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Synopsis

Technological growth is usually enabled and nurtured by the discovery of materials

that exhibit excellent properties and can be grown readily. With advances in sci-

entific theories, computational algorithms and resources, materials can be designed

and their responses to external stimuli can be determined through computer simu-

lations based on fundamental principles of physics. With these advances, computer

simulations have become important in understanding and complementing experi-

ments. In this end, first-principles density functional simulations have become pow-

erful tools to obtain the accurate estimates of the properties. They permit prediction

of the stability of new materials and their properties under the influence of external

stimuli, providing access to atomistic information that is not readily accessible to

experiments.

The thesis is broadly divided into three parts based on the kind of materials

studied here. The first part (chapter 3) focuses on the theoretical analysis of how

line defects (i.e. grain boundaries) influence the properties of 2D h-BN. The second

part (chapter 4, 5, 6), focuses on detailed analysis of group VI transition metal

dichalcogenides (TMDCs) in their bulk and two dimensional forms. In this part, we

study various polymorphs of group-VI TMDCS, their structural phase transition,

point defects, and effects of external pressure on their properties. The third part

(chapter 7) presents a study of black phosphorous under pressure and effects of

carrier doping on its vibrational properties.

Our simulations bridge the gap between theory and experiment, and allow us to

access the information which is not readily available to experimental techniques. For

example, with these calculations, one can focus on (1) a given type of defects at a

time and study their effect on properties (first part of the thesis) and (2) effects of

vii



carrier doping on electron-phonon coupling of phosphorene, which are useful char-

acterization of the concentration of doping in devices. We highlight the usefulness

of our work in developing a better understanding of experimental observations.
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Chapter 1

Introduction

With emergence of two-dimensional materials marked with the experimental isola-

tion of graphene by mechanical exfoliation of graphite in 2004 [2], the research field

of 2-dimensional layered materials has witnessed a remarkable expansion with in-

tense activity. Graphene and other 2-dimensional materials, such as transition metal

dichalcogenides (TMDCs), hexagonal boron nitride, phosphorene, etc. have received

tremendous attention in the fields of material science, nano-electronics, photonics,

and energy technologies. In the bulk form, these materials have layered structure

consisting of few-atom-thick sheets stacked and held together by weak van der Waals

forces which allow their isolation into single 2D-layer or sheets. The family of 2D

layered materials exhibits metallic, insulating, semiconducting and superconducting

properties [3–6, 8–11, 195], which make it possible to realize various electronic and

optoelectronic devices, giving rise to many new device concepts and theories.

Graphene is a semimetal with excellent electronic and thermal conductivity.

With its high transparency due to monolayer thickness, graphene would be one

of the best candidates for transparent conductors and electrodes [12]. Its pecu-

liar electronic structure provides a platform to study various physical phenomena,

such as massless Dirac fermions and anomalous room-temperature quantum Hall

1
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effect [13,14]. While the high carrier mobility of graphene is well suited for making

field effect transistors (FETs), their on-off ratio is too low due to the vanishing band

gap graphene [15]. This essentially means that there is need for other 2D materi-

als with a finite band gap and high mobility which are suitable for nano-electronic

devices. In this thesis, we investigate 2D materials beyond graphene using first-

principles calculations and compare our results with experiments.

Semiconducting 2D materials such as TMDCs form another family of materi-

als that offer very promising properties. Unlike graphene which is a semimetal

and therefore unsuitable for digital electronics, these atomically thin layers pos-

sess a sizeble band gap which makes them suitable for building active electronic

devices such as a field effect transistor, a basic unit of logic circuits and proces-

sors. The family of transition metal dichalcogenides (TMDCs) covers the need for

2D layered semiconductors with a vast spectrum of properties. Nowadays, these

materials are particularly highlighted as the integrated circuit industry based on

Si-MOSFET is approaching the limits of down-scaling, which has been used over

decades to improve the processing power per unit area. 2D semiconducting TMDCs

are considered to be a potential solution due to their ultrathin thickness, which

allows efficient modulation of the carrier transport. Moreover, the direct band gap

of monolayer TMDCs guarantee promising applications in optoelectronics, like light

emitting diodes (LEDs) and photodetectors [16,17]. In addition, owing to the broken

inversion symmetry of the crystalline structure of monolayer TMDCs, the spin-valley

coupling leads to realization of novel spin-tronic and valley-tronic devices [18, 19].

In contrast to graphene, the on-off ratio of FETs made of TMDCs is sufficiently

high [20]. However, the carrier mobility of TMDCs is relatively low, partly due to

the localized d-electrons in the valence bands of the transition metal elements [21]

and also the defects that are common in as-grown samples. Alternative 2D materials

are still constantly sought for addressing these issues.



3

Few layers of black phosphorous is a relatively new member of the family of

2D materials with unique properties. Unlike gapless graphene, black phosphorous

is a direct band gap semiconductor with gap ranging from 0.3 eV in bulk to 2 eV

in monolayer [22–24], covering a wide range of electromagnetic spectrum. This is

in contrast to TMDCs which exhibit a direct band gap of ∼ 1 to 2 eV only in

their monolayer form. The narrow gap of black phosphorous (in few layer form)

bridges the gap between the zero band gap graphene and large band gap TMDCs,

making BP a suitable for mid infrared optics [25]. For possible applications in elec-

tronic devices, black phosphorous offers a good possibility with mobility of ∼ 1000

cm2/V-sec at room temperature and on-off ratio of ∼ 105 with excellent current

saturation [26]. Theoretically, much higher mobility (up to 105 cm2/Vs) has been

predicted for monolayered phosphorene [27]. With improved defect control and in-

terface engineering, the mobility is expected to be further improved. If the issue with

their stability in air can be adequately addressed, the few layers of phosphorene and

black phosphorous could be potential candidates for next generation nanoelectronic

applications.

This thesis is divided into three parts based on the 2-D materials studied. The

first part focuses on the theoretical analysis of how line defects (i.e. grain bound-

aries) influence the properties of 2D h-BN and graphene. The second part presents

on a detailed analysis of group VI transition metal dichalcogenides (TMDCs) in

their bulk and two dimensional forms. In this part, we study various polymorphs

of group-VI TMDCS, their structural phase transitions, point defects, and effects of

external pressure on their properties. The third part presents a study of black phos-

phorous under pressure and effects of carrier doping on its vibrational properties.

Our simulations studies bridge the gap between theory and experiment, and allow

us to access the information which is not readily available to experimental tech-

niques. We highlight the relevance of our work in developing better understanding
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of experimental observations.

This thesis mainly focuses on effects of defects and external field on the mate-

rials studied here, and uses first-principles calculations effectively to determine and

understand these effects on materials’ properties.

1.1 Defects

Defects mean any region where the microscopic arrangement of atoms differs dras-

tically from that of a perfect crystal. Defects are inherently present in materials,

that appear during synthesis or treatment of material [28–30], and can have notable

effects on a range of properties of the materials, such as electronic, optical, thermal

properties, mechanical strength, electrical conductivity, corrosion and chemical reac-

tivity. For example, mechanical strength and ductility of metals are determined by

defects whereas electrical conductivity and thermal conductance of semiconductors

are controlled by defects [31].

Defects are classified as planar, line, or point defects, depending on whether the

imperfect region is bounded on the atomic scale in one, two or three dimensions.

There are two types of defects (i) intrinsic and (ii) extrinsic defects [32]. Defects

which appear as thermodynamic effects, and increase in number and size with in-

creased temperature are known as intrinsic defects. Extrinsic defects are the ones

which arise from the deviation in stoichiometry and do not necessarily depend on

temperature. Intrinsic defects include point defects (vacancies), line defect (disloca-

tions), grain boundaries, stacking and growth faults. In the structures with reduced

dimensionality, the types of defects are fewer, and their effects become more pro-

nounced in 2D materials. Due to their relevance to the technological applications,

we have studied the grain boundaries and in hexagonal boron nitride (h-BN) [3]

and planar defects in Group-VI transition metal dichalcogenides (TMDCs) [4]. We
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identified the signatures in electronic and vibrational properties of these materials.

Grain boundaries or interfaces in 2D materials appear naturally during the

growth of these materials [30]. At these interfaces, the atomistic structure devi-

ates from the perfect crystal structure and leads to changes in electronic and optical

properties [3, 30]. Grain boundaries lead to out-of-plane deformation of the flat 2D

structures [3, 33]. h-BN has a tendency to form ripples or wrinkles in the presence

of these interfaces. “Planar” defects are normally found in MX2 type compounds

whose single layer consists of 2-3 atomic planes (e.g. MoS2). Planar defects can

be introduced by sliding one atomic plane (out of 2-3 planes) with respect to the

rest (keeping the other layers fixed) [4]. These planar defects introduce a structural

transformation to 1T form, and gives rise to metal to semiconductor phase transi-

tion only in group IV MX2. This 1T structural form shows interesting ferroelectric

properties which can be utilized for device formation. In another work, we show

how point defects (anion-deficiency) affect electronic and thermoelectric properties

of MoTe2.

1.2 Effect of External Field

External field (e.g . electric field induced charge doping and pressure) can be im-

portant in tunning the properties of nano-materials. Tunning these parameters or

fields affect the performance of the devices like field effect transistors and sensors.

Within experimental work alone, it is difficult to identify such effects of external

field on these materials. Hence, theoretical study plays a important role in obtain-

ing fundamental insights (electronic scale to macroscopic properties) of materials.

For example, black phosphorous shows structural phase transition under external

applied pressure whereas MoTe2 undergoes electronic topological transition. Hy-

drostatic pressure changes the crystal structure of black phosphorus and modifies
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its electronic properties. As the most stable known allotrope of phosphorus, black

phosphorus exhibits transition to three different phases under moderate high hydro-

static pressures: the orthorhombic phase with wrinkled hexagons, the graphene-like

rhombohedral phase with hexagonal lattice for pressures P > 4.5 GPa, and the

simple cubic phase with each P atom being in the octahedral center of other six P

atoms for P > 10.3 GPa. In contrast, MoTe2 is remarkably robust and remains in

the same structure upto 30 GPa, but shows isostructural and electronic topological

transitions which are discussed in detail in this thesis. In our work on electron/hole

doping in phosphorene, we explain the observed asymmetry in changes in properties

with respect to electron and hole doing [6].

1.3 Why First-principles Theoretical Study?

Density functional theory is a powerful tool to determine the electronic ground state

and predict structural properties of crystals, molecules and surfaces. For example a

line defect in carbon nanotube was theoretically predicted using density functional

theory [33], which was later verified experimentally [30]. This shows how the the-

oretical prediction and analysis of defects can facilitate experimental observation

of these defects, and identify which properties of a material are affected by these

defects. With these simulations one can focus on specific type of defects at a time

and their interactions can also be studied, which is hard to access experimentally.

We can control doping concentration with the help of these simulations, and avoid

unintentional doping whereas the characterization of doping concentration is not

straightforward experimentally. We can determine the effects of particular type of

doping (hole/electron) on vibrational modes which is crucial information for ex-

perimental characterization (e.g. Raman spectroscopy) of nano-electronic devices.
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We can access pressure dependent phase transitions associated with changes in elec-

tronic structure such as semiconductor to metal transition and topological transition

(Lifshifz transition), while the electronic spectroscopy is tricky in experiments on

materials under pressure.

1.4 Overview of the Thesis

The objective of this thesis is to determine physical properties and the behavior of

2D as well as bulk materials with and without structural imperfections or defects

using first-principles theoretical calculations and explain experimental observations.

The materials studied here are not only technologically important, but are also

fundamentally interesting as they exhibit unusual phenomena involving physics of

coupled electrons and phonons.

After a brief introduction, I emphasize the motivation and central ideas in this

chapter. In chapter 2, I present a brief overview of the formalism and first-principles

density functional theoretical methods used in this work. This thesis is organized in

three parts based on the layered materials investigated.

Part I: 2D h-BN

In chapter 3, we determine the structure of grain boundaries (GBs) or faults, and

study their effects on the electronic and vibrational properties of h-BN. As grain

boundaries in graphene are well studied, we compare our results obtained for h-

BN with those on graphene. We first present the schemes of classification and

construction of GBs in 2-D h-BN and graphene in terms of (a) stacking faults and (b)

growth faults. We show that a stacking fault involves linked rhombi and octagonal

rings (4:8), and while a growth fault involves linked pentagonal and octagonal rings

(5:5:8). While a growth fault is energetically more stable than a stacking fault in
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graphene, the polarity of B and N results in reversed ordering of their stability in

h-BN. Our analysis leads to prediction of new types of low-energy GBs of h-BN and

graphene. At the fundamental level, we show that the planar structure is unstable

with respect to buckling (out-of-plane deformation) that originates at the GB, which

results in the formation of a wrinkle (short length scale buckling) at the GB as well

as rippling (long length scale buckling) of the structure. We predict the variation in

Raman and IR spectra as signatures of these GBs, and present scanning tunneling

microscopy (STM) images, that would facilitate experimental characterization and

validation of our theoretical predictions.

Part II: Group VI Transition Metal Dichalcogenides

Monolayered transition metal dichalcogenides (MX2, M= Mo, W and X= S, Se) are

two-dimensional semiconductors exhibiting interesting physical and chemical prop-

erties, and have the potential to be used in nano-electronic devices. Among the

1H and 1T structural forms exhibited by monolayers of transition metal dichalco-

genides, the group VI compounds MX2 (M= Mo, W and X= S, Se) largely occur

in the 1H form. Recently, transformation of the 1H form to the 1T form with

metallic electronic structure at high temperatures was demonstrated in MoS2 with

Re-substitution, and upon electron irradiation. In chapter 4 (a), we present the

energy landscape associated with the 1H to 1T phase transition, and relate the ob-

served intermediate structures to the structural instabilities of the 1T structure of

MX2 compounds. We show that the metallic centrosymmetric 1T (c1T) structure of

these compounds is generally unstable with respect to dimerization or trimerization

of metal atoms, leading to competing metallic
√

3×1 1T form and ferroelectric semi-

conducting
√

3×
√

3 1T form respectively. While the former is a more stable 1T form

of MoSe2, WS2 and WSe2, the latter is a more stable 1T form of MoS2 exhibiting

rich ferroelectric dipolar domain structure. With vicinity to metal-semiconductor



1.4 Overview of the Thesis 9

transitions, their semiconducting forms are shown to exhibit anomalous response to

applied electric field. To facilitate experimental verification of these subtle features

of the 1T forms of MX2 monolayers, we present comparative analysis of their vibra-

tional properties, and identify their Raman and Infra-Red spectroscopic signatures.

Next, electronic structure of the 1T metastable phase of MoS2 is analyzed in-

depth. While the potential of 1T MoS2 phase for different technological applications

has been appreciated, basic understanding of its electronic nature is still lacking. 1T

MoS2 can exist in several structural forms (e.g . 1T′, 1T′′ and 1T′′′). In chapter 4

(b), with self-energy corrected first-principles calculations of its electronic structure,

we show that the 1T′ phase is relevant to experimental samples grown by chemical

exfoliation, and has the ground state with a small bandgap (∼ 90 meV). Thus, it is

semiconducting in contrast to many claims of its metallic behavior in the literature3.

Our finding complements the work by experimentalists (Prof. D. D. Sarma’s group,

IISc), to find out which structural form of 1T MoS2 is present in their samples.

In chapter 4 (c), we provide a possible explanation for how MoSe2 has superior

photo-catalytic activity compared to MoS2 in both 1H and 1T structures towards hy-

drogen evolution reaction (HER). First-principles calculations reveal that 1T-MoSe2

has a lower work function than 2H-MoSe2 as well as 1T and 2H-MoS2, making it

easier for an electron to be donated from 1T-MoSe2 to reduce H+ and produce

H2. Metallic 1T-MoSe2 prepared by Li intercalation followed by exfoliation of bulk

2H-MoSe2 shows excellent H2 evolution activity in comparison to few-layered semi-

conducting 2H-MoSe2. We show that 2D surfaces of MoS2 and MoSe2 do not quite

adsorb hydrogen (Eads > 0). To understand this, we simulated ribbons of MoX2 (X

= S, Se) with two different types of edges (Mo terminated edge and X terminated

edge), and studied their interaction with H (with 100% H coverage at the edges).

The binding energy of hydrogen at the metal edge is about the same in the two

compounds, while the Se edge of MoSe2 shows weaker binding with hydrogen than
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the S edge of MoS2. This investigation has helped us in understanding experiments

(Prof. CNR Rao’s group, JNCASR) that showed that MoSe2 performs better as a

catalyst for HER than MoS2.

In chapter 5 (a), we present analysis of the behavior of bulk 2H-MoTe2 under

pressure, based on its electronic structure and vibrational properties determined by

first-principles density functional theoretical calculations. We find a low pressure

(∼ 8 GPa) isostructural semiconductor to metal transition. The topology of the

Fermi-surface evolves as a function of pressure, with abrupt appearance of electron

and hole pockets at P ∼ 20 GPa marking a Lifshitz transition. In experiments,

these transitions are marked by changes in the pressure coefficients of frequencies

of A1g and E1
2g Raman modes as well as their relative intensity. Our theoretical

analysis shows that the structure remains the same upto 30 GPa. We find that

pressure has a strong influence on the electron phonon coupling (EPC) of A1g mode,

which is consistent with experiments. All the Raman active modes harden with

increasing pressure, and EPC increases under compression due to changes in the

Fermi surface. Our findings should stimulate further experiments on high pressure

and low temperature resistivity to capture the anomalies near the Lifshitz transition.

In chapter 5 (b), we present first-principles calculations based on density func-

tional theory to determine the nature of electronic states associated with Te-vacancies

in 2H-, 1T′- and Td-MoTe2−x. The defect states associated with Te-vacancies are

shown to appear within the gap of 2H-MoTe2 and in the pseudo gap of 1T′-MoTe2,

thereby reducing the band gap of the former and making the latter more metallic.

These defect states are crucial in understanding the trends in the temperature-

dependent transport properties of Te-deficient 2H- and 1T′-MoTe2−x observed in

experiments. Pristine bulk 2H-MoTe2 is an indirect gap semiconductor, whereas the

pristine 1T′ and Td-forms of MoTe2 are semi-metallic. The thermal conductivities

of 2H-MoTe2−x and 1T′-MoTe2−x thus exhibit opposite trends with temperature due



1.4 Overview of the Thesis 11

to the dominant electronic contribution to the thermal transport in the latter. The

trends in transport properties observed in experiments can be explained with theory

only after taking into account Te-vacancies. We also present a comparative analysis

of effects of local and non-local van der Waals interaction on the structure and band

gap of bulk 2H-MoTe2 and Te-deficient 2H-MoTe2.

In chapter 6, we present first-principles theoretical analysis of structural, elec-

tronic and vibrational properties of monolayered and bulk forms of Td-WTe2. Spin-

orbit coupling is shown to govern the semi-metallic character of Td-WTe2. Frequen-

cies and symmetry of the lattice vibrations of Td-WTe2 obtained with first-principles

calculations have been analyzed. Out of the 33 possible zone-center Raman active

modes, five distinct Raman bands are observed near 112, 118, 134, 165 and 212

cm−1 in bulk Td-WTe2. Based on the symmetry analysis and calculated Raman

tensors, we assign the observed modes at 165 cm−1 and 212 cm−1 to the A
′
1 and

A
′′
1 . We bring out the connection of the Td-structure with the c1T form of layered

metal dichalcogenides, and explain its stability in terms of the electronic and vibra-

tional properties of the c1T form. Most of the Raman bands harden with reducing

thickness, and the ratio of integrated intensities of the A
′′
1 to A

′
1 bands decreases in

the few-layered samples consistent with experiment. Our finding helps in (a) iden-

tification of the symmetry of the intense modes observed in Raman spectra and (b)

understanding the signatures of number of layers in Raman active modes.

Part III: Black Phosphorous

In chapter 7 (a), we report an extraordinary carrier dependent electron-phonon in-

teraction in doped monolayer black phosphorus (BP) or phosphorene: the armchair

oriented (polarized) in-plane A2
g phonon and out-of-plane A1

g phonon interact more

strongly with electron-like carriers than the hole-like. The electron-phonon inter-

action captured through in-situ Raman spectroscopic studies in gated phosphorene



12 Chapter 1.

transistors in experiment, is confirmed with our density functional theory based

calculations. We corroborate the line width broadening of A2
g and A1

g and phonon

softening as a function of electron concentration seen in experiments. The other

Raman active B2g phonon with atomic displacement oriented along zigzag direction

does not show any appreciable coupling to carriers. The Raman active modes with

Ag symmetry respond more significantly to electron doping than to the hole dop-

ing. The contrasting effects of electron and hole doping on EPC are explained with

symmetry arguments, and have been estimated quantitatively with first-principles

calculations. The findings will be important in design of transistors with phospho-

rene, as the interaction of carriers with phonons is a deterministic factor in achieving

desired carrier mobilities in devices.

In chapter 7 (b), we determine the Raman signatures of possible pressure de-

pendent transitions in Black phosphorus (BP) up to 24 GPa. The electron-phonon

coupling of Raman modes A1
g, B2g and A2

g of its orthorhombic phase show a mini-

mum at ∼ 0.6 GPa consistent with the observed Raman line-widths in experiment

close to pressure dependent electronic topological transition (ETT), where band gap

closes to zero. Frequencies of B2g and A2
g Raman active modes become anomalous

in the rhombohedral phase at 7.4 GPa, and the new modes appearing in the rhom-

bohedral phase are also found to show anomalous softening with pressure as seen in

experiments.



Chapter 2

Methods and Formalism

Materials are composed of atomic nuclei bound together by electrons, which are the

fundamental particles and determine the properties of materials. Ground state prop-

erties of materials can be determined as first derivatives (e.g. stress, magnetization

and forces are first derivative of energy w.r.t. strain, magnetic fields and atomic po-

sitions) and second derivatives (e.g. elastic constants, inter-atomic force constants

and magnetic susceptibility are second derivative of energy w.r.t. strain, atomic

positions and magnetic fields) of the total energy, which is the sum of the many

electron ground state energy and electrostatic interaction between nuclei, within

the adiabatic approximation.

The development of Density Functional Theory proposed by Walter Kohn [34]

with a few approximations to ease the computational effort has led to significant

advances in the theory and simulations of material properties. It is a theory of many-

body fermionic system, with a mapping onto an independent fermion methods. DFT

calculations have been used to make important contributions to a diverse range

of compelling scientific questions, generating information that would be hard to

determine with experimental work alone.

In this chapter, we discuss the theoretical methods which have been employed

13
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in this thesis to determine the physical properties of the materials. We give a

brief account of formulation of the density functional theory and its mapping to an

independent-particle method to address the quantum ground state of many-body

problem of electrons in materials. We discuss the technical details of calculating

total energies, and describe Hybrid functional and GW approximations, which are

useful in determining the excited state properties of materials. Next, we review two

approaches of phonon calculations, namely, frozen phonons and linear response.

2.1 Introduction

The fundamental Hamiltonian of a system of interacting electrons and nuclei is given

by,

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
i,I

Zie
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
,

−
∑
I

~2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
(2.1)

where } is the Planck’s constant, me and MI are the masses of ith electron and I th

ion respectively, e is the charge of an electron, and ZI is the atomic number of the Ith

ion, ri and RI are position vectors of ith electron and I th ion respectively. The first

and the third terms in Eq. 2.1 are the kinetic and electrostatic interaction potential

energies of electrons respectively. Whereas the fourth and the fifth terms are the ki-

netic and potential energies of ions respectively. The second term is the electrostatic

interaction between ions and electrons, which is treated as an external potential for

the electronic problem, and also include the effect of external perturbation such as

electric or magnetic fields. The nuclear kinetic energy can be ignored, considering

that the mass MI is & 1836 times that of electrons. This approximation is known

as Bohn-Oppenheimer or the adiabatic approximation. Within this approximation,
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the nuclear dynamics does not induce electronic transition, thus the many body

wavefunction can be written as a product of electronic and nuclear wavefunctions,

Ψ(R, r) = φ(R)ψ(R, r), (2.2)

where ψ(r,R) is the electronic wavefunction of eigenfunctions corresponding to nu-

clear position {R}, and φ(R) are nuclear wavefunction independent of electronic

position (r). The many-body wave-functions of electrons are obtained by time-

independent Schrödinger equation:

ĤΨ(R, r) = εΨ(R, r) (2.3)

Substituting equation 2.1 and 2.2 in 2.3 we get,

[
− ~2

2me

∑
i

∇2
i −

∑
i,I

Zie
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
+

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |

]
ψn(r,R)

= Enψn(r,R),

(2.4)

and [
− ~2

2MI

∑
I

∇2
I + En

]
φm(R) = ξmφm(R) (2.5)

Here ri is the position of electron i; r = {ri}. The ground state wavefunction

ψ0, i.e the lowest energy state, can be determined by minimizing the total energy

with respect to all the parameters defining ψ(r), with the constraint that ψ must

obey the particle anti-symmetry and conservation laws. The Born-Oppenheimer

approximation hence reduces the problem to solving for the ground state for a given

set of ionic positions {RI}. However, the many-body electronic Hamiltonian in

Eq.2.4 is difficult to be solved exactly as ψn is still a function of 3Ne variables (Ne
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is the number of electrons in the system), hence other approximations are essential

to solution of this eigenvalue problem.

2.2 Density Functional Theory

Density functional theory is a theory of correlated many-body systems, having a

close association with independent-particle method. The work of Hohenberg-Kohn

in 1964 [35], and Kohn-Sham in 1965 [34] led to the formulation of DFT, which

has become a powerful tool today for treating electrons in atoms, molecules and

condensed matter.

2.2.1 Hohenberg-Kohn Theorems

The two theorems proved by Hohenberg and Kohn form the basis to formulation of

density functional theory as an exact theory for ground state of many-body fermionic

systems.

Theorem I: The external potential Vext(r) of an interacting gas of electrons can

be determined uniquely, within a constant, by the ground state particle density

n0(r). Thus, all the properties of the system can be determined completely, once

the ground state density n0 is known.

Theorem II: A universal functional for the energy E[n] in terms of the density

n(r) can be defined, for any external potential, Vext(r). For any particular Vext(r),

the exact ground state energy of the system is the global minimum value of this

functional, and the density n(r) that minimizes the functional is the exact ground

state density n0(r). The total energy functional, as uniquely determined by n(r), is

EHK [n] = T [n] +

∫
d3rVext(r)n(r) + Eint[n] + EII (2.6)
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where EII denotes the energy of electrostatic interaction of nuclei.

A functional FHK [n], which includes kinetic and potential energies of interacting

electron system, can be defined as:

FHK [n] = T [n] + Eint[n] (2.7)

Thus, if the functional FHK [n] is known, minimization of total energy with respect

to n(r) can be used to determine, the exact ground state density and energy.

These Hohenberg and Kohn theorems make a significant contribution towards cal-

culation of ground state energy by reducing it to the minimization problem with

function of 3Ne to that of 3 variables. The difficulty with the above formulation is

that there is no known way to extract kinetic energy directly from the density. The

kinetic energy expressed in terms of Ne wavefunctions has derivatives as a functions

of the number of electrons that are discontinuous at integer occupation numbers.

This implies that the exact functional varies in a non-analytic manner as a func-

tion of number of electrons. This lead to Kohn and Sham approach, where kinetic

energy is treated in terms of single particle wavefunctions and interaction terms as

functionals of the density.

2.2.2 Kohn-Sham Ansatz

In the Kohn and Sham formalism [34], the exact Hamiltonian of an interacting many-

body system is mapped onto a fictitious non-interacting single particle Hamiltonian,

which can be solved efficiently. The total energy functional in Kohn-Sham formalism
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can be written as,

EKS = − ~2

2m
〈ψi|∇2|ψi〉+

∫
drVext(r)n(r) +

1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
+ Eion−ion + EXC [n],

= Ts[n] +

∫
drVext(r)n(r) + EHatree[n] + Eion−ion + EXC [n],

(2.8)

where EHatree and EXC are the Hartree and exchange-correlation contributions to

the total energy and Ts is the non-interacting kinetic energy of electrons.

The Kohn-Sham non-interacting single particle Hamiltonian is

HKS = Ts[n] + VKS(r), (2.9)

where VKS is Kohn-Sham potential which is defined as,

V = Vext(r) + VHatree(r) + VXC(r) (2.10)

where Vext, VHatree and VXC are external, Hartree and exchange-correlation poten-

tials respectively. The single particle Kohn-Sham equations are

HKSψi(r) = εiψi(r) (2.11)

and the ground state density can be written in the terms of single particle wave-

function, ψi as,

n(r) =
Ne∑
i

|ψi(r)|2, and Ne =

∫
dr n(r) (2.12)

Since Kohn-Sham equations are non-linear equations (Eq. 2.11), a self-consistent

iterative method is used to solve them as illustrated in Figure 2.1.
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Initial guess
n(r)

n(r)= nold

Calculate effective potential
VKS(r) = Vext(r)+VHatree(n)+VXC(n)

∇
2

Solve Kohn-Sham equations
[-1/2    +VKS(r)] Ψi(r) = εi Ψi(r)

Calculated electron density
n(r) =  |∑ Ψi(r)|2 = nnew

Self-consistent?
|nnew-nold| < δtot

Output quantities
Energy, foreces, stresses, eigenvalues, ...

nold= nnew

Yes

No

i

Figure 2.1: Flow chart showing the self-consistency loop for the iterative solution of
Kohn-Sham equations.
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2.2.3 Exchange-correlation functionals

All the many-body effects in kinetic, exchange and correlation are grouped into the

exchange-correlation energy EXC . It is defined as the difference of exact energy and

Hartree energy. The exchange-correlation function is given as,

EXC [n] = T [n]− Ts[n] + Eee[n]− EHatree, (2.13)

The exact form of exchange correlation energy function is not know, and the accu-

racy is limited by the approximations made in the formulation of this functional.

There are two commonly used approximation to determine exchange-correlation

energy, namely local density approximation (LDA) [34] and generalized gradient

approximation (GGA) [36].

In LDA, the exchange-correlation energy density at each point is the same as

that of a homogeneous electron gas of the same density:

ELDA
XC =

∫
drn(r)εXC(n(r)) (2.14)

where εXC(n(r)) is the exchange-correlation energy per particle of a homogeneous

electron gas of density n0 = n(r). Several parameterizations for εXC exist, but the

most commonly used is that of Perdew and Zunger [37]. The parameterization uses

interpolation formulas to link these exact results for the exchange and correlation

energy at many different densities. In LDA, corrections to the exchange-correlation

energy due to the inhomogeneities in the electronic charge density about r is ignored.

In spite of this, LDA works remarkably well in inhomogeneous electronic systems.

LDA fails in the situations where the density undergoes rapid changes such as

in molecules. An improvement to this can be made by considering the gradient

of the electron density, the so-called Generalized Gradient Approximation (GGA).
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The exchange-correlation energy is expressed in terms of the gradient and spatial

derivatives of the charge density as,

EGGA
XC =

∫
drn(r)εXC(n(r),∇n(r)). (2.15)

This leads to a notable improvement over LDA results with accuracy approaching

that of correlated wavefunction methods [38]. There are different parameterizations

of the GGA, some of the commonly used approximations of exchange-correlations

energy functional are the ones parameterized by Perdew and Wang (PW91) [39] and

Perdew, Burke and Ernzerhof (PBE) [36].

2.2.4 Pseudopotentials

Another approximation in our DFT calculations is that of pseudopotentials. This is

based upon the observation that the core electrons are relatively unaffected by the

chemical environment of an atom. It is assumed that their (large) contribution to

the total binding energy does not change when isolated atoms are brought together

to form a molecule or a crystal. The actual energy differences of interest involve

changes in the valence electron interaction and energies. If the binding energy of the

core electrons can be subtracted out, the contribution of valence electrons is a much

larger fraction of the total binding energy, and easier to calculate accurately. This

is because a strong nuclear Coulomb potential and highly localized core electron

wave-functions are difficult to represent numerically.

Since the atomic wave-functions are eigenstates of the atomic Hamiltonian, they

are mutually orthogonal. Since the core states are localized in the vicinity of the

nucleus, the valence states oscillate rapidly in the core region to maintain the or-

thogonality with wavefunctions of core electrons. Such rapid oscillations result in a

large kinetic energy of valence electrons in the core region, which roughly cancels
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Figure 2.2: Schematic representation of an all electron potential (dotted line) and
pseudopotential (solid line) along with corresponding wavefunctions.

the large potential energy due to the strong Coulomb potential.

It is therefore convenient to replace the strong Coulomb potential and core elec-

trons with an effective pseudopotential, which is much weaker. This involves replac-

ing the valence electron wave-functions, which oscillate rapidly in the core region,

with pseudo-wave-functions, which vary smoothly in the core region (see Figure 2.2).

The pseudopotential is constructed by considering a cut-off radius (rc) such that the

all electron and pseudo wavefunctions of valence electrons are the same beyond rc

(refer Figure 2.2). In the core region, the eigenvalues and scattering properties are

conserved by pseudo wavefunctions. If the charge of each pseudo wavefunction is

equal the charge of the actual wavefunction in the region r < rc, the pseudopotential

is known as norm-conserving pseudopotential [40]. This is generalized in ultrasoft

pseudopotential [40], in which the total charge in the core is conserved with aug-

mented charge density. Ultrasoft pseudopotentials reduce the computational cost

significantly, while maintaining the accuracy and transferability.
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2.2.5 Basis sets

There are three basic approaches to the calculate the Kohn-Shame wavefunctions in

materials, which are equally accurate provided they are applied carefully and taken

to comparable convergence. In Kohn-Sham formalism, the independent-particle

wavefunctions are expanded using basis sets and these methods are classified based

on their basis sets. The commonly used basis sets are plane waves, atomic orbitals

and a combination of both known as mixed basis.

Plane wave basis is used widely due to their simplicity and absence of Pulley

forces. Since plane wave are eigenfunctions of the Schrödinger equation with con-

stant potential, they are the natural basis for description of band structure of many

materials including sp-bonded metals and semiconductors. The Kohn-sham wave-

function in the plane basis can be expanded as,

ψi(r) =
∑
|G|

Ci,(k+G)e
i(k+G).r, (2.16)

where G is the reciprocal lattice vector and k is Bloch wavevector at which Kohn-

Sham equations are solved [41, 42]. This expansion is infinite and is truncated to

make it computationally feasible. To truncate the set of G vectors, a kinetic energy

cutoff is used. The number of reciprocal lattice vectors in the sum is limited by

including all those vectors which satisfy the condition,

~2

2me

|k +G|2 ≤ Ecut. (2.17)

The cutoff energy (Ecut) is increased until the calculated energy converges.

Atomic orbital basis [43,44] captures the essence of atomic-like features of wave-

functions of molecules and solids. Mixed basis is a more general basis where the

atomic-like features are incorporated near the core, and smoothly varying (plane
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waves) away from the nucleus [45]. We have used plane wave basis in all our calcu-

lations here.

2.2.6 Hybrid Functional

Hybrid functionals are a class of approximations to the exchange-correlation energy

functional in density functional theory that include a portion of exact exchange

from Hartree-Fock (HF) theory with exchange and correlation of DFT. The ex-

act exchange energy functional is expressed in terms of the Kohn-Sham orbitals

rather than the density. A hybrid functional [46], which include certain amount of

Hatree-Fock exchange, has further improved the GGA results. This improvement

apparently originates from the inclusion of non-dynamical correlations which effec-

tively delocalize the GGA exchange hole. Efficient hybrid calculations of periodic

solids are possible using Gaussian-type orbitals and periodic boundary conditions

(PBC) [47,48].

In this thesis, we have used Heyd-Scuseria-Ernzerhof (HSE) functional to calcu-

late band gaps of MoTe2 and MoS2. The HSE exchange-correlation functional [46]

uses an error function screened Coulomb potential (short ranged) to calculate the

exchange portion of the energy in order to improve computational efficiency, espe-

cially for metallic systems. The form of screened Coulomb potential hybrid density

functionals given by,

EωPBEh
XC = aEHF,SR

X (ω) + (1− a)EPBE,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C , (2.18)

where a is the mixing parameter and ω is an adjustable parameter controlling the

short-range interactions. Standard values of a=1
4

and ω =0.2 Å
−1

(usually referred

to as HSE06) have been shown to obtain good results for most of systems. The

HSE exchange-correlation functional reduces to the PBE0 hybrid functional for ω
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= 0. EHF,SR
X (ω) is the short range HF exact exchange functional, EPBE,SR

X (ω) and

EPBE,LR
X (ω) are the short and long range component of the PBE exchange functional,

and EPBE
C (ω) is the PBE [36] correlation functional. The most striking change due

to use of the hybrid functional is in the predicted excitation energies or bandgaps.

2.2.7 GW Approximation

The Green function method is a suitable approach for studying excited state prop-

erties. To calculate the Green function one requires the self-energy operator which

is non-local and energy dependent. The GW approximation is a simple and fruit-

ful approximation to the self-energy. The Kohn-Sham eigenvalues εi have no clear

physical meaning except for that of the highest occupied state. Although there is no

theoretical justification, they are often interpreted as single-particle excitation en-

ergies corresponding to excitation spectra of the system upon a removal or addition

of an electron. Single-particle excitation energies or quasiparticle energies [49, 50]

can be calculated with the Green function formalism [51,52]. Quasiparticle energies

Ei are obtained from the quasiparticle equation:

[
− 1

2
∇2(r) + VHatree(r)

]
ψi(r) +

∫
d3r
∑

(r, r′;Ei)ψi(r
′) = Eiψi(r) (2.19)

The non-local and energy dependent potential
∑

, or the self-energy, contains the

effects of exchange and correlations. It is in general complex with the imaginary part

describing the damping of a quasiparticle. It can be seen that the different single-

particle theories amount to approximating the self-energy operator
∑

. Calculations

of self-energy is unfortunately intensive even for the electron gas. The form of the

self-energy in the GW Approximation (GWA) is the same as in the HF approxi-

mation (HFA) but the Coulomb interaction is dynamically screened, remedying the

most serious deficiency of the HFA.
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The GWA includes an important physical ingredient in extended systems, namely

screening or polarization of the medium which is absent in the HFA. It is well

known that the neglect of screening results in unphysical results for metals such

as zero density of states at the Fermi level and in semiconductors and insulators

to overestimated band gaps. Since screening is a common feature in all electronic

systems, it is perhaps not surprising that the GWA works in a wide variety of

materials.

Applications of a GWA to large and complex systems is still not quite feasible

due to computational effort involved. Simplified GW schemes, which maintain the

accuracy of full calculations and are computationally efficient, are therefore much

desirable. Many schemes have been proposed but most of them are designed for

semiconductors. While they give reliable band gaps, details of the band structure are

not completely accounted for. Non-locality as well as energy dependence of the self-

energy must be taken care in reliable schemes of calculations. With efficient schemes,

many interesting problems can then be tackled such as chemisorption at surfaces,

3d impurities in semiconductors, interfaces, band off-sets in heterojunctions.

2.2.8 Dispersive interaction

GGA functionals including hybrid schemes have a general drawback that they can

not describe long-range electron correlations that are responsible for van der Waals

(vdW, dispersive) forces [53, 54] as they replace part of the local HF exchange by

nonlocal HF exchange. The vdW interactions between atoms and molecules play

an important role in many chemical problems [55]. In recent years, to include these

dispersive interactions in DFT calculations, several methods have been developed.

These interactions are divided into two classes, (1) treatment of dispersion inter-

action as semi-empirical corrections on top of existing local functionals, and (2) to

develop non-local exchange-correlation energy functionals that can incorporate the
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London interactions [56,57]. To account for such weak interactions between layers of

materials such as MoTe2, WTe2, we have used parametrized DFT-D2 scheme (class

1) of Grimme [56]. This gives a fairly accurate treatment of London dispersion inter-

actions at relatively low computational cost, and we briefly describe the formulation

below. The total energy with dispersion correction is given as,

EDFT−D2 = EKS−DFT + Edisp (2.20)

where EKS−DFT is the self-consistent Kohn-Sham energy and Edisp is the an empir-

ical dispersion correction given as,

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdmp(Rij) (2.21)

Here, Nat is the number of atoms in the system, C6 denotes the dispersion coefficient

for atom pair (i, j), s6 is a global scaling factor that depends only on the approximate

functional used in KS-DFT, and Rij is an interatomic distance. In order to avoid

near-singularities at small R, a damping function fdmp must is used:

fdmp(Rij) =
1

1 + e−d(Rij/Rr−1)
(2.22)

Here, Rr is the sum of atomic van der Waals radii and the parameter d determines

the dispersion corrections to the total energy and is fixed to 20 by Grimme to

give accurate dispersion energies, but still maintaining negligible energies for typical

covalent bonding situations. The dispersion coefficient Cij
6 for a given pair of atoms

i and j, is taken as a geometric mean of the individual coefficients,

Cij
6 =

√
Ci

6C
j
6 . (2.23)
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2.3 Calculation of Phonons

Phonon, a quantum of vibration energy that arises from oscillating atoms within

the crystals. With Born-Oppenheimer approximation, the electrons remain in their

ground state, and hence the total energy is only function of ionic positions, E({RI}).

There are mainly two approaches for the calculation of phonons from first-principles:

(1) Direct calculation of total energy as a function of the positions of the atoms

(frozen-phonon method) (2) Perturbative approach involving calculations of the

second derivatives of energy (response function method) with respect to atomic

positions.

2.3.1 Frozen phonons

In the frozen phonon method, a small, a finite perturbation (atomic displacement)

is frozen in the system, and the total energy and forces are calculated. The forces

on atoms are calculated within the framework of density functional theory, making

it a direct approach for phonon calculations. The potential energy of the system on

Taylor expansion is

V = V0 +
∑
I,α

∂E

∂RI,α

∣∣∣
u=0

uIα +
1

2

∑
I,J,α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
u=0

uIαuJβ +O(u3). (2.24)

where, RI = R0
I+ uI , R0

I is the equilibrium position of the I th ion and uI is dis-

placement of the atom. The second term of the equation is equal to zero as all the

ions are placed in their equilibrium position. Ignoring the constant term (V0) and

O(u3), focusing on the quadratic terms, the force constant matrix KIJ,αβ is given
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by,

V =
1

2

∑
I,J,α,β

∂2E

∂RI,α∂RJ,β

∣∣∣
u=0

uIαuJβ,

=
1

2

∑
I,J,α,β

KIα,JβuIαuJβ.

(2.25)

Solving the equation of motion for harmonic oscillator we get,

MI
∂2uIα
∂t2

= −
∑
J,β

KIα,JβuJβ. (2.26)

uIα has time dependence as follows

uI(t) = ûIe
iωt (2.27)

and from equation,

ω2MI ûIα =
∑
J,β

KIα,JβûJβ. (2.28)

We can get frequencies (ω) and eigenvectors (û) of phonons by solving the above

eigenvalue (ω2) equation. There are 3N number of modes and dimension of force

constant matrix is 3N×3N for a given N atom system. The local structural stability

of a crystal is determined with the value of phonon frequencies. If ω2 > 0, the

system is stable i.e. the excitation of any phonon mode with frequency ω increases

the energy of the system. For a unstable system, ω2 < 0 i.e. finite amplitude of

certain phonon modes results in lowering of total energy of the system.

However, this technique can determine the full phonon dispersion of a crystal only

with use of large “supercells” in calculations, whose size depends on the wavelength

of perturbation. Thus it increases the computational cost of phonon calculations

at non-zero q-points. Density functional perturbation theory is a technique which

overcomes this drawback of frozen phonon method.
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2.3.2 Density Functional Perturbation Theory

Many physical properties of a system depend upon its response to some form of

external perturbation. The response functions are first, second and third derivative

of the total energy with respect to external perturbation, λ. Some of the physical

properties of interest include polarizabilities, phonons, forces, stresses, Born effective

charges, elastic constant, Raman intensities and cross-sections.

A linear response technique used to calculate second derivatives of the ground

state energy w.r.t. external perturbation (λi) is known as density functional pertur-

bation theory (DFPT). The first and second derivatives of ground state energy are

given as,

∂E

∂λi
=
∂Eion−ion
∂λi

+

∫
dr
∂Vext(r)

∂λi
n(r),

∂2E

∂λiλj
=
∂2Eion−ion
∂λiλi

+

∫
dr
∂2Vext(r)

∂λiλi
n(r) +

∫
dr
∂n(r)

∂λi

∂Vext(r)

∂λj

(2.29)

The electron density response ∂n(r)/∂λj is obtained by linearizing Eq. 2.12 as,

∆n(r) = 2Re

Ne/2∑
i

ψ∗i (r)∆ψi(r). (2.30)

Within the linear response, ∆n(r) = ∂n(r)/∂λj. The variation in the wavefunction

can be obtained by solving standard first-order perturbation theory:

(HKS − εi)|∆ψi〉 = −(∆VKS −∆εi)|ψi〉, (2.31)

here, ∆VKS and ∆εi are first order variations of Kohn-Sham effective potential and
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eigenvalues respectively.

∆VKS(r) = ∆Vext(r) + e2

∫
dr′

∆n(r′)

|r− r′|
+

∫
dr′

∂2VXC
∂n(r)∂n(r′)

∆n(r′);

∆εi = 〈ψi|∆VKS|ψi〉.
(2.32)

∆ψi’s can be projected onto empty states as the electron density responds to only

those perturbations that couple both the occupied and empty states:

(HKS − εi)|∆ψi〉 = −P̂empty∆VKS|ψi〉, (2.33)

where P̂empty is the projection onto the empty states manifold defined in terms of

occupied states (P̂occ) given by,

P̂empty = 1− P̂occ; P̂occ =

Ne/2∑
i=1

|ψi〉〈ψi|. (2.34)

By solving this set of linear equations, one can calculate the relevant response prop-

erties of the system efficiently and with reasonable accuracy.

An advantage of DFPT with respect to the frozen-phonon technique is that the

linear response to a monochromatic phonon perturbation is also monochromatic with

the same wave-vector q. This is a consequence of the linearity of DFPT equations

with respect to the perturbing potential. The calculation of the dynamical matrix

can thus be performed for any q-vector without introducing supercells: the depen-

dence on q factors out and all the calculations can be performed with lattice-periodic

functions.





Part I

2D Hexagonal Boron Nitride





Chapter 3

Grain boundaries in 2D h-BN:

structural instabilities and

wrinkles*

3.1 Introduction

Fascinating properties of 0-D, 1-D and 2-D nano-forms of carbon have generated

immense activity of research in the last two decades [58–60]. Among these, graphene

(the 2-D form) is the mother form, which gives rise to other nano-forms through

deformation or introduction of structural point defects (involving pentagonal carbon

rings). Of late, there have been efforts to develop 3-D nano-structured forms of

carbon that would open up new domains of applications [61, 62]. To this end,

understanding of the structure of interfaces or extended line defects in graphene is

expected to be crucial. While 2-D h-BN is the only other known material which

is isostructural to graphene (almost lattice matched!), it exhibits rather different

*This work has been published in Phys. Chem. Chem. Phys., 2014 [3]. Reproduced by
permission of Royal Society of Chemistry, URL: http : //dx.doi.org/10.1039/C4CP0226.

33



34 Chapter 3.

structural defects [63]. As a result, a solid solution, Cx(BN)1−x (CBN) between h-

BN and graphene is promising in the development and engineering of 3-D materials

with nano-scale architecture based on h-BN and graphene [64].

To develop such 3-D nano-forms of CBN, it is important to understand the

interfaces or GBs in h-BN and graphene on the same footing. Such interfaces are

analogous to GBs (well known in the context of 3-D crystalline materials), as they

determine the way in which two flakes (grains) of 2-D materials are stitched together

through non-hexagonal structural units (e.g. pentagon and heptagon pair [65]). In

this work, we use the terms ‘interfaces’ and ‘line defects’ to broadly represent GBs.

Line and point defects invariably occur during the synthesis of these materi-

als. They alter the local structural symmetry and can have interesting effects on

their global properties, such as band gaps of h-BN [66]. Graphene and h-BN can

be synthesized via different techniques such as chemical vapor deposition (CVD),

chemical exfoliation, and electrochemical reduction [67–72]. The presence of point

defects [28,73,74] and line defects [30,74,75] in h-BN and graphene is clearly evident

in detailed characterization based on transmission electron microscopy (TEM) and

scanning tunneling microscopy (STM). Notable changes in electronic, [33,76–81] me-

chanical, [82, 83] chemical [84] and magnetic [85] properties of graphene have been

reported due to such structural changes at the GBs, though only a few reports are

available on the analysis of GBs in h-BN and their effects on its electronic [86] and

magnetic [87] properties.

Liu et al. [87] have discussed dislocations and GBs in monolayered h-BN, analysing

square-octagon and pentagon-heptagon pair dislocations and transformation reac-

tion of GBs for the tilt angle varying from 0 ◦ to 240 ◦. Their work focused on relative

stability and electronic properties of these GBs. Li et al. [66] have studied ‘B2, N2

and C2 pentagon-octagon-pentagon (5-8-5)’ line defects in 2D h-BN, and explained

electronic and magnetic properties associated with these defects in h-BN. While the
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structural instabilities are associated with Stone-Wales point defects [76] and line

defects [88–90] are known to give rise to buckling of the structure of graphene, anal-

ysis of the structural instabilities associated with GBs or line defects in 2D h-BN is

lacking. Though Raman spectroscopic characterization of defects in graphene has

been quite effective, it lacks the specificity with respect to the kind of defects which

requires the identification of specific vibrational signatures (if any) of GBs. It is

thus desirable to study structural stability and spectroscopic properties of GBs in

monolayer h-BN and graphene in detail.

We present here a detailed structural analysis of extended line defects or GBs in

h-BN and graphene benefiting from the ideas of growth and stacking faults that are

well established in metallurgy. This is expected to help understand how these GB

structures may form during growth of these materials in experiments. The defect

structures discussed in this article are essentially 60 ◦ GBs [90, 91] and inversion

domain boundaries [92].

We identify the signatures of these GBs in the electronic and vibrational spec-

tra. Our comparative analysis based on first-principles density functional theoretical

(DFT) calculations provide a unified understanding of the interfaces or GB struc-

tures in h-BN and graphene. Our systematic scheme for the construction of GBs

in these 2-D materials allows us to predict novel low energy interfaces. From their

energetics, we assess the relative stability of various GBs in these materials, and

understand it in terms of the changes in bonding. The structural instabilities and

buckling (ripples and wrinkles) of planar structures associated with these GBs are

analysed through a detailed study of their vibrational spectra. The spectroscopic

signatures identified here would permit non-invasive characterization of such inter-

faces using Raman and IR spectroscopies.
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3.2 Computational Methods

Our first-principles simulations are within the framework of density functional the-

ory (DFT) as implemented in QUANTUM ESPRESSO (QE) package, [41] which

employs plane wave basis and pseudopotentials. We use a generalized gradient ap-

proximation (GGA) of the Perdew, Burke and Ernzerhof (PBE) [36] form of the

exchange correlation energy functional and ultrasoft pseudopotentials [40] to rep-

resent the interaction between ionic cores and valence electrons. The plane wave

basis for representation of Kohn-Sham wavefunctions and charge density has been

truncated with energy cutoffs of 30 Ry and 180 Ry respectively. We aided the conver-

gence to self-consistency by smearing the occupation numbers with the Fermi-Dirac

distribution function, with the smearing width of 0.003 Ry. Structures have been re-

laxed through the minimization of energy using Broyden-Fletcher-Goldfarb-Shenno

(BFGS) scheme, until magnitude of each component of Hellman-Feynman force is

smaller than 0.001 Ry/bohr. We use a periodic supercell to model 2-D h-BN (mono-

layer) and graphene. In order to ensure negligible interaction between the nearest

periodic images of the 2-D sheet, a vacuum of 15 Å is introduced along c-axis. Inte-

grations over the Brillouin zone are sampled with a 4x3x1 uniform mesh of k-points

for a 3x4 supercell (rectangular supercell with 96 atoms, where unit cell consist of

8 atoms) and a 2x6x1 mesh for a 7x2 (rectangular supercell with 104 atoms, where

unit cell consists of 8 atoms) supercell for 4:8 and 5:5:8 GBs respectively. Vibra-

tional spectrum at the zone center Γ-point is determined using the frozen-phonon

method with finite difference formulae and atomic displacements of ± 0.04 Å.

To assess relative stability of GBs, we define their energy per unit length as:

EGB =
EGB
BN/g −N × Ebulk

l
(3.1)

where, EGB
BN/g is the total energy of h-BN or graphene supercell with a GB, Ebulk
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is the total energy of a primitive cell of h-BN or graphene, and N is the number

of B-N or C-C atomic pairs in the supercell, and l is the length of a GB contained

within supercell.

3.3 Structure and Energetics

In this section, we present detailed atomic structure of interfaces in 2-D lattices.

There are many ways to construct interfaces [33, 66, 86, 87] which are classified into

two types: (i) a stacking fault, in which a semi-infinite half of the 2-D lattice is in

misregistry with the other half, and (ii) a growth fault, which is associated with

removal of a line of atoms (missed during the growth of the lattice), as reported

earlier for graphene [33]. They are essentially the inversion domain boundaries and

60 ◦ GBs. The construction of their structure in h-BN and graphene, is discussed

below.

3.3.1 Stacking fault

A pure h-BN lattice with armchair edges along ~a or x̂ is divided into two semi-infinite

sheets by a slip line (see Figure 3.1a) parallel to ~a. A misregistry (or slip) vector,

~v = 1.5bx̂ (where, b = bond length) gives a displacement of the upper half of the

sheet with respect to the lower half. With introduction of this fault, the neighbouring

atoms across the GB form homopolar (B-B and N-N) bonds, which are chemically

and energetically not favourable (Figure 3.1b). Hence, a 180◦ rotation of the upper

half lattice around the y-axis (‘twist’) (Figure 3.1c) is performed, so that the bonds

across the GB line are heteropolar (B-N) and energetically more favourable. [93] As

a result, a pair of one rectangular (B-N-B-N) ring and one octagonal ring forms, and

this structure is labelled as a ‘4:8’ GB. Because of the periodic boundary conditions,

two such 4:8 GBs are generated, one at the center of the periodic supercell and
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another at its edge. Recently, a similar GB has been reported theoretically, [87]

in which 4:8 GB is created when two asymmetrical grains join with tilt angles of

0 ◦, 120 ◦ and 240 ◦. However, the resulting atomistic structural changes at the

Figure 3.1: Construction of 4:8 GB in h-BN (a) Pure BN lattice (pristine) (b)
BN lattice with stacking fault (c) BN lattice with GB twisting and (d) Ground
state structure of BN with 4:8 GB (grey shadow shows the GB with octagons and
rhombii). The bond length (b) and angles ∠NBN (θ1) and ∠ BNB (θ2) are 1.45Å,
98 ◦ and 82 ◦ respectively after relaxation. Boron (B) atoms are shown in pink and
nitrogen (N) in blue.

GB have not been discussed. We present a detailed account of how its structure

and energetics evolve upon relaxation. We find that the structure at the interface
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evolves to interlinked rhombal and irregular octagonal rings, whose opposite sides are

equal. The B-N bonds elongate from 1.44 Å (bulk h-BN) to 1.46 Å (perpendicular

to GB). The bond angles θ1 and θ2 of rhombii are 82 ◦ and 98 ◦ respectively as

shown in Figure 3.1d. The stress on the system is zero (after complete structural

relaxation) for a defect concentration of 0.2/Å (no. of GB per supercell/distance

between two GBs). Stretching of bonds perpendicular to the GBs causes a slight

compression of hexagonal rings in the perfect honeycomb region connecting two

GBs. The calculated energy of the 4:8 GB is 0.48 eV/Å, in good agreement with

earlier estimates (0.4-0.5 eV/Å [87]).

Similarly, the 4:8 GB in graphene is introduced with a misregistry vector ~v =

1.5bx̂, which has energy of 0.74 eV/Å for defect concentration of 0.2/Å. Upon struc-

tural relaxation, we find that bond angles θ1 and θ2 are of 90 ◦ but the C-C bond

perpendicular to the GB weakens from 1.42 Å (in pristine graphene) to 1.47 Å. As a

result, we get interlinked rectangular and irregular octagonal rings at the interface.

The 4:8 GB is more stable in h-BN than in graphene because the hetero-elemental

sub-lattices facilitate formation of stable bonds at the interface (which comes from

the twist of a grain) in contrast to those in graphene.

3.3.2 Growth fault

In construction of a growth fault, we consider two grains of a pure h-BN lattice

obtained by cutting across a dashed line along zigzag direction as shown in Figure

3.2a, where grains or flakes are marked as 1 and 2.

The two grains are anti-symmetric across the dashed line. In grain 2, each B atom

is replaced by N atom and N atom is replaced by B atom, such that a symmetric

grains with the same polar edges facing each other (Figure 3.2b). To introduce a

growth fault, we (i) move grain 1 along x-direction such that boron atoms at the

edges of the two grains overlap along the dashed line, and (ii) remove one set of
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Figure 3.2: Construction of growth fault in h-BN (a) Pure BN lattice (pristine)
which can be thought as two grains are connected perfectly along the dashed line
(symmetrical grain boundaries with opposite polarity grains). Grain 1 and grain 2
are marked by 1 and 2. (b) Grain 2 is rotated by 180◦ along z-axis (tilt) with respect
to grain 1 such that B-B bond forms perpendicular to dashed line (symmetrical grain
boundaries with same polarity grains). (c) Grain 1 is moved along x-direction such
that boron atoms perpendicular to dashed line overlap with each other (one layer
of boron atoms is removed). A defect created at the GBs before relaxation (at the
center of supercell) (d) Chain of rhombii, GB generated at the edge of the supercell
(before relaxation). GBs are marked in shadow in (e) and (f), which show structural
modifications after relaxation. Boron (B) atoms are shown in pink and nitrogen (N)
in blue.
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boron atoms on this line. This results in a linear chain of rhombii (Figure 3.2c)

at the interface with B atoms occupying sites at the GB. We ensure equal number

of B and N atoms in the supercell, by removing a line of N atoms from the edge

of the supercell. Because of the periodic boundary conditions, another GB is thus

generated at the boundary of the supercell involving a chain of rhombii with N atoms

occupying sites at the GB (Figure 3.2d). The relaxation of this structure leads to

the formation of a pair of two irregular pentagonal rings with apex angles of 111 ◦

and one irregular octagonal (with opposite sides of equal length) rings at the GB

(Figure 3.2e). Thus, we label this as a ‘5:5:8’ GB.

The interfaces with N-N and B-B bonds along the GB will be referred to as

‘5:5:8 N-N’ and ‘5:5:8 B-B’ GBs respectively. While the GB at the edge of the

supercell is naively expected to transform into a 5:5:8 B-B GB, it retains its initial

structure with rhombii (Figure 3.2f), confirming the feasibility of its occurrence in

h-BN at 0 K. We label this GB constituted purely of rhombii as a ‘4:4’ GB. This GB

transforms into 5:5:8 B-B GB at 1000 K as discussed theoretically by X. Li et al. [66].

Along the line of 4:4 GB at the boundary, N-atoms are coordinated with four B-

atoms saturating all its valence electrons (energetically favourable), in contrast to

B-atoms coordinated with four N-atoms at the center of supercell. Hence, 4:4 GB

with B atoms at GB transforms into N-N dimer along the GB (see Figure 3.2e). To

determine energy of each of these GBs, we simulated BN ribbons containing these

GBs at the center running along the length. From these simulations, the estimates

of energies of the 5:5:8 N-N and 4:4 GBs in h-BN are 0.77 eV/Å and 1.87 eV/Å

respectively. To determine energy of a 5:5:8 B-B GB, we interchange the B atoms

and the N atoms in the 5:5:8 N-N structure. The calculated energy of the 5:5:8 B-B

GB is 0.65 eV/Å, from which it is clear that the 5:5:8 B-B GB is more stable than

the other two (5:5:8 N-N and 4:4) GBs in h-BN.

Similarly, a 5:5:8 GB can be created in graphene by the introduction of a growth
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fault [33]. We have repeated the calculations of these GBs in graphene with the same

type of supercell as h-BN to facilitate direct comparison of energetics. Similar to

h-BN, there are two GBs: one at the edge and another at the center of the supercell

(chain of rhombii). However, they evolve differently upon structural relaxation.

The GB at the center of the graphene supercell evolves into a GB with a set of 2

irregular pentagonal rings with apex angles, 112 ◦ and an irregular octagonal ring

(Figure 3.3a) i.e., the 5:5:8 GB.

Figure 3.3: Different GBs in graphene and h-BN (a) Structure of 5:5:8 GB in
graphene. (a chain of a set of 2 pentagon and octagon falls along the GB) (b)
Structure of 6:5:8:4:8:5 GB in graphene ( two set of one pentagon and octagon ori-
ented oppositely are connected by a rectangle along the GB). (c) Structure of 4:8 GB
in graphene (a chain of a set of 1 octagon and rectangle). (d) Structure of 6:5:8:4:8:5
N-N GB in h-BN (two set of one pentagon and octagon oppositely are connected by
a rhombus along the GB). (e) Structure of 6:5:8:4:8:5 B-B GB in h-BN (two set of
one pentagon and octagon oppositely are connected by a rhombus along the GB).
Note that in 6:5:8:4:8:5 N-N and 6:5:8:4:8:5 B-B two set of 5-8-4-8-5 polygons are
connected by a distorted hexagon whose opposite sides are B-B/N-N as highlighted
in (d) and (e) by red circle. GBs are shown by shadows. Boron (B) atoms are shown
in pink and nitrogen (N) in blue.

Interestingly at the boundary of the supercell, we find a new type of GB with
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two oppositely oriented pentagon-octagon pairs linked with a rectangular ring (Fig-

ure 3.3b). This GB is named as the ‘6:5:8:4:8:5’ GB, in which we get irregular

pentagonal ring with apex angle 109 ◦ and irregular octagonal ring. The energies

of 5:5:8 and 6:5:8:4:8:5 GBs (using simulations of ribbon) are 0.52 eV/Å and 0.73

eV/Å respectively (we note that these estimates of energies include the energy cost

associated with dangling bonds formed at edge of ribbon). We find that the 5:5:8

GB is lower in energy than the 6:5:8:4:8:5 GB indicating its greater stability in

graphene. Our analysis also shows that the 5:5:8 GB is more stable in graphene

than h-BN (see Table 3.1). The reason for this is the extra energy required for the

formation of homo-elemental bonds at the GB in h-BN. We explored the feasibility

of 6:5:8:4:8:5 GB in h-BN and found two new types of GB structures (6:5:8:4:8:5 B-B

and 6:5:8:4:8:5 N-N). The structures of these GBs involve a pair of pentagons and

an octagon oppositely oriented, connected by a rhombus and two sets of 5-8-4-8-5

polygons that are connected by a deformed hexagon with B-B/N-N bonds at the

opposite sides (see Figure 3.3d and e). The energies of 6:5:8:4:8:5 B-B and 6:5:8:4:8:5

N-N GBs are 0.79 eV/Å and 1.10 eV/Å respectively, comparable to energy of other

interfaces.

3.3.3 Relative stability of faults or grain boundaries

We now discuss the relative stability of GBs in h-BN and graphene, by comparing

the energies of the same GB in these materials. It is clear from our results (Table 3.1)

that 4:8 GB (stacking fault) is more stable in h-BN (Figure 3.1d) than in graphene

(Figure 3.3c), and it has the lowest energy, due to formation of the hetero-polar

bond at the GB in h-BN. In contrast, a growth fault (5:5:8 GB) is the most stable

GB in graphene with energy 0.52 eV/Å. Similarly, the 5:5:8 B-B GB (growth fault)

is the most stable GB among all the growth faults in h-BN studied here. While

studying growth and stacking faults in h-BN and graphene, we find four new GBs,
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Figure 3.4: Vibrational density of states (Vdos) of perfect BN and BN with GBs.
(a) Vdos of pristine and h-BN with 4:8 GB. (b) Vdos of pristine and h-BN with 5:5:8
B-B GB. (c) Vdos of pristine and h-BN with 5:5:8 N-N GB. (d) Vdos of pristine
and h-BN with 4:4 GB. Light brown (orange) and blue denote the phonon density
of states for pristine h-BN and h-BN with GB respectively.

which have not been reported yet. The 6:8:5:4:8:5 GB in graphene has an energy

of 0.73 eV/Å, whereas 4:4, 6:8:5:4:8:5 B-B and 6:8:5:4:8:5 N-N GBs in h-BN have

energies of 1.87 eV/Å, 0.79 eV/Å and 1.10 eV/Å respectively. The 6:8:5:4:8:5 GB

is energetically more stable in graphene than in h-BN, and 6:8:5:4:8:5 B-B is more

stable than the other two GBs in h-BN (6:8:5:4:8:5 B-B and 6:8:5:4:8:5 N-N). The

4:4 GB is relatively higher in energy than any other GB in h-BN, suggesting low

likelihood of its occurrence.
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Table 3.1: Energies for different grain boundaries (4:8, 5:5:8, 4:4 and 6:5:8:4:8:5
GBs) in h-BN and graphene

Type of GBs System Energy

(eV/Å)

4:8 h-BN 0.48

4:8 graphene 0.74

5:5:8 N-N h-BN 0.77

5:5:8 B-B h-BN 0.65

4:4* h-BN 1.87

6:5:8:4:8:5 N-N* h-BN 1.10

6:5:8:4:8:5 B-B* h-BN 0.79

5:5:8 graphene 0.52

6:5:8:4:8:5* graphene 0.73

*novel GBs

3.4 Structural Instabilities

Structural stability can be affirmed by showing that the structure is a local minimum

of energy w.r.t. all structural distortions. To this end, we determine long wavelength

phonons of the supercell (at Γ-point). Vibrational density of states (Figure 3.4)

of h-BN with 4:8, 4:4 and 5:5:8 N-N GBs, reveal the presence of unstable modes

(i.e. imaginary frequencies), whereas 5:5:8 B-B does not have any unstable modes,

implying the structure of h-BN with 5:5:8 B-B GB is stable, i.e. local minimum

of energy. On the other hand, these unstable modes conclusively show that the

structure is not a local minimum of energy, but is a saddle point. Eigen-modes

of phonons with imaginary frequencies in the vibrational spectrum of defective h-

BN involve atomic displacements that lead to out-of-plane deformation along these

interfaces (see Figure 3.5a, b and Figure 3.6a, b).

We distort the structure by freezing in small atomic displacements corresponding

to eigen modes of the lowest energy unstable modes (strongest instability) (which

are 53 cm−1, 375 cm−1 and 40 cm−1 for 4:8, 4:4 and 5:5:8 N-N GBs respectively).
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Figure 3.5: Phonon modes constituting the structural instability of h-BN with 4:4
GB (a), (b) Two views of atomic displacements of the mode with a frequency ≈375i
cm

−1 (wave like deformat ion at GB). (c) Freezing in the same mode leads to buckling
of the sheet which is centered at GB (side view of the sheet). (d) Top view of 4:4
GB (which evolves on relaxation), which has two heptagons sharing a B-B bond side
connected with a rhombus. Boron (B) atoms are shown in pink and nitrogen (N) in
blue.

The unstable modes of 4:8 and 4:4 GBs have oscillatory deformation localized (like

a wave) along the GB (Figure 3.5a, b and Figure 3.6a, b), whereas the unstable
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Figure 3.6: Phonon mode which constitutes the structural instability of h-BN with
4:8 GB, two views of atomic displacements of the mode with a frequency ≈53i cm

−1

(wave propagates along th e GB) as shown (a) and (b). Phonon modes constitutes
the structural instability of h-BN with 5:5:8 N-N GB, two views of atomic displace-
ments of the mode with a frequency ≈40i cm

−1 as shown in (c) and (d). Boron (B)
atoms are shown in pink and nitrogen (N) in blue.

mode of 5:5:8 N-N has deformation wave running along the edge of the ribbon (not

at the GB) (see Figure 3.6c and d).

In the 4:4 GB, N-atom is coordinated with four boron atoms through sp3 bonding,

hence it tries to deviate from planar to tetrahedral structure. A set of two B-atoms

placed opposite to N atom tries to move in opposite direction to achieve tetrahedral

structure (see Figure 3.5b). Upon structural relaxation, the h-BN sheet with these

GBs buckle, i.e., becomes non-planar. Such buckling of the sheet reduces the energy

of 4:8 GB by 19.5%. For this GB, the rippling amplitude (the difference along the

z-axis of the highest and lowest atom) is ∼ 0.35 Å, which is quite sizable and should

be readily observable. There is not a considerable change in energy of 5:5:8 N-N

GB due to buckling even though its rippled structure has an amplitude of 0.42
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Å, suggesting a rather flat energy landscape of rippling. Structural relaxation of

h-BN with a 4:4 GB after freezing in the displacements of lowest energy unstable

mode, lowers its energy by 39.5%. The resulting structure exhibits a wrinkle (short

length-scale deformation) at the interface (Figure 3.5b). Its structure (a chain of

rhombii) evolves to a completely different structure (a chain of two heptagons and

a rhombus). In this transformed structure, the two heptagons share a B-B bond as

one of its sides (Figure 3.5d) and the rippling amplitude (1.6 Å) is quite significant.

This deformation structure involving large displacement of most of the atoms at the

GB constitute a wrinkle (see Figure 3.5c). Liu et. al [87] have studied similar defect

as 4:8 GB, but missed the deviation from planarity of asym-0 ◦ (120 ◦ and 240 ◦) [87]

GBs (4:8 GB in our case). In contrast we find that h-BN with a 4:8 GB does show

buckling and there is noticeable reduction in energy by huge amount (19.5%).

3.5 Vibrational and Electronic Signatures

3.5.1 Vibrational signatures

The structural changes associated with these interfaces in h-BN are responsible for

the changes in vibrational spectra, which can be identified in Raman and IR spectra.

The unit cell of 2-D h-BN contains two atoms, and belongs to the point group D3h

and space group (P 6̄2m). Its optical phonon modes are categorized into A′′2 + 2E ′

modes, where mode A′′2 is IR active and an E ′ mode is both IR and Raman active

(E ′ is a doubly degenerate in-plane bond stretching mode) [94]. Our estimates of

frequencies of A′′2 and E ′ modes are 791 cm−1 and 1382 cm−1 respectively, which

agree well (within 1%) with experimental values reported earlier. [95] The frequency

and eigen displacement of A′′2 and E ′ modes are modified by these interfaces, due

to structural modifications at their GB. To identify A′′2 and E ′ modes of the h-BN

supercell with a 4:8 GB, we project its normal modes (e′ν) onto those of pristine
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h-BN (eµ), by calculating an overlap matrix (Sµν) given by,

Sµν = 〈eµ|e′ν〉 (3.2)

The A′′2 and E ′ modes of the defective h-BN are identified as those having the largest

overlap (|Sµν |) with the A′′2 and E ′ eigenvectors of pristine h-BN.

Due to the GB, the symmetry equivalence between x and y directions in the

hexagonal lattice is broken, and hence the degeneracy of E ′ mode is lifted. The A′′2

mode softens by 14 cm−1, 10 cm−1 and 14 cm−1 due to 4:8 , 5:5:8 N-N and 4:4 GBs

respectively (see Table 3.2). In presence of 5:5:8 B-B GB, the A′′2 mode hardens by

38 cm−1. The E ′ mode softens by 21 cm−1 and 25 cm−1, and hardens by 5 cm−1 and

10 cm−1 due to 5:5:8 N-N, 5:5:8 B-B, 4:8 and 4:4 GBs respectively for the vibration

(in xy-plane) along the GB. The another in-plane E ′ mode softens by 26 cm−1 and 3

cm−1 (not significant) and hardens by 12 cm−1 and 106 cm−1 (significant) for 5:5:8

N-N, 4:4, 4:8 and 5:5:8 B-B GBs respectively for vibrations in the xy-plane involving

displacements perpendicular to the GB (refer Table 3.2). Such shifts in frequencies

can be observed experimentally with IR and Raman spectroscopies. The softening

(hardening) of these modes is readily understood in terms of stretching (contraction)

of the in-plane (out-of-plane) bonds.

3.5.2 Electronic signatures

We now identify electronic signatures of the lowest energy GB (4:8 GB) in h-BN

through comparison with pristine h-BN. Its electronic density of states (DoS) re-

veals two extra peaks (Figure 3.7a) at the valence band maximum (VBM) and the

conduction band minimum (CBM). Further analysis of the charge density of these

states indicates that these electronic states are localized at the GBs, confirming
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Table 3.2: Vibrational spectroscopic signatures in the Raman and IR active modes
of h-BN with different GBs (4:8, 5:5:8, 4:4) and shifts in frequencies (∆ω in cm−1)
w.r.t. pristine h-BN.

Pristine h-BN with h-BN with h-BN with h-BN with

(h-BN) 4:8 5:5:8 B-B 5:5:8 N-N 4:4

GB GB GB GB

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

791 777 829 781 778

(IR active) (∆ω= -14) (∆ω= +38) (∆ω= -10) (∆ω= -14)

1382 1389 1392 1361 1357

(Raman and (∆ω= +5) (∆ω= +10) (∆ω= -21) (∆ω= -25)

IR active)

1382 1394 1379 1356 1488

(Raman and (∆ω= +12) (∆ω= -3) (∆ω= -26) (∆ω= +106)

IR active)

these extra peaks constitute characteristic signatures of the 4:8 GB. From the com-

parison of the electronic DoS of planar and non-planar GB structures, a few extra

peaks are evident in the DoS of the non-planar structure, indicating a redistribution

of localized electronic states upon buckling.

To facilitate experimental observations and verification, we obtain simulated

scanning tunneling microscopy (STM) [96] images. They were obtained keeping the

tip at a constant height of 1Å above the surface of h-BN with a positive sample

bias of 0.8V with respect to the CBM. For a positive sample bias, induced charge

accumulation is observed at B atoms whose orbitals constitute the conduction band.

Simulated STM images (Figure 3.7c and d) highlight the difference between elec-

tronic structure of the planar and non-planar structures of the defective h-BN. We

notice that the bright features in the bulk planar structure weaken upon buckling

(clear from the STM image of the non-planar structure), showing that charge accu-

mulation remains localized at the GB even after buckling.
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Figure 3.7: Electronic signature of 4:8 GB in h-BN seen in the density of states
of (a) planar and (b) buckled (i.e. non-planar) structures (compared with pure
h-BN). Atomic structures juxtaposed on simulated STM images of planar (c) and
non-planar (d) h-BN with 4:8 GB. (g) Buckled h-BN sheet with different colors
showing the extent to which different atoms displace out of plane.

3.6 Conclusions

We presented a comparative analysis of changes in the structure and vibrational

properties associated with two types of interfaces categorized into: (i) stacking and

(ii) growth faults in h-BN and graphene. We demonstrated that a 4:8 GB (stacking
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fault) is more stable in h-BN, while a 5:5:8 GB (growth fault) is relatively more

stable in graphene. We reported four new types of GBs: 6:5:8:4:8:5 GB in graphene

and 4:4, 6:5:8:4:8:5 N-N and 6:5:8:4:8:5 B-B GBs in h-BN. The 6:5:8:4:8:5 GB in

graphene, which is not reported so far, has the lowest energy among all the four GBs,

and should therefore be common and relevant to experiment. Our work highlights

the remarkable diversity in the structures of grain boundaries even when the angle

between the grains is fixed at 60 ◦.

Furthermore, our analysis of the lattice dynamical (phonon) spectrum of the

planar structure with these GBs (4:8, 5:5:8 N-N and 4:8) revealed unstable modes,

i .e. structural instabilities with respect to buckling initiated at the interface. These

lead to formation of wrinkles (short length scale buckling) at the interfaces and as-

sociated rippling (long length scale buckling) of the structure, which are relevant

to the evolution of nano-forms to 3-D frameworks. Vibrational signatures identified

here, specifically hardening and softening (frequency shifts) of A′′2 and E ′ modes,

will be useful in characterization of these interfaces with IR and Raman spectro-

scopies. Electronic signature of the lowest energy 4:8 GB of h-BN is identified in

the additional peaks at the VBM and the CBM that are associated with charge

accumulation localized at the interface, and is accessible to STM.
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Chapter 4

1H and 1T polymorphs,

structural transitions and catalytic

activity towards hydrogen

evolution reaction

4.1 Polymorphs of 2-D Group VI TMDCs (Mo,

W)(S, Se)2
∗

4.1.1 Introduction

In recent years, there has been a renewed interest in Transition Metal (group VI )

Dichalcogenides (TMDCs) due to their applications in varied areas such as lubrica-

tion [97,98], photocatalysis [99], field effect transistors [20], sensors [100] and battery

cathodes [101–103]. TMDCs are layered materials with strong intra-layer and rela-

tively weaker inter-layer bonding. With advances in synthesis techniques and device

∗This work has been published in 2D Materials, 2015 [4]. Reproduced with permission of
Institute of Physics (IOP), URL: http : //iopscience.iop.org/2053− 1583/2/3/035013.

54
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fabrication, these structures can be exfoliated into 2-D monolayers from their bulk

form. We follow the same nomenclature for polymorphs of monolayer MX2 as used

(1H and 1T ) in recent review on 2-D TMDCs by Chhowalla et al. [104]. Monolayers

of these 2D-TMDCs (e.g. MoS2, MoSe2, WS2 and WSe2), in their most common

1H structure, exhibit non-vanishing direct band gaps, and are suitable for appli-

cations such as transistors (with high on-off ratios [20]) photodetectors [105, 106],

electroluminescent [107, 108] devices, electrode for Li-ion batteries [104] and super-

capacitors [104].

Tunability of properties of a material is important to its applications, and the

variation in its chemistry and structure are fundamental to such tunability. In

the 2D-TMDCs, variety in cations (Mo, W) and anions (S, Se) can be effective in

achieving some degree of tunability in their properties such as electronic band gap.

Similarly, strain is known to alter their electronic properties [109–111]. A possibility

of polymorphism involving variation in the stacking sequence of their atomic planes,

can effectively modify electrical, thermal and mechanical properties without chang-

ing the chemistry and straining the lattice. Indeed, the 1T structure was stabilized

experimentally through Re substitution [112], and the atomic mechanism of 1H -1T

transformation was uncovered through a careful electron microscopy.

The 1H structure consists of three X-M-X triangular planar atomic lattices,

stacked in the ABA sequence. It effectively has a honeycomb lattice structure,

with every alternate site occupied by a metal atom M , and the rest of the sites

occupied by a pair of chalcogenide atoms X. The 1H polymorphic [113] form of

2D-TMDCs exhibits a sizable band gap (e.g. 1.9 eV for MoS2 [114]). In the 1T

polymorph of MX2, the X-M-X triangular planar atomic lattices are stacked in the

ABC sequence such that each M atom is octahedrally coordinated with six X atoms,

and is at the centre of inversion. Monolayers of the centrosymmetric 1T polymorph

of TMDCs are metallic, and have been reported recently to show extraordinary
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hydrogen evolution reaction activity (for 1T MoS2) [99, 115], with promise for a

cost-effective replacement of platinum in hydrogen generation.

Recently, the 1T form of MoS2 was predicted to be ferroelectric (broken inversion

symmetry) with a semiconducting electronic band gap [5]. This is in contrast to the

1H structure, which has a vanishing polarization in spite of its non-centrosymmetric

structure due to other structural symmetries. The prediction of 2-D ferroelectricity

in MoS2 (and related monolayers) is striking because it is contraindicative due to

effects of depolarizing fields which suppress the out-of-plane electric polarization. Its

origin was traced to the strong electron-phonon coupling in MoS2 associated with

nesting of the Fermi surface of 1T polymorph. Based on this, Shirodkar et al. [5]

proposed a novel class of dipolectronic devices, in which an electric field perpendicu-

lar to the layer is used to control the dipolar structure which influences the transport

of carriers through the strong electron-phonon (dipole) coupling. Specifically, they

proposed XNOR, NAND and OR logic gates within a single transistor structure.

For such exciting technology and dipolectronics based on these TMDCs, it is very

crucial to be able to synthesize them in the 1T polymorphic structure, and requires

special considerations [116].

Lin et al. [112] have successfully triggered the 1H to 1T by accumulation of neg-

ative charge, and have studied the triggers and phases that act as precursors during

this phase transformation. However, it is also important to understand the origin

of their stability through determination of energetics and the precise structure of

intermediate phases involved in it. For simple scheme of experimental characteri-

zation of these phases, it is desirable to obtain their spectroscopic signatures. At

the fundamental level, the transitions between the polymorphic structures of MX2

compounds are expected to result in anomalies in their response to external fields,

which are yet to be identified.
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In this paper, we determine the pathways in the configuration space of the mono-

layered MX2 (M= Mo, W and X= S, Se) that connect the 1H polymorph with the

1T polymorph by estimating lowest energy barriers of their transformation. We

also assess in detail the local stability and electronic structure of the 1H and 1T

polymorphs, and provide the electronic and vibrational signatures that distinguish

between the different polymorphs and the different compounds in group VI TMDCs.

A deeper analysis of the switchability of ferroelectric polarization in the 1T struc-

ture [5] of these compounds is studied through their electronic structure and the

stability of their dipolar domain structure. Finally, we uncover interesting anoma-

lies in the response of semiconducting forms of MX2 monolayers to electric field.

4.1.2 Methods

Our first-principles calculations are based on density functional theory as imple-

mented in Quantum ESPRESSO package [41], and ultrasoft pseudopotentials [40]

to model the interactions between valence electrons and ionic cores. The exchange-

correlation energy of electrons is treated within a Generalized Gradient Approxima-

tion (GGA) functional as parametrized by Perdew, Burke and Ernzerhof (1996) [36]

(use of LDA is known not to alter the results significantly for MoS2 [5]). We use an

energy cutoff of 35 Ry to truncate the plane wave basis used in representing Kohn-

Sham wave functions, and an energy cutoff of 280 Ry to represent charge density.

Structures are relaxed till the Hellman-Feynman force on each atom is less than 0.02

eV/Å. We have used a periodic supercell to simulate a 2D MX2 sheet, with a vacuum

of 10 Å to separate its adjacent periodic images. Integrations over the Brillouin Zone

(BZ) are sampled on a 21x21x1 uniform mesh of k-points. We determine dynamical

matrices and phonons at wavevectors on a 3x3x1 mesh in the BZ using DFT linear

response (Quantum ESPRESSO implementation based on Green’s function). From
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these, dynamical matrices and phonons at arbitrary wave vectors are obtained us-

ing Fourier interpolation. For configurations of the 1T structure with
√

3x
√

3 and
√

3x1 periodic supercells, our self-consistent Kohn-Sham calculations are based on

BZ sampling with 7x7x1 and 7x12x1 meshes of k-points respectively. The Raman

cross-section of all the modes of the MX2 compounds were calculated using second-

order response as implemented in the Quantum ESPRESSO package [117] using

norm-conserving pseudopotentials with the exchange correlation energy of electrons

treated within the Local Density Approximation (LDA) functional as parametrized

by Perdew-Zunger [37].

Figure 4.1: Contour plot of the γ-surface associated with glide of a Se-plane of MoSe2

monolayer and top view of the structure at different configurations of γ-surface.
Here, A is 1H polymorph, B, E, F are symmetry equivalent transition states, C is
the structure of c1T polymorph and D is the structure at highest point at energy
surface (where Se-atom is sitting on the top of Mo-atom) of MoSe2 structure . Se-
atoms are denoted by yellow (small) spheres and Mo-atoms by grey (large) spheres.
To distinguish between two Se planes, the top Se atoms are shown with circles of
smaller radii than the bottom ones.
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4.1.3 Paths of transition from 1H to 1T structure

Energy landscape

To determine the energy landscape for a transformation between 1H and 1T poly-

morphs, we consider different configurations obtained by displacing (or sliding) one

of the X-atomic sublattice planes (e.g. top layer, Xtop) with respect to the M-atom

layer of the 1H structure. This slip or the glide is a vector (~d) in the plane of the

2D MX2:

~d = x~a+ y~b, (4.1)

where ~a and ~b are the unit cell vectors, and the atomic planes of metal and other

X-atom are kept fixed. We consider x and y ∈ [0,1), as the points on a 6x6 mesh

in the unit cell of real-space lattice in fractional coordinates. The chalcogen atoms

(X) are allowed to relax only in the direction perpendicular to sheet (i.e. z-axis).

By Fourier interpolating the energies obtained for (x,y) points on a 6x6 mesh using

DFT calculations, we construct the energy-surface (γ):

γ(x, y) =
E(x, y)− E(0, 0)

A

=
1√
6

5∑
p=0

1√
6

5∑
q=0

Ap,q exp{i(2πkpx+ 2πkqy)},
(4.2)

where E(x, y) is energy of a configuration ~d(x, y) relative to the 1H structure, and A

is the area of the unit cell. kp,q ∈ {0,1,2,3,-2,-1} and Ap,q are the coefficients obtained

from discrete Fourier transform of energies of configurations ~d(x, y) corresponding

to points on a 6x6 grid in real space. The coefficients Ap,q possess the symmetry

of the crystal, and we note that the γ-surface (see Figure 4.1) exhibits a reflection

symmetry about (1̄, 1) direction (see direction ~p3 in Figure 4.1 and Figure 4.2),

which is used to reduce the number of configurations simulated.

A local minimum of the γ-surface (denoted as γC) located at the slip (glide) of
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(2
3
,1
3
) corresponds to the 1T polymorph. 1T polymorph of MX2 has ABC stacking

of the X-M-X planes of atoms, and close packed network of MX6 octahedra with

M-atom at the site of inversion symmetry makes it metallic (see Figure 4.3). Our

estimate of the energy of 1T structure of MX2 compounds is in the range of 1.18

to 1.51 J/m2 (0.7-0.8 eV/f.u.) (see Table 4.1, Figure 4.1 and Figure 4.2), and

comparable to the surface energy of metals like copper (≈ 1.73 J/m2) and gold

(≈ 1.48 J/m2) [118]. We note that the relative energies of 1T polymorphs of MSe2

(w.r.t. the 1H form) are generally smaller than those of MS2, and we expect that

the 1T polymorph is expected to be more stable in the selenides than in sulphides.

From Figure 4.1, we see that a MX2 monolayer needs to overcome an energy

barrier when it transforms from the 1H to the 1T structure. A configuration at the

energy barrier i.e. the transition state is a point in γ-surface (denoted as γB = γE

= γF ) representing an unstable equilibrium, and occurs at slips of (5
6
,1
6
), (5

6
,2
3
) and

(1
3
,1
6
). The estimated energies of the transition state of the four MX2 compounds

are in the range of 2.47-3.01 J/m2 (1.5-1.7 eV/f.u.) (see Table 4.1 and Figure 4.1).

In these structures (see B, E and F in Figure 4.1), the X-atom lies on top of the

midpoint of the bond connecting two nearest M atoms in the hexagonal lattice.

These three configurations are symmetry-equivalent (hence of same energies), and

have been indicated in the contour plot of γ-surface (see Figure 4.1 and Figure 4.2).

This implies that there are three equivalent paths (along ~p1, ~p2 and ~p3, where ~p1 and

~p2 are related by reflection symmetry) of transformation of the ideal 1H structure

to the 1T configuration, that involve the barriers of same energy (see Figure 4.2).

The maximum energy on the γ-surface (denoted as γD) occurs at a slip of ~d =

(1
3
,2
3
), and it ranges from 3.81 to 4.51 J/m2 (2.3-2.5 eV/f.u.) (see Table 4.1) for

different MX2 compounds. This configuration in which the top X sublattice plane

is on the top of the M atom (Figure 4.1A) is unstable w.r.t. x and y-directions. The

other set of calculations in which the top X-atom was allowed to relax in all the
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(a) (b)

Figure 4.2: Unit cell with three symmetry directions forming the transition paths,
section of the γ-surface along one of these directions and atomic structures of the
extremum points along such a path. (a) Unit cell of MX2 and the three directions
denoted by arrows ~p1, ~p2 and ~p3 (where ~p1 and ~p2 are equivalent directions). (b)
shows the sections of γ-surface along the ~p3 direction. Top view of the structures of
monolayer of MX2 at extreme points of the γ-surface is shown in (b). X-atoms are
denoted by yellow (small) spheres and Mo-atoms by grey spheres. To distinguish
between two X planes, the top X atoms are denoted by smaller radii than the bottom
ones.

directions, showed that the energies of the local minima remain unchanged. Also,

the energy of the transition state (i.e. γB) reduces by ≈ 0.03 J/m2.

Table 4.1: Energies of local minima (γC), minimum energy barrier (γB) and maxi-
mum energy barrier (γD) w.r.t. 1H structure, of energy surface for MX2 (M= Mo,
W and X= S, Se).

γC , (x,y = 2
3 ,1

3) γB, (x,y = 5
6 ,1

6 ; 5
6 , 2

3 ; 1
3 ,1

6) γD,(x,y = 1
3 ,2

3)

Compound e (J/m2) e (eV/fu) e (J/m2) e (eV/fu) e (J/m2) e (eV/fu)

MoS2 1.51 0.83 2.80 1.54 4.37 2.40

MoSe2 1.18 0.70 2.28 1.35 3.81 2.26

WS2 1.61 0.88 3.01 1.65 4.51 2.47

WSe2 1.29 0.77 2.47 1.47 3.94 2.35
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(a) (b)

(c) (d)

Figure 4.3: Contour plot of the band gap Eg(x,y) of monolayer of MX2 as a function
of slip/glide for (a) MoS2, (b) MoSe2, (c) WS2, and (d) WSe2. Note the absence of
island with nonzero band gap in the region of metallic states of MoSe2.

Electronic structure

We now examine the electronic band gap of MX2 monolayers in structural configu-

rations associated with glide on the uniform 6x6 mesh in the real space unit cell, and

visualize its Fourier interpolation Eg(x,y) with contour plot (see Figure 4.3). We

find that the band gap vanishes in most of the region [(x,y) ∈ [0,1)] centered at 1T

structure, and is nonzero only in a tiny region centred at the 1H structure, where

MoS2, MoSe2, WS2 and WSe2 monolayers exhibit direct band gaps of 1.68 eV, 1.46

eV, 1.80 eV and 1.52 eV respectively. We note that Mo compounds typically have

a lower band gap than the respective W compounds and, amongst Mo/W TMDCs,

compounds with Se have a lower band gap than ones with S in respective metals.

Lower band gaps indicate softer bonds [119], and imply that bonding in MoSe2 is

the weakest amongst these compounds. In the contour plot of the band gaps (refer
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to Figure 4.3), we observe that only MoSe2 has a vanishing gap at its γD configura-

tion, and is also related to the nature of bonding i.e. softest bonds in MoSe2. We

note the pathway of the 1H to 1T polymorph transition invariably passes through

metallic states (see Figure 4.3).

4.1.4 Vibrational spectra and stability

We now assess the structural stability of the 1H and 1T polymorphs of MX2 com-

pounds through determination of their phonon spectra. If the phonon spectrum

exhibits phonon modes with imaginary frequencies, it means that the structure is

locally unstable (it is a saddle point in energy landscape), else it is stable. The

eigen displacements of the unstable modes give energy lowering structural distor-

tion. Our results for phonons of the stable structural form are also useful in Raman

and infra-red (IR) characterization of these structures.

1H structure

Phonon dispersions of the 1H polymorph of each of the four compounds exhibit no

unstable modes (i.e. imaginary frequencies), establishing that the 1H structure is a

stable polymorphic form (refer to Figure 4.4, left panel). Higher mass of Se results

in lower frequencies of MSe2 compounds than those of the respective MS2, and the

bandwidth of phonon modes of 1H MSe2 is typically smaller as compared to those

of 1H MS2. Interestingly, the optical bands of WSe2 with in-plane and out of plane

atomic displacements are split, whereas they overlap in frequency forming a single

band of optical phonons in the other three compounds.

The Raman active A1g modes of 1H polymorph of MoS2, WS2 and MoSe2, WSe2

are at 388 cm−1, 398 cm−1 and 285 cm−1, 392 cm−1 respectively, whereas, the doubly

degenerate E1
2g Raman active mode is at 375 cm−1, 344 cm−1 and 292 cm−1, 258

cm−1 for MoS2, WS2, MoSe2 and WSe2 respectively (refer Table 4.3). Note that
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the A1g mode of MoSe2 (285 cm−1) is softer than the E1
2g mode, in contrast to the

trend seen in other compounds and in agreement with previous report by Sugai et

al. [120]. This change in the trend in MoSe2 can be traced back to its force constants

relevant to shear and compressive deformations [120].

1T structure

Our analysis of the vibrational spectra of the c1T polymorph reveals that all the

four MX2 compounds studied here are structurally unstable, and exhibit structural

instabilities with imaginary frequencies in the range of 100i cm−1 to 200i cm−1 (refer

to Figure 4.4, right panel). The unstable modes are doubly degenerate at the high

symmetry K-point of the BZ, and singly degenerate at the M-point of the BZ. We

discuss the K-point instability and its consequences to the structure of the 1T form

in subsection (a), followed by similar analysis of the M-point instability in subsection

(b).

Table 4.2: Energetics, metal-metal bond lengths, polarization and domain wall en-
ergies of 1T polymorph of MX2 compound. ∆E ′ = Ec1T - E1H and ∆E = Ed1T -
Ec1T are given in eV per formula unit (distorted IT (d1T ) structures:

√
3x
√

3 and√
3x1 superstructure). bd1T and bc1T are the bond lengths of metal-metal bond of

d1T and c1T structures respectively. ER is relative energy of
√

3x1 w.r.t.
√

3x
√

3.
Pz is the polarization of 1T polymorph of MX2 in the direction perpendicular to
sheet (z-direction). DW is formation energy of the domain walls separating domains
of opposite polarization.

Compound ∆E′ bc1T bd1T ∆E bd1T ∆E ER Pz DW
(
√

3x1) (
√

3x1) (
√

3x
√

3) (
√

3x
√

3) (
√

3x
√

3) (
√

3x
√

3)

(eV/fu) (Å) (Å) (eV/fu) (Å) (eV/fu) (eV/fu) (µC/cm2) (eV/Å)

MoS2 0.82 3.2 2.7 -0.28 3.0 -0.28 0.004 0.27 0.004

MoSe2 0.70 3.3 2.8 -0.34 3.1 -0.28 -0.072 0.26 -0.003

WS2 0.89 3.2 2.7 -0.35 3.0 -0.31 -0.052 0.25 -0.002

WSe2 0.76 3.3 2.8 -0.47 3.1 -0.32 -0.146 0.25 -0.02

(a) K-point instability:
√

3×
√

3 superstructure

We first note that the degeneracy of the K-point instability is lifted at wavevector

q in the neighborhood of K (i.e. q = K + δ k, refer to Figure 4.4 right panels).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Phonon dispersion of monolayered of MX2 with 1H structure (left panel)
and c1T structure (right panel), MoS2 in (a) and (b), MoSe2 in (c) and (d), WS2

(e) and (f), and WSe2 in (g) and (h). Note that the instability at the K-point in 1T
MX2 is doubly degenerate, and the degeneracy is split at points away from K. The
instability at M-point is singly degenerate.



66 Chapter 4.

Figure 4.5: Top view of 1H, c1T,
√

3×
√

3 1T and
√

3×1 1T structures. A schematic
diagram showing systematic transition of 1T stucture (unstable) to stable structures√

3 ×
√

3 1T structure and
√

3 × 1 1T structure which is lead by K-point and M
point instabilities.

This evolves into two singly degenerate unstable modes, one of which constitutes

a slightly stronger instability than that at K-point. Since there are two equally

unstable modes at the K-point that can lower the energy through distortion of the

1T polymorph as opposed to a single strongly unstable mode at K + δ k, we expect

the lowest energy structure to arise from freezing of the K-point instability. The

structural distortion associated with atomic displacements of the K3 mode leads to a

cell tripled (
√

3x
√

3) superstructure with trimerization of metal atoms [121,122] (see

Figure 4.5). The trimerization of metal atoms which involves bonding through the

d2 electronic states of transition metals these MX2 compounds, lowers the energy

of the 1T polymorph by ≈ 0.28 to 0.32 eV/f.u. (refer to Table 4.2). It leads to

reduction in M-M bond lengths by 0.2 Å (refer to Table 4.2) and is accompanied by

the opening of a band gap ≈ 0.6 to 0.8 eV marking a metal-semiconductor transition.

Along with this, we perform full (atomic and cell) relaxation of
√

3x
√

3 structure

as stresses on the unit cell (σxx = σyy ∼ 12 kbar to 24 kbar) are bit large due to

trimerization of metal atoms. The lattice constants (a=b) of
√

3×
√

3 structure of

MoS2, MoSe2, WS2 and WSe2 change by 1.8% 1.2%, 2.2% and 1.5% respectively
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w.r.t. the lattice parameters of c1T structure.

Phonon dispersion of the
√

3x
√

3 1T structure of each of the four compounds

exhibits no unstable modes, confirming its metastability (Figure 4.6). The signatures

of the
√

3x
√

3 superstructure can also be seen in its Raman spectra. The E1g and

A1g Raman active modes of MoS2 (WS2) are at 292 cm−1 (292 cm−1) and 402 cm−1

(411 cm−1) respectively. In comparison, the E1g and A1g modes of MoSe2 (WSe2)

are at 148 cm−1 (152 cm−1) and 227 cm−1 (257 cm−1) respectively. Along with E1g

and A1g modes, we find that there exist four additional Raman active modes (which

we name as J1, J2, J3 and J4) in all the MX2 compounds. These modes (refer to

Table 4.3) are the Raman signatures that can be used to clearly detect the
√

3x
√

3

superstructure of these materials. We note that the Raman active modes of MoS2

and WS2 (refer to Table 4.3) lie in the same range of frequencies, and the same holds

for MoSe2 and WSe2.

Table 4.3: Raman active modes of 1H and 1T (
√

3x
√

3 and
√

3x1 superstructures)
polymorphs of MX2.

Structure Raman Modes MoS2 MoSe2 WS2 WSe2

(cm−1) (cm−1) (cm−1) (cm−1)

1H A1g 388 285 398 392

E1
2g 375 292 344 258

A1g 402 227 411 257

E1g 292 148 292 152

1T J1 178 127 156 132

(
√

3x
√

3) J2 203 159 150 128

J3 270 180 260 175

J4 376 319 360 273

1T A1g 391 222 391 254

(
√

3x1) E1g 268 139,143 258,268 141,147

(b) M-point instability:
√

3× 1 superstructure

On freezing in the eigen-displacements of the unstable mode at M-point of the 1T

polymorph, we obtain a
√

3x1 superstructure (see Figure 4.5) with zigzag chains
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of metal atoms. Our analysis shows that the
√

3x1 superstructure is same as the

precursor (α phase) observed in the 1H to 1T phase transformation by Lin et

al. [112]. This distorted structure involving dimerization of metal atoms (where the

M-M bonds are contracted by 0.5 Å (refer to Table 4.2)) is metallic (see Figure 4.7),

and a better candidate for HER activity than
√

3x
√

3 1T and 1H polytypes [99].

Along with this, we perform full relaxation of of
√

3x1 structure as the stresses along

y-direction are large (σyy ∼ 30 kbar to 34 kbar) due to dimerization of metal atoms.

The lattice constants b (a) of
√

3 × 1 structure of MoS2, MoSe2, WS2 and WSe2

vary by 3.7% (-0.2%), 4.0% (-1.1%), +3.7% (-0.4%) and 3.6% (-0.4%) respectively

w.r.t. the lattice parameters of c1T structure.

Phonon dispersion of the
√

3×1 1T superstructure of each of the four compounds

(see Figure 4.6) exhibits no unstable modes, hence confirming its metastability.

Spectroscopic signatures of the
√

3x1 superstructure can be identified in the E1g

and A1g Raman active modes. Due to lower symmetry of the dimerized structure,

the degeneracy of E1g mode is split. We find that for MoS2 (WS2) the E1g and

A1g modes are at 268 cm−1 (258 cm−1 and 268 cm−1) and 391 cm−1 (391 cm−1)

respectively. Similarly, the E1g and A1g modes of MoSe2 (WSe2) are at 139 cm−1

and 143 cm−1 (141 cm−1 and 147 cm−1) and 222 cm−1 (254 cm−1) respectively (refer

Table 4.3).

We find that the
√

3x
√

3 superstructure is energetically more stable than the
√

3x1 superstructure in MoS2, which is in contrast to the other MX2 compounds

where the
√

3x1 superstructure is more stable (refer to ∆E in Table 4.2). These

two superstructures can be differentiated experimentally from the signatures in the

Raman spectra of MX2 compounds. In contrast, change in frequency for the A1g

and E1g modes are softer in
√

3x1 than in
√

3x
√

3 superstructure. The E1g mode

of
√

3x1 superstructure of MoS2 (WS2) and MoSe2 (WSe2) are softer by ≈ 25 cm−1

(9 cm−1) and 34 cm−1 (11 cm−1) respectively. For the A1g mode in contrast, the
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(a) (b)

(c) (d)

Figure 4.6: Phonon dispersion of monolayered of MX2 with
√

3x
√

3 1T structure
(left panel) and

√
3x1 1T structure (right panel), MoS2 in (a) and (b), and MoSe2

in (c) and (d).

changes in frequency are 11 cm−1 (20 cm−1) and 5 cm−1 (3 cm−1) for MoS2 (WS2)

and MoSe2 (WSe2) respectively in the two superstructures. We see that the change

in the frequency of the A1g mode is not as significant as the E1g mode for all the

compounds. Secondly, the shift in the frequency of E1g mode is more pronounced

for MS2 compounds than in the MSe2 compounds. Hence, the Raman signatures

can be used to distinguish between the
√

3x1 and
√

3x
√

3 superstructures of MS2

compounds experimentally.
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Figure 4.7: Electronic density of states (DoS) of MoS2 in its 1H and 1T (
√

3x
√

3
and
√

3x1 superstructure) polymorphs.

4.1.5 Transition pathways from
√

3×
√

3 to 1H,
√

3×1 to 1H

and
√

3× 1 to
√

3×
√

3

To estimate energy barriers relevant to the transitions from
√

3×
√

3 to 1H,
√

3× 1

to 1H and
√

3× 1 to
√

3×
√

3 structures, we determine the transition using nudged

elastic band method [123] as implemented in Quantum ESPRESSO package [41].

From Table 4.4, we record that energy barriers for the transitions from
√

3 ×
√

3

to 1H structure are 1.06 eV/fu, 0.96 eV/fu, 1.20 eV/fu and 1.10 eV/fu for MoS2,

MoSe2, WS2 and WSe2 respectively. Similarly, energy barriers for a transition from
√

3×1 to 1H structure are much smaller 0.75 eV/fu, 0.70 eV/fu, 0.60 eV/fu and 0.80

eV/fu for MoS2, MoSe2, WS2 and WSe2 respectively. Finally, the energy barriers for

a transition from
√

3× 1 to
√

3×
√

3 structure are even smaller 0.025 eV/fu, 0.085

eV/fu, 0.078 eV/fu and 0.163 eV/fu for MoS2, MoSe2, WS2 and WSe2 respectively

(refer Table 4.4). We find that the 1H to
√

3 × 1 structural transition is an easier

transformation than the one from 1H to
√

3×
√

3 structure in all the 4 compounds.

To stabilize
√

3×
√

3 structure in MoS2, we need to stabilize
√

3× 1 structure first.
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Table 4.4: Energy barriers for the transition from (a)
√

3x
√

3 to 1H (b)
√

3x1 to
1H and (c)

√
3x1 to

√
3x
√

3 structure of MX2 compounds.

Compound E (eV/fu) E (eV/fu) E (eV/fu)

(
√

3x
√

3 to 1H ) (
√

3x1 to 1H ) (
√

3x1 to
√

3x
√

3)

MoS2 1.06 0.75 0.025

MoSe2 0.96 0.70 0.085

WS2 1.20 0.60 0.078

WSe2 1.10 0.80 0.163

The transition path calculations show that the
√

3× 1 and
√

3×
√

3 structures are

quite comparable in energy and the barriers along the path between them are also

quite small (refer Table 4.4, Figure 4.8). Notably, the intermediate structures (refer

Figure 4.8) have lower energy than
√

3×
√

3 structure in MoSe2, WS2 and WSe2. A

careful examination of these structures reveals that these structures are a strained
√

3×1 structure. Hence,
√

3×1 structure is more stable than the
√

3×
√

3 structure

in MoSe2, WS2 and WSe2 whereas
√

3 ×
√

3 structure is more stable than
√

3 × 1

structure in MoS2 (refer to Figure 4.8). Our analysis confirms why the
√

3 × 1

structure [116] is more commonly observed than the
√

3×
√

3 structure [116].

4.1.6 Ferroelectricity of the
√

3×
√

3 1T polymorph

Based on the prediction of ferroelectricity the
√

3x
√

3 superstructure of MoS2 [5],

we now investigate ferroelectric properties and domains in
√

3x
√

3 superstructure

of the MX2 compounds, (the metallic
√

3x1 phase does not exhibit ferroelectricity).

The inversion symmetry in the cell tripled (
√

3x
√

3) structure [5] is broken because

of the anharmonic coupling of the K-point unstable mode (K3) with a stable polar

mode (Γ−2 ). Once the ordering driven by the primary instability K3 sets in, this

coupling leads to condensation of the polar mode in the structure, and hence to a

spontaneous polarization perpendicular to the plane of the MX2 sheet ranging from

≈ 0.25 to 0.27 µC/cm2 (refer to Table 4.2). Since ferroelectricity in the
√

3 ×
√

3
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Figure 4.8: Transition pathways from
√

3x1 to
√

3x
√

3 superstructure of all the MX2

compounds. Initial and final images are
√

3x1 and
√

3x
√

3 structures respectively.
Structure of intermediate image is shown, where M atoms are denoted by grey
spheres and X atoms are denoted by yellow spheres.

1T structure results from trimerization of M atoms that induce polar distortion of

the centrosymmetric 1T phase of MX2, it is certain that
√

3 ×
√

3 1T -MoX2 is a

ferroelectric [124]. This is based on symmetry argument and is robust. Thus, we

demonstrate that the
√

3x
√

3 1T superstructure of MoSe2, WS2 and WSe2 com-

pounds too exhibit ferroelectricity, in agreement with the predictions of Shirodkar

et al. [5]. However, based on our results in Sec. IV, it will quickly transform to
√

3× 1 structure.

Domains of different orientations of polarization are crucial to its switching with

electric field, which is relevant to application of a ferroelectric in memory devices.

Unrealistically large electric field (coercive field) is required to switch polarization

through homogeneous nucleation of domains of P with opposite orientation. It is

reduced considerably in practice due to the presence of heterogeneously distributed

defects, which facilitate nucleation of ferroelectric domains [5] at lower electric field.
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Applications of these MX2 compounds as ferroelectric semiconductors in the dipolec-

tronic devices requires them to exhibit a stable ferroelectric dipolar domain struc-

ture. We estimate stability of domains through simulation to calculate domain wall

energy as:

Dw =
E(180◦ domains)− EFE

A
(4.3)

where, E(180◦ domains) and EFE are the energies of a configuration with 180◦

(up and down) polarized domains and bulk ferroelectric (with uniform polarization)

respectively. The area (A) is calculated as a product of length of domain wall and d

(thickness of the 2-D sheet of MX2). We note that stable domain wall configuration

indicates (positive energy) that the monolayer can support 180◦ domains of opposite

polarization, which is necessary for polarization switching, a defining property of

ferroelectrics. Secondly, the size of these domains is much larger than the periodicity

of a typical antiferroelectric phase. To this end, we obtained the minimum energy

structure starting with two domain walls (per supercell) separating the domains

with opposite polarization (refer to Table 4.2). Except for MoS2, we find that

none of the other compounds (MoSe2, WS2 and WSe2) exhibit stable domain walls:

our estimates of negative domain wall energy in the latter indicate their natural

instability (refer to Table 4.2) and the fact that the structural relaxation of these

configurations with domain walls leads to formation of the
√

3x1 superstructure,

which is lower in energy. Thus, the relative stability between
√

3x1 and
√

3x
√

3

superstructures is essentially reflected in the negative domain wall energies given in

Table 4.2. The ferroelectric domain walls are thus topological structural excitations

that may drive the
√

3x
√

3 to
√

3x1 structural transformation in MoSe2, WS2 and

WSe2 due to applied electric field.

While the ferroelectric semiconducting
√

3x
√

3 superstructure of 1T polymorphic

phase is locally stable in all the compounds, it is more stable than the
√

3x1 1T phase
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only in MoS2. Thus, only MoS2 has the potential to be used as a semiconducting

ferroelectric in the dipolectronic devices proposed in Ref. [5].

4.1.7 Anomalous response to electric field

Response of an insulating single crystal to electric field is through redistribution of its

electronic charge and ionic positions. Dielectric constant is a measure of the strength

of screening of electric fields in a material. In 2-D materials like MoS2, dielectric

constant has been shown to be crucial in changes in its optical properties that involve

formation of excitons and trions [125] due to external electrostatic environment.

Here, we highlight certain anomalous aspects of ionic response of MX2 monolayers

to electric field, which reflect the fact that they are sensitive to external fields and can

readily undergo metal-semiconductor phase transitions discussed earlier in Section

3.

Table 4.5: Born effective charges (Z∗) and electronic dielectric constants (ε∞) for
1H and 1T (

√
3x
√

3 superstructure) polymorphs of MX2.

Structure 1H 1T (
√

3x
√

3)

Z∗xx Z∗yy ε∞xx=ε∞yy ε∞xx=ε∞yy

Compound M X M X

MoS2 -1.0 0.5 -1.2 0.5 7.6 11.3

MoSe2 -1.9 0.9 -2.0 0.9 8.5 11.5

WS2 -0.4 0.2 -0.5 0.2 7.0 11.7

WSe2 -1.2 0.5 -1.3 0.5 7.9 11.7

We first determine the dielectric properties of both the semiconducting forms

(1H and
√

3x
√

3 1T ) of MX2 compounds. Due to a smaller band gap in the
√

3x
√

3

superstructure, its electronic contribution to dielectric constant ε∞ (optical dielectric

constant) is significantly (by ≈ 50 %) larger than that of the 1H polymorph. While

ε∞xx=ε
∞
yy is in the range of 7 to 8.5 for the 1H polymorph, it ranges from 11 to
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12 for the
√

3x
√

3 superstructure (refer to Table 4.5) of 1T polymorph. These

dielectric constants are relevant to electronic, excitonic and trionic properties of

these materials.

The lower (THz) frequency dielectric response has contributions from phonons

as well, which is proportional to squared mode (Born) effective charges and depends

inversely on the square of their frequencies [126]. Born effective charge (Z∗i,α,β) gives

the force acting on an ion (i) in the ‘α’ direction when an electric field is applied in

the ‘β’ direction (Eβ). An anomalously large Z∗ is often an indicator of the tendency

of a material to undergo a ferroelectric distortion, or its vicinity to metallicity of the

compound [127]. Increase in metallicity or covalency is reflected in the increase in

anomalous nature of Z∗ measured by the deviation from the nominal charge. Due

to strong screening of electric field by conduction electrons in the metallic
√

3x1

superstructures, the dielectric constant or Born effective charges are not physically

meaningful.

Since the 1H polymorph of MX2 compounds is a relatively a wider band gap

semiconductor, the in-plane Born effective charges are expected to be closer to their

nominal charges (i .e. +4 for M and -2 for X). However, we find that the values and

even the sign of Z∗ are counter-intuitive, where Z∗ of M atoms is in the range from

-0.5 to -2 (see Table 4.5) and that of X atom is in that of +0.2 to +0.9. Anomalous

values of Z∗ are due to strong covalency in these materials, and the opposite sign

of Z∗ arises from the contribution of the d-states of M atoms constituting the top

most valence band just below the Fermi level. The
√

3x
√

3 1T form exhibits an even

stronger anomaly (see Table 4.5) and, its Z∗ is larger in magnitude by a factor of

2.5 than of 1H due to a smaller band gap. We find that the in-plane Born effective

charges for the M atoms are in the range of +0.7 to -5, and +2 to -2 for X atoms.

Such anomalous Z∗ is due to its vicinity primarily to a metal to semiconductor

transition of the c1T polymorph, and associated electron phonon coupling [5].



76 Chapter 4.

4.1.8 Conclusions

Using first-principles density functional theoretical calculations, we have determined

the energies and electronic structure of the states along the transition pathway

connecting 1H and c1T structures of monolayers of MX2 (M= Mo, W and X= S,

Se). We find that the c1T structure is typically higher in energy by 0.7-0.9 eV/f.u.

than the 1H structure. Secondly, an energy barrier associated with this transition

through glide of a plane of X atom is about 1.5 to 1.7 eV. We have shown that the c1T

polymorphic structure is unstable, exhibiting instabilities at the valley point K and

zone boundary point M . These structural instabilities lead to symmetry and energy

lowering distortions of the c1T structure to form
√

3x
√

3 (for K-point) and
√

3x1 (for

M-point) stable superstructures respectively. The
√

3x1 superstructure associated

with dimerization of metal atoms remains metallic, while the
√

3x
√

3 superstructure

exhibit a nonzero electronic band gap arising from trimerization of metal atoms. We

find a considerable softening of A1g and E1g modes in the
√

3x1 superstructure as

compared to the
√

3x
√

3 structure, which can be used as the Raman signatures

to distinguish between the two. These, along with four new Raman modes of the

semiconducting
√

3x
√

3 superstructure, will be useful in experimental verification of

these subtle features of the 1T structural form.

Finally, the
√

3x
√

3 structure of (Mo,W)(S,Se)2 exhibits a spontaneous polar-

ization (0.25-0.3µC/cm2) along the direction perpendicular to the sheet, making it

the thinnest known ferroelectric. However, the
√

3x
√

3 structure is (a) more stable

than the
√

3x1 structure, and (b) exhibits a stable dipolar domain structure only

in MoS2. Thus, MoS2 is the only suitable candidate for use in the dipolectronic

devices proposed earlier [5]. As a result of vicinity of these compounds to metal-

semiconductor and ferroelectric transitions, all of them exhibits anomalous response

to electric field.
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4.2 Nuances in electronic structure of 1T-phases

of MoS2

4.2.1 Introduction

MoS2 is undoubtedly important member of the TMDCs family for applications

in transparent and flexible electronics due to its finite bandgap and extraordi-

nary electrostatic gate coupling properties at lower dimension [16,20,100,128,129].

While MoS2 is stable in 1H structure, it exhibits various trigonal polymorphic

forms [130,131] such as 1T, 1T′, 1T′′ and 1T′′′. These structural forms are metastable

and can be kinetically formed as small patches embedded in the majority 1H form

during chemical exfoliation [132]. The electronic properties of stable 1H form has

been extensively studied as a wide direct band gap (1.9 eV) semiconductor. Whereas

other polymorphic forms of MoS2 are less explored experimentally, which may po-

tentially limit or enhance the application of 2D MoS2 devices by its presence within

1H-MoS2 samples. It has been assumed that metastable phase is the 1T phase and

it is metallic in nature [112, 122, 133–135]. Due to its metallic nature, 1T-MoS2 is

considered suitable for novel devices such as i.e supercapacitors [133], catalyst for

hydrogen evolution reaction [134], ultrathin transistors [135].

In this section, we used self-energy corrected first-principles calculations to deter-

mine the electronic nature of metastable form present in the experimental samples

synthesized by Prof. D. D. Sarma’s group, IISc.

4.2.2 Computational Details

We have used first-principles calculations based on density functional theory as

implemented in Vienna ab initio package (VASP) [136,137]. Core and valence elec-

trons are treated using the projected-augmented wave (PAW) method [138,139]. We
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used the GW version of PAW potentials available with VASP, which are expected

to provide improved scattering properties at higher energies [140]. The exchange-

correlation of electrons is treated using a generalized gradient approximation with

functional parameterized by Perdew, Burke, and Ernzerhof (PBE) [36]. We use

an energy cutoff of 380 eV to truncate the plane wave basis used in representing

Kohn-Sham wave functions. We relaxed the structures to minimize energy until the

Hellman-Feynman force on each atom is less than 0.01 eV/Å. We have used a peri-

odic supercell to simulate a 2D MoS2 sheet, with a vacuum of 10 Å to separate the

periodic images. Integrations over the Brillouin zone (BZ) were sampled on 24x24x1

and 12x24x1 uniform meshes of k-points (Γ-centered) for 2H and 1T′ (2axa) respec-

tively. Converged PBE eigenvalues and wave functions were used subsequently to

calculate quasiparticle energies in the non-self-consistent GW (G0W0) approxima-

tion. DFT eigenvalues were corrected with electron self-energy obtained within a

GW approximation. Calculations of RPA-based dielectric response function were

carried out with energy cut-offs of 186.7 eV. We added 63, 126, 252, 189 empty con-

duction bands in G0W0 calculations of 1H, 1T′, 1T′′ and 1T′′′ structures respectively.

We have performed some of the test calculations with exchange correlation energy

functional treated within the framework of a local density approximation (LDA)

and Hubbard U parameter of 1 eV to include on-site correlations of d-electrons of

Mo atom, which constitute the valence and conduction bands lining the gap.

4.2.3 Results and Discussion

The crystal structure of metastable patches of MoS2 was originally proposed to be of

1T form with an ideal octahedral configuration [122,141]. However, some of the X-

ray diffraction and STM based investigation show that chemical exfoliation of MoS2

leads to formation of distorted 1T′′ structure with 2ax2a superstructure [142, 143]

involving tetramerization of Mo atoms (Figure 4.9). The 1T′ structure with a zigzag
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Figure 4.9: Top view of different forms of MoS2 1H, 1T and various distorted 1T
structures (1T′, 1T′′ and 1T′′′). 1T′ can be described in terms of two different
unit cells corresponding to 2axa and

√
3axa superstructures, while 1T′′ and 1T′′′

correspond to 2ax2a and
√

3ax
√

3a superstructures obtained by trigonal 1T MoS2

distortion. The unit cells are enclosed by solid lines.

chain-like clustering of Mo atoms or dimerization of Mo atoms [116,144] is observed

using transmission electron microscopy (TEM). Some groups have reported that the

oxidation of MoS2 leads to formation of 1T′′′ (
√

3×
√

3 superstructure) with trimer-

ization of Mo atoms (see Figure 4.9). The electronic structure of these structural

forms depend on their structure such as centrosymmetric-1T is metallic whereas

1T′, 1T′′ and 1T′′′ known as distorted 1T-forms are semiconductor with a gap of 90

meV, 200 meV and 500 meV respectively. Based on total energy calculations, it is

difficult to find most stable 1T structural form as 1T′ and 1T′′ MoS2 are degenerate

in energy. The energy difference of these structural form is 4 meV/f.u. which is

within the error limits of DFT.
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Photoemission spectroscopy (PES) is the only direct method to probe electronic

structure experimentally. It is well known that density functional theory (DFT)

is ill equipped to describe photoemission as the Kohn-Sham energies do not for-

mally correspond to quasiparticle energies, which are required to correctly describe

electron addition or removal events [145]. A widely-employed and efficient means

to overcome this problem is the GW approximation [140, 146–148], which goes be-

yond the mean-field, independent-particle DFT approach and properly accounts for

many-body electron-electron interactions. Therefore, this quasiparticle picture is

generally sufficient to obtain accurate photoemission spectra. Hence, we have cal-

culated electronic structure of MoS2 in 1T forms within GW approximation and

compared it with PES valence band spectra to find out which structural form is

present in the experimental sample and it’s nature (semiconducting or metallic).

We compared the calculated density of states of 1H phase with the valence band

spectrum of 1H phase obtained experimentally. Due to hybridized Mo 4d and S

3p states, there are features appearing at 1.8, 3.3, 5.2 and 6.5 eV in valence band

spectrum of 1H MoS2 (Figure 4.10a). To compare the calculated DOS to the experi-

mental spectrum, experimentalist took into account the relative cross-sectio of Mo 4d

and S 3p states at the photon energy used. The sum of these cross-section weighted

partial DoS after broadening with a Lorentzian with an energy dependent width

and a Gaussian of fixed width to account for the life-time and resolution broaden-

ing (see Figure 4.10a). The agreement between the calculated and experimentally

obtained spectrum is remarkable (refer 4.10a), establishing the potency of the GW

calculation scheme in capturing the electronic structure of MoS2. Calculated results

based on local density approximation (LDA) with and without spin-orbit coupling

did not provide an accurate description of our experimental results, significantly

underestimating the energy separation between Mo 4d and S 3p dominant peaks

observed at 1.8 and 3.3 eV. We have also checked the inclusion of on-site Coulomb
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Figure 4.10: (a) Experimental (open circle) and calculated (solid line) valence band
spectra of pure 1H sample along with partial density of states of Mo 4d and S 3p.
(b) Experimentally obtained spectral features of the metastable phase (open circle)
compared with that obtained from the calculation of the electronic structure of the
metastable 1T′ phase of MoS2 (solid line) along with partial density of states of Mo
4d and S 3p.

interaction of Mo 4d states within the LDA+U approach, which even worsen the

agreement with experimental data. We have compared the valence band spectrum
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of metastable patches obtained experimentally with 1T′, 1T′′ and 1T′′′ DoS (refer

Figure 4.10b) and find that the metastable MoS2 phase generated by the chemical

exfoliation of 1H MoS2 is a semiconductor (1T′) with a gap ∼ 90 meV in contrast

to the assumption of it being the metallic 1T phase.

4.2.4 Conclusions

We unravel the mystery of precise atomic and electronic structures of the 1T phase

of 2D MoS2, which is known to have properties that are relevant to its applications.

This meta-stable phase is known to occur in nano-scale regions of commonly grown

samples of 2D MoS2. Self-energy corrected first-principles calculations of electron-

icstructure to determine its electronic nature, which along with the experiments by

Prof. D. D. Sarma show that 1T phaseof 2-D MoS2 has a 2a × a super-structure

with Mo dimerization, and exhibits a band-gap of 90 meV.

4.3 Superior performance of 1T-MoSe2 in visible

light induced hydrogen evolution reaction†

4.3.1 Introduction

The global energy crisis, which results from exponentially increasing energy demands

and harvesting of nonrenewable energy resources in unsystematic way, has befallen

mankind. In pursuit of renewable and environmentally friendly energy sources,

much research has been conducted to achieve energy sustainability. Superior energy

density, sustainable energy production techniques proposed hydrogen as a feasible

storage and source of green energy. To this end, efficient catalysts are required for

the hydrogen evolution reaction (HER), where protons from solution combine with

†A part of this work has been published in APL Materials, 2014 [99]. Reproduced by permission
of Creative Commons Attribution, URL: http : //dx.doi.org/10.1063/1.4892976.
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electrons at the electrode to form H2 gas. The expensive Pt-group metals are still the

most active catalysts for HER, so efficient, abundant, and low-cost alternatives are

needed. Hence, alternatives to Pt have been suggested; of these, a class of materials

that features promising qualities, such as low cost and favorable energy barrier to

hydrogen adsorption [149] is that of Group VI TMDCs. MoS2 has been widely

used as a catalyst for electrochemical, photo-electrochemical and photo-catalytic H2

generation from water [150–152]. The metallic nature of 1T MoS2 is expected to be

responsible for H2 evolution [115, 134, 153]. 2H-MoTe2 with an indirect bandgap of

1.05 eV has its conduction band minimum at 0.37 eV higher than 1H-MoS2, and

well above the water reduction potential [154,155], making it an ideal catalyst for H2

evolution. The 1T form of MoSe2 is also metallic and could be expected to be better

catalyst than its 2H analogue for water reduction. In this section, we explain that

why MoSe2 has superior catalytic activity compared to MoS2 in both 1H and 1T

structures towards hydrogen evolution reaction (HER) as observed in experiments

by Prof. CNR Rao.

4.3.2 Computational Details

We have used first-principles calculations based on density functional theory (DFT)

as implemented in Quantum ESPRESSO package [41], in which the ionic and core-

valence electron interactions are modeled with ultrasoft pseudopotentials [40]. The

exchange-correlation energy of electrons is treated within a Generalized Gradient

Approximation (GGA) functional as parametrized by Perdew, Burke and Ernzerhof

(1996) [36]. We use an energy cutoff of 35 Ry to truncate the plane wave basis used

in representing Kohn-Sham wave functions, and energy cutoff of 280 Ry to represent

charge density. Structures are relaxed till the Hellman-Feynman forces on each atom

are less than 0.02 eV/Å. We have used a periodic supercell geometry to simulate a

2D sheet, including vacuum of 15 Å to separate the adjacent periodic images of the



84 Chapter 4.

sheet. In self-consistent Kohn-Sham (KS) calculations of configurations of with 1x1,
√

3x
√

3 and
√

3x1 supercells, the Brillouin zone (BZ) integrations are sampled over

uniform meshes of 21x21x1, 7x7x1 and 12x7x1 k-points respectively.

Since KS-DFT typically underestimates electronic band gaps (a known limita-

tion), we employ hybrid functional based on Hartree-Fock-Exchange (HSE) [46] with

screened Coulomb potential to estimate band gaps more accurately. These calcu-

lations are based on first-principles DFT using Projector Augmented Wave (PAW)

method [138,139] as implemented in the VASP (Vienna Ab-initio Simulations Pack-

age) [136,137].

4.3.3 Results and Discussion

Experimental results show that the catalytic activity of the 1T form of MoSe2 is

nearly few hundred times higher than that of the 2H form. Interestingly, the yield

of H2 and turn on frequencies (TOF) with 1T-MoSe2 is superior even to those found

with 1T MoS2. The 1H form of MoSe2 too shows better activity than that of

2H MoS2 (yield of 0.05 mmolg−1h−1 and TOF of 0.008 h−1). For more details of

experimental results, refer Gupta et al., APL Materials 2, 092802 (2014) [99].

1T structure with 1x1 periodic cell is metallic [4,5]. We have studied two super-

structures of 1T-MoX2 (where X = S and Se),
√

3x
√

3 and
√

3x1 [156] (see Figure

4.9). Amongst these two superstructures,
√

3x1 is metallic and shows dimerization

of Mo atoms, and
√

3x
√

3 is semiconducting with trimerized Mo atoms. From the

calculated phonon dispersion, we find that both MoS2 and MoSe2 are stable (struc-

tures are at local minima of energy) in the
√

3x
√

3 and
√

3x1 superstructures as

shown is Section 4.1. However,
√

3x
√

3 structure of 1T-MoS2 is energetically more

stable than the
√

3x1 by 27 meV/f.u., while the
√

3x1 super-structure of MoSe2 is

energetically more stable than the
√

3x
√

3 super-structure by 33 meV/f.u. Exper-

imentally, MoSe2 is indeed seen to be in
√

3x1 super-structure [99], in agreement
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with our first-principles results. In the further analysis, we consider the
√

3x
√

3

superstructure for MoS2 and
√

3x1 superstructure for MoSe2.

To determine the efficiency of MoX2 (X= S, Se) in reducing a proton to hydrogen

as observed in experiments here, we have estimated their electron affinities (EA)

and work function (φ). For the metallic states, the relevant property here is the

work function. The work function is calculated as φ = Evac - EF , where EF is the

Fermi energy. For semiconductors, the EA is estimated as the difference between

the vacuum potential (Evac) and the lowest energy conduction band (ECB). As

DFT is a ground state theory, estimation of band gap and hence of the location

of CB, ECB is not accurate. We replace the ECB with EV B + Eg, where EV B

is the energy of the highest valance band (occupied states) and Eg is the band

gap. We use the HSE corrections (using VASP) to determine Eg accurately. For

the monolayered MoS2, experimental value of electronic bandgap (1.8 eV [114]) is

available. Comparison of the experimental bandgap with our estimates of bandgaps

for 2H-MoS2 reveals that Kohn-Sham bandgap is underestimated by 7.2%, while

HSE bandgap is overestimated by 17.7% (see Table 4.6), the latter is in agreement

with Ahuja et al. [157]. Thus it is clear that the HSE method overestimates the

experimental bandgap of 2H-MoS2, whereas KS-DFT calculation (GGA) yields a

better estimation, and we use estimates of Eg obtained from KS-DFT calculations

in this work.

We find that the 2H and 1T-polytypes of MoS2 have a greater work function than

that of the respective structure of MoSe2 (refer to Table 4.7). Thus, it is easier to

extract an electron from MoSe2 as compared to that from MoS2 in both 1T and 2H

polytypes. Secondly the 1T polytype has a lower work function than the 2H, which

means that its easier for the 1T polytype to donate electron as compared to the 2H-

structure. This explains why 1T-polytype of MoSe2 is more effective in producing

hydrogen than the 2H-polytype as observed in experiments. Electron affinities of
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both 1T and 2H polytypes (see Table 4.7) indicate that MoS2 has a stronger electron

affinity (indicating a higher tendency to attract electrons) than that of MoSe2, but

its work function is also larger. Thus, though MoS2 more readily attracts/accepts

electrons, it does not donate it easily. Hence, MoSe2 is more efficient in hydrogen

evolution as compared to that of MoS2 as observed in experiments here.

Table 4.6: Calculated and experimental values of bandgaps for 2H and 1T (
√

3x
√

3
superstructure) structures of MoX2. HSE and KS-DFT bandgaps are calculated
using VASP.

Compounds
Bandgap (eV)

KS-DFT (VASP) HSE (VASP) Exp.

2H-MoS2 1.67 2.12 1.8 [114]

2H-MoSe2 1.45 1.88 –

1T-MoS2 0.76 1.28 –
(
√

3x
√

3)

1T-MoSe2 0.64 1.16 –
(
√

3x
√

3)

Table 4.7: Calculated values of electron affinity (EA) and work function (WF) for
1T (for both

√
3x
√

3 and
√

3x1 superstructures) and 2H structures of MoX2 (MoS2

and MoSe2)

1T-form 2H-form

Superstructure
√

3 x
√

3
√

3 x 1 –

Compound MoS2 MoSe2 MoS2 MoSe2 MoS2 MoSe2

EA(eV) 4.95 4.42 – – 4.22 3.78

WF(eV) 5.68 5.20 5.63 5.00 5.86 5.35

In addition, we have determined the energy of binding of hydrogen (H) to
√

3x1

1T superstructure of MoS2 and MoSe2, which is relevant to the experiments reported

here and has the lowest work function. The hydrogen binding energy is calculated

as

Eads =
1

n
[E(slab+ nH)− E(slab)− n

2
E(H2)], (4.4)

where n is the number of H atoms considered in the simulation. We find that

bulk metal dichalcogenides (MoS2 and MoSe2) do not absorb hydrogen (Eads > 0).



4.3 Superior performance of 1T-MoSe2 87

However, it has been previously reported that their edges are catalytically active

in hydrogen adsorption [153]. Hence, we have simulated ribbons of MoX2 with two

different types of edges (Mo terminated edge and X terminated edge) and their

interaction with H (with 100% hydrogen coverage at the edges). The hydrogen

binding energies at Mo sites at the edges of MoS2 and MoSe2 are -33.8 meV/f.u.

and -32.3 meV/f.u. respectively. The respective Mo-H bond lengths are 1.72 Å and

1.73 Å. Whereas, the hydrogen binding energies at the X (S/Se) edges of MoS2 and

MoSe2 are -34.6 meV/f.u. and -13.1 meV/f.u. respectively. The corresponding X-H

bond lengths are 1.35 Å and 1.48 Å. The binding energy of hydrogen at the metal

edge is about the same in the two compounds but the Se edge shows weaker binding

with hydrogen than of the S edge. According to the volcano plot [158], this suggests

a higher exchange current for hydrogen evolution over MoSe2 than that over MoS2,

consistent with our analysis based on the work functions. Since MoSe2 has a lower

work function than of MoS2, its Fermi energy (EF ) lies closer to the normal hydrogen

electrode (ENHE), which makes easy exchange of an electron with MoSe2 (H atom

has a weaker binding at Se edge) as compared to MoS2. Hence, MoSe2 is relatively

more efficient in facilitating hydrogen evolution reaction.

4.3.4 Conclusions

Our first-principles analysis reveals that (a) MoSe2 has a lower work function in each

of the 1T and 2H structures as compared to MoS2, and (b) 1T-structure exhibits

lower work function than the 2H-structure for each MoX2 (X= S and Se). This

results in easy transfer of electron from the MoSe2 substrate to reduce proton, and

hence MoSe2 is more efficient for hydrogen evolution reaction as compared to MoS2,

which is also reflected in our analysis of binding energies of H at MoSe2 edges.
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Properties of 2H-MoTe2: Effect of

pressure and Te-vacancies

5.1 Pressure-dependent phase transition in 2H-

MoTe2

5.1.1 Introduction

The electronic topological transition [161, 162] or Lifshitz [163] transition are ob-

served when the van Hove singularity associated with the band extrema approaches

the Fermi level and passes through it. It effects the distribution of carriers and hence

changes the Fermi surface topology. The minute changes in the electronic band and

Fermi surface topology is caused by external parameters, that can be reflected in

the anomalies of the measurable quantities and, are mainly of two types: (a) the

appearance or disappearance of electron and hole pockets, and (b) the rupturing

of necks connecting Fermi-arcs. In this work, we observe Lifshitz transition due to

the appearance or disappearance of electron and hole pockets. Raman studies have

88
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been shown to be useful to capture the phonon signatures associated with the sub-

tle modifications in the Fermi surface topology, evident in the changes in pressure

coefficients [164] or in the integrated area ratios [165] of the Raman modes.

Mechanical deformation or strain is one of the way to switch among different

thermodynamically stable structural polytypes for TMDCs without adding impuri-

ties. According to recent studies on high pressure Raman of 2H-MoS2 [159, 160], a

lateral shift of adjacent S-Mo-S layers around ∼ 20 GPa is observed. This phase is

a mixed phase of 2Hc (2H) and 2Ha (1T) structures with the 2Hc-phase being the

dominant one [159], hence changes the pressure coefficients of Raman modes [159]. A

metallic phase appears at ∼ 40 GPa [159], as a result of completion of layer sliding

transition from 2Hc to 2Ha. In this section, we are interested to study the effect of

external pressure on electronic and vibrational properties of 2H-MoTe2.

In the section 5.1, we present Raman studies of bulk 2H-MoTe2 as a function of

pressure. Experiments by Prof. A. K. Sood’s group show considerable change in the

pressure coefficients of the frequencies of first order (E2g and A1g) phonon modes

at ∼ 6 GPa. This transition is identified as semiconductor to semimetal as shown

by first-principles study. Experimentally, a decrease of pressure coefficient of the

A1g mode from 2.2 to 1.7 cm−1/GPa around ∼ 16.5 GPa is observed. Theoretically,

this transition is marked as Lifshifz transition. Our theoretical calculations confirm

that there is no structural transition in 2H-MoTe2 throughout the whole pressure

range upto 30 GPa. This is consistent with Raman experiments, where no new

Raman modes appeared for a lower symmetry structure [166]. Our findings is quite

similar to the cousin material MoSe2, where no structural transition is observed

upto the maximum pressure of ∼ 60 GPa and it shows a metallic nature around 41

GPa [167]. Pressure dependent Raman experiments of 2H-MoTe2 presented in the

Section 5.1, are performed by Prof. A. K. Sood’s group (IISc).
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5.1.2 Computational Details

Our first-principles calculations are based on density functional theory as imple-

mented in Quantum ESPRESSO package [41], in which the interaction between

ionic core and valence electrons is modelled by norm-conserving pseudopotentials

[168, 169]. The exchange-correlation energy of electrons is treated within a Local

Density Approximation (LDA) with a functional form parametrized by Perdew-

Zunger [37]. We use an energy cutoff of 80 Ry to truncate the plane wave basis used

in representing Kohn-Sham wave functions, and energy cutoff of 320 Ry for the basis

set to represent charge density. Self-consistent solutrion to the Kohn-Sham equations

was obtained until the total energy converges numerically to less than 10−8 Ry. Struc-

tures are relaxed to minimize the energy till the magnitude of Hellman-Feynman

force on each atom is less than 0.001 Ry/bohr. We include van der Waals (vdW)

interaction with the parametrization given in Grimme scheme [56]. In self-consistent

Kohn-Sham (KS) calculations of configurations of bulk 2H-MoTe2 unit cell, the Bril-

louin zone (BZ) integrations are sampled on 12x12x3 and 24x24x6 uniform meshes

of k-points in determination of total energy and electron-phonon coupling respec-

tively. For bulk 2H-MoTe2 at zero pressure, we determine electronic structure by

including the spin-orbit coupling (SOC) through use of relativistic pseudopoten-

tials using a second variational procedure [170]. Phonon and dynamical matrices at

Γ-point (q= (0, 0, 0)) were determined using density functional linear response as

implemented in Quantum ESPRESSO(QE) [41], which employs the Green’s function

method to avoid explicit use of unoccupied Khon-Sham states. Since DFT typically

underestimates the bandgap, we have used HSE functional as implemented in QE

to estimate the gaps accurately. The mixing parameter is equal to 0.15 in these cal-

culations. The reciprocal space integration is performed using 108 k-points in each

direction for a 6x6x3 uniform mesh.
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Figure 5.1: The phonon frequencies of (a) A1g, (b) E1
2g and (c) the integrated area

ratio of A1g to E1
2g versus pressure plot. The solid lines are linear fits [ωp = ω0 +

( dω
dP

)P ] to the observed frequencies (solid symbols) and the corresponding slope
values are shown. The inset of (b) shows Raman spectra at P= 16.5 and 29 GPa,
where the spectra are laterally shifted to match the frequency and also normalized.
Error bars (obtained from the fitting procedure) are also shown. The black dashed
lines mark the phase transitions and the red dashed lines are guide to the eye.

5.1.3 Experimental Observations

In this subsection, we show the experimental results obtained by Prof. A. K. Sood’s

group on pressure dependent Raman experiments of 2H-MoTe2. The Raman mea-

surements show a change in slope (S= dω/dP) (Figures 5.1a, b) of the phonon modes

A1g and E1
2g at ∼ 6 GPa. The change in S across the transition pressure for the out-

of-plane A1g mode (0.9 cm−1/GPa) is about twice that of the in-plane E1
2g mode

(0.4 cm−1/GPa)(see Figure 5.1c). We also observe a maximum in the integrated

area ratio of the A1g mode to the E1
2g mode around 6 GPa (see Figure 5.1c). They

also suggests another transition at ∼ 16.5 GPa (Figure 5.1c). Across this pressure
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range, the value of S for the A1g mode and E1
2g mode decreases. We are interested

to understand the orgin of these anomalies observed in phonons with pressure.

5.1.4 Atomic and electronic structure

The structure of 2H-MoTe2 consists of layers Te-Mo-Te, with a unit cell charac-

terized by a stacking sequence AbABaB, where A, B label Te atomic layers and

a,b label Mo atomic layers with triangular lattices (see Figure 5.2a). 2H-MoTe2 is

an indirect band gap semiconductor with valence band maximum (VBM) at Γ and

conduction band minimum (CBM) at K2 point (K2 point is a mid point of Γ-K

path) with a gap 0.57 eV (refer to Figure 5.2b). The VBM and CBM constitute of

4d orbital of Mo and 5p orbital of Te (see Figure 5.2c). Inclusion of the SOC reduces

the indirect gap by 30 meV. The splitting of bands due to SOC is relatively smaller

at Γ point than at K and M points. Since the change in band gap due to inclusion

of SOC is small, we have not included the SOC in pressure dependent studies.

Figure 5.2: (a) Crystal structure, (b) electronic structure and (c) projected density
of states of 2H-MoTe2. Electronic structure determined with (red color lines) and
without (black color lines) effects of the spin-orbit coupling (SOC); the effect of SOC
are particularly evident in the states lining the gap.
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(a) (b)

(c) (d)

Figure 5.3: Electronic structure of 2H-MoTe2 at (a) 2 GPa, (b) 8 GPa, (c) 14 GPa,
(d) 20 GPa.

5.1.5 Pressure dependent electronic transitions

We present theoretical calculations to understand the two transitions at 6 GPa and

24 GPa observed in the experiments. We find that the structure of 2H-MoTe2 remains

stable upto the highest pressure, but its indirect band gap reduces and VBM shifts

to K1 point (q= (1/14, 1/14, 0), near Γ-point) (see Figure 5.3a). We clearly observe

(see Figure 5.4b) that the VBM (at K1-point) and the CBM (at K2-points) cross the

Fermi level at 8 GPa. In addition, the CBM at K-point and VBM at Γ-point also

cross Fermi level (see Figures 5.3b, 5.4a and 5.4c). At 8 GPa, there are very few states

at the Fermi level and hence MoTe2 is semi-metallic, in agreement with the previous

calculations [171]. At 8 GPa, the indirect band gap with VBM at K1 and CBM at K2

(mid point of Γ-K path) as well as at K-point (see Figure 5.3b) closes. We note that
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Rifliková et al [171] have predicted semiconductor to metallic transition in between

10 to 13 GPa. The inclusion of van der Waal’s interactions in our calculations perhaps

result in reduction of the predicted transition pressure. The transition observed in

our experiment at ∼ 6 GPa which is identified as a semiconductor to semimetal

transition, is seen to occur at 8 GPa in our calculations. This difference between the

observed and calculated transition pressures is partly due to errors in the calculated

equilibrium lattice constants.

Figure 5.4: Variation in VBM and CBM with pressure at different high symmetry
points of BZ (a) Γ, (b) K1(VBM; near Γ point), K2 (CBM; mid point of Γ-K path),
(c) K and (d) A point. The inset in (a) shows the estimates of band gaps with HSE
and LDA functionals with pressure. The difference in enthalpy of 2H and 1T

′
-MoTe2

with pressure is shown in inset of (a). Note that 2H-MoTe2 stability increases with
pressure.

Furthermore, we determine the band gap of MoTe2 using HSE calculations to

estimate the accurate transition pressure of semiconductor to semimetal transition.

The HSE based estimates of the band gap at 0 GPa is 1.1 eV, while the gap estimated

with LDA is 0.57 eV. We note that the former is in good agreement with experiment

at P = 0 GPa, whereas the latter is an underestimate by 0.4 eV, with respect to
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the experimental value (1.1 eV). Thus, the pressure of semiconductor to semimetal

transition is expected to be underestimated with LDA calculation. Pc obtained with

HSE calculation is 12 GPa (see inset of Figure 5.4a). However, this is expected to be

also off-set by the errors in the lattice constants calculated by LDA, and a precise

comparison of these results with experiment on this anisotropic materials is tricky.

The motivation behind our calculations is to understand the nature of transition

rather than predicting the precise transition pressure, and the link demonstrated

between the Raman anomaly and the electronic transition is physically reasonable.

An increase in the pressure beyond 8 GPa creates new extrema in electronic

dispersion with electron pockets (valleys) at K2 and K points, and hole pockets

at Γ and A points (see Figure 5.3c). This emergence of hole and electron pockets

seen clearly in Figures 5.4a, b and d where the VBMs at Γ, K1 and A points cross

Fermi level at 10 GPa, 8 GPa and 12 GPa respectively, leading to formation of hole

pockets. Similarly, CBMs at K2 at 8 GPa and K points at 20 GPa cross Fermi level

leading to the formation of electron pockets. As the hydrostatic pressure does not

alter the symmetry of the crystal, energy levels do not split, but those near the

Fermi energy change notably giving rise to pressure induced transfer of electrons

from one pocket to another in order to maintain the number of carriers. Interestingly

at 20 GPa, the gap at K-point closes (see Figure 5.4c), which within errors of our

calculation, corresponds to the second transition experimentally seen at 16.5 GPa. To

probe this further, we monitored the evolution of Fermi surface with pressure. At

20 GPa, we visualize Fermi surfaces associated with all the bands which cross Fermi

level and find electron pockets at K-point and at K2 along the path Γ to K (see

Figure 5.5a, green color surfaces). In Figure 5.5a (red and blue surfaces), at Γ and A

points, we observe hole pockets (see Figures 5.3a and d). We find the Fermi surface

associated with the bands at Γ and A points changes significantly at pressure of ∼

20 GPa (see Figures 5.5b-d). Since, the Fermi surface changes with applied pressure
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without breaking the structural symmetry, we assign a Lifshitz transition at ∼ 20

GPa.

Figure 5.5: Fermi surfaces at (a) 20 GPa of merged bands (all the bands crossing the
Fermi levels). Panels (b), (c) and (d) show the specific hole like part of Fermi surface
changing with pressure at P= 18 GPa, 20 GPa and 22 GPa respectively. Note that
(b), (c) and (d) show the hole pockets at Γ and A points with pressure. Green color
shows electron pockets whereas blue and red (at the center of the hexagon) show
hole pockets.

5.1.6 Investigation of structural phase transition from 2H

to 1T
′
phase

To investigate the pressure dependent phase transition from 2H to 1T
′

phases of

MoTe2, we study the changes in enthalpy of these structures, and did not observe

any phase transition from 2H to 1T
′

phase. In fact, MoTe2 in 2H form indicates

increased stability with pressure (inset of Figure 5.4d). We investigated the phase

transition only between 2H and 1T
′

phase as 1T
′

is the phase that is second lowest

in energy. The energies of 1T
′
-MoTe2 and 1T-MoTe2 are 133 meV/f.u. and 544

meV/f.u. with respect to 2H-MoTe2, respectively. 1T-MoTe2 is also locally unstable

and exhibit structural instabilities with imaginary frequencies at K and M-points

of BZ whereas MoTe2 is stable in the 1T
′

form. The 1T′ phase has a monoclinic

lattice which is a distorted form of 1T phase. However, this structural distortion of
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Figure 5.6: The pressure coefficients of Raman active phonon modes obtained using
first-principles calculations. Changes in slopes (expressed in cm−1/GPa) of A1g, E1

2g

and E1g are shown by vertical dashed lines in (a), (b) and (c) respectively. The
changes in electron-phonon coupling of those modes are shown in (d).

1T phase results in formation of weak in-plane metal-metal bonds in the pseudo-

hexagonal layers with zigzag metal chains [172].

5.1.7 Signatures of electronic transition in vibrational spec-

trum

The space group of 2H-MoTe2 is D4
6h with unit cell containing two formula units. The

optically active modes at the BZ centre (Γ point) are classified into following irre-

ducible representation as A1g + A2u + B1u + 2B2g + E1g + E1u + 2E2g + E2u. Out

of these A2u and E1u modes are infrared active whereas A1g, E1g and E2g modes

are Raman active. We determined the effects of hydrostatic pressure on the Raman

active modes. A compression of the unit cell leads to hardening of all the three
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modes A1g, E1
2g and E1g (see Figures 5.6a, b and c). Here, the calculated pressure

coefficients for all the Raman modes decrease after the SMT except for A1g mode,

whereas the pressure coefficients for both the modes (A1g and E1
2g) increase (see Fig-

ure 5.6a and Figure 5.1a) in experiments. This increase in the pressure coefficient

may be further amplified possibly due to chalcogen vacancies present in the system

which can influence its properties notably [104, 173–175]. While the difference in

the magnitude of slopes of A1g of region I (0-6 GPa) and region II (6-16.5 GPa)

in experiment is approximately 1 cm−1/GPa (Figure 5.1a), it is underestimated in

theory to be 0.1 cm−1/GPa (Figure 5.6a). Similarly, we find difference in magnitudes

of the calculated slopes of E1g and E1
2g from experimental slopes (see Figure 5.1 and

Figure 5.6). To explain this, we have examined the effects of anharmonic interac-

tions between phonons. We froze A1g mode atomic displacements by 0.04 Å, and

determined the changes in E1
2g frequencies as a function of pressure. We find that

the frequencies of E1
2g mode change by approximately 12-13 cm−1, revealing that

there is a relatively strong coupling between A1g and E1
2g modes. This anharmonic

(phonon-phonon) coupling is not included in our analysis, may be responsible for

difference in the slopes of A1g mode in region I and region II as a function of pressure

in experiment and in theory.

We note that there are changes in slope (= dω/dP) of pressure dependence of

all the Raman active phonon modes at 8 GPa and 20 GPa (From Figure 5.6 a, b

and c). A careful examination of the evolution of electronic structure with pressure

indeed show the pressure induced semiconductor to semimetal transition at 8 GPa

and a Lifshitz transition at 20 GPa. Thus, there is a clear correlation between the

slope changes of Raman active modes and electronic phase transitions, obtained

within the same theoretical framework. The electron-phonon coupling (EPC) of a

phonon mode ν at wavevector q (frequency ω) is
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λqν =
2

~ωqνN(εF )

∑
k

∑
ij

|gqν,ijk + q, k|
2 × δ(εk + q,i − εF )

× δ(εk,j − εF ), (5.1)

where N(εF ) is the density of states at Fermi energy. The electron-phonon coupling

matrix element is

gqν,ijk + q, k =

(
~

2Mωqν

) 1
2

〈ψk + q,i|4Vqν |ψk,j〉, (5.2)

where ψk,j is electronic wavefunction of jth band at wavevector k, M is the effective

mass associated with the phonon, and 4Vqν = ∂V
∂uν(q)

is the change in the self-

consistent potential associated with atomic displacements of phonon qν.

Figure 5.6(d) shows that the A1g mode couples more strongly with electrons

than E1g and E1
2g modes (see Figure 5.6d). The size of electron pockets in the Fermi

surface centered at K increases with pressure. This also can be understood with the

help of group theoretical analysis of symmetry. The A1g mode has symmetry of the

crystal (an identity representation). The electron phonon coupling (EPC) of A1g is

large due to non-zero matrix element in Eq. 5.2 for the perturbation A1g for all the

electronic states. The EPC of A1g increases with pressure and gets saturated above

20 GPa (refer to Figure 5.6d). This saturation of EPC can be a result of the gap

closing at K-point at 20 GPa (Figure 5.3d). In contrast, E1g and E1
2g couples weakly

as matrix element vanishes for E1g and non-zero for a few of electronic states (i .e.

E1g) for E1
2g. Hence, we do not find any significant change in EPC with pressure for

E1g and E1
2g.

Furthermore, to explain the non-monotonous change with a peak in relative

intensity of A1g and E1
2g Raman modes (refer to Figure 5.1c) at the semiconductor to
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semimetal transition (P= 6 GPa), we estimated Raman tensors using first-principles

calculations. Raman scattering intensity is proportional to square of Raman tensor

and defined as,

I ∝ |ei.R.es|2, (5.3)

where, ei(es) is the polarization of incident (scattered) radiation and R is the Raman

tensor. Raman tensor is defined as,

Riαβγ =
∂Z∗iαβ
∂Eγ

= − ∂

∂uiα

(
∂2Etot
∂Eα∂Eβ

)
= −

∂χ∞αβ
∂uiα

(5.4)

where, Z∗iαβ, Etot and χ∞αβ are Born effective charges, total energy of the system and

dielectric susceptibility (electronic contribution), and Eα is the applied electric field

along α direction. uiα is displacement of ith atom along α direction, and we use uiα

= ± 0.04 Å in finite difference method to evaluate Raman tensor by freezing A1g

and E1
2g modes with a magnitude uA1g ,E1

2g
(= ± 0.04 Å), R = ∆χ/∆u.

Table 5.1: Components of Raman tensors of A1g and E1
2g modes, R (A1g) and R

(E1
2g).

Pressure R11 (A1g) R33 (A1g)
∑2

i=1 Rii (E1
2g)

∑2
i,j=1 Rij (E1

2g) Ratio

(GPa) = R22 (A1g) = R11 (E1
2g) + R22 (E1

2g) = R12 (E1
2g) + R21 (E1

2g) R11(A1g)/Rij(E
1
2g)

4 18.8 59.9 0.0 4.4 4.27

8 23.5 131.1 0.0 0.4 58.75

12 27.7 514.7 0.0 5.0 5.54

We find that R33(A1g) increases with pressure (see Table I), though its value after

the gap closing point (∼ 8 GPa) is not quite well-defined (i .e. at P= 12 GPa). The

Rij (E1
2g) (= R12 (E1

2g) + R21 (E1
2g)) has a large magnitude at P= 4 GPa, and

passes through a minimum at P = 8 GPa and then rises again. These elements

do not change much above the pressure of the gap closing point (Table 5.1). As a

result, the relative intensity ratio of A1g to E1
2g modes will exhibit a maximum at 8

GPa. Thus, the peak in Figure 5.1c arises primarily from non-monotonous change
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in Raman tensor of E1
2gmode (Table 5.1).

Figure 5.7: Electronic structure of 2H-MoTe2 at non-hydrostatic pressure, (a) σxx
(=σyy) = 7 GPa and σzz = 10 GPa, (c) σxx (=σyy) = 10 GPa and σzz = 7 GPa, (d)
σxx (= σyy) = 19 GPa and σzz = 21 GPa, and (f) σxx (= σyy) = 19 GPa and σzz =
21 GPa and at hydrostatic pressure (b) σxx (= σyy = σzz) = 8 GPa and (e) σxx (=
σyy = σzz) = 20 GPa.

It is known that the KBr pressure medium does not provide hydrostatic condi-

tions above 3-5 GPa in experiments [176]. However, there are technical limitations

in using other pressure transmitting media and hence we address this issue theoreti-

cally. For this, we compute the electronic structure of 2H-MoTe2 at non-hydrostatic
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pressures near the transition pressures 8 GPa and 20 GPa, using first-principles cal-

culations. At P = 8 GPa, 2H-MoTe2 shows semiconductor to semimetal transition

whereas Lifshifz transition takes place at P= 20 GPa. We consider two different

non-hydrostatic conditions of pressure near 8 GPa (σxx (=σyy), σzz) = (7, 10) and

(10, 7) GPa. From our calculations, it is clear that 2H-MoTe2 is semimetal at (7, 10)

GPa (see Figure 5.7a) whereas it is semiconductor at (10, 7) GPa (see Figure 5.7c).

Comparison of electronic structure of states at (8, 8) GPa and (7, 10) GPa reveals

that density of states near Fermi energy is higher in the latter (Figures 5.7a and

b). On the other hand, we find an opposite behavior at (10, 7) GPa, the density of

states near Fermi energy decreases and a small gap opens up. Thus σzz > σxx = σyy

favors the transition at lower pressure, while σzz < σxx = σyy pushes the transition

to higher pressures. Thus, we conclude that (a) the character of the transition is

preserved even when the pressure is non-hydrostatic, and (b) the transition pressure

may change by a few GPa.

We perform similar calculations near second transition (P= 20 GPa) at (19, 21)

GPa and (21, 19) GPa (see Figures 5.7d, e and f), and find that small gap opens

up at K point (Figures 5.7d and f), but it is well below the Fermi level. Clearly,

there is no notable change in the states near Fermi energy. Thus, deviation from

hydrostatic pressure should not affect the behavior of this higher pressure electronic

transition, as much as it affects the lower pressure transition.

5.1.8 Conclusions

We have analyzed the pressure induced semiconductor to semi-metal transition at ∼

8 GPa and a Lifshitz transition at ∼ 20 GPa in 2H-MoTe2 by first-principles density

functional theoretical calculations (in complement with Raman experiments by Prof.

Sood’s group). The signatures of semiconductor to semimetal and the Lifshitz tran-

sitions are carried by the frequencies of the first order A1g and E1
2g Raman modes.
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The occurrence of a maximum in the integrated ratio of the A1g and E1
2g modes is

mainly due to non-monotonous change in Raman tensor of E1
2g mode with pressure.

We calculated the effect of pressure on Raman active modes, and find that pressure

influences the EPC of A1g most strongly. All the Raman active modes harden with

increasing pressure, and electron phonon coupling increases under compression due

to changes in the Fermi surface. We hope that our findings will stimulate further

study of high pressure and low temperature resistivity experiments to capture the

anomalies near the Lifshitz transition.

5.2 Te-deficient 2H-MoTe2: Electronic and Ther-

moelectric properties

5.2.1 Introduction

Group VI transition metal dichalcogenides (TMDCs) are materials of composition

MX2 where M is a transition metal (Mo, W) and X is a chalcogen atom (Se, S,

or Te). They form layered structures where covalent bonding binds atoms strongly

within the layers, while van der Waals interaction provides a weak bonding between

the layers. They usually have hexagonal or rhombohedral symmetry with the metal

atoms coordinated in either octahedral or trigonal prismatic environment. A remark-

able contrast in the properties these polymorphs of TMDCs create possibilities of

various electronic devices [16, 104,109].

Molybdenum ditelluride MoTe2 a member of this family, is an interesting com-

pound which exhibits electronic structure with signatures of a strong spin-orbit

interaction, and has the lowest band-gap (∼ 1 eV) among MX2 compounds, which

makes it useful in the making of tunneling field effect transistors (TFETs) in addition

to its other applications [177]. It occurs in three structures: (a) trigonal prismatic
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(2H-MoTe2), (b) monoclinic structure (β-MoTe2), (c) distorted octahedral structure

(Td-MoTe2). The 2H or 2H-MoTe2 has a layered structure of the form Te-Mo-Te

which is characterized by a stacking sequence AbABaB, where A, B are Te atom

layers and a, b are Mo atom layers with triangular lattices (Figure 5.8a). The Te

atoms in the two hexagonal planes are separated by a plane of metal atoms. The

number of atoms in a unit cell of this form is 6, with each Mo atom trigonal pris-

matically coordinated by 6 Te atoms (see Figure 5.8a and d). When a metal atom

is displaced from the central position of the 2H hexagonal layered structure, the co-

ordination around the metal atom becomes a slightly distorted octahedron, making

the coordination number of Mo atom 8. This leads to the formation of monoclinic

β-form of MoTe2 which is stable at temperatures above 900 ◦C [178] and contains 12

atoms per unit cell (see Figures 5.8b and e). The β-form shows an interesting phase

transition on cooling where the layers shift quasi-continuously giving an orthorhom-

bic crystal. With decreasing temperature, the c lattice parameter increases, and

then decreases as the layers lock into the new orientation wherein the monoclinic

angle of 93◦ reduces to orthorhombic 90◦ [178]. The Td structure of MoTe2 has lay-

ered structure where each of the layer consists of Te-Mo-Te atomic planes, stacked

along c axis through weak van der Waals interaction where each Mo atom is sur-

rounded by eight neighbours (Figure 5.8) [178]. Among the three forms of MoTe2,

2H-MoTe2 has been extensively studied since it is the most stable form at room

temperature. This form with strong spin orbit coupling and an indirect band-gap

of 1 eV, is a semiconductor with diverse applications in logic transistors, charge

density waves, superconductors, spintronics and valley optoelectronics [179]. The β

phase has potential applications in a novel type of device: topological field-effect

transistors based on quantum spin Hall (QSH) insulators [179].

In general, electronic transport properties of a solid are determined mainly by

the electronic states near the band gap. These states are easily influenced by possible
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Figure 5.8: Side and top views of crystal structure of (a) 2H-MoTe2, (b) 1T′-MoTe2

and (c) Td-MoTe2.

defects in the system or any pertubation, and hence the defects play an important

role in the performance of a material as a semiconductor, metal or insulator. Exten-

sive studies have been conducted on the effects of defects on few of the TMDCs like

MoS2 crystals [180–185]. On the other hand, comparatively few studies have been

conducted on the effect of point defects (vacancy of Te atom) in MoTe2 [186, 187]

crystals.

In the section 5.2, we have investigated the nature of the defect states in MoTe2

associated with Te vacancies using the first-principles calculations based DFT. We

also investigate the structure, electronic structure and transport properties of three

different polymorphs of MoTe2 in presence of Te-vacancies which are expected to

have strong influence on material properties. We explain the origin of p-n crossover

observed in measured Seebeck coefficients of 2H-MoTe2 as shown in experiments by

Prof. CNR Rao (JNCASR). We compare the calculated transport properties with

experimental results and explain the trends observed as a function of temperature in

experiments using Boltztrap code with input of first-principle electronic structure.
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5.2.2 Computational Details

Our first-principles simulations are within the framework of density functional the-

ory (DFT) as implemented in QUANTUM ESPRESSO (QE) [41] package, which

uses a plane wave basis and pseudopotentials. Local density approximation (LDA)

of the Perdew-Zunger (PZ) [37] form of the exchange correlation energy functional

and norm conserving pseudo-potentials to represent the interaction between ionic

cores and valence electrons were used. We include spin-orbit coupling (SOC) [170]

through use of relativistic pseudopotentials using a second variational procedure, and

van der Waals (vdW) interaction with the implementation of Grimme parameter-

ized scheme [56]. The plane wave basis sets for representation of Kohn-Sham wave-

functions and charge density have been truncated with energy cut-off of 80 Ry and

320 Ry respectively. We aided the convergence to self-consistency using Fermi-Dirac

distribution function to smear occupation numbers with a width of 0.003 Ry.

In structural optimization and total energy calculation of pure MoTe2, we have

used its conventional unit cell containing 6 atoms for 2H-MoTe2 and 12 atoms

periodic cells of Td MoTe2 and 1T ′-MoTe2. Integrations over Brillouin zone were

sampled on grid of 12 x 12 x 3 k-points for 2H-MoTe2 and 20 x 10 x 5 k-points

for Td MoTe2 and 1T ′-MoTe2. To model 3% Te vacancies in 2H-MoTe2, we have

constructed a 2 x 2 x 2 supercell (48 atoms) and removed one Te atom from the

supercell. To simulate Te vacancies in Td MoTe2 and 1T ′-MoTe2, we constructed 1 x

2 x 2 supercell with 48 atoms. We also modelled 6% Te vacancies using 1 x 2 x 2, 1 x

1 x 2 and 1 x 1 x 2 supercells of 2H-MoTe2, 1T ′-MoTe2 and Td MoTe2 respectively

with removal of one Te atom from the supercell.

We have used Boltztrap code [188] for calculating electronic transport (elec-

trical and thermal conductivity) and thermoelectric (Seebeck coefficient) proper-

ties. Boltztrap is a program for calculating semi-classical transport coefficients based

on smoothed Fourier interpolation of the electronic band.
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5.2.3 Pristine MoTe2

From structural optimization of pristine 2H-, 1T′- and Td-MoTe2, our estimates of

lattice parameters, a and b are 1-2% smaller than the experimental values [178] (see

Table 5.2) and the c/a ratio is slightly underestimated. The little underestimation of

the lattice constants (a and b) is typical of the over-binding given by the LDA, and

a bit larger over-binding between the layers results (underestimation of c parameter

by ∼ 5% for 1T′ structure and ∼ 4.5% for Td structure) after the inclusion of van

der Waals (vdW) interactions. Inclusion of nonlocal vdW interactions improve these

results (see below). The results obtained with the use of a generalized gradient

approximation are comparable to these LDA results of the 2H, 1T′ and Td struc-

tures. From the energetics of polymorphic forms of MoTe2, 2H structure is clearly

its most stable form. Td-MoTe2 and 1T′-MoTe2 have energies of 298 meV/fu and

133 meV/fu relative to 2H-MoTe2 respectively; 1T′-MoTe2 is more stable than the

Td-MoTe2.

Table 5.2: The experimental and calculated lattice parameters of bulk pristine
MoTe2 (α, β and Td).

Polymorph Experimental Value [178] Theoretical Value Theoretical value

(LDA (LDA

+ local vdW) + non-local vdW)

Å Å

2H ~a = ~b: 3.52 3.47 3.54

~c: 13.96 13.62 14.08

1T ′ ~a: 6.33 6.31 –
~b: 3.47 3.46 -0.2%

~c: 13.86 13.13 -5.2%

Td ~a: 3.47 3.46 –
~b: 6.33 6.30 –

~c: 13.83 13.20 –

From the electronic structure and projected density of states of 2H-MoTe2, 1T′-

MoTe2 and Td-MoTe2 (Figure 5.9a-c), it is clear that the valence bands (VBs) of

all the three structural forms involve strong hybridization between Te 5p and Mo
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Table 5.3: The calculated electronic bandgap of bulk pristine and anion deficient
2H-MoTe2.

2H-MoTe2 Eg (eV)

LDA LDA LDA

+ + +

vdW (Grimme) [56] non-local vdW non-local vdW

(vdw-df2-b86r) [190,191] + HSE06 [46]

Bulk 0.576 0.753 1.5

3% Te Vacancy 0.134 0.1907 0.797

6% Te Vacancy 0.099 0.1694 0.771

4d states whereas peaks in the conduction band (CB) are primarily contributed by

Mo 4d orbitals, with weaker contribution of Te 5p and 4d states as expected from

the ionic charges and bonding in MoTe2. Valence bands deeper in energy comprise

largely of p-orbitals of Te. The electronic structure of 2H-MoTe2 exhibits an indirect

gap of 0.56 eV between VBM and CBM along Γ-K (Figure 5.9a) direction. Our

theoretical band gap is underestimated, as typical of LDA-DFT calculations, in

comparison with the experimental value of 1.1 eV [134, 192]. On the other hand,

pristine 1T′-MoTe2 and Td-MoTe2 have semi-metallic electronic structure (Figure

5.9b). To improve the bandgap of 2H-MoTe2, we have optimized the structure with

non-local vdW interactions using vdw-df2-b86r functional [190,191]. Our estimated

lattice parameters agree with experiments much better than the LDA-vdW estimates

(refer Table 5.2). The indirect bandgap of 2H-MoTe2 is improved from 0.56 eV to

0.75 eV. We also used HSE06 functional in our calculations to estimate bandgap

more accurately [46], and find an indirect bandgap of 1.5 eV (refer Table 5.3), which

is overestimated by 0.4 eV with respect to experimental value.

5.2.4 Effect of Te-vacancies in MoTe2

Since the measured transport properties (by Prof. Rao’s group) of MoTe2 cannot

be rationalized with the electronic structure of pristine, stoichiometric MoTe2, we
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Figure 5.9: Electronic structure and projected density of states (PDoS) of pris-
tine (a) 2H-MoTe2, (b) 1T′-MoTe2 and (c) Td-MoTe2 and with 6% defect (d) 2H-
MoTe2−x, (e) 1T′-MoTe2−x and (f) Td-MoTe2−x. Note that band structure of Te-
deficient MoTe2 is superimposed on electronic band structures of bulk MoTe2 shown
in (d), (e) and (f).

have simulated 3% and 6% Te vacancies with supercells containing 48 atoms (32 Te

atoms and 16 Mo atoms) and 24 atoms (16 Te atoms and 8 Mo atoms) respectively.

The defect formation energy is estimated using

δE = Ev − Eb + ETe (5.5)
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where Ev, Eb and ETe are the total energies of supercell containing a vacancy, bulk

crystal (with the same number of atoms as in the defective structure), and an isolated

Te atom respectively. Our estimates of the vacancy energies with 3% concentration

of Te-vacancies in 2H-, 1T′- and Td-MoTe2 are 7.18, 6.49 and 6.51 eV/vacancy

respectively, while those for 6% concentration of Te vacancies in 2H-, 1T′- and Td-

MoTe2 are 7.18, 6.72 and 6.57 eV/vacancy respectively, reflecting relatively weak

interactions between the periodic images of vacancies in 2H- and Td- forms. As the

difference in energies of pristine MoTe2 in 1T′ and 2H structures is 0.165 eV/cell,

these results suggest that Te vacancies play an important role in their relative sta-

bility, consistent with Ref. [193]. In the electronic structure of MoTe2 (with these

structural forms) with Te-vacancies, bands associated with defect states appear at

the top of VB and at the bottom of CB. The indirect gap for 2H-MoTe2 reduces to

0.134 eV and 0.099 eV with 3% and 6% Te-vacancies respectively (Figure 5.9d). The

estimate of indirect bandgap with inclusion of non-local vdW interactions are 0.19

eV and 0.16 eV at 3% and 6% concentration of Te-vacancies. As the HSE06 cal-

culations are computationally expensive for large supercell, we used it to determine

the gap at Γ-point and applied the corrections in VBM and CBM bands at other k-

points to estimate the indirect bandgap values. Resulting indirect gaps with 3% and

6% Te vacancies are 0.797 eV and 0.771 eV respectively. The electronic structure of

1T′-MoTe2 (Figure 5.9e) with Te-vacancies becomes more metallic in nature, with

increase in the overlap between valence and conduction bands at the Fermi level

(Figure 5.9e). Te vacancy related bands result in reduction of the pseudo gap be-

tween the VBs and CBs (along Y-A and B-Z directions for 1T′, and along Γ-Y and

Z-T directions for Td structures) i.e., density of states at Fermi level increases. From

the density of states of 2H MoTe2, we find a new peak on top of CBM and identify

it as the defect peak. This peak is contributed by Mo 4d states. For 1T′ and Td

MoTe2, we observe a redistribution of density of states, near EF .
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(a) (b)

(c)

Figure 5.10: Seebeck coefficient as a function of temperature for (a) 2H-MoTe2 with
and without spin-orbit coupling and with Te-vacancies, (b) 1T′-MoTe2 with and
without spin-orbit coupling and with Te- vacancies and (c) Td-MoTe2 with and
without spin-orbit coupling and with Te-vacancies.

We have determined the temperature-dependence of Seebeck coefficient (S), elec-

trical conductivity (σ) and electronic thermal conductivity (κele) of pristine 2H-,

1T′- and Td-MoTe2 within semi-classical framework using Boltztrap code with in-

puts from first-principles electronic structures [188, 194]. For 2H- and Td-MoTe2,

the Seebeck coefficient is negative in the entire temperature range studied, indi-

cating n-type conduction in both the forms (Figures 5.10a and c). On the other

hand, Seebeck coefficient of 1T′-MoTe2 changes its sign from positive to negative

at T= 400 K, indicating a change from p- to n- type conduction with increasing

temperature (Figure 5.10b). With inclusion of spin-orbit coupling (SOC), the mag-

nitude of Seebeck coefficient for 2H-MoTe2 (Figure 5.10a) and Td-MoTe2 (Figure
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(a) (b)

(c)

Figure 5.11: Electrical conductivity per unit time as a function temperature: with
and without spin-orbit coupling and with Te-vacancies for (a) 2H MoTe2, (b)
1TḾoTe2 and (c) Td-MoTe2.

5.10b) decreases i.e. S becomes less negative as the concentration of n-type carriers

decreases with changes in the electronic structure near the gap. For 2H-MoTe2, cal-

culated electrical conductivity (σ/τ) and electronic thermal conductivity (κele/τ)

scaled by the relaxation time are nearly constant up to 400 K beyond which they

increase steeply (Figures 5.11a and 5.12a). Inclusion of the SOC does not affect σ/τ

and κele/τ much. Estimate of σ/τ of Td-MoTe2 is about 6.575 x 1019 (Ω−1m−1s−1)

at 50 K (Figure 5.11c), which increases gradually with temperature, while κele/τ

increases monotonically with temperature from 50 K to 800 K (Figure 5.12c). Both

σ/τ and κele/τ increase in magnitude as a result of changes in electronic structure

due to SOC (Figures 5.11b and 5.12b). 1T′-MoTe2 exhibits a markedly contrasting

behavior in comparison with the other two forms in that its σ/τ does not change



5.2 Te-deficient MoTe2: Electronic and Thermoelectric properties 113

(a) (b)

(c)

Figure 5.12: Electronic contribution of thermal conductivity as a function tempera-
ture: with and without spin- orbit coupling and with Te-vacancies for (a) 2H MoTe2,
(b) 1TḾoTe2 and (c) Td-MoTe2.

significantly with temperature (Figure 5.11b), while κele/τ increases with tempera-

ture with and without inclusion of SOC (Figure 5.12c). SOC has a stronger effect

on transport properties of 1T′ MoTe2 than on those of 2H-MoTe2 with its effects on

S and σ/τ being stronger than those on κele/τ . We note that calculated transport

properties (σ/τ , S and κele/τ) of pristine MoTe2 do not quite agree with experiments.

We examine the effects of Te-vacancies on the transport properties in 2H-, 1T′-

and Td-MoTe2−x. The variation in S with temperature for 2H-MoTe2−x (Figure

5.10a) is quite different from that for the pristine 2H-MoTe2 (discussed above). Te-

vacancies change the character of the Seebeck coefficient of pristine 2H-MoTe2 from
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Figure 5.13: Calculated temperature-dependent Seebeck coefficient for 6% Te-
deficient 2H-MoTe2 with a 250 meV shift in Fermi level and (b) total density of
states of 2H MoTe2−x. Note that the green dashed line shows the Fermi level shifted
by 250 meV.

n-type to p-type. With a shift in Fermi level by +250 meV of 2H-MoTe2−x with 6%

Te-vacancies (carrier concentration corresponding to this Fermi level shift is about

1020 cm−3), we find that the calculated temperature dependence of S (Figure 5.13)

is in fairly good agreement with experiments reported here. The sign of Seebeck

coefficient changes from positive to negative around 450 K indicating a transition

from p-type to n-type. The maximum value of S is ∼ 32 µV/K, smaller than the

experimental maximum value of ∼ 125 µV/K, which can be explained partly in

terms of higher carrier concentration or doping used in our calculations, and S being

inversely proportional to the carrier concentration. We note that such discrepancy

in calculations and experiments can arise from the errors in band-structure (partic-

ularly associated with d-states near the Fermi energy, compounded with the errors

in lattice constants), and possibly other defects in samples.

The calculated transport properties of 1T′-MoTe2−x (Figures 5.10b, 5.11b and

5.12b) agree well with our experimental results. The Seebeck coefficient of 1T′

MoTe2−x with Te-vacancies remains positive and increases with temperature up to

400 K, and attains a constant value of 15 µV/K beyond 400 K (Figure 5.10b). Ex-

perimentally too, we observe that Seebeck coefficient of 1T′-MoTe2−x has a positive
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sign throughout the temperature range investigated. Consistent with the calculated

trend, the observed Seebeck coefficient (in experiments) of 1T′-MoTe2−x increases

with temperature and attains a constant value of 32 µV/K beyond 500 K, suggesting

a weak bipolar conduction due to thermal excitation of the minority carriers at ele-

vated temperatures. In contrast, σ/τ of 1T′ MoTe2−x (Figure 5.11b) decreases with

T up to 400 K and then increases beyond 400 K, which also is consistent with its

observed behavior in experiments. Similarly, κele/τ of 1T′ MoTe2−x (Figure 5.12b)

increases linearly with temperature, in qualitative agreement with experiments.

Calculated Seebeck coefficient of Td-MoTe2−x (Figure 5.10c) remains positive

throughout the temperature range investigated in presence of Te-vacancies suggest-

ing that p-type carries are the majority carriers. σ/τ and κele/τ (Figures 5.11c and

5.12c) reduce in magnitude due to Te-vacancies. The effective mass of the carriers

increases in the presence of defects, (due to flat bands of localized states) and hence

the conductivity decreases. σ/τ remains constant with temperature whereas κele/τ

increases linearly with temperature. There is no experimental data of transport

properties of Td-MoTe2 present for comparison with our theoretical results.

5.2.5 Conclusions

We obtained the structural, electronic and transport properties of the three poly-

morphs of MoTe2 and determined the effect of Te vacancies. We show that pristine

2H-MoTe2 is an indirect gap semiconductor, whereas the 1T′ and Td forms of MoTe2

are semi-metallic. In the presence of Te vacancies, 2H form shows reduction in the in-

direct semiconducting gap, whereas the other two forms become more metallic. The

observed trends in transport properties can be explained with theory only by tak-

ing into account Te-vacancies and incipient electron doping. Thus, Te-vacancies in

MoTe2 essentially govern the trends in the observed temperature-dependent elec-

tronic transport properties of MoTe2.



Chapter 6

Electronic and vibrational

signatures of bulk vs. monolayer of

Td-WTe2*

6.1 Introduction

Layered transition metal dichalcogenides are of fundamental and technological im-

portance due to their interesting electronic, optical, chemical, thermal and catalytic

properties [16,104,196,197]. In comparison to other Group VI TMDCs, ditellurides

are less explored to date and exhibit very different structure and properties. The

ditellurides deviate from a simple band model predicting a semiconducting behav-

ior due to trigonal prismatic crystal-field splitting unlike disulfides and diselenides

as discussed by Dawson and Bullet [178] based on electronic structure calculations.

Tungsten ditelluride (WTe2) crystallizes in a distorted variant of CdI2-type structure

with an octahedral coordination around the metal, referred to as Td-polytype [192].

The structure of Td-WTe2 consists of layers of covalently bonded Te-W-Te atomic

*A part of this work has been published in J. Phys.: Condens. Matter [195]. Copyright
(2015) by Institute of Physic (IOP), URL: http : //iopscience.iop.org/0953− 8984/27/28/285401
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planes, stacked along c-axis through weak van der Waals interactions. The WTe6

octahedra are strongly distorted due to off-centering of W atoms as the latter move

towards each other to form slightly buckled W-W zigzag chains running along the x-

axis. As a result, WTe2 forms metallic (W-W) bond of length 2.849 Å, which is about

0.13 Å longer than that in the tungsten metal [198]. The reduced Madelung energy

as compared to the hypothetical 2H-WTe2 favors Td form leading to a semimetallic

ground state [178,199].

The exact origin for the preference of the Td-structure instead of the 2H-polytype

remains unclear. According to recent reports, single crystals of Td-WTe2 shows an

extremely large unidirectional (along x-axis) positive magnetoresistance [200]. Mag-

netoresistance in WTe2 does not saturate even at very high applied magnetic fields,

which is considered due to a perfect balanced electron-hole resonance in semimetal-

lic WTe2, as later complemented with high resolution angle resolved photoemis-

sion spectroscopy study of low energy electronic structure [201]. The pronounced

anisotropy in magnetoresistance is assigned to the uniaxial character of the Fermi

surface and the proximity of balanced electron and hole Fermi pockets aligned along

WW chain direction in the k-space.

In this chapter, we study the electronic and vibrational properties of less explored

Td-WTe2 and understand the origin for stabilization of Td-polytype in WTe2. We

explain the non-monotonous transport properties seen in experiments by Prof. CNR

Rao (JNCASR). We also identify the symmetry of the peaks observed in Raman

spectrum of Td-WTe2.
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6.2 Computational Details

Our first-principles calculations are based on density functional theory (DFT) as

implemented in Quantum ESPRESSO package [41], in which the ionic and core-

valence electron interactions are modeled with ultrasoft pseudopotentials [40]. The

exchange-correlation energy of electrons is treated within a Generalized Gradient

Approximation (GGA) with a functional form parameterized by Perdew, Burke and

Ernzerhof [36]. We use an energy cutoff of 35 Ry to truncate the plane wave basis

used in representing Kohn-Sham wave functions, and energy cutoff of 280 Ry for the

basis set to represent charge density. Structures are relaxed to minimize energy till

the Hellman-Feynman forces on each atom are less than 0.03 eV/Å. We use a periodic

supercell to simulate a 2D sheet, including vacuum of 15 Å to separate the adjacent

periodic images of the sheet. In self-consistent Kohn-Sham (KS) calculations of

configurations of WTe2 with monolayered form and bulk Td-structure unit cell,

the Brillouin zone (BZ) integrations are sampled over uniform meshes of 20x11x1

and 20x11x5 k-points respectively. Electronic structure is determined by including

the spin-orbit interaction (SOI) through use of relativistic pseudopotentials using a

second variational procedure [170]. To calculate Seebeck coefficient and electrical

conductivity, we have used BoltTrap code [188] with input from first-principles.

Dynamical matrices and phonons at wavevectors on a 3x3x1 mesh in the BZ were

determined using DFT linear response (Quantum ESPRESSO implementation [41]

based on Greens function method). From these, dynamical matrices and phonons

at arbitrary wave vectors in the BZ are obtained using Fourier interpolation.

6.3 Electronic Structure

Our calculations reveal that bulk and monolayer of WTe2 exhibit rather similar elec-

tronic structure (Figure 6.1), both being semimetallic in nature. This behaviour is
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in contrast to other TMDCs, in which a strong dependence of their electronic struc-

ture on the number of layers is seen [197]. From the partial density of states (DoS),

we see that both the valence and conduction bands near Fermi energy level (EF )

are composed of W-5d and Te-5p states indicating the covalency in W-Te bond-

ing (Figure 6.2). Secondly, the spin-orbit coupling (SOC) included in calculations of

electronic structure crucially influences even its qualitative features for example, the

spin-split bands. It is clear from the crystal structure, that the dimerized chain of

W atoms along X-axis (Figure 6.2d), gives a semimetallic electronic structure along

Γ-X direction in the BZ. Along M-Γ path, we find an indirect band gap close to

Γ-point (see the zoomed in picture in Figure 6.1). This indirect band gap increases

from the bulk to monolayer by 0.1 eV. Above room temperature, thermal excita-

tions of electrons in the partially filled valence and conduction bands are expected

to result in the increase in electrical conductivity as seen in experiment at 375 K.

6.4 Vibrational Analysis

6.4.1 Structural Stability

We first note that the bulk Td structure of WTe2 is (a) layered and (b) closely re-

lated to centrosymmetric 1T form (c1T )(Figure 6.2a) [4]. We assess the structural

stability of c1T monolayer and Td (bulk and monolayer) forms of WTe2 through

determination of their phonon spectra (Figure 6.3). If a phonon spectrum exhibits

phonon modes with imaginary frequencies (ω2 < 0), the structure is locally unstable

(i .e., it is not a local minimum, but a saddle point in the energy landscape); other-

wise it is stable. The eigen displacements of the unstable modes precisely give the

structural distortions that often lower the energy by lowering the symmetry. Our

results for phonons of the stable structural forms are relevant and useful in Raman

and infra-red (IR) characterization of these structures. Experimentally, bulk WTe2
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Figure 6.1: Electronic structre of Td-WTe2 in (a) bulk and (b) monolayer forms.
Highlighted part of band structures near the gap in green box is shown on the right.
Note that indirect band gap close to Γ-point (along M-Γ path) in monolayer WTe2

is higher by 0.10 eV than of bulk, which facilitates thermal excitations of carriers
and leads to an increase in electrical conductivity above room temperature.

is known to take the Td structure, and our calculated phonon spectrum of bulk

WTe2 exhibits no unstable modes, confirming its stability in the Td structure.

Our analysis of the vibrational spectrum of the c1T polymorph reveals that WTe2

is structurally unstable, exhibiting structural instabilities with imaginary frequencies

of about 100i cm−1 (refer to Figure 6.3b) at K and M points. The unstable modes

at the high symmetry K-point of the BZ are doubly degenerate, while it is singly
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Figure 6.2: Crystal (top view) and electronic structures of monolayered, (a, b) c1T
and (c, d) Td forms of WTe2. c1T and Td structures of WTe2 are metallic and
semimetallic respectively. Note that spin-orbit coupling included in these calcula-
tions is crucial even for these qualitative properties of the electronic structure. W
and Te atoms are shown with cyan spheres and yellow respectively.

degenerate at the M-point of the BZ. We focus on the M-point instability and its

consequences to the structure of the 1T form [4]. On distorting the c1T structure

(Figure 6.2a) with eigen-displacements of its unstable mode at M-point, we get

a
√

3x1 superstructure (see Figure 6.2c) with zigzag chains of metal atoms. This

distorted structure involving dimerization of metal atoms (where the M-M bonds are

significantly contracted by 0.8 Å) is semimetallic (see Figure 6.2d). This distorted
√

3x1 superstructure is similar to monolayer of Td structure, though the b/a ratio

of experimental lattice parameter is 1.80 (as opposed to 1.73 here) due to coupling

with strain. It is evident from phonon spectrum that monolayered Td structure is
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locally stable. Weak instabilities near Γ along the Γ-X and Γ-M directions involve

long wavelength rippling of the 2-D planar structure (Figure 6.3c), which is common

to other 2-D materials [3, 76].
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Figure 6.3: Phonon dispersion of WTe2 in (a) bulk form, monolayer forms with (b)
c1T and (c) Td structures of WTe2. Note that c1T WTe2 exhibits instability at
K-point in c1T WTe2 is doubly degenerate and singly degenerate instabilities at K
and M points respectively.

6.4.2 Analysis of Raman Spectra

Bulk WTe2 has a Td crystal structure with a periodic unit cell containing 12 atoms,

and belongs to the point group C2V and the space group (Pmn21). There are 33

optically active modes at the Brillouin zone center (at Γ-point) whose irreducible

representations are:

Γbulk → 11A1 + 6A2 + 5B1 + 11B2, (6.1)
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all of which are Raman active because of the low structural symmetry crystal. To

assign the irreducible representations to the calculated phonons at Γ, we obtained

overlap (inner product) of a basis vector of an irreducible representation and eigen

vectors of phonon modes (obtained using density functional perturbation theory).

Experimentally, 5 peaks have been observed in the Raman spectrum of bulk WTe2

[195]. There are many modes with frequencies (tabulated in Table 6.1) close to

experimental peaks, which make the assignment of the experimentally observed

peaks nontrivial. For example, modes with frequencies 162 cm−1, 164 cm−1 and 168

cm−1 make the assignment of the experimentally observed intense peak at 165 cm−1

subtle, i .e. it can be A2, B1 or A1 mode. Similarly, the modes with frequencies 211

cm−1 and 213 cm−1 are close to the experimentally observed intense peak at 212

cm−1 which therefore can be assigned either B2 or A1 irreducible representation.

Table 6.1: Calculated phonon frequencies of Raman active modes of Td-WTe2.

A1 A2 B1 B2

Frequency Frequency Frequency Frequency

cm−1 cm−1 cm−1 cm−1

42 38 92 41

80 93 119 94

120 116 129 121

134 125 153 133

138 155 164 136

140 162 142

168 159

183 180

207 209

211 213

233 236

The Raman tensor of these possible modes can facilitate the differentiation between

these modes. The Raman tensor is calculated as slope of the linear changes in

electronic dielectric constant (the second derivative of the electronic density matrix
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with respect to a uniform electric field [117]) with normal mode displacements. As

bulk WTe2 is semimetallic in nature (see Figure 6.1), its response to macroscopic

electrical field is not finite or well defined, and it is not straightforward to deter-

mine the Raman tensor directly. To this end, we estimated the Raman tensor by

constraining the occupation numbers of electrons so as to treat Td-WTe2 as an

insulator (i.e. number of occupied bands = number of electrons/2). We then iden-

tified the modes at ∼ 168 cm−1 and ∼ 207 cm−1 as the ones with largest Raman

tensor, both belonging to the A1 symmetry. We label them as A
′
1 (∼ 168 cm−1)

and A
′′
1 (∼ 207 cm−1). Our observed intense Raman peaks are at 211 cm−1 and

165 cm−1, in agreement with these theoretical results. Experimental results show

that the peak at 211 cm−1 is sensitive to thickness (number of layers) whereas the

one at 168 cm−1 does not depend much on the thickness, though both belong to

same symmetry (A1). To understand such dependence on thickness, we examine the

displacements of W and Te in the eigenvectors of these modes (see Figure 6.4). It is

evident that (i) the mode A
′
1 involves out-of-plane (z-direction), displacements of Te

atoms and in-plane displacements of W atoms, and (ii) the mode A
′′
1 involves out-of-

plane dispalcements of W and in-plane displacements of Te atoms (refer Figure 6.4).

Such mixing of in-plane and out-of-plane components of atomic dispalcements is a

consequence of low-symmetry of the structure, and has been reported for a similarly

strongly distorted structure of 1T-ReS2 [202].

Secondly, Te atoms of same plane vibrate in phase (Figure 6.4a) in the A
′
1 mode

of vibration, while their motion is out of phase in the A
′′
1 mode (Figure 6.4b).

Thus, A
′
1 mode seems more localized to a layer of WTe2, and exhibits weaker or

no dependence on the thickness or the number of layers. To confirm the observed

changes in Raman modes as a function of thickness, we compare the vibrational

spectrum of monolayer WTe2 with that of the bulk. We find hardening of A
′′
1 mode

by ∼ 3 cm−1 and softening of A
′
1 by ∼ 3 cm−1 in the monolayer with respect to the
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(a) (b)

(c) (d)

Figure 6.4: Raman active phonon modes of bulk Td-WTe2 with largest Raman
tensor. (a, b) Two views of the atomic displacement of the A

′
1 mode with frequency

∼ 168 cm−1. (c, d) Two views of the atomic displacement of A
′′
1 mode with frequency

∼ 207 cm−1. W and Te atoms are shown with cyan spheres and yellow respectively.

modes of the bulk. While this is consistent with the observed trend in A
′′
1 mode, it

suggests additional compensating mechanism that governs the thickness dependence

of A
′
1 vibrational mode, and needs further investigation.

6.5 Transport Properties

We have employed Boltztrap program [188] with input from first-principles calcu-

lations to understand the non-monotonous temperature (T) dependence of Seebeck

coefficient (S), electrical conductivity (σ) and thermal conductivity (κ) (refer Figure
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6.5). This program is based on the smoothened Fourier interpolation of the electronic

band structure and used for calculating transport coefficients within semi-classical

treatment. Assuming that the band structure does not change with T, we estimated

EF as a function of T. Within this rigid band picture, we could capture the behavior

of σ(T) at high T and the nature of S(T) (n-type) at low T. We find that σ increases

with T as seen in experiments at higher temperature (> 375 K) (Figure 6.5a), and S

becomes more negative as EF shifts to higher energies into the conduction band (Fig-

ure 6.5b). We note that the electronic structure of WTe2 reveals both electron and

holes as carriers and the resulting Seebeck coefficient involves cancellation between

their contributions and hence is subtle. We believe that the polycrystalline WTe2

involves defects and incipient doping along with structural changes that are relevant

to the n-p crossover in the Seebeck coefficient as a function of T. Explanation of the

observed n- to p-type transition as a function of T seen in experiments probably re-

quires determination of electronic structure as a function of T-dependent structure.

Interestingly, the electronic contribution to κ(T) is in qualitative agreement with

experiment [195] (refer Figure 6.5c), which increases with increasing T.

6.6 Conclusions

We present electronic structure and vibrational properties of WTe2 in the monolay-

ered and bulk Td forms, determined using first-principles calculations. We highlight

the importance of spin-orbit coupling in accurate description of its electronic struc-

ture particularly near the Fermi-level. Due to the lower structural symmetry, all

the optical phonons of WTe2 are Raman-active. We have effectively used symmetry

analysis and estimation of Raman tensor in identification of the strongly Raman-

active modes, and assigned the symmetry labels to the observed peaks. Finally, we
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(a) (b)

(c)

Figure 6.5: T-dependent transport properties of bulk Td-WTe2. (a) Electronic
conductivity (σ/τ) (b) Seebeck coefficient (S) (c) electrical contribution (κ/τ) to
thermal conductivity calculated using Boltztrap program.

bring out the connection of the Td structure with 1T form of layered metal dichalco-

genides, and understand its stability in terms of electronic and vibrational properties

of the 1T form. Transport properties calculation shows qualitative agreement with

experimental results of thermal and electrical conductivies as a function of T. The

n-p crossover in the Seebeck cofficient as a function of T could be due to defects

and incipient doping along with structural changes. Furthur determination of elec-

tronic structure as a function of T-dependent structure is required to understand

the observed n- to p-type transition as a function of T seen in experiments.
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Black Phosphorus





Chapter 7

Black phosphorus under external

fields

7.1 Phosphorene: Electron-hole asymmetry in electron-

phonon coupling∗

7.1.1 Introduction

Monolayer of black phosphorous (BP) is referred to as phosphorene. Phosphorene

lattice structure is a 2-D puckered network (Figure 7.1a) where each atom is cova-

lently bonded with three neighboring atoms (Figure 7.1b). Its in-plane anisotropy is

unique feature of phosphorene. The puckered crystal structure of BP leads to asym-

metric electronic and phonon dispersion relations such that electronic bands are more

dispersive along the armchair direction than along the zigzag direction, whereas the

phonon dispersion is more dispersive along the zigzag direction [23,203,204]. Carrier

mobility is higher along the armchair direction as the effective mass along the zigzag

direction is about 10 times larger than that of armchair direction [205, 206]. Also,

∗This work has been published in part in 2D Materials, 2015 [6]. Reproduce with permission
of Institute of Physics (IOP), URL: http : //iopscience.iop.org/2053− 1583/3/1/015008.
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the Hall mobility along the armchair direction is 1.8 times the mobility along the

zigzag direction [207].

Monolayer and few layers BP absorb light ranging from infrared to a part of

visible spectrum polarized along arm chair axis, whereas they are transparent for

polarization along the zigzag direction [23]. Recent reports of photoluminescence

measurements of phosphorene reveal the existence of anisotropic excitons emitting

light polarized along direction with a higher exciton binding energy of 0.7-0.8 eV

and quasi particle gap of 2.2 eV [208–211].

Figure 7.1: (a) Crystal structure of monolayer BP showing the armchair (ac) and
zigzag (zz) directions. (b) Top view of monolayer BP. (c) Atomic vibrations of
Raman active modes A1

g, A
2
g and B2g.

Electron-phonon coupling (EPC) plays an important role in the resistivity be-

havior at high carrier concentration for 2D systems like graphene [212]. Raman

spectroscopy is a powerful tool for estimation of the number of layers in 2D mate-

rials such as graphene and TMDCs [213–216], to characterize EPC of graphene and
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evaluating thermal conductivity of graphene [217, 218] among various other prop-

erties. For BP also, Raman spectroscopy has shown its potential as successful and

noninvasive technique to determine the crystal orientation [207, 208, 219, 220]. The

degradation of BP flakes due to environmental aspects have been proved by Raman

spectroscopy [221].

The unit cell of phosphorene contains 4 atoms. Out of the nine optical modes,

phosphorene has six Raman active modes, out of which three prominent modes

have irreducible representation A1
g, A

2
g and B2g, as observed in back scattering ge-

ometry [6]. The eigen-vectors of these modes show that A1
g mode involve out-of-

plane displacement of atoms, and A2
g and B2g modes are along armchair and zigzag

directions respectively (Figure 7.1).

In the section 7.1, we identify the effect of doping on the Raman active phonons

in phosphorene, revealing characteristic EPC. While Ag modes are affected by dop-

ing, B2g mode remain insensitive (Figure 7.3a-c) [6]. Further Ag modes soften and

their linewidths broadens with electron doping while remains unaffected by holes as

observed in experiments (Figure 7.3) [6]. Using first-principle calculations, we un-

derstand the contrasting effect of electron and hole doping on Raman active modes

of phosphorene (in complement to Raman measurements by Prof. Sood’s group).

7.1.2 Computational Details

Our first-principles calculations are based on density functional theory as imple-

mented in Quantum ESPRESSO package, [41] and norm-conserving pseudopoten-

tials [168, 169] to model the interactions between valence electrons and ionic cores.

The exchange-correlation energy of electrons is treated within a Local Density Ap-

proximation (LDA) functional as parametrized by Perdew and Zunger [37]. We use

an energy cutoff of 60 Ry to truncate the plane wave basis used in representing

Kohn-Sham wave functions, and an energy cutoff of 240 Ry to represent charge
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density. Structures are relaxed till the Hellman-Feynman force on each atom is less

than 0.03 eV/Å. We have used a periodic supercell to simulate a phosphorene sheet,

with a vacuum of 15 Å (along y-direction) to separate its adjacent periodic images.

Integrations over the Brillouin Zone (BZ) are sampled on a 12x1x9 and 48x1x36

uniform meshes of k-points in the calculation of total energy and electron-phonon

coupling respectively. For a few hole doping concentrations (1.3 x 1013 cm−2 and

1.8 x 1013 cm−2), we have used 72x1x54 uniform mesh of k-points in determination

of electron-phonon coupling.

7.1.3 Electronic structure

Electronic structure of phosphorene determined from our first-principles calculations

exhibits a direct band gap of 0.89 eV (see Figure 7.2a) at the Γ point, which is in

good agreement with the earlier theoretical results [22]. We note that electronic

structure is remarkably different along zigzag (Γ-Z) and armchair (Γ-X) directions.

It shows linear dispersion along the armchair and parabolic dispersion along the

zigzag directions. States at conduction band minimum (CBM) and valance band

maximum (VBM) are constituted of py orbitals of phosphorous (Figure 7.2b) at Γ

point. We observe that symmetry of the wavefunctions at CBM and VBM is distinct

(see Figure 7.2), which leads to a contrast in the effects of electron and hole doping

on electron-phonon coupling (to be explained in detail later).

7.1.4 Effect of charge doping on vibrational spectra

We have simulated carrier (electron and hole) doping in phosphorene by adding

small fraction of electron/hole (according to doping concentration) to the unit cell.

This affects mostly A1
g and A2

g modes (see Figure 7.3g-i): A1
g and A2

g modes soften

significantly (A1
g ∼ 3 cm−1 and A2

g ∼ 2 cm−1 at ∼ 1.8 × 1013 cm−2) with electron
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Figure 7.2: (a) Electronic structure of phosphorene with symmetry labels B2u at
VBM (valance band maximum) and B3g at CBM (conduction band minimum) at
Γ-point (b) isosurfaces of wavefunctions at VBM and CBM at the Γ-point, and (c)
a schematic diagram showing symmetry of the wavefuction at VBM and CBM at
Γ-point where dashed lines are showing mirror planes. Note that wavefuction at
VBM and CBM are even and odd respectively, under mirror reflection.

doping as compared to hole doping. In contrast, B2g mode remains unaffected

by carrier (both electron and hole) doping, which is in good agreement with the

experimental results (see Figure 7.3a-c). To understand this observed trend (see

Figure 7.3a-c) and the associated interactions between electrons and phonons, we

have performed systematic study of electron-phonon coupling with carrier doping.

The electron-phonon coupling (EPC) of a phonon mode ν at wavevector q is given

as

λqν =
γqν

π~N(εF )ω2
qν

, (7.1)

γqν = 2πωqν
∑
k

∑
ij

∣∣gqν,ijk+q,k

∣∣2 δ(εk+q,i − εF )δ(εk,j − εF ), (7.2)

where N(εF ) is density of states at the Fermi energy and ω is the frequency of phonon

qν. The electron-phonon coupling matrix element is defined as

gν,ijk+q,k =

(
~

2Mωqν

) 1
2

〈ψk+q,i|
∂V

∂U ν(q)
|ψk,j〉, (7.3)
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where ψk,j is electronic wavefunction at wavevector k for j band, M is an effective

mass, and ∂V
∂Uν(q)

is the change in the self consistent potential associated with atomic

displacements of phonon qν. Our calculations show that (a) A1
g and A2

g modes couple

Figure 7.3: (a)-(c) Changes in phonon frequencies ∆ω, and (d)-(f) FWHM of Raman
peaks, as obtained from experiments, as a function of carrier concentration n. (g)-(i)
∆ω obtained from DFT calculations and (j)-(i) calculated values of EPC (λ) as a
function of n. The lines are guide to eye. The off-state and electron doped regions
are marked with orange and grey shades.

much more strongly with electrons than B2g mode, and (b) these modes show couple

more strongly with electrons than holes (consistent with experiments, Figure 7.3d-

f). Strong coupling of A1
g mode with electrons can be understood with analysis of
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the governing symmetry. The Ag modes (see Figure 7.1c) have the symmetry of the

lattice, i.e. distortion along these modes does not break the symmetry of the lattice.

As a result, all the electronic states have a non-zero matrix element (from Eq.7.3)

for the perturbation of Ag modes, for ν = q = 0. With the same argument, matrix

element (Eq. 7.3) vanishes for B2g mode which breaks the symmetry of the lattice

(B2g mode is orthogonal to Ag modes).

We do observe an asymmetry in EPC with hole and electron doping: EPC

increases with increasing concentration of electron doping while it decreases with

increasing concentration of hole doping. This asymmetry can be explained in terms

of the symmetry of the wavefunctions at VBM and CBM at Γ point. At the VBM,

wavefunction is even under mirror reflection, while that wavefunction at the CBM

is odd under mirror reflection. Thus magnitude as well as the sign of the coupling

matrix (Eq. 7.3) is different for electron and hole doping. It is evident in Figure 7.3

that A1
g mode is affected more strongly by electron doping than the hole doping. In

contrast, A2
g mode is affected by both electron as well as by hole doping. To under-

stand these effects of electron and hole doping on A1
g and A2

g modes quantitatively,

we obtained the energies of VBM and CBM as a function of structural distortions

frozen corresponding to eigenvectors of these modes.

We clearly see that the CBM varies more strongly as compared to the VBM with

A1
g mode (Figure 7.4). On the other hand, freezing of A2

g mode affects both VBM and

CBM quite significantly though the effect on CBM is slightly more in comparison to

that on VBM. Thus the contrast in the dependence of A1
g and A2

g modes on electron

and hole doping originates from the matrix element 〈ψk,i|∆Vν |ψk,j〉. Interestingly,

we find inversion of CBM and CBM+1 bands for phosphorene (see Figure 7.5)

with structural distortion of A1
g mode, which is relevant to studies of excited state

properties.

The symmetry of the monolayer of black phosphorous (phosphorene) is D2h and
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Figure 7.4: (a) Change in the energies of CBM, CBM+1 and VBM (relative to VBM
at zero freezing), as a function of structural distortion obtained with A1

g mode (a)
and energies of CBM and VBM as a function structural distortion obtained with A2

g

mode (b).

Figure 7.5: Isosurfaces of wavefunctions of CBM and CBM+1 with structural dis-
tortion of A1

g mode for 0.04 Å and 0.06 Å, that reveal the band inversion between
CBM and CBM+1 bands. If both the py orbitals are seen in the same reference
frame across the red dashed line, we observe that py orbitals get flipped by 180◦ i.e.
ψ = −ψ confirms band inversion of CBM and CBM+1.

does not alter with increasing number of layers. The symmetry arguments given to

explain the nature of Ag and B2g modes with carrier doping hold good for few layers
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of black phosphorous.

We note that low levels of doping result in changes in the population of only the

states that have energies close to the VBM and CBM at the Γ point. Thus, the

states lining the band-gap along Γ-X direction (Figure 7.2) are more relevant to our

experiments than the ones along Γ-Z (energies of the states at Z-point are too far

(Figure 7.2a) from the gap to be affected by low levels of doping in phosphorene

transistor). In Figure 7.6, we now include isosurfaces of wavefunctions of the valence

and conduction bands at X-point and a diagram of their projections on p-orbitals

of P. We note that the bands at X point are doubly degenerate, and are made from

px and py orbitals of P, in contrast to the VBM and CBM at Γ point consist of py

orbitals. From the Figure 7.6, it is clear that the relative phases of p orbitals of

the P sublattices are the same for wave functions at X and Γ (Figure 7.2c) points.

Hence, our symmetry analysis of the coupling of Raman active phonons to the states

along Γ to X is similar. Since the orbitals involved in the VBM and CBM bands

at X point are different from those at Γ point, their relative phase factors are not

simple. In fact, they involve rotations in the 3-dimensional space of bands made

of two p-orbitals. Thus, their relative phases can be meaningfully described with a

Hermitian matrix that is responsible for the complex Raman tensor relevant to the

polarization dependent Raman scattering observed in Ref. [219]. To connect more

closely with the results of Ref. [219], we determined optical dielectric constants of

structures obtained by freezing A1
g and A2

g modes. ∆εxx and ∆εzz are 0.05 and 1.3 for

A1
g and 0.2 and 1.5 for A2

g modes respectively which show (i) a remarkable anisotropy

in the Raman tensor, and (ii) are quite distinct for A1
g and A2

g modes, in qualitative

agreement with empirical parameters obtained from polarization dependent Raman

spectra of Phosphorene [219].
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Figure 7.6: (a) Isosurfaces of wavefunctions of VBM and CBM at the X-point and
(b) a schematic diagram of projection on px,y orbitals of P showing symmetry of
the wavefunction at VBM and CBM at X-point. Note that the states at the VBM
and CBM at X-point are doubly degenerate and isosurfaces of the degenerate states
(VBM and VBM+1 or CBM and CBM+1) are similar.

7.1.5 Conclusions

The Raman active modes with Ag symmetry soften significantly with electron doping

than with the hole doping, while the mode B2g is insensitive to any doping due to the

symmetry of relevant electronic states. The contrasting effect of electron and hole

doping on EPC is also explained with symmetry arguments, and quantitatively with

first-principles calculations. For reproducing experimental results for the intensity

of Ag modes, the Raman tensor has to be complex whereas for B2g, real values

of Raman tensor elements can explain angular dependence [219]. The complex

values of Raman tensor can arise from electron radiation as well as electron-phonon

matrix elements [219]. We show that the imaginary part of Raman tensor elements is

different for the two totally symmetric modes A1
g and A2

g, pointing out that electron-

phonon interaction is a key factor responsible for the complex values of the tensor.
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7.2 Pressure dependent study of black phospho-

rus

7.2.1 Introduction

Black phosphorus (BP) is the most stable form among the exhisting allotropic struc-

tures of phosphorus at ambient conditions. The structure of BP is orthorhombic and

consists of puckered layers which bind together with weak van der Waals interac-

tions [222]. From electrical conductivity measurements, it is inferred that BP is

a direct band gap semiconductor with a gap of 0.35 eV [223, 224]. Recently, BP

was introduced as layered thin film materials [27, 225], with bandgap depending on

layer thickness: it is 0.3 eV for thickness > 4nm and 1.2 eV for a monolayered

BP. This variation in bandgap of BP as a function of thickness bridges the gap be-

tween gapless graphene and relatively wide gap of transition metal dichalcogenides

and makes it suitable for infrared optoelectronic devices [26]. An interesting se-

quence of structural transformations from the orthorhombic (semiconductor) phase

to rhombohedral (semimetal) phase and then to simple cubic (metal) phase with

pressure [226, 227] is observed in BP. The simple cubic phase exhibits supercon-

ductivity at 4.7 K [228, 229]. The superconducting temperature is slightly pressure

dependent and increases with increasing pressure and the superconducting state

remains stable for several hours even if pressure is removed. BP shows supercon-

ductivity with high transition temperature (10K) if it is cooled to 4K first and then

pressure is applied, showing that pressure can be effective in tunning its character-

istics significantly.

Pressure or strain have been used to change the relative strength of spin-orbit

coupling inducing electronic topological transition (ETT) in materials like Sb2Se3
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[161], b-As2Te3 [230], BiTeI [231]. Recently, Gong et al. [232] reported a pres-

sure induced Lifshitz transition at P= 1.23 GPa, where black phosphorus under-

goes a semiconductor to three-dimensional Dirac semimetal transition. By using

first-principles density functional theoretical calculations within GGA and mBJ

exchange-correlation functionals, Gong et al. [232] showed that band inversion oc-

curs at Z point at 1.23 GPa and robust three-dimensional Dirac points appear away

from Z point. In another work, Xiang et al. [233] reported colossal positive magneto-

resistance in black phosphorus for P ≥ 1.2 GPa and observed non-trivial π Berry

phase from the Shubnikov-de Haas oscillation measurement. These observed changes

in black phosphorus at P = 1.2 GPa were attributed to electronic Lifshitz transition.

In this section, our goal is to understand the origin of dip (minima) observed

experimentally in the line width of first order Raman modes A1
g , B2g and A2

g of

orthorhombic phase at 1.1 GPa (refer Figure 7.7). Secondly, we want to understand

the observed anomalies in frequencies of B2g and A2
g modes at 7.4 GPa and the

origin of new modes (N1, N2 and N3) emerging within 4-11 GPa, where BP exhibits

rhombohedral structure. These new modes show anomalous softening with pressure

(refer Figure 7.8). Experimental results presented this section are performed by

Prof. A. K. Sood’s Group (IISc).

We determine electronic and vibrational spectra of BP as a function of pressure

(upto 24 GPa) using first-principles calculations. We find a low pressure electronic

topological transition at P ∼ 0.5 GPa, identified as the one from semiconductor to

metal, and establish a strong topological character above P = 0.5 GPa.
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Figure 7.7: Pressure evolution of FWHM of various Raman modes. The vertical
dashed lines indicate the phase transition pressures. The vertical dashed line indi-
cates the metallic phase transition pressures. The solid blue line are the guide to
the eye.
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Figure 7.8: Pressure dependence of various phonon frequencies. The vertical dashed
lines indicate the phase transition pressures. The solid blue line are the guide to the
eye.

7.2.2 Methods

Our first-principles calculations are based on density functional theory (DFT) as

implemented in Quantum ESPRESSO package [41], in which the interaction be-

tween ionic core and valence electrons modeled with norm-conserving pseudopo-

tentials [168, 169]. The exchange-correlation energy of electrons is treated within a
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generalized gradient approximation (GGA) with a functional form parameterized by

Perdew, Burke and Ernzerhof [36]. We use an energy cutoff of 55 Ry to truncate the

plane wave basis used in representing Kohn-Sham wave functions, and energy cutoff

of 220 Ry for the basis set to represent charge density. Structures are relaxed to

minimize energy till the magnitude of Hellman-Feynman force on each atom is less

than 0.03 eV/Å. We include van der Waals (vdW) interaction with the parametriza-

tion given in Grimme scheme [56]. In self-consistent Kohn-Sham (KS) calculations

of configurations of bulk black phosphorous with orthorhombic and rhombohedral

unit cell, the Brillouin zone (BZ) integrations are sampled with a uniform mesh of

18x16x16 and 16x16x16 k-points respectively, and 32x32x32 mesh of k-points is used

for calculation of electron-phonon coupling of both the structural forms. Phonon

and dynamical matrices at Γ-point (q= (0, 0, 0)) as a function of lattice constant (or

pressure) were determined using density functional linear response as implemented

in Quantum ESPRESSO(QE) [41], which employs the Greens function method to

avoid explicit calculations of unoccupied Khon-Sham states. Since DFT typically

underestimates the electronic bandgap, we have used HSE functional [46] as imple-

mented in QE to estimate the gaps accurately, with the mixing parameter of 0.25

and reciprocal space integration sampled on a 4x4x4 mesh of k-points. We calculated

Z2 topological invariant using Z2Pack code [234], which uses the ideas of time re-

versal polarization formulated in terms of hybrid Wannier charge centers [235,236].

To determine the topological invariant (ν0), we chose two time-reversal invariant

planes (kz = 0 and kz = 0.5 planes) in the BZ, and tracked the evolution of the

hybrid Wannier charge centers (WCCs) in each of the planes during an adiabatic

cycle [235].
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7.2.3 Structure and Electronic structure

The structure of BP consists of puckered layers, with a unit cell characterized by

a stacking sequence ABA, where A and B label P layers (see Figure 7.9a). The

puckered network is formed by phosphorus atoms with each atom covalently bonded

to three neighboring atoms and layers are bound together by weak van der Waals

interactions (see Figure 7.9b). Our optimized structural parameters of orthorhombic

structure, a, b, c, d1, d2, α1 and α2 are 4.42Å, 3.32Å, 10.46Å, 2.224 Å, 2.244 Å,

96.34◦ and 102.09◦ respectively, in good agreement experimental values [237], where

d1 is the bond length of in-plane P atoms while d2 defines the distance out-of-plane

P atoms. α2 and α1 are the bond angles between d1 and d2 and two d1 bonds

respectively (Figure 7.9b). BP is a direct band gap semiconductor at Z-point (0.0,

0.0, 0.5) with a gap of 0.33 eV estimated with HSE functional (Figure 7.10a) in

good agreement with experiment (Eg = 0.35 eV) whereas there is no gap observed

at 0 GPa with GGA functions (refer Figure 7.10b).

7.2.4 Vibrational Signatures

The space group of BP in orthorhombic structure is Cmca −D2h with primitive cell

containing 4 atoms. The optical modes at the BZ center (Γ point) are classified into

following irreducible representations at Γ:

2Ag + Au +B1g +B1u + 2B2g +B2u +B3g (7.4)

B1u and B2u are Infra Red active and Ag, B1g, B2g and B3g are Raman active modes.

Here, we focus on the changes in A1
g, B2g and A2

g modes with pressure. The other

two modes, B1g and B1
3g, Raman active modes are very weak and difficult to separate

from the background experimentally.
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(a) (b)

Figure 7.9: Side (a) and top (b) views of the layered structure of bulk black phos-
phorous. d1 and d2 are the P-P bonds lengths. d1 is the distance between two P
atoms in a plane while d2 is the nearest neighbor distance. α1 is the bond angle
between two d1’s and the bond angle between d1 and d1 is α2.

7.2.5 Low pressure transition

The calculated frequencies of A1
g, B2g and A2

g are 453 cm−1, 418 cm−1 and 354

cm−1, which agree well with the observed frequencies of these modes. In our Raman

experiments (see Figure 7.7), we observed anomalous changes in FWHM of A1
g, B2g

and A2
g modes at 1.1 GPa. To capture this anomalies, we performed electron-phonon

coupling calculations and find a dip (minima) at -1.5 GPa in the electron-phonon

coupling of A1
g and A2

g modes as a function of pressure (Figure 7.11). We do not

see any anomaly in the electron-phonon coupling of B2g with pressure. A careful

examination of electronic structure at -1.5 GPa show a semiconductor to semi-metal

transition.

Since the anomalous change in FWHM can be an indicator of electronic topo-

logical transition (ETT) [161], and given the experimental observations of Xiang et

al. [233] and theoretical study of Gong et al. [232], we studied electronic structure

of black phosphorus as a function of hydrostatic pressure using highly accurate HSE
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(a)

(b)

(c)

Figure 7.10: Electronic structure of BP in A11 phase. (a) Electronic structure of
BP at P = 0 GPa calculated with HSE functionals. Note that we used Wannier
functions [1] to plot band structure with HSE functionals. (b) Comparison of elec-
tronic structure near the gap obtained with HSE and PBE functionals at P = 0
GPa. BP exhibit a gap of 0.33 eV at Z-point, which is captured correctly with HSE
functionals whereas PBE calculations gives no gap. (c) Electronic structure near
the gap obtained with HSE functionals at different pressures.
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Figure 7.11: Variation in the calculated electron-phonon coupling of Raman active
modes with pressure (a) A1

g, (b) B2g and (c) A2
g modes of BP in A11 phase.

Figure 7.12: Band inversion during pressure induced electronic topological transition
(ETT) in BP. Isosurfaces of charge densities associated with electronic states at
valance band maximum and conduction band minimum at Γ-point (a) before and
(b) after the ETT revealing band inversion across this transition.

calculations. Our calculations show that band inversion occurs at Z point between

P = 0.25 and P = 0.50 GPa (Figure 7.12) following which the band gap opens up

above P ≥ 0.5 GPa (refer Figure 7.10c), which is in contrast to that earlier DFT

study (within GGA and mBJ functional) where persistence of robust band crossing

is reported after band inversion [232]. We use HSE calculations to predict the cor-

rect transition pressure as with GGA functionals transition pressure is predicted at

-1.5 GPa. Our estimate of the transition pressure with HSE functionals is P ∼ 0.5
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GPa, in agreement with theoretically predicted transition pressure (P ∼ 0.6 GPa)

by Ruixiang et. al [238].

Although earlier studies [232,233] reported pressure induced electronic topologi-

cal transition (Lifshitz transition) in black phosphorus following band inversion near

P = 1.2 GPa, the nature of electronic topology of the bulk has not been clear. To

investigate the electronic topology of black phosphorus, we determined the Z2 topo-

logical invariant (ν0) as a function of pressure (see Figure 7.13). We find that ν = 0

for P < 0.5 GPa, whereas ν0 = 1 for P ≥ 0.5 GPa signifying Z2 topological insulat-

ing nature of black phosphorus above 0.5 GPa. Thus, we attribute the anomalous

changes in FWHM of Raman active modes to the pressure induced electronic topo-

logical phase transition. The observation of non-trivial π Berry phase and colossal

magneto-resistance for P>1.2 GPa in experiment [233] are also consistent with the

fact that black phosphorus becomes topologically non-trivial for P > 0.5 GPa. The

discrepancy between our calculated transition pressure (0.5 GPa) and previously

reported ones (1.2 GPa) falls within the typical errors of DFT calculations.

7.2.6 Anomalies at high pressure transition: structural ori-

gin

In this section, change in frequencies and electron-phonon coupling with pressure

is studied using PBE functionals. At P= 0 GPa, our calculations do not capture

the correct gap with PBE fuctionals as shown in previous subsection. Thus, to

capture the semiconductor to semimetal transition, we have to apply the negative

pressure. Estimated transition pressure is P ∼ -1.5 GPa with PBE functionals. BP

is a complex material due to its in-plane and out-of-plane anisotropies. We could

not stabilize it below P = -2 GPa: it goes to another structural form which is

even lower in energy that of the structure at P = 0 GPa. The electronic structure
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Figure 7.13: Evolution of hybrid Wannier charge centers (WCCs) along y-direction
(marked by circle) and their largest gap function (blue rhombus) for (a) kz =0 plane
and (b) kz=0.5 plane. It is clear show that kz = 0 plane is topologically non-trivial
whereas kz=0.5 plane is topologically trivial.

of this new structural form is quite different from the structure at P = 0 GPa.

It is metallic in nature whereas structure at P = 0 GPa is semiconductor. BP

exhibits orthorhombic structure from 0-4.6 GPa. In this pressure range, frequencies

of all the Raman active mode are seen to harden in experiments (see Figure 7.8).

Our theoretical calculations show that only A1
g mode hardens whereas other two

modes softens anomalously. This softening and hardening can be explained with

the variation of internal structural parameters with pressure. A careful examination

of frequency vs. P graph of A2
g and B2g shows that the observed anomalies at P

= 7.4 GPa (see Figure 7.8) are captured at P = 10 GPa (refer Figure 7.14) in

our calculations. These modes soften anomalously: especially B2g mode softens

by ∼ 80 cm−1 at 10 GPa and starts hardening beyond this pressure (see Figure

7.14). A2
g mode softens by ∼ 30 cm−1 at 10 GPa. At 10 GPa, BP transforms to

the rhombohedral structure. We suggest that the anomalies seen in experiments

in the rhombohedral phase are basically due to co-existence of orthorhombic and

rhombohedral structures.



7.2 Pressure dependent study of black phosphorus 149

Figure 7.14: Change in the frequencies of Raman active modes (a) A1
g, (b) B2g and

(c) A2
g modes of BP in A11 phase with pressure. Insets of (a), (b) and (c) show

atomic displacements in these Raman active modes.

Atomic vibration of A1
g mode (refer Figure 7.14) involve stretching the d2 bond.

From the variation of d2 bond with pressure (see Figure 7.15a), we find that d2

decreases monotonically with pressure and the ∆d2 is 0.04 Å. As a result, A1
g hardens

with pressure. The atomic vibration of B2g (refer Figure 7.14) affects bond angle,

α2. From Figure 7.15(b), α2 decreases with increasing pressure. We find that the

frequency of B2g mode decreases with pressure in the same fashion as α2, and observe

a sudden drop in α2 from 4 GPa to 6 GPa, which is also evident in the frequency

of B2g as a function of pressure (see Figure 7.14b). Atomic displacements of A2
g

mode (refer Figuure 7.14) involve stretching of d1 bond. d1 decreases with pressure

upto 3 GPa, and starts increasing from 3-6 GPa, and subsequently decreases with

pressure upto 12 GPa (see Figure 7.15a). In this case, ∆d1 with pressure is much

smaller than ∆d2 which is also reflected in softening of B2g and A2
g. As a result of

variation of d1 with pressure, A2
g softens with pressure and this softening is less than

the softening observed in B2g.

The space group of BP in rhombohedral structure is R − 3m−D3d(−3m) with

primitive cell containing 2 atoms. The optical modes at the Brillouin zone center
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(a) (b)

Figure 7.15: Evolution of bond lengths (a) and bond angles (b) of BP in A11 phase
with pressure.

(Γ point) are classified into following irreducible representation:

A1g + A2g + Eg + A1u + A2u + Eu (7.5)

A1g and Eg are the Raman active mode and A2u and Eu are infrared active mode.

Rhombohedral phase of BP is also known as the A7 phase. A7 is the high pressure

phase, it appears at P ≥ 4.6 GPa and survives till P = 11 GPa. Beyond this pressure

(P = 11 GPa), BP transforms to the cubic structure, which (a high pressure phase)

is stable upto P = 24 GPa. The frequencies of A1g and Eg modes are 350 cm−1

and 255 cm−1 at 4 GPa. There are three Raman active modes which appear in

rhombohedral phase (Figure 7.8). The frequencies of these modes are N1, N2 and

N3 are ∼ 250 cm−1, 300 cm−1 and 380 cm−1 respectively. We identify N3 mode as

A1g mode and N1 as Eg. From first-principles calculations, rhombohedral structure

is stable from 4 GPa to 12 GPa, unstable modes start appearing in phonon dispersion

beyond this pressure. With increasing pressure, A1g and Eg modes soften consistent

with softening of N3 and N1 modes (Figure 7.16(a, b) and Figure 7.8).

N2 mode can appear due to defects, which can lead to splitting in the degeneracy



7.2 Pressure dependent study of black phosphorus 151

Figure 7.16: Change in the calculated frequencies of Raman active modes with
pressure of BP in A7 phase, (a) Eg mode, (b) A1g mode and (c) N2 mode (Insets
of (a) and (b) showing their atomic displacements). Note that N1, N2 and N3 are
the modes observed in experiments. Here N2 shows the frequency of longitudinal
acoustic mode at Z-point of the Brillouin zone of A7 phase.

of frequencies of Eg modes. We have investigated frequency of longitudinal acoustic

mode at Z-point with pressure which hardens with pressure whereas N2 softens with

pressure.

7.2.7 Conclusions

Using first-principles calculations, we find that the low pressure phase transition in

BP at P ∼ 0.5 GPa is a semiconductor to semimetal transition. Our calculations of

the Z2 invariant confirm the change in electronic topology making a transition from

band to topological insulating state. We uncover the origin of anomalous softening of

Raman active modes in the variation of internal structural parameters with pressure,

and identify the symmetry of the new modes appearing in experiments.





Chapter 8

Summary

The central theme of this dissertation has been to explore the role of defects and

effect of external fields (e.g. pressure and charge doing) in modification of physical

properties and behavior of bulk and two dimensional materials. The materials stud-

ied in this thesis are not only technologically important, but are also fundamentally

interesting as they exhibit unusual phenomena involving fascinating physics. We

have employed first-principles density theoretical calculations and modeling in our

analysis.

Grain boundaries are always present in materials and have particularly interest-

ing consequences to the properties of 2D materials. We present a comparative study

of changes in the structure and vibrational properties associated with two types

of interfaces or grain boundaries (GB) (i) stacking and (ii) growth faults in h-BN

and graphene and label them with the polygonal ring-structure. We identify that a

4:8 GB (stacking fault) is more stable in h-BN, while a 5:5:8 GB (growth fault) is

relatively more stable in graphene. We predicted four novel GBs: 6:5:8:4:8:5 GB in

graphene and 4:4, 6:5:8:4:8:5 N-N and 6:5:8:4:8:5 B-B GBs in h-BN. We reported

a novel GB in graphene, which is 6:5:8:4:8:5 GB, having the lowest energy among

all the four GBs, and should therefore be common and relevant to experiment. Our
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work highlights the remarkable diversity in the structures of grain boundaries in

h-BN and graphene. We show that grain boundaries intrinsically cause rippling and

wrinkles in the h-BN sheet and affect the electronic structure greatly. We identified

the vibrational signatures of these GBs, specifically hardening and softening (fre-

quency shifts) of A2
′′ and E′ modes, which will be useful for the characterization of

these interfaces by IR and Raman spectroscopies. Electronic signature of the low-

est energy 4:8 GB of h-BN is in the charge accumulation localized at the interface,

which accessible to scanning tunneling microscope.

Among 2-D materials planar defects can be found in materials such as MX2

compounds (M= (Mo, W); X= (S, Se)) whose monolayers consist of 2 or 3 atomic

planes. Upon introduction of a planar defect, MX2 compounds makes transition from

insulator (2H-phase) to metal (1T-phase) because of increase in the covalency of M

and X atoms. We have determined the energies and electronic structure of the states

along the transition pathway connecting 1H and c1T structures of monolayers of

MX2 (M= Mo, W and X= S, Se). We find that the c1T structure is typically higher in

energy by 0.7-0.9 eV/f.u. than the 1H structure. Secondly, an energy barrier associ-

ated with this transition through glide of a plane of X atom is about 1.5 to 1.7 eV. We

have shown that the c1T polymorphic structure is unstable, exhibiting instabilities

at the valley point K and zone boundary point M . These structural instabilities lead

to symmetry and energy lowering distortions of the c1T structure to form
√

3x
√

3

(for K-point) and
√

3x1 (for M-point) stable superstructures respectively. The
√

3×1

structure associated with dimerization of metal atoms remains metallic, while the
√

3×
√

3 superstructure exhibits a nonzero electronic band gap arising from strong

trimerization of metal atoms. The
√

3 ×
√

3 structure of (Mo, W)(S, Se)2 exhibits

a spontaneous polarization (0.25-0.3 µC/cm2) along the direction perpendicular to

the sheet, making them the thinnest known ferroelectrics. However, the
√

3 ×
√

3
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structure is (a) more stable than the
√

3×1 structure, and (b) exhibits a stable dipo-

lar domain structure only in MoS2. Thus, MoS2 is the only suitable candidate for

possible use in the dipolectronic devices. As a result of vicinity of these compounds

to metal-semiconductor and ferroelectric transitions, all of them exhibit anomalous

responses to an electric field.

Due to variety of 1T structures exhibited by TMX2 compounds, the precise na-

ture of 1T-phase occuring in experiment is not clear. Our work prove into the mys-

tery of precise atomic and electronic structure of the 1T phase of 2D MoS2, which

is known to have properties that are relevant to its applications. This meta-stable

phase is known to occur in nano-scale regions of commonly grown samples of 2D

MoS2. We used self-energy corrected first-principles calculations of electronic struc-

ture to determine its electronic nature, which along with experiments by Prof. D.

D. Sarma (IISc), show that the 1T phaseof 2-D MoS2 has a 2a× a super-structure

with Mo dimerization, and exhibits a band-gap of 90 meV.

In our work on photo-catalytic properties of TMX2 for water splitting, we found

that (i) MoSe2 has a lower work function in each of the 1T and 2H structures in

comparison to MoS2 and (ii) 1T-structure exhibits lower work function than the

2H-structure for each MoX2 (X= S and Se). These result in easy transfer of electron

from the MoSe2 substrate to reduce proton, and hence MoSe2 is more efficient in

catalysis of hydrogen evolution reaction than MoS2. This is also reflected in our

analysis of binding energies of H at MoSe2 edges.

We have analyzed the pressure induced semiconductor to semi-metal transition

at ∼ 8 GPa and a Lifshitz transition at ∼ 20 GPa in 2H-MoTe2 with first-principles

density functional theoretical calculations (in complement to Raman measurements

by Prof. Sood’s group). The signatures of semiconductor to semimetal and the

Lifshitz transitions are carried by the frequencies of the first order A1g and E1
2g

Raman modes observed in experiments and theory. The occurrence of a maximum in
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the integrated ratio of the A1g and E1
2g modes arises from a non-monotonous change

in the Raman tensor of E1
2g mode with pressure. We find that pressure influences the

electron-phonon of A1g most strongly, and Raman active modes generally harden

with increasing pressure, and electron phonon coupling increases under compression

due to changes in the Fermi surface. We believe that our findings will be useful

in further studies of high pressure and low temperature resistivity experiments to

capture the anomalies near the Lifshitz transition.

We presented structural, electronic and transport properties of the three poly-

morphs of MoTe2, determining the effects of Te vacancies. We show that the pris-

tine 2H-MoTe2 (bulk-form) is an indirect gap semiconductor, whereas the 1T’ and

Td forms of MoTe2 are semi-metallic. In the presence of Te vacancies, 2H form

shows reduction in the indirect semiconducting gap, whereas the other two forms

become more metallic. The observed trends in transport properties can be explained

with theory only by including the effects of Te-vacancies and incipient electron

doping. Thus, Te-vacancies in MoTe2 essentially govern the trends in the observed

temperature-dependent electronic transport properties of MoTe2.

We presented a comparative analysis of electronic structure and vibrational prop-

erties of WTe2 in its monolayered and bulk Td forms. The importance of spin-orbit

coupling in accurate description of its electronic structure particularly near the

Fermi-level is highlighted in this work. We assigned the symmetry labels to the

observed experimental Raman active peaks with symmetry analysis and estimation

of Raman tensor. We also highlighted the connection of the Td structure with 1T

form of layered metal dichalcogenides, and explained its stability in terms of the elec-

tronic and vibrational properties of the c1T form. We found qualitative agreement

between experimental and calculated results of thermal conductivity and electrical

conductivity as a function of T. The experimentally observed n-p crossover in the

Seebeck coefficient as a function of T in experiments is likely due to defects and
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incipient doping along with structural changes.

Our work uncovered a remarkable electron-hole asymmetry in the coupling be-

tween charge carriers with phonons in phosphorene: phonons with Ag symmetry cou-

ple much more strongly with electrons than with holes. Further, only the phonons

(Ag) preserving the symmetry of the lattice couple strongly with electrons. Our first-

principles calculations reveal that the electron-hole asymmetry arises from rather dif-

ferent orbital characters of conduction and valence bands involving π and σ bonding

states respectively.

Using first-principles calculations, we found that the observed low pressure phase

transition in black phosphorous at P ∼ 0.5 GPa is a semiconductor to semimetal

transition. Our calculations of the Z2 invariant confirmed the change in electronic

topology making a transition from band to topological insulating or semimetallic

state. We showed that origin of anomalous softening of Raman active modes lies

in the variation of internal structural parameters with pressure, and identified the

symmetry of the new modes appearing in experiments.

We have summarized the work in this thesis in a schematic (see Fig. 8.1) that

brings out the commonality and central theme of the topics covered. In summary,

we highlighted how various defects and external fields govern the properties of 2D

layered and bulk materials, giving rise to unexpected physical phenomena and fas-

cinating behavior. Our work should be helpful in experimental characterization of

these materials and devices based on them.



Figure 8.1: A schematic summarizing our work presented in this thesis
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