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Synopsis 

The primary cause for excellent high-temperature mechanical properties 

exhibited by Ni-based superalloys is essentially the high volume fraction of ordered and 

coherent Ni3Al-based precipitates in the Ni-rich solid solution matrix. While the lattice 

parameters of the precipitate and of the matrix structures influence the coherency strains 

and hence the extent of precipitation hardening, the stacking fault energies (SFE) 

influence the dislocation motion and hence the strength. Plastic deformation of 

crystalline materials depends greatly on mobility of dislocations. The glide of 

dislocations requires relatively little atomic motion compared to full shifting of the entire 

atomic planes in perfect (i.e. defect free) crystals. The generalized stacking fault (GSF) 

energy surface was proposed to describe the cost energy associated with fractional 

shifting of glide planes, and can be accurately computed from first-principles based 

Density Functional Theory (DFT) calculations. This thesis is aimed at estimating the 

energies of various stacking faults that exist in Ni and Ni3Al, and the changes associated 

in their energies on alloying with solutes from the 3d, 4d and 5d series transition metals 

(TM). An attempt is made to understand the dislocation movement in terms of Peierls 

stress by estimating the unstable stacking fault energy within the framework of first-

principles. 

The thesis is divided into seven chapters. The first chapter provides a brief 

introduction to Ni-based superalloys, along with a brief overview of various atomistic 

simulation techniques highlighting their advantages and limitations. The second chapter 

describes basic theoretical aspects of first-principles calculations based on DFT, used 

throughout the present work. 

Chapter 3 is aimed to elucidate the effect of changes in atomic volume of Ni i.e. 

the lattice parameter (ao), associated with substitution of solutes for Ni. For each of the 

TM series, we find that the atomic volume of Ni exhibits a minimum for substitutional 
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elements with half-filled d-orbitals (5 d orbital valence electrons). The change in ao with 

solute substitution in Ni is observed to follow the Vegard’s law (an approximate 

empirical rule for the lattice parameter of an alloy as a function of its constituent 

elements), and our estimates of Vegard’s coefficients are in reasonable agreement with 

the other reported values. Another important aspect that influences the mechanical 

behavior of an alloy is the preferences of the solute atoms to segregate in clusters or tend 

to remain far apart as in solid solution. This behavior has been analyzed by calculating 

the binding energy (BE) as a function of distance between the substituted solute atoms. 

It is shown that the magnetic state of nickel, apart from individual solutes chemical 

activity, does influence the tendency of clustering. Cr, Co, Re and Ru exhibit the 

tendency towards clustering when Ni is considered magnetic. However, above the Curie 

temperature, (nickel treated as non-magnetic in our calculation), only Co favors 

clustering. 

In chapter 4, we describe computational details of the scheme for estimating the 

intrinsic stacking fault energy (ISFE, is) and unstable stacking fault energy (USFE, us) 

of Ni and its solid solutions. The results have been analyzed in terms of variations in is 

and us as functions of number of d-valence electrons, considering both magnetic and 

non-magnetic states. All solute (except Pd) substitution reduce the is irrespective of the 

magnetic state of nickel. However, 20 - 30 % higher estimates of is are obtained when 

nickel is treated as a magnetic material. The results have also been obtained with variable 

spacing between two solute atoms, and its effects on the is and us are analyzed. It is 

observed that some of the solutes, such as Zr, Nb, Mo, Ru, W and Re, do result in  

changes in us as function of the distance between solute atoms. A correlation between 

the changes in volume and in us with substitutional alloying has been established. 

The fifth chapter provides a detailed description of effects of solute substitution 

on the energies of anti-phase boundary (APB), superlattice intrinsic stacking fault (SISF) 

and unstable stacking fault (USF) of Ni3Al. Since it is an ordered intermetallic 

compound, effects of solute substitution at Al or Ni or simultaneously at both Al and Ni 

sites have been considered separately. It has been shown that USF and APB energies are 
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maximal for the systems wherein solutes having half-filled d-orbitals are substituted at 

the Al site. We establish a correlation between SISF and APB energies. 

The sixth chapter is focused on the cleavage energy and its relevance to the 

fracture strength in terms of Griffith’s work (Gc), related to mode I cleavage fracture of 

Ni system alloyed around 1 at.% of solutes. Gc is defined as the work needed to cleave a 

crystal across a particular crystallographic plane. Tendency of a micro void formation 

and its growth can also be assessed in terms of “cleavage energy”. Here, we focus on the 

(111) plane of FCC Ni. Except Zr and Pd of 5d series, all the substitutional elements 

considered here are found to increase the Gc. Analysis of the solute effects on the intrinsic 

ductility has been done by evaluating a dimensionless ductility parameter (D) as 

D=0.15Gc/us, where Gc is the Griffith work or energy needed to create two new surfaces 

(Gc = 2s, where s is the surface energy) and us is USFE. The ductility parameter 

calculated for non-magnetic Ni with or without any solute is typically around 20 % higher 

compared to its magnetic counterpart. In general, the solute substitution is observed to 

weakly influence the ductility of Ni. This inferences have further been strengthened 

based on B/G ratio and using the Pugh criterion. 

The last chapter summarizes the findings of the work in the thesis, and provides 

future perspectives. It is envisaged that the comprehensive data generated through this 

work would form useful input to multiscale modeling and simulations. For example, the 

fault energies can serve as proto-data for the construction of -surfaces, which can be 

input into discrete dislocation dynamics and/or phase field dislocation dynamics 

simulations to establish structure-property correlations. Secondly, occupancy of the d-

shell of substituents and its correlations with APBE & SISFE should facilitate 

identification of descriptors relevant to simple predictive models of fault energies. Such 

efforts would be critical not only to understand the deformation mechanisms in model 

alloys but also in rational design of Ni-based alloys with improved mechanical 

properties. 
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Chapter 1  

Introduction  

Materials exhibit a wide variety of properties in broadly varying magnitudes, and 

hence different materials find different applications depending on their suitability. These 

properties can be categorized as mechanical, electrical, thermal, magnetic and physical. 

For example, mechanical properties of materials are of crucial importance in various 

applications where materials are subjected to forces and stresses. The ability to bear these 

forces and stresses without undergoing a permanent deformation decreases with 

increasing temperature for most of the alloys. This strength, known as the yield strength, 

however increases (or at least does not decrease) as a function of temperature for a certain 

class of materials. Ni-based superalloys belong to such a class of materials characterized 

with superior high-temperature mechanical strength, in addition to corrosion and creep 

resistance in harsh environments. Due to the combination of these properties, they are 

the preferred materials for the hot sections such as turbine blades and turbine discs of gas 

turbine engines used in the aerospace and power generation industries.  

1.1 Ni-based superalloys 

Metallic alloys that can be used in structural applications at temperatures in 

excess of 0.7 times of the absolute melting temperature are termed as superalloys. The 

behavior exhibited by this class of alloys is contrary to normal alloys in that the strength 

increases with increasing temperature reaching a peak and thereafter it decreases. 

Another characteristic of these alloys is their ability to resist mechanical degradation over 
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extended period of time even at very high operating temperature. The term superalloy 

was used after the Second World War to describe a group of alloys that found 

applications in aircraft engines because of their excellent performance at elevated 

temperatures. The range of applications also includes land-based gas turbines, rocket 

engines etc. The three major classes of superalloys are nickel-, iron-, and cobalt- based 

alloys. In this thesis, we have focused on Ni-based superalloys, which are used for 

making turbine blades and vanes in modern aero-engines and also in land-based gas 

turbines.  

Polycrystalline Ni-based superalloys are in use since 1950 and subsequently 

continuous efforts are being made to increase the capability of these materials to enable 

the aero-engines to operate at higher temperatures. The efficiency of these turbine 

engines depends on the turbine entry temperature (TET), which is limited by the high-

temperature strength and behavior of these superalloys [1, 2]. With continuous efforts to 

increase the capability of the engine, around 1970 and 1980 conventional polycrystalline 

alloys gave way to columnar grained and single crystalline (SX) materials. Figure 1.1 

illustrates the relative life (life normalized with respect to the conventional 

polycrystalline superalloys) of the creep strength, thermal fatigue resistance and 

corrosion resistance of the conventional polycrystalline, columnar grain and single 

crystal Ni-based superalloys. These properties of single crystals are much superior to 

those of other forms. For example, as the grain boundaries are weakest under tensile 

loading conditions, their elimination perpendicular to the loading direction in the 

columnar crystals and the single crystals improved the creep resistance of the alloys. 

Polycrystalline materials have many grains while single crystal is equivalent to one grain 

containing a few low-angle boundaries and many γ/γ interfaces. Therefore, the 

advantage of SX over polycrystalline is the elimination of grain-boundaries and also the 

removal of B, C etc. as grain boundary strengthening solutes. Since these solutes have 

relatively low melting temperatures, their elimination leads to increase in the incipient 

melting temperature (localized melting due to chemical segregation), and hence the 

operating temperatures. 
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Figure 1.1: Critical parameters and their relation with relative life of various types 

of Ni-based superalloys [1]. 

 

Figure 1.2: (a) Microstructure of - matrix [3] (b)  phase with the Al atoms 

occupying corners of the cube and the Ni atoms located at the cube faces (c)  phase 

with all the sites occupied by Ni atoms and (d) coherent interface between - [1]. 
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The superior mechanical strength of Ni-based single crystal superalloys (NBSX) 

is attributed primarily to their microstructure that consists of cuboidal γ precipitates 

which are in complete coherence with the γ matrix (Figure 1.2a) [1, 3, 4]. γ is an ordered 

intermetallic based on Ni3Al having L12 structure (Figure 1.2b) and γ is essentially Ni-

rich solid solution (FCC structure) containing a number of substitutional alloying 

elements (Figure 1.2c). Even though γ phase is the precipitate, present commercially 

available blade alloys have a volume fraction as high as 70% that are evenly distributed 

throughout the matrix [1]. The difference in lattice parameters of γ and γ phases with 

several solute additions is kept low so as to maintain complete coherence between the 

precipitate and the matrix phase (Figure 1.2d) [1], and hence providing higher 

precipitation hardening. The microstructure is also designed to be stable along with the 

rate of coarsening at elevated temperatures to be low, which is achieved by having low 

interfacial energy between γ and γ. Addition of refractory materials in the NBSX alloys 

significantly enhances mechanical properties of the system by decreasing the coarsening 

kinetics as well as providing solid solution strengthening to the system [1].  

1.2 Strengthening mechanisms in Ni-based single crystal 

superalloys  

Strengthening mechanisms are those which prevent deformation by impeding the 

movement of dislocations through the material. In Ni-based superalloy the two common 

strengthening mechanisms are precipitation hardening and solid solution strengthening 

which are influenced by the addition of various alloying elements. In addition, solid 

solution strengthening of the γ matrix reduces the mobility of dislocations between the 

γ particles. However, Ni3Al being ordered intermetallic, most potent strengthening 

mechanism that outweighs these at temperatures close to the melting temperature is the 

order strengthening. 
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1.2.1 Solid solution strengthening 

Solid solution strengthening is being achieved with solutes that have large 

difference in their atomic size and moduli as compared to that of solvent atom along with 

reasonable solid solubility. Large size variation generates stress field around the solutes 

which influences the movement of the dislocations.  

At elevated temperatures, the deformation mechanism involves dislocation cross-

slip. Dislocation present in the lattice distorts the bond and hence increases its energy. 

The elastic energy of the dislocation per unit length is proportional to the square of the 

magnitude of the Burgers vector (𝑏⃗ ). Hence minimization of the energy and reduction in 

the energy barrier for dislocation movement for FCC materials, such as Ni, is facilitated 

by the dissociation of perfect dislocations, 𝑏⃗  , into Shockley partials, 𝑏1
⃗⃗  ⃗ and 𝑏2

⃗⃗⃗⃗  as 

1

2
[1̅10] →

1

6
[1̅21̅] +

1

6
[2̅11] + 𝑆𝐹, 

where SF, the stacking faults, is the region encompassed by the partial dislocations. 

Further details are described in chapter 4. Cross-slip can be reduced by adding elements 

which lower the stacking fault energy of Ni and produce wider stacking faults. Also, 

solutes having higher melting point than the solvent provide creep resistance by reducing 

its diffusivity. 

1.2.2 Precipitation strengthening 

Most of the strength of single crystal superalloys results from the precipitation of 

the L12, ordered γ. These precipitates are formed by carrying out long time ageing of the 

super-saturated solid solution. The similarity in the structure and the lattice parameter of 

γ and γ allows homogeneous nucleation of a coherent and reasonably ductile γ which 

has extraordinary high-temperature stability. In single crystal superalloys most of the 

strengthening is achieved by the γ precipitate from slowing or obstructing  the passage 

of dislocations either by forcing them to by-pass or shear through them. 
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1.2.3 Order strengthening 

Dislocation movement in FCC material, such as γ, takes place along shortest 

lattice vector lying in the close packed plane i.e. dislocation glide along 1 2⁄ 〈11̅0〉{111}. 

Lattice vectors refers to the translation that keeps the crystal lattice unchanged. The 

shortest lattice vector for Ni3Al, because of L12 crystal structure, is <100>. But this 

vector does not reside in the close-packed plane {111}. The shortest lattice vector on the 

{111} plane for Ni3Al is 〈11̅0〉 which is twice in magnitude in comparison to the FCC 

materials. Hence, dislocation movement in this ordered intermetallic is extremely 

complex. At low temperatures, dislocations glide along 1 2⁄ 〈11̅0〉{111} resulting in the 

generation of antiphase boundary (APB), which requires substantial energy penalty 

arising from the formation of forbidden bonds [1]. Another dislocation movement is 

required to eliminate the APB generated by the earlier dislocation. The simultaneous 

movement of two dislocations is called superdislocation. Further energetics govern the 

dissociation of superdislocation into superpartials encompassing a region of stacking 

faults such as superlattice intrinsic stacking fault (SISF) and complex stacking fault 

(CSF) [5]. Detailed descriptions are reported in chapter 5. Hence a dislocation travelling 

in the matrix phase cannot enter the Ni3Al (precipitate) phase without generating an APB 

which results in substantial order strengthening [1].  

1.3 Factors to be considered for alloy design 

The driving force behind the improvement of Ni-based superalloys is to improve 

the operating efficiency of the turbine engine. The primary factor that governs the 

efficiency is the operating temperature. Maximum improvement in the operating 

temperature has been achieved by tuning the microstructure that comprises essentially of 

the size, morphology and distribution of γ precipitates in the γ matrix of the alloy. The 

planar defects such as APB in Ni3Al and stacking faults in both the phases which are 

resultant of the dislocation dissociation reactions are associated with certain additional 

energies. The high-temperature properties of the alloys are significantly dependent on 

these fault energies. Also the coherency between the γ and γ is ensured if the stress-free 
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lattice misfit () between γ and γ is not large and the γ/γ interfacial energy remains low. 

Solute substitution in Ni-based superalloys are also expected to affect the interfacial 

energy. Computationally it is estimated from the Griffith work of rupture (Gc) and is 

defined as the energy needed to cleave a crystal about a plane [6]. Since Ni-based 

superalloys, in general, contain more than ten alloying elements it is essential to 

understand the role of each alloying element on the fault energies and Gc in order to 

design alloys with specific targeted properties. 

1.4 Role of modeling and simulation 

Design of superalloys has advanced over many decades and has been mostly 

carried out using traditional route through trial-and-error based empirical procedures. 

This method is not only time consuming but expensive as well. With the advancement of 

the computing resources, it has become very efficient and effective to use modeling and 

simulation tools to overcome some of the challenges of the experimental techniques. 

The description of mechanical properties of materials greatly depends on the 

relevant length-scales. Hence, numerous efforts are being made by scientists to 

understand the mechanical behavior at the different length-scales through computer 

simulations. For example, macroscopic description of deformation of materials is being 

carried out using continuum description, for which finite element method (FEM) is being 

widely used as the numerical technique. In the continuum description, constitutive 

equations relating stress and strain of the systems under deformation are considered. 

Relevant partial differential equations are solved considering representative volumes 

elements. 

The overall mechanical properties of the crystal are governed by the movement 

of dislocations. At length-scales below the continuum description is the microstructure 

and dislocation modeling which are used at the mesoscopic range (1µm to 100µm). 

Dislocation Dynamics (DD) is a modeling approach that aims to simulate the motion and 

interaction of these dislocation to gain insights concerning the mechanical strength of the 
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crystal. The stress induced by any arbitrary dislocation loop at an arbitrary field point is 

computed by the Peach-Koehler integral equation given in Hirth and Lothe (1982) [7]. 

However, the most critical among many parameters will be a thorough 

understanding of the physics behind the interactions of the alloying elements at the 

atomistic length scale. The knowledge and data generated can be used as an input to 

address properties at different length-scales required in the development of newer and 

more efficient superalloys. 

1.4.1 Atomistic simulations 

The atomistic simulation techniques can address the length-scales of the order of 

100s of nm. Molecular Dynamics (MD) is one such technique wherein atoms ranging 

from several thousands to millions can be handled. MD uses classical equation of motion 

for the atoms to determine their trajectories where the forces and energies between 

interacting particles are calculated from the interatomic potential field. However, 

construction of the potential requires lot of parametric input (or physical properties) 

which are usually obtained from experiments as well as from first-principles calculations. 

This method is widely used in the investigation of the atomistic aspects of dislocations, 

such as the core structure, extended dislocations and individual defect-dislocation 

interaction. A recent application for the simulation of brittle cleavage of Ir [8] 

demonstrates the power of such large-scale simulations. Nevertheless, these methods rely 

on the model potential and consequently, still some more progress has to be made to 

realize their predictive power. It becomes particularly hard when different types of atoms 

constitute a material. 

Modeling interactions without a priori knowledge of the bonding present requires 

the use of first-principles methodologies, in which one attempts to solve the Schrödinger 

equation governing the electronic dynamics. This method captures the physics of bond-

breaking or forming process and can be considered to be highly accurate and predictive 

while describing the atomic interactions. One such method is the density functional 

theory (DFT) [9] which requires only position and atomic number of the involved species 



9 
 
 

 

as input. However, the solution in full quantum mechanical framework is extremely 

computationally expensive. Even with suitable justified assumptions, only a few 

hundreds of atoms can be addressed in the first-principles DFT [9, 10]. The solution to 

the Schrödinger equation is carried out through the determination of a single electronic 

density function n(𝑟 ) and not the many body wave functions. Hence, once n(𝑟 ) is 

determined the properties of the system are uniquely defined. Another beauty of this 

technique is the advantage of being completely transferable (ability to describe atoms in 

different chemical environments), requiring only the atomic constituents of the system 

under consideration to be specified.  

The DFT approaches have proved to be of general and predictive nature for 

various problems in materials science [11-14]. This technique calculates many important 

parameters that are required for a large-scale modeling, for example, results of brittle 

energy cleavage calculations might provide  input for the cohesive zone models [15, 16], 

or the -surface may be used to determine dislocation core structures and dislocation 

dissociation by means of the Peierls-Nabarro model of dislocation [17- 23]. Generalized 

stacking fault energy surface (GSF) or -surface introduced by Vitek [20, 24], is defined 

as the energy cost or work done to form a plane fault by an in-plane relative shift 𝑞  of 

one part of the crystal against the another. The GSF reflects the symmetry of the crystal 

with minima and maxima of the energy for a lattice translation corresponding to the 

stable and unstable stacking faults (USF) energies. 

1.5 Overview of the thesis 

In this thesis an attempt has been made to address some critical aspects of 

properties that can be modelled using DFT for Ni-based superalloy. An effort is made to 

acquire better understanding of the trends in effects of substitutional solutes element 

belonging to 3d, 4d and 5d series of transition metals (TM) on the two major phases γ 

and γ present in Ni-based superalloy. 
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The computational details and brief overview about first-principles DFT is 

described in chapter 2. 

In chapter 3, we examine the effects of substitution of solutes on the cell volume 

of Ni. In order to understand the effect of interaction between solutes on the volume of 

the Ni-based solid solution, we consider solute atoms in four configurations, viz 1st, 2nd, 

3rd and 4th nearest neighbour (NN). With the volume changes associated with solute 

substitution, Vegard's coefficients for solutes in  phase are calculated. The binding 

energies (BE) associated with these solutes are calculated to provide insights into their 

tendency in Ni solid solution towards clustering.  

In Chapter 4, we determine effects of different solutes on the stacking fault energy 

of Ni. In addition, we obtain unstable stacking fault energies (USFE, us) of pure as well 

as the alloyed system. 

A systematic analysis of the influence of substitution of solute atoms from the 3d, 

4d and 5d transition metals at the Ni or Al or simultaneously at Ni and Al atoms separated 

as first nearest neighbour in the (111) fault plane of Ni3Al on the USFE, the SISFE and 

the APBE is presented in chapter 5. 

Changes in the Griffith work of rupture (Gc) change associated with solutes from 

the 3d, 4d and 5d transition metals substituted in Ni are determined in chapter 6. We also 

calculate elastic constants of Ni-based solid solutions with solutes from 4d and 5d TMs, 

and compare the changes in the ductility parameter arising from solute substitution using 

Griffith’s and Pugh criteria.  
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Chapter 2 

Computational Methodology 

Properties of materials are determined by the interactions between the nuclei and 

their electrons. Classical Newtonian mechanics cannot capture these interactions and 

hence is inadequate to explain many phenomena occurring at the atomic scale. Quantum 

mechanics emerged as a complementary discipline to classical mechanics, and has been 

very successful in explaining numerous complex materials related phenomena. The crux 

of this method is to solve the time-independent Schrödinger equation so as to obtain the 

materials properties. Since it is not possible to obtain closed-form analytical solution for 

this equation for many-body problems of interest to materials community, it is 

indispensable to use numerical/computational techniques. However, these quantum 

mechanical simulation techniques that involve only fundamental physical constants and 

atom co-ordinates as inputs are computationally intensive. Even with tremendous 

development in the computational resources these types of calculations, with reasonable 

approximations, are limited to a few hundreds of atoms. 

2.1 The Schrödinger equation 

The properties of a system may be obtained by solving the quantum mechanical 

wave equation governing the system dynamics. For non-relativistic systems, this is done 

by solving the Schrödinger equation of the form:  

𝐻̂𝛹(𝑟 ) = 𝐸𝛹(𝑟 ),    2.1 
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where H is the Hamiltonian operator describing the kinetic energy and interaction 

between particle, and,  and E represent the wavefunction and energy of the particular 

state of the system. The solution to this equation gives the allowed energy levels of 

quantum mechanical systems.  

2.1.1 Total energy function  

In condensed matter, interactions in a system comprise of those between the 

constituent atoms through Coulombic (electrostatic) forces which are specified in terms 

of their atomic numbers and the coordinates of nuclei and electrons. The total non-

relativistic Hamiltonian of a system consisting of P number of atoms and Q electrons, 

can be written in a general form [25]: 

𝐻̂ = −∑
ħ

2𝑀𝐼
∇𝐼

2

𝑃

𝐼=1

− ∑
ħ

2𝑀𝑖
∇𝑖

2

𝑄

𝑖=1

− 𝑒2 ∑∑
𝑍𝐼

|𝑅⃗ 𝐼 − 𝑟 𝑖|

𝑄

𝑖=1

𝑃

𝐼=1

+
𝑒2

2
∑∑

𝑍𝐼𝑍𝐽

|𝑅⃗ 𝐼 − 𝑅⃗ 𝐽|

𝑃

𝐽≠𝐼

𝑃

𝐼=1

+
𝑒2

2
∑∑

1

|𝑟 𝑖 − 𝑟 𝑗|

𝑄

𝑗≠𝐼

𝑄

𝑖=1

,                                                                     2.2 

where 𝑅⃗ = {𝑅⃗ 𝐼}, 𝐼 = 1,… , 𝑃, is a set of P nuclear coordinates and 𝑟 = {𝑟 𝑖}, 𝑖 = 1, … ,𝑄, 

is a set of Q electronic coordinates. ZI and MI are the nuclear charges and masses, 

respectively, and e is the electronic charge. The first two terms represent the kinetic 

energy of the nuclei and the electrons respectively. The third term gives the attractive 

electrostatic interaction between the electrons and nuclei. The fourth and fifth terms are 

the repulsive Coulomb between nuclei and between electrons respectively.  

The total Hamiltonian can be rewritten in a compact form as [25]: 

𝐻̂ = 𝑇̂𝑁(𝑅⃗ ) + 𝑇̂𝑒(𝑟 ) + 𝑉̂𝑒𝑁(𝑟 , 𝑅⃗ ) + 𝑉̂𝑁𝑁(𝑅⃗ ) + 𝑉̂𝑒𝑒(𝑟 ), 2.3 

where T and V refer to the kinetic and potential energy operators with the subscripts N, e 

referring to the nucleus and electrons, respectively.  
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The solution to the many-body Schrödinger equation can, in principle, be used to 

derive most of the mechanical properties. Unfortunately, solution to this equation in a 

full quantum-mechanical framework is practically impossible. Only in a few cases, 

limited to a small number of particles, exact solution is available. The reasons for the 

difficulty to find analytical solutions are 

1. Systems are mostly multicomponent and hence are many-body. 

2. Electrons being fermions have antisymmetric many-body wavefunctions. 

3. Nuclei can be fermions, bosons or distinguishable particles, according to the 

particular problem under examination. 

4. The electrostatic interaction between the nuclei and electrons prevents the 

separation of complete molecular wavefunctions into electronic and nuclear 

terms. This leads to dealing with wavefunctions of (3P + 3N) coupled degrees of 

freedom. 

Hence, in practice, the complexity associated with the solution of this ‘many-

body’ problem forces us to use some reasonable approximations and simplifications. The 

large majority of the calculations presented in the literature are based on two 

approximations namely: (i) Born-Oppenheimer approximation (adiabatic 

approximation) and (ii) classical treatment of motion of nuclei. 

2.1.2 Born-Oppenheimer approximation  

The Born-Oppenheimer approximation [25], (also called adiabatic 

approximation), is introduced to decouple the motions of the electrons and the nuclei. 

The Coulombic interaction between electrons-nuclei (𝑉̂𝑒𝑁) prevents separation of the 

total Hamiltonian (equation 2.3) into electronic and nuclear part. It is thus assumed that 

the electronic wavefunctions depend only on the positions of the nuclei but not on their 

momentum. The basis for this assumption is based on the fact that the mass of a proton 

is 1836 times that of an electron and hence the velocity of electrons is typically much 

higher when compared to that of nuclei. Thus nuclei can be thought of as fixed with 
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respect to electrons on the time-scale of remaining in the same instantaneous stationary 

state of the electronic Hamiltonian. With this assumption it is reasonable to take into 

consideration only the electronic degrees of freedom. Also, the kinetic energy operator 

of the nuclei 𝑇̂𝑁 can be neglected since 𝑇̂𝑁  is smaller than 𝑇̂𝑒  by a factor of MA/μe, where 

μe is the reduced mass of an electron. Thus, the total Hamiltonian for fixed nuclear 

configuration (𝐻̂𝑒𝑙) is written as [25]: 

𝐻̂𝑒𝑙 = 𝑇̂𝑒(𝑟 ) + 𝑉̂𝑒𝑁(𝑟 , 𝑅⃗ ) + 𝑉̂𝑒𝑒(𝑟 ) + 𝑉̂𝑁𝑁(𝑅⃗ ), 2.4 

and hence can be considered as a sum of electronic Hamiltonian (𝐻̂𝑒) and Coulomb 

interaction between nuclei (𝑉̂𝑁𝑁), where [25]: 

𝐻̂𝑒 = 𝑇̂𝑒(𝑟 ) + 𝑉̂𝑒𝑁(𝑟 , 𝑅⃗ ) + 𝑉̂𝑒𝑒(𝑟 ).  2.5 

It is important to note that when nuclear configuration in the total Hamiltonian 

(equation 2.4) is fixed, it is assumed that the nuclear coordinates are no longer 

contributing to the full wavefunctions. Hence, the nuclear repulsion (VNN) contributes to 

the total energy by augmenting it with some value. This is possible only when the nuclei 

are treated as classical particles.  

With these approximations, we are left with the problem of solving the many-

body electronic Schrödinger equation for ground state for a set of fixed nuclear positions 

of the form 

𝐻̂𝑒𝛹𝐺(𝑟 , 𝑅⃗ ) = 𝐻̂𝐺𝛹𝐺(𝑟 , 𝑅⃗ ),  2.6 

where (EG) is the ground state energy of the system and the total energy of the system 

(Etotal) is calculated as  

Etotal  = EG + VNN.     2.7 

Etotal has all the material-specific information except for electronic excitations. 

For system containing one electron, the time independent non-relativistic Schrödinger 
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equation (Equation 2.1) can be solved precisely. Complex electrostatic interactions 

between electrons lead to problems when another electron is introduced.  

2.1.3 Quantum mechanics of electrons 

Using the Born-Oppenheimer approximation, the problem is reduced to that of a 

gas of interacting electrons moving in a static external potential due to the nuclei. This 

simplified quantum many-body problem is still too complex to solve for large systems. 

Since the wavefunction of the many-body system depends on the coordinates of each 

particle, the wavefunction based treatment of any system larger than few electrons is not 

feasible. In order to deal with realistic materials, further approximations have to be made. 

Density functional theory (DFT), provides an enormous simplification of this many-body 

ground state problem.  

2.2 Density functional theory: A first-principles approach 

DFT, based on Hohenberg-Kohn theorems [9] and Kohn-Sham equations [10], 

allow the replacement of the many-electron wavefunctions with the electron density of 

the system. It is also shown that the system of interacting electrons can be mapped to a 

system of non-interacting particles. Hence, the many electron problem is mapped to an 

effective one electron problem thus reducing the complexity of the problem to a great 

extent.  

2.2.1 Hohenberg-Kohn formalism 

In 1964, the foundation for DFT was provided by two theorems, proved by 

Hohenberg and Kohn (H-K) [9], stated below [25]: 

Theorem 1: For any system of interacting particles in an external potential 

𝑉̂𝑒𝑥𝑡(𝑟 ), the potential 𝑉̂𝑒𝑥𝑡(𝑟 ) is determined uniquely, except for a constant, by the 

ground state particle density no(𝑟 ). 
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Theorem 2: A universal functional for the energy E[n(𝑟 )] in terms of the density 

n(𝑟 ) can be defined, valid for any external potential 𝑉̂𝑒𝑥𝑡(𝑟 ). For any particular 𝑉̂𝑒𝑥𝑡(𝑟 ), 

the ground state energy of the system is the global minimum value of this functional, and 

the density n(𝑟 ) that minimizes the functional is the exact ground state density no(𝑟 ). 

The first theorem suggests one-to-one correspondence between the 𝑉̂𝑒𝑥𝑡(𝑟 ) and 

the density n(𝑟 ). Hohenberg and Kohn could show that for any system of interacting 

particles in an external potential 𝑉̂𝑒𝑥𝑡(𝑟 ), this potential is uniquely determined by the 

ground state electronic density no(𝑟 ). 𝑉̂𝑒𝑥𝑡(𝑟 ) is the Coulomb potential arising from the 

nuclei (𝑉̂𝑒𝑁(𝑟 , 𝑅⃗ )) in the electronic Hamiltonian He in equation 2.5. The electronic 

Hamiltonian can be rewritten as 𝐻̂𝑒 = 𝑇̂𝑒(𝑟 ) + 𝑉̂𝑒𝑒(𝑟 ) + 𝑉̂𝑒𝑥𝑡(𝑟 ) (𝑉̂𝑒𝑁(𝑟 , 𝑅⃗ )) for all P-

electron systems, so that the He, and hence the ground-state property are completely 

determined by P (total number of electrons) and 𝑉̂𝑒𝑥𝑡(𝑟 ).  

According to the second H-K theorem a universal functional valid for any 

external potential 𝑉̂𝑒𝑥𝑡(𝑟 ) can be defined for the ground state energy E[n(𝑟 )] in terms of 

density n(𝑟 ). For any particular 𝑉̂𝑒𝑥𝑡(𝑟 ), the exact ground state energy of the system is 

the global minimum value of the energy functional. The density that minimizes the 

functional is the exact ground state density no(𝑟 ). For a given potential the energy 

functional is given as [25]: 

𝐸[𝑛(𝑟 )] = ∫ 𝑉̂𝑒𝑥𝑡(𝑟 )𝑛(𝑟 )𝑑𝑟 + 𝐹𝐻𝐾[𝑛(𝑟 )],  2.8 

where 𝐹𝐻𝐾[𝑛(𝑟 )] is a universal Hohenberg-Kohn density-functional of the electron 

density for any many-electron system. The functional 𝐹𝐻𝐾[𝑛(𝑟 )] is purely electronic part 

of the energy, consisting of the kinetic energy of the electrons and the electron-electron 

interaction. Thus, 𝐹𝐻𝐾[𝑛(𝑟 )] can be written as, 

𝐹𝐻𝐾[𝑛(𝑟 )] = 𝑀𝑖𝑛𝛹̅〈𝛹̅|𝑇 + 𝑉𝑒𝑒| 𝛹̅〉,  2.9 



17 
 
 

 

with a constraint that Ψ gives a density n(𝑟 ). 𝐹𝐻𝐾[𝑛(𝑟 )] contains no information on the 

nuclei and the nuclear positions. Consequently, this functional is same for all many-

electron systems.  

The one-to-one correspondence between ground state electronic charge density 

and ground state energy established by the Hohenberg-Kohn theorems reduces the 

problem of finding the wavefunctions of 3N variables to that involving determining the 

ground state electronic density function of three variables. However, the two H-K 

theorems do not offer a way of determining FHK [n(𝑟 )] and thus no practical scheme for 

determining the ground-state density of a system. One year later in 1965 Kohn and Sham 

[10] came out with a derivation to solve this and thus paving a practical path for solution 

for this functional. 

2.2.2 Kohn-Sham ansatz 

In 1965 Kohn and Sham [10] proposed to rewrite the 𝐹𝐻𝐾[𝑛(𝑟 )] to facilitate 

solution to equation 2.6. They could show that the solution is simplified if the exact 

Hamiltonian of an interacting many-body systems can be mapped onto fictitious non-

interacting single particle Hamiltonian. With Kohn-Sham treatment FHK[n(𝑟 )] can be 

represented as [25]: 

𝐹𝐻𝐾[𝑛(𝑟 )] = 𝑇0[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛], 2.10 

where To[n] is the kinetic energy functional for non-interacting electrons of the form 

𝑇𝜊(𝑛) = −


2

2𝑚
[∑〈𝜓𝑖|𝛻

2|𝜓𝑖〉

𝑖

] ,                  2.11 

and EH[n] is the electrostatic interaction energy (called Hartree energy) of the electrons, 

arising from the mutual Coulomb repulsion of all electrons: 

𝐸𝐻[𝑛] =
1

2
∬

𝑛(𝑟 )𝑛(𝑟 ′)

|𝑟 − 𝑟 ′|
𝑑𝑟 𝑑𝑟 ′                          2.12 
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The last term Exc[n] is the exchange-correlation functional, a correction term, 

which accounts for all many-body effects in 𝐹𝐻𝐾[𝑛(𝑟 )] and is discussed in the section 

2.2.3. 

Thus the simplified total energy functional can be rewritten as Kohn-Sham 

Hamiltonian Eks [25]: 

𝐸𝐾𝑆 = 𝑇𝜊[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛] + ∫ 𝑉̂𝑒𝑥𝑡(𝑟 )𝑛(𝑟 )𝑑𝑟   2.13 

Equation 2.13 can be interpreted as the energy functional of non-interacting 

particles in two potential 𝑉̂𝑒𝑥𝑡(𝑟 ) and Exc[n].  

The exact ground-state density )rn(


 of an N-electron system is [25]: 

𝑛(𝑟 ) = ∑𝜓𝑖(𝑟 )𝜓𝑖
∗(𝑟 )

𝑁

𝑖=1

,                              2.14 

where the single-particle wavefunctions )r(i


 are the N lowest energy solutions of the 

Kohn-Sham equation 

𝐻̂𝐾𝑆𝜓𝑖(𝑟 , 𝑅⃗ ) = 𝜀𝑖𝜓𝑖(𝑟 , 𝑅⃗ ),  2.15 

where εi is the ground state energy and has all the material specific information, except 

for electronic excitation. Hence, Schrödinger like single-particle equations have to be 

solved to obtain the ground-state density of the many-body system.  

It is important to note that the Kohn-Sham Hamiltonian depends on the electron 

density through the Hartree and the exchange-correlation terms, while the electron 

density depends on the ψi to be calculated. This leads to the solution of a non-linear self-

consistency problem where the solution determines the original equation. Hence the 

solution can only be achieved by following an iterative process. Initially the Kohn-Sham 

Hamiltonian is constructed with an initial guess for the density and the solution results 
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in a new set of ψi and a new electron density. This new electron density is used to 

construct a new HKS, and the loop is continued until the succeeding densities are the same 

within a tolerance. 

2.2.3 Exchange-correlation functional 

In order to solve the Kohn-Sham equation, exchange-correlation functional 

Exc[n] has to be known. However, the functional form of the Exc[n] is unknown and hence 

reasonable approximation has to be made. Two most widely used approximations are the 

local density approximation (LDA) and the generalized gradient approximation (GGA). 

The simplest approximation used is LDA which defines the Exc[n] as [10]: 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛] = ∫𝑛(𝑟 ) 𝜀𝑥𝑐[𝑛(𝑟 )]𝑑𝑟  ,                        2.16 

where εxc stands for exchange-correlation energy per particle of a homogeneous electron 

gas with interacting electrons and is numerically known from Quantum Monte Carlo 

calculations. LDA is assumed to depend only on the density at the coordinate where it is 

evaluated and also the density distribution is assumed not to vary too rapidly. Under this 

approximation, for each point in space the exchange-correlation energy is approximated 

locally by the exchange-correlation energy of a homogeneous electron gas with the same 

electron density as present at that point.  

For systems where charge densities vary rapidly i.e. non-uniform, the exchange-

correlation energy can deviate significantly from the uniform result obtained using the 

LDA. A more sophisticated approximation involves GGA, which considers gradient of 

the total charge density. While LDA depends only on the local density )rn(


, GGA 

incorporates the gradient in density as well: 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛] = ∫𝑛(𝑟 ) 𝜀𝑥𝑐[𝑛(𝑟 ), |∇𝑛(𝑟 )|]𝑑𝑟 .                2.17 
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GGAs tend to improve total energies [26], atomization energies [26-28], energy 

barriers and structural energy differences as compared to LDA [29-32]. GGAs expand 

and soften bonds as well as favour density inhomogeneity more than LDA [32]. In our 

calculations we have used GGA based approximations to account for the exchange-

correlation energy. 

2.3 Basis sets 

The effective one-electron Kohn-Sham equations (Eqn. 2.15) are non-linear 

partial differential equations involving eigenvalue problem that are iteratively solved by 

representing the electronic wavefunctions by a linear combination of a set of basis 

functions. The commonly used basis functions are plane waves, atomic orbitals or a 

combination of both (known as mixed basis). However, because of its simplicity, the 

most common basis functions are the plane waves. 

2.3.1 Plane wave basis 

The solution to the problem, even after these assumptions, is still computationally 

intensive and scales as N3, where N is the number of atoms in our system [25]. With this 

formalism, solution for bulk systems is practically impossible unless the periodicity of 

the bulk crystal is exploited and reduce the problem to be addressed from infinite to finite 

size. However, while considering a finite size, false periodicity is being imposed by the 

construction of a supercell which is then replicated periodically throughout (Figure 2.1). 

The region confined within the green box is actually the supercell that is used for 

calculation and the region within the dotted box are its images. Hence for any translation 

of the red atom to new position marked in blue, its images (marked with dotted arrow) 

experiences the same. Sufficient care should be taken while constructing a supercell such 

that the structural features such as defects contained within each one, which in reality is 

isolated, do not interact significantly. 
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Figure 2.1: Periodic boundary conditions and construction of a supercell (region 

within the green boundary). 

Atoms in crystalline system are arranged in a regular periodic array described by 

the Bravais lattice vector 𝑅⃗ . The system, being infinite, is invariant under translation by 

any set of these lattice vectors, and in particular the potential is also periodic i.e.  

V(𝑅⃗ + 𝑟 ) = V(𝑟 ),               2.18 

The theorem of Bloch shows that the electronic wavefunction in a periodic system 

can be written as the product of periodic part and wave-like part [25]:  

Ψ𝑛𝑘⃗ 
(𝑟 ) = exp (𝑖𝑘⃗ . 𝑟⃗⃗  ⃗)u𝑛𝑘⃗ 

(𝑟 ),             2.19 

where 𝑘⃗  is a vector in the first Brillouin zone, Ψ𝑛𝑘⃗ 
(𝑟 ) is the wavefunction, u𝑛𝑘⃗ 

(𝑟 ) is 

periodic in the same way as the crystal lattice (u𝑛𝑘⃗ (𝑟 + 𝑅⃗ ) = u𝑛𝑘⃗ 
(𝑟 ) for all 𝑅⃗  in the 

Bravais lattice). This periodic term is expanded as a linear sum of plane-waves with wave 

vectors that are reciprocal lattice vectors of the crystal and is represented as [25]: 
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u𝑛𝑘⃗ 
(𝑟 ) = ∑𝐶

𝐺 
𝑛𝑘⃗ 𝑒𝑥𝑝(𝑖𝐺 . 𝑟 )

𝐺

 ,                              2.20 

where 𝐺  sums over the reciprocal lattice vectors (at least in principle), and 𝐶𝐺  are 

coefficients in the expansion. In actual calculations, we have to limit the plane wave 

expansion at some point to make it computationally feasible. The point at which we 

truncate the basis set is called the plane-wave cutoff. The highest included wave vectors 

(𝑘⃗ + 𝐺 ) of plane waves in a basis set is determined by an energy cutoff Ecut using the 

following equation: 

ℏ|𝑘⃗ + 𝐺 |
2

2𝑚𝑒
< 𝐸𝑐𝑢𝑡.                                      2.21 

An advantage of plane waves is that the sums needed to go back and forth 

between reciprocal space and real space can be performed efficiently using fast Fourier 

transforms (FFTs). They are called ‘plane waves’ because surfaces of constant phase are 

parallel planes perpendicular to the direction of propagation. By limiting the plane wave 

expansion to the discrete set of 𝐺  vectors that are sums of integer multiples of the three 

primitive lattice vectors, we are selecting plane waves that have a periodicity compatible 

with the periodic boundary conditions of our direct lattice. In general, the properties of a 

periodic system are correctly described only if a sufficient number of k-vectors are 

sampled from the Brioullin zone. However, when a calculation is carried out for all 

electrons associated with the atoms, a large number of plane waves is required to expand 

the wavefunctions in the core region. The wavefunctions of core electrons because of 

strong nuclear Coulomb interaction are highly localised and oscillating, which are 

difficult to represent computationally (Figure 2.2). This problem is resolved by using 

pseudopotentials that eliminates the numerical problems associated with the electron-ion 

interaction. 
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2.4 Pseudopotentials 

Most properties of the systems are determined by the valence electrons with little 

contributions from the core electrons (electrons that are bounded strongly to the nucleus). 

It is thus assumed that the core electrons contribution to the total binding energy does 

not change when isolated atoms are brought together to form a crystal. Therefore, the 

actual energy differences of interest are the changes in valence electron energies, and so 

if the binding energy of the core electrons can be subtracted out, the valence electron 

energy change will be a much larger fraction of the total binding energy, and hence much 

easier to calculate accurately.  

 

Figure 2.2: Schematic diagram comparing relationship between an all-electron (Ψ, 

blue) and pseudo wavefunction (Ψpseudo, red) along with their potentials. The real and 

the pseudo wavefunction and potentials match above the cutoff radius rcut. 

Specially constructed non-singular electron-ion potential (pseudopotential) is 

used in place of all electron potential. This pseudopotential replaces the core electrons 
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and the nucleus with an effective potential which mimics how the valence electrons 

experience the potential of the nucleus (Figure 2.2). Effective pseudopotential is 

constructed by considering a cutoff radius (rcut), the boundary separating the core and 

valence regions (Figure 2.2) [33, 34] 

𝛹𝐴𝐸(𝑟 ) = 𝛹𝑃𝑆(𝑟 ), 𝑟 > 𝑟𝑐𝑢𝑡,  2.22 

where the actual wavefunctions (all electron, Ψ𝐴𝐸) and pseudo wavefunctions (Ψ𝑃𝑆) are 

the same beyond rcut [35]. The transferability of the pseudopotential i.e. ability to 

describe an atom in different chemical environments, is crucial [36]. With increasing rcut, 

the number of plane waves required to represent a pseudo wavefunction generally 

decreases but compromising its transferability. Hence, an optimal value of rcut is required 

to be estimated.  

The pseudopotentials eigenvalues should also be conserved  

𝜖𝑖
𝐴𝐸 = 𝜖𝑖

𝑃𝑆.                2.23 

The pseudopotentials should also follow the Norm-conservation criteria (total 

charge of each pseudo wave function should equal the charge of the all-electron wave 

function) [35] such that 

∫ |𝛹𝑖
𝐴𝐸(𝑟 )|

2
𝑑𝑟 

𝑟𝑐𝑢𝑡

0

= ∫ |𝛹𝑖
𝑃𝑆(𝑟 )|

2
𝑑𝑟 

𝑟𝑐𝑢𝑡

0

.            2.24 

Norm conservation criteria states that the valence electrons are not affected by 

the replacement of smoother charge distribution for the core electrons as long as the total 

charge remains same.  

With justified relaxation in the norm conserving pseudopotentials, ultrasoft 

pseudopotentials was proposed by Vanderbilt [37] to obtain smoother (mathematically 

less expensive, softer) pseudo wavefunctions. This was done through splitting the pseudo 

wave functions into two parts. The first part being ultrasoft valence wave functions 
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𝛹𝑖
𝑈𝑆(𝑟 ),          2.25 

that don’t fulfill the norm conservation criteria, and the second part being core 

augmentation charge to account for the charge deficit in the core region 

𝑄𝑛𝑚(𝑟 ) = 𝛹𝐴𝐸∗

𝑛(𝑟 )𝛹
𝐴𝐸

𝑚(𝑟 ) − 𝛹𝑈𝑆∗

𝑛(𝑟 )𝛹
𝑈𝑆

𝑚(𝑟 ). 2.26 

The ultrasoft potential takes the form: 

𝑉𝑈𝑆 = 𝑉𝑙𝑜𝑐(𝑟 ) + ∑ 𝐷𝑛𝑚
0 |𝛽𝑛

𝐼 ⟩⟨𝛽𝑚
𝐼 |

𝑛𝑚𝐼

 ,                  2.27 

where the β-projector are strictly localized inside the cut-off region and is 

defined through: 

|𝛽𝑛⟩ = ∑
|𝜒𝑚⟩

⟨𝜒𝑚|𝛹𝑛⟩
𝑚

.                                   2.28 

The χ-functions are defined through: 

|𝜒𝑛⟩ = (𝜖𝑛 − 𝑇̂ − 𝑉𝑙𝑜𝑐)|𝛹𝑛⟩,  2.29 

and D is defined as 

𝐷𝑛𝑚
0 = ⟨𝛹𝑛|𝜒𝑚⟩ + 𝜖𝑚𝑞𝑛𝑚.  2.30 

where  

𝑞𝑛𝑚 = ∫ 𝑄𝑛𝑚(𝑟 )𝑑𝑟 

𝑟𝑐𝑢𝑡

0

.                                      2.31 

Therefore the ultrasoft pseudopotential is determined by 𝑉𝑙𝑜𝑐(𝑟 ), 𝐷𝑛𝑚
0 , 𝑄𝑛𝑚(𝑟 ) 

and 𝛽𝑛(𝑟 ). The advantage with this pseudopotential is the requirement of less plane 

waves. In the present study ultrasoft pseudopotentials are used that are tuned to use the 
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basis set with a very low energy cut-off without compromising the accuracy of the 

calculations. 

2.5 Computational details 

Quantum Espresso package [38] has been used to carry out first-principles DFT-

based calculations with a plane wave basis and pseudopotentials. Plane wave basis 

truncated with an energy cutoff of 25 Ry is used to represent the wave functions and that 

of 200 Ry for density (convergence has been ensured for the above cut-off parameters). 

Ultrasoft pseudopotentials [37] are used to model ionic cores along with a generalized 

gradient approximation for the electron correlation and exchange energy with the 

Perdew-Burke-Ernzerhof functional [32].  Brillouin Zone integrations are sampled with 

suitable meshes for calculation with periodic supercell after checking the convergence 

with k-points. Hellman-Feynman forces on atoms and stresses are used to determine 

optimal crystal structures through minimization of total energy with the Broyden-

Fletcher-Goldfarb-Shanno scheme. Convergence to minimum energy is achieved until 

either the difference in total energy between successive self-consistent cycles is less than 

10-5 eV or the average force in the system is less than 0.02 eV/Å.  
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Chapter 3 

Energetics of Substitutional Alloying and its 

Tendency to Cluster in Ni Solid Solution*  

At higher operating temperature, the strength of Ni-based superalloys is primarily 

determined by its microstructure [40]. The microstructure essentially consists of ordered 

γ precipitates (based on Ni3Al) with L12 crystal structure in a solid solution of γ matrix 

having FCC structure (Figure 1.1). For optimum strength to be achieved for the 

superalloys, Ni3Al should be in complete coherence with the matrix in cube on cube 

orientation. It has been shown that one of the critical factors that control the morphology 

of coherent γ precipitates is the magnitude and sign of the stress-free lattice misfit () 

between γ and γ [1].  is defined as  

𝛿 = 2 × 100 × [
(𝑎𝛾′ − 𝑎𝛾)

(𝑎𝛾′ + 𝑎𝛾)
⁄ ],  3.1 

where aγ and aγ are the equilibrium lattice parameters of the γ and γ phases respectively. 

The composition of the solutes in these two primary phases along with the coefficient of 

thermal expansion determine the magnitude of .  can be tailored based on the 

requirement by suitably alloying with elements, which partition preferentially to either γ 

or γ phase or into both phases, and contributing to the overall straining of the 

_________________________________________ 

* This work has been published in part in Comp. Mat. Sci [39]. Copyright (2018). 
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corresponding phase lattice. High values of  increase the misfit stress leading to semi-

coherent or incoherent interface resulting in loss of coherency and its related strength [1]. 

The misfit stress arising due to   along with the applied stresses could be important 

driving force for dislocation motion during high-temperature low-stress creep. It is 

reported that in single crystal alloys, under tensile loading, negative misfit stimulates the 

formation of rafts perpendicular to the tensile force direction, which aids in reducing the 

creep rate [1]. Hence, one of the ways of controlling the lattice mismatch is to add 

prescribed quantities of solutes into the system. In order to achieve this, prior knowledge 

of volume changes associated with the addition of solutes is important. 

 In dilute alloys (wherein the solute concentration is low), the spacing between the 

individual solute atoms (in a disordered alloy) can be generally very large and the solutes 

can generally be considered to be isolated. However, it is essential to know whether the 

solutes prefer to have a tendency for segregation (clustering). From atomistic point of 

view, even with two solute atoms, several configurations need to be analyzed to discern 

this behavior. This can, in principle, be identified from the configuration that has 

minimum energy among the several possible configurations. An equivalent approach is 

based on the binding energy (BE) between the solute atoms. The magnitude and sign of 

BE would describe the preference for neighbouring bonds for an atom and hence is 

correlated to the preference for clustering [41].  

 In this chapter, we evaluate the changes in volume and calculate the lattice 

parameters of the alloyed systems and hence estimate the Vegard’s coefficient for 

different solutes in Ni. We also estimate the BE between solutes when they are separated 

as 1st, 2nd, 3rd and 4th nearest neighbour (NN).  

3.1 Computational details  

In the present study, we estimate the change in lattice parameter with substitution 

of solutes from 3d, 4d and 5d series transition metals. In order to simulate system with 

different alloy composition (up to 6.7 at.% of solute), three different supercells with 32, 

96 and 144 atoms of Ni have been considered. To estimate the BE, 96 atoms supercell of 
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γ phase have been generated with three orthogonal vectors along X, Y and Z directions 

as [1̅01], [1̅21̅] and [111] respectively with an arrangement of six layers with stacking 

sequence ABCABC along the <111> corresponding to close-packed FCC structure 

(Figure 3.1). The effect of solute substitution has been studied by substituting for either 

a single Ni atom (Figure 3.1) or two Ni atoms (Figure 3.2a-d) corresponding to ~1 at.% 

and ~2 at.% respectively. When two solute atoms are substituted they are placed such 

that they form 1st to 4th nearest neighbour configuration. All the systems have been 

relaxed completely (i.e. the atomic positions as well as the volume) to obtain minimum 

energy configuration to estimate the volume. Elements from 3d (Ti, V, Cr and Co), 4d 

(Zr, Nb, Mo, Ru and Pd) and 5d (Ta, W, Re and Ir) transition metal series have been 

considered as substitutional solutes. 

3.2 Lattice parameter of Ni 

Typical variation in the energy of the systems, after normalizing by subtracting 

with the minimum energy corresponding to the equilibrium lattice parameters (a
0
), with 

the lattice parameter is shown in Figure 3.3. Our estimates of the a
0
 of pure Ni are 3.52 

and 3.51 Å for the ferromagnetic and the non-magnetic states respectively. This is in 

excellent agreement with the experimental value of 3.52 Å [1].  

 

Figure 3.1: 96 atoms supercell of Ni with single solute substitution. 
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               (a)                                  (b)                             (c)                          (d) 

Figure 3.2: Two solutes with 1
st
 to 4

th
 nearest neighbour separation (a)-(d) 

respectively. 

 

Figure 3.3: Variation of energy as a function of lattice parameter for bulk Ni in 

magnetic and non-magnetic states. Copyright (2018) by Comp. Mat. Sci [39]. 

Solute substitution, owing to differences in the atomic size, changes the lattice 

parameter of the system. Vegard's law describes an approximate empirical rule and states 

that a linear relation exists between the lattice constant of an alloyed system and the 

concentrations of the solutes [42,43]. Hence, lattice parameter of alloyed Ni system (𝑎𝛾) 

is given as 
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𝑎𝛾~𝑎𝑁𝑖 + ∑ 𝑉𝑖
𝛾
𝑋𝑖

𝛾
𝑖 ,     3.2 

where 𝑎𝑁𝑖  is the lattice parameter of pure Ni, 𝑉𝑖
𝛾
 and 𝑋𝑖

𝛾
 is the Vegard’s coefficients and 

the atomic fractions of element i in Ni. Though empirical relation does not assume ternary 

and higher order interactions, it is observed to be a quite accurate description. We 

calculate the coefficients of elements that are most commonly used as alloying elements 

in Ni-based superalloy. The changes in lattice parameter of the system, for solute 

concentration variation from 0.7 to 6.7 at.%, are represented in Figure 3.4. Both magnetic 

and non-magnetic states have been considered here. It is clear that linear relations 

between the change in lattice parameter with solute concentration, as described by 

Vegard’s relation, is being maintained. Table 3.1 lists the Vegard’s coefficients of solutes 

estimated from the present study as well as reported values from experiments [44 - 46] 

and  first-principles calculations [47]. While our studies suggest that substitution by Co 

and Cr would lead to contraction of the lattice, experimental results show the other way. 

This deviation may be attributed to the temperature effect, as the experimental 

measurements have been done at room temperature while our estimates are at 0K. 

Deviation in results from the first-principles study by Goswami [47] may be attributed 

to their smaller system of 32 atom supercell leading to the interaction between the images 

of the solutes because of periodic boundary condition. To understand the interaction 

between solutes a bigger supercell of Ni with 144 atoms was considered. Two solutes 

were substituted with variable spacing (d) between them and the energy of the completely 

relaxed system was calculated (Table 3.2). It is clearly observed that marginal change in 

energy is observed in the fourth decimal place for Al as well as Ru when d is greater than 

5.56 Å. Therefore, in the present study, whenever two solutes are substituted it is ensured 

that the spacing between them is higher than 7 Å. Consideration of a bigger supercell (up 

to 144 atoms) in the present study would potentially minimize these interactions. 
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(a)  

(b)  

Figure 3.4: Changes in lattice parameter of the system as a function of solute at.%  

for (a) non-magnetic and (b) ferromagnetic state of Ni. 
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Table 3.1: Vegard's law coefficients of solutes for lattice constant of alloys with 

ferromagnetic and non-magnetic states of Ni. 

 Present study Reported 

 Ferromagnetic Ni Non-mag Ni Experimental First-principles [47] 

Zr 0.90 0.92   

Ta 0.56 0.62 0.7 [44]  

Nb 0.54 0.59 0.7 [44] 0.654 

Pd 0.50 0.55   

Ir 0.45 0.44   

Ru 0.40 0.37 0.3125 [46] 0.408 

W 0.39 0.44 0.444 [44] 0.443 

Ti 0.32 0.36 0.422 [44] 0.38 

Al 0.19 0.22 0.179 [44] 0.188 

Re 0.18 0.24 0.441 [45] 0.368 

Mo 0.17 0.22 0.478 [44] 0.451 

V 0.11 0.14   

Co -0.03 -0.04 0.0196 [44]  

Cr -0.17 -0.17 0.11 [44]  

Table 3.2: Energy of the relaxed systems with different configurations of solutes. 

Spacing between 

solutes (Å) 

Energy (Ry) 

Al Ru 

2.49 -12205.14570 -12297.05937 

3.52 -12205.16417 -12297.06160 

4.31 -12205.16504 -12297.06315 

5.56 -12205.16660 -12297.06394 

6.1 -12205.16657 -12297.06374 

6.59 -12205.16660 -12297.06382 
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3.2.1 Volume change (V) with solute substitution (~1 at.%) 

The volume change associated with alloying not only provides solid solution 

strengthening but also affects the lattice mismatch between γ and γ, which has a bearing 

on the precipitation strengthening [1]. The fractional change in atomic volume of Ni with 

alloying by different solutes is presented in Figures 3.5 (a) and (b), for the non-magnetic 

and ferromagnetic cases, respectively, in terms of number of d-orbital valence electrons 

of the solutes, in their respective atomic ground states. Except Cr (and Co in the non-

magnetic case) all the other solutes increase the volume of the system. The volume 

change (increase) associated with solute substitution is marginally less for the 

ferromagnetic Ni than for the non-magnetic Ni. This difference can be attributed to the 

fact that the lattice parameter of magnetic Ni, itself is roughly 0.3 % higher than the non-

magnetic one indicating that magnetic Ni would be able to accommodate larger atoms 

with lesser strain in the lattice. However, the general variation and trend are quite similar 

in the two magnetic states of the system. With increase in the number of valence 

electrons, the percentage change in volume reduces until a valency of 5 (corresponding 

to half-filled d-orbital) is reached. Beyond this minimum, it increases with further 

increase in valency. 

3.2.2  Volume change (V) with substitution of solutes (~2 at.%) 

The volume change associated with solutes substitution for four different 

configurations wherein the solutes are placed as 1st, 2nd, 3rd and 4th nearest neighbours 

are considered (Figure 3.2). The corresponding volume changes are shown as tabular 

form in Table 3.3 and 3.4 for non-magnetic Ni and ferromagnetic state of Ni respectively. 

In these tables,  indicates the compensatory volume to be added because of the 

interactions between the solutes and is computed using 

𝛿 = ∆𝑉2𝑋 − 2 × ∆𝑉1𝑋,    3.3 

where ∆𝑉2𝑋  and ∆𝑉1𝑋  are volume changes associated with ~ 2 at.% and ~1 at.% solutes 

respectively. In comparison to ~1 at.% solute substitution, the volume change is not 
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exactly double with ~2 at.% solutes substitution. It is either slightly less or more than 

two times depending on the spacing and interaction between the solute atoms (Table 3.3 

and 3.4). The compensatory volume is maximum positive for Ta in non-magnetic and W 

in magnetic Ni, when the solutes are 1st nearest neighbour. It is maximum negative with 

Re as solute atom in the 2nd nearest neighbour position in the magnetic Ni. However, it 

would be worth looking at whether the solutes prefer to occupy themselves as neighbours 

which can be accomplished using the concept of binding energy (BE).  

(a)  

(b)  

Figure 3.5: Fractional change in volume associated with solute substitution for (a) 

non-magnetic and (b) ferromagnetic Ni with the number of d-orbital valence 

electrons of substitutional TM atoms in their respective ground states. The horizontal 

dotted line at %V/V=0 indicates the base line for pure Ni. Copyright (2018) by 

Comp. Mat. Sci [39]. 
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Table 3.3: V associated with solute substitution for Ni in non-magnetic state. 

Atomic 

No. 

  1X 2X (1st NN) 2X (2nd NN) 2X (3rd NN) 2X (4th NN) 

X %∆𝑉1𝑋 %∆𝑉2𝑋  %∆𝑉2𝑋   %∆𝑉2𝑋  %∆𝑉2𝑋  

13 Al 0.21 0.42 -0.01 0.39 -0.03 0.40 -0.03 0.40 -0.03 

22 Ti 0.36 0.74 0.02 0.67 -0.05 0.67 -0.05 0.67 -0.05 

23 V 0.14 0.34 0.05 0.28 0.00 0.29 0.01 0.30 0.01 

24 Cr -0.19 -0.35 0.03 -0.36 0.02 -0.38 0.00 -0.35 0.03 

27 Co -0.04 -0.11 -0.03 -0.10 -0.02 -0.10 -0.02 -0.10 -0.02 

40 Zr 0.93 1.89 0.02 1.83 -0.03 1.84 -0.02 1.82 -0.04 

41 Nb 0.59 1.25 0.07 1.17 -0.01 1.18 0.00 1.19 0.01 

42 Mo 0.24 0.49 0.01 0.43 -0.05 0.43 -0.05 0.46 -0.01 

44 Ru 0.36 0.76 0.03 0.71 -0.02 0.71 -0.02 0.74 0.01 

46 Pd 0.52 1.04 0.00 1.04 -0.01 1.05 0.00 1.05 0.01 

73 Ta 0.61 1.32 0.09 1.24 0.01 1.24 0.02 1.25 0.03 

74 W 0.45 0.98 0.08 0.86 -0.03 0.90 0.00 0.89 -0.01 

75 Re 0.25 0.54 0.03 0.45 -0.05 0.47 -0.03 0.49 -0.01 

77 Ir 0.41 0.87 0.05 0.83 0.00 0.83 0.00 0.85 0.02 

Table 3.4: V associated with solute substitution Ni in ferromagnetic state. 

Atomic 

No. 

  1X 2X (1st NN) 2X (2nd NN) 2X (3rd NN) 2X (4th NN) 

X %∆𝑉1𝑋 %∆𝑉2𝑋  %∆𝑉2𝑋   %∆𝑉2𝑋  %∆𝑉2𝑋  

13 Al 0.19 0.41 0.03 0.37 -0.01 0.38 0.00 0.38 0.00 

22 Ti 0.33 0.69 0.03 0.63 -0.03 0.62 -0.04 0.62 -0.04 

23 V 0.11 0.29 0.07 0.22 -0.01 0.20 -0.03 0.23 0.00 

24 Cr -0.19 -0.38 0.00 -0.25 0.00 -0.40 -0.02 -0.40 -0.02 

27 Co 0.03 0.00 -0.06 0.00 -0.06 0.01 -0.05 0.01 -0.05 

40 Zr 0.89 1.81 0.02 1.76 -0.03 1.76 -0.03 1.74 -0.05 

41 Nb 0.55 1.16 0.05 1.08 -0.03 1.09 -0.02 1.09 -0.02 

42 Mo 0.19 0.41 0.04 0.37 -0.01 0.37 0.00 0.39 0.02 

44 Ru 0.42 0.80 -0.03 0.80 -0.03 0.79 -0.04 0.79 -0.04 

46 Pd 0.57 1.08 -0.06 1.06 -0.08 1.06 -0.07 1.07 -0.07 

73 Ta 0.58 1.22 0.05 1.12 -0.05 1.12 -0.04 1.14 -0.02 

74 W 0.41 0.91 0.08 0.80 -0.02 0.79 -0.03 0.81 -0.01 

75 Re 0.25 0.52 0.02 0.39 -0.11 0.42 -0.08 0.46 -0.04 

77 Ir 0.48 0.92 -0.04 0.92 -0.04 0.89 -0.07 0.92 -0.05 
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3.3 Binding energy (BE) 

In order to describe what nearest neighbour bonds an atom prefers and hence 

correlate with their preference towards forming clusters, we have calculated the BE. BE 

describes the preference towards neighbouring bonds for an atom [41]. The BE between 

two solute atoms (X) in a system with N lattice sites, 𝐸𝑏𝑖𝑛𝑑(𝑋 − 𝑋), in the host lattice of 

Ni atoms is given by  

𝐸𝑏𝑖𝑛𝑑(𝑋 − 𝑋) = 2. 𝐸(𝑁𝑖𝑁−1𝑋1) − 𝐸(𝑁𝑖𝑁−2𝑋2) − 𝐸(𝑁𝑖𝑁), 3.4 

where E(NiN-1X1) and E(NiN-2X2) are the total energies of the supercell with one and two 

X atoms respectively in the desired configuration and E(NiN) is the total energy of a 

perfect supercell consisting of only Ni atoms. The tendency of the alloying elements to 

form a cluster is based on the magnitude of the BE of the system. A negative BE indicates 

repulsive force between the two solute atoms. The first term in the RHS of equation 3.4 

describes energy of a system wherein the solutes are essentially infinitely separated. 

Since, we work with finite systems (96 atoms), the separation in the present case 

corresponds to sixth nearest neighbour due to periodic boundary conditions (based on the 

interaction analysis in section 3.2. This can be considered as a good approximation for 

simulating infinite separation as generally the influence of one solute is not expected to 

be felt for such separation in a real system [48]. 

In the present chapter BE with different solute atoms have been calculated for 

four different configurations (Figure 3.2) with and without spin-polarization for Ni 

(Table 3.5). In the non-magnetic case, Co has a positive BE with another Co at the first 

nearest neighbour configuration indicating its preference to form cluster (marked as bold 

in the table) whereas other elements do not show clustering behavior. In fact, in the 

magnetic case too, Co has zero BE for 1st and 2nd neighbour configurations indicating its 

relative insensitiveness for the presence of other Co atom. Irrespective of the magnetic 

state of Ni, except for Co and to some extent Ru and Pd, BE is maximum (negative) for 

1st NN configuration and hence suggesting maximum repulsion for this configuration. 

Repulsive energy is substantially reduced with increasing separation between the solutes.  
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Table 3.5: Binding energy associated with solute substitution in Ni. The configuration 

with highest BE is marked bold. 

 Non- magnetic Magnetic 

 BE1NN  BE2NN BE3NN BE4NN BE1NN  BE2NN BE3NN BE4NN 

Al -0.28 -0.03 -0.02 0.01 -0.22 0.01 0.00 0.05 

Ti -0.46 0.00 -0.02 -0.05 -0.37 0.12 0.02 0.02 

V -0.37 -0.01 -0.03 -0.13 -0.23 0.16 0.03 -0.05 

Cr -0.24 -0.02 -0.03 -0.17 0.10 0.31 0.32 0.32 

Co 0.03 0.00 0.00 -0.01 0.00 0.00  -0.03 

Zr -0.67 0.10 0.01 -0.03 -0.59 0.22 0.05 0.05 

Nb -0.64 0.04 0.00 -0.13 -0.48 0.24 0.07 -0.03 

Mo -0.57 -0.02 -0.04 -0.24 -0.24 0.24 0.06 -0.12 

Ru -0.06 -0.03 -0.01 -0.10 0.00 -0.04 0.04 -0.05 

Pd -0.01 0.05 0.00 -0.03 -0.01 0.05 -0.01 -0.03 

Ta 
-0.69          

(-0.68*) 

0.05    

(0.06*) 

-0.01          

(-0.01*) 

-0.12          

(-0.03*) 
-0.52 0.24 0.06 -0.02 

W 
-0.62          

(-0.60*) 

-0.02          

(-0.01*) 

-0.02          

(-0.29*) 

-0.21           

(-0.07*) 
-0.33 0.27 0.09 -0.07 

Re 
-0.45          

(-0.43*) 

-0.09          

(-0.09*) 

-0.05          

(-0.05*) 

-0.27          

(-0.11*) 
0.05 0.20 0.07 -0.10 

Ir -0.11 -0.05 -0.01 -0.04 -0.07 -0.06 0.03 -0.02 

* A. Mottura et al. [49] 

In both magnetic as well as non-magnetic cases, Zr, Nb, Pd and Ta show 

preference to have 2nd neighbour coordination whereas Al shows preference for 4th 

neighbour coordination. In addition, elements such as Ti, V, Mo, W and Re show 

preference for 2nd and Cr, Ru and Ir show preference for 3rd neighbour coordination in 

the magnetic state, whereas in the non-magnetic state they tend to stay far apart. Mottura 

et al. [49] have reported little effect of magnetism on the BE, however we observe that 

there is an appreciable change in the BE for some solutes with the state of Ni atom. The 

values reported by Mottura et al. [49] for the non-magnetic Ni are in very good agreement 

with our calculation for Ta, W and Re. While for other elements, the magnitudes vary 
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with the state of magnetization, for Cr and Re there is a complete reversal from repulsive 

to attractive force between the solutes. 

3.4 Conclusion 

Lattice parameter change associated with solute substitution follow linear 

relationship and hence Vegard’s law can be considered to be applicable for finding the 

variation of the lattice parameter with their concentration. The coefficients estimated in 

the present study are in agreement with the experimentally reported [44 - 46] as well as 

other first-principles calculation [47]. With these coefficients we can find the variation 

of lattice expansion/contraction with the composition of solute element and estimate the 

lattice parameter as a function of alloy composition (equation 3.2). Such a relation has 

practical significance though it would be based on the assumption that Vegard’s law is 

applicable and that there is no cross-correlation effect due to different solutes, which 

needs further verification. It is known that the lattice misfit between the  and  phases 

affects the coherency between the phases and hence the extent of precipitation hardening. 

Ni and Ni3Al are considered as prototypes for the  and  phases and a relation for 

estimating the lattice parameter of  phase can also be obtained by substitution of 

alloying elements in Ni3Al. Using such relations along with the partitioning information 

of alloying elements from other calculations (say thermodynamic calculations), the 

optimal compositions can be arrived at while designing a new alloy (so as to keep the 

coherency strain at a minimum level). Further, from the estimated lattice misfit, it would 

be possible to calculate the strain energy using micromechanics principles. Therefore, 

the extent of precipitation hardening can be estimated if the elastic moduli are 

known/computed. The strain energy can also serve as useful input for mesoscale 

simulations such as phase field simulations and hence realistic microstructural evolution 

can also be simulated. BE associated with the relative positioning between the solutes 

predict their preference of the neighbouring bonds with positive value associated with 

attraction. On this basis except Co no other solutes prefer clustering. Repulsive energy is 

substantially reduced with increasing separation between the solutes.  
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Chapter 4 

Influence of Dilute Solute Substitution in Ni 

on Generalized Stacking Fault Energies* 

The crystal structure of Ni, being face center cubic (FCC), makes it inherently 

ductile as it fulfills the von Mises (1928) criteria of having the necessary five independent 

active slip systems. Slip system describes the set of symmetrically identical slip planes 

and the associated family of slip directions for which dislocation motion can easily occur 

leading to plastic deformation. An independent slip system is defined as one producing 

a crystal shape change that cannot be reproduced by any combination of other slip 

systems. FCC crystal has 12 possible slip systems ({111} <110>, out of which five are 

independent) and hence the movement of dislocation, causing plastic deformation, is 

very much favorable leading to higher ductility as compared to other crystal structures.  

4.1 Dislocation  

The importance of understanding dislocations and their interaction is vital for 

improving the material’s behavior under stress. The permanent deformation which 

materials retain even after the removal of external loading is achieved through slip, a 

technical term referring to plastic deformation caused by dislocations. Plastic 

_________________________________________ 

* This work has been published in part in Comp. Mat. Sci [39]. Copyright (2018). 
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deformation by shear can be visualized as a plane of atoms sliding past another plane 

(Figure 4.1). This movement requires a stress, 𝜏𝑚 , which is proportional to the shear 

modulus (G) and is given by 𝜏𝑚 ≈ 𝐺
2𝜋⁄  , is of the order of GPa. However, the crystals 

typically yield at stress levels of the order of 300 MPa. Taylor, Orowan and Polyani 

independently postulated in 1930s and later got confirmed by another TEM observations 

in 1950s, that the agent responsible for this weakening is the presence of a 

crystallographic defect caused by irregularity within the crystals called dislocation.  

4.1.1 Slip by dislocation glide  

Glide of many dislocations, in single crystals, leads to slip which is manifested 

as weakening of the system leading to plastic deformation at much lower load than 

predicted by theoretical calculation for perfect materials. Glide requires relatively little 

atomic motion compared to full shifting of the perfect (i.e., defect free) crystals. Hence 

the stress to move a dislocation is much smaller (at least 100 times), as only few bonds 

are to be broken at any instant. In 1940 Peierls [50] defined a concept, later refined by 

others [51 - 53], that for individual dislocation movement, a lattice frictional force called 

Peierls-Nabarro force must be overcome. This force depends on the force-distance 

relation between atoms. If the dislocation has to move, for example an edge dislocation 

represented with red colored sheet of atoms (Figure 4.2), it has to press against the 

neighbouring atoms on one side and move away from the atoms on the other side by 

passing through a higher energy configuration. Peierls and Nabarro arrived at the energy 

(EP-N) of the dislocation per unit length as a function of dislocation movement (Figure 

4.2, also referred as Peierls potential). 

𝐸𝑃−𝑁 =
𝐺|𝑏⃗ |

2

𝜋(1−𝜈)
𝑒𝑥𝑝 (

−2𝜋𝑊

|𝑏⃗ |
),   4.1 

where W is the width of the dislocation. The Peierls-Nabarro stress is the shear stress 

required to move an individual dislocation on its slip plane and is given as  



43 
 
 

 

𝜏𝑃−𝑁 =
2𝜋

|𝑏⃗ |
2 𝐸𝑃−𝑁 ≈

2𝐺

(1−𝜈)
𝑒𝑥𝑝 (

−2𝜋𝑑

(1−𝜈)|𝑏⃗ |
),   4.2 

where d is the distance between slip planes and Burgers vector 𝑏⃗  is distance between the 

nearest neighbouring atoms along the slip direction. Hence slip is most preferred on 

planes with highest planar density (maximum d i.e. {111} for FCC) and direction along 

highest linear density (i.e. <110> minimum 𝑏⃗ ). However, the movement of dislocation 

in FCC materials is favored with the dissociation of perfect dislocation to partials due to 

energy considerations. 

 

Figure 4.1: Shearing of one plane over the other on the application of stress leading 

to plastic deformation. 

 

Figure 4.2: Peierls-Nabarro energy as a function of dislocation movement from one 

plane to another (marked with atoms in red color). 
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4.1.2 Dislocation dissociation 

Glide of a dislocation, in FCC crystals, by 1/2<110> (the shortest translation 

vector known as Burgers vector, 𝑏⃗ ) leaves behind a perfect lattice and therefore the 

dislocation is called a perfect dislocation [54]. However, it is also well known that the 

dislocation movement is favored when the perfect dislocation 𝑏⃗ , dissociates into 

Shockley partials, 𝑏1
⃗⃗  ⃗ and 𝑏2

⃗⃗⃗⃗  as 

1

2
[1̅10] →

1

6
[2̅11] +

1

6
[1̅21̅] + 𝑆𝐹,   4.3 

where SF, the stacking fault, is the region encompassing the partial dislocations (Figure 

4.3). The driving force for this dislocation dissociation is the minimization of the total 

energy of the system. Energy of a dislocation is proportional to |𝑏⃗ |
2
 and according to 

Frank [54] the dissociation is favorable only if |𝑏⃗ |
2

> |𝑏⃗ 1|
2
+ |𝑏⃗ 2|

2
. Frank only 

considered energy associated with the dislocation, however increase in energy on account 

of the stacking faults has also to be considered. Thus, it is the overall energy of the crystal 

that should decrease to favor the dissociation. It is important to note that dislocation splits 

into Shockley partials which are still able to glide on the same plane as the perfect 

dislocation, wherein the leading partial creates a stacking fault while trailing one 

eliminates it.  

Hence the movement of dislocation is governed by firstly the generation of 

stacking fault and the fault energy associated with it and secondly overcoming the energy 

barrier, also known as Peierls potential, required to move the dislocation. The Peierls 

potential is greatly reduced in the case of partials compared to that of a perfect 

dislocation. For example, the energy barrier for the dislocation to move along <211> and 

<110> are reported to be 254 mJ/m2 and 777 mJ/m2 by Yu and Wang [55] for Ni3Al. 

Estimation of these two parameters and their response to different solutes and their 

composition will be essential to design materials with desired property. 
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Figure 4.3: Schematic two-dimensional presentation of {111} plane with different 

color of atoms representing the stacking sequence of FCC and dissociation of Burgers 

vector of a perfect dislocation 𝒃⃗⃗ = 𝟏
𝟐⁄ [𝟏̅𝟏𝟎] into two Shockley partials 𝒃𝟏

⃗⃗ ⃗⃗ =

𝟏
𝟔⁄ [𝟏̅𝟐𝟏̅] and 𝒃𝟐

⃗⃗ ⃗⃗ = 𝟏
𝟔⁄ [𝟐̅𝟏𝟏]. Copyright (2018) by Comp. Mat. Sci [39]. 

4.1.3 Stacking fault 

A stacking fault (SF) is a planar defect in a crystal, representing an interruption 

in the perfect stacking sequence of the atomic layers. The normal (111) stacking sequence 

with minimum energy for FCC crystals is …ABCABCABC... Any local disturbances to 

this sequence generates a region with fault in the stacking patterns and hence increases 

the energy. The associated energy cost due to the presence of this planar fault is known 

as the stacking fault energy (SFE).  

In FCC crystals the most common stacking fault is the intrinsic stacking fault 

(ISF) and is generated because of the shearing of the lattice by 1 6⁄ [2̅11]. This movement 

changes the stacking sequence of the FCC lattice from ….ABCABCABCABCABC…. 

to ….ABCABCBCABCABCA….. generating an ISF with one mirror plane with 

energy penalty known as intrinsic stacking fault energy (ISFE, is). 
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The spacing between the partial dislocations is an important parameter governing 

the cross slip i.e. the ability of dislocations to glide on the intersecting slip planes and 

hence is directly correlated with the strengthening of the materials. While a perfect 

dislocation can easily move from one plane to another, the movement of partials has to 

be coordinated and is dependent on the spacing between them [54]. Spacing between 

partials is an interplay of balance between 

1. Repulsive force acting between the two partial dislocations 

2. Attractive force due to energy cost of generating stacking fault 

It is well established that the faulted region between the partials is an intrinsic 

stacking fault and its energy, is, is inversely related to the spacing between the partials, 

d (is α 1/d) [54]. Lower is (wider spacing between the partials) retards the possibility of 

cross slip and reduces the steady-state creep rate 𝜀̇ with a widely used empirical relation 

[56, 57], 

ε ̇  ΓSF
n .    4.4 

Here, ΓSF (=
𝛾𝑖𝑠

𝐺|𝑏⃗ |⁄ ) is the normalized SFE, with G being the shear modulus 

and 𝑏⃗  the burgers vectors, and n is an empirical parameter around 3-4 [58]. Cross-slip 

can be reduced by alloying with elements that lower the SFE of Ni resulting in wider 

stacking faults [59]. 

4.1.4 Estimation of stacking fault energies  

There is no direct way of measuring the SFE, and hence several indirect 

experimental methods have been used to determine it. The most widely used method is 

the back calculation of SFE by measuring the spacing between the partials observed in 

the transmission electron microscopy (TEM). For example Reed and Schramm [60] 

report average value of SFE for Ni to be 220 mJ/m2 and in the range of 160 – 300 mJ/m2. 

However, the wide range for SFE for Ni emphasizes that experimental determination of 
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SFE is quite complicated due to various parameters (grain size, homogeneity, impurity 

etc,) involved including the sample quality and the accuracy with which the width of the 

partials can be determined. The difficulty level would further be exacerbated for accurate 

measurement of the SFE as a function of composition. A systematic study based on the 

theoretical methods would lead to a fundamental understanding of the topic, which is of 

great importance for designing new materials. 

Numerous studies, theoretical as well as experimental, have been carried out to 

gain better understanding of the effects of solute substitution on various properties, such 

as lattice parameter, SFE and USFE of Ni. For example, Siegel [61] calculated the GSF 

of Ni alloyed with Nb, W, Mn, Fe and Cu and evaluated a measure of twinnability of the 

above alloys. Datta et al. addressed the surface effects on the stacking fault by analysing 

nanofilms of Al, Cu and Ni [62]. Shang et al. explored the effects of alloying elements 

on the SFE of dilute Ni-base superalloys and their temperature dependence [63]. Mishin 

[64] carried out comprehensive study on the atomistic modeling of pure γ and γ phases 

using molecular dynamics. However, to the best of our knowledge, a systematic study of 

effect of alloying on the is and us  of Ni is lacking. In this work an attempt has been 

made to gain an understanding of the effect of substitutional solute (~1 at.% and ~2 at.%) 

elements belonging to 3d, 4d and 5d transition metals substituted for Ni on the above 

mentioned properties using first-principles based DFT. For the first time, particular 

emphasis has been given to the spacing between the solutes and its effect on the above 

mentioned properties. A comprehensive study has been carried out by considering nickel 

in both ferromagnetic (spin-polarized) and non-magnetic (non-spin-polarized) states.  

4.2 Computational details 

A supercell was constructed with three orthogonal directions along [1̅01], [1̅21̅] 

and [111] direction having six (111) layers (i.e., with the stacking sequence ABCABC 

along the <111> corresponding to close-packed FCC structure). This system with 96 Ni-

atoms (consisting of 16 atoms in each layer) was completely relaxed, with the flexibility 

to change its cell size also, to obtain the equilibrium volume corresponding to the 
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minimum energy structure. In order to calculate the fault energies, shear deformation 

along <112>{111} is simulated by suitably displacing the image of the supercell along 

the [2̅11] direction, and allowing the positions of the atoms in the outer planes to relax 

along directions only perpendicular to the fault plane. The corresponding energy penalty 

𝛾𝑓𝑠  is estimated as 

𝛾𝑓𝑠 =
𝐸𝑓−𝐸𝑜

𝐴
,    4.5 

where Ef and Eo are the energies of the faulted and perfect structures, and A is the 

area of the slip plane in the supercell on which fault has been generated.   

In order to find out the effect of the solutes on the energy penalty, two different 

configurations have been considered. For the first case, one of the Ni atom on the 

shearing plane while in the second case two Ni atoms were substituted with an alloying 

element from the 3d, 4d and 5d transition element series and the procedure of calculating 

equilibrium volume and the defect energies was repeated for each substitution. With two 

solute atoms, again three different configurations have been considered while 

substituting Ni, namely first, third and fourth nearest neighbour as 1NN, 3NN and 4NN 

on the same (111) plane (Figure 3.2). 2NN have not been considered for estimation of 

the stacking fault as the two alloying elements will have to be on two different (111) 

planes and hence comparison of the properties may be difficult.  

4.3 Estimation of fault vectors from GSF energy surface  

1D representation of the gamma surface gives us the energy required to slide one 

half of the crystal against another along a specific direction (here [11̅0] and [2̅11]) on 

any specific plane (here octahedral (111) for Ni) and is represented in Figure 4.4. The 

minima and maxima in energy represents the stable and unstable stacking fault 

configurations. This minimum energy known as stable stacking fault is the intrinsic 

stacking fault energy (is), and maximum with the EP-N corresponding to the energy 

barrier for dislocation to move from one minima to another for Ni. It is important to note 



49 
 
 

 

that translation of dislocation by 1 2⁄ [11̅0] on (111) (point 1 to 3 for Figure 4.4a) leaves 

the crystal unchanged and hence there should be no energy difference. Hence, no stacking 

fault is generated if dislocation movement is along <110>. Here, the movement of 

1
2⁄ [11̅0] corresponds to movement of perfect dislocation by 𝑏⃗ . However, to undergo 

this slip it has to cross the energy barrier of point 2 which is estimated to be 711 mJ/m2 

for pure Ni in the present study   

 (a) (b)  

Figure 4.4: Energy profile of sliding one half of the Ni supercell against another along 

(a) [𝟏𝟏̅𝟎] and (b) [𝟐̅𝟏𝟏] on (111). 

However, when similar analysis is performed along <112> a local minima at 

point 3 (point 1 to 3 for Figure 4.4b) is obtained corresponding to a translation of Burgers 

vector 𝑏𝑝
⃗⃗⃗⃗ = 1

6⁄ [2̅11], resulting in the generation of an is. Point 2 of Figure 4.4b 

corresponds to the energy barrier for dislocation to move to the stacking fault 

configuration and after a series of refined calculations, the first maximum of the GSFE 

was found at the slip corresponding to the translation of 0.56 𝑏𝑝
⃗⃗⃗⃗  (Appendix A). The 

lowest energy barriers among the family of various paths on a given plane (in the present 
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case {111}) is obtained for translation along 〈112̅〉 and hence is defined as the USFE 

(us) and estimated to be 237 mJ/m2. Hence, it is clear that the dissociation of dislocation 

into partials reduces the energy required for movement of dislocation from 711 mJ/m2 

along <110> to 237 mJ/m2 along <112> (~almost 1/3). 

 

Figure 4.5: Energy cost associated with slip along [𝟐̅𝟏𝟏] for non-magnetic and 

ferromagnetic Ni 

4.4 Results 

4.4.1 Intrinsic stacking fault energy (is) of bulk Ni  

Figure 4.5 plots the energy associated with sliding one half of the crystal against 

the other along [112̅] for ferromagnetic and non-magnetic state of Ni. The maximum and 

minimum are the us and is. is for magnetic Ni is estimated to be 128 mJ/m2 which is in 

very good agreement with other simulated values such as (121 [23], 132 [63] mJ/m2, 134 

[64], 125 [65]). is for non-magnetic Ni is estimated to be 104 which is 24% lower in 

comparison to the magnetic state. Hence magnetic state of Ni has pronounced effect on 

the is and hence the spin polarization cannot be neglected in its estimation. This result 

has other ramification that at service temperatures, which are often higher than the Curie 

temperature of Ni (355oC), the stacking fault energy of pure non-magnetic system is 
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lower than that of the low temperature ferromagnetic system (with the disclaimer that 

presently computed energies are at zero K) which is beneficial for mechanical properties.  

4.4.2 is with solute substitution 

Substitution of solutes to the system is bound to have an effect on the is. The 

variation in is for the solute (~1 at.%) substituted systems is shown in Figure 4.6 as a 

function of the d-orbital valence electrons of the solutes (ground state valence of pure 

solutes). All solutes, except Pd (in the non-magnetic case), lowers the is of Ni up to a 

maximum of 15%, with Ti, V, Nb, Mo, Ru, Ta, W and Re decreasing it by more than 

10%.  These results support the fact that Nb, Re, Ru, Ta, Ti and W are added to improve 

the creep resistance of Ni-based single crystal alloy [66], because of their lower stacking 

fault energies (equation 4.4). While the substitution by 3d series elements leads to almost 

a monotonic increase in is as a function of valence electrons, those by 4d and 5d series 

show a different behavior, in which a maximum reduction of up to 15% is observed for 

solutes having d-valency of 4 (Nb for 4d and W for 5d) and 5 (Re for 5d and Mo for 4d) 

depending on the magnetic state of Ni. 

Table 4.1 summarises of the effect of substituting ~1 at.% as well as ~2 at.% 

solute atoms from the 3d, 4d and 5d series of transition metals on is of dilute solid 

solution of Ni. Our calculated is for ~1 at.% solute substitution, in ferromagnetic Ni, is 

in very good agreement with Shang et al. [63]. With ~2 at.% substitution, except for Al, 

Co in non-magnetic state and Pd, the is decreases further in excess of 20% compared to 

pure Ni. For most of solutes, except for Al, Cr, Co, Zr, Pd and Ir, % decrease in is 

compared to that of pure Ni are more than doubled with doubling the solute 

concentration. For example ~1 at.% Re substitution decreases is of Ni by 13 % while ~2 

at.% Re atoms decrease it by 30 % in the non-magnetic system.  
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(a)  

(b)  

Figure 4.6: Variation in is of Ni with solute substitution with respect to their number 

of d-valence electrons in (a) non-magnetic and (b) magnetic states. The dotted lines 

indicate the is of pure Ni. Copyright (2018) by Comp. Mat. Sci [39]. 
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Table 4.1: ISFE of Ni alloy associated with solute substitution. 

Intrinsic stacking fault energy (mJ/m
2
) 

 Non- magnetic Magnetic 

 ~1 at.%  ~2 at.% ~1 at.%  ~2 at.% 

Ni-X 1X 1NN 3NN 4NN 1X Reported 1NN 3NN 4NN 

Pure 104 104 104 104 128 

121 [23], 134 [64], 

137 [67] , 125 

[65], 132 [63] 

128 128 128 

Al 102 101 101 103 124 124 [63] 117  117 119 

Ti 93 83 81 84 114  113 [63] 100  98 102 

V 92 83 80 81 114  113 [63] 99 97 97 

Cr 98 91 92 92 118  119 [63] 100 123 127 

Co 103 104 104 103 124  127 [63] 120 119 119 

Zr 98 87 89 98 119  102 [63] 104  107 116 

Nb 90 76 74 78 110  59 [61], 104 [63] 90 89 93 

Mo 91 74 75 75 109 109 85 83 83 

Ru 91 82 81 76 120  116 [63] 112 113 113 

Pd 106 104 107 107 128  127 [63] 124 127 128 

Ta 94 82 80 84 113  108 [63] 97 95 99 

W 91 76 75 75 109  38 [61], 105 [63] 90 87 88 

Re 90 73 75 71 111  103 [63] 93 89 86 

Ir 99 95 95 90 122 122 119 117 115 
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   (a)                                                (b) 

Figure 4.7: Dependence of ISFE (is) for TM substituted Ni on the relative spacing 

between solute atoms in (a) non-magnetic and (b) ferromagnetic state of Ni. 

The variation of is for various elemental substitutions for different configurations 

are presented in terms of transition metal series-wise in Figure 4.7. It may be observed 

that the is is sensitive to the spacing between the solutes for some of the elements. For 

example in the non-magnetic system with Zr at 1NN configuration the decrease in is 

(compared to that of pure Ni) is 16% which becomes 14% and 6% for 3NN and 4NN 
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configurations, respectively. When the magnetization is turned on, the reduction in is is 

19%, 16% and 9%, respectively for the 1NN, 3NN and 4NN configurations. It is very 

interesting to note that when the substitution of Cr is doubled, in the non-magnetic case 

the decrease in ISFE is doubled irrespective of the spacing between the Cr atoms. 

However, when the calculations are performed with spin-polarization, the reduction in 

ISFE is 22% and 4% for the 1NN and 3NN configurations respectively, while for the 

4NN configuration, the ISFE is almost equal to that of pure Ni. In other words, whatever 

reduction of fault energy achieved by substituting ~1 at.% Cr atom can be nullified if its 

concentration is increased and keeping the atoms far apart. This result is quite counter-

intuitive. 

4.4.3 Unstable stacking fault energy (us) 

From our  calculations (Figure 4.5) we estimate us for non-magnetic Ni to be 237 

mJ/m2 which is in very good agreement with another DFT calculation of 230 mJ/m2 [23]. 

Our estimation of 281 mJ/m2 for ferromagnetic Ni also compares very well with other 

reported values of 281 mJ/m2 [68], 273 mJ/m2 [61] and 298 mJ/m2 [64]. Similar to is, 

the us for the magnetic state of Ni is about 19 % higher than that of the non-magnetic 

Ni. Hence it can be concluded that magnetic state of Ni also has a significant influence 

on the us and hence on the Peierls stress of the system. The USFE for (100) surface is 

very high (1080 mJ/m2 and 1120 mJ/m2) for the non-magnetic and magnetic system [48].  

This calculation provides a quantitative picture for the absence of dislocations on the 

cubic planes of FCC. 

4.4.4 us with solute substitution 

us can be affected because of the presence of solutes in Ni-based solid solution 

and different solutes may influence it differently. Table 4.2 summerises this influence on 

us when solutes concentration and the spacing between the solutes are varied. Figure 4.8 

graphically represents the variation of us with solute substituted (~1 at.%) in Ni. With 

solute substitution, us is 10-20 % higher for the magnetic Ni compared to its non-
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magnetic counterpart. In the non-magnetic case, Zr, Nb and Pd decrease us, whereas in 

the magnetic case, except Cr, Co, Ru and Ir all the other substitutions considered here 

reduce the fault energy. For solute substitution using 3d, 4d and 5d series of transition 

metals maximum increases in us results from solutes having half-filled d-valence 

electrons i.e. Cr, Re and Mo respectively for the non-magnetic Ni system.  

 (a)  

(b)  

Figure 4.8: Variation in us of Ni in (a) non-magnetic and (b) ferromagnetic state with 

solute substitution (~1 at.%) as a function of their number of valence electrons. us of 

pure Ni is represented with the dotted lines. Copyright (2018) by Comp. Mat. Sci 

[39]. 
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In the magnetic state, substitution of solutes with fewer d-valence electrons yield 

the lowest us in each of the TM series, and it steadily increases with number of d-valence 

electrons until a valency of 7 corresponding to a maximum in us is reached. However, 

these us at these maxima are marginally higher than the us of Ni.  

With two solutes substitution, irrespective of the magnetic state of Ni, and the 

spacing between the solute atoms, except Al, V and Co, all the other alloying elements 

do affect the magnitude of us (Figure 4.9 and Table 4.2). For example, in non-magnetic 

state, ~1 at.% substitution of Re increases us by 7% (237 to 254 mJ/m2) while with ~2 

at.% Re atoms there is no change in us for 1NN; but it increases to 13% (268 mJ/m2) for 

3NN configuration. Similarly, Cr also increases the USFE from 8 % for ~1 at.% to 14% 

for 1NN and 17% for 3NN as well as 4NN configurations corresponding to ~2 at.%. For 

Ti the us decreases for 1NN configuration compared to single substitution but 

improvement in the magnitude is observed if they are spaced as 3NN or 4NN. For Ti, 

Nb, Mo, Ta, Re and W, 4NN configuration gives the highest value and improves us by 

5-16%. Only the substitutions using Ru and Ir result in highest us for 1NN configuration.  

In magnetic state, substitution with Zr and Nb with ~1 at.% Ni reduces USFE by 

8% and 6% respectively and with two solutes at 1NN reduces it further to 16% and 13% 

while it improves to 12% and 11% for energetically favorable 4NN configuration.  
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    (a)                                                (b) 

Figure 4.9: Dependence of USFE (us) on the spacing between solute atoms treated as 

(a) non-magnetic and (b) ferromagnetic state of Ni. 
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Table 4.2: Effects of solute’s concentration and its relative position on us of Ni alloy.  

 Non- magnetic Magnetic 

 ~1 at.%  ~2 at.% ~1 at.%  ~2 at.% 

Element 1X 1NN 3NN 4NN 1X Reported 1NN 3NN 4NN 

Pure 
237 (230 

[23]) 
237 237 237 281  

273 [61], 

298 [64], 

281 [68] 

281 281 281 

Al 241 246 246 245 275  270 270 269 

Ti 237 234 238 238 271  256 260 261 

V 246 254 254 254 276  271 271 271 

Cr 256 271 276 276 283  275 269 292 

Co 241 245 245 246 285  288 287 287 

Zr 227 214 215 227 259  235 237 248 

Nb 235 226 232 236 263  223 [61] 244 247 251 

Mo 246 242 253 255 270  249 255 258 

Ru 243 252 249 249 283  285 283 285 

Pd 230 225 228 228 272  265 263 267 

Ta 238 233 238 243 267  251 253 258 

W 246 247 254 257 272  257 [61] 258 263 266 

Re 254 254 267 268 276  266 269 271 

Ir 244 255 251 252 284  288 287 287 

4.5 Electronic structure analysis 

To obtain a microscopic picture the individual electronic density of states as a 

function of energy for bulk Ni as well as Ni-based solid solution (Ir, Re and Ta) in its 

ferromagnetic and non-magnetic states have been examined. As d-d bonding is important 

in these systems [69], the partial density of states (PDOS) of the d-orbitals of the elements 

have been analysed.  
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   (a) (b)  

   (c)  

Figure 4.10: Partial density of states of d-orbitals of different atoms in (a) Ni-Ir (b) 

Ni-Re and (c) Ni-Ta systems in the non-magnetic calculations. Cyan, green and red 

lines are PDOS of bulk Ni, substituted atoms and their FNN Ni atom, respectively. 

Because of the symmetry of the spin, only spin-up states are shown. Copyright (2018) 

by Comp. Mat. Sci [39]. 

PDOS of d-orbital of bulk Ni, those of impurity atom and its first nearest 

neighbour (FNN) Ni with non-spin polarized calculations are represented in Figure 4.10. 

The number of states at the Fermi level (NF) for Ni in the pure system is calculated to be 

1.63, while the corresponding values for the FNN Ni atoms in Ni-Ta, Ni-Re and Ni-Ir 

alloyed system are calculated to be 1.27, 1.16 and 1.44, respectively. The change in is 

upon alloying is observed to be in the same order as with the magnitude of NF  i.e. Ni > 

Ni-Ir > Ni-Ta > Ni-Re.  Similar observation is also made for the magnetic case for the 

DOS of minority spin states at the Fermi level (Figure 4.11). The NF for pure Ni and FNN 

Ni atoms of Ni-Ta, Ni-Re and Ni-Ir are 1.61, 1.36, 1.32 and 1.46, respectively, whereas 

the is of the corresponding systems are 128, 113, 111 and 122 mJ/m2. Similar empirical 
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observation has been made for Co-based alloy based on the peak values of total DOS of 

faulted systems and their stacking fault energies [70]. The present results show similar 

correlation even when the stacking faults are not introduced in the structures. However, 

the majority spin states (spin-up) show the opposite trend with respective NF values being 

0.110, 0.116, 0.215 and 0.111 (i.e., the order is Ni < Ni-Ir < Ni-Ta < Ni-Re, which is 

exactly opposite to that of the spin-down state). Further, it is observed that the differences 

in is can be related to magnetic signature at the Fermi level. The differences between up 

and down spin states at EF for the FNN Ni atoms for Ni, Ni-Ir, Ni-Ta and Ni-Re system 

are 1.50, 1.35, 1.24 and 1.10, respectively, which follow the same decreasing trend of is 

of the alloy systems.  

Yu and Wang [69] have related the changes in the SFE to the bonding behavior 

through an analysis charge density differences of the Ni-X alloys on the close packed 

plane. Their results show considerable electron accumulation around Re, Mo and W in 

comparison to that around Cr and Ru, with least accumulation around Co. Accordingly, 

there is appreciable decrease in the is of Ni, when alloyed with Re, Mo, W; moderate 

decrease when alloyed with Cr and Ru; and insignificant change with Co substitution, 

which is in accordance with the present study (see Figure 4.6b). 

A semi-qualitative correlation can be observed between the PDOS in the anti-

bonding region and the us. In the non-magnetic calculations with Ta and Ir substitutions, 

the DOS corresponding to the FNN Ni atoms are largely unaffected in the anti-bonding 

region near the Fermi level (when compared with those of bulk Ni atom) (Figure 4.10). 

Accordingly, these substitutions change the us of Ni very little. A similar behavior can 

be observed for Ir substitution in the magnetic case (Figure 4.11c), wherein again the us 

is very close to that of Ni. 
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   (a) (b)  

   (c)  

Figure 4.11: PDOS of d-orbitals of different atoms in (a) Ni-Ir (b) Ni-Re and (c) Ni-

Ta systems in the magnetic calculations. Cyan, green and red lines are PDOS of bulk 

Ni, substituted atoms and their FNN Ni atom, respectively. Majority and minority 

spin states are shown using solid and dashed lines, respectively. Copyright (2018) by 

Comp. Mat. Sci [39]. 

4.6 Discussion and conclusions  

Using electron microscopic techniques Carter and Holmes [71] estimated the 

stacking-fault energy of Ni to be 120-130 mJ/m2. Our estimated is of magnetic state of 

Ni is in this range. Reduction in is of Ni on Co substitution has been experimentally 

reported in [72], which is in agreement with our results especially when the calculations 

are performed considering spin polarization. Except Pd, substitution with considered 

alloying elements, reduces the is of Ni which indicates that the width of stacking fault 

will increase with these additions. Hence, these solutes can be expected to provide 

additional creep strength as the constriction of partials in the narrow channels would 
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become difficult and hence the cross slip will be unfavorable. Increasing the composition 

of solutes by two times reduces the is  further. The decrease is in the range of 6-15 % for 

~1 at.% solute substitution while in the range of 12-30 % for ~2 at.% solute. Except Zr, 

Ru and Ir the relative position between the solutes do not change the ISF of the system 

by more than 2%.  

Our estimates of us of Ni with Nb and W substitution are 263 and 272 mJ/m2, 

while in another study using VASP, Seigel [61] estimated these values to be 223 and 257 

mJ/m2. This difference may be associated with the fact that 40 atoms supercell was used 

by him in contrast to 96 atoms in the present study and hence atomic concentration of the 

solutes is more than double in his work [61] as compared to ours. However, us estimated 

in the present study for two solutes is pretty close to that of Seigel [61]. The us defines 

the energy barrier for the nucleation of dislocation. The results indicate that in spin-

polarized system all the alloying elements, except Cr, Co, Ru and Ir, weaken this barrier. 

However, when the spins are turned off, except Zr, Nb and Pd (all belonging to 4d series), 

the other alloying elements strengthen this barrier. Ta and Ti have no influence on the 

us.  

When the solute concentration is doubled, us of Ni shows dependence on the 

relative position between the solutes. However, for Al, Ti, V, Co, Ru, Pd and Ir the 

variation in us is relatively unchanged or vary up to maximum of 2%.  For others us is 

highest for 3rd or 4th NN configurations. Consistent with our analysis with volume change 

and binding energy, us is found to be maximum for the position which is defined to be 

the stable configuration. For example, Cr, Mo, W and Re are added as solutes, the system 

is more stable when they are either 3NN or 4NN compared to be as 1NN. Accordingly, 

us are maximal for the systems where the solutes are farther separated. With Co and Ru, 

which shows a tendency towards clustering, us is relatively unaffected or marginal 

decrease is observed with increasing spacing.  

In summary, we have performed first-principles calculations to understand the 

effect of solute substitution from 3d, 4d and 5d series of transition metals on Ni in terms 
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of is and us. In the present study Ni has been considered in both non-magnetic and 

ferromagnetic states. The major inferences from the present results can be summarized 

as follows: 

 is, irrespective of the magnetic state of Ni, decreases with solute substitution. 

Increasing solute concentration further reduces it. Also 4d and 5d solutes 

decreases is more as compared to 3d elements. 

 Spacing between Zr, Ru and Ir do affect the is. is increases by 13% for Zr and 

decreases by 7% for Ru if the solute are spaced from 1NN to 4NN. 

 us is around 19% higher when Ni is ferromagnetic and very nominal increase in 

this value is observed with solute addition. 3d elements have higher influence on 

the us as compared to 4d and 5d elements. However, for non-magnetic Ni, except 

for Zr, Nb and Pd (all from 4d), all solute increases the us and maximum value 

is observed for Cr, Mo and Re from 3d, 4d and 5d series all with valency 5 

respectively.  

 Spacing between solutes affects the us of the system. us improvement in the 

range of 3-7 % is observed if separation between the solute is increased to 3NN 

or 4NN from 1NN for Cr, Zr, Nb, Mo, Ta, W and Re. 
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Chapter 5 

Tuning Planar Fault Energies of Ni3Al 

Dilute Solid Solution* 

5.1 Introduction 

Nickel-based superalloys used for high-temperature applications are designed as 

precipitation hardened alloys wherein the precipitate phase is based on Ni3Al. It is an 

ordered compound with L12 crystal structure, which is a superlattice based on a FCC 

structure where the minority atom Al occupies the corner position and the Ni atoms 

occupy the face centres. As a result of the cubic symmetry, the compounds in the L12 

structure possess the maximum number of slip systems and hence exhibit ductile 

behavior. However, the movement of dislocation in Ni3Al, because of its ordered 

structure, is far more complex compared to that in a solid solution. In fact, it is this 

ordered structure that is responsible for the formation of various planar defects that 

finally results in exhibiting anomalous yield effect (rise in the yield strength with 

increasing temperature ~800C) [5]. The anomalous yield effect is a phenomenon 

originating from the structure and properties of superdislocation and is associated with 

its dissociation on both {111} and {100} planes. This is mainly due to thermally activated 

_________________________________________ 

* This work has been published in part in Scripta Materialia [73]. Copyright (2017). 
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cross slip from the (octahedral) primary slip plane to the cubic plane leading to 

dislocation movement locking (Kear-Wilsdorf lock). The difference in the APB energy 

on {111} and {100} is one of the key factors controlling the activation enthalpy of cross 

slip of a 𝑎〈11̅0〉{111} dislocation [74, 75]. Further, a dislocation travelling in the matrix 

phase cannot enter the Ni3Al (precipitate) phase without generating an APB which results 

in substantial order strengthening [1].  

5.2 Dislocation movement in ordered Ni3Al 

Superior high-temperature strength of Ni-based superalloys is attributed to the 

anomalous flow stress behavior which is associated with a complex movement and 

interaction of the dislocations in the ordered γ phase. Because of the ordered occupancy 

of the Ni and Al atoms, the basis vector on the {111} becomes 〈110〉 and not the 

1
2⁄ 〈110〉, which is the basis vector in FCC structures . Hence, a perfect dislocation in 

Ni3Al has Burgers vector, 〈110〉 , that is twice the length of that in FCC crystals; 

accordingly, this perfect dislocations are called superdislocations. In a coherent system, 

wherein the ordered lattice of the intermetallic phase is in registry with that of the 

surrounding matrix phase, the lattice vector 〈11̅0〉{111} of a perfect dislocation 

dissociates into two partial dislocations, also known as superpartials, 𝑎 2⁄ 〈11̅0〉{111} 

encompassing a planar defect. Translating half of the crystal by 1 2⁄ 〈110〉  relative to 

other half would replace Al atoms on Ni sites, leading to the generation of a planar defect 

called anti-phase boundary (APB) [76]. 

5.3  Anti-phase boundary (APB) 

In Ni3Al, under equilibrium conditions, all the twelve first nearest neighbours 

(NNs) for Al are Ni, and, for Ni, eight of them are Ni and the rest four are Al. The six 

second NNs for Al (Ni) are Al (Ni). Any change in this neighbouring configuration leads 

to the formation of a planar defect with an interface called anti-phase boundary (APB). 

Hence, APBs in the ordered phases (e.g. γ) appear as a result of dislocation motion and 
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are characterized by the crystallographic plane that forms the boundary between the 

slipped and unslipped regions.  

The process of APB generation is associated with breaking of certain bonds and 

formation of certain other bonds. Hence, the magnitude of APB energy (APBE) depends 

upon the crystallographic plane on which the APB resides. For example dislocation 

movement in Ni3Al by 𝑎 2⁄ 〈11̅0〉{111} (vector linking neighbouring Ni and Al) leads to 

the formation of forbidden Ni-Ni and Al-Al bonds as first nearest neighbours. This 

interface generation requires substantial energy penalty and is reported to be in the order 

of ~100 mJ/m2 [1] and is estimated to be 182 mJ/m2 in the present study. However, in 

the case of {100} planes, a translation of 1 2⁄ 〈110〉 does not change the first neighbour 

configuration and accordingly its magnitude is significantly lower (90 mJ/m2 [48]) 

compared to the {111} APBs. 

High energy penalty required to generate APB requires dislocation to move in 

pairs, the former generating while the latter eliminating it and can be represented as 

[11̅0] → 1
2⁄ [11̅0] + 𝐴𝑃𝐵 + 1

2⁄ [11̅0] , 

where [11̅0] is the Burgers vector of a perfect superdislocation dissociating into two 

1
2⁄ [11̅0] partial superdisloactions. Hence, the extent of strengthening of Ni-based 

alloys depends on the energy associated with its APB as it governs the stress required by 

the dislocation to shear through the γ. 

5.4 Superlattice intrinsic stacking fault (SISF) 

There are other ways that the superdislocations can dissociate into multiple 

partials dislocations connected by faults of various kinds. [5] Most commonly observed 

stacking faults are superlattice intrinsic stacking fault (SISF) and complex stacking fault 

(CSF), both causing an intrinsic stacking fault in the underlying FCC lattice. SISF 

conserves the first nearest neighbour of all the atoms while CSF alters some 
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configuration. Movement of dislocation by 𝑎
3⁄ 〈2̅11〉{111}, changes the stacking 

sequence from ABCABCABC…. to ABCACABC…resulting in the formation of a 

superlattice intrinsic stacking fault (SISF). The SISF energy (SISFE) is a key parameter 

that is relevant to the spacing (R) between superpartials (SISFE  1/R) [1]. A lower 

SISFE reduces the possibility of cross slip and reduces the steady-state creep rate [56, 

57]. 

Hence, the mechanical properties of ordered Ni3Al are affected by the existence 

of superdislocations and by the formation of extended superdislocations (or 

superpartials), which consist of partial dislocations bounding stacking faults SISFE or 

antiphase boundaries (APB). The energies involved in the formation of APB, CSF and 

SISF are instrumental in determining the deformation behavior of this ordered 

intermetallic [77].The strengthening behavior of γ also depends on the ease of being 

sheared by the dislocation coming from γ matrix. Hence it would be of fundamental 

interest to study the effect of solute substitution on the magnitude of the planar fault 

energies such as APBE and SISFE along with the unstable stacking fault energy (USFE). 

Numerous studies, both theoretical and experimental, have been reported 

addressing the effect of alloying elements on the fault energies of γ [78-80]. Using DFT 

Chandran and Sondhi [81] calculated the APB energy (APBE) in Ni-based binary and 

ternary alloys for APBs on (111) as well as (100) planes. In another study, Yu and Wang 

[55] estimated the effects of single elemental substitution of Al with Re, Ta, W, Ru and 

Ti on the stacking fault energies such as complex stacking fault energy, APBE and SISFE 

and the strength of γ (Ni3Al). Mishin [64] carried out comprehensive study on the 

atomistic modeling of pure γ and γphases using molecular dynamics. However, to the 

best of our knowledge, a comprehensive analysis of the effect of solute substitution for 

Ni, Al, and simultaneously for Ni and Al atoms separated as first NN on the fault plane 

{111} of Ni3Al (which is the basis system for γ) on the USFE, the SISFE and the APBE 

is lacking. In the present chapter, we present a systematic analysis of the influence of 

substitution of Ni atom, Al atom and Ni and Al atoms simultaneously with 3d, 4d and 5d 

transition metals on (111) fault plane of Ni3Al on energies of these faults. 
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(a) (b)  

(c)  

Figure 5.1. Schematic representation of solute substitution for (a) Al (b) Ni and (c) Al 

and Ni atoms simultaneously on the fault plane {111} in Ni3Al. 
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5.5 Computational details 

To simulate substitutionally alloyed γ phase, we used a supercell containing 96 

atoms by stacking six (111) atomic layers (two successive stacking sequences 

ABCABC), with 16 atoms in each layer (Figure 5.1). The supercell having L12 ordered 

structure with Ni3Al composition was constructed using three orthogonal vectors parallel 

to [11̅0], [112̅] and [111] (Figure 5.2a). This periodic system was used to model alloys 

with a single Ni or Al atom or Ni and Al atom on the shearing plane (i.e. (111)) 

substituted with the alloying element/elements Ti, V, Cr, Mn, Fe, Co and Ni (Ni on Al-

site) (3d), Zr, Nb, Mo and Ru (4d) and Hf, Ta, W, Re and Ir (5d). This is an exhaustive 

list of alloying elements used in single crystal superalloys [1].  

(a) (b)  

Figure 5.2. (a) Geometrical representation of stacking of (111) planes in L12 

crystal structure. Arrows give the translations required for generating the APB, SISF 

and the USF. (b) Projection of atomic planes along y-axis ([𝟏𝟏̅𝟎] direction) showing 

periodic images shifted by a fault vector. The positions of the fault planes (FP) have 

been marked with dark lines. Copyright (2017) by Acta Materialia Inc [73]. 

The system was allowed to relax completely to obtain the minimum energy 

configuration. The relaxed configuration of each substitutional alloy was used in 
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subsequent analysis and calculation of various planar fault energies as shown in equation 

4.5. The faults were generated by providing suitable displacements to the periodic images 

along [11̅0] and [1̅1̅2] respectively (Figure 5.2b). After introducing a fault, the structure 

was relaxed completely, except the top and bottom layers which was allowed only to 

relax with respect to atomic displacement in the direction perpendicular to the fault plane. 

The fault energies, as explained in the previous chapter, were determined as the 

difference between the energies of the faulted and the corresponding unfaulted 

configuration, normalized with respect to the area of the unit cell containing the 

substituted atom. In the calculations of APBE and SISFE of Ni3Al, the periodic image of 

the supercell was displaced by 1 2⁄ [11̅0] and1 3[1̅1̅2]⁄   respectively, on the (111) plane 

(as represented in Figure 5.2). 

Table 5.1: Comparison of theoretical estimates and experimental values of lattice 

parameters and fault energies of γ phase. Copyright (2017) by Acta Materialia Inc 

[73]. 

5.6 Results: 

5.6.1 Validation of stacking fault energy for bulk Ni3Al 

The equilibrium lattice parameter (ao) of Ni3Al was obtained from the variation 

in energy with cell size. APBE and SISFE for pure Ni3Al were estimated to benchmark 

the quality of pseudopotentials used in DFT calculation and its comparison with reported 

experimental and other first-principles calculations are reported in Table 5.1. The 

estimated lattice parameter is 3.58 Å is in very good agreement. The APBE estimated in 

Property Present study First-principles Experimental 

ao(Å) 3.58 3.573 [90], 3.58 [91] 3.572 [92] 

APBE (mJ/m2) 182 181 [81], 152 [83], 188 

[84], 210 [85] 

180 [86], 175 [87], 195 

[88] 

SISFE (mJ/m2) 29 39 [83], 80 [85], 68 [93] 10 [1], 6 [87], 35 [89] 

USFE (mJ/m2) 227 254 [55]  
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the present study for pure Ni3Al is 182 mJ/m2 which is in good agreement with the 

published results from first-principles 181 [81], 172 [82], 152 [83], 188 [84], 210 [85] 

and experimental values of 180 [86], 175 [87], 195 [88]. It may be noted that our 

estimation of APBE for system sizes of 48 atoms (6 layers), 96 atoms (6 layers) and 192 

atoms (12 layers) are 179.0, 182.2 and 182.2 mJ/m2, respectively. Thus a system size of 

96 atoms (6 layers) is reasonably adequate to overcome the image force effects arising 

due to periodic images, and hence has been chosen for all the studies reported in this 

thesis (Figure 5.2b). Our estimate of SISFE (29 mJ/m2) falls between the experimental 

measurements (10 [1], 6 [87], 35 [89]) and other first-principles calculations. In general, 

SISFE is expected to be small as it does not generate any first nearest neighbour 

disturbances. Our estimate of the USFE of pure γ phase (227 mJ/m2) is slightly lower 

than that calculated by Yu and Wang [55], and this difference may be attributed to the 

differences in the way simulations were carried out. While Yu and Wang [55] used a slab 

model and kept the positions of the two surface layers of atoms fixed  to avoid surface 

reconstruction (due to a 12 Å thick vacuum region), our calculations did not have such 

constraints as there are no surfaces or vacuum in our set-up (Figure 5.2). 

5.6.2 Effect of solutes on APBE 

The solute substitution in Ni3Al is bound to have its effect on the APB energy.  

The variations in APBE with number of d-orbital valence electrons of the alloying 

element (substituted for Al atom, Ni atoms and both Al and Ni atoms) are shown in 

Figure 5.3. For solute substitution at Al site, within each period of the periodic table, 

APBE increases marginally to reach a maximum for elements having half-filled d-

orbitals, and reduces considerably after that (Figure 5.3 a). Excepting Fe, Co, Ni and Ir, 

the substitution with other elements leads to an increase in the APBE compared to that 

of pure Ni3Al. It is evident that the maximal in APBE with substitution across a transition 

metal period increases from the 3d to 5d series. However, solutes from 4d and 5d series 

of transition metals have comparable APBs for same number of d-orbital valence 

electrons. The results of the present study show similar qualitative trend when compared 

with an earlier DFT calculations on ternary systems [55] which showed increase in APBE 
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with addition of Re, W, Ta, Ti and a decrease upon addition of Ru. When a Ni atom is 

substituted at an Al site, there is a significant reduction of 41% in APBE, as the 

configuration in the defect plane leads to a situation with a reduced number of the 

energetically expensive and thus thermodynamically unstable Ni-Ni and Al-Al bonds 

(which is a characteristic of the APB), compared to an APB in pure Ni3Al.  

The effects of substitution for Ni atom with different alloying elements on APBE 

is depicted in Figure 5.3b. Substitution at Ni sublattice site with Fe, Co, Ru and Ir reduces 

the APBE whereas an increase is observed for alloying with the rest of 3d, 4d and 5d 

series TMs. While APBE generally decreases monotonically with increase in the number 

of d-orbital valence electrons, V (3d3), Zr (4d2) and Hf (5d2) provide maximum increase 

in APBE within a period.  An important observation is that excess Ni present at the anti-

sites at the fault plane tends to reduce the values of APBE by 41%, whereas the presence 

of excess Al at anti-sites increases the respective energies by 43%.  

With the creation of an APB, the number of first nearest neighbour (FNN) Al-Al 

and Ni-Ni violations are respectively 0.5 per Al atom and 0.16 per Ni atom, where the 

referred Al and Ni atoms are on the planes adjacent to (on either sides of) the fault plane. 

With the introduction of a Ni anti-site, these numbers become 3/7 (~0.43) and 3/25 

(~0.12) i.e., there is decrease in both Al-Al and Ni-Ni violations, which might seem to 

suggest a decrease in fault energy compared to system without antisites. However, 

similar argument cannot be extended to system containing Al antisite, wherein the 

normalized number of Al-Al and Ni-Ni FNN violations are, respectively 3/9 (~0.33) and 

3/23 (~0.13). If the argument is based on FNN violations only, one would expect a 

decrease in APB energy compared to the system without any antisite defects. The 

concentration of Ni in the adjacent planes about the fault plane are 0.78 and 0.72 in the 

systems with Ni-antisite and Al-antisite respectively. Hence, the asymmetry may be 

attributed to compositional effect (segregation of alloying elements at the defect area). 

This has been found in experimental studies too (163±21 mJ/m2 for Ni-24.2Al and 

190±26 mJ/m2 for Ni-25.9Al [94] and in other simulation works [95]. 
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(a)  

(b)  

(c)  

Figure 5.3. Effects on APBE associated with solute substitution at (a) Al (b) 

Ni and (c) Al and Ni sublattice site. The fault energies of pure Ni3Al are represented 

by the horizontal dashed lines. Figure 5.3 a-b copyright (2017) by Acta Materialia 

Inc [73]. 
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When two solutes are substituted for Ni and Al that are separated as first nearest 

neighbour on the {111} fault plane, the trend (or the form of variation with d-orbital 

valence electrons) observed is almost similar to the behavior of ~1 at.% solute substituted 

for an Al atom. However, the APBE is substantially reduced in comparison to that of 

pure Ni3Al. This is interesting because while most of the substitutions for either an Al or 

a Ni atom lead to increase in the APBE, the synergetic effect is not seen when the two 

atoms are simultaneously substituted. Hence it can be inferred that the magnitude of 

APBE is greatly dependent on the % of Al and Ni atoms which directly links to the 

formation of the forbidden bonds such as Ni-Ni and Al-Al. 

5.6.3 Effect of solutes on SISFE 

In this section an attempt has been made to understand and find any correlation 

on the effect of solute substitution, similar to APBE, on SISFE for Ni3Al. The variations 

in SISFE with number of d-orbital valence electrons of the alloying element (substituted 

for Al atom, Ni atoms and both Al and Ni atoms separated as 1NN on the fault plane) are 

represented in the form of graph (Figure 5.4). 

For elemental Al substituted by the solute, within each period of the periodic 

table, variation in the SISFE with alloying shows a similar trend (as in APBE) for 3d 

TMs (Figure 5.4a). However, it monotonically decreases with increase in the number of 

d-orbital valence electrons for 4d and 5d series of TMs. Substitution of Cr, Zr and Hf 

belonging to 3d, 4d and 5d series of TMs respectively, results in maximal increase in the 

SISFE. Substitution with Ni reduces the SISFE by 40 % while that with Co or Ir leads to 

a marginally higher value of SISFE compared to that of pure Ni3Al. Substitutions with 

other elements increase the SISFE by 100 to 350 % with maximal effect for Zr as solute. 

Earlier DFT calculations on ternary systems [55] showed increase in SISFE with addition 

of Re, W, Ta, Ti and a decrease upon addition of Ru, which are qualitatively similar to 

our results.  
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(a)  

(b)  

(c)  

Figure 5.4. Effects on SISFE associated with solute substitution at (a) Al (b) Ni and 

(c) Al and Ni sublattice site. The fault energies of pure Ni3Al are represented by the 

horizontal dashed lines. Figure 5.4 a-b copyright (2017) by Acta Materialia Inc [73]. 
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The effects of substitution for Ni atom with different alloying elements on SISFE 

are represented in Figure 5.4b. SISFE first increases, reaching a maximum and thereafter 

it decreases. With respect to pure Ni3Al, SISFE decreases with substitutional alloying 

with Ru.  An important observation is that excess Ni present at the anti-sites at the fault 

plane tends to reduce the values of SISFE by 40 %, whereas the presence of excess Al at 

anti-sites increases the respective energies by 152%. This increase in SISFE due to 

incorporation of Al anti-sites may have similar chemical origin as described for APBE. 

For same solute, elemental substitution of Al results in sufficiently higher SISFE in 

comparison to Ni substitution. 

Also the SISFE increases more for solutes with fewer number of d-orbital valence 

electrons. Hence, it can be inferred that solutes with higher number of d-electron 

substituted for Ni will result in minimum increase in SISFE and hence providing better 

creep properties. 

For simultaneous substitution of Al and Ni atoms separated as first nearest 

neighbour with solutes, SISFE monotonically decreases with increasing d-orbital valence 

electrons of the solutes. The rate of decrease is gradual for solutes upto half-filled d-

orbital and thereafter there is steep decrease. The values of SISFE for 5d elements lies in 

between the 3d and 4d solutes. Contrary to APBE, the magnitude of SISFE is highest for 

simultaneous substitutions of solutes at Ni and Al sublattice. This implies that the SISFE 

is critical to solute concentration.  

5.6.4 Effects of solutes on USFE 

In the present study effect of solute substitution on USFE is systematically 

analysed. The variations in USFE with number of d-orbital valence electrons of the 

alloying element substituted for Al atom, Ni atoms and simultaneous substitution for Al 

and Ni atoms (as 1 NN on the fault plane) are shown in Figure 5.5 a-c respectively.  
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(a)  

(b)  

(c)  

Figure 5.5. Effects on USFE associated with solute substitution at (a) Al (b) Ni and 

(c) Al and Ni sublattice site. The fault energies of pure Ni3Al are represented by the 

horizontal dashed lines. Figure 5.5 a-b copyright (2017) by Acta Materialia Inc [73]. 
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For solute substituted with TMs within each period at Al sublattice the variation 

of USFE (Figure 5.5a) shows a somewhat similar trend than that of APBE (Figure 5.3a). 

However, as compared to variation of APBE the USFE shows an improvement of about 

6 - 11% increase before reaching a maximum for elements belonging to half-filled d-

orbitals, viz., Cr, Mn (3d5), Mo (4d5) and Re (5d5) with in each period. Excepting Ni, all 

other substitutions lead to increase in the USFE compared to that of pure Ni3Al. This 

trend is exactly opposite to that seen in the changes in volume (Figure 3.5) suggesting a 

possible correlation between volume changes associated with the solute atoms and the 

shear strength. One possible explanation for this is that the associated strength of the 

strain field is larger for substitutional elements causing large volume change, which is 

reflected as changes in USFE. 

For solute substitution for Ni atom, similar to substitution at Al sublattice, USFE 

first increases, reaching a maximum and decreases thereafter. While a maximum increase 

in USFE is seen for elements with half-filed d-orbital in the case of substitution for Al 

atom, no such definite behavior is found in effects of substitution for Ni atoms. 

Substitution with V (3d3), Nb (4d4) and W (5d4) leads to maximum increase in USFE 

within the respective periods. It is important to note that Ni present at the anti-sites at the 

fault plane tends to reduce the values of USFE by 3%, whereas the presence of excess Al 

at anti-sites increases it by 22%. In fact, this is the highest USFE observed with solutes 

considered in the present study for substitution at Ni sublattice. However, solute 

substitution at Al sublattice provide much higher strengthening. Hence, it can be inferred 

that solutes that prefer Al sublattice substitution will provide resistance to dislocation 

movement. 

Simultaneous solute substitution from 3d series of TMs at Al and Ni sublattice 

increases the USFE reaching maxima for half-filled d-orbitals. However, for 4d and 5d 

elements monotonically increases with d-electrons. Among the three cases considered 

USFE is minimum when solutes with less than 5 electrons are occupying the Al and 

sublattice position separated by 1NN on the fault plane. 
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5.7 Discussion  

Baluc and Schaublin [96] estimated APBE from the dislocation widths in the 

TEM micrographs. They reported APBE of Ni3(Al,1%Ta) to be 237±30 mJ/m2, as 

compared to 195±13 mJ/m2 for the binary Ni3Al [88]. Our simulation results for the 

APBE of Ni3Al is 182 mJ/m2 which is within the range while 272 mJ/m2 for Ni3(Al,Ta) 

is slightly higher than the experimental value. The difference may be attributed to the Ta 

composition which is 4% of total Al content as compared to 1% used for experimental 

technique. Substitution at Al sublattice provides highest APBE followed by those at Ni 

sublattice. Simultaneous substitution at Al and Ni sublattice drastically reduces the 

APBE. Presence of Ni at the anti-sites on the fault plane reduces the values of APBE by 

41%, whereas for Al anti-sites it increases it by 43%. Hence, at higher temperatures 

where the prominent creep deformation mechanism is APB related shearing, solutes that 

prefer Al sublattice can be expected to provide more resistance to plastic deformation. 

Baluc and Schaublin [96] have also reported an increase of 150% in the SISFE 

for Ni3(Al,1%Ta) (15±5 mJ/m2) compared to a value of 6 mJ/m2 [87] for pure Ni3Al. 

While our calculations show an increase of 270%, the fault energies themselves with and 

without Ta estimated here are 109 and 29 mJ/m2, which are different from the above 

experimental findings. This extent of difference in energetics between computations and 

experiments is not very uncommon and the deviation can be attributed to various factors 

such as (a) considering atom of Ta in the fault plane only in the modeling work, (b) 

difference in the concentration of Ta in the two studies, (c) experimental difficulty in 

accurate determination of the spacing between partials, from which the defect energy is 

estimated and (d) finite temperature effects. Among the different configuration 

considered, SISFE is found to be lowest, and thus at intermediate temperatures where 

creep deformation is prominently governed by isolated stacking faults, solutes that prefer 

Ni sublattice can be expected to reduce the creep rates. 

We found a correlation between APBE and SISFE (Figure 5.6), irrespective of 

whether the alloying element is in Ni-site or Al-site. A similar correlation can be seen 

for the data published by Vamsi and Karthikeyan [83]. It may be observed that these 
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correlations have been obtained using limited amount of data. However, they may prove 

to be thumb rules in cases where the estimation of SISFE is difficult. 

USFE was estimated and, similar to APBE, solute substituted at the Al sublattice 

provide highest value. For Al sublattice substitution by solutes from 3d, 4d and 5d series 

of transition metals USFE increases reaching a maximum for half-filled d-orbitals, viz., 

Cr, Mn (3d5), Mo (4d5) and Re (5d5) followed by decrease in the value.  

 

Figure 5.6: Correlation between APBE and SISFE for solute at Al and Ni sublattice 

sites in Ni3Al. Copyright (2017) by Acta Materialia Inc [73]. 

5.8 Conclusion 

We have determined the APBE, SISFE and USFE for solutes substituted at Al or 

Ni or both sites in Ni3Al on the (111). Our results indicate that substitution of elements, 

considered in the present study, at the Al-site and at Ni-site, barring Fe, Co, Ru and Ir, 

leads to an increase in USFE. Since USFE is related to the energy release rate during 

dislocation nucleation [97], most alloying elements seem to provide strengthening by 

increasing the barrier energy. This is in line with the experimental findings of Shah and 

Duhl [98] that the stress required to achieve minimum creep rate of best multicomponent 

alloys is about four times that of the binary compound Ni3Al. 
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In summary, there is a clear trend in the variation of USFE, APBE and SISFE for 

3d, 4d and 5d transition metals substitution (~1 at.%) at Al site, with the numbers of 

electrons in the d-orbitals with five half-filled d-orbitals being at the cusps. As compared 

to substitution at Ni site, substitution at Al site provides better strengthening as is 

reflected in higher values of USFE and APBE. However, detailed density of states 

calculations would be able to explain this behavior, we surmise that this could be due to 

d-d interaction (between the solute and Ni) in the alloyed systems as compared to p-d 

interaction in Ni3Al. We do not find extrema at the half-filled d-shell (d=5) in the systems 

where Ni atom is substituted (as only the magnitude of p-d interaction changes in these 

systems). However, SISFE, which governs the spacing between the partials, is lower 

when the solute is added at the Ni sublattice.  
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Chapter 6 

Influence of Solutes on Ductility in Ni-based 

Solid Solution* 

Strength of materials can be estimated either through calculation of its cohesive 

energy or by calculating the work done to generate new surfaces. Cohesive strength is 

calculated as the energy required to break atomic bonds (Figure 6.1). Large elastic 

constant, high melting temperature and small coefficient of thermal expansion are all 

manifestation of the strong cohesive forces present in a material. The variation in the 

interatomic forces between two atoms as a function of separation between them (bo+r, 

where bo is the equilibrium interatomic distance and r is the deviation from equilibrium 

interatomic distance), is represented as Figure 6.1 This curve is the net result of the 

repulsive (Fr) and attractive forces (Fa) between the atoms as a function of their distance 

of separation. If the crystal is subjected to a uniaxial tensile loading, the separation in the 

loading direction between atoms increases.  The Fr decreases more rapidly as compared 

to the Fa with increasing separation, such that the net attractive force balances the tensile 

load. Above some specific load, which is material dependent, the separation between 

atoms increases such that the Fr becomes negligible and the Fa starts reducing. This 

separation corresponds to the maximum value for the cohesive force between the atoms. 

_________________________________________ 

* This work has been published in part in Comp. Mat. Sci [39] Copyright (2018), Comp. Mat. 

Sci [48] Copyright (2014). 
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(a)  

(b)  

Figure 6.1: (a) Sketch of the cohesive zone in front of the tip relevant to the cohesive 

strength involving breaking of the bonds and (b) a sketch of the variation in the 

interatomic forces between two atoms as a function of separation between them, 

where bo is the equilibrium interatomic distance. 

This maximum cohesive force is defined as the theoretical cohesive strength of materials 

(𝜎𝑡ℎ). 𝜎𝑡ℎ derived with theoretical models of force-displacement curves is around E/4-

E/15, where E is the elastic modulus of the material. However, under practical conditions, 

this strength is calculated to be at least 10-1000 times lower than the theoretical value. 

The discrepancy is mainly attributed to the defects such as cracks, dislocations and voids 

which are inherently present in the materials. 
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Inglis [99] gave a theoretical model (local criterion), based on the stresses, for the 

growth of crack. He proposed that the stress felt at the crack tip is significantly higher 

than the stress applied to the materials. For example, for an external stress of 𝜎0 the stress 

at the tip of crack (𝜎𝑡𝑖𝑝) of length 2c and radius of curvature  is given as [99]:  

𝜎𝑡𝑖𝑝 = 𝜎𝜊 (1 + 2√𝑐
𝜌⁄ )   6.1 

Griffith [100] in 1920 proposed a global criterion for crack growth in terms of 

energetics. For a crack to propagate, the necessary global criterion (due to Griffith [100]) 

and the sufficient local criterion (due to Inglis [99]) have to be satisfied. 

6.1 Griffith theory of brittle fracture 

The first successful theoretical model explaining the discrepancy between the 

theoretical cohesive strength and observed fracture strength was given by Griffith [100]. 

He proposed that numerous fine cracks are inherently present in materials, which produce 

a stress concentration equivalent to the theoretical cohesive strength. A criterion for the 

crack propagation was established by Griffith [100]: ‘A crack will propagate when the 

decrease in elastic strain energy is at least equal to the energy required to create the new 

crack surface’. The condition for propagation of a crack was based on the competition 

between an excess elastic energy release G of the solid for the movement of a crack and 

the surface energy of the crack C. Then, the critical equilibrium state is defined by 

𝜕(Δ𝐺−𝐶)

𝜕𝑎
≡ 𝐺 = 0  6.2 

The tendency of crack propagation is measured in terms of the energy release rate 

G (in units of energy per unit length) which is a function of specimen geometry and 

applied load. For a crack to propagate, the energy release rate must exceed a critical value 

Gc which is a material property, called critical energy release rate. For an ideal brittle 
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material, crack propagates without any energy dissipation, i.e. no plastic deformation at 

the crack tip and hence, 

𝐺𝑐 = 2𝛾𝑠     6.3 

where, s  is the surface energy. Equation 6.3 represents the energy balance condition 

corresponding to the first law of thermodynamics, applied to a solid containing a crack.  

6.2 Stress field near the crack tip 

The propagation behavior of cracks or dislocations present in a material mainly 

depend on the displacements and the stress fields associated with them. A fracture is 

termed brittle when cracks propagate without any plastic deformation on application of 

load. Examples are LiF, MgO, CaF2, BaF2, CaCO3, Zn. For such a solid, the work of 

fracture approaches the surface energy of the newly created surfaces. For these materials, 

the surface energies derived from fracture experiments agree quite well with those 

theoretically expected [101]. Furthermore, it provides important information for the 

models considering the brittle to ductile transition, which occurs in many of the 

technologically important structural materials, for example Fe, Al, or various 

intermetallic compounds. 

6.3 Atomistic simulation of mode-I brittle fracture 

Brittle fracture in metals is characterized by a rapid rate of crack propagation, 

with no gross plastic deformation and the tendency increases with decreasing 

temperature as well as increasing strain rate. A crucial issue in simulating actual crack 

propagation is that the stress field as a function of a crack distance, x, varies as 1
√𝑥

⁄ , 

and thus involves long-range interaction. At the macroscopic level, simulation of crack 

propagation is described by the elasticity theory and hence making use of linear elastic 

solutions of the continuum theories for mechanical properties of solids. However, this 
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approach neglects the atomistic structure and treats materials as a homogeneous, linearly 

elastic and isotropic medium. 

The influence of atomic scale structure processes on brittle fracture can only be 

investigated with atomistic simulations. Molecular dynamics is one of the tools that can 

address the crack propagation because of its capability to address large number of atoms 

(of the order of 106). However, a major drawback is the limited availability of the 

interatomic potentials for a specific material. The requirement of large number of atoms 

impose restriction on the use of direct first-principles DFT modeling for crack 

propagation impossible. However, it is also understood that crack propagation under 

brittle fracture occurs through breaking of the interatomic bonds ahead of the crack tip 

(Figure 6.1). Horizontal lines represent bonds between individual atoms, and their 

elongation and rupture due to the opening of the crack. In the present thesis, the problem 

of brittle fracture is addressed using first-principles calculations of brittle cleavage 

decohesion, i.e. by calculating Griffith’s work under mode I fracture.  

6.3.1 DFT calculations of cleavage energy 

The cleavage strength of Ni and its alloys is simulated by calculating the Griffith 

rupture work and is defined as the energy needed to cleave a crystal along a plane. 

Griffith work [102], within the DFT framework, is calculated using the simple model of 

ideal brittle cleavage decohesion between two semi-infinite planes of the crystal which 

are separated with a distance bo + x (Figure 6.2). Here bo is the equilibrium interplanar 

separation and x is considered sufficiently large such that the interaction between the 

interfaces is negligible. Kumar et.al. [48] have shown that in the relaxed configuration 

up to x = 1.59 Å, the atoms between the two surfaces have appreciable interactions and 

hence are able to accommodate the applied separation as deformation (as strain). 

However, beyond a separation of 1.59 Å the interaction is extremely weak and thus the 

separation cannot be accommodated as elasto-plastic strain, and the configuration is 

similar to two fractured parts. It has also been shown by Kumar et.al. [48] that the change 
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in the total energy beyond a separation of 5 Å between the interfaces is less than 0.01 eV 

suggesting the interactions are negligible beyond this separation. Griffith work (Gc) is 

 𝐺𝑐 = 1
𝐴⁄ [𝐸𝑡𝑜𝑡(𝑥 = ∞) − 𝐸𝑡𝑜𝑡(𝑥 = 0)],  6.4  

where A is the area of the cleaved surface, Etot(x=0) is the total energy of the system 

under equilibrium condition and Etot(x=) is the total energy of the completely cleaved 

system.  

       

Figure 6.2: Model of the brittle cleavage with two adjacent planes separated by a 

distance x. 

6.3.2 Computational details 

To simulate substitutionally alloyed γ phase, we used a supercell containing 96 

atoms by stacking six (111) layers (two successive stacking sequences ABCABC, Figure 

3.1), with 16 atoms in each atomic plane. The supercell was constructed using three 

orthogonal vectors parallel to [11̅0], [112̅] and [111]. Single Ni atom on the plane to be 

cleaved was substituted by the alloying elements such as Ti, V, Cr and Co (3d), Zr, Nb, 

Mo and Ru (4d) and Hf, Ta, W, Re and Ir (5d) and was allowed to relax completely to 

obtain the minimum energy configuration. The relaxed configurations of each 
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substitution was later used to evaluate the surface energy of (111). The computational 

details for calculating the cleavage energy for (100) have been described in details by 

Kumar et al. [48] and added as Appendix B for ready reference. In the present thesis, 

separation of x = 10 Å is considered between the cleaved planes. 

ElaStic tool [103] has been used to calculate the full second-order elastic stiffness 

tensor from total energy calculated from first-principles based Quantum Espresso 

package [38]. Elastic stiffness constants Cij of Ni-X dilute solid solutions have been 

calculated for supercell with 2 × 2 × 2 cubic unit cells constructed with 32 atoms (3.125 

at.% of solute) along the [001] direction. By specifying the maximum strain value of 

max, 31 distorted structures between strain values of -max and max have been created 

and the energies are obtained by performing first-principles calculations. A polynomial 

fit is done to calculate the second derivative at equilibrium of the energy with respect to 

the strain. With these values, Voigt [104] approach assuming uniform strain and Reuss 

[105] approach assuming uniform stress are used for determining the bulk (B), shear (G) 

and Young modulus (E) of the material. Hill [106, 107] has shown that the Voigt and 

Reuss elastic moduli are the strict upper and lower bound respectively. Using Voigt’s 

approximation [103] bulk and shear moduli are obtained by averaging first-principles 

elastic stiffness constants (Cij) as 

𝐵𝑉 =
[(𝑐11 + 𝑐22 + 𝑐33) + 2(𝑐12 + 𝑐13 + 𝑐23)]

9
⁄ ,  6.5 

𝐺𝑉 =
[
(𝑐11 + 𝑐22 + 𝑐33) − (𝑐12 + 𝑐13 + 𝑐23) +

3(𝑐44 + 𝑐55 + 𝑐66)
]

15
⁄

, 6.6 

Similarly, with Reuss procedure [103] with single-crystal elastic constants, the 

related elastic properties of a polycrystalline alloy are as follows 

𝐵𝑅 = [(𝑠11 + 𝑠22 + 𝑠33) + 2(𝑠12 + 𝑠13 + 𝑠23)]
−1,  6.7 

𝐺𝑅 = 15 [
4(𝑠11 + 𝑠22 + 𝑠33) − (𝑠12 + 𝑠13 + 𝑠23)

+3(𝑠44 + 𝑠55 + 𝑠66)
]
−1

, 6.8 
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Sij are the compliance tensor coefficients. The Young’s modulus from bulk and shear 

moduli is calculated as  

𝐸 = 9𝐵𝐺
(3𝐵 + 𝐺)⁄ ,   6.9 

6.3.3 Benchmarking 

Our estimate for Gc in magnetic and non-magnetic states of Ni for the (111) 

surface are 3.62 J/m2 and 3.78 J/m2 respectively. Unlike the us and is, the Gc of 

ferromagnetic Ni is 4 % lower as compared to that of non-magnetic Ni. Similarly, the 

cleavage strength for the (100) surface is also found to be lower for ferromagnetic Ni 

(4.18 J/m2) compared to the non-magnetic case (4.29 J/m2) [48]. Gc for Ni ((111) plane) 

using the EAM potential by Mishin [64] was estimated to be 3.518 J/m2. In another work 

using VASP with GGA pseudopotentials, Siegel [61] has estimated it to be 3.895 J/m2, 

respectively. Hence, our estimated values for the pure system are in reasonable 

agreement with the reported values. 

6.4 Effect of alloying elements on cleavage energy in γ  

In this thesis, cleavage energy has been estimated with single Ni atom substituted 

with solute atoms from 3d, 4d and 5d series of transition metals. The variations with d-

orbital valence electrons are shown in Figure 6.3a and 6.3b, respectively for the non-

magnetic and the magnetic states. All the elements except Zr and Pd tend to increase the 

cleavage energy of Ni, irrespective of its magnetic state. In the magnetic case, systems 

doped with Nb and W have cleavage energies of  3.67 and 3.74 J/m2 respectively, while 

in another work using VASP with GGA pseudopotentials, Siegel [61] has estimated these 

values to be  3.895 and 3.906 J/m2, respectively. Thus the trends in variation in Gc 

obtained here are in good agreement with those reported in the literature. In both the 

studies with Nb substitution, the magnitude of Gc is relatively unchanged with respect to 

the pure system while W substitution enhances it. 
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(a)   

(b)  

Figure 6.3: Change in the cleavage energy (Gc) of Ni with solute substitution as a 

function of their valency in (a) non-magnetic and (b) magnetic state. Dotted lines 

represents Gc of pure Ni. Copyright (2018) by Comp. Mat. Sci [39]. 

In non-magnetic state of Ni, the trend in variation of the Gc is similar to that of 

the us i.e., it increases with the number of d-valence electrons of the solute with maxima 

occurring for solutes with d-valence of 5 (Cr, Mo and Re respectively of 3d, 4d and 5d 

series). This indicates that there is correlation between the us and the Gc. This is 

interesting because the us is related to the dislocation nucleation whereas Gc is related to 

the complete breaking of bonds. There is, however, no such clear correlation in estimates 
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of us and Gc obtained for magnetic state of Ni. The reasons for the presence and absence 

of the correlations will be investigated in future. 

6.5 Ductility parameter using Griffith criteria 

One of the ways of quantifying ductility of materials is through a parameter 

known as ductility parameter, D = 0.15Gc/us [61, 97].  The influence of alloying elements 

on the ductility parameter estimated from the current study is listed in Table 6.1. It is 

clear that Al, V, Cr, Co, Mo, Ru, W, Re and Ir reduce D for the non-magnetic Ni. 

However, when Ni is in the magnetic state, all the solutes excepting Co and Ir enhance 

the ductility parameter. Nevertheless, the alloying elements considered here only weakly 

influence the ductility of Ni. 

 

Figure 6.4: Comparison of the ductility parameters estimated from the Rice (D) and 

Pugh criterion (P) and comparison of P with Shang et.al. [112].  
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Table 6.1: Ductility parameter for substitution of different solutes for Ni in non-

magnetic and ferromagnetic state. 

 Al Ti V Cr Co Ni Zr Nb Mo Ru Pd Ta W Re Ir 

D 

(NM) 
2.33 2.41 2.36 2.27 2.38 2.40 2.44 2.44 2.36 2.36 2.40 2.43 2.37 2.30 2.33 

D (M) 
1.96 2.03 2.01 1.93 1.92 1.93 2.04 2.09 2.03 1.93 1.94 2.08 2.06 2.01 1.91 

6.6 Ductility parameter using Pugh criteria 

Elastic moduli of materials can be used to assess mechanical properties such as 

strength and ductility/brittleness. The shear modulus (G) of the material is linked to the 

resistance of the material to plastic deformation and the bulk modulus (B) represents the 

average resistance to bond breaking [110]. Also for FCC materials Gilman [111] showed 

that the yield stress is proportional to the Young’s modulus (E). Based on the B/G ratio, 

Pugh [110] proposed that materials with large B/G ratios (>1.75) behave in a ductile 

manner while low B/G ratios (<1.75) in a brittle manner. Hence, the effects of solutes on 

the elastic constants using computational tool will provide an understanding and will be 

helpful in identifying suitable alloying elements for the application. ElaStic tool [103] 

have been used in the present study to calculate the elastic stiffness constants Cij of Ni-

X dilute solid solutions. 

The values of elastic constants for cubic system (C11, C12 and C44) and the bulk, 

shear and the Young moduli for bulk Ni and for solid solution (specific composition of 

3.125 at.% of solute) are listed in Table 6.2. The B, G and Young’s modulus are obtained 

using the Voigt and Reuss approximations. For bulk Ni the values of elastic constants 

are in good agreement with the reported experimental values by Neighbours et. al. [108] 

and from first-principles by Kim et. al. [109]. All solute substitution increases the moduli 

of the system with maximum value for Ru and Ir from 4d and 5d series transition metals.  

 The value of ductility parameter (B/G) by Pugh [110] for Ni is calculated to be 

2.03 which is higher than 1.75 and hence is in accordance with its higher ductility. B/G 

ratios estimated in the present study are in very good agreement with those of Shang et.al 

[112] (Figure 6.4). Similar to Rice criteria, shown earlier, all solute substitution increases 



94 
 
 

 

the ductility of the solid solution. However, a one-to-one correlation between the 

numbers obtained using the two criteria is not expected as B/G is dependent on the elastic 

response of the material, whereas D (from Rice’s criteria) is dependent on energies of 

fracture/surface () and that of plastic deformation (us). 

Table 6.2: Calculated elastic properties, unit of GPa, for dilute solid solution of Ni 

(3.125 at. % of solute). P stands for present study and numbers in the parenthesis 

refers to the reference number in the bibiliography. 

     
Bulk modulus 

(B) 

Shear  

modulus (G) 

Young  

modulus 

B/G 

  C11 C12 C44 Voigt Reuss Voigt Reuss Voigt Reuss Voigt 

Ni P 249 155 122 186 186 92 74 237 197 2.03 

 [108] 253 152 124        

 [109] 281 157 131 198  104  265  1.90 

Zr P 265 170 123 201 201 93 75 242 201 2.17 

 [109] 261 158 117 192  91  235  2.11 

Nb P 262 168 124 199 199 93 75 242 199 2.14 

 [109] 268 162 120 197  93  242  2.12 

Mo P 256 167 127 197 197 94 73 243 194 2.09 

 [109] 278 163 124 202  98  252  2.06 

Ru P 272 168 135 202 202 102 83 262 219 1.99 

 [112] 280 157 131 198  103    1.92 

Pd P 267 164 126 199 199 96 80 248 211 2.07 

 [112] 269 154 126 192  99    1.95 

Ta P 264 169 126 201 201 94 76 245 202 2.13 

 [109] 270 163 121 199  94  243  2.12 

Re P 269 170 133 203 203 100 79 257 211 2.04 

 [109] 281 162 126 199  99  256  2.01 

Ir P 277 168 136 204 204 103 85 265 224 1.98 

 [112] 278 160 130 199  102    1.96 
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6.7 Summary 

 We have calculated the Griffith’s work of rupture (cleavage energy) and elastic 

constants for solid solution of Ni with specific composition of ~1 and 3.125 at.% of 

solute. All solutes, except Zr and Ir, increases the cleavage energy of the system with 

maxima for half-filled or nearly half-filled (4 electrons) d-orbitals. Similarly, all solutes 

increase the elastic constants of the system with maximum increase for Ru and Ir from 

4d and 5d-series of transition metals. A uniform increase of 6-8% for C11, C12, bulk 

modulus is observed. However, except for Ru, Re and Ir substitution there is nominal 

improvement in the C44 and Young’s modulus. For magnetic state of Ni all solutes, 

except Ru and Ir, increase the ductility of the system based on the calculation of ductility 

parameter form Rice approach (D = 0.15Gc/us) as well as Pugh approach (B/G). 
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Chapter 7 

Summary 

This thesis is an exploratory study of delving the role of alloying elements on 

various properties of  and  phases of Ni-based superalloys. First-principles based 

density functional theory calculations have been performed using the computational tool, 

Quantum Espresso, to examine the effects of transition metals (TM) from 3d, 4d and 5d 

series on the lattice parameter, cleavage energy, binding energy and planar fault energies 

of the phases. As Ni undergoes a magnetic transition, calculations have been performed 

considering both non-magnetic (non-spin polarized) and ferromagnetic (spin polarized) 

states. Highlights of the important findings of this research are presented below:  

Influence of alloying elements on the lattice parameter of Ni 

 The equilibrium lattice parameters (ao) of non-magnetic Ni and its solid solutions 

are lower than those of the ferromagnetic counterparts. 

 From the linear variation of ao with the percentage of solute substitution, 

Vegard’s coefficients have been estimated and compared with those available in 

the literature. 

 Barring Cr and Co, all other alloying element substitutions result in expanding 

the lattice parameter of Ni. Substitution by Zr leads to maximum expansion of the 

lattice with a Vegard’s coefficient of around 0.9. 
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Energetics of substitutional alloying elements and their tendency to 

clustering in Ni-based solid solution 

 Using the concept of binding energy between the solute atoms, it is seen that Co 

has the tendency to form clusters in Ni-based solid solution whereas other 

alloying atoms prefer to stay apart. In the ferromagnetic state, elements such as 

Ti, V, Mo, Pd, Nb, Ta, W and Re show preference to stay as second nearest 

neighbour, thus indicating the possibility of ordering.  

Variation of generalized stacking fault energies of Ni with dilute 

alloying 

 The influence of solutes on the intrinsic stacking fault energy (ISFE), an 

important parameter that affects cross-slip of dislocations formed due to the 

dissociation of perfect dislocation in the  matrix phase has been investigated. 

The fault was created on the (111) plane by a displacement of 1 6⁄ [2̅11] with the 

solute present on the fault plane, and the penalty in the planar energy density for 

incorporating the fault has been evaluated as ISFE. 

 The ISFE of pure Ni is 24% higher in the ferromagnetic state compared to the 

magnetic state. When alloyed with solutes, except Pd, all the elements considered 

in the study reduce the ISFE of the system, with maximum reduction of about 

15% when substituted by either of Nb, Mo, Ru, W or Re. 

 Increasing the substitutional element concentration to two percent results in 

further reduction of ISFE. 

 For the first time, the dependence of spacing between the solute atoms on the 

ISFE is being reported. While for most of the solutes this variation is very small, 

Cr shows an unusual behavior. When the substituted Cr atoms are first nearest 

neighbour on the fault plane, the ISFE decreases compared to a system substituted 

with single Cr atom. However, the fault energy increases when the Cr atoms 

remain far apart as third or fourth nearest neighbour. 
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 The barrier for the nucleation of dislocation can be estimated in terms of unstable 

stacking fault energy (USFE). Ferromagnetic Ni has 19% higher USFE compared 

to the “non-magnetic” one.  

 There is marginal increase in USFE with the substitution of Cr, Co, Ir and Ru in 

the ferromagnetic system. However, in the non-magnetic system except Zr, Nb 

and Pd all other substitutions increase this energy with maximal increase for those 

TMs with half-filled d-orbitals (i.e. Cr, Mo and Re of 3d, 4d and 5d series 

transition metals respectively).  

 For the first time, the dependence of spacing between the solutes on the USFE 

has been estimated. While Mo and Cr substitutions show some unusual behavior, 

the case of Cr is more interesting wherein in the USFE can be tuned to be either 

below or above that of pure (ferromagnetic) Ni just by changing the spacing 

between the Cr atoms. 

Variation of planar fault energies of Ni3Al with alloying 

 With Ni3Al as the basis for  phase, the energies due to antiphase boundary 

(APBE), superlattice intrinsic stacking fault (SISFE) and unstable stacking fault 

(USFE) have been systematically calculated for substitution with various alloying 

elements.  

 It is inferred that solute substitutions at Al site could provide better strengthening 

as reflected by the higher values of USFE and APBE compared to pure Ni3Al.  

 APBE is significantly increased for solutes with 5 electrons or less in their d-

orbitals with higher values for transition metals belonging to 4d and 5d series. 

 The USFE of  phase increases with number of d-orbital electrons of the solute 

with maximal values for elements having half-filled d-orbitals, viz., Cr, Mn (3d5), 

Mo (4d5) and Re (5d5), and reduces considerably thereafter.  

 An important observation is that excess Ni present as anti-site on the fault plane 

tends to reduce the values of APBE, SISFE and USFE by 41, 40 and 3%, 

respectively, whereas excess Al as anti-site increases the respective energies by 

43, 152 and 22%. 
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Influence of solutes on the ductility of Ni-based solid solution 

 Cleavage strength of (100) plane for bulk Ni was estimated by calculating the Gc. 

and its values in ferromagnetic and non-magnetic states, respectively, are 

estimated to be 4.18 mJ/m2 and 4.29 mJ/m2. 

 The ratio of Griffith work for formation of surfaces to that of USFE is an indicator 

of the ductility of a system. Based on the criterion given by Rice, it is found that 

solute substitutions lead to marginal improvement, with respect to pure Ni, in 

ductility of ferromagnetic Ni, except in the case Ir, where a marginal decrease is 

observed.  

 In the case of non-magnetic system, except Ti, Zr, Nb and Pd, other solute 

substitutions lead to a decrease in the ductility parameter.  

 Ductility parameter (B/G) higher than 1.75 based on Pugh for Ni is in accordance 

with its higher ductility. Based on Pugh criterion all solute substitution suggest 

further increases in the ductility of the alloy. 

Thus, in this thesis, properties relevant to the design of Ni-based superalloys have 

been systematically estimated. The reasons for variation of many of the properties have 

been addressed from the point of view of atomic interaction along with their electronic 

structures. It is envisaged that the trends and estimated properties would be useful in the 

context of Integrated Computational Materials Engineering (ICME) framework for the 

rational design of superalloys with specific quantified properties. 
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Appendix A 

Precise determination of displacement for the 

creation of unstable stacking fault (USF) in Ni 

96 Ni atoms supercell was constructed with three orthogonal directions along 

[1̅01], [1̅21̅] and [111] direction having six (111) layers. The faults were simulated by 

shear deformation along <112>{111} through displacing the image of the supercell by 

x𝑏𝑝
⃗⃗⃗⃗ , along the [2̅11] direction, and allowing the positions of the atoms in the outer planes 

to relax only along directions perpendicular to the fault plane. Here 𝑏𝑝
⃗⃗⃗⃗  corresponds to 

the Burgers vector 1 6⁄ [2̅11] and x was varied from 0.06 to 1.29 in increments of 

x=0.12. The corresponding energy penalty fs is estimated as 

𝛾𝑓𝑠 =
𝐸𝑓 − 𝐸𝑜

𝐴
, 

where Ef and Eo are the energies of the faulted and perfect structures, and A is the 

area of the slip plane in the supercell on which fault has been generated. As a result, a 

rough estimate of generalized stacking fault energy curve was obtained (Figure A.1). For 

a more precise determination of the displacement corresponding to USF, a finer step of 

x=0.025 was used in the range between x=0.48 and 0.60. This led to the conclusion that 

USF can be created by a displacement vector of 0.56 1
6⁄ [2̅11] on the (111) plane. 
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Figure A.1: Energy profile of sliding one half of the Ni supercell against another 

along [𝟐̅𝟏𝟏] on (111) for various displacements. The line joining the points is a 

guide to the eye. 
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Appendix B 

Calculation of cleavage energy 

The (001) planar interface of the composite γ/γ system is considered for the 

calculation of cleavage energy. A γ-γsystem is simulated using a supercell of 1110 

cubic unit cells (40 atoms corresponding to 20 layers with 2 atoms per layer) constructed 

along the [001] direction (Figure B.1). γ/γ interface is considered as (002)γ||(001)γ plane 

based on the fact that the {002} interface plane is coherent between the γ-Ni and γ-Ni3Al 

blocks [B.1]. The supercell is divided by the interface with one half consisting of 

consecutive layers of Ni atoms (corresponding to γ phase) and the other half with 

alternating layers of pure Ni and a mix of 50 % Ni  50 % Al (corresponding to γ- Ni3Al 

phase) (Figure B.1). 

The Griffith work of rupture (Gc) is used to determine the tensile cleavage 

strength of the bulk γ-γsystem and is defined as the energy needed to cleave a crystal 

about a plane [B.2]. Using DFT, Gc has been calculated using a simple model of ideal 

brittle cleavage between two planes of the crystal which are separated by a distance xd+ 

x, where xd is the equilibrium interplanar separation. To simulate a cleaved crystal, this 

separation should be sufficiently large such that the interaction between the interfaces 

vanishes (Figure B.2 (a)). The total energy of the system (Etot(x)), with increasing 

separation x, is obtained by completely relaxing the system (Figure B.2 (b)). Infinite 

separation may be referred to as a separation xm beyond which the increase in the total 

energy (E = Etot(x) -Etot(xm)) of the system is below a small insignificant value (in the 
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present case E per atom has been taken to be 10-3 eV). From Figure B.2 (b) it can be 

observed that the change in total system energy beyond a separation of 5 Å is less than 

0.001 eV suggesting that the interactions across the cleaved interface are too small 

beyond this separation. Thus, in the present study, xm is taken to be equal to 10 Å.  

 

Figure B.1: 20 layers γ - γ supercell used for cleavage and GSF energy calculation. 

The cleavage energy, Gc is calculated using 

𝐺𝑐 = 1
𝐴⁄ [𝐸𝑡𝑜𝑡(𝑥𝑚) − 𝐸𝑡𝑜𝑡(0)] 

where, A is the area of the cleaved surface, Etot(0) and Etot(xm) are, respectively, the total 

energy of the bulk and cleaved systems.  
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(a)     (b)  

Figure B.2. (a) Brittle cleavage model with two adjacent planes separated by a 

distance xd+ x and (b) increase in the total energy for the 20 layer γ-γ system as a 

function of xd+ x. 
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