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Abstract

Statistical mechanics is an essential tool to describe the behavior of complex systems rang-

ing from bacterial growth to universe expansion. For a system in equilibrium, this approach

is well established and the stationary state distribution is given by the Boltzmann weight.

Nonequilibrium systems are much more common than the equilibrium ones but a com-

plete formalism analogous to equilibrium statistical mechanics has not been developed

for nonequilibrium processes. We therefore study some simple nonequilibrium models

in detail to gain an insight in these systems. In this thesis, we focus on one-dimensional

nonequilibrium interacting particle systems which are driven by an external force. Such

systems can show a non-trivial phase transition even in one-dimension and we are inter-

ested in understanding the critical behavior of these systems. The models studied in this

thesis are motivated by the common phenomenon of jamming that occurs in traffic flow of

vehicles, molecular motors, fluid flow through narrow pipe, etc.

In this thesis, we study two generic classes of one-dimensional stochastic models: (a)

lattice gas models of hard core particles in which a particle hops to an empty site according

to the hop rule assigned to it and (b) mass transport models in which each site can contain

many particles and a particle hops to another site according to the prescribed rule. Below

we list four lattice gas models that we have worked on in this thesis and their correspon-

dence to the mass transport models:

i. A particle hops to a nearest neighbor provided it is empty depending on the number

of vacancies in front of it; this model can be mapped exactly to a zero range process.
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ii. A particle hops to a nearest neighbor if it is empty depending on the number of va-

cancies in front and back of it; this model can be mapped exactly to a misanthrope

process.

iii. A particle hops to a nearest neighbor with a hop rate that is chosen from a distribu-

tion; this model can be related to a zero range process with the sitewise disorder.

iv. A particle can have both short range as well as long range hops; this model can be

mapped to an aggregation-fragmentation model.

In stationary state, these lattice gas models show a phase transition between fluid phase

and jammed phase as the total density of the system is varied [1]. In fluid phase, the par-

ticles are uniformly distributed while in the jammed phase, a hole cluster of macroscopic

length is formed in front of a particle. Some of the questions regarding stationary state

and dynamical properties of these models have been addressed in previous studies and are

reviewed briefly in Chapter 2.

In Chapter 3, we calculate the equal time density-density correlation function in the

stationary state in the fluid phase and at the critical point for the models listed above. Our

main result is that at the critical point, the correlation function shows a power law decay

with an exponent that varies continuously with the parameters in the models (i)-(iii). How-

ever, in the model (iv), the exponent associated with the correlation function decay is a

constant. We also find that the correlation length diverges in thermodynamic limit with

an exponent which varies continuously in one parameter regime of hop rates in models

(i)-(iii), otherwise it is a constant [2, 3].

The stationary state dynamics of these models are addressed in Chapter 4. We studied

the decay of density-density autocorrelation function with time both analytically and nu-

merically. Our main result is that the autocorrelation function decays as a power law in time

with an exponent 2/3 [4] when equal time correlation function decays faster than inverse

distance otherwise the decay is slower and the exponent is continuously varying [3].

Besides the stationary state properties of the models of interest, we also studied the

quench dynamics for hop rule (i) in Chapter 5. For this model, infinitely rapid quench dy-
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namics (coarsening) have been studied [5]. However the dynamics of this model under

slow annealing have not been investigated, and we study the decay of the domain wall den-

sity with the inverse quench rate using numerical simulations and analytical arguments.

We find that the standard Kibble-Zurek scaling [6, 7] explains our results in the critical re-

gion but close to the critical point and for quenches deep in the jammed phase, the excess

domain wall density decay with quench time can be understood using the corresponding

results for rapid quench dynamics [8].

We conclude the thesis in Chapter 6 by presenting our preliminary results on the slow

quench dynamics of a zero range process in mean field geometry [9] and also discuss some

open questions.
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Chapter 1

Introduction

Statistical mechanics is a branch of physics that applies probability theory to study the be-

havior of systems composed of a large number of particles. It provides an essential tool to

connect the microscopic properties of individual particles to the macroscopic bulk proper-

ties of materials that can be observed in everyday life. For example, in the kinetic theory

of gases, by treating every atom or molecule of the gas as a particle undergoing classical

Newtonian mechanics and focusing only on the average behaviour of a large number of

particles of the same kind, one can find the expression for the average macroscopic phys-

ical observable like pressure or temperature. Thus, statistical mechanics uses minimum

details from the microscopic constituents to produce macroscopic observable quantities

correctly. It was originally introduced in the late nineteenth century as a theoretical de-

scription of thermodynamics.

1.1 Equilibrium versus nonequilibrium

A system in thermal equilibrium obeys the laws of thermodynamics that are well estab-

lished in equilibrium statistical mechanics. The connection between the macroscopic de-

scription and the microscopic scale is obtained through Boltzmann’s formula, S = k logΩ,

where S is the entropy, k is the Boltzmann constant and Ω is the number of different con-

figurations of the system. In canonical ensemble, once the microscopic Hamiltonian H of
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the system at temperature T is specified, the stationary state distribution over configura-

tion space is known to be given by the Boltzmann factor e−βH , where β= (kT )−1.

Nonequilibrium systems are much more common than the equilibrium ones, but a

complete formalism analogous to equilibrium statistical mechanics has not been devel-

oped for nonequilibrium processes. In contrast to equilibrium systems, nonequilibrium

systems can reach a stationary state but their statistical properties are not described by the

equilibrium Boltzmann distribution. One important feature that distinguishes a nonequi-

librium system from an equilibrium system is the breakdown of detailed balance due to

the presence of currents in nonequilibrium systems that drive the macroscopic transport

of matter, charge, energy etc. within a system, or between the system and its environment.

To see this, consider a classical system following Markov dynamics in which the system

evolves from a configuration C to a configuration C
′ between time t and t +d t at a rate

W (C ′,C ). The evolution of probability, P (C , t ) of being in microstate C at time t is gov-

erned by the master equation [10],

dP (C , t )

d t
=

∑

C ′ 6=C

W (C ,C ′)P (C ′, t )−
∑

C ′ 6=C

W (C ′,C )P (C , t ). (1.1)

When the stationary state is reached, the left-hand side of the above equation must vanish.

Moreover, at equilibrium, as the microscopic dynamics of the system is time reversible, the

local currents must vanish and thus the detailed balance equation is obtained as [10]

W (C ,C ′)P eq (C ′) =W (C ′,C )P eq (C ). (1.2)

A state for which the right hand side of (1.1) is zero but the detailed balance of (1.2) is not

satisfied is a nonequilibrium stationary state [11–13].

Modeling of complex phenomena involves creating simple representations while retain-

ing a close relationship with actual physical systems [12]. For example, Lenz introduced

the Ising model [14] in order to understand the nature of the ferromagnetic phase transi-

tion [12]. Due to the lack of a general framework for nonequilibrium systems, one usually

investigates simple models for such systems and several models have been introduced [15–
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18]. Asymmetric simple exclusion process (ASEP) is one of the most commonly studied

models for nonequilibrium phenomena. This particle-hole model is defined on a lattice

and the particles have excluded volume interactions. The non-vanishing currents are pro-

duced in the system by coupling the system to external reservoirs that drive current (trans-

port of particles, energy, heat) through the system, or by introducing some bias in the dy-

namics that favors motion in a preferred direction. Due to its simplicity, the ASEP has been

used in various contexts. It was first proposed as a model to describe the dynamics of ri-

bosomes along RNA [15]. In the mathematical literature, the name exclusion process was

first used by Spitzer [16] in context of a Markovian process of particles with hardcore inter-

action. A very popular application of exclusion process is in understanding the dynamics

of molecular motors that transport cargos inside the cells [19] and several variants have

been used to model traffic flow [20]. The ASEP has also been used to describe transport

phenomena in low-dimensional systems such as macromolecules passing through capil-

lary vessels [21], anisotropic conductors or quantum dots where electrons hop to a vacant

site and repel each other due to Coulomb interactions [22].

1.2 Jamming transition in one dimension

An important characteristic of nonequilibrium systems with short range interactions is

that unlike equilibrium systems, they can exhibit phase transitions even in one dimension.

Variants of ASEP called driven lattice gas models are examples of nonequilibrium systems

whose stationary state can show a nontrivial phase transition textcolorredin one dimen-

sion. Here we will study the properties of such a nonequilibrium phase transition in one

dimension. The physical phenomenon of interest in this thesis is jamming which is com-

monly observed and disrupts the flow of vehicles on a city road [20], molecular motors in

a biological cell [19], fluids in narrow pipes, and food grains through a hopper [23]. Usu-

ally one expects a jam to form at high densities and dissolve at lower densities; however,

jamming can happen at low particle densities also [24]. For example, consider a bus route

along which overtaking is not allowed and, one of the buses gets delayed. The number of
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passengers waiting for the bus at the stop increases and so does the time interval to get

the passengers on board. As a result, the bus gets delayed even more leading to a cluster

of buses behind it even when only few buses are serving on the affected bus route [24]. Of

course, a traffic jam can also form behind a slow car on a single-lane highway where over-

taking is prohibited even when there are few vehicles [25–27]. Large headways in front of

a jam have been observed in experiments on ant trails [28], and camphor boats [29] where

the agents (ants and boats) form a platoon at low densities due to the presence of an exter-

nal field, namely, pheromone and camphor concentration respectively.

1.3 Overview of the thesis

In this thesis, we mainly focus on the critical behavior of the density-density correlation

function in several lattice gas models whose stationary state is not in equilibrium. Our stud-

ies are based on extensive Monte Carlo simulations, scaling analysis, physical arguments,

and analytic solutions. In Chapter 2, we give details of the models that are used in the thesis

and review the relevant results from existing literature. In Chapter 3, we calculate the equal

time density-density correlation function in the stationary state for several variants of the

exclusion process explained in Chapter 2. We also study the behavior of correlation length

while approaching the critical point. We obtain the exact analytical expression for the corre-

lation function in the canonical ensemble which we further simplify in the thermodynamic

limit [2, 3].

In literature, the asymmetric exclusion process (ASEP) has been studied extensively and

its stationary state dynamics have been understood by mapping it to an interface model

which is described by the Kardar-Parisi-Zhang equation [30]. Previous studies have shown

that the density-density autocorrelation function decays in time with an exponent 2/3 [4].

However, it is well known that an ASEP with periodic boundary conditions does not show

a jamming transition. The question of the stationary state dynamics at the critical point

for systems having jamming transition is addressed in Chapter 4 by studying the decay of

density-density autocorrelation function with time [3].
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Besides the stationary state properties of the lattice gas models that exhibit jamming

transition, we also study the quench dynamics under slow annealing. In Chapter 5, we

study the decay of domain wall density with the inverse quench rate using numerical sim-

ulations and analytical arguments [8]. We find that the standard Kibble-Zurek scaling [6, 7]

explains our results in the critical region but close to the critical point, we find a new scal-

ing law which also involves the properties of the fast quench dynamics. We also present

our preliminary results on slow quench dynamics of a zero range process (which is related

to ASEP) in mean field geometry. Finally, in Chapter 6, we summarize our main results.





Chapter 2

Driven systems with jamming transition

2.1 Introduction

As mentioned in Chapter 1, simple models are useful because one can bypass the complex

details of the full system and try to understand the system properties in terms of a few

parameters. Some of the simple models of nonequilibrium systems that are driven by an

external field are well known in literature [1].

An important model in this class is the Zero Range Process (ZRP) in which a particle

hops to a neighbouring site with a rate that depends only on the properties of the departure

site and has the attractive feature that its steady state distribution can be found exactly

[16]. This model has been generalised in various directions in recent years [31–33], and

has been used to study the clustering phenomena in traffic flow [34], granular gases [35]

and networks [36], avalanche dynamics in sandpiles [37], slow dynamics in glasses [38] and

phase separation in nonequilibrium systems [39].

Another class of model, called exclusion process, is defined on a one-dimensional lat-

tice and involves hopping of the hard core particles to an empty site [16, 40]. Our main

focus in the thesis is to study the variants of a one-dimensional exclusion process that are

closely related to the zero range process [41, 1], or a misanthrope process, whose exact

steady state measure can be found in certain cases [42, 33]. Certain models with excluded
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Lattice gas
  Model

4u (2,1)

Mass model

u (2,1)4

Fig. 2.1 Illustration of the mapping between lattice gas model (bottom) and mass model

(top) with short range hop.

volume interaction can also be related to aggregation-fragmentation models [43, 44]. In the

following sections, we review these models in detail.

2.2 Stationary states with product measure

In this section, we discuss a class of one-dimensional lattice gas models (exclusion process)

defined on a ring. In these models, each site contains at most one particle and a particle

hops to an empty nearest neighbor site with a rate ui (m,m′) where m and m′ are the num-

ber of vacancies in its front and back respectively. Further, the hop rate may also depend

on the particle index i .

To understand the lattice gas model analytically, we map it to the so-called mass model

in which each site can contain multiple particles. As shown in Fig. 2.1, the exclusion process

described above with L sites and N particles maps to a mass model with L = N sites and

M = L − N particles (each of unit mass). A particle hops out of a site with m particles to

a target site on right with m′ particles at rate ui (m,m′), where the subscript i now refers

to the site from which the particle hops out. The density ̺ = M /L in the mass model is

related to the density ρ = N/L in the exclusion process as

̺=
1

ρ
−1 . (2.1)
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Although we have described the unidirectional case above, it is important to note that the

steady state properties for these models are not affected by a bias in the hop rates.

For certain choices of short-range hop rates in the mass model, the stationary state

mass distribution is a product measure. More precisely, the stationary state mass distribu-

tion of a configuration C ≡ {m1, ...,mL }, where mi is the number of particles at the i th site

is given by

P (m1, ...,mL ) = Z̃−1
L ,M

L
∏

i=1

fi (mi ) δ
M ,

∑

L

k=1
mk

, (2.2)

where δ
M ,

∑

L

k=1
mk

is the Kronecker delta and Z̃L ,M is the canonical partition function de-

fined as

Z̃L ,M =
∑

{mi }

L
∏

i=1

fi (mi ) δ
M ,

∑

L

k=1
mk

. (2.3)

Here, fi (mi ) is the steady state weight factor and can be obtained using the master equation

in stationary state, which is given as [1]

L
∑

i=1

[ui (mi−1 +1,mi )P (..,mi−1 +1,mi −1, ...)−ui (mi ,mi+1)P (...,mi−1,mi , ...)]θ(mi ) = 0 ,

(2.4)

where θ(mi ) reflects the constraint that the site i must be occupied. Using (2.2) in (2.4) and

equating each term, we get the relation between the stationary state weight factor fi (mi )

and the hop rates ui (m,m′) [1] (as given in Secs. 2.2.1, 2.2.2, and 2.2.3).

Further, we have the exact recursion relation for the canonical partition function (2.3)

and is given as [45]

Z̃L ,M =
M
∑

k=0

fi (k)Z̃L−1,M−k , (2.5)

with Z̃0,m = δm,0 since Z̃1,m = fi (m). For some more properties of the partition function in

the canonical ensemble, see Appendices A.1 and A.2.

For clarity, from this point onward, we only consider stationary state properties of ho-

mogeneous systems. The steady state properties for the model involving heterogeneity is

discussed separately in Sec. 2.2.3. Thus, for homogeneous system, one can also exactly cal-

culate the single site mass distribution in the canonical ensemble for the mass model by
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[1]

p(m) = P (m,m2, ...,mL )δ

(

L
∑

i=2

mi − (M −m)

)

= f (m)
Z̃L−1,M−m

Z̃L ,M

. (2.6)

In general, it is difficult to obtain results in the canonical ensemble due to the mass con-

servation constraint. However, the grand canonical partition function ZL can be readily

obtained. Using (2.3), we can write it as

ZL (ω) =
∞
∑

n=0

Z̃L ,nω
n = g L (ω) , (2.7)

where g (ω) is the generating function of f (m) defined as

g (ω)=
∞
∑

m=0

ωm f (m) , (2.8)

with a radius of convergence ω∗. In the thermodynamic limit, keeping density fixed, we

can determine the fugacity ω(≤ω∗) using the following relation

̺=
1

ρ
−1 =

ω

L

∂ lnZL (ω)

∂ω
=ω

∂ ln g (ω)

∂ω
. (2.9)

From (2.6) and (2.9), we have the mass variance σ2 = 〈m2〉− 〈m〉2 in mass model which is

given by

σ2 =ω
∂̺

∂ω
=−

ω

ρ2

∂ρ

∂ω
. (2.10)

Further, in the thermodynamic limit, on summing over the mass on all sites except one site

in (2.6), the single site mass distribution is obtained as

p(m) =ωm f (m)

g (ω)
. (2.11)

Equation (2.9) shows that the fugacity ω is an increasing function of the mass-model den-

sity ̺. But, as it is bounded above, it may happen that ω reaches its maximum value at a
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finite critical density, ̺c . In such a case, the mass distribution p(m) =ω∗m f (m)/g (ω∗) for

all̺≥ ̺c . This implies that the average density in the system is L
−1∑∞

m=1 m p(m) = ̺c . The

excess mass ̺−̺c is then said to be condensed into a single cluster, as shown in Fig. 2.2 for

the case of hop rate given by (2.12). This signals the phase transition. In following sections,

this phase transition is explained in greater detail for specific choices of the hop rate.

2.2.1 Exclusion process with hole-dependent rates

We consider a model in which the hop rate depends on the number of holes in front of a

particle. Specifically, we choose the hop rate to be [1]

u(m) = 1+
b

m
, m > 0 , (2.12)

where m denotes the number of vacancies in front of a particle and the parameter b ≥ 0.

When b = 0, we obtain the simple exclusion process (SEP) [1, 46] from this model. For

nonzero b, the rate u(m) decreases with an increasing number of vacancies, and therefore

a particle with many holes in front of it hops at a slower rate and can cause a jam behind it.

In fact, it has been shown that for b > 2, a phase transition occurs between a homogeneous

phase with typical hole cluster of length unity and a jammed phase with a macroscopically

large hole cluster, as the total particle density is decreased. To see this result, it is useful to

consider a one-dimensional zero range process (ZRP) [1] as described in Sec. 2.2.

For the hop rate (2.12), the steady state weight factor f (m) used in (2.3) for ZRP is given

by

f (m) = (1−δm,0)
m
∏

i=1

1

u(i )
+δm,0 , (2.13)

which simplifies to

f (m) =
m!

(b +1)m
, (2.14)

where (a)m = a(a+1)...(a+m−1) is the Pochhammer symbol or rising factorial. In general,

it is difficult to obtain results in the canonical ensemble (see however [47, 48, 45]), but one
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can do it numerically with the recurrence relation (2.5) for the ZRP partition function Z̃L ,M

with L sites and M particles that has been obtained [45].

In the grand canonical ensemble, the generating function (2.8), g (ω) of f (m) can be

written as

g (ω) = 2F1(1,1;1+b;ω) , (2.15)

where

2F1(a,b;c;ω) =
∞
∑

n=0

(a)n(b)n

(c)n

ωn

n!
(2.16)

is the Gauss hypergeometric function [49].

It is easy to see that the radius of convergence of g (ω) in (2.15) is ω∗ = 1. Equation (2.9)

and the discussion following it then shows that a condensation transition occurs at the

critical density in which particles are distributed homogeneously over the system at low

densities, but above a critical density, a macroscopic number of particles form a cluster.

The exact critical density for ZRP is

̺c =
1

b −2
, (2.17)

for b > 2. In a ZRP, the single site mass distribution is given by

p(m) =ωm f (m)

g (ω)
. (2.18)

One can notice the significant change in the distribution p(m) with density ̺. For ̺ < ̺c ,

the distribution is exponential and at the critical point ̺c , the single-site mass distribution

(2.18) can be expressed as

p(m) = (b −1)
Γ(b)Γ(m +1)

Γ(m +b +1)
, (2.19)

which decays algebraically as m−b for large m. For ̺> ̺c , the distribution p(m) ∼ m−b for

density̺c and the excess mass of density (̺−̺c) is condensed into a single cluster as shown

in Fig. 2.2. Further at the critical point, the algebraic decay of mass distribution signifies

that the mass fluctuations (2.10) diverge in the thermodynamic limit when 2 < b < 3, but

remain finite otherwise.
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Fig. 2.2 Figure shows the single site mass distribution p(m) versus particles number m for

a zero range process from equation (2.18). The result is obtained by iterating the partition

function recursion relation (2.5) for a system of size L = 1000 and b = 4 at different densi-

ties. The density ̺= 0.25 is in fluid phase, ̺ = 0.5 is at the critical point and ̺= 4 is in the

condensed phase.

2.2.2 Exclusion process with generalised hole-dependent rates

This is a class of driven lattice gas models in which a particle hops to the empty left neighbor

at a rate u(m,m′) where m(m′) denotes the number of vacancies on its left (right). This

model can be studied via the mapping described in Sec. 2.2, from a misanthrope process

[33] in which a site can be occupied by any number of particles, and a particle hops out of

a site with mass m to its right neighbor at a rate u(m,m′) when there are m′ particles on

the landing site. Indeed, it is a generalized extension of ZRP. The misanthrope process was

originally used for the hop rate u(m,m′) which is increasing in m and decreasing in m′ [42].

The general hop rate of this kind is widely used to model rewiring in complex networks [1].
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For the misanthrope process, it has been shown that the steady state has product form (2.2)

when the hop rate is constrained as [42]

u(m,m′) = u(m +1,m′−1)
u(1,m′)u(m,0)

u(m +1,0)u(1,m′−1)
, (2.20)

u(m,m′)−u(m′,m) = u(m′,0)−u(m,0). (2.21)

Here, f (m) is the steady state weight function which satisfies the following recursion rela-

tion

f (n) = f (n −1)
f (1)

f (0)

u(1,n −1)

u(n,0)
. (2.22)

In this thesis, we are particularly interested in the choice of hop rate for which conden-

sation transition occurs [33]. The hop rate is of factorized form,

u(m,m′) = (v(m)−v(0)) v(m′) , (2.23)

where

2

3
< v(0)< 1, v(m)= 1+

1

m +1
, m > 0 . (2.24)

For the above mentioned hop rate, the steady state weight factor f (m) and its generating

function g (ω) can be worked out to be

f (m) =
c

4

C m−1((m +1)!)2

m!(c)m
, m ≥ 1 , (2.25)

g (ω) =
1

2
[2−v(0)+v(0) 2F1(2,2,c;Cω)] , (2.26)

where (a)m = a(a+1)...(a+m−1) is the Pochammer symbol, f (0) = 1, and c and C are given

by

c =
3−2v(0)

1−v(0)
, (2.27)

C =
c

2v(0)
. (2.28)
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As for the ZRP discussed in Sec. 2.2.1, the critical density for the misanthrope process is

found by setting ω= 1/C in the density-fugacity relation (2.9), and we find that the critical

density is given as

̺c =
4v(0)

c

2F1(3,3,c +1;1)

2−v(0)+v(0)2F1(2,2,c;1)
. (2.29)

Note that the expression for the critical density in [33] is incorrect since it is obtained by

assuming that c = 4,C = 1 (see (45)) which implies that v(0) = 2 is in contradiction with

(2.24).

At the critical point, the single-site mass distribution is given by

p(m) =
v(0)(m +1)(m +1)!

[2−v(0)+v(0) 2F1(2,2,c;1)] (c)m
, m > 0 , (2.30)

which decays algebraically as m3−c . The mass fluctuations diverge in the thermodynamic

limit when 5 < c < 6 but remain finite otherwise.

2.2.3 Exclusion process with particlewise disorder

We again consider a system of hard-core particles on a ring in which a particle hops to

the empty neighbor with the hop rates assigned to the particles being random variables,

and are independent of the length of the hole clusters on the either side [25–27]. Here, we

consider two cases – a single defect case in which only one particle has slower hop rate

than the rest of the particles, and a fully disordered case in which the hop rates are chosen

independently from a common distribution. This model can be mapped to a ZRP with

sitewise disorder. The site-dependent weight factor for ZRP is given by

fi (m)= u−m
i , (2.31)

where ui is random rate assigned to the site. The generating function of fi (m) can be calcu-

lated as

gi (ω) =
ui

ui −ω
. (2.32)
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As before, the fugacity is determined by the particle conservation equation (2.9),

̺=
1

L

L
∑

i=1

ω

ui −ω
. (2.33)

For some choices of hop rates, the condensation transition occurs between a low-density

homogeneous phase and a high-density condensed phase in which a macroscopically large

particle cluster forms at the site with minimum hop rate at ̺c .

To understand this phase transition in the model, we first consider the case in which

one site has hop rate u1 = c < 1 while the rest of the sites have a hop rate ui = 1, i > 1 [26].

The canonical partition (2.3) for the single defect case is given by [1]

Z̃L ,M =
M
∑

m=0

(

M +L −m −2

L −1

)

c−m . (2.34)

For large system sizes, due to (2.33), the mean hop rate increases with increasing particle

density till the critical density ̺c = c/(1− c). Thus, the mean hop rate in the two phases is

given by

〈u〉 =
̺

1+̺
, ̺< ̺c , (2.35)

〈u〉 = c , ̺≥ ̺c . (2.36)

For ̺> ̺c , the system is in a condensed phase where the defect site contains all the excess

mass density ̺−̺c , and for ̺< ̺c , the system is in fluid phase where the mass is uniformly

distributed.

In the fully disordered case, the hop rates are chosen independently from a common

distribution,

q(u) =
1+γ

(1− ũ)1+γ (u − ũ)γ , γ> 0 , (2.37)

where 0 < ũ < u < 1. Here, the fugacity is bounded above by the minimum hop rate and

therefore, as in the previous case, the fugacity increases with increasing particle density

until it reaches ũ (in the thermodynamic limit). The critical density ̺c is obtained from
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disorder averaged conservation equation [26, 50, 1] as

̺=
〈mmi n〉

L
+

∫∞

ũ
du q(u)

ω

u −ω
, (2.38)

where 〈mmi n〉 is average number of particles occupied by the slowest site which can take a

value of O (L ) in condensed phase.

For a random sequential update the critical density for hop rate distribution (2.37) is known

to be [25, 26]

̺c = ũ
1+γ

γ(1− ũ)
. (2.39)

Furthermore, the averaged single site mass distribution can be obtained by averaging over

the disorder distribution, and is given as

p(m)=
∫1

ũ
du q(u)

ωm f (m)

g (ω)
. (2.40)

The asymptotic solution of the single site mass distribution at the critical point shows a

power-law decay as m−(2+γ) and, similar to previous two models, the mass fluctuations

diverge for 0 < γ< 1 but remain finite otherwise.

Interestingly, considering q(u) as the density of states and ũ as minimum energy state,

the condensation phenomenon in this model is related to the phenomena in ideal Bose-

Einstein condensation where a finite number of Bosons occupy the lowest energy state.

2.3 Stationary state in mean-field approximation

Unlike in the previous models, both short and long jumps are allowed and the product

measure is not exact in the model considered in this section. The specific model studied

here is motivated from one-dimensional aggregation-fragmentation model in which either

the entire mass cluster or a single particle in the aggregate hop with rate one and w re-

spectively to the nearest neighbor and coalesces. [43]. In the lattice gas picture, these dy-

namical rules represent hopping of a particle to the farthest (nearest) empty site without
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1

w

w
1

Aggregation−fragmentation

       Model
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Fig. 2.3 Figure to illustrate the mapping of lattice gas model (bottom) with short and long

range hops (bottom) and aggregation-fragmentation model (top).

any preferred direction with rate one (w) as demonstrated in Fig. 2.3. For the aggregation-

fragmentation model, it is known that a biased hop rate does not show phase transition [51],

so we focus only on the bidirectional case which has a condensation transition at a fi-

nite critical point. The steady state of the model is solved within a mean-field approxi-

mation [43] which shows very good agreement with the stationary state properties of the

one-dimension model [52, 44]. The master equation for the evolution of the probability

p(m, t ) of any site having mass m at any time t within the mean field approximation is

d p(m, t )

d t
= −(1+w)[1+σ(t )]p(m, t )+w p(m +1, t )+wσ(t )p(m −1, t )+p ∗p , m ≤ 1 ,

d p(0, t )

d t
= −(1+w)σ(t )p(0, t )+w p(1, t )+σ(t ) , (2.41)

where σ(t ) = 1−p(0, t ) is the occupation probability and p ∗p =
∑m

m′=1
p(m′, t )p(m −m′, t )

is a convolution term that describes the coalescence of two masses. To solve the above

master equation in stationary state, we use the generating function Q(y) =
∑∞

m=0 p(m)ym

for mass distribution which is known to be [43]

Q(y) = 1−σ+
w +2σ+wσ

2
−

w

2y
−

wσy

2
+wσ

1− y

2y

√

(y − y+)(y − y−) , (2.42)
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where y± = (w + 2± 2
p

w +1)/wσ. Setting the first derivative of the generating function

(2.42) to zero at y = 1 gives the relation between ̺ and σ as

2̺= w(1−σ)−wσ
√

(y+−1)(y−−1). (2.43)

For a fixed w , the above density and occupation probability relation is defined till y− ≤ 1.

At y− = 1 we obtain the critical density ̺c =
p

1+w −1 where the mass distribution p(m)

changes from an exponential distribution to an algebraic decay as m−5/2. For ̺ > ̺c , the

mass distribution is same as ̺c , however the excess mass density ̺−̺c clusters together to

form an aggregate.

Apart from static properties of the model, the steady state dynamics have also been

studied and the numerics show that the dynamical exponent is z = 2 [52]. (In Sec. 4.6.3, we

will present a better understanding of this dynamical exponent by calculating the autocor-

relation function of the model).

2.4 Dynamics for the model with hole-dependent hop rates

For the hop rate (2.12), extensive studies have been done for the dynamics in the condensed

phase in the ZRP both in mean-field approximation [5] and using random walk arguments

in one-dimension [53]. These studies mainly focus on the coarsening process in which one

drives a system infinitely fast starting from a fluid phase to a condensed phase or to the

critical point. The objective of such studies is to determine the timescale for the growth

of the condensate. In general, analytical study of the dynamics even in one dimension, is

difficult since it requires joint distribution of the mass distribution; however, it is possible

to make some analytical progress within a mean-field approximation [54, 55]. In the mean-

field system, we allow particles to hop from any site to any other site, with a rate dependent

on the number of particles at the departure site. Assuming a factorized steady state, the

master equation for the evolution of the single site probability distribution p(n, t ) at a given
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time t is given by

d p(n, t )

d t
= u(n +1)p(n +1, t )+〈u(t )〉p(n −1, t )−u(n)p(n, t )−〈u(t )〉p(n, t ) , n > 0 ,

d p(0, t )

d t
= u(1)p(1, t )−〈u(t )〉p(0, t ) , (2.44)

where 〈u(t )〉 =
∑∞

m=1 u(m)p(m, t ) is the average value of the hop rate. The equation is non-

linear and has been solved for the late time dynamics of both the condensed phase, and at

the critical point [5].

2.4.1 In condensed phase

Mean-field analysis by Godréche [5] suggests that the mean condensate size 〈m(t )〉 grows

in time as t 1/2. This scaling can be understood by a random walk argument in a one di-

mensional biased ZRP [53]. Moreover, in a symmetric case, mean condensate size grows as

t 1/3 [5, 53].

2.4.2 At the critical point

Dynamical scaling at the critical point has been obtained via exact calculation in the mean-

field geometry, and numerical simulations in one dimension. However, the scaling is dif-

ferent in mean-field and one-dimension. In mean-field, the dynamical scaling calculated

is the same as in the condensed phase and this work has been analytically done by Go-

dréche [5], which we will briefly explain here. The evolution process at the critical point

consists of two regimes:

Regime I: when m is fixed and t is large, the convergence of p(m, t ) to stationary state

mass distribution p(m) occurs in the following manner

p(m, t ) = p(m)(1+vm t−α) , (2.45)

where vm = v0 +m A, here A is constant, and p(m) ∼ m−b .
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Fig. 2.4 Figure shows the power law decay of the probability p(0, t )−p(0) with time after a

fast quench to the critical point, bc starting from b = 0 in mean-field geometry. The line

shows the exponent (b −2)/ẑ for b > 3 and 1/2 for b = 2.25.

Regime II: when m and t are simultaneously large such that the ratio of these two vari-

able is constant, then the similarity solution is given as

p(m, t ) ≈ p(m)F (k) , k = m t−1/ẑ , (2.46)

where the critical coarsening exponent, ẑ = 2. Further, the exponent α is calculated from

the sum rules
∑

m p(m, t ) = 1 and
∑

m mp(m, t ) = ̺ respectively and for b > 3, it is known

to be (b −2)/ẑ [5, 54]. Moreover, for 2 < b < 3, due to divergence of the second moment of

steady state mass distribution, the sum rule does not hold and, to the best of our knowledge,

the exponentα is not known in this case. However, on numerical integration (2.44), we find

that for 2< b < 3, the exponent α= 1/ẑ as shown in Fig. 2.4.
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In one dimension, numerical studies show that the coarsening exponents are [5]

ẑ ≃















3 for bidirectional ZRP ,

5 for unidirectional ZRP.

(2.47)

2.5 Numerical procedures

Numerical studies are amenable for all the above mentioned lattice gas models and mass

models. In particular, dynamical Monte Carlo simulations and numerical evaluation of the

partition function (A.1) in the canonical ensemble are useful to study the model behaviour

in both phases (fluid phase and jammed/condensed phase) and at the critical point.

In Monte-Carlo simulations, we have followed the random sequential algorithm in which:

• A site is picked at random by generating a random number from 1 to L and selected

if it is occupied and the arrival site is unoccupied.

• Then the jump probability ui (m,n)/N where N is the normalization constant of the

hop rate function is calculated which is compared to a random variable between 0 to

1. If the random variable is less than the jump probability, a particle hops to a nearest

neighbor.

The algorithm is repeated until the steady state is reached. After reaching steady state, time

averages of various quantities of interest are calculated. These time averages are equivalent

to the ensemble average, assuming the ergodic hypothesis is valid. In order to overcome

finite size effects, simulations are performed for reasonably large systems.

We also solved the recursion relation for the partition function (2.5) numerically to cal-

culate the various quantities in the canonical ensemble.

2.6 Summary

In this Chapter, we introduced various one-dimensional lattice gas models in which par-

ticles hop from one site to an empty neighboring site with hop rates that may depend on
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the number of vacancies as well as the particle label itself. We reviewed some of the known

results for the stationary state and the dynamics of these models which we have used in the

present thesis.





Chapter 3

Static density-density correlation

function

3.1 Introduction

As discussed in Chapter 2, there exists exhaustive literature on the steady state properties

of the Exclusion Process (EP) because of its mapping to the Zero Range Process (ZRP). How-

ever, a fundamental question regarding the spatial correlation function in the exclusion

process with jamming transition has not been addressed in previous studies. For the one-

dimensional totally asymmetric simple exclusion process (TASEP) on a ring which is a spe-

cial case of the exclusion models studied here, the result for the density-density correlation

function is trivial because all configurations are equally likely in the steady state. A non-

trivial exact formula for the TASEP with open boundaries where particles enter with rate α

at the left end and leave with rate β at the right was given in [56] for arbitrary system size.

However, their limiting behaviour has not been calculated to the best of our knowledge, es-

pecially at the critical phase line α = β < 1
2

. Recently the particle-particle correlation func-

tion for the EP with hole-dependent rates was calculated in the laminar phase for certain

special choices of hopping rates in the grand canonical ensemble [57].

In this Chapter, we study the two-point correlation function at the critical point in the

thermodynamic limit [2, 3] and find a simple analytical formula for the generating function
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of two-point function with arbitrary hop rates. This result is applied to the models reviewed

in Chapter 2. We also give a result for the two-point function in the canonical ensemble for

a system of arbitrary size [2].

The plan of the Chapter is as follows: we show a calculation of the steady state particle-

particle correlation function in the canonical ensemble in Sec. 3.2 and obtain an exact ex-

pression for it for any system size. We then find an exact expression for the generating func-

tion of the correlation function in the thermodynamic limit. In Sec. 3.3, for u(n) = 1+(b/n),

we show that at the critical density, the correlation function decays as a power law with

continuously varying exponent. The behaviour of the correlation function in the laminar

phase is also studied. In Sec. 3.4, we present a simpler calculation for two-point correlation

function in the thermodynamic limit. Later, in Secs. 3.5 and 3.6, we present the results for

the two-point function for the models with generalised hole-dependent hop rates and with

particlewise disorder respectively. In Sec. 3.7 we extend our calculation to systems with

short and long jumps. We finally conclude with a summary of our results and discussion in

Sec. 3.8.

3.2 Two-point correlation function in canonical ensemble

In this section, we study a homogeneous system in which the hop rates are such that the

stationary state is a product measure (2.2).

3.2.1 Exact formula for finite system

We define the two-point connected correlation function

S(r )= 〈ηiηi+r 〉−ρ2 , r > 0 , (3.1)

in a system of L sites with N particles. Here, ηi takes a value 1 when site i is occupied and

0 when site is empty. Let us consider a set of configurations in which the r sites from i to

i + r −1 contain k holes. Then the contribution to the correlation function 〈ηiηi+r 〉 comes
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from only those configurations in which both the i th and (i +r )th sites are occupied. Using

the mapping between EP and ZRP described in Sec. 2.2 and summing over all the particle

configurations in front of the i th and (i + r )th particle, we get

〈ηiηi+r 〉 =
kmax
∑

k=kmi n

Z̃r−k,k Z̃N−r+k,L−N−k

ZL,N
(3.2)

= ρ
kmax
∑

k=kmi n

Z̃r−k,k Z̃N−r+k,L−N−k

Z̃N ,L−N

, (3.3)

where we have used (A.3) to arrive at the last expression. As the total number of particles

is conserved, the maximum number of particles in the first cluster can be N −1. In other

words, r −k ≤ N −1 which gives kmi n = max(0,r −N +1), as the lower limit kmi n can not be

below zero. Also the local conservation in the first cluster with r sites requires that k ≤ r −1.

Thus we find that kmax = min(L −N ,r −1) since kmax can not exceed the total number of

holes in the system.

3.2.2 Exact expression for infinitely large system

It is evident from (3.3) that the partition function at all densities is required to evaluate

the correlation function. However, barring some special cases that are discussed in Ap-

pendix B.1 and B.2, it does not seem possible to calculate the exact partition function Z̃L ,M

for all densities. In the following subsections, we will calculate the two-point correlation

function in the thermodynamic limit as the problem is analytically tractable in this limit.

For L →∞ and finite r , we first note that the limits in the sum which is appearing in (3.3)

simplify to kmi n = 0 and kmax = r −1. Furthermore, inspired by equilibrium statistical me-

chanics, we conjecture that there exists a ‘free energy’ F̃ (̺) defined as

F̃ (̺) =− lim
L→∞

ln Z̃L ,M

L
. (3.4)

For the hop rate (2.12) and using the recursion equation (2.5), we calculated the partition

function Z̃L ,M as a function of density for various system sizes. Fig. 3.1 shows that the
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scaled logarithmic partition function indeed approaches a limiting function with increas-

ing system size.

Thus for large L, using (3.4), we can write [58]

ln

(

Z̃N−r+k,L−N−k

Z̃N ,L−N

)

= kµ− (r −k)P , (3.5)

where the chemical potential µ and the pressure P are given by

µ =
∂(L F̃ )

∂M

∣

∣

∣

L
= F̃ ′(̺) , (3.6a)

P = −
∂(L F̃ )

∂L

∣

∣

∣

M
=−F̃ (̺)+̺F̃ ′(̺) , (3.6b)

and the prime stands for derivative with respect to ̺. Using (3.5) in the expression (3.3) for

correlation function 〈ηiηi+r 〉 and the boundary condition Z̃0,n = δn,0 [refer to the discus-

sion after (A.2)], we get

〈ηiηi+r 〉 = ρ e−r P
r

∑

k=0

Z̃r−k,k ek(µ+P) , r ≥ 0 (3.7)

= ρ erµ
r

∑

k=0

Z̃k,r−k e−k(µ+P) (3.8)

= ρ erµ
r

∑

k=0

k

r
Zr,k e−k(µ+P) (3.9)

= −
ρ

r
erµ d

d(µ+P )

r
∑

k=0

Zr,k e−k(µ+P). (3.10)

Thus, the correlation function is related to the grand canonical partition function of the

EP with r sites, which is not known.

However, as explained in Sec. 2.2, the grand canonical partition function for ZRP is

known. We therefore define the generating function of the correlation function as G(y) =
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Fig. 3.1 Free energy F̃ (̺) for hop rate (3.18) as a function of density ̺ for b = 3/2 (inset) and

b = 5/2 (main) for different system sizes. The data for finite-sized systems is obtained by

numerically solving the recursion equation (2.5) and is compared with the result (3.17) for

infinitely large system.

∑∞
r=0 yr S(r ) which, on using (3.8), works out to be

G(y) = ρ
∞
∑

l=0

(ye−P )l
∞
∑

n=0

Z̃l ,n(yeµ)n −
ρ2

1− y
(3.11)

=
ρ

1− ye−P g (yω)
−

ρ2

1− y
, (3.12)

where ω = eµ. Furthermore, we recall that the equation of state in the grandcanonical en-

semble is given by [58]

PL = ln(Z̃L (ω)) =L ln g (ω) , (3.13)
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which gives e−P = 1/g (ω). Thus we arrive at our main result, namely

G(y) =
ρ g (ω)

g (ω)− y g (yω)
−

ρ2

1− y
, (3.14)

where the fugacity ω(ρ) is determined by (2.9). The correlation function is then given by

S(r ) =
1

r !

d r G(y)

d yr

∣

∣

∣

y=0
(3.15)

=
∮

C

d y

2πi

G(y)

yr+1
, (3.16)

where the integral in the last expression is along the closed curve C around the origin [59].

We check that S(0)= ρ(1−ρ) is obtained from the above expression. The behavior at r →∞

is obtained by taking the limit y → 1. Expanding (3.14) close to y = 1 and using (2.9), we see

that G(y) (and hence S(r )) vanishes as r →∞.

Before proceeding further, we note that due to (3.6) and (3.13), the free energy can be

written as

F̃ (̺) = ̺ µ− ln g (ω). (3.17)

This expression is also plotted in Fig. 3.1 for hop rate (3.18) with b = 3/2 and 5/2, and we

see that it matches well with the results for large systems. We note that F̃ (̺) is a decreasing

function of the density for b < 2, but it saturates to − ln g (1) at high density for b > 2.

3.3 Correlation function for hole-dependent hop rates

We consider here the hole-dependent rate which is given as

u(m) = 1+
b

m
, m > 0 , (3.18)

where the parameter b ≥ 0 and m is the number of holes (vacancies) in front of a particle.

Using the approach described in the last section for b = 0, we can obtain the known

trivial results of TASEP as described in Appendix B.1. Although we will focus on the rate
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(3.18) which models ‘attractive interactions’ between particles in the ZRP, we also consider

the case of free particles in Appendix B.2 for which u(m) = m [60]. In the latter case, each

particle is endowed with an exponential clock that ticks at rate one, but since the particles

are free and act independently, the total hop out rate is equal to the number of particles at

the site.

We now apply the general result (3.14) for the generating function of the correlation

function to the choice (3.18) of the hop rates. The correlation function can be easily ob-

tained numerically from (3.14) for an infinitely large system, and these results are shown

along with those obtained using the exact result (3.3) for a finite system in Figs. 3.2, 3.3

and 3.4, and see that the latter approaches the result obtained from (3.14) with increasing

system size. In the following subsections, we obtain analytical results for S(r ) using (3.14).

3.3.1 Laminar phase: 0< b < 2

When b = 0, we obtain the well known TASEP [16] on a ring for which the steady state is

known exactly. This case is discussed briefly in Appendix B.1 using (3.14). For b = 1, the

generating function g (ω) given by (2.15) takes a particularly simple form:

g (ω)=−
ln(1−ω)

ω
. (3.19)

Therefore, from (3.14), we get the generating function of the correlation function as

G(y) =
ρ ln(1−ω)

ln(y0 −1)− ln(y0 − y)
−

ρ2

1− y
, (3.20)

where y0 = 1/ω> 1. The density-fugacity relation (2.9) is given by

ρ =−
1−ω

ω
ln(1−ω) , ω< 1. (3.21)

To calculate the correlation function, we consider the following integral in the complex-y

plane along a closed contour C ′ of Fig. B.1 wrapped around the branch cut at y0 which
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Fig. 3.2 Decay of the correlation function in the laminar phase at ρ = 0.4 for various b < 2

for hop rate (2.12) in the infinite system. The analytical result (3.27) for b = 1 is also shown.

The inset compares the correlation function for b = 1 obtained using (3.3) for L = 104 and

(3.14) for infinite system.

consists of a large circle of radius R about the origin and a small circle of radius ǫ about y0:

I1 =
1

2πi

∮

C ′

d y

yr+1

ρ ln(1−ω)

ln(y0 −1)− ln(y0 − y)
. (3.22)

As the integrand has a simple pole at y = 1 and poles of order r +1 at y = 0, due to (3.16),

the residue at these poles immediately gives S(r ). It is easy to check that the contribution

from the integrals over the large and the small circle vanishes when R →∞ and ǫ→ 0. Since

the integrand in (3.22) also has a branch cut singularity at y = y0, we finally obtain

S(r ) =
1

2πi

(∫

AB

d y

yr+1

ρ ln(1−ω)

ln(y0 −1)− ln(y0 − y)
+

∫

B ′A′

d y

yr+1

ρ ln(1−ω)

ln(y0 −1)− ln(y0 − y)

)

, (3.23)
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where y − y0 = x along AB and y − y0 = xe i 2π along B ′A′. Since the correlation function is

real, writing −x = xe−iπ, we get

S(r ) =
ρ ln(1−ω)

2πi

∫∞

0

d x

(y0 +x)r+1

(

1

ln(y0 −1)− ln x + iπ
−

1

ln(y0 −1)− ln x − iπ

)

=
−ρ ln(1−ω)(1−ω)

yr
0

∫∞

0

d x

(1+x(1−ω))r+1

1

(ln x)2 +π2
. (3.24)

We are not able to perform the above integral exactly. But an approximate expression can

be found for large r as follows:

S(r ) ≈
−ρ ln(1−ω)(1−ω)

yr
0

∫∞

0
d x

e−r x(1−ω)

(ln x)2 +π2
(3.25)

≈
−ρ ln(1−ω)(1−ω)

yr
0

∫ 1
r (1−ω)

0

d x

(ln x)2 +π2
(3.26)

≈
ρ| ln(1−ω)|

r

e−r | lnω|

[ln(r (1− z))]2 +π2
, (3.27)

where the last expression is obtained after an integration by parts and the fugacity is deter-

mined in terms of density from (3.21). The last result is plotted against that obtained by

solving (3.14) numerically, and we see an excellent agreement. Similar to the b = 1 case, the

correlation function shows an exponential decay (with power law correction) for 0 < b < 2,

as can be seen in Fig. 3.2.

3.3.2 At the critical density: b > 2

We now calculate the correlation function at the critical density (2.17) using (3.14). At the

critical density ̺c , as the fugacity ω= 1, we get

G(y) =
ρc g (1)

g (1)− y g (y)
−

ρ2
c

1− y
. (3.28)



34 Static density-density correlation function

10−4

10−3

10−2

10−1

100 101 102 103

S
(r

)

r

10−1

100 10−1

√

r
S

(r
)

rL−2/3

L = 5000
L = 10000
L = 20000
L = 40000

using G(y) (3.14)
Eq. (3.36)

Fig. 3.3 Decay of spatial correlation function with distance at the critical density for hop

rate (3.18) for b = 5/2. The data for finite-sized systems is obtained by numerically solving

(2.5) and (3.3), while the result in the thermodynamic limit is obtained using (3.14). The

analytical result (3.36) valid for large inter-particle distances is also shown. The inset shows

the data collapse of S(r,L) for different system sizes using (3.47).

We first consider the case when b is not an integer. For large r , we can expand g (y) given

by (2.15) about y = 1. Using equation (15.3.6) of [49], we obtain

g (y) = g (1)− sg ′(1)+
s2

2!
g ′′(1)+ ...+

(−s)n

n!
g (n)(1)+αsb−1 +O (sb) , (3.29)

where s = 1− y . Here we have retained analytic terms in the Taylor series expansion up

to nth order where n is the integer part of b −1 and the leading non-analytic term. In the
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above expression, α= bπcsc(bπ) and g (1) = b/(b −1). Then we have

G(s) =
∫∞

0
dr e−sr S(r ) (3.30)

=
ρc

s
ρc

+c2s2 + ...+cn sn − αsb−1

g (1)

−
ρ2

c

s
(3.31)

=
ρ2

c

s

[

αρc sb−2

g (1)
−ρc (c2s + ...+cn sn−1)

]

, (3.32)

where the coefficients ci are writeable in terms of the derivatives of g (ω) evaluated at one.

Since G(s) has a branch cut singularity at s = 0, its inverse Laplace transform is given by [59]

S(r ) =
1

2πi

∫i∞

−i∞
d s e sr G(s) (3.33)

= −
ρ3

c

2πi

∫i∞

−i∞
d s e sr

(

c2 +c3s + ...+cn sn−2 −
αsb−3

g (1)

)

. (3.34)

An integral similar to above also appears in the calculation of the canonical partition

function of the ZRP [47] and we can use those results here. In the above expression, the

first integral is δ(r ) and all the integrals (barring the last one) are the derivatives of the delta

function. Therefore for large r , these integrals vanish, and we are left with

S(r )=
αρ3

c

g (1)

∫i∞

−i∞

d s

2πi
e sr sb−3. (3.35)

The above integral can be obtained from the integral I2 calculated in the Appendix B.3 by

setting c = δ= 0, and we obtain

S(r ) =
ρ2

c Γ(b −1)

r b−2
. (3.36)

This result is compared against that obtained using (3.14), and we see an excellent match

at large r .

When b is an integer, as before, we expand g (y) about y = 1 and using (15.3.11) of [49]),

we obtain

g (1− s)= g (1)− sg ′(1)+
s2

2!
g ′′(1)+ ...+

(−s)n

n!
g (n)(1)+βsb−1 ln s , (3.37)
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Fig. 3.4 Decay of spatial correlation function with distance at the critical density for hop

rate (3.18) for b = 3.3. The data for finite-sized systems is obtained by numerically solving

(2.5) and (3.3), while the result in the thermodynamic limit is obtained using (3.14). The

analytical result (3.36) valid for large inter-particle distances is also shown. The inset shows

the data collapse of the correlation function for different densities close to the critical point

in the laminar phase for infinite system using (3.45).

where β= (−1)bb. Following the same steps as described above, we get

S(r ) =
βρ3

c

g (1)

∫i∞

−i∞

d s

2πi
e sr sb−3 ln s (3.38)

=
ρ3

cβ

g (1)r b−2

∫i∞

−i∞

d s

2πi
e s sb−3(ln s − lnr ) (3.39)

=
ρ3

cβ

g (1)r b−2

∫i∞

−i∞

d s

2πi
e s sb−3 ln s , (3.40)

where we have used that b is an integer to arrive at the last equation. As the above integrand

has a branch cut at s = 0, proceeding in a manner similar to that described in Appendix B.3

with c = t = 0, we find the above integral to be (−1)b−2
Γ(b −2) which shows that (3.36) is

valid for integer b as well.
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3.3.3 Above the critical density: b > 2

We now consider the behavior of the correlation function in the laminar phase at a density

close to the critical point. Since the fugacity is below one here, we write δ = 1−ω and

expand (2.9) about ω= 1 to find the relationship between δ and ρ. We find that

1

ρ
=















1
ρc

− α(b−1)g ′ (1)

g 2(1)
δb−2 , 2< b < 3 ,

1
ρc

+ g ′(1)

g (1)

(

g ′(1)

g (1)
− g ′′(1)

g ′(1)
−1

)

δ , b > 3.

(3.41)

The next order corrections to the above expression can also be worked out, and turn out to

be of the order δ for 2 < b < 3, δb−2 for 3 < b < 4 and δ2 for b > 4.

For large distances and densities close to the critical density, we now expand the gener-

ating function G(y,ω) in (3.14) about y = 1 and ω= 1. For b > 3, on using (3.41), we obtain

G(s,δ)=
αρ3

g (1)

(s +δ)b−1 −δb−1

s2
, (3.42)

where, as before, s = 1−y and we have dropped the analytic terms as they do not contribute

to S(r,ω) for the same reasons as described in the last subsection. We then have

S(r,ω) =
αρ3

g (1)

∫c+i∞

c−i∞

d s

2πi
e sr (s +δ)b−1 −δb−1

s2
, (3.43)

where c is a positive real number. The above integral is calculated in Appendix B.3, and we

find that in the limit δ = 1−ω→ 0,r →∞ with rδ finite, the correlation function is of the

following scaling form

S(r,ω) = r 2−b
H (r (1−ω)) , (3.44)

where the scaling function

H (x) = (b −2)Γ(b −1)ρ2
c e−x

[

(x +b −1)exEb−1(x)−1
]

, (3.45)

is a decreasing function of x. In the above expression, En(x) =
∫∞

1 dδ e−xδδ−n is the expo-

nential integral. By carrying out a calculation similar to above, it can be checked that the
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results (3.44) and (3.45) hold for 2 < b < 3 and integer b as well. The inset of Fig. 3.4 shows

the data collapse for the correlation function for various densities close to the critical point

and the scaling function.

Using the asymptotic properties of the exponential integral En(x) [49], we find that

the scaling function H (x)
x→0∼ Γ(b − 1)ρ2

c which thus reproduces the result at the critical

point obtained in the last subsection. At large x, as the scaling function H (x)
x→∞∼ Γ(b)(b−

2)ρ2
c e−x/x2, the correlation function decays exponentially fast with inter-particle distance

r . This analysis yields the correlation length defined by x = r /ξ to be

ξ∼ (1−ω)−1 ∼ (ρ−ρc )−ν , (3.46)

which, by virtue of (3.41) gives ν= 1/(b −2) for b < 3 and 1 for b > 3.

From the numerical data shown in Figs. 3.3 and 3.4 at the critical point, we note that

the finite size effects set in early on. For example, in Fig. 3.3 for b = 5/2 and a system size

L = 104, a power law is seen for about a decade only. This makes a numerical determination

of the correlation function exponent difficult. Here we have given an expression (3.14) for

the generating function of the two-point correlation function for an infinite system which

can easily generate several decades of data. For a finite system with L sites, we expect the

correlation function to be of the following scaling form:

S(r,L) =
1

r b−2
F (r L−z ) , (3.47)

where the scaling function F (x) is a constant for x ≪ 1 and decays for x ≫ 1. In the ZRP, the

average mass cluster at the critical point scales as L
1/(b−1),b < 3 and

p
L ,b > 3 [47]. If we

make the reasonable assumption that at the critical density, there is a single length scale in

the system under consideration and is set by the typical headway, we expect z = 1/(b−1) for

b < 3. This expectation is consistent with the data shown in the inset of Fig. 3.3 for b = 5/2

where we see that the data collapse gets better with increasing L.
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EP ZRP

i i+r

Fig. 3.5 Illustration of the relation between two-point correlation in exclusion process and

the single site mass distribution in ZRP. Here, we have shown the two configurations that

contribute to calculate the correlation function S(r ), where r = 4. Provided the sites i and

i + r are occupied in EP, we map all the possible configurations of EP between the sites i

and i + r −1 to ZRP as described in Sec. 2.2.

3.4 Static correlation function in the thermodynamic limit

Here, we provide a simpler derivation of the result (3.14) in the thermodynamic limit [3].

Consider the probability Ps (r − s) that s consecutive sites in the ZRP have r − s particles.

Then, as shown in Fig. 3.5, it is easy to see that in the exclusion process, the probability that

two sites at a distance r are occupied is given by

〈ηiηi+r 〉 = ρ
r

∑

s=1

Ps (r − s) . (3.48)

The factor ρ on the RHS of the above equation appears because the site i (in the ex-

clusion process) must be occupied. The generating function of the correlation function

defined as G(y) =
∑∞

r=0 yr S(r ) is then given by

G(y) = ρ
∞
∑

r=0

yr
r

∑

s=1

Ps (r − s)−
∞
∑

r=0

yrρ2 (3.49)

= ρ
∞
∑

r=0

yr
∞
∑

m=0

ymPr (m)−
∞
∑

r=0

yrρ2 . (3.50)
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But due to (2.11), we have

∞
∑

m=0

ymPr (m) =
∞
∑

m=0

ym
∑

m1,...,mr

P (m1, ...,mr ) δ∑r
j=1

m j ,m (3.51)

=
(

g (yω)

g (ω)

)r

. (3.52)

Using the last expression in (3.50), we immediately obtain the result (3.14) for the generat-

ing function of the correlation function:

G(y) =
ρ

1− y
g (yω)

g (ω)

−
ρ2

1− y
. (3.53)

The large distance behavior of the correlation function can be found by expanding G(y)

about y = 1 for the hop rates. For the hop rate (3.18), at the critical point, we obtain the

result (3.36)

S(r ) =
ρ2

cΓ(b −1)

r b−2
, b > 2 . (3.54)

3.5 Correlation function for the model with generalised hole-

dependent hop rates

We consider generalised hop rates, where the hop rate depends on the number of empty

space in the front and back of the particle as explained in Sec. 2.2.2. The choice of hop rate

is given by [33]

u(m,m′) = (v(m)−v(0)) v(m′) , (3.55)

where m (m′) is the number of vacancies front (back) of a particles and

2

3
< v(0)< 1, v(m)= 1+

1

m +1
, m > 0 . (3.56)

Using (2.30) in (3.53) for the generating function of the static density-density correlation

function and expanding about y = 1, we find that G(y) ∝ (1− y)c−6 at the critical point,
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Fig. 3.6 Decay of spatial correlation function with distance at the critical density for hop

rate (3.55) for c = 6 and v(0) = 0.75. The data for finite-size systems is obtained by numer-

ically solving (2.5) and (3.3), while the result in the thermodynamic limit is obtained using

(3.53).

where

c =
3−2v(0)

1−v(0)
> 5 , (3.57)

due to (3.56). On inverting the Laplace transform [2], we finally obtain

S(r ) =
̺cρ

3
c (Γ(c −2))2

4Γ(c −3)
×

1

r c−5
, (3.58)

where the critical particle density ρc and the related the critical mass density ̺c as given in

(2.1). The results shows good agreement with numerical simulations as shown in Fig. 3.6.

For correlation length as given in Sec. (3.3.3), we obtain the same scaling form as (3.45)

and the correlation length is given as

ξ∼ (1−ω)−1 ∼ (ρ−ρc )−ν , (3.59)
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which, by virtue, of (3.41) gives ν= 1/(c −5) for c < 6 and 1 for c > 6.

3.6 Correlation function for the model with particlewise dis-

order

The simplest case of a heterogeneous system is one consisting of only a single defect par-

ticle, while all other particles are identical. The defect particle hops at a rate smaller than

the rest, which can be taken as one. Evidently, the system exhibits a jamming transition.

The canonical partition function for such a system is exactly known (see Sec. 2.2.3) which

allows us to calculate the exact expressions for the two-point correlation function in both

the canonical and grand canonical ensembles. In the canonical ensemble, the two-point

correlation function scales with the system size, but approaches a constant value when the

size becomes infinitely large. Thus, in the thermodynamic limit, the two-point function

is a function of density. For more details on the two-point correlation function of a single

defect particle system see Appendix B.4. Additionally in Appendix B.5, we consider another

case of a single defect particle system in which the defect particle hop rate is the smallest

and dependent on the number of empty spaces in front of it as (3.18).

Further, for a fully disorder system in which the hop rate is different for each particle,

analogous to (3.48), we can write the two-point correlation function as

〈ηiηi+r 〉 =
N
∑

α=1

Prob(site i is occupied by particle α)

×
r

∑

s=1

Ps (r − s; {uα, ...,uα+s−1}) , (3.60)

where Ps (r − s; {uα, ...,uα+s−1}) denotes the distribution of mass r − s on s consecutive sites

in the ZRP when the sites have a hop rate {uα, ...,uα+s−1}. Similar to (3.52), this distribution

is given by

Ps (r − s; {uα, ...,uα+s−1}) =
∑

m1,..,ms

α+s−1
∏

j=α

ωm j f j (m j )

g j (ω)
δ∑α+s−1

k=α mk ,r−s . (3.61)
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Fig. 3.7 Decay of spatial correlation function with distance at the critical density for disor-

dered hop rate (2.37) for γ = 0.5, ũ = 0.5. The data for finite-sized systems is obtained by

numerical simulations, while the result in the thermodynamic limit is obtained using (3.63).

The analytical result (3.69) valid for large inter-particle distances is also shown.

On averaging over the particle hop rates, we get

〈ηiηi+r 〉 = ρ
r

∑

s=1

∑

{m j }

p(m1) ... p(ms) δ∑s
j=1

m j ,r−s , (3.62)

where p(m) is the single site mass distribution obtained after disorder averaging given by

(2.40). Some of the stationary state properties are briefly given in Sec. 2.2.3, and at the

critical point for the power-law distributed hop rate (2.37), the fugacity ω takes the value of

the lowest hop rate ũ. Therefore, we find the disorder averaged generating function G(y) of

the correlation function at the critical point by

G(y) =
ρc

1− y g (y ũ)

g (ũ)

−
ρ2

c

1− y
. (3.63)
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Exact solution of the disorder averaged correlation function in thermodynamic limit re-

quire expansion of ratio
g (ũ y)

g (ũ)
around y = 1 and for non-integer γ we have,

g (ũy)

g (ũ)
= 1−

(

1+γ

γ

)(

ũ

1− ũ

)

s + .....+cn
(−s)k

k !
+α sγ+1 , (3.64)

where s = 1− y . Using above expansion, (3.63) becomes

G(s) =
ρc

s
ρc

+c2s2 + ...α sn+1
−
ρ2

s
(3.65)

=
ρ2

s

[

α sγ+ρc (c2 s + ..)
]

. (3.66)

Now the correlation function can be evaluated using contour integration,

S(r ) =
1

2πı

∫ı∞

ı∞
d s e sr G(s). (3.67)

Note that the integrand has a branch cut singularity at s = 0. The integral with an analytic

term is a delta function, and it vanishes upon integration. Thus we just need to solve the

following integral

S(r ) =αρc

∫ı∞

−ı∞

d s

2πı
e sr sγ−1 , (3.68)

where α= πγcsc(γπ)(1+γ)
(

ũ
1−ũ

)1+γ
. Finally, we get

S(r ) = ρ3
c (1+γ)

(

ũ

1− ũ

)1+γ
Γ(γ)

r γ
, (3.69)

For integer γ, the expansion of
g (ũ y)

g (ũ)
around y = 1 results,

g (c y)

g (c)
= 1−

(

1+γ

γ

)

( c

1−c

)

s + ...+βsγ+1 ln s , (3.70)

where β = ρ2
c (−1)γ(1+γ)

(

c
1−c

)1+γ
. For a non-integer γ, we follow the same procedure and

obtain the same result as (3.69). The results (3.63) and (3.69) are consistent with numerical

simulations shown in Fig. 3.7.



3.7 Correlation function for exclusion process with short and long range hops 45

3.7 Correlation function for exclusion process with short and

long range hops

The model, considered here is defined in Sec. 2.3 where a particle hops to the farthest (near-

est) empty site with rate one (w). Using (3.48), the generating function G(y) of the correla-

tion function can be expressed in terms of the generating function Q(y) of mass distribu-

tion p(m) and is given by

G(y) = ρ
∞
∑

r=0

yr
r

∑

s=1

Ps (r − s)−
∞
∑

r=0

yrρ2 (3.71)

= ρ
∞
∑

l=0

y l
l

∏

j=1

( ∞
∑

m=0

mp(m)

)

(3.72)

= ρ
∞
∑

l=0

[yQ(y)]l (3.73)

=
ρ

1− yQ(y)
−

ρ2

1− y
. (3.74)

At critical point the generating function Q(y) of single site mass distribution in mean-field

approximation is given by (2.42) which on expanding about y = 1 and σ=σc and retaining

the terms which are linear in σ and nonanalytic terms to lowest order in the deviation of

s = 1− y , and δ= (σc −σ), we get

Q(s,δ) = 1− s̺c + ...+
w sσc

2

√

(y+(σc)−1)

(

s +
δ

σc

)

, (3.75)

where we have used that y−(σc ) = 1. This gives the generating function of correlation func-

tion as

G(s,δ) =
ρ3

c wσc

√

y+(σc )−1

2

√

s +δ/σc

s
. (3.76)
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Fig. 3.8 Decay of spatial correlation function with distance at the critical density for short

and long range hop model for w = 8. The data for finite-sized systems is obtained by nu-

merical simulation, while the result in the thermodynamic limit is obtained using (3.74).

The analytical result (3.77) valid for large inter-particle distances is also shown.

On inverting the Laplace transform using a contour that includes the branch cut at −t/σc ,

we finally get

S(r ) =
ρ3

c wσc

√

y+(σc)−1

2

1
p
πr

H (δr /σc ) , (3.77)

where H (x) = e−x +
p
πxerf(x). The decay of the two-point function is compared with

numerical simulations as shown in Fig. 3.8.

3.8 Summary

In this Chapter, we studied several exclusion process on a ring in which a particle hops

to a empty neighbour with a rate assigned to it. Although we assumed that the hops are

unidirectional, the results obtained here also hold for the bidirectional case, in which a par-
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ticle may hop to either left or right empty neighbour with nonzero rate. This is because the

general exclusion models maps to some of the mass models whose partition function is in-

dependent of the bias in the hop rates [1]. Then our exact equation (3.3) for the correlation

function, holds for any bias in the hop rates.

Although most of the results for the ZRP and hence the exclusion process have been ob-

tained in the grand canonical ensemble [1], some studies in the canonical ensemble have

also been carried out [47, 48, 61, 45]. In particular, an expression for the partition function

Z̃L ,M in the canonical ensemble at and in the vicinity of the critical point has been calcu-

lated for finite systems [47], and it has been shown that for the weight f (m) with the same

asymptotic behavior as (2.15), Z̃L ,M depends exponentially on system size for ̺ < ̺c , but

sublinearly on L for ̺≥ ̺c . This implies that the free energy (3.4) changes with the density

̺ in the homogeneous phase but becomes a constant equal to − ln g (1) (which is chosen to

be zero in [47]) for all ̺≥ ̺c , as seen here in Fig. 3.1. Due to the latter property, our analy-

sis can not be carried over to the jammed phase. However, since we are mainly concerned

with critical exponents here, it suffices to consider the system in the infinite size limit.

For an infinitely large system, we have derived an exact expression (3.14) for the gener-

ating function of the steady state two-point correlation function in the canonical ensemble.

This result was applied to the several choices of hop rate for ρ ≥ ρc to find the relevant crit-

ical exponents. The case of b = 1 in hop rate (3.18), where the system is in laminar phase

for all densities, has been considered in [57], but an explicit expression for the correlation

function was not provided.

Interestingly, at the critical point, we find the exponent characterising the power law

decay of the two-point correlation function changes continuously with the hop parameter.

Equilibrium systems in two dimensions that show continuously varying exponents at the

critical point are known [62], and their behavior is understood in terms of conformal field

theories with central charge one [63]. We do not know if the behavior found here has any

such deeper significance.

We also found that for the correlation function, exponent is always of 2 orders less than

the hole cluster distribution exponent. We have also given a general result regarding the ex-
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ponent ν associated with correlation length. The exponent ν in (3.46) is constant except in

the parameter regime where mass variance diverges. This scaling for the correlation length

has been obtained in a previous study as well [64]. In addition, we have also derived the

scaling function for the correlation function in the high density phase here and found that

when the steady state is of product form, the scaling is universal. However, for the exclusion

process corresponding to aggregation-fragmentation model, we find that the static correla-

tion function decays as 1/
p

r and the scaling function is also different from the other hop

rates we have used.



Chapter 4

Critical dynamics of the jamming

transition in driven lattice-gas models

4.1 Introduction

This Chapter focuses on the stationary state dynamics of several driven lattice-gas mod-

els in one dimension that exhibit a jamming transition; most of the work discussed in this

Chapter has been published in [3]. A special case of the models studied here is the totally

asymmetric simple exclusion process (TASEP) in which a particle hops to the left neigh-

bor with rate one if it is empty. It is known that the jamming transition does not occur

in this model and its steady state dynamics can be understood using its relationship to

the Kardar-Parisi-Zhang equation for interface growth; specifically, the density-density au-

tocorrelation function decays with time as t−2/3 [46, 65]. The models of interest here are

driven lattice-gas models with hard-core particle interaction and in which the hop rates

are chosen such that jamming transition can occur. In the fluid phase and at the critical

point, the hole clusters are not macroscopically long as in the TASEP. Then it is natural to

ask if the dynamical properties in the fluid phase and especially at the critical point differ

from those in the TASEP.

The class of models that we consider are related to a zero range process [41, 1], a misan-

thrope process [42, 33] and an aggregation-fragmentation model [43, 52]. In these models,
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a jamming transition appears as a condensation transition where a macroscopically large

mass cluster forms on a single site at high densities but at low densities, the mass is dis-

tributed uniformly. The coarsening dynamics in the condensate phase have been studied

for these models quite extensively [25, 53, 5, 27, 66, 33], but the stationary state dynamics

are largely unexplored (however, see [27, 67]). It should be noted that in this picture, the

questions relate to the properties of hole clusters, whereas here we are concerned with the

holes themselves.

The relation to the mass model allows us to find the static density-density correlation

function analytically. In Chapter 3, we studied the equal time density-density correlation

function in the stationary state in a class of models where the product measure is exact

and a model within mean-field approximation. It was shown that at the critical point, the

two-point function decays as a power law in distance with a continuously varying expo-

nent in the former [2], and a constant exponent in the latter. Using this result and numer-

ical simulations, in models with exact product measure, we find that at the critical point,

when the static correlation function decays slower than the inverse distance, the exact au-

tocorrelation function decays as a power-law in time with a continuously varying exponent.

However, the TASEP behavior for the autocorrelation function, viz., t−2/3 decay holds oth-

erwise. Moreover, for a model studied using mean-field approximation, we find the decay

of autocorrelation function slower than t−1/2, as for symmetric exclusion process.

In the following section, we describe the mapping of our basic model to an interface

growth model. We then discuss the results for the static and dynamic correlation function

in Secs. 4.4 and 4.5 respectively. Sec. 4.6 is devoted to a discussion of three other models

that exhibit a jamming transition. Later, in Sec. 4.7, we discuss preliminary results on calcu-

lation of the variance of a tagged particle at the critical point. We conclude with a summary

of results and open questions in Sec. 4.8.
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u(3)

Process

Model
Lattice Gas  

Interface Growth 
Model

Zero Range 

u(3)

u(3)

Fig. 4.1 Figure to illustrate the mapping between the lattice gas model (bottom), zero range

process (middle) and interface growth model (top).

4.2 Models

We consider a system of hard core particles on a ring with L sites in which the total N num-

ber of particles is conserved. As described in Sec. 2.2.1, a particle attempts to hop to a left

neighbor with hop rate u(m). For the rate u(m) = 1+b/m, where m > 0 are the number of

vacancies in front of it, the occupancy variable ηi (t ) at site i and time t evolves according

to the following equation:

d〈ηi 〉
d t

= 〈
∞
∑

m=0

ηi+1ηi−(m+1)u(m +1)
m
∏

k=0

(1−ηi−k )−
∞
∑

m=1

ηiηi−(m+1)u(m)
m
∏

k=1

(1−ηi−k )〉 , (4.1)

where the angular brackets denote averaging over initial conditions and independent stochas-

tic trajectories.

The exclusion process described can also be related to an interface growth model. As

shown in Fig. 4.1, an interface height profile can be obtained by associating an upward

(downward) slope with a particle (hole) in the exclusion process. The interface evolves in

time by flipping a local valley to a hill with a rate that depends on the number of upward
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slopes on the left. It is convenient to work with a height profile with zero average slope, and

we therefore define the height h j (t ) of the interface at the substrate site j and time t as

h j (t ) =
j

∑

i=1

ηi (t )−ρ j . (4.2)

4.3 Density-density correlation function

Consider the unequal time density-density correlation function defined as

S(r, t ) = L−1
L
∑

i=1

[

〈ηi (0)ηi+r (t )〉−ρ2
]

, (4.3)

where the angular brackets denote an average over initial conditions that are chosen from

the stationary state ensemble and independent stochastic histories. We already studied the

equal time correlation function S(r,0) ≡ S(r ) in Chapter 3 and we will study the autocor-

relation function S(0, t ) in Sec. 4.5. The correlation function S(r, t ) is related to the height-

height correlation function defined as [46, 65]

C (r, t )= L−1
L
∑

i=1

[

〈(hi+r (t )−hi (0))2〉
]

, (4.4)

via the relation [68]

S(r, t ) =
1

2

∂2C (r, t )

∂r 2
, (4.5)

which can be obtained on using (4.2) in the derivative of C (r, t ) with respect to r .

The correlation function C (r, t ) has been studied for several interface growth models,

and found to grow with time as t 2β initially and saturate to r 2α over a time scale that grows

as r z . In other words, it is of the scaling form [68]

C (r, t ) = t 2β
C

( r

t 1/z

)

, (4.6)
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where the scaling function C (x) is a constant when x ≫ 1 and x2α for x ≪ 1, and α = βz.

Correspondingly, for the density-density correlation function, we have

S(r, t ) = t−
2(1−α)

z S

(

t

r z

)

, (4.7)

where the scaling function S (x) is a constant for x ≪ 1 and decays to zero for x ≫ 1.

The height model corresponding to the TASEP is known to obey the Kardar-Parisi-Zhang

(KPZ) equation [30], for which it is known that the dynamic exponent z = 3/2, the rough-

ness exponent α = 2− z = 1/2, and the growth exponent β = 1/3 (see Appendix C.1), and

therefore S(0, t )∝ t−2/3 for large systems as indeed verified in recent numerical simulations

[69]. Further for a TASEP, the full scaling form is known to be

S(r, t ) ≈
(

1

2

)1/3 (

A

2λt

)2/3

Q

(

r

(2λ2 At 2)1/3

)

, (4.8)

where Q(x) ∼ exp(−0.295x3) [4, 68], A is the prefactor of static height-height correlation

function calculated in Sec. 4.4 and λ is a function of the moments of the mass distribu-

tion and is given by (C.6). Our objective here is to study the exclusion process with hole-

dependent hop rates at the critical point and determine if the dynamics differ from that in

the TASEP case. The autocorrelation function is mostly studied by simulating the driven lat-

tice gas model via sequential updating. In most cases, we worked with large systems of size

L = 104 or larger, and the data were averaged over more than 104 independent initial condi-

tions in the stationary state. Our results for S(r,0) and S(0, t ) are described in the following

two sections. Although in most of the Chapter, we focus on the exclusion process, with

hop rate u(m) = 1+b/m, we also discuss other models that exhibit a jamming transition in

Sec. 4.6.
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4.4 Height-height correlation function and roughness expo-

nent

We now use the result obtained in the Chapter 3 to find the equal time height-height corre-

lation function C (r,0) defined in (4.4) which grows as r 2α [46, 65]. Using (4.2) in (4.4), we

have

C (r,0)= ρ(1−ρ)r +2
r

∑

k=1

(r −k)S(k,0) , (4.9)

where S(k,0)≡ S(k), which has been calculated in Chapter 3. For TASEP, as S(k,0) vanishes

for all k > 0 in the thermodynamic limit, the above correlation function increases linearly

with r and therefore the roughness exponent α equals 1/2 [46, 65]. For u(m) = 1+ b/m,

b > 2, at the critical point, we get

C (r,0)= ρc (1−ρc )r +2ρ2
cΓ(b −1)

(

r H (b−2)
r −H (b−3)

r

)

, (4.10)

where we have used (3.36). In the above equation, H (x)
n =

∑n
i=1 i−x is a harmonic number of

order x and whose large n behavior is given by [49]

H (x)
n =

n1−x

1−x
+ζ(x)+O (n−x ), (4.11)

where ζ(x) =
∑∞

k=1
k−x is the Riemann zeta function. Using the above equation in (4.10), we

find the leading and two subleading terms in the height-height correlation function to be

C (r,0)=































c1r 4−b +c2r +c3 , b 6= 3,4,

[

2ρ2
cΓ(b −1)

]

r lnr +c ′2r , b = 3,

c2r −2ρ2
cΓ(b −1) lnr , b = 4 ,

(4.12)

where the coefficients c1 = 2ρ2
cΓ(b − 1)((3−b)(4−b))−1,c2 = ρc (1−ρc )+ 2ρ2

cΓ(b − 1)ζ(b −

2),c ′2 = ρc (1−ρc)+ 2ρ2
cΓ(b − 1)(γE M − 1),c3 = −2ρ2

cΓ(b − 1)ζ(b − 3) and γE M ≈ 0.577 is the
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Euler-Mascheroni constant. It can be verified that the correlation function S(r,0) in (3.36)

is obtained using the above result in (4.5).

Equation (4.12) shows that for large r , the height variance grows as r 4−b for 2 < b < 3

and linearly for b > 3. Thus the interface is rougher in the former case, and the growth of

the interface width with distance can be characterised by the roughness exponent given by

α=















(4−b)/2 , 2< b < 3 ,

1/2 , b > 3 .

(4.13)

The subleading terms in the correlation function C (r,0) are useful in understanding the

dynamical behavior of the correlation function which we discuss in the next section.

4.5 Unequal time correlation function

We now study the autocorrelation function at the critical point. The results of our numer-

ical simulations are shown in the inset of Fig. 4.2 for the autocorrelation function defined

in (4.3), and we find that it oscillates in time. This is because the density fluctuations move

with a nonzero speed v = ∂J/∂ρ [70] (also, see Appendix C.1) where J is the stationary state

current. These oscillations (with time period L/v) can be eliminated by working in the rest

frame of the density fluctuations [66], and we therefore consider

S(r, t )= 〈ηi (0)ηi+v t+r (t )〉−ρ2 . (4.14)

4.5.1 Current-density relation for the exclusion process with hole-dependent

rates

To find the speed v , we first calculate the stationary state current as follows. Since a particle

hops to the left empty neighbor with a rate that depends on the number of vacancies in

front of it, the stationary state current in the bond connecting the sites i −1 and i is given
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by

J (ρ) = 〈u(1)ηi−2(1−ηi−1)ηi +u(2)ηi−3(1−ηi−2)(1−ηi−1)ηi + ...〉 (4.15)

= 〈
∞
∑

m=1

u(m)ηiηi−(m+1)

m
∏

k=1

(1−ηi−k )〉. (4.16)

Upon mapping the particle configurations appearing on the RHS of the above equation to

the ZRP as described in Sec. 2.2.1, we find that

J (ρ) = ρ
∞
∑

m=1

u(m)p(m) (4.17)

= ρ
∞
∑

m=1

u(m)
ωm f (m)

g (ω)
(4.18)

= ρ ω(ρ) , (4.19)

since p(m) is given by (2.6) and f (m) obeys (2.13). As shown in the inset of Fig. 4.2, the

current is a nonmonotonic function of density: it increases linearly in the jammed phase

and reaches a maximum at ρ ≥ ρc .

For the current (4.19), the speed v = ∂J/∂ρ = ω+ρ∂ω/∂ρ. In the high density phase

where ω< 1, using (2.10), we obtain

v =ω−
ω

ρσ2
. (4.20)

However, in the low density phase, since the fugacity equals one, the current is simply given

by ρ and thus the speed of the density fluctuations for ρ < ρc is unity for all b > 2. Moreover,

in high density phase, this speed changes sign and vanishes at b∗ = 3+
p

2 for b > 3. For

b < b∗, since the slope v+(ρc ) of the current at ρc from the high density side is positive,

the current continues to increase beyond the critical density. The density ρ∗ > ρc where

the current is maximum can be found by setting the derivative of the current equal to zero

and using the density-fugacity relation (2.9). For b = 2.5 for which ρc = 1/3, we find that

ρ∗ ≈ 0.65 as shown in Fig. 4.2. For b > b∗, the current must decrease as the critical density is

crossed since the speed v+ is negative. But as the slope v− is positive, the maximum current
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Fig. 4.2 Autocorrelation function S(0, t ) defined in (4.14) at the critical point for b = 7/2

and L = 100 to show that the density fluctuations move with the speed v+ given by (4.21).

The inset shows the stationary state current (4.19) as a function of the particle density for

two values of the parameter b. The critical density ρc = 1/3 and 4/5 for b = 5/2 and 6

respectively.

is obtained at the critical density. Note that the derivative of the current does not exist at

the critical point for b > 3. At the critical point, since the mass distribution p(m) ∼ m−b , the

variance σ2 diverges when 2 < b < 3 and remains finite otherwise. As a result, the speed is

not a continuous function of density for b > 3 since

v+(ρc ) =















1 , 2 < b < 3 ,

1− (b−2)(b−3)
b−1

, b > 3 ,

(4.21)

whereas, as mentioned above, v−(ρc ) = 1 for b > 2 [66]. Thus, for b > 3, it is not clear

whether one should use v+ or v− in (4.14) at the critical point. Our numerical simulations

show that the correlation function S(0, t ) does not oscillate in time when v+ is used, see
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Fig. 4.3 Temporal decay of the autocorrelation function S(0, t ) defined in (4.14) in the fluid

phase for b = 5/2 at ρ = 1/2 for the exclusion process with hop rate u(m) = 1+b/m. The in-

set shows the scaled unequal time two-point correlation function for hop rate (2.12) where,

b = 2.5 at densityρ = 1/2 in fluid phase. The straight line in inset shows the scaling function

given in (4.8) where A = ρ(1−ρ) and λ= 3.27.

Fig. 4.2. To rationalize this observation, we note that the speed v is determined by a steady

state property (namely, the first derivative of the steady state current). But in the station-

ary state, a typical hole cluster is not macroscopically long (see Sec. 4.2) and therefore the

properties of the critical state are similar to that in the fluid phase. In the following, we will

set v = v+ which is given by (4.21).

4.5.2 Autocorrelation function when b > 3

To get an insight into the dynamics, we write down an equation for the height of the inter-

face model (explained in Sec. 4.2) in Appendix C.1 using a standard prescription for ρ ≥ ρc .

The coefficients appearing in this equation are related to the second and third cumulants of
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Fig. 4.4 Temporal decay of the autocorrelation function S(0, t ) defined in (4.14) at critical

point for b = 6 for the exclusion process with hop rate (2.12). The inset shows the scaled

unequal time two-point correlation function at critical density for hop rate (2.12) where,

b = 6. The straight line in inset shows the scaling function given in (4.8) where A= ρ(1−ρ)/2

and λ= 25.28.

the hole cluster distribution p(m) in (2.18). In the fluid phase where the distribution of the

hole clusters is an exponential, we find that the KPZ equation is obtained for all b > 2 and

therefore the autocorrelation function S(0, t )∝ t−2/3, as shown in the Fig. 4.3. We have also

compared the scaling form (4.8) of the TASEP with the scaling function in the fluid phase

and have found good agreement with numerics as shown in the inset of Fig. 4.3.

However, at the critical point where the hole cluster distribution p(m) ∼ m−b , we find

that the interface height profile obeys the KPZ equation when b> 4. We thus expect that the

density-density autocorrelation function S(0, t ) decays as t−2/3 as in the standard KPZ case.

Our numerical results shown in Fig. 4.4 for b = 6 are indeed consistent with this expectation.
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Fig. 4.5 Temporal decay of the autocorrelation function S(0, t ) defined in (4.14) at the crit-

ical point for the exclusion process with hop rate (2.12) and b = 7/2. The inset shows the

data collapse for various system sizes for b = 3.8 at the critical density.

On comparing the unequal time correlation function with that for TASEP, we find a good

agreement up to a constant factor as shown in inset of Fig. 4.4.

We next turn to the case when 3 < b < 4. Although the roughness exponent in (4.13) is

1/2 in this parameter regime, as the third cumulant of p(m) diverges for b < 4, our hydro-

dynamic description in Appendix C.1 breaks down. However, our numerical data for the

autocorrelation function shown in Fig. 4.5 is consistent with the t−2/3 decay at large times

which means that the dynamic exponent z = 3/2 here as well. This is also verified by writ-

ing (4.7) as r S(r, t ) = x−2/3
S (x) , x = t r−3/2 and obtaining a data collapse for three system

sizes as shown in the inset of Fig. 4.5. The slow convergence of S(0, t ) to the asymptotic

behavior indicates that the subleading corrections to the leading behavior may be strong.

From (4.12) for the static correlation function, we see that the subleading correction grows
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Fig. 4.6 Temporal decay of the autocorrelation function S(0, t ) defined in (4.14) at the crit-

ical point for the exclusion process with hop rate (2.12) and b = 5/2. The inset shows the

data collapse for various system sizes for b = 9/4 at the critical density.

as r 4−b for b > 3. On using this result and the discussion in Sec. 4.3, we find that

S(0, t )∝
1

t
2
3

(

1+
A

t
2(b−3)

3

)

, (4.22)

where A is a constant. Thus for b = 7/2, the correction to the leading order behavior is

expected to decay slowly as t−1/3; the numerical data fits well to the above equation as

shown in Fig. 4.5.

4.5.3 Autocorrelation function when 2 < b < 3

As in the 3 < b < 4 case, here our hydrodynamic description also breaks down, the reason

for which can be traced to the slow decay of the hole cluster distribution. In addition, the

static correlation function C (r,0) increases superlinearly, see (4.12). As shown in the inset of
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Fig. 4.6, we obtain a good data collapse for various system sizes using α= (4−b)/2 and z =

3/2 in (4.7). Thus, here the autocorrelation function decays with time as a power law with

a continuously varying exponent given by 2(b −2)/3. Moreover, on taking the subleading

corrections to the static correlation function into account, we obtain

S(0, t ) ∝
1

t
2(b−2)

3

(

1+
A′

t
2(3−b)

3

)

, (4.23)

which provides a good fit to the numerical data as shown in Fig. 4.6 for b = 5/2.

4.6 Critical dynamics in other models

The main conclusions so far are that at the critical point, in a certain parameter regime,

the roughness exponent is different from that in the TASEP but the dynamic exponent z =

3/2 holds throughout. Below we discuss three more models that show a similar jamming

transition and for which the above results continue to hold. In Sec. 4.6.3, we also discuss a

model for which the above conclusions are not valid.

4.6.1 Generalised exclusion process with hole-dependent rates

We now discuss a class of driven lattice gas models in which a particle hops to the empty

left neighbor at a rate u(m,m′) where m(m′) denotes the number of vacancies on its left

(right). This model is obtained, via the mapping described in Sec. 2.2, from a misanthrope

process [33] in which a site can be occupied by any number of particles and a particle hops

out of a site with mass m to its right neighbor at a rate u(m,m′) when there are m′ particles

on the landing site. When the hop rate does not depend on the mass at the target site, we

obtain a ZRP as already discussed in Sec. 2.2.

Here we consider such a case with hop rates given by [33]

u(m,m′) = (v(m)−v(0)) v(m′) , (4.24)
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where

2

3
< v(0)< 1, v(m)= 1+

1

m +1
, m > 0 . (4.25)

Thus a particle hops to the left empty site with a lower rate if there are large empty regions

on either side. For the range of v(0) mentioned above, a jamming transition occurs, see

detail in Sec. 2.2.2. The static density-density correlation function at the critical point is

calculated in Sec. 3.5 and given by

S(r,0)=
̺cρ

3
c (Γ(c −2))2

4Γ(c −3)
×

1

r c−5
, (4.26)

where the critical particle density ρc and the related mass density ̺c are given in Sec. 2.2.2.

On comparing this result with those in Sec. 4.4, we immediately see that the roughness

exponent is equal to (7−c)/2 for 5< c < 6 and 1/2 for c > 6.

Further, the speed of the density fluctuations v = ∂J/∂ρ where the stationary state cur-

rent expression J in lattice gas model with hop rates (4.24) and (4.25) can be written as

J (ρ) = 〈u(1,0)ηi−2(1−ηi−1)ηiηi+1 +u(2,0)ηi−3(1−ηi−2)(1−ηi−1)ηiηi+1

+...+u(1,1)ηi−2(1−ηi−1)ηi (1−ηi+1)ηi+2 + ...〉

= 〈
∞
∑

m=1

∞
∑

m′=0

u(m,m′)ηi−(m+1)ηiηi+(m′+1)

m
∏

k=1

(1−ηi−k )
m′
∏

j=1

(1−ηi+ j )〉 (4.27)

= ρ
∞
∑

m=1

∞
∑

m′=0

(v(m)−v(0))v(m′)p(m)p(m′) (4.28)

= ρω
v(1)−v(0)

v(0)

(

2v(0)2F1(1,3,c,Cω)

2−v(0)+v(0)2F1(2,2,c,Cω)

)2

. (4.29)

Furthermore, assuming that the dynamic exponent z = 3/2 here as well, we expect that

the autocorrelation function behaves as

S(0, t )∝































t−
2(c−5)

3

(

1+α1 t−
2(6−c)

3

)

, 5 < c < 6 ,

t−
2
3

(

1+α2 t−
2(c−6)

3

)

, 6 < c < 7 ,

t−
2
3

(

1+α3 t−
2
3

)

, c > 7 ,

(4.30)
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Fig. 4.7 Autocorrelation at the critical point for the generalised exclusion process discussed

in Sec. 4.6.1 for c = 5.5 with ρc = 5/33, v = 0.285714 (main) and c = 9 with ρc = 12/19, v =
−0.00846192 (inset).

where αi ’s are constants. Our numerical results for the autocorrelation function shown in

Fig. 4.7 for c = 5.5 and 9 in the rest frame of the density fluctuations are in agreement with

these expectations.

4.6.2 Exclusion process with particlewise disorder

We again consider a system of hard core particles on a ring in which a particle hops to the

empty left neighbor. However, the hop rate of a particle is now a random variable, and it

is independent of the length of the hole clusters on either side [25–27]. The hop rates are

chosen independently from a common distribution,

q(u) =
1+γ

(1− ũ)1+γ (u − ũ)γ , γ> 0 , (4.31)
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Fig. 4.8 Autocorrelation function at the critical point for the disordered exclusion process

discussed in Sec. 4.6.2 for γ= 0.5 (main) and γ= 4 (inset). The data are averaged over 2000

independent disorder configurations for the rates chosen from (4.31) with ũ = 1/2.

where 0 < ũ < u < 1. This model can be mapped to a ZRP with sitewise disorder as ex-

plained in Sec. 2.2.3 and shows a jamming transition at ρc = γ 1−ũ
ũ+γ [25, 26]. On using the

result from Sec. 3.6, the static two-point correlation function turns out to be

S(r,0)= ρ3
c (1+γ)

(

ũ

1− ũ

)1+γ
Γ(γ)

r γ
. (4.32)

Using this expression in (4.9), we find that the roughness exponent is given by (2−γ)/2

when 0 < γ< 1 but is 1/2 for γ> 1.

Following similar steps to the models considered before, the stationary state current

for a given configuration of particle hop rates is found to be J = ρω, and the speed of the

density fluctuations can be calculated using (2.33) and its derivative with respect to ω. In

numerical simulations, for a given set of ui ’s, we calculated the speed and measured the
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Fig. 4.9 Autocorrelation function at the critical point for the process with short and long

jumps for two values of parameter w . The data are shown here for system size ∼ 15000

and averaged over 2000 independent histories. The plot confirms that the autocorrelation

function decay is independent of hop parameters and decays with exponent 1/4.

autocorrelation function in (4.14). The numerical data were averaged over many disorder

configurations to yield S(0, t ) which is shown in Fig. 4.8, and we find that our numerical

results are consistent with (4.7) where the roughness exponent is as quoted above and the

dynamic exponent z = 3/2.

4.6.3 Exclusion process with short and long jumps

The model of our interest is already explained in Sec. 2.3. It is known to show jamming

transition only in the bidirectional case when the current in the system is zero. From the

hydrodynamic agreements, one would expect it to fall in Edwards-Wilkinson (EW) univer-

sality class [71] and therefore, the dynamic exponent z = 2. Using the static two-point cor-

relation function decay exponent from (3.77) in (4.9), we calculate the roughness exponent

α to be 0.75 which is very different from standard prediction of α= 1/2 by EW. Further, us-
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ing the two-point correlation function scaling given by (4.7), the autocorrelation function

is given as

S(0, t ) ∼ t−1/4 , (4.33)

and is consistent with the numerical simulation as shown in Fig. 4.9.

4.7 Tagged particle correlation for the model with hole-

dependent hop rate

Another way to understand the stationary state dynamics is through the study of the dis-

placement of a tagged particle. Here, we study the growth of the variance of the displace-

ment of a tagged particle with time. The variance is studied at the critical point for ex-

clusion process with hole-dependent hop rate (3.18), in stationary state. The details of

some of the known stationary state properties of this model have already been discussed

in Sec. 2.2.1. The time growth of the fluctuation for a tagged particle in the steady state

for ASEP [72–74] as well as that for the hole-dependent hop rate (3.18) [66] has been well

studied. However, a detailed analysis at the critical point is still lacking.

The study of the fluctuation by measuring the variance of a tagged particle displace-

ment in time can be approached in two ways: (a) by calculating the variance σ2(t ), aver-

aged over different stationary state initial configurations and (b) by calculating variance

s2(t ), which is only averaged over stochastic histories starting from the same initial condi-

tion.

Earlier studies on ASEP show that the fluctuation,σ2(t ), grows linearly in time with a dif-

fusion constant, D0 which is a function of density and the bias [73] in the thermodynamic

limit; for TASEP, it is given by D0 = (1−ρ). Further, it has been observed that the growth

of the variance is sensitive to ensemble averaging, i.e., the variance decay scaling changes

if the variance is averaged over different stochastic histories starting from same initial con-

dition. In the thermodynamic limit, the variance, s2 with same initial condition, shows a

constant growth in time with exponent 2/3 (s2(t ) ∼ t 2/3) [74]. This difference in the expo-
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nent can be explained by arguing that in the stationary state, the displacement of the nth

tagged particle, y(n, t )− y(n,0), has contributions from three different terms: drift, sliding

density fluctuations, and dissipation. Thus, one can write the displacement as

d(t ) = y(n, t )− y(n,0) = D0t +Wn tα+ tβGn(t ) , (4.34)

where α is the roughness exponent and β is the growth exponent of the KPZ equation.

Presently, we will not go into the detailed observation of (4.34) (see [74] for details) and use

it to explain briefly how the exponents for σ2 and s2 are different. Two different scenarios

are considered –

(i) When the displacement is averaged with respect to the different stationary initial con-

ditions, we get

d(t ) = 〈y(n, t )− y(n,0)〉 = D0t +Wn tα+ tβ〈Gn〉 , (4.35)

where the angular bracket denotes averaging over the stochastic histories, and the

over-bar denotes ensemble averaging of initial conditions. Now, taking the variance

of displacement, σ2(t ) becomes

σ2(t ) = ((Wn −Wn)tα+ tβ(Gn −〈Gn〉))2 ∼ t 2α , (4.36)

where α= 1/2 for TASEP.

(ii) When the displacement is averaged over different stochastic histories while keeping

the initial condition fixed, we get

〈d(t )〉 = 〈y(n, t )− y(n,0)〉 = D0t +Wn tα+ tβ〈Gn〉 , (4.37)

Thus, the variance of the displacement becomes

s2(t ) = tβ(Gn −〈Gn〉)) ∼ t 2β , (4.38)
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Fig. 4.10 Growth of the variance of the displacement in time at critical point is shown for

hop rate (3.18) when b = 6 for the system size L = 16000. The main figure shows the growth

of the variance s2 as t 2/3 same as in TASEP given by (4.38). The inset shows the linear growth

of the variance σ2 (4.36) when average is taken over several initial conditions.

where β= 1/3 for TASEP. Hence, we recover two different scaling of σ2(t ) and s2 (see

ref. [74] for details).

Note that although, there is fair amount of literature for hop rate (3.18), but the result is

not very clear at critical point [66]. Here, we do not comprehensively analyse this, rather,

we carry out some numerical simulations to understand the growth of the displacement

fluctuation of a tagged particle at the critical point. Following the study of TASEP given

earlier in this section, we require knowledge of the roughness exponent α and the growth

exponent β at the critical point [3]. In Sec. 4.4, we have found two different regimes for the

roughness exponent and growth exponent. For 2 < b < 3, we have continuously varying

exponents, and for b > 3, we have exponents as that for the KPZ equation. Therefore, for

b > 3, the variance of displacement is expected to show the same result as TASEP.
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Fig. 4.11 Growth of the variance of the displacement in time at the critical point is shown for

the hole-dependent hop rate (3.18) when b = 3.5 for the system of size L = 12000. The main

figure shows the linear growth (4.36) for the variance, σ2 which is averaged over several

initial conditions. The inset shows the growth of the variance, s2 with next order correction

when averaged over stochastic histories only.

The results obtained from numerical simulations for the hop rate (3.18) are compared

with the known TASEP results [66]. On the basis of the result of roughness exponents (4.13)

and growth exponents α/z where z = 3/2, the fluctuation in the tagged particle displace-

ment is calculated from (4.36) and (4.38).

4.7.1 Variance of a tagged particle displacement when b > 3

For b > 3, the exponents α and β are 1/2 and 1/3 respectively, same as in TASEP. Therefore,

the results for the variance s2 and σ2 are same as in TASEP case and are given by equations

(4.38) and (4.36) respectively. This has been confirmed by the numerical simulations as

shown in Figs. 4.10 and 4.11. In Fig. 4.11, we consider next order correction of the variance

s2(t ) similar to the correction incorporated for the autocorrelation function (4.22).
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Fig. 4.12 Growth of the variance of the displacement in time at the critical point is shown

for the hole-dependent hop rate (3.18) when b = 2.25 for the system of size L = 15000. The

main figure shows the linear growth for both variance σ2 and s2. The inset shows the next-

order term of the displacement given in (4.35) which represent the value of roughness ex-

ponent α.

4.7.2 Variance of a tagged particle displacement when 2 < b < 3

In this case, the static correlation function suggests that the roughness exponent α is con-

tinuously varying with hop parameter, α = (4−b)/2. Hence the growth exponent β is also

continuously varying with exponent (4−b)/2z. Using these values of exponents in (4.36),

and (4.38), we get the variance of the displacement as

σ2(t ) ∼ t (4−b) , when averaged over different initial configurations , (4.39)

s2(t ) ∼ t (4−b)/z , when averaged over stochastic histories only . (4.40)

This suggests that the growth of σ2(t ) and s2(t ) are faster compared to that for b > 3. How-

ever the numerics suggest that the growth of the fluctuation is linear for both σ2 (when the
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Fig. 4.13 Autocorrelation function at the critical point for the bidirectional case for hop

rate u(m) = 1+b/m discussed in Sec. 2.2.1 for b = 3.5 (main) and 2.5 (inset). The results of

autocorrelation function is consistent with numerical simulation with dynamical exponent

z = 2.

initial configuration is averaged) and s2 (with fixed initial condition) as shown in main fig-

ure of Fig. 4.12. The exponent for variance s2 is same as given by (4.40) while σ2 is different

from (4.39). We do not know the reason for this difference yet, and would like to revisit it in

future. Moreover, we have checked the second leading order term for the displacement of

a tagged particle and it is consistent with the exponent given by roughness exponent α as

shown in the inset of Fig. 4.12.

4.8 Summary

Although the critical dynamics of some nonequilibrium phase transitions such as absorb-

ing state transitions [75] have been rather well studied, such questions have not been ad-

dressed for the condensation transition and the related jamming transition barring some
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exceptions [27, 67]. The dynamical behavior in the stationary state for the latter class of

transitions is the subject of this Chapter.

Here we studied several one-dimensional models in which the particles have hard core

interactions and always hop in one direction. Our main finding is that when the equal

time density-density correlation function decays faster than the inverse of the distance, the

autocorrelation function decreases with time in the same way as in the TASEP. However for

slower decaying S(r,0), the autocorrelation function S(0, t ) also decays slower than t−2/3

and with an exponent that varies continuously with a model parameter. In a driven system

of hard core particles with nonlocal hop rates, the static correlation function is found to

decay as r−2 and the dynamic exponent has been shown to be one [76], unlike here where

z = 3/2 is found to be robust.

For a generalisation of the hop rate (2.12) given by u(n) = 1+ (b/nλ), the jamming tran-

sition occurs when 0 < λ < 1,b > 0 (besides the case considered here, namely, λ= 1,b > 2)

[77]. In the former case, at the critical point, the single site mass distribution p(m) ∝

exp
[

−b(1−λ)−1m1−λ]

decays faster than a power law as in the fluid phase. As a conse-

quence, the roughness exponent remains one half [2] and the dynamical behavior is the

same as in the TASEP for all 0 < λ < 1,b > 0. We have also studied a bidirectional version

of the model in Sec. 4.2 in which a particle may hop to either side with equal probability

at a rate that depends on the number of holes in the direction toward which it chooses to

hop. This model can be mapped to a symmetric ZRP whose steady state is the same as

in Sec. 4.2. As a result, the roughness exponent does not change from the driven model.

However, since the steady state current vanishes, the dynamic exponent z = 2 here [46, 65]

as shown in Fig. 4.13. Our numerical simulations for the autocorrelation function given

by (4.7) are consistent with these values of the roughness exponent and the dynamic expo-

nent.

We note that the Galilean invariance which holds for the KPZ equation and yields the

scaling relation α+ z = 2 is violated for the models studied here at the critical point when

the static correlation function decays slower than 1/r . Precisely what is responsible for this

breakdown is not understood. We have been able to obtain an understanding of the KPZ dy-
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namic exponent z = 3/2 in the models discussed here using a hydrodynamic theory when

the third cumulant of the hole distribution is finite, but an extension of the hydrodynamic

description to the complete range of parameters at the critical point is desirable.



Chapter 5

Critical dynamics of classical systems

under slow quench

5.1 Introduction

In the past few decades, extensive studies have been carried out to understand the phase

ordering dynamics of classical systems with equilibrium [78] and nonequilibrium steady

states [54, 67, 53] when the system is quenched infinitely fast from a disordered state to an

ordered one. Slow quench (or annealing) dynamics have also attracted some attention in

the recent years, and have been invoked to understand the defect structures in the early

universe [6, 79] and more generally, to systems exhibiting second order phase transitions

[7, 80] in both classical [81–87] and quantum [88–92] settings. Moreover, a number of ex-

periments investigating the relationship between defect density and quench rates have also

been performed in variety of systems such as liquid crystals, superfluid 3He, superconduc-

tors, Bose-Einstein condensates and colloidal systems, see [93] for a recent review. The

defect density at the end of the quench is generally found to decay as a power law in the

inverse quench rate (although some systems such as 2D XY model exhibit non-algebraic

decay [94, 95]).

Much of the body of work on slow quench dynamics appeals to the Kibble-Zurek ar-

gument [6, 7] which states that if the control parameter is varied slowly across the criti-
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cal point, the system stays close to the steady state (adiabatic regime) until its relaxation

time becomes longer than the quench time after which the dynamics are hypothesised to

remain “frozen" (impulse regime) until the critical region is crossed. Thus the argument

applies only for quench processes near the critical point, but recent works have elucidated

the slow annealing dynamics when the system is quenched far from the critical point to an

ordered phase and argued that the defect density is determined by coarsening dynamics

[85, 94]. However the question about the dynamical behavior when the system is quenched

slowly in the critical region has not been addressed in previous investigations. Moreover, all

the studies mentioned above deal with systems with equilibrium steady state (but, see [96]

that considers a nonequilibrium quantum system).

Here we consider the slow quench dynamics of the jamming transition that occurs in di-

verse settings such as vehicular traffic [20], cellular traffic [19] and granular media [23]. We

study a classical nonequilibrium system in one dimension which shows a jamming transi-

tion in the stationary state [47]. The steady state of this model is known exactly [1], and

some results for the coarsening dynamics [5, 53] and stationary state dynamics [3] have

also been obtained. However the dynamics of this model under slow annealing have not

been studied and here we address this problem using numerical simulations and analytical

arguments. We find that the standard Kibble-Zurek scaling explains our results in the crit-

ical region but close to the critical point and for quenches deep in the jammed phase, the

defect density decay can be understood using the corresponding results for rapid quench

dynamics [85].

5.2 Model

We consider an exclusion process with hole-dependent rates given by

u(n)= 1+
b

n
, n > 0 . (5.1)

The stationary state properties of this model and its mapping to a Zero Range Process (ZRP)

have been described in Sec. 2.2.1. Here we recall that for this hop rate, a jamming transition
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occurs at

bc =
2−ρ

1−ρ
, (5.2)

where ρ = N/L is the total particle density. For b < bc , the typical hole cluster length is of

order unity (fluid phase) while for b > bc , a macroscopically long hole cluster coexists with

gaps that are power law distributed as n−b (jammed phase) [1]. As shown in Appendix D.1,

close to the critical point, the static correlation length ξ∼ (bc −b)−ν, diverges with an expo-

nent ν that varies continuously with bc when 2< bc < 3 but is a constant otherwise [2],

ν=















(bc −2)−1 , 2 < bc < 3,

1 , bc ≥ 3 .

(5.3)

The stationary state dynamics have also been studied and it has been found that at the

critical point, the steady state density fluctuations decay on a time scale that grows as Lz

where the dynamic exponent z = 3/2 [3].

In the following, we also consider a bidirectional model in which the particle first chooses

either the left or the right neighbor with equal probability and then hops with a rate that de-

pends on the vacancies in the chosen direction provided the target site is empty. The steady

state obeys detailed balance and is the same as that in the unidirectional model [1]. As a

result, the correlation length exponent ν is given by (5.3); however, the dynamic exponent

z = 2 in this case [3].

To study the slow quench dynamics, we introduce time-dependence in the hop rates

and write

u(n, t ) = 1+
b(t )

n
, n > 0 , (5.4)

where, for simplicity, we work with linearly varying b given by

b(t ) =
bτt

τ
, 0≤ t ≤ τ . (5.5)

The quench protocol was carried out by changing the parameter b from zero (in the fluid

phase) to a final value bτ = bc (critical point) and 2bc (jammed phase) keeping the density
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Fig. 5.1 Inset shows the unidirectional lattice gas model studied in this article and the re-

lated zero range process. Main figure shows the dynamics of the excess defect density de-

fined in (5.6) for bτ = bc = 2.3 in the unidirectional model.

fixed at ρc which is given by (5.2). Our quantity of interest is the domain wall density (which

is the interface between the particle and hole) in the lattice gas model. From the inset

of Fig. 5.1, we see that the number of domain walls is equal to two times the number of

occupied sites in the ZRP. For finite inverse quench rate τ, as the system is far from its

steady state and has more domain walls than at stationarity, we consider the excess defect

density given by

δρd (t ) = 2ρc [p(0, t )−p(0)] , (5.6)

where p(0, t ) is the probability that a site is empty at time t in ZRP when the parameter

b is time-dependent and p(0) is given by (2.6). In Monte-Carlo simulations of the mod-
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Fig. 5.2 Main figure shows that the remaining time tr to the critical point obeys the Kibble-

Zurek prediction (5.7) for the unidirectional model when bτ = bc . Inset shows the collapse

of excess defect density with the Kibble-Zurek scaling (5.8) for time t∗ < t < τ when the

system is quenched to bτ = bc = 2.3.

els described above, we measured δρd (t ) for system sizes in the range 15000−20000 and

averaged the data over 2000−4000 independent initial conditions.

5.3 Results

When the quench rate τ−1 is very small, the parameter b changes very slowly allowing the

system to relax to the stationary state. But for faster quench, the system is farther from the

steady state. Indeed, as Fig. 5.1 shows, the excess defect density δρd (t ) decreases with in-

creasing τ. Our objective here is to understand how δρd (τ) decays with τ when the system

is quenched slowly to bτ.
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Fig. 5.3 Power law decay of the probability p̂(0, t )−p(0) with time after a fast quench to the

critical point starting from b = 0 to bc with density ρc in the unidirectional model (closed

symbols) and bidirectional model (open symbols). The lines show the scaling (5.9) and the

triangular closed symbols show the numerical data when the system is quenched instanta-

neously to bc = 2.3 from the initial value one.

5.3.1 Dynamics in the critical region

When the system is far from the critical point, it relaxes quickly. But as the critical point is

approached, the relaxation time increases and at time t∗, the remaining time tr = τ− t∗ to

reach the critical point becomes comparable to the relaxation time in the stationary state

which can be expressed as [6, 7]

τ− t∗ ∼ ξz
∗ ∼ (bc −b(t∗))−zν ∼

(

1−
t∗
τ

)−zν

, (5.7)

so that tr ∼ τ
zν

1+zν . As the system falls out of equilibrium at t∗, in numerical simulations, we

picked the time t∗ to be the one where the excess domain wall density is 10−3 and found

the time tr . Using the exponents ν and z quoted in the last section, we find that for the
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unidirectional model, the time tr ∼ τ3/(2bc−1) for 2 < bc < 3 and as τ3/5 for bc ≥ 3 which is

in good agreement with the numerical data in Fig. 5.2. (We have checked that our scaling

results are not affected if t∗ is determined by the criteria that excess defect density . 10−3).

Assuming that the system does not evolve after time t∗, the defect density after crossing

the critical point is posited to be δρd (τ) ∼ ξ−1
∗ ∼ τ−ν/(1+νz) [6, 7]. However, we find that

the Kibble-Zurek scaling works well for times < τ but not at or after the critical point is

crossed (see below). Our simulation results for the unidirectional model shown in the inset

of Fig. 5.2 for a quench to the critical point demonstrate that the excess defect density is of

the form,

δρ(uni)
d

(t ) =















τ
− 2

2bc−1 f (t/τ) , 2< bc < 3 ,

τ−2/5 f (t/τ) , bc ≥ 3 ,

(5.8)

where f (x) is the scaling function and t∗ < t < τ. We also find that the above scaling form

breaks down at times of order t∗.

Close to the critical point, the system undergoes critical coarsening during the time

interval tr [85]. We therefore turn to a discussion of the fast quench dynamics of the ZRP

in which the system initially in the fluid phase is quenched instantaneously to the critical

point. To distinguish between the quantities obtained using slow and fast quench, in the

following, we use ˆ to refer to quantities obtained using the fast quench protocol. In [5],

critical coarsening dynamics of the ZRP have been investigated in mean-field geometry

and in one dimension. In the latter case, numerical simulations indicate that a measure

of the domain length grows with time as t 1/ẑ with the coarsening exponent ẑ = 3 (5) for

unidirectional (bidirectional) model and a scaling argument suggests that the probability

δp̂(0, t ) ∼ t−α̂ with the exponent α̂ = (b −2)/ẑ for b > 3. While our numerical results for ẑ

are in agreement with those of [5], the distribution of empty sites does not obey the scaling

law claimed by Godréche. Instead, our numerical results shown in Fig. 5.3 suggest that

δp̂(0, t ) ∼ t−α̂ where,

α̂=















(bc −1)/ẑ , 2 < bc < 3 ,

2/ẑ , bc ≥ 3 .

(5.9)
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Fig. 5.4 Decay of the excess defect density when the system is quenched slowly to the critical

point (bτ = bc ) in the unidirectional model. Our scaling prediction (5.12) is compared with

numerical data for several values of bc and the errorbars for some representative points are

also shown.

In the stationary state, using the fact that the mass distribution p(n) ∼ n−b at the critical

point and extreme value theory [97], it can be seen that in a system of size L, the largest

mass is of the order L1/(b−1) for b > 2. These considerations also show that

p(0,L)−p(0) ∼
∫∞

L
1

b−1

dn n−b ∼ L−1 , (5.10)

and the mass fluctuation ℓ grows as [47]

ℓ∼















L1/(b−1) , 2 < b < 3 ,

p
L , b ≥ 3 .

(5.11)
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Fig. 5.5 Decay of the excess defect density when the system is quenched slowly to the critical

point (bτ = bc ) in the bidirectional model. Our scaling prediction (5.13) is compared with

numerical data for several values of bc ; the errorbars in this case are smaller than the point

size.

However, as mentioned above, on rapid quench, the mass fluctuation ℓ̂(t ) ∼ t 1/ẑ [5] on

using which in (5.11) yields a relationship between time and system size thence leading to

δp̂(0, t ) ∼ t−α̂ with α̂ given by (5.9).

Using the above results and recalling that the coarsening process initiates at time of

order t∗, we obtain δρd (τ) ∼ t−α̂r ∼ τ−zνα̂/(1+zν) when the system is quenched to the critical

point. Here we have ignored the dependence on the quench depth (i.e., bc −b(t∗)) since

our numerical results in Fig. 5.3 suggest that the long time dynamics are independent of it.

More explicitly, for the unidirectional model, we have

δρ(uni)
d

(τ) ∼















τ
− bc−1

2bc−1 , 2 < bc < 3 ,

τ−2/5 , bc ≥ 3 ,

(5.12)
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Fig. 5.6 Decay of the excess defect density in the unidirectional model when the system is

quenched slowly to bτ = 2bc . The lines in the main figure show (5.14) and the data collapse

with the coarsening exponents in the jammed phase is shown in the inset for bτ = 2bc ,bc =
2.3.

while, for the bidirectional model, we get

δρ(bi)
d

(τ) ∼















τ
− 2(bc−1)

5bc , 2 < bc < 3 ,

τ−4/15 , bc ≥ 3 .

(5.13)

The above predictions for the excess defect density are consistent with the numerical re-

sults shown in Figs. 5.4 and 5.5 when bτ = bc . We have also checked that the above scaling

predictions hold when the system is quenched in the vicinity of bc .
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5.3.2 Dynamics in the jammed phase

For bτ ≫ bc , the system undergoes coarsening in the jammed phase after the time tc + tr

where b(tc ) = bc [85]. As the time scale tc ∼ τ but tr is sublinear in τ, the time left until the

quench is of order τ. Thus we expect the defect density to simply decay as

δρd (τ) ∼ τ−1/ẑ , bc > 2 , (5.14)

where the coarsening exponent ẑ = 2 (ẑ = 3) for unidirectional (bidirectional) model [53, 1].

Fig. 5.6 shows that our numerical results for bτ = 2bc are consistent with the above scaling

prediction. Moreover, the excess defect density δρd (t ) is of a scaling form similar to (5.8) as

attested by the data collapse shown in the inset of Fig. 5.6.

5.4 Slow quench dynamics of zero range process in mean

field geometry

Here, we consider a zero range process (ZRP) in mean-field geometry, in which, a particle

hops to any other site with a rate depending on the number of particles at the departure

site which is given in (5.1). For this choice of hop rate, in the mean-field, one obtains a

condensation transition at

bc =
1

̺
+2 , (5.15)

where ̺ is a finite density. The stationary state is specified by a product measure (as re-

viewed in Sec. 2.2.1). Along with the stationary state properties, the model has well studied

coarsening dynamics both at the critical point and in the condensed phase [5](see Sec. 2.4).

Here, our intention is to extend the study of slow quench dynamics in the mean-field geom-

etry [9]. For slow quench process in mean-field geometry, a particle hops to any other site

with time dependent hop rates (5.4). To perform study, we compute the excess probability

of a site having zero mass, in comparison with its probability at stationary state
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Fig. 5.7 The Kibble-Zurek prediction (5.7) for the remaining time tr to reach the critical

point is shown in the figure for b > 3.

δp(t ) = p(0, t )−p(0) , (5.16)

where p(0, t ) is the probability of a site having zero mass at time t . Similar to one dimen-

sion, we start the analysis with the help of Kibble-Zurek argument, and therefore, we ex-

pect the decay of the excess probability of a site having zero mass, at the critical point to

be τ−νzα/(1+νz), with appropriate exponents. In order to determine this excess probability

we need information of the unknown exponents z, α and ν. The exponents α and ν are

already known from the previous studies [5, 2]. The correlation length ξ which scales as

ξ∼ (bc −b)−ν diverges at the critical point with exponent ν is given in (5.3). The exponentα

is decay exponents of the probability of a site having zero mass in time at the critical point

due to fast quench process and is explained in Sec. 2.4. Further, we need to know about

the nature of the stationary state fluctuation in order to determine the exponent z. The

simplest way is to get an understanding of the fluctuation via hydrodynamic equation in

higher dimensions. Earlier studies on the KPZ equation have shown that above the upper
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Fig. 5.8 Decay of defect density when the system is quenched slowly to the critical point

(bτ = bc ) in mean-field geometry of ZRP for 2 < b < 3. The numerical results show the

decay of excess probability of a site having zero mass in comparison to its stationary state

in τ with an exponent 1/3, for two values of b.

critical dimension, the dynamical exponent z changes from 3/2 to 2 [98]. Therefore, we

consider the dynamical exponent z = 2 for this case. Nevertheless, it is worth mentioning

that a more comprehensive understanding of the stationary state fluctuation in mean-field

is still needed and is one of the goals for the future work. Below, we briefly describe the

results obtained so far for this model.

5.4.1 Dynamics in the critical region

Using the above mentioned exponents for mean-field, we have first checked for the Kibble-

Zurek scaling (5.7) of the remaining time tr , to reach the critical point and find good agree-

ment with numerical simulations for bc > 3, as shown in Fig. 5.7.

Close to the critical point, system undergoes critical coarsening during the remaining

time in the same manner as given for one dimension in Sec. 5.3.1 but with different expo-
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Fig. 5.9 Decay of defect density when the system is quenched slowly to the critical point

(bτ = bc ) in mean-field geometry of ZRP. Our prediction (5.17) is compared with numerical

data for several bc > 3 in mean-field geometry.

nent. Using the known results of the critical coarsening for mean-field [5] (as described in

Sec. 2.4) and remaining time tr , the excess probability of a site having zero mass in compar-

ison to the stationary state can be shown to algebraically decay with τ at the critical point.

For 2 < bc < 3, the excess probability δp(τ) decays in τ with a exponent 1/3, whereas for

bc > 3, the exponent is continuously varying with the hop parameter as shown in Figs. 5.8

and 5.9. However, the analytical results in the mean-field picture, suggest the decay of ex-

cess probability as

δp(τ) ∼















τ
− 1

bc , 2 < bc < 3 ,

τ−(bc−2)/3 , bc ≥ 3.

(5.17)

For bc > 3, the numerical simulations are consistent with the result (5.17) which is shown

in Fig. 5.9, whereas, for 2 < bc < 3, we find a disagreement with the predicted exponent of

1/bc shown in Fig. 5.8.
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Further, we are also trying to understand the slow quench dynamics of the mass distri-

bution analytically by analysing the modified master equation. The dynamical equation

for the evolution of the single site mass distribution with the time-dependent hop rates is

given as

∂pτ(n, t )

∂t
= u(n +1, t )pτ(n +1, t )+ ū(t )pτ(n −1, t )−u(n, t )pτ(n, t )− ū(t )pτ(n, t ),n > 0 ,

∂pτ(0, t )

∂t
= u(1, t )pτ(1, t )− ū(t )pτ(0, t ) , (5.18)

where u(n) = 1+b(t )/n and b(t ) = δ t
τ

. The ū(t ) is the mean hop rate in the model given

by ū(t ) =
∑

n u(n, t )p(n, t ). We perform exact integration of the equation (5.18) for different

τ values and find that the results obtain by integration are consistent with the simulation

results and same as shown in Figs. 5.8 and 5.9. The detailed analysis is in progress [9].

5.5 Summary

Slow quench dynamics have been studied extensively when the control parameter is changed

across the critical point of a second order phase transition in equilibrium systems [7, 80]

and recent works have considered slow quenches deep into the ordered phase [85, 94].

Here we have performed, to our knowledge, first quantitative study for the slow quench

dynamics when the system is quenched in the critical region.

The Kibble-Zurek argument assumes that in the critical region, the dynamics are frozen

since the relaxation times are much longer than the time available. Here, we find that the

defect density decays as a power law even within the so called frozen regime although with

an exponent smaller than or equal to the Kibble-Zurek prediction. While the dynamics

outside the critical region involve only the stationary state dynamic exponent (z) and the

deep quench in the ordered phase is determined by the coarsening exponent (ẑ), the criti-

cal point quench dynamics are more complex involving both static fluctuations and critical

coarsening.
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For the class of models considered here, a comparison of the decay exponents shows

that the excess defect density decays faster in the unidirectional model which has a nonequi-

librium steady state than in the bidirectional model with equilibrium steady state. We

also obtain continuously varying exponents for 2 < b < 3 where the mass fluctuations are

anomalous but constant otherwise [1].

A detailed exploration of other nonequilibrium and equilibrium systems with critical

point annealing should inform us better about the dynamics in the impulse regime and is

a goal for the future.



Chapter 6

Summary

In this Chapter, we summarise our main findings and give a brief outlook of future research.

We have considered several stochastic models that exhibit jamming and condensation tran-

sitions. Although, in the recent past, several authors have studied stationary state proper-

ties and dynamics of condensates, a complete and coherent picture at the critical point has

been lacking. This thesis has made some efforts in this regard; it provides a detailed study

of nonequilibrium stationary states and dynamical properties at the critical point within

the scope of certain one-dimensional driven lattice gas models. In particular, we have fo-

cused on models whose stationary measures are either of a product form or given by the

mean-field approximation. Mostly, the emphasis is on the study of the two-point correla-

tion function which describes the statistical fluctuation of density at critical point.

In Chapter 3, exact static two-point correlation functions in the canonical ensemble

and in the thermodynamic limit which are valid in the fluid phase and at the critical point

are calculated. The main results obtained from this Chapter are:

(i) At the critical point, the exponent characterizing the power-law decay of the two-

point correlation function changes continuously with the hop parameter when sta-

tionary state partition function of the model is given by a product measure.

(ii) The correlation length diverges with an exponent ν which changes continuously for

the parameter regime where mass variance diverges, whereas it is constant otherwise.
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(iii) Our calculation of two-point correlation function in the thermodynamic limit is valid

even in a mean-field approximation. In the aggregation model, the correlation func-

tion decays with an exponent 1/2, and the correlation length decays with exponent

ν= 1.

The stationary state dynamical behavior for the jamming transition is the subject of Chap-

ter 4. Our main findings in this regard are:

(i) The autocorrelation function decreases with time in the same way as in the TASEP

when the equal time density-density correlation function decays faster than the in-

verse of the distance.

(ii) When the static correlation function decays slower than the inverse of the distance,

the autocorrelation function decays slower than t−2/3.

(iii) The Galilean invariance which holds for the KPZ equation and yields the scaling rela-

tion α+z = 2 is violated at the critical point for the case when mass variance diverges.

Chapter 5 is devoted to understanding the role of cooling or annealing mechanism in the

equilibration of the classical systems in the critical regime, especially via slow quench pro-

cess. To the best of our knowledge, we have performed the first quantitative study of the

slow quench dynamics when the system is quenched in the critical region. The main results

we obtain from our study of slow quench dynamics are:

(i) The defect density decays as a power-law even within the so called “frozen regime ”of

Kibble-Zurek scaling.

(ii) The critical point quench dynamics are more complex involving both static fluctua-

tions and critical coarsening.

(iii) We obtain the exponents that are continuously varying in the region where the mass

fluctuations are anomalous, and are constant otherwise.

The continuously varying critical exponents for the regime where the variance of the hole

or mass clusters distribution diverges is key universal feature observed in our work. The



93

power-law distribution of clusters is hallmark of a phase transition and is observed in many

scenarios. For this reason, we expect our results to hold in more general settings and we

hope that this thesis would initiate further enquiry in this direction.
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Appendix A

A.1 Partition function in the canonical ensemble

Consider a system of N particles on L sites. If τ is a configuration in this system, let W (τ)

denote the stationary weight of such a configuration. Let ZL,N denote the partition function

of the EP in this system. That is to say,

ZL,N =
∑

τ

W (τ).

We will first give two different recurrence relations for ZL,N .

Note that any configuration can be written in the form 0k0τ10kN , where τ is a config-

uration in the system with L − k0 − kN − 1 sites and N − 1 particles. Since we want this

representation to be unique, τ1 has to be 1. Thus,

ZL,N =
∑

0≤k0+kN≤L−N

∑

τ

W (0k0τ10kN )

=
∑

0≤k0+kN≤L−N

∑

τ

f (k0 +kN )W (τ)

=
L−N
∑

k=0

(k +1) f (k)
∑

τ

W (τ) ,

where we set k = k0+kN in the last line and the factor of k+1 counts for the number of ways

one can split k in this way. The sum over τ now gives the partition function for a system

with L −k −1 sites and N −1 particles where the first site is occupied. Since the system is
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translation-invariant, this gives the formula,

ZL,N =
L−N
∑

k=0

f (k)(k +1)
N −1

L−k −1
ZL−k−1,N−1 . (A.1)

Another recurrence relation for the mass model with short-jump partition function

Z̃L ,N with L sites and N particles has been obtained in the reference [45] and is given

by

Z̃L ,N =
n
∑

k=0

f (k)Z̃L−1,N −k , (A.2)

with Z̃0,N = δN ,0 since Z̃1,n = f (n). Since a ZRP can be mapped to EP by regarding the N

particles in an EP as L sites in ZRP and L −N holes in EP as N particles in ZRP, the two

partition functions can be related as

ZL,N =
L

N
Z̃N ,L−N . (A.3)

The prefactor on the right hand site (RHS) of the above equation arises due to the fact that

the mapping described above between ZRP and EP assumes that an EP configuration be-

gins with an occupied site. The EP configurations that begin with an empty site are taken

care of by the factor L/N using the argument described above.

Therefore, on using the last two equations, we get

ZL,N =
L

N

L−N
∑

k=0

f (k)
N −1

L−k −1
ZL−k−1,N−1 . (A.4)

We have thus shown that both recurrence relations (A.1)and (A.4) with the initial conditions

ZL,0 = ZL,L = 1 give rise to the same formula.



A.2 Exact Formula for the partition function of hole-dependent hop rate 105

A.2 Exact Formula for the partition function of hole-dependent

hop rate

It turns out that one can express ZL,N exactly using integer partitions [2]. To state the result,

we need some definitions. An integer partition of a positive integer n is a representation

of n in terms of other positive integers which sum up to n. For convenience, the parts

are written in weakly decreasing order. For example (5,3,3,2,1) is a partition of 14. If λ is

a partition of n, we denote this as λ ⊢ n. Another way of expressing a partition is in the

so-called frequency representation, 1a1 2a2 · · · , where ai represents the multiplicity of i in

the partition. This information can be encoded as a vector ā = (a1, a2, . . . ). For example,

the same partition of 14 above can be written as 1121324051 ≡ (1,1,2,0,1) followed by an

infinite string of zeros, which we omit. We will write ā ⊢ n to mean a partition of n in this

notation.

The number of parts of a partition, denoted by |ā|, is given by
∑

i ai . Given a function f

defined on the positive integers, we will denote

f (ā) = f (1)a1 f (2)a2 · · · .

In the same vein, let ā! =
∏

i ai !. Finally, recall that the Pochhammer symbol or rising fac-

torial (m)n for nonnegative integer n, is given by the product m(m +1) · · ·(m +n −1) if n is

positive and by m if n = 0.

The partition function of the EP can be written as

ZN+M ,N = (N +M)
∑

ā⊢M

(N −|ā|+1)|ā|−1

ā!
f (ā), (A.5)

where the length of the system is L = N +M and (m)n is the Pochhammer symbol defined

after (2.14). We will prove this by equating both representations (A.1) and (A.4). Doing so
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for ZN+M ,N shows

M
∑

k=0

(N −1) f (k)

N +M −k −1
ZN+M−k−1,N−1

(

M −Nk

N

)

= 0.

Isolating the k = 0 term and replacing N −1 by N gives a recurrence

M

N +M
ZN+M ,N =

M
∑

k=1

(N +1)k −M

N +M −k
f (k) ZN+M−k,N .

Define ẐN+M ,N = ZN+M ,N

N+M
to get a recurrence for Ẑ ’s,

ẐN+M ,N =
M
∑

k=1

(N +1)k −M

M
f (k) ẐN+M−k,N . (A.6)

We will now prove the formula for ẐN+M ,N equivalent to (A.5) by induction on M . When

M = 1, there is a single term in the sum corresponding to ā = (1,0, . . . ). Thus ẐN+1,N = f (1).

This is correct since there is a single vacancy and a factor of f (1) for the particle preceding

it.

Now, we assume that (A.5) is true for the number of vacancies being any of 1, . . . , M −1.

Using (A.6) and the induction assumption, we can write

ẐM+N ,N =
M
∑

k=1

(N +1)k −M

N +M −k
f (k)

∑

ā⊢M−k

(N −|ā|+1)|ā|−1

ā!
f (ā). (A.7)

Notice that each term in the above equation contains the factor f (k) f (ā) where a ⊢ M −k.

We can thus replace ā in the sum by a′, where a′ = ā ⊕ (k). Then f (k) f (ā) can be replaced

by f (a′). Therefore, the sum above can be reinterpreted as a sum over partitions of M . We

have to compute the coefficient of f (a′) in such a term.

Suppose a′ can be written as (i
a′

1

1 , . . . , i
a′

j

j
) where each a′

k
6= 0. Since there are j distinct

parts in a′, we can express a′ = (ik )⊕ a′
k , where a′

k = (i
a′

1

1 , · · · , i
a′

k
−1

k
, · · · i

a′
j

j
) for k = 1, . . . , j .

There are thus, exactly j terms that contribute to the partition a′. Note that

|a′
k | = |a′|−1, f (a′) = f (a′

k ) f (ik ) and a′! = a′
k ! a′

ik
.
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The terms contributing to a′ are

j
∑

k=1

(N +1)ik −M

M
f (ik )

(N −|a′
k |+1)|a′

k |−1

a′
k !

f (a′
k )

=
j

∑

k=1

(N +1)ik −M

M

(N −|a′|+2)|a′|−2

a′!
a′

ik
f (a′)

=
(N −|a′|+2)|a′|−2

a′!
f (a′)

j
∑

k=1

(N +1)ik a′
ik
−M a′

ik

M

=
(N −|a′|+2)|a′|−2

a′!
f (a′)(N +1−|a′|)

=
(N −|a′|+1)|a′|−1

a′!
f (a′).





Appendix B

B.1 Simple exclusion process

For u(n) = 1 , n > 0, as all configurations are equally likely [40], the steady state partition

function is given by ZL,N =
(L

N

)

. The two-point correlation function S(r ) =
(L−2

N−2

)

/
(L

N

)

=

N (N −1)/(L(L −1)) , r > 0 vanishes in the limit L →∞. It can be easily checked that (3.3)

also gives this result. For large systems, the free energy defined in (3.4) works out to be

F̃ (̺) = (1+̺) ln(1+̺)−̺ ln̺ , (B.1)

which is an increasing function of the density ̺. Furthermore, since f (m) = 1, we have

g (ω) = 1/(1−ω) and therefore

G(y) = ρ
1− (1−ρ)y

1− y
−

ρ2

1− y
, (B.2)

which immediately yields S(r ) = 0 , r > 0, as expected in the thermodynamic limit.

B.2 Free particle case

The case of free particles is considered here for which u(n) = n [60] where each particle is

endowed with an exponential clock that ticks at rate one, but since the particles are free

and act independently, the total hop out rate is equal to the number of particles at the site.
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Therefore from (2.3), the ZRP partition function is easily seen to be

Z̃L ,N =
L

N

N !
.

Using this in (3.3), we obtain the exact expression for the two-point correlation function as

〈ηiηi+r 〉 =
ρ

N L−N

kmax
∑

k=kmi n

(r −k)k

k !
(N − r +k)L−N−k (L−N )!

(L−N −k)!
. (B.3)

In the thermodynamic limit, the above expression gives

〈ηiηi+r 〉 = ρ
r−1
∑

k=0

(r −k)k

k !
̺k e−(r−k)̺. (B.4)

For this case, we have g (ω)= eω and ω= ̺. As a result, (3.14) gives

G(y) =
ρ

1− yeω(y−1)
−

ρ2

1− y
. (B.5)

It can be checked that the correlation function in (B.4) matches that obtained from the

series expansion of (B.5).

To obtain an explicit expression for the correlation function S(r ), we use the Euler-

Maclaurin formula given by [99]

r
∑

k=0

f (k) ≈
∫r

0
d x f (x)+

1

2
( f (0)+ f (r ))−

∫r

0
d x f ′(x)

∞
∑

j=1

sin(2 jπx)

π j
(B.6)

=
∫r

0
d x f (x)+

f (0)

2
+2

∞
∑

j=1

∫r

0
d x cos(2 jπx) f (x) (B.7)

=
∫r

0
d x f (x)+

f (0)

2
+2

∞
∑

j=1

Re

[∫r

0
d x e i 2 jπx f (x)

]

, (B.8)

where f (k) is the summand in (B.4). Our main task is to calculate the integral on the RHS

of the last equation which can be carried out using the saddle point method for large r . We

find that
∫r

0
d x e i 2 jπx f (x) ≈

er (x0−̺)

1+x0
, (B.9)
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where x0 is the solution of the saddle point equation

̺−x0 + ln(̺/x0)+ i2π j = 0. (B.10)

Writing x0 = ̺αe iθ, we find that α and θ obey the following equations:

̺ =
2π j −θ

tanθ
+ ln

(

2π j −θ

̺sinθ

)

(B.11a)

α =
2π j −θ

̺sinθ
. (B.11b)

For j = 0, the saddle point x0 = ̺ which immediately gives

S(r ) = 2ρ
∞
∑

j=1

∫r

0
d x cos(2 jπx) f (x) , (B.12)

where the summand is given by

er (
2π j−θ
tanθ −̺)

cos(r (2π j −θ))(1+ 2π j−θ
tanθ )+ sin(r (2π j −θ))(2π j −θ)

(1+ 2π j−θ
tanθ )2 + (2π j −θ)2

. (B.13)

Since the contribution of the successive terms in the sum decreases with increasing j , we

estimate only the j = 1 term here. Also, numerical analysis of (B.11a) shows that θ increases

with j and therefore we work within small-θ approximation. These considerations finally

yield

θ =
2π

W (̺e1+̺)
, (B.14)

where W is the Lambert function that satisfies W (ω)eW (ω) =ω [100], and

S(r ) = 2ρe
−r ( 1

ρ−
2π
θ

) cos(rθ)( 2π
θ )− sin(rθ)(2π−θ)

( 2π
θ )2 + (2π−θ)2

(B.15)

≈ ρe
−r ( 1

ρ−
2π
θ ) θcos(rθ)

π
, (B.16)

which is an oscillatory function with decaying amplitude.
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Fig. B.1 Figure to show the closed contour C ′ appearing in the integral given by (top) equa-

tion (3.22 ) and (bottom) equation (B.17).
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B.3 Evaluation of the integral (3.43)

Consider the following integral:

I2 =
1

2πi

∮

C ′
d s e sr (s + t )b−1 − t b−1

s2
, t ≥ 0 , (B.17)

where the contour C ′ around the branch cut at −t includes the Bromwich contour along

the line s = c, c being real and nonnegative given in Fig. B.1b. The residue from the second

order pole at s = 0 gives I2 = (b −1)t b−2. The integral along the large semicircle with radius

R decays exponentially fast with increasing R , and the one along the small semicircle with

radius ǫ is proportional to ǫb−2 and therefore vanishes as ǫ→ 0. Thus we get

I2 =
1

2πi

(∫c+i∞

c−i∞
+

∫

AB
+

∫

B ′A′
d s e sr (s + t )b−1 − t b−1

s2

)

. (B.18)

Since s =−t +xe±iπ along the upper (lower) branch AB(B ′A′), we get

∫c+i∞

c−i∞

d s

2πi
e sr (s + t )b−1 − t b−1

s2
(B.19)

=
sin(bπ)

π
e−tr

∫∞

0
d x e−xr xb−1

(x + t )2
+ (b −1)t b−2 (B.20)

=
sin(bπ)

π
Γ(b −1)e−tr (r t +b −1)Eb−1(tr )e tr −1

r b−2
+ (b −1)t b−2. (B.21)

For t = c = 0, using that exEb−1(x)
x→0∼ (b−2)−1+O (xb−2) [49], the above integral reduces to

∫i∞

−i∞

d s

2πi
e sr sb−3 =

sin(bπ)

π

Γ(b −2)

r b−2
. (B.22)

B.4 Single defect particle

We consider a lattice gas model having L sites and N hard core particles. In this model,

all the particles are identical except one known as the defect particle which hops with the

slower rate than the rest of the paricles. The hop rates corresponding to the defect particle
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and a particle µ from the set of identical particles can be defined as

u1(n) = c, (B.23)

uµ(n) = 1 for µ> 1. (B.24)

Here, particle with sub index 1 is the defect particle, and c < 1 indicates that the defect par-

ticle hops to the empty nearest neighbor with a slower rate compared to the other particles.

This hopping condition leads to a phase separation phenomenon between the fluid phase

and jammed phase (see Chapter 2 for details). In the jammed phase, ρ < ρc , the mean hop

rate becomes c while in fluid phase, ρ > ρc , the mean hop rate is a function of density as

explained in Sec. 2.2.3. The canonical partition function of this model can be computed

exactly by mapping it to the mass model as shown in Fig. 2.1; it can be expressed as

Z̃N ,L−N =
L−N
∑

x=0

(

L−x −2

N −2

)

c−x . (B.25)

Using Stirling approximation, followed by saddle point calculation, the partition function

simplifies to

Z̃N ,L−N =
1

2
c−(L−N)(1−c)−(N−1)



erf





√

(1−c) N

2c



−erf





√

N (1−c)2

2c

(

c

(1−c)
−

L−N

N

)







 .

(B.26)

Two-point correlation function

Two-point correlation function is defined as the probability that the sites i and i + r are

occupied. As explained in Sec. 3.2, the two-point correlation function is a product of the

partition of two sub-configurations and is given by the equation (3.3). However, in a single

defect system the hopping rate of one particle is different from the rest of the particles, so

it imposes a condition to consider the correlation function as the sum of the following two

configurations.
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(i) In the first case, when one sub-configuration of length r from the start contains the

defect particle, the partition function of the sub-configuration is given by (B.25). On

the other hand, the rest of the subsystem of length L − r sites is the same as a simple

exclusion process, and thus, the partition function calculated as sub-configuration

is equally likely and is given by a binomial distribution. Therefore, the correlation

function of the system in which first r site contain defect particle S1(r ) is given as

S1(r ) =
max
∑

j=mi n

(

r − j

L

)

Z̃r,r− j

Z̃L,N

(

N − r + j

L− r

)

(

L− r

N − r + j

)

. (B.27)

Using (B.26) and the Stirling approximation, the correlation function transforms to

S1(r ) =
2

π
(1−c)2

( r

L

)3/2 (2−c)
p

1−c

c
. (B.28)

(ii) In the second case, a sub-configuration of length r has normal particles with hop

rate one, while the rest of the system of length L − r sites has one defect particle. The

partition function of first configuration of site r is given by binomial distribution and

rest by (B.25). Hence, the correlation function S2(r ) can be given by

S2(r ) =
max
∑

j=mi n

(

r − j

r

)

(

r

r − j

)

(

N − r + j

L

)

Z̃L−r,N−r+ j

Z̃L,N

. (B.29)

By simplifying above equation, we get

S2(r ) = (1−c)2[1+D(c,ρ)], (B.30)

where D(c,ρ) is a series in c and ρ. Now, the total correlation function is the sum of the

above two correlation functions,

S(r ) = S1(r )+S2(r ) (B.31)

=
2

π
(1−c)2

( r

L

)3/2 (2−c)
p

1−c

c
+ (1−c)2[1+D(c,ρ)]. (B.32)
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The total correlation function calculated above shows good agreement with the numerical

simulation for any finite system.

Thermodynamic limit

In the grand canonical ensemble, the partition function of ZRP with single defect site is

given by (see Sec.2.2)

Z̃N (ω) =
N
∏

c=1

[

∞
∑

nc=0

ωnc fc(nc )

]

(B.33)

=
[ ∞

∑

n=0

ωnc−n

][ ∞
∑

n=0

ωn

]N−1

(B.34)

=
1

1− ω
c

(

1

1−ω

)N−1

, N ≥ 1. (B.35)

From Ref. (3.63), we can write the generating function G(y) of the correlation function in

thermodynamic limit as

G(y) = ρ
∞
∑

n=0

(ye−P )n
Z̃n(ωy) (B.36)

= ρ+ρ
1− yω

1− ωy

c

∞
∑

n=1

(

ye−P

1−ωy

)n

(B.37)

= ρ+ρ
1− yω

1− ωy

c

(

ye−P

ye−P − (1−ωy)

)

, (B.38)

where P is the pressure. It can be calculated as

P N = lnZ̃N (ω) (B.39)

= − ln(1−ω/c)− (N −1) ln(1−ω). (B.40)

Now at the critical point, ω = c, and the series expansion of generating function (B.38)

around y = 1, as shown in Sec. 3.2.2, gives

G(y) = ρ(1+ρ+
c(1−c)

N
y + ....). (B.41)
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Fig. B.2 Scaled two-point correlation function for the single defect particle model with dif-

ferent system sizes is shown in the figure. The slowest particle has hop rate, c = 0.25.

Further, the correlation function is given by (3.16) which shows that the correlation func-

tion depends on the system size — as the system size increases the correlation function

decreases. It has also been confirmed numerically, see Fig. B.2. Thus, in the thermody-

namic limit L →∞, i.e., the single defect approaches the estimates of simple exclusion. It

is because the effect of a single particle is negligible, the particles average hopping rate

become 1.

B.5 Single defect particle with hole dependence

In this case, the single defect particle hop rate depends on the number of holes in front of

it, and the hop rule of the system is given as

u1(n) = c

(

1+
b

n

)

, for n > 0, (B.42)

uµ(n) = 1 , for µ> 1, (B.43)
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provided c < 1. The canonical partition function for the above choice of hop rate as given

in ref. [1] is

Z̃N ,L−N =
n
∑

x=0

x!

(1+b)x

(

L−x −2

N −2

)

c−x . (B.44)

The critical point for this model is dependent on the system size and is given as [1]

̺c =
c

1−c
+

2

1−c

(

bc

N

)1/2

. (B.45)

From the above expression, at the critical point the dependence on b goes away for an in-

finitely large system and the expression of the critical density for a single defect is recovered.

Furthermore, it is useful to simplify the partition function so that we can solve the correla-

tion function exactly as done in the single defect case. The simplified partition function is

given by

Z̃N ,L−N =

√

πb

2

b

x

b

e−bc−(L−N)(1−c)−(N−1)



erf





√

(1−c) N

2c



−erf





√

N (1−c)2

2c

(

c

(1−c)
−

L−N

N

)







 . (B.46)

The correlation function for this case is again same as (B.32). By normalising, the depen-

dence on b cancels out and the correlation function for this case becomes the same as that

of a single defect particle case.

In thermodynamic limit

For the choice of hop rate up (n) (B.43), the steady state weight factor (2.14) can be obtained

[101]. It is given as

f1(n) =
1

cn

n!

(1+b)n
, (B.47)

fp (n) = 1 for p > 1, (B.48)
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and from (2.8), we get

g1(ω) =
∞
∑

n=0

(ω

c

)n n1

(1+b)n
(B.49)

= 2F1(1,1;1+b;ω/c) , (B.50)

gp (ω) =
1

1−ω
for p > 1. (B.51)

Now using (B.51), we can write the grand canonical function similar to (B.35). It is given by

Z̃N (ω) =
1−ω

g1(ω)

(

1

1−ω

)N−1

. (B.52)

We calculate the generating function in a similar way as we did for the single defect particle

case and obtain

G(y) = ρ+ρ
(1−ωy)

g1(yω)

∞
∑

n=1

(

ye−P

1−ωy

)n

, (B.53)

where P is the pressure,

P = ln[g1(ω)− (N −1) ln(1−ω)]. (B.54)

In thermodynamic limit, this system has ρc = 1− c, and the fugacity, ω = c. Using these

values for ρc and ω, and expanding the generating function G(y) around y = 1, we get

G(y) = ρ(1+ ye−p + .....) (B.55)

= ρ

[

1+ y

(

1− 2F1(1,1;1+b;1)

N

)

(1−c)
(

1+
c

N

)

+ ..(N−(L−N))

]

. (B.56)

Here, same as the single defect problem, the correlation function decreases with an increas-

ing system size. Thus, the effect of a defect particle vanishes in the thermodynamics limit

and the correlation function becomes the same as that of the simple exclusion process.





Appendix C

C.1 Hydrodynamic equation for the height profile

For the lattice-gas models considered here, the average particle density ρi (t ) = 〈ηi (t )〉 at

site i obeys a continuity equation, ρ̇i (t ) = ji (t )− ji−1(t ) where ji (t ) is the average current in

the bond connecting the sites i and i +1. On a coarse-grained level, the local density (now

defined in continuous space) obeys the following equation

∂ρ(r, t )

∂t
+
∂J (ρ(r, t ))

∂r
= 0 , (C.1)

where, assuming that local stationarity holds, the current depends on the space variable

through the density and given by the expression in the stationary state [46, 65]. Writing

ρ(r, t ) = ρ+δρ(r, t ) and expanding the current to quadratic order in the deviation δρ(r, t )

about the mean density, we obtain J (ρ(r, t )) = J (ρ)+vδρ(r, t )+ (λ/2)(δρ(r, t ))2 where

v =
∂J

∂ρ
, (C.2)

λ =
∂2 J

∂ρ2
. (C.3)

Since the lowest order term in δρ obeys the following first order wave equation

∂δρ(r, t )

∂t
+v

∂δρ(r, t )

∂r
= 0 , (C.4)
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the density fluctuations move with a speed v . Using the mapping (4.2) and retaining the

quadratic term that carries information about the decay of the density fluctuations, we

obtain the KPZ equation for the height profile in one (space) dimension [46, 65]:

∂h

∂t
=−v

(

∂h

∂r

)

+
λ

2

(

∂h

∂r

)2

+ν
∂2h

∂r 2
+ζ(r, t ) , (C.5)

where the noise is assumed to be white in both space and time with 〈ζ(r, t )ζ(r ′, t ′)〉 = Dδ(r −

r ′)δ(t − t ′) and C (r,0)= (D/ν)|r |.

For the exclusion process described in Sec. 2.2, we now consider the above equation for

ρ ≥ ρc . As explained in Sec. 4.5, the speed v given by (4.21) is related to the variance of the

mass. The coefficient λ above is however related to the third cumulant of mass, κ3:

λ=
ω

(ρσ2)3

(

σ2 +2ρσ4 −κ3

)

−
2ω

ρ2σ2
. (C.6)

For ρ > ρc , since the mass distribution is an exponential, all the mass cumulants exist and

therefore, using the KPZ exponents, it follows that the autocorrelation function decays as

t−2/3 in the fluid phase.

We now ask if the KPZ equation describes the dynamics at the critical point as well. As

for the speed, we approach the critical point from the high density side to find the coeffi-

cient λ. In the vicinity of the critical point, for non-integer b, the generating function g (ω)

for the weight factor f (m) in (2.13) is given by [2]

g (ω) = g (1)− sg ′(1)+
s2

2!
g ′′(1)+ ...+

(−s)n

n!
g (n)(1)+αsb−1 +O (sb) , (C.7)

where s = 1−ω, n is the integer part of b −1 and α = bπcsc(bπ). Using this in the density

conservation equation (2.9), we have [2]

1

ρ
=































1
ρc

− α(b−1)g ′ (1)

g 2(1)
sb−2 +O (s) , 2 < b < 3 ,

1
ρc

+ g ′(1)

g (1)

(

g ′(1)

g (1)
− g ′′(1)

g ′(1)
−1

)

s − (b−1)α
g (1)

sb−2 , 3 < b < 4 ,

1
ρc

+ g ′(1)

g (1)

(

g ′(1)

g (1)
− g ′′(1)

g ′(1)
−1

)

s +O (s2) , b > 4 .

(C.8)
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On inverting this equation for the fugacity to lowest order in the deviation ǫ = ρ−ρc , and

using it in (4.19) for the current, we get

J (ρ) =































ρc +vǫ+O (ǫ
1

b−2 ) , 2< b < 3 ,

ρc +vǫ+O (ǫb−2) , 3< b < 4 ,

ρc +vǫ+O (ǫ2) , b > 4 ,

(C.9)

where v is given by (4.21). The above equation shows that the coefficient λ is finite for b > 4

but diverges otherwise at the critical point.





Appendix D

D.1 Calculation of the exponent ν for fixed density

D.1.1 For b > 3

From (2.15) the density is related to the generating function as

̺=ω
g ′(ω)

g (ω)
= B(ω,b). (D.1)

We perform Taylor series expansion of ̺ around ω= 1 and b = bc which gives us

B(ω,b) = B(1,bc )+ (ω−1)∂ωB(ω,b)|1,bc
+ (b −bc )∂bB(ω,b)|1,bc

. (D.2)

Further, (D.2) is written as series expansion in following way

̺=
g ′(1)

g (1)
+ (ω−1)

[

g ′(1)

g (1)
−

(

g ′(1)

g (1)

)2

+
g ′′(ω)

g (ω)

]

+ (b −bc )

[

g̈ (1)

g (1)
− g ′(1)

ġ

g 2

]

, (D.3)

which further simplies to

̺= ̺c + (ω−1)

[

̺c −̺2
c +

g ′′(ω)

g (ω)

]

+ (b −bc )

[

g̈ (1)

g (1)
− g ′(1)

ġ

g 2

]

, (D.4)

where

∂b g (ω,b)|1,bc
= ġ (1,bc ). (D.5)
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For fixed density, ̺= ̺c , we obtain the following relation

(1−ω)

[

̺c −̺2
c +

g ′′(ω)

g (ω)

]

= (b −bc )

[

g̈ (1)

g (1)
− g ′(1)

ġ

g 2

]

. (D.6)

The correlation length is defined as ξ∼ (1−ω)−1 ∼ (b −bc )−1. Therefore, ν= 1.

D.1.2 For 2 < b < 3

Here, we use the Laplace transform representation of the single site steady state weight

factor f (m). The density is related as

̺=
∫∞

0 m f (m)e−smdm
∫∞

0 f (m)e−smdm
, (D.7)

with
∫∞

0
f (m)dm = 1. (D.8)

We define the moments of f (m) as

µk =
∫∞

0
mk f (m)dm. (D.9)

Now to calculate the exponent ν, we have to expand the Laplace transform g (s,b) of f (m),

when s approaches to 0 and b approaches bc and by defining b −→ bc−ǫ. For f (m) ∼ Am−b ,

we have

g (s,bc −ǫ) =
∫∞

0
Am−(bc−ǫ)e−smdm , (D.10)

which on expansion gives

g (s,b +ǫ) =
∫∞

0
f (m)(1+ǫ lnm)e−smdm (D.11)

=
∫∞

0
f (m)e−smdm +ǫ

∫∞

0
f (m) lnme−smdm (D.12)

=
∫∞

0
f (m)e−smdm +ǫ

∫∞

0
f (m) lnm(1− sm)dm . (D.13)
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The above integral can be evaluted using small s expansion

g (s,b +ǫ) =
n−1
∑

k=0

(−1)kµk sk

k !
+Qsbc−1 + ...+ǫ

(

1

(bc −1)2
−

s

(bc −2)2

)

, (D.14)

and the derivative of g (s,b +ǫ) is therefore,

g
′
(s,b +ǫ) =

n−1
∑

k=1

(−1)kµk sk−1

(k −1)!
+Q(bc −1)sbc−2 + ...−ǫ

(

1

(bc −2)2

)

, (D.15)

where Q = AΓ(1−b). Using (D.14) and (D.15), the density in (D.1) can be expanded as

̺ =
µ1s −Q(bc −1)sbc−2 +ǫ

(

1
(bc−2)2

)

µ0 −µ1s +ǫ
(

1
(bc−1)2

) . (D.16)

Since s and ǫ are small quantities, we get

̺ =
[

µ1 −Q(bc −1)sbc−2 +ǫ

(

1

(bc −2)2

)][

µ0 +µ1s −ǫ

(

1

(bc −1)2

)]

(D.17)

= µ1 −Q(bc −1)sbc−2 +ǫ
1

(bc −2)2
−ǫ

µ1

(bc −1)2
. (D.18)

The first moment, µ1 defined as the critical density ̺c , we have

̺c = ̺c −Q(bc −1)sbc−2 +ǫ
1

(bc −2)2
−ǫ

̺c

(bc −1)2
, (D.19)

Q(bc −1)sbc−2 = ǫ

[

1

(bc −2)2
−

µ1

(bc −1)2

]

. (D.20)

At fixed density, ̺= ̺c ,

s =
[(

1

(bc −2)2
−

̺c

(bc −1)2

)

ǫ

Q(bc −1)

] 1
bc−2

, (D.21)

where ǫ= bc −b and s =− lnω. We get the relation of hop parameter and fugacity as

lnω=−
[(

1

(bc −2)2
−

̺c

(bc −1)2

)

ǫ

Q(bc −1)

] 1
bc−2

, (D.22)
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ω = exp

[

−
[(

1

(bc −2)2
−

̺c

(bc −1)2

)

ǫ

Q(bc −1)

] 1
bc−2

]

, (D.23)

= 1−
[(

1

(bc −2)2
−

̺c

(bc −1)2

)

ǫ

Q(bc −1)

] 1
bc−2

, (D.24)

1−ω =
[(

1

(bc −2)2
−

̺c

(bc −1)2

)

ǫ

Q(bc −1)

] 1
bc−2

. (D.25)

As the function f (m) is normalised,

∫∞

0
f (m)dm = 1 ,

and the normalisation constant A = b −1. As Q = AΓ(1−b), the relation (D.25) becomes

1−ω=
[(

1

(bc −2)2
−

̺c

(bc −1)2

)

ǫ

(bc −1)2Γ(1−b)

] 1
bc−2

. (D.26)

Since, the correlation length is defined as ξ ∼ (1−ω)−1 ∼ (bc −b)−1/(bc−2). Therefore, ν =

1/(bc −2).


	Table of contents
	List of figures
	1 Introduction
	1.1 Equilibrium versus nonequilibrium
	1.2 Jamming transition in one dimension
	1.3 Overview of the thesis

	2 Driven systems with jamming transition
	2.1 Introduction
	2.2 Stationary states with product measure
	2.2.1 Exclusion process with hole-dependent rates
	2.2.2 Exclusion process with generalised hole-dependent rates
	2.2.3 Exclusion process with particlewise disorder

	2.3 Stationary state in mean-field approximation
	2.4 Dynamics for the model with hole-dependent hop rates
	2.4.1 In condensed phase
	2.4.2 At the critical point

	2.5 Numerical procedures
	2.6 Summary

	3 Static density-density correlation function
	3.1 Introduction
	3.2 Two-point correlation function in canonical ensemble
	3.2.1 Exact formula for finite system
	3.2.2 Exact expression for infinitely large system

	3.3 Correlation function for hole-dependent hop rates
	3.3.1 Laminar phase: 0 < b < 2
	3.3.2 At the critical density: b > 2
	3.3.3 Above the critical density: b > 2

	3.4 Static correlation function in the thermodynamic limit
	3.5 Correlation function for the model with generalised hole-dependent hop rates
	3.6 Correlation function for the model with particlewise disorder
	3.7 Correlation function for exclusion process with short and long range hops
	3.8 Summary

	4 Critical dynamics of the jamming transition in driven lattice-gas models
	4.1 Introduction
	4.2 Models
	4.3 Density-density correlation function
	4.4 Height-height correlation function and roughness exponent
	4.5 Unequal time correlation function
	4.5.1 Current-density relation for the exclusion process with hole-dependent rates
	4.5.2 Autocorrelation function when b > 3
	4.5.3 Autocorrelation function when 2 < b < 3

	4.6 Critical dynamics in other models
	4.6.1 Generalised exclusion process with hole-dependent rates
	4.6.2 Exclusion process with particlewise disorder
	4.6.3 Exclusion process with short and long jumps

	4.7 Tagged particle correlation for the model with hole-dependent hop rate
	4.7.1 Variance of a tagged particle displacement when b>3
	4.7.2 Variance of a tagged particle displacement when 2<b<3

	4.8 Summary

	5 Critical dynamics of classical systems under slow quench
	5.1 Introduction
	5.2 Model
	5.3 Results
	5.3.1 Dynamics in the critical region
	5.3.2 Dynamics in the jammed phase

	5.4 Slow quench dynamics of zero range process in mean field geometry
	5.4.1 Dynamics in the critical region

	5.5 Summary

	6 Summary
	References
	Appendix A 
	A.1 Partition function in the canonical ensemble
	A.2 Exact Formula for the partition function of hole-dependent hop rate

	Appendix B 
	B.1 Simple exclusion process
	B.2 Free particle case
	B.3 Evaluation of the integral (3.43)
	B.4 Single defect particle
	B.5 Single defect particle with hole dependence

	Appendix C 
	C.1 Hydrodynamic equation for the height profile

	Appendix D 
	D.1 Calculation of the exponent  for fixed density
	D.1.1 For b>3
	D.1.2 For 2<b<3



