the dangling bond, while the other Cl atom

gets “inserted”. Based on this, we have considered a similar mechanism for adsorption for

Br2. The inserted Br atom is denoted as Br(i) (shown as a black sphere in Fig. 7.5). In

Fig. 7.5, we have shown the top view and the side view of the atomic arrangements of

one such configuration, where the Br(i) gets inserted by breaking the Si dimer bond. The

adsorption reaction can be written as:

2SiBr∗ + Br2(g) ⇋ Si2Br3 − Eads, (7.5)

where 2SiBr∗ denotes a fully Br-saturated surface except for a few Br-free Si atoms. The

value of Eads is calculated to be −1.38 eV/ Br atom; this indicates that the reaction is

exothermic.

The STM images obtained by Weaver and co-workers [174, 175] reveal that the post-

etch morphology of the surface contains dimer-vacancy lines/pits. The authors argued that

only an adsorption geometry like the one considered in this study can give rise to such a
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(a) Top view (b) Side view

Figure 7.5: Adsorption geometry for supersaturation etching of Si(100) by Br2: (a) and (b) show
the top view and the side view, respectively. The red, black, dark gray and light gray spheres represent
Br atoms, Br(i) atoms, Si atoms in the topmost layer and the remaining Si atoms, respectively.
See the text for the description of the Br(i) atom.

morphology. Here, etching is considered to commence by breaking the Si-Si dimer bond

due to the diffusion of a Br(i) atom to the adjacent dimer of the same dimer row. In

0 0.2 0.4 0.6 0.8 1
Reaction coordinte

0

0.1

0.2

0.3

R
el

at
iv

e 
en

er
gy

 (
eV

)

∆Ediff

(a)

(b) Initial state (c) TS state (d) Final state

Figure 7.6: Diffusion of Br(i) atom during supersaturation etching of Si(100) by Br2. (a) shows
the diffusion barrier (∆Ediff). (b)-(d) show the atomic configurations corresponding to the initial,
transition state (TS), and final configurations. The red, black, dark gray and light gray spheres
represent Br atoms, Br(i) atoms, Si atoms in the topmost layer and the remaining Si atoms,
respectively. See the text for the description of the Br(i) atom. See Appendix C for a video file
depicting the diffusion process during supersaturation etching.
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Fig. 7.6(a), we have plotted the relative energy as a function of the generalized distance

traversed by the Br(i) atom. We find that the diffusion barrier (∆Ediff) for moving a Br(i)

atom to the next dimer is 0.34 eV.

This type of diffusion can then lead to a configuration where two Br(i) atoms on two

adjacent dimers of the same dimer row can pair up [see Fig 7.7(b)]. Next, one of the Br(i)

atoms can hop to the adjacent dimer to give rise to 2SiBr2(a) [see Figs. 7.7(e) and 7.8(b)

for the top view and side view, respectively]. This reaction can be written as:

2Si2Br3 ⇋ 2SiBr2(a) + 2SiBr−∆E∗
hop. (7.6)

From Fig. 7.7(a) we find that this reaction is a barrier-less reaction. This implies that dif-

fusion and pairing of Br(i) leads to the (spontaneous) formation of two SiBr2(a) containing

Si atoms of the same dimer.

The final step involves the desorption of the two SiBr2 molecules one by one. The

desorption reaction can be written as:

2SiBr2(a) ⇋ SiBr2(g) + SiBr2(a) + ∆E∗
des(1) ⇋ 2SiBr2(g) + ∆E∗

des(2). (7.7)

We find that the desorption barrier (∆E∗
des(1)) for the first SiBr2 molecule is 0.8 eV per

molecule [see Fig. 7.8(a)]. However, the desorption energy for the second SiBr2 molecule

(∆E∗
des(2)) is 2.25 eV. So, the final morphology of the surface is again the dimer vacancy pit

[see Fig. 7.9(d)]. In contrast to conventional etching, we see that due to supersaturation

etching the surface morphology remains clean, i.e., no Si regrowth islands are formed.

Thus, the surface morphology can be controlled in this case.

We again compare the barriers for supersaturation etching of Si(100) by Br2 (obtained

in this study) with those for Cl2 [162,175] in Table 7.2. We find that each of these barriers is

smaller for Br2 than Cl2. Most significantly, we find that the formation of 2SiBr2(a) on the

same dimer (see the value of ∆E∗
hop in Table 7.2) is a barrier-less process for Br2, whereas

for Cl2 the barrier was reported to be 2.5 eV [175]. Again, the values of ∆Edes are ∼0.6 eV

lower in the case of Br2 than Cl2. The reason for the reduction of the barriers on going from
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Figure 7.7: Formation of 2SiBr2(a) during supersaturation etching of Si(100) by Br2. (a) shows
the barrier (∆E∗

hop) for the formation of 2SiBr2(a). (b)-(f) show atomic configurations correspond-
ing to the initial state, transition state (TS), and final state. The red, black, dark gray and light
gray spheres represent Br atoms, Br(i) atom, Si atoms in the topmost layer and the remaining Si
atoms, respectively. See the text for the description of the Br(i) atom. See Appendix C for a video
file depicting this reaction.

Cl2 to Br2 could be due to the stronger steric interaction in the case of Br2. Examining

the values of the barriers one can conclude that supersaturation etching is feasible for Br2.

Moreover, these values also suggest that the effective barrier for supersaturation etching

by Br2 is much less than for etching in the conventional regime by Br2.

Table 7.2: The comparison between barriers for Cl2 and Br2 during supersaturation etching of
Si(100). All values are in eV. Numbers for Cl2 are taken from Refs. [162,175].

Quantity Halogen
Cl2 Br2

∆E∗
diff 0.4 0.34

∆E∗
hop 2.5 0.00

∆E∗
des(1) 1.4 0.80

∆E∗
des(2) 2.9 2.25
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The above mentioned mechanism of supersaturation etching only commences when Br-

free Si sites are created via the PAESD process. Thus, it seems that the etch rate would

depend strongly on the rate of creation of Br-free Si sites. Trenhaile et al. [176,177] showed

that the PAESD rate is different for Cl2 and Br2. If we compare these reaction rates for

Br2 and Cl2 at 750 K, we find that the PAESD rate is 10 times faster in the case of Br2.

This, along with the results presented in Table 7.2, suggests that supersaturating etching

by Br2 is likely to occur at supersaturated surfaces.
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Figure 7.8: Desorption of the first SiBr2 during supersaturation etching of Si(100) by Br2. (a)
shows the variation of the relative energy as a function of the distance ds between SiBr2 and the
surface. ∆E∗

des(1) indicates the barrier for desorption. The atomic configurations corresponding

to the reactant, transition state (TS), and products are shown in (b)-(e). The red, dark gray and
light gray spheres represent Br atoms, Si atoms in the topmost layer and the remaining Si atoms,
respectively. See Appendix C for a video file depicting the desorption during supersaturation etching.
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Figure 7.9: Desorption of the second SiBr2 during supersaturation etching of Si(100) by Br2. (a)
shows the variation of the relative energy as a function of the distance ds between SiBr2 and the
surface. ∆E∗

des(1) indicates the barrier for desorption. The atomic configurations corresponding

to the reactant, transition state (TS), and products are shown in (b)-(d). The red, dark gray and
light gray spheres represent Br atoms, Si atoms in the topmost layer and the remaining Si atoms,
respectively. See Appendix C for a video file depicting the desorption during supersaturation etching.

7.6 Discussion

7.6.1 Why is Br2 a better etchant than Cl2?

From Tables 7.1 and 7.2, we find that the activation barriers for etching reactions are

lower in the case of Br2 than Cl2. In order to obtain an understanding of the differing

behavior of Br2 and Cl2, let us first examine the adsorption energies (Eads) of both the

molecules on the Si(100) surface. The values of Eads for Br2 and Cl2 on clean Si(100)

are −2.15 eV and −2.7 eV per molecule, respectively. These values indicate that chlorine

atoms bind more strongly to the Si(100) surface compared to bromine atoms. Since we

have found that the etching is likely to commence by breaking both the Si-Si dimer bond

and Si-X bonds, with X being a halogen atom, breaking of Si-Cl bonds would require a
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higher energy than breaking of Si-Br bonds. This suggests that the barrier for etching is

likely to be higher for Cl2 than Br2. Another reason that may play a crucial role in making

Br2 a better etchant than Cl2 is steric interactions. Being smaller in size, chlorine atoms

do not show significant steric interactions on Si(100). However, the bromine atoms being

larger in size exhibit strong steric interactions, especially at high coverages [118]. Such

steric interactions are likely to play a significant role during etching at high coverages.

7.6.2 Change of surface morphology due to etching

We find that in both conventional and supersaturation etching a dimer vacancy is created.

However, in the case of high coverage conventional etching, such vacancy pits may not be

stable and the Si(s) atoms can diffuse to vacancy sites. In spite of this, the barriers for

further similar reactions can decrease considerably for atoms lying near the dimer vacancy

created at the initial stages of etching [161]. Thus, the vacancy will eventually grow to

form an extended pit [171]. These types of vacancy pits are mobile at low temperatures

and can get annihilated at step edges. However, at high temperature, vacancy dynamics

are (kinetically) hindered, so it is possible to retain the etched morphology, especially in

the case of supersaturation etching.

We have seen in Chapter 6 that the Br-covered surface transforms from a (2× 1) phase

to a (3 × 2) phase when θBr ≥ 0.66 and the (2 × 1) phase lies only 21 meV per (1 × 1)

higher in energy than the (3× 2) phase at θBr = 1.0 [116]. Although, long-range ordering

of the (2× 1) phase was observed in STM experiments by Herrmann and Boland [135] at

full coverage, both phases may be expected to coexist in an experimental scenario. Thus,

etching mechanisms that consider adsorbate-mediated surface reconstructions also needed

to be explored.

7.6.3 Etching vs. roughening

We have seen that etching occurs by the desorption of SiBr2. Nakayama et al. [181] had

shown that at a temperature below the desorption threshold, the Cl atom of SiCl2(a) can
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hop to the Cl-free Si atoms of the surface. In that case, the surface morphology gets modi-

fied without any desorption and etching does not occur. Such modification of the surface is

referred to as roughening. Both etching and roughening produce Si dimer vacancies (which

grow into dimer vacancy lines and pits) and Si regrowth islands. However, from a techno-

logical point of view, etching is preferable over roughening. Thus, a careful experimental

set up is required for etching, which can be obtained by tuning the temperature properly.

7.7 Summary

In this chapter, we have studied conventional and supersaturation etching of Si(100) by

Br2 using density functional theory. We find that etching always commences by breaking

surface bonds, Si-Si dimer bonds and Si-Br bonds. For conventional etching, the calculated

barriers are in excellent agreement with the experimental results. The results obtained here

suggest that the activation barriers for supersaturation etching are significantly lower than

the barriers for conventional etching. Moreover, by considering first-order reaction kinetics,

we find that the rate of etching by Br2 is faster by 104 times than the rate of etching by

Cl2 for low coverage conventional etching and by 10 times faster than the rate of etching

by Cl2 in the supersaturation regime. These observations can be explained in terms of

stronger steric interactions and weaker binding to the surface of Br2 compared to Cl2.

Here we have mainly considered the Langmuir–Hinshelwood type of mechanism for

spontaneous etching, where a gas molecule gets adsorbed on the surface and the product

is formed due to interactions between the adsorbed species. In this type of reaction,

the reactants and products are in thermal equilibrium. However, one cannot rule out

the possibility of other kinds of reaction mechanisms for etching; e.g., an Eley-Rideal

mechanism or a “precursor” mechanism involving hot electrons, where the incoming gas

molecules directly interact with the surface atoms without getting adsorbed (in the case

of an Eley-Rideal mechanism) or are thermally accommodated on the surface (for the

“precursor” mechanism). Such reactions are “nonthermal” reactions and generally involve

transfer of energy between the adsorbate and the surface. Such mechanisms would occur in
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processes like reactive-ion etching (RIE) where high energy plasmas are bombarded toward

the surface.
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Chapter 8

Summary and outlook

In this chapter, the main findings and highlights of this thesis are summarized, and we

also list open questions that could be addressed in the future work. In this thesis, we have

tried to develop strategies to tailor the magnetic and chemical properties of surfaces. We

have primarily used density functional theory calculations for these studies, along with the

ab initio atomistic thermodynamics method and the nudged elastic band method.

In Part A of the thesis we have tried to develop strategies to control the magnetic

properties of surfaces. The main highlights of this part of the thesis are described below.

First, the long-standing controversial problem of Cr/Ag(100) was revisited. We showed

that a Cr monolayer on Ag(100) wants to go sub-surface and prefers an antiferromagnetic

ordering. By considering different sub-surface positions of the Cr monolayer, we found

that the lowest energy structure is the one where the Cr monolayer is buried below one

monolayer of Ag. We also find that the deposition of Cr leads to several new surface

states. Recently obtained low energy electron diffraction (LEED) images support these

observations. Also, the angle-resolved photoemission spectroscopy (ARPES) data are in

excellent agreement with the theoretically obtained band structure. Thus, in this work, we

have seen satisfying synergy between theory and experiments.

Second, in this thesis we have predicted “new” stable surface alloys: MnxAu1−x-

/Ru(0001), with x being the concentration of Mn atoms. The driving force behind the

161
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formation of this alloy system has been examined in terms of the band energy, the mag-

netic energy and the stress-relief mechanism. Showing that both band energy and magnetic

energy are related to the effective coordination number, we demonstrated that the “effective

coordination number” (ECN) is a good tool to understand the stability of surface alloys.

In the absence of magnetism, the structure with the highest ECN is favored, while in the

presence of ferromagnetism, the structure with the lowest ECN is favored. This finding

should serve as a simple yet useful guiding principle when searching for stable structures

in alloy phase diagrams. We found that Mn-Au/Ru(0001) surface alloys get stabilized by

magnetism. The role of magnetism in determining the stability was found be two-fold:

(1) magnetic interactions increase the magnetic moments in the alloy phases compared

to the phase-segregated phases; thus magnetic energy helps lower the total energy of the

alloys and (2) magnetism also helps to reduce the surface stress in the alloy phases via the

magneto-volume effect.

Next, we have studied the ground state magnetic properties of one of these newly

obtained surface alloys: MnAu2/Ru(0001), along with another surface alloy system: FeAu2-

/Ru(0001). For both these systems, we find that the lowest-energy magnetic configuration

corresponds to a left-rotating spin spiral, in which the sense of rotation is determined by the

Dzyaloshinskii-Moriya interaction. These spirals are lower in energy than the ferromagnetic

configuration by a rather small amount of 3–4 meV per nm2. This demonstrates that

magnetic surface alloys constitute a new class of systems in which one can search for the

rare phenomenon of spin spirals. The primary reason for the stability of the spin spiral

in FeAu2/Ru(0001) is found to be the asymmetric exchange interaction (Dzyaloshinskii-

Moriya interaction), whereas the spin spiral in MnAu2/Ru(0001) is stabilized mostly by

symmetric exchange interactions. We also find that FeAu2/Ru(0001) has a significantly

high magnetic anisotropy energy, of the order of 1 meV per Fe atom. By comparing with the

corresponding freestanding alloy monolayers, we find that the presence of the Ru substrate

plays a significant role in determining the magnetic properties of the surface alloy systems.

Part B of the thesis deals with developing strategies to tune the chemical properties of

surfaces. The main findings of this part of the thesis are discussed below.
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Here, we have first developed strategies to tune patterning conditions by co-adsorption

of gases. Earlier work had shown that it is possible to pattern the Si(100) surface by

depositing Br2 alone; however, the patterns of interest can only be obtained at very low

pressures and in a very narrow range of the phase diagram. We have shown that by co-

adsorbing Br2 and H2, the stability of these kind of patterns can be brought into a region

of the phase diagram corresponding to pressures that are significantly higher than those

where they are observed with Br2 alone. We have also shown that new kinds of patterns

are obtained via co-adsorption. With the help of a simple equation, we are able to show

why the patterns move to higher partial pressures upon co-adsorption. Thus, our finding

can apply to co-adsorption in general.

Finally, an atomistic picture of etching has been obtained for Si(100) etching by Br2.

The reaction pathways and activation barriers for the etching reactions for the formation of

SiBr2 are obtained for both conventional etching (at θBr ≤ 1) and supersaturation etching

(at θBr > 1) regimes, θBr being the coverage of Br2. For both these cases, etching of Si(100)

is found to occur via a complex sequence of reactions, featuring one or more intermediate

precursors. Comparing the effective activation barriers for Br2 with the corresponding

values for Cl2 (obtained in an earlier study) at both etch conditions, we find that Br2

should be a better etchant than Cl2, i.e., most of the barriers are lower in the Br2 case

than in the Cl2 case. This is primarily due to the fact that the Si–Br bond is much weaker

than the Si–Cl bond. Most importantly, we observe that the effective etch barrier for

supersaturation etching is lower compared to the effective barrier for conventional etching.

This counter-intuitive result is explained by the large steric interactions between the Br

atoms.

There are many open questions which can be addressed in the future. Below we describe

them briefly.

For Cr deposition on Ag(100), it would be interesting to explore what effect, if any, the

incorporation of spin-orbit interactions has on the electronic structure and geometry.

In the case of surface alloys of MnxAu1−x/Ru(0001), one can extend the study of sta-

bility of the alloys by including the effect of antiferromagnetic interactions along with the
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ferromagnetic interactions. It would be interesting to see how the relation between the

effective coordination number and magnetic moments changes in the case of antiferromag-

netic interactions.

For etching of Si(100) by Br2 we have only considered the formation of SiBr2 from the

Si(100) surface. It would be interesting to study the reaction pathways where SiBr3 and

SiBr4 are also formed. In future work, we hope to explore some of these issues.
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Appendix A

List of configurations of

MnxAu1−x/Ru(0001)

Here, we have depicted the optimized structures for all the configurations considered by

us in Chapter 4. As the relaxation of the overlayer atoms is slightly different in the non-

magnetic (NM) and the ferromagnetic (FM) configurations, we have shown the top views

of the atomic arrangement in both the configurations for comparison. Note that all the

structures are grouped according to their structural similarities (see Section 4.4). The blue

and golden spheres represent the Mn and Au atoms, respectively.
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(a) x = 0.17 (b) x = 0.2 (c) x = 0.25 (d) x = 0.33
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x

y

Figure A.1: Group A, non-magnetic

(a) x = 0.17 (b) x = 0.2 (c) x = 0.25 (d) x = 0.33

(e) x = 0.33 (f) x = 0.4 (g) x = 0.5
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Figure A.2: Group A, ferromagnetic
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(a) x = 0.33 (b) x = 0.4 (c) x = 0.5 (d) x = 0.5

(e) x = 0.5 (f) x = 0.6 (g) x = 0.6 (h) x = 0.67

(i) x = 0.67 (j) x = 0.67 (k) x = 0.75 (l) x = 0.8

(m) x = 0.83

x

y

Figure A.3: Group B, non-magnetic
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(a) x = 0.33 (b) x = 0.4 (c) x = 0.5 (d) x = 0.5

(e) x = 0.5 (f) x = 0.6 (g) x = 0.6 (h) x = 0.67

(i) x = 0.67 (j) x = 0.67 (k) x = 0.75 (l) x = 0.8

(m) x = 0.83
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y

Figure A.4: Group B, ferromagnetic
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Figure A.5: Group C, non-magnetic
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Figure A.6: Group C, ferromagnetic

(a) x = 0.5 (b) x = 0.6 (c) x = 0.67

x

y

Figure A.7: Group D, non-magnetic
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Figure A.8: Group D, ferromagnetic
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(e) x = 0.33

x

y

Figure A.9: Group E, non-magnetic

(a) x = 0.17 (b) x = 0.2 (c) x = 0.25 (d) x = 0.25

(e) x = 0.33

x

y

Figure A.10: Group E, ferromagnetic
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Figure A.11: Group F, non-magnetic
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Figure A.12: Group F, ferromagnetic
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Figure A.13: Group G, non-magnetic

(a) x = 0.5
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y

Figure A.14: Group G, ferromagnetic
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(a) x = 0.6 (b) x = 0.67 (c) x = 0.67 (d) x = 0.75

(e) x = 0.75 (f) x = 0.8 (g) x = 0.83
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Figure A.15: Group H, non-magnetic

(a) x = 0.6 (b) x = 0.67 (c) x = 0.67 (d) x = 0.75

(e) x = 0.75 (f) x = 0.8 (g) x = 0.83

x

y

Figure A.16: Group H, ferromagnetic
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Applicability of the Force Theorem

In section 5.6.3A, we showed that the force theorem (FT) failed to yield an accurate value

for δEHE, the difference in energy from symmetric exchange interactions, between two spin

spirals of slightly different wavelengths, especially for MnAu2/Ru(0001). Here, we discuss

this issue further.

We first consider conical spin spirals, where the magnetic moments are not constrained

to lie in a plane, but precess around the axis of rotation, making an angle α with it. Note

that for planar spin spirals, α = π
2 . The energy difference δESE(α) between two spin spirals

with wavevectors q1 and q2 can be written as: [182]

δESE(α) = Eq1

SE(α)− Eq2

SE(α), (B.1)

≃ sin2α
(
Eq1

SE(
π

2
)− Eq2

SE(
π

2
)
)
,

≡ sin2α δESE(
π

2
), (B.2)

where the approximation holds for a small difference between q1 and q2, and does not

depend on the method of calculation [FT or self-consistent (SC)]. For our calculations we

have taken |q1| and |q2| to be 0 and 3.3 nm−1, respectively, for MnAu2/Ru(0001), and 8.8

and 11 nm−1, respectively, for freestanding MnAu2, along the [110] direction.

First, we checked whether the approximation holds in our case. In order to do this,

we have obtained δESE(α) from Eqs. (B.1) and (B.2) by using the FT for different values

of α. We have used 5041 k‖-points in the irreducible Brillouin zone of MnAu2/Ru(0001),

while for the freestanding monolayer of MnAu2, 2304 k‖-points are used. The results

thus obtained are shown in Fig. B.1, where we have plotted δESE(α) as a function of α

for both MnAu2/Ru(0001) and a freestanding MnAu2 monolayer. The values obtained

from Eqs. (B.1) and (B.2) are shown by dots and dashed lines, respectively. For both the

systems, we see that the values obtained from Eq. (B.1) deviate slightly from sinusoidal
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Figure B.1: The variation of δESE(α) as a function of the cone angle α for (a) MnAu2/Ru(0001)
and (b) MnAu2 freestanding monolayers. The gray (orange online) dots and dashed lines are ob-
tained from FT calculations, while the black line is obtained from SC calculations. The bottommost
row of figures show how the spin precesses around the axis of rotation as the cone angle α is varied.

behavior, but agree qualitatively with the values obtained from Eq. (B.2).

Having shown that values of δESE can be calculated approximately by the FT method

from Eq. (B.2), we proceed to calculate the values self-consistently (SC) using only Eq. (B.2).

The number of k-points used for these calculations is 800 and 400 for MnAu2/Ru(0001) and

freestanding MnAu2, respectively. By comparing the energies obtained for MnAu2/Ru(0001)

from SC (black solid line in Fig. B.1) and FT (dots and dashed line) methods, we see that

the values of δESE(α) do not agree with each other, in fact, they even have opposite sign.

On the other hand, for the freestanding monolayer of MnAu2, the values match quite well.

This suggests that the FT is applicable for the calculation of δESE between two spin spi-

rals (both conical and planar) of the freestanding MnAu2 monolayer, at least when the

difference in wavevectors is small. However, the FT breaks down for MnAu2/Ru(0001)

even when α is very small. We conclude that the applicability of the force theorem has to

be tested for all cases individually, since the breakdown of the FT for MnAu2/Ru(0001)

could not have been anticipated, either from the comparison to the freestanding layers, or

to the FeAu2/Ru(0001) case.



Appendix C

Video files showing the etching

reaction step by step

Here, we show the reaction pathway for both conventional and supersaturation etching

discussed in Chapter 7 by showing the step by step changes in the atomic arrangement as

the reaction progresses. This has been done by making a set of video files. Please see the

attached CD-ROM for these video files. Fig. C.1 shows the contents of the CD-ROM.

Appendix C

Conventional_etching Supersaturation_etching

1. Isomerization_reaction
(top_view).avi
2. Isomerization_reaction
(side_view).avi
3. Diffusion_reaction.avi 
4. Desorption_reaction.avi 

Low_coverage High_coverage

1. Formation_of_2SiBr2(a).avi 

2. Desorption_of_1st_SiBr2.avi  
3. Desorption_of_2nd_SiBr2.avi 

Figure C.1: The arrangement of the video files in CD-ROM.
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G. Bihlmayer, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 101, 027201 (2008).

[103] Y. A. Izyumov, Soviet Phys. Uspekhi 27, 845 (1984).

[104] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Ku-
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(2013).


