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Abstract

The present state of life on earth is the outcome of millions of years of biological evolution.

All organisms evolve to develop traits which make them better suited to their environment.

Biological evolution is driven by several forces such as mutations (beneficial, deleterious and

neutral), recombination, migration, genetic drift and natural selection. The main aim of this

work is to understand the effect of beneficial mutations in the presence of deleterious mutations

and other evolutionary forces. Many theoretical studies consider the effect of either one of

these mutations only, but the combined effect of both beneficial and deleterious mutations

is much less explored. However, it is important to take both into account because in a real

biological system, they occur together.

In this thesis, we focus on two biological questions, namely, evolution of sex and recombi-

nation and dynamics of adaptation process in which beneficial mutations play a crucial role. A

summary of the different models studied in this thesis is given in Table 1. The thesis is divided

into six chapters as described below:

In Chapter 1, we introduce various evolutionary forces such as mutation, recombination,

migration, genetic drift and natural selection. Two theoretical models (Wright-Fisher process

and Moran process) used to study the role of these forces in evolution are discussed here.

Further, different fitness landscapes considered in our study are also explained in this Chapter.

Recombination is very common in nature as a primary mechanism of reproduction. The

reason why it is so widespread in spite of all its disadvantages is however not properly under-

stood. Irreversible accumulation of deleterious mutations (Muller’s ratchet)[1] in finite asexual

populations is considered to be one of the reasons for the evolution of sex and recombination.

But theoretical studies of Muller’s ratchet [2] completely ignore the presence of beneficial
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Beneficial and deleterious

mutations
Drift Fitness landscape Recombination Reference

Yes Yes Simple Yes [3]

Yes No Simple No [5]

Yes Yes Rugged No [6]

Yes Yes Rugged Yes [7]

Table 1 Summary of different models considered in this study.

mutations. In Chapter 2, we study the effect of beneficial mutations modeled as back muta-

tions in halting the Muller’s ratchet and attaining the equilibrium in finite populations. The

main questions addressed in this study are: What is the equilibrium frequency of deleterious

mutations when beneficial mutations are included? How does recombination help in reducing

the mutational load in finite populations? Our results show that beneficial mutations allow the

population to attain a nontrivial steady state unlike in the case of Muller’s ratchet. The steady

state fraction of deleterious mutations show a weak dependence on population size in the case

of linked genome, which is very different from the exponential dependence predicted for an

unlinked genome [3].

In Chapter 3, we explore the effect of beneficial mutations in a variant of the above men-

tioned model with a different mutational scheme. The assumption here is that the genome is

infinitely long, and the mutation rates per genome are constant in the fitness space [4]. In this

case, we obtain an exact solution for the steady state distribution of an asexual and infinitely

large population. We show that this distribution is proportional to the Bessel function of the

first kind [5] unlike the well known Poisson distribution [2] when beneficial mutations are

neglected. We also numerically study the effect of genetic drift to find the critical population

size (or, beneficial mutation rate) needed to attain a steady state in a population of finite size.

Unlike in the previous chapters, in Chapter 4, we consider a complex rugged fitness land-

scape which is biologically more realistic. In our previous study on a single-peak fitness

landscape (discussed in Chapter 1)[3], we found an advantage of recombination in reducing

the equilibrium mutational load. In this chapter, we study this effect on a class of complex fit-

ness landscapes [8, 9]. Our study shows that recombination has a short term advantage when
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the population is starting from a maladapted state and the time scale over which the advantage

persists is longer when the mutation rate is low and fitness landscape is maximally rugged [7].

In Chapter 5, we turn to a study of the adaptation dynamics of microbial populations

to understand the details of the underlying distribution of beneficial fitness effects. Since

beneficial mutations which drive adaptation are rare, they occur only in the tail of the fitness

distribution which allows one to use extreme value statistics for the distribution of beneficial

fitness effects (DBFEs). A previous study on adaptation dynamics in low mutation regime

has identified a quantity, namely, the fitness advantage in successive adaptive steps that shows

distinguishable trends for different DBFEs [10]. In Chapter 5, we study the robustness of

this measure in high mutation regime and find that the qualitative behavior seen in the low

mutation regime holds in the high mutation regime as well [6]. We also find that the rate of

adaptation shows distinct trends for different DBFEs in both high and low mutation regimes.

Finally, in Chapter 6, we summarize our main results and discuss some interesting open

problems related to our study.
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Chapter 1

Introduction

1.1 Modeling biological evolution

Theoretical population genetics aims to understand the action of different evolutionary forces

such as mutation, selection, recombination, migration and genetic drift in driving the process

of evolution [14]. But, as the incorporation of all the complexity of a real biological system

to a mathematical model will make it impossible to make any progress, it is very important

to make appropriate simplifications that preserve the intricacies of the real system and at the

same time simplifies the problem to a level where one can handle it mathematically or nu-

merically. In this thesis, we assume that the evolutionary forces remain constant over time

and the relevant evolutionary forces such as mutation and selection are modeled as simple one

parameter process [14]. We will see in the coming Chapters that, even these simplified mod-

els are mathematically nontrivial but give important insights into the process of evolution. In

this Chapter, we explain how we model the process of evolution under the action of different

evolutionary forces.

1.2 Sequence space and fitness landscapes

We model a genome as a binary string with two allelic state 0 or 1. Then a genome of length

L has 2L possible configurations. The Hamming distance between two sequences is defined
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as the number of positions where these two genotypes differ. For L = 2, the four sequences

can be represented as the vertices of a square. When L = 3, there are 8 possible configurations

which form a cube with sequences of one Hamming distance away arranged as the first nearest

neighbors and two Hamming distance as the second nearest neighbors and so on. For large

values of L, the sequence space is a higher-dimensional hypercube.

Once the sequence space is generated, each genetic sequence can be assigned a particular

fitness value, by measuring a fitness proxy such as cell size, drug resistance, or reproductive

ability, to create the fitness landscape. In our study, we define fitness as the reproductive

ability.

1.2.1 Single peak fitness landscape

A single peak, non-epistatic fitness landscape can be created by assuming the fitness function

to be

W ( j) = (1− s) j, (1.1)

where j represents the number of deleterious alleles (ones) the genome carries. Such fitness

landscape is relevant to a population growing in a medium which contains only one type of

food source [15]. Even though such fitness landscapes are biologically unrealistic, mathemat-

ical model considers such simplified functions to get an insight into complex questions. We

consider this fitness landscape in our study and the results obtained in Chapters 2 and 3 are

based on this fitness landscape.

1.2.2 Maximally rugged fitness landscape

Experiments suggest that the fitness landscapes are quite complex and have many local fitness

peaks [16–19]. Maximally rugged fitness landscapes can be generated in mathematical models

by assigning fitness values randomly for each configuration from a fixed distribution. This

distribution is chosen with reference to the experimental data obtained from the measurements

of fitness landscapes. This type of fitness landscape is considered in Chapter 5 of this thesis.
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Fig. 1.1 Schematic diagram of different types of fitness landscapes.

1.2.3 Tunable rugged fitness landscape: Rough Mount Fuji (RMF)

The maximally rugged and single peak fitness landscapes are two extreme cases, which are

comparatively easy to handle mathematically. But, in more realistic scenario, the fitness land-

scapes show an intermediate level of ruggedness [9]. One example of such fitness landscape

is the Rough Mount Fuji (RMF) model [20], which consists of a smooth component with a

selection gradient c, along with a random component with amplitude B, which is drawn from

the unit normal distribution. The fitness function for this fitness landscape is defined as:

W ({σ}) = cdσ ,σ∗ +Bη(σ). (1.2)

Here, dσ ,σ∗ is the Hamming distance between σ and the reference sequence σ∗=(1,1,1,1...1),

which is equal to the number of zeros in the sequence and η is a random variable drawn in-

dependently for each sequence from a normal distribution with mean zero and variance one.

Thus, the RMF fitness landscape is parameterized by the ratio θ = B/c. This type of fitness

landscape is considered in Chapter 4 of this thesis. A two dimensional schematic presentation

of all three types of fitness landscapes is shown in Fig. 1.1
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1.3 Evolutionary forces

The process of evolution is driven by several evolutionary forces; we describe below the forces

that are relevant to the discussion in this thesis.

1.3.1 Natural selection

Natural selection acts on the variation in the population and gives an advantage to the one

with favourable traits by giving them a higher probability of reproducing. This will result

in an increase in fraction of population with favourable traits and that in turn will result in

an increase of high average fitness of the population. This helps the population to attain

the fitness peak in the fitness landscape. This process is reasonably simple to understand

and easy to implement in models by assigning the probability of reproduction as a function

of relative fitness of the genotype. In this study, we consider only one form of selection,

namely, directional selection that reduces the variation in a population. Other forces- mutation,

recombination, and migration described below generate new genetic variation.

1.3.2 Mutation

Mutations are random changes that result in a new genotype. To understand the process,

let us consider the simplest case of asexual reproduction by binary fission. During asexual

reproduction, cell first makes a copy of its genome and then divides by giving each daughter

cell one copy. In this simple process of reproduction, the only way to generate variation

is through mutations. Three major sources of mutation are, errors in replication, errors in

segregation of the replicated genome and genome modification by DNA damage [21].

We consider point mutations where the change occurs at one base pair in a single position

in the DNA. If the change is from one purine (G and A) to another or one pyrimidine (C

and T) to another it is called transition. If a purine changes to pyrimidine or vice versa it

is called transversion [21]. Transversion can have a strong effect on phenotype, and results

in serious diseases. Mutations based on their fitness effect on the phenotype are classified

into two, synonymous mutations and nonsynonymous mutations. Synonymous mutations are
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Fig. 1.2 Figure shows the distribution of fitness effects of mutations in vesicular stomatitis

virus. In this experiment, random mutations were introduced into the virus and the fitness of

each mutant was compared with the ancestral type. A fitness of zero, less than one, one, more

than one, respectively, indicates that mutations are lethal, deleterious, neutral, and beneficial

[11, 12].

nearly neutral and have a mild effect on fitness. One example of such mutations is the mutation

between preferred and unpreferred codon. Nonsynonymous mutations are the ones which have

larger fitness effects. These mutations are important in the study of adapting populations.

1.3.2.1 Frequency of mutations

Different types of mutations occur at different rates. For example, in point mutations, transi-

tions occur at a much higher rate compared to transversions. Moreover different regions of the

genome will also have different mutation rates. It is difficult to handle such complex scenario

in a mathematical model. Here, we work with the average mutation rate per locus per genera-

tion for a particular genome for simplicity. Mutation rate varies for different species having a

range from 10−10 to 10−3 [21] per bp per generation from humans to viruses. This includes all

types of mutations with different fitness effects: deleterious ones that reduce fitness, beneficial

mutations which increase fitness and neutral ones that have no fitness effect.
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The mutation rates of nonsynonymous mutations which carry a fitness effect are highly

skewed with more than 90% of them being deleterious [11], which can be seen from Fig. 1.2.

This uneven distribution of mutations results in ignoring the presence of beneficial mutations

in most of the theoretical studies as a first approximation. Even though the fraction of benefi-

cial mutations is small, they play an important role in evolutionary dynamics. More evidence

for the importance of this small fraction of mutations is reported in recent times [22]. As the

title of this thesis suggests, our aim is to study the combined effect of both deleterious and

beneficial mutations in evolution.

In Chapter 5, we study the distribution of beneficial fitness effects (DBFEs), that only

include mutations which have fitness relative to the wildtype more than one in Fig. 1.2, to get

a better understanding of adaptation dynamics of asexual populations. We discuss this point

in detail in Section 1.5.2.

We have also considered nearly neutral or synonymous mutations, to understand the prob-

lem of codon usage bias. Here the rate of beneficial and deleterious mutations are of the same

order. The results obtained in this study are discussed in Chapter 2.

1.3.2.2 Rates of mutations

When an error occurs in the proofreading mechanism of DNA, the mutation rate of the strain

increases and can be as high as 1000 times that of the wildtype [23, 24]. During adaptation,

such mutators hitchhike with the beneficial mutations they produce, and increase in frequency,

which raises the mutation rate of the entire population. On the other hand, for adapted popula-

tions, higher mutation rate means a higher load of deleterious mutations, and hence, selection

favours lower mutation rates, which is in agreement with many experimental [25] as well as

theoretical [26, 27] findings.

1.3.3 Recombination

Genetic variation can also arise through recombination. In eukaryotes, this results from sexual

reproduction and the formation of gametes which are genetically different from those united to

reproduce. This could happen by independent segregation of nonhomologous chromosomes,
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or by crossing over between homologous chromosomes. Recombination or lateral gene trans-

fer in bacteria also leads to mixing of genetic sequence from different lineages. Another

example is the genetic exchange happening in virus genome when more than one virus strain

infects the same host. The new viral particles produced will contain a mixture of chromosome

from the two original strains. All these processes come under the class of recombination with-

out sexual reproduction, and this process is equally effective in generating genetic variation

[21].

Recombination is a much more complex process, in which there is mixing of two parent

genomes in each generation to produce the offspring genome. This process is very efficient

in creating large variation in a short time span of the order of one generation. It is evident

from all higher organisms that has sex or recombination as the mechanism of reproduction,

that they carry large amount of genetic variation compared to the asexual populations. This

in turn helps selection to act more effectively and have faster adaptation. But, recombination

is expensive and there are many ‘costs’ associated with it, which makes the evolution and

widespread of recombination a puzzle. We discuss this point in detail in Section. 1.5.1.

1.3.4 Random genetic drift

Real populations have a finite size and this finiteness is responsible for stochastic evolution

of a population. Random genetic drift is a very important force in evolution that decides the

fate of a new genotype appearing in the population due to mutation or recombination. When

a new genotype appears first in the population it will be in a small fraction, and the initial

evolution of this genotype is mostly driven by drift. Even the beneficial (deleterious) mutant

has a chance of getting lost (fixed) in the population because of the stochastic fluctuations in

number.

The probability of fixation of a mutant under drift is given as [4]

(i) Deleterious mutations:

Pd =
e2s −1

e2Ns −1
(1.3)



8 Introduction

 0.0001

 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250

Pr
ob

ab
ili

ty
 o

f f
ix

at
io

n

Population size (N)

Pd
Pb
2 s

Fig. 1.3 Figure shows the fixation probability of beneficial (Pb) and deleterious (Pd) mutations

with population size. Selection coefficient s = 0.01 is kept fixed.

(ii) Beneficial mutations:

Pb =
1− e−2s

1− e−2Ns
. (1.4)

The probability of fixation of the deleterious and beneficial mutations with population size

is shown in Fig. 1.3. When N is small, deleterious mutants have a finite probability to get

fixed in the population that goes to zero as N increases. Similarly, the fixation probability of a

beneficial mutant will saturate to a constant equal to 2s as N increases.
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1.4 Mathematical Models

Here we aim to include the evolutionary forces discussed above, such as selection, mutation,

recombination, and random genetic drift into mathematical models, to study combined effect

of these forces in driving the process of evolution.

1.4.1 Deterministic models

The assumption of N → ∞, results in a deterministic model, that ignores the effect of ran-

dom genetic drift. This is a major simplification, but it is useful because in some cases such

models are exactly solvable and the answers obtained in this limit are useful in developing

approximation for the finite-sized populations.

In this limit, we can write an equation for the change in the population fraction of a geno-

type σ at generation t to σ ′ at generation t +1, under the action of mutation and selection as

[28],

X(σ ′, t +1) =
∑σ M(σ ′ ← σ)W (σ)X(σ , t)

∑σ W (σ)X(σ , t)
. (1.5)

Here, M(σ ′ ← σ) is the probability that a genotype σ mutate to genotype σ ′ in the next

generation, and W (σ) is the fitness of the genotype σ . The solution for the deterministic

equation for two different mutation schemes and fitness function given in 1.1, corresponding

to a single peak fitness landscape is discussed in Chapters 2 and 3.

1.4.2 Stochastic models

Here we consider two well known models, Wright-Fisher model, and the Moran model to

study the evolution of a finite size population under the action of other evolutionary forces.

1.4.2.1 Wright-Fisher Model

In this model, generations are assumed to be discrete and nonoverlapping, i.e., all the individ-

uals in the tth generation reproduce at the same time. In every generation, one individual is

chosen with probability proportional to its relative fitness to reproduce. While reproducing it
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Fig. 1.4 Schematic diagram for Wright-Fisher process. Relative fitness of an individual is

represented by the gradient of blue, with dark blue representing the fittest. Reproduction with

mutations are shown by red and light green arrows, where the colours represent deleterious

and beneficial mutations respectively. Reproduction without mutations is shown by dark green

arrows.

can undergo mutations with probability specified by the parameters of the model. This process

is repeated until the (t+1)th generation has N individuals. A schematic representation of this

process is shown in Fig.1.4.

When the genome length is finite we can include recombination also. To implement recom-

bination, we choose two parents at random, and with probability r, the genome of these two

parents break and recombine to produce the offspring genome. The number of break points

is chosen from a binomial distribution with mean L r, where L is the genome length. We use

this protocol to study the effect of recombination, and the results obtained are discussed in

Chapters 2 and 4.

1.4.2.2 Moran Model

The main difference between this model and the Wright-Fisher model is that- this model con-

siders overlapping generations. Here an individual is chosen with probability proportional to

its relative fitness to reproduce, and after reproduction to keep the population size constant

another individual chosen at random is killed (replaced by the offspring). At the time of re-

production, the individual can be allowed to mutate as well. This model is described in a

schematic diagram shown in Fig. 1.5.
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Fig. 1.5 Schematic diagram for Moran process. Relative fitness of an individual is represented

by the gradient of blue with dark blue representing the fittest. At generation t, one individual

chosen with probability proportional to its relative fitness to reproduce with mutations. Once

the offspring is produced, it replaces a randomly chosen individual from the population to

keep the population size constant. Offspring genotype will be one of the three possible types

at the mutation step.

1.5 Questions we want to address

The main focus of this work is to understand the effect of beneficial mutations in the presence

of other evolutionary forces. As already discussed in Section 1.3.2.1, beneficial mutations are

rare and their effect is not completely understood. Here we want to study the combined effect

of beneficial and deleterious mutations for two biological questions, namely the evolution of

sex and recombination and the dynamics of adaptation.
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1.5.1 Role of beneficial mutations in the evolution of sex and recombina-

tion

The ubiquity of sex and recombination is one of the major questions in evolutionary biology,

which has attracted the attention of biologists over the past many decades [29–32]. Even

though recombination is effective in creating variation, it has many costs associated with it,

which include the time and energy required to find a partner, and the risks involved in sexual

reproduction such as the transmission of disease and predation. Moreover, when only one

sex is capable of reproduction, the reproductive output of the whole population is halved as

compared to asexual populations [21]. Despite all these ‘costs’, why recombination is so

common in nature has not been fully understood so far.

One major reason for the evolution of sex and recombination is believed to be an irre-

versible accumulation of deleterious mutations (also known as Muller’s ratchet) in asexual

populations [1]. However, Muller’s ratchet ignores beneficial mutations and it is important to

take them into account. In this thesis, we study the effect of beneficial mutations on Muller’s

ratchet, and ask if beneficial mutations can halt the ratchet. Also, we study the effect of recom-

bination in a population evolving on single peak as well as rugged fitness landscapes. Chapters

2, 3 and 4 of this thesis aim to address this question, and a general conclusion of all the results

obtained is discussed in Chapter 6.

1.5.2 Relation between adaptation dynamics and the distribution of ben-

eficial fitness effects

Adaptation is the process in which organisms develop new traits which make them more

favourable to survive in their environment. One example of evolution of such traits is the

antibiotic resistance developed by bacteria. Since this process aims to improve the survival

probability of an individual, it is obvious that it will be driven by beneficial mutations.

As we discussed in Section 1.3.2, the fractions of mutations that are beneficial are rare and

occur at the extreme tail of the fitness distribution. This suggests that we can use the extreme

value statistics to study the distribution of beneficial fitness effects (DBFEs). In Chapter 5, we
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find experimentally measurable quantities that can be used to predict the underlying beneficial

fitness distribution. We found two quantities which show distinguishable trends for different

DBFEs, and these results are discussed in Chapter 5.





Chapter 2

Effect of drift, selection and

recombination on the equilibrium

frequency of deleterious mutations

2.1 Introduction

In this Chapter, we study the effect of linkage in a finite size population evolving under the

action of both ways mutation, selection, recombination and random genetic drift. This model

is useful in addressing the question of evolution of sex and recombination, and also the linkage

effect on codon usage bias [3].

A large number of population genetic studies assume one-way mutation- in some situa-

tions, beneficial mutations are neglected as they occur rarely [1, 33, 2, 34] while in adaptation

studies, deleterious mutations are ignored as they are unlikely to fix under strong selection

conditions [35, 36, 10]. The assumption of one-way mutation has an important effect on the

nature of the state at large times. If the population size is infinite, a time-independent station-

ary state can be reached due to a balance between mutation and selection even if the mutational

forces are unidirectional [2]. However in a finite population, when mutations are completely

neglected or only unidirectional mutations are allowed, a population evolving under the influ-

ence of other evolutionary forces either does not reach an equilibrium state [2], or achieves a
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trivial one in which one of the variants gets fixed at large times [37]. It is when both benefi-

cial and deleterious mutations are taken into account, a finite population reaches a nontrivial

stationary state [38].

An example of such a steady state is seen in the context of synonymous codons that rep-

resent the same amino acid but do not occur in equal frequencies [39, 40]. In a gene coding

for a two-fold degenerate amino acid, while selection favors the preferred codon, reversible

mutations between preferred and unpreferred codons and random genetic drift maintain the

unpreferred one [41, 42]. Assuming that the sites in the sequence evolve independently, an-

alytical results for the equilibrium frequency of unpreferred codons have been obtained [41–

43]. However as the evolutionary dynamics at a genetic locus are affected by other loci [44], a

proper theory of codon usage bias must account for the Hill-Robertson interference between

sequence loci [45–48].

Reverse and compensatory mutations have been proposed as a possible mechanism to stop

the degeneration of asexual populations [49–51]. In a finite nonrecombining population, if

beneficial mutations are completely ignored, deleterious mutations accumulate irreversibly

due to stochastic fluctuations by a process known as Muller’s ratchet [1, 52]. But when rare

beneficial mutations are taken into account, the population reaches an equilibrium [53, 22, 52].

The model studied here accounts for the reversibility of nucleotide substitutions. Recently [51]

calculated the amount of beneficial mutations required to achieve a stationary state. But these

authors assumed the mutation rates to be independent of the fitness, contrary to experimental

evidence [22]. Moreover their solution for the equilibrium frequency can become negative in

some parameter range.

In this Chapter, we are interested in understanding the stationary state of a multilocus

model, which is described in detail in the following section. We consider a class of non-

epistatic fitness landscapes where the fitness depends only on the number of deleterious mu-

tations in a sequence (fitness class). As in previous works [41, 45, 46], we assume that the

beneficial mutations are back mutations, the probability of whose occurrence depends on the

fitness class. More precisely, if the mutation probability per site is small, the total probability

of a beneficial (deleterious) mutation increases (decreases) linearly with the fitness class. We
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consider the evolution of both infinitely large and finite populations, and to analyse the effect

of linkage amongst the loci, we allow recombination to occur. We are primarily interested in

the population size dependence of the average number of disadvantageous mutations at equi-

librium. We obtain analytical results when the sites are completely linked, and compare them

with the known results for a freely recombining population. For intermediate recombination

rates, we obtain numerical results.

We find that the number of deleterious mutations decreases in a reverse sigmoidal fashion,

as the population size is increased. For small populations, the fraction of disadvantageous

mutations is seen to be roughly independent of population size and recombination rate. An

understanding of this behavior is obtained from an exact solution and numerical simulations

for a neutral finite population. For very large populations that can be described by a deter-

ministic model, we find the stationary state exactly which is also unaffected by recombination.

However for moderately large populations, recombination is found to alleviate the effect of

deleterious mutations [44, 33, 54, 47], and the extent to which it does so depends on the bene-

ficial mutation rate relative to the deleterious one. We find that when beneficial mutations are

rare, the equilibrium frequency of disadvantageous mutations decreases logarithmically with

population size when the loci are completely linked, but exponentially fast when linkage is

absent. On the other hand, when disadvantageous mutations are rare, the deleterious muta-

tion fraction drops exponentially fast, irrespective of the recombination rate. Thus we expect

that the linkage has a weak effect on codon bias where the rates at which mutations between

preferred and unpreferred codons occur are of the same order [55, 56]. But in adapting micro-

bial populations where beneficial mutations are rare [57], recombination may be expected to

reduce the frequency of disadvantageous mutations significantly.

2.2 Models

We consider a haploid population of size N in which each individual carries a diallelic (either

zero or one) sequence of finite length L, where zero represents the wildtype allele and one

denotes the deleterious mutation. The population is evolved in computer simulations using a
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Wright-Fisher process which is described in Chapter 1, with recombination followed by mu-

tation and selection occurs in discrete, non-overlapping generations. To create an offspring,

two parent individuals are chosen at random with replacement. With probability r ≤ 1/2, a

single crossover event occurs in the parent sequences at one of the L−1 equally likely break

points to form two recombinant sequences, while with probability 1− r, the parent sequences

are copied to the offspring sequences. In either case, one of the offspring is chosen with proba-

bility half to undergo mutations and selection, and the other one is discarded. In the offspring

sequence, a deleterious mutation occurs at a locus with a wildtype allele with probability µ

and a reverse beneficial mutation on mutant allele with probability ν . The resulting sequence

is allowed to survive with a probability equal to its fitness, where the fitness of a sequence

with j deleterious mutations is assumed to be a nonepistatic, and given by w( j) = (1− s) j,

0 ≤ s < 1. This corresponds to the single peak fitness landscape discussed in the Chapter 1.

We have been able to implement the procedure described above for sequences of length

up to 500 and population sizes of the order 103. For larger populations with long nonrecom-

bining sequence, the computational difficulties were overcome by tracking only the number

of deleterious mutations (fitness class) carried by the individual since the fitness of a sequence

depends only on the number of deleterious mutations in the sequence. Here a parent chosen at

random produces a clone of itself, and the offspring may undergo mutations with a probability

that depends on its fitness class. In a sequence with j deleterious mutations, as a deleterious

(beneficial) mutation can happen at any one of the L− j ( j) sites, the rate of deleterious and

beneficial mutations is given by (L− j)µ and jν respectively. To find the number of benefi-

cial (b) and deleterious (d) mutations acquired by the offspring, random variables were drawn

from Poisson distribution with mean jν and (L− j)µ respectively. The total number of dele-

terious mutations in the offspring is then given by j′ = j+d −b. If j′ turns out to be greater

than L or less than zero, the offspring individual is produced with j′ = j mutations. As before,

the offspring is allowed to survive with probability w( j′), and the process is repeated until N

individuals in the next generation are obtained.

All the numerical results presented here are obtained with an initial condition in which

none of the individuals carry deleterious mutations. In each stochastic run, the Wright-Fisher
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process was implemented for about 104 generations and it was ensured that the stationary

state is reached. In the equilibrium state of each run, we measured the number of deleterious

mutations present in the population and averaged them over another 104 generations. The data

were also averaged over 100 independent stochastic runs. Although all the simulation results

presented here are obtained using the Wright-Fisher process, we will also use a continuous

time Moran model for some analytical calculations which is described in a later section. If

the population is infinitely large, the dynamics and equilibrium state of the population fraction

can be described by a deterministic equation, which we discuss next.

2.3 Infinite Population

2.3.1 Nonrecombining population

For small selection coefficient and mutation rates, the population fraction X( j, t) in the jth

fitness class at time t evolves in continuous time according to

∂X( j, t)

∂ t
= −(s j+w(t))X( j, t)− [(L− j)µ+ jν]X( j, t)

+ (L− j+1)µX( j−1, t)+( j+1)νX( j+1, t) , 0 ≤ j ≤ L (2.1)

where w(t) = ∑L
k=0 lnw(k) X(k, t) ≈ −s∑L

k=0 k X(k, t) is the average Malthusian fitness and

X(−1, t) = X(L+1, t) = 0 at all times. In the above equation, the first term on the right hand

side (RHS) represents the contribution to the change in X( j, t) due to reproduction and the

second term gives the loss in the population fraction due to mutations. The last two terms are

the gain terms due to deleterious and beneficial mutations respectively. The dynamics and the

steady state solution of the deterministic model defined by (2.1) can be found exactly. Below

we discuss the stationary state and refer the reader to Appendix A.1 for the time-dependent

solution.
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In the steady state, the left hand side (LHS) of (2.1) equals zero and the population fraction

carrying j deleterious mutations is of the following product form [58]:

X( j) =

�

L

j

�

x j (1− x)L− j (2.2)

On using the above ansatz in (2.1) for j = 0 and L, we find that the average fitness w̄ =

L(ν x̃−µ) where x̃ = x/(1− x) is a solution of the following quadratic equation:

ν x̃2 +(s+ν −µ)x̃−µ = 0 (2.3)

Plugging the ansatz (2.2) in the bulk equations corresponding to j = 1, ...,L−1 and rearrang-

ing the terms, we get

j


µ − s−ν +µ x̃−1 −ν x̃
�

− w̄+L(ν x̃−µ) = 0 (2.4)

which, by virtue of the results obtained above, shows that the ansatz (2.2) is consistent with

the bulk equations. Since the population fraction must be positive, the allowed solution of

(2.3) gives the fraction x to be

x =
2µ

µ +ν + s+
p

(s+ν −µ)2 +4µν
(2.5)

Furthermore, as the RHS of (2.2) is a binomial distribution, the average fraction of deleterious

mutations defined as q = j̄/L = ∑L
j=0 jX( j)/L equals x.

To get some insight in the solution obtained above, we first consider some special cases by

setting one of the parameters equal to zero.

(i) In the absence of selection (s = 0), we get

X( j) =

�

L

j

��

µ

µ +ν

� j � ν

µ +ν

�L− j

(2.6)

q =
µ

µ +ν
(2.7)
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(ii) When the reverse mutation probability ν equals zero, the fraction x = µ/s , µ < s and

therefore

X( j) =

�

L

j

�

�µ

s

� j �

1− µ

s

�L− j

, µ < s (2.8)

while for µ > s, the fraction X( j) = δ j,L, thus signaling the well known error threshold transi-

tion [59]. On the other hand, if the probability µ is zero, we have the trivial solution that the

fitness class with zero deleterious mutations has frequency one, for all ν .

When all the three parameters are nonzero and the sequence length is large, the following

cases may be considered [60]:

1. If µ,ν,s are kept fixed but the sequence length is increased, we find that the population

fraction of deleterious mutations is a Gaussian centred about the average number Lx.

2. If the deleterious mutation rate per genome Ud = Lµ is held fixed while µ → 0,L → ∞,

the fraction x ≈ µ/(s+ ν) approaches zero for finite ν and s. In this limit, the population

fraction is a Poisson distribution given by [61]

X( j) = e−
Ud
s+ν

1

j!

�

Ud

s+ν

� j

(2.9)

3. However when both µ,ν → 0 and L → ∞ such that the product Ud = Lµ,Ub = Lν

remains finite, taking ν → 0 in (2.9), we immediately find that the population fraction is

independent of the beneficial mutation rate. To understand this rather surprising result, we

first note that when beneficial mutations are completely absent, due to (2.8), the mean number

of deleterious mutations is of order unity i.e. it does not increase with L. However when

beneficial mutations are present, the average number of advantageous mutations that can occur

is ∼ j̄ν which approaches zero as ν → 0, and thus the population remains unaffected by

beneficial mutations.

2.3.2 Recombining population

So far, we discussed the stationary state of the deterministic model when recombination is

absent. But in an infinitely large population, if epistasis is absent (as is the case here), the

linkage disequilibrium (LD) stays at its initial value [62]. Since we start with an initially
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monomorphic population with zero LD, the results obtained above are expected to hold in

a recombining population as well. In fact, when the sequence loci are completely unlinked

(r = 1/2) [9], [42] has shown that the average fraction of deleterious mutations is given by

(2.5).

2.4 Finite population without selection

2.4.1 Nonrecombining population

We consider a neutral Moran process for an asexual population of finite size with a mutation

scheme which is more general than that described in Section 2.2. In this model, a parent is

randomly chosen with replacement to replicate. If the offspring has j mutations relative to the

wildtype, the number of mutations increases (decreases) by one with probability µ j (ν j) and

remains unchanged with probability 1−µ j −ν j. It is obvious that µL = ν0 = 0. An individual

in the parent population is then randomly chosen to die and is replaced by the possibly mutated

offspring. As explained in the Appendix A.2, the average number n̄( j) of individuals carrying

j mutations evolves according to (A.14). In the stationary state, we obtain

n̄( j)

N
=

1

1+∑L
k=1 ∏k−1

i=0
µi

νi+1

j−1

∏
i=0

µi

νi+1
(2.10)

which is independent of the population size.

For the model with back mutations, as explained in Section 2.2, the probability µ j = (L−
j)µ and ν j = jν . Using this in the above equation, we find that the average population fraction

carrying j mutations is given by the deterministic solution (2.6) and the average fraction q =

j̄/L by (2.7), where j̄ = N−1 ∑L
j=0 jn̄( j). These results are verified in numerical simulations

of the Wright-Fisher process and are shown in Fig. 2.1.
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Fig. 2.1 Neutral case: Main figure shows the steady state fraction n̄( j)/N in the mutant class

j with µ = 4.9× 10−5, ν = 5.1 × 10−5 and L = 100. The distribution is independent of

the population size N, and matches with the deterministic solution (2.6) shown by solid line.

The inset shows the average fraction of mutations relative to the wildtype as a function of

recombination probability r for L = 300, N = 300 and µ = 10−4 when ν = µ (•) and 0.5µ
(N). The solid lines give the theoretical prediction (2.7).

2.4.2 Recombining population

When the recombination probability is equal to half, as the sequence loci evolve indepen-

dently, the results from single locus theory are expected to hold. In this case, the frequency of

mutations is given exactly by [38, 63]

j̄1 =
µ

µ +ν
(2.11)

Thus the average number of mutations in the two limiting cases, namely for a nonrecombining

population (r = 0) and a freely recombining one (r = 1/2), is same. Furthermore, the results
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of our numerical simulations displayed in the inset of Fig. 2.1 for 0 ≤ r ≤ 1/2 show that the

average fraction q is independent of the recombination probability.

2.5 Finite population under selection

2.5.1 Effect of sequence length

Our numerical simulations show that, unlike in the deterministic case, the fraction of delete-

rious mutations initially varies with the sequence length and approaches a constant value for

long enough sequences. Motivated by the discussion for the deterministic model, we consider

the three cases when the sequence length is large.

1. The limit in which µ,ν,s are kept fixed but the sequence length is increased has been

studied in previous works to gauge the effect of Hill-Robertson interference on the fraction

of deleterious mutations [45, 48] and to understand the effect of nonrecombining regions of

different lengths in the genome of various species [45, 64]. Here for a given Ns, the aver-

age fraction of deleterious mutations is found to increase with increasing sequence length,

but saturates to a finite constant smaller than unity for long sequences. Our simulation data

for minimum number of deleterious mutations shown in Fig. 2.2 is also consistent with this

observation.

2. When Ud and ν are kept finite and sequence length is increased, our simulations show

that for long enough sequences, the average number of deleterious mutations j̄ is a constant,

as in the deterministic model.

3. In the rest of the Chapter, we will consider the biologically relevant limit in which

the genome mutation rates Ub and Ud remain finite, as the number of loci in the sequence

is increased [65]. We find that unlike in the deterministic case, here the average fraction of

deleterious mutations is finite and sensitive to the beneficial mutation rate. Figure 2.3 shows

that the fraction j̄ decreases to a constant value, as the sequence length is increased. The data

shown in the other figures of this Chapter refers to this large-L limit.
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Fig. 2.2 Figure shows the minimum fraction of deleterious mutations with genome length L.

Other parameters are N = 100,µ = 0.008,ν = 0.00008 and s = 0.05.

2.5.2 Nonrecombining population

The neutral Moran model described in the last section can be straightforwardly generalised

to include selection, but we find that the evolution equation for the average number distribu-

tion n̄( j) does not close in the presence of selection i.e. it involves quantities that can not be

expressed in terms of n̄( j). Therefore to understand the population size dependence of the av-

erage frequency q of deleterious mutations, we use the results obtained in the last two sections,

and employ an analytical argument which is described below.

2.5.2.1 Small and very large populations

Figures 2.4 and 2.5 show that the fraction of disadvantageous mutations decreases monoton-

ically with the population size N. When the selection is weak (Ns ≪ 1), the fraction q is
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Fig. 2.3 Variation of minimum number jm (broken line with �) and average number j̄ (solid

line with ◦) of deleterious mutations with sequence length L for N = 200, s = 2×10−2, Ud =
10−1 and Ub = 5×10−2.

expected to be close to the neutral value (2.7), in agreement with the data in Figs. 2.4 and 2.5.

For very large populations, the deterministic solution (2.5) is expected to hold, and Fig. 2.5

clearly shows that this expectation is borne out by numerical simulations.

2.5.2.2 Moderately large populations

We now discuss a rate matching argument that allows us to find the minimum number jm of

deleterious mutations in the population. The basic idea is that if beneficial mutations are ne-

glected, due to stochastic fluctuations, all the individuals in the least-loaded fitness class jm

will acquire deleterious mutations and it will get lost from the population at a degeneration

rate r−jm [1, 2]. However due to beneficial back mutations, this process can be reversed and

the population in the fitness class jm will be regenerated at a rate r+jm . In the stationary state,
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Fig. 2.4 Directional selection and rare beneficial mutations: Figure shows the average fre-

quency of disadvantageous mutations as a function of population size when Ud = 10−1,

Ub = 10−3, s = 10−2 and L = 100. For nonrecombining population, the line shows the best fit

curve 0.087ln(Ns)+0.98 to the numerical data and for freely recombining population, (2.17)

is shown. The broken lines joining the numerical data for r = 10−2 and r = 10−1 are a guide

to the eye. The solid line at the bottom is the deterministic expression (2.5) and the one at

the top shows the prediction (2.7) from the neutral theory. The inset shows the nonmonotonic

behavior of the difference between the deleterious mutations in a nonrecombining and freely

recombining population for N = 1000,L = 100,Ud = 10−1 and Ub = 10−3.

on equating these two rates, the least-loaded fitness class jm can be found [51]. The vari-

ation of these rates with the fitness class is shown in the inset of Fig. 2.6, and we observe

that with increasing number of deleterious mutations, the degeneration rate decreases while

the regeneration rate increases. This is a direct consequence of the fact that for the fitness-

dependent mutation scheme considered here (refer Section 2.2), the total deleterious mutation

rate (L− j)µ decreases with increasing j, but the beneficial mutation rate jν decreases with

decreasing j.
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Fig. 2.5 Directional selection and frequent beneficial mutations: Figure shows the average

frequency of disadvantageous mutations as a function of population size when L = 100,s =
10−2,Ud = 10−2,Ub = 10Ud (main) and L = 300,s= 2×10−2,Ud = 10−1,Ub = 0.5Ud (inset).

For freely recombining population, (2.17) is shown while rest of the curves are a guide to the

eye. The solid line at the bottom is the deterministic expression (2.5) and the one at the top

shows the prediction (2.7) from the neutral theory.

In the absence of beneficial mutations, as shown in Appendix A.3, the average number

of individuals in the least-loaded fitness class J is given by nJ = NX
(0)
J (J) = N(1−µ/s)L−J

which grows exponentially with J. As a result, an initially fast-clicking ratchet with nJs ≪ 1

crosses over to a slow-clicking ratchet with nJs ≫ 1, when nJs is of order unity [2, 66]. Using

a diffusion theory for the slow ratchet [67, 34, 66], we find that when nJ ≫ 1, the degeneration

rate is given by

r−J =

s

NX
(0)
J (J)c3s3

π
e−csNX

(0)
J (J) (2.12)



2.5 Finite population under selection 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  1000  10000  100000  1e+06

j m
/L

N

 0.01

 0  20  40  60  80  100

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 20  40  60  80  100

ra
te

J

rJ
- 

rJ
+

Fig. 2.6 Behavior of least-loaded class: Main figure shows the logarithmic decrease of the dele-

terious mutation fraction jm/L with population size N when beneficial mutations are rare. The

theoretical prediction (2.15) is shown with a best fit for the intercept as 1.437. The parameters

are s = 10−2,Ud = 10−1,Ub = 10−3 and L = 100. Bottom, left inset: Plot to show the ex-

ponential decay of jm/L as predicted from (2.16) when beneficial mutations occur frequently.

The line joining the points is a guide to the eye. Here Ub = 10−1 and Ud = 10−2, and the other

parameters are same as those in the main figure. Top, right inset: Degeneration and regenera-

tion rates calculated in numerical simulations starting from all the individuals in the best and

worst fitness class respectively. Parameters: L = 100,N = 50,Ud = 5×10−2,Ub = 5×10−3

and s = 10−2.

where

X
(0)
J (J)≈ e−

Ud
s (1− J

L) (2.13)

and c is a number of order unity [68, 69]. When deleterious mutations are absent, a maladapted

population adapts at a rate that depends on the number NUb of beneficial mutants produced

per generation. For NUb ≪ 1, the beneficial mutants arise one at a time and go to fixation
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Fig. 2.7 Distribution of the average fraction of individuals in each mutant class for a completely

linked sequence for various population sizes, and L = 100, Ud = 10−1, Ub = 10−3 and s =
10−2.

sequentially, while they interfere with each other for NUb ≫ 1 [35]. The regeneration rate in

these two parameter regimes is given by [70, 51]

r+j ∼







2sNUb (J/L) , NUb ≪ 1

s lnN

ln2Ub

f (J)

L
, NUb ≫ 1 (2.14)

where, our numerical simulations for large populations indicate that f (J) is of the form δ1

√
J+

δ2J. The above equation shows that the rate r+J depends weakly on N, and increases linearly

with J for large J.

i. Rare beneficial mutations (Ub ≪Ud): An expression for jm can be obtained by matching

the rates (2.12) and (2.14). But as the degeneration rate decays fast with N whereas regenera-
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tion rate depends weakly on population size, we may treat the rate r+jm as a constant in N. This

simplification implies that r−jm ∼ e
−csNX

(0)
jm

( jm) ∼ 1 which immediately leads to

jm

L
∼− s

Ud

ln(Ns) (2.15)

Our analytical result (2.15) is compared with the results of numerical simulations in Fig. 2.6

and for a wide range of population sizes, we see a good agreement. Figure 2.7 shows that

the average population fraction is distributed over a narrow range of fitness classes [41], and

therefore we may expect j̄ to behave in a manner similar to jm. Indeed as shown in Fig. 2.4, the

average fraction of disadvantageous mutations also decreases logarithmically with population

size, albeit with a prefactor smaller than s/Ud .

ii. Frequent beneficial mutations (Ub ≫ Ud): When Ub ≫ Ud , the average frequency of

deleterious mutations lies between the neutral value µ/ν (refer (2.7)) and the deterministic

value µ/(s+ν) (refer (2.5)), and thus q ≪ 1 for a wide range of population sizes. This implies

that jm/L is also small compared to unity. Using this in (2.13), and that the degeneration rate

r+jm is linear in jm, we have

jm

L
∼ e−csNe−Ud/s

(2.16)

which decreases exponentially fast with population size and is consistent with our numeri-

cal observations shown in the inset of Fig. 2.6. Same behaviour is observed for the average

fraction of deleterious mutations j̄/L, refer Fig. 2.5.

2.5.3 Recombining population

Having discussed the case of complete linkage (r = 0), we now turn to the limit of com-

pletely unlinked loci (r = 1/2) where single locus theory applies. When selection is present,

a diffusion theory calculation [38] gives the frequency of deleterious mutations for a haploid

population to be [71]

j̄1 =
µ

µ +ν
1F1(2Nµ +1,2N(µ +ν)+1,−2Ns)

1F1(2Nµ,2N(µ +ν),−2Ns)
(2.17)
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where 1F1(a,b,z) is the confluent hypergeometric function. For s = 0, the above expression

reduces to (2.11). When Ns is small, we have

j̄1 =

�

1+
ν

µ
e2Ns

�−1

(2.18)

which may be obtained either from (2.17) [41, 42, 72, 49] or a rate matching argument [42, 49].

When Ns is large, (2.17) approaches µ/s [71] as one would also expect from the deterministic

solution (2.5). Thus as Figs. 2.4 and 2.5 show, the fraction q decreases exponentially fast in

a reverse sigmoidal fashion, as the population size N is increased when there is no linkage

between loci.

As in the two extreme cases of complete linkage and no linkage, for 0 < r < 1/2, we dis-

cern three distinct regimes in the behavior of the fraction q of disadvantageous mutations. Our

numerical data in Figs. 2.4 and 2.5 shows that the fraction q is roughly constant in population

size and recombination rate when the population is small or very large. But for moderately

large population, q decreases with increasing population size and the general effect of recom-

bination is to decrease the equilibrium frequency of the deleterious mutations.

2.6 Discussion

In this Chapter, we examined the stationary state of a model in which both beneficial and dele-

terious mutations can occur. The multilocus model studied here differs from that in previous

works [73, 51] where these mutation rates are assumed to be independent of the fitness. Here

we considered a biologically realistic situation of forward and backward mutations where the

rates depend linearly on the logarithmic fitness. In the general scenario where compensatory

mutations can occur, nonlinear relationship between the mutation rates and logarithmic fitness

has been experimentally observed [22]. Here we are mainly concerned with the variation of

the average number j̄ of deleterious mutations with the population size.
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2.6.1 Exact bounds on the number of deleterious mutations

For an infinitely large and nonrecombining population, exact results for the population fre-

quency have been obtained for special choice of parameters [58, 74, 75, 61], and here these

results were generalised to obtain exact stationary state and dynamics. Since we consider

non-epistatic fitnesses, the stationary state solution does not depend on the recombination rate

[62]. Moreover as the deterministic limit corresponds to very strong selection which is not

favorable for disadvantageous mutations, this analysis provides a lower bound on the average

number j̄ of deleterious mutations.

The upper bound on j̄ can be found by considering the neutral limit for a finite population.

For completely linked loci, we calculated the average frequency of mutations (relative to the

wildtype) exactly, and found it to be independent of the population size. Although the latter re-

sult is known from previous studies on one locus models [63], to our knowledge, such a result

has not been obtained using a multilocus model. Using numerical simulations and the known

results for freely recombining population [38, 63], we found that the number j̄ is independent

of the recombination rate in the neutral limit as well. This happens because in the absence

of selection, as random genetic drift creates positive and negative linkage disequilibrium (LD)

with equal probability, the average LD vanishes [76, 77] and therefore the average number j̄

is not affected by recombination. It should however be noted that the higher moments of the

number of mutations may depend on both the recombination rate and population size [76].

2.6.2 Effect of drift, selection and recombination

To get an insight into the problem when both selection and population size are finite and recom-

bination is absent, we used a rate matching argument which states that stationarity is achieved

when the rate at which the least-loaded fitness class is lost due to deleterious mutations equals

the rate at which it is regenerated by beneficial mutations [51]. A similar argument has been

used previously by [42], but in a single locus setting, to arrive at the equilibrium fraction of

deleterious mutations given in (2.18). In recent years, some analytical understanding of the

rate at which an asexual population declines in fitness [67, 34, 66, 75, 78, 68, 69] and adapts
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Fig. 2.8 Figure shows the decrease in equilibrium fraction of deleterious mutation with selec-

tion coefficient s. Other parameters used are N = 1000,µ = 0.001,ν = 0.00001 and L = 100.

[35, 79, 36, 80, 70] has become available in multilocus models. Using these results and the

rate balancing argument described above, we found analytical expressions for the minimum

number of deleterious mutations that a finite asexual population under selection carries in the

stationary state.

For a nonrecombining population, our main result is that the average fraction q of delete-

rious mutations decreases from the neutral value (2.7) towards the deterministic fraction (2.5),

as population size is increased. If beneficial mutations are rare (Ub ≪ Ud), as is the case in

adapting microbial populations [57], q changes logarithmically with population size. In an

adaptation experiment on bacteriophage, it was observed that when the population size is in-

creased by a factor ten, the logarithmic fitness increased mildly [22], which is consistent with

the weak N-dependence seen here. Experimental data [55, 56] on Drosophila shows that the

mutation rate from preferred to unpreferred codon is twice as much as that for the reverse
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mutations. In such a case where Ub ∼Ud , as the inset of Fig. 2.5 indicates, q decreases faster

than the logarithm of population size, but we do not have an analytical form for it. However in

the extreme case when Ub ≫Ud , we find that the fraction q decreases exponentially fast with

the population size. Similar qualitative behaviour, namely, the decrease in j̄ with increasing

population size is seen when recombination is nonzero, refer Figs. 2.4 and 2.5. When the

population size is kept fixed and the selection coefficient is increased, the average fraction of

deleterious mutations decreases as one would intuitively expect, see Fig. 2.8. Although the

rate balancing argument used here explains the population size dependence of the fraction of

deleterious mutations, we have not been able to obtain a complete analytical understanding

of its variation with selection coefficient since the s-dependence of the function c in the de-

generation rate in (2.12) is not known. We also performed numerical simulations keeping the

product Ns constant (= 10), and find that j̄ is not a function of Ns unlike the one locus theory

prediction (2.17). For s = 0.005, we obtained j̄ = 13.7 which increased to 28.8 on halving s

which suggests that it depends more strongly on s than N which is consistent with (2.15).

For a given Ns, we find that the recombination reduces the frequency of the deleterious

mutations (also see [81]). As discussed above, in a finite population, due to random genetic

drift, both positive and negative LD are created. If LD is positive, the population consists

of individuals with extreme fitnesses on which selection can act efficiently and thus removes

the LD. On the other hand, when LD is negative, as most of the individuals are likely to have

similar fitnesses, selection is ineffective in removing LD. Thus in the presence of selection, the

average LD in a nonrecombining population is negative [33, 77]. But once recombination is

introduced, it will create individuals with extreme fitnesses thereby helping selection to weed

out the deleterious mutations, and thus decreasing j̄. The effect is large for intermediate values

of Ns since this regime corresponds to both selection and drift having a strong effect. From

the results in the neutral and deterministic limit, we expect that the difference in the number

of deleterious mutations carried by a nonrecombining and recombining population is nearly

zero when s ≪ 1/N (weak selection) and s ≫ 1/N (strong selection). Thus, as shown in the

inset of Fig. 2.4, the maximum advantage of recombination occurs at an intermediate value of

selection coefficient as has also been observed in other studies [82].
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Fig. 2.9 Figure shows the effective population size Ne (♦) given by (2.19) where jm is shown

in Fig. 2.6, and click time of the Muller’s ratchet with deleterious mutation rate U ′
d and selec-

tion coefficient s′, when there are finite number of background selection sites with reversible

mutations. The click time of the ratchet for (i) a population of size N and without back-

ground selection sites (△), (ii) a population of size N with background selection sites (◦) and

(iii) a population of size Ne without background selection sites (•) are shown. Parameters:

L = 100,s = 0.01,Ud = 0.1,Ub = 0.001,U ′
d = 0.015,s′ = 0.001.

Although recombination reduces the number of deleterious mutations, the extent to which

it does so depends on how common the beneficial mutations are compared to the deleterious

ones. In an adapting asexual population where beneficial mutations occur rarely [57], even

slight recombination reduces j̄ considerably indicating the advantage of recombination during

adaptation [54, 77]. On the other hand, in the codon bias problem where back mutation rates

are comparable to the forward ones [55, 56], the fraction of unpreferred codons is given by

(2.18) if the loci are assumed to be completely unlinked, but as the inset of Fig. 2.5 shows,

linkage increases the unpreferred codon frequency moderately [45–47].
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2.7 Applications and Open questions

2.7.1 Effect of background selection

Background selection is a type of Hill-Robertson effect [83] and is known to increase the

rate at which the Muller’s ratchet clicks [73, 84]. In a finite, nonrecombining population

with an infinitely long sequence in which both deleterious and beneficial mutations occur at L

background selection sites, and deleterious mutations accumulate at rest of the sites [84], we

find that the ratchet clicking time is considerably reduced from the situation when there are

no background selection sites (see Fig. 2.9). If the background selection sites (BGS) remain

at equilibrium in the presence of other linked loci also, they affect the evolutionary dynamics

at other sites, and their effect can be quantified by a reduction in the effective population size

to the number of individuals carrying the minimum number of deleterious mutations at BGS

[83, 73]. Since the minimum number of deleterious mutations in the BGS is jm, we require the

population fraction in the class jm. For large populations with Ns ≫ 1 where the deterministic

theory is expected to hold, using (2.9) and (2.13), we obtain

Ne = Ne−
Ud (1−

jm
L

)

s (2.19)

where jm is a function of population size N. The ratchet time with background selection for

a population of size N is found to be well approximated by the ratchet time without it for

a population of size Ne as shown in Fig. 2.9. From the results for jm when Ub ≪ Ud , we

expect Ne in (2.19) to increase linearly with N for small and large populations. But for the

intermediate range of population sizes, using (2.15) in (2.19) above, we find the effective

population size to be independent of N. These predictions were tested numerically and as

shown in Fig. 2.9, the effective population size and the ratchet time remain roughly constant

when the actual population size is varied over three orders of magnitude .
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2.7.2 Codon usage bias

Our results have implications for the codon usage bias problem in the context of which the

model studied here was introduced [41, 42]. To apply the two-allele model to amino acids

encoded by more than 2 synonymous codons, the preferred codon is represented by 0 allele,

and the other codons collectively by 1 allele. A comparison of two allele model with the 4

allele model [55] showed that these two models give the same allele frequency spectrum when

there is no mutational bias, but there is a slight difference when there is a mutational bias (Fig.2

in [55]). Previous numerical results [41, 46] show that the preferred codon frequency changes

slower than that predicted by (2.18) which neglects interference effects arising due to linkage.

Also, recent studies have observed a reduced level of codon usage bias in genome regions

with low frequency of recombination [64]. Our results shown in Fig. 2.5 also support this

conclusion and for weak selection, where codon bias problem lies [39], we find that j̄ depends

weakly on the population size. This can be seen as follows: If we assume that mutations are

Poisson distributed, a simple calculation shows that j̄ ∼ ln(N/ jm), where jm is given by (2.15).

Thus the interference between linked loci can maintain intermediate codon bias levels for a

wide range of population sizes [85, 46].

Here we investigated the effect of linkage using numerical simulations, but an analytical

expression for the average j̄ as a function of recombination probability is desirable. Also, in

the model discussed here, it was assumed that the number of beneficial mutations increases lin-

early with average number of deleterious mutations. However in an adaptation experiment on

bacteriophage [22], a nonlinear relationship between these two quantities has been observed.

An extension of these results to the more general cases of compensatory mutations would be

interesting.



Chapter 3

Effect of beneficial mutations in an

infinitely long genome with constant

mutation rates

3.1 Introduction

In the previous Chapter, the role of beneficial mutations in attaining a stationary state for a

finite length genome with multiplicative or additive fitness when the mutation rates depend lin-

early on the sequence fitness was discussed. A complete solution of the genotypic frequency

distribution is exactly known [58, 3] for this model, and has been utilized, for example, in

modelling codon usage bias [41–43]. In this Chapter, we extend our study to consider a vari-

ant of this model in which deleterious and beneficial mutations rates are independent of the

sequence fitness. This model has recently appeared in various contexts such as adaptive evolu-

tion [86, 36, 70], evolution of sex [51] and evolution of mutation rates [27]. The relationship

between these two mutation schemes is discussed in detail in Appendix B.1.

Here, we focus on understanding a model with fitness-independent mutation rates in the

deterministic limit (N → ∞), which constitutes an important step towards an understanding of

more complex and realistic finite size populations that evolve stochastically. When beneficial

mutations are ignored, the exact solution in the stationary state and for the dynamics of the
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population fraction is known; in particular, at mutation-selection balance, the frequency is

Poisson-distributed with a mean given by the ratio of the deleterious mutation rate to selec-

tion coefficient [4, 2, 74, 75]. The short time dynamics of the frequency distribution when

beneficial mutations are also allowed has been quite well-studied [70] and some approximate

results at mutation-selection equilibrium were obtained recently [27]. Here we find an exact

expression for the frequency distribution at all times. We also numerically studied the case of

finite size population and the preliminary results obtained are discussed in last Appendix.

In the following section, we define the model, discuss some limiting cases and explain the

relation of our work to the existing literature. We then proceed to find an exact solution of

the stationary state as well as the dynamics using an eigenfunction expansion method in Sec-

tion 3.3. Besides the exact results, we also provide accurate approximations for the frequency

distribution when the selection coefficient is larger or smaller than the mutation rates. Sections

3.4 and 3.5, respectively, deal with these approximations in the stationary state and for the dy-

namics of the frequency distribution. A discussion of the results follows in the concluding

section.

3.2 Model

We consider an infinitely large asexual population of infinitely long diallelic sequences evolv-

ing in continuous time. All individuals carrying j ≥ 0 deleterious mutations relative to the

fittest individual are assumed to have the same (Malthusian) fitness w( j) = −s j,s ≥ 0 and

said to belong to the fitness class j. We also assume a single-step mutation scheme in which

a deleterious (beneficial) mutation increases (decreases) the fitness class by one and occurs at

rate Ud (Ub), but mutations to other classes are ignored. Then the population fraction X( j, t)

in the jth fitness class at time t obeys the following differential-difference equations:

Ẋ(0, t) =UbX(1, t)−UdX(0, t)+ sC1(t)X(0, t) , (3.1a)

Ẋ( j, t) =UbX( j+1, t)+UdX( j−1, t)−UX( j, t)− s( j−C1(t))X( j, t) , j ≥ 1 . (3.1b)
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In the above equations, U = Ud +Ub is the total mutation rate and C1(t) = ∑∞
j=0 j X( j, t) is

the average number of deleterious mutations in the population at time t. In the stationary state

where the LHS of (3.1a) and (3.1b) is zero, we will denote the steady state fraction by X( j).

It is easy to verify that the above set of equations respect the normalisation condition,

∞

∑
j=0

X( j, t) = 1 , t ≥ 0 . (3.2)

We also have the boundary condition

X( j, t)
j→∞

−→ 0 , (3.3)

which ensures that the total fraction remains finite at all times. To complete the definition

of the model, we also need to specify the initial condition X( j,0) for all j. The analysis in

Sections 3.3 and 3.4 holds for arbitrary initial conditions but in Section 3.5, we will assume

that the population is initially localised in the fitness class j0.

The time evolution equations above for the frequency X( j, t) are defined for j ≥ 0 and

therefore the maximum fitness is zero. However, (3.1b) has been used without an upper bound

on fitness to describe the adaptation dynamics [86, 87, 80, 36, 88, 70]. The latter is a rea-

sonable model at short times for a population initially localised in a fitness class with many

deleterious mutations since the frequency in the fitness classes close to the fittest one can then

be neglected. For this model, several works [86, 87, 80, 70] have shown that it does not have

a traveling wave solution, and either a lower cutoff on the frequency modeling a finite popu-

lation size [86] or discrete time dynamics [70] are required to obtain it. In [36], although a

cutoff for the high-fitness edge is imposed in the deterministic model to account for the finite

size of the population, this work also assumes a traveling wave solution for the continuous

time model (see their (4) and (5)). However, as in [86, 87, 80, 70], our analysis of short time

dynamics described in Section 3.5.1 also does not support a traveling wave behavior.

Although dynamics can be studied on an infinite line, a stationary state does not exist if

the fitness is not bounded above. To see this, consider the steady state of (3.1b) by setting the

LHS to be zero. Since the frequency in any fitness class must not be negative and the first two
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terms on the RHS of (3.1b) are positive, their contribution can be balanced if

j > C1 −U/s = j∗ , (3.4)

thus leading to a maximum fitness corresponding to −s j∗. A previous analysis of (3.1b) with

unbounded fitnesses finds a negative frequency distribution in the stationary state and claims

that “in the deterministic limit there is no true stationary state for arbitrary [beneficial muta-

tion rate]..." (p. 1313, [51]). However as discussed above, the loss of positivity is simply a

consequence of the lack of upper bound on the fitness and in Section 3.4, we will show that

the model defined by (3.1a) and (3.1b) has a nontrivial steady state. We also mention that

if we set the maximum fitness to −s j∗ instead of zero, the frequency X(m) = 0,m < j∗ and

X(m+ j),m ≥ j∗ is given by the solution X( j) of (3.1a) and (3.1b) [2].

Equations (3.1a) and (3.1b) are mathematically nontrivial for two reasons: first, they are

nonlinear in the fractions X( j, t) due to the last (selection) term on the RHS and second, they

are second order difference equations in j when both mutation rates are nonzero.

(i) When the beneficial mutations are absent (Ub = 0), in the stationary state, the boundary

equation (3.1a) immediately yields the average number of deleterious mutations, C1 = Ud/s.

This result is very helpful since it renders (3.1b) to be linear in the frequencies and we quickly

arrive at the following well known result [4, 2]:

X( j) =
e−Ud/s

j!

�

Ud

s

� j

[Ub = 0] . (3.5)

The time-dependent frequency has also been obtained using a generating function method and

shown to be Poisson-distributed [75].

(ii) When the deleterious mutations are absent (Ud = 0), the stationary state is trivial (X( j) =

δ j,0). But the short time dynamics can be obtained by extending the method of [75] as de-

scribed in Section 3.5.1 (also, see [87, 80, 70]).
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Ub = 0 Ud = 0 s = 0 all nonzero

Stationary state [4, 2] trivial none Equation (3.27)

Dynamics [75] [87, 80, 70] Equation (B.8) Equation (3.26)

Table 3.1 Summary of the results for the deterministic model defined by (3.1a) and (3.1b)

where Ud and Ub, respectively, denote deleterious and beneficial mutation rate and s is the se-

lection coefficient. In all the cases except when deleterious mutations are absent, it is assumed

that Ub <Ud .

(iii) In the neutral case (s = 0), the nonlinear term on the RHS of (3.1a) and (3.1b) vanishes.

The stationary state frequency is then easily found to be

X( j) =

�

1−Ud

Ub

� �

Ud

Ub

� j

[s = 0,Ud <Ub] . (3.6)

The condition Ud <Ub arises due to the boundary condition (3.3). However, in the parameter

regime where Ub <Ud , the neutral population does not reach a steady state. In Appendix B.2,

we give the exact solution of the neutral dynamics in this parameter regime.

A brief summary of the results in the stationary state and for the dynamics is given in

Table 3.1.

3.3 Exact solution of the population frequency by eigenfunc-

tion expansion method

We now proceed to find the population fraction X( j, t) when all the three parameters, viz.,

s,Ub,Ud are nonzero. In the following discussion, we assume that the mutation rate Ud >Ub

as in biologically realistic situations [89]. Since the equations (3.1a) and (3.1b) are nonlinear

in the fractions X( j, t), we work with the unnormalised variables defined as [90, 91]

Z( j, t) = X( j, t) e−s
R t

0 dt ′ C1(t
′) , (3.7)
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which obey the following linear equations:

Ż(0, t) =UbZ(1, t)−UdZ(0, t) , (3.8a)

Ż( j, t) =UbZ( j+1, t)+UdZ( j−1, t)−UZ( j, t)− s jZ( j, t) , j ≥ 1 . (3.8b)

Summing over j on both sides of (3.7) and using the normalisation condition (3.2), we obtain

the following relationship between the average C1(t) and the unnormalised frequencies Z( j, t):

∞

∑
j=0

Z( j, t) = e−s
R t

0 dt ′ C1(t
′) . (3.9)

Using this in (3.7), we immediately obtain

X( j, t) =
Z( j, t)

∑∞
m=0 Z(m, t)

. (3.10)

It is convenient to further define (p. 139, [92])

Y ( j, t) =

�

Ub

Ud

� j/2

e(
√

Ud−
√

Ub)
2t Z( j, t) , (3.11)

τ = t
p

UbUd , (3.12)

γ = 2−
p

Ub/Ud , (3.13)

S =
p

s/Ub ·
p

s/Ud . (3.14)

In terms of these variables, we have

∂Y (0,τ)

∂τ
= Y (1,τ)− γY (0,τ) , (3.15a)

∂Y ( j,τ)

∂τ
= Y ( j+1,τ)+Y ( j−1,τ)− (2+S j)Y( j,τ) , j ≥ 1 . (3.15b)

The above set of equations involving two independent variables, viz., space and time can be

solved by the eigenfunction expansion method (Chapter 5 and 6, [92]). Since the differential

operator ∂/∂τ has eigenfunctions e−λτ with eigenvalues −λ , on expanding Y ( j,τ) as a linear
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combination of these eigenfunctions as

Y ( j,τ) = ∑
λ

cλ e−λτ φ j(λ ) , j ≥ 0 , (3.16)

we obtain difference equations in one independent variable:

φ1 − (γ −λ )φ0 = 0 , (3.17a)

φ j+1 +φ j−1 − (2+S j−λ )φ j = 0 , j ≥ 1 . (3.17b)

Equation (3.17b) is an eigenvalue equation for a real symmetric matrix with eigenfunction φ j

and eigenvalue −λ . For such a matrix, it is possible to find a complete set of eigenvectors

[93]. Moreover, the eigenvalues are real and the eigenfunctions corresponding to different

eigenvalues are orthogonal and can be normalised to unity:

∞

∑
j=0

φ j(λ )φ j(λ
′) = δλ ,λ ′ . (3.18)

The eigenvalues are determined by the boundary condition (3.17a) as explained below. The

constants cλ ’s in (3.16) can be found using the initial condition and are given by

cλ =
∞

∑
m=0

φm(λ ) Y (m,0) , (3.19)

=
∞

∑
m=0

φm(λ )

�

Ub

Ud

�m/2

X(m,0) . (3.20)

This can be seen by using (3.16) at t = 0 and using the orthonormality condition (3.18).

Our remaining task now is to find the eigenfunctions φ j. We remark that if the fitness

class j is treated as a continuous variable, (3.17b) reduces to a time-independent Schrödinger

equation for a particle in a linear potential for which the eigenfunctions are known to be Airy

function (and plane wave when S is zero) [94]. Here we are interested in finding the eigen-

functions in discrete fitness space with (Robin) boundary condition (3.17a). In the neutral case

(S = 0), exact eigenfunctions and frequency Y ( j, t) are obtained in Appendix B.2. When the
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parameter S is nonzero, the solution of (3.17b) is a linear combination of the Bessel function

of first and second kind with order ν and argument z that are denoted by Jν(z) and Yν(z),

respectively [95] (also, see Appendix B.3):

φ j(λ ) = A(λ )J
j+ 2−λ

S

�

2

S

�

+A′(λ )Y
j+ 2−λ

S

�

2

S

�

, j ≥ 0 . (3.21)

It is easy to check that (3.21) satisfies the eigenvalue equation (3.17b) using the recurrence

relation for the Bessel function Kν(z) given by (9.1.27, [96])

Kν−1(z)+Kν+1(z) =
2ν

z
Kν(z) , (3.22)

where K denotes J,Y . To find the constants A,A′, we invoke the boundary condition (3.3)

that the frequency X( j, t)→ 0 as the fitness class j → ∞. From (3.7) and (3.11), it follows

that Z( j, t) and Y ( j, t) also obey this boundary condition. Using this large j behavior, we find

that the coefficient A′ is zero since Yν(z) diverges for large ν (9.3.1, [96]). Then using the

orthonormality condition (3.18), we find that

A2(λ ) =
1

∑∞
j=0 J2

j+ 2−λ
S



2
S

� . (3.23)

The eigenvalues are determined using (3.21) in the boundary condition (3.17a) at j = 0

and satisfy

J
1+ 2−λ

S

�

2

S

�

− (γ −λ )J2−λ
S

�

2

S

�

= 0 . (3.24)

Putting all the pieces together, we finally obtain

X( j, t) ∝

�

Ud

Ub

� j/2

∑
λ

cλ A(λ )J
j+ 2−λ

S

�

2

S

�

e−λ
√

UbUdt , (3.25)

where cλ and A(λ ) are, respectively, given by (3.20) and (3.23), the eigenvalues by (3.24) and

the proportionality constant is determined by the normalisation condition (3.2). If λα ,α ≥ 0



3.4 Stationary state frequency 47

denotes the (α +1)th minimum eigenvalue, the above equation can be rewritten as

X( j, t) =

�

Ud

Ub

� j/2

∑∞
α=0 cλα

A(λα) J
j+ 2−λα

S



2
S

�

e−(λα−λ0)
√

UbUdt

∑∞
m=0

�

Ud

Ub

�m/2

∑∞
α=0 cλα

A(λα) J
m+ 2−λα

S



2
S

�

e−(λα−λ0)
√

UbUdt

. (3.26)

This result can be verified by plugging it in (3.1a) and (3.1b) and using the relationship (3.9)

between the normalisation constant and the mean.

3.4 Stationary state frequency

To obtain the steady state, we take the limit t → ∞ in (3.26) and find that only the minimum

eigenvalue λ0 contributes to the sum over the eigenvalues and the result is independent of the

initial condition. We thus obtain the exact stationary state frequency for an infinitely large

population evolving under the joint action of deleterious and beneficial mutations and non-

epistatic selection to be

X( j) =

�

Ud

Ub

� j/2

J
j+

2−λ0
S



2
S

�

∑∞
m=0

�

Ud

Ub

�m/2

J
m+

2−λ0
S



2
S

�

, (3.27)

where λ0 is the minimum eigenvalue determined from (3.24). Before proceeding further, we

note that the Bessel function Jν(z) is an oscillatory function in both ν and z. However, since

the eigenfunction corresponding to the minimum eigenvalue for a real symmetric matrix with

homogeneous boundary condition cannot have zeros (p. 452, [93]), the solution (3.27) satisfy-

ing (3.17a) and (3.17b) is guaranteed to be positive for all j ≥ 0.

Using the above solution in (3.1a), we find that the average number of deleterious muta-

tions in the steady state is given exactly by
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Fig. 3.1 Variation of the minimum and second minimum eigenvalue λ0 and λ1 with S. The

points are obtained by solving (3.24) numerically and the lines show the approximate expres-

sions (3.37) and (3.31) for λ0 and (3.48) for λ1 for Ub = 0.01 Ud,s = 0.001.

C1 =
Ud

s
− γ −λ0

S
(3.28)

=
U

s
− 2−λ0

S
. (3.29)

As Fig. 3.1 shows, the minimum eigenvalue λ0 initially increases with S and approaches a

constant asymptotically. Taking S → ∞ in (3.24) and using that J0(0) = 1,J1(0) = 0 [96],

we find that λ0 → γ (also, see (3.31) below). Then, from (3.28), it follows that beneficial

mutations decrease the average number of deleterious mutations as also expected intuitively.

Moreover, using the inequalities λ0 ≤ γ ≤ 2 in (3.29), it is easily checked that the condition

(3.4) for the existence of the stationary state is satisfied.
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Fig. 3.2 Main figure shows the exact mean C1 and variance C2 in the stationary state given,

respectively, by (3.28) and (3.30) for Ub = 0.01 Ud,s= 0.001. The lines show the approximate

expressions (3.34), (3.38) for mean and (3.35), (3.39) for variance. The variance is scaled by

a factor 2 for clarity. The exact ratio C2/C1 shown in the inset supports the non-Poissonian

nature of the frequency distribution in the steady state.

The higher order cumulants such as variance and skewness can be found using a cumulant

generating function as detailed in Appendix B.4. Alternatively, on multiplying both sides

of (3.1b) in the steady state by j and summing over j, we find the stationary state variance

C2 = j2 − j
2

to be

C2 =
Ud

s
− Ub

s
(1−X(0)) , (3.30)

which shows that beneficial mutations decrease the width of the distribution also. Furthermore,

as the inset of Fig. 3.2 shows, the variance to mean ratio is greater than one and therefore the

frequency distribution is non-Poissonian when Ub is nonzero.
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Fig. 3.3 Steady state distribution when s ≫ √
UbUd: Comparison of the exact distribution

(3.27) and Poisson distribution (3.5) for Ub = 0.005,s = 0.1,Ud = 0.2 (main) and Ub =
0.01,Ud = 0.05,s = 0.1 (inset).

To obtain some insight into the behavior of the equilibrium frequency given by (3.27)

above, we now consider two parameter regimes where the ratio S of the selection coefficient

to the mutation rates is large or small relative to one.

3.4.1 When the parameter S is large

The parameter S ≫ 1 when (i) Ub < s and (ii) either Ud < s or s <Ud < s2/Ub. When Ub = 0,

as (3.5) shows, the average number of deleterious mutations in the stationary state equals Ud/s.

Therefore, when Ub is turned on, we expect that beneficial mutations do not have a significant

effect when Ud < s but they can decrease the mean C1 substantially when Ud > s. The analysis

given below is in agreement with these expectations.
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As described in Appendix B.5 and shown in Fig. 3.1, the minimum eigenvalue λ0 when S

is large is given by

λ0 ≈ γ −S−1 . (3.31)

On plugging (3.31) in (3.27), we obtain

X( j) ∝

�

Ud

Ub

� j/2

J
j+

Ub
s
(1+

Ud
s
)

�

2

S

�

, (3.32)

which, on using the series representation (B.19) of Bessel function, yields

X( j) ∝

�

Ud

s

� j ∞

∑
m=0

�

UbUd

s2

�m (−1)m

m!(m+ j+ Ub

s
(1+ Ud

s
))!

. (3.33)

We check that the above solution reduces to (3.5) when Ub = 0. To see the effect of beneficial

mutations, it is useful to expand (3.33) in a power series in Ub/s as was done recently in

[27] and described here briefly in Appendix B.6. This discussion as also Fig. 3.3 show that a

nonzero Ub has a significant effect when Ud > s.

Furthermore, using (3.31) in the exact expression (3.28) for the average C1, we find that

[27]

C1 ≈
Ud

s

�

1−Ub

s

�

. (3.34)

Since Ub/s is small for large S, using (3.5) for the frequency X(0) in (3.30), we find that the

variance is well approximated by

C2 ≈ Ud

s
−Ub

s
(1− e−Ud/s) , (3.35)

=











C1 , Ud ≪ s ,

Ud−Ub

s
, Ud ≫ s .

(3.36)

Thus the variance is close to mean (3.34) when Ud/s ≪ 1 but larger in the opposite param-

eter regime. The above approximations are tested against the corresponding exact results in

Fig. 3.2 and we see a good agreement.
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Fig. 3.4 Steady state distribution when s ≪ √
UbUd: Comparison of the exact distribution

(3.27), Gaussian approximation (3.40) and Poisson distribution (3.5). The parameters in the

top and bottom panel are s = 0.003,Ub = 0.009,Ud = 0.1 and Ub = 0.001, s= 0.005,Ud = 0.1,

respectively.

3.4.2 When the parameter S is small

The parameter S ≪ 1 when (i) s<Ud and (ii) either s<Ub or Ub < s <
√

UbUd. A biologically

relevant situation where S can be small arises in the case of mutators where mutation rates can

be as high as 10−2 [97]. Then for selection coefficient in the range 10−4 −10−3, one obtains

S ∼ 0.01−0.1.

For small S, the minimum eigenvalue shown in Fig. 3.1 is calculated in Appendix B.7 and

given by

λ0 =

�

9π

8

�2/3

S2/3 − S

γ −1
. (3.37)
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Using this in (3.28), we find that

C1 ≈
Ud −Ub

s
−
"

2

S
−
�

9π

8

�2/3
1

S1/3
+

1

γ −1

#

. (3.38)

As our numerical analysis of (3.27) shows that the fraction X(0)∼ e−1/S for small S (also, see

Fig. 3.4), the variance (3.30) can be approximated by

C2 ≈
Ud −Ub

s
, (3.39)

as also seen in (3.35) when s <Ud . The above equation also shows that the variance is larger

than the mean as illustrated in Fig. 3.2. The above approximations are in good agreement with

the exact results, see Fig. 3.2.

An analysis of the frequency distribution (3.27) for small S described in Appendix B.8

suggests a Gaussian approximation for the frequency distribution,

X( j)≈
r

1

2πC2
exp

�

−( j−C1)
2

2C2

�

, (3.40)

where the mean and variance are given, respectively, by (3.38) and (3.39). Figure 3.4 compares

the above approximation with the exact distribution (3.27) and we see a quite good agreement.

However, it should be noted that unlike (3.40), the exact frequency distribution is not sym-

metric about the mean. The skewness defined as C3/C
3/2
2 , where C3 is the third cumulant,

is a measure of the asymmetry of the distribution. Due to (B.18) in the stationary state, on

neglecting the frequency X(0), we find a nonzero C3 =U/s. Figure 3.4 also shows that both

mean and variance are considerably affected by beneficial mutations when s <Ub <Ud.

3.5 Dynamics of the population frequency

In the last section, we discussed the stationary state and now turn to the dynamics of the

frequency distribution. We will focus on the time dependence of the average C1(t) starting



54 Effect of beneficial mutations in an infinitely long genome with constant mutation rates

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  1000  2000  3000  4000  5000  6000  7000

C
1(

t)-
C

1

time

S=0.1

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  500  1000  1500  2000

S=10

Fig. 3.5 Dynamics of the mean deviation from the stationary state, C1(t)−C1 for two values

of S = s/
√

UbUd with initial population located in the fitness class j0. The exact dynamics

obtained by numerically integrating (3.1a) and (3.1b) are shown by points while the solid

(blue) lines show the short time dynamics (3.45) and the broken (black) line shows the relax-

ation dynamics be−Rt , where the relaxation rate R is given by (3.47). The parameters in the

main and inset are Ub = s = 0.001,Ud = 0.1, j0 = 150,b = 4.515× 108,C1 = 84.8958 and

Ub = 0.0001,s =Ud = 0.01, j0 = 600,b = 71561,C1 = 0.990147, respectively.

from a monomorphic initial condition given by

X( j,0) = δ j, j0 . (3.41)

As the exact expression (3.26) for the time-dependent frequency involves a sum over a large

number of eigenvalues, the dynamics are more efficiently studied by solving the differential

equations (3.1a) and (3.1b) numerically. The results for the mean thus obtained are shown in

Fig. 3.5 for two values of S and, we observe (i) a short time regime where the population is
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Fig. 3.6 Figure shows the dynamics of mean number of deleterious mutation when the popu-

lation starts from j0 = 0 at t = 0, which is below C1 = 84.8958. The short time and relaxation

dynamics are captured by (3.45) and (3.47) respectively. Other parameters are Ub = s = 0.001

and Ud = 0.1.

far from the stationary state, (ii) an intermediate time regime where the mean changes quickly

and (iii) a long time relaxation regime where the population is close to the steady state.

The initially monomorphic population first spreads over the genotypic space due to muta-

tions followed by an increase in the frequency of high fitness genotypes as a result of selection.

At short enough times, one can understand the dynamics away from the stationary state by ig-

noring the boundary at j = 0 (see, Section 3.5.1 below). Note that this holds even if the

population is initially located in the zeroth fitness class because the mean initially increases

for Ud >Ub as shown in Fig. 3.6. However once the population is close to the stationary state

(i.e., C1(t)−C1 . 1 in Fig. 3.5), the boundary at the zeroth fitness class becomes important.

As discussed in Section 3.5.2, at long enough times, it is sufficient to retain the minimum and
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second minimum eigenvalue in the sum over the eigenvalues in (3.26) to determine the time

to relax to the stationary state.

3.5.1 Dynamics far from the stationary state

The dynamics of the nth cumulant Cn(t) are described in Appendix B.4. For the initial condi-

tion (3.41), at short enough times, we can set the frequency in the fittest class to be approxi-

mately zero in (B.16) to obtain

~̇C (t) =−sD̂ ~C (t)+~U , (3.42)

where ~C and ~U are column vectors whose nth element is given by Cn and Ud+(−1)nUb respec-

tively and D̂ is an upper shift matrix with matrix element Dmn = δm+1,n. The above equation

can be straightforwardly solved for arbitrary initial condition and for (3.41), we obtain

Cn(t) =
Un

s
sinh(st)−Un+1

s
(cosh(st)−1)+ j0δn,1 . (3.43)

Using (3.43) in (B.15), the generating function of the population fraction, F(ξ , t)=∑∞
j=0 X( j, t)e−ξ j

can also be obtained and given by

lnF(ξ , t) =− j0ξ −Ud

s
(1− e−st)(1− e−ξ )−Ub

s
(1− est)(eξ −1) . (3.44)

The above result generalises (53) of [87] who obtained it for special values of the parameters.

Due to (3.43), the approximate short time dynamics of mean C1(t) and variance C2(t) are

given by

C1(t) =
Ud

s
(1− e−st)+

Ub

s
(1− est)+ j0 , (3.45)

C2(t) =
Ud

s
(1− e−st)+

Ub

s
(est −1) . (3.46)

The above equations show that for t ≪ 1/s, both mean and variance change linearly with time

with a slope that depends only on the mutation rates but for longer times, the mean varies
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exponentially fast at a rate s−1. The short time dynamics of the mean given by (3.45) are valid

as long as |C1(t)−C1| is large and agree with the numerical results shown in Fig. 3.5.

3.5.2 Dynamics close to the stationary state

When beneficial mutations are absent, the frequency X( j, t) is Poisson-distributed with mean

(Ud/s)(1− e−st) [74, 75] and thus approaches the stationary state at rate s, independent of

the deleterious mutation rate. When the beneficial mutation rate Ub is nonzero, the dynamical

evolution of the frequency is given by (3.26). At large but finite times, it is a good approxi-

mation to retain only the terms containing the minimum and second minimum eigenvalues in

the sum over the eigenvalues in (3.26). Thus the frequency X( j, t) relaxes to the steady state

exponentially fast at rate

R = (λ1 −λ0)
p

UbUd , (3.47)

where λ1 is the second minimum eigenvalue. Unlike λ0, the second minimum eigenvalue λ1

is an increasing function of S as shown in Fig. 3.1.

The second minimum eigenvalue is calculated in Appendix B.5 and B.7 and given by

λ1 =













21π
8

�2/3
S2/3 − S

γ−1
, S ≪ 1 ,

S+2 , S ≫ 1 .

(3.48)

This yields the relaxation rate R = s+Ub for large S which shows that the population reaches

the stationary distribution faster in the presence of beneficial mutations. For small S, we get

R ∼ s2/3(UbUd)
1/6 which approaches zero as s → 0 in accordance with the neutral case where

the population never reaches a stationary state, see Appendix B.2. The relaxation dynamics

of the mean C1(t) are in agreement with the above results as shown in Fig. 3.5.

On comparing the results for short and long time dynamics, we find that while the for-

mer occurs over a time scale ∼ s−1 independent of the mutation rates, the relaxation time is

determined by both selection and mutation.
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3.6 Conclusions and Open questions

In this Chapter, we presented the exact solution (3.26) for the frequency distribution at all times

for the model defined by (3.1a) and (3.1b). Our results summarised in Table 3.1 generalise the

earlier ones in [4, 2, 75] by including beneficial mutations and extend the treatment in [86, 87,

80, 36, 88, 70] to all times including the stationary state limit. We discussed the biologically

realistic situation where the beneficial mutation rate is smaller than its deleterious counterpart

[89] but, for completeness, we explore the parameter regime Ud ≪Ub in Appendix B.9.

Here we considered a mutation scheme in which the mutation rate per sequence is same

for all sequences, irrespective of their fitness. The evolution of an infinitely large population

on additive fitness landscapes when the mutation rates depend linearly on the number of loci

carrying deleterious allele has also been studied [58, 3] and the relationship of this mutation

scheme with the one studied in this Chapter is elucidated in Appendix B.1. In the fitness-

dependent mutation rate model [58, 3], when the number of loci carrying the deleterious allele

is small, the beneficial mutation rate vanishes in the limit of infinitely long sequence. This has

the immediate consequence that the stationary state properties are not affected by beneficial

mutations in this mutation scheme [3].

In contrast, for the model studied here, the general effect of beneficial mutations is to

decrease both mean and variance in the stationary state (see, (3.28) and (3.30)) but the extent

to which this happens depends on the strength of selection relative to mutations. We find that

(i) when Ub <Ud < s, beneficial mutations have a minor effect since the mean number of

deleterious mutations in the absence of beneficial mutations is already close to zero,

(ii) when Ub < s <Ud , beneficial mutations decrease the mutational load significantly and

the frequency is enhanced (diminished) in fitness classes below (above) Ud/s and

(iii) when s <Ub <Ud , both mean and variance decrease considerably and the frequency

distribution is a nontrivial function.

In this Chapter, we focused on the deterministic evolution, and ignored the effect of ran-

dom genetic drift. However, we have numerically studied the stochastic evolution of finite size

population and as discussed in Appendix B.10, we find that even in the presence of beneficial

mutations, the population attains a steady state only when the population size is above a criti-
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cal value Nc [51]. Future investigations of the finite size population are desirable to obtain an

analytical understanding of the critical population size Nc. Since the bulk of the distribution is

expected to be described well by deterministic distributions [80, 36, 88, 51], the exact answers

obtained for the deterministic system in this Chapter can be used to understand the behavior of

the finite population better. A detailed study of the evolution of finite populations exploiting

the results presented here will be taken up in future.





Chapter 4

(Dis-)Advantage of Recombination on

Rugged Fitness Landscapes

4.1 Introduction

In Chapter 2 [3], we saw that recombination results in higher steady state fitness for a finite-

sized population evolving on a single peak fitness landscape. However, as discussed in Section

1.2, single peak fitness landscapes are rare and most of the experimentally measured fitness

landscapes show intermediate level of ruggedness [19]. In this Chapter, we study the effect

of recombination on a class of tunable rugged fitness landscapes to see how our finding of

advantage of recombination on a single peak fitness landscape [3] changes when the topology

of the fitness landscape changes [7].

A key distinction between evolution on smooth vs. rugged fitness landscapes is that finite

populations evolving on the latter may not attain a steady state, even over fairly long time

scales, because of the tendency to get trapped at local peaks. Here, we monitor the fitness

effect over multiple time scales – at both short times (when fitness is changing rapidly) and

intermediate to long times (when it changes very slowly due to trapping in a local fitness peak).

We use extensive simulations with the Wright-Fisher model in the presence of other evolution-

ary forces such as mutation, selection, and drift. We find that the effect of recombination has a

complex dependence on these forces and it changes from advantageous to disadvantageous as
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the parameter regime is varied. We attempt to give an intuitive explanation for the existence of

different parameter regimes of advantage and disadvantage of recombination. We also explore

how the initial state of the population – its initial ‘position’ on the fitness landscape, as well

as the extent of genetic variation it harbors – crucially determines whether recombination can

increase population fitness or not. This sort of strong dependence on the initial conditions has

remained largely unexplored in previous works [9, 8].

The Chapter is organized as follows: we first describe the methods used in this study and

then discuss our main results for the effect of recombination on population fitness and its

dependence on various parameters. Finally, we discuss the results obtained for different initial

conditions.

4.2 Materials and Methods

We consider the Rough Mount Fuji (RMF) fitness landscapes with fitness function given as

[16, 98, 99, 20, 18, 9]

W ({σ}) = cdσ ,σ∗ +Bη(σ). (4.1)

Here, dσ ,σ∗ is the Hamming distance between σ and the reference sequence σ∗=(1,1,1,1...1),

which is equal to the number of zeros in the sequence and η is a random variable drawn

independently for each sequence from a normal distribution with mean zero and variance one.

Thus, the RMF fitness landscape is parametrized by the ratio θ = B/c (also see Section 1.2.3).

In the following simulations, c is set to 1 and the ruggedness is tuned by varying B .

Once the fitness landscape is created, we use the usual Wright-Fisher simulation method

described in Chapter 1 to study the population dynamics. As a first step, we define the genome

as a binary string of length L. Fitness values of all possible 2L sequences are assigned from the

fitness function given in(4.1). A population of size N is introduced to this fitness landscape

and allowed to evolve under the action of evolutionary forces such as mutations, selection,

random genetic drift, and recombination. The two main initial conditions we consider are:

(i) a random initial condition where each individual is assigned a random sequence (this cor-

responds to a situation with maximum initial variation) (ii) a monomorphic initial condition



4.2 Materials and Methods 63

where all individuals are assigned an identical genome and thus have the same fitness value

(this corresponds to a situation with zero initial variation). This genome can either be chosen

randomly or may represent a special point on the fitness landscape such as the global peak, a

local peak, or a valley. During reproduction, each individual is allowed to go through three

steps, which include a recombination step with a rate r, a mutation step in which each locus

has a probability µ to mutate to the other allelic state, and a selection step (also, see Sec-

tion 1.4.2.1). The specific question we want to address in this study is: What is the effect of

recombination in different regimes of this high-dimensional parameter space (N, L, µ , r, θ )?

The population fitness

w(t) =
1

N
∑

individuals, i

wi(t), (4.2)

is measured at each generation. We average w(t) over several histories and monitor it over

multiple time scales. The advantage of recombination is measured as the difference between

wr(t)− w0(t), where wr(t) and w0(t) are average fitness with and without recombination,

respectively. The relative fitness advantage at time t is given as

Δw =
wr −w0

w0

, (4.3)

where, wr and w0 are the fitnesses of recombining and nonrecombining genotype at a fixed

time point t.

The two extreme limits of the smooth (B = 0) and the maximally rugged fitness landscapes

(c = 0) are relatively well studied.

1. B = 0: Our results discussed in Chapter 2 [3], show that recombination has a clear

advantage in reducing the mutation load at equilibrium state.

2. c = 0: In this limit, recombination shows a short time advantage that vanishes with time

because of the lower probability of escaping from local maxima [100].

The escape probability is measured by starting with all the population at a local peak in h

(∼1000) numerical experiments and counting the cases where the population fitness changes

(n) within tmax (∼ 100000) generations. The probability of escaping the local peak is defined
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as n/h. Although realistic fitness landscapes are characterized by an intermediate level of

ruggedness [18, 16, 19], the effect of recombination on moderately rugged fitness landscapes

is much less explored. Previous study by Nowak et al.,[9] which looked into this reported

that recombination has a short term advantage and the effect reverses due to the tendency of

recombining population to get trapped at local peaks. In our study, we analyse how these

results depend on the initial condition that adds to the completeness of these already existing

results.

4.3 Results

We first discuss the effect of different evolutionary forces on the (dis-)advantage of recombina-

tion. Since the population does not attain a steady state, the effects are expected to be dynamic.

Thus, we analyze the short time as well as long time effects and a comparison with these two is

also discussed. All results presented in this section assume a random initial condition, where

each individual is assigned a sequence randomly from the 2L possible sequences (maximum

initial variation) [8].

4.3.1 Recombination rate

The advantage of recombination changes non-monotonically with recombination rate for small

mutation rate which is shown in Fig. 4.1. This observation is consistent with the zero mutation

rate results obtained in a previous study [8]. This effect is easy to understand, because when

mutation rate is low recombination is preferred as it is the only force that can create variation

in the population. However, once recombination crosses an optimum value, it becomes disad-

vantageous because it can destroy the favorable configuration (local peak genotype) by chance

before selection could act on it and increase its frequency.
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Fig. 4.1 Figure shows the advantage of recombination with recombination rate r for different

mutation rates. Panel (a) short time effect with Δw measured at 50th generation and (b) long

time effect with Δw measured at 5000th generation. Other parameters are L = 16, N = 1000

and θ = 0.8.

4.3.2 Mutation rate

Figure 4.1 also shows a transition in the effect of recombination from an advantageous phase

to a disadvantageous phase as mutation rate increases. A schematic diagram of the effect of

recombination in the µ − r plane is shown in Fig. 4.2. For a fixed recombination rate, the

transition from one phase to another occurs at a critical mutation rate µ∗.
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Fig. 4.2 Figure shows the transition of effect of recombination in µ − r plane. Effect changes

from an advantageous phase to a disadvantageous phase as mutation rate increases beyond a

critical value µ∗.

Recombination increases existing genetic variation, in particular, by generating fit combi-

nations (local peak sequences) out of existing variation, which in the short run would not be

accessible by mutation alone. This is particularly true when mutation rates are low. However,

at higher mutation rates, many of these local peaks (as well as the global peak) become more

accessible by mutation itself. In fact, in populations where adaptation via mutation is relatively

efficient, recombination can actually have a detrimental effect by breaking up favorable combi-

nations much faster than they are generated. This explains why even the short term advantage

of recombination declines with mutation rate (see Fig. 4.1(a)). Therefore, if mutational force

is sufficiently high to create enough variation, recombination becomes disadvantageous.

4.3.3 Ruggedness

Figure 4.3 shows the effect of ruggedness on the advantage of recombination. In short time,

fitness landscape with a low level of ruggedness shows a higher advantage of recombination

which is shown in Fig. 4.3(a). However, this advantage vanishes fast and at long time, advan-

tage persists only in a fitness landscape with a high level of ruggedness as shown in Fig. 4.3(b).
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Fig. 4.3 Figure shows the effect of recombination with mutation rate for different ruggedness

parameter θ = 0.4,0.8 and 1.4. Other parameters are r = 0.003,L = 16 and N = 1000.

4.3.4 Significance of µ∗

All these observations suggest that for a particular fitness landscape, there is a mutation rate

µ∗, such that any increase in genetic variation (either by a further increase in mutation rate

or by introduction of recombination) leads to a decrease in mean fitness. The transition point
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Fig. 4.4 Long term (dis-)advantage Δw/hwi|r=0 of recombination, r = 0.1 as a function of

mutation rate µ for different L for ruggedness parameter θ = 0.5.

µ∗ is dynamic and its rate of decay is expected to depend on the ruggedness of the fitness

landscape. As time increases, µ∗ shifts towards the lower bound resulting in a long time

disadvantage of recombination even for small mutation rates. The rate of decay of µ∗ to zero

depends on the ruggedness of the fitness landscape: it is expected to be slower in a maximally

rugged fitness landscape compared to the one with a low level of ruggedness. More careful

study of the dynamics of µ∗ and the effect of ruggedness will be taken up in future.

4.3.5 Effect of varying genome length L

Figure 4.4 shows the fractional change Δw/hwi|r=0 in fitness due to recombination as a func-

tion of µ for different values of L. At small µ , where recombination is advantageous, the

advantage becomes higher with increasing L. At intermediate µ , where recombination is

disadvantageous, the disadvantage becomes greater with increasing L. At very large µ , re-
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combination again becomes advantageous, with the advantage being more apparent at larger

L. Thus, the characteristic U− shaped curve obtained on plotting Δw/hwi|r=0 vs. µ shows

much steeper variation as L is increased. This data is obtained with the assumption of one

break point, but having more than one break point does not change the qualitative behaviour.

4.4 Initial condition dependence

The trends observed here, with the combined effect of all these five parameters, showed a

strong dependence on initial condition as well. All the results discussed above are based on

the assumption of an initial condition with maximum variation. Now, we study the effect of

other initial conditions in which population is clustered about- global peak, local peak, in a

valley, or any random point in the fitness landscape.

4.4.1 Global peak

Recombination shows no effect in low mutation rates and it becomes disadvantageous at high

mutation rate. The disadvantage is higher for high recombination rate which is shown in

Fig. 4.5.

4.4.2 Local peak

Even though the recombining genotype shows high variation, it has lower probability to escape

from the local peak shown in Fig. 4.6(b). This effect of getting stuck in local peak results in

a long time disadvantage of recombination which is consistent with the results obtained in the

previous studies [9].

4.4.3 Local valley

In small mutation rates, recombination shows an initial short term advantage in attaining a

local peak. But, it gets stuck in local peak very fast and the recombination becomes disadvan-

tageous as in the previous case.
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Fig. 4.5 Figure shows the disadvantage of recombination when the population is at global peak,

for two different recombination rates. Other parameters are L = 16,N = 1000 and θ = 0.8.

4.4.4 Populations with variable initial spread on the fitness landscape

We consider populations with different levels of initial variation, ranging from a delta function

initial condition to sequences distributed normally with width d around a reference sequence,

where d represents the pairwise difference between the chosen sequence and the reference

sequence.

Recombination has a short time advantage that vanishes with time as shown in Fig. 4.7.

The advantage is maximum for high initial variation and it persists for a longer time. The

trend observed is consistent with both high and low mutation rate, but in high mutation rate

advantage vanishes faster as expected.
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Fig. 4.6 Figure shows effect of recombination when the population is at local peak.Other

parameters are L = 16, N = 1000 and θ = 0.8.

4.5 Conclusions

Whether or not recombination is advantageous depends on where the population is in the (N, L,

µ , r, θ ) parameter space. We explored the variation with µ , r, and θ and found that: (i) Fitness

changes non-monotonically with r for a wide range of µ and θ values: recombination can be
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Fig. 4.7 Figure shows the effect of recombination with time for different level of initial varia-

tion. We consider two cases with mutation rate µ = 0.0005 and µ = 0.002, shown in (a) and

(b) respectively. Other parameters r = 0.003,L = 16,N = 1000 and, θ = 0.8 are kept fixed.

advantageous at small rates and disadvantageous at large rates. (ii) For small mutation rates µ ,

recombination at a small rate is always beneficial, but this benefit decreases with µ . Beyond a

critical value µ∗, recombination at howsoever small a rate is detrimental. (iii) The range of µ

and r over which recombination confers advantage increases with ruggedness parameter B/c.

(iv) The change in fitness (both positive and negative) due to recombination becomes higher

in magnitude with increasing L.

(Dis-)advantage of recombination depends strongly on the strength of mutation that creates

variation. The short time and long time dynamics of average fitness increase (adaptation) show

different dependence on recombination in the presence of mutations. The short time dynamics

is determined by the potential to generate fit combinations from the existing initial variation

and quickly access the nearest local peaks. In general, recombination has an advantage in

this regime. The long time dynamics is determined mainly by the ability to escape from a

local peak and reach the global peak. Recombination shows a disadvantage in this regime as

it reduces the probability to escape from the local peak as shown in Fig. 4.6(b).

Another important effect we observe is the strong dependence on the initial condition,

which suggests that the advantage or disadvantage of recombination depends on the ability to

reach the local/global peak. To attain a local/global peak, it is necessary to create variation in
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the population. Once the population attains a peak, recombination seems to have a negative

effect on the probability to escape from the peak and therefore shows disadvantages. In short,

recombination shows a short term advantage when mutation rate is weak and this advantage

dies once the population attains a local/global peak. This short term advantage is the highest

when the initial variation is high and the ruggedness is low. However, the advantage persists

longer in very rugged fitness landscape with low mutation rates.





Chapter 5

Exploiting the adaptation dynamics to

predict the distribution of beneficial

fitness effects

5.1 Introduction

In this Chapter, we study the second question of interest mentioned in Chapter 1, namely,

the dynamics of adaptation process and its relationship to the distribution of beneficial fitness

effects (DBFEs)[6].

Microbial populations have to constantly adapt in order to survive in a changing environ-

ment. For example, a bacterial population exposed to a new antibiotic must evolve in order to

exist [101]. In asexual populations, this process of adaptation is driven only by rare beneficial

mutations [12] which provide fitness advantage. So in order to survive in new environment,

enough beneficial mutations should be available and the beneficial mutations should confer

sufficient fitness advantage. While the first factor depends on the mutation rate and population

size, the second factor is determined by the underlying fitness distributions. Even though we

have some understanding about the mutation rate of different microbial populations, the full

fitness distribution is more complex and relatively little is known about it. But for moderately

adapted populations (i.e. fitness of the wildtype is high enough), rare beneficial mutations
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Fig. 5.1 The figure shows the distribution of beneficial fitness effects p( f ) with fitness f for

the three EVT domains, given by (5.1) for various κ . Here κ is the tuning parameter with

κ > 0, κ → 0 and κ < 0 corresponding to Fréchet, Gumbel and Weibull domains respectively.

which occur in the tail of the fitness distribution can be described by the extreme value the-

ory (EVT) as proposed first by Gillespie [102]. The EVT states that the extreme tail of all

distributions of uncorrelated random variables (fitness, in this case) can be of three types only.

Depending on whether the tail of underlying fitness distribution is truncated or decaying faster

than a power law or as a power law, the EVT distribution would belong to Weibull or Gumbel

or Fréchet domain, respectively [103].

All the three EVT domains can be obtained from the generalized Pareto distribution given

as

p( f ) = (1+κ f )−
1+κ

κ , (5.1)

where κ is the tuning parameter.
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Quantities DBFE domains: Low mutation regime DBFE domains: High mutation regime

Δ fstep

F̄ (t)

Weibull Gumbel Fréchet

[10] [10] [10]

[6] [13] [13]

Weibull Gumbel Fréchet

[6] [6] [6]

[6] [13] [6]

Table 5.1 Here, Δ fstep is the average fitness difference between the present leader and the new

beneficial mutation that gets established and F̄ (t) is the rate of change of fitness.

One example from each of the three EVT domains is shown in Fig. 5.1, which shows the

distribution of beneficial effects p( f ) with fitness f . The three types of EVT domains are

classified according to the value of κ . Here negative κ belongs to the Weibull domain, while

κ = 0 corresponds to Gumbel domain and positive κ to Fréchet domain. Interestingly, all

the three DBFEs have been observed in experiments on microbial populations [11, 104–112].

While the exponential distribution belonging to the Gumbel domain has been most commonly

seen [11, 104, 105, 107], in recent times, the distribution of beneficial mutations belonging to

Weibull [108, 112] and Fréchet [109] domains have also been observed.

Recent theoretical studies have shown analytically and numerically that qualitatively dif-

ferent patterns occur in the adaptation dynamics of populations in different EVT domains of

DBFEs in low mutation regime [113–117, 10, 118, 119]. Specifically, it has been shown that

the fitness gain in a fixation event follows the pattern of diminishing returns in Weibull do-

main, constant returns in Gumbel domain and accelerating returns in Fréchet domain, and

thus indicates that this quantity can be used to predict the DBFE. But these observations are

restricted to strong selection-weak mutation (SSWM) regime in which the genetic variation in

the population is minimal, that is, only one beneficial mutation is present in the population in

the time interval between its appearance and fixation [104]. It is then natural to ask whether

the relationship between the adaptation dynamics and the DBFE mentioned above holds for

large populations as well, where there might be more than one beneficial mutation competing

for dominance in the population. The main aim of our study is to address this question and to

see if the fitness gain in a fixation event can be used for predicting the DBFE in a more general

scenario.

Here we are mainly concerned with the populations in which a large number of mutants

are produced at every generation. Hence, more than one beneficial mutation is expected to be
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present at the same time [1, 35, 120, 80, 28]. In this case, the beneficial mutations will compete

with each other as has been observed in different experimental populations [121–124]. In

this high mutation regime, as a result of the competition among the beneficial mutations, the

rate of adaptation slows down. The fitness advantage due to the mutations that get fixed is

much higher, since the availability of more mutations results in allowing only the best (fittest)

mutation to get fixed [70]. A clear comparison of the population fraction of new mutants

appearing in the population for two mutation regimes is given in Fig. 5.2. In Fig. 5.2(a) we

see that the population in the SSWM regime is more or less monomorphic with only one

mutant present at a time in all the three EVT domains. However, in high mutation regime,

population is polymorphic with more than one mutant produced in it at every generation as

shown in Fig. 5.2(b). In fact, a large amount of genetic variation is observed in the case of

bounded distributions corresponding to κ < 0 in (5.1) resulting in strong competition between

the beneficial mutants.

Here, we have used Wright-Fisher dynamics described in Chapter 1 to study the adaptation

dynamics in high and low mutation regimes for the three EVT domains of DBFE. The main

motivation of this study is to look for quantities which can be used to distinguish between the

DBFEs using the properties of adaptation dynamics as opposed to the direct measurements

of DBFEs. Our most important and interesting result is concerned with fitness difference

between mutations that spread in the population which shows qualitatively different trends in

three EVT domains and thus helps in distinguishing the DBFEs.

We have also studied another quantity which is the rate of change of fitness with time,

and observed that this shows quantitatively different behaviour for different EVT domains

of the DBFEs. Though some results for the rate of change of fitness are already known in

the literature [13], we measured it for all the three cases (Weibull, Gumbel and Fréchet) and

identified that this can be used to distinguish the DBFEs in both SSWM and high mutation

regimes. To obtain a complete picture, a comparison of our study with the existing literature

is given in Table 5.1 below.

We also measured quantities like the genetic variation and the number of mutations in

the most populated sequence. All of these quantities are discussed in Section 5.3 and 5.4. We
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suggest that the distinct trends shown by the above mentioned quantities can be used to predict

DBFEs from experimental studies on adaptation. The relevance of our work to experiments is

also explored in Section 5.7.

5.2 Materials and Methods

We track the dynamics of a population of self-replicating (asexual), infinitely long binary se-

quences of fixed size using the standard Wright-Fisher process [120, 70], which is described

in Chapter 1. In our work, the population size is held constant at N = 104, unless specified

otherwise and the total mutation probability (beneficial and deleterious) per sequence is given

by µ . Every occupied sequence is counted as a class and labelled when it arises in the popula-

tion. Initially, the whole population is in class 1 whose fitness is fixed and specified in every

simulation run. We have used the term leader to refer to the class whose normalised proba-

bility of reproduction (product of population fraction and fitness) is greater than half. In that

case, clearly, class 1 is the initial leader since the whole population is localized there. At every

time step, out of N sequences, mt are chosen from a binomial distribution with mean Nµ as

mutants. Every mutant produced increases the number of classes in the population by one, and

with time, the mutants may produce their own set of further mutants. The population fraction

of each class may grow or go extinct, as can be observed in Fig. 5.2. At any time t, the number

of classes present in the population is given by Nc(t), and the population size and fitness of

each class, i, where 1 ≤ i ≤ Nc, is denoted by n(i, t) and f (i), respectively. The normalized

probability of each class at every time step, p̃(i, t) contributing offspring to the population at

the next time step, depends on the population size of the class at the present time step and the

fitness of the class as

p̃(i, t) =
n(i, t) f (i)

Σ
Nc(t)
j=1 n( j, t) f ( j)

. (5.2)

Note that though the fitness of the class is the same as long as it persists in the population,

its size may vary at every time step, thus changing its probability of reproduction as given

by (5.2). The different classes are populated in the next time step based on the multinomial
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distribution

P(n(1, t ′),n(2, t ′)..n(Nc, t
′)) = N!

Nc(t)

∏
j=1

[p̃( j, t)]n( j,t)

n( j, t)!
(5.3)

where t ′ = t + 1. The above equation is subject to the constraint Σ
Nc(t)
j=1 n( j, t ′) = N. In our

simulations, we implement (5.3) along with the above constraint by converting (5.3) to a

binomial distribution for every class, 1 ≤ i < Nc(t) as

n(i, t ′) =
�

Ñ(i)

n(i, t)

�

q(i, t)n(i,t)(1−q(i, t))Ñ(i)−n(i,t) (5.4)

We set the population size of the last class as n(Nc(t), t
′) = N −∑

Nc(t)−1
i=1 n(i, t ′). In (5.4),

q(i, t) =
p̃(i, t)

Σ
Nc(t)
j=i p̃( j, t)

(5.5)

and Ñ(i) = N −Σi−1
j=1n( j, t).

At every time step, once the classes are populated based on the algorithm described above,

mt sequences are chosen as mutants based on the binomial distribution with mean Nµ . Every

new mutant class that appears in the population reduces the population size of the class in

which it arose by one. In our work, we have varied µ to access both the SSWM (low mutation)

and the high mutation regime. In our simulations unless specified otherwise, Nµ = 0.01 in

low (SSWM) and Nµ = 50 in high mutation regimes.

A new class is assigned to each mutant and its fitness is chosen from a generalized Pareto

distribution [103] given in (5.1). The advantage of using (5.1) is that we can access all three

EVT domains of DBFE by changing κ . The distributions whose κ < 0 belong to the Weibull

domain, while κ = 0 belong to the Gumbel domain, and κ > 0 belong to the Fréchet domain,

respectively. The frequency distribution of beneficial effects p( f ) for various values of κ is

shown in Fig. 5.1. The upper bound u for the distributions chosen from (5.1) is infinity when

κ ≥ 0 and equals −1/κ for κ < 0. In this work, the fitness of the mutants is independently

chosen from (5.1) thus making the fitness of the mutant, Fm an uncorrelated variable, which

may be greater or smaller than the parent fitness, Fp. This model known as the House-of-
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Fig. 5.2 Population fraction of different mutant classes are shown as different coloured lines.

Where, (a) shows the SSWM (Nµ = 0.1, low mutation rate) regime and (b) shows the high

mutation (Nµ = 10) regime for all three EVT domains of DBFE.

Cards model [125, 13] is based on the assumption that genetic organization of an individual is

highly delicate and can be completely disturbed by any small change in the configuration. We
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have analyzed the results to see how they vary between the three EVT domains and different

mutation rates.

In the allocation of the fitness to any mutant, our work differs from the other works on

clonal interference [120, 70] wherein the fitness of the mutant is hiked above the parent fitness

by the selection coefficients (s) which may be held constant or chosen from a distribution as

Fm = (1+ s)Fp. Unlike the model we have used in this work (as explained above), in this case

there is a strong correlation between the mutant fitness Fm and the parent fitness Fp. In those

cases, the mutant fitness is always greater than the parent fitness and on an average, a double

or higher mutant is fitter than a single mutant. This is in contrast with our work since in ours,

as the fitness of the parent increases, the number of better mutants available decreases thus

producing different patterns for the fitness increment in each EVT domain.

In our model, whenever a mutant class goes extinct, the classes below it is moved up, and

the number of classes in the population is reduced by one. The normalized probability of

reproduction given in (5.2) of a class exceeding half corresponds to a leader change. The new

leader determined now belongs to the class whose normalized probability exceeded half. We

have also explored other criteria for defining the leader as the most populated class and find

that our main results are robust with respect to the change in criteria.

Every change of leader is counted as a step. In the high mutation regime the population

is spread over many sequences and a sequence can produce two or more mutants each of

which may become leaders at different time steps. However, in the SSWM regime, the whole

population is localized at a single sequence with a fixed fitness and can only move to a dif-

ferent sequence with higher fitness one mutation away. Thus every new leader arises from

the previous leader, as can be observed in Fig. 5.2(a). When a better sequence appearing in

the population does not get lost due to genetic drift, it quickly gets fixed. Further mutations

that may lead to future leaders appear in this genetic background. The change in the fitness

of the population is the same as the change in fitness of the leader. In this case, every move

of the population (leader) from one sequence to another is termed a step in the adaptive walk

[126, 114, 127, 128], whereas in high mutation regime, the population is polymorphic as can

be seen from Fig. 5.2(b) and the leader change is not obvious from the figure.
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Various quantities like the fitness difference between successive leaders and the average

number of mutations in the leader are averaged only over the walks that take the step. Other

quantities like the number of classes present at any time point and the rate of change of fitness

are averaged over all time steps in that simulation run.

In this paper, the total number of iterations is 105 in every simulation run and the dynamics

is tracked for finite time limit of 104 generations which we shall refer to as tmax. In this time

span, if we assume that there is only one mutant which has fitness greater than fmax then the

maximum fitness value, fmax that arises in the population can be calculated as

tmaxNµ
Z u

fmax

p( f )d f = 1 (5.6)

where u is the upper limit of the fitness distribution equalling (-1/κ) for bounded distributions

and infinity for unbounded ones [103]. From the above integral, we get

fmax =
(tmaxNµ)κ −1

κ
. (5.7)

5.3 The number of classes in the population

For a population of fixed size, the number of classes in the population is expected to increase

with the mutation rate. The average genetic variation defined here as the average number of

classes (Nc) present in the population is shown in Fig. 5.3 for all the three domains of DBFE.

The top and bottom panels of the figure show the data corresponding to the high and low

mutation regimes respectively. In both the mutation regimes, we see that the average number

of classes increases during the initial time steps and decreases at later times when the classes

with lower fitness are eliminated by the fitter ones. The maximum number of classes existing

in the population for the first case, as shown in Fig. 5.3(a), does not belong to the lowest initial

fitness, but to a slightly higher initial fitness. This could be because when the initial fitness is

low, its class is quickly replaced by a fitter mutant and all further mutants arise on this new

background must compete with this fitter class.
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(a) (b)

(c)

Fig. 5.3 The plot shows the average number of classes in the population as function of time for

various initial fitnesses. The fitnesses are chosen from (5.1) with (a) κ =−1 (b) κ → 0 and (c)

κ = 1/4. For each κ value, the plot shows Nc(t) in both the high mutation (top panels) and

low mutation (bottom panels) regimes. The straight line in all plots shows Nµ +1.

In the low mutation regime, the population for the most time is localized at a single se-

quence and produces Nµ mutants at every time step. So in this case, the average number

of classes approach a constant Nµ + 1 at large times as can be seen in the bottom panels of

Fig. 5.3. These panels also indicate that the value of this constant increases with decreasing

κ . This is because in the case of bounded distributions with κ < 0, the fitness of beneficial

mutant produced is expected to be closer to the parent fitness. In other words, mutations are

nearly neutral and thus it takes longer time to take over the population as shown in Fig. 5.2(a).
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Fig. 5.4 The main plot shows the number of mutations in the leader at any step for various

κ and mutation rates. The simulation data are represented by points while the broken lines

connect the data points. The solid line shows y = x. In the inset, from a single simulation

run, the fitness of the whole population as a function of time is shown by broken lines and the

fitness of the leader whenever the leader changes is shown by symbols.

This results in a larger number of mutants in Weibull domain which can be observed in the

bottom panel of Fig. 5.3(a). We can clearly see from the top panels of Fig. 5.3 that number of

classes increases with decreasing κ even in high mutation regime. Also, the average number

of classes present at a time is much higher in this regime. This makes sense because the fitness

of the classes belonging to κ = −1 cannot be very different from each other (can only vary

between 0 and 1) which makes it possible for many of them to exist in the population. The

maximum fitness of the classes belonging to κ = 1/4 distribution will, on an average be much

higher than all others (since the distribution is unbounded with a fat tail), thus out-competing

the others in the population.
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5.4 Number of mutations in the leader

In the low mutation regime, the average number of mutations in the leader is expected to be

very close to the step number since the genetic variation in the population is low and any

mutation that escapes drift quickly takes over the population [102]. We verify this point via

simulations as depicted in Fig. 5.4. We find that the mutation number equals the step in all the

three EVT domains of the DBFE in the low mutation regime for the initial steps.

However in the high mutation regime, the number of mutations in the leader of any step

differs between the three DBFE domains. When the mutation rate is increased, the genetic

variation of the population and the significance of clonal interference also increases. In the

high mutation regime, the number of mutations in the leader is found to be less than the step

number in all the three DBFE domains. This is because there is a chance that different mutants

originating from the same parent class can become the leader of the population at different

times. This decrease from the step number is the minimum for the fat-tailed distributions

and maximum for the truncated ones, as shown in Fig. 5.4. This result is consistent with the

number of classes present in the population as discussed in the previous section. In the Fréchet

domain, since the clonal interference is minimal, mostly a mutant originating from the present

leader will become the next one. In the Weibull domain, due to the large number of classes

present in the population, mutants originating from the same class can become the leaders at

different time points.

5.5 Fitness and fitness difference

From our simulations, we find that the average fitness of the first mutant fixed in the population,

f̄1 increases linearly with the initial fitness, f0 for all κ in the low mutation regime and for

κ 6= 0 in the high mutation regime. So we can write

f̄1 = a
(Nµ)
κ f0 +b

(Nµ)
κ (5.8)
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(a) (b)

(c)

Fig. 5.5 The main plot shows the fitness difference at the first step as a function of the initial

fitness for various Nµ . The fitnesses are chosen from (5.1) with (a) κ = −1 (b) κ → 0 and

(c) κ = 1/4. The solid lines in the main plot are obtained by numerically evaluating the

integral given by (5.9), while the dotted lines are the approximate results that can be obtained

for the results when the initial fitness is high, in the low mutation regime. The broken lines

for κ 6= 0 are lines of best fit as mentioned in the text. The broken line for κ → 0 is used

for connecting the data points. The inset shows the fitness difference at the first step as a

comparative measure of the fitness difference obtained at the first step when f0 = 0. Here, the

lines are used for connecting the data points.

where the coefficients a
(Nµ)
κ and b

(Nµ)
κ are constants. In the low mutation regime, where

the population for most times is monomorphic, the adaptive walk model has been used to
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Fig. 5.6 The plot shows the fitness difference at the first step as a function of the initial fitness

for different κ and two different Nµ . The lines give the theoretical values while the open

symbols are the simulation output for Nµ = 0.02 and the closed symbols are those for Nµ = 5.

analytically obtain the fitness at the first step, f̄1 as [117, 10]

f̄1 =

Z u

f0

d f T ( f ← f0) f (5.9)

where the transition probability is given by

T ( f ← f0) =
(1− e

− 2( f− f0)
f0 )p( f )

R u
f0

dg

�

1− e
− 2(g− f0)

f0

�

p(g)

. (5.10)
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In this model, from (5.9), the coefficient a
(Nµ≪1)
κ was obtained as 0.33,1.0 and 1.6 for κ =

−1,0, and 1/4 respectively. The corresponding b
(Nµ≪1)
κ for the aforementioned κ were

0.66, 2.0 and 1.89 [10]. In the high mutation regime where the adaptive walk model is not ap-

plicable, we obtained the values for the coefficients in (5.8) numerically. We find that for large

f0, a
(50)
κ equals 0.004 and 1.5 and b

(50)
κ equals 0.99 and 9.1 for κ =−1 and 1/4 respectively.

The interesting result from our work is that, irrespective of the number of mutants produced

in the population, the difference Δ fstep = f̄1 − f0 between the fitness of the first step and

the initial fitness displays different qualitative trends: increases for positive κ , approaches a

constant when κ = 0 and decreases for negative κ , as shown in Figs. 5.5 and 5.6.

We can better understand these increasing and decreasing trends by the following heuristic

argument. In both the low and high mutation regimes, for large f0, the fitness at the first step

f1 increases linearly with the initial fitness as given in (5.8) and so, we can write the selection

coefficient defined as the relative fitness difference, at the first step as

s =
f̄1 − f0

f0
=

(a
(Nµ)
κ −1) f0

f0
+

b
(Nµ)
κ

f0
, for all κ , Nµ (5.11)

In an adapting population, since the fitness of the first step is greater than the initial fitness, the

selection coefficient is always positive. As the fitness distributions belonging to the Fréchet

domain are unbounded with fat tails, high f0 values can be considered in which case, the

second term on the right hand side (RHS) of (5.11) can be ignored and we can write s ≈
(a

(Nµ)
κ −1) > 0. Thus for κ > 0, a

(Nµ)
κ > 1 and therefore it follows that the fitness difference

at the first step increases with f0. On the other hand, since the distribution belonging to the

Weibull domain are truncated, we can invoke the following inequality to explain the decrease

in fitness difference with increasing f0:

f̄1 − f0 < u− f0, (5.12)

where u is the upper limit of the fitness distribution. With increasing f0, the RHS of the

above equation decreases which shows that as the initial fitness increases, f̄1 − f0 has to nec-
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essarily decrease. Thus the qualitative trends discussed above appear to be determined by the

behaviour of the tail (bounded/unbounded), and not by the details of the model.

Also, it is interesting to note that while the data points for the exponentially decaying

distribution (κ = 0) increase and seem to be approaching a constant in the low mutation regime,

the data in the high mutation regime seems to be reducing to approach the same constant.

Our simulation results shown in Fig. 5.5 not only match the predicted theoretical values and

validate the claim of different qualitative trends in each EVT domain in the SSWM regime

but also show that the trends hold irrespective of the number of mutants produced in the

population. This result suggests that the qualitatively different trends of the fitness difference

(increasing, constant and decreasing with initial fitness in the Fréchet, Gumbel and Weibull

domain, respectively) can be used to distinguish between the EVT domains in a more general

scenario.

Though the fitness difference at the first step is greater in the high mutation regime, when

compared with the results in the low mutation regime, when we look at the fitness difference

at the first step scaled by the fitness difference obtained when the initial fitness is zero (insets

of Fig. 5.5, we see that this increase is slower in the high mutation regime compared to the

results obtained in the low mutation regime. This indicates that as the mutation rate increases,

though the number of mutants accessed is higher, the difference in fitness compared to a lower

initial fitness is not proportionally higher and is in fact lower for all the fitness distributions.

5.6 Rate of change of fitness with time

Besides the fitness increment at a fixed event of leader change, we also measured the fitness

as a function of time as shown in Fig. 5.7. We observed that even though the fitness increases

with time in all the three EVT domains, the rate at which the fitness increases depends strongly

on the DBFE. This rate has an initial fast transient phase, after which it slows down.

The initial transient phase is strongly dependent on the initial condition as well as the

mutation rate as shown in Fig. 5.8. The increase in fitness is fastest for the lowest initial

condition, but it approaches the same fitness value as in the case of higher initial fitness in
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Fig. 5.7 Figure shows the average fitness increase with time for three different values of κ in

the SSWM regime (Nµ = 0.01), and in high mutation regime(Nµ = 50). In all the cases, the

population starts with the same initial fitness f0 = 0.5.

few generations. The time taken for populations of different initial fitness to reach the same

fitness value depends on the mutation rate: for Nµ ≫ 1, it takes about 20 generations, whereas

for Nµ ≪ 1, it is approximately 200 generations. Even after this transient phase, the rate of

increase in average fitness (F̄ (t)) with time depends on the mutation rate as shown in Fig. 5.7.

This is because of the fact that, when a large number of mutations are available at the same

time, a highly fit mutant can invade the population and give a large fitness increment. So the

fitness of a highly fit mutant sequence would be greater in the high mutation regime compared

to the one in low mutation regime. The maximum fitness value reached in 9000 generations,

in the case of Fréchet distribution is about 10 times more for high mutation regime, which is

consistent with the expectation from (5.7). Even beyond this point we noticed that the fitness

is still increasing. In the same way, Gumbel distribution also shows a significant increase in

maximum fitness reached in high mutation regime compared to the SSWM regime (about 4

times). Here also we found that the fitness is still increasing beyond the time point till which

we tracked the dynamics. The bounded distribution (Weibull) reaches near the upper bound in
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Fig. 5.8 The figure shows the average fitness of the population for various κ in both the low and

high mutation regimes. Two different initial conditions f0 = 0 (open symbols) and f0 = 0.5
(closed symbols) are considered.

SSWM and evolves slowly. But the fitness reaches a fitness plateau in high mutation regime

and rate of adaptation becomes zero as can be seen in Fig. 5.7.

From this we observe that the rate of change of fitness depends strongly on the properties of

the underlying DBFE, which suggests that looking at this quantity can help us in distinguishing

the DBFEs. So we measured the fitness increment defined as

ΔF̄ (t) = hF̄ (t +1)− F̄ (t)i (5.13)

at each step. The ΔF̄ (t) initially increases, then slowly decreases and settles down to a zero

as shown in Fig. 5.9. If we denote this function as

ΔF̄ (t) =
A

tα
(5.14)
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Fig. 5.9 Figure shows the fitness increment in each time step for three different values of κ
in two mutation regimes (SSWM and high mutation). In each case the data is fitted with the

theoretically expected function given in (5.14), except for exponential distribution for which

we used the theoretical prediction by Park and Krug [13]. In all the cases, the population starts

with the same initial fitness f0 = 0.5.

where A is a constant and the exponent α can be used to distinguish the DBFE, since, as

explained below, exponent α is found to be greater (smaller) than one in Weibull (Fréchet)

domain, but is close to one in Gumbel domain.

In the SSWM regime, from Fig. 5.9(a), we can see that each type of DBFE considered

shows a different rate of decay. Weibull domain has a faster decay with α = 1.86, Gumbel

domain has α ≈ 1 [13] and Fréchet domain α = 0.66 [13]. We observed that the same trend

holds in high mutation rate regime as well, where α values are slightly larger in all cases. In
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this regime also α = 2.02, 1 and 0.76 for Weibull, Gumbel and Fréchet domains respectively

as shown in Fig. 5.9(b). In the high mutation regime, in the case of Weibull distributions

fitness reaches a plateau in few generations, after which its rate of change goes to zero, as can

be observed in Fig. 5.9(b). The theoretical prediction for the fitness at every time step for the

unbounded distributions belonging to the Gumbel and Frèchet domains was obtained by Park

and Krug [13] in the low mutation regime. The comparison of our simulation data with these

predictions shows a very good agreement in Gumbel domain and in Fréchet domain (up to a

constant). In this work, we have considered the bounded distribution also and observed that

its rate of decrease is faster with an exponent greater than one, which was not considered in

the previous studies. We observed that even in high mutation regime, the exponent α shows

the same behaviour. In this regime the rate of change of fitness has been calculated only for

exponential distribution belonging to the Gumbel domain [13] and their prediction matches

with our data. In this work, we have obtained a complete picture by studying the rate of

change of fitness numerically for the other two EVT domains as well.

Thus, the second main finding from our study is that in all DBFEs, the fitness difference

at each time step decreases with time as given by (5.14) and we can distinguish between the

three EVT domains of DBFEs by looking at the exponent α . A comparison of our results with

the existing literature is given in Table 5.1.

5.7 Discussion

The main purpose of our work is to determine the quantities which can be used to distinguish

the different extreme value domains of the DBFE. Previous studies [10, 119] have found that

in an adapting population, the fitness gain at each fixation event shows qualitatively different

trends in the three DBFE domain, when the number of mutants produced in the population is

much less than one at every generation (Nµ ≪ 1). The focus of this work is to explore the

parameter regime in which the number of mutants produced is much above one (Nµ ≫ 1).

When the mutation rate is high, the population becomes polymorphic and the better mutants

existing in the population compete with each other. From our study we have observed that
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Fig. 5.10 The main figure shows the selection coefficient as a function of step for all three κ
values. We considered two different Nµ where open symbols and closed symbols are for Nµ =
0.01 and Nµ = 50, respectively. The inset shows the selection coefficient of various steps for

two different the initial fitnesses f0 = 0.2 fmax and f0 = 0.6 fmax, where fmax is calculated using

(5.7) in the high mutation regime.

the qualitative trends found for fitness difference when a new mutation establishes in the low

mutation regime hold irrespective of the number of mutants produced. Thus this study sug-

gests that fitness difference between the successive mutations that spreads in the population is

a very important and robust quantity that can be used to predict the DBFEs in a more general

scenario.

From our simulations, we see that as the initial fitness is increased the fitness difference

at the first step given by Δ fstep reduces, approaches a constant or increases with initial fitness

in the Weibull, Gumbel and Fréchet domains, respectively. We can understand these trends

by a heuristic reasoning as discussed in detail in the Section 5.5. This argument explains the

increase in Δ fstep with f0 for unbounded power law distribution and shows that the trends are
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determined by the behaviour of the tail (bounded/unbounded), and not by the details of the

model.

Another important measure in understanding the dynamics of adaptation is the rate at

which it occurs. Most of the previous studies which measured the adaptation rate have only

considered exponentially distributed fitness distributions [35, 120, 80, 70, 129]. A previous

study by Park and Krug [13] also considered DBFEs belonging to Fréchet domain but only

in the SSWM regime (see Table 5.1). In this work, we have extended the previous studies by

numerically measuring the rate of change of fitness for bounded distributions also. We have

measured the rate of change of fitness in all the three EVT domains of the DBFE in both low

and high mutation regimes. We observed that in all the cases, the rate of change of fitness

decreases with time as ∼ t−α , where α > 1 for Weibull, α ≈ 1 for Gumbel [13] and α < 1 for

Fréchet domains [13].

Experimentally, the distribution of beneficial fitness effects can be inferred by two methods.

In the first method, mutations are introduced in the wildtype sequence and those that confer

a fitness advantage are separated and their distribution of fitness effects are determined. By

this method, DBFE belonging to all the EVT domains have been observed [11, 104–112].

In contrast, here we focus on learning about DBFE via adaptation dynamics. Though many

works have tracked the dynamics of the population during adaptation [104, 130–133], in most

of them only the selection coefficient of the mutant fixed was measured. In our study, we have

observed that the selection coefficient as given by (5.11) always decreases, with the increasing

initial fitness or increasing steps as shown in Fig. 5.10. Hence this quantity is not useful to

distinguish between the EVT domains. However, from our study we observe that the fitness

difference between steps shows different patterns depending on the EVT domain of the DBFEs

in both the high and low mutation regimes and can be used to distinguish between the EVT

domains.

In this work, we have numerically shown that the fitness returns in each EVT domain is

very robust and holds even when the number of mutations produced is large (Nµ ≫ 1). Fitness

difference can be measured in experiments, for example as in [107]. We suggest that exper-

iments can predict the EVT domain of DBFE by measuring the fitness difference between
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successive mutations fixed in the population, or even from the fitness of the first mutation,

when the initial fitness is varied. However currently experimental studies that measure both

fitness and DBFE in the same study are not available but it is highly desirable to have such

studies to test our predictions.

The criteria used for choosing the leader, namely, the class which has a population fraction

greater than 1/2, is not good in high mutation regime, because more than one mutant class with

fraction close to 1/2 can be present in the population at a time, and in that case it is difficult

to identify the leader in an experimental population with this criteria. It will be interesting

to check the robustness of our results for different criteria, which can be used in experiments

with some genetic markers.





Chapter 6

Conclusions

The main focus of this study is to understand the combined effect of beneficial and deleterious

mutations in the presence of other evolutionary forces, in particular, we study the effect of ben-

eficial mutations in two biological questions, namely, the evolution of sex and recombination

and the dynamics of adaptation process.

In Chapters 2 and 3, we studied the effect of beneficial mutation on the irreversible ac-

cumulation of deleterious mutation (Muller’s ratchet)[1] for two different mutation schemes.

The main findings are:

(i) Whether or not beneficial mutations can stop Muller’s ratchet depends on the mutational

scheme used. Beneficial mutations always stop the Muller’s ratchet if the mutation rates

are fitness-dependent (as discussed in Chapter 2) [3]. But, when the mutation rates

are fitness independent (as in Chapter 3), for a fixed beneficial mutation rate, Muller’s

ratchet stops only when the population size is above a critical value Nc.

(ii) The equilibrium fraction of deleterious mutations (mutational load) reduces with recom-

bination. This reduction is appreciable when beneficial mutations are rare, as in the case

of adapting microbial populations, whereas it has a mild or moderate effect on codon

usage bias where the mutation rates between the preferred and unpreferred codons are

comparable. These results are discussed in Chapter 2.
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(iii) On the technical front, exact solution of the frequency distribution in deterministic mod-

els were found in Chapters 2 and 3.

In Chapter 4, we asked the question how the advantage of recombination on a single peak

fitness landscape changes when the topology of fitness landscape changes. We found that on

rugged fitness landscapes,

(i) Small rate of recombination is advantageous when mutational forces are weak.

(ii) Recombination has a short time advantage, which is determined by the potential to

generate fit genotypes from the existing initial variation, but it becomes disadvantageous

at long times, as it reduces the probability to escape from the local fitness peak [9].

(ii) Effect of recombination shows strong dependence on the initial condition, as the short

term advantage is highest when the initial variation is high and the ruggedness is low.

In Chapter 5, we studied the adaptation dynamics of asexual populations to address the

second question of interest, namely, the relationship between the adaptation dynamics and the

distribution of beneficial fitness effects (DBFEs). We found that:

(i) Distinguishable trends shown by average fitness difference between successive steps, in

three extreme value domains of DBFEs in the low mutation regime [119] holds good for

high mutation regime as well.

(ii) Rate of adaptation also shows distinct trends for different DBFEs in both high and low

mutation regimes.
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Appendix A

A.1 Deterministic dynamics and stationary state

Equation (2.1) is nonlinear in the population fraction due to the first term on the RHS. This

nonlinearity can be eliminated by a change of variables from X( j, t) to an unnormalised pop-

ulation variable Z( j, t) which is defined as [134, 91]

Z( j, t) = X( j, t) e
R t

0 dt ′ w(t ′) (A.1)

Then the unnormalised population fraction obeys the following linear differential equation:

∂Z( j)

∂ t
= −s j Z( j, t)− [(L− j)µ + jν]Z( j, t)

+ (L− j+1)µZ( j−1, t)+( j+1)νZ( j+1, t) (A.2)

with boundary conditions

Z(−1, t) = Z(L+1, t) = 0 (A.3)

at all times. The RHS of (A.2) is a three-term recursion relation (in j) with variable coeffi-

cients, which is usually not easy to solve.

Inspired by the results of [58], we assume that the population fraction Z( j, t) is of the

following form

Z( j, t) =

�

L

j

�

x
j
1(t) x

L− j
2 (t) (A.4)
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where x1,x2 are calculated below. The normalised fraction X( j, t) is then given by [134, 91]

X( j, t) =
Z( j, t)

∑L
j′=0 Z( j′, t)

(A.5)

=

�

L

j

�

x j(t) (1− x(t))L− j (A.6)

where x = x1/(x1 + x2) lies between zero and one. It should be noted that the above form for

the population fraction of a fitness class implies that each locus in the sequence contributes

independently to the population fraction of a sequence.

Using the ansatz (A.4) in the boundary conditions (A.3), we find that x1,x2 obey linear,

coupled differential equations which can be expressed as

∂

∂ t





x1

x2



=





−ν − s µ

ν −µ









x1

x2



 (A.7)

On using the ansatz (A.4) in the bulk equation (A.2) for which 0 < j < L, we get

j

x1

�

∂x1

∂ t
+(ν + s)x1 −µx2

�

+
L− j

x2

�

∂x2

∂ t
−νx1 +µx2

�

= 0 (A.8)

However due to (A.7), the coefficient of j and L− j equals zero for any 0 < j < L. Thus

the ansatz (A.4) is consistent with the bulk equations, and the problem reduces to solving the

matrix equation (A.7). By going to the diagonal basis, we obtain





x1(t)

x2(t)



=





2µ

ν−µ+s+
√

(µ−s−ν)2+4µν

2µ

ν−µ+s−
√

(µ−s−ν)2+4µν

1 1









eλ+t x̃1(0)

eλ−t x̃2(0)



 (A.9)

where the column vectors in the matrix above are the eigenvectors of the matrix on the RHS

of (A.7) corresponding to the eigenvalues λ±, which are given by

λ± =
−ν −µ − s±

p

(µ − s−ν)2 +4µν

2
(A.10)

and x̃1(0), x̃2(0) can be found using the initial condition X( j,0).
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In the steady state, the population fraction is obtained by taking the limit t → ∞ in the

expressions of x1(t),x2(t) obtained above. Using the fact that the eigenvalue λ− in (A.10) is

negative, we find that the steady state fraction x is given by (2.5).

A.2 Moran model for neutral, nonrecombining population

For the Moran process defined in the main text, the probability distribution P(n(i), t) of the

number of individuals in the fitness class i evolves according to the following equation:

∂P(n(i), t)

∂ t

= ∑
j 6=i

"

N−n(i)

∑
n( j)=1

P(n(i)+1,n( j)−1, t) R(n(i)+1 → n(i),n( j)−1 → n( j))

−
N−n(i)

∑
n( j)=0

P(n(i),n( j), t) R(n(i)→ n(i)−1,n( j)→ n( j)+1)

+
N−n(i)

∑
n( j)=1

P(n(i)−1,n( j)+1, t) R(n(i)−1 → n(i),n( j)+1 → n( j))

−
N−n(i)

∑
n( j)=0

P(n(i),n( j), t) R(n(i)→ n(i)+1,n( j)→ n( j)−1)

#

(A.11)

where R is the rate at which a birth-and-death event occurs, and P(n(i),n( j), t) is the joint

distribution of the number of individuals in the ith and jth fitness class. Using the above

equation, it can be seen that the average number of individuals in the fitness class i given by

n̄(i, t) = ∑N
n(i)=1

n(i)P(n(i), t) changes as

∂ n̄(i, t)

∂ t
= ∑

j 6=i

∑
n(i),n( j)

[R(n(i)→ n(i)+1,n( j)→ n( j)−1)P(n(i),n( j), t)

−R(n(i)→ n(i)−1,n( j)→ n( j)+1)P(n(i),n( j), t)] (A.12)
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We next find the rates at which the birth-and-death process occurs. For class i, j = 0, ...,L

and i 6= j, we have

R(n(i)→ n(i)+1,n( j)→ n( j)−1)

= (1−µi −νi)
n(i)

N

n( j)

N
+µi−1

n(i−1)

N

n( j)

N
+νi+1

n(i+1)

N

n( j)

N
(A.13)

with n(−1) = n(L+1) = 0. In the above equation, the first term on the RHS gives the proba-

bility of the event that a birth occurs in the ith class, the offspring does not mutate and a death

occurs in the jth class, while the second and third term give the probability that a birth occurs

in a class neighboring the ith class, the offspring acquires a mutation and a death occurs in the

jth class. On using the above equation in (A.12), after some simple algebra, we get

∂ n̄(i, t)

∂ t
= µi−1n̄(i−1, t)+νi+1n̄(i+1, t)− (µi+νi)n̄(i, t) , 0 ≤ i ≤ L (A.14)

which can be easily solved in the stationary state to give (2.10).

A.3 Deterministic solution in the absence of beneficial muta-

tions

Consider an infinitely large, nonrecombining population when only deleterious mutations are

allowed. Let J be the least-loaded fitness class so that the frequency X
(0)
J (k, t) = 0 , k < J at

all times. Then the evolution (2.1) reduces to

∂X
(0)
J ( j, t)

∂ t
= −(s j+ w̄J(t))X

(0)
J ( j, t)− (L− j)µX

(0)
J ( j, t)

+ (L− j+1)µX
(0)
J ( j−1, t) , J ≤ j ≤ L (A.15)

where the average fitness w̄J(t) =−s∑L
k=J kX

(0)
J (k, t). In the stationary state, the equation for

j = J gives

w̄J =−(L− J)µ − sJ (A.16)
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On iterating the two-term recursion relation for X
(0)
J ( j), we obtain

X
(0)
J ( j) =

�

L− J

j− J

�

�µ

s

� j−J �

1− µ

s

�L− j

, µ < s (A.17)

For J = 0, (2.8) is recovered.





Appendix B

B.1 Comparison of mutation schemes

As already described in Section 2.2, in an infinitely large population of finite diallelic se-

quences of length L in which the wild type allele mutates with rate µ and the back mutation

occurs with rate ν , the frequency X( j, t) of a sequence with j deleterious mutations and fitness

w( j) =−s j evolves in continuous time as [58, 3]

Ẋ( j, t)= ( j+1)νX( j+1, t)+(L− j+1)µX( j−1, t)−[(L−k)µ+ jν]X( j, t)−s(k− j̄)X( j, t) ,

(B.1)

where x−1 = xL+1 = 0. In the limit µ,ν → 0 and L → ∞, one can define the deleterious and

beneficial mutation rate per sequence as Ud = Lµ and Ub = Lν , and rewrite the above equation

as

Ẋ( j, t)= ε j+1UbX( j+1, t)+(1−ε j−1)UdX( j−1, t)−[(1−ε j)Ud+ε jUb]X( j, t)−s( j− j̄)X( j, t) ,

(B.2)

where ε j = j/L. In a well adapted population in which the number of loci carrying the delete-

rious allele is small, the back mutations to the wild type allele can be ignored. More precisely,

when the number of deleterious mutations scales sub-linearly with L, the fraction ε j → 0 for

an infinitely long sequence and we obtain the model defined by (3.1a) and (3.1b) with Ub = 0.

Similarly, in a maladapted population in which ε j → 1, the model (B.2) reduces to the one
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studied in Chapter 3 with Ud = 0. The model defined by (3.1a) and (3.1b) thus interpolates

between the two limits of the model (B.2) described above.

B.2 Neutral dynamics using eigenfunction expansion method

The treatment below for the unnormalised frequency Y ( j, t) essentially follows Chapter 7 of

[92] and here we briefly describe our results. For S = 0, the solution of the eigenvalue equation

(3.17b) is given by

φ j =C+a
j
++C−a

j
− , j ≥ 0 , (B.3)

where a± are solutions of the quadratic equation a2+(λ −2)a+1 = 0 and the coefficients C+

and C− are related due to the boundary equation (3.17a). Since a+a− = 1, it is convenient to

write a±= e±iq where q is real. The latter condition is required to ensure that the eigenfunction

φ j does not diverge at large j (see (3.3)). Using a++a− = 2−λ , we find that the eigenvalues

form a continuous spectrum and are given by

λ = 4sin2
�q

2

�

, 0 ≤ q ≤ π . (B.4)

Since the ratio C+/C− determined using (3.24) has unit modulus, we can write

C+

C−
=− γ −2+ eiq

γ −2+ e−iq
= ei2η(q) , (B.5)

and finally arrive at

φ j(q) =

r

2

π
cos(q j+η(q)) , (B.6)

where we have used the orthonormality condition (3.18) to determine the proportionality con-

stant. For the initial condition X( j,0) = δ j,0, on replacing the sums in (3.16) and (3.20) by
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integrals (as the eigenvalues are continuous), we obtain

Y ( j, t) =
Z π

0
φ j(q)φ0(q)e

−2(1−cosq)
√

UbUdtdq , (B.7)

=
2

π

Z π

0
dqsinq

(γ −2)sin(q j)+ sin(q j+q)

(γ −2)2 +2(γ −2)cosq+1
e−2(1−cos q)

√
UbUdt , (B.8)

where the last expression follows on using (B.5) in (B.6). The above integral does not appear

to be exactly solvable, but in the scaling limit q → 0, j, t → ∞ with q2t and q j finite, the above

equation simplifies to give

Y ( j, t) ≈ 2

π

Z ∞

0
dq

(γ −1)qsin(q j)+q2 cos(q j)

(γ −1)2
e−q2

√
UbUdt , (B.9)

=
1

2
√

π

j

γ −1

e
− j2

4t
√

UbUd

(t
√

UbUd)3/2
. (B.10)

B.3 Some properties of the Bessel functions

If K denotes J,Y , the Bessel function Kν(z) is defined as the solution of the following differ-

ential equation (9.1.1,[96])

z2 d2Kν(z)

dz2
+ z

dKν(z)

dz
+(z2 −ν2)Kν(z) = 0 . (B.11)

The Bessel function of the second kind Yν(z) is related to the Bessel function of the first kind

Jν(z) by (9.1.2,[96])

Yν(z) =
cos(νπ)Jν(z)− J−ν(z)

sin(νπ)
. (B.12)

For the series representation of Jν(z), see (B.19) below; the asymptotic expansions of Jν(z)

for z > ν and z < ν are given in (B.25) and (B.31), respectively.



122

B.4 Cumulants of the number of deleterious mutations

Following [75], we first define the generating function of the frequency as

F(ξ , t) =
∞

∑
k=0

X( j, t)e−ξ j . (B.13)

Multiplying (3.1a) and (3.1b) by e−ξ j and summing over j, we obtain

d lnF(ξ , t)

dt
= sC1(t)+ s

d lnF(ξ , t)

dξ
−Ud(1− e−ξ )+Ub(e

ξ −1)

�

1− X(0)

F(ξ , t)

�

. (B.14)

The nth cumulant Cn(t),n = 1,2, ... of the number of deleterious mutations is related to

F(ξ , t) through

lnF(ξ , t) =
∞

∑
n=1

Cn(t)
(−ξ )n

n!
. (B.15)

Using the above equation in (B.14), we get

∞

∑
n=1

Ċn(t)
(−ξ )n

n!
= −s

∞

∑
n=1

Cn+1(t)
(−ξ )n

n!
+Ud

∞

∑
n=1

(−ξ )n

n!

+ Ub

 

∞

∑
n=1

ξ n

n!

!

�

1− X(0, t)

F(ξ , t)

�

. (B.16)

Matching the coefficient of ξ n for n = 1,2 on both sides, we find that

Ċ1(t) = −sC2(t)+Ud −Ub(1−X(0, t)) , (B.17)

Ċ2(t) = −sC3(t)+U −UbX(0, t)(1+2C1(t)) . (B.18)
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B.5 Approximate expressions for the eigenvalues when S is

large

The Bessel function of the first kind has the following series representation (9.1.10, [96]):

Jν(z) =
∞

∑
m=0

(−1)m

m!(ν +m)!

� z

2

�2m+ν
. (B.19)

For large S, keeping the first two terms in the above series and using it in the eigenvalue

equation (3.24), we get

(λ − γ)(λ −S−2)≈ 1 . (B.20)

Solving the above quadratic equation, we obtain the first two eigenvalues λ0 and λ1 given in

(3.31) and (3.48) respectively. Figure 3.1 shows a comparison between the exact eigenvalues

obtained numerically using (3.24) and the above approximations. Our numerical analysis of

(3.24) also suggests that the αth eigenvalue is given by

λα ≈ αS+2 , α = 1,2, ... . (B.21)

B.6 Approximate expression for the stationary distribution

when S is large

Noting that the terms corresponding to m = 0,1 in the summand on the RHS of (3.33) con-

tribute to the leading order term in Ub/s, we obtain

X( j) ∝
µ j

j!

�

1+
Ub

s

�

(γEM −Hj)(1+µ)− µ

j+1

��

, (B.22)

where µ = Ud/s. In the above equation, we have used that j!/( j + ε)! ≈ 1+ ε(γEM −Hj)

for small ε where γEM ≈ 0.577... and Hj = ∑
j
i=1 i−1 is the Harmonic number. On fixing the
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proportionality constant using (3.2), we recover (A7) of [27]:

X( j) =
e−µ µ j

j!

"

1+
Ub

s

 

∞

∑
m=0

e−µ µm

m!
(Hm(1+µ)+

µ

m+1
)−Hj(1+µ)− µ

j+1

!#

.

(B.23)

For Ud < s, the above expression shows that the distribution is close to the Poisson distribution

(3.5). However, for Ud > s, we obtain [27]

X( j)≈ e−Ud/s

j!

�

Ud

s

� j �

1+
UbUd

s2
ln

�

Ud

s j

��

, (B.24)

on using ∑∞
m=0 zmHm/m! ≈ ez lnz for large z and Hj ≈ ln j + γEM for large j in (B.23). This

result shows that the beneficial mutations enhance the frequency in fitness classes j < Ud/s

and diminish it in higher ones (also, see Fig. 3.3).

B.7 Approximate expressions for the eigenvalues when S is

small

For the Bessel function Jν(z),z > ν , the asymptotic expansion for large orders is given by

(9.3.3, [96])

Jν(ν secβ )∼ cos(ν(tanβ −β )− (π/4))
p

(ν/2)π tanβ
, 0 < β < π/2 . (B.25)

As shown in Fig. 3.1, the eigenvalues λ0,λ1 are an increasing function of S and approach zero

as S → 0 (also, see (B.4) for the neutral case). Then using (B.25) in (3.24) and carrying out a

small λ expansion, we obtain

cos(2λ 3/2

3S
− π

4
−
√

λ )

cos(2λ 3/2

3S
− π

4
)

= γ −λ . (B.26)

After some algebra, the above simplifies to

tan

 

2

3

λ 3/2

S

!

=−γ −1+
√

λ −λ

γ −1−
√

λ −λ
. (B.27)
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The above equation immediately suggests that the eigenvalue λ ∼ S2/3 so that the RHS can be

nonzero and finite. Guided by this observation and a numerical analysis of (3.24), we expect

that the αth eigenvalue is of the following form:

λα = λ
(0)
α S2/3 +λ

(1)
α S . (B.28)

Substituting this in (B.27) and expanding both sides of the equation for small S, we find that

λ
(0)
α =

�

3π(4α +3)

8

�2/3

, (B.29)

λ
(1)
α = − 1

γ −1
. (B.30)

As we have assumed λ to be small to arrive at (B.26), the above results for the eigenvalues are

valid for small α . For larger α , our numerical analysis of (3.24) suggests that the eigenvalues

increase linearly with S.

B.8 Approximate expression for the stationary distribution

when S is small

The asymptotic expansion of the Bessel function Jν(z),z< ν for large orders is given by (9.3.1,

[96])

Jν(z)∼
1√
2πν

� ze

2ν

�ν
. (B.31)

Using this in (3.27), we obtain the steady state frequency to be

X( j) ∝

�
r

Ud

Ub

� j+δ
1

p

j+δ

�

e/S

j+δ

� j+δ

, (B.32)

where δ = (2− λ0)/S and λ0 is given by (3.37). A Gaussian approximation for the above

expression can be obtained by writing X( j) ∝ eI( j) and expanding I( j) about its turning point

j̃ = (Ud/s)−δ up to quadratic orders in the deviation j− j̃. On fixing the normalisation, we
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Perturbation

Fig. B.1 Figure shows the decrease in the population fraction in the zeroth fitness class with

deleterious mutation rate (Ud) for a fixed value of s = 0.05 and Ub = 0.01. The solid line

shows the result of the perturbation theory given in (B.38) for Ud <Ub.

obtain

X( j)≈
r

s

2πUd

exp

"

− s

2Ud

�

j−Ud

s
+

2−λ0

S

�2
#

. (B.33)

The mean and variance of the above distribution differs from (3.38) and (3.39) by a factor

Ub/s and is therefore a good approximation when Ub ≪Ud .

B.9 Stationary state distribution when the deleterious muta-

tion rate is smaller than the beneficial one

For completeness, here we consider the parameter regime in which Ud < Ub within a pertur-

bation theory in Ud . We begin by expanding the steady state fraction in a power series in Ud
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as

X( j) =
∞

∑
n=0

Un
d

X (n)( j)

n!
, (B.34)

where X (n)( j) is the nth derivative of X( j) with respect to Ud evaluated at Ud = 0. When the

deleterious mutation rate is zero, as the entire population is in the zeroth fitness class, we have

X (0)( j) = δ j,0. As a result, the mean C
(0)
1 = ∑∞

j=0 jX (0)( j) = 0. Using (B.34) in (3.1a) and

(3.1b) in the steady state and retaining terms to leading order in Ud , we obtain

sC
(1)
1 = 1−UbX (1)(1) (B.35)

UbX (1)(2) = (Ub+ s)X (1)(1)−1 (B.36)

UbX (1)( j) = (Ub+ s( j−1))X (1)( j−1) , j ≥ 3 . (B.37)

The last equation implies that the steady state fraction is a monotonically increasing function

of j; however, since each frequency is bounded above by unity and the total fraction must also

add up to one, to obtain a sensible result to linear order in Ud, the fraction X (1)( j) must be

zero for all j ≥ 2. This immediately yields

X(0) = 1− Ud

Ub + s
+O(U2

d ), (B.38)

X(1) =
Ud

Ub + s
+O(U2

d ), (B.39)

X( j) = O(U2
d ) , j ≥ 2 . (B.40)

Thus the fraction in the zeroth fitness class decreases linearly with Ud when the deleterious

mutation rate is smaller than the beneficial one; in contrast, the fraction X(0) decays exponen-

tially or faster with Ud when Ud >Ub (see Fig. B.1 and Sections 3.4.1 and 3.4.2).

B.10 Finite Size population

As real populations are finite and evolve stochastically, here we present our preliminary results

taking random genetic drift into account. The dynamics of the population is modeled in the
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Fig. B.2 Figure shows the transition from a ratcheting state to a steady state as the population

size crosses the critical value Nc. Other parameters are Ud = 0.1 and s = 0.05.

same way as described in Section 2.2, except that the mutation probabilities for beneficial and

deleterious mutations are drawn from a Poisson distribution with mean Ud and Ub. We find that

unlike for the mutation scheme studied in Chapter 2 where a finite population always attains a

steady state in the presence of beneficial mutations, here Muller’s ratchet stops only when the

population size is above a critical value Nc [51]. Our numerical results for the dependence of

Nc on beneficial mutation rate is shown in Fig. B.2 and we find that with increasing beneficial

mutation rate, the minimum population size required to halt the Muller’s ratchet decreases. A

complete analytical understanding of these results is however not currently available.
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