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Synopsis

The thesis deals with dipolar fermionic and bosonic low-dimensional sys-

tems where particle-particle and at times dipole-dipole interactions play the

major roles. It is divided in six chapters. In the first chapter, a general

introduction on optical lattices, Bosons and Fermions have been discussed.

Thereafter, a thorough discussion is there on various quantum phases which

are found in optical lattice experiments. A detail discussion is presented on

low-dimensional systems where due to quantum fluctuations long range order

cease to exist. The emergence of various quantum phases, e.g., spin-density,

charge-density, superfluidity etc. have also been outlined.

In the second chapter, a general description of theoretical models and

computational approaches which extensively used in following chapters, have

been explored. Four computational methods have been discussed in de-

tail, namely, exact diagonalization of correlated model Hamiltonians, time-

dependent exact diagonalization method, infinite and finite-size density ma-

trix renormalization group for low-dimensional correlated model Hamilto-

nians and time-dependent finite-size density matrix renormalization group

methods. Each of these methods are described in details together with their

algorithms and implementations.

In the third chapter, various phases of hardcore Bosons in two coupled

chains, with interchain attraction and intrachain nearest-neighbor repulsion

between the Bosons have been studied in a systematic way. It has been

demonstrated that the ground state phase diagram has mainly three phases:

single particle superfluid (SF), pair superfluid (PSF), and density wave (DW).



The phases and the phase boundaries are estimated accurately through ap-

propriate two body and four body correlation functions and at times the fi-

nite size scaling of the corresponding structure factors. The model discussed

in the chapter is fundamentally a simplified description of bilayer dipolar

Bosons and contains essential ingredients for the formation of pair superfluid

and pair density wave phases.

In the fourth chapter, motivated by recent experimental progress in the

field of dipolar-Fermi gases, the quantum phases of dipolar fermions, on a

triangular lattice at half filling has been investigated. Using density matrix

renormalization group method, in presence of onsite repulsion and intersite

attractive interaction, exotic spin-triplet superfluid phase in addition to the

usual spin-density and charge-density waves have been demonstrated. Fur-

ther, the stability of spin-triplet superfluid phase has been explored in detail

by varying the hopping along rungs of the triangle. Possibility of fermionic

supersolidity has also been discussed, by considering three-body interaction

in the Hamiltonian. The effect of spin-dependent hopping on the stability of

spin-triplet superfluid phase has also been outlined at the end.

The quantum dynamics of quasi-one dimensional ring with varying elec-

tron filling factors is investigated in the presence of an external electric field

in fifth chapter. The system is modeled within a Hubbard Hamiltonian with

attractive Coulomb interactions. It results in a superconducting ground state

when away from half-filling. The electric field is induced by applying time-

dependent AharonovBohm flux in the perpendicular direction. To explore

the non-equilibrium phenomena arising from the field, exact diagonalization



together with the Crank-Nicolson numerical method have been adopted. In-

terestingly, with an increase in electric field strength, the electron pairs, a

signature of the superconducting phase, start breaking and the system en-

ters into a metallic phase. However, the strength of the electric field for this

quantum phase transition depends on the electronic correlation. This phe-

nomenon has been confirmed by flux quantization of time-dependent current

and pair correlation functions.

In the sixth chapter, quench dynamics of one dimensional dipolar fermions

is studied by using exact diagonalization method coupled with the Crank-

Nicolson numerical algorithm. The initial state was prepared in a charge

density wave (CDW) state, and it was quenched to a spin density wave

state, by changing abruptly the onsite interaction parameter, U . It was

found that near the critical point, Uf ∼ 2V , the system relaxes very fast and

loses its initial memory. On the other hand, away from the critical points,

depending upon the values of Uf , the system retains its memory of the initial

wavefunction, and relax to a quasi-stationary state.
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Chapter 1

Introduction

Recent progresses in ultra-cold atoms [1], dipolar atoms [2], and polar molecules

[3] have given opportunity to realize several quantum phases of strongly cor-

related systems. The tunibilty and controllability of optical lattice and avail-

ability of highly sophisticated measurement techniques gives realization of

quantum phenomena which occurs from macroscopic scale to microscopic

scales [4]. Ultracold atoms help to understand most fascinating and exotic

phases, like superfluidity and superconductivity, quite clearly. The perfect

isolation from environment of ultracold atoms confined in optical lattices,

gives realization of excited state phases (like Super-Tonks-Girardeau gas) [5]

and coherent dynamics on long timescales [6]. Optical lattices give also plat-

form to study various dynamics and non-equilibrium phenomena, which gen-

erally is very difficult to realize in condensed matter systems [7–10]. Optical

lattice with quasi-periodic structure, helps to investigate the disorder system

and also realization of Anderson localizations [11]. The experimental realiza-

tion of ultracold dipolar gases interacting with long range interactions [12],

1
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allow to study various types of conventional (s-wave) and unconventional (p-

wave) pairing phenomena. Research on dipolar system, has promise to find

to find more exotic phases like, supersolid phases [13]. The recent advance-

ment in optical lattice with artificial gauge field opened up the possibility of

realization of various topological phases [14–19]. In fact, the recent develop-

ments leads to various application in the field of quantum information [20,21],

quantum computation [22,23] and quantum optics.

1.1 Optical Lattices

Optical lattices are essentially ideal crystal of light, created by the super-

imposition of counter propagating laser beams [1] (Fig.1.1). Atoms can be

trapped, by using optical dipole traps, due to the interaction between in-

duced dipole moment of atoms and the oscillating electric field of the laser

(Vdip(r) = −~d · ~E, where ~d is the dipole moment induced by the oscillat-

ing electric field ~E of the laser). By interfering laser beams in different

angles, and due to advancement in technology, various kinds of optical lat-

tice geometries are possible to generate [24]. Recently, optical lattice with

triangular [25], hexagonal [26] and Kagome [27] geometries have been suc-

cessfully created. By making stronger confinement in particular directions,

dimensionality of optical lattices can be tuned from 3D to 2D to 1D [28,29].

For two “component” atomic species (like two hyperfine states), by changing

the polarization of the laser beam, spin-dependent optical lattice can also be

generated [30,31]. In optical lattice, one can also control various interactions

parameters and hopping strength of the system. By changing the intensity
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of laser beams, hopping strength can be adjusted, whereas by using the Fes-

hbach resonance [32–35], one can tune the strength of the onsite interaction.

These controllability and tunability of optical lattices, make ultracold sys-

tems as ideal testing ground for various experimental and theoretical work

in condensed matter systems.

Figure 1.1: (a) Two dimensional and (b) Three dimensional optical lat-
tices formed by counter-propagating two and three laser beams respectively.
Adopted from Ref [1].
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1.2 Recent Progress in Ultracold Atoms

The behaviour of ultracold atoms in an optical lattice, near to quantum

degeneracy behave differently depending upon the nature of the ultracold

gas, i.e. whether they are Fermions or Bosons [36]. In optical lattice, various

cooling techniques [37–42] are used to cool the atomic gases to reach the

quantum degenerate regime. For ultracold gases this regime is where the

thermal de Broglie wavelength
(
λdb =

√
2π~2
mkBT

)
of the atoms is comparable

to the interatomic distances [36].

Bosons are particles with integral spins. Their wavefunctions are symmet-

ric under exchange of particles. Bosons form condensate at low temperatures,

in which all Bosons occupy the lowest single-particle state (Bose-Einstein

Condensation). On the other hand, Fermions are particles with half-integral

spins and their wavefunctions are antisymmetric under exchange of particles.

Fermionic particles obey the Pauli exclusion principle and form a Fermi sea

at temperature close to absolute zero.

In 1995, the first experimental realization of Bose-Einstein Condensation

(BEC) of 87Rb atoms were shown by C. E. Wieman, et al [43], using laser

cooling and evaporating cooling techniques. Later, in various experiments,

Bose-Einstein Condensation of Sodium, Potassium, Lithium, Hydrogen have

been shown successfully [44–46]. These experiments, opened up a new era

in cold atoms system to study collective and coherent macroscopic quantum

phenomena. BEC is the property of Bosons, in which at very low temperature
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all Bosons occupy the lowest single-particle state, which results in the for-

mation of a macroscopic wavefunction. For formation of Bose-Einstein Con-

densate, temperature must be low enough, such that, the thermal de Broglie

wavelength λdb of the particles becomes larger than mean-interparticle dis-

tance of the particles.

The Bose-Einstein condensate of ultracold atomic gases, also help to un-

derstand the phenomena of superfluidity. The superfluidity relates to the

macroscopic quantum coherence, frictionless flow of fluids below a critical

velocity and formation of quantized vortices [47]. The superfluid behaviour

of liquid 4He has been shown in 1930, by measuring the viscosity of the liq-

uid below the critical temperature (Tλ = 2.17K) [48]. At low temperature,

the weakly interacting ultracold atomic gases, form a Bose-Einstein conden-

sate, and also show characteristic of novel superfluidity. After realization of

Bose-Einstein condensate in dilute ultracold atomic gases, a number of exper-

iments have been carried out to characterize phenomenological properties of

superfluidity of ultracold atomic gases. Evidence of critical velocities in BEC

is shown by moving a laser beam through the condensate [49,50]. Below the

critical velocity of laser, no heating is observed. Interestingly, the quantized

vortices have also been observed in the BEC of cold atom systems [51,52].

Experimental realization of quantum phase transition in ultracold atoms,

from superfluid to Mott insulator transition is shown by Markus et al [53], by

tuning the potential depth of the optical lattices. This experiment in ultra

cold atoms, shows a new path toward the understanding of strongly corre-

lated condensed matter systems. The quantum phase transition occurs at

absolute zero temperature, purely driven by the quantum fluctuations, due
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Figure 1.2: Schematic of number distribution and interference patterns of
bosonic atoms, (a) in superfluid phase (b) in Mott phase in an optical lattice.
Adopted from Ref [1].

to the Heisenberg uncertainty principle. For a certain value of interaction

parameters or presence of external field or pressure, these quantum fluctua-

tions are largely enhanced and this results in transitions from one phase to

the other [54]. In the superfluid phase, atomic interactions are small com-

pared to tunnelling parameters. Atoms are allowed to tunnel from one lattice

site to another, leading to formation of a macroscopic wavefunction, which

in turn shows long-range phase coherence [53]. As shown in the Fig.1.2(a),
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upon releasing the condensate from the optical lattice, sharp interference

pattern appears in the system due to phase coherence between the atomic

wavefunctions of different lattice sites. In the superfluid phase, the atomic

wavefunctions shows perfect phase coherence, while, the number of atoms in

each lattice remain uncertain (Fig.1.2(a)). With increase in lattice depth,

tunnelling term is reduces and interaction term starts dominating. Due to

repulsive interaction between atoms, placing more than one atoms in each

site is energetically costly. To minimize the energy, the system forms a Mott

insulator phase, where each lattice site occupy only one atoms (Fig.2(b)). In

the Mott insulator phase, the number of atoms in each lattice site remain

fixed and the phase coherence between atoms of different lattice sites is not

well defined [1]. Hence, after releasing the atoms from optical lattice, no

interference pattern is observed (Fig.2(b)).

In optical lattices, first experimental cooling and trapping of Fermi gas

near the quantum degeneracy had been carried out by De Marco et al [55].

Motivation for studying the fermionic gases was to study the superconduc-

tivity, superfluidity and other quantum phases of condensed matter systems.

Due to Fermi-statistics of fermions, ideal Fermi gas does not form Bose-

Einstein condensate. But in presence of effective attraction, fermions can

form pairs and form composite boson (pairing of even number of fermions).

These effective bosons can exhibit BEC or superfluidity. For example, in con-

ventional s-wave superconductor (BCS superconductor), the electron with up

and down spins makes pair through electron phonon interaction and these

pairs form condensate [56]. In an optical lattice, one can form composite
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Bosons from equal mixture of alkali fermionic atoms in two different hy-

perfine spin states, by using magnetic field Feshbach resonance [35]. The

magnetic field Feshbach resonance occurs in a system, where bound (closed

channel) and unbound (open channel) state of fermions have different total

electronic spin states. In the closed channel, fermions forms molecules, while

in the open channel they remain unbound atoms. These two channels are

coupled through hyperfine interaction; thus by applying magnetic field, one

can control the relative energy between these two channels [35]. In the dilute

limit, the effective two body interactions between particles can be described

by scattering length, a. The s-wave Feshbach resonance can be characterized

by scattering length, a ∝
(
1− ∆H

H−H0

)
, where ∆H is the width of resonance

and H is the magnetic field [57]. So, in the optical lattices, the Feshbach

resonance allows the tuning of the attractive interactions between fermionic

atoms. This, interestingly leads to the investigation of the superfluidity in

fermions in different limits, BCS to BEC.

To describe the physical behaviour of the system, when the system goes

from BCS to BEC crossover, conventionally a dimensionless parameter, v =

1/kFa, is used, where KF is the Fermi wave vector of the system [20, 59].

In the lower limit of attractive interaction (v → −∞), the superfluidity of

Fermi gas can be described by the famous Bardeen-Cooper-Schrieffer (BCS)

theory [56]. The low temperature physics of the fermionic atoms are very

similar to the physics of electrons in the BCS-superconductors. For arbitrar-

ily weak values of attractive interactions, fermions with opposite spins and

momentum’s form Cooper pairs. The formation of Cooper pairs and their

condensation occurs at same temperature [20]. The size of Cooper pairs are
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Figure 1.3: BCS to BEC crossover as a function of 1/(kFa) and temperature,
T/EF . Adopted from Ref [20].

much larger than the mean distance between the atoms (Fig1.3). For this

reason, Cooper pairs strongly overlap with each other [60]. On the other

hand, for large limit of attractive interaction (v → +∞), fermions form

tightly bound molecules and then Bose-Einstein condensate (BEC) at low

temperature (Fig1.3). These molecules behave as weakly repulsive Bosons,

although the attractive interaction between the fermionic atoms remains

quite strong [20]. With increase in temperature (T > Tc), the superfluidity of

the system gets destroyed by thermal fluctuations, but due to strong attrac-

tive interactions, Fermion pairs still exist in the system. For dissociation of

these tightly bound pairs into the atoms, it requires very high temperature.
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In between BCS and BEC limit, where v → 0 is known as unitary regime. In

this regime, scattering length, a, diverges and ground state becomes strongly

correlated interacting pair superfluid. The size of the pairs is of the order of

the interparticle spacing of the atomic Fermions. In the unitary regime, the

system shows universal behaviour, without any dependence on the details

of the interatomic potential. Theoretically, this region is quite challenging,

as it cannot be described by perturbative methods. Experimentally, direct

observation of molecular Bose-Einstein condensate of

Fermi gas of 40K2,
6Li2 was found in 2003 [61–63]. These condensates

are formed in the BEC limit of the BCS to BEC crossover. The momen-

tum distribution was obtained by using time of flight techniques. On the

other hand, observing the condensation of fermionic atom pairs in the BCS

limit is much more challenging. To demonstrate condensation, generally

time-of-flight imaging techniques are used, where by turning off the trapping

potential, they allow the expansion of the condensate and measurement of

the position of particles is carried out for a certain time. Measuring the

momentum distribution through this technique is problematic in the BCS

limit. As in the BCS-limit, condensation occurs due to cooperative many

body effect and atoms are not bound throughout the expansion process. To

circumvent this problem and to find condensation of fermions in the BCS-

limit [64], C. A. Regal et al used a technique that pairwise projects fermionic

atoms onto molecules. After forming molecules, they probe the system by

rapidly sweeping the magnetic field to BEC side of resonance, where time-

of-flight techniques can be used to find the momentum distribution of bound
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molecules. The first conclusive observation of fermionic superfluidity in ultra-

cold fermionic gases was obtained by M. W, Zweierlein et al, where they ob-

served vortex lattices in a strongly interacting rotating Fermi gas of 6Li [65].

The evidence of superfluidity for ultra cold fermionic system in optical lat-

tices has also been shown by Chin et al [66], where they have found sharp

interference pattern of fermion pairs, when the system is released from an

optical lattice. This indicates the presence of a macroscopic wave function

with long-range phase coherence.

Although ultracold atoms show successful realization of BEC, superflu-

idity and metal to insulator transition, most of ultra-cold atomic gases in-

teract with short range isotropic s-wave interactions. Thus it fails to de-

scribe the system interacting via long-range interactions, like Coulombic in-

teraction in solid state physics. After successful experimental realization of

dipolar Bose-Einstein-condensation (BEC) of 52Cr [67], 164Dy [68], and Ry-

dberg atoms [69], possibility of finding exotic phases in bosonic system, like

ferrofluid, pair-superfluid, supersolid, pair-supersolid, charge density wave

and phases involving quantum magnetism [87] have increased tremendously.

Also the dipolar Fermi gas of 161Dy [71] and fermionic polar molecules,

40K87Rb [72,73], 23Na40K [74], with large dipole moments have been able to

simulate real solid state system with long range interactions. In fact, due to

long range and anisotropic characters of the dipolar interactions, these sys-

tems can provide various types of exotic phases like, charge-density [75–77],

spin density [78,79], liquid-crystal [80,81], conventional (s-wave) and uncon-

ventional fermionic superfluids (p-wave and other symmetry) [82–87].
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1.3 Low Dimensional Systems

Low dimensional systems are quite unique and show properties which are

mostly different from the higher dimensional systems. In fact, this has at-

tracted physicists, chemists and mathematician to work on low dimensional

systems for more than fifty years. One dimensional Heisenberg model had

been solved by Bethe in 1931, using an ansatz (known as Bethe-ansatz) [88].

The Bethe-ansatz method has been quite useful in solving varieties of physical

problems in 1D, like superconductivity, magnetism and string theory. During

1960, many crucial theoretical development has taken place for low dimen-

sional systems like bosonization and fermionization [89–91]. Exact solutions

of 1D Bose gas and Fermi gas, each interacting with delta-function potential,

have been given by Lieb and Linger (for Bosons) [92] and Gaudin and Yang

(for Fermions) [93,94]. Then for interacting one dimensional system, a pow-

erful method was developed by Tomonaga and Luttinegr, which is also known

as “Tomonaga-Luttinger liquid” theory [89, 95]. Tomonaga-Luttinger liquid

describes universal low-energy physics of interacting Fermions, Bosons and

spin systems in one dimension [96,97]. Experimentally, direct observation of

Tomonaga-Luttinger liquid state has been observed in carbon nanotubes at

low temperature [98].

Due to reduced dimensionality, effect of interactions and quantum fluctu-

ations enhances quite strongly, in low dimensional systems, which lead to very

different physical behaviour compared to the higher dimensional systems. In

low dimension, due to strong quantum fluctuations, true long range order
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does not exists, for system interacting via short-range interactions and Hamil-

tonian with continuous symmetry [99,100]. Systems instead show quasi-long

range behaviour, which can be determined by power-law decay of correla-

tion functions. In higher dimension, generally electrons can be described

by Fermi-liquid theory, as quasiparticle excitations can be treated as nearly

non-interacting [101]. For example, in higher dimensions, individual motion

of electrons are possible as there is free space for electrons, so that they can

avoid each other. On the other hand, in one dimensional system, due to effect

of confinement, individual motion of electrons are not possible, without push-

ing the other electrons, which creates density fluctuation [97]. So elementary

excitations are generally collective excitations, which leads to invalidation of

Fermi liquid theory in one dimension systems. Electrons in higher dimensions

form a continuous and connected Fermi surface, whereas, in one dimension

the Fermi surfaces is just made of two discrete points {kF ,−kF}. This clearly

indicates that in one dimension, for two-particle interaction processes, avail-

able phase space is very less compared to higher dimension, where entire

Fermi sphere is available for interactions [102].

Quasi-one dimensional metallic system at low temperature tends to dimer-

ize (or distort) spontaneously, due to the modulation of atomic positions in

the system [103]. This process opens up a finite gap at the Fermi surface.

Thereby, a good number of occupied electronic state energies are pushed

down, which results in an overall energy gain of the system. Due to this

distortion, the system has to pay an elastic energy. So there will be a com-

petition between elastic energy and the electronic energy, which produces

modulation in the system. At low enough temperature in 1D system, the
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elastic energy cost to produce modulation in atomic positions is less com-

pared to gain in total electronic energy. Thus, dimerization is a energetically

favorable state for the ground state of the system [104]. On the other hand,

at high temperature, due to thermal excitation of the electrons across the

gap, the electronic energy gain is reduced, so metallic state becomes the pre-

ferred ground state of the system. The transition from metallic state to a

dimerized state (an insulating phase) is known as Peierls transition [103].

One of the exotic example of non-Fermi liquid behaviour is “spin-charge

separation” of interacting 1D spin-1/2 fermionic systems [96,97]. In this pro-

cess, a fermionic excitation disintegrate into collective excitations of charge

(with no spin) and spin (with no charge). These two excitations move in the

system with different velocity (vρ) and (vs). In other words, these excitations

carry spin and charge degrees of freedom of electrons independently, indicat-

ing ‘fractionalization’ of electronic degrees of freedom. The spin-charge sep-

aration is one of the essential finding of “Tomonaga-Luttinger liquid” theory.

Due to recent progress in material synthesis and advancement in ultracold

atoms, many fundamental properties of 1D quantum systems have been ex-

perimentally observed. These experiments show excellent agreement with the

results obtained by theoretical models of 1D systems. Experimentally, obser-

vation of spin charge separation has been demonstrated in SrCuO2, organic

conductors and quantum wires [105–108]. For SrCuO2, spin-charge sepa-

ration has been shown by using angle-resolved photoemission spectroscopy

(ARPES) techniques, where the spinon-holon two-peak structure and their

distinct dispersions have been shown very clearly [107].

Due to the presence of strong electron-electron correlations and the spin
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and charge fluctuations, quasi-one dimensional systems may shed light to-

wards the conventional and unconventional superconductors. Chromium

based quasi-one dimensional superconductors, Bechgaard salts (TMTSF2X)

[109, 110] and strontium based oxide, Sr2RuO4 [111], are considered to be

good candidates of unconventional superconductor, with pairing of electrons

in the triplet states. Finding of superconductors with triplet pairing, at-

tract great attention in the condensed matter physics community, due to

their connections to a number of topological phases and quantum computa-

tions. Signature of Majorana Fermions is shown for hybrid superconductors-

semiconductor nano-wires of InSb [113]. These quasi-1D materials at low

temperature, in addition to superconductivity, show many other ordered

phases, like spin-density wave, spin-Peierls, antiferromagnetic, and Mott in-

sulator phases [97]. And they also display many peculiar behaviour, like

non-fermi liquid metallic behaviour, quantized Hall conductance, etc.

Recent progress in ultracold atomic system to trap quasi-one-dimensional

bosonic and fermionic gases, provide opportunity to realize fundamental

properties of interacting quasi-one dimensional systems. The array of one

dimensional optical lattice can be created by applying strong confinement in

two transverse directions and weak confinement along the axial direction, so

that their transverse motion is completely blocked and atoms can move only

in the axial direction [115]. The high controllability and tunabilty of ultracold

experiments provide ideal condition to realize 1D physics, compared to real

materials, where due to the presence of defects and Coulomb interactions,

experimental realization is more difficult. The extent of quantum fluctua-

tions and correlations enhance for quantum gases in quasi-one dimensional
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system. In one dimension, BEC is not possible for homogeneous system, but

it can occur in optical and magnetic trap, as density of states gets modified

due to confining potentials [116, 117]. But due to effect of interactions and

fluctuations, in 1-D condensate can be described as quasi-condensate with

fluctuating phases [118]. The quasi-condensate locally behaves as normal

condensate but globally its phase fluctuates. For one dimensional interacting

Bose gas, quantum phase transition from superfluid phase to Mott insula-

tor phase has been demonstrated experimentally [119]. Interestingly, due to

pronounced quantum fluctuations, observed value of transition point for SF

to MI phase, is lower than that for 3D Bose gas. The reduced dimension-

ality also affects the transport and dynamical properties of Bosonic gases.

Strongly damped dipole oscillation of 1D Bose gases has been observed in

one dimensional harmonic and optical lattice, under condition for which un-

stamped dipole oscillation has been found in case of 3D BEC [120,121]. These

damped oscillation is observed even before the system enters into the Mott

Insulator state.

One dimensional quantum Bosonic gas with delta-function repulsive in-

teractions are even more peculiar [91]. At low temperature with high values

of density and weakly interacting γ = mg1D
~2n1D

<< 1, Bose gas forms BEC.

On the other hand, in low density limit with strong repulsive interactions,

γ = mg1D
~2n1D

>> 1 Bose gas behave similar to non-interacting fermions (known

as Tonk gas) [115]. Instead of forming condensate to single quantum state,

Bosons repel each other. The many-body wave function of the bosonic gas

can be described by the absolute value of the many body wave function of the
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non-interacting fermions (Ψb(x1, ...., xN) = |Ψf (x1, ...., xN)|). The strong in-

teractions of bosonic gases mimic to some extent the Pauli exclusion principle

for Fermions. Indeed, many properties are identical to the non-interacting

Fermions like, spatial density distributions, low energy excitations spectrum

etc. However, some properties like, momentum distributions are quite dif-

ferent from non-interacting Fermions and weakly interacting bosonic gases.

Experimentally, array of Tonk-Girardeau gas has been prepared, by tuning

the interaction parameter γ [122–124]. For an ultracold 1D system of bosonic

cesium (Cs) atoms, in the strongly attractive regime, a stable, highly excited

gas like phase has been realized, which is known as super Tonks-Girardeau

gas [5].

For quasi-1D ultracold system, low energy physics can very well be de-

scribed by Luttinger liquid theory. Spin-charge separation has been demon-

strated for quasi-1D interacting quantum Fermi gases confined in harmonic

trap [125]. In this experiment, by applying short laser pulse near to the center

of trap, a density or a spin wave packet has been generated and then dynam-

ics of spin and density wave packets has been probed. Here ‘spin’ refers to

two internal hyperfine states, and ‘density’ refers to atomic mass density, of

the fermionic ultracold atoms. For ultracold two component attractive Fermi

gases, in a major breakthrough experiment, pairing of fermionic atoms has

been shown in 1D optical lattice [126]. For two component Fermi gas in

1D, scattering properties change due to existence of tight transverse con-

finement. Unlike 3D Fermi gases, the existence of bound states does not

depend upon the sign of the scattering length. This experiment opens a

new way to explore various exotic pairing phenomena existing in quasi-1D
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Figure 1.4: Confined two component Fermi gas in an array of 1D tubes. Spin
imbalance in the system can be generated by different number of spin-up and
spin-down fermionic atoms. Adopted from Ref [114].

condensed-matter systems. In conventional BCS-superfluid, fermionic atoms

with equal number of up and down spins and opposite momentum’s form

Cooper pairs (with zero center of mass momenta). In a recent experiment

of two component spin-polarized fermionic gases trapped in quasi-1D opti-

cal lattices (Fig.1.4), BCS pairs with nonzero center-of-mass momenta has

been realized [127]. The BCS pairs having nonzero center-of mass momenta

also known as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [128]. This

experiment gives opportunity to explore the co-existence of the magnetism
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and superfluidity. Compared to 3D gases, FFLO phase in quasi-1D Fermi

gas is more stable, due to enhancement of Fermi surface “nesting” in quasi-

1D [129].

In quasi-1D ultra cold Fermi gases, there is possibility of p-wave inter-

action, in addition to the s-wave interaction, due to strong confinement in

transverse directions [130]. The p-wave Feshbach resonance for quasi-1D

spin-polarized Fermions has been realized experimentally [131]. Also, the

realization of trapping and cooling of dipolar-Fermi gas with long range in-

teractions, can give opportunity to explore unconventional p-wave superfluids

in optical lattices. The recent advanced developments in ultracold systems,

it is now possible to create artificial gauge fields, which would help to realize

even the spin-orbit coupling in quantum Fermi gases [132, 133]. These pro-

gresses open the doors for realization of various kinds of topological phases

in ultra cold systems.

1.4 Theoretical Model

For describing low energy properties of strongly correlated systems, one has

to create effective model lattice Hamiltonian, that take into account of full

many-body interactions between the particles. Lattice based model like Hub-

bard, Heisenberg and t-J models, successfully provides crucial description of

electronic and magnetic properties of real-material and cold atom systems.

The ground state solution of effective many body model Hamiltonian gives

ideas about various physical properties and phases of the systems. In this the-

sis, to explore various quantum phases in low dimensional system at T = 0K,
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we have used spin, Bosonic and Fermionic Hamiltonian’s.

1.4.1 The Bose Hubbard Model

The simplest model to describe interacting Bosons in a lattice is the Bose-

Hubbard model [134]. For ultracold bosonic system in a optical lattice, it was

first derived by Jaksh et al [135] and experimentally realized by M. Greiner

et al [53]. For dilute bosonic atoms, at very low temperature, interaction

between bosons can be described in terms of s-wave scattering length as,

U(x) = 4π~2as
m

δ(x). The Hamiltonian for Bosons trapped in an external

potential V (x), in terms of the Bosonic field operators, ˆΨ(x), can be written

as [135]

Ĥ =

∫
dxΨ̂†(x)

(
− ~2

2m
∆2 + V (x)

)
Ψ̂(x) +

∫
dxΨ̂†(x)Ψ̂†(x)U(x)Ψ̂(x)Ψ̂(x)

(1.1)

The bosonic field operators, Ψ̂(x), in a periodic potential with onsite

interaction can be written in terms of well localized Wannier functions. When

the energies involved for dynamics of the atoms are too small, we can expand

the field operators, Ψ̂(x), in the basis of Wannier function, w(x− xi) of the

lowest vibrational states [135]

Ψ̂(x) =
∑
i

âiw(x− xi) (1.2)

Here âi is the bosonic annihilation operator of the ith lattice sites and

obey the commutation relation [âi, âj] = δij. By considering only nearest-

neighbour hopping and on-site interaction of Bosons, and using expansion of
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the field operator in Wannier basis, equation 1.1 becomes the famous Bose

Hubbard model

Ĥ = −t
∑
<i,j>

â†i âj +
∑
i

1

2
Un̂i(n̂i − 1) +

∑
i

εin̂i (1.3)

Here n̂i is the bosonic number operator, εi is the energy offset of the ith

lattice site. The strength of hopping of bosons between the adjacent sites i

and j in the optical lattice is described by the, first term of the Hamiltonian

t =
∫
dxw(x − xi)(− ~2

2m
∆2 + V (x))w(x − xj). The tunneling term of the

Hamiltonian tries to delocalized the bosonic atoms in the optical lattice.

The interaction of Bosons on a single lattice site can be described by the

second term of the Hamiltonian, U = 4π~2as
m

∫
|w(x)|4dx. This term of the

Hamiltonian tends to localize the bosonic atoms to every site in the optical

lattice.

The physics of the ultracold bosonic atoms in optical lattice is well cap-

tured by the above Bose-Hubbard model. For low value of onsite interaction

U , where tunneling term dominates U/t >> 1, the ground state of the system

is in a superfluid phase. Atoms are delocalized in the optical lattice. The

many body wavefunction of N atoms with M lattice sites can be written as

product of N identical Bloch waves [53].

|ΨSF 〉 ∝

(
M∑
i=1

â†i

)N

|0〉 (1.4)

In case of 3D, the superfluid phase at T = 0K can be described by off-

diagonal long range order of the single particle density matrix, 〈â†i âj〉. On
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the other hand in 1D, 〈â†i âj〉, shows power law behaviour.

In the other limit, U/t >> 1, the repulsive interaction term dominates.

To minimize repulsive interaction energy, U , atoms arrange itself with fixed

number of atoms (n atoms: depending on the filling factors) in each lattice

sites. System thus forme a Mott insulator phase, where the atomic wave

function becomes localized to each lattice site. The ground state many body

wave function (with n atoms in each lattice sites) can be written as [53]

|ΨMI〉 ∝
M∏
i=1

(
â†i

)n
|0〉 (1.5)

In the Mott-insulator phase, single particle density matrix, 〈â†i âj〉, decays ex-

ponentially. So with change in U/t, there will be a quantum phase transition

from superfluid to Mott insulator phase, for a particular value of quantum

critical point, (U/t)c. To study this phase transition, many experimental

and theoretical studies have been carried out. In case of 3D, for filling fac-

tor n̄ = 1, SF to MI transition point occurs at (U/t)c = 5.8z, here z is the

number of nearest neighbours of a lattice site. In case of 1D, where quan-

tum fluctuations have pronounced effect, SF to MI transition point occurs at

(U/t)c = 3.37, for n̄ = 1. SF to MI transition can also be found by study of

excitation spectra. In the SF phase, excitation spectrum is gapless, whereas,

Mott insulator phase shows gapped excitation spectra. For low dimensional

bosonic gas, system can be well described by Luttinger liquid theory. In the

superfluid phase, correlation function, 〈â†râ0〉, shows power law behaviour.

While due to opening of a gap in Mott phase, it (the correlation function)

decays exponentially. For integer filling, SF to MI phase transition is known
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as Kosterlitz-Thouless transition. At the transition point, the Luttinger liq-

uid parameter takes the value, K = 1 and can be determined by exponent of

correlation function [136], 〈â†râ0〉 ∝ r−K/2.

1.4.2 The Fermionic Hubbard Model

The fermionic Hubbard model offers to study electronic and magnetic prop-

erties of interacting Fermions in the condensed matter physics. Initially, the

Hubbard-model was introduced to study magnetic properties of transition

metal oxides [137,138]. Now it is being used to explain the low temperature

physics of strongly correlated systems, to describe the phenomena of High

Tc superconductivity, various insulating phases, quantum-magnetism, Fulde-

Ferrel-Larkin-Ovchinnikov (FFLO) phase, etc [115]. In terms of second-

quantized notation, the Hubbard model can be written as

Ĥ = −t
∑

<i,j>,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i↑n̂i↓ +
∑
i

εin̂i (1.6)

Here ĉi,σ is the fermionic annihilation operators with spin σ. The first term

is kinetic energy. Second term denotes onsite interaction energy of Fermions

with opposite spins. For U = 0, the system shows metallic behaviour . While

for U >> t at half filling, Fermions try to avoid each other, and become re-

luctant to move, forming a Mott insulator phase. This Mott insulating phase

is dominated by the virtual exchange of Fermions with opposite spins (su-

perexchange interaction). In this limit, for large repulsive onsite interaction,

the charge degrees of freedom are frozen and the system can be described

by the spin-Heisenberg Hamiltonian [102]. The repulsive Hubbard model
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can be mapped to attractive Hubbard model by a simple transformation(
ĉi,↓ → (−1)iĉ†j,↓

)
. The attractive Hubbard model, gives knowledge of pair-

ing of Fermions with opposite spins (s-wave paring), which helps to under-

stand the superconductivity. For the ultracold atomic gases, FFLO pairing

and physics of BCS to BEC crossover can be well described by attractive

Hubbard model [115,139].

1.4.3 The Heisenberg Hamiltonian

For describing quantum magnetism of the real materials and ultracold atoms

in optical lattice, the Heisenberg Hamiltonian is the simplest model. This

model explains ferromagnetic, antiferromagnetic and gapless Luttinger-Liquid

phases of quasi-one dimensional magnetic materials [97]. It also helps to un-

derstand the phases arising due to frustration in various magnetic materials.

For spin-1/2, 1D quantum chains, The isotropic Heisenberg Hamiltonian can

be written as

H = J
∑
<i,j>

Sx
i S

x
j + Sy

i S
y
j + Sz

i S
z
j (1.7)

Here J is the exchange coupling constant of the spins. If J < 0, it favours

the spins to align in the same directions (known as ferromagnetic phase),

while for J > 0, the neighbouring spins tend to align in opposite direction

(anti-ferromagnetic-phase). Sometimes due to presence of anisotropy in the

real materials, the value of J can be different in different directions. If value

of J is same in the x and y directions (Jxy = Jx = Jy) but differs along the z
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direction, the system can be described by famous XXZ- Heisenberg model

H =
∑
<i,j>

Jxy
(
Sx
i S

x
j + Sy

i S
y
j

)
+ JzS

z
i S

z
j (1.8)

The phase diagram of XXZ-model is known as a function of Jz/Jxy. For

Jz/Jxy << −1, the quantum spin-1/2 chain is an Ising ferromagnet, where

all the spins align along the z-direction (either z or −z axis). For Jz/Jxy >>

1, system is in the Ising antiferromagnetic phase (Neel-phase). For −1 <

Jz/Jxy < 1, the phase of quantum spin-1/2 chain can be described as gapless

Luttinger-Liquid phase, where spins ly on the xy plane [97].

TheXXZ- Heisenberg model of a quantum spin-1/2 chain, can be mapped

to linear chain of hard core Bosons at half filling. For hardcore Bosons, at

most one particle is allowed at each site due to large values of onsite repul-

sion. The number of states of a hardcore Boson can exactly be mapped to

sz states of a spin-1/2 particle, |0〉 → | ↓〉 and |1〉 → | ↑〉

Ĥ = t
∑
<i,j>

â†i âj + V n̂in̂j (1.9)

Here t = Jxy/2 and V = Jz. To get this bosonic Hamiltonian, we have used

the relations, S†
i → â†i , S

−
i → âi and Sz

i → n̂i − 1
2
. The bosonic model,

for V > 2t, corresponds to a density wave order, with configuration |1010..〉,

while for V < 2t, the model corresponds to a superfluid phase with quasi

long range order.
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Figure 1.5: Schematic of diploar interactions. Here r is a vector joining the
two dipoles and θ is the angle between r and the polarization axis of dipoles.
If two dipoles are parallel to each other, there is a repulsive interaction and
if they are aligned, the interaction turns attractive.

1.4.4 The Models with Dipolar Fermions and Bosons

The Hamiltonian with only homogeneous short-range onsite interaction term

is not sufficient to explain various types of properties, which occur due to

long range order. For example, long-range Coulomb interaction’s give rise to

charge-density wave, excitonic phases, various kinds of physical properties in

the bilayer or layered systems. Also for bosonic systems, like in the array

of Josephson-junctions, range of interactions are consider to be long [140].

For describing physics of these systems theoretically, extended fermionic and

bosonic Hubbard model have been used. Recent development in dipolar

bosonic and fermionic gases, gives opportunity to investigate the physics of

long-range interaction in optical lattices [2]. The dipolar interaction between

two dipoles can be defined as (Fig.1.5)

Vd(r) =
(1− 3cos2(θ))

r3
(1.10)
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Here, r is the vector joining the two dipoles, and angle θ is the angle between

r and the polarization axis of dipoles.

The effective Hamiltonian for two-component (pseudo-spin-1/2) dipolar

fermions can be written as [2]

H = −t
∑
i,σ

(
c†i+1,σci,σ + h.c.

)
+ U

∑
i

n̂i,↑n̂i,↓ +
∑
i6=j

V (i, j)
ñiñj

r3
(1.11)

where cσ,i is annihilation operator with spin σ =↑, ↓ at site i. Here ↑ and

↓ states refer to two hyperfine states of dipolar atoms or molecules. t is

the hopping term and U is the onsite interaction term between the Fermion

with opposite spins. V (i, j) is the long-range interaction term which depends

on angle and distance between dipoles. Depending upon the orientation of

dipoles, V (i, j) can be repulsive or attractive. This Hamiltonian also helps to

understand various types of unconventional pairing, and spin-density phases.

1.5 Outline of Thesis

As has been discussed, the low dimensional fermionic and bosonic quan-

tum gases show various interesting properties, which arises basically from

strong correlations and quantum fluctuations. The recent advancement in

optical lattices gives opportunity to understand various equilibrium and non-

equilibrium phenomena in low dimensional systems. In this thesis, we have

studied various types of quantum phases and phases transitions in quasi-one

dimensional systems, with equilibrium and non-equilibrium situations.

In the next chapter, we have discussed the numerical methods in details
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which have been extensively used for studying various static and dynam-

ical phenomena in subsequent chapters. The numerical methods that we

have used in this thesis are mainly, exact diagonalization (for time indepen-

dent and dependent Hamiltonian’s), density matrix renormalization group

(DMRG) and adaptive t-DMRG methods.

In the third chapter, we have discussed the quantum phases of hardcore

Bosons, in two parallel chains coupled through dipolar interactions. From our

DMRG calculations, we find single particle superfluid phase for the lower val-

ues of repulsive and attractive interactions. For lower values of repulsive in-

teractions and larger values of attractive interactions, we find pair-superfluid

phase. On the other hand, for large values of repulsive and attractive inter-

action’s, we find density wave of bound pairs. We have also discussed the

phase boundaries of these phases and have numerically deduced the nature

of the phase transitions.

In the next (fourth) chapter, we have studied quantum phases of dipolar

fermions on a triangular ladder at half filling. From DMRG calculations, we

find exotic spin-triplet fermionic superfluid phase, spin and charge density

wave phases. We also have discussed the stability of fermionic spin-triplet

superfluid phase, in presence of spin dependent hopping along the rung of the

triangular ladder. Interestingly, in presence of three-body interaction terms,

we find a fermionic supersolid phase.

We have studied the breakdown of Cooper pairs in presence of external

electric field, in a superconducting ring in chapter five using time-dependent

exact diagonalization method. The electric field has been induced in the ring

through the time dependent Aharonov Bohm flux. We have demonstrated
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the breaking of electron pairs, by flux quantization, long-time average current

and time dependent pair-correlation functions.

In the sixth chapter, we have demonstrated the quench dynamics of one

dimensional dipolar fermions in case of positive values of onsite and long-

range interactions. To study the quench dynamics of the system, we have

changed suddenly the onsite interaction parameter, to another arbitrary final

values. We have found that near the critical point (CDW to SDW), the sys-

tem thermalizes very fast, while away from critical point, the system retains

its memory and relax to a quasi-stationary state.
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Chapter 2

Quantum Many Body

Numerical Methods for Low

Dimensional Systems

2.1 Introduction

Solving the many-body interacting Hamiltonian in low dimensional system is

a challenging problem. In low dimensional systems, effect of correlations and

fluctuations dominate. Thus, the mean field and Fermi liquid theories do not

yield accurate results. In other words, in these systems single particle picture

is not valid. Thus to solve the system Hamiltonians, one has to take into

account the full many body interactions. Although, for 1D system, various

powerful analytical methods exist, like Bethe ansatz, Bosonization, conformal

field theory [1–4], there are limitations in these methods to get quantitatively
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accurate information of properties of the systems. From the Bethe ansatz so-

lutions, extracting correlation functions is quite difficult. Bosonization works

in low-energy limits assuming linear dispersion. To obtain full insight of in-

teracting low dimensional systems, there exists non-perturbative numerical

approaches in low dimensional systems, like density matrix renormalization

group (DMRG) [5, 6], Quantum Monte Carlo (QMC), Path Integral Renor-

malization Group (PIRG), to name a few. These numerical methods pro-

vides prediction of various phases and accurate phase boundaries, which are

difficult to obtain from analytical methods. In fact, quantum many-body

numerical methods give quantitative guidelines for experiments to obtain

properties of various quantum systems. In this thesis, to solve the low di-

mensional system Hamiltonians (time-independent and time-dependent) we

have used powerful numerical methods, Exact Diagonalization (ED), DMRG

and adaptive time dependent-DMRG [7,8] methods.

2.2 Exact Diagonalization

Exact diagonalization method is a quantum many-body method for solving

the Hamiltonian of a many body system for a finite size. In this method,

first one has to create a basis set (Hilbert space) of the Hamiltonian and ob-

tained Hamiltonian matrix in that basis. After creating Hamiltonian matrix,

one needs to diagonalize it. After obtaining eigenvalues and eigenvectors,

one can calculate various static and thermodynamic properties of interacting

systems. For example, consider a lattice of two spin-1/2 sites, where the spin

interactions are described by Heisenberg Hamiltonian. Basis set for two sites
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are {| ↑↑〉, | ↑↓〉, | ↓↑〉 and | ↓↓〉}. Operation of Hamiltonian (H = JS1 · S2)

on the basis set gives rise to a Hamiltonian matrix

H =



J/4 0 0 0

0 −J/4 J/2 0

0 J/2 −J/4 0

0 0 0 J/4


Diagonalization of the Hamiltonian matrix gives four eigenvalues (-3J/4; J/4;

J/4; J/4) and four eigenvectors, each one has the form:

|Ψ〉 = c1| ↑↑〉+ c2| ↑↓〉+ c3| ↓↑〉+ c4| ↓↓〉 (2.1)

Exact diagonalization method can be used only for smaller system sizes,

as with increase in size, Hilbert space increases exponentially. For spin-1/2

system for N sites, Hilbert space is 2N ; for N sites fermions, it is 4N . For

spin system it is very hard to diagonalize system size more than N ≥ 32, and

for fermions N > 18. Although, by using various symmetries, which com-

mutes with Hamiltonian, one can go for slightly larger system sizes. From

exact diagonalization, one can get full set of eigenvectors and eigenvalues,

without any approximations, which is very helpful to calculate finite temper-

ature properties and dynamical properties (like, conductivity, specific heat,

magnetic susceptibility, time evolution and spectral function) of the system.

For calculating time dependent properties, first one has to obtain ground

sate wavefunction, |ψ(0)〉, at t = 0 from exact diagonalization method. Then

one can evolve |ψ(0)〉 with time by solving the time-dependent Schrodinger



2.3 Density Matrix Renormalization Group 46

equation: i d
dt
|ψ(t)〉 = H(t)|ψ(t)〉. For the time evolution of |ψ(t)〉 at absolute

zero temperature, in this thesis, we have adopted Crank-Nicolson’s algorithm

which preserves the unitary time evolution without divergence at large time

limit. The time evolution can be written as,

|ψ(t+ δt)〉 = exp−i
∫ t+δt
t H(t)dt |ψ(t)〉 '

1− i δt
2
H(t+ δt

2
)

1 + i δt
2
H(t+ δt

2
)
|ψ(t)〉 (2.2)

In this method, one has to keep time step δt small enough for precise conver-

gence of the wave-function. Time has been chosen as inverse of energy unit

such that the exponential becomes dimensionless. In the Crank-Nicolson’s

algorithm, each time evolution step requires the computationally expensive

matrix inversion of the many body Hamiltonian matrix. For matrix inversion

we adopt Davidson algorithm in this thesis, which gives proper convergence.

Once |Ψ(t)〉 is obtained, any dynamic properties (like time dependent cor-

relation functions, current etc) can be readily calculated. Exact diagonal-

ization also provides benchmarking of other numerical many-body methods,

like DMRG, t-DMRG methods.

2.3 Density Matrix Renormalization Group

DMRG is an accurate nonperturbative numerical method to obtain a few

low lying eigenstates of low dimensional strongly correlated quantum system.

The method is motivated by numerical renormalization group method, and

developed by S. R White in 1992 [5]. The method is based on the truncation

of the Hilbert space by keeping the most probable eigenstates of reduced
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density matrix. DMRG has been used very widely to calculate properties of

low dimensional spin, fermionic and bosonic systems. Unlike the ED method,

DMRG can be used for very long system size, due to its efficient truncation

capability of Hilbert space without losing the accuracy of properties. For

equilibrium systems, there are mainly two types of DMRG, (i) infinite-system

DMRG and (ii) finite-system DMRG.

2.3.1 Infinite System DMRG

In the infinite system DMRG scheme, one has to start with a small number of

sites, which is known as superblock (Fig.2.1). By using exact diagonalization

procedure, one has to create Hamiltonian matrix of super block. Then by

diagonalizing this Hamiltonian matrix, one gets the wavefunction, |ψ〉 =∑
LR CLR|L〉|R〉. From this obtain the reduced density matrix ρLL′ of left

block: ρLL′ =
∑

R C
∗
LRCL′R.

Figure 2.1: Schematic of a superblock with left and right blocks.

Diagonalize the ρLL′ to find a set of eigenvalues and eigenvectors. Keep

the m eigenvectors corresponding to the m largest eigenvalues. Then form

transformation matrix, On,m (truncation of the basis: here n = d ×m, d is

the dimension of Hilbert space of single site). By using On,m, renormalize

the Hamiltonian and the required operators of the left and right blocks into

density matrix equivocator’s basis: Ãm×m = O†
m×n An×n On×m. Add two



2.3 Density Matrix Renormalization Group 48

Figure 2.2: The superblock structure with left and right block in the density
matrix basis (µ and µ′) and newly added sites in the site basis (σ and σ′).

sites in the middle and construct the Hamiltonian matrix of super-block in

the basis (|µ, σ, σ′, µ′〉). Diagonalize this superblock Hamiltonian matrix to

get ground state wavefunction, ψ(µ, σ, σ′, µ′) Then again we have to repeat

the same procedure, by forming again half block reduced density matrix,

transformation matrix, half block Hamiltonian operators and other operators.

Then add two new sites in the middle (Fig.2.2). This process has to repeat

till we reach the thermodynamic limits, or the energy converges. In fact, if

one is interested in a finite size system, the infinite DMRG is carried out till

that particular size and then finite-DMRG method is adopted.

2.3.2 Finite DMRG

The accuracy of the infinite-DMRG results can be improved further by using

finite-DMRG method. After reaching the desired system size N , one has to

store operators of left and right blocks. Then by keeping the total system

size, N fixed, one has to increase the length of the left block by adding one

sites from the right block. This results in the configuration of the superblock

structure (shown in Fig.2.3), left block has L + 1 sites, right block has R −

1, and two single sites in between left and right blocks. Then one has to
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diagonalize the superblock Hamiltonian and perform same infinite DMRG

algorithm till one reaches the left block with size L = N − 3 and right block

R = 1. This completes the left to right block sweeping. Again, one has

to decrease the size of the left block and increase the length of the right

block till one reaches the symmetric configuration, where L = N/2 − 1 and

R = N/2 − 1. This completes one finite size sweeping (Fig.2.3). Then one

can perform this sweeping process till energy converges. After obtaining the

ground state wavefunction ψ(µ, σ, σ′, µ′), one can obtain any property like

expectation values and correlation functions.

Figure 2.3: Pictorial representation of finite DMRG algorithm. Initially, the
left block size increases while the right block size shrinks. Then the left block
size shrinks and right block size increases. After reaching the symmetric
configuration, one sweep gets completed.

If we represent the operators on left block by OL
i and right block by OR

j

(Fig.2.4), the basis set corresponding to left block is {|α〉 = |µσ〉} or {〈α′| =

〈ντ |} and to right block as {|β〉 = |µ′σ′〉} or {〈β′| = 〈ν ′τ ′|}. The ground

state wavefunction can be written in these basis as, |ψ〉 =
∑

αβ Cαβ|αβ〉.
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Figure 2.4: Schematic for calculating the observables of left and right blocks
of theN site system, after finite DMRG sweeps. Various correlations between
left and right blocks can also be calculated.

The expectation value of the any operator ÔL
i . e.g., Charge-density or spin-

density, can be written as 〈ψ|ÔL
i |ψ〉 =

∑
αβ,α′ C∗

α′βCαβ〈α|ÔL
i |α′〉. The cor-

relation function between left and right block operators can be written as,

〈ψ|ÔL
i Ô

R
j |ψ〉 =

∑
αβ,α′β′ C∗

α′β′Cαβ〈α|ÔL
i |α′〉〈β|ÔR

j |β′〉. For finding the four

point correlation functions or correlation functions between sites from the

same block, one has to keep the corresponding product operators renormal-

ized in every infinite and finite DMRG steps.

2.4 Adaptive t-DMRG

Time dependent DMRG is a method to solve the time-dependent Schroedinger

equation (TDSE) using DMRG. Time dependent DMRG, provides platform

to study, various time dependent phenomena, like, out of equilibrium prop-

erties, quench dynamics, transport properties, responses to time-dependent

external magnetic or electric fields, of low dimensional strongly correlated

systems [9]. The first idea to use DMRG concepts for time evolution of

quantum systems was given by Cazalia and Marston [10], where, after get-

ting the ground state wavefunction from the infinite-DMRG, they carried
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Figure 2.5: Schematic of time evolution of initial state wavefunction, Ψo,
obtained from static DMRG method: (a) non-adaptive method i.e. time
evolution in the fixed reduced basis. (b) adaptive method, i.e. time evolution
in adapted reduced basis.

out time evolution of ground state, keeping the basis fixed. This method

works only for small time window and it fails to demonstrate real time evo-

lution for longer time. As in DMRG, we work in truncated basis (not in

full Hilbert space), it is expected that as time evolves, the wavefunction may

sample outside of this reduced space. This results in loss of accuracy in the

time evolution. The time evolution was done correctly for longer time, by

Luo, Xiang and Wang [11], where time evolution was done by targeting the

states at each time step of time evolution. However, this method is highly

time consuming. Then one of the crucial and efficient method to calculate

time evolution was proposed by Vidal, which is known as time-evolving block

decimation technique (TEBD) [12]. The time evolution of matrix product

states was carried out by using Suzuki-Trotter decomposition. The limita-

tion of this method is that it can be used only for Hamiltonian with nearest

neighbour interactions on single chain.

Adaptive t-DMRG for long-range interactions and ladder systems was
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introduced by A. E. Feiguin and S. R. White [7]. In this approach, the

adaptive basis was created by targeting the intermediate states in between

the time t and t+ τ , and from these intermediate states density matrix was

created for time t. By using Finite-DMRG algorithm, doing a few sweeps

at particular value of time t, basis states were properly adopted for next

time steps. In this scheme, time evolution was done by using Runge-Kutta

methods.

Figure 2.6: Schematic of time steps considered to optimize the basis. We
chose four intermediate states for each time step.

We have developed the adaptive t-DMRG set of codes by using time-

step targeting method. For time evolution, instead of Runge-Kutta method,

which does not preserve Hermiticity of the time evolution operator, we have

used unitary Crank-Nicolson’s algorithm [13]. As discussed, as time evolves,

the wavefunction may change with time and it can go outside of the reduced

space. Hence, to adapt the DMRG basis as time evolves, we keep track of the

states at intermediate points between time t and t + τ . For example, after

getting |Ψ(t)〉 at t = 0 from static DMRG, by using Crank-Nicolson method,

we obtain |Ψ(t + τ/3)〉, |Ψ(t + 2τ/3)〉, |Ψ(0 + τ)〉 (Fig.2.6). Note that, for

time dependent Hamiltonian, H(t), to obtain these four wavefunctions, we

need four Hamiltonians H(t), H(t+ τ/3), H(t+2τ/3), and H(t+ τ) in each
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time steps. Then, we have calculated density matrix by taking corresponding

weight, wi, for each of the targeted states |Ψ(t)〉, |Ψ(t+ τ/3)〉, |Ψ(t+2τ/3)〉,

and |Ψ(t + τ)〉: ρ =
∑4

i=1wi|Ψ(ti)〉〈Ψ(ti)|. We have created transformation

matrix, On×m, by using the time average density matrix, ρ. To optimise the

basis, before going to next time step, t+ τ , we performed one or two sweeps

of finite-DMRG iteration (without advancing in time). Advancing the time

(t+ τ) is done in the last steps of finite DMRG. We have perform the same

scheme, for each time step between t and t + τ , to reach the time T = nτ ,

where n is the number of steps.

To verify our results, we have compared our t-DMRG results with those

obtained from exact diagonalization study, for the Hamiltonian, where we

have added a time dependent term to the Hubbard Hamiltonian.

H(t) = −J
∑
i,σ

(c†i+1,σci,σ + h.c.) + U
∑
i

n̂i,↑n̂i,↓ +
∑
i

n̂icos(ωt)

As can be seen, the energy calculated for time dependent exact diagonal-

ization and adaptive time dependent DMRG, for N=12 sites compare fairly

well over a long time evolution (Fig.2.7).

Interestingly, we found that above discussed method has a few prob-

lems, in case of sudden quench [15]. In sudden quench, the system is ini-

tially prepared in a Hamiltonian HI = J
∑

i,σ c
†
i+1,σci,σ + UI

∑
i n̂i,↑n̂i,↓ with

ground state wavefunction |ΨI〉. Then at time t = 0, interaction param-

eter is suddenly changed, UI → UF . Thus the final Hamiltonian becomes

HF = J
∑

i,σ c
†
i+1,σci,σ + UF

∑
i n̂i,↑n̂i,↓. In the adaptive t-DMRG approach,
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Figure 2.7: Comparison of time-dependent energy E(t), obtained by exact
diagonalization and t-DMRG methods, with time t [units of ~/J].

the ground state of initial Hamiltonian, |ΨI〉, would be evolved with the fi-

nal Hamiltonian, HF . To retain the properties of an initial wavefunction,

in the finite DMRG steps, instead of diagonalizing the HF , we have used

the prediction wavefunction technique described by S. R. White [14]. Also

obtaining wavefunction from the prediction wavefunction technique is very

fast compared to diagonalizing the Hamiltonian and the results of t-DMRG

compare fairly well with exact diagonalization results.
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Chapter 3

Quantum phases of hardcore

bosons in two coupled chains:

A DMRG study ∗

3.1 Introduction

Recently, after the successful experimental realization of dipolar Bose-Einstein-

condensation (BEC) of 52Cr [1], 164Dy [2], and Rydberg atoms [3],the pos-

sibility of finding exotic phases like superfluid, pair-superfluid, supersolid,

pair-supersolid, charge density wave and phases involving quantum mag-

netism [22] have increased tremendously. Usually, bosons can form super-

fluid by condensation of bosonic particles to a single ground state, whereas

fermionic superfluidity in superconductors and in cold atoms [5, 6] occurs

∗Work reported in this chapter is published in: Bradraj Pandey, S. Sinha, and Swapan
K. Pati, Phys. Rev. B 91, 214432 (2015).
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due to the formation of pairs. For sufficiently strong attractive interactions,

bosons can also form pairs which leads to the formation of ‘pair-superfluidity’

of bosons [7]. It is possible to realize pair-superfluidity in cold atom systems

by interspecies attractive interactions [8,68], bilayer dipolar systems [10–12],

and through Feshbach resonance [13]. Theoretically ‘pair-superfluidity’ has

also been studied in models with correlated hopping [14].

A supersolid phase is described by simultaneous existence of crystalline

order and superfluid order in the system. Various experimental and theoret-

ical studies have been carried out for finding supersolidity [15–25]. Interest-

ingly, pair-supersolid (PSS) is defined as a phase where one finds simultane-

ous existence of pair-superfluidity and modulation in density, with vanishing

single-particle superfluidity [10, 11, 26, 68]. Interestingly, bilayer dipolar sys-

tems provide existence of pair-superfluid (PSF) and pair-supersolid (PSS)

phases [10, 11]. The possibility of pair-supersolidity in bilayer dipolar gas

with polarised dipoles has also been investigated [10], where the existence of

PSF and PSS phases are shown by solving an effective Hamiltonian of pairs

in the strong coupling limit.

Trefzger et al. have looked at polarized dipolar particles in two decou-

pled 2D layers, in the presence of repulsive interactions in the planes and

attractive interactions between the two layers. They have shown the exis-

tence of PSS and PSF phases by solving the effective extended Bose-Hubbard

Hamiltonian in the low-energy subspace of pairs, by means of a mean-field

Gutzwiller approach and exact diagonalization methods [10]. The PSF and

PSS phases have also been studied in a two-species Bose-Hubbard model

in a two-dimensional square lattice with on-site intraspecies repulsions and
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interspecies attractions [68].

Low dimensional quantum systems are quite unique and interesting, as

in reduced dimension, quantum fluctuations destroy the true long range or-

der (LRO), and so many exotic phases appear in low-dimensional correlated

systems. The low dimensional systems, instead, in general, show quasi long

range order (QLRO). Incidentally, for the system to show QLRO, the equal-

time correlation functions, 〈C+(X)C(0)〉,(where X is the distance) would

decay algebraically. However, if the correlation function decays exponen-

tially, the system is believed to show short range order (SRO) [27]. The

transition between superfluid to Mott insulator in one dimension at com-

mensurate density is a BKT type transition, and the transition point can

be determined by a Luttinger liquid parameter, K [28–33].The Luttinger liq-

uid parameter can be extracted from exponent of correlation functions. For

bosonic low-dimensional systems, there have been studies where a number of

phases, namely, superfluid, supersolid, and pair-superfluid, phases have been

reported [34–46]. In low dimension, quite a few interesting studies in pairing

phenomena have been carried out. Paired superfluid and counterflow super-

fluidity in one-dimension can exist in a binary mixture of bosons with equal

density [35]. Studies on phases of the dipolar bosonic gases in unconnected

neighboring one-dimensional systems have also been carried out [34]. Parallel

stack of one-dimensional hard-core bosons in optical lattices have been stud-

ied, by using bosonization and quantum Monte Carlo methods [45], where

superfluids, super-counterfluids (SCF), and checker-board (CB) phases from

composite particles from different tubes are shown. In a recent study [46]

of a two-leg ladder system with attractive onsite and repulsive interchain
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nearest-neighbor interactions, phases like atomic superfluid, dimer superfluid

and dimer rung insulator have been found by imposing the onsite three-body

constraint.

We consider hardcore bosons with dipolar interactions on two coupled

one dimensional chains at half-filling after getting motivated by recent ex-

perimental progress on dipolar gas. Dipoles are oriented in such a way that

it generates a nearest neighbour intra-chain repulsion and onsite inter-chain

attraction. In this system, inter-chain attraction can induce pairing between

the Bosons in two chains and intra-chain repulsion can break the translational

symmetry which leads to the formation of density ordering.

In this chapter, we mainly focus on the formation of various phases due to

the interplay between these two orderings. The remaining part of the chapter

is organized as follows. In Sec.II we describe the model and its connection

to an equivalent spin model. Various phases of this bosonic ladder (and

spin chain) with different ordering are discussed. The results obtained from

DMRG calculations are presented in details in Sec.III. Different phases and

their transitions are described in separate subsections. Finally, we summarize

all our results in the end of the chapter.

3.2 The Model

We consider hardcore Bosons in two coupled chain of one dimensional lattices

at half filling with dipolar interaction as depicted in Fig.3.1. The anisotropic

part of dipolar interaction is proportional to (1− 3cos2(θ)), where θ is the
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Figure 3.1: Schematic of the two chains with dipolar bosons. There is nearest-
neighbour repulsive interaction V , and nearest-neighbour hopping parameter
t, in each of the chains. Both chains are coupled with onsite attractive
interaction U , while there is no hopping between the two chains.

angle between the dipoles. We consider that the dipoles are polarized per-

pendicular to the chains (as shown in Fig.3.1). Thus, the dipolar interaction

is repulsive when dipoles are in the same chain, while, the dipoles of different

chain which are at the same lattice site attract each other. The effective

Hamiltonian of the system, without taking into account the inter chain hop-

ping, can be written as,

H = −t
∑

α,<i,j>

(
b†α,ibα,j + h.c

)
+ V

∑
α,<i,j>

n̂α,in̂α,j

− U
∑
i

n̂1,in̂2,i (3.1)

where α = 1, 2, is the chain index, t is the hopping term within the chains,

V is the strength of intra-chain nearest-neighbour repulsion, and U is the

strength of inter-chain onsite attraction. For simplicity, we truncate the long

range dipolar interaction and consider only nearest-neighbour intra-chain

repulsion and onsite inter-chain attraction. The physical states of a hardcore

boson are restricted by the condition b†2i |0〉 = 0. The number states of a hard



3.2 The Model 62

core boson are equivalent to sz states of a spin-1/2 particle by the mapping

(|1〉 → | ↑〉 and |0〉 → | ↓〉). The creation, annihilation operators of a hard

core boson can be represented by the spin-1/2 operators as follows, s+i → b†i ,

s−i → bi and szi → ni − 1/2. The final spin Hamiltonian turns out to

be a coupled chain of spin-1/2 XXZ model with inter chain ferromagnetic

coupling,

H = −t
∑

α,<i,j>

(
s+α,is

−
α,j + h.c

)
+ V

∑
α,<i,j>

szα,is
z
α,j

− U
∑
i

sz1,is
z
2,i. (3.2)

In the spin Hamiltonian (Eq.3.2), which is obtained from the bosonic

Hamiltonian (E.q.3.1), we impose the constraint
∑

i s
z
α,i = 0.

In this model, we scale all the energies by the hopping strength, t and set

t = 1 to obtain the complete phase diagram in the U − V plane. For U = 0,

the above model becomes equivalent to two decoupled XXZ spin 1/2 chains

which can be solved exactly and studied extensively [27]. This model under-

goes a quantum phase transition to antiferromagnetic phase above the critical

coupling value, V = 2. Similarly, hardcore bosons with nearest neighbour re-

pulsion exhibits a transition from superfluid to density wave. Superfluid and

density wave phases can be characterized by following correlation functions,

Cα(r) = 〈b†α,ibα,i+r〉, (3.3)

Gα(r) = 〈nα,inα,i+r〉. (3.4)

For spin chain, corresponding correlations functions transform to Cα(r) =
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Figure 3.2: Two dimensional phase diagram in the phase space of two pa-
rameters, U and V . The phase diagram is quite rich with phases, namely,
Superfluid (SF), Pair-superfluid (PSF) and Density wave (DW) phases.

〈s+α,is−α,i+r〉 and Gα(r) = 〈szα,iszα,i+r〉. In SF phase of bosons the correlation

function Cα(r) shows power law decay ∼ 1/rαs , where the exponent αs can

be determined from the Luttinger parameter [27].

We have calculated relevant quantities by varying the values of the pa-

rameters U , V . Based on these quantities, we have drawn the complete phase

diagram in Fig.3.2. For low values of U and V , Bosons in the two chains are

almost decoupled and form a superfluid in each of the chains. In terms of

spins, there will be quasi-long range order in the X-Y plane [21]. In this case,

the effect of fluctuation is quite large and there is no order along the z-axis.
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For sufficiently large nearest neighbour interaction, density ordering devel-

ops in each chain which can be characterised by density-density correlation

function (−1)rGα(r). In DW phase, superfluidity vanishes and Cα(r) decays

exponentially due to the appearance of an energy gap. Attractive interaction

between two chains induces pairing of bosons which can be analyzed from

the correlation function of the pairs,

P (r) = 〈b†1,ib
†
2,ib2,i+rb1,i+r〉 − 〈b†1,ib1,i+r〉〈b†2,ib2,i+r〉. (3.5)

For sufficiently large attractive interaction, U , and small repulsive interac-

tion, V , quasi ‘pair-superfluid’(PSF) state of bound pairs is formed. In this

phase the correlation function, P (r) shows QLRO but single particle super-

fluidity vanishes. In the large U and V limit, the system forms strongly

bound pairs of hardcore bosons with density ordering of the pairs due to the

strong nearest neighbour repulsion. This insulating density wave phase of

pairs can be described by the wavefunction,

|PDW 〉 =
∏
i

|0, 0〉i
∏
j

|1, 1〉j (3.6)

where i, j represent sites of two sublattices and |n1, n2〉i is the number state

of coupled chains at site i. In terms of spin language, spins are ordered

antiferromagnetically in each of the chains, while spins align ferromagneti-

cally along the rung of the ladder. Interestingly, this phase is similar to the

‘pseudo-gap’ phase of superconductors, where phase coherence between the

strongly bound pairs is absent.
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3.3 Results and Discussion

To solve the above spin-Hamiltonian and to find various possible quantum

phases in the parameter space, we have used density-matrix renormalization

group (DMRG) [59,60] method. We consider spin-1/2 at every site, varying

the DMRG cut-off (max = m) from 250 to 400, for consistent results. Unless

other wise stated, most of the results below are obtained with m = 250.

We have used an open boundary condition for both the chains. We have

compared our DMRG results, namely energy gap and energy eigenvalues,

with results from exact diagonalization, up to 28 lattice sites. We find the

energies are comparable up to five decimal places. To characterize different

phases, we have calculated spin-density, two points and four points correla-

tion functions, and the corresponding structure factors. For showing plots of

correlation functions and structure factor, unless stated explicitly, we have

considered each chain to be of length l = 160, which amounts to the total

system size L = 320. We have carried out finite size scaling of correlation

lengths, structure factors and exponents of the correlation functions of the

system with size (L) up to 384, to determine accurately the phase boundary

between different phases, minimizing the finite size effect.

3.3.1 SF to DW transition

The quasi-superfluid order in terms of spin language can be described as

order in the XY-plane [21]. To calculate order along the XY-plane, we have

calculated transverse spin-spin correlation function Cα(r) = 〈S+
α,0S

−
α,r〉,

where r is the distance from the middle of the chain. In Fig.3.3, we have
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Figure 3.3: Plot of correlation function C1(r), as a function of r, at U = 0.5
and different values of V (V = 0.4 (square), V = 1.0 (triangle) and V = 1.4
(circle)). Inset shows scaling of L/ ξ1L as a function of V for U = 0.5.
Coalescence of the data points of different L shows SF-DW transition at
V = 1.1± 0.05.

shown the plot of the correlation function, C1(r) at U = 0.5 and different

values of V . It shows, correlation function, C1(r), decays algebraically for

V = 0.4 and 1.0, while, it has short range order for V = 1.4. The structure

factor C1(k) =
1

(L/4)

∑
exp(ikr)C1(r) gives peak at k = 0 in the superfluid

phase. For characterizing order along the z-axis (density wave), we have

calculated the correlation function Gα(r) = 〈Sz
α,0S

z
α,r〉. In Fig.3.4, we have

shown the plot of correlation function, (−1)rG1(r), at U = 0.5 and different

values of V . The system has order along the z-axis for V = 1.2 and 1.4, while

it has short range order for V = 0.4. Due to the open-boundary condition in
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DMRG, there exists some fluctuations in G1(r) close to the boundary. The

structure factor G1(k) = 1
(L/4)

∑
exp(ikr)G1(r) gives peak at k = π in the

density wave phase.
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Figure 3.4: Plot of correlation function (−1)rG1(r), as a function of r, at
U = 0.5 and different values of V (V = 0.4 (circle), V = 1.0 (square),
V = 1.2 (triangle) and V = 1.4 (diamond)). Inset shows, finite size scaling
of OG(L), at U = 0.5, and for different values of V .

It is well known that the transition between superfluid to gapped density

wave in one dimension is a BKT type transition. Thus the system opens up

a gap very slowly, as it makes the transition from SF to DW [28–30]. As

energy gap and correlation length are related to each other (GL ∼ 1/ξL),

superfluid to density wave transition can be shown by finite size scaling of
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the correlation length. The correlation length, is defined as [30,33,49,50]

ξαL =

√∑
r r

2Cα(r)∑
r Cα(r)

(3.7)

where Cα(r) = 〈S+
α,0S

−
α,r〉, is obtained by using the wave function of the

system of length L. In the inset of Fig.3.3, we have plotted length dividing

correlation length L/ξ1L versus V , for U = 0.5. The coalescence of data

occurs at V = 1.1± 0.05 for different system sizes (L = 192, 224, 256). This

indicates a transition from SF to DW at V = 1.1± 0.05.

Density wave order can also be characterized by a nonzero static structure

factor, OG(L) = G1(k = π) = 1
(L/4)

∑
r(−1)rG(r) [11, 38, 51, 52]. To obtain

the thermodynamic value of OG(L), we have done finite size scaling for sys-

tems with length L up to 384, by fitting the finite size OG(L) [38] values with

a function, OG + O1/L + O2/L
2. In the inset of Fig.3.4, we have plotted

OG(L) as a function of 1/L at U = 0.5 and different values of V . From inset

of the Fig.3.4, its appears that, the extrapolated value of OG(L), is finite for

V & 1.05. On the contrary, for lower values of V , OG(L) decreases faster

to very small values with an increase in system size. In fact, due to the

slow nature of the transition, from extrapolation of the OG(L), it is difficult

to exactly locate the phase boundary of the SF-DW transition. However,

it shows how the DW wave appears in the system, while going from SF to

DW phase. As shown in Fig.3.4, from correlation function, (−1)rG1(r) and

finite size scaling of OG, we estimate the density wave order in the system

for V = 1.1± 0.06, at U = 0.5.
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Figure 3.5: (a)Finite-size scaling of KC(L), at U = 0.5 and different values
of V . (b) Plot of the extrapolated values of KC(L) vs V for U = 0.5, showing
SF to DW transition at V = 1.12 ± 0.04. (c) Power law fitting of C1(r) for
V = 1.0, on a log-log scale.

As we have mentioned above, transition between SF to DW in one di-

mension is BKT type. The transition point can also be determined by ex-

amining the critical exponent of the correlation function [28, 29, 33]. Criti-

cal exponent can be obtained by fitting the correlation function with alge-

braic decay of C1(r) = A/r2KC (as shown in Fig.3.5(c)). At the transition

point ( from SF to DW), exponent (KC) of the function C1(r) takes the

value 1/2. The thermodynamic limit of KC(L) is obtained by extrapolating

KC(L) = KC +K1/L+K2/L
2, where K1 and K2 are constants. In Fig.3.5,
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we have shown SF to DW transition from KC of the correlation function,

C1(r) at U = 0.5 and by varying V . In Fig.3.5(a), we have shown extrapo-

lation of KC(L), obtained from a power law fit of C1(r) for different system

sizes. Extrapolation of KC(L) goes to 1/2 at V = 1.12 (inset of Fig.3.5(b)).

This indicates a phase transition from SF to DW at V = 1.12 ± 0.04 for

U = 0.5. The error of ±0.04 is the error in fitting of C1(r) to the algebraic

function. In Fig.3.5(c), we have shown fitting of a correlation function, with

C1(r) = A/r2KC for V = 1.0, and with chain length l = 128. Due to the

open boundary condition, fitting is not good near the end of the chain. Also

while going from a SF phase to a DW phase, fitting error increases. For

U = 0 and V = 2.0, which is the transition point from SF to DW, we find

KC = 1/2 ± 0.01, while with increase in U near the SF-DW boundary, the

error in fitting of C1(r) also increases slowly. The transition points that we

obtained from scaling of the L/ξ1L and exponent KC(L) are consistent with

each other within the error bars indicated in the phase diagram.

3.3.2 SF to PSF transition

With increase in attractive interaction U along the rungs of the ladder, hard-

core Bosons start making pairs along these rungs. As a result, single particle

superfluidity starts decreasing in each of the chains. For smaller values of re-

pulsive interaction V , and sufficiently larger values of U , our low-dimensional

system shows BKT type transition from single particle superfluid phase to

pair-superfluid phase [35, 53]. In the PSF phase, single-particle spectrum
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Figure 3.6: Plot of correlation function C1(r), as a function of r, at V = 0.1
and different values of U . In the inset, scaling of L/ ξ1L as a function of U
for V = 0.1. Coalescence of the data points of different system sizes shows
SF-PSF transition at U = 1.6± 0.1.

opens up a gap As a result, the correlation function, C1(r), decays expo-

nentially in this phase. As discussed in the case of SF to DW transition,

here also, we estimate the SF to PSF transition from finite size scaling of

correlation length ξαL. In Fig.3.6, we have plotted C1(r) vs r at V = 0.1

and different values of U . This plot, shows the transition from algebraic

to exponential decay of, C1(r), as the system undergoes transition from SF

phase to PSF phase. In the inset of Fig.3.6, we have plotted L/ξ1L versus

U . The coalescence of data occurs at U = 1.6 ± 0.1 for different system

sizes (L = 192, 224, 256). This indicates transition from SF to PSF phase at

U = 1.6 ± 0.1. We find, generically, SF to PSF transition to be the slowest
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transition in the phase diagram. The corresponding errors in finding the

transition points have been indicated in the phase diagram.
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Figure 3.7: Plot of pair-correlation functions P (r), as a function of r, on a
log-log scale, at U = 2.0 and different values of V . The plot shows PSF to
DW transition at V = 0.4± 0.05

3.3.3 PSF to DW transition

To characterize pair-superfluidity, we have calculated the pair-correlation

function, which is defined as, P (r) =
〈
S+
1,0S

+
2,0S

−
1,rS

−
2,r

〉
−
〈
S+
1,0S

−
1,r

〉 〈
S+
2,0S

−
2,r

〉
,

where 1 and 2 stand for chain indices of the ladder and r is the distance from

the middle site of the ladder. We find pair-superfluidity in the system for

lower values of repulsive interaction V and large enough values of attractive

interaction U . With increase in V , we find density wave in each of the

chains. We also find that, in the presence of large enough U , density wave
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in each of the chains gets stabilized at much lower values of V , and becomes

strongly correlated [11]. In the PSF phase, correlation function, P (r), decays

algebraically, while, in the density wave phase, it decays exponentially. To

reduce the finite size effect, we have calculated, P (r) by taking the total

system size L = 384 and with max value m = 400. In Fig.3.7, we have

plotted the pair correlation function, P (r), with r in log-log scale, at U = 2,

and different values of V . We find pair correlation function, P (r), decay
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Figure 3.8: Plot of correlation function (−1)rG1(r), as a function of r, at
U = 2.0 and different values of V : V = 0.1 (circle), V = 0.3 (diamond),
V = 0.4 (triangle left), V = 0.5 (triangle down) and V = 0.6 (square). Inset
shows, finite size scaling of OG, at U = 2.0 and different values of V .

algebraically up to V = 0.4± 0.05 for U = 2.0. For V ≥ 0.4± 0.05, the pair

correlation function decays exponentially, indicating transition from the PSF
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to DW phase.

We have plotted correlation function, G1(r), as a function of r, at U = 2.0

and for different values of V in Fig.3.8. This shows how the density wave

order develops in the chain with increase in repulsive interaction, V , while

going from PSF to DW phase. In the inset of Fig.3.8, we show extrapolation

of, OG(L), as a function of 1/L for different values of V , and for U = 2.0.

From extrapolation of OG(L), it seems that for V & 0.3, OG takes a finite

value for U = 2. During SF to DW transition, as discussed, from correlation

function, G1(r), and finite size scaling of OG, we find that density wave order

exists in each of the chains for V = 0.4 ± 0.08. As shown in Fig.3.8 and

the inset of Fig.3.4, density wave order develops in each of the chains faster

and stabilizes at much lower values of V , for U = 2.0 (Fig.3.8) compared to

U = 0.5 (Fig.3.4). We find continuous transition from PSF phase to DW

phase and we did not find PSS phase within the error-bar of our method.

3.3.4 Dimerization

With increase in attractive interaction, U , between the chains, bosons makes

bound pairs along the rung, while, due to repulsive interaction V , these

bound pairs try to avoid each other. As a result, in the large limit of U and

V , positions of the hard core bosons in each of the chains become strongly

correlated. In this limit, the density waves of each of the chains are correlated

to each other. To find this correlation in density waves of chains, we have

calculated dimer-dimer correlation D(r) =
〈
Sz
1,0S

z
2,0S

z
1,rS

z
2,r

〉
, where 1 and 2

stand for chain indices of the ladder and r is the distance from the middle
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Figure 3.9: Plot of dimer-dimer correlation function D(r), as function of r,
for V = 2.2 and different values of U . Inset shows plot of Nav as a function
of U , and different values of V .

site of the ladder. As shown in Fig.3.9, we have plotted D(r) with distance

r for V = 2.2, and different values of U . For U = 0, the two chains behave

independently, and with increase in U , we find that the correlation in density

wave increases. As already mentioned, increase in U forces bosons to make

bound pairs along the rungs. The number of boson pairs in terms of spins,

can be defined as, Npair =
∑

i < sz1,is
z
2,i > /L

4
, where i is the site index

of the chain. For small values of U , since the system has large fluctuation

effects, the number of pairs is quite small. In fact, in this limit, the system

has loosely bound pairs along the rungs. While, with increase in U , Nav

increases, displaying crossover of the system to strongly bound pairs. We

also find that, repulsive interaction, V , helps to stabilize these bound pairs.
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In the inset of Fig.3.9 it is shown, where we have plotted Nav verses U , for

different values of V .

Figure 3.10: (a) Plot of spin-density < szl >, as function of l, for U = 2.0
and V = 1.5. Spin-density of the first chain is denoted with a square while
the second chain is denoted with a circle. Inset shows the schematic of
dimerization of spins in two chains. (b) Plot of density correlation g(l), as a
function of l, for U = 2.0 and V = 1.5.

As we have discussed, the system forms a density wave of strongly bound

pairs and positions of hard-core bosons in each of the chains become strongly

correlated in the large U and V limit [11, 45]. In spin language, spins align

ferromagnetically along the rung of the ladder, while, antiferromagnetically

along each of the chains, (as shown in the schematic of the Fig.3.10(a)). To

show this, in Fig.3.10(a), we have plotted spin-density, 〈Sz
l 〉, of the ladder
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with position l, for U = 2, and V = 1.5. For a clear view of 〈Sz
l 〉, num-

bering of l index is done in a different way, which is shown in schematic of

Fig.3.10(a). Spin-density, < Sz
l >, along the rungs takes same value and

are in the same direction, while, along the chains, they are oriented in op-

posite directions. Such a configuration with parallel spin within each rungs

and anti-parallel spin along each chain of the ladder structure can be rep-

resented as | ↑↑↓↓↑↑ ...〉. In hardcore bosonic language, due to attractive

interaction, U , hardcore bosons form bound pairs along the rungs, while,

due to repulsive interaction, V , present in each of the chains, these rung

pairs try to avoid each other. As a result, these rung pairs reside on al-

ternate rungs and this configuration can be represented by |110011..〉. As

shown in Fig.3.10(b), this configuration can also be visualised by looking at

the density correlation function, g(l) = 〈sz0szl 〉, for both the chains (full lad-

der), where sz0 is considered as the middle spin site of the ladder. Numbering

of l index for g(l), as shown schematically in Fig.3.10(a), is done differently

compared to G1(r). As shown in Fig.3.10(b), periodicity of the density wave

on the ladder is twice the lattice spacing. The structure factor, defined as,

G(k) = 1
L/2

∑
l exp(ik · l) < szos

z
l >, has peaks at −π/2 and π/2.

3.4 Conclusion

To conclude, we have studied various phases of hardcore bosons in two cou-

pled chains, with inter chain attraction and inter chain nearest neighbor

repulsion between the bosons. We find that the ground state phase diagram

has mainly three phases, SF, PSF and DW. The model discussed in this
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chapter is a simplified description of bilayer dipolar bosons with dipole mo-

ments perpendicular to the plane. Although, we truncated the long range

dipolar interaction to nearest neighbour repulsion, this model contains essen-

tial ingredients for the formation of ‘pair superfluid’ and ‘pair density wave’

phases. Inclusion of longer range interaction can lead to the formation of

various density wave phases and supersolid phases with different patterns.

Similar to the BCS-BEC crossover of fermions, in this system, bosons can

undergo a transition from a weakly bound paired superfluid state to paired

supersolid phase and finally to density wave of strongly bound pairs.
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[34] A. Argüelles, and L. Santos, Phys. Rev. A. 75, 053613 (2007).

[35] A. Hu, L. Mathey, et al., Phys. Rev. A. 80, 023619 (2009).

[36] L. Mathey, I. Danshita, and C. W. Clark, Phys. Rev. A. 79, 011602(R)

(2009).

[37] L. Mazza, M. Rizzi, et al., Phys. Rev. A. 82, 043629 (2010).

[38] G. G. Batrouni, R. T. Scalettar, et al., Phys. Rev. Lett. 110, 265303

(2013).

[39] A. Kundu and S. K. Pati, Eur. Phys. Lett. 85, 43001 (2009).

[40] T. Mishra, R. V. Pai, S. Mukherjee, et al., Phys. Rev. B. 87, 174504

(2013).

[41] T. Mishra, R. V. Pai, S. Mukherjee, Phys. Rev. A. 89, 013615 (2014).

[42] T. Mishra, J. Carrasquilla and M. Rigol, Phys. Rev. B. 84, 115135

(2011).



Bibliography 82
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Chapter 4

Triplet Superfluidity on a

triangular ladder with dipolar

fermions∗

4.1 Introduction

Recent experimental advancements in the field of dipolar Fermi gases have

given opportunity to explore the quantum phases of strongly correlated fermionic

systems with long-range interactions [1,2]. The dipolar Fermi gas of 161Dy [3]

and fermionic polar molecules, 40K87Rb [4], 23Na40K [5], with large dipole

moments have experimentally been realized in optical lattices. It has been

found that the external electric and microwave fields on optical lattices can

control quantum many body interaction parameters of dipolar systems and

∗Work reported in this chapter is under revision in Phys. Rev. B. (Bradraj Pandey
and Swapan K. Pati)

83



4.1 Introduction 84

polar molecules [6–9]. In fact, it has been argued that the long range

and anisotropic characters of the dipolar interactions, can provide various

types of exotic phases like, charge-density wave (CDW; even though the

density modulation is produced by charge neutral atoms or molecules, it is

called CDW in the literature) [10–12], spin density wave (SDW; spin order

for pseudo-spin-1/2 of dipolar fermions, shown in schematic of Fig.4.2(a))

[13,14], liquid-crystal [15,16], conventional and unconventional fermionic su-

perfluids [17–22], to name a few.

It is truly quite challenging and also interesting to find phases like triplet

superfluidity and triplet superconductivity, as these exotic phases have con-

nection to a number of topological phases and quantum computation. Inter-

estingly, at low temperature, liquid 3He forms fermionic superfluids, where

3He atoms (or quasi particles) form pairs with p-wave symmetry in spin

triplet state [23, 24]. Chromium based quasi-one dimensional superconduc-

tors [25,26] and strontium based oxide, Sr2RuO4, are considered to be good

candidates for triplet pairing [27,28].

Interestingly, ultra cold dipolar systems offer intriguing possibilities to

explore unconventional pairing mechanisms of the condensed-matter system.

For single component fermions, a dominant pz-wave superfluidity has been

proposed [17,18]. For two components fermions, it has been shown that there

is possibility of formation of both singlet and triplet superfluidity [29–31],

as both singlet and triplet pairing are allowed in such systems. In dipolar

fermionic system in two-dimension, where dipoles are aligned with external

electric field, it has been shown that p-wave superfluidity can be realized by
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varying anisotropy and geometry of the system [20]. Unconventional spin-

density waves [14] and bond-order solids [32] have also been shown for the

two-dimensional dipolar systems.

On the other hand, more exotic phases like supersolid phase, has been

proposed for dipolar Fermi gas in a cubic optical lattice system [33]. Inter-

estingly, in this, it has been shown that a p-wave superfluid is formed due

to attractive interaction along the z-direction, and charge-density wave in

the XY-plane due to electronic repulsions and together with the intermedi-

ate values of dipolar interactions. For a two dimensional dipolar Fermi gas,

coexistence of density-wave and p-wave superfluidity has been shown [34,35].

In a recent experimental study on ultra-cold three dimensional optical lat-

tice systems, effect of multi-body interaction has been demonstrated [36,37].

Furthermore, in a few numerical studies, it was shown that dominant three-

body Coulombic interactions can give rise to a host interesting phases, like

supersolid and bond-order phases [38–41]. Interestingly, for polar molecules

in optical lattice, the realization of three-body interactions using microwave

field have been proposed [44–46] and since then there have been various the-

oretical studies of microscopic models with three-body interactions [47–51].

These studies have shown that, with three-body Coulombic interactions, the

ground state can be quite exotic displaying quantum phases like, topological

phases, spin liquids, fractional quantum Hall states etc.

One- and quasi one-dimensional systems are quite unique and interesting.

Due to strong quantum fluctuations, the true long range order is not possible

for continuous symmetry breaking phases [52]. In a one dimensional optical
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lattice, bosonization study has shown triplet superfluid (TSF) phase for dipo-

lar fermions [53]. TSF phase is also found in two coupled one dimensional

systems for quadrupolar Fermi gas [54]. Interestingly, mixture of triplet and

singlet superfluidity has also been shown in a quasi-one dimensional system

with two component fermions [55]. A recent DMRG study [56] has also found

the TSF phase in a one-dimensional dipolar Fermi gas. In presence of at-

tractive head to tail arrangement of dipolar interactions, the one and two

dimensional dipolar fermions become unstable and they undergo either col-

lapse or phase separation. To overcome these difficulties, bilayer system has

been proposed, where dipoles are aligned perpendicular to the layers, giving

more stable paired phases [57, 58].

In this chapter, we consider dipolar fermions in a triangular ladder sys-

tem at half-filling. We study the stability of various exotic phases, like,

spin-density wave, charge density wave and triplet-superfluid phases. In the

ladder, the dipolar fermions are considered to be polarized along the rungs of

the triangles (as shown in schematic of Fig. 4.1). The strength and direction

of polarization can be controlled by external electric field or by varying dis-

tance between lattice sites. Due to alignment of dipolar fermions along the

rungs, attractive interaction is generated on alternative rungs (odd rungs).

It is also possible to generate repulsive interaction in each of the chains and

diagonal rungs of triangle by alignment of dipoles. In the presence of attrac-

tive dipolar interaction and on-site Hubbard repulsion, a stable TSF phase

gets generated. We have checked the stability of the TSF phase thoroughly,

by tuning in the inter-chain hopping strength and the repulsive interaction

parameters. Additionally, we have also examined the effect of spin-dependent
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interchain hopping on the stability of the TSF phase. Interestingly, due to

triangular geometry, three-body interactions can also play important role in

identifying new quantum phase, like, fermionic super-solid phase of dipolar

fermions [41].

The remaining part of the chapter is organized as follows. In sec.II we

have discussed the model Hamiltonian and the method used to solve it. Sub-

sequently, we have discussed the results obtained from DMRG calculations.

This is divided into four subsections, where in each subsection the details of

phase and phase transition is discussed. In last section of the chapter, we

have summarized all our results.

4.2 The Model

Figure 4.1: Schematic of the triangular ladder with dipolar fermions. There
is onsite interaction U , attractive interaction Va, repulsive interaction Vr.
Three-body interaction term W . The hopping along the legs is t and along
the rungs is t′.

We consider two-component (pseudo-spin-1/2) dipolar fermions on a two-

leg triangular ladder at half-filling. The effective Hamiltonian of the system
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can be written as,

H = −
∑
σ,i

(
tc†σ,icσ,i+2 + t′c†σ,icσ,i+1 +H.c

)
+

U
∑
i

n̂i,↑n̂i,↓ +
∑
〈i 6=j〉

V (i, j)ñiñj −W
∑
i

ñiñi+1ñi+2

where cσ,i is annihilation operator with spin σ =↑, ↓ at site i. Here ↑ and

↓ states refer to two hyperfine states of dipolar atoms or molecules. ñ =

(n − 〈n〉) where n is the number operator and 〈n〉 = 1. t and t′ are the

hopping terms and U is the onsite interaction term between the fermion with

opposite spins; V (i, j) is the two-body nearest-neighbour intersite interaction

term. The last term in the Hamiltonian,W , represents attractive three-body

interactions between the fermions, which act on the fermions belonging to

the same triangle (as shown in the Fig.4.1). The two-body interaction term

depends on direction and distance between the dipoles. When the two dipoles

are parallel to each other, the interaction becomes repulsive, while when they

align with each other along the rungs, interaction become attractive. The

most dominating interactions arise from the nearest-neighbour terms [42,43],

and also in optical lattice by adjusting the distance between sites, one can

make other subdominating interactions quite smaller [43]. Thus, we restrict

ourself to only nearest-neighbour terms of V (i, j) in the Hamiltonian [41].

The two-body nearest-neighbour term, V (i, j), can be described as

V (i, j) =


Vr Intersite repulsive term on each chain.

Vd Intersite repulsive term for even rungs.

−Va Intersite attractive term for odd rungs.
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Since the dipolar interaction depends on angle and distance between the

dipoles, it allows tuning of magnitude and sign of these interaction parame-

ters to a wide range to explore rich quantum many-body phases. The dipolar

interactions can be tuned by external electric field or changing the distance

between sites. The above Hamiltonian preserves U(1) and SU(2) symmetry,

which is related to conservation of total charge and spin degrees of freedom.

Note that, for nonzero next nearest neighbor terms, t and W , the Hamilto-

nian does not have particle-hole symmetry.

To solve the above Hamiltonian and to find quantum phases in the pa-

rameter space, we have used density-matrix renormalization group (DMRG)

[59,60] method. We have used open boundary conditions and vary the DMRG

cut-off (max = m) from 300 to 600, for consistency in results. Most of the

results presented in this chapter are obtained using max=520, unless oth-

erwise stated. To check the accuracy of our DMRG calculations, we have

calculated truncation error of the system. In DMRG, the effective basis is

truncated by keeping the m largest eigenvectors of the reduced density ma-

trix corresponding to the m largest eigenvalues. The error caused by the

truncation can be measured by calculating e = 1 −
∑

i ρi, where ρi is the

eigenvalues corresponding to the reduced density matrix. We found that de-

pending upon the interaction parameters and system size, truncation error

e varies from 10−5 to 10−6(shown in Fig.4.2) . We have verified energy and

excitations for some parameters with those from exact diagonalization for

smaller system sizes. To characterize different phases, namely SDW , TSF ,

and CDW phases, we have calculated corresponding correlation functions

and also spin and charge density profiles. For showing plots of correlation
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functions, unless stated explicitly, we have considered system size L = 128.

To determine phase boundary between different phases and to minimize the

finite size effect, we have done finite-size scaling of order-parameters, of the

system with size (L) up to 160.
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Figure 4.2: Plot of truncation error with max values m, for system size
L = 128 and for interaction parameters values U = 2, Va = 1.8. With
increase in max value m > 420, truncation error changes very slowly.

4.3 Results

4.3.1 SDW to TSF to CDW transition

We first consider a simple case, where t′ = 0, the intersite repulsive dipolar

term, Vr = 0, Vd = 0 and three-body term, W = 0. Due to long range

of dipolar interactions, two chains of triangular ladder can couple through
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Figure 4.3: Schematic of the SDW, TSF and CDW phases on a triangular
lattice.

attractive dipolar interaction, Va, even though the tunneling between the

chains remain zero [53]. For finding TSF phase, we take onsite Hubbard

interaction U = 2, and vary the attractive interaction, Va (0 to 4), along the

rungs (odd rungs). For U = 2 and lower vales of Va, we find that to minimize

repulsive onsite interaction, fermions stay put in each site and form spin

density wave, | ↑, ↑, ↓, ↓, ↑, ↑, ↓, ↓, ↑, ↑ ...〉 (as shown in schematic of Fig.4.3).

In order to show spin density profile of the system, in Fig.4.4(a), we have

plotted spin-density 〈szi 〉 of system, with site index, i. With increase in

attractive interaction, Va, the fermions form intersite pairs along the rungs

of the ladder, where the electronic spins form triplet symmetry (|sz = 0〉 =

| ↑↓〉+ | ↓↑〉) [61]. This phase remains so for moderate values of Va. For large

value of attractive interaction, fermions with up and down spin prefer to sit

together and form CDW-phase, where the state appears like, | ↑↓, ↑↓, 0, 0, ↑↓

, ↑↓, 0, 0...〉 (as shown in schematic of Fig.3). To show this, in Fig.4.4(b),

we have plotted charge density profile of fermions, 〈ni〉, with site index i.

Interestingly, this CDW-phase appears even without any intersite-repulsive

terms. Thus is precisely due to the triangular geometry and the attractive

interaction along leg-direction [62]. However, in strictly one dimensional



4.3 Results 92

case, for large values of attractive interaction, the system goes to either

phase-separated phase or it collapses [56].
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<
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Figure 4.4: (a) Plot of spin-density 〈szi 〉 with site index i, for Va = 1.6
(triangle) and Va = 2.5 (star). (b) Plot of charge density 〈ni〉 for Va = 2.4
(star) and Va = 3.2 (square).

In order to characterize SDW, TSF and CDW phases and their bound-

aries, we vary Va with fixed value of U = 2, and we look into the behavior

of corresponding correlation functions. For SDW phase, we have calculated

correlation function, S(r) = 〈szi szi+r〉, where r (even distances) is the dis-

tance from the middle site of the ladder to the one end of the ladder. To

remove the edge effects, we have computed correlation functions from cen-

tral site to one side of the triangular ladder. We found that with increase
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in r, fluctuations appears in the correlation function (Fig.4.5(b)). To re-

duce these fluctuations, we have calculated average correlation function [63],

S(r) = 1/N(r)
∑

r

∣∣〈szi szi+r〉
∣∣. where we took the sum over the correlations,

which are separated by the same distance r from the sites i of the other side

of triangular ladder. This is then divided by the number N(r), of such same

distance correlations. While averaging, we took lattice sites which are at

distance up to L/2 from the center of system size L.
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)| Center
Average
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)|

U = 2, Va= 1.8

(a)

(b)

Figure 4.5: Plot of correlation functions (a)P (r) and (b)S(r), in two different
ways, one from center of the lattice (square) and second by taking average
(circle) for system size L = 128.

As shown in Fig.4.6(a), for lower values of Va, the correlation function,

S(r), decays algebraically, while for larger values of Va, it decays exponen-

tially. With increase in attractive attraction along the rungs of the triangle,

interchain fermions form bound pairs along the rung, giving rise to inter-

chain spin-triplet superfluid phase, which is quite interesting. In general,
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Figure 4.6: (a) Plot of correlation function S(r), (b) correlation function
P (r), for U = 2 and varying Va < 2.3. (c) Plot of correlation function P (r),
(d) correlation function C(r), for U = 2 and varying Va (2.3 to 2.9).

the TSF phase can be characterized by pair correlation function [70–72]

P (r) = 〈∆†
l∆l+r〉, where ∆†(l) =

(
c†i,↑c

†
i+1,↓ + c†i,↓c

†
i+1,↑

)
, creates a fermionic

pair in spin triplet state on a rung (labeled l) and r (even distance) is the

distance from the rung l (near to the center of the triangular ladder). This

correlation function P (r), is also called pz wave like superfluid correlation

function, because of spin triplet pairing along z direction. For P (r) also,

fluctuations appear with increase in r. To smooth out these fluctuations, we

have calculated average correlation function, P (r) = 1/N(r)
∑

r |〈∆
†
i∆i+r〉|,

where we have summed over the correlations which are separated by same

distances r from rung l, divided by the numbers, N(r), with such same dis-

tances correlations (Fig.4.5(a)).
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For moderate values of Va, SDW phase and TSF phase compete with each

other. Due to finite size effect, it is difficult to locate the phase boundary

from smaller system size correlation functions. To study the finite size effect,

we have calculated correlation functions for different system sizes, near the

phase boundary of SDW and TSF phases. We found that for larger system

sizes, the dominating behaviour of correlation functions become clearer near

the phase boundaries. In Fig.4.7, comparison of correlation functions P (r)

(Fig.4.7(a)) and S(r) (Fig.4.7(b)), is shown at U = 2, Va = 1.6 (SDW -phase)

for different system sizes. As can be seen, for larger system size correlation

functions, S(r) decays slowly compared to the correlation functions, P (r).

On the other hand, as shown in Fig.4.8, for larger system size correlation

functions, P (r) goes to zero slowly compared to the correlation function,

S(r), at U = 2 and Va = 1.8 (TSF -phase).
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Figure 4.7: Plot of correlation functions (a)P (r) and (b) S(r), for different
system sizes at U = 2 and Va = 1.6.
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Figure 4.8: Plot of correlation functions (a)P (r) and (b) S(r), for different
system sizes at U = 2 and Va = 1.8.

To characterize phase boundary more accurately between SDW and TSF

phase, we have done finite size scaling of exponent of correlation function,

S(r). The exponent, K, can be obtained by fitting the correlation function

with algebraic decay of S(r) ∼ (1/r)1+K (as shown in Fig.4.9(c)). From

Luttinger liquid theory, the transition point for SDW to TSF is expected

to be at K = 1. For K < 1, SDW phase dominates in the system, while

for K > 1, TSF phase dominates [64–68]. As shown in the Fig.4.9(b), the

transition from SDW phase to TSF phase occurs at Va = 1.7± 0.06, as the

extrapolated value of exponent K, of the correlation function S(r) takes the

valueK ∼ 1. The thermodynamic limit ofK(L) is obtained by extrapolating,

K(L) = K +K1/L+K2/L
2 , where K1 and K2 are constants.

To characterize CDW-phase, we have calculated correlation function,

C(r) = 〈(n(i) − n̄)(n(r) − n̄)〉. where r is the distance from middle site
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Figure 4.9: Finite-size scaling of (a) order parameter Op (b) exponent K of
the correlation function S(r), at U = 2 and different values of Va. (c)Power
law fitting of S(r) at Va = 1.6, on a log-log scale for system size L = 128.
(d) phase diagram for fixed value of U = 2 with varying Va.

of the ladder to other on one side of the ladder. As shown in Fig.4.6(d),

the correlation function, C(r), for Va > 2.5 has nearly long range order,

while P (r) decays exponentially (as shown in Fig.6.(c)). Thus, for Va > 2.5,

the system is in the CDW phase. To calculate the phase boundary between

TSF and CDW phase, we have done finite size scaling of order-parameter,

Op = (1/L)
∑L

r=1 |C(r)|. In the density wave phase order-parameter Op,
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takes non-zero values in the thermodynamic limit [69]. To obtain the ther-

modynamic value of Op, we have done finite-size scaling for systems with

length L up to 160, by fitting the finite-size Op values with a function,

Op+O1/L+O2/L
2. As shown in the Fig.4.9(a), TSF to CDW transition oc-

curs at Va = 2.55±0.05 as Op takes finite non-zero values for Va = 2.55±0.05.

As shown in schematic of Fig.4.9(d), for fixed values of onsite interaction,

U = 2 and by varying Va, we found SDW phase for Va . 1.7, TSF phase for

1.7 . Va . 2.55 and CDW-phase for Va & 2.55.

4.3.2 Effect of Onsite Repulsive Interaction
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Figure 4.10: (a) Plot of correlation function C(r), (b) correlation function
P (r), for Va = 1.8 and varying U < 1.5. (c) Plot of correlation function P (r),
(d) correlation function S(r), for Va = 1.8 and varying U (1.5 to 3.0).
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To find the role of onsite interaction, U , in the triplet pairing and for-

mation of other phases, we varied the U values from (U = 0.0 to 3.0), for

fixed values of attractive interaction Va = 1.8. As shown in Fig.4.10(a) and

Fig.4.10(b), initially for lower values of U , the correlation function, C(r),

shows nearly long range order, while P (r) decays exponentially, indicating

CDW phase in the system. On the other hand, for U & 1.1, the correlation

function, P (r), shows algebraic decay behaviour, displaying TSF phase in

the system. To find out the phase boundary between the CDW and TSF

phase, we have done finite size scaling of order-parameter Op. As shown in

Fig.4.11(a), Op takes finite non-zero values for U = 1.1± 0.05, indicating the

transition from CDW phase to TSF phase.

As shown in Fig.4.10(c) and Fig.4.10(d), with increase in U , initially P (r)

shows power law behaviour, while S(r) decays exponentially. On the other

hand, for large values of U , S(r) shows power law behaviour, while P (r) de-

cays exponentially. For moderate values of U , TSF and SDW phases compete

with each other. To find the phase boundary between TSF and SDW phase,

we have done finite size scaling of exponent of correlation function S(r), as

discussed in previous section. Fig.4.11(b), shows transition from TSF to

SDW phase at U = 2.1± 0.06, as exponent of S(r), takes the value K = 1.

As shown in schematic of Fig.4.11(d), we find CDW-phase for U . 1.1, TSF

phase for 1.1 . U . 2.1 and SDW phase for U & 2.1, for a fixed value of

attractive interaction, Va = 1.8.
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Figure 4.11: Finite-size scaling of (a) order parameter Op (b) exponent K of
the correlation function S(r), at Va = 1.8 and different values of U . (c)Power
law fitting of S(r) at U = 2.2, on a log-log scale, for L = 128. (d) phase
diagram for fixed value of Va = 1.8 with varying U .

4.3.3 Effect of interchain hopping

Here, we study the effect of interchain hopping, t′ on the triangular lad-

der. We find that, as the interchain hopping is turned on, the SDW phase

becomes unstable and disappears quickly with increase in t′. On the other

hand, TSF phase becomes prominent with nonzero t′ values, however, as the

t′ becomes larger, the prominence of TSF phase decreases. The spin triplet
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Figure 4.12: (a) Plot of correlation function S(r), (b) Plot of correlation
function P (r), as a function of r, at U = 2, Va = 1.6 and varying t′(on a
log-log scale).

pairs formed due to Va term along the rung, gets higher stability with in-

troduction of t′, as it promotes the antiferromagnetic exchange between the

electrons on the rungs. This results in increase in pair-correlation, P (r).

Interestingly, for large values of attractive interaction, Va, when the system

is in the CDW-phase, it gets hardly affected by interchain hopping term, as

the charge ordered state arrests the effective hopping between the chains.

However, close to the phase boundary between TSF and CDW phases, when

the system is near the CDW phase boundary, for finite values of t′, system

can again make transition to the TSF phase.
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Now, we demonstrate the effect of t′ by considering two values of Va (1.6

and 2.8), and for a fixed value of U = 2, using DMRG method. These

Va values correspond to SDW and CDW phases respectively, without any

interchain hopping term, t′. As we turn on t′, we look at the variation in

SDW and CDW phases. As shown in Fig.4.12(a), for Va = 1.6, the spin-

spin correlation function, S(r), starts decaying exponentially for t′ & 0.1

(Fig.4.12(a)), whereas, the pair correlation function, P (r), initially increases

with t′, for even small values of it. It clearly shows that the system makes

transition from SDW phase to TSF phase in presence of interchain hopping

t′. On the other hand, as we increase the t′ value, for larger values (t′ & 1.0),

the pair correlation function, P (r), starts decreasing (Fig.4.12(b)). In the

presence of attractive interaction, for larger values of t′, the system goes to

a phase-separated state and P (r) decays exponentially .

We find that the CDW-phase is quite robust against the interchain hop-

ping term, t′. As shown in Fig.4.13(b), the charge-charge correlation function,

C(r), shows nearly long range order for t′ . 0.5, On the other hand, as shown

in Fig.4.13(a), the pair correlation function, P (r), decays exponentially for

lower values of t′ . 0.5, while shows power law behaviour for t′ > 0.5. Such

behavior of the correlation functions indicate a phase transition from CDW-

phase to TSF phase for t′ ' 0.55± 0.05. For moderate values of t′, the P (r)

shows power-law behaviour, while for larger values of t′ & 1.2, it starts de-

caying exponentially, as system goes to a phase-separated state. For Va & 3,

the CDW-phase is quite stable and it requires a really large values of t′ to

destroy the CDW-phase.
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Figure 4.13: (a) Plot of correlation function P (r) as a function of r (on a
log-log scale), (b) Plot of correlation function C(r), as a function of r, at
U = 2.0, Va = 2.8 with different values of t′.

4.3.4 Effect of Intersite Repulsive Interactions

When the dipolar fermions are aligned along the rungs of the triangle, re-

pulsive interactions can be generated along each chain direction (Vr) as well

as along the diagonal (Vd) of the triangular ladder (as shown in schematic

Fig.4.1). To demonstrate clearly the effect of repulsive interactions, Vr and

Vd, we chose interaction parameters U = 2, t′ = 0.4, Va = 1.8 and vary the

intersite repulsive parameters, Vr and Vd. As discussed in the previous sec-

tion, in absence of repulsive intersite interactions, for these parameter values,

the system remains in the TSF phase. On the other hand, with increase of
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Figure 4.14: (a) Plot of correlation function P (r), as a function of r, at
U = 2.0, t′ = 0.4, Va = 1.8 and different values of Vd. Inset shows finite size
scaling of Op with 1/L. (b) Plot of correlation function C(r), with distance
r at U = 2.0, t′ = 0.4 ,Va = 1.8 and different values of Vd.

intersite repulsive interactions, the fermions try to avoid each other and form

a CDW state with structure, like |2, 0, 0, 2..〉.

In Fig.4.14, we have shown the effect of intersite repulsive interaction

Vd, on the TSF phase keeping Vr = 0. As shown in the Fig.4.14, for lower

vales of Vd < 0.8, correlation function P (r), shows power law behaviour

(Fig.4.14(a)). For larger values of Vd, correlation function C(r), shows nearly

long range behaviour (Fig.4.14(b)). To find the phase boundary between

TSF and CDW , we have done finite size scaling of Op. As shown in inset

of Fig.4.14(a), Op takes small finite value for Vd ∼ 0.7. In some cases, due
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to slow nature of transition and finite size effect, Op can take very small

non-zero values. So from plot of correlation function, C(r) (Fig.4.14(b)) and

finite size scaling of Op, we have estimated the transition from TSF to CDW

phase at Vd = 0.75± 0.06.
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Figure 4.15: Plot of correlation function (a) P (r), as a function of r, (b)
C(r), as a function of r at U = 2.0, t′ = 0.4, Va = 1.8, Vd = 0.3 and different
values of Vr. Inset shows, finite size scaling of Op with 1/L.

In the presence of attractive interaction, Va, along the rungs of the trian-

gles, the Fermions in each of the chain become correlated with each other.

We also found that in presence of Vd, small values of repulsive interaction

Vr is enough to produce a CDW-phase [73]. As shown in Fig.4.15(a), the

pair correlation function, P (r), shows power law behaviour up to Vr ∼ 0.24,
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while for larger values of Vr, it decays exponentially. On the other hand,

the charge charge correlation function C(r), shows nearly long range be-

haviour for Vr & 0.24 (Fig.4.15(b)). We have carried out finite size scaling of

order-parameter, Op, to find the phase boundary. As shown in the inset of

Fig.4.15(a), Op takes finite value for Vr = 0.24±0.02, which clearly shows the

phase transition from the TSF phase to the CDW phase at Vr = 0.24±0.02.

4.3.5 Effect of Three-body interaction
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Figure 4.16: Plot of correlation function, P (r), as a function of r, for interac-
tion parameters, U = 2.0, Va = 1.8, Vr = 0.1, Vd = 0.3, t′ = 0.4 and different
values of W . Inset shows, density profile of fermions 〈ni〉, with site index i,
for W = 1.9.

Interestingly, an additional three-body interaction term may appear in

each of the triangular plaquette, as suggested by others on similar grounds,

basically due to triangular geometry and dipolar interactions [39,46].
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Three-body term can break the particle hole symmetry of the Hamilto-

nian. In optical lattices, the three-body and two-body interactions can be

tuned independently [44, 45]. Here, we demonstrate the consequences of at-

tractive three-body interaction [37,74], W , along with two-body interactions

and ask whether the three-body term can generate new phases or combine

several phases. To show the effect of three-body interactions, we chose the

system parameters, U = 2, Va = 1.8, Vd = 0.3, Vr = 0.1 and t′ = 0.4 and

varied the W . Without W term, the system exists in TSF phase for these

parameters. As we turn on the attractive three-body interaction, W , both

TSF and CDW phases coexist and the system remains so up to moderate

values of W .
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Figure 4.17: Plot of correlation function, C(r), as a function of r, for interac-
tion parameters, U = 2.0, Va = 1.8, Vr = 0.1, Vd = 0.3, t′ = 0.4 and different
values of W . Inset shows, finite size scaling of Op with 1/L.



4.3 Results 108

As shown in the Fig.4.16, triplet pair correlation function, P (r) with in-

crease in W , shows power law behavior, with slight changes in exponent.

Additionally, with increase in W , a periodic modulation appeared in the

charge charge correlation function, C(r). To see the appearance of CDW

order in the thermodynamic limit, we have done finite size scaling of order-

parameter, Op. As shown in inset of Fig.4.17, Op takes finite nonzero values

for W = 0.6 ± 0.1. Periodic modulation in density correlation, C(r), and

algebraic decay of P (r), give signature of fermionic supersolid phase in the

system for 0.6 . W . 1.6, where both CDW and TSF phases coexist. This

supersolid phase is different from the supersolid phase formed due to coex-

istence of onsite pairing of fermions (s-wave superfluid), and charge density

wave of the system. Here, fermions form pairs in spin-triplet sate (pz-wave

superfluid), which coexist with CDW phase of the system. For large values

of W > 1.6, the system becomes unstable and thereby becomes phase sepa-

rated. In the phase separated state, density distribution is inhomogeneous,

while correlation function, P (r) decay exponentially. Note that, in the phase

separated state, there is generally convergence problem, which we found for

W > 2. In the inset of Fig.4.16, plot of charge density profile 〈ni〉 has been

shown for W = 1.9, with site index i.

4.3.6 Effect of spin-dependent hopping

We analyze the effect of spin dependent hopping on the TSF phase in this

section of the chapter. We apply spin dependent hopping along the rungs of

the triangle. We considered up-spin hopping term to be more stronger than
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Figure 4.18: (a) Plot of correlation function P (r), (b) Correlation function
S(r), as a function of r, at U = 2, Va = 2.0, Vr = 0.1, Vd = 0.2 and t′ = 0.4,
with varying α. Inset shows, plot of spin density 〈Sz

i 〉 with site index i, for
α = 1 (circle) and α = 0.4 (diamond).

the down-spin hopping term [75]. The corresponding change in hopping term

in the Hamiltonian can be written as

Htσ =
∑
i

(
t′↑c

+
i,↑ci+1,↑ + h.c

)
+
(
αt′↓c

+
i,↓ci+1,↓ + h.c

)
where, α is an anisotropic term (α = 1 make the Hamiltonian same as equa-

tion.1) Spin dependent hopping term breaks the spin rotational symmetry,

SU(2) and also the time reversal symmetry of the Hamiltonian [52, 76]. As

the SU(2) symmetry is broken, ground state is no more in Sz
tot = 0 sector,
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while the number sector is still fixed with n = Ntot. Thus, we work with

fixed number of particles without considering Sz
tot quantum number in the

DMRG calculation. The non-zero elements in each of the DMRG iteration

increases quite considerably (∼ 109) with increase in max value and length of

the system, which affects the accuracy and convergence of the DMRG calcu-

lation. Due to this, in this section, we have carried out DMRG calculations

with max=450 and for system length, L = 96. We have, however, checked

our results with the exact diagonalization results for smaller system sizes.

Our DMRG calculations are with the parameters, U = 2, Va = 2, Vr = 0.1,

Vd = 0.2, t′ = 0.4 and varying α values. For these parameter values with

α = 1, the system is found to be in TSF phase.

Interestingly, we find that the TSF phase is suppressed, while on the

other hand, the SDW phase is dominated by spin-dependent hopping. As

shown in Fig.4.18(a), the pair correlation function, P (r), decays algebraically

for α & 0.6 ± 0.1, showing clearly that the TSF phase is sustained by spin

dependent hopping, while for α . 0.6 ± 0.1, the pair correlation decays

exponentially. With lower values of α, spin-spin correlation function, S(r),

has nearly quasi long range order for α . 0.6±0.1 (Fig.4.18(b)). In the inset

of Fig.4.18(a), we show spin density profile, 〈szi 〉 with site index i. As can be

seen, the 〈szi 〉 takes finite values for α = 0.4, however, it vanishes for α = 1.0.

For lower values of α, the down-spin becomes reluctant to hop between legs

of triangle, thus promoting SDW phase while suppressing TSF phase in the

ladder system.
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4.4 Conclusion

To conclude, in this chapter, we have investigated the SDW, TSF and CDW

phases of dipolar fermions, at half filling, on a triangular ladder. In presence

of moderate values of repulsive onsite interaction and attractive intersite in-

teractions, the fermions form exotic spin triplet superfluid phase. In presence

of intersite attractive interactions, and onsite repulsive interaction, a charge

density wave phase is found even without any intersite repulsive interactions.

We have demonstrated the stability of spin triplet phase, by introducing in-

ter leg hopping, which effectively enhances the spin triplet superfluid phase

region by replacing the spin density wave phase. In presence of repulsive

interactions, we show transition between TSF phase and a CDW phase. We

also have looked at the effect of three-body interactions on the TSF and CDW

phases. We find that the three-body term can introduce a fermionic super-

solid phase, where both TSF and CDW coexist. We strongly believe that

our study, which unravel the rich physics of exotic phases of dipolar-fermionic

systems in ultra-cold systems would show inroads for further experiments.
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150405 (2008).

[46] L. Bonnes and S. Wessel, Phys. Rev. B 83, 134511 (2011).

[47] R. D. Murphy and J. A. Barker, Phys. Rev. A 3, 1037 (1971).

[48] N. R. Cooper, Phys. Rev. Lett. 92, 220405 (2004).

[49] D. S. Petrov, Phys. Rev. A 67, 010703(R) (2003).
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Chapter 5

Breakdown of Electron-pairs in

a Superconducting Ring: Effect

of Electric Field∗

5.1 Introduction

The research on the strongly correlated low-dimensional systems and their

response to the external perturbations, e.g., applied field has been an ever-

growing area owing to their rich quantum phase diagram. Recent advance-

ments in experiments enable the realization of the quantum dynamics in

materials [1–4] and in the cold atom system [5–8] in non-equilibrium environ-

ment. Dielectric breakdown of Mott insulating phase in organic thyristor [3]

and one-dimensional systems, such as, Sr2CuO3 and SrCuO2 [4] has been

∗Work reported in this chapter is published in: B. Pandey, S. Dutta and S. K. Pati, J.
Phys.: Condens. Matter 28, 195601 (2016).
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realized experimentally in presence of strong electric field. There has been

report of photo-induced Mott transition in halogen-bridged Ni-chain com-

pound as well. In cold atom systems, such as, one-dimensional Bose gases,

the non-equilibrium dynamics of superfluids has been studied [6]. Three

dimensional fermionic optical lattices also exhibit band-insulator to metal

transition by controlling the interaction between atoms through the Fesh-

bach resonance [8].

Recently, breaking of electron-pairs, namely Cooper-pairs of supercon-

ducting system is shown experimentally by exposing it to photon flux [14].

At low enough temperature, superconductors are condensate of Cooper-pairs

which are sensitive towards the external perturbations. Motivated by these

experiments, here we study the breaking of electron pairs in superconduct-

ing rings, which can be realized experimentally [9, 10] along with the mea-

surement of their persistent current [11–13]. The superconducting rings are

described by the attractive Hubbard model. Here the net effective attractive

interaction forms the electron pairs, leading to superconductivity [16–18]. In

the real materials, the origin of this attractive interaction can also be due

to the coupling between electron and lattice, excitons or plasmons [19]. For

lower values of attractive interaction, electrons form BCS (Bardeen-Cooper-

Schrieffer) type of pairing with loosely bound pairs, while increase in at-

tractive interaction results in strong local pairing (BEC-limit (Bose-Einstein

condensate)) [20]. These strong-pairs that are similar to charged bosons can

condensate and give rise to superconducting state [19]. Therefore, supercon-

ductivity requires formation of electron pairs and phase-coherence between

the pairs.
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The external electric field induces fluctuation in these pairs and as the

field magnitude is increased, it eventually breaks the pairs. We have mod-

eled the external electric field in terms of time-dependent Aharonov-Bohm

(AB) flux and studied the non-equilibrium properties and time evolution

of many-body wave function, by using exact diagonalization and Crank-

Nicolson method. We found that the breaking of electron-pairs depends

on the strength of electric field and attractive interaction. We analyze this

depairing of electrons by flux-quantization of persistent-current, time average

current and pair-correlation function.

As is well known, the flux quantization [21,22] and the off-diagonal long-

range order [23] are the key characteristics of superconductors. The quanti-

zation of AB-flux has been observed experimentally in conventional [24, 25]

and in the high-temperature superconductors [26]. For the free electron sys-

tem, the quantized flux is φ0 = hc/e [27]. In case of superconductors, the

electron-pairing results in halved period, i.e., φ = φ0/2 [21,22,28–31]. Similar

phenomenon can be observed in case of repulsive Hubbard model for finite

size rings due to the spin degrees of freedom [32], even without superconduc-

tivity. This ambiguity has driven us to choose the more global approach of

extended-AB period method to detect the electron-pairing [18, 33, 34], since

this keeps track of the evolution of energy levels and the wavefunction as a

function of the flux over the extended-AB period (0 ≤ φ ≤ Lφ0) . In this ap-

proach, the quantized flux for the free electron system has been considered to

be Lφ0, where L is the total length of the system. However, electron-pairing

in superconducting state makes this extended-AB period halved, i.e., Lφ0/2

(for more detail about extended-AB period we refer to [34]). But whenever
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there is a formation of the density wave (charge or spin), this periodicity gets

confined within the lattice constant, i.e., φ0.

5.2 Model and numerical method

f = 4/10

f = 6/10

f = 8/10

f = 10/10

2 4 6 8 100

10

-10

0E

φ(t)/φ

(a) F

φ(t)

(b)

0

Figure 5.1: (a) The schematic of quasi-one-dimensional ring with 12 sites.
The time dependent perpendicular AB flux, φ(t) generates the circulating
electric field, F in the ring. (b) Time evolution of the non-interacting (U = 0)
ground state energy E, as a function of φ(t)/φ0, for F = 0.0005 with varying
filling factors f .

To investigate the behavior of these electron-pairs in presence of exter-

nal electric field, we consider the quasi-one-dimensional ring structure (see
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Fig.5.1(a)) and modeled the system within attractive Hubbard model,

H(t) = −γ
∑
i,σ

(
exp2πiφ(t)/N c†i+1,σci,σ + h.c

)
− U

∑
i

ni,↑ni,↓ (5.1)

where γ and U are the hopping term and the attractive onsite Coulomb

potential. c†i,σ (ci,σ) creates (annihilates) one electron with spin σ at i-th

site and n is the number operator. The electric field F has been included

in terms of time-dependent AB-flux, φ(t) = eFLt (see Fig.5.1(a)), N = L/a

denoting the number of sites, a is lattice constant and t being the time. We

set e = h = a = 1 and assume γ as the unit of energy throughout the paper.

Since, a = 1, L has been considered to be same as N in the following sections.

We consider different system lengths (L = 8, 10 and 12), with various fill-

ing factors f (f = ne/L), where ne is the number of electrons in the system).

Note that, we always consider same number of up and down spins to keep

the z-component of the total spin, stotalz as zero. In absence of electric field,

the above model results in superconducting ground state [15–19], while away

from half-filling. However, at half-filling the superconducting state becomes

degenerate with a charge density wave ground state. At half-filling, a large

enough negative value of |U | ensures the pairing of electrons at alternate

sites. Therefore, the ground state becomes alternate bound pairs and empty

sites, which constitutes a charge density wave (| ↑↓, 0, ↑↓, 0, ↑↓, 0...〉) [35]. For

finite values of U , the system has paring gap of the order of U , to spin ex-

citation. The degeneracy can be lifted by deviation from half-filling, which

essentially tilts the stability towards superconducting phase [19]. Note that,
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at half-filling, the repulsive Hubbard Hamiltonian, on the contrary, leads to a

Mott insulating phase, characterized by antiferromagnetic spin density wave

to avoid on-site pairing of electrons. Unlike the attractive U case, here the

spin sector becomes gapless, while opening up the charge gap.

We have adopted exact diagonalization method to solve the above Hamil-

tonian and to obtain ground sate wave function, |ψ(0)〉, at t = 0. Then we

evolve |ψ(0)〉 with time by solving the time-dependent Schrodinger equation:

i d
dt
|ψ(t)〉 = H(t)|ψ(t)〉. For the time evolution of |ψ(t)〉 at absolute zero tem-

perature, we adopt Crank-Nicolson’s algorithm which preserves the unitary

time evolution without divergence at large time limit. The time evolution

can be written as,

|ψ(t+ δt)〉 = exp−i
∫ t+δt
t H(t)dt |ψ(t)〉 '

1− i δt
2
H(t+ δt

2
)

1 + i δt
2
H(t+ δt

2
)
|ψ(t)〉 (5.2)

In this chapter, we have considered the time step, δt, to be small enough,

0.01 in units of ~/γ, for precise convergence of the wave-function. This unit of

time has been chosen to make the exponential dimensionless. Note that, each

time evolution step requires the computationally expensive matrix inversion

of the many-body Hamiltonian matrix. We adopt Davidson algorithm for

this purpose, which gives proper convergence.
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5.3 Results and discussion

First in this chapter, we have investigated the flux quantization of the ground

state energy and the current density as a response to the applied AB-flux with

varying filling factor, f and attractive potential. Then the effect of electric

field on the ground state has been studied to detect the superconducting to

metallic phase transition. This has been characterized by further calculations

on pair correlation function and the time averaged current.
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Figure 5.2: The time evolution of the interacting (U 6= 0) ground state energy
E, as a function of φ(t)/φ0, for F = 0.0005 with varying U for (a) f =4/10,
(b) f =6/10, (c) f =8/10 and (d) f =10/10.
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Figure 5.3: Time evolution of current-density, 〈J(t)〉, as a function of φ(t)/φ0

for F = 0.0005, with different values of U and filling factors (a) f =4/10, (b)
f =6/10, (c) f =8/10 and (d) f =10/10.

We have shown the time evolution of the ground state energy for inter-

acting case, as a function of AB-flux for very small, F , in Fig.5.2. As can be

seen, for non-interacting systems (Fig.5.1(b)), the periodicity is always equal

to the extended AB-period, Lφ0. Once the attractive interaction is turned

on, the periodicity becomes halved, i.e., Lφ0/2 in case of smaller f values

(Fig.5.2(a)), indicating superconducting ground state with the formation of
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electron-pairs. However, increase in f results in additional cusps, coexist-

ing with the halved extended AB-period (Fig.5.2(b) and (c)). These cusps

are signature of level anti-crossings, arising from the enhanced degeneracy in

the system with higher number of electrons [18,34]. These degenerate states

are connected via two-particle scattering processes along with the Umklapp

processes [34]. Once the system attains half-filling (f = 1), the periodicity

reduces to φ0 (Fig.5.2(d)), as the system forms charge density wave phase,

with pairing up of two electrons with opposite spins at alternate sites under

the influence of attractive U [34, 35].

For further characterization of flux quantization, we investigate the cur-

rent density as a function of the applied AB-flux. The current density oper-

ator is defined as.

J(t) = −γ
∑
i,σ

i
(
exp2πiφ(t)/N c†i+1,σci,σ − h.c.

)
(5.3)

In Fig.5.3, we show the time evolution of the current density as a function

of φ(t) = FLt. Note that, the current density is the change in the slope of

energy with respect to the flux. Therefore, one can find direct correspondence

between the energy and the current density plots as a function of flux (see

Fig.5.2 and Fig.5.3). As expected, the < J(t) > shows extended AB-period

for non-interacting system. The fractional periodicity [37, 38] in the current

(see Fig.5.3(b) and (c)) corresponds to the cusps of energy. The coexistence of

superconducting state, characterized by the halved period and the fractional

periodicity can also be seen from < J(t) > plot for f < 1. Note that,

due to the finiteness of the one-dimensional system, the kinetic energy of
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the electron-pairs tries to break the pairing and leads to the formation of

fractional periodicity. Therefore, increase in system length or the increase

in attractive potential, U can lead to stable superconducting ground state

with improved half-periodicity [36]. This behavior is clearly visible from U

dependence of current density in Fig.5.3.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

<
J

(t
)>

f = 6/8 f = 6/10 f = 6/12(a) (b) (c)

0 2 4 6 8 10 120 2 4 6 8 100 2 4 6 8

φ(t)/φ
0

φ(t)/φ
0

φ(t)/φ
0

Figure 5.4: Time evolution of current-density, 〈J(t)〉 as a function of φ(t)/φ0

for F = 0.0005, U = 2, and different system sizes (a) L = 8, (b) L = 10, and
(c) L = 12 with fixed number of electrons ne = 6.

Furthermore, we show current density in Fig.5.4, by systematically in-

creasing the system size for a fixed number of electrons, ne = 6 and fixed

U = 2.0. As can be seen, with gradual increase in system size from 8 to 10 to

12, the halved periodicity becomes smoother and the fractional periodicities

gradually disappear [36].

Next, we investigate the effect of electric field on the ground state of su-

perconducting ring consisting of 12 sites with filling factors f = 1/3 and 1/2.

In Fig.5.5, we show the current density as a function of φ(t) = FLt for vary-

ing attractive potential, U and strength of electric field, F . As can be seen
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Figure 5.5: Time evolution of current-density, 〈J(t)〉 as a function of φ(t)/φ0

with varying electric field strength, F for different values of attractive inter-
action, (a)U = 0.5, (b) U = 1.0, (c) U = 1.5 and (d) U = 2.0.

in Fig.5.5(a), the superconducting ground state (characterized by halved ex-

tended AB-period) undergoes the transition to metallic phase (characterized

by the extended AB-period) even in case of weak electric field. This is due to

fact that, the presence of weak U forms loosely bound electron pairs which

can easily be broken. However, the gradual increase in U strengthens the

electron-pairs and the system requires stronger electric field for the super-

conducting to metallic phase transition (see Fig.5. 5(b), (c) and (d)). The
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fractional periodicities also disappear, owing to the fact that, the applied

electric field closes up the gaps at level anti-crossings, allowing the spectral

flow.

For further characterization of this phase transition, we investigate the

time evolution of the pair-correlation function, which is given as follows [39],

P (r) = 〈c†1,↑c
†
1,↓cr,↓cr,↑〉 − 〈c†1,↑cr,↑〉〈c

†
1,↓cr,↓〉 (5.4)
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Figure 5.6: Pair correlation P (r) as a function of r, for a quasi-one-
dimensional ring with N = 12 and with different attractive interaction
(U = 0.0 (circle), U = 0.5 (square), U = 1.0 (diamond), U = 1.5 (upper-
triangle), U = 2.0 (lower-triangle)) for different filling factors (a)f = 4/12,
(b) f = 6/12, (c)f = 8/12, and (d)f = 10/12.
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distance r, for the 12 site ring with U = 2.0 and filling factors (a)f = 4/12
and (b) f = 6/12 with electric field strengths F = 0.0005 (top panel) and
0.5 (bottom panel). The color bar represents the numerical values of 〈P (r)〉.

First, we have calculated the pair-correlation function P (r), for static

case (φ = 0.0). In Fig.5.6 we have shown plot of P (r) as a function of r for

different values of U and different filing factors. We have calculated P (r)

for 12 sites fermionic ring, but due to periodic boundary condition we have

shown P(r) only for 6 sites. It is known that, the quasi long-range order of

the pair-correlation function is indicative of the superconducting phase at

low-dimension [39]. As shown in the Fig.5.6, values of P (r) increase with

attractive interaction U , which indicates the formation of strong electron

bound pairs and increase in phase-coherence within pairs. On the other

hand, in metallic case it takes either zero or very small nonzero values.

We have presented the expectation value of pair-correlation, 〈P (r)〉 as a
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function of distance r and AB flux, φ(t), in Fig.5.7 for two different electric

field strengths, e.g., F = 0.0005 and 0.5 and for different filling factors. In

presence of weak electric field, 〈P (r)〉 shows periodic behavior (see top panel

of Fig.5.7) with short-range order corresponding to the energy maxima at

quarter of the extended AB-period. This may occur due to the loss of phase

coherence between the bound pairs and subsequent diminished superconduc-

tivity at those flux values. However, the long-range order persists even at

large time regime, showing the existence of superconducting phase. On the

contrary, in presence of strong electric field, the 〈P (r)〉 approaches to zero

at higher φ(t) = FLt values (see bottom panel of Fig.5.7), indicating the

breakage of Cooper-pairs. This proves the superconducting to metallic phase

transition. Note that, the value of 〈P (r)〉 does not go to its ideal value of

zero due to probable finite size effect.
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Figure 5.8: Plot of time-averaged current, 〈J〉 as a function of FL for different
values of attractive interaction U with filling factors (a) f = 4/12 and (b)
f = 6/12.

To gain further insight, we calculate the time-averaged current as given

below [40],
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〈J〉 = 1

T

∫ T

0

〈J(t)〉dt (5.5)

with integration over quarter of the extended AB period (φ(t) = L/4) and

plot that as a function of FL in Fig.5.8. As we have discussed before, the

increase in applied electric field breaks the electron-pairs and that can cause

the increase in the induced current. As can be seen from Fig.5.8(a) and

(b), at lower values of FL, the induced current does not increase initially.

However, beyond a certain critical strength of FL, the 〈J〉 starts increasing.

The critical value of FL increases with the increase in the strength of the

attractive potential, U . That necessitates the application of stronger FL

to trigger the superconducting to metallic phase transition. Note that, at

higher FL regime, the 〈J〉 gets saturated mainly depending on the available

conduction electrons. All these observations are consistent for different filling

factors.

5.4 Conclusion

To conclude, in this chapter, we have studied the time-dependent non-equilibrium

properties of quasi-one-dimensional superconducting ring under the influence

of external electric field and the corresponding flux quantizations of energy

and current density. We present the numerical results of the systems with

varying length and filling factor. At half-filling, the formation of the charge

density wave ground state restricts the AB-period within the lattice constant.

Hole doping leads to superconducting ground state with halved extended
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AB-period, although with fractional peaks, owing to the level anticrossings

of degenerate states. Further increase in hole doping reduces the degeneracy

and fades away the fractional periodicity. We observe that, the applied field

breaks the electron-pairs, namely the Cooper-pairs in these rings, driving the

system from a superconducting to a metallic phase. The required strength

of this applied field depends on the strength of the attractive interaction po-

tential. Our study on the non-equilibrium behavior of the superconducting

rings will drive further experiments to explore the rich phase diagram of the

strongly correlated low-dimensional systems under external perturbations.
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[10] H. Küpfer, G. Linker, G. Ravikumar, et al., Phys. Rev. B 67, 064507

(2003).

135



Bibliography 136
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Chapter 6

Quench Dynamics of One

Dimensional Dipolar Fermions:

An Exact Diagonalization

Study∗

Recent advancement in ultracold atomic gases provides promising platform

for studying non-equilibrium physics of quantum many-body phenomena [1].

The perfect isolation from environment, high degree of controllability and

tunability of ultracold atomic gases, allow us to probe non-equilibrium dy-

namics of isolated quantum systems [2]. Ultracold atomic gases are prepared

in high vacuum conditions and the system remains perfectly decoupled from

any kind of heat bath. This, in fact, prohibits energy exchange with the

∗Work reported in this chapter is under preparation for submission (Bradraj Pandey
and Swapan K. Pati)
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environment and the systems thereby remain perfectly isolated and thus en-

ergy is conserved. These systems can be considered as ideal tool to study

non-equilibrium dynamics of closed quantum many-body phenomena. These

systems also give opportunity to explore coherent dynamics, dynamics of

quantum phase transitions, thermalization of closed systems, dynamics of

quantum magnetism and many other exotic dynamical phenomena [3–5].

The most popular way to study non-equilibrium physics of the exper-

imental ultracold atomic gases is to consider giving quantum quenches to

the systems [6, 7]. The quantum quench can be produced in the system by

suddenly changing, one of the Hamiltonian parameters. The initial wave-

function of the system is evolved under the influence of final Hamiltonian,

where the parameter responsible for dynamics has been changed. The sud-

den quench approach provides understanding of thermalization processes of

the isolated quantum many-body system, as the system evolves with time.

In a recent experiment, on three dimensional ultra cold Bosonic atoms in

optical lattice, collapse and revival of the Bose-Einstein condensate has been

found [7]. System was initially prepared in a superfluid ground state, there-

after a sudden quench took the system to the Mott insulator phase. The

sudden quench here was carried out by suddenly increasing the lattice inten-

sity. A dynamical multiple matter wave interference pattern was observed,

where after a short time, the interference pattern vanishes and again the

interference pattern appears after time (τ = 2π/Uf , Uf is the final changed

onsite interaction). This revival and collapse of interference pattern initially

oscillates with period τ = 2πn/Uf , then it relaxed to a thermal steady state.

Another interesting experiment for a integrable bosonic system, consisting of
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an array of trapped one dimensional Bose gas has been carried out. In this

experiment, the long-time non-thermal behaviour of momentum distribution

was observed [8].

Recently, various theoretical studies on integrable and nearly integrable

Hamiltonians, have been carried out for one dimensional systems. Approxi-

mate methods like, the mean field, renormalization group based approaches

are insufficient to explore the non-equilibrium dynamics of quench systems,

as dynamics of such systems require knowledge of higher excited states. For

1D systems, exact analytical and numerical methods are available to explore

the non-thermal behaviour of integrable systems. In case of nonintegrable

quantum systems in 1D, the thermalization process is quite subtle. The

quench dynamics of nonintegerable Bose-Hubbard model was shown by us-

ing exact diagonalization (ED) and time dependent renormalization group

(t-DMRG) methods [9]. By changing the onsite interaction parameter sud-

denly, the system has been quenched from superfluid to Mott phase. In fact,

they found that by changing the final interaction parameter to a large value

(U >> t), the system reaches to non-equilibrium states, carrying the mem-

ory of initial ground states. On the other hand, for final interaction strength

comparable to hopping strength (i.e U ∼ t), the system shows thermalized

behaviour [9]. For strongly correlated spinless fermionic system in one di-

mension, relaxation dynamics was shown by using adaptive t-DMRG [10]

method. There, they found that, irrespective of integrability of Hamilto-

nian, if the difference between initial and final quenched states is large, the

system shows non-thermal behaviour and relax to a quasi-stationary state.

On the other hand, if the initial and final states are close in energy, then
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the system gets thermalized, and the initial state loses its memory [10]. In

another interesting work on relaxation dynamics of antiferromagnetic order

in spin-1/2 anisotropic Heisenberg model has been carried out, using infinite

size time evolving block decimation (iTEBD) method [11]. In this method,

they found that, relaxation dynamics depends on the value of anisotropy pa-

rameters (∆), and near the critical point (∆ = 1) the system shows minimal

relaxation time.

In this chapter, we have studied the quench dynamics of one dimensional

fermionic dipolar system, by using exact diagonalization method coupled

with Crank-Nicolson algorithm. We have modeled our system with long

range extended fermionic-Hubbard model. We have prepared initial state

in a charge density wave (CDW), and then quench to a spin density wave

state, by changing the onsite interaction parameter. We find that dynamics

of the initial state depends on the final onsite interaction parameters. For

large values of onsite interaction parameters, the system retains the memory

of initial state and shows non-thermal behaviour. We also find that near the

critical point the system relaxes very fast and shows thermal behaviour.

6.1 Model and numerical method

We consider two-component (pseudo-spin-1/2) dipolar fermions in a 1D lat-

tice at half-filling. The effective Hamiltonian of the system can be written

as,

H = J
∑
σ,i

(
c†σ,icσ,i+1 + h.c

)
+ U

∑
i

n̂i,↑n̂i,↓ +
∑
〈i6=j〉

V (i, j)ñiñj (6.1)
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where cσ,i is the annihilation operator with spin σ =↑, ↓ at site i. Here

↑ and ↓ states refer to two hyperfine states of dipolar atoms or molecules.

ñ = (n̂− 〈n〉) where n̂ is the number operator and 〈n〉 = 1 as it is half filled

system. J is the hopping term and U is the onsite interaction term; V (i, j)

is the long range interaction term, which decay as 1/r3 with distance r.

The equilibrium phase diagram of this model is quite well known [12]. For

positive values U and V , in case of U > 2V , the ground state is a spin-density

wave (SDW), whereas, for U < 2V , the ground state is a charge density wave

(CDW) [13]. In the CDW-phase, the system has both charge and spin gap,

while on the other hand, in SDW phase, the spin excitations are gapless but

charge sector is gapped. Near the U ∼ 2V , where charge gap is minimum, an

intermediate bond order phase (BOW) appears, due to competition between

U and V [14].

To study the quench dynamics of the system, we have changed the initial

onsite parameter, Ui to a final value of, Uf , abruptly. To obtain the initial

wave function, |Ψ(0)〉 in the CDW phase, we keep the interaction parameters

U = 0, and V = 4. By using the exact diagonalization method, we diago-

nalize the initial Hamiltonian Hi = H(J, V ) for system size L = 12 at half

filling. To produce quench in the system, we have changed suddenly the on-

site parameter U ; thus, the final Hamiltonian becomes, Hf = H(J, V, Uf ). To

obtain the non-equilibrium dynamics, we evolve initial wavefunction, |ψ(0)〉,

in the influence of final Hamiltonian Hf : as Ψ(t)〉 = exp (−iHf t)|ψ(0)〉. For

the time evolution of |ψ(t)〉 at absolute zero temperature, we adopt Crank-

Nicolson’s algorithm which preserves the unitary time evolution without di-

vergence at large time limit. For precise convergence of the wave-function,
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the time step δt has been considered to be very small (0.006 in units of ~/J).

This unit of time has been chosen to make the exponential dimensionless.

6.2 Results and discussion
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Figure 6.1: Plot of double occupancy d(t), with time, t (in units of ~/J), for
different final values of Uf .

To study the non-equilibrium quench dynamics of initial CDW phase

state with time, we have calculated the time dependent correlation functions

and local observables, like double occupancy and number fluctuations. We

choose initial parameter V = 4, J = 1 and U = 0, which is in the CDW phase

with configuration of the type: |202020..〉. The density-density correlation

function, C(r) = 〈(ni−ñ)(nj−ñ), shows long range behaviour with distance,
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r. Then at t = 0, we changed the onsite parameter, U , suddenly to different

values. In Fig.6.1, we have shown the time evolution of the double occupancy

d(t) = 1
L

∑L
i=1〈ni↑nj↓〉 [15], with time t, for different values of Uf . We find

that for U = 8.0 (near the critical point, U = 2V ), double occupancy relaxes

very fast (τ = 1/J) and loses memory of the initial wavefunction (in CDW-

phase). For large values of U , double occupancy relaxes to a quasi-stationary

state, which oscillates with time period of the order of 1/Uf . This quasi-

stationary state bears strong memory of initial CDW state. Interestingly,

for Uf = 4 (U < 2V ), the system also relaxes to quasi-stationary state.
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Figure 6.2: The density-density correlation function C(t), for two distances
(r = 1 and r = 9) as a function of time, t (in units of ~/J), for different final
values of onsite parameter (a) Uf = 4.0 (b) Uf = 8.0 (c) Uf = 16.0 and (d)
Uf = 32.0.
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In Fig.6.2 we have shown time evolution of density-density correlation

function, C(t), with time for distances r = 1 and r = 9. We find that

nearest neighbour correlation (r = 1), show very similar behaviour with

double occupancy, d(t), while r = 9 shows slightly different behaviour. The

correlation function, C(t), decreases very fast near the critical point, Uf =

8.0. For distance r = 9, the correlation function approaches zero within

t = 1 (Fig.6.2(b)), which shows it completely loses the memory of initial

wavefunction. On the other hand, for larger values of Uf , the correlation

function retains almost the initial values (Fig.6.2(d)), with oscillation with

period ∼ 1/Uf , indicating strong memory of initial wavefunction.

To find the presence of SDW phase after the sudden quench, in Fig.6.3,

we have plotted the time evolution of spin-spin correlation function S(t) =

〈Sz
i S

z
j 〉 for distances r = 1 and r = 9 for different Uf values. As shown in

the Fig.6.3(b), for Uf = 8.0, the correlation function S(t), for distance r = 1,

rises very sharply. The correlation function at distance r = 9, takes non-zero

values after t > 2.

The sharp rise in S(t) and fast relaxation of C(t), indicates that the

system has reached the thermal equilibrium. The initial CDW state loses its

memory and the system goes over to SDW phase near to the critical point

of (CDW-SDW phase transition). On the other hand, away from critical

point (U > 2V ) depending upon the values of Uf , the long distance (r = 9)

correlations, S(t) and C(t), both takes non-zero values for moderate values of

Uf . While for very large values of Uf , S(t) takes very small non-zero values,

indicating strong memory of initial wavefunction and presence of CDW phase

in the system, for longer time, t.
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Figure 6.3: The spin-spin correlation function S(t), for two distances (r = 1
and r = 9) as a function of time, t (in units of ~/J), for different final
values of onsite parameter (a) Uf = 4.0 (b) Uf = 8.0 (c) Uf = 16.0 and (d)
Uf = 32.0.

6.3 Conclusion

In conclusion, we have studied the quench dynamics of fermionic Hubbard

model with dipolar interactions at half filling. The quench has applied to

the system by sudden change of the onsite parameter, U . We find that

near the critical point, Uf ∼ 2V , the system relaxes very fast and loses its

initial memory, while away from the critical points, after quench, depending

upon the values of Uf , it retains memory of the initial wavefunction. This

behaviour can be understood by the nature of the charge gap of the system.
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Due to competition between onsite interaction U and long range interaction

V , near the phase boundary the charge gap becomes minimum near the phase

boundary, which leads to fast relaxation of the system. On the other hand,

away from critical point the charge gap increases, which prevents the system

from thermalization, and this ensures that the system carries the memory of

the initial wavefunction [11].
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Chapter 7

Summary and Future Outlook

7.1 Summary

To conclude, in this thesis, we have studied various quantum phases that

occur in low dimensional fermionic and bosonic quantum gases, mainly due

to dipolar interactions. We have found various exotic quantum phases, like,

pair-superfluids of Bosons, spin-triplet superfluid of Fermions and fermionic

supersolid phase, which would shed light on the understanding of various

types of pairing phenomena occurring in low-dimensional strongly correlated

quantum systems. We also believe that our study, which would certainly

unravel the rich physics of exotic phases of dipolar-Fermions and Bosons in

ultra-cold systems, would show inroads for further experimental studies.

In chapter one we have discussed briefly, about various type of quantum

phases of fermionic and bosonic quantum gases in optical lattices. We have

also discussed the recent progress in experimental studies in the field of ul-

tracold atomic systems. In the 2nd chapter, we have discussed at length the
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development of numerical quantum many body methods, like, exact diagonal-

ization for time independent and time dependent quantum many body model

Hamiltonian, density matrix renormalization group (DMRG) and adaptive

time dependent density matrix renormalization group (t-DMRG) methods.

In chapter three and four, we have studied the equilibrium phase diagram

of bosonic and fermionic dipolar gases, where exotic paired phases, like, pair-

superfluid of Bosons and Fermions (in spin-triplet states) have been found. In

chapter three, the complete phase diagram of hard core Bosons with dipolar

interactions have been elucidated.

In chapter five and six, we have studied the non-equilibrium dynamics by

using exact diagonalization method coupled with Crank-Nicolson algorithm.

In chapter five, we have studied the break down of electron pairs in a finite size

superconducting ring by varying the strength of onsite attractive interactions

and time dependent flux. The interplay between these parameters reveal the

strength of the Cooper pairs and the mechanism by which the breakdown

occurs. In chapter six, we have studied the quantum quench dynamics of 1D

dipolar Fermions, the thermalization and memory effects, when the system

is brought abruptly from the charge density wave phase to spin density wave

phase.

7.2 Future Outlook

We shall extend the existing ground state phase diagram obtained in chap-

ter 3 by including the effect of hopping along the rungs of the ladder. In

future, we also plan to extend the nature of dipolar interactions, by changing
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the directions and angle along the legs of the triangular ladder, studied in

chapter 4. This way, we expect to obtain different type of paired phases

along the legs of the ladder. We are also studying the quench dynamics of

the 1D dipolar Fermions with different Hamiltonian parameters than what is

considered in chapter six and SDW to CDW and the s-wave superconductor

to SDW phases. The t-DMRG method, developed in house, will be used in

future to study various time-dependent and non-equilibrium phenomena, for

low dimensional systems with long-range interactions.


