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Synopsis

Adaptation is an ubiquitous phenomenon occurring in nature. It sometimes

helps humans, for example, in the domestication of plants and animals. On

the other hand, it can also cause great distress, for example, when drug-

resistant microbes emerge [1]. Therefore it is crucial to understand how a

population adapts, in order to address the effects caused by it. In asexual

populations, adaptation can occur only via beneficial mutations which are

changes in the genetic sequence that increase its chances of survival. These

are the mutations that we are interested in our work and in order to study

their effect, we consider an asexual population of binary sequences that can

replicate, mutate and undergo random genetic drift. We consider the adap-

tation dynamics of this population on rugged fitness landscapes which are

endowed with a large number of local fitness peaks [2]. In Fig. 1, we show

a schematic example of an asexual population adapting on a rugged fitness

landscape after an abrupt change in its environment as a result of which, the

population which was previously at a fitness peak drops to a low fitness in

the new environment. The population adapts or climbs the fitness landscape

v



Figure 1: The fitness landscape in the old environment is shown by the
broken red curve and in the new environment by the continuous blue one.
The small green circles represent the population on the fitness landscape and
when the fitness landscape is abruptly changed, it drops from a peak on the
old fitness landscape to a lower fitness value in the new one. The arrows
show the beneficial mutations because of which the population adapts.

by accumulating beneficial mutations.

The adaptation dynamics of a population depends on the size and fre-

quency of beneficial mutations, or in other words, the distribution of benefi-

cial fitness effects (DBFE). Whether adaptation happens via many mutations

conferring small fitness advantage, or a few producing large fitness changes

depends on the nature of DBFE. Although initial theoretical works suggested

that adaptation occurs mostly by mutations that provide small benefits [3],



recent works suggest that large effect mutations are also possible [4]. The

basic idea governing the shape of the DBFE is due to Gillespie [5], who sug-

gested that the mutations conferring higher fitness than the wild type must

lie in the right tail of the fitness distribution and so the statistical proper-

ties of such extreme fitnesses can be described by an extreme value theory

(EVT) which states that the extreme value distribution of independent ran-

dom variables can be of three types: Weibull which occurs when the fitnesses

are right-truncated, Gumbel for distributions decaying faster than a power

law and Fréchet for distributions with algebraic tails [6]. because beneficial

mutations are rare, accounting for less than 15% of the total mutations and

occur at a rate between 10−9 to 10−8 per cell per generation [7–9], it is a

challenging task to measure them experimentally. But, in recent times some

success has been achieved and interestingly, all the three EVT distributions

have been observed [10–13].

In our work, in order to access all the EVT distributions, we generate the

fitness of each sequence from a generalised Pareto distribution defined as

p(f) = (1 + κf)−
1+κ
κ . (1)

In the above equation, the parameter κ can take any real value. The fitness

distribution is unbounded for κ ≥ 0 and has an upper bound u at −1/κ when

κ < 0. The advantage of using (1) is that all the three extreme value domains



Figure 2: Schematic representation of adaptive walks in a 4-dimensional
sequence space, starting from the same initial sequence. The arrows represent
the shift of the population from a sequence to a fitter sequence one mutation
away.

can be accessed by tuning a single parameter κ. The tails of the fitness dis-

tribution when κ < 0, → 0 and > 0 belong to Weibull, Gumbel and Fréchet

distributions respectively. The main aim of our work is to study the adap-

tation dynamics of the population when the underlying fitness distribution

belongs to one of the three EVT domains.

As already mentioned, the population moves on the fitness landscape

by means of beneficial mutations and their availability is controlled by the

number of mutants appearing in the population. In the weak mutation

regime, the number of mutants produced in the population is much less

than one per generation. In this case, the population can move from its



initial fitness until a local fitness peak only by means of single mutations

that will produce new sequences differing from the current sequence at a

single locus. When any mutation that confers a fitness benefit, if not lost

due to genetic drift quickly get fixed in the population, then the population

is said to be under strong selection. In the strong selection-weak mutation

regime (SSWM), the whole population can be represented by a single particle

that climbs the fitness landscape by one step mutantations and is termed an

adaptive walk. The walk ends when the population encounters a local fitness

peak. stops. Every mutation that gets fixed is termed as a step in the

adaptive walk and the total number of such steps till a local fitness peak is

the walk length.

Most of the work in this thesis is in the SSWM regime in which, the

dynamics of adaptation depends, in addition to the extreme value domain

of the beneficial mutations, on the initial fitness of the population and the

fitness correlations between the fitnesses. The two main quantities that we

calculated in our work by varying all the parameters mentioned in the pre-

vious statement are the average walk length [14,15] and the average fitness

at a step [14,16]. From the latter, we obtained the fitness difference between

successive steps and find that the fitness difference between successive steps

decreases in the Weibull domain, increases in the Fréchet domain and is a

constant in the Gumbel domain [16]. This is the most important and inter-

esting result of our work as it suggests a simple way to distinguish between

the EVT domains.



The thesis is divided into five chapters and now I will briefly describe

the contents of each. In Chapter 1, we introduce concepts that guided

our work and the various terms pertinent to the discussion. We discuss the

notion of fitness landscapes and the experiments that suggest that they are

partially rugged [2]. Then we explain a theoretical model for a broad class

of fitness landscapes known as block model [17] in which fitness correlations

can be tuned. We then discuss the experiments that have been carried out to

determine the DBFE of a biological population under consideration. In this

chapter, we also mention the relevant mutation regimes- the weak mutation

regime in which the SSWM model can be used and the strong mutation

regime, in which it cannot be. The bulk of our work in this thesis is based in

the SSWM regime in which the population climbs the fitness landscape until

a local fitness peak is reached by one-step mutations as shown in Fig. 2. In

contrast to the weak mutation regime in which monomorphic populations are

seen, the population in the strong mutation regime has many better mutants

existing in the population at the same time and competing with each other

for dominance. In this chapter, we also discuss the results obtained from

theoretical works dealing with the strong mutation regime [18, 19]

In Chapter 2, we describe the models used in our work here. The bulk of

it is concerning the adaptive walks in the SSWM regime in which the number

of mutants produced per generation is much smaller than one. During the

walk, the probability that the population moves from the current fitness h

to one of the fitter one-mutants with fitness f > h at the next step is given



by the transition probability T (f ← h). We define the quantities of interest

and review the known results here. In previous works, the average number of

steps in the adaptive walk from its initial fitness to a local fitness peak was

determined in the two limiting cases of the adaptive walks namely, greedy

walk [20] and random adaptive walk [21]. While in the former, the best of all

available mutants is chosen at every step resulting in a constant average walk

length independent of the initial fitness, in the latter, any better mutant is

chosen with equal probability yielding an average walk length that depends

on the logarithm of the rank of the initial fitness. We discuss the results of

both these limiting cases of the move rule. In the biologically more realistic

model termed the natural selection adaptive walk, the transition probability

T (f ← h) depends on the selection coefficient,s = f−h
h

which is the relative

fitness difference between h and f . If u is the upper limit of the fitness

distribution, the transition probability for an infinitely long sequence can be

written as [4, 22]

T (f ← h) =
(1− e−

2(f−h)
h ) p(f)

∫ u

h
dg (1− e−

2(g−h)
h ) p(g)

, f > h (full model) (2)

For small selection coefficients, the proportionality factor can be approxi-

mated as T (f ← h) ∝ 2 s and in this case, the transition probability for a

sequence of infinite length is given by [4, 23]

T (f ← h) =
(f − h) p(f)

∫ u

h
dg (g − h) p(g)

, f > h (linear model) (3)



For a sequence of fixed length L, the adaptive walk would terminate after

a certain number of steps when there are no better mutants available at

that step. The probability of the adaptive walk, starting from initial fitness

f0, taking the step J + 1 and assuming fitness f after already having taken

step J with fitness h during the walk can be obtained from the following

equation [14]

PJ+1(f |f0) =
∫ f

f0

dh T (f ← h) (1− qL(h)) PJ(h|f0) , J ≥ 0 (4)

The above equation is the main equation used in our work for analytical

calculations. In (4), T (f ← h) is given either by (2) or (3), and q(h) is the

probability of having a fitness less than h obtained as q(h) =
∫ h

0
dg p(g).

The above equation simply means that the probability of the walk taking

step J + 1 and having fitness fitness f is the product of the probability that

it has fitness h < f at step J , the probability of the fitness increasing from

fitness h to f and the probability that not all L mutants produced at that

step have a fitness less than h.

Though (2) is the biologically accurate model, it is analytically difficult

to handle and for the sake of calculations, one may resort to (3) [14, 24].

Another reason for using (3) is that the results obtained from it matches

the results obtained using (2) in the Weibull domain. We have also tuned

the fitness correlations in our model using a block model [17] in which, a

sequence of length L is considered to be built of B blocks of length LB = L/B



and the fitness of each block is chosen from (1). The average of the fitness of

all the blocks gives the fitness of the sequence. The fitness landscape would

be uncorrelated when B = 1 and fully correlated when B = L [25].

Although much of the work in this thesis is in the weak mutation regime,

we have also studied the adaptation dynamics when the mutation is strong.

This part of the work is chiefly numerical. The strong mutation regime is

observed when the mutation rate or the population size is high so that many

mutants are produced in the population at every time step. In this case, the

population can no longer be reduced to a single particle climbing the fitness

landscape and we used the Wright -Fisher dynamics to study this parameter

regime. In the strong mutation regime, due to the presence of multiple

mutants in the population at all times, the population is polymorphic and a

step in this case is when for the first time, the probability of reproduction of

any mutant exceeds half.

In Chapter 3, we consider the full model defined by (2) to study adapta-

tion of infinitely long sequences for which the probability of all the one-step

mutants having a lower fitness than the current one can be ignored, and the

probability distribution of the population having fitness f at the step J in

the full model can be calculated for exponentially and uniformly distributed

fitnesses [14]. One of our main results is that the average fitness at step

J + 1 can be written as

f̄J+1 = a f̄J + b , J ≥ 0 (5)
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Figure 3: The plot shows (scaled) average fitness difference between succes-
sive steps as a function of the number of adaptive substitutions for various κ
on uncorrelated (main) and correlated fitness landscapes with B = 2 (inset).
Taking f0 = 0.63, 1, 1.14 and 2.32 for κ = −1, 0, 1/4 and 3/2 respectively,
the simulation data are shown as points for LB = 1000 which corresponds
to L = 1000 and 2000 for independent and correlated fitnesses respectively.
The line connecting the data points for κ = 3/2 is guide to the eye, while
the others are obtained from theoretical calculations for uncorrelated and
correlated fitnesses.

where the values of a and b depend on κ. For the distributions with finite

mean (i.e. κ < 1), we obtained the results for the fitness difference at any

step J of the adaptive walk in the three EVT domains as

∆fJ =



















aJ−1
− ((a− − 1)f0 + b−) , κ < 0 (6a)

2 , κ→ 0 (6b)

aJ−1
+ ((a+ − 1)f0 + b+) , 0 < κ < 1 (6c)
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Figure 4: Main: Variation of the average walk length with initial fitness
in the linear model on uncorrelated fitness landscapes for various κ. The
simulation points are for L = 1000 and the lines are obtained from (7) for
all κ < 1, while the one for κ = 3/2 is a guide to the eye. Inset: Comparison
of the average walk length in the full model (∗) and the linear model (+) for
(1/κ) ln(1 + κf0) = 2. The solid line shows the walk length expressions for
the greedy walk and the random adaptive walk respectively.

where a− < 1, a+ > 1 and f0 is the initial fitness. The analytical results

for the difference in the fitness between successive steps was calculated and

shown to have a qualitatively different trend in each EVT domain, as shown

in Fig. 3. These results are the most important part of my thesis as the

calculations and simulations show that the trends in fitness difference hold

not only for the fitness difference between successive steps in the uncorrelated



0 1 2 3 4
(1/κ) log(1+κf0)

10
-2

10
0

∆f
1

κ=−1
κ−>0
κ=1/4

Figure 5: The plot shows the fitness difference at the first step as a function
of the initial fitness for different κ and two different Nµ. The lines give
the theoretical values while the open symbols are the simulation output for
Nµ = 0.02 and the closed symbols are those for Nµ = 5.

fitness landscapes, but also on correlated ones.

In Chapter 4, we discuss the average walk length for a population starting

from a fixed initial fitness f0 using the linear model and full model in all the

three EVT domains. When (4) is solved analytically using T (f ← h) from

(3), the average number J̄(L|f0) of steps for a fixed initial fitness f0 when

(1) has a finite mean is obtained as

J̄(L|f0) = βκ

(

lnL− 1

κ
ln(1 + κf0)

)

+ cκ (7)



where βκ = 1−κ
2−κ

and cκ is constant. On the other hand, if the fitness dis-

tribution given by (1) has an infinite mean, the average walk length in the

linear model becomes independent of the initial fitness. The simulation re-

sults obtained compared with the analytical results as shown in Fig. 4. In

this chapter, we discuss this transition in dependence of the walk length on

the initial fitness. We also calculate the distribution of walk length for expo-

nentially and uniformly distributed fitnesses [14]. For the linear model, we

also discuss the dependence of the walk length on the number of blocks in the

sequence. We show that while this dependence is linear in the Weibull and

Gumbel domains, it is logarithmic in the Fréchet domain. We also compare

our results obtained in the linear model with the results obtained numerically

from the full model on uncorrelated fitness landscapes as shown in the inset

of Fig. 4.

In Chapter 5, we consider the strong mutation regime so that many mu-

tants are produced at every time step. The population is no longer monomor-

phic, but may be spread over many sequences. In our model, we keep the

population size and the mutation rate fixed. The fitness difference obtained

at the first step for various initial fitnesses is shown in Fig. 5. We can see

that even if the numerical values for this quantity varies from the theoretical

values obtained in the SSWM regime, its qualitative trends in the three EVT

domains still stays [26].
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Chapter 1

Introduction

Evolution refers to the change in heritable phenotypic changes in a biolog-

ical population over successive generations. In asexual populations, at the

genomic level, there is no mixing between different genetic sequences. These

populations evolve by replication which refers to an identical copy of the

genetic sequence being produced, mutation or an error in the copying and

genetic drift which is the stochastic, random fluctuations in the population

fraction size of a genetic sequence. By these means, an asexual population

can evolve to undergo adaptation, that is, become more successful to suit

the environment, or can suffer extinction which means that their population

size has become zero or can experience speciation by means of which two

subpopulations from the same ancestor diverge to become different species.

In this thesis, we focus on the adaptation of asexual populations and in the

next section, we will introduce various terms and concepts relevant to this

1
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work.

1.1 Concepts and definitions

1.1.1 Fitness landscape

Fitness is a quantitative measure of how successful an organism is in a given

environment - an organism with high fitness has a better chance of propaga-

tion within the population than those with lower fitness. Fitness landscape

defined as a map from genetic sequences to (genotypic) fitness is a fundamen-

tal concept in the theory of biological evolution [1, 2]. It is a L dimensional

hypercube, comprising of all possible sequences of length L in a population

along with the fitness associated with each sequence. Empirical measurement

of fitness landscapes is very hard since the number of sequences increases ex-

ponentially with the sequence length L. In Fig. 1.1, we show a schematic

example for the fitness landscapes for sequences of small length. However,

as the length of the sequence increases, the fitness landscape can only be

given a schematic representation. Even to construct a fitness landscape for

a microbe with merely hundred nucleotide sequence, one needs to experi-

mentally measure the fitness of 4100 ∼ 1060 sequences which is not possible

with the current technology. However some empirical insights have been ob-

tained regarding the qualitative nature of the fitness landscapes in the recent

years. Fitness have been measured for various microbes for a small part (up



1.1 Concepts and definitions 3

Figure 1.1: The figure shows three examples for the fitness landscapes for
sequences of different length.

to ten loci) of the genome which gives information about the local topog-

raphy of the fitness landscape [3]. Large scale fitness landscapes for about

70, 000 HIV sequences have also been constructed [4]. Besides experimentally

measuring fitness landscapes directly, the dynamics of adaptation have also

been exploited to obtain insights into the structure of the underlying fitness

landscape [5–9].

In recent times, it has been possible to track adaptive trajectories for

several tens to thousands of generations, especially in microbial populations

[9]. Other experiments show that the fitness landscapes can be smooth as

evidenced by fast adaptation in some proteins [10] or have multiple peaks as

seen in microbial populations that evolve towards different fitness maxima

[5,11,12] and enzymes with short uphill paths to the global fitness peak [13].

An example for a smooth end rugged fitness landscape is shown in Fig.

1.2. It has been observed that initially the population evolves quickly and

then its fitness increases slowly towards different fitness plateau for the same

initial fitness [5,11,12] thus supporting the conclusion that fitness landscapes
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Figure 1.2: The figure shows a schematic example adaptation on fitness
landscapes. The red line represents the fitness landscape before the change
in environment and the blue one is after the change. The small green circle
represent the population that tries to reach a fitness peak in the new envi-
ronment. The left figure shows an smooth fitness landscape and the right
figure shows a rugged one.

are rugged. On such fitness landscapes, while very large populations can

reach the global fitness maximum quickly as they produce greater number

of mutants, smaller populations stay trapped at a local fitness peak for a

long time [8, 14–16]. Detailed studies in which all or a set of mutants from

wild type to an optimum are created and their fitness measured [17] have also

indicated the smooth [18] and rugged [19,20] nature of the fitness landscapes.

A key result which has emerged from these empirical studies is that the

fitness landscapes are quite rugged i.e. they are endowed with moderately

large number of local fitness peaks which are sequences fitter than their

nearest neighbours [21]. A related characteristic of such fitness landscapes is

that they are partially correlated [6, 22] which has the effect of reducing the
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number of local fitness peaks relative to a fully uncorrelated fitness landscape.

The topography of the fitness landscape can be changed by changing the

environment. For example, in a E.coli population the fitness landscape is

expected to be smooth when the carbon source is simple sugar since there is

only a single metabolism pathway but becomes rugged with many peaks due

to multiple metabolism pathways when the medium is a complex mixture of

carbon sources in form of a broth [14].

1.1.2 Mutation

The term refers to the stochastic errors that occur during replication and

the process results in the production of a new sequence. The fitness of the

mutant sequence may be higher, lower or same as that of the parent sequence,

based on which the mutation is termed beneficial, deleterious or neutral

respectively. The number of mutations produced in the population, depends

on both the population size N and the mutation rate µ and depending on

this number, various models have been used to study the population as shall

be discussed next [23]. When Nµ ≪ 1, the population is monomorphic for

most times since less than one mutant is produced every generation and we

can use the adaptive walk model to study the dynamics of the population. On

the other hand, if Nµ > 1 then the population is polymorphic since a large

number of mutants are produced and more than one beneficial mutation

may be present in the population. These mutations competing with each

other for dominance, is termed clonal interference and has been observed
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in various experimental populations [24–27]. An extreme case of Nµ > 1

is when Nµ → ∞. Here the population becomes a quasispecies population

which is spread over all the sequences, at all times [23, 28].

1.1.3 Genetic drift

Even beneficial mutations (that produce mutants of high fitness) can get lost

from the population due to random sampling termed genetic drift. The effect

of this process is strong if the populations size is small. To understand this

process better, let us consider the wild type with fitness 1 and the mutant

with fitness, 1 + s. The population size is fixed at N . Here s is the selection

coefficient giving the relative fitness difference between the mutant and the

wild type with respect to the latter such that s = 0 corresponds to a neutral

mutation while s > 0 and s < 0 correspond to beneficial and deleterious

mutations respectively. Then, the fixation probability πi that the mutant

will sweep through the population at large times starting with an initial

number i is given by [29, 30]

πi =
1− (1 + s)−2i

1− (1 + s)−2N
(1.1)

From the above equation we can see the stochastic nature of evolution in

which, beneficial mutations might get lost if the mutation is rare and dele-

terious mutation might get fixed if i is large as shown in Fig. 1.3(a). Let us

now consider the fate of a rare mutation (i = 1) when N →∞, s → 0 such
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Figure 1.3: (a) The probability of a mutation being fixed in the population
when N = 10. (b) The probability of a single mutation getting fixed as a
function of the population size.

that Ns is finite. The probability of fixation of the mutant can be written as

π =
1− e−2s

1− e−2Ns
(1.2)

The probability of fixation of nearly neutral mutations for which Ns ≪ 1,

is 1/N as expected. But if Ns ≫ 1 corresponding to the strong selection

limit, the probability of fixation of the mutant in the population can be

approximated as

π ≈







1− e−2s if s > 0 (1.3)

0 if s < 0 (1.4)

The probability of fixation of a rare mutant as a function of population size

N is shown in Fig. 1.3(b).
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1.2 Adaptation and distribution of beneficial

fitness effects

The increase in the fitness of a population is termed adaptation and, schemat-

ically it can be represented as a population climbing the fitness fitness land-

scape as can be seen in Fig. 1.2. In asexual populations, this process occurs

exclusively via beneficial mutations that are not lost due to genetic drift. The

problem of adaptive evolution is experimentally challenging because advan-

tageous mutations, which are responsible for adaptation, are rare, accounting

for less than 15% of all mutations [31, 32]. However as beneficial mutations

contribute substantially to the fate of a population despite their rarity, and

play a crucial role in real life scenarios such as the anti-drug resistance devel-

oped by microorganisms [33], it is important to know the size and frequency

of these mutations. It is important to note that the beneficial mutations

occur in the right tail of fitness distributions. The basic idea governing the

shape of the distribution of beneficial fitness effects (DBFE) is due to Gille-

spie [34], who argued that in the event of a small environmental change, as

the wild type fitness is expected to remain high, the mutations conferring

higher fitness than the wild type will lie in the right tail of the fitness distri-

bution. The statistical properties of such extreme fitnesses are described by

an extreme value theory (EVT) which states that the extreme value distribu-

tion of independent random variables can be of three types: Weibull which
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occurs when the fitnesses are right-truncated, Gumbel for distributions de-

caying faster than a power law and Fréchet for distributions with algebraic

tails [35].

Experimentally the distribution of the beneficial mutations (DBFE) has

been directly measured, since the size and frequency of the beneficial mu-

tations drive the adaptation of asexual populations. As mentioned above,

the distribution of beneficial mutations can belong only to one of the three

extreme value distributions and, interestingly, all the three extreme value

domains have been observed in recent experiments. Although the exponen-

tial distribution for beneficial mutations belonging to the Gumbel domain

has been most commonly seen [36–39], the fitness distribution of beneficial

mutations belonging to Weibull [40, 41] and Fréchet [42] domains have also

been observed. This method directly determines the fitness distribution and,

is affected by the rarity of beneficial mutations.

In recent years, the dynamics of adaptation have been studied extensively

in experiments [43–45] and various quantities have been tracked. Several

quantities such as the fitness rank of the mutant at the first adaptive step [46],

the number of adaptive substitutions [40, 47–49] and its dependence on the

initial fitness [39,48,49] have been measured, though not with the intention of

determining the fitness distribution. However the relation of these properties

of adaptation dynamics to the tail of the fitness distribution and hence DBFE

is not clear. Clonal interference that is expected in large populations in which

Nµ > 1 has also been observed in various experimental populations [24–27].



1.3 Overview of the thesis 10

On the theoretical front, the adaptation dynamics have been studied both

when Nµ≪ 1 and when Nµ > 1. In the first case, beneficial mutations are

assumed to sweep the population sequentially till the population reaches a

local fitness peak and various quantities like the average number of mutations

fixed between the starting fitness and a local fitness peak, the average fitness

of the mutant fixed have been calculated [37,50–52]. A lot of theoretical work

is based on the premise that the relative fitness difference between successive

mutations fixed was small [37, 50–57]. However large selection coefficients

have been seen in experiments [58, 59] and so far, very few theoretical in-

vestigations have taken large effect mutations into account [60, 61]. Also,

though fitnesses are known to be correlated, much of the previous work on

the subject ignores correlations completely [37, 50–52]. In the second case

(Nµ > 1), in which more than one mutant is produced every generation,

most of the previous studies measured the adaptation rate only when the

fitness distribution is exponential [62–66].

1.3 Overview of the thesis

In this thesis, we study the adaptation dynamics of asexual populations on

rugged fitness landscapes in all the three EVT domains of DBFE. The moti-

vation of our work is to recognize quantities that show qualitatively different

behaviour in each extreme value domain, so that they be used in experiments

to determine the DBFE. We use two different models to study this depending
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on the number of mutants produced in the population at every generation.

When the number of mutants produced in the population is much less than

one, we use the adaptive walk model and when it is greater than one, we

study the population by using the Wright-Fisher dynamics.

� Adaptive walk model: Here, a small population increases its fitness

until a local fitness peak by successively fixing of single beneficial mu-

tations. Every mutation fixed in the population is termed a step in the

walk. However, there is a probability that a rare, beneficial mutation

might be lost due to genetic drift. So the probability that a mutation

gets fixed in the population is proportional to the relative fitness differ-

ence between the mutant (f) and the parent (h), as can be discerned

from (1.3), as (1 − e−
2(f−h)

h ). Using this probability we calculate the

fitness difference between successive mutations in all the three extreme

value domains, for both the uncorrelated and correlated fitness land-

scapes. We find that this fitness difference shows a different trend in

each extreme value domain- it increases in the Fréchet domain, is a

constant in the Gumbel domain and decrees in the Weibull domain.

Moreover, we numerically find that the average length of the adaptive

walk depends on the logarithm of the initial fitness rank and the walk

is the shortest in the Gumbel domain. We also calculated the aver-

age walk length analytically, assuming the relative fitness difference

between the mutant and the parent to be small in which case, the de-

pendence of the probability of fixation of a mutation can be considered
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to be 2(f−h)
h

as given in (1.3). In this case, in addition to finding the

adaptive walk length dependence on the logarithm of the initial fitness

rank, we also find that this is true only when underlying fitness distri-

bution has a finite mean. In other cases, the walk length is a constant

independent of the initial fitness. So we see that there is a transition

in the behaviour of the walk length depending on the existence of the

mean of the fitness distribution. We also calculated the average walk

length on correlated fitness landscapes for all the three extreme value

distributions.

� Wright Fisher dynamics: When the population size is huge, many mu-

tations are produced at the same time and the associated mutants

compete with the other mutants and the wild type for dominance in

the population. The subpopulation of every sequence is termed a class.

We track the dynamics in this model, for a population of fixed size, us-

ing the Wright Fisher dynamics by which each mutant class is allowed

to grow stochastically, depending on the population size of the class

and its fitness. New mutants are produced in the population at every

time step. Using this model we find that irrespective of the number of

mutants produced in the population, the fitness difference between suc-

cessive dominant sequences show a trend identical to what is observed

in the adaptive walk model. The fitness difference between successive

dominant sequences, not only numerically match the calculated results

of the adaptive model, when the number of mutants produced in the
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population is much less than one but also, show that even when many

mutations are produced every generation, the qualitative trend of the

fitness difference increasing in the Fréchet domain, staying a constant

in the Gumbel domain and decreasing in the Weibull domain still hold

true. We also find that the rate of adaptation shows a strong depen-

dence on the number of mutants produced when the fitness distribution

belongs to the Fréchet domain, but is affected weakly otherwise.

1.4 Plan of the thesis

In Chapter 2, we introduce various models that we use in our work. We

describe in detail, the block model that is used to model the fitness landscape

and to tune the correlations in it. We then move on to the adaptation

models. Adaptive walk model is used to address populations in which less

than one mutant is produced every generation and any beneficial mutation

produced, that manged to escape drift is quickly fixed in the population. So

the population is considered to be monomorphic and can be representation

by a point particle on the fitness landscape as shown in Fig. 1.2. Every

mutation fixed in the population is termed a step in the adaptive walk. The

population climbs the fitness landscape by single mutations till a local fitness

peak is reached. In this chapter, we have also introduced various quantities

that we shall measure and the basic equations that we shall use in later

chapters. However, when the number of mutants produced in the population
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is high, the equations obtained from the assumptions of the adaptive walk fail

and we numerically track the population dynamics using the Wright-Fisher

dynamics. In this chapter we explain how every mutant class grows, how we

define the leader and the production of mutants.

In Chapter 3, we use the adaptive walk model to measure the fitness

difference between successive steps. We obtain analytic expression for this,

by assuming the relative fitness difference between successive mutations to

be small and arbitrarily large, in all the three extreme value domains. We

have presented and described the results on uncorrelated and correlated fit-

ness landscapes. In all these cases, we have backed our calculations using

numerical simulations. We find that the fitness difference between succes-

sive steps increases, is a constant and decreases, as the walk proceeds in the

Fréchet, Gumbel and Weibull domains, respectively. We have also measured

the relative fitness difference at every step and we find that unlike fitness

difference which shows different trend in each extreme value domain, this

quantity decreases as the walk proceeds in all the the three extreme value

domains.

In Chapter 4, we present the results for the average walk length of adap-

tive walks in each extreme value domain. We have carried out extensive

calculations for the model that assumes the relative fitness difference to be

much less than one. In this case, we find that the average walk length un-

dergoes a transition in its behaviour depending on whether the mean of the
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underlying fitness distribution is finite or not. As long as the mean is fi-

nite, the walk length has a logarithmic dependence on the rank of the initial

fitness. However, as the mean becomes undefined (as can happen in the

Fréchet domain) the walk length becomes a constant, independent of the

initial fitness. In this chapter, we describe our calculation and results on the

correlated fitness landscapes, as well. We have also presented the simulation

results for the average walk length from the model that considers the full rel-

ative fitness difference and does not make the assumption that it is much less

than one. In this case, there is no transition in the behaviour of the average

walk length, as it always depends on the initial fitness. We also find that

the numerical values obtained here match the analytical calculation results

that assume small relative fitness in the Weibull and Gumbel domains, but

diverge in the Fréchet domain.

In Chapter 5, we use the Wright-Fisher dynamics to track the dynamics of

a finite sized population. Mutations are stochastically produced in the popu-

lation and their fitness effect can be either beneficial beneficial or deleterious.

Though on an average, beneficial mutations are the ones that spread in the

population, due to fluctuations deleterious ones may also increase its pop-

ulation fraction. In this chapter we find that the fitness difference between

successive dominant sequences, shows similar pattern as what was observed

in adaptive walks. Also we find that there is a increase in the rate of adap-

tation with number of mutants produced in the population, in the Fréchet

domain, whereas it is nearly constant in Weibull and Gumbel domains.
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Chapter 2

Models

2.1 Introduction

Adaptation is associated with a population climbing the fitness landscape as

schematically shown in Fig. 1.2. In asexual populations, this process happens

solely by means of beneficial mutations. The problem of adaptive evolution

is challenging because advantageous mutations, which are responsible for

adaptation, are rare [1]. It has been observed that initially the population

evolves quickly and then its fitness increases slowly towards different fitness

plateau for the same initial fitness [2–4] thus supporting the conclusion that

fitness landscapes are rugged. Depending on the number of mutants produced

in the population at every time step, we use two different models to study

its adaptation dynamics. In this chapter, we shall introduce the concept

of fitness landscape and explain how its ruggedness can be tuned. We also

22
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explain the two adaptation models we use in this thesis.

2.2 Block model

All possible sequences of length L in a population, along with their associated

fitness comprise the L+1 dimensional fitness landscape, whose L dimensions

represent the sequence space along with one more dimension to indicate

the fitness of each sequence. The fitness landscape can be defined on a

hypercube to represent the sequence space, whose each vertex corresponds

to a binary sequence. Examples for this is shown in Fig. 1.1 for L ≤ 3 and in

Fig. 2.1 for L = 4. We study adaptation on rugged fitness landscapes that are

characterized by many local fitness maxima using a block model [5] in which

a sequence of length L is split into B blocks of equal length LB = L/B. The

partitioning of a sequence is motivated by the domain structure of proteins [6]

and paired-unpaired regions in RNA secondary structure [7]. In proteins,

the domains that perform essential enzymatic functions are more likely to be

stable and in RNA secondary structure, the paired regions may have a lower

free energy than the unpaired ones.

The 2LB fitnesses of each of the B blocks is chosen from the fitness dis-

tribution, p(f) and if interactions between the blocks are neglected [6], the

fitness of the whole sequence can be written as the average of the block

fitnesses [5]. Fitness correlations arise because of common blocks between

two sequences and can be changed by tuning the number of blocks in the
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sequence. The two limits namely B = 1 and B = L produce fully uncorre-

lated and fully correlated fitness landscapes respectively. A measure of the

ruggedness of a fitness landscape is the number of local fitness peaks (defined

as sequences fitter than all of their one mutant neighbours) which decreases

as the fitness correlations increase [5]. On correlated fitness landscapes, a

local fitness peak is reached when the fitness of each block is a local fitness

maximum. As the probability of one of the 2LB sequences being a local fit-

ness peak is 2LB/(LB +1), the average number of local peaks on a correlated

fitness landscape is given by
(

2LB

LB+1

)B

[5]. Thus on a fully correlated fitness

landscape, there is only one local (same as global) fitness peak, whereas on

fully uncorrelated fitness landscapes, there are on an average 2L/(L+1) local

fitness maxima. In general, different blocks in a sequence may have different

fitness and a random variable chosen from a fitness distribution p(f) may be

assigned to each block.

A result from extreme value theory that we will need for subsequent

discussion, states that the typical value f of the mth best fitness amongst

L independent fitnesses can be determined by equating the rank m to the

average number of fitnesses higher than f . This is given by [8]

L

∫ u

f

dg p(g) = m (2.1)

where u is the upper limit of the fitness distribution. Setting m = 1 in the

above equation, we get the largest value of L random variables, or in other
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Figure 2.1: Schematic representation of adaptive walks in a 4-dimensional
sequence space, starting from the same initial sequence. The arrows represent
the shift of the population from a sequence to a fitter sequence one mutation
away (refer text for details).

words, the typical fitness f̃B of a local fitness peak. The typical local peak

fitness f̃B of a sequence of length L is the average of B random variables,

each of which is the best of LB random variables. We obtain the expression

for this from the equation

LB

∫ u

f̃B

df p(f) = 1 (2.2)

On uncorrelated fitness landscapes where B = 1, we drop the subscript B

and refer to the average fitness of a local fitness peak as just f̃ .

Fitness distributions: Each sequence is assigned a fitness which is an

independent and identically distributed (i.i.d.) random variable chosen from

a probability distribution. Experiments indicate that deleterious and neutral

mutations account for most of the weight in the fitness distribution, but a
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significant fraction comes from the beneficial mutations as well [1]. Since the

adaptation process is governed by these rare beneficial mutations, we need to

consider the upper tail of the fitness distribution [9] which immediately sug-

gests the use of the extreme value theory and the related peak-over-thresholds

formulation described below [8, 10].

Consider the conditional cumulative distribution PfT (f) for the fitness

f chosen from the distribution p̂(f) above a large threshold fT which here

refers to the wild type fitness. Formally, we have

PfT (f) = Prob(F − fT < f |F > fT ) (2.3)

= 1− q̂(f + fT )

q̂(fT )
(2.4)

where q̂(f) =
∫

f
dg p̂(g). For large enough thresholds, the above cumulative

distribution approaches the Generalised Pareto Distribution (GPD) [8]:

PfT (f)
large fT−→ P (f, τ) = 1−

[

1 +
κf

τ

]−1/κ

, −∞ < κ <∞ (2.5)

where τ is a scale factor and the shape parameter κ can take any real value.

The limiting distribution with positive κ corresponds to a power law distribu-

tion, and is obtained when p̂(f) itself decays algebraically. When κ < 0, the

fitness distribution (2.5) makes sense when f < −τ/κ and therefore such a

distribution is bounded above. This class of distributions appears when p̂(f)
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is truncated. Finally, the limit κ → 0 gives an exponentially decaying func-

tion which is obtained from unbounded distributions decaying faster than a

power law. For example, for the fitness distribution p̂(f) = cf c−1 e−fc

, c > 0,

the conditional distribution works out to be

PfT (f) = 1− e−(f+fT )c

e−fc
T

(2.6)

≈ 1− e−cfc−1
T

f , fT ≫ 1 (2.7)

Thus the tail of the conditional distribution is an exponential, and the thresh-

old fitness fT and the exponent c characterizing the tail of the full dis-

tribution p̂(f) appear in the scale factor τ . In summary, the distribution

p(f, τ) = dP (f, τ)/df of beneficial mutations for i.i.d. fitnesses is a GPD,

or in the language of the extreme value theory (EVT), the distribution of

the beneficial fitness effects (DBFE) p(f, τ) can be of only three types viz.,

Weibull (κ < 0), Gumbel (κ → 0) and Fréchet (κ > 0) [8]. Experimentally,

DBFE belonging to all the EVT domains have been observed [11–20]. We

will set τ = 1 in the rest of this thesis and denote the fitness distribution by

p(f) = (1 + κf)−
1+κ
κ (2.8)

As we are interested in adaptive changes, an uncorrelated fitness landscape

is generated by choosing fitnesses independently from p(f). Fig. 2.2 shows

the fitness distribution for various κ. The average fitness of a local peak as
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Figure 2.2: The figure shows the fitness distribution for various κ.

obtained from (2.2) then immediately yields

f̃ =
Lκ − 1

κ
(2.9)

Similarly, on correlated fitness landscapes the average fitness of a local peak

is given by

f̃B =
Lκ
B − 1

κ
(2.10)

2.3 Adaptive walk model

This model is used in the strong selection-weak mutation (SSWM) regime

in which the number of mutants produced per generation is much less than
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one. In this case, for a population of size N with a mutation rate mu,

although a single-mutant with selection coefficient s arises on an average

every (Nµ)−1 generations, the waiting time to its fixation is (Nµπ(s))−1

generations, where the π(s) is the fixation probability introduced in Chapter

1. If the initial fitness is small, several beneficial alleles each with a different

selective effect are possible, and Gillespie showed the probability that the one

with selection coefficient s will sweep through the population is proportional

to π(s) [9]. In the adaptive walk model, the mutation rates are small enough

so that only those sequences that are one mutation away from the currently

occupied sequence can be accessed. Once a beneficial mutant is fixed in the

population, the new wild type produces a novel neighborhood of mutants

that are single mutation away from it. Again one of the beneficial mutants

sweeps through the population and replaces the current wild type. This

substitution process goes on until the population encounters a local fitness

peak, as double and higher order mutants are ignored.

Here we consider an asexual population initially localized at a sequence

with fitness f0 in which only the beneficial mutations spread through the

population while the neutral and deleterious ones are quickly lost [9]. As

illustrated in Fig. 2.1 for sequence space of dimension 4, starting from the

sequence {0000}, at the first step in the walk, the population has three fit-

ter neighbors viz. {0010}, {0100} and {1000}, and it chooses one of them

according to a stochastic rule described below. After the first step is taken,
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the population again scans its nearest neighbors and walks to a fitter neigh-

bor. This process repeats until a local fitness peak is reached whereupon

the adaptive walk terminates since the next beneficial mutation is at least

two mutations away which is not accessible in the weak mutation regime.

The number of steps taken from the initial sequence to a local fitness peak

is termed as the walk length. In Fig. 2.1, two walks to the local fitness peak

{0100} with length one and three are shown. Of course, an adaptive walk to

a different local fitness peak (say, sequence {1001}) is also possible.

We now discuss the stochastic rules by which a nearest fitter sequence

may be chosen [21]. Perhaps the simplest algorithm is the greedy adaptive

walk (GAW) in which the fittest mutant is chosen at any step in the walk.

In contrast, in the random adaptive walk (RAW), any fitter one-mutant is

equally likely to be chosen. Here we are interested in the biologically rel-

evant situation where, as one would intuitively expect, a mutant which is

much fitter than the wild type has a higher chance of sweeping through the

population than a mutant which is mildly fitter. From the population ge-

netics theory [22], it is known that in a large adapting asexual population, if

h is the fitness of the wild type and f > h is the fitness of the mutant, the

probability that the mutant will take over the population is given by (1.3) as

π(f, h) = 1− exp

[

−2(f − h)

h

]

, (2.11)

since the selection coefficient is given by s = f−h
h
. Thus, as in Fig. 2.1, when
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several of the L nearest mutants are beneficial, the population moves to one

of them with a probability proportional to π. The normalised transition

probability is then given by [23–25]

T (f ← h) =
1− e−

2(f−h)
h

∑

g>h 1− e−
2(g−h)

h

(2.12)

≃ p(f) (1− e−
2(f−h)

h )
∫ u

h
dg p(g) (1− e−

2(f−h)
h )

(full model) (2.13)

For all κ, (2.13) is applicable when L is large and we can see that the equation

is clearly nonlinear in the fitnesses. However our previous work [25] shows

that when κ ≤ 0, the relative fitness difference s = (f − h)/h between the

mutations encountered is small, and we may therefore write π(f, h) ≈ 2s

[9, 23, 24, 26] which gives us

T (f ← h) =
f − h

∑

g>h g − h
(linear model) (2.14)

For the above equation, we can use an integral approximation similar to

(2.13) only when κ < 1, since the mean of p(f) diverges beyond this range

(see Section 3.2.1). In this thesis, we shall refer to the model that uses (2.13)

as the full model and the one that uses (2.14) as the linear model.

Since in many experiments the population is founded using a single ances-

tor thus keeping the initial fitness fixed [27, 28], we consider the adaptation

process starting from a fitness f0. On correlated fitness landscapes, if a se-

quence is divided into B blocks and the initial fitness of the bth block is f
(b)
0 ,
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the initial fitness of the whole sequence is given by

f0 =
1

B

B
∑

b=1

f
(b)
0 (2.15)

On uncorrelated fitness landscapes, the probability distribution PJ (f |f0) that

the population has fitness f at the Jth step of the adaptive walk given that

it started with fitness f0 obeys the following recursion equation [24]

PJ+1(f |f0) =
∫ f

f0

dh T (f ← h) (1− qL(h)) PJ(h|f0) , J ≥ 0 (2.16)

where q(f) =
∫ f

0
dg p(g) = 1 − (1 + κf)−1/κ gives the probability of having

a fitness less than f and T (f ← h) is given by (2.13) or by (2.14). Equation

(2.16) simply means that the population moves from fitness h to a higher

fitness f at the next step with probability (2.13) or (2.14) provided at least

one fitter mutant is available, the probability of whose is given by 1− qL(h).

Equation (2.16) can be used to write a second order differential equation in f

for the distribution PJ(f |f0) defined through PJ(f |f0) = p(f)PJ(f |f0) which

is given by [24]

P
′′

J+1(f |f0) =
p(f)(1− qL(f))
∫ u

f
dg (g − f) p(g)

PJ(f |f0) , J ≥ 1 (2.17)

where the prime refers to a derivative with respect to (w.r.t.) f . For

monomorphic initial condition with fixed fitness f0, we have the boundary
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conditions

PJ(f |f0) = δ(f − f0)δJ,0 (2.18)

P ′
1(f0|f0) =

p(f0)(1− qL(f0))
∫ u

f0
dg (g − f0) p(g)

(2.19)

Equation (2.18) is self explanatory and (2.19) is obtained by applying (2.18)

on the first derivative of (2.16) w.r.t. f [24].

The main quantities that we are interested in is the average fitness at

each step of the adaptive walk, for sequence that are infinitely long, which

can be obtained from the distribution PJ (f |f0) as

f̄J(f0) =

∫ u

f0

df f PJ(f |f0) (2.20)

A related quantity is the selection coefficient which at step J is given by

sJ =
fJ − fJ−1

fJ−1
, J > 0 (2.21)

In this thesis, we use the above formalism to obtain an expression for

the fitness of a step in the adaptive walk for both the linear model and the

full model as explained in Chapter 3. However, we could obtain the analyt-

ical expression for the walk length only for the linear model and have only

simulation results for the full model as presented in Chapter 4. The linear

model is interesting to study, not only because it is amenable to analysis,

but also because the results obtained here appear in other systems [29] viz.
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models of deterministically evolving populations [30–32] and the Jepsen gas

that describes a system of particles with random velocities undergoing elastic

collisions [33, 34].

In computer simulations of the dynamics of the adaptive walk, we started

with a sequence of length L and initial fitness f0, and considered uncorrelated

(B = 1) and weakly correlated fitnesses with B > 1. In the former case,

the initial fitness of the sequence is fixed and in the latter case, B random

variables are generated independently from (2.8) and they are accepted as

block fitnesses if their sum is Bf0 ± δ where δ ∼ 0.01f0. At each step of

the adaptive walk, we generate L new fitnesses that are chosen from (2.8)

and one of them is chosen to be fixed according to the transition probability

(2.13) or 2.14. While in the case of uncorrelated fitnesses, the fitness of

the whole sequence changes at each step, when B > 1 the fitness of only

one of the blocks is changed. The fitnesses sampled during the walk are not

stored as for large L, the number of one mutant neighbors probed in previous

steps can be ignored in comparison to L [23, 36, 37]. In our simulations, the

fitness and selection coefficient of each step are averaged over only those

walks that proceed until that step. In all the simulations on uncorrelated

fitness landscapes, the data were averaged over 106 independent realizations

of the fitness landscape and 105 for the correlated ones.
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Figure 2.3: Population fraction of different classes in SSWM (Nµ = 0.1) and
clonal interference (Nµ = 10) regimes for all three DBFE domains.

2.4 Wright Fisher model

For populations in which a large number of mutants are produced at every

generation, the genetic variation of the population is also high and more
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than one beneficial mutation is expected to be present at the same time

[38–41]. In this case, the beneficial mutations will compete with each other

as has been observed in different experimental populations [42–45]. In this

clonal interference regime, because of the competition among the beneficial

mutations, the rate of adaptation slows down and also the fitness advantage

due to the mutations that get fixed is much higher since the availability

of more mutations results in allowing only the best (fittest) mutation to get

fixed [46]. A clear comparison between the two mutation regimes for different

DBFE is shown in Fig. 2.3. In Fig. 2.3(a) we see that the population in the

SSWM regime is more or less monomorphic with only one mutant present at

a time in all the three EVT domains, whereas the population is polymorphic

when more than one mutant is produced in it at every generation as shown

in Fig. 2.3(b). Moreover, we notice that the maximum amount of genetic

variation is observed in the case of bounded distributions corresponding to

κ = −1 resulting in strong clonal interference effects.

We track the dynamics of a population of self-replicating, infinitely long

binary sequences of fixed size using the standard Wright-Fisher process [40,

46]. In our work, the population size is held constant at N = 104, unless

specified otherwise and the mutation probability per sequence is given by µ.

Every occupied sequence, is counted as a class and labeled when it arises

in the population. Initially, the whole population is in class 1, which is the

initial leader and its fitness is fixed and specified. At every time step, out

of N sequences, mt are chosen from a binomial distribution with mean Nµ
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Figure 2.4: Schematic representation of the algorithm used in the strong
mutation regime.

as mutants. Every mutant produced increases the number of classes in the

population by one and with time, the mutants may produce their own set

of further mutants. The population fraction of each class may grow or go

extinct. A schematic representation of the algorithm we have used is shown

in Fig. 2.4.

At any time t, the number of classes present in the population is given by

N (t)
c , and the population size and fitness of each class, i, where 1 ≤ i ≤ Nc,

is denoted by n
(t)
i and fi, respectively. The normalized probability of each

class at every time step, p
(t)
i contributing offspring to the population at the

next time step, depends on the population size of the class at the present
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time step and the fitness of the class as

p
(t)
i =

n
(t)
i fi

ΣN (t)
c

j=1 n
(t)
j fj

(2.22)

Note that though the fitness of the class is the same as long as it persists

in the population, its size may vary at every time step, thus changing its

probability of reproduction as given by (2.22). The different classes populate

the next time step based on the multinomial distribution

P (n
(t′)
i , n

(t′)
2 ..n

(t′)
Nc

) = N !

N (t′)
c
∏

j=1

(

p
(t)
j

)n
(t′)
j

n
(t′)
j !

(2.23)

where t′ = t+1. The above equation is subject to the constraint ΣN (t)
c

j=1 n
(t′)
j =

N . In our simulations, we implement the above algorithm along with the

constraint by converting (2.23) to a binomial distribution for every class,

1 ≤ i < N (t)
c as n

(t′)
i =

( Ñi

n
(t′)
i

)

q
n
(t′)
i

it (1−qit)Ñi−n
(t′)
i and by setting the population

of the last class as n
(t′)

N (t)
c

= N −∑N (t)
c −1

i=1 n
(t′)
i . In the previous equation,

qit =
p
(t)
i

ΣNc
j=ip

(t)
j

and Ñi = N − Σi−1
j=1n

(t)
j .

At every time step, once the classes are populated based on the algo-

rithm described above, mt sequences are chosen as mutants based on the

binomial distribution with mean Nµ. Every new mutant class that appears

in the population reduces the population size of the class in which it arose

by one. In our work, we vary µ to access both the SSWM (low mutation)

and the clonal interference (high mutation) regime. In our simulations unless
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specified otherwise, in the low and high mutation regimes, Nµ = 0.01 and

Nµ = 50, respectively.

A new class is assigned to each mutant and its fitness is chosen from a gen-

eralized Pareto distribution (2.8) [8], in order to access all the three extreme

value domains. In this work, the fitness of the mutants is independently

chosen from (2.8) thus making the fitness of the mutant, fm an uncorrelated

variable, which may be greater or smaller than the parent fitness, fp, and

we analyze the results to see how they vary between the three EVT domains

and different mutation rates.

In the allocation of the fitness to any mutant, our work differs from the

other works on clonal interference [40, 46] wherein the fitness of the mutant

is hiked above the parent fitness by the selection coefficients (s) which may

be held constant or chosen from a distribution as fm = (1 + s)fp. In those

cases, the mutant fitness is always greater than the parent fitness and on an

average, a double or higher mutant is fitter than a single mutant. This is in

contrast with our work since in ours, as the fitness of the parent increases,

the number of better mutants available decrease thus producing different

patterns for the fitness increment in each EVT domain.

Whenever a class goes extinct, the classes below it are moved up, and

the number of classes in the population is reduced by one. The normalized

probability, (2.22) of any classes exceeding half corresponds to a leader change

and the new leader determined now, belongs to the class whose normalized

probability exceeded half. Every change of leader is counted as a step. While
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in the clonal interference regime the population is spread over many sequences

and a sequence can produce two or more mutants each of which may become

leaders at different time steps, in the SSWM regime, the whole population

is localized at a single sequence with a fixed fitness and can only move to a

different sequence with higher fitness one mutation away. Thus every new

leader arises from the previous leader. The change in the fitness of the

population is the same as the change in fitness of the leader. In this case,

every move of the population (leader) from one sequence to another is termed

a step in the adaptive walk.

Various quantities like the fitness difference between successive leaders

and the average number of mutations in the leader are averaged only over

the walks that take the step. Other quantities like the number of classes

present at any time point and the rate of adaptation are averaged over all

walks in that simulation run. We shall refer to the number of classes present

in the population at any time as Nc.

In the adaptive walk model, since only mutations one mutation away are

successively fixed in the population, the model is applicable only till a local

fitness peak whose average fitness is given by (2.9). However in the Wright-

Fisher model the population can produce multiple mutations in a step and

the maximum fitness that can be encountered in this model after tmax time

steps is obtained from [8]

tmaxNµ

∫ u

fmax

p(f) = 1 (2.24)
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from which we get

fmax =
(tmaxNµ)κ − 1

κ
(2.25)

Here, we set the total number of iterations is 105 in every simulation run and

the dynamics is tracked for tmax = 104 time steps.
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Chapter 3

Fitness evolution during

adaptive walk

3.1 Introduction

A fundamental question in the study of adaptive dynamics is whether adap-

tation happens via many mutations conferring small fitness advantage, or

a few producing large fitness changes. Although initial theoretical works

suggested that adaptation occurs mostly by mutations that provide small

benefits [1, 2], it has been recently realised that large effect mutations are

also possible [3]. The basic idea governing the shape of the distribution of

beneficial fitness effects (DBFE) is due to Gillespie [4], who argued that in the

event of a small environmental change, as the wild type fitness is expected to

remain high, the mutations conferring higher fitness than the wild type will

47
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lie in the right tail of the fitness distribution. As discussed in Chapter 2, the

extreme value distribution of such independent extreme fitnesses can be only

of three types: Weibull which occurs when the fitnesses are right-truncated,

Gumbel for distributions decaying faster than a power law and Fréchet for

distributions with algebraic tails [5].

In Chapter 2, we introduced the strong selection-weak mutation (SSWM)

regime in which an asexual population performs an adaptive walk on the

fitness landscape. In the adaptive walk model, if the population is fixed at

a sequence with fitness h, a mutant with fitness f > h substitutes it with a

probability proportional to the fixation probability π(s) where s = (f−h)/h.

For long sequences, when the selection coefficient is assumed to be small, we

use the linear model for which the normalised transition probability is given

in (2.14) and we use the full model whose normalised transition probability

is given in (2.13) for all values of the selection coefficient [6]. In our work, we

use the block model discussed in Chapter 2 to model the fitness landscape

and generate the fitness for each sequence from (2.8). In this chapter, we

will study how the fitness of a maladapted asexual population evolves with

the fixation of beneficial mutations using both the linear model and the full

model.
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3.2 Evolution of fitness fixed in the linear

model

3.2.1 On uncorrelated fitness landscapes

Transition in the behavior of fitness fixed:

Given that fitness is h at a step in the adaptive walk, the probability, PJ(f)

that the adaptive walk fixes a fitness f at step J can be obtained from the

transition probability (2.14) which gives, T (f ← h) ∝ (f − h)p(f) favoring

large fitness differences. But as the fitness distribution p(f) is a decreasing

(increasing) function of f for κ > −1 (κ < −1), the transition probability is

nonmonotonic in f with the most probable fitness f ∗ = 2 + κh for κ > −1

but monotonically increasing for κ ≤ −1. This property is reflected in the

distribution PJ(f) (shown in Fig. 3.1 for κ = −1/2 and −2) which peaks

at higher fitnesses as f0 increases for κ > −1 while for κ < −1, irrespective

of f0, the most probable fitness occurs at the upper limit u of the fitness

distribution.

Due to (2.20), the average fitness fixed at the next step given by

∫ u

h

df f T (f ← h) =

∫ u

h
df f (f − h)p(f)
∫ u

h
dg (g − h)p(g)

(3.1)
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Figure 3.1: Plot of PJ(f) for (a) κ = −2 and (b) κ = −1/2 to show the
behavior of the most probable fitness when L = 1000. The lines show the
simulation data for initial fitness f0 = 0 and points for f0 > 0 in both cases.

for κ < 1 however displays a different dependence on the GPD exponent. The

numerator on the RHS of the above equation contains the second moment

of the fitness distribution which is infinite for κ ≥ 1/2. We show that the

fitness of a step far from a local fitness peak has a dependence on the length

of the walk when the second moment of p(f) does not exist ( when κ ≥ 1/2),

whereas there is no such dependence otherwise (when κ < 1/2). We shall

discuss this transition in the rest of this section. Moreover for κ < 1/2, the

fitness difference

∫ u

h

df f T (f ← h)− h =

∫ u

h
df (f − h)2p(f)

∫ u

h
dg (g − h)p(g)

(3.2)

has the important property that it increases with fitness h for positive κ. For

an infinite sequence in which fitter mutants are always available, these two

results taken together suggest that the fitness jumps keep increasing during
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the adaptive process for fat-tailed fitness distributions.

Below we discuss how the average fitness increases with the number of

adaptive substitutions and with initial fitness on uncorrelated fitness land-

scapes.

Average fitness for κ < 1/2:

If the population reaches a local fitness peak after J̄ steps and when the

number of adaptive substitutions J ≪ J̄ or the initial fitness is far from the

local fitness peak, the average fitness fixed at the Jth step for a sequence of

length L is well approximated by the corresponding quantity for an infinitely

long sequence [6]. Taking the infinite sequence limit in (2.17) and using the

definition (2.20) for average fitness, we have

f̄J+1(f0) =

∫ u

f0

dh

∫ u

h

dff T (f ← h) ΦJ (h|f0) (3.3)

where ΦJ(f |f0) ≡ LimL→∞PJ(f |f0) and we have interchanged the order of

integration to arrive at the last equation. In the linear model where the

transition probability is given by (2.14), as the numerator in the integrand

contains the second moment of the distribution p(f) which is undefined for

κ ≥ 1/2, the above equation is valid for κ < 1/2 only. On performing the
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integrals in (3.3), we have

f̄J+1(f0) =

∫ u

f0

dh
2 + h

1− 2κ
ΦJ(h|f0) (3.4)

=
2 + f̄J(f0)

1− 2κ
(3.5)

where we have used the fact that for κ < 1, the adaptive walk goes on

indefinitely for an infinitely long sequence [6]. The solution of the above

equation is given by

f̄J(f0) =

(

1 + κf0
κ

)

(1− 2κ)−J − 1

κ
(3.6)

The above result for zero initial fitness matches Eq. 33 of [3] for high initial

rank. Equation (3.6) predicts that the final fitness u is approached expo-

nentially for bounded distributions but the fitness increases with the number

of substitutions linearly for exponentially distributed fitnesses and exponen-

tially for unbounded distributions with 0 < κ < 1/2.

It is useful to consider the fitness improvement ∆fJ during the successive

steps defined as

∆fJ = fJ − fJ−1 (3.7)

where the overbar represents averaging over only those walks that reach the

Jth step. For infinitely long sequences, as the Jth step is definitely taken [6],
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Figure 3.2: The plot shows (scaled) average fitness difference between succes-
sive steps as a function of the number of adaptive substitutions for L = 1000
(open symbols) and f0 = 0 on uncorrelated fitness landscapes. The theoreti-
cal prediction (3.8) is shown by lines and the simulation data by points. The
filled boxes are the simulation data for L = 10000 and κ = 1/4 to show that
the agreement with theoretical prediction (3.8) improves with increasing L.
The standard deviation about the mean fitness difference is shown by error
bars for a few representative points.

we have

∆fJ = f̄J − f̄J−1 = 2(1 + κf0)(1− 2κ)−J (3.8)

A similar expression for fitness effects has been obtained by Joyce et. al., [3]

but its consequences were not discussed. The above result has also been

obtained for the special case of exponentially distributed fitnesses and zero
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Figure 3.3: The plot shows (scaled) average fitness difference between suc-
cessive steps as a function of initial fitness on uncorrelated fitness landscape
for various κ and L = 1000 when J = 1 (main plot) and 2 (inset). The points
give the simulation data and the lines are the theoretical prediction (3.8) for
κ < 1/2. For κ = 2/3, the data has been scaled down by a factor two for
clarity and the lines are guide to the eye.

initial fitness by [7]. For fixed initial fitness, (3.8) shows that for κ < 0,

the fitness benefit decreases exponentially as the walk proceeds (diminishing

returns) while for κ→ 0, the average fitness increases linearly during succes-

sive steps conferring constant benefit (constant returns) and for 0 < κ < 1/2,

the fitness difference increases exponentially fast with each step conferring

higher benefit than the previous one (accelerating returns). Similar qualita-

tive trends are seen when the initial fitness is varied since the fitness gain

changes linearly with f0 and the sign of the slope changes as κ crosses zero. In
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Figs. 3.2 and 3.3, the simulation results and the above theoretical prediction

(3.8) for infinitely long sequence are compared and we see a good agreement

when the local fitness maximum is far away. We have also measured the

standard deviation about the mean fitness fixed and our simulations indicate

that as the walk proceeds, the fluctuations increase for κ > 0 but remain

almost a constant for κ→ 0 and decrease for κ < 0.

Average fitness for 1/2 ≤ κ < 1:

When the second moment of the fitness distribution becomes infinite, we

work with a sequence of finite length to find how the average fitness diverges

with L. Since the adaptation process is over when the fitness fixed is of

the order of the fitness of the local fitness optimum, we truncate the fitness

distribution (2.8) at the local fitness maximum f̃ given by (2.9) [5].

Proceeding in a manner similar to that used to obtain (3.3) above, we

find that for large but finite L,

f̄J+1(f0) ≈ −
2 + f̄J(f0)

2κ− 1
+

(1− κ) L2κ−1

(2κ− 1)κ2

∫ f̃

f0

dh ΦJ (h) (1 + κh)
1−κ
κ (3.9)

The second term on the RHS can be neglected when κ < 1/2 and we recover

(3.5). At the first step in the walk, using (2.18), we immediately get

f̄1 = −
2 + f0
2κ− 1

+
(1− κ)(1 + κf0)

1−κ
κ

κ2(2κ− 1)
L2κ−1 (3.10)

which shows that for large L, the average fitness f̄1 scales as L2κ−1. Beyond
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the first step, an exact expression for ΦJ(h) is not available but if we assume

that this distribution decays faster than h−1/κ, one can replace the upper

limit in the integral on the RHS of (3.9) by infinity to get

f̄J+1(f0) ≈ −
2 + f̄J(f0)

2κ− 1
+AJ(κ, f0)L

2κ−1 (3.11)

where AJ(κ, f0) represents the resulting integral and the other prefactors.

The above equation shows how the fitness fixed differs in its character for κ

below and above half.

For κ < 1/2, as the right hand side (RHS) of (3.11) becomes independent

of the sequence length (and hence f̃) for large L, the fitness fixed during the

initial steps in the walk depends on the initial fitness but not on the local peak

fitness. In contrast, for 1/2 ≤ κ < 1, the fitness fixed depends on both the

initial fitness and the local peak fitness. From (2.9) and (3.11), we see that

the fitness fixed increases as f̃
2κ−1

κ which scales sublinearly with f̃ for κ < 1.

We also find that for κ > 1, the population immediately jumps to a fitness

close to the local optimum irrespective of the initial fitness and therefore

we expect the fitness fixed in this parameter regime to depend only on the

fitness of the local optimum. These inferences are indeed consistent with the

results of the numerical simulations shown in Fig. 3.4. Equation (3.11) also

suggests that the fitness at the Jth step increases with the sequence length

as L2κ−1 which is supported by numerical simulations shown in Fig. 3.4 for

κ = 2/3. Also the fitness difference between successive steps increases with
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f J
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Figure 3.4: Numerical data for the average fitness fixed during the walk as
a function of L when κ = 2/3, B = 1 and f0 = 1 to support the expectation
that it scales as L2κ−1 (refer (3.11)). The lines are best fit to the curve of
the form f̄J = A1(J) + A2(J)L

2κ−1.

both J and f0 as shown in Figs. 3.2 and 3.3.

The fitness evolution on correlated fitness landscapes is discussed in 3.2.2

within a simple approximation. Although the results thus obtained do not

match the simulation results (displayed in Fig. 3.5) quantitatively, the correct

qualitative behavior is captured.
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Figure 3.5: Main: (Scaled) average fitness difference at the first step as a
function of initial fitness for various κ. Top left inset: Fitness evolution
during the course of the adaptive walk for exponentially distributed fitnesses
with f0 = 1. The lines are the theoretical prediction (3.16) and the points
give the simulation data. Top right inset: (Scaled) average fitness difference
between successive steps as a function of the number of adaptive substitutions
when f0 = 0. In all the plots, the block number B = 2 and sequence length
L = 2000. Unless mentioned otherwise, the points show the simulation data
while the lines are guide to the eye.

3.2.2 Effect of correlations on fitness evolution

For a given set {f (b)
0 } of initial block fitnesses, the average fitness fixed when

the sequence is partitioned into B blocks is given by

f̄J,B =
1

B

B
∑

i=1

f
(i)
J +

∑

k 6=i f
(k)
J−1

B
(3.12)



3.2 Evolution of fitness fixed in the linear model 59

where the overbar represents averaging with respect to (w.r.t.) the distri-

bution DJ(i) ≡ PJ (f
(1)
J−1, ..., f

(i)
J , ..., f

(B)
J−1|{f

(b)
0 }) that at step J , an adaptive

substitution occurs in the ith block. Assuming that this distribution can be

factorized over the blocks, we find that

f̄J,B =

B
∑

i=1

f̄
(i)
J

B2
+

B
∑

i=1

∑

k 6=i f̄
(k)
J−1

B2
(3.13)

=
f̄J − f̄J−1

B
+ f̄J−1 (3.14)

where the last equation is obtained on averaging over the initial block fit-

nesses under the constraint (2.15) and f̄J is the average fitness fixed at the

Jth step on uncorrelated fitness landscape. At the first step in the walk,

using (3.6) in (3.14), we immediately get

f̄1,B = f0 +
2

B

(

1 + κf0
1− 2κ

)

(3.15)

which states that the fitness difference at the first step depends linearly on

the initial sequence fitness for nonzero κ. However our simulation data shown

in Fig. 3.5 does not agree with the above expectation except for exponentially

distributed fitnesses which suggests that the factorization property for the

distribution DJ(i) does not hold in general. For κ → 0, due to (3.14) and

(3.6), we have

f̄J,B = f0 +
2J

B
(3.16)
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At first few steps, the above expression is consistent with the simulation

results as can be seen in Fig. 3.5. For κ 6= 0, although the fitness difference

does not obey (3.14), the trend with κ shown in Fig. 3.5 is similar to that in

the uncorrelated case where the fitness difference increases and decreases for

κ > 0 and κ < 0 respectively.

3.2.3 Mean selection coefficient during the walk

The average selection coefficient fixed at step J also exhibits a similar behav-

ior as the fitness. To see this, consider the distribution SJ(s|f0) of selection

coefficient s at the Jth step in the walk which can be determined using (2.16)

for an infinitely long sequence as

SJ(s|f0) =

∫ u

f0

df

∫ u

f0

dh δ

(

s− f − h

h

)

T (f ← h) ΦJ−1(h|f0)(3.17)

=

∫ u
s+1

f0

dh h T (h(s+ 1)← h) ΦJ−1(h|f0) , J ≥ 1 (3.18)

In the last equation, the upper limit of the integral is obtained using the

fact that the fitness f at the Jth step can not exceed u. Then the average

selection coefficient can be written as

s̄J(f0) =

∫ u

f0

dh h ΦJ−1(h|f0)
∫ u

h
−1

0

ds s T (h(s+ 1)← h) (3.19)

The average selection coefficient in the linear model displayed in Fig. 3.6

for various κ shows that it decreases with increasing J or f0. For κ ≤ 0, due
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Figure 3.6: Average selection coefficient for various κ and initial fitness f0
with L = 1000 on (a), (b) uncorrelated and (c) correlated fitness landscapes
(B = 2, f0 = 0). The theoretical prediction (3.24) is shown for exponentially
distributed uncorrelated fitness while in all the other cases, the lines are guide
to the eye.

to the upper bound of p(f), the fitness difference is a nonincreasing function

of J and f0. So one may expect the selection coefficient (2.21) to decrease but

for κ > 0, although the fitness benefit increases, the selection coefficient still

decreases. Moreover like average fitness f̄J , the average selection coefficient

s̄J is also undefined for κ ≥ 1/2. Using (3.18) for the distribution of selection
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compared against the theoretical result (3.23) for infinitely long sequence.

coefficient in the limit L→∞, we obtain

s̄J(f0) =

∫ u

f0

dh
(1− κ)h2

(1 + κh)
κ−1
κ

ΦJ−1(h|f0)
∫ u

h
−1

0

ds s2 p [h(s+ 1)](3.20)

As the inner integral over s in the last equation is undefined for κ ≥ 1/2, we

get

s̄J(f0) =
2κ

1− 2κ
+

2

1− 2κ

∫ u

f0

dh

h
ΦJ−1(h|f0) , κ < 1/2 (3.21)

Note that while the expectation value of fitness h is involved in the expression

(3.4) for average fitness, the average of 1/h appears in the above equation.
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For exponentially distributed fitnesses, on solving the differential equation

(2.17) in the infinite sequence length limit [6], we find that the distribution

ΦJ(f |f0) is given by

ΦJ(f |f0) =
e−(f−f0)(f − f0)

2J−1

(2J − 1)!
(3.22)

thus leading to the distribution of selection coefficient in (3.18) for an in-

finitely long sequence as

SJ(s|f0) L→∞−→ se−sf0

(1 + s)2J
[

((1 + s)f0 + 2J − 2)2 + 2J − 2
]

(3.23)

The above result for an infinitely long sequence compares well with the sim-

ulation results for a finite sequence shown in Fig. 3.7. We find that the

distribution is nonmonotonic in s and decays faster with increasing J or f0.

From (3.23), we also obtain

s̄J =
2

(2J − 3)!

∫ ∞

0

dy
y2J−3

y + f0
e−y = 2ef0E2J−2(f0) , J > 1 (3.24)

where En(x) is the exponential integral function. Using the asymptotic ex-

pansion of exponential integral [8], we find that s̄J ∼ 2/f0 for large f0 and

therefore the selection coefficient decreases with initial fitness. For large J ,

we have s̄J ∼ 1/J on using the representation of En(x) for large n [8]. Thus

the mean selection coefficient decreases with increasing initial fitness and

during the course of the walk.
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We have obtained an analytical expression for the distribution ΦJ(f |f0) which

is available only for special cases such as the first step in the walk, which we

shall discuss now.

At the first step in the walk, using (2.18) in (3.18), we immediately have

S1(s|f0) L→∞−→ (1− κ)f 2
0 s

(1 + κf0)
κ−1
κ

p((s+ 1)f0) , 1 + κ(s+ 1)f0 > 0 (3.25)

which is a nonmonotonic function of s for κ > −1 but increases monotonically

for κ ≤ −1. The above equation also gives

s̄1(f0) =
2κ+ 2f−1

0

1− 2κ
, κ < 1/2 (3.26)

which decreases as the initial fitness increases (see Fig. 3.6). If the above

distribution (3.25) is averaged over the initial fitness also, the mean selection

coefficient diverges for all κ < 1. On integrating (3.25) over the fitness

distribution with κ ≥ 0, we obtain

S1(s)
L→∞−→ s(1− κ)

∫ ∞

0

df0
f 2
0

(1 + κf0)2
(1 + κ(s+ 1)f0)

− 1+κ
κ (3.27)

It is useful to consider the integral

I(s) = s

∫ ∞

0

dx
x2

(1 + x)2
(1 + xs)−a (3.28)

≈ s−1/κ

∫ ∞

0

dx
x2−a

(1 + x)2
(3.29)
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where we have assumed s≫ 1 and a = (1 + κ)/κ. We also have

I(s) = s−2

∫ ∞

0

dx
x2

(1 + xs−1)2
(1 + x)−a (3.30)

≈ s−2

∫ ∞

0

dx x2 (1 + x)−a (3.31)

where the last integral is finite provided κ < 1/2. Splitting the integral I(x)

as follows:

I(s) = s

∫ 1/s

0

+

∫ 1

1/s

+

∫ ∞

1

(3.32)

≈ s

∫ ∞

1

dx(1 + xs−1)−2 +

∫ 1/s

0

dx
x2

(1 + x)2
(3.33)

= O(s−1/κ) +O(s−2) (3.34)

Thus for κ < 1/2, the distribution of the selection coefficient decays as ∼ s−2

while for 1/2 < κ < 1, it decays as s−1/κ giving a diverging mean selection

coefficient for all κ < 1.

3.3 Evolution of the fitness fixed in the full

model

In the biologically relevant full model of the adaptive walk, we find that

while the fitness fixed during adaptation increases in all the three extreme

value domains [6], the average difference ∆fJ between fitnesses fixed at step
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Figure 3.8: The plot shows (scaled) average fitness difference at the first step
as a function of initial fitness for various κ on uncorrelated (main) and cor-
related fitness landscapes with B = 2 (inset). In both the plots, LB = 1000
which corresponds to L = 1000 and 2000 for uncorrelated and correlated
fitnesses respectively. The points give the simulation data and the line con-
necting the data points are obtained from (3.45) and (3.46) for uncorrelated
and correlated fitnesses respectively for κ < 1. The data points for κ = 3/2
are scaled down by 102 for clarity and the line connecting the data is guide
to the eye.

J − 1 and J exhibits interesting trends that can be exploited to distinguish

between them (refer Figs. 3.8 and 3.9).
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3.3.1 On uncorrelated fitness landscapes

Transition in the behaviour of fitness fixed:

To find the average fitness and selection coefficient, we consider the probabil-

ity distribution PJ(f |f0) of the population having fitness f at the Jth step

of the adaptive walk, given that it started with fitness f0. On uncorrelated

fitness landscapes, it obeys the recursion equation (2.16) and here we use the

transition probability given by (2.13) [6, 9].

The average fitness fixed at the Jth step is given by f̄J(f0) =
∫ u

f0
df f PJ(f |f0).

Far from a local fitness peak, the average fitness fixed for a sequence of length

L is well approximated by the corresponding quantity for an infinitely long

sequence [6] as given in (3.3) for the transition probability (2.13). In (3.3),

for a given h, we use the the transition probability (2.13) which reduces to

(2.14) varying as (f−h) p(f) for f ≪ 3h/2 (small selection coefficient) which

varies as or is just p(f) when selective effects are large. As the dominant con-

tribution to the inner integral in (3.3) comes from the large-f behavior of

the integrand, the integral over f is seen to be proportional to the mean of

the fitness distribution p(f) which, we recall, is undefined for κ ≥ 1. This

result means that the fitness fixed is independent of the sequence length L

for κ < 1, but increases with L otherwise.
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Figure 3.9: The plot shows (scaled) average fitness difference between succes-
sive steps as a function of the number of adaptive substitutions for various κ
on uncorrelated (main) and correlated fitness landscapes with B = 2 (inset).
Taking f0 = 0.63, 1, 1.14 and 2.32 for κ = −1, 0, 1/4 and 3/2 respectively,
the simulation data are shown as points for LB = 1000 which corresponds
to L = 1000 and 2000 for independent and correlated fitnesses respectively.
The line connecting the data points for κ = 3/2 is guide to the eye, while the
others are obtained from (3.45) and (3.46) for uncorrelated and correlated
fitnesses respectively.

Fitness increment between steps:

The fitness improvement ∆fJ during the successive steps is given by (3.7).

For infinitely long sequences, as the Jth step is definitely taken, we have

∆fJ = f̄J − f̄J−1. Thus it is sufficient to study the behaviour of the fitness

fixed at each step which we discuss next.

We find that ∆fJ decreases during the walk in the Weibull domain and
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increases in the Fréchet domain. A similar behavior is seen at a fixed step in

the walk when initial fitness is varied. A heuristic understanding of the latter

result can be obtained for uncorrelated fitnesses using a simple back-of-the-

envelope calculation of the average fitness f̄1 at the first step, which is given

by
∫ u

f0
df f T (f ← f0). We first note that if the fitness distribution decays

slowly, fitnesses much larger than initial fitness can occur with appreciable

frequency and thus the selection coefficients can be large. On the other

hand, for bounded distributions, the selection coefficient can be at most

u/f0 − 1 which is below unity for f0 > u/2. Indeed as Fig. 3.10 shows, the

selection coefficients fixed are large (small) for positive (negative) κ. As a

result, the fixation probability π(s) can be approximated by unity in the

Fréchet domain, while π(s) ≈ 2s in the Weibull domain. A quick calculation

gives f̄1 ∼ f0/(1 − 2κ) , κ < 0 which is linear in f0 with a slope below

unity. On the other hand, in the Fréchet domain, a transition occurs in the

behavior of the fitness fixed at κ = 1 where the mean of the distribution

p(f) becomes infinite. We find that the average fitness is infinite for κ ≥ 1

but for 0 < κ < 1, the fitness f̄1 ∼ f0/(1 − κ) which also increases with f0

but with a slope above unity. The key point that emerges from these simple

calculations (and detailed ones later in this section) is that the average fitness

at the first step is of the form af0+ b where the slope a is above (below) one

for positive (negative) κ. The result for the fitness difference claimed above

then immediately follows.

To understand the behavior at higher steps in the adaptive walk, more
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Figure 3.10: The plot shows the average selection coefficient fixed during the
course of the walk on uncorrelated fitness landscapes for various κ and L =
1000. The open and shaded symbols are respectively for f0 = 0.1f̃ and 0.75f̃
where f̃ is the average fitness of a local fitness peak given by (2.9). The points
are the simulation data, while the lines are guide to the eye. The data for
κ = 3/2 is scaled down by a factor 10 for clarity.

work is required as described below.

Gumbel domain: We can obtain the expression for the average fitness at

step J by performing the inner integral in (3.3) for κ→ 0, to get

f̄J+1(f0) =

∫ ∞

f0

dh ΦJ (h|f0)
h2 + 4h+ 2

h+ 2
(3.35)

The above equation does not close in the average fitness fixed i.e. the RHS

contains the average of quantities which can not be written in terms of f̄J .
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However for large initial fitness f0, as h≫ 1, we can write

f̄J+1(f0) =

∫ ∞

f0

dh ΦJ (h|f0)
(

h+ 2 +O(h−1)
)

(3.36)

= f̄J + 2 +O
(

f−1
J

)

(3.37)

where we have used that the adaptive walk goes on indefinitely for an in-

finitely long sequence [6]. As the average fitness increases during adaptation,

one may expect the average of inverse fitness to decrease. Neglecting the last

term on the RHS of (3.37), we immediately find the solution of the resulting

recursion equation to be

f̄J = 2J + f0 (3.38)

Weibull domain: The inner integral in (3.3) can be done exactly, but the

resulting expression is too complicated and we omit the general expression

here. For the special case of κ = −1, we get

f̄J+1(f0) =

∫ 1

f0

dh ΦJ(h|f0)
2e2/h(1− h)2 + e2h(2 + h)(Γ(2, 2− 2/h)− 1)

e2/h(6h− 4)− 2e2h

(3.39)

where Γ(a, x) is the incomplete gamma function [8]. The above equation

demonstrates that as in the Gumbel domain, the recursion relation for f̄J

does not close here also. Since p(f) has an upper bound when κ < 0, the

selection coefficient which is the relative fitness difference, is well below one
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when the initial fitness f0 is close to u as can be seen in Fig. 3.10. In the

inner integral on the RHS of (3.3), the selection coefficient is smaller than half

if the fitness f ≪ 3h/2 which is ensured if f0 > 2u/3. These observations

suggest that in the Weibull domain, the small selection coefficient can be

assumed to be small. On using (2.13) in (3.3), we find that the recursion

equation closes in the average fitness and given by f̄J+1 = a−f̄J + b− where

a− = (1− 2κ)−1 (3.40)

b− = 2(1− 2κ)−1 (3.41)

On iterating the recursion equation, we find the average fitness to be

f̄J = aJ−f0 +
b−

1− a−
(1− aJ−) (3.42)

It is evident that for negative κ, the coefficient a− < 1. It is easily verified

that (3.38) is obtained from the above equation when κ→ 0.

Fréchet domain: For κ < 1 and large f0, proceeding in manner similar to

that in the Gumbel domain, we find that the average fitness at step J is of

the form f̄J+1 ≈ a+f̄J + b+ where

a+ =
κ− e2(1− κ)E 1

κ
(2)

2e2κ(1− κ)E 1
κ
(2)

(3.43)

b+ =
κ− e2(1 + κ)E 1

κ
(2)− 2e4κ(1− κ)E2

1
κ

(2)

2e4κ2(1− κ)E2
1
κ

(2)
(3.44)
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and En(x) is the exponential integral [8]. For κ → 0, using the large n

representation of En(x) [8] in the above expressions for a+ and b+, it can be

checked that the result (3.38) in the Gumbel domain is obtained.

For infinitely long sequences, on using the results previously obtained in

the section, we have

∆fJ =



















aJ−1
− ((a− − 1)f0 + b−) , κ < 0 (3.45a)

2 , κ→ 0 (3.45b)

aJ−1
+ ((a+ − 1)f0 + b+) , 0 < κ < 1 (3.45c)

where a− < 1, a+ > 1. For fixed initial fitness, the above equation shows that

for κ < 0, the fitness benefit decreases exponentially as the walk proceeds

(diminishing returns) while for κ → 0, the fitness gain is same (constant

returns) and for 0 < κ < 1, it increases exponentially fast with each step

conferring higher benefit than the previous one (accelerating returns). Sim-

ilar qualitative trends are seen when the initial fitness is varied: the fitness

increment decreases (increases) linearly with f0 for negative (positive) κ. In

Figs. 3.8 and 3.9, the simulation results and the above theoretical prediction

(3.45) for infinitely long sequence are compared and we see a good agree-

ment when the initial fitness is sufficiently large but local fitness maximum

is far away. The latter condition is satisfied when the number of adaptive

substitutions and the initial fitness are smaller than the average length of the

walk and the average fitness of a local maximum respectively. The results

of our numerical simulations in Figs. 3.8 and 3.9 also show that the fitness
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difference between successive steps increases with both f0 and J for κ ≥ 1.

In both the linear model and the full model, from (3.45) and (3.8), we

first note that in each of the three extreme value domains, fitness differ-

ence displays the same qualitative trend, irrespective of whether the correct

asymptotic behavior of transition probability is taken into account. However

the result (3.8) matches with (3.45) in the Weibull and Gumbel domains but

not in the Fréchet domain. This is because the selection coefficient, shown

in Fig. 3.10 for two initial fitnesses, decreases with f0 for κ ≤ 0 and at

sufficiently large f0, selective effects can be assumed to be small. But for

κ > 0, the selection coefficient remains high even for large initial fitnesses

and therefore we do not expect the small selection coefficient approximation

to work here. The behavior of the selection coefficient can be immediately

obtained at the first step in the walk using (3.45a)-(3.45c) since s̄1 = ∆f1/f0

and we find that s̄1 decays to zero with increasing f0 for κ ≤ 0, but to a finite

constant a+− 1 for 0 < κ < 1. On comparing (3.45c) and (3.8), we find that

the value of the exponent κ at which a transition occurs in the behavior of

the fitness fixed is different. Moreover the growth rate a+, which takes values

in the range 1.1 − 27.5 as κ is increased from 0.05 to 0.95, is smaller than

the corresponding rate (1− 2κ)−1 in (3.8) because the transition probability

(2.13) decays faster than (2.14) for large fitnesses.

In the full model, since the inner integral over s in (3.19) is undefined for

κ ≥ 1 for the same reasons as described earlier in this section for average fit-

ness, we find that the average selection coefficient also undergoes a transition
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at κ = 1.

3.3.2 On correlated fitness landscapes

When a sequence is partitioned into B blocks, the fitness of the sequence at

any step is determined by the joint distribution of the fitness of the block that

acquired one beneficial mutation and the fitnesses of the rest of the blocks at

the preceding step. But as it is difficult to work with this distribution, here

we use the approximation that the joint distribution can be factorized over

the blocks. In other words, we assume that the blocks evolve independently

which is a reasonable approximation for weakly correlated fitnesses. Since J

substitutions in a sequence partitioned in B blocks can be obtained if each

block acquires J/B mutations, it immediately follows that

∆fJ,B ≈ f̄J/B − f̄(J/B)−1 , J > 0 (3.46)

where f̄J is the average sequence fitness at the Jth step on uncorrelated fitness

landscapes. Using the results of the Section 3.3.1 in the above equation,

we find that the trend of fitness difference for correlated fitnesses is the

same as that in the uncorrelated case. This result is consistent with the

simulation data shown in the inset of Figs. 3.8 and 3.9 where the fitness

difference increases and decreases for κ > 0 and < 0 respectively. The

selection coefficient decreases with increasing correlations in all extreme value

domains. Our numerical data, for a parameter set in which the same initial
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and final fitness is chosen for uncorrelated and correlated fitnesses, shows

that the selection coefficient at the first step reduced from 1.4 to 0.8 for

κ = −1, 0.7 to 0.4 for κ→ 0 and 2.8 to 0.4 for κ = 2/3, as the block number

increased from one to two.

3.4 Discussion

In this chapter, we investigated how the statistical properties of the adaptive

walk relate to the tail behavior of the fitness distribution. The sign of the

exponent κ in the fitness distribution (2.8) determines the nature of the

DBFE which can be of three types namely Weibull, Gumbel and Fréchet.

It is important to note that this classification of the extreme value domains

is applicable only if the fitnesses are completely uncorrelated or at most,

weakly correlated [10]. For strongly correlated fitnesses, a classification of

extreme value domains on the basis of the behavior of the tail of the fitness

distribution is not available and it is not clear if it even exists. For these

reasons, here we studied the adaptive walk properties on weakly correlated

fitness landscapes [11].

The exponent κ in (2.8) has been measured in experiments and interest-

ingly, all the three extreme value domains for uncorrelated fitnesses have been

seen. Although many early studies supported the Gumbel domain [12–15],
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recently Weibull [16, 17] and Fréchet domain [18–20] have also been docu-

mented. It has been suggested that as the beneficial mutations are expen-

sive due to pleiotropic constraints, fat-tailed fitness distributions whose ex-

treme value statistics lies in the Fréchet domain can occur if such constraints

are limited, and bounded ones that lie in the Weibull domain for severe

constraints [18]. Experiments suggest that the fitness landscapes are corre-

lated [21–23] but we know little about the fitness correlations quantitatively.

Sign epistasis which is a characteristic feature of rugged fitness landscapes

with many local fitness maxima has also been documented in several recent

experiments [24–27].

3.4.1 Comparison to previous works

Our theoretical analysis here differs in an important way from the previous

studies on adaptive walks [3, 6, 7, 28–33] that assume selective effects to be

small and therefore work with (2.14) in which the transition probability is

linear in the selection coefficient. Here we not only work with (2.14) but also,

have presented results for (2.13) which is a nonlinear function of the selection

coefficient. Our numerical data in Fig. 3.10 on selection coefficient fixed

shows that large selection coefficients can arise in any extreme value domain

when the initial fitness is small, as is the case in adaptation experiments

in stressful environment [34, 35], or in a moderately fit population if the

underlying fitness distribution is slowly decaying as is the case in the Fréchet

domain. Here we focus on the latter situation and therefore our formulae
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hold for moderately high initial fitnesses that are far from a local fitness

optimum.

Our main conclusion is that small selection coefficient approximation can

be safely employed in the Weibull domain, but the analysis in the Gumbel and

especially Fréchet domain requires that large effect mutations are taken into

account. We find that regardless of whether we assume mutations to have

small or large effect, a transition in the behavior of the fitness fixed occurs at

a certain value of exponent κ below which the fitness fixed during the initial

steps in the walk does not depend on the average fitness of a local peak, and

above which it does. The transition point is given by κ = 1 where mean

of the fitness distribution becomes infinite if transition probability (2.13) is

used but by κ = 1/2 which corresponds to an infinite variance, if selection

coefficient is assumed to be small.

3.4.2 Evolution of fitness and selection coefficient

Although the fitness fixed during the adaptive walk increases with the number

of substitutions and with initial fitness in all extreme value domains, the

fitness difference (3.45) between successive steps depends on how fast the

fitness distribution (2.8) decays (refer Figs. 3.8 and 3.9). In the Weibull

domain, the fitness benefits decrease as the walk proceeds or the starting

fitness is increased. In contrast, in the Fréchet domain, increasing adaptive

substitutions or initial fitness leads to increasing fitness gain. This behavior

of fitness increments is robust with respect to fitness correlations as attested
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by the insets of Figs. 3.8 and 3.9, and holds irrespective of whether the

correct asymptotic behavior of the fixation probability is taken into account.

To get some insight into the behavior of average fitness difference with initial

fitness, we recall that the selection coefficient is bounded above for truncated

distributions but not for the unbounded ones. As a result, in the Weibull

domain, we have f1− f0 ≤ u− f0 which suggests that ∆f1 decreases with f0.

This is in contrast to the behavior in the Fréchet domain where the selection

coefficient is large (and positive) and hence f1 − f0 ∝ f0 which increases

linearly with f0. Treating the fitness at the Jth step as the initial fitness

for the next step, the patterns during the course of the walk can also be

understood.

We believe that experimental measurements of fitness difference as a func-

tion of the initial fitness in a population evolving under strong selection-weak

mutation conditions can give an insight into the domain of the DBFE. Al-

though negative correlation between initial fitness and fitness gain has been

observed [15,34] and increasing fitness gain in successive steps has been seen

in small populations [36], how these results correlate with the tail behav-

ior of the beneficial mutations in these studies is not known. On the other

hand, the adaptive walk properties have not been studied in experiments

that measure the exponent κ [12–18]. In [37], since the local fitness optimum

to which the population approaches is fixed, a truncated fitness distribution

is expected. It would be interesting to check if our prediction that the fitness

difference decreases with increasing initial fitness for bounded distributions
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is supported by the fitness data in their experiment.

We also studied the behavior of average selection coefficient and obtained

a general result that in all the three extreme value domains, it decreases

during the course of the walk and with initial fitness and fitness correlations,

see Fig. 3.10 (also refer [7]). Since the fitnesses are closely related on corre-

lated fitness landscapes, the fitness difference and hence selection coefficient

is expected to decrease with increasing correlations. The behavior with ini-

tial fitness can also be rationalized using the fact that the fitness difference

grows at most linearly with initial fitness and therefore for large f0, selection

coefficient decreases. These results are consistent with those obtained in the

experimental studies on Aspergillus nidulans [38,39] in which the mean selec-

tion coefficient is observed to decrease as the walk proceeds, and Escherichia

coli [37] in which the mean selective effect is found to be larger for poorer

initial condition.

3.4.3 Beyond the SSWM regime

In the experiments discussed above, the population size is > 104 [17, 37–40],

the smallest selection coefficient detected is ∼ 10−3 [37,39] and the mutation

rate per base pair for the microbes used in the experiments namely, bacte-

riophage φX174 [13], Escherichia coli [37], Aspergillus nidulans [38] is of the

order 10−7 − 10−11 [41]. Thus these experiments are in the strong selection-

weak mutation regime where adaptive walk model studied here is defined.

However when the population size is large enough that the weak mutation
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condition fails, clonal interference occurs in which two or more independent

beneficial mutations arise in the population and compete with each other

for dominance [42–45]. In Chapter 5, we shall discuss whether the trends in

the fitness difference discussed here are also exhibited by populations with

competing beneficial mutations especially during the early adaptation stage.
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Chapter 4

Length of adaptive walk

4.1 Introduction

In this chapter, we address how the number of adaptive steps that a pop-

ulation takes before it gets trapped at a local fitness peak depends on the

properties of the underlying fitness landscape. Similar to Chapter 3, here as

well, we consider an asexual population in the strong selection-weak mutation

regime where, the entire population can be represented by a single point in

the fitness landscape, and performs an uphill adaptive walk. However, unlike

in Chapter 3 where infinitely long sequences were considered, here we con-

sider sequences of finite length for which the adaptive walk terminates once

the population reaches a local fitness peak since a better fitness is at least

two mutations away [1, 2]. The properties of the adaptive walk depend on

the distribution of beneficial mutations which can be found by appealing to

87
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the extreme value theory (EVT) [2] since beneficial mutations are rare and

therefore lie in the tail of the full fitness distribution [3, 4]. For independent

and identically distributed (i.i.d.) random variables, the EVT states that

the distribution of the tails can belong to one of the three domains namely

Weibull, Gumbel and Fréchet [5]. Here we study how the walk length de-

pends on these three extreme value domains. Although fitnesses are known to

be correlated, much of the previous work on the subject ignores correlations

completely [6–9]. Here we also investigate how correlations affect the num-

ber of adaptive substitutions. Motivated by recent experiments on adaptive

walks in which a maladapted population starts at different fitness [10–12],

we also analyze the dependence of the walk length on the initial fitness.

The average walk length calculated using the two extreme cases of stochas-

tic rules, the greedy adaptive walk (GAW) and the random adaptive walk

(RAW) described in Chapter 2, show no dependence on the EVT domain.

The average walk length J̄ of the GAW has been calculated by appealing to

the theory of records, and for infinitely long sequences, it turns out that [13]

J̄GAW = e− 1 ≈ 1.718 (4.1)

for any fitness distribution. On the other hand, in the case of RAW the

average length of the walk diverges with the sequence length [14]. More
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precisely, the average walk length for zero initial fitness is given by [14]

J̄RAW ≈ lnL+ 1.099 (4.2)

and is independent of the choice of the fitness distribution. But neither GAW

or RAW is biologically realistic and according to the population genetics the-

ory [15], the probability that a beneficial mutation will spread through the

population increases with the relative fitness difference between the mutant

and the parent exponentially fast towards unity. Two variants of the lin-

ear model have been studied: while [1] and [8] considered adaptation in a

single fixed neighborhood where the mutants are produced only at the first

step and the same are retained all through the walk, the model studied

in [6, 7, 9, 16, 22] assumes that a new set of L fitnesses (corresponding to the

fitness of the one mutant neighbours) are generated at each step of the walk.

Though we shall use the latter model here, it is interesting to note that most

results for the walk length are robust with respect to this assumption. Using

(2.13), we numerically find that the adaptive walk is shortest in the Gumbel

domain [16]. However when the relative fitness difference is assumed to be

small, this probability is proportional to the relative fitness difference, and in

this case, we find that the adaptive walks are shortest in the Fréchet domain

and longest in the Weibull domain. Although the assumption of small fitness

differences is biologically incorrect, especially in the Fréchet domain, it is still

interesting to consider this model as it connects to other systems [8], such as
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deterministically evolving populations [17, 18] and a gas of particles under-

going elastic collisions [19,20], and lends itself to analytical calculations. We

calculate the average walk length in all the three EVT domains for uncorre-

lated fitnesses, and show that it depends logarithmically on the initial rank

of the population. Using results from the large deviation theory [21], we also

obtain analytical expressions for the walk length for correlated fitnesses, and

find that the walk lasts longer on correlated fitness landscapes as they have

fewer local fitness peaks.

4.2 Walk length in the linear model

4.2.1 On uncorrelated fitness landscapes

For zero initial fitness, it has been shown that if the mean f̄ of the fitness

distribution p(f) is finite, the walk length increases with the length of the

sequence but remains constant otherwise [9, 22]. To understand this transi-

tion at κ = 1 above which f̄ is infinite, here we present a simple argument

and refer the reader to [9] for details. For κ < 1, as the transition probabil-

ity (2.14) is nonzero for finite fitness differences, the adaptive walk goes on

indefinitely for infinitely long sequence or in other words, the adaptive walk

length diverges with the sequence length L. A calculation for zero initial

fitness and large L shows that the walk length cumulants increase logarith-

mically with the sequence length [9]. In particular, the mean walk length J̄
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increases as [8, 9, 22]

J̄(L|f0 = 0) ≈ βκ lnL (4.3)

where

βκ =
1− κ

2− κ
, κ < 1 (4.4)

which shows that the walks are shorter for slowly decaying fitness distri-

butions. For κ > 1, as the mean of the fitness distribution is infinite, the

normalization sum in the denominator on the right hand side (RHS) of (2.14)

is dominated by the largest value f̃ amongst L i.i.d. random variables (re-

fer (2.9)). This implies that the transition occurs to one of the highly fit

sequences with fitness of order f̃ . Since the number of such sequences is of

order unity, the walk terminates in a few steps resulting in a constant walk

length.

As shown in Fig. 4.1, a similar transition is seen at κ = 1 when the

sequence length is kept fixed and the initial fitness is varied. We now gen-

eralist the calculation in [9] for zero initial fitness to find how the average

walk length changes with the initial fitness when κ < 1. Since the mean of

the fitness distribution is finite when κ is below unity, for long sequences, we

can calculate the walk length using (2.14) as detailed below.

An adaptive walk will stop at step J if all the L neighboring sequences

have a fitness lower than that of the currently occupied sequence. Thus if

QJ(L|f0) is the probability that the adaptive walk of a sequence of length L
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Figure 4.1: Main: Variation of the average walk length with initial fitness
in the linear model on uncorrelated fitness landscapes for various κ. The
simulation points are for L = 1000 and the lines are obtained from (4.18) for
all κ < 1, while the one for κ = 3/2 is a guide to the eye. Inset: Comparison
of the average walk length in the full model (∗) and the linear model (+) for
(1/κ) ln(1 + κf0) = 2. The solid line shows the walk length expressions (4.1)
(bottom) and (4.2) (top) for the greedy walk and the random adaptive walk
respectively.

lasts exactly J steps, we can write [22]

QJ(L|f0) =
∫ u

f0

df qL(f) PJ(f |f0) (4.5)

where PJ(f |f0) is the probability distribution of the fitness f at the Jth step,

given the initial fitness f0 which satisfies (2.16), and q(f) is the cumulative
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probability of having a fitness lower than f . For the transition probability

(2.14), the integral equation (2.16) for the distribution PJ(f |f0) appearing in

(4.5) can be recast as a second order differential equation for the distribution

PJ(f |f0) defined through PJ(f |f0) = p(f)PJ(f |f0) as given in (2.17) [22].

Although we are unable to analyse (2.17) when L is finite, as explained

below, it is possible to extract useful information from it when the sequence

is infinitely long and using the fact that for a finite sequence, there is a

characteristic fitness scale f̃ given by (2.9).

We first introduce the generating function G(x, f) =
∑∞

J=1 PJ(f) x
J , x <

1 which, due to (2.17), obeys the following differential equation:

G′′(x, f) =
x(1− κ)(1− qL(f))

(1 + κf)2
G(x, f) (4.6)

and is subject to the initial conditions (2.18) and (2.19). In the above equa-

tion, the cumulative probability qL(f) of the maximum value distribution is

a smoothly varying function that increases from zero to one, as the fitness f

increases and belongs to one of the three EVT domains. For the cumulative

fitness distribution (2.5), we find that for large L [5]

qL(f) ≈ e
−( 1+κf

1+κf̃
)−

1
κ

=























e−z−
1
κ , κ < 0 (Weibull) (4.7a)

e−e−z

, κ→ 0 (Gumbel) (4.7b)

e−z−
1
κ , κ > 0 (Fréchet) (4.7c)
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where

z(f) =







f − f̃ , κ→ 0 (4.8a)

(1 + κf)(1 + κf̃)−1 , κ 6= 0 (4.8b)

It is useful to consider (4.6) as a function of z defined above. If z̃ ≡ z(f̃ ),

the general solution of the differential equation (4.6) may be written as

G(x, z) =

{

a1g1(x, z) + a2g2(x, z) , z < z̃ (4.9a)

b1h1(x, z) + b2h2(x, z) , z > z̃ (4.9b)

where gi, hi satisfy (4.6), and the constants a1, a2 are determined in A using

the initial conditions at z0 ≡ z(f0) < z̃. The other constants of integration

b1, b2 can be found by matching the solution G(x, z) and its first derivative

(w.r.t. z) at z = z̃. Noting that z̃ is constant in L and f0 but z0 depends on

them, we find that the constants b1, b2 are of the form

bi = bi1(x)a1(z0) + bi2(x)a2(z0) , i = 1, 2 (4.10)

To find the properties of the walk length, we next define a generating

function H for the walk length distribution (4.5) as

H(x, L) =

∞
∑

J=1

QJ (L|f0) xJ (4.11)

=

∫ z(u)

z(f0)

dz p(z)
dz

df
qL(z) G(x, z) (4.12)
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On approximating qL(z) for z < z̃ by zero, we get

H(x, L) ≈
∫ z(u)

z̃

dz p(z)
dz

df
qL>(z) G>(x, z) (4.13)

where the subscript > is used to denote the quantities when z > z̃. Using

(4.8) and (4.10), we can extract the z0-dependence of the generating function

and find that

H(x, L) =











a1(z0)R1(x) + a2(z0)R2(x) , κ→ 0 (4.14a)

κ

1 + κf̃
(a1(z0)R1(x) + a2(z0)R2(x)) , κ 6= 0 (4.14b)

where

Ri(x) =

∫ z(u)

z̃

dz p(z) qL>(z)

2
∑

j=1

bji hj(x, z) (4.15)

is independent of L and f0. Furthermore, from the explicit expressions for a1

and a2 discussed in Appendix A, we see that a2 decays more rapidly with L

than a1, and therefore we may neglect the second term on the RHS of (4.14a)

and (4.14b) for large L. Since the nth cumulant µn of the walk length is given

by [5]

µn(L) =
dn lnH

dXn

∣

∣

∣

∣

X=0

(4.16)

where X = ln x, to leading order in L, we finally obtain

µn(L) ≈















(lnL− f0)
dn

dXn
eX/2

∣

∣

∣

∣

X=0

, κ→ 0(4.17a)

1

2κ
ln

(

Lκ

1 + κf0

)

dn

dXn

√

κ2 + 4eX(1− κ)

∣

∣

∣

∣

X=0

, κ 6= 0(4.17b)
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Setting n = 1 in our final result (4.17), we find the average walk length

to be

J̄(L|f0) = βκ

(

lnL− 1

κ
ln(1 + κf0)

)

+ cκ (4.18)

where βκ is given by (4.4) and the constant cκ in which the subleading cor-

rections in L are subsumed is determined numerically. We check that the

results of [22] and [9] for f0 = 0 are reproduced from the above equation. We

also note that since the typical rank m of a fitness (with the fittest ranked

one) is given by [5]

m0 =
L

(1 + κf0)
1
κ

=

(

1 + κf̃

1 + κf0

)
1
κ

(4.19)

our result (4.18) gives J̄ = βκ lnm0 + cκ. Thus the effect of nonzero initial

fitness is to replace the sequence length L in (4.3) for zero initial fitness

(where all the mutants are fitter) by the average number of mutants present

at the beginning of the walk. The logarithmic dependence of the walk length

on the initial rank has been obtained in [1, 8] using a model in which both

the initial rank m and the mutational neighborhood are fixed. Here instead

the initial fitness is fixed, but the initial rank is a random variable and a new

suite of mutants is generated at every step in the walk. The fact that the

same basic result is obtained in the deterministic and stochastic model shows

that the stochastic effects are rather unimportant on an average as noted in

previous works as well [6, 8].
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Our numerical results for the average walk length on uncorrelated fitness

landscapes are compared with (4.18) in Fig. 4.1 where the numerical fits for

constants cκ for κ = −1, 0 and 2/3 are 1.15, 1.21 and 1.55 respectively. We

see a good match between the simulation data and (4.18) except when the

initial fitnesses are close to the local fitness optimum where the simulation

data lies below the theoretical results. This discrepancy may be due to the

fact that the approximation q(f) = 0 is good for fitnesses far below the local

fitness peak, while we have used it for all f < f̃ to arrive at (4.13).

4.2.2 On correlated fitness landscapes

In the above discussion, we have assumed that the sequence fitnesses are

uncorrelated. We now discuss how the walk length changes when correlated

fitnesses generated using a block model (described in Chapter 2) are con-

sidered. The initial fitness of the whole sequence built of B blocks each of

fitness f
(b)
0 , 1 ≤ b ≤ B, is given in 2.15. Since the block fitnesses evolve

independently, the average walk length is the sum of the mutations accumu-

lated by each block [22,24]. Thus the average walk length J̄B for a sequence

composed of B blocks is given by

J̄B(L|f0) =
B
∑

b=1

J̄(LB|f (b)
0 ) (4.20)

where J̄(LB|f (b)
0 ) is the average walk length for a sequence of length LB

with initial fitness f
(b)
0 on uncorrelated fitness landscapes. In the simplest
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situation where the initial fitness f
(b)
0 of each block is same, we immediately

have [22, 24]

J̄B(L|f0) = BJ̄(LB|f0) (4.21)

However if the block fitnesses are random variables that satisfy (2.15),

an average over the joint distribution PB({f (b)
0 }) of block fitnesses is also

required. We thus have

J̄B(L|f0) =
∫ u

0

df
(1)
0 ...

∫ u

0

df
(B)
0 PB({f (b)

0 })
B
∑

b=1

J̄(LB|f (b)
0 ) (4.22)

Since the block fitnesses are i.i.d. random variables subject to the constraint

(2.15), the distribution of block fitnesses can be written as

PB({f (b)
0 }) =

∏B
b=1 p(f

(b)
0 )

NB(Bf0)
δ(Bf0 −

B
∑

i=1

f
(i)
0 ) (4.23)

where the normalization constant NB(X) is the distribution of the sum of B

random variables given by

NB(X) =

∫ u

0

df
(1)
0 ...

∫ u

0

df
(B)
0

B
∏

b=1

p(f
(b)
0 ) δ

(

X −
B
∑

i=1

f
(i)
0

)

(4.24)

=

∫ X

0

df p(f) NB−1(X − f) (4.25)
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with N0(f) = δ(f). Thus we can express the average walk length as

J̄B(L|f0) = B(βκ lnLB + cκ)−
βκB

κ

∫ l2
l1
df p(f) ln(1 + κf) NB−1(Bf0 − f)

NB(Bf0)

(4.26)

where the integration limits are l1 = 0, l2 = Bf0 in the Gumbel and Fréchet

domains. In the Weibull domain, three cases arise: (i) if Bf0 < u, the limits

are l1 = 0, l2 = Bf0, (ii) if u < Bf0 < (B − 1)u, we have l1 = 0, l2 = u and

(iii) if (B − 1)u < Bf0 < Bu, the limits are l1 = Bf0 − (B − 1)u, l2 = u.

Exactly solvable case

For exponentially distributed fitnesses, the distribution NB(X) in (4.24) is

known exactly to be [25]

NB(X) = e−X XB−1

(B − 1)!
(4.27)

Taking the limit κ→ 0 in (4.26), we find the average walk length as

J̄B(L|f0) = B(β0 lnLB + c0)− Bβ0

∫ Bf0
0

df e−f f NB−1(Bf0 − f)

NB(Bf0)
(4.28)

= B(β0 lnLB + c0)− Bβ0
e−Bf0(Bf0)

B

B! NB(Bf0)
(4.29)

= BJ̄(LB|f0) (4.30)

which is the same as that in the case where each block fitness is f0 (refer

(4.21)).
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Weakly correlated fitnesses

For κ 6= 0, it appears difficult to obtain exact expressions for the walk length

for correlated fitnesses. The case of two independent blocks (B = 2) presents

the simplest model for correlated fitnesses, and we discuss this here. The

distribution N2(X) of two random variables is given by

N2(X) =















∫ X

0

dg p(g) p(X − g) , X < u (4.31a)

∫ u

X−u

dg p(g) p(X − g) , X > u (4.31b)

For 2f0 < u, using (4.31a) in the expression (4.26), we get

J̄2(L|f0)
B

= βκ lnLB + cκ −
βκ

κ

∫ 2f0
0

df p(f) ln(1 + κf) p(2f0 − f)
∫ 2f0
0

df p(f) p(2f0 − f)
(4.32)

= βκ lnLB + cκ −
βκ

κ
ln(1 + κf0) +

βκ

2κ
Iκ(w0) (4.33)

where the integral

Iκ(w0) =

∫ w0

1
dz ln z z

1−κ
κ (1− z−1)−1/2

∫ w0

1
dz z

1−κ
κ (1− z−1)−1/2

(4.34)

with w0 = (1+κf0)
2/(1+2κf0). Note that for large initial fitnesses f0 ∼ u/2,

the function w0 ≫ 1.

Fréchet class: For positive κ and large f0, an approximate expression for the
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integral Iκ(w0) can be obtained after an integration by parts, and we get

J̄2(L|f0)
B

≈ J̄(LB|f0) +
βκ

2κ
(lnw0 − κ) (4.35)

≈ βκ lnLB + cκ −
βκ

2κ
(ln(κf0) + ln 2 + κ) (4.36)

Weibull class: The integral Iκ(w0) can be calculated exactly for uniformly

distributed fitnesses and is given by

I−1(w0) = 2 + lnw0 − 2

√

w0

w0 − 1
sinh−1(

√
w0 − 1) (4.37)

≈ 2(1− ln 2)− lnw0

2w0
, w0 ≫ 1 (4.38)

For arbitrary negative κ, we note that the integral Iκ(w0) is finite when

w0 → ∞ and can be written in terms of the harmonic number Hn =

n
∑∞

i=1 (i(n+ i))−1 [26]. An integration by parts then yields

Iκ(w0) ≈ H− 1
κ
− 1

2
−H− 1

κ
−1 +

κΓ(1
2
− 1

κ
)√

πΓ(− 1
κ
)

lnw0

w
1/|κ|
0

(4.39)

which matches the result for κ = −1 as H1/2 = 2 − ln 4. Ignoring the last

term on the RHS of the above equation which decays with f0, we find that

the average walk length can be written as

J̄2(L|f0)
B

= J̄(LB|f0) +
βκ

2κ
(H− 1

κ
− 1

2
−H− 1

κ
−1) , f0 . u/2 (4.40)

For f0 > u/2 where N2(X) is given by (4.31b), the integrals can be done
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exactly and we have

J̄2(L|f0)
B

= βκ lnLB + cκ −
βκ

κ

∫ 1

−1
dh (1− h2)−

1+κ
κ (ln(1 + κf0) + ln(1 + h))

∫ 1

−1
dh (1− h2)−

1+κ
κ

(4.41)

= βκ lnLB −
βκ

κ
ln(1 + κf0) + cκ +

βκ

2κ
(H− 1

κ
− 1

2
−H− 1

κ
−1) (4.42)

= J̄(LB|f0) +
βκ

2κ
(H− 1

κ
− 1

2
−H− 1

κ
−1) , f0 > u/2 (4.43)

For bounded distributions, although the walk length is continuous at

initial fitness equal to u/2, it is interesting to note that it is not differen-

tiable. For uniformly distributed fitnesses where exact expressions for the

walk length can be calculated, the average walk length obtained from (4.33)

and (4.43) is found to be the same at f0 = 1/2. The first derivative of the

walk length (with respect to f0) is given by

dJ̄2

df0
=















2β−1

f 2
0

[

f0 +
1

2
ln(1− 2f0)

]

, f0 < 1/2 (4.44a)

− 2β−1

1− f0
, f0 > 1/2 (4.44b)

From the above equation, we see that while the derivative at f0 = 1/2 ob-

tained from (4.44a) is undefined, the expression (4.44b) yields a finite con-

stant. For general κ < 0, the derivative of the walk length calculated using

(4.43) is seen to be finite, while it diverges when (4.33) is used.
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On strongly correlated fitness landscapes

We now turn to the situation when the block number B ≫ 1. To calculate

the integral in (4.26), let us first consider the integrand

F(f) = p(f) ln(1 + κf)1/κ NB−1(Bf0 − f) (4.45)

The first two factors on the RHS are obviously independent of B and f0.

However for all κ < 1 where the fitness distribution has a finite mean f̄ ,

the last factor peaks about the mean B(f0 − f̄) of the sum distribution

which increases with both B and f0. Then for large enough B and f0, the

integrand F(f) gets a contribution from the lower tail of the sum distribution

instead of the region around its mean. The behavior of the tail of the sum

distribution can be obtained by applying a large deviation principle if the

fitness distribution possesses all finite moments as is the case for κ ≤ 0.

However for power law distributions with κ > 0, the (1/κ)-th and higher

moments diverge and the large deviation principle is not applicable, and in

this case, we use the result that the sum distribution decays as the fitness

distribution itself [5, 21]. The fact that the central limit theorem for the

sum distribution does not capture the correct behavior of the integral under

question is illustrated in Appendix B for exponentially distributed fitnesses.

To calculate the walk length using the large deviation theory, we first

consider a normalised distribution with support on the interval [0, u] defined
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as

g(t) = κ(α− 1)(1 + κt)−α (4.46)

where α < 1, u = −1/κ for κ < 0 and α > 1, u = ∞ when κ ≥ 0. Then the

distribution of the sum of B i.i.d. random variables chosen from g(t) is given

by

IB(X ;α) =

∫ u

0

dt(1)...

∫ u

0

dt(B)
B
∏

j=1

g(t(j)) δ

(

X −
B
∑

i=1

t(i)

)

(4.47)

Differentiating on both sides w.r.t. α, we get

∂IB(X ;α)

∂α
=

BIB(X ;α)

α− 1
− B

∫ min(X,u)

0

dt g(t) ln(1 + κt) IB−1(X − t;α)

(4.48)

The upper limit in the above integral is X for unbounded distributions. But

for bounded distributions, when correlations are strong (large B), the limits

in case (ii) described below (4.26) apply. On dividing the above equation by

IB(X ;α), it follows that the average walk length (4.26) can be written as

J̄B(L|f0) = B(βκ lnLB + cκ)−
βκB

κ

(

1

α− 1
− ∂

∂α

ln IB(Bf0;α)

B

)
∣

∣

∣

∣

α=1+ 1
κ

(4.49)

Our task is now reduced to finding the sum distribution IB(X) for the various

EVT domains which we describe below.

Weibull class: According to the large deviation principle, for large B, the
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distribution IB(X) is of the form [21],

IB(X ≃ Bx) ∼ eBr(x) (4.50)

where the rate function r(x) can be determined as described below. On using

the integral representation of the Dirac delta function in (4.47), we get

IB(X) =
1

2π

∫ ∞

−∞
dk eikX

(
∫ ∞

−∞
dy e−ikyg(y)

)B

(4.51)

=
1

2πi

∫ i∞

−i∞
dω eB(ωx+ln g̃(ω)) (4.52)

where g̃(ω) =
∫∞
0

dt g(t) e−ωt is the Laplace transform of the distribution

function g(t). Evaluating the RHS of (4.52) using the saddle point method

for large B [23], we get

ln IB(X)

B
= r(x) = ω∗x+ ln g̃(ω∗) (4.53)

where the saddle point ω∗ is real and given by

d ln g̃

dω

∣

∣

∣

∣

ω=ω∗

= −x (4.54)

The Laplace transform of the distribution g(t) in (4.46) is given by

g̃(ω) = eη
[

(α− 1)Eα(η) + ηα−1Γ(2− α)
]

(4.55)
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Figure 4.2: Main: Plot shows the variation of the average walk length with
initial fitness for the linear model on correlated fitness landscapes for vari-
ous B when κ = −1. The theoretical predictions (4.61) and (4.63) (lines)
are compared against the simulation data (points). Inset: Plot shows the
rate function for κ = −1 obtained using (4.53) and (4.56) (points) and the
analytical formulae (4.58) and (4.59).

and the function ω∗(f0) is a solution of the equation

T (ω∗) =
(α− 1)ω2(Eα−1(η)−Eα(η))− ηακ2(η + α− 1)Γ(2− α)

ωκ((α− 1)ωEα(η) + ηακΓ(2− α))

∣

∣

∣

∣

ω=ω∗

= f0

(4.56)

where η = ω/κ, Eα(η) =
∫∞
1

dx e−ηxx−α is the exponential integral and

Γ(n + 1) = n! is the gamma function. The function T (ω∗) in the above

equation decreases from its maximum value −1/κ to zero as ω∗ is increased
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from −∞ to ∞. Using the asymptotic expansion of the exponential integral

[27], we find that

T (ω∗) =







−κ−1 + (1− α)ω−1
∗ , ω∗ → −∞ (4.57a)

ω−1
∗ , ω∗ →∞ (4.57b)

When the initial fitness is large (small), f0 equals the left hand side (LHS)

of (4.56) when ω∗ is negative (positive). Then using (4.57a) and (4.57b) in

(4.53), we find the rate function to be

r(f0) ≈







1 + ln((α− 1)κf0) + ln(1− ακf0) (4.58)

1− α− (1− α) ln

(

1− α

1 + κf0

)

+ ln(Γ(2− α)) (4.59)

(4.58) and (4.59) are for f0 ≪ T (0) and f0 ≫ T (0) respectively where T (0) =

(1 − κ)−1. The above expression for the rate function is compared against

the results from numerical simulations for uniformly distributed fitnesses in

the inset of Fig. 4.2, and we see a good agreement for f0 < 0.3 and > 0.7.

For small f0, using (4.49), we obtain

J̄B(L|f0)
B

= βκ lnLB + cκ −
βκf0

1− (1 + κ)f0
(4.60)

≈ J̄(LB|f0) (4.61)
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while for large f0, we get

J̄B(L|f0)
B

= βκ lnLB + cκ −
βκ

κ
(κ+ ln(−κ) + ln(1 + κf0) +H− 1

κ
− γ)(4.62)

= J̄(LB|f0)−
βκ

κ
(κ+ ln(−κ) +H− 1

κ
− γ) (4.63)

where the Euler-Mascheroni constant γ ≈ 0.577. The walk length expressions

above can be succinctly written as

J̄B(L|f0) = J̄B(L|0)−
Bβκ

κ
ln(1 + κf0) (4.64)

and shows that the walk for nonzero fitness is shorter, as one would intuitively

expect. For κ = −1, the equations (4.60) and (4.62) are compared against

the numerical results in Fig. 4.2, and we see that the theoretical prediction

for the walk length matches the simulation results quite well in the range of

initial fitness values where the rate function agrees.

Fréchet class: In this case, the sum distribution (4.47) for large Bf0 is given

by [5]

IB(Bf0;α) ∼ Bg(Bf0) (4.65)

whose tail behavior is the same as that of the fitness distribution g(f). Using

this in (4.49), we immediately find

J̄B(L|f0) = B(βκ lnLB + cκ)−
βκ

κ
(ln(1 +Bκf0) + κ(B − 1)) (4.66)

≈ B(βκ lnLB + cκ)−
βκ

κ
(ln(κf0) + lnB + κ(B − 1))(4.67)
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We note that the above answer matches with (4.36) for the two block model

discussed in the last subsection. The above equation states that the average

walk length decreases logarithmically with initial fitness but, unlike in the

Weibull and Gumbel domain, the coefficient of ln f0 does not scale with the

number of blocks. Thus in this case

J̄B(L|f0) = J̄B(L|0)−
βκ

κ
ln(1 +Bκf0) (4.68)

In Fig. 4.3, the above expression is compared with the simulation data for

κ = 2/3, and we see a good quantitative agreement between the theory and

the simulations.

4.3 Walk length in the full model

As mentioned in the previous chapters, the transition probability (2.14) used

to calculate the walk length is valid only when the relative fitness difference

is small. However, large fitness differences during successive steps in the walk

can occur when the initial fitness is small or if the fitness distribution has a

fat tail [16]. In such cases, the approximation (2.14) breaks down, and we

should consider the full transition probability (2.13). We have not been able

to obtain analytical results for this model, and present our simulation results

below.

As in the linear model, the walks are long for the full model when the
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Figure 4.3: Plot shows the variation of the average walk length with the
initial fitness for the linear model on correlated fitness landscapes for various
B when κ = 2/3 and LB = 1000. The theoretical prediction (4.66) (lines) is
compared against the simulation data (points).

initial fitness is low or when the fitness are correlated [16]. However qual-

itative difference between the linear and the full model is seen with regard

to the walk length dependence on the extreme value domain. As explained

in Sec. 4.2.1, the divergence of the denominator on the RHS of (2.14) is re-

sponsible for the independence of the walk length on the initial fitness when

κ > 1 in the linear model. However the normalization constant in (2.13)

remains finite for all κ and therefore the walk length always decreases with

increasing f0 here. In the full model, for an infinitely long sequence, the
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walk goes on forever for all κ [22] but similar to what happens in the linear

model, for finite L, the walk terminates at a local fitness peak and the walk

length is expected to increase with the sequence length. Here we are unable

to analytically calculate the average walk length and present our numerical

results in Fig. 4.4. For uncorrelated fitnesses, we find that in all the extreme

value domains, the average walk length decreases with increasing f0 due to

decreasing availability of beneficial mutations at higher initial fitnesses. The

simulation results also indicate that the average walk length ˜̄J(L|f0) has a

logarithmic dependence on the rank m0 = L(1+κf0)
−1/κ of the initial fitness

as given in (4.19). Thus we can write

˜̄J(L|f0) = β̃κ lnm0 + c̃κ (4.69)

where β̃κ and c̃κ depend on the exponent κ and the block number B. Inter-

estingly, the prefactor β̃κ has a nonmonotonic dependence on the exponent

κ: with increasing κ, it decreases in the Weibull domain and increases in the

Fréchet domain with a minimum occurring in the Gumbel domain. As shown

in the inset of Fig. 4.4, on correlated fitness landscapes, the adaptive walks

are longer than those on uncorrelated ones since the number of local fitness

peaks decrease with increasing correlations [28]. Furthermore the average

walk length ˜̄JB(L|f0) seems roughly linear in lnm0 in all the three extreme

value domains with a slope that depends nonmonotonically on exponent κ.

In the previous chapter, we saw that the behaviour of fitness fixed can be
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understood using the small selection coefficient approximation in the Weibull

and Gumbel domains. Below we will compare our results in Fig. 4.4 with

those obtained in the linear model that assumes that the selective effects are

small. In section 4.2, the analytical expressions for average walk length using

(2.14) were obtained for both uncorrelated and correlated fitnesses [8,9,22,29]

and it was shown that a transition occurs in the behaviour of the walk length

at κ = 1. For κ < 1 where the mean of the fitness distribution (2.8) is finite,

the average walk length calculated using the transition probability (2.14) was

found to show a logarithmic dependence on the rank of the initial fitness as

given in (4.18). An intuitive understanding of the logarithmic dependence

of the walk length in the domain of κ where its variance is finite can be

obtained by equating the fitness fixed at the final step J̄ to the average

fitness (2.10) of a local fitness maximum [14, 22]. Note that βκ in (4.4)

decreases monotonically with the exponent κ. For κ > 1 where the mean

of the fitness distribution (2.8) is undefined, the walk length is found to

be independent of the initial fitness rank. Our analytical calculations for

the average walk length on correlated fitness landscapes [29] show that the

length of the adaptive walk increases with increasing block number B and

there is a monotonic decrease in βκ with increasing κ.

We now exploit the results summarised above to understand the walk

length behaviour when the transition probability is given by (2.13). Fig. 4.4

shows that in the Weibull domain, for uncorrelated fitnesses, the simulation

data and the expression (4.18) are in good agreement and for correlated
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Figure 4.4: The plot shows the variation of the average walk length with
initial fitness for various κ on uncorrelated (main) and correlated fitness
landscapes with B = 2 (inset) for the full model. In the main plot, the
broken lines show the result (4.18) with the constants c̃κ = 1.08 and 1.21 for
κ = −2 and → 0 respectively, while the solid lines are the best fit to (4.69)
with β̃κ ≈ 0.71, 0.86, 0.94 for κ = 1/4, 3/2 and 5 respectively. In the inset,
the open symbols give the simulation data points of the average walk length
obtained using the transition probability (2.13) while the shaded ones are
those obtained using the transition probability (2.14) in the small selection
coefficient approximation. In all the simulations, the sequence length L =
1000.

fitnesses, when the numerical data obtained using (2.13) is plotted with the

ones using (2.14), the two data sets coincide for a wide range of initial fitness.

Similar plots in the Gumbel domain for uncorrelated and correlated fitnesses

show that the small selection coefficient approximation does not work as well

as in the Weibull domain. In the Fréchet domain, the results (4.18) and (4.4)
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Figure 4.5: Plot to show the simulation data for the walk length distribution
(main) and the index of dispersion (inset) of the walk length for various κ
when L = 1000 using the full model on uncorrelated fitness landscapes. In
the inset, (1/κ) ln(1 + κf0) = 2.

obtained by neglecting the large effect mutations predict decreasing walk

length with increasing κ, a trend opposite to that seen in Fig. 4.4. That the

walk length J̄ should be longer than ˜̄J is expected - as the step length (3.45c)

is smaller than that given by (3.8), more adaptive steps to a local fitness peak

can be taken in the former case. To understand the trend of coefficient β̃κ,

it is useful to consider the limits κ→ ±∞. It has been shown that the limit

κ→ −∞ corresponds to a random adaptive walk in which transition to any

beneficial mutation occurs with the same probability [7] and in this case,
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βκ = 1 in the expression (4.18) for the walk length [14]. The opposite limit

κ → ∞ corresponds to a greedy adaptive walk [13, 30] in which the fittest

mutant is chosen with probability one if selection coefficient is assumed to be

small, but a random adaptive walk when large selective effects are taken into

consideration [7]. Thus we arrive at the conclusion that in the two limiting

cases, if the selection coefficient is allowed to be large, the prefactor β̃κ in

(4.69) must be one. As the prefactor β̃κ decreases with increasing κ due to

(4.4) in the Weibull domain, it must increase in the Fréchet domain in order

to satisfy the κ→∞ limit. We also mention that the transition in the fitness

fixed at κ = 1 does not seem to affect the walk length.

The inset of Fig. 4.1 shows that the full model is approximated very well

by the linear model in the Weibull domain, and is a reasonable approxima-

tion in the Gumbel domain. This agreement is explained by the fact that

the fitness difference between successive steps are indeed small in these two

domains as discussed in [16]. However in the Fréchet domain, the relative

fitness differences between the successive steps in the adaptive walk can be

as large as hundred [16] thus rendering the linear model invalid. For a fixed

initial fitness rank, the inset of Fig. 4.1 shows that in the full model, the walk

length increases with increasing κ in the Fréchet domain. Thus the behaviour

of the walk length is nonmonotonic in κ with the minimum occurring in the

Gumbel domain.

Figure 4.5 shows the distribution of the walk length for various κ and

uncorrelated fitnesses, and we observe that as |κ| increases, this distribution
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approaches the corresponding result for the random adaptive walk where the

walk distribution is known to be a Poisson distribution with mean lnL [14].

A related quantity is the index of dispersion of the walk length which is the

ratio of the variance to the mean which is shown in the inset of Fig. 4.5 and

displays a nonmonotonic behaviour with the minimum occurring at κ = 0

and approaching unity for κ → ±∞. A similar nonmonotonic behavior is

seen in the linear model but in that case, the index of dispersion approaches

unity when κ→ −∞ and one [8].

4.4 Discussion

In this chapter, we studied a model of adaptation in which beneficial muta-

tions sweep the population sequentially as it adapts by climbing up a rugged

fitness landscape. The broad question addressed here is regarding the aver-

age number of adaptive mutations that occur until the population reaches a

local fitness peak. This quantity has been measured in recent experiments on

various systems like bacteriophage φX174 [10], fungus A. nidulans [11] and

bacteria E. coli [12]. Theoretically, the number of adaptive changes have been

calculated on uncorrelated fitness landscapes for zero initial fitness [9,22] and

high initial rank [1,8,31]. Some studies for correlated fitnesses have also been

carried out [22, 28, 32, 33]. Here we have extended the previous works and

studied how the length of the adaptive walk depends on the initial fitness,

extreme value domains and fitness correlations.
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For the linear model that assumes small relative fitness differences in

all the extreme value domains, we find that the walk length decreases with

increasing initial fitness logarithmically provided the mean of the fitness dis-

tribution is finite, otherwise it remains a constant. The walks are found to be

shorter for fitness distributions that decay slower - in the limit κ → ∞, the

walk length approaches the greedy walk limit (4.1) while in the other extreme

of κ→ −∞, it tends to the random adaptive walk (4.2) [7]. The logarithmic

variation with the same dependence on the fitness distribution as here has

also been seen in other systems [8]. On correlated fitness landscapes, the

previous studies have been largely numerical [28, 32, 33], while here we have

presented analytical results. Interestingly, the large deviation theory finds an

application in the calculation of the walk length for correlated fitnesses. We

find that, as on uncorrelated fitness landscapes, the walk length decreases

with increasing initial fitness and GPD exponent κ. But increasing fitness

correlations also lengthen the adaptive walk since the population encounters

lesser number of local fitness peaks. Our detailed analysis shows that the

walk length difference J̄B(L|f0)− J̄B(L|0) scales linearly with the number of

blocks (that are a measure of correlations) in the Weibull and Gumbel do-

mains, and shows a weaker logarithmic dependence on the number of blocks

in the Fréchet domain. For the sake of completeness, we also performed sim-

ulations for κ > 1 and found that the average walk length in this case shows

a linear dependence on the block number (data not shown). These results

for the linear model are summarised in Table 4.1.
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For the full model that is not restricted to small relative fitness differences,

we find that the walk length decreases with initial fitness for all κ, unlike in

the linear model. The walk length is however seen to match quantitatively

well in the Weibull domain where small fitness differences arise [16]. In

contrast, in the Fréchet domain, even the qualitative trends in the two models

are opposite: while the walk length decreases with increasing κ(< 1) in the

linear model, it increases in the full model. Thus in the full model, the walk is

shortest in the Gumbel domain. An analytical understanding of these results

is however not available.

Experiments show that a moderately sized population reaches a fitness

plateau in two to four substitutions [10–12] (although one population has

been seen to gain nine beneficial mutations as well [10]) thus indicating that

the adaptive walks are generally short. An inverse relationship between the

initial fitness and the walk length has been observed in some experiments

[10, 12] in agreement with the full model. However a constant walk length

independent of initial fitness has been seen in a recent experiment [11]. As

described above, the full model predicts the walk length to be a nonmonotonic

function of the parameter κ. The adaptive walk is expected to last longer in

the experimental set ups in which Weibull [10, 34] or Fréchet [35] domain is

observed than in the ones in which the distribution of beneficial mutations

has an exponential tail [6, 36–38]. However the walk length has not been

measured in these experiments, while in the walk length experiments [10–12],

the extreme value domain of the beneficial mutation has not been studied
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EVT domain Dependence on initial rank Dependence on number of blocks

Weibull, κ < 0 Logarithmic Linear
Gumbel κ→ 0 Logarithmic Linear

Fréchet, 0 < κ < 1 Logarithmic Logarithmic
Fréchet, κ > 1 Independent Linear

Table 4.1: Table summarizing the dependence of the walk length on extreme
value domains, initial fitness and fitness correlations in the linear model.

and therefore presently the theoretical predictions regarding the connection

between the extreme value theory and the length of the adaptive walk remains

experimentally untested. Although some of the available experimental results

are in qualitative agreement with the theoretical predictions described above,

a quantitative comparison between the experiments and the theory seems

difficult. This is because in experiments measuring the walk length, the

walk is assumed to terminate if the fitness remains constant over some time

period but that need not imply that the adaptation is over [10]. Besides most

experiments [11] cannot measure mutations whose fitness difference is below

a threshold value and miss out on mutations conferring slight benefit thus

underestimating the walk length. A better understanding of the theoretical

results vis-à-vis the experimental ones remains a goal for the future.
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Chapter 5

Adaptation dynamics in the

strong mutation regime

5.1 Introduction

In Chapter 3, we have shown analytically and numerically that qualitatively

different patterns occur during the adaptation dynamics of populations in

different DBFEs when the number of mutants produced per generation is

very small [1–4]. The fitness gain obtained in each fixation event follows

the pattern of diminishing returns in Weibull domain, constant returns in

Gumbel domain and accelerating returns in Fréchet domain which suggests

that this quantity can be used to predict the DBFE. These observations

are in strong selection-weak mutation (SSWM) regime where the genetic

variation in the population is minimal, that is, only one beneficial mutation is

124
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present in the population in time interval between its appearance and fixation

[5]. It is then natural to ask if the relationship between the adaptation

dynamics and the DBFE mentioned above holds for large populations as

well in which there might be more than one beneficial mutation competing

for dominance in the population. To address the above question, we use

the Wright-Fisher model explained in Chapter 2 to study the adaptation

dynamics of an asexual population when the mutation rate is varied in the

three EVT domains of DBFE. If two or more beneficial mutation exist in

the population, then they have been experimentally observed to compete

with each other for dominance in the population [6–9]. This competition is

termed clonal interference that we introduced in Chapter 1. We find that

the qualitatively different trends for the fitness difference in the three EVT

domains seen in the SSWM regime holds even when the mutation rate is

increased and the population experiences clonal interference. We also study

the dependence of the rate of adaptation of the population on the number

of mutants produced per generation in the population. We observe that the

rate of adaptation depends strongly on the number of mutations when the

beneficial fitnesses are distributed according to the Fréchet domain, whereas

it is nearly independent in the case of Gumbel and Weibull distributions.

We suggest that these distinct trends can be used to predict the DBFE from

experimental studies on adaptation.
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Figure 5.1: The plot shows the average number of classes in the population
as function of time for various initial fitnesses. The fitnesses are chosen from
(2.8) with (a) κ = −1 (b) κ → 0 and (c) κ = 1/4. For each κ value, the
plot shows Nc(t) in both the high mutation (top panels) and low mutation
(bottom panels) regimes. The straight line in all plots show Nµ+ 1.

5.2 Results

5.2.1 The number of classes in the population

For a population of fixed size, the number of classes in the population is

expected to increase with the mutation rate. The average genetic variation

defined here as the average number of classes (Nc) present in the population

is shown in Fig. 5.1 as a function of time, for all the three domains of DBFE.
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Figure 5.2: The main plot shows the number of mutations in the leader of any
step for various κ and mutation rates. The simulation data are represented
by points while the broken lines are guide to the eye. The solid line shows
y = x. In the inset, from a single simulation run, the fitness of the whole
population as a function of time is shown by broken lines and the fitness of
the leader whenever the leader changes is shown by symbols.

The top and bottom panels of the figure show the data corresponding to the

high and low mutation regimes respectively. In both the mutation regimes,

we see that the average number of classes increase during the initial time

steps as more mutant classes accumulate and decrease at later times when

the classes of lower fitness are eliminated by the high fit classes. Also, we see

that while the maximum of the number of classes in the population at any

time is greater for lower initial fitness when κ ≥ 0, in the case of κ = −1, it
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shows a nonmonotonic trend with respect to initial fitness. The maximum

number of classes existing in the population for the first case as shown in

Fig.5.1(a), does not belong to the lowest initial fitness, but to a slightly

higher initial fitness. This could be because when the initial fitness is low,

its class is quickly replaced by a fitter mutant and all further mutants arise

on this new background and must compete with this fitter class.

In the low mutation regime, the population for the most time is localized

at a single sequence and produces Nµ mutants at every time step. So in

this case, the average number of classes approach a constant Nµ+1 at large

times as can be seen in the bottom panels of Fig. 5.1. These panels also

indicate that the value of this constant increases with decreasing κ. This

is because in the case of bounded distributions with κ < 0, the fitness of

beneficial mutant produced is expected to be closer to the parent fitness,

and thus it takes longer time to take over the population as shown in the

bottom panel of Fig.2.3(a). This results in a larger number of mutants in

Weibull domain which can be observed in the bottom panel of Fig.5.1(a). We

can clearly see from the top panels of the figure that not only are number

of classes for a higher mutation rate greater than that for lower rates (as

expected), but also that at a fixed high mutation rate, the number of classes

increases with decreasing κ, as in the low mutation regime. This makes sense

because the fitness of the classes belonging to κ = −1 cannot be very different

from each other (can only vary between 0 and 1) which makes it possible for

many of them to exist in the population, whereas the maximum fitness of
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the classes belonging to κ = 1/4 distribution will, on an average be much

higher than all others (since the distribution is unbounded with a fat tail),

thus out-competing the others in the population.

5.2.2 Number of mutations in the leader

In the low mutation regime, the average number of mutations in the leader

is predicted to be equal to the step number since the genetic variation in

the population is low and any mutation that escapes drift quickly takes over

the population [10]. We verify this point via simulations as depicted in

Fig. 5.2. We find that the mutation number equals the step, in all the

three EVT domains of DBFE in the low mutation regime for the initial

steps However in the high mutation regime, the number of mutations in

the leader of any step differ between the three DBFE domains. When the

mutation rate is increased, the genetic variation of the population and the

significance of clonal interference also increases. In the high mutation regime,

the number of mutations in the leader is found to be less than the step

number in all the three DBFE domains since there is a chance that different

mutants originating from the same parent class can become the leader of the

population at different times. This decrease from the step number is the

least for the fat-tailed distributions and maximum for the truncated ones, as

shown in Fig. 5.2. This result is consistent with the number of classes present

in the population as discussed in the previous section. In the Fréchet domain,

since the clonal interference is minimal, mostly a mutant originating from the
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present leader will become the next one whereas in the Weibull domain, due

to the large number of classes present in the population, mutants originating

from the same class can become the leaders at different time points.

5.2.3 Fitness and fitness difference

From our simulations, we find that the average fitness of the first mutant

fixed in the population, f̄1 increases linearly with the initial fitness, f0 for all

κ in the low mutation regime and for κ 6= 0 in the high mutation regime. So

we can write

f̄1 = a(Nµ)
κ f0 + b(Nµ)

κ (5.1)

where the coefficients a
(Nµ)
κ and b

(Nµ)
κ are constants. In the low mutation

regime, where the population for most times is monomorphic, the adaptive

walk model has been used to analytically obtain the fitness at the first step,

f̄1 as [1, 2]

f̄1 =

∫ u

f0

df T (f ← f0)f (5.2)

where the transition probability is given by (2.13). In this model, from (5.2)

the coefficient a
(Nµ≪1)
κ was obtained as 0.33, 1.0 and 1.6 for κ = −1, 0, and 1/4

respectively, as explained in Section 3.3. The corresponding b
(Nµ≪1)
κ for the

aforementioned κ were 0.66, 2.0 and 1.89 [2]. In the high mutation regime

where the adaptive walk model is not applicable, we obtained the values for

the coefficients in (5.2) numerically. We find that for large f0, a
(50)
κ equals

0.004 and 1.5 and b
(50)
κ equals 0.99 and 9.1 for κ = −1 and 1/4 respectively.
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Figure 5.3: The main plot shows the fitness difference at the first step as
a function of the initial fitness for various Nµ. The fitnesses are chosen
from (2.8) with (a) κ = −1 (b) κ → 0 and (c) κ = 1/4. The solid lines in
the main plot are obtained by numerically evaluating the integral given by
(5.1), while the dotted lines are the approximate results that can be obtained
for the results when the initial fitness is high, in the low mutation regime.
The broken lines for κ 6= 0 are lines of best fit as mentioned in the text.
The broken line for κ → 0 is guide to the eye. The inset shows the fitness
difference at the first step as a comparative measure of the fitness difference
obtained at the first step when f0 = 0. Here, the lines are guide to the eye.

The interesting result from our work is that, irrespective of the number

of mutants produced in the population, the difference ∆f1 = f̄1−f0 between

the fitness of the first step and the initial fitness displays results that are

qualitatively different in each EVT domain of DBFE, as shown in Fig. 5.3

and Fig. 5.4. This is clearly seen in the low mutation regime where as the
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initial fitness is increased, the fitness difference at the first step increases,

approaches a constant and decreases when κ is positive, zero and negative,

respectively. In the high mutation regime, though the population is no longer

monomorphic, the fitness of the population is almost equal to the fitness

of the leader as shown in the inset of Fig. 5.2. More importantly, even

in the high mutation regime where, for a fixed initial fitness, the fitness

of the first step is greater than the value in the low mutation regime, as

can be seen in Fig. 5.4, we find that with increasing initial fitness, the

qualitative trend of ∆f1 increasing or decreasing depends on whether the

underlying fitness distribution decays as a power law (κ > 0) or is truncated

(κ < 0). This is because ∆f1 = (a
(Nµ)
κ − 1)f0 + b

(Nµ)
κ and, since a

(Nµ)
κ is

greater than one and less than one for the power law (κ > 0) and truncated

(κ < 0) distributions respectively. Also, it is interesting to note that while

the data points for the exponentially decaying distribution (κ = 0) increase

and seem to be approaching a constant in the low mutation regime, the data

in the high mutation regime seems to be reducing to approach the same

constant. Our simulation results shown in Fig. 5.3 not only match the

predicted theoretical values and validate the claim of different qualitative

trends in each EVT domain in the SSWM regime but also, go further to

show that the trends hold irrespective of the number of mutants produced

in the population. The qualitatively different trends of the fitness increase

increasing, staying a constant and decreasing in the Fréchet, Gumbel and

Weibull domain, respectively can be used to distinguish between the EVT
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Figure 5.4: The plot shows the fitness difference at the first step as a function
of the initial fitness for different κ and two different Nµ. The lines give
the theoretical values while the open symbols are the simulation output for
Nµ = 0.02 and the closed symbols are those for Nµ = 5.

domains.

Though the fitness difference at the first step is greater in the high mu-

tation regime, when compared with the results in the low mutation regime,

when we look at the fitness difference at the first step rescaled by the fitness

difference obtained when the initial fitness is zero (insets of Fig.5.3), we see

that this increase slows in the high mutation regime compared to the results

obtained in the low mutation regime. This indicates that as the mutation
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Figure 5.5: Main figure shows the fitness increment in each time step and
the inset figure shows the increase in fitness for three different values of κ.
In all the cases, the population starts with the same initial fitness f0 = 0.5 .

rate increases, though the number of mutants accessed is higher, the differ-

ence in fitness compared to a lower initial fitness is not proportionally higher

and is in fact is lower for all the fitness distributions.

5.2.4 Rate of adaptation

Besides the fitness increment at a fixed event of leader change, we also mea-

sure the fitness as a function of time. We observe that even though the

fitness increases with time in all the three EVT domains, the rate at which

the fitness increases depends strongly on the DBFE. This rate has an ini-

tial transient phase, then it slowly evolves with time and finally it reaches a

constant.

The initial transient phase is strongly dependent on the initial condition
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Figure 5.6: The figure shows the average fitness of the population for various
κ in both the low and high mutation regimes. Two different initial conditions
f0 = 0 (open symbols) and f0 = 0.5 (closed symbols) are considered.

as well as the mutation rate as shown in Fig. 5.6. The increase in fitness

is fastest for the lowest initial condition, but it approaches the same fitness

values as in the case of higher initial fitness in few generations. The time

taken for different initial fitness population to reach the same fitness value

depends on the mutation rate: for Nµ ≫ 1, it takes about 20 generations,

whereas for Nµ ≪ 1, it is approximately 200 generations. We observe that

the rate of increase in average fitness (F̄(t)) with time also depends on the

mutation rate as shown in the inset of Fig. 5.5. This is because when large

number of mutations are available at the same time, a highly fit mutant can

invade the population and give a large fitness increment, so the fitness of a

highly fit mutant sequence would be greater in the high mutation regime,

compared to the one in low mutation regime.
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After the transient phase, we also measured at the fitness increment de-

fined as

∆F̄(t) = 〈F̄(t+ 1)− F̄(t)〉 (5.3)

at each step. The ∆F̄(t) initially increases, then slowly decreases and settles

down to a constant as shown in Fig. 5.5. This phase is initial condition

independent, and the rate at which it approaches the constant adaptation

rate is different in different mutation regimes.

Once ∆F̄(t) becomes a constant, it is called as the rate of adaptation

(RA), which can be calculated using equation 5.3. We measure RA for the

three DBFEs with different mutation rates. The values were averaged over

3000 time steps. The fastest rate of adaptation is observed in power law

distribution with high mutation rates. Since the distribution is unbounded,
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it can produce high fit mutants when the number of mutants produced is

large, so maximum advantage is expected to be for this distribution. The

rate of adaptation is slowest for bounded distribution, due to limited number

of higher fitness mutations available.

Thus dependence of RA on number of mutants for three distributions are

significantly different in the three EVT domains of DBFE. There is a clear

increase in RA with number of mutants in the case of power law distribution,

whereas it is nearly constant in other two distributions as shown in Fig.

5.7. These trends lead us to the conclusion that large number of mutants

produced is not particularly advantageous except for fat-tailed distributions

where κ > 0. In all other cases (κ ≤ 0), even though large mutation rate

results in very fast fitness increase in initial steps, the rate of adaptation

reaches the same value for both low and high mutation regimes.

5.3 Discussion

The main purpose of our work is to determine the quantities which quali-

tatively show different behaviour for different extreme value domains of the

DBFE. The fitness gain at each fixation event shows qualitatively different

trends in each DBFE domain, when the number of mutants produced in the

population is much less than one at every generation as explained in Chapter

3 [2,4]. The focus of this work is to explore the parameter regime in which the

number of mutants produced is much above one. When the mutation rate is
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high, the population becomes polymorphic and the better mutants existing

in the population compete with each other. In this case as well, we observe

that the qualitative trends found in the low mutation regime hold, which

shows that the fitness gain at each step in adaptation process is strongly

dependent on the DBFE, irrespective of the mutant number produced.

Thus, an important quantity that can be used to predict the DBFE is

the fitness difference between the mutations that spread in the population.

From our simulations, we see that as the initial fitness is increased the fitness

difference at the first step given by ∆f1 reduces, approaches a constant or

increases in the Weibull, Gumbel and Fréchet domains, respectively. We can

understand these increasing and decreasing trends by the following heuristic

reasoning. In both the low and high mutation regimes, for large f0, the

fitness at the first step increases linearly with the initial fitness as given in

(5.1) and so, we can write the selection coefficient defined as the relative

fitness difference, at the first step as

s =
f̄1 − f0

f0
=

(a
(Nµ)
κ − 1)f0

f0
+

b
(Nµ)
κ

f0
, ∀ κ , Nµ (5.4)

In an adapting population, since the fitness of the first step is greater than

the initial fitness, the selection coefficient is always positive. As the fitness

distributions belonging to the Fréchet domain are unbounded with fat tails,

high f0 values can be considered in which case, the second term on the right

hand side (RHS) of (5.4) can be ignored and we can write s ≈ (a
(Nµ)
κ −1) > 0.
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Thus for κ > 0, a
(Nµ)
κ > 1 and it follows that the fitness difference at the first

step increases with f0. On the other hand, since the distribution belonging

to the Weibull domain are truncated, we can invoke the following inequality

to explain the decrease in fitness difference with increasing f0:

f̄1 − f0 < u− f0, (5.5)

where u is the upper limit of the fitness distribution. With increasing f0,

the RHS of the above equation decreases which shows that as the initial

fitness increases, f̄1 − f0 has to necessarily decrease. Thus the qualitative

trends discussed above appear to be determined by the behaviour of the tail

(bounded/unbounded), and not by the details of the model.

Another important measure in adaptation is the rate at which it occurs.

Most of the previous studies which measured the adaptation rate only con-

sidered exponentially distributed fitness distributions [11–15]. In this work,

we measured the rate of adaptation in all the three EVT domains of DBFE

and studied its dependence on the mutation rate. We observed a clear in-

crease in RA with the number of mutants produced in the population in the

case of Fréchet distribution, whereas it is nearly constant in Gumbel and

Weibull distributions as shown in Fig. 5.7. This pattern can be used as

another measure in predicting the underlying DBFE. A previous study mea-

suring RA with exponentially distributed beneficial fitness effect observed

that after the initial few generations of high rate of adaptation, the rate of
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adaptations settles down to a constant value which is independent of the

mutation rate [16] which is consistent with our observation.
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Figure 5.8: The main figure shows the selection coefficient as a function of
step for all three κ values with two different Nµ where open symbols and
closed symbols are forNµ = 0.01 and Nµ = 50, respectively. The inset shows
the selection coefficient of various steps for two different the initial fitnesses
f0 = 0.2fmax and f0 = 0.6fmax, where fmax is calculated using (2.25) in the
high mutation regime.

Experimentally, the distribution of beneficial fitness effects can be in-

ferred by two methods. In the first, mutations are introduced in the wild

type sequence and those that confer a fitness advantage are separated and

their distribution of fitness effects are determined. By this method, DBFE

belonging to all the EVT domains have been observed [5,17–25]. In contrast,

here we focus on learning about DBFE via adaptation dynamics. Though

many works have tracked the dynamics of the population during adapta-

tion [5, 26–29], in most of them only the selection coefficient of the mutant
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fixed was measured. But our simulations in both the high and low muta-

tion regimes and also, the previous works [1, 2] in the SSWM regime find

that irrespective of the EVT domain of the DBFE, the selection coefficient

as given by (5.4) always decreases, with the increasing initial fitness or in-

creasing steps as shown in Fig. 5.8 and hence this quantity, is not useful to

distinguish between the EVT domains, while the fitness difference between

steps show different pattern depending on the EVT domain of the DBFE. In

this work, we numerically show that the fitness returns in each EVT domain

is very robust and holds even when the number of mutations produced is

large. Fitness difference can be measured in experiments as, for example,

shown in [20]. We suggest that experiments can predict the EVT domain

of DBFE by measuring the fitness difference between successive mutations

fixed in the population, or even from the fitness the first mutation when the

initial fitness is varied. Such experimental studies are desirable.

5.4 Future work

In this thesis, one important process that we ignored is recombination which

leads to exchange of genetic material between sequences. In microbial pop-

ulations such as bacteria, this happens mostly by means of horizontal gene

transfer such as conjugation in which two sequences swap genetic material.

The advantage that the population experiences because of this is that, bene-

ficial mutations in different organisms can come together to produce a fitter
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organism than either. This process may thus effectively eliminates compe-

tition between beneficial mutations since they can spread together. So in

the long term, recombination may provide fitness advantage to the popula-

tion [30]. In our work, we have also assumed the effect of each mutation to

be independent of the effect of others. However often one mutation affects

the effect of other mutations and this effect is termed epistasis [31].

In future, we intend to study the adaptation dynamics of microbial popu-

lations by varying the recombination rate. We also plan to introduce epistatic

interaction between mutations and check if the qualitative trends of the fit-

ness difference between successive mutations still exhibit the distinct trends

of decreasing, staying a constant and increasing in the Weibull, Gumbel and

Fréchet domains hold even in these cases. We also hope to get analytical

expressions for the numerical results discussed in this chapter.
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[29] A. Sousa, S. Magalhães, and I. Gordo. Mol. Biol. Evol., 29:1417–1428,

2012.

[30] W. R. Rice. Nat. Rev. Genet., 3:241–251, 2002.

[31] D. R. Rokyta, Z. Abdo, and H. A. Wichman. PLoS Genetics,

7:229e1002075, 2011.



Appendix A

Solution of the generating

function equation (4.6)

The probability distribution PJ (f |f0) obeys the recursion equation given by

(2.16) [1] in which T (f ← h) is given by (2.14). The above equation simply

means that the population moves from fitness h to a higher fitness f at the

next step with probability T (f ← h) provided at least one fitter mutant is

available, the probability of whose is given by 1 − qL(h). For monomorphic

initial condition with fixed fitness f0, we have the boundary conditions given

in (2.19) For the linear model with transition probability (2.14), the integral

equation (2.16) can be recast as a second order differential equation (2.17).

For infinitely long sequences, the cumulative probability distribution qL(h)→
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0 and the differential equation (4.6) for the generating function G(x, f) re-

duces to

G′′(x, f) =
x(1− κ)

(1 + κf)2
G(x, f) (A.1)

From (2.18) and (2.19), we have

G(x, f0) = 0 (A.2)

G′(x, f0) =
x

∫ u

f0
dg (g − f0) p(g)

(A.3)

The solution of (A.1) subject to above initial conditions is given by [2]

G(x, f) =
x(1− κ)(1 + κf0)

1/κ

√

κ2 + 4x(1− κ)

[(

1 + κf

1 + κf0

)α+

−
(

1 + κf

1 + κf0

)α−
]

(A.4)

where

α± =
1

2

(

1±
√

1 +
4x(1− κ)

κ2

)

(A.5)

The functions a1, a2 appearing in (4.14a) and (4.14b) can be calculated

explicitly using the above result. In terms of z defined in (4.8), the solution

(A.4) for κ 6= 0 can be written as

G(x, z) =
x(1− κ)(1 + κf0)

1/κ

√

κ2 + 4x(1− κ)

[(

z
1 + κf̃

1 + κf0

)α+

−
(

z
1 + κf̃

1 + κf0

)α−
]

(A.6)
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Comparing the above equation with (4.9a), we get

a1 =
x(1− κ)(1 + κf0)

1/κ

√

κ2 + 4x(1− κ)

(

1 + κf̃

1 + κf0

)α+

(A.7a)

a2 = −
x(1 − κ)(1 + κf0)

1/κ

√

κ2 + 4x(1 − κ)

(

1 + κf̃

1 + κf0

)α−

(A.7b)

For exponentially distributed fitnesses, taking the limit κ → 0 in (A.4) and

using (4.8), we find that

G(x, z) =

√
xef0

2

(

ez
√
xe(f̃−f0)

√
x − e−z

√
xe−(f̃−f0)

√
x
)

(A.8)

from which we obtain

a1 =

√
xef0

2
e(f̃−f0)

√
x (A.9a)

a2 = −
√
xef0

2
e−(f̃−f0)

√
x (A.9b)
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Appendix B

Walk length using Gaussian

approximation for

exponentially distributed

fitnesses

By virtue of central limit theorem [3], the distribution NB(X) of the sum of

B i.i.d. random variables is given by

NB(X) =
1√

2πBσ2
exp

[

−(X − Bf̄)2

2Bσ2

]

(B.1)
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provided the mean f̄ and the variance σ2 of the parent distribution p(f)

exist. Since the Gaussian distribution is a good approximation to the ex-

act distribution of the sum when X ∼ Bf̄ ±
√
2Bσ2, we expect that it will

provide a good estimate of the walk length when f ∼ B(f0 − f̄) ±
√
2Bσ2

in the integrand in (4.28). With increasing B, as the core of the distribu-

tion NB(X) moves rightwards while the factor fe−f in the integrand peaks

around one, the overlap is significant when f0 ∼ 1 ∓
√

2σ2/B. Thus the

Gaussian approximation for the sum distribution is likely to work well in

the neighborhood of initial fitness one. This can be seen more explicitly as

follows: using (B.1) in the integral appearing in (4.28), we get

Iclt =

∫ Bf0

0

df fe−fNB−1(Bf0 − f) (B.2)

=
aea

2
e−2ab

√
π

[

e−(a−b)2 − e−4a2 +
√
π(a− b)(erf(a− b)− erf(2a))

]

(B.3)

where a =
√

(B − 1)/2 and b = (Bf0 − B + 1)/(2a). For large B, using the

asymptotic expansion of error function, we get

Iclt ≈
aea

2
e−2abe−(a−b)2

2
√
π(a− b)2

(B.4)

The expression (4.28) for the average walk length then gives

J̄B(L|f0) = B(β0 lnLB + c0)− β0B
e−f0(f0−1)

(2− f0)2
(B.5)

≈ B(β0 lnLB + c0)− Bβ0f0 , f0 → 1 (B.6)
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Thus it is only when the initial fitness is close to unity, the Gaussian approx-

imation captures the linear relationship between J̄ and f0 correctly.
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