
Evolution of Mutation Rates in Asexual Populations

A Thesis

Submitted for the Degree of

DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE

by

ANANTHU JAMES

THEORETICAL SCIENCES UNIT

JAWAHARLAL NEHRU CENTRE FOR ADVANCED SCIENTIFIC RESEARCH

(A Deemed University)

Bangalore – 560 064

July 2017





To The Living World





DECLARATION

I hereby declare that the matter embodied in the thesis entitled “Evolution of Muta-

tion Rates in Asexual Populations” is the result of investigations carried out by me at the

Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Ban-

galore, India under the supervision of Prof. Kavita Jain, and that it has not been submitted

elsewhere for the award of any degree or diploma.

In keeping with the general practice in reporting scientific observations, due acknowl-

edgement has been made whenever the work described is based on the findings of other

investigators.

Ananthu James





CERTIFICATE

I hereby certify that the matter embodied in this thesis entitled “Evolution of Mutation

Rates in Asexual Populations” has been carried out by Mr. Ananthu James at the Theoret-

ical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,

India under my supervision and that it has not been submitted elsewhere for the award of

any degree or diploma.

Prof. Kavita Jain

( Research Supervisor)





Acknowledgements

First of all, I express my gratitude to my Ph. D. advisor Prof. Kavita Jain for her support

throughout my academic life as a Ph. D. student. I am really grateful to her for giving me

enough freedom to explore and learn things the way I wanted and letting me publish a

single author paper, which resulted in improving my confidence substantially.

I got benefited a lot by attending various schools, conferences, and seminars at insti-

tutes like IISc, ICTS and NCBS in Bangalore. Apart from that, I am happy for getting the

opportunity to participate in PopGroup49, held in Edinburgh.

I would like to thank Council of Scientific and Industrial Research (CSIR) for the funding

during my first five years of Ph. D. life.

I remember the quote “Nothing in biology makes sense except in the light of evolution”

by Theodosius Dobzhansky in one of my Biology textbooks in school. The concept of bio-

logical evolution as well as the mathematical aspects of genetics have been fascinating to

me since my school days. I am fortunate to have come across the theory of evolution in my

school curriculum.

As an undergraduate student in Physics, I got the opportunity to do summer research as

part of the Kishore Vaigyanik Protsahan Yojana (KVPY) fellowship. This was a turning point

in my life which made me realize that research is actually very much enjoyable. Moreover,

I acknowledge Prof. Vincent Mathew who would encourage me during my undergraduate

days and with whom and I did two projects.

At JNCASR, I have spent more than five years as a Ph. D. student. I thank my institute

for providing all the necessary facilities and funds. I acknowledge Prof. Amitabh Joshi,

Prof. Shobhana Narasimhan, Prof. Subir K. Das, Prof. Swapan K. Pati, Prof. Umesh V.



x

Waghmare, Prof. Vidhyadhiraja N. S., Dr. T. N. C. Vidya, Prof. Srikanth Sastry, Dr. Meher K.

Prakash, and Prof. Meheboob Alam for the courses they have offered and the interactions

with them. I also thank Dr. Mukund Thattai from NCBS who was the external examiner of

my comprehensive viva.

I acknowledge my labmates Sarada, Priyanka, Sona, Jyoti, Tanmoy, and Archana for

their help and support. I am deeply thankful to Priyanka and Sona for their help in vari-

ous academic and non-academic things. I was part of various committees in JNC. I thank

all the committee members who worked with me. I express my special thanks to the cul-

tural forum Dhwani, in which I worked for more than two years screening documentaries

on topics such as society, politics, history, science etc. Playing and watching football, pho-

tography, and most importantly, trekking have been my hobbies during my Ph. D. life. I

went trekking to many places in South India, mainly Western Ghats, with Bangalore Moun-

taineering Club (BMC). I extend my gratitude to Nikhil, Sonia, and Kanchan for organizing

some trips and treks from JNC. Moreover, I am thankful to those who used to play football

and (rarely) badminton with me. Further, I thank my batchmates and friends Anjali, Chakri,

Meha, Sharmila, and Vinay with whom I used to spend my time during the first one or two

years, especially during the coursework. I extend my thanks to Nandu for the intellectual

conversations and Vybhav for the inspiring discussions about the history of science.

I am greatly indebted to Jyoti for her motivation and support, who joined my lab four

years after me. The interactions with her helped me to understand her research area, coa-

lescent theory. Apart from her, I am very much happy to have a cousin, whom I call Monu,

who would always encourage me for anything creative and rebellious and accompanied

me on so many trips. In addition, I am glad to have spent two years at IIT Madras, where I

met my friends Siddharth and Varghese whom I appreciate for their positive mentality and

never-say-die attitude.

I am pleased to have a family which is relatively liberal and rational for the society they

live in. I am thankful to them for motivating me to pursue basic science instead of profes-

sional courses. I also recall that it was my mother who insisted me to apply to institutes in



xi

India for Ph. D. when I was only interested in doing a Ph. D. from abroad. I also thank my

brother for all sorts of discussions varying from academics to football and philosophy.

I do appreciate the help and support I received from all the academic and non-academic

staff in JNC including the hostel staff, Dhanvantri staff, library staff, and canteen staff. Fi-

nally, I thank Rajesh Ranjan from Engineering Mechanics Unit for help with the thesis tem-

plate in the current format, without whom the thesis writing would have been much harder.



xii

Synopsis

The living world exists in the present form because of the evolutionary processes that

have been going on since the origin of life on earth. Mutations that are random changes in

the genetic material of a cell or an organism are one of the main drivers of the evolutionary

process. Mutations are classified as beneficial, deleterious, or neutral, respectively depend-

ing on whether they increase, decrease, or do not alter the reproductive ability or fitness of

an organism. Early studies on the mutation rates led to the important conclusion that like

many other traits, the mutation rate is also subject to evolution [1]. Since then, there have

been various experimental as well as theoretical studies on the evolution of mutation rates

[2, 3].

These studies suggest that in adapting populations, mutators (the alleles or individuals

with higher mutation rates than the wild type) are favored [4, 3]. Although there are exper-

imental evidences [5, 6] indicating that the lower mutation rate increases in frequency in

adapted mutator populations, this phenomenon has been very less theoretically explored

[7, 3]. Our aim in this thesis is to fill this gap and gain an insight into the process of re-

duction of the mutation rate. The thesis is divided into five chapters. The details of each

chapter are given below.

In Chapter 1, we first provide an introduction to the evolutionary forces viz., selection,

mutation, and random genetic drift in our study. The class of fitness landscapes used are

single-peaked in which magnitude epistasis can be tuned [8]. We also describe the Wright-

Fisher process to deal with finite populations and discuss the branching process formalism

[9] to understand the chances of fixation of a beneficial allele in a large population.

In Chapter 2, we study the role of selection and random genetic drift in the evolution

of mutation rates [10]. Using a multitype branching process, we first derive analytical ex-

pressions for the fixation probability of a rare nonmutator in a large mutator population

when the fitness landscape is non-epistatic. Throughout this analysis, we assume that the
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mutator is strong i.e., its mutation rate is much larger than that of the nonmutator. Using

a drift-barrier argument [11, 7], we show that the minimum mutation rate is inversely pro-

portional to the population size when selection is strong [7] but decays much faster when

selection is weak [10]. We also discuss how our results relate to the experimental observa-

tions of [6].

In Chapter 3, we consider a more general scenario of the case studied in Chapter 2 [12].

Here, we analytically calculate the fixation probability of a rare nonmutator when the mu-

tation rate of the nonmutator can be comparable to that of the mutator. Our analytical

expressions reveal that the fixation probability can be a decreasing or increasing function

of the background mutation rate depending on the strength of selection and mutation rate

of the nonmutator. In fact, the decreasing trend is counterintuitive and it is discussed in

detail.

In Chapter 4, we examine the role of the epistatic fitness interactions on the fixation of

a nonmutator in an adapted mutator background [13]. We find that the fixation probability

increases with the interaction strength and a critical value of the epistasis parameter exists

beyond which the fixation probability is a nonmonotonic function of the mutation rate of

the mutator population.

Finally, in Chapter 5, we summarize our results and discuss some open questions.
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Chapter 1

Introduction

1.1 Theoretical population genetics and modeling evolution

The term “evolution” in the context of biology refers to the collective changes in the features

of a population over a period of time [15]. Population genetics provides a framework to un-

derstand the processes and mechanisms by which evolutionary changes occur [16]. The

main goal of theoretical population genetics is to gain an insight into how the interactions

between the forces of mutation, natural selection, random genetic drift, and population

structure result in the variations amongst the individuals of a population by formulating

the problem into a workable mathematical model [17]. Since the inclusion of all the com-

plexities that are part of the actual biological systems is not possible in a mathematical

model, simplifications, which do not significantly alter the details of the real system, but

using which a further mathematical progress can be achieved, are required.

In this thesis, the evolutionary forces are considered to be not changing with time. More-

over, we model mutation and selection as simple processes [17, 18], though in reality, more

complex scenarios are possible for the mutation rate of an organism as well as the selection

acting on it. It will be seen in the subsequent Chapters that despite the simplifications in

our models, we encounter mathematically challenging problems. However, a mathemati-

cal approach is very helpful in obtaining quantitative predictions as well as a deep under-

standing of the mechanism behind the evolutionary processes [19]. The two sentences
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taken from the classic book [20] by R. A. Fisher emphasize the importance of developing

a mathematical framework in evolution: “I believe no one will be surprised that a large

number of the points considered (here) demand a far fuller, more rigorous, and more com-

prehensive treatment. It seems impossible that full justice should be done to the field in

this way, until there is built up a tradition of mathematical work devoted to biological prob-

lems, comparable to the researches upon which a mathematical physicist can draw in the

resolution of special difficulties.”. A survey conducted by Otto and Day [19] demonstrates

that the use of mathematical models is becoming extensively common in the articles pub-

lished in biological journals. This Chapter is dedicated to describing the way we model the

action of the various evolutionary forces.

1.2 Evolutionary forces

The major evolutionary forces that are encountered in our study are discussed in this Sec-

tion. In addition to that, we describe how they are being modeled.

1.2.1 Natural selection

The genetic sequence or genome of an organism stores all the heritable information. In

our study, we consider haploid asexual individuals and model the genome using a binary

sequence of length L, corresponding to which 2L combinations are possible. If we assume

that each site in the sequence represents a base pair, the minimum length of the sequence

could be few thousands of base pairs, based on the data from natural populations [21, 22].

The resulting number of sequences exceeds 10300. In order to avoid the complexities in

dealing with such astronomically large numbers, we make rather simple assumptions, that

are given below, using which we can proceed further.

The fitness of an individual denotes its survival ability in a specific environment. In our

model, fitness is assumed to be proportional to the probability of reproduction. The repre-

sentation of the fitness values corresponding to all the possible genetic sequences is known

as a fitness landscape [23]. The schematic representation of a typical fitness landscape can
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Fig. 1.1 Schematic diagram showing the position of an adapted population (shown using

the circle) on a fitness landscape. (Ref: http://evolutionarysystemsbiology.org/intro/)

be seen in Fig. 1.1. An adapted population will be close to a local fitness peak as shown

here. If we consider that the population does not accumulate any large effect mutations

so as to move away from its nearest fitness peak, we can effectively restrict ourselves to a

single-peak fitness landscape, with the population close to its peak. (However, such sim-

plifications are not always possible. To know more about how to generate the more com-

plicated and realistic fitness landscapes, one can refer to [18].) Due to the inconvenience

associated with considering all the possible configurations of the genome, we consider a

fitness function [8]

W (k)= (1− s)kα

(1.1)

which depends only on the total number k ≥ 0 of a particular allele (mutation) carried by

the genome, but not on their locations. Here, the genome is taken to be infinitely long

(L →∞). In (1.1), s represents the selection coefficient (also see the last paragraph of this
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Subsection), whereas α stands for the epistasis parameter. The latter is a measure of the

degree of interactions between the mutations in the genome. In fact, a fitness landscape of

the form (1.1) with α= 0.46 has been observed experimentally as well [24].

The value of the interaction strength α can be tuned. The case α = 1 indicates a non-

epistatic or multiplicative fitness landscape, in which the interactions among the muta-

tions are absent. Moreover, the effect of each mutation on the fitness is the same. For any

other value of α, the effect of a mutation on the fitness is determined by the number of mu-

tations already present in the genome. In Chapters 2 and 3, we have studied a non-epistatic

fitness landscape, while in Chapter 4, we have considered an epistatic fitness landscape.

The individuals that are more suited to the environment will reproduce more and in-

crease in number. In this way, the force of natural selection acts on the variation in fitness

among the organisms and tries to reduce it. When all the individuals in the population

become the descendants of a beneficial allele, that allele is said to have attained fixation.

1.2.2 Mutation

The random changes in the genetic material of an individual are termed as mutations. Er-

rors in DNA (genetic material) replication or physical damage to DNA can lead to mutations

[25]. Mutations are classified mainly on the basis of the following: 1) the type of change they

cause to the genome [25], and 2) their effect on the fitness of an organism. In asexual or-

ganisms, mutations are the only source of de novo variation. We learn from experiments

[26] that the number of beneficial mutations is very small relative to the deleterious ones.

Moreover, in an adapted population (as shown in Fig. 1.1), there is no room for the benefi-

cial mutations to act, assuming that the environment does not change during the period of

study. As a result, any mutation that improves the fitness of the best genotype has been ne-

glected. However, we include the rare compensatory mutations [10, 27, 12], which oppose

the build-up of detrimental mutations at a rate much smaller than that of the deleterious

mutations, but do not increase the fitness of the best genotype. The deleterious and com-

pensatory mutations, respectively increase and decrease the value of k in (1.1).
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Fig. 1.2 The fixation probability of an individual carrying a beneficial (s = 0.05), deleterious

(s = −0.05), or neutral (s = 0.00) mutation as a function of the population size. The lines

show (1.2).

In our model, the accumulation of mutations lowers the reproductive ability of an indi-

vidual, as one can clearly see from (1.1). Due to this, the population will be shifted away

from the fitness peak. On the other hand, selection keeps the population closer to the peak.

When the force of selection balances that of mutation, a steady state can be established.

In this steady state, also known as the mutation-selection balance, the mean fitness of the

population as well as the population frequencies corresponding to all the genotypes (refer

to Section 1.3.1) become time independent. In later parts of the thesis, we will see that the

concept of steady state is very helpful in deriving relatively simple analytical expressions.
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1.2.3 Random genetic drift

Real populations are finite in size. Moreover, reproduction is a stochastic process. Even if

an individual carries a beneficial (deleterious) mutation, it may fail (manage) to reproduce.

Owing to their non-zero probabilities, these unlikely events can repeat and eventually lead

to the extinction (fixation) of the beneficial (deleterious) allele. However, such improbable

occurrences have a higher likelihood of happening in small populations. This can be seen

in Fig. 1.2 in which the expression [28]

Π(N ) = (1−e−2s)/(1−e−2sN ) (1.2)

is plotted for the fixation probability Π(N ) of a mutant with a selective advantage s in a

population of size N . For a deleterious mutation, s is a negative number, and hence, Π(N ) ∼

e−2sN . In the case of a neutral mutation, s → 0, N s ≪ 1, due to which, Π(N ) = 1/N . In the

limit N →∞, Π(N ) ∼ 0 for both the deleterious and neutral mutants, whereas Π(N ) = 2s for

a beneficial mutant.

1.3 Models and methods

Here, our aim is to incorporate the effect of the evolutionary forces, namely, selection, mu-

tation, and genetic drift that have been discussed till now into mathematical models.

1.3.1 Deterministic models

The stochastic effects due to the fluctuations in the population vanish in the limit N →∞

and one develops deterministic theories for the evolution of the various genotypes under

the action of mutation and selection, as well as for the fixation of a beneficial mutant.

The deterministic fraction p(k, t +1) of the population carrying k mutations in genera-

tion t +1 is related to the population fractions in the previous generation according to the

expression [29]

p(k, t +1) =
∑

j M(k ← j ) W ( j ) p( j , t )

W (t )
, (1.3)
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Fig. 1.3 Schematic diagram showing Wright-Fisher process for a population size N = 6. The

darker the shade of green, the higher the fitness is.

where the fitness W ( j ) is given by (1.1), and M(k ← j ) is the probability with which num-

ber of mutations changes from j to k. The mean fitness W (t ) of the population is W (t ) =
∑

j p( j , t ) W ( j ). The steady state (t →∞) solution to (1.3) has been utilized in the coming

Chapters.

1.3.2 Wright-Fisher process

Unlike Section 1.3.1, here we consider a finite population of constant size N that evolves

according to a Wright-Fisher process. The generations are discrete and non-overlapping.

In every generation, corresponding to each individual, an individual in the previous gen-

eration is assigned as the parent, with a probability proportional to its fitness. The parent

can undergo mutations during the process of passing the genes to its offspring. According

to Wright-Fisher process, the probability Pk (n, t ) of an individual having the fitness W (k)
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Fig. 1.4 Schematic diagram showing a multitype branching process. Here, X t represents

the number of descendants of the mutant in generation t . The different colors indicate the

fact that during reproduction, one type can give rise to different types.

in generation t to give birth to n offspring in the next generation, assuming that mutations

do not occur, can be expressed using a Binomial distribution as shown below:

Pk (n, t ) =
(

N

n

)

(

W (k)

NW (t )

)n (

1−
W (k)

NW (t )

)N−n

. (1.4)

An example for Wright-Fisher process is shown in Fig. 1.3. In order to incorporate the

stochastic behavior of finite populations [25], Wright-Fisher method has been implemented

in our simulations, which will be discussed in the succeeding Chapters.

1.3.3 Branching process formalism for the fixation probability of a ben-

eficial mutant

The branching processes [9, 30] are applicable to a wide variety of problems ranging from

nuclear physics to population genetics [31]. One main assumption, which the branching

process relies on is that the probability of reproduction of each individual is independent

of the other individuals in the population [31]. This method is useful in determining the

probability of eventual extinction (fixation) of a mutant which has an advantage over the
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rest of the individuals in the population [31, 32]. Therefore, it can be employed to examine

the fate of a mutant having a low mutation rate arising in an adapted population which is

undergoing mutations at a high rate.

In our thesis, each genotype can undergo mutations during the reproduction. To ac-

count for this, we use a multitype branching process here as discussed later [32]. Fig. 1.4

shows the schematic representation of a multitype branching process.

1.4 The main goals and overview of the thesis

In this thesis, we want to address the question how mutation rates evolve in an adapted

asexual population. Because harmful mutations play a major role in well-adapted popu-

lations, a reduction in the mutation rate is advantageous here. There have been various

experiments [33, 5, 34, 6] in which such a reduction in mutation rate has been observed.

But, barring a computational work [35] that showed the possibility of decline in the muta-

tion rate and a recent analytical study [7] conducted for the special case in which all the

mutations are assumed to be lethal, a theoretical understanding is largely missing.

We study the role of the factors viz., drift, selection, compensatory mutations, epistasis,

and mutation rates of the invader as well as the resident population on the fixation proba-

bility of the nonmutator (invader).

In Chapter 2 [10], we calculate the chances of a rare nonmutator to reach fixation in a

strong mutator background [4, 36], in which the nonmutator has a negligible mutation rate

compared to that of the mutator background. This calculation reveals that the dependence

of the lower bound of the mutation rate on the population size can be different from the

prediction by the existing theory [7]. Moreover, the probability of occurrence of the com-

pensatory mutations has been taken into account. We find that the nonmutator can be

favored due to compensatory mutations if the selection is milder than the background mu-

tation rate [10]. However, as laboratory experiments [34, 6] show that the mutator and non-

mutator can have comparable mutation rates, in Chapter 3, we analyze the case in which

mutator is weak [12]. Here, we find that the nonmutator can experience a disadvantage in
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a high mutation rate background when the mutation rates exceed the selection and make

predictions regarding the behavior of the advantage associated with the nonmutator (in the

presence of compensatory mutations) as a function of the mutation rates of the invader as

well as the resident population [12].

All the above studies have considered the very simple fitness landscape in which the

mutations do not interact with each other (α = 1 in (1.1)). However, such a situation may

not be realistic. In order to take this into account, in Chapter 4, we investigate the im-

pact of epistatic interactions (α 6= 1) on the fixation of a nonmutator [13]. Interestingly, the

presence of a critical value of the epistasis parameter, below which the fixation probability

manifests a nonmonotonic trend as a function of the background mutation rate, is found

here [13].

Our main findings are summarized in Chapter 5. In addition to that, some open ques-

tions are discussed here.



Chapter 2

Fixation of a nonmutator in a strong

mutator background

2.1 Introduction

In this Chapter, our purpose is to understand the role of selection and random genetic drift

in the evolution of mutation rates when the effect of each mutation is the same [10]. More-

over, we examine the impact of compensatory mutations on the fixation of a rare mutant

having a negligible mutation rate relative to that of the background [10].

Because most mutations are deleterious, the mutation rate cannot be too high; in fact,

in an infinitely large population, for a broad class of fitness functions, an error threshold

has been shown to exist above which the deleterious effects of mutation cannot be com-

pensated by selection [37, 29]. The mutation rate is not zero either [2], and it has been

argued that the stochastic fluctuations in a finite population limit the evolution of muta-

tion rates below a certain level since in small enough populations, the advantage gained by

lowering the mutation rate cannot compensate the effect of random genetic drift [11]. Em-

pirical data for organisms with widely different effective population size shows a negative

correlation between the deleterious mutation rate and the population size [22], and some

quantitative insight into this relationship has been obtained by treating all deleterious mu-
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tations to be lethal [7]. However, this is clearly an extreme scenario, and it is important to

ask how the deleterious mutation rate evolves when mutations are only weakly deleterious.

Many theoretical and experimental investigations have also shown that in an adapting

asexual population, a mutator allele causing a higher mutation rate than that of the non-

mutator can get fixed (see a recent review by [3]). Since the mutators produce not only

deleterious but also beneficial mutations at a higher rate than the nonmutators, the mu-

tator allele can hitchhike to fixation with favorable mutations [38, 35]. However, once the

population has reached a high fitness level, high mutation rates are detrimental since most

mutations will now be deleterious, and in such a situation, the mutation rate is expected

to decrease [39]. Indeed, in some experiments [33, 5, 34, 40, 6], the mutation rate of an

adapted population carrying a mutator allele has been seen to decrease and the time to

fixation has been measured, but a theoretical understanding of this time scale is missing.

To address the issues discussed above, we study the fate of a rare nonmutator in a large

asexual population of mutators using a multitype branching process [9]. An important dif-

ference between the previous works on mutator hitchhiking [35, 41–43] and our study is

that here the mutator population is assumed to be at mutation-selection equilibrium and

is therefore not under positive selection. However, compensatory mutations that allevi-

ate the effect of deleterious mutations are included in our model. We find that when only

deleterious mutations are present, a nonmutator can get fixed with a probability that in-

creases with the deleterious mutation rate of the mutator. Compensatory mutations in the

mutator population are expected to decrease the fixation probability of the nonmutator,

and we find that this intuition is indeed correct when deleterious mutations in the mutator

are effectively lethal. But, surprisingly, when the deleterious mutations are mildly harm-

ful, the fixation probability is found to initially increase and then decrease as the rate of

compensatory mutations increases. Our study thus identifies the conditions under which

the spread of nonmutators is suppressed in the absence of positive selection, and comple-

ments earlier works in which a mutator hitchhikes with beneficial mutations to fixation

[35, 41–43].
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Using our results for the fixation probability and a drift-barrier argument which states

that the advantage offered by a decrease in the deleterious mutation rate is limited by ran-

dom genetic drift in a finite population [11], we find that the deleterious mutation rate

decreases with increasing population size in accordance with experimental data [22]. How-

ever, unlike the previous theoretical work by Lynch [7] that treats the deleterious mutations

to be effectively lethal, here we consider both strongly and weakly deleterious mutations,

and not only reproduce the result by Lynch [7], but also find a new scaling law in the latter

case. We also use the results for the fixation probability to find the time to lower the muta-

tion rate in an adapted population of mutators, and compare our theoretical results with

recent experiments [34, 6].

2.2 Model and methods

We consider an asexual population in which the fitness of an individual with k deleterious

mutations is given by W (k) = (1− s)k , where the selection coefficient 0 < s < 1. A delete-

rious mutation is allowed to occur at a rate Vd and a compensatory one at a rate Vb < Vd

(see Appendix A.1 for details). We are interested in the fate of a nonmutator that arises in

this population and whose total mutation rate is smaller than that of the mutator. In a suf-

ficiently large population of mutators in which stochastic fluctuations due to genetic drift

may be ignored, this can be addressed using a branching process [9], as described below.

The fixation probability π(k, t ) of a single copy of a nonmutator allele with fitness W (k)

present at generation t changes according to [32]

1−π(k, t ) = exp

[

−
W (k)

W (t )

∑

k′
M(k → k ′)π(k ′, t +1)

]

, (2.1)

where W (t ) =
∑∞

k=0
W (k)p(k, t ) is the average fitness of the mutator population and p(k, t )

is the mutator frequency. The above equation expresses the fact that a single copy of the

rare allele in the fitness class k whose offspring distribution is Poisson with mean W (k)/W (t )

will be lost eventually if each of its offspring, which may undergo mutations with probabil-
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ity M(k → k ′), do not survive. (Note that as explained in Section 1.3.2, throughout the thesis,

the simulations are done assuming that the offspring are Binomially distributed. However,

it is possible to convert the Binomial distribution in (1.4) to a Poisson when N → ∞ and

W (k)

NW (t)
→ 0. In branching process formalism, this approximation offers some advantages

in calculation, as you can see in Section 4.2.2.) Here we consider strong mutators whose

mutation rate is much higher than that of the nonmutator [4, 36], and therefore neglect the

mutation rate of the latter in most of the following discussion (however, see Fig. 2.1). We

also assume that the mutator population is at mutation-selection equilibrium as is likely

to be the case in large populations that have been evolving for a long time in a constant

environment. As a result, the probability π(k, t ) becomes time-independent. These consid-

erations lead to a relatively simpler, but still highly nonlinear equation given by

1−π(k) = exp

[

−
W (k) π(k)

W

]

. (2.2)

The above expression, of course, reduces to the well known single-locus equation [44, 45]

when the nonmutator can be present in only one genetic background, but here we are deal-

ing with a multitype branching process since a nonmutator can arise in any fitness class.

The total fixation probability is obtained on summing over all genetic backgrounds [32],

Π=
∞
∑

k=0

p(k) π(k) , (2.3)

where the probability that a nonmutator arises in a background of k deleterious mutations

is given by the mutator frequency p(k) in the stationary state.

Although the steady state frequency p(k) in the absence of compensatory mutations

that mitigate the effect of deleterious mutations is known exactly [46, 47], the correspond-

ing solution with nonzero Vb is not known. We therefore compute the mutator frequency

numerically for nonzero Vb using (A.1) given in Appendix A.1, and use these results in (2.2)

to find the fixation probability for arbitrary Vb . To make analytical progress, we use a pertur-

bation theory in which the effect of the small dimensionless parameter Vb/s can be studied
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by expanding the quantities of interest in a power series in Vb/s, and write

π(k) =
∞
∑

n=0

(

Vb

s

)n

πn(k) , p(k) =
∞
∑

n=0

(

Vb

s

)n

pn(k) . (2.4)

The termsπ0(k) and p0(k) corresponding to n = 0 in the above expansion give the results in

the absence of compensatory mutations, and in Appendix A.1, we calculate the stationary

state fraction p(k) to linear order in Vb/s.

2.3 Results

2.3.1 Fixation probability

In the absence of compensatory mutations: We first consider the case when Vb = 0. Taking

the logarithm on both sides of (2.2), and expanding the left hand side (LHS) up to π2
0(k), we

find that either π0(k) = 0, or

π0(k) = 2

(

W (k)

W0

−1

)

≈ 2s(k̄0 −k) , (2.5)

where the average fitness W0 = e−Vd and the average number of deleterious mutations

k̄0 = Vd /s [46, 47]. The last expression on the right hand side (RHS) of (2.5) is obtained

by expanding the exponentials as the parameters Vd and s are small. Since the fixation

probability must not be negative, the expression (2.5) is valid when k < ⌊k̄0⌋, and the solu-

tion π0(k) = 0 holds otherwise. Here ⌊x⌋ denotes the largest integer less than or equal to

x. More generally, a nonmutator can get fixed if its fitness W (k) ≈ e−sk is larger than the

average fitness e−sk̄ of the mutator population, or k < ⌊k̄⌋, k̄ being the average number of

deleterious mutations [32].

Equation (2.5) shows that the fixation probabilityπ0(k) decreases as the number of dele-

terious mutations increase, as one would intuitively expect. However, the probability p0(k)

that a nonmutator would arise in a background with k < k̄0 deleterious mutations increases.

On summing over the backgrounds in which a nonmutator can arise, as explained in Ap-
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pendix A.2, we find that the total fixation probability falls in two distinct regimes defined

by whether Vd is below or above s:

Π0 =
⌊k̄0⌋
∑

k=0

π0(k)p0(k) =















2Vd , Vd ≪ s
√

2sVd

π , Vd ≫ s .

(2.6)

For k̄0 ≪ 1, since a mutation is costly, it can be treated as effectively lethal [48]. In this sit-

uation, the advantage conferred by the nonmutator is simply given by 1− e−Vd ≈ Vd and

the classical result for the single locus problem gives the fixation probability to be 2Vd

[44, 45]. For k̄0 ≫ 1, the total fixation probability apparently receives contribution from k̄0

genetic backgrounds, but merely

√

k̄0 genetic backgrounds are actually relevant because

the Poisson-distributed frequency p0(k) has a substantial weight for fitness classes that lie

within a width

√

k̄0 of the mean (also, see Appendix A.2). Equation (2.6) shows that for

fixed s, the nonmutator is more likely to be fixed when Vd is large. But, for a given Vd , the

fixation probability initially increases with the selection coefficient and then saturates to

2Vd . In Fig. 2.1, the analytical results above are compared with those obtained by numeri-

cally iterating (2.2) and (2.1) when the mutation rate of the nonmutator is zero and Vd /50

respectively, and we see a good agreement in both cases.

Including compensatory mutations: We now study how compensatory mutations in the

mutator population affect the fixation probability of the nonmutator. Figure 2.2 shows that

when k̄0 ≪ 1, the fixation probability decreases with Vb , but for k̄0 ≫ 1, it changes non-

monotonically: it first increases and then decreases with increasing Vb . To understand this

behavior, consider the change δΠ=Π−Π0 in the fixation probability due to compensatory

mutations which is simply given by

δΠ=
⌊k̄⌋
∑

k=0

p0(k)δπ(k)+π0(k)δp(k)+δp(k)δπ(k) . (2.7)

When Vb is nonzero, the change in the fixation probability δπ(k) = π(k)−π0(k) and the

mutator frequency δp(k) = p(k)− p0(k) behave in a qualitatively different manner. With
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Fig. 2.1 Dependence of the fixation probability obtained using a multitype branching pro-

cess on the deleterious mutation rate Vd for two values of the selection coefficient s and

compensatory mutation rate Vb = 0. The points are obtained by numerically solving (2.2)

when the mutation rate of the nonmutator is zero (the circles and squares), and the station-

ary state solution of (2.1) when the nonmutator’s mutation rate is 50 times lower than that

of the mutator (+,×). The lines show the analytical result (2.6).

increasing Vb , the average fitness of the mutator population increases which, by virtue of

(2.2), decreases the fixation probability of the nonmutator, i.e. δπ(k) < 0. However, since

the frequency of individuals with less deleterious mutations increases when Vb is nonzero,

the change in the mutator fraction δp(k) > 0 (refer to Fig. 2.3 as well as the paragraphs

below to know more details). Thus the change in the total fixation probability given by (2.7)

receives both positive and negative contributions, and it is not obvious which one of these

factors would have a larger effect.

To address this question, we calculate the fixation probability for small Vb/s as described

below. Substituting (2.4) in the expression (2.7) forδΠ, and neglecting terms of order (Vb/s)2
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and higher, we find that δΠ≈ (Vb/s)Π1, where

Π1 =
⌊k̄0⌋
∑

k=0

p0(k)π1(k)+p1(k)π0(k) . (2.8)

The contribution π1(k) is calculated in Appendix A.3, and we find that

π1(k) ≈−2sk̄0(1−π0(k)) , k < ⌊k̄0⌋ , (2.9)

which is negative, as expected. An expression for the fraction p1(k) is obtained in Ap-

pendix A.1, and its behavior is shown in Fig. 2.3 for small and large k̄0. For small k̄0, the

frequency p0(k) is close to one in the zeroth fitness class and zero elsewhere. But the cor-

rection p1(k) is negligible in all the fitness classes. For large k̄0, the contribution p1(k) is

significantly different from zero in many fitness classes and can be approximated by

p1(k) = k̄0p0(k) ln

(

k̄0

k

)

, k ≫ 1 . (2.10)

Thus, as claimed above, the fraction p1(k) is positive for k < k̄0 and negative for k > k̄0 (also,

see Fig. 2.3).

When Vd ≪ s, as already mentioned, the fraction p1(k) is negligible in all the fitness

classes and p0(0) ≈ 1. Using these results in (2.8) and (2.9), we get π1 =−2sk̄0, and thus

δΠ

Π0
=−

Vb

s
, Vb <Vd < s. (2.11)

This reduction in the fixation probability of the nonmutator when Vb is nonzero is expected

since the effect of compensatory mutation is to restore the mutators that have suffered

lethal mutation to the zeroth mutation class thus enabling them to offer competition to the

nonmutators.
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When Vd ≫ s, as shown in Appendix A.3, we can obtain a quantitative estimate of the

initial increase in δΠ by calculating the sum on the RHS of (2.8) to obtain (A.14), and thence

δΠ

Π0
=

Vb

2s
, Vb < s <Vd . (2.12)

Thus we find that for small Vb , the increase of the mutation frequency in fitness classes

with fewer deleterious mutations dominates the increase in the mutator fitness resulting

in positive δΠ. However, for large Vb , the net change in the fixation probability is negative

since the last term in the summand of (2.7), which is also negative, enters the picture. Since

the maximum in δΠ occurs at large Vb/s, the perturbation theory described here cannot

capture the eventual decrease in this parameter regime. A quantitative comparison of the

results obtained by numerically solving (2.2) and (A.1) for arbitrary Vb with the analytical

results (2.11) and (2.12) for small Vb/s is shown in Fig. 2.2, and we observe a good match

when Vb/s is small. For large Vb/s and Vd /s, a fit to the numerical data shows that the

fixation probability decreases linearly with Vb .

2.3.2 Evolution of mutation rates in finite populations

The drift-barrier hypothesis states that in a finite population, the beneficial effect of lower

deleterious mutation rate can be outweighed by the stochastic effects of random genetic

drift which limits the evolution of mutation rates [11]. In a finite population of size N , a mu-

tation that decreases the deleterious mutation rate confers an indirect selective advantage

and will spread through the population. However, as Vd decreases, the fixation probabil-

ity of such a mutant decreases until it reaches its neutral value Πneu = 1/N . Here we have

calculated the fixation probability Π0 neglecting stochastic fluctuations. The full fixation

probability Π that includes the neutral and the large population limit may be obtained as

follows.

The fixation time for a mutator in a finite population of nonmutators when all muta-

tions are deleterious has been calculated using a diffusion theory by Jain and Nagar [49],

and shown to increase exponentially with the population size. The fixation probability
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Fig. 2.2 Dependence of the fixation probability obtained using a multitype branching pro-

cess on the compensatory mutation rate Vb for two values of Vd /s. The points show the nu-

merical solution of (2.2) and the lines show the analytical results (2.11) and (2.12). The bro-

ken curve for Vb/s > 0.1 is a linear fit, 0.1−0.24Vb/s, to the numerical data. For Vd /s = 0.1,

the ratio Vb/s is also below 0.1 since Vb is assumed to be smaller than Vd .

∼ e−2NS is thus exponentially small in the population size [50, 51], where we have identi-

fied the coefficient of population size in the exponent as a selection coefficient 2S. (The

discussion in Section 4.4.5 will be helpful in developing a better understanding, where the

exact functional dependence of S is shown.) This effective selection coefficient is found to

match with the result (2.6) for the fixation probability Π0 obtained here using a branching

process. Although this is not a rigorous proof, these observations strongly suggest that the

fixation probability of a nonmutator in a finite population of size N is of the classical form

[28]

Π=
1−e−2S

1−e−2NS
, (2.13)
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Fig. 2.3 Change in the mutator frequency when compensatory mutations are included,

δp(k) = p(k)− p0(k) for Vb = 10−4. The points (the circles and squares) are obtained by

numerically iterating (A.1) and (+,×) show the perturbation theory result (A.7), and we ob-

serve a good agreement. The simple expression (2.10) for large Vd /s is also shown (lines).

where S =Π0/2. We also mention that the probability 2S depends on the difference in the

deleterious mutation rate of the mutator and the nonmutator when the mutation rate of the

nonmutator is nonzero [49], and has also been shown to be insensitive to the distribution

of selective effects [43].

As described in Section 1.2.3, in (2.13), when 2NS ≪ (≫) 1, Π ∼ 1/N (2S). These two

conditions respectively correspond to neutral regime and positive selection. Now, based on

the argument in the above paragraph, by replacing 2S with Π0, we can state that a crossover

between positive selection and neutral regime occurs when Π0 ∼ N−1. Now, using (2.6), we

express Π0 in terms of s and Vd . This gives a lower bound on the mutation rates. We recall

that the fixation probabilityΠ0 in (2.6) shows a transition when Vd ∼ s, and at this mutation

rate, the fixation probabilityΠ0 ∼ s. This translates into a change in the behavior of Vd when
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Fig. 2.4 Relationship between the deleterious mutation rate and the population size for

selection coefficient s = 0.0064 when compensatory mutations are absent. The points are

obtained by numerical simulations of a Wright-Fisher process, and the lines show the N-

dependence in (2.14).

N s crosses one, and we have

Vd ∼















(sN 2)−1 , N s ≪ 1

N−1 , N s ≫ 1 .

(2.14)

Thus in the weak selection regime (N s ≪ 1), the deleterious mutation rate depends on

the selection coefficient, and decreases faster than when the selection is strong. Figure 2.4

shows the preliminary results of our numerical simulations for a finite size population of

mutators with mutation rate Vd in which nonmutators with mutation rate Vd /2 can arise

with a certain probability. This population of nonmutators and mutators evolves via stan-

dard Wright-Fisher dynamics, and the time to fix the nonmutators is measured [49]. For

a fixed N , the fixation time is found to increase as the mutation rate of the mutator is de-
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creased until a minimum mutation rate is reached below which the fixation time remains

constant. This lower bound, shown in Fig. 2.4, exhibits different scaling behavior in the

weak and strong selection regimes, in accordance with (2.14).

2.4 Discussion

2.4.1 Fixation probability

A rare mutator arising in a population of nonmutators carries a higher load of deleterious

mutations but offers indirect benefit by producing more beneficial mutations. The fixation

probability of a rare mutator in a finite nonmutator population has been studied analyti-

cally [41, 42], and found to vary nonmonotonically with the mutation rate of the mutator.

It has been shown that the fixation probability is of the classical form (2.13) where the ef-

fective selection coefficient S, when scaled by the selective advantage s of a mutation, in-

creases (decreases) when the ratio of mutation rate to selection coefficient is below (above)

one. Here, we have studied a situation in which a nonmutator appears in a mutator pop-

ulation and is beneficial since it produces fewer deleterious mutations, and calculated its

fixation probability Π using a branching process. The mutator population is assumed to

be at mutation-selection balance and therefore, by definition, selective sweeps resulting in

the spread of favorable mutations are neglected. However, it is interesting to note that the

scaled fixation probability of the nonmutator obtained here also changes its behavior when

the deleterious mutation rate is of the order of the selection coefficient, see (2.6). Our work

significantly extends the previous result by Lynch [7] as the deleterious effect of mutations

is allowed to be mild here, and therefore we are dealing with a truly multilocus problem.

Compensatory mutations that alleviate the effect of deleterious mutations are found to

have a surprising effect on the fixation probability of the nonmutator. Although they im-

prove the fitness of the mutator population, it also means that the nonmutator can arise in

a better genetic background where it has a better chance of fixation. Thus, compensatory

mutations affect both the resident mutator population and the invading nonmutator al-

lele in a positive manner. The effect of these two factors on the fixation probability of the
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nonmutator is, however, opposite and can result in an unexpected increase in the fixation

probability of the nonmutator when compensatory mutations are present. Here, we have

shown analytically that this scenario is realized when the mutations are weakly deleterious

and the compensatory mutation rate is small, as illustrated in Fig. 2.2. The increase in the

fixation probability due to compensatory mutations can be quite high, but we do not have

analytical estimates for this. An exact solution of (A.1) would, of course, pave the way for a

better analytical understanding but is currently not available.

2.4.2 Fixation time

In a maladapted asexual population, the mutators can sweep the population since they

facilitate rapid adaptation [3]. But as the population adapts and the supply of beneficial

mutations diminishes, mutators have a detrimental effect on the population fitness and a

mutation that lowers the mutation rate is favored. In bacteria E. coli, several genes (such

as mutT and mutY ) are involved in avoiding or repairing the errors that occur during the

replication process, and defects in these genes can lead to the mutator phenotype [52]. But

compensatory mutations in the defective error-repair machinery can reduce the mutation

rate, at least, partially [6]. We therefore model this situation by assigning a probability b

with which mutators can convert into nonmutators due to a mutation in the proofreading

or error-repair region. In E.coli, the conversion probability f from nonmutator to mutators

has been estimated to be ∼ 10−6 per bacterium per generation [53]. But the probability b

for the reverse mutation is not known, although one expects b < f , possibly because it is a

gain-of-function mutation [6].

When the rate Nb at which the nonmutators are produced from the mutators is small

enough that the new alleles behave independently, the time taken to fix the nonmutator

population is given by T = (NbΠ)−1. (To know more about the fixation time, refer to Sec-

tion 4.4.4.) In a long term evolution experiment on E .col i by Wielgoss et al. [6], it has been

found that the mutation rate decreases by about a factor two in a nearly adapted mutator

population with a mutation rate 150 times that of the wildtype in two lineages. As the popu-

lation size in the experiments by Wielgoss et al. has been estimated to be about 107 [54], the
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product Nb can be at most ten which is not too large. We first note that in the experiment

by Wielgoss et al. [6], the fixation time was longer in the lineage in which the mutation rate

decreased by a smaller amount, in accordance with (2.6). To make a quantitative compar-

ison, we consider the ratio of the times for the two lineages, as T depends strongly on the

probability b which is not known experimentally. Using the data in Table 2 of the above

mentioned article [6], we find the ratio of fixation time in mutT mutY-L background to that

in mutT mutY-E background to be 9209/5157≈ 1.8. The theoretical formula (2.6), on replac-

ing Vd by the difference between the mutation rate of the nonmutator and mutator yields

1.5 (1.2) when mutations are assumed to be strongly (weakly) deleterious and the selection

coefficient same in both lineages. Since (2.6) is obtained assuming that the mutators are

strong whereas the mutation rates decreased merely by a factor two in the experiment, a

more careful examination is needed. Solving (2.1) numerically in the stationary state, we

find that the ratio is unaffected when the mutations are strongly deleterious. But, using the

mutation rates in Table 2 of the article on the long term evolution experiment on E .col i [6]

and s ∼ 0.01 yield the ratio to be about 4.5. Although the theoretical conclusions (1.5−4.5)

are in reasonable agreement with experiments, the above analysis suggests that the rever-

sion probability b may not be too small (i.e. Nb & 1), and a more sophisticated theory

that takes care of the interference between the nonmutators [55] may be required to obtain

a closer match. We close this discussion by noting that in an experiment on S. cerevisiae

in which the adapted population reduced its genome-wide mutation rate by almost a fac-

tor four in two of the experimental lines [34], the fixation time seems to increase with the

mutation rate, in contradiction with the experiment by Wielgoss et al. [6] and the theory

presented here.

2.4.3 Evolution of mutation rates

Experiments show that the mutation rate decays as N−0.7 for prokaryotes and N−0.9 for eu-

karyotes [22]. The population size and deleterious mutation rates are negatively correlated

since deleterious mutations can get fixed in small populations due to stochastic fluctua-

tions, but not in large populations where the genetic drift is ineffective [11]. Here, we have
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shown that a reciprocal relationship between the population size and mutation rate holds

for large populations, but for small populations, the deleterious mutation rate decreases

much faster, see Fig. 2.4. This is in contrast to experimental results mentioned above where

the data has been fitted assuming a single scaling law. In view of our theoretical results

discussed above, a more careful analysis of experimental data is required.

While the evolution of deleterious mutation rate has received much attention, to the

best of our knowledge, analogous theoretical predictions for the beneficial mutation rate

are not available except a very recent study [56]. As large populations experience clonal

interference [55] which results in the wastage of beneficial mutations, the rate of beneficial

mutations is observed to be smaller in large populations in microbial experiments [57]. An

understanding of the relationship between the population size and the rate of beneficial

mutations would be an interesting avenue to explore. Other potential factors that can affect

the correlation between the mutation rate and the population size include epistasis and

recombination, among which how the former influences the fixation of a low mutation rate

allele in an adapted population has been examined in detail in Chapter 4. Here, we have

also ignored the cost of fidelity, and it remains to be seen how the results presented here

are affected on including it [58–60]. A more detailed understanding of the mutation rates,

both empirically and theoretically, remains a goal for the future.



Chapter 3

Fixation of a nonmutator in a weak

mutator background

3.1 Introduction

In the last Chapter, we have studied the fate of a nonmutator in a strong mutator back-

ground. In the present Chapter, with the information obtained from some of the experi-

ments [34, 6] that the mutation rate of the nonmutator can be as large as 60 per cent of

that of the mutator, we undertake a more elaborate investigation on the process of nonmu-

tator fixation considering both the deleterious and compensatory mutations as well as a

non-zero mutation rate of the nonmutator [12].

Our analysis demonstrates that when the nonmutator can undergo mutations, the prob-

ability of its fixation can increase or decrease with the increase in the mutation rate of the

resident population. The latter condition, which is counterintuitive, is fulfilled in the fol-

lowing cases: 1) the selection pressure exceeds the difference between the deleterious mu-

tation rates, but the deleterious mutation rate of the mutator is greater than the selection,

2) the selection coefficient is smaller than the detrimental mutation rates, and the ratio be-

tween the mutation rate of the mutator and the selection coefficient outweighs the strength

of the reduction in the mutation rate (this parameter gives the ratio of the mutation rate of

the mutator to that of the nonmutator). Moreover, in the case of the nonmutators with
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their mutation rates comparable to that of the mutators, the fixation probability behaves

like a non-smooth function (of the ratio of the difference in mutation rates to selection co-

efficient), but its mean decays as the mutation rate of the background (selective cost) is

increased (reduced).

The surprising role of the compensatory mutations in boosting the survival chances of

the nonmutator has been already unraveled in Chapter 2 for the case in which the nonmu-

tator remains in the same genetic background in which it appears. Our investigation in the

present Chapter discloses that the presence of the compensatory mutations could turn out

to be highly beneficial to the nonmutators if the mutation rates of both the invader and

the resident population are higher than the selection coefficient. Moreover, we discuss the

behavior of the advantage associated with the nonmutator as a function of the different

parameters studied here.

3.2 Models and methods

A large asexual population of haploid individuals of size N on a fitness landscape [8]

W (k) = (1− s)k (3.1)

has been considered here, where 0 < s < 1 is the selection coefficient. Here, k stands for

the fitness class or the number of mutations carried by the genome of infinite length. The

fitness function in (3.1) represents a multiplicative fitness landscape, and the effect of each

mutation is the same. Moreover, (3.1) is applicable for a genome carrying infinite number

of biallelic loci in which the fitness depends solely on the number of mutations, but not on

their locations.

The simulations are done using the standard Wright-Fisher (W-F) process [61]. The

population size remains a constant in each non-overlapping generation. Corresponding to

each individual in a particular generation, the parent is chosen randomly. Now, the parent

reproduces with a probability proportional to its fitness, and undergoes mutation.
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In the absence of compensatory mutations, an asexual population of finite size can lose

its least loaded class due to genetic drift [62]. This repeats, and the population keeps losing

its fitness classes one by one. This process is called the Muller’s ratchet [47, 63, 62]. In the

case of a population that has a very small ratchet speed (very large inter-click time or the

time to lose the least loaded class), a steady state due to the mutation-selection balance is

possible [62]. In steady state, the population fractions corresponding to each genotype and

the mean fitness of the population become time independent. In our model, we assume

that a nonmutator with the mutation rate Ud = Vd /λ, where λ > 1, appears only after the

mutator population having the mutation rate Vd attains steady state [10, 13]. This is a valid

assumption for the populations that have been evolving for large number of generations

without environmental changes. In the simulations, the mutator population is initially con-

sidered to be in steady state. This assumption has been made by [13] in studying a similar

problem. Corresponding to each set of parameters, we ensure that the population does

not lose its least loaded fitness class for a period at least of the order of 20/s generations by

observing the single run plots. A timescale of 10/s generations has been considered as the

typical time for the population to attain steady state [32]. If the inter-click time to lose class

0 [62] does not exceed the time to reach steady state, we assume that the Muller’s ratchet

for the population operates rapidly. Hence, the simulation data is not given for such pop-

ulations. However, to complement that, results valid for an infinite population, given in

Section 2.2 have been obtained using Wolfram mathematica 9.0.1.0. (See the article by [62]

to know more about the time to lose the least loaded class in a population.)

3.3 Results

3.3.1 When only deleterious mutations are present

We make use of the well known assumption that the probability of a genome to accumulate

i number of deleterious mutations is Poisson distributed with the mean being the mutation

rate and the variable being i [64]. Therefore, M(k → k+i ) = e−Ud (Ud )i

i !
, where Ud is the dele-

terious mutation rate of the nonmutator. (Note that the mutators also undergo mutations
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The variation of Π0 as Vd increases

Regime kmax “Non-smooth” The condition and reference Π0

behavior by Π0 to the corresponding figure

I 0 absent
Vd

s
< 1 (Figs. 3.2 & 3.3) ↑
Vd

s
> 1 (Fig. 3.2) ↓

II ⌊Vd

s
⌋ or ⌊Vd

s
⌋−1 absent always (Fig. 3.3) ↑

III ⌊
(

Vd−Ud

s

)

⌋ present
Vd

s
<λ2 (Fig. 3.3) ↑

(Figs. 3.2 & 3.3)
Vd

s
>λ2 (Fig. 3.3) ↓

Table 3.1 Summary of the main results in Section 3.3.1. The symbols ↑ and ↓ represent

increase and decrease, respectively.

according to this expression, but with Ud being replaced by Vd .) Hence, the population

fraction p0(k) takes the form of a Poisson distribution [46] with the mean being Vd /s as

given below:

p0(k) = e−Vd /s (Vd /s)k

k !
. (3.2)

Consequently, in steady state, (2.1) will become

1−π0(k) = e
−

[

(1−s)k

e
−Vd

∑

i e−Ud
(Ud )i

i ! π0(i+k)

]

(3.3)

since the steady state fitness W 0 of the mutator population is e−Vd [65]. Assuming that the

nonmutator accumulates at most one mutation in each generation, we can convert (3.3) to

write

1−π0(k) = exp
[

−eVd−sk ((1−Ud )π0(k)+Udπ0(k +1))
]

. (3.4)

The above expression is useful in obtaining an analytical solution to π0(k) which can be a

fast decreasing function of k as shown in Fig. 3.1.

If a nonmutator arising with k detrimental mutations escapes drift and manages to

reach fixation, the steady state fitness of the resulting population is e−Ud (1 − s)k . Since

W 0 = e−Vd , the condition for the nonmutator population to become established is e−Ud (1−

s)k > e−Vd [10, 13]. Therefore, the maximum number of mutations the nonmutator can

carry so as to have a selective advantage over the mutator population and hence, possess a
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Fig. 3.1 Fixation probability π0(k) as a function of k when only deleterious mutations are

present. The symbols represent the solution to (3.3) using Wolfram mathematica 9.0.1.0.

The parameters are λ= 5,Vd = 0.202, and s = 10−3.

non-zero probability to get fixed in an infinite population is

kmax = ⌊(Vd −Ud )/s⌋ . (3.5)

Here, ⌊x⌋ is the maximum integer value less than or equal to x. Based on the value of the

upper bound kmax of deleterious mutations the nonmutator can carry in order to be con-

sidered for fixation, three different regimes are possible here (see Table 3.1). The trend

shown by Π0 as a function of Vd is summarized in Table 3.1 for all the three regimes. The ex-

planation for the nonmonotonic trend exhibited by Π0 is given in the following paragraph.

The high mutation rate is a disadvantageous trait; hence a nonmutator carrying a given

number of mutations will be highly beneficial in the background which has a large Vd value.

On the other hand, π0(k) in (3.2) is a decreasing function of Vd for k < Vd /s. The intuitive
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Fig. 3.2 The variation of Π0 w.r.t. Vd in Regimes I and III. Main figure: The simulation data

(represented using the symbols) corresponding to Regimes I and III. The error bars indicate

±2 standard error (averaged over 105 independent stochastic realizations). The population

size is N = 10,000. Inset: Solution to the recurrence relation (3.3) using Wolfram mathe-

matica 9.0.1.0 (represented using the circles) corresponding to Regimes I and III. The pa-

rameters are s = 10−3 and λ= 2. In both the figures,
Vd−Ud

s
can take non-integer values.

meaning of this is that with increase in the mutation rate, the background population gets

spread out more. Correspondingly, the nonmutator is more likely to appear with more

number of deleterious mutations. Hence, Π0 =
∑

k p0(k)π0(k) could be an increasing or

decreasing function of Vd depending on the values of the parameters s,Ud , and Vd (see

Figs. 3.2 and 3.3), similar to what has been observed by [13].

We have seen that π0(k) and p0(k) are respectively increasing and decreasing functions

of Vd /s. This is clearly seen in Table 3.2. The first five rows show that with the rise in Vd such

that kmax increases only by 1, one more fitness class becomes available to the nonmutator.

At the same time, the mutator population spreads out more, and the nonmutator has less
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Fig. 3.3 The variation of Π0 w.r.t. Vd in Regimes I, II, and III. Main figure: Regimes I, II, and

III. The parameters are s = 10−5 and λ = 100. Inset: Regimes II and III. The parameters

are s = 10−4 and λ = 16. In both the figures, the solution to the recurrence relation (3.3) is

obtained using Wolfram mathematica 9.0.1.0 (represented using the circles). Further, the

exact values of Π0 are obtained for the case in which
Vd−Ud

s
can assume non-integer values.

chances of appearing in the high fitness classes. For small increments in Vd , the positive

contribution from π0(k) to Π0 exceeds the negative contribution from p0(k), by which Π0

increases. When Vd /s increases from 2 to 3 in Table 3.2, Π0 increases by 24.7 per cent. How-

ever, for larger increments in Vd , the disadvantage conferred by the nonmutator due to fall

in p0(k) exceeds the advantage due to rise in π0(k). Due to the functional forms taken by

π0(k) and p0(k) for the parameters here, the reduction in Π0 happens by a larger amount

than the increment. For example, as Vd /s increases from 3 to 4 in Table 3.2, Π0 decreases

by 27.2 per cent. Therefore, Π0 decreases overall when kmax increases by 1. This process

repeats for every further increment in kmax by 1. Instead of the mutator strength, when the
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Regime III: Variation of Π0 with Vd
Vd

s
Vd

s

(

1− 1
λ

)

π0(k)×103 p0(k)×103
Π0 ×104

k = 0 k = 1 k = 2 k = 3 k = 0 k = 1 k = 2 k = 3 Exact

2.0 1.0 2.00 0.00 135 271 2.71

2.4 1.2 2.75 0.40 91 218 3.36

3.0 1.5 3.79 1.00 50 149 3.38

3.8 1.9 5.12 1.80 22 85 2.67

4.0 2.0 5.45 2.00 0.00 18 73 147 2.46

5.0 2.5 7.69 4.19 1.00 7 34 84 2.77

6.0 3.0 9.67 5.99 2.00 0.00 3 15 45 89 2.02

Table 3.2 The data correspond to s = 10−3 and λ = 2 (these parameters are the same as

those in the inset of Fig. 3.2). The integer value corresponding to the number in the second

column gives kmax . Both π0(k) and p0(k) are scaled by 103, while Π0 values are scaled by

104. π0(k) values are obtained numerically via solving (3.3), whereas p0(k) using (3.2). To

get the exact values of Π0 given in column 11, (3.3) and (2.3) have been numerically solved.

epistatic interactions between the fitness affecting mutations have been studied, a similar

behavior has been observed [13].

3.3.2 When compensatory mutations are present

The compensatory mutations act against the deleterious mutations, trying to reduce their

number in the genome, but at a lower rate [10, 27]. In a mutator population having the

respective deleterious and compensatory mutation rates Vd and Vb , when a nonmutator

with the respective deleterious and compensatory mutation rates Ud and Ub is produced,

the ratio Vb/Vd = Ub/Ud remains the same. To solve the problem numerically, we take

into account only the mutations from the nearest fitness classes. That is, both the mutator

and the nonmutator cannot gain or lose more than one mutation per generation. An exact

expression for the population fractions in this case has been obtained by [27]. The mean

steady state fitness of the mutator population is given by W = e−sk̄ , where k̄ is the average

number of mutations carried by the mutator population [27]. Consequently, (3.3) takes the
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The effect of compensatory mutations for small values of Vb/s

kmax Description of the regime and Π/Π0 −1

reference to the corresponding figure sign variation in magnitude as

Vd ↑ λ ↑
0

Vd

s
< 1 (Regime I, case I) (Fig. 3.4) − ↓ ↓

Vd

s
> 1 (Regime I, case II) (Fig. 3.5) + ↑ ↑

≥ 1
Ud

s
< 1 (Regime II) (Fig. 3.6) + ↓

Ud

s
> 1 (Regime III) (Figs. 3.7 ) + ↑ ↓

Table 3.3 The summary of the results in Section 3.3.2. The sign of the value of Π

Π0
−1 given in

column 3 determines whether the nonmutators are getting enhanced (+) or suppressed (−)

due to the compensatory mutations. The next two columns show the change in |(Π/Π0 −1)|
as Vd and λ are increased. The symbols ↑ and ↓ stand for increase and decrease, respec-

tively.

form

1−π(0)= e

[

−W (0)

W
((1−Ud )π(0)+Udπ(1))

]

, (3.6a)

1−π(k) = e

[

−W (k)

W
(Ubπ(k−1)+(1−Ud −Ub )π(k)+Ud π(k+1))

]

, (3.6b)

1−π(L) = e

[

−W (L)

W
(Ubπ(L−1)+(1−Ub )π(L))

]

. (3.6c)

Here, due to the presence of the compensatory mutations, irrespective of the fitness class

in which the nonmutator appears, it has a non-zero fixation probability. Nevertheless, for

large values of k, π(k) will be a very small quantity. In order to find the numerical values

of π(k), the recurrence relation is truncated at a large value k = L. For arbitrary values of

mutation rates and selection, (3.6) can be numerically solved using mathematica. The total

fixation probability can be calculated using (2.3), where [27]

p(k) =
(Vd /Vb)k/2 J

k+ (2−β0)

s/
p

VbVd

(

2

s/
p

VbVd

)

∑∞
m=0(Vd /Vb)m/2 J

m+ (2−β0)

s/
p

VbVd

(

2

s/
p

VbVd

) . (3.7)
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Fig. 3.4 The effect of compensatory mutations in Regime I, case I. Main figure: The simula-

tion data with 105 averaging. The error bars represent ±2 standard error. The parameters

are N = 5,000, s = 0.2, and Vd = 0.1. Inset: The numerical solution to (3.6) for the parame-

ters s = 0.2, λ= 1.5, with Vd = 0.01 (shown using the circles), and Vd = 0.05 (the squares).

Here, J
k+ (2−β0)

s/
p

Vb Vd

is the Bessel function of the first kind [66]. Further, β0 is the minimum

eigenvalue taken by β in the solution to the expression [27]

J
1+ (2−β)

s/
p

VbVd

(

2

s/
p

VbVd

)

− (2−
√

Vb/Vd −β) J (2−β)

s/
p

Vb Vd

(

2

s/
p

VbVd

)

= 0 . (3.8)

In the limit
p

VbVd /s < 1, the approximate expression [10, 27]

p(k) = p0(k)+
Vb

s
p1(k) = e−Vd /s (Vd /s)k

k !

[

1+
VbVd

s2
ln

(

Vd

sk

)]

if k ≫ 1 (3.9)

is helpful in obtaining an analytical understanding here. The main results in this Section

can be found in Table 3.3.
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Fig. 3.5 The effect of compensatory mutations in Regime I, case II. Main figure: The simula-

tion data is shown using the filled squares (105 averaging). The corresponding parameters

are N = 5,000, s = 0.05, Vd = 0.1 and λ = 1.5. The open circles represent the numerical

solution to (3.6) for the parameters s = 0.05, Vd = 0.15 and λ = 1.5. Inset: The open sym-

bols represent the solution to (3.6). The parameters are s = 0.05, Vd = 0.1 with λ = 1.75

(triangles) and λ= 2 (circles).

3.3.2.1 Regime I: kmax = 0

Case I: Strong selection regime (Vd /s < 1)

From Fig. 3.4, we see that the compensatory mutations suppress the fixation of the non-

mutators, as observed in the previous Chapter [10]. The nonmutators having higher muta-

tion rates (lower λ) suffer higher reductions in the fixation probability. The main figure of

Fig. 3.4 captures this trend. When s > Vd > Ud , neither the mutator nor the nonmutator

will be subject to the onslaught of detrimental mutations [67], and the population remains

localized around class 0. The deleterious mutations try to reduce the fraction of mutators

(nonmutators) present in the fitness class 0, while the compensatory mutations oppose it
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at a rate Vb (Ub) < Vd (Ud ). For a given background mutation rate Vd and selection coeffi-

cient s, a nonmutator with a lower value of λ will have a higher Ud (and a higher Ub) value

which is disadvantageous. This explains why Π/Π0 displays the trend in the main figure of

Fig. 3.4.

Note that the inset of Fig. 3.4 shows the variation of Π/Π0 w.r.t. s/Vd . It can be observed

that when Vb , s and λ are held constants, the compensatory mutations resist the nonmuta-

tor fixation more if the deleterious mutation rate of the background is low. This is because

when Vd is low relative to Vb , the compensatory mutations help the mutator population to

withstand the build-up of detrimental mutations more.

Case II: Weak selection regime (Vd /s > 1)

In this regime, Π/Π0 is a nonmonotonic function of Vb (see Fig. 3.5) and an increasing

function of λ. The compensatory mutations enable the fixation of nonmutators appear-

ing in fitness classes k > kmax = 0. This causes a substantial relative increase in the total

number of classes from which the fixation can happen with a non-negligible probability.

Further, for k < Vd /s, each newly contributing fitness class will contribute to Π by a factor

proportional to Vd /s owing to the form taken by p(k). Hence, the total fixation probability

increases by a very high amount in this case (since Vd /s > 1). This can be seen in Fig. 3.5.

(Note that Π

Π0
can be as large as 4.) Moreover, Π

Π0
increases with Vd /s. This is obvious from

the main figure of Fig. 3.5.

The inset of Fig. 3.5 captures an increasing trend of the ratio of the fixation probabilities

Π

Π0
w.r.t. λ. Since Ud ≥ s, unlike the strong selection regime [67], the nonmutator can accu-

mulate deleterious mutations. Because Ud >Ub and Ub/Ud being a constant, a lower value

of the mutation rate of the nonmutator (higher value of λ) is more advantageous here. This

physically explains the increasing behavior of Π

Π0
with λ.

Since the compensatory mutation rate for the mutator population is greater than that of

the nonmutators, we anticipate the mutators to be favored when Vb is present. This means

that Π

Π0
is expected to decrease with Vb . Indeed, we see from Fig. 3.5 that Π

Π0
decreases with

Vb following the an initial rise.
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Fig. 3.6 The effect of compensatory mutations in Regime II. The simulation data is shown

using the symbols (105 averaging). The error bars represent ±2 standard error. The param-

eters are N = 5,000, s = 0.05, Vd = 0.1 with λ= 3 (the circles) and λ= 5 (the triangles).

3.3.2.2 Regime II: kmax = ⌊Vd /s⌋ or ⌊Vd /s⌋−1

Here, even when the mutation rate of the nonmutator is neglected, it has been observed

that Π/Π0 exhibits a nonmonotonic behavior [10] w.r.t. the variation in Vb . When the non-

mutator has a significantly high mutation rate, we want to know how the results are affected.

From Fig. 3.6, we can clearly see that a nonmutator with a smaller value of λ confers a

higher advantage.

3.3.2.3 Regime III: kmax = ⌊(Vd −Ud )/s⌋

The most dominant “additional” contribution to Π due to compensatory mutations comes

from the factor
Vb

s

∑

k π0(k) p1(k), which is positive. Due to this, Π/Π0 is an increasing

function of Vb/s for small values of Vb/s as we can see from Fig. 3.7. Moreover, in this
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Fig. 3.7 The effect of compensatory mutations in Regime III. The symbols represent the

numerical solution to (3.6) for s = 5×10−3 (for both the main figure and inset). Main figure:

Variation of the advantage gained by the nonmutator w.r.t. λ for Vd /s = 20. Inset: Variation

of the advantage associated with the nonmutator w.r.t. Vd for λ= 2.5.

regime, the compensatory mutations can magnify the fixation probability by an order of

magnitude or more. The numerical solution to (3.6) for the parameters Vd = 0.1, s = 5×10−3,

and λ= 2 yieldsπ(0) = 2.6×10−2 and p(0) = 5.6×10−2 when Vb/s = 10, whereas π0(0) = 1.8×

10−1 and p0(0) = 2.1×10−9 in the absence of the compensatory mutations. Therefore, the

huge increments in the population fractions corresponding to the small k values account

for the hikes in the fixation probabilities by substantial amounts.

The inset in Fig. 3.7 indicates that Π/Π0 is an increasing function of Vd similar to the

trend in Case II in Section 3.3.2.1. The main figure in Fig. 3.7 shows that the relative increase

Π/Π0 in the fixation probability decreases with increase in λ.
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In this regime also, as Vb/s increases to large values, higher order terms contribute and

Π/Π0 exhibits a decreasing behavior, which is not unexpected (see Fig. 3.6 and Case II in

Section 3.3.2.1 also).

3.4 Discussion

3.4.1 Summary of the results

A nonmutator appearing in an adapted mutator population confers a selective advantage

and reaches fixation [6, 3]. We have learnt in the previous Chapter that when the fitness

landscape is non-epistatic, the chances of fixation of the nonmutator increases with the

background mutation rate, assuming the mutation rate of the nonmutator is negligibly

small compared to the mutation rate of the mutator and the selection coefficient. However,

in the present Chapter, we find that in the more realistic scenario in which the nonmutator

can undergo mutations, the fixation probability Π0 manifests a nonmonotonic behavior

w.r.t. the increase in the mutation rate of the background population. When the difference

(Vd −Ud ) between the mutation rates is less than the selective cost s of a mutation, we see

that for the ratio Vd /s < (>) 1, the value of Π0 rises (drops) with increment in Vd [12]. On

the other hand, if (Vd −Ud ) exceeds s, Π0 increases (falls) as a function of Vd for Ud /s < (>)

λ = Vd /Ud [12]. This behavior is a result of the fact that Π0 =
∑

k π0(k)p0(k), where p0(k)

- the probability of the nonmutator to appear with k mutations (which is the same as the

fraction of the mutator population carrying k mutations) - is a decreasing function of Vd ,

while π0(k) - the probability to attain fixation if it carries k mutations - is an increasing func-

tion of Vd . For nonmutators with the mutation rates close to that of the mutator, we see that

Π0 behaves like a non-smooth function and declines in magnitude overall for (Vd −Ud ) > s,

when Vd (see Fig. 3.2) is varied.

The compensatory mutations alleviate the accumulation of deleterious mutations. This

means that the presence of compensatory mutations is expected to boost the mutator pop-

ulation and reduce Π0. On the contrary, for the case λ → ∞, it has been shown that the

nonmutators will be benefited if Vd > s [10]. In this Chapter, we examine the fate of non-
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mutators when λ is finite and the compensatory mutations can occur. We see that the

advantage acquired by the nonmutator increases with the value of Vd . Moreover, this ad-

vantage increases with λ in the regime (Vd −Ud ) < s; Vd > s, while it drops as a function of

λ in the regime (Vd −Ud ) > s. In the latter regime, we observe that for small values of λ, the

compensatory mutations can enhance possibility of the nonmutator fixation by an order of

magnitude or more. Given the very small likelihood of a nonmutator with a small value of

λ to take over the mutator population when only the deleterious mutations are present, the

availability of compensatory mutations provides a possible mechanism (also, see Section

3.4.4) by which the mutation rate reduction can happen by small amounts.

3.4.2 Connection with real populations and biological relevance

The analysis in this Chapter focuses on the fixation of a single nonmutator. In addition to

that, as we have elucidated in Section 3.2, we treat that the nonmutator appears only after

the mutator population reaches a steady state. There are two limitations to this approach:

1) a nonmutator can appear before the mutator population attains the steady state and

2) not all the asexual populations are “large” enough to have a steady state. The detailed

discussions on these shortcomings due to the assumptions in the model can be found in

Section 3.4.5 as well as in the articles by [10] and [13] in which similar treatments have been

made.

However, whether our theoretical predictions can be observed in real populations or

not needs to be explored. For this purpose, we will investigate the values of the parameters

such as s, Vd , Ud , and the population size N in the case of the asexual microbe E. coli on

which numerous evolution experiments have been performed. The value of the selection

coefficient has been observed to vary from 10−3 [68] to 10−1 [69]. The mutation rate of the

wild type E. coli strain is 2.7×10−3 per genome per replication [26]. The mutation rate Vd

of the E. coli mutator strain can be as high as 40 [5] to 150 [6] times that of the wild type,

though mutators of strength of the order 104 are reported to have been observed [52]. In

the experiment by [5], N ∼ 1010, whereas for the one by [6], N ∼ 107 [54]. Note that the

mutation rate of the nonmutator in the experiment by [6] has been estimated to be 40−60
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per cent of that of the mutator which corresponds to λ∼ 2, while in the case of a mutation

reduction experiment on yeast [34], λ ∼ 4. We have used the values of s, Vd , and λ in the

range 10−5 −10−1, 10−6 −10−1 per genome per generation, and 1.02−102, respectively.

One important thing we need to confirm is the presence of a steady state. Based on the

studies of [63] and [62], we take N s e−Vd /s ∼ 102 as the condition necessary to guarantee

a steady state [13]. Using N ∼ 1010 and s ∼ 10−2, we see that the upperbound of Vd /s ∼ 14.

For this maximum value of Vd /s, it is possible to test all the results we have predicted. Note

that for the parameters considered in the plots in Fig. 3.3, the population size needed for

the existence of a steady state is too large in the biological limits.

To the best of our knowledge, the compensatory mutation rate has not been experimen-

tally measured yet. Instead, measurements on the beneficial mutation rates are available.

One such experiment by [57] on adapting E. coli populations has revealed that this rate can

be as high as∼ 10−5 per genome per generation (approximately 1 per cent of the deleterious

mutation rate). Since this is an adapting population, this value could be an overestimate

for the populations considered in this Chapter. Nevertheless, we use this value as an up-

perbound for the compensatory mutation rate. Moreover, because we are working with

mutator populations, the elevated mutation rates are applicable to compensatory muta-

tions as well. Therefore, when Vd /s & 10, we set the maximum value of Vb/s to be ∼ 10−1

corresponding to which the nonmutator fixation for small λ values can be improved by

∼ 100 per cent (see Fig. 3.7). The values of Vb/s larger than 10−1 are extremely unlikely to

be observed in biological populations.

3.4.3 Comparison with experiments

For a nonmutator produced at a constant rate b in a large mutator population of size N ,

the fixation time [61] T = (NbΠ)−1 [70, 10, 13], assuming Nb ≪ 1. (To know more about

the fixation time, refer to Section 4.4.4.) The fixation time has been measured in two recent

mutation reduction experiments on E. coli [6] as well as S. cerevisiae [34]. According to the

former experiment, T (Π) is lowered (increased) as Ud is increased (reduced), while as per

the latter experiment, T (Π) rises (falls) with the increment (decrement) in Ud . The behav-
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ior of T in the experiment by [6] is consistent with the analysis in this Chapter. On the other

hand, assuming the background mutation rate remains a constant, the trend observed in

the experiment by [34] cannot be explained on the basis of our study. However, it is not

clear to us if the background mutation rates have been the same or not in this experiment.

If the mutation rates of the resident populations are not the same for the two reductions

reported by [34], it could be explained using our theory.

3.4.4 Comparison with previous theoretical studies

A previous study [13] (see Chapter 4) sheds light on the fact that even if the nonmutator

does not undergo mutations (λ =∞), Π0 exhibits a nonmonotonic behavior (an initial in-

crease followed by a decline) as a function of Vd, similar to that in Figs. 3.2 and 3.3, provided

epistatic interactions are present and the value of the epistasis parameter is below a critical

value. In addition to this, a preliminary numerical inspection in the same article suggests

that for any value of λ, Π0 can be a decreasing function of Vd if the epistasis is below the cor-

responding critical value. The corollary of this finding is that irrespective of the value taken

by λ, Π0 can remain an increasing function of Vd if the value of the epistasis parameter is

above this limit. This is a possible mechanism which could operate against the resilience

of high mutation rate populations to reduction in the mutation rate. However, for finite

values of λ, the role of epistasis has to be investigated more in detail to unravel the exact

functional dependence of the critical value of epistasis on parameters such as s, Vd , and λ

(see Section 3.4.5).

3.4.5 Conclusions and open questions

Our results indicate that the compensatory mutations and the mutation rate of the non-

mutator can play a crucial role in the nonmutator fixation. As discussed in Section 3.4.4,

the role of epistatic interactions on the fixation of a low mutation rate allele has been in-

vestigated [13] excluding these two factors. Given that the lowering of the mutation rate

becomes highly unlikely in a high mutation rate background when the selection is weak,
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and the compensatory mutations as well as a large value of the epistasis parameter [13]

could help in mitigating the mutation rate, a complete study taking into account the effects

of epistasis, compensatory mutations, and a non-zero mutation rate of the nonmutator can

pave the way to a better understanding of the process of mutation rate reduction.

As we have explained in Section 3.4.2, there are limitations in the assumptions we have

made in our models. These assumptions can be relaxed. The article by [32] studies the

case in which the beneficial alleles appear at a constant rate in an asexual population un-

dergoing deleterious mutations. Such an approach can be used in our model as well due

to the selective advantage possessed by the nonmutator. However, when the selection is

much greater than the mutation rates, this has already been done by [7]. The effect of finite

population size on mutation rate evolution has been explored by [7], [22], and [10]. Nev-

ertheless, using (2.1) and the results from the article by [27], a numerical evaluation of the

fixation probability corresponding to a particular time t could be possible. One could also

attempt for analytical approximations in this case in a future study.

All the studies mentioned here except the one by [13] have examined the process of

mutation rate reduction on a single-peaked multiplicative landscape. More complicated

landscapes could be used to check the robustness of our results. Moreover, the physiologi-

cal costs [58–60, 71, 2] associated with the decline in the mutation rates can be included in

a further study to gain an insight into its effect on mutation rate evolution.





Chapter 4

Fixation of a nonmutator in the presence

of epistasis

4.1 Introduction

In the last two Chapters, we have considered a simple non-epistatic fitness landscape in

which the effect of each mutation is the same. In the current Chapter, we aim to understand

the role of epistatic interactions between the fitness affecting mutations in the process of

mutation rate reduction in a large adapted population [13]. Further, the influence of the

joined action of the forces of mutation and selection in the presence of epistasis on the

decline in mutation rate will be investigated in detail here [13].

All the theoretical studies on the evolution of mutation rate in adapted populations

[72, 7, 73, 10] except the article by Jain and Nagar [49] have considered mutations to con-

tribute independently to fitness, which is otherwise known as a non-epistatic fitness land-

scape. An epistatic landscape is a more general description of the actual biological scenario,

since intergenetic interactions cannot be ignored. There have been numerous experiments

demonstrating the presence of epistasis [74, 75, 24, 76–79]. The effect of epistasis on asexual

populations has been explored theoretically as well [49, 63, 8, 80, 29, 62, 81, 82]. Among the

theoretical studies on adapted populations with the inclusion of epistasis, Campos [80] has

studied the process of fixation of a mutant with a direct selective advantage in a population
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that is undergoing deleterious mutations at a constant rate, while Jain and Nagar [49] have

explored the fixation of mutators. The focus in this Chapter is to understand the fixation of

nonmutators in an adapted mutator population in the presence of epistatic interactions.

In the current study, we find that synergistic epistasis (two or more mutations interact

with each other to produce larger decline in relative fitness) rises the fixation probability of

a rare nonmutator, whereas antagonistic or diminishing epistasis (two or more mutations

interact with each other to produce smaller decline in relative fitness) lowers it. When selec-

tion is much stronger compared to mutation rate, the fixation probability is independent

of epistasis, and increases with mutation rate. This matches with the result in Chapter 2

[10] in the absence of epistasis. Below a particular value of antagonistic epistasis, we see

that the fixation probability initially increases, and then decreases with mutation rate of

the background. In the presence of synergistic interactions, as selection is varied, the fix-

ation probability decreases overall, with damped oscillations. Our results can be merged

with that of Kondrashov [63] to deduce that synergistic epistasis is doubly advantageous as

it not only lowers the rate of accumulation of deleterious mutations, but also increases the

chances of mutation rate reduction. On the other hand, antagonistic epistasis is doubly dis-

advantageous to an asexual population due to the faster rate of accumulation of harmful

mutations [8], as well as the lower probability of mutation rate decline.

4.2 Models and methods

4.2.1 Details of stochastic simulations

We consider a large asexual population of haploid individuals of size N on a fitness land-

scape [8]

W (k) = (1− s)kα

, (4.1)

where 0 < s < 1 is the selection coefficient and α > 0 is the epistasis parameter. Here, k

is the number of deleterious mutations carried by the genome, represented using a binary

sequence of length L →∞, of an individual. We also denote k as the fitness class since the
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fitness is decided by k. Antagonistic epistasis is modeled by α < 1 and synergistic epistasis

by α> 1. α= 1 implies no epistasis. Biologically, (4.1) represents a genome carrying infinite

number of biallelic loci that are equivalent to each other, and the effect of a new mutation

at any locus depends on the number of mutations already present in the genome. The prob-

ability that the genome of an individual accumulates x number of deleterious mutations at

the rate Vd is Poisson distributed as given below.

MVd
(k → k +x) = e−Vd

(Vd )x

x!
. (4.2)

The population evolves via standard Wright-Fisher (W-F) dynamics [62], where the pop-

ulation size is held constant in each non-overlapping generation. In the W-F process, corre-

sponding to each individual, we randomly assign an individual in the previous generation

as its parent. This undergoes mutation followed by reproduction with a probability propor-

tional to its fitness.

Asexual populations can go extinct via the accumulation of deleterious mutations (see

section 4.4.1), a process known as Muller’s ratchet [47, 63]. Populations of large size with

extremely small ratchet speed, that have been evolving for long timescales without changes

in the environment can attain a steady state due to mutation-selection balance. For a pop-

ulation in steady state, the mean fitness and the population fractions corresponding to var-

ious genotypes remain time independent. In this study, it is assumed that the nonmutator

with mutation rate Ud = Vd /λ, where λ > 1 is the strength of the mutator, appears when

the mutator population is in steady state (see Chapter 3). The nonmutator also evolves via

standard Wright-Fisher process, and (4.1) and (4.2) are applicable for it with Vd being re-

placed by Ud . Here, we choose populations of size large enough to fulfill the criterion that

the number of individuals carrying the minimum number of mutations (least loaded class)

in steady state is at least 100 so that Muller’s ratchet operates at a very small speed [63] (also,

see Appendix B.5).

In simulations, we consider the population to be in steady state initially. This assump-

tion is verified by ensuring that the population eventually reaches mutation-selection bal-
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ance by observing single run plots corresponding to the given parameter set of s, Vd , and

α. Moreover, we confirm that the population fractions stabilize at values predicted by (B.5).

Fig. 4.1 in the Appendix shows qualitative comparison of the fixation probability of a non-

mutator created at time t = 0 in a population that is in steady state (filled symbols) with that

of a nonmutator produced after a time interval of 10/s generations in a population which

initially has no deleterious mutations (open symbols). In this Chapter, each simulation

point (excluding the points in the single run plot Fig. 4.3) is averaged over 105 independent

stochastic runs. All simulations except those for Fig. 4.1 have assumed N = 4,000. Apart

from Fig. B.2, only nonmutators with λ= 100 have been considered here. All the numerical

calculations have been done using Wolfram Mathematica 9.0.1.0.

4.2.2 Analysis

Due to the lower rates of deleterious mutation accumulation and fitness decline, the non-

mutator appearing in mutator background in an adapted population is effectively a bene-

ficial allele. The fixation probability of such an allele can be studied using the branching

process [9]. The details [32] are described below.

The extinction probability ǫ(k, t ) of a nonmutator arising with k deleterious mutations

in generation t in a very large population of mutators is given by

ǫ(k, t ) =
∞
∑

n=0

ψn(k, t )

[

∑

j

MUd
(k → j ) ǫ( j , t +1)

]n

. (4.3)

The above equation assumes that the extinction probabilities are independent of each other.

Here, ψn(k, t ) is the probability that the nonmutator will give rise to n offspring in genera-

tion t . MUd
(k → j ) is the Poisson distributed probability of the nonmutator to mutate from

class k to j > k.

If the probability of reproduction of the nonmutator is assumed to be Poisson distributed,

we get

ψn(k, t ) = e−w(k,t) w n(k, t )

n!
. (4.4)
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Fig. 4.1 Variation of the fixation probability with population size. A nonmutator is allowed

to appear at time t = 10/s in a population that is initially at its fittest genotype. For large

values of N (= 4,000), the result in this case (shown using the open symbols) is in good

agreement with the fixation probability of a nonmutator arising in a population which is

initially in steady state (filled symbols). The parameters are s = 0.1, Vd = 0.15, λ= 100 with

α = 20 (blue symbols), and α = 0.5 (red symbols).
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In this expression, the mean of the Poisson distribution equals the absolute fitness of the

nonmutator, and hence we write

w(k, t ) =
W (k)

W (t )
. (4.5)

Note that W (t ) = ∑∞
k=0

W (k) p(k, t ) is the mean fitness of the background population with

p(k, t ) being the fraction of population having k deleterious mutations in generation t (see

Appendix B.1 for details on the expression p(k) for population fraction in steady state).

With the help of (4.4) and (4.5), we rewrite (4.3) as

ǫ(k, t ) = e
−W (k)

W (t )

[

1−∑

j MUd
(k→ j ) ǫ( j ,t+1)

]

. (4.6)

The nonmutators are considered established if they do not go extinct. Due to the se-

lective advantage possessed by the nonmutator, the establishment eventually leads to fixa-

tion, and these two are taken to be the same here. Hence, the fixation probability is π(k, t )

= 1−ǫ(k, t ). Therefore, from (4.6), it follows that

1−π(k, t ) = e
−W (k)

W (t )

∑

i e−Ud
(Ud )i

i ! π(i+k,t+1)
, (4.7)

since
∑∞

i=0 MUd
(k → i +k) = 1. For a nonmutator that arises in the background population

after the attainment of steady state, (4.7) becomes

1−π(k)= e
−W (k)

W

∑

i e−Ud
(Ud )i

i ! π(i+k)
. (4.8)

We get the fixation probability of a nonmutator that is produced in a genetic back-

ground having k number of deleterious mutations by solving (4.8). However, the mutator

population is distributed across so many fitness classes, and the nonmutator can appear

in any of these backgrounds. Hence, the total fixation probability can be calculated only by

taking into account all the possible genetic backgrounds. The probability of the nonmuta-

tor to appear in fitness class k is the same as the fraction p(k) of the background population
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in that class. This is an important concept which plays a major role in understanding the

results. As explained above, the total fixation probability receives contributions from both

the fraction of background population and the probability of fixation, and therefore, can be

expressed as

Π=
∑

k

p(k) π(k) . (4.9)

The above expression is applicable for very large populations in which the effect of genetic

drift can be neglected.

4.3 Results

As considered by [10], for strong mutators which have very high mutation rates (λ ≫ 1)

compared to the nonmutator [4, 36], we can neglect Ud to write

1−π(k) = exp

[

−
W (k)

W
π(k)

]

. (4.10)

If the nonmutator has negligible mutation rate, we can directly obtain (4.10) from (4.3) as-

suming steady state, since π(k) = 1− ǫ(k). Using (B.4), the average fitness of mutators in

steady state is found to be W = (1− s)kα ≈ e−Vd . This is otherwise the classical result ob-

tained by [65] for the mean fitness of an asexual population. Following the approach of

[10], taking logarithm on both sides of (4.10), and neglecting terms of order greater than 2

from the expansion ln(1−x) =−x−x2/2− ..., we can solve the resulting quadratic equation

to get

π(k) =















2
(

W (k)

W
−1

)

= 2s
(

kα−kα
)

if k < ⌊(Vd /s)1/α⌋

0 otherwise .

(4.11)

Here, ⌊(Vd /s)1/α⌋ is the largest integer corresponding to (Vd /s)1/α, and kα is given by (B.4).

We see that with rise in the background mutation rate Vd , π(k) increases, which is rather

expected. The intuitive meaning of (4.11) is that the effective selective advantage of a non-

mutator carrying k mutations, appearing in the background having mean fitness e−skα
is
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Class 0 mutator frequency p(0)
(

Vd

s

)

> 1
(

Vd

s

)

< 1

α ≤ 1 p(0)= (2π)
α−1

2

p
α

(

Vd
s

)
α−1
2α

e
α

(

Vd
s

)1/α p(0) =
(

1− Vd

s

)

if α≪ 1

α > 1 p(0)=
(

1+ Vd

s
+ (Vd /s)2

2α

)−1
p(0) =

(

1+ Vd

s
+ (Vd /s)2

2α

)−1

if α> ln(Vd /s)
ln2

α = 2 p(0)=
[

I0

(

2

√

Vd

s

)]−1

p(0) =
[

I0

(

2

√

Vd

s

)]−1

Table 4.1 The above expressions are derived in Appendices B.1 and B.2. Expressions in the

last row are exact, while the other ones are approximations. The symbols Vd , s and α re-

spectively represent the mutation rate of the background population, selection coefficient

and epistasis parameter.

s(kα−kα), and its fixation probability is twice that. The latter statement follows from the

single locus model [44, 45].

Plugging (B.5) and (4.11) in (4.9), and performing the resulting sum give rise to

Π=
2Vd (Vd /s)⌊(Vd /s)1/α⌋

(

⌊(Vd /s)1/α⌋!
)α p(0) . (4.12)

The derivations for the frequency p(0) of the background population with zero deleterious

mutation are given in Appendices B.1 and B.2, and the final expressions are summarized in

Table 4.1. Based on whether the selection is strong (Vd /s < 1) or weak (Vd /s > 1) and the

epistasis is antagonistic (α< 1) or synergistic (α> 1), there are four regimes for Π.

4.3.1 Variation of fixation probability with epistasis parameter

4.3.1.1 Weak selection; antagonistic epistasis (Vd /s > 1, α ≤ 1)

For large (Vd /s)1/α, with the help of Stirling’s approximation x! ≈
p

2πx (x/e)x , we obtain

Π=
2Vd (Vd /s)(1−α)Vd /s eVdα/s

(2πVd /s)α/2
p(0) . (4.13)
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Using the result from Table 4.1, we get

Π=Vd

√

2α

π

(

s

Vd

) 1
2α

. (4.14)

Expression (4.14) yields the known result [10] for α= 1. It is evident that Π∝ V
1− 1

2α

d
, imply-

ing the total fixation probability to be an increasing function of the background mutation

rate for α > 0.5 and decreasing function for α < 0.5, as shown in Fig. 4.2. The value of α

at which this transition happens is denoted as αc , the critical value of the epistasis param-

eter. Corresponding to α = αc , (4.14) gives Π = sp
π

. As the mutation rate of a population

increases, we expect it to have higher probability to reduce its mutation rate. However, if α

< 0.5, we see that the higher the mutation rate of a population, the lower is the probability

that its mutation rate will decrease. The physical interpretation of this surprising trend is

explained in the following paragraph.

Combining (B.9) and (B.12) enables us to write

p(k) =
e

−α(k−(Vd /s)1/α)
2

2(Vd /s)1/α

√

2π
(Vd /s)1/α

α

. (4.15)

This clearly states that the background population frequency p(k), which is also equal to

the probability of the nonmutator to appear with k deleterious mutations, is a Gaussian

distribution with mean (Vd /s)1/α and variance α−1(Vd /s)1/α. Therefore, in the regime α< 1

and (Vd /s) > 1, the mutator population will be more spread out for larger values of Vd and

smaller values of α.

As Vd increases, it is more likely that the nonmutator will appear with higher number

of deleterious mutations, which is disadvantageous to the invader population. However,

as we saw in (4.11), once the nonmutator appears with a particular number of mutations,

its fixation probability π(k) increases with Vd . This is an advantageous factor associated

with Vd . Competition between the advantageous and disadvantageous effects of Vd on the

nonmutator decides the behavior of its total fixation probability as a function of α. As α
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Fig. 4.2 Weak selection with antagonistic and synergistic epistasis. The symbols represent

simulation data (red circles for s = 0.1, Vd = 0.1, and λ= 100; blue triangles for s = 0.1, Vd =
0.15, and λ= 100). Each simulation point is averaged over 105 independent stochastic runs.

The error bars stand for ±2 standard error [14]. The corresponding solid curves indicate

(4.14), and the dashed curves represent (4.16). The green vertical broken line is drawn at α

= 0.5.

falls below 0.5, the disadvantage experienced by the lower mutation rate allele due to its

low fitness dominates its advantage of arising in a background that has high mutation rate.

Fig. 4.2, 4.5, and 4.6 show that the trend predicted by (4.14) is observed in finite size

populations. Further, in the parameter regime used in the plot, (4.14) is a good approxi-

mation for the total fixation probability of a lower mutation rate individual in the strong

mutator background.

It has to be noted that the resultαc = 0.5 is valid only for the strong mutator background.

A discussion on αc for the case in which the mutation rates of the nonmutator and mutator

are comparable (weak mutator background) can be found in Appendix B.6.
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4.3.1.2 Weak selection; synergistic epistasis (Vd /s > 1, α> 1)

We have an analytical expression for p(0) only for the limiting case α > ln(Vd /s)
ln2

((Vd /s)1/α <

2), which is given in Table 4.1. The mutation rates of asexual microbes such as E. coli and

S. cerevisiae are measured to be of the order of 10−3 per genome per generation [26]. The

value of selection coefficient for E. coli is found to vary from 10−3 [68] to 10−1 [69]. Even

for the maximum value of (Vd /s) in this case, which is 100, α ≥ 6.7 ensures that only the

first two classes contribute to Π. In fact, even if (Vd /s) ∼ 106, which could be biologically

improbable, α≥ 20 guarantees thatπ(k) = 0 for k > 1. This physically corresponds to two or

more mutations interacting with each other to produce lethal effects on the genome. This

is illustrated in Fig. 4.3 in the Appendix. Therefore, it follows from (4.12) that

Π=
2Vd Vd /s

(

1+ Vd

s
+ (Vd /s)2

2α

) if α>
ln(Vd /s)

ln2
. (4.16)

Here, the α dependence of Π comes from p(0). For α ≫ ln(Vd /s)
ln2

, epistasis affects neither

the fixation probability π(k) nor the fraction of background population p(k) of the first

two fitness classes. Unsurprisingly, it can be seen that Π rises with increase in α initially

and reaches its maximum value 2Vd (Vd /s)
(

1+ Vd

s

)−1
, which is independent of α. This is

captured in Fig. 4.2 (also, see Appendix B.4 where the discrepancy between the results from

simulations and analytics has been discussed). It is important to note that if the condition

α > ln(Vd /s)
ln2

is not satisfied, the nonmutator can arise in fitness classes having low fitness.

Owing to this, (4.16) overestimates the actual value of Π.

Note that for (Vd /s) ≫ 1 and α ≫ ln(Vd /s)
ln2

, (4.16) simplifies to the known result for fixa-

tion probability Π = 2Vd [10] of a nonmutator on a non-epistatic fitness landscape, when

the selective effects are strong with respect to mutation rate. From (B.5) and (B.13), we see

that synergistic epistasis with α≫ ln(Vd /s)
ln2

causes the background population to be concen-

trated around fitness class 1, and therefore, p(1) ≈ 1 for (Vd /s) ≫ 1. The fixation probability

of a nonmutator with a single deleterious mutation is π(1) ≈ 2Vd from (4.11) when (Vd /s)

≫ 1. Thus, both p(1) and π(1) give the same results as p(0) and π(0), respectively when

selection is very strong and epistasis is either absent [10] or synergistic (see section 4.3.1.4).
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Fig. 4.3 Weak selection; synergistic epistasis. Single run plot of population fractions. It can

be seen that the population will be localized in the first two fitness classes. The parameters

areα= 16, Vd = 0.1, s = 0.01, and N = 4,000. The solid horizontal lines show the steady state

population fractions as calculated using (B.6). At t = 0, the population has no deleterious

mutations. One can see that the population fractions from simulation approach the steady

state values as time increases.

Effectively, the fitness class 1 for α ≫ ln(Vd /s)
ln2

and (Vd /s) ≫ 1 “replaces” fitness class 0 for

(Vd /s) ≪ 1 and α ≥ 1. Fig. 4.7 shows variation of (4.16) with s.

4.3.1.3 Strong selection; antagonistic epistasis (Vd /s < 1, α < 1)

As (Vd /s) < 1, ⌊(Vd /s)1/α⌋ = 0, and hence the fixation probability receives contribution only

from class 0. Using the result from Table 4.1 in (4.12), we obtain

Π= 2Vd (1−Vd /s) if α≪ 1 . (4.17)
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Fig. 4.4 Strong selection with antagonistic and synergistic epistasis. The symbols represent

simulation data (red circles for s = 0.1 and Vd = 0.05; blue diamonds for s = 0.1 and Vd

= 0.01). λ = 100 for both the cases. Each simulation point is averaged over 105 indepen-

dent stochastic realizations. The error bars represent ±2 standard error. The solid lines

correspond to (4.17), and the broken curves represent (4.18).

Fig. 4.4, 4.5 and 4.6 show the validity of (4.17) by comparing against finite population sim-

ulations. For (Vd /s) values comparable to 1, if the condition α ≪ 1 is not fulfilled, the

expression for p(0) is not valid (see Table B.1, and Case III in Appendix B.2). From Fig. 4.5

and 4.6, we can infer that for (Vd /s) & 0.5, Π varies with α. For (Vd /s) ≪ 1, Π is independent

of α.
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4.3.1.4 Strong selection; synergistic epistasis (Vd /s < 1, α> 1)

Since ⌊(Vd /s)1/α⌋ = 0, the use of the result from Table 4.1 in (4.12) yields

Π=
2Vd

(

1+ Vd

s
+ (Vd /s)2

2α

) . (4.18)

As in the case of (4.16), with increase in α, the dependence of Π on epistasis will vanish, and

(4.18) will approach the constant value 2Vd

(

1+ Vd

s

)−1
. Fig. 4.4 and 4.7 show the compari-

son of (4.18) with finite population simulations (a discussion on the discrepancy between

the results from simulations and analytics can be found in Appendix B.4). Table 4.2 gives

summary of all the results from section 3.3.

It is obvious that, for (Vd /s) ≪ 1, (4.17) and (4.18) approach the known result for fixation

probability Π = 2Vd [10] in the absence of epistasis (α = 1). This can also be obtained

using a single locus model, since the population consists only of class 0 individuals, and the

selective advantage of nonmutators is the difference in the class 0 frequencies. As the class

0 individuals remain unaffected by epistasis for very strong selection, Π, which receives

contribution only from class 0, is independent of α.

4.3.2 Variation of fixation probability with mutation rate

4.3.2.1 Strong selection; antagonistic epistasis (Vd /s < 1, α < 1)

When we vary Vd keeping s to be the same, for (Vd /s) < 1, only the class 0 individuals decide

Π. For (Vd /s) ≪ 1, p(0) ≈ 1 (see Table 4.1). This means that a mutation is very costly, due

to which any individual carrying it will not survive. As the number of mutators in class 0

decreases with the rise in Vd , a reduction in the mutation rate will be highly favored. Thus,

Π increases with Vd . For (Vd /s) & 0.5, Π depends on epistasis (Fig. 4.5 and 4.6), though the

dependence is not analytically captured. This is because p(0) depends on α. An increase

(decrease) in Vd (α) leads to decrease in p(0) (see Table B.1 and Fig. B.1), as the background

population spreads out more. On the other hand, π(0) = 2Vd . This results in Π = π(0)p(0)
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Fig. 4.5 Antagonistic epistasis with strong and weak selection. Variation of Π with Vd . The

symbols represent simulation data (red circles for α= 1, blue squares for α= 0.4, and green

triangles for α = 0.2). Each point is averaged over 105 independent stochastic runs. The

other parameters are s = 0.1 and λ = 100. The solid curves correspond to (4.14), and the

broken curve represents (4.17). Clearly, (4.17) deviates from simulation results as (Vd /s) →
1.

showing α dependent behavior for 1 > (Vd /s) & 0.5 similar to that in the regime (Vd /s) > 1,

α < 1.

4.3.2.2 Weak selection; antagonistic epistasis (Vd /s > 1, α < 1)

As discussed in section 4.3.1.1, the total fixation probability in the regime (Vd /s) > 1 is a

multilocus problem. For antagonistic epistasis, the nonmutator has higher chances of ap-

pearing in a lower fit background for larger values of Vd . When α < 0.5, this disadvantage

cannot be compensated by its benefit associated with being created in a higher mutation

rate background. Due to this, Π falls as a function of Vd . These two factors together give rise
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to a nonmonotonic behavior of Π with respect to Vd forα< 0.5, as shown in Fig. 4.5. If 1≥α

> 0.5, we see that the advantage conferred by the nonmutator owing to being produced in

a high mutation rate background dominates its drawback and therefore, Π increases with

Vd . Thus, Π is a monotonically increasing function of Vd for 1 ≥ α > 0.5 (see Fig. 4.5).

4.3.2.3 Synergistic epistasis (α> 1)

For synergistic epistasis, Π rises with Vd for both weak selection (see Fig. 4.2) and strong

selection (see (4.18)). For α ≫ ln(Vd /s)
ln2

, Π is a linearly increasing function of Vd for both

(Vd /s) ≫ 1 and (Vd /s) ≪ 1.

4.3.2.4 Effect of very large or small (Vd /s) when s is held constant

As Vd increases to very large values relative to selection, for α < (>) αc , Π approaches 0 (1).

Note that Π can never exceed 1. When Vd is decreased to very small values compared to s,

Π falls towards 0 irrespective of α. This is obvious because the lower the mutation rate of

the mutator is, the smaller the advantage associated with the reduction of mutation rate.

4.3.3 Variation of fixation probability with selection

4.3.3.1 Antagonistic epistasis (α< 1)

The selection coefficient decides the effect of a mutation. Since the expression (4.17) for

(Vd /s) < 1 and α < 1 is inadequate to capture the α dependence, the simulation data cor-

responding to two α values have been plotted for that regime in Fig. 4.6. Qualitatively, one

can conclude that Π increases with s. When s is large, the nonmutator has a higher advan-

tage by virtue of the higher deleterious effect of a mutation. For (Vd /s) ≪ 1, it is possible

to understand from (4.17) that Π becomes independent of s, since it is determined only by

the individuals that do not undergo mutation. In the weak selection regime, better under-

standing is possible with the help of (4.14), which is plotted in Fig. 4.6 for α = 0.6. When α

= 0.2, for the given set of parameters and population size (N = 4,000), a steady state does
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Fig. 4.6 Antagonistic epistasis with weak and strong selection. Variation of Π with s. The

symbols show simulation data (average over 105 replicas). Here, α = 0.6 (red circles) and

0.2 (blue squares). The other parameters are Vd = 0.05 and λ = 100. The red solid curve is

(4.14), and the green broken curve is (4.17).

not exist in the weak selection regime. Hence, the corresponding data is not shown in Fig.

4.6.

4.3.3.2 Synergistic epistasis (α> 1)

For synergistic epistasis, in the special case of α = 2, an exact solution exists for p(0). With

the help of the result in Table 4.1, (4.12) becomes

Π=
2Vd

(

Vd

s

)⌊
p

(Vd /s)⌋

(

⌊
√

(Vd /s)⌋!
)2

I0

(

2

√

Vd

s

) , (4.19)
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which is valid for any value of (Vd /s). Corresponding to (Vd /s) < 1, ⌊
√

(Vd /s)⌋ = 0, by which

(4.19) takes the form

Π=
2Vd

I0

(

2

√

Vd

s

) if (Vd /s) < 1 . (4.20)

Fig. 4.7 shows the comparison of (4.19) with simulation data, which is represented using

the blue open triangles. For the values of s corresponding to which a population of size N

= 4,000 do not have steady state, the numerical solutions of (4.8) and (4.9) using Wolfram

Mathematica 9.0.1.0 are shown using the filled circles in the main figure in Fig. 4.7. Since

we assumed Ud = 0 and used the approximation (4.11), (4.19) overestimates the exact nu-

merical solution by a small amount. The comparison of (4.19) with the exact solution using

(4.8) and (4.9) is given in the last two columns of Table B.2. The detailed explanation for the

surprising trend in Fig. 4.7 is given in Appendix B.3.

4.3.3.3 Effect of very large or small (Vd /s) when Vd is kept the same

We know from sections 4.3.1.3 and 4.3.1.4 that when (Vd /s) ≪ 1, Π assumes the value 2Vd

regardless of α. Expressions (4.20) and (B.19) also justify this claim, as the denominators of

them approach 1 for (Vd /s)≪ 1. When selection is reduced to much lower values compared

to mutation rate, Π→ 0. This can be seen from (4.14) for α ≤ 1, and Fig. 4.7 for α = 2. This

is because there will not be any significant difference between mutators and nonmutators

when the selective effects are negligibly small.

4.4 Discussion

4.4.1 Summary of results and connection with real populations

In an asexual adapted population, it is known that [62] in the presence of synergistic epis-

tasis, a higher proportion of individuals will carry less mutations, while in the presence of

antagonistic epistasis, the fraction of individuals containing less mutations will be very low.

In this Chapter, it is found that antagonistic epistasis lowers the fixation probability of a
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Fig. 4.7 Synergistic epistasis with strong and weak selection. Variation of Πwith s. The open

symbols show simulation data (averaged over 105 independent realizations). The filled cir-

cles represent the numerical solutions of (4.8) and (4.9). The parameters are α = 16 (red

squares), 2 (blue triangles), and 1 (green circles) with Vd = 0.01 and λ= 100. The red curves

plotted with the data respectively indicate (4.16) and (4.18) in the weak and strong selec-

tion regimes. The blue and green (inset) solid curves are (4.19) and (B.19), respectively. The

broken violet line in the inset represents the simplified expression (4.14).



66 Fixation of a nonmutator in the presence of epistasis

Analytical expressions for Π

(Vd /s) ≥ 1 (Fig. 4.2) (Vd /s) < 1 (Fig. 4.4)
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(Fig. 4.7)

Table 4.2 The figure denoted in bracket in any row (column) indicates that the validity of the

next two expressions given in the same row (column) is shown in that figure. All expressions

in the last column (strong selection regime) involve nonmutators created only in class 0.

Even though the expressions in the second row can be used for α = 2, the equations in the

last row are more accurate.

lower mutation rate allele, thereby opposing the decline in mutation rate, while synergis-

tic epistasis favors the reduction in mutation rate. Using a model similar to the one in this

Chapter, [63] hypothesized that asexual populations could resist mutation accumulation in

the presence of synergistic interactions. However, the model here assumes the population

size to be a constant in every generation, while the size of an actual population fluctuates

stochastically. A theoretical study in which the population size was allowed to vary with

time [83] revealed that the extinction time of asexuals by virtue of onslaught of detrimental

mutations vary depending on the values of parameters such as mutation rate, selection, etc.

Since epistasis influences mutation rate reduction, results in this Chapter can be connected

to the analysis of [83] to unravel the role of epistasis on the extinction time of asexuals. How-

ever, real populations can have compensatory or back mutations (see two different models

that incorporate compensatory mutations - [84, 10]) acting against the influx of deleterious

mutations, which were neglected by all the above studies. In order to understand the fate of
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real asexual populations, the current study has to be extended by including more realistic

considerations as discussed above.

It is observed in this study that there exists a critical value αc of epistasis below which

the probability of reduction of mutation rate in an infinite population shows negative cor-

relation with its mutation rate. For strong mutators, αc is found to be at 0.5 using analytical

arguments (see Appendices B.4 and B.6). Though the mutation rate reduction happens

with a non-zero probability, which is characteristic of any beneficial mutation, the decline

in mutation rate becomes more unlikely when α < αc . For α < αc , the fixation probability

of a nonmutator decreases with Vd in the weak selection regime, as the lower mutation rate

allele now appears with large number of mutations and finds it difficult to outcompete the

resident population. On the other hand, Π increases with Vd in the strong selection regime

because of the nonmutator arising in class 0 benefiting from the reduction of mutational

load by a larger amount. (A discussion on αc in the weak mutator background is given in

Appendix B.6.)

In the presence of synergistic interactions, Π initially remains constant at the value 2Vd

followed by a reduction, as s is reduced in the strong selection regime. In the weak se-

lection regime, as s drops, Π manifests a nonmonotonic behavior for every n−α Vd < s <

(n +1)−α Vd , where n = 1,2,3, ..., but experiences eventual decay. This is shown in Fig. 4.7.

4.4.2 Limitations of the models and future goals

One major assumption which we have made in this Chapter is that the population attains

steady state after a large number of generations. However, populations of small size (see

section 4.2.1 and Appendix B.5) do not have steady state, and hence the results presented

here are not applicable to them. It is possible to evaluate the total fixation probabilities of

nonmutators in such populations using (4.7) and (B.1). The total fixation probability will

depend on the time of arrival of the nonmutator. This has been studied by [7] for a non-

epistatic landscape, when the selective effects are very strong. It is an open question for the

epistatic landscape, and is not done here. The analysis in this Chapter is a special case of

this problem.
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However, Fig. 4.1 in the Appendix helps to have a qualitative understanding of the ef-

fect of variation of N . For each value of N in the figure, the nonmutator appears after 10/s

generations. It is noticeable that large populations are more effective in withstanding the

accumulation of harmful mutations. Small populations that are incapable of resisting the

build-up of deleterious mutations and decline of mean fitness will be benefited more from

the reduction in mutation rate. As a result, when N increases, the fixation probability de-

creases and approaches the constant value predicted by (4.9). Articles like [11, 7, 49, 22, 10],

etc. give insights into the role of population size on mutation rate evolution.

It is noteworthy that the model in this Chapter examines the fixation probability of a sin-

gle nonmutator appearing in the mutator population as described using (4.3). Its fixation is

decided by whether the lineage of this particular nonmutator takes over the population or

not. In reality, there can be multiple nonmutators emerging in the population. The article

by [32] includes the study of fixation probability of beneficial alleles arising at a constant

rate. The same approach can be used to model the fate of multiple nonmutators arising in

the adapted mutator population, since the nonmutator is effectively beneficial.

Actual biological populations may not have all the mutations having the same selective

effects. There are models in which the selection coefficient is chosen from a distribution.

However, the robustness of the results presented here could be tested using other fitness

functions. There have been works taking into account the possible physiological costs as-

sociated with lowering the mutation rates [58–60, 71, 2]. The effect of this factor could be

explored.

4.4.3 Choice of parameters and biological relevance

Maisnier-Patin et al. [24] experimentally confirmed that in Salmonella typhimurium, for

various values of the mutation rates, the fitness effect of the mutations resembles the func-

tion (4.1) with α = 0.46. Synergistic epistasis has been observed in experiments [74, 75]. In

Drosophila melanogaster, the logarithm of relative productivity of genotypes was measured

to be proportional to negative of the number of mutant regions carried by them [75]. This

is similar to the fitness function (4.1) with the corresponding α being 2. In previous theo-
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retical studies, the chosen values for α range from 0.02 [82] to 5 [80], whereas α has been

varied from 0.03 to 20 in the simulations in this Chapter. The strength λ of the mutator

can be as large as 1000 [52] to as small as around 2 [34, 6]. In this study, λ values ranging

from 1.25 to 10,000 (see Appendix B.6) are used. For E. coli populations, s is observed to

be in the range 10−3 [68] − 10−1 [69], while Vd ∼ 10−3 per genome per generation [26]. This

Chapter includes values of s and the absolute values of mutation rate (for both mutators

and nonmutators) in the range 10−5 − 10−1 and 10−4 − 10−1 per genome per generation,

respectively. In the experiment by Maisnier-Patin et al. [24], Vd was varied from 4 × 10−4 to

0.31 per genome per replication, and s was measured to be 4.1 × 10−2.

With the help of information about the parameters s, Vd and α from the experiment by

Maisnier-Patin et al. [24], it follows from (B.6) that p(0) lies between 0.99 and 7.3 × 10−18

corresponding to the lower and upper limits of Vd . By including the selection coefficient,

the condition proposed by Kondrashov [63] can be modified to write Nm p(0)s ∼ 102, where

Nm is the minimum value of N so as to have a steady state (see Appendix B.5). Hence, for

the experiment by Maisnier-Patin et al. [24], Nm varies from 3 × 103 to 3 × 1020. Neverthe-

less, the population size in this case was 108. For this value of N , a steady state is possible

for Vd ≤ 0.16. Therefore, to the best of our knowledge, Salmonella typhimurium is the only

model organism which can be used to test the results in this Chapter, as it is the only asex-

ual for which α has been measured.

4.4.4 Fixation time and comparison with experiments

The time required for the fixation of a nonmutator is given by the inverse of the rate at

which nonmutators that are certain to get fixed are created [70]. (The details of the fixation

time can be found in [61].) The rate of creation of nonmutators that are expected to reach

fixation is the product of their rate of production and fixation probability. Thus, for a large

population, the fixation time [10] is T = (NbΠ)−1, where b is the rate at which the mutation

that produces the lower mutation rate allele happens, provided Nb ≪ 1.

Table 2 of [6] gives the mutation rate corresponding to 3 genotypes and their respective

times of origin. Assuming the time of origin corresponds to the time when a genotype was
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significantly high in proportion in order to get detected, we see that the time for reduction

of mutation rate is inversely proportional to magnitude of the reduction. However, the

experiment of [34] indicates that this reduction time is higher for a higher magnitude of

decline in the mutation rate. The opposite trends observed in the above two experiments

can be explained if epistasis is assumed to be present, as the fixation probability can be

either an increasing or decreasing function of mutation rate depending on the epistasis

parameter.

4.4.5 Comparison with previous theoretical works

It is known that the fixation probability of an allele with effective selective advantage S in a

finite population of size N is Π(N ) = (1− e−2S)/(1− e−2SN ) [28]. In this model, for infinite

population size, Π = 2S, as discussed in [10]. That is, the fixation probability of a beneficial

allele in an infinite population is twice its net selective advantage. For a harmful allele, S

is negative, and hence, its fixation probability (time) falls (increases) exponentially with N

[50, 51].

Fixation of mutators in an asexual nonmutator population is effectively the same as fix-

ation of a harmful allele if the fitness affecting beneficial mutations are excluded. For this

problem, [49] studied the fixation time of mutators, and the time was found to increase

exponentially (e
2N

√

2α(λ−1)
π s

1
α

(

Vd
λ

)2− 1
α

for weak selection, and e2NVd (1−1/λ) for strong selec-

tion). It is important to be noted that we study only the strong mutator case (λ≫ 1). From

the above mentioned result of [49], we can obtain the effective selective disadvantage con-

ferred by the mutator (which is also the same as (Π/2)) to be
√

2αλ
π

s
1

2α

(

Vd

λ

)1− 1
2α

for weak

selection. This has similar dependence on Vd as (4.14), though the mutator strength does

not enter our expression. For α = 1, these two solutions differ only by a factor 2. Neverthe-

less, in the strong selection regime, the net selective disadvantage of the mutator is simply

Vd (1−1/λ), which exactly matches with our result. In the case of the work of [49], there is

a continuous production of mutators from nonmutators owing to which mutators sweep

to fixation in a finite population. For a population of large size, the corresponding steady
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state fitness is e−Vd . In this Chapter, we analyze a mutator population that is in steady state

initially with mean fitness e−Vd . The nonmutator allele can appear in a background car-

rying k mutations, and reach fixation to form a distribution of nonmutators with mean

fitness (1− s)kα
e−Vd /λ. Though the initial state of the problem addressed in this Chapter is

the same as the final state of the problem considered by [49], the reverse is not true. In the

special case of strong selection, these two works study “complementary” processes.





Chapter 5

Summary

Here, we summarize the main points discussed in the thesis and provide future prospects

for research. The evolutionary aspects of the phenomenon of the reduction in mutation

rate are very less theoretically probed. In this thesis, we have focused on the influence of

the forces of genetic drift, mutation, and selection on the evolution of low mutation rates

in adapted populations.

In Chapter 2, we consider the very simple case in which the mutations do not interact

with each other and the nonmutator competes for fixation in a background that has a sig-

nificantly high mutation rate than that of the invader. The important findings from this

Chapter are the following [10]:

1. A nonmutator is more likely to fix when the deleterious mutation rate of the mutator

population is high.

2. As the rate of compensatory mutations increases, the fixation probability of a non-

mutator decreases if the selection coefficient is large, while it exhibits a surprising

nonmonotonic behavior if the selection is mild.

3. Connecting the results obtained for the fixation probability with a drift-barrier hy-

pothesis [11, 7], we show that the lower bound of mutation rate is inversely propor-

tional to the population size for strong selective effects [7], while it decays at a much

faster rate if selection is weak.
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In Chapter 3, we analyze the extension of the case studied in Chapter 2, in which the

nonmutator can have a mutation rate comparable to that of the resident population [12].

1. The probability of fixation of a nonmutator rises or falls as a function of the mutation

rate of the mutator depending on the values of the mutation rates and selection.

2. The analysis for strong mutators with compensatory mutations in nonmutators shows

that the effect in [10] is not general.

In the previous two Chapters, we have studied the simple non-epistatic fitness land-

scape. Unlike before, in Chapter 4, we aim to understand the role of epistatic interactions

between the fitness affecting mutations in the process of evolution of low mutation rates.

The main observations from this Chapter are listed below [13]:

1. The likelihood of the nonmutator to reach fixation increases as the epistasis parame-

ter (strength of the interactions) increases.

2. The presence of a critical value of epistasis parameter has been discovered, below

which the fixation probability behaves nonmonotonically with variation in mutation

rate of the background population.

3. For synergistic epistasis, when the selection is varied, the fixation probability reduces

overall, with damped oscillations.

It would be interesting to examine the effect of compensatory mutations on an epistatic

fitness landscape. Further, the robustness of our results could be tested using different fit-

ness functions or when the selective cost of each mutation is chosen from a distribution.

Throughout the thesis, we have studied a haploid asexual population. However, there have

been experiments on mutation rate evolution on diploid populations as well as in the pres-

ence of recombination [3]. Such realistic considerations could be taken into account.
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Appendix A

A.1 Mutator frequency when compensatory mutations are

included

For small selection coefficient and mutation rates, the mutator frequency p(k, t ) obeys the

following continuous time equations:

∂p(0, t )

∂t
=−Vd p(0, t )+Vb p(1, t )+ sk̄p(0, t )

∂p(k, t )

∂t
=−V p(k, t )+Vd p(k −1, t )+Vb p(k +1, t )− s(k − k̄(t ))p(k, t ) ,

(A.1)

where V = Vd +Vb and k̄(t ) =
∑∞

k=0
k p(k, t ). In the stationary state, the LHS is zero and

the frequencies are time-independent. On dividing both sides of the above equations by s,

we find that the stationary frequency p(k) depends on the ratios Vb/s and Vd /s. We first

expand the fraction p(k) in a power series about Vb/s = 0 as

p(k) =
∞
∑

n=0

(

Vb

s

)n

pn(k) , (A.2)

where pn(k) is proportional to the nth derivative of p(k) with respect to Vb/s evaluated at

Vb = 0. The lowest order term p0(k) is the solution of the steady state of (A.1) in the absence

of compensatory mutations, and is known to be a Poisson distribution with mean k̄0 =Vd /s

[47]:

p0(k) = e−k̄0
k̄k

0

k !
, k = 0,1, ... (A.3)
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To find the solution with nonzero Vb , we first set the LHS of (A.1) equal to zero, and sub-

stitute (A.2) in these equations. On neglecting the terms of order (Vb/s)2 and higher, we

obtain the following equations for p1(k):

k̄1p0(0) = −p0(1) (A.4)

k̄0p1(k −1)−kp1(k)+ k̄1p0(k) = p0(k)−p0(k +1) , k = 1,2, ... (A.5)

where k̄1 =
∑∞

k=0
kp1(k). Equation (A.4) above immediately yields k̄1 = −k̄0. Thus, as ex-

pected, the effect of compensatory mutations is to decrease the deleterious mutations in

a population. Using this result in (A.5), after some simple algebra, we get the following

one-term recursion equation for p1(k) , k ≥ 1:

p1(k) =
k̄0

k
p1(k −1)−

(

1

k
+

k̄0

k +1

)

p0(k) , (A.6)

which can be iterated easily to give

p1(k) =
k̄k

0

k !
p1(0)−p0(k)

[

k̄0(Hk+1 −1)+Hk

]

, (A.7)

where the harmonic number Hk =
∑k

i=1 i−1 and the fraction p1(0) is determined using the

normalisation condition, viz.,
∑∞

k=0
p(k) = 1. Since the fraction p0(k) already satisfies this

condition, we have the constraint
∑∞

k=0
p1(k) = 0, on using which, p1(0) can be found. For

large k, using Hk ≈ lnk in (A.7), we obtain the expression (2.10).

A.2 Fixation probability in the absence of compensatory mu-

tations

To find the total fixation probability given by (2.3), we use the expression (2.5) for the fix-

ation probability and (A.3) for the mutator fraction p0(k) which is a Poisson distribution

with mean k̄0. When k̄0 ≪ 1, we have Π0 ≈ p0(0)π0(0) = 2Vd . But for k̄0 ≫ 1, on summing

over the mutator backgrounds in which a nonmutator can arise, we obtain the total fixation
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probability to be

Π0 =
⌊k̄0⌋
∑

k=0

p0(k)π0(k) = 2s
e−⌊k̄0⌋⌊k̄0⌋⌊k̄0⌋+1

⌊k̄0⌋!
. (A.8)

On using the Stirling’s formula x! ≈
p

2πx(x/e)x for large x in the last expression, we imme-

diately obtain (2.6). Another way of seeing the result in the large k̄0 regime is by approx-

imating the Poisson-distributed p0(k) by a Gaussian with mean and variance equal to k̄0

and thus obtain

Π0 ∼ 2s

∫k̄0

k̄0−
p

k̄0

dk(k̄0 −k)
1

√

k̄0

e
− (k−k̄0)2

2k̄0 ∼ 2s

√

k̄0

∫1

0
d x xe−x2

(A.9)

where we have used the fact that the mutator frequency is substantial in the fitness classes

lying within a distance

√

k̄0 of the mean.

A.3 Fixation probability when compensatory mutations are

included

Inserting Π=Π0 + (Vb/s)Π1 and W =W 0 + (Vb/s)W 1 in (2.2), and using the exact equation

for π0(k), we get a rather involved expression for π1(k) given by

π1(k) =−
W 1

W 0

W (k)π0(k)(1−π0(k))

W 0 −W (k)(1−π0(k))
. (A.10)

Since all the parameters are smaller than one, we work with the approximate expression

(2.5) for the probability π0(k) and arrive at (2.9).

We now calculate the contribution Π1 given by (2.8) when k̄0 ≫ 1 using the expression

(2.9) for π1(k) and the frequency p1(k) in (2.10). We have

Π1 = −2sk̄0(1−
∞
∑

k=⌊k̄0⌋
p0(k))+2s

∞
∑

k=0

(k̄0 −k)p1(k)−
∞
∑

k=⌊k̄0⌋
p1(k)π0(k) (A.11)

= 2sk̄0

∞
∑

k=⌊k̄0⌋
p0(k)−2

∞
∑

k=⌊k̄0⌋
(k̄0 −k) sp1(k) , (A.12)
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where we have assumed that Vb ,Vd , s are small, but Vb/s and Vd /s are finite. The last expres-

sion is obtained on using the normalisation condition
∑∞

k=0
p1(k) = 0 and the expression for

the average k̄1. For large k̄0, we approximate the Poisson distribution p0(k) by a Gaussian

as

p0(k) ≈
1

√

2πk̄0

e
− (k−k̄0)2

2k̄0

(

1−
k − k̄0

2k̄0

+O (k̄−2
0 )

)

. (A.13)

Approximating the sums in (A.12) by integrals, we finally have

Π1

s
≈



k̄0 −

√

k̄0

2π



−
2k̄0p
π

∫∞

0
d z

e−z2

1+ z
√

2

k̄0

≈

√

k̄0

2π
, (A.14)

where we have carried out an integration by parts in the second integral on the RHS and

neglected subleading terms in k̄0.
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B.1 Frequency of mutator population

Similar to (A.1) in Appendix A.1, when s and Vd are small, the population fraction of muta-

tors carrying k mutations in generation t can be expressed using the equation

∂p(k, t )

∂t
=Vd [p̄(k −1, t )− p̄(k, t )]− s[kα−kα(t )]p(k, t ) , (B.1)

where

kα(t ) =
∞
∑

k=0

(k)α p(k, t ) (B.2)

and p(−1, t ) = 0. Note that the difference between (B.1) and (A.1) is that (A.1) is for a non-

epistatic fitness landscpae (α= 1 in (B.1)), but in the presence of compensatory mutations.

When the population is in steady state, (B.1) and (B.2) become time independent, and we

get

Vd [p̄(k −1)− p̄(k)]− s[kα−kα]p(k) = 0 . (B.3)

Solving (B.3) for k = 0 yields expression for negative of the mean Wrightian fitness (loga-

rithm of the Malthusian fitness given by (4.1)) of the population per selection coefficient

kα =Vd /s . (B.4)
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This can be substituted back in (B.3) and iterated to get [62]

p(k) = (Vd /s)k

(k !)α
p(0) . (B.5)

The normalization condition
∑∞

k=0
p(k) = 1 gives [62]

p(0) =
[

∞
∑

k=0

(Vd /s)k (k !)−α
]−1

. (B.6)

The exact solutions to the above expression are possible only for α = 1 (non-epistatic case)

[46, 47] and α = 2 [62].

p(0)=















e−Vd /s if α= 1
[

I0

(

2

√

Vd

s

)]−1

if α= 2.

(B.7)

I0

(

2

√

Vd

s

)

is the modified Bessel function of the first kind of order 0. (Refer to [66] to know

more about this function.) It is a monotonically increasing function of (Vd /s), so that p(0)

decreases with increase in (Vd /s). For any value of α except 1 and 2, approximations are

needed to solve (B.6).

B.2 Approximate expressions for the class zero mutator fre-

quency

By taking the ratio p(k)/p(k −1) in (B.5), we can see that the maximum of p(k) is at km =

(Vd /s)1/α.

Case I: Vd /s > 1, α ≤ 1

For α ≤ 1, when selection is weaker than mutation rate, (Vd /s)1/α > 1. Correspondingly,

the distribution of mutators can be approximated by a Gaussian. As a first step, upon using

Stirling’s approximation k ! ≈
p

2πk (k/e)k in (B.5), we obtain

p(k) = (Vd /s)k ekα

(p
2πk kk

)α p(0) . (B.8)
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Fig. B.1 Class 0 mutator fractions. For the main figure and the insets, the symbols represent

the numerically evaluated values of the full sum in (B.6). Main figure: Weak selection with

antagonistic and synergistic epistasis. Solid and broken curves are expressions (B.12) and

(B.13), respectively for (Vd /s)= 1 (blue squares). Left top inset: Weak selection; antagonistic

epistasis. The red solid curve is (B.12) for (Vd /s) = 5. Right bottom inset: Strong selection

with antagonistic and synergistic epistasis. The solid and broken curves show (B.14) and

(B.15), respectively for (Vd /s) = 0.05 (black triangles) and (Vd /s) = 0.5 (green diamonds).
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Now, converting (B.8) to an exponential and then expanding around its maximum (Vd/s)1/α

using Taylor series gives

p(k) =
eα(Vd /s)1/α

(

2π(Vd /s)1/α
)α/2

e

−α(k−(Vd /s)1/α)
2

2(Vd /s)1/α
p(0) . (B.9)

By replacing the sum in (B.6) by an integral and using (B.9), we get

p(0) =







eα(Vd /s)1/α

(

√

2π(Vd /s)1/α
)α

[

∫(Vd /s)1/α

x=0
e
− αx2

2(Vd /s)1/α
d x +

∫∞

x=0
e
− αx2

2(Vd /s)1/α
d x

]







−1

. (B.10)

Performing the integral in (B.10) yields

p(0) =







eα(Vd /s)1/α

(

√

2π(Vd /s)1/α
)α

√

π(Vd /s)1/α

2α



1+er f





√

α(Vd /s)1/α

2















−1

. (B.11)

For large values of x, we have the expansion er f (x) ≈ 1− e−x2

x
p
π
≈ 1. By using this, we can

simplify (B.11) to write

p(0) = (2π)
α−1

2 e−α(Vd /s)1/α

α1/2(Vd /s)
α−1
2α . (B.12)

Note that (B.12) reproduces the known result p(0) = e−Vd /s for α = 1. Fig. B.1 shows a

comparison of (B.12) with (B.6). The inset at the left top clearly indicates that (B.12) very

well captures the exact sum even for extremely small values of p(0).

Case II: Vd /s > 1, α > 1

In this case, the Gaussian approximation does not hold good. An approximate solution

is possible for the limit case (Vd /s)1/α < 2. When (Vd /s)1/α < 2, the mutator frequency peaks

around 1 (also, see section 4.3.1.2), and contributions to p(k) from classes with k > 1 are

negligibly small. Nevertheless, in order to obtain a very accurate estimate of p(0), terms up
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to second order can be retained. Effectively, we get

p(0) ≈
1

1+Vd /s + (Vd /s)2

2α

if α>
ln(Vd /s)

ln2
. (B.13)

As α increases, p(0) rises to the constant value (1+Vd /s)−1, which is the upper bound of

p(0). Fig. B.1 shows that (B.13) matches well with (B.6) for large values of α. For values of

α that are not very large, other classes also contribute. As a result, p(0) will be smaller than

what is predicted by (B.13).

Case III: Vd /s < 1, α < 1

When Vd /s < 1, p(k) in (B.5) is a monotonically decreasing function of k. In the limiting

case α→ 0, (B.6) becomes

p(0) ≈
[

∞
∑

k=0

(Vd /s)k

]−1

= (1−Vd /s), if α≪ 1 . (B.14)

However, (B.14) only provides the lower bound of p(0) in the presence of antagonistic epis-

tasis when the selection is strong. When both (Vd /s) and α are not very small compared to

1, this expression is not accurate to obtain the exact values of p(0) (see Table B.1). The right

bottom inset of Fig. B.1 shows that p(0) predicted by (B.6) decreases to (B.14) for very small

values of α. It can be seen that p(0) depends on α if the numerical value of (Vd /s) is close

to 1. Expression (B.14) does not capture this dependence. When (Vd /s) ≪ 1, p(0) becomes

independent of α. Moreover, Table B.1 and Fig. B.1 indicate that corresponding to the same

value of α, as the value of (Vd /s) increases, p(0) decreases.

Note that when α = 0, it follows from (4.1) that all the individuals carrying non-zero

mutations have the same fitness (1 − s). Thus, in practice, the population has only two

classes differing in fitness by s, with mutation rate from class 0 to 1 being Vd . For this, the

steady state solution for population fraction in class 0 yields (B.14).

Case IV: Vd /s < 1, α > 1
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Comparison of (B.14) with (B.6)

α Vd /s p(0) (exact) (1−Vd /s)

1 0.9 0.407 0.1

10−1 0.9 0.196 0.1

10−2 0.9 0.115 0.1

10−3 0.9 0.102 0.1

1 0.5 0.607 0.5

10−1 0.5 0.522 0.5

10−2 0.5 0.503 0.5

1 0.2 0.819 0.8

10−1 0.2 0.803 0.8

1 0.1 0.905 0.9

Table B.1 Evaluation of p(0) (exact) is done using (B.6). For small (Vd /s) values, (B.14) and

(B.6) show a good agreement. For larger (Vd /s), these two solutions match only for α≪ 1.

Like Case II studied here, the class 0 mutator fraction increases with α.

p(0) ≈
1

1+Vd /s + (Vd /s)2

2α

if α> 1 . (B.15)

From the right bottom inset of Fig. B.1, we can see that p(0) predicted by (B.6) increases to

(1+Vd /s)−1 for large values of α. When (Vd /s) ≪ 1, (B.14) and (B.15) give almost the same

result close to 1 for p(0), indicating the fact that the fraction of individuals with zero delete-

rious mutations in the population is unaffected by epistasis when the selective effects are

very strong. Since the population is localized around class 0, the frequency of individuals in

other fitness classes will be insignificant. Note that when (Vd /s) is not very small compared

to 1, p(0) depends on α.

Results of this section are summarized in Table 4.1.

B.3 Explanation for the trend in Fig. 4.7

Table B.2 gives the numerical values of π(k) using (4.8), and p(k) for different values of s.

When s is reduced, π(0) remains roughly the same, while p(0) decreases. This explains why



B.3 Explanation for the trend in Fig. 4.7 93

Π = π(0)p(0) falls as a function of s in the strong selection regime. For k > 0, for a given

value of k, π(k) = 2(Vd − skα) (see (4.11)) increases with decrease in s. From Appendix

B.2, we understand that the distribution p(k) peaks around km = (Vd /s)1/α. Column 2 of

Table B.2 shows this value. The integer part ⌊km⌋ of the corresponding number gives the

maximum value of the fitness class that contributes to Π. In the weak selection regime,

when s is lowered keeping ⌊km⌋ to be the same, we see from Table B.2 that p(km) remains

almost the same, while p(k) decreases for all k < km . Hence, the net effect on Π due to

decrease in s is not a straightforward problem. To have a better understanding at least for 1

≤ (Vd /s)1/α < 2 (⌊km⌋ = 1), we can make use of (4.16). The argument used in understanding

the case ⌊km⌋ = 1 can be extrapolated to the general case ⌊km⌋ = n, where n takes only

positive integer values.

By taking the first derivative of Π in (4.16) with regard to s, we can see that Π peaks at a

particular value of selection

s∗ = 2−α/2Vd . (B.16)

Note that for α = 2, (B.16) yields s∗ = 5×10−3 (Vd /s∗ = 2), which approximately matches

with the simulation data (blue triangles) shown in Fig. 4.7, whereas for α= 16 (shown using

the red squares), s∗ = 3.9×10−5 (Vd /s∗ = 256). The latter point also agrees with the data

plotted in Fig. 4.7. The red curves for the weak and strong selection regimes are (4.16) and

(4.18), respectively. Π increases with decrease in s for Vd < s ≤ s∗. Further decrement in

s reduces Π for s∗ < s ≤ 2−αVd . When s is lowered from n−α Vd to (n + 1)−α Vd , where n

= 1,2,3, ... (see Table B.2), ⌊km⌋ increases by 1. Consequently, frequencies p(k) of classes

having high π(k) values decrease. For k > 1, π(k) declines rapidly with k. This can be

explicitly seen in the last row in Table B.2, for which the selection is very small. Therefore,

each time ⌊km⌋ increases by 1 due to decrement in s, Π increases initially, followed by a

faster decay. As a result, whenever (Vd /s) = nα with n being any non-zero value of ⌊km⌋, Π

assumes its local minimum values, as we see in Fig. 4.7.

In the weak selection regime, for α> 1, Π undergoes damped oscillations and decreases

overall. We will examine the properties of its local maxima or peaks. The relative increase
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in Π corresponding to s∗ (first peak) can be measured as

∆Π(s∗)

Π(s)|Vd

=
Π(s)|s∗ −Π(s)|Vd

Π(s)|Vd

. (B.17)

Substituting (B.16) in (4.16), we get

Π(s)|s∗ =
2Vd 2α/2

2+2α/2
. (B.18)

For α = 16, (B.18) yields Π(s,α = 16)|s∗ = 2Vd , and (4.16) leads to Π(s,α = 16)|Vd
= Vd . In-

deed, these two match with the observed values in Fig. 4.7. Thus, we estimate the value

of the relative increase in Π corresponding to s∗ to be 100 percent for α = 16 using (B.17).

This result is applicable for any large value of α for which 2α/2 ≫ 2. For α = 2, (B.16) can

be substituted back in the exact expression (4.19) to obtain Π(s,α = 2)|s∗ = 0.94Vd . At s =

Vd , using (4.19), Π(s,α= 2)|Vd
= 0.88Vd . These two results also are in good agreement with

what is observed in Fig. 4.7. The resulting relative increase in Π for α = 2 corresponding to

s∗ is 6.8 percent. It is evident that with reduction in α, the first peak gets smaller. Moreover,

Fig. 4.7 suggests that for the same value of α, the peaks associated with further reductions

in s (⌊km⌋ > 1) become less significant.

For α ≤ 1, the approximation ⌊km⌋ = km was made in order to get the simple analytical

expression (4.14). At least for α = 1, for which an exact formula for p(0) is available, the

presence of non-monotonicity in the weak selection regime can be tested. Using (B.7) in

(4.12), we can write

Π=
2Vd

(

Vd

s

)⌊(Vd /s)⌋

(⌊(Vd /s)⌋!)
e−Vd /s . (B.19)

In the weak selection regime, when ⌊Vd /s⌋ =n, this can be rewritten asΠ= 2Vd (Vd /s)n e−Vd /s /(n!).

By differentiating Π with respect to s, one can see that Π peaks at s = n−1Vd . However, in

this section, we have already seen that the local minima of Π occur at s = n−1Vd . This re-

flects the fact that there is no nonmonotonicity for α = 1. The inset of Fig. 4.7 shows (B.19)

using dark green lines, and the filled circles are the numerical solutions of Π using (4.8) and

(4.9). The broken violet line is the approximate expression (4.14) for α= 1. For antagonistic
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Synergistic epistasis: Variation of Π with selection
(

s
Vd

) (

Vd

s

) 1
α

π(k)×102 p(0) p(1) p(2) p(3) Π×103

k = 0 k = 1 k = 2 k = 3 Exact Eqn. (4.19)

10.0 0.32 1.96 0.91 17.8 18.1

3.00 0.58 1.96 0.73 14.4 14.7

1.00 1.00 1.96 0.00 0.44 0.44 8.6 8.8

0.90 1.05 1.97 0.17 0.41 0.45 8.8 9.0

0.50 1.41 1.97 0.97 0.24 0.47 9.2 9.4

0.25 2.00 1.98 1.47 0.00 0.09 0.35 0.35 7.0 7.1

0.20 2.24 1.98 1.57 0.38 0.06 0.29 0.37 7.2 7.3

0.14 2.67 1.98 1.70 0.86 0.03 0.19 0.34 6.7 6.9

0.10 3.16 1.98 1.78 1.12 0.18 0.01 0.11 0.28 0.31 6.0 6.1

Table B.2 The data corresponds to Vd = 0.01 and α = 2. The integer value corresponding to

the number in the second column gives the number of classes that contribute to Π. π(k)

and Π are scaled by 102 and 103, respectively. π(k) values are obtained numerically via

solving (4.8), while p(k) using (B.7). To get the exact values of Π given in column 11, (4.8)

and (4.9) have been numerically solved.

epistasis, from the simulation data in Figures 4.5 and 4.6, we do not see any nonmonotonic

trend in the weak selection regime unlike Fig. 4.7. Note that for the set of parameters used

in these two figures, ⌊(Vd /s)1/α⌋ can be as large as 7.

B.4 Regarding the discrepancy between the analytical and

simulation results

To have a steady state, the size of a population needs to be of the order of 100 (p(0))−1 [63].

Table B.3 gives p(0) values by solving (B.12) corresponding to two (Vd /s) values, changing

α. For large (Vd /s) and small α, we find that the size required for the attainment of steady

state is too large for most of the biological populations. Hence, populations of lower size

will accumulate deleterious mutations and go extinct (see section 4.4.1). By comparing

columns 4 and 5, it can be seen that as α decreases, (4.14) deviates from the exact solution

of Π obtained using (4.8) and (4.9). This is because the approximation (4.11) does not hold

good for the fitness classes close to ⌊(Vd /s)1/α⌋, which contribute more to Π due to the form

(4.15) taken by the mutator frequency. Moreover, for a particular value of α, the deviation
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Weak selection; antagonistic epistasis:

Comparison of (4.14) with the exact numerical solution for Π

α Vd /s p(0) Exact value of Π Π using (4.14)

using (4.8) and (4.9)

0.5 5 7.44×10−7 1.03×10−2 1.19×10−2

0.45 5 1.56×10−8 8.00×10−3 8.96×10−3

0.4 5 2.12×10−11 5.84×10−3 6.75×10−3

0.3 5 6.24×10−30 2.13×10−3 2.99×10−3

0.2 1.5 2.09×10−2 3.81×10−3 3.89×10−3

0.15 1.5 5.99×10−3 2.23×10−3 2.40×10−3

0.1 1.5 6.98×10−5 7.62×10−4 9.97×10−4

Table B.3 Here, p(0) is evaluated using (B.12). The value of s is chosen to be 0.02 for the two

values of (Vd /s) used.

is less if the value of (Vd /s) is small. Nevertheless, populations of size in the biological

limit having larger values of (Vd /s) and smaller values of α do not have steady state. Hence,

(4.14) is applicable to most of the real populations except those with both (Vd /s) ∼ 1 and

antagonistic epistasis with very small α values. However, a better approximation to π(k) is

needed to yield more accurate results for Π when (Vd /s) ≫ 1 and α≪ 1.

One more thing to note is that αc = 0.5 is obtained using (4.14). This tells us that the

“true” value of αc could be slightly different from 0.5, as (4.14) deviates from the exact re-

sults. The best estimate of αc is given in Appendix B.6.

To derive (4.11), we assumed that π(k) ≪ 1 and neglected cubic and higher order terms.

When Vd & 0.1, π(k) values will differ from what we obtain using (4.11). Due to the same

reason, there is discrepancy between (4.16) and (4.18), as well as the simulation data in Fig-

ures 4.2 and 4.4, respectively. The same expressions match well with the simulation points

for Vd = 10−2 as shown in Fig. 4.7 and using the blue diamonds in Fig. 4.4. Corresponding

to the pointα= 20, Table B.4 provides a comparison of (4.16) and (4.18), and the simulation

results in Figures 4.2 and 4.4, respectively. In fact, (4.14) also deviates from the simulation

results for large Vd values. This is clear in the case of the red circles corresponding to α = 1

and the blue squares corresponding to α= 0.4 in Fig. 4.5, and in Fig. 4.2, where log scale is
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Synergistic epistasis: Comparison of simulation data in

Figures 4.2 and 4.4 with analytical results

Vd Πsi m (standard error) Πnum Πanal yti c

0.15 1.571×10−1 (1.15×10−3) 1.553×10−1 1.80×10−1

0.10 9.406×10−2 (9.231×10−4) 9.12×10−2 1.00×10−1

0.05 6.445×10−2 (7.765×10−4) 6.33×10−2 6.67×10−2

0.01 1.738×10−2 (4.133×10−4) 1.785×10−2 1.82×10−2

Table B.4 The parameters used here are α= 20, s = 0.1, and N = 4000. Note that Πanal yti c is

given by (4.16) for weak selection, which is applicable to the Vd values in the first two rows.

Πanal yti c is obtained using (4.18) for strong selection, applicable to the Vd values in the last

two rows. Πnum is obtained by solving (4.8) and (4.9).

used to plot the data. Moreover, based on the discussion in Appendix B.3, it is worth noting

that (4.12) is the more accurate form of (4.14), but the latter is more simplified.

The analytical expression (4.17) for the strong selection; antagonistic epistasis regime

(section 4.3.1.3) is valid only for α≪ 1. A more precise formula for p(0) in this case can help

us to analytically understand the variation of Π with α, and the nonmonotonic behavior in

Fig. 4.5. Further, (4.16) and (4.18) are not exact expressions. A more accurate expression

for p(0) in the presence of synergistic epistasis will pave the way for better analytical under-

standing.

B.5 Regarding steady state

The argument of [63] on the minimum population size necessary to ensure steady state

includes only the population fraction corresponding to the least loaded class (see section

4.2.1). A further detailed analysis by [62] shows that the ratchet time is actually proportional

to the number of individuals in the least loaded class times the selection coefficient. A

very high ratchet time corresponds to very a slowly operating ratchet. For smaller values of

selection coefficient, the deviation from the results of [63] becomes clearer. Nevertheless,

for the parameters used in this Chapter, there will not be any significant difference from the

above theory, since smaller values of selection have been used only for synergistic epistasis.
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Fig. B.2 Variation of αc with the strength λ of the mutator. The points (red filled circles) are

obtained using numerical solution of (4.8) and (4.9). For all these points, s = 0.1.

B.6 Critical value of epistasis for the weak mutator background

Weak mutator refers to the case when the mutation rate of the nonmutator is comparable

(λ∼ 1) with that of the mutator. In two recent mutation reduction experiments [34, 6], weak

mutators with λ as low as 2 have been observed. By solving (4.8) and (4.9) using Wolfram

Mathematica 9.0.1.0, we obtain Π as a function of α for a given value of λ. By comparing

these Π values up to three significant figures for two different values of Vd , we estimate αc

corresponding to eachλ. With the variation in mutator strength,αc changes. This is plotted

in Fig. B.2. For strong mutators, the exact numerical analysis suggests that αc approaches

its minimum value 0.57, as λ → ∞. This is contrary to the analytical result αc = 0.5 using

(4.14). Therefore, even though (4.14) is helpful in demonstrating the presence of αc (see

section 4.3.1.1), this expression is not very accurate in determining αc precisely. This is
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Simulation results for weak mutators

λ Vd α Πsi m (SE ×104) Πsi m (SE ×104) α Vd λ

1.7 0.04164 (6.317) 0.04159 (6.314) 1.7

2 0.15 1.6 0.04023 (6.214) 0.04025 (6.215) 1.6 0.10 2

1.5 0.03866 (6.096) 0.04048 (6.232) 1.5

1.0 0.05411 (7.154) 0.05253 (7.055) 1.0

4 0.15 0.9 0.05140 (6.983) 0.05106 (6.961) 0.9 0.10 4

0.8 0.04659 (6.665) 0.04931 (6.847) 0.8

0.6 0.06195 (7.623) 0.05926 (7.466) 0.6

100 0.15 0.5 0.05332 (7.105) 0.05527 (7.226) 0.5 0.10 100

0.4 0.04432 (6.508) 0.04953 (6.861) 0.4

Table B.5 Example of values for Π for two different values of Vd , and αc is obtained as the

value of α for which the difference between the two Π values is the minimum. The αc value

corresponding to each λ is indicated in bold. The simulation parameters are s = 0.1, N =
4000, and each simulation point is averaged over 105 independent stochastic realizations.

The standard error (SE ) value given in each row is the actual value multiplied by 104. The

best estimates of αc using Mathematica (see Appendix B.6 and Fig. B.2) are 1.505, 1.022 and

0.575 for λ = 2, 4 and 100, respectively.

because of the two approximations (B.12) and (4.11) involved in the derivation of (4.14)

(see Appendix B.4 as well). As λ falls towards 3, αc rises to its upper limit 1.55. A further

reduction in λ results in decrease in αc .

The interpretation for the initial increase of αc with decrease in λ is as follows: A sig-

nificantly high deleterious mutation rate reduces the fixation probability of nonmutator,

since it is a disadvantageous factor. Thus, a nonmutator produced in a weak mutator back-

ground that is less spread out, and that created in a strong mutator background which is

more spread out can have the same fixation probabilities. The former and latter respec-

tively correspond to larger and smaller values of α. Therefore, the critical value αc of the

epistasis parameter rises as the strength of the mutator decreases. However, the decline of

αc with λ for λ < 3 is counterintuitive. The explanation for this interesting trend requires a

detailed analysis. A study of the weak mutator case is beyond the scope of this project and

will be left for a separate work. The results presented regarding weak mutators is meant to

give directions for future work. Solving (4.8) without neglecting Ud will be useful in obtain-

ing analytical expressions in this case.
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Table B.5 gives the data from finite N simulations for three values of λ. Using this, a

crude estimate of αc has been made corresponding to each λ. The errors associated with

αc are not given, since the error calculation is not straightforward here. Nevertheless, we

see a clear variation with respect to λ, similar to what we see from the exact numerical

solution.


	Table of contents
	List of figures
	1 Introduction
	1.1 Theoretical population genetics and modeling evolution
	1.2 Evolutionary forces
	1.2.1 Natural selection
	1.2.2 Mutation
	1.2.3 Random genetic drift

	1.3 Models and methods
	1.3.1 Deterministic models
	1.3.2 Wright-Fisher process
	1.3.3 Branching process formalism for the fixation probability of a beneficial mutant

	1.4 The main goals and overview of the thesis

	2 Fixation of a nonmutator in a strong mutator background
	2.1 Introduction
	2.2 Model and methods
	2.3 Results
	2.3.1 Fixation probability
	2.3.2 Evolution of mutation rates in finite populations

	2.4 Discussion
	2.4.1 Fixation probability
	2.4.2 Fixation time
	2.4.3 Evolution of mutation rates


	3 Fixation of a nonmutator in a weak mutator background
	3.1 Introduction
	3.2 Models and methods
	3.3 Results
	3.3.1 When only deleterious mutations are present
	3.3.2 When compensatory mutations are present

	3.4 Discussion
	3.4.1 Summary of the results
	3.4.2 Connection with real populations and biological relevance
	3.4.3 Comparison with experiments
	3.4.4 Comparison with previous theoretical studies
	3.4.5 Conclusions and open questions


	4 Fixation of a nonmutator in the presence of epistasis
	4.1 Introduction
	4.2 Models and methods
	4.2.1 Details of stochastic simulations
	4.2.2 Analysis

	4.3 Results
	4.3.1 Variation of fixation probability with epistasis parameter
	4.3.2 Variation of fixation probability with mutation rate
	4.3.3 Variation of fixation probability with selection

	4.4 Discussion
	4.4.1 Summary of results and connection with real populations
	4.4.2 Limitations of the models and future goals
	4.4.3 Choice of parameters and biological relevance
	4.4.4 Fixation time and comparison with experiments
	4.4.5 Comparison with previous theoretical works


	5 Summary
	References
	Appendix A 
	A.1 Mutator frequency when compensatory mutations are included
	A.2 Fixation probability in the absence of compensatory mutations
	A.3 Fixation probability when compensatory mutations are included

	Appendix B 
	B.1 Frequency of mutator population
	B.2 Approximate expressions for the class zero mutator frequency
	B.3 Explanation for the trend in Fig. 4.7
	B.4 Regarding the discrepancy between the analytical and simulation results
	B.5 Regarding steady state
	B.6 Critical value of epistasis for the weak mutator background


