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Abstract

The focus of the present dissertation is to study the spatio-temporal pattern formation and
transport in Compressible Taylor-Couette flow. Using the Direct Numerical Simulations (DNS)
to study the axisymmetric Taylor-Couette flow (TCF) of an ideal gas with inner cylinder
rotating, the solutions are presented as functions of (i) Reynolds number (Re) based on the
rotation rate of the inner cylinder, (ii) peripheral Mach number (Ma) of the flow and (iii) the
radius ratio (η = r1/r2), where r1 and r2 corresponds to the radii of inner and outer cylinders,
respectively. All simulations are carried out with axially periodic boundary conditions, except
in Chapter - 6 that deals with axisymmetric counter rotating TCF with end-plates. The primary
bifurcation from the pure azimuthal circular Couette flow (CCF) leads to the well-known
Taylor Vortex flow (TV F), and the phase diagrams consisting of patterns are identified in
the (Re,Ma) and (Re,η) plane. The effect of compressibility (Ma) on TCF and the onset of
primary instability which is the transition from purely azimuthal circular Couette flow (CCF)
to Taylor vortex flow (TV F) for η = 0.5 and Γ = h/δ = π/2, where Γ is the aspect ratio, h
is the height of the computational domain and δ (= r2 − r1) is the gap width between two
cylinders, is analyzed in Chapter 3. It is shown that the compressibility primarily affects the
density distribution within the gap between two rotating cylinders by causing an accumulation
of mass near the stationary outer cylinder and plays a pivotal role in restraining the onset of
instability. A new time-dependent, axially propagating, axisymmetric flow state, called the
Travelling wave solution (TWS), is identified in TC cells at higher Re. These are low frequency
axially propagating waves, and a comprehensive phase diagram in (Re,Ma) plane is plotted that
summarizes the region of TWS. Transport in compressible Taylor vortices is calculated and the
analyses of density (ρ) and velocity (u,v,w) fields reveal that the compressibility diminishes
the radial (Qr), azimuthal (Qθ ) and axial (Qz) transports.

Chapter 4 highlights the effects of radius ratio (η) and compressibility (Ma) on the onset
of Taylor vortices from the base state of circular Couette flow (CCF). It is seen that the
compressiblity (Ma) effects are less significant in smaller gap-width, TC-cell as the diffusive
effects become dominant at η −→ 1, which is similar to the linear stability results of Manela
& Frankel (2007). The existence of stationary and non-stationary patterns is found and a
comprehensive phase diagram in (Re,η) plane is plotted that summarizes these findings. The



xii

scaling of effective-Nusselt number (Nuω) with Taylor number (Ta) are presented for different
radius ratio (η) for CCF −→ TV F transition along with the effect of fluid compressibility
(Ma) on effective-Nusselt number (Nuω) for η = 0.5 is discussed. Chapter 5 portrays the
results on Proper Orthogonal Decomposition (POD) on the flow fields obtained from the DNS
data of Taylor-Couette flow. Using the “method of snapshots” on the radial-axial velocity (u,w)
spectra combined with density (ρ) and temperature (T ) perturbations, scaled with a weight
matrix, corresponding to the Mack norm (Mack, 1984), over the (r,z) plane for various Re in
the the wide-gap regime (η = 0.5), it is found that the first three POD modes (for Re = 210)
and first five POD modes (Re = 500) are sufficient to capture more than 95% of the total energy
content of the present system.

Chapter 6 presents the results from numerical investigations of Taylor-Couette flow (TCF)
of an ideal gas in “finite” cylinders obtained with independently rotating inner-cylinder (0 <

Rei < 300) and outer cylinder (−300 ≤ Reo ≤ 300), where Rei = ω1r1δ/ν and Reo = ω2r2δ/ν

are the Reynolds number of inner and outer cylinder, respectively, and ω1 and ω2 are inner and
outer cylinder angular velocities, δ = r2−r1 is the gap-width, and ν is the kinematic viscosity at
inner cylinder. All these simulations are done by assuming axisymmetric flow. The emergence
of localized cellular Taylor vortex state (Abshagen et al., 2010) is found in the counter-rotation
regime (Rei ∈ [150,300] and Reo ∈ [−100,−300]). We also report axisymmetric propagating
vortices (previously observed by Hoffmann et al. (2013) in incompressible TCF), which travel
from end walls towards mid-height, where they get annihilated and the cycle continues. The
phase diagram consisting of stationary and travelling patterns is constructed in the (Rei,Reo)

plane for Ma = 1 and Pr = 1.
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Chapter 1

Introduction

1.1 Taylor-Couette Flow: Flow between Two Concentric Dif-
ferentially Rotating Cylinders

The story of flow between two concentric differentially rotating cylinders started its journey
during the twilight years of seventeenth century when Sir Isaac Newton hypothesized the
definition of modern day Newtonian fluid. In the Book 2, Section 9, Proposition 51, Corollary
2 of Principia Mathematica, Newton states - “If a fluid be contained in a cylindric vessel of an
infinite length, and contain another cylinder within, and both the cylinders revolve about one
common axis, and the times of their revolutions be as their semidiameters, and every part of
the fluid continues in its motion, the periodic times of the several parts will be as the distances
from the axis of the cylinders”. After a period of one hundred sixty one years, George Gabriel
Stokes (1848) solved for the fluid flow velocity between two rotating coaxial cylinders but
expressed his concerns about the boundary conditions of the flow (no-slip condition at the wall
and free surface).

In the 1880s, Henry Reginald Arnulph Mallock and Maurice Marie Alfred Couette indepen-
dently determined the viscosity of water in an apparatus consisting of two rotating concentric
cylinders. In the year of 1890, the thesis written by Couette illustrated a detailed study of
measurement of viscosity of water using a pair of cylinders with the stationary inner cylinder
and a rotating outer cylinder. The design of viscometer by Couette (1890) was inspired from
the works of Austrian theoretical meteorologist, Max Margules and only the outer cylinder
could be rotated. However the apparatus designed by Mallock (1889) operated with more than
two different arrangements of the cylinders. This work of Mallock (1889) was communicated
by Lord Rayleigh on 30th of November 1888, in response to which Lord Kelvin wrote a letter
to Lord Rayleigh, dated 10th July 1895 -
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“On Saturday I saw a splendid illustration by Arnulph Mallock of our ideas regarding
instability of water between two parallel planes, one kept moving and the other fixed. Coaxial
cylinders, nearly enough planes for our illustration[, were used]. The rotation of the outer can
was kept very accurately uniform at whatever speed the governor was set for, when left to itself.
At one of the speeds he showed me, the water came to a regular regime, quite smooth. I dipped
a disturbing rod an inch or two down into the water and immediately the torque increased
largely. Smooth regime would only be reestablished by slowing down and bringing up to speed
again, gradually enough. Without the disturbing rod at all, I found that by resisting the outer
can by hand somewhat suddenly, but not very much so, the torque increased suddenly and the
motion became visibly turbulent at the lower speed and remained so.” Later on, Lord Rayleigh
decided to probe the flow stability in the absence of viscosity. A detailed description of history
of the Taylor-Couette flows is excellently summarized in Donnelly (1991).

Around three decades later, Lord Rayleigh (1917) derived a criterion for the stability of
inviscid rotating flows, which emphasized that the circular Couette flow (CCF) is stable to
axisymmetric perturbations only if the square of specific angular momentum of the rotating
fluid element increases monotonically outwards from the axis of rotation, or, in other words,
the square of the circulation increases outwards. Rayleigh (1917) asserted the above mentioned
criterion to be necessary and sufficient. Later Synge (1938) performed linear stability analyses
for axisymmetric inviscid perturbations on rotating fluid and concluded that the criterion derived
by Rayleigh (1917) was sufficient but not necessary.

The Navier-Stokes equations for purely axisymmetric disturbances are given by:
r- momentum:

Du
Dt

− v2

r
=− 1

ρ

∂ p
∂ r

, (1.1a)

θ -momentum:
Dv
Dt

+
uv
r

= 0, (1.1b)

z-momentum:
Dw
Dt

=− 1
ρ

∂ p
∂ z

, (1.1c)

where the material derivative can be expressed as

D
Dt

=
∂

∂ t
+u

∂

∂ r
+w

∂

∂ z
, (1.2)

and finally, invoking the equation of continuity,

∂u
∂ r

+
u
r
+

∂w
∂ z

= 0, (1.3)
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(a)

(b) (c)

Fig. 1.1 Schematic diagram of (a) Taylor-Couette setup, the inner cylinder (r = r1) is rotating
with angular velocity ω1 and the outer cylinder (r = r2) is stationary (ω2 = 0). The gap-width
between the two cylinders is δ = r2 − r1 and the axial extent of cylinder is h; (b) flow pattern
showing purely azimuthal CCF (blue lines); (c) flow pattern marked in red circles showing
TV F as a primary bifurcation from CCF .
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where u,v and w denote radial (r), azimuthal (θ) and axial (z) velocities, respectively; ρ is the
mass-density of the fluid and p is the pressure.

Consider the initial flow to be purely azimuthal, i.e.

v = rω(r), u = 0 = w. (1.4)

From the momentum balance in the θ -direction, we have

D(rv)
Dt

= 0, (1.5)

which implies that the quantity H = rv, the specific angular momentum of the fluid, is conserved.
One can define the kinetic energy per unit volume associated with the azimuthal motion in
terms of H as follows:

1
2

ρv2 =
1
2

ρH2

r2 . (1.6)

Let us consider two elemental rings of equal volume dV at different radial locations, one at
r = r1 and the other at r = r2. Assuming r2 > r1, total kinetic energy per unit volume is:

KE12 =
1
2

ρ

(
H2

1
r2

1
+

H2
2

r2
2

)
. (1.7)

Considering that the fluid in these two elemental volume has swapped positions, the new kinetic
energy per unit volume will be:

KE21 =
1
2

ρ

(
H2

1
r2

2
+

H2
2

r2
1

)
, (1.8)

and hence the change in kinetic energy is,

KE21 −KE12 =
1
2

ρ(H2
2 −H2

1 )

(
1
r2

1
− 1

r2
2

)
. (1.9)

Note that, for r2 > r1,
(

1
r2

1
− 1

r2
2

)
> 0. If the swap liberates kinetic energy, KE21 −KE12 < 0

or H2
2 −H2

1 < 0, the base flow will be unstable. This implies that, if H2 decreases with r, the
flow is unstable. Note that, 2πH is the circulation around a circle, given by r = constant and
z =constant, see Chandrasekhar (1960). Hence the criterion for stability is given by

dH2

dr
> 0. (1.10)
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Fig. 1.2 Rayleigh (1917) line (red line) and Taylor (1923) stability line (blue line) in the
(Reo,Rei) plane.

The above criterion (1.10) is known as Rayleigh’s (1917) inviscid stability criterion. Figure
1.2 shows the Rayleigh (1917) line (depicted by the red line) is given by ω1r2

1 = ω2r2
2 in

the (Reo,Rei)-plane where ω1 and ω2 are the angular velocities of inner and outer cylinders,
respectively. The story of the flow between concentric cylinders entered a new phase when,
considering the effect of viscosity along with experimental evidence, Taylor (1923) presented
a linear stability analysis with narrow-gap approximation which elucidated the occurrence of
azimuthally-invariant counter-rotating toroidal vortices, stacked along the axial direction, as
a transition to Taylor vortex flow (TV F) from the CCF (see panels (b) CCF and (c) TV F of
figure 1.1). This marked as a bridge between theory and experiments proving the NSE (Navier
Stokes Equations) to describe the fluid flow and no-slip boundary condition. It took 75 years
to demystify the concerns of Stokes (1848) about the boundary conditions in rotating fluid.
The apparatus designed by Taylor had the provision for flow visualization which previous
experimentalists failed to incorporate. The blue line in figure 1.2 represents a schematic of
Taylor’s neutral stability curve in (Reo,Rei)-plane.

Over a decade later, Taylor (1936a) presented torque measurements with (a) inner cylinder
rotating and outer cylinder stationary and (b) inner cylinder stationary and outer cylinder
rotating. His key finding was that the onset of turbulence happens much earlier in case (a) than
in case (b). In a follow up article, Taylor (1936b) describes the distribution of fluid velocity
between two cylinders with stationary inner and rotating outer cylinder. Chandrasekhar (1958)
examined this problem for wider gap scenarios and concluded that viscosity indeed stabilizes
the flow. He provided extensive stability analyses on Taylor Couette flow including the effect
of magnetic field.



6 Introduction

During the past hundred years, the incompressible Taylor-Couette flow (TCF) has emerged
as a well-studied problem in fluid mechanics to understand instabilities (Di Prima & Swin-
ney, 1981; Taylor, 1923, 1936a), pattern formation (Coles (1965), Andereck et al. (1986),
Koschmieder (1993), Cross & Greenside (2009), Chossat & Iooss (2012)) and the laminar-
turbulent transition (Barcilon et al. (1979), Gorman et al. (1980), Lathrop et al. (1992),
Grossmann et al. (2016)).

In a seminal work, Coles (1965) discovered, depending on the path to reach a specific
Reynolds number Re, more than 70 transitions for a speed range up to about 10 times the first
critical speed (10Rec) which provided conclusive instances of the nonuniqueness of patterns in
Taylor-Couette flow. Coles (1965) found that, at large Re, the discrete spectrum obtained from
flow pattern changes gradually and reversibly to a continuous one by broadening of the initial
sharp spectral lines. He also identified catastrophic transition: when the angular velocity of
outer cylinder is larger than the inner one, in which for a given Re different regions in the fluid
exists in laminar and turbulent flow states and under certain conditions the flow, the turbulent
regions may appear and disappear like intermittency in turbulent bursts and spiral turbulence.
Regarding the absence of turbulence in specific regions of the fluid, Coles (1965) stated - “part
of the turbulent energy may actually be transferred from the turbulence back to the mean flow
rather than merely dissipated as heat.” Andereck et al. (1986) characterized different flow states
and the transition scenarios between them, for a fixed radius ratio of η = r1/r2 = 0.883. The
plethora of states included Taylor vortices (TV F), wavy vortices (WV F), modulated wavy
vortices (MWV ), vortices with wavy outflow boundaries (WOB), vortices with wavy inflow
boundaries (WIB), twisted vortices (TWI), spiral vortices (SPI), interpenetrating spirals (IPS),
wavy interpenetrating spirals (WIS), spiral turbulence (SPT ), turbulent Taylor vortices (T TV ),
featureless turbulence (TUR), and many more, see figure 1.3. This marked the beginning of
tremendous growth and development in the Taylor-Couette flow over the next decades, some of
which are reviewed in Grossmann et al. (2016).

1.2 Taylor-Couette Flow: Direct Numerical Simulations

The incompressible Taylor-Couette flow, being a paradigmatic model for wall-bounded, shear-
driven turbulence, has been probed numerically using direct numerical simulations (DNS)
by various groups. Complete access to scalar (temperature and pressure) and vector fields
(velocity) can be achieved for every spatial location on the domain of interest at all times in
DNS in which the NSE are numerically solved for a given set of initial and boundary conditions
without aid from any turbulence model. This translates to the fact that the whole range of spatial
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(a) (b)

(c) (d)

Fig. 1.3 Flow patterns illustrating (a) Spiral vortices (SPI); (b) Modulated Wavy Vortex
flow (MWV); (c) Interpenetrating Spirals (IPS) and (d) Wavy Interpenetrating Spirals (WIS)
(Andereck et al., 1986)

scales (integral scales to Kolmogorov microscales) are resolved, which, of course, requires
high computational costs.

To the author’s best of knowledge, the first reported DNS on TCF was done by Meyer
(1967), where he solved axisymmetric incompressible NSE using finite difference technique.
Later he extended the analysis to fully three dimensional simulations (Meyer, 1969) using a
combination of Fourier expansions in azimuthal (θ) direction and finite differencing in radial
(r) and axial (z) directions for a radius ratio of η = r1/r2 = 0.833, where r1 and r2 are the
radii of inner and outer cylinders, respectively. Meyer (1969) performed simulations for three



8 Introduction

discrete Reynolds number (of 750,1000 and 2000), based on inner cylinder radius,

Rer1 =
ωir2

1
ν

, (1.11)

where ωi refers to the angular velocity of the inner cylinder and ν refers to the kinematic
viscosity of the fluid. Meyer-Spasche & Keller (1980) performed pseudo-arc length continuation
to capture bifurcating branches from purely azimuthal CCF to TVF for different gap-widths.
Their analysis was restricted to incompressible axisymmetric simulation of NSE with Fourier
expansions in z direction and finite difference in r direction.

Jones (1981) performed axisymmetric simulations with inner cylinder rotating and stationary
outer cylinder for a wide range of Taylor numbers

Ta =
(ωi −ωo)

2r1(r2 − r1)
3

ν2 =
1−η

η
Re2 (1.12)

where
Re =

(ωi −ωo)∗ (r2 − r1)

ν
(1.13)

and ωo is the angular velocity of the outer cylinder; he computed linearized eigenfunctions
which correspond to wavy TVF at a radius ratio of η = 0.875. Jones (1982) numerically studied
the pattern formation scenario in counter-rotating cylinders for small outer cylinder rotation.
In a subsequent work, Jones (1985) studied the transition from steady axisymmetric TV F to
time dependent WV F . Moser et al. (1983) carried out highly resolved simulations using fully
spectral method for axisymmetric and three-dimensional simulations in the TVF regime.

Marcus (1984a) came up with a robust, fast and highly memory-efficient pseudospectral
code in order to compute non-axisymmetric TCF as an initial value problem. He showed
the importance of computers to probe the underlying physical mechanisms that govern the
dynamics of TCF. In a later work, Marcus (1984b) computed wave-speeds, angular-momentum,
torque, energy and enstrophy spectra for both TVF and Wavy Vortex flow (WVF) and explained
the relevant physics involved.

Fasel & Booz (1984) solved for axisymmetric NSE using a fourth order implicit finite
difference method for Re upto 10 times the critical Re corresponding to the transition from
the purely azimuthal CCF to TVF. They provided detailed analysis on the evolution of jet-like
structures at higher Re, from stream-function, vorticity and velocity data.



1.3 Compressible Taylor-Couette Flow 9

1.3 Compressible Taylor-Couette Flow

While the instability mechanism and pattern formation scenario in incompressible TCF is well
understood, its compressible counterpart has been relatively less explored. The compressible
analog of TCF is relevant in astrophysical fluid dynamics problems such as accretion disk
flows (Balbus & Hawley, 1998) and compact astrophysical bodies, like neutron stars (Abney &
Epstein, 1996), that admit high Mach number (Ma).

In compressible flows, one has to solve for the continuity, momentum and the energy
equations along with the equation of state. In incompressible flows, the pressure Poisson
equation imposes the continuity of the flow at the boundaries, whereas in the compressible
case, density or pressure has to be explicitly mentioned. In order to mitigate the latter problem,
one can use artificial boundary conditions, or, formulate the continuity equation in a manner
such that it is not discretized at the boundary, for example, using staggered grid.

The stability of compressible plane Couette flow (PCF), which is a limiting case of the
narrow-gap compressible TCF, has been studied by Duck et al. (1994), Hu & Zhong (1998),
Malik et al. (2006) and Malik et al. (2008); it has been found at high Re, acoustic instabilities
occur for a range of supersonic Ma. These instabilities are caused by the compressibility of the
fluid and are referred as Mack modes (Mack, 1976). On the other extreme lies the compressible
pipe flows in which the Rayleigh’s problem (which essentially is a spin up from rest problem)
have been extensively studied for the case of infinte cylinders (Park & Hyun, 1989). Rayleigh’s
problem (Batchelor, 2000) is a canonical problem for incompressible fluid dynamics, in which
an infinite flat plate is started to move in a direction parallel to itself through a viscous fluid,
and has been considered for compressible fluid by Howarth (1951).

To the author’s knowledge, the first experimental study on compressible TCF was done by
Kuhlthau (1960) using dry air. The rotor is made up of forged aluminium alloy (2024-T4) 4
inches in diameter and varies from 1 inches to 2.5 inches in length. The rotor is clamped to a
flexible steel shaft of 0.1 inches in diameter. The gap between two cylinders is 0.5 inches. The
speeds are varied from 400 rev/sec to 1600 rev/sec, corresponding to a range of Mach numbers
0.37 ≤ Ma ≤ 1.47 (Ma = v f /cs where v f is the local flow velocity and cs is the adiabatic
sound speed). Torque measurements on the stationary outer cylinder revealed an inception of
instability when it started to increase sharply.

Kao & Chow (1992) carried out a temporal stability analysis for the compressible TCF
to study the effects of Ma, Re and wall temperatures for a wide-gap Taylor Couette flow
(η = r1/r2 = 0.5 is the radius ratio) using Chebychev collocation method. With increasing
rotation of the inner cylinder and the stationary outer cylinder, they found that, at all speeds,
increasing the temperature ratio (χ = T2/T1) stabilises the low-Re flows and destabilises the
high-Re flows. As reported by Kao & Chow (1992), at Re = 100 and χ = 1, the maximum



10 Introduction

growth-rate of the disturbances (ωi) increases with increasing Ma, indicating the destabilising
role of Ma.

Hatay et al. (1993) considered two and three dimensional disturbances and analysed the
linear stability for a wide range of parameters and found out that increasing Ma stabilizes the
flow for narrow gaps (η > 0.8) and destabilizes for wide gaps. They also found increasing
the χ = T2/T1 stabilizes the flow irrespective of the gap-width which were in agreement with
Kao & Chow (1992). Both Kao & Chow (1992) and Hatay et al. (1993) defined the Reynolds
number based on the local density of gas.

As reported by Manela & Frankel (2007), the local gas density cannot be a priori prescribed
since the near-wall gas conditions are likely to change with varying Re and Ma, and it would
be more meaningful to use the average density (the ratio of the mass per unit length of fluid
between two cylinders to the area of the gap) as a reference density which in turn would respect
the mass conservation when the external parameters are varied. Since at high supersonic
speeds, the variation between local and average densities can be quite large, which in turn
would influence temperature and pressure distribution within the gap, using the critical Re
based on the local density is not a good measure when comparing with its incompressible
counterpart. Manela & Frankel (2007) carried out a linear stability analysis focusing on narrow-
gaps (η ≥ 0.893), and found their results to agree qualitatively with Kuhlthau (1960) in the
transonic regime. They concluded that increasing Ma stabilizes the flow and the compressibility
effects become more pronounced with decreasing η .

More recently, Welsh et al. (2014) performed the linear stability analysis for the compress-
ible TCF for a radius ratio of η = 0.5. At low Prandtl number (Pr ≤ 1), they found increasing
Ma stabilizes the flow as found previously by Manela & Frankel (2007). Collectively, the works
of Manela & Frankel (2007) and Welsh et al. (2014) confirmed that the conclusion of Kao &
Chow (1992) are incorrect. Interestingly, at high Pr, Welsh et al. (2014) found new instability
modes in the form of oscillatory axisymmetric modes and steady convective modes along with
stationary Taylor-Couette modes. Most notably, they found that the onset of instability can
occur even when the angular momentum increases outwards and hence the classical Rayleigh’s
criterion can be violated in compressible TCF.

1.4 Present Work

The focus of the present thesis is to study the spatio-temporal pattern formation and transport
in compressible Taylor-Couette flow of a dilute gas. Using the Direct Numerical Simulations
(DNS) to study the axisymmetric Taylor-Couette flow (TCF) of an ideal gas with inner cylinder
rotating, the solutions are presented as functions of (i) the Reynolds number (Re) based on the
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rotation rate of the inner cylinder, (ii) the peripheral Mach number (Ma) of the flow and (iii) the
radius ratio (η = r1/r2), where r1 and r2 corresponds to the radii of inner and outer cylinders,
respectively. The phase diagrams consisting of new patterns are drawn in the (Re,Ma) and
(Re,η) plane.

1.4.1 Chapter 2

This chapter presents (i) the governing equations, consisting of time-dependent compressible
Navier-Stokes equations along with the continuity and energy equations for a monoatomic
perfect gas and (ii) the details of the numerical method. We employ no-slip and Dirichlet
boundary conditions for velocity fields (u,v,w) and temperature field (T ), respectively. Axially
periodic boundary conditions are imposed and extensive code validation is presented.

1.4.2 Chapter 3

In this chapter, the effects of compressibility (Ma) on (i) TCF of molecular gases and (ii) the
onset of primary instability, which is the transition from purely azimuthal circular Couette
flow (CCF) to Taylor vortex flow (TVF), are studied for η = 0.5 and Γ = h/δ = π/2; here
Γ is the aspect ratio, h is the height of the computational domain and δ (= r2 − r1) is gap
width between two cylinders. It is shown that the compressibility primarily affects the density
distribution within the gap between two rotating cylinders by causing an accumulation of mass
near the stationary outer cylinder that, in turn, plays a pivotal role in restraining the onset of
instability. Axially propagating waves have been found and a comprehensive phase diagram
in the (Re,Ma)-plane is plotted that summarizes the present findings on different patterns.
Transport in compressible Taylor vortices has been calculated and the effects of compressibility
on the radial (Qr), azimuthal (Qθ ) and axial (Qz) transports are discussed.

1.4.3 Chapter 4

This chapter highlights the effects of radius ratio (η) and compressibility (Ma) on the onset
of Taylor vortices from the base state of circular Couette flow (CCF). Existence of stationary
and non-stationary patterns is found and a comprehensive phase diagram in (Re,η) plane is
plotted that summarizes these findings. Qualitative bifurcation diagrams have been constructed
for ramp-up and ramp-down protocols. We verify that the periodic boundary conditions in
axial direction admits supercritical pitchfork bifurcation at the onset of TV F from CCF , and
the order parameter, ∆u (radial velocity at the mid-height and mid-gap of the computational
domain) shows a square-root scaling (∆u ∝

√
ε), with the driving parameter (ε) being the
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distance from the critical point, where ε = (Re−Recr)/Recr. The axial velocity (w) at mid-
height and mid-gap acts as an effective order parameter to quantify the “degree of asymmetry”
in asymmetric stationary flow patterns. We also investigate the existence of side by side two
rolls concerning short - cylinders with aspect ratios Γ ≤ O(1) at high Re in the parameter
regime of the Travelling wave (TWS) flow state. We calculate the scaling of effective-Nusselt
number (Nuω) with Taylor number (Ta) for different radius ratio (η).

1.4.4 Chapter 5

This chapter presents the results on Proper Orthogonal Decomposition (POD) on the flow fields
obtained from the DNS of Taylor-Couette flow. POD is a technique that takes a set of input
data and creates an orthogonal basis constituted by functions which are the solutions of an
integral eigenvalue problem. Using the “method of snapshots” on the radial-axial fluctuation
velocity (u,w) spectra combined with density (ρ) and temperature (T ) perturbations, scaled
with a weight matrix, corresponding to the Mack norm (Mack (1984)), obtained from the DNS,
over the (r,z) plane for various Re in the the wide-gap regime (η = 0.5), we find that the first
three POD modes (for Re = 210) and first five POD modes (Re = 500) are sufficient to capture
more than 95% of the total energy content of the present system. The temporal dynamics is
shown by projecting the fields onto the POD basis modes in order to calculate the associated
POD coefficients and are plotted in phase diagrams.

1.4.5 Chapter 6

In this chapter, we report results from numerical investigations of Taylor-Couette flow (TCF)
of an ideal gas in “finite” cylinders obtained from independently rotating inner-cylinder (0 <

Rei < 300) and outer cylinder (−300 ≤ Reo ≤ 300), where Rei = ω1r1δ/ν and Reo = ω2r2δ/ν

are the Reynolds number of inner and outer cylinder, respectively, and ω1 and ω2 are inner
and outer cylinder angular velocities, δ = r2 − r1 is the gap-width, and ν is the kinematic
viscosity at inner cylinder. The Mach number (Ma) of the flow and the Prandtl number (Pr)
of the the fluid is set to unity. The geometrical parameters: (a) radius ratio (η = r1/r2) is 1/2
(wide-gap limit) and (b) the aspect ratio (Γ = h/δ , where h is the height of the computational
domain). We employ no-slip and Dirichlet boundary condition for velocities (u,v,w) and
temperature T , respectively, at the cylinder walls as well as at the top and bottom lids of
the domain. The emergence of localized cellular Taylor vortex state (Abshagen et al., 2010)
is found in the counter-rotation regime (Rei ∈ [150,300] and Reo ∈ [−100,−300]). We also
report axisymmetric propagating vortices (previously observed by Hoffmann et al. (2013) in
incompressible fluid systems), which travel from mid-height towards end walls, where they get
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annihilated and the cycle continues. The phase diagram consisting of stationary and travelling
patterns is constructed in the (Rei,Reo) plane.

1.4.6 Chapter 7

In this chapter, we summarise the present findings.





Chapter 2

A Finite Difference Code for
Compressible Shear Flows in Cylindrical
Coordinates

2.1 Introduction

A finite difference code for axisymmetric compressible Taylor-Couette flow (TCF) is presented.
We seek solutions of azimuthal invariant [∂/∂θ(·) = 0], time-dependent compressible Navier-
Stokes equations along with the continuity and energy equations for a monoatomic perfect
gas as functions of Reynolds number (Re) based on the rotation rate of inner cylinder, Mach
number (Ma), and the radius ratio (η) of two cylinders. This chapter is based on axisymmetric
finite difference code originally developed by Aghor (2018), adapted from Harada (1980a),
Harada (1980b) and Hyun & Park (1992), and later modified, extended and optimized in the
present thesis.

2.2 Axisymmetric Compressible TCF and Boundary Condi-
tions

The compressible flow of a perfect gas driven by the rotation of inner cylinder of radius r1 and
stationary outer cylinder of radius r2, as shown in schematically in figure 2.1, is the focus of
the current study. The inner cylinder is rotated at an angular velocity (ω1 > 0) and the outer
cylinder is at rest (ω2 = 0). The problem is formulated in cylindrical coordinates, (r, θ , z),
that refer to the radial (wall-normal), azimuthal (flow) and spanwise (axis of the cylinders)
directions, respectively. The flow velocity is denoted by u = (ũ, ṽ, w̃), where ũ, ṽ and w̃ are
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Fig. 2.1 Schematic diagram of Taylor-Couette setup. The inner cylinder is rotating with angular
velocity ω1 and the outer cylinder is stationary (ω2 = 0). The gap between the two cylinders is
δ̃r = r̃2 − r̃1 and the height of cylinders is h̃.

its components along r, θ and z directions, respectively. The fluid considered in the present
study is a dilute mono-atomic compressible gas of density ρ̃ , pressure p̃ and temperature T̃ .
The shear viscosity (µ̃), the thermal conductivity (κ̃), the specific heat at constant pressure
(c̃p) and specific heat at constant volume (c̃v) are assumed to be constants and independent of
temperature. We consider the heat capacity ratio of the gas (γ = c̃p/c̃v) to be 5/3. We assume
the bulk viscosity to be zero (i.e. ζ̃ = 0) such that the Stokes (2009) assumption, can be invoked
(λ̃ = ζ̃ − 2

3 µ̃ = 0− 2
3 µ̃). The temperature of the inner (T̃1) and outer (T̃2) cylinders are kept

constant.

2.2.1 Dimensionless governing equations: axisymmetric TCF

Let us choose a reference length scale of the problem, δ̃r, where δ̃r = r̃2− r̃1 is the gap between
two cylindrical walls, a reference time scale, t̃r, where t̃r = δ̃r

2
/ν̃r is the viscous time scale and

a reference velocity scale, ũr where ũr = δ̃r/t̃r, and ν̃r = µ̃r/ρ̃r is the kinematic viscosity of the
gas. Hence the non-dimensional variables are as follows -

(r,z) = (r̃, z̃)/δ̃r, t =
t̃

(δ̃r
2
/ν̃r)

, (u,v,w) = (ũ, ṽ, w̃)/ũr. (2.1)

The tilde over any physical quantity denotes the dimensional quantity and its unclad equivalent
is dimensionless. Note that, δ represents the dimensionless length scale instead of δr, chosen
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to avoid confusion with δr representing the derivative in finite difference formulation (section
2.3). The reference scale for viscosity (µ̃r), thermal conductivity (κ̃r) and temperature (T̃r) are
based on their values at the inner cylinder. As per Welsh et al. (2014), let us consider m̃w be the
mass of the gas per unit length between the two cylinders; the reference average gas density is

ρ̃r = m̃w/π(r̃2
2 − r̃1

2) (2.2)

and the reference scale for pressure (p̃r) is taken to be (c̃p − c̃v)ρ̃rT̃r, where c̃p and c̃v are
specific heats at constant pressure and volume, respectively. The dimensionless density and
pressure are defined as follows:

ρ = ρ̃/ρ̃r, p = p̃/p̃r. (2.3)

Using (2.1) and (2.3), we define the Reynolds number at the inner cylinder to be

Re = ω1r1δ/νr. (2.4)

The peripheral Mach number (Ma) is defined as

Ma = Re/cis, (2.5)

where cis is the isothermal sound speed defined via

c2
is =

(cp − cv)Trδ
2

ν2
r

and the subscript “is” denotes the quantity being evaluated at isothermal conditions.
The final parameter is the Prandtl number of the gas (Pr), which is the ratio of molecular
diffusivity of momentum and molecular diffusivity of heat. For most simulations reported
in this thesis, we take Pr = 1 which is close to that of air. The effect of varying Pr will be
considered for some specific cases.

Following Harada (1980a), the governing equations are written in terms of a new variable ρ̄

ρ̄ = ρr, (2.6)

The governing equations in terms of ρ̄ and casted for azimuthally-invariant [∂/∂θ(·) = 0]
flows are as follows:
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∂ ρ̄
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is the viscous dissipation.
The equation of state is

p =
ρ̄T
r

(2.13)

2.2.2 Dimensionless initial and boundary conditions

Computations were initialised from the rest state (u = v = w = 0), unit density and temperature
(ρ,T = 1) for all reported runs. The boundary conditions for velocities, (u,v,w), is no-slip at
the walls of the cylinder and the temperature, T , admits Dirichlet boundary conditions. The
inner and outer cylinders are placed at the dimensionless radial location of r1 =

η

(1−η) and

r2 =
1

(1−η) , respectively, where

η =
r1

r2
(2.14)

is the radius ratio. The dimensionless boundary conditions can be written as follows -

u = 0, w = 0 at r1 =
η

(1−η)
and r2 =

1
(1−η)

(2.15)

v = Re at r1 =
η

(1−η)
; v = 0 at r2 =

1
(1−η)

(2.16)

T = 1 at r1 =
η

(1−η)
; T =

T2

T1
= χ at r2 =

1
(1−η)

(2.17)

Note that, while varying the gap-width (δ ), we change the radial location of outer cylinder,
(r = r2), but keep the inner cylinder fixed at r = r1 = 1. Effectively, the inner and outer
cylinders are placed radially at r1 = 1 and r2 = 1/η . One has to account for the fact that
changing η = 0.3 to 0.8 at a constant cylinder height amounts to change in aspect ratio
(Γ = h/δ ) from Γ(η = 0.3) = 0.673 to Γ(η = 0.8) = 6.283. This protocol, however, changes
the length-scale of the problem, initially being the gap-width between two cylinders (δ ), later
being the radius of the inner cylinder (r1). This change is accounted for in the Reynolds number
(Re), in Eqn.(3.1) and has been discussed in detail in the section 4.1.
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2.3 Numerical Method

A variant of the finite difference method used by Harada (1980a) is adapted. The details
of the numerical implementation are described in Aghor (2018). We discretize the spatial
derivatives with central-difference scheme of second order accuracy and a donor-cell technique
is used for the convective derivatives which provides numerical stability. An explicit scheme of
Dufort-Frankel leapfrog type of second order accuracy is used for both the time derivatives
and diffusive terms. A staggered grid is used in which the scalar variables are defined at the
center of each cell; the axial and radial components of velocity(mass-flux), w(ρ̄w) and u(ρ̄u)
are defined at the midpoints of the axial and radial cell edges, respectively. The azimuthal
component of velocity(mass-flux) v(ρ̄v) is defined at the same point as u(ρ̄u). continuity

Fig. 2.2 Schematic diagram of grid points; ρ̄ and T are defined at the center of the cell at the
blue filled circles, u or ρ̄u and v or ρ̄v at the side faces at the red filled circles and w or ρ̄w at
the top and bottom of the cell at the black filled circles, This arrangement of grids have been
adapted from Harada (1980a) and Hyun & Park (1992).

equation:

ρ̄n+1 − ρ̄n−1

2∆t
=−[δr(ρ̄u)n+1 +δz(ρ̄w)n+1], (2.18)
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r - momentum equation:

(ρ̄u)n+1 − (ρ̄u)n−1

2∆t
= −[δr(ρ̄uu)+δz(ρ̄uw)]n +

(
ρ̄v2

r

)n

+

[
− Re2

Ma2 δr pn +µ
n
(

δrδrun̄ +δzδzun̄ +δr

(
u
r

)n

+
1
3

δr

(
δrun̄ +

(
u
r

)n

+δzwn
))

− 2
3

(
δrun +

(
u
r

)n

+δzwn
)

δrµ
n +2δrµ

n
δrun +δzµ

n(δzun +δrwn)

]
, (2.19)

θ - momentum Balance:

(ρ̄v)n+1 − (ρ̄v)n−1

2∆t
= −[δr(ρ̄uv)+δz(ρ̄vw)]n −

(
ρ̄uv

r

)n

+r
[

µ
n
(

δrδrvn̄ +δzδzvn̄ +δr

(
v
r

)n)
+δrµ

n.δrvn

+δzµ
n.δzvn −

(
v
r

)n

δrµ
n
]
, (2.20)

z - momentum Balance:

(ρ̄w)n+1 − (ρ̄w)n−1

2∆t
= −[δr(ρ̄uw)+δz(ρ̄ww)]n +

[
− Re2

Ma2 δz pn +µ
n
(

δrδrwn̄

+δzδzwn̄ +
1
r
.δrwn +

1
3

δz

(
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(
u
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))
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u
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)n

+δrun +δzwn
)
.δzµ

n +δrµ
n.

(
δrwn +δzun

)
+2δzµ

n
δzwn

]
, (2.21)

energy equation:

(ρ̄T )n+1 − (ρ̄T )n−1

2∆t
= −[δr(ρ̄u)n+1T n +δz(ρ̄w)n+1T n]+ r(γ −1)

(
− pn+1

(
δrun +

(
u
r

)n

+δzwn
)
+ rγ

[
κ

(
δrδrT n̄ +

1
r

δrT n +δzδzT n̄
)
+δrT n.δrκ

n +δzT n
δzκ

n
]

+r(γ −1)
Ma2

Re2 Φ, (2.22)
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where,

Φ
n = µ

n
[

2ei jei j −
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]n

= µ
n
[{
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(2.23)

pn+1 =
(ρ̄T )n+1

r
. (2.24)

For any arbitrary physical quantity Θ ,

δrΘi =
Θi+ 1

2
−Θi− 1

2

∆ri
(2.25)

where δr is used to represent δr and δz and ∆ri denotes the grid spacing between two consecutive
grid points, which can be either ∆ri or ∆zi, portraying the grid spacing in radial and axial
directions, respectively.

δrδrΘ
n̄ =

1
∆ri

[
(Θi+1 −Θ̄i)

∆ri+1/2
− (Θ̄i −Θi−1)

∆xi−1/2

]n

(2.26)

Θ̄ n =
(Θ n+1

i −Θ
n−1
i )

2
, (2.27)

∆ri+1/2 =
(∆ri +∆ri+1)

2
, (2.28)

and

∆ri =
(∆ri+1/2 +∆xi−1/2)

2
, (2.29)

where Θ can be anything between u,v,w, ρ̄ , ρ̄u, ρ̄v, ρ̄w, T, p, µ and κ . In the current investiga-
tions ∆ri = ∆xi−1/2 = ∆ri+1/2, as a result of uniform grid.

The solution procedure after finite difference formulation is as follows Harada (1980a),
Hyun & Park (1992) and Aghor (2018)-

1. We substitute Θ 1 =Θ 0 as the computational initial condition and Θ can be u,v,w, ρ̄,T, p

2. Mass velocities (ρ̄u)n+1, (ρ̄v)n+1, (ρ̄w)n+1 to be computed from momentum equations
(2.8)-(2.10).
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3. Volume fraction ρ̄n+1 is computed from the continuity equation (2.7).

4. The pressure, pn+1 (2.13) is computed from the energy equation (3.3).

5. The values of un+1, vn+1, wn+1, T n+1 are computed by dividing (ρ̄u)n+1, (ρ̄v)n+1,
(ρ̄w)n+1, (ρ̄T )n+1 by ρ̄n+1.

6. To avoid computational splitting caused by leapfrog scheme, as described in Harada
(1980a), filter after every m time steps is used according to the following equation-

Θ
n±1/2 =

(Θ n +Θ n±1)

2

In the present simulations, m = 11, and results are invariant for m = 21 and m = 31; fig
2.3 illustrates the comparison of radial-axial velocity (u,w) spectra at the mid-height
mid-gap of the Taylor-Couette cell using different values of the computational filter,
m = 11,21 and 31 for different Reynolds number. (a) Re = 300, (b) Re = 410 and (c)
Re = 500.

7. The steps (ii)− (vii) are repeated with time marching until the kinetic energy of the
system saturates to some constant value.

In order to analyse the steady state of the system, we use the average quantities, defined as
volume integral over (r− z) section of the cylindrical annulus (Harada, 1980a) by

⟨φ⟩= 2π

1
η

∑
1

2π

k

∑
0

Θr∆r∆z, (2.30)

where Nr and Nz denotes the number of grids in radial (r) and axial (z) directions. ∆r and ∆z
are respective grid spacing in r and z directions. The average grid-independent kinetic energies
are calculated -

KEu = ⟨1
2

ρu2⟩ and KEv = ⟨1
2

ρv2⟩ and KEw = ⟨1
2

ρw2⟩ (2.31a,b,c)

and the total kinetic energy of the system is given by,

KEtotal = KEu +KEv +KEw. (2.32)

The dimensionless height of computational domain is chosen to be h = 2π/k, where k =

2π/λ f and λ f is the wavelength of fastest growing mode obtained from the linear stability
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Fig. 2.3 Comparison of radial-axial velocity (u,w) spectra at the mid-height mid-gap using
different values of computational filter, m = 11,21 and 31 for various Re; (a) Re = 300, (b)
Re = 410 and (c) Re = 500

of compressible TCF (Welsh et al., 2014). For all simulations, we set k = 4, resulting in the
dimensionless length of computational domain to be π/2. The aspect ratio (Γ) can be written
as a function of the radius ratio η as

Γ =
πη

2(1−η)
. (2.33)
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2.4 Validation of the Code

2.4.1 Base state validation of compressible TCF

For time-independent and fully developed circular Couette flow (CCF), the base state velocity,
density and temperature are given by

u = (u0,v0,w0), ρ
0 and T 0. (2.34)

The analytical solution of the base state of compressible TCF has been derived by Welsh
et al. (2014). In order to find the base state from (2.7)-(2.13) with appropriate boundary
conditions, we look for a solution with u0 = w0 = 0 and v0 = v0(r). The azimuthal velocity is
taken as (Chandrasekhar, 1960),

v0(r) =C1r+
C2

r
, (2.35)

where

C1 = Re
Ω−η2

η(1+η)
and C2 = Re

η(1−Ω)

(1−η)(1−η2)
. (4.2a,b)

where the rotation-ratio is Ω = ω2/ω1. The base state temperature profile is obtained by solving
the following equation (Welsh et al., 2014)

1
r

d
dr

(
r

dT 0

dr

)
+

γ −1
γ

PrMa2

Re2

[
r

d
dr

(
v0

r

)]2

= 0, (2.37)

which yields

T 0 = χ +
γ −1

γ

PrMa2

Re2
1

C2
2

(
C3 lnr− 1

r2 +C4

)
+(1−χ)

ln [r(1−η)]

lnη
, (2.38)

with

C3 =
(1−η2)(1−η)2

η2 lnη
and C4 = (1−η

2)

[
1+

1−η2

η2
ln(1−η)

lnη

]
. (4.5a,b)

being integration constants and χ = T2/T1. Following Welsh et al. (2014), in order to compute
for the base state density profile, we need to form a governing equation for density in terms of
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a boundary value problem. We define local density as

ρ
0(r) =

1
2πr

dm(r)
dr

, (2.40)

where

m(r) = 2π

r

∑
1

rρ
0(r)∆r. (2.41)

For the base state (2.34), the r - momentum equation (Eqn. 2.8) reduces to

Ma2

Re2

(
(v0)2

rT 0

)
=

1
T 0

∂T 0

∂ r
+

1
ρ0

∂ρ0

∂ r
. (2.42)

Substitution of Eqn. (2.40) into Eqn. (2.42) yields the second order boundary value problem,

d2m
dr2 +

[
1

T 0
dT 0

dr
− Ma2

Re2

(
(v0)2

rT 0

)
− 1

r

]
dm
dr

= 0, (2.43)

subjected to the following boundary conditions,

m(r1 = η/(1−η)) = 0 and m(r2 = 1/(1−η)) = π

[
(1/(1−η))2 − (η/(1−η))2

]
.

(3.12a,b)

Equations (2.43 - 2.44) have been solved numerically, and the base state density is determined
from (2.40).

Figure 2.4 shows the base state validation of compressible TCF against the work by Welsh
et al. (2014) for Pr = 1. Figures (a),(b) and (c) shows variation of the base state profiles
of velocity (v0), density (ρ0) and temperature (T 0) with Ma ∈ [0.01,3] for different values
of critical Reynolds number (Recr) for the purely azimuthal CCF to TV F , respectively. The
incompressible limit for code validation has been taken as Ma = 0.01 since it is practically
not feasible to run simulations below this value of Ma. However, for the incompressible limit
simulations for higher Re (well beyond CCF), we admit Ma = 0.1. The height (h) of the
computational domain used is 2π/k, and we choose to employ the axial wavenumber (k), k = 4,
for all the simulations reported in this current dissertation. This particular value of k was chosen
in order to ensure that we get the base state values unambiguously and can match with the linear
stability results of Welsh et al. (2014). In the Ma = 0.01, the constant temperature (T 0) and
density (ρ0) profiles are found and match well with the incompressible Re for CCF to TV F
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transition. With increasing Ma, the primary effect is observed in the radial density profiles (see
panel (b) of figure 2.4 between the two walls. Notice that, density near the inner cylinder is
less compared to the density at the outer wall. This attributed to the fact that the centrifugal
forces are very high near the inner cylinder compared to the outer cylinder, as a result of
which asymmetry in radial density profile is manifested. The panel (c) of figure 2.4 shows the
temperature variations along the radial direction. Note that, a hump in the temperature profile is
developed with increasing Ma. Since, we employ isothermal walls (which acts as a thermostat),
viscous dissipation takes place which is manifested in the temperature profiles. This viscous
dissipation in the energy equation is enhanced with increasing Ma, see the base state energy
equation:

γ

Pr

(
1
r

∂

∂ r

(
r

∂T
∂ r

))
+(γ −1)

Ma2

Re2

(
∂v
∂ r

− v
r

)2

= 0. (2.45)

Hence, the radial gradient in the temperature field increases with increasing Ma, and is evident
from the solid lines (red and black) in the panel (c) of figure 2.4.

Panels (a),(b) and (c) of figure 2.5 portrays base state profiles of velocity (v0), density (ρ0)

and temperature (T 0) for Ma = 1, variation with Pr ∈ [1,15], respectively. It is noted from Fig
2.5, (c) the gradients in temperature increase with increasing Pr for a given Ma number, which
can be explained from the equation (2.45), and the ∇T ∝ Pr. Because of high temperature
gradients, the fluid expands locally and causes a depletion in the local density, see Fig 2.5 (b).

2.4.2 Validation of effective-Nusselt number: incompressible Taylor-Couette
flow

The second code validation was done to compare effective-Nusselt number (Nuω ) obtained
from the torque measurements in incompressible TCF via DNS studies of Pirro & Quadrio
(2008), Fasel & Booz (1984) and Ostilla et al. (2013). In CCF regime, the radial (u = 0) and
axial velocities (w = 0) over the domain is zero and the base flow is purely azimuthal, resulting
in only molecular transport of angular momentum (L ). With the onset of Taylor vortices,
both radial (u > 0) and axial velocities (w > 0) become non-zero giving rise to large scale
circulation in the (r,z) plane which increases with increasing Re. The convective transport of
angular momentum comes into motion and with increasing Re, the convection effects become
more pronounced. In analogous to the heat current in thermally driven Rayleigh Benard flow
(RBF), Eckhardt et al. (2007) defined local angular momentum current(Jω ), which relates the
sum of Reynolds stress (< u,ω >A(r),t) (convective transport) and the product of kinematic
viscosity (ν) with the radial derivative of < ω >A(r),t profile (molecular transport) as described
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Fig. 2.4 Comparison of base state profiles of (a) velocity, (b) density and (c) temperature with
variation in Ma for Pr = 1 respectively, with the results obtained by Welsh et al. (2014). The Re
of the inner cylinder is close to its the critical value for their respective Ma and Pr (Re ∼ Recr)
and the outer cylinder is at rest (ω2 = 0).

below -
Jω = r3(⟨uω⟩A(r),t −ν

∂

∂ r
⟨ω⟩A(r),t) (2.46)

where, ⟨...⟩A(r),t denotes a spatial average of cylindrical surface coaxial with the bounding
cylinders of radius r, (r1 ≤ r ≤ r2) and the temporal average. The first term in (2.46) denotes
Reynolds stress and the second term is transverse derivative of averaged angular momentum
(L = ρvr), and is related to the dimensionless torque (Σ) , Σ = 2πhρν2G, where G = Jω

ν2 . In
the current problem, equation (2.46) reduces to -

Jω = r3(⟨uω⟩t −ν
∂

∂ r
⟨ω⟩t) (2.47)
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Fig. 2.5 Comparison of base state profiles of (a) velocity, (b) density and (c) temperature
with variation in Pr for Ma = 1, respectively, with the results obtained by Welsh et al. (2014).
The Re of the inner cylinder is close to its the critical value for their respective Ma and Pr
(Re ∼ Recr) and the outer cylinder is at rest (ω2 = 0).

owing to the axisymmetric nature of the problem. In terms of azimuthal velocity (v),
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)
(2.48)
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Re
Nuω

(current work)
Ma = 0.1

Nuω

(Ostilla et al. (2013))
Ma = 0.0

Nuω

(PQ08)
Nuω

(FB84)
% deviation

from Ostilla et al. (2013)

60 0.9919 1.0005 1.0000 1.0000 -0.859
68 0.9920 1.0006 1.0000 1.0000 -0.869
70 1.0218 1.0235 1.0238 1.0237 -0.17
75 1.0857 1.0835 1.0834 1.0833 +0.22
80 1.1415 1.1375 1.1372 1.1371 +0.4

Table 2.1 Comparison of Nuω for Γ = 2, η = 0.5 and Reo = 0 and Ma = 0.1 with their
incompressible counterpart provided by Ostilla et al. (2013), PQ08 (Pirro & Quadrio, 2008)
and FB84 (Fasel & Booz, 1984).

The laminar value of local angular momentum current (Jω
l ), is given by

Jω
l = 2νω1

r2
1r2

2
r2

2 − r2
1
=

2νv1r1

1−η2 (2.49)

The effective-Nusselt number (Nuω ) is given by

Nuω = Jω/Jω
l (2.50)

The comparison of Nuω near inner cylinder has been done in a range identical to Ostilla
et al. (2013) (between 60 ≤ Re ≤ 80) and provided in the Table 2.1. The geometry of setup
for the code validation was chose to be Γ = 2 and η = 0.5 which was different from Γ = π/2
for η = 0.5 used in rest of the simulations in the present study. The number of grids (Nz ×Nr)
was 61×61 whereas in the DNS studies of Ostilla et al. (2013), Pirro & Quadrio (2008) and
Fasel & Booz (1984), the number of grids chosen was 64×64. In the CCF, for Re = 60 and 68,
we observe the Nuω predicted by our code is less than Ostilla et al. (2013) by 0.86 % and for
Re = 75 it is more by 0.2 %. Since the variations of Nuω with Ostilla et al. (2013) are well
within 1%, we successfully validate our code. Henceforth, Ma = 0.1 serves as good test case
for incompressible Taylor-Couette.

2.4.3 Code validation at low and high Prandtl limit

Most of the geophysical examples admit Prandtl number (Pr = ν/α , where ν is the kinematic
viscosity and α is the thermal diffusivity) of O(1) for gases, O(10) for water, and O(104) for
magma in volcanic flows. However, the in the limit of Pr << 1 is found the liquid metals (Pr ∼
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O(10−3−10−1)) and astrophysical fluid flows like stellar interiors where Pr ∼O(10−9−10−5)

(see Garaud (2018)).
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Fig. 2.6 Comparison of the base state profiles of (a) velocity, (b) density and (c) temperature
with variation in Ma for Pr = 0.1, respectively, with the results obtained by the present DNS
code. The Re of the inner cylinder is Re = 60 and the outer cylinder is at rest (ω2 = 0).

Figure 2.6 illustrates comparison of the base state profiles of (a) velocity, (b) density and
(c) temperature with variation in Ma for Pr = 0.1, respectively, with the results obtained by
the present DNS code. The Re of the inner cylinder is Re = 60 and the outer cylinder is at rest
(ω2 = 0). From the base state energy equation, we find, that the heat conduction is balanced by
the viscous dissipation. At low Pr, the conduction of the fluid in the gap between two cylinders
dominate as a result of which increase in Ma enhances the viscous dissipation.

Figure 2.7 shows the comparison of the base state profiles of (a) velocity, (b) density and
(c) temperature with variation in Ma for Pr = 10, respectively, with the results obtained by the
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Fig. 2.7 Comparison of the base state profiles of (a) velocity, (b) density and (c) temperature
with variation in Ma for Pr = 10, respectively, with the results obtained by the present DNS
code. The Re of the inner cylinder is Re = 60 and the outer cylinder is at rest (ω2 = 0).

present DNS code. The Re of the inner cylinder is 60 and the outer cylinder is at rest (ω2 = 0).
We use 201 grid points in the radial direction and 51 grid points in the axial direction and the
completion time is 168 CPU hours. The necessity of using a large number of grid points in the
radial direction is to resolve very thin thermal boundary layer compared to velocity boundary
layer (α << ν , where α = κ/(ρcp) is the thermal diffusivity and ν is kinematic viscosity).
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)2

= 0, (2.51)
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Figure 2.7 (b) shows the radial density variation at large Pr for a Re = 60. Following equation
(2.51), we see large temperature gradients at higher Pr for a given Ma and Re, which results
from the hot fluid near the mid-gap as compared to the boundaries, causing local thermal
expansion and depletion of material. Invoking the equation of continuity, the fluid accumulates
near the cylinder walls (both inner and outer wall) and causing the formation of negative
density gradient near the inner cylinder. As pointed by Welsh et al. (2014), in the presence of
the centrifugal forces acting on the fluid system in shear driven flow, this acts as an effective
gravity from inner cylinder to outer cylinder. This configuration has the potential to setup
Rayleigh–Taylor (RT) instabilities, where a heavy fluid layer sits on top of a lighter fluid layer
and gravity acts downwards. Close to the outer cylinder wall, the radial density gradient is
positive (∂ρ

∂ r > 0), forming a stable stratification which can give rise to waves analogous to
gravity waves.

2.5 Summary

In this Chapter, we have presented (i) the governing equations, consisting of time-dependent
compressible Navier-Stokes equations along with the continuity and energy equations for a
monoatomic perfect gas and (ii) the details of the numerical method. We employed no-slip and
Dirichlet boundary conditions for velocity fields (u,v,w) and temperature field (T ), respectively.
Axially periodic boundary conditions are imposed and extensive code validation was presented
considering (i) the base state of CCF and (ii) the effective Nusselt-number scaling in the TV F
regime.





Chapter 3

Axisymmetric Compressible TCF: Effect
of Mach Number on Patterns and
Transport

3.1 Introduction

The genesis of Taylor vortices arising from the centrifugal instability in a fluid rotating be-
tween two coaxial cylinders is a paradigmatic problem in the hydrodynamic stability theory
(Chandrasekhar, 1961; Drazin & Reid, 2004; Taylor, 1923). While the instability mechanism
and pattern formation scenario in incompressible TCF is well understood, its compressible
counterpart has been relatively less explored. The compressible analog of TCF is relevant in
accretion disk flows (Balbus & Hawley, 1998) that admit high Mach number (Ma). Only a
few studies have addressed the compressible TCF problem (Kuhlthau (1960), Kao & Chow
(1992), Hatay et al. (1993), Manela & Frankel (2007), Welsh et al. (2014)) from linear stability
analyses.

In this chapter, we seek to address the following questions: (i) How does the variation in
Mach number (Ma), a measure of the compressibility of the fluid, affect the critical Reynolds
number (Recr) for the onset of primary (CCF −→ TV F) instability? (ii) Are there new patterns?
(iii) What are the flow patterns at high Re? (iv) How does the frequencies of the travelling
wave vary with Re and Ma? For all results, we set the radius ratio to η = r1/r2 = 1/2 and
the Prandtl number is Pr = 1. The role of radius ratio on pattern transitions is considered in
Chapter 4.
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We define the Reynolds number (Re) at the inner cylinder to be :

Re =
ω1r1δ

νr
, (3.1)

where ω1r1 is the speed of the inner cylinder and δ = r2 − r1 is the gap-width and νr is the
kinematic viscosity of the gas. The peripheral Mach number (Ma) is defined as

Ma =
Re
cis

, (3.2)

where cis is the isothermal sound speed defined via

c2
is =

(cp − cv)Trδ
2

ν2
r

and the subscript “is” denotes the quantity being evaluated at isothermal conditions. Tr denotes
the reference scale for temperature, cp and cv are specific heats at constant pressure and volume,
respectively.

3.2 Numerical Method and Resolution Tests

The numerical method has been described in Chapter 2 of the current thesis. We employ axially
periodic boundary conditions along with no-slip and Dirichlet boundary condition for velocities
(u,v,w) and temperature T , respectively, at the inner and outer cylinders.

The results presented here consist of two different grids chosen as per requirement of the
spatial resolution. As discussed by Curry et al. (1984), a lower number of grid points than
the optimum may induce chaos in computational solution which ceases to exist with adequate
resolution. He showed that high Pr Rayleigh-Benard convection (RBC) exhibits such fictitious
chaos when subjected to poor resolution. This phenomenon has been previously reported by
Orszag & Kells (1980) and Treve & Manley (1982). For the present system, a detailed grid
independence study has been made in order to choose optimum grid resolution based on the
Reynolds number of the flow.

Figure 3.1 presents grid independence study for Reynolds number of (a) Re = 210 (u,w)
phase portrait; (b) Re = 210, single-sided axial velocity (w) fluctuation power spectra; (c)
Re = 500 (u,w) phase portrait; (d) Re = 500, single-sided axial velocity fluctuation (w) power
spectra corresponding to η = 0.5, Ma = 1.0 and Pr = 1.0. We carry out numerical simulations
using the following grid-points along axial and radial directions (Nz ×Nr): 41×41, 61×61,
81×81 and 101×101 for 210 < Re < 500. From figure 3.1, one can conclude that the flow
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Fig. 3.1 Grid independence study for Reynolds number (a) Re = 210 (u,w) phase portrait; (b)
Re = 210, single-sided axial velocity (w) fluctuation power spectra; (c) Re = 500 (u,w) phase
portrait; (d) Re = 500, single-sided axial velocity fluctuation (w) power spectra corresponding
to η = 0.5, Ma = 1.0 and Pr = 1.0.

features become more resolved with increased grid points and the difference between two
successive phase plot (u(r = 3/2,z = π/4), w(r = 3/2,z = π/4)) decreases with increase of
grid resolution (see panel (a) of figure 3.1). Hence for the regime considered (210 ≤ Re < 500),
we choose a grid size of 61×61. For higher Reynolds number regime (Re ≥ 500), we observe
a grid size of 61×61 is unable to accurately reproduce the topology of (u,w) phase portrait
(see panel (c) of figure 3.1), hence 101×101 and higher grids can be used to study the flow
features at Re ≥ 500.

Panels (b) and (d) of figure 3.1 correspond to single-sided axial velocity (w) fluctuation
power spectra, based on different grid sizes, for (b) Re = 210 and (d) Re = 500, respectively.
Table 3.1 shows dominant and sub-dominant frequencies for different grid sizes; the columns
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illustrate the inner cylinder Reynolds number (Re), number of grid-points along axial and radial
directions (Nz ×Nr), first dominant frequency f1i, second dominant frequency f2i and third
dominant frequency f3i where subscript i denotes the frequency based on inertial time scale
(1/ω1).

Re Nz ×Nr f1i f2i f3i

210 41×41 0.0006494 1.296×10−3 1.96×10−3

61×61 0.00112 2.24×10−3 3.37×10−3

81×81 0.001299 2.597×10−3 3.896×10−3

101×101 0.001299 2.814×10−3 4.113×10−3

500 61×61 0.003455 0.007 0.01045
101×101 0.003727 0.007455 0.01118
201×201 0.003909 0.007909 0.01182
301×301 0.004 0.008 0.01227

Table 3.1 Dominant and sub-dominant frequencies for different grid sizes. The columns
illustrate the inner cylinder Reynolds number (Re), number of grid-points along axial and radial
directions (Nz ×Nr), first dominant frequency f1i, second dominant frequency f2i and third
dominant frequency f3i where subscript i denotes the frequency based on inertial time scale.

The main panel of figure 3.2 illustrates the evolution of the radial (KEu) and axial (KEw)

kinetic energy with time (t), shown by the blue and red lines, respectively. The temporal
invariance of the radial (KEu) and axial (KEw) kinetic energy is taken as the steady state of the
flow, see the main panel in figure 3.2. The inset in figure 3.2 displays a steady state snapshot of
Taylor rolls, the radial-axial (u,w) velocity vectors are superimposed on the azimuthal velocity
(v) field in the meridional (r,z) plane. The control parameters are η = 0.5, Γ = π/2, Re = 100,
Ma = 1 and Pr = 1. It is observed that there is a radially outward jet at the mid-height of the
domain and two radially inward jets near the top and bottom of the periodic box - this pattern is
known as Taylor-vortex flow (TVF) after Taylor (1923).

Figure 3.3 displays steady state snapshot of Taylor rolls at different values of Mach number.
The radial-axial (u,w) velocity vectors are superimposed on the density (ρ) field. The control
parameters are η = 0.5, Γ = π/2, Re = 100, Pr = 1 with (a) Ma = 0.1, (b) Ma = 1 and (c)
Ma = 3. Refering to figure 3.3 (a), at Ma = 0.1, i.e. the incompressible limit, the density
is nearly evenly distributed throughout the gap between two cylinders. We observe, with
increasing Ma (see panels (b) and (c) of figure 3.3), the region near the inner cylinder becomes
more rarefied compared to the region near the outer cylinder, i.e., more mass of the gas moves
from the inner cylinder towards the outer cylinder, making the region near the outer cylinder
denser.
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Fig. 3.2 Main panel: Temporal evolution of the radial (KEu) and axial (KEw) kinetic energy,
showed in the blue and red lines, respectively. Inset: Steady state snapshot of Taylor rolls; the
radial-axial (u,w) velocity vectors are superimposed on the azimuthal velocity (v) field. The
control parameters are η = 0.5, Γ = π/2, Re = 100, Ma = 1 and Pr = 1. Note that time has
been non-dimensionalized by viscous time-scale.
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Fig. 3.3 Steady state snapshot of Taylor rolls; the radial-axial (u,w) velocity vectors are
superimposed on the density (ρ) field. The control parameters are η = 0.5, Γ = π/2, Re = 100,
Pr = 1 for (a) Ma = 0.1, (b) Ma = 1 and (c) Ma = 3.
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3.3 Phase-diagram of Patterns

The main panel of figure 3.4 summarises all patterns for a range of Mach number Ma ∈ [0.1,3]
and Reynolds number Re ∈ [50,600] that have been obtained from the numerical integration
of compressible Navier-Stokes equations, with the energy equation and ideal gas equation of
state. These patterns enumerated on the phase diagram of (Re,Ma) are obtained by varying the
Reynolds number (Re) of the inner cylinder, Re = ω1r1δ/ν ∈ [50,600] for a given Ma ∈ [1,3].
The purely azimuthal circular Couette flow (CCF) are shown by red filled circles and the Taylor
rolls are marked by blue colored plus symbols at different Ma. Apart from these two stationary
patterns, we report existence of a travelling wave (described in section 3.4) and are represented
by black ∞ symbols. The axial extent of the periodic domain was set at h = 2π/k = π/2,
based on the value of axial wavenumber k = 4. The choice of this k was motivated by the
linear stability data provided in Welsh et al. (2014), where the value of critical wavenumber is
kc ∈ [3.1729,3.2459] for Ma ∈ [1,5]. The initial conditions of the flow is chosen to be “starting
from rest” for all the simulations in figure 3.4. After covering the initial transients, the Taylor
rolls develop. However, while presenting the data for Ma < 1 in figure 3.4, we used a different
protocol for Re ≥ 100; once the flow settles at a given Re for Ma = 1, we use that solution as as
initial condition and march in Ma towards Ma= 0.1 (incompressible limit), with dMa/dt ∼ 0.1.
At each time step the flow was allowed to become steady before further decreasing Ma. The
choice of this particular setting is two fold. Firstly, the coefficient (Re2/Ma2) of radial and axial
pressure gradient terms in momentum equation becomes excessively large with decrease in
Ma number (Ma = 0 being the singular limit). Secondly, the coefficient (Ma2/Re2) of viscous
dissipation terms in energy equation becomes too small (Ma = 0 makes the code inviscid)
resulting in the destabilization of the code.

3.3.1 Role of fluid compressibility on Taylor-rolls

The role of fluid compressibility on the onset of Taylor vortices from the base state of circular
Couette flow (CCF) has been addressed by various groups, from linear stability analysis. Some
argued that compressibility can be stabilizing as well as destabilizing based on geometrical
parameters (Kao & Chow(1992)), strictly destabilizing (Hatay et. al. (1993), Riechelmann &
Nanbu (1993)) and stabilizing (Stefanov & Cercignani (1993), Yoshida & Aoki (2006), Manela
& Frankel (2007), Welsh et. al. (2014)). We will illustrate the role of fluid compressibility on
the onset of Taylor vortices from the base state of circular Couette flow (CCF) using DNS of
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Fig. 3.4 Phase diagram of patterns in (Re,Ma)-plane for a radius ratio of η = 1/2 and aspect
ratio of Γ = π/2. All states have been identified by starting simulations from the rest state; red
circle denotes the CCF (circular Couette flow), plus denotes the TV F (Taylor vortex flow) and
∞ denote the TWS (Travelling Wave solution).

compressible TCF. The energy equation is given as follows:
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where viscous dissipation Φ is given by
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is substantial near the inner wall of TC cell due to increase in Ma at a given Re and is
reflected in a form of hump in the radial temperature profile (see Chapter 2). This elevated
fluid temperature is a characteristic property of wall-bounded compressible shear flows and has
been addressed by Manela & Frankel (2007), Manela & Zhang (2012) and recently by Welsh
et al. (2014). Similar phenomenon has been addressed by Park & Hyun (1989) where they
observe the location of peak temperature moving radially inwards in the transient simulation
of compressible gas contained in infinite cylinder. We also find, that for small Mach numbers
(Ma), the temperature profile shows no radial variation; pertaining to the fact that the effect of
viscous dissipation is completely negligible in the incompressible Taylor-Couette flow (TCF).

Figure 3.4 illustrates the explicit dependence of the critical Re on Ma for η = 0.5. In
the case of 1 ≤ Ma ≤ 3, we observe compressibility, in general, stabilizes the flow since the
critical Re for transition from one flow state to other increases. The region where the TWS
returns back to TV F , continues to exist with increase in Ma, however shifts vertically upward in
(Re,Ma)-plane. As it is evident from figure 3.4, for Ma < 1, the region of reappearance of TV F
exists, but there is no distinct shift of critical Reynolds number (Recr) due to compressibility.
Note that, in purely incompressible TCF, existing literature has not reported any oscillations
analogous to TWS in the parameter regime under study.

The observed flow transitions (CCF −→ TV F −→ TWS −→ TV F −→ TWS) enlisted in
figure 3.4 are found to be new in the case of compressible Taylor-Couette flow of an ideal gas.
The nature of bifurcation TV F −→ TWS is analysed in detail in Section 3.4.1.

3.3.2 Rayleigh inviscid stability and angular momentum

The base state of Taylor-Couette flow is CCF for which the flow is purely azimuthal (i.e.
v = v(r),u = w = 0) if the system is of infinite length. As discussed in Chapter 1, the inviscid
stability argument of Rayleigh (1917) asserts that the radial variation of the specific angular
momentum (L ), where

L = ρvr, (3.5)
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should increase towards the outer cylinder, i.e. dL /dr > 0, for the flow to remain in CCF . In
other words, for any finite inner cylinder rotation rate (with stationary outer cylinder), the CCF
is unstable to axisymmetric perturbations, yielding the critical Re for the transition from CCF to
TV F regime, Recr = 0. Taylor (1923) demonstrated with a linear stability analysis that viscosity
stabilizes the flow, admitting a finite Recr > 0 for CCF to TV F transition. Recently, Welsh
et al. (2014) analyzed the Rayleigh inviscid stability argument in the light of compressible TCF
and they found the primary instability can occur much below the Rayleigh line at moderate and
high Prandtl numbers (Pr), violating the canonical Rayleigh criterion.

The effect of compressibility is depicted in Figs. 3.5 and 3.6 for the radial variations of
density (ρ), azimuthal velocity (v) and specific angular momentum (L ) profiles. The leftmost
panels of figure 3.5 (a,d,g, j) and figure 3.6 (a,d) show a strong radial stratification in density
(ρ) with increasing Ma. The radial density stratification is a hallmark of the spin-up process
in rotating compressible flows and has been previously studied by Harada (1980a,b), Park &
Hyun (1989), Hyun & Park (1992) and recently observed by Welsh et al. (2014) in the base
state of compressible TCF. The variation of density (ρ) profiles with r, for a given Ma remains
identical in the CCF regime (see panels (a) and (d) in figure 3.5). Interestingly, at higher Re
(panels (a) and (d) of the figure 3.6), the density profile changes and develops an inflection
point. This results in horizontally displaced radial location of crossover of the density profiles
which has strong implications on the radial L profiles.

The central panels in figure 3.5 and figure 3.6 show the variation of azimuthal velocity (v)
along the radial extent between the two cylinders. It is seen from the panels (b)(Re = 50) and
(e)(Re = 60) in figure 3.5, that the azimuthal velocity profiles for different Ma are identical.
However, there exists a slight deviation in the azimuthal velocity profiles in the TV F , which
increases with Re [see panels (h)(Re = 80) and (k)(Re = 100) in figure 3.5]. This deviation in
the radial profiles of azimuthal velocity (v) can be clearly observed towards the outer cylinder.
Interestingly, this deviation occurring near outer cylinder shifts towards the inner cylinder with
increasing Re [see (b)(Re = 120) and (e)(Re = 150) in figure 3.6].

Figure 3.5 ((c),( f ),(i) and (l)) and figure 3.6 ((c) and ( f )) show non-monotonic behaviour
of specific angular momentum (L ) with increase in r. With increasing Ma, locally causing
dL /dr > 0 near the inner cylinder (see unfilled circles, green triangles, unfilled magenta
squares and black stars for Ma = 1.5,2,2.5,3.0 in the rightmost panels ((c),( f ),(i),(l)) of
figure 3.5). This suggests that this part of variation of specific angular momentum L with r is
stable to inviscid axisymmetric perturbation whereas the remaining part is unstable (dL /dr <
0). For super-critical Reynolds number of Re = 120 and Re = 150, the behaviour of specific
angular momentum (L ) becomes increasingly complex. We observe distinct plateau regions,
where dL /dr ∼ 0 (see panel (c) and ( f ) (green triangles, unfilled magenta squares and black
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Fig. 3.5 The effect of compressibility on mid-height radial profiles of (a,d,g, j) density (ρ),
(b,e,h,k) azimuthal velocity (v) and (c, f , i, l) angular momentum (L ) profiles for (a− c)
Re = 50 (CCF); (d − f ) Re = 60 (CCF); (g− i) Re = 80 (CCF : Ma = 2,2.5,3) and (TV F :
Ma = 1,1.5); ( j− l) Re = 100 (TV F); ω2 = 0 and Pr = 1.
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Fig. 3.6 The effect of compressibility on mid-height radial profiles of (a,d) density (ρ), (b,e)
azimuthal velocity (v) and (c, f ) angular momentum (L ) profiles for (a−c) Re = 120 (TV F);
(d − f ) Re = 150 (TV F); ω2 = 0 and the Pr being unity.
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Fig. 3.7 Variation of ReL with Re at η = 0.5; the vertical red line indicates the boundary below
which the flow is CCF for Ma ∈ [0.1,3]; the blue line indicates the boundary above which the
flow is TV F for Ma ∈ [0.1,3].



46 Axisymmetric Compressible TCF: Effect of Mach Number on Patterns and Transport

stars) in figure 3.6). With increase in Re(≥ 150), at Ma ≥ 2.5, the radial profiles of L shows
a bimodal distribution. The origin of the non-monotonic specific angular momentum (L )

profiles can be linked to the underlying density (ρ) stratification. We have found strong radial
variation of density, with the density crossover (corresponding to different Ma) shifting towards
the outer cylinder with increasing Re. This is attributed to the fact that more fluid is thrown
outward due to increasing centrifugal force (increasing Re). The azimuthal velocity (v) profiles
are always decreasing towards the stationary outer cylinder. As a result, a part of the L

profiles (irrespective of Ma) decreases monotonically towards the outer cylinder representing
“Rayleigh-unstable” regime and a “Rayleigh-stable” (see Fig. 1.1 in Chapter 1) part being
located near the inner cylinder.

Based on figure 3.5 and 3.6, we can define a Reynolds number, (ReL ), based on the length
scale chosen to be the radial location (rL ) from inner cylinder at the crossover point of L

curves, which is independent of Ma for a given Re. The density (ρL ) and reference velocity
(vL ) used are evaluated at rL .

ReL =
ρL vL rL

µ

Variation of ReL with Re is displayed in figure 3.7. For the flow in purely CCF regime (for
all Ma), we observe ReL ∝ Reα , where α = 1 and the exponent α significantly deviates from
unity in TV F regime.

3.3.3 Effect of Compressibility on Taylor Vortices and Transport

In this section, we uncover how the stratification in the hydrodynamic fields associated with
Taylor vortices affect the transport in the present fluid system. Figure 3.8 shows the axial
variation of density (ρ) (see panels (a) and (b)) and radial velocity (u) (see panels (c) and (d))
at the mid-gap along the mid-height for different Re. For a given Reynolds number (Re), in the
TV F regime, we find the radially outward jet at the mid-height and two radially inward jets
manifested at the top and the bottom of the computational domain. However, for a periodic
system, either of the possibilities (radially outward jet or radially inward jet at the mid-height)
are stable, and corresponds to stable branches in the CCF to TV F regime. For a given Re, the
radially outward jet at the mid-height is accompanied by lower density and the radially inward
jets are accompanied by higher density (see panel (a) and (c) of figure 3.8). With increase in
Re, the degree of axial stratification

∆ρ

(
δ

2
,z
)
= ρ

(
δ

2
,z
)

max
−ρ

(
δ

2
,z
)

min
(3.6)
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Fig. 3.8 Upper row: axial variation of density (ρ) due to change in Ma for different Re, (a)
Re = 100, (b) Re = 150 ; Lower row: radial velocity (u) variation along the height of the
computational domain with Ma for different Re, (c) Re = 100, (d) Re = 150 .

increases and this is more pronounced at higher Ma (see the red curves in the panels (a) and
(b) in the figure 3.8). This leads to the formation of the alternate regions of rarified and dense
regimes along the axial direction and remarkably different from its incompressible counterpart.
Note that, the increase in the axial stratification in radial velocity (u) with increase in Re is as
expected.

Figure 3.9 shows the radial variation of density (ρ) (see panels (a) and (b)) and axial
velocity (u) (see panels (c) and (d)) at the mid-height along the mid-gap for different Re. With
the increase in Ma, for a given Re, the radial stratification of density (ρ) becomes increasingly
asymmetric (see panels (a) and (b) of figure 3.9). The radial location of crossover of different
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Fig. 3.9 Upper row: radial variation of density (ρ) due to change in Ma for different Re,
(a) Re = 100, (b) Re = 150 ; Lower row: radial variation of axial velocity (w) with Ma for
different Re, (c) Re = 100, (d) Re = 150.

density profiles along the radial direction shifts towards the outer cylinder with increase in Re.
Note that, in the CCF regime, this crossover location of radial density profiles are invariant
with increase in Re (see panels (a) and (d) of figure 3.5). This is attributed to the fact that
the flow in CCF regime is purely azimuthal and there is no radial component (u = 0). In the
TV F regime, the hydrodynamic fields are coupled and with increase in Re, the radial velocity
(u) increases, as a result the strength of outward jet at the mid-height increases, pushing the
crossover point towards the outer cylinder. Panels (c) and (d) of figure 3.9 shows the radial
variation in axial velocity (w), which portrays that the extent of radial variation
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increases with decreasing Ma.

We study the effect of compressibility is studied on the radial (Q̃r), axial (Q̃z) and azimuthal
(Q̃θ ) transport obtained using the formulation described in Abcha et al. (2013) and Hoffmann
et al. (2004). Compressible TCF shows significant variation of density across the radial extent
between the cylinders and hence, we use the following definitions of (Q̃r), (Q̃z) and (Q̃θ ):

Q̃r(r̃1 + δ̃/2, z̃) = r̃
∫ 2π

0

∫ h̃

0
ρ̃(r̃, z̃)ũ(r̃, z̃)dz̃dθ (3.8)

Q̃z(r̃, h̃/2) =
∫ 2π

0

∫ r̃2

r̃1

ρ̃(r̃, z̃)w̃(r̃, z̃)r̃dr̃dθ (3.9)

Q̃θ (r̃, z̃) =
∫ 2π

0

∫ r̃2

r̃1

∫ h̃

0
ρ̃(r̃, z̃)ṽ(r̃, z̃)dr̃dz̃dθ (3.10)

The unclad equivalent of dimensional quantities represent the corresponding dimensionless
analog. Using the gap between two cylindrical walls δ̃r = r̃2− r̃1 as the length scale, a diffusion
time scale, t̃r = δ̃r

2
/ν̃r, the corresponding velocity scale ũr = δ̃r/t̃r, along with reference scale

for density being defined at the wall of inner cylinder, the dimensionless radial (Qr), axial (Qz)

and azimuthal (Qθ ) transport are -

Qr

(
1+

ςr

2
,z
)
= 2π(1+

ςr

2
)
∫ π

2

0
ρ(r,z)u(r,z)dz (3.11)

Qz

(
r,π/4

)
= 2π

∫ 1/(1−η)

η

(1−η)

ρ(r,z)w(r,z)rdr (3.12)

Qθ

(
r,z

)
= 2π

∫ 1/(1−η)

η

(1−η)

∫ π

2

0
ρ(r,z)v(r,z)drdz (3.13)

where ςr = δ/2 and the factor 2π denotes the imposed axisymmetry in evaluated dimensional
quantities. It is clear that the Qr, Qθ and Qz in compressible TCF is strongly reduced in
comparison to its incompressible analog (Ma = 0.1). The trend shows with increasing Ma, Qr,
Qθ and Qz reduces and Qr and Qz become less negative in magnitude. This is attributed to the
fact that in a periodic domain, far from the critical Re of CCF to TV F transition, the Taylor
rolls can axially shift resulting in small negative value of Qr and Qz.

Figure 3.10(a) shows the variation Qr with Ma (refer to relation 3.11). Figure 3.8 shows the
axial variation of density (ρ) ((a),(b)) and the axial variation of radial velocity (u) ((c),(d))
profiles along the mid-height at the mid-gap, for different Re. We would like to point out that,
for Ma = 0.1 and 1.5, with the change in Re, the axial variation of ρ profiles is not pronounced,
whereas in the case of Ma = 3, the axial variation of density (ρ) profiles increases with increase
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Fig. 3.10 Variation of Ma with non-dimensional (a) radial flow-rate Qr; (b) axial flow-rate Qz
and (a) azimuthal flow-rate Qθ for different Re = 60,100,120,150.

in Re (see panels (a),(b) in the figure 3.8). It is also noted the same argument does not holds for
axial variation of radial velocity (u) profiles at mid-way between two cylinders, with increase
in Re the variation from the mean u increases irrespective of Ma (see panels (c) and (d) in the
figure 3.8). In the plot of Qr with Ma, a reference has given with respect to purely azimuthal
CCF at Re = 60, where no radial-transport (Qr) is observed irrespective of Ma.

Similarly, figure 3.10(b) shows the variation Qz with Ma. Figure 3.9 shows the radial
variation of density (ρ) profiles along the mid-gap at the mid-height, and the radial variation
of axial velocity (w), for different Re. It is noted that the crossover point for different Ma of
ρ curves at constant Re, displaces towards the outer cylinder with increase in Re (see panels
(a),(b) and (c) in the figure 3.9). Although, the radial ρ variation does not change significantly
for a given Ma at different Re. Analysis of the axial velocity profiles at the mid-height (see
figures 3.9 (d),(e) and ( f )) we come to the conclusion that vortex centers remain at the same
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location independent of Ma at a given Re. However one can say, the strength of Taylor-rolls
(radial variation of w from the mean value) decrease with increase in Ma at a given Re. We can
safely conclude from figure 3.10(b), the axial transport decreases (in other words, become less
negative) with increase in Ma.

Figure 3.10 (c) illustrates the variation of azimuthal flow-rate (Qθ ) with Ma for the four
different Re studied previously. This involves the azimuthal velocity (v) and density (ρ) field
integrated over the (r,z) section for different Re and Ma (see equation 3.13). The same trend
continues as observed in the case of 3.10(a) and 3.10(b), with increasing Ma, Qθ decreases.
Considering the fact that the base flow is purely azimuthal, the relative magnitude of Qθ is
O(102) larger than that of Qr and Qz. We may conclude from the above section that enhanced
compressibility (manifested in terms of higher peripheral Ma) diminishes the radial (Q̃r), axial
(Q̃z) and azimuthal (Q̃θ ) transports observed in TV F regime.

3.4 Flow Patterns at High Reynolds Number

In the standard Taylor-Couette experiments, it is a well known fact that the axisymmetric
TV F bifurcates to non-axisymmetric Wavy vortex flow (WVF). In the WV F , waves develop
on top of the Taylor vortices in the azimuthal (θ ) direction and the whole structure starts
rotating in the θ -direction at some speed. However, the symmetry group SO2 ×O2 remains
intact and no broken symmetry in axial direction is observed. O2 refers to general orthogonal
group which includes both rotation and reflection which forms in the axial direction due to
periodic boundary conditions. The symmetry group SO2 refers to purely rotational symmetry
in azimuthal (θ) direction. We report a new time-dependent, axially propagating, axisymmetric
flow state, dubbed Travelling Wave solution (TWS), identified in the present fluid system at
higher Reynolds number (Re). Figure 3.11 illustrates the time dependence of axial velocity (w)
at mid-height and mid-plane of the computational domain for Re = 500, Ma = 1 and Pr = 1,
where, the right panel is an enlargement of the left figure showing a single wave. Velocity
vectors on (r,z) plane superimposed on dimensional temperature contour plots are displayed in
top and right panels, the red colour in temperature contour plot shows hotter region and blue
shows the temperature magnitude of unity. Note that the two cylinder walls are isothermal and
have dimensionless temperature unity. Figure 3.12 is same as figure 3.11 but for Re = 410 and
Ma = 3. In these oscillations, the Taylor rolls start propagating axially downwards. However,
at higher Re (≥ 500), the distance between the vortex center changes and their alignment is
broken compared to case of TV F regime. Since our system is axisymmetric [∂/∂θ(·) = 0],
the reported TWS is not an analog of WVF observed in incompressible TCF. Secondly, as
described in DiPrima & Swinney (1981), the critical Re for transition from TV F to WVF in
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Fig. 3.11 Time dependence of axial velocity (w) at mid-height and mid-plane of the compu-
tational domain; the right panel is an enlargement of the left figure showing a single wave.
Velocity vectors on (r,z) plane superimposed on temperature contour plots are displayed in top
and right panels for Re = 500, η = 0.5, Ma = 1 and Pr = 1.

wide-gap (η = 0.5) TC cells is around Re = 681.9, for incompressible TCF. We observe the
oscillations in the fields at Re much below above mentioned onset in incompressible TCF. In
the incompressible Taylor Couette systems, axially propagating waves along with azimuthally
travelling waves are observed in counter-rotation (Spirals) (Andereck et al., 1986) which are
inherently non-axisymmetric. These oscillations are characterized using the axial-velocity
(w) and radial-velocity (u) vs t plots at the mid-height and mid-plane of the computational
domain. These results are presented from figure A.2 to figure A.4 for Ma = 1 and η = 0.5
(see Appendix A). The single-sided amplitude spectrum is plotted in the frequency domain
and it has been found that the sub dominant frequencies are present as integral multiples of the
dominant frequency.

In order to gain qualitative insight about these oscillations, we plot the dominant as well as
other sub-dominant frequencies obtained from the power spectrum of radial or axial velocity at
the mid-point and mid-height of the domain. We also convert the dimensionless frequencies
from viscous time-scale, (δ 2/ν), to the inertial time scale, (1/ω1), in order to obtain qualitative
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Fig. 3.12 Same as figure 3.11 but for Re = 410 and Ma = 3.

information about their variation with the rotation of the inner cylinder. We denote the
dimensional frequency f̃ , dimensionless frequency on the viscous time-scale as fv and the
dimensionless frequency on the inertial time-scale as fi and they are related as follows -

fi =
fv

Re
η

(1−η)
(3.14)

Figure 3.13 illustrates variation of dimensionless frequency ( f ) of oscillations scaled with
(a) viscous time-scale ( fv) and (b) inertial time scale ( fi) with Re for different Ma for η = 0.5,
Pr = 1; dimensionless time period (c) τv = 1/ fv and (d) τi = 1/ fi. It is noted that the curves
of fi versus Re follow the same trend as that of fv versus Re. Also it is observed at a constant
Re, both fi and fv decreases with increase in Ma. However, the order of magnitude of these
frequencies are very less compared to the frequencies of oscillatory eigenfunctions reported by
Welsh et al. (2014) at high Pr (see Table 3.2).
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Re k Ma Pr fv fi

143.6191 3.1549 1.0 3.0 7.8603 0.0547
94.4030 3.1094 1.0 5.0 4.6189 0.0489
79.2450 3.1243 1.0 7.0 3.0374 0.038

(190-600) 4.0 1.0 1.0 (0.17-2.41) (0.0009291-0.004)

Table 3.2 Comparison of dimensionless frequencies of oscillatory eigenfunctions reported
by Welsh et al. (2014) with the travelling wave solution (TWS) for Γ = 2π/k, η = 0.5 and
Reo = 0. The last row (coloured red) denotes the current simulations reported for Re = 190 to
Re = 600 for k = 4, Ma = 1 and Pr = 1, the dimensionless frequency based on viscous time
scale fv ∈ [0.17,2.41]
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Fig. 3.13 Variation of dimensionless frequency ( f ) of oscillations scaled with (a) viscous
time-scale ( fv) and (b) inertial time scale ( fi) with Re for different Ma for η = 0.5, Pr = 1;
dimensionless time period (c) τv = 1/ fv and (d) τi = 1/ fi.
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3.4.1 Effect of ramp up and ramp down: subcritical bifurcation

(a) (b)

(c) (d)

Fig. 3.14 Schematic of bifurcation diagram at (a) Ma = 0.5; (b) Ma = 1; (a) Ma = 2.5; and
(d) Ma = 3 for η = 1/2; Ramp-rate of upsweep and downsweep runs are dRe/dt ∼ 0.45,
where t is the dimensionless time based on visous time scale.

In this section, we study the effect of quasi-static change in the Reynolds number (Re).
It is a kind of continuation routine, implemented using the current finite-difference code.
Figure 3.14 illustrates the schematic of bifurcation diagram at (a) Ma = 1; (b) Ma = 3 for
η = 1/2; Re was changed in steps of ∆Re = 1 after every 20000 time-steps, corresponding to a
ramp-rate of dRe/dt = 1/(5×10−6 ×20000×22)∼ 0.45, where t is the dimensionless time
based on visous time scale. Figure 3.14 (a) shows that while performing upsweep protocol
(slowly increasing the Re at the dRe/dt ∼ 0.45), we do not encounter Travelling wave state
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(TWS), and the flow remains as Taylor-vortex flow (TV F), over Re range we have reported
for simulations starting from rest (see Figure 3.4). Interestingly, we encounter TV F while
performing downsweep protocol (slowly decreasing the Re at the dRe/dt ∼ 0.45) from the
TWS state. This jump to TV F from TWS happens at Re = 181 for Ma = 1.

In order to study this typical behaviour further, we carried out simulations using the present
DNS code for Ma = 3. (see figure 3.14 (b)) keeping all other parameters same. Figure
3.14 (b) shows that while performing upsweep protocol (slowly increasing the Re at the
dRe/dt ∼ 0.45), we encounter Travelling wave state (TWS) at Re = 272, following which the
stationary TV F branch becomes unstable (see dotted black line in figure 3.14 (b)). On the other
hand, we encounter TV F while performing downsweep protocol (slowly decreasing the Re at
the dRe/dt ∼ 0.45) from the TWS state. This jump to TV F from TWS happens at Re = 265,
forming a finite hysteris loop, between Re = 265 and Re = 272 (see the region between two
red lines in figure 3.14 (b)).

Uniqueness: For a higher ramping rate of dRe/dt ∼ 10, performing the upsweep protocol
at Ma = 1, we encounter the transition from TV F to TWS regime. This can be attributed to the
fact that more energy is required to pump into the system using shear work, in order to switch
from TV F to TWS branch. However, while performing the downsweep run, irrespective of
ramp rate (dRe/dt ∼ 10 or dRe/dt ∼ 0.45), the system relaxes to the stationary TV F state.
It also explains the reason why we have observed Travelling Wave solution (TWS) when
the system was started from rest. Interestingly, the system starting from rest and reaching a
particular state in the phase space (such as in Fig. 3.4) in the very next time step corresponds to
a large magnitude of ramping rate (dRe/dt = 1/(5×10−6 ×1×22)∼ 9000).
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Fig. 3.15 Scaling of frequency of Travelling Wave solution (TWS) based on inertial time
scale (1/ω1) , (a) with the Reynolds number (Re), (b) with the distance from the limit point
(Re−R⌉l p). The control parameters are η = 1/2, Γ = π/2, Ma = 1 and Pr = 1.
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Figure 3.15 shows the scaling of frequency of Travelling Wave solution (TWS) based on
inertial time scale (1/ω1) with the (a) Reynolds number (Re), and (b) distance from the limit
point (Re−R⌉l p). The control parameters are η = 1/2, Γ = π/2, Ma = 1 and Pr = 1. For
Ma = 1, we define the limit point (l p) as the Re corresponding to TWS −→ TV F transition
while performing the downsweep runs. For Ma = 1, based on panel (a) of figure 3.15; the
Reynolds number at the limit point is:

R⌉l p = 181 (3.15)

fi = α(Re)β (3.16)

and, the found as scaling of the inertial frequency with the distance from the limit point
(Re−R⌉l p) is:

fi = α(Re−R⌉l p)
β (3.17)

The coefficients α and β are determined by least-square fitting all data of fi vs (Re) using
Eqn. (3.16), with α ≈ 0.000006607 and β ≈ 1.005, in the 95% confidence bound for α ∈
[5.07×10−7,1.27×10−5] and β ∈ [0.8528,1.156]. The coefficients α and β are determined by
least-square fitting all data of fi vs (Re−Rel p) using Eqn. (3.17), with α ≈ 0.0001883 and β ≈
0.5067, in the 95% confidence bound for α ∈ [0.0001642,0.0002123] and β ∈ [0.4835,0.5298],
utilising the MATLAB software.

3.5 Summary

We have studied compressible Taylor-Couette flow of an ideal gas and investigated the effect
of Mach number (Ma) on the onset of axisymmetric instabilities for a radius ratio of η = 0.5
and an aspect ratio of Γ = π/2, with periodic boundary conditions along the axial direction.
For the pure driving of the inner cylinder (Rei > 0) and stationary outer cylinder (Reo = 0), we
find compressibility stabilises. Emergence of alternate regions of rarified and dense layers are
identified from the axial density density (ρ) profile and the extent of axial stratification is found
to increase with Re at larger Ma. For a given Re, the radially outward jet at the mid-height is
accompanied by lower density and the radially inward jets are accompanied by higher density.
We also find that compressibility diminishes the axial (Qz), radial (Qr) and azimuthal (Qθ )

transport for the current fluid system. Beyond Taylor vortex flow (TV F), low frequency axially
propagating waves have been found and a comprehensive phase diagram in (Re,Ma)-plane is
plotted that summarized these findings.
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We find that the frequency, based on the inertial time scale fi, of Travelling Wave solution
(TWS) scales with the distance from the limit point (Re−R⌉l p) as fi ∝ (Re−R⌉l p)

0.5, for
η = 1/2, Γ = π/2, Ma = 1 and Pr = 1. It is noted for slow ramp-up (dRe/dt < 1), the
Travelling Wave solution (TWS) is not encountered, it remains as a disconnected branch. This
previously has not been found in incompressible TCF and our conjecture is that this branch is
disconnected in strictly incompressible limit (Ma = 0) and connected for any finite value of
Mach number (Ma > 0). Further analysis is required to shed light on these issues, which will
constitute a considerable extension of the present work.



Chapter 4

Axisymmetric Compressible TCF: Effect
of Radius Ratio on Flow Patterns

4.1 Introduction

Previous chapter deals with the pattern-formation scenario in axisymmetric compressible
Taylor-Couette flow (TCF) of an ideal gas, with rotating inner cylinder (Rei > 0) and stationary
outer cylinder (Reo = 0) with axially periodic boundary conditions. We study the effects of
variation of the radius ratio (η = r1/r2) on pattern transition and compressibility (Ma) for a
fixed height of the computational box (h = π/2) on the observed patterns in compressible TCF.
Numerical simulations starting from resting initial conditions are performed upto Re = 800
for six different radius ratios (0.3 ≤ η ≤ 0.8). It is shown that the compressibility primarily
affects the density distribution within the gap between two rotating cylinders by causing an
accumulation of mass near the stationary outer cylinder and plays a pivotal role in restraining
the onset of instability. Axially propagating waves have been found and a comprehensive phase
diagram in (Re, Ma)-plane is plotted that summarizes these findings.

Figure 4.1 shows the stability boundary obtained by Esser & Grossmann (1996) that holds
for axially periodic incompressible Taylor-Couette flow. The critical Reynolds number (Recr) is
evaluated using the expression (Esser & Grossmann, 1996) for case of stationary outer cylinder
(Reo = 0),

Recr =
1

σ2
(1+η)2

2η
√
(1−η)(3+η)

, (4.1)

where, σ is a constant factor,

σ = 0.1556. (4.2)
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TVF

CCF

Fig. 4.1 Stability boundary obtained by Esser & Grossmann (1996) that holds for axially
periodic incompressible TCF. CCF (circular Couette flow) and TVF (Taylor vortex flow).

In this chapter, we seek answers to two questions: (i) how does the radius ratio (η) and
the Mach number (Ma) affect the critical Reynolds number Recr(Ma,η) for the onset of flow
patterns from base state of circular Couette flow (CCF) in contrast to the situation in the
incompressible fluid systems, for a fixed Prandtl number (Pr = 1) and axial wavenumber
(k = 4)? (ii) What are the secondary bifurcation scenarios associated with different radius ratio
(η) for Ma = 1?

4.2 Numerical Procedure

All simulations are carried out with axially periodic boundary conditions along with no-slip
and Dirichlet boundary condition for velocities (u,v,w) and temperature T , respectively, at the
inner and outer cylinder. The length of computational domain used is π/2 and the radius ratio
(η) is changed by varying the radial location of the outer cylinder (r2) keeping the radius of
the inner cylinder (r1) at unity (r1 = 1 and r2 = 1/η). This in turn changes the aspect ratio
(Γ = h/(r2 − r1)) from Γ(η = 0.3) = 3π/14 to Γ(η = 0.8) = 2π (see the upper horizontal
axis in figure 4.2). Phase diagrams of patterns are portrayed in the (Re,η) plane for unit Mach
number (Ma) and Prandtl number (Pr). In this process of keeping the radius of the inner
cylinder constant and changing the outer cylinder radius, the length scale of the current problem
changes. Instead of the length scale being the gap-width (δ = r2 − r1) between two cylinders,
the inner cylinder radius (r1) is taken as the reference length scale. Accordingly, we define the
Reynolds number, Rer1 , based on inner cylinder radius as follows:
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Rer1 =
ω1r2

1
νr

. (4.3)

We use the above definition of Rer1 (to be followed hereafter till the end of this section). Recall
that changing the length scale does not change the physics of the flow, henceforth an one to one
correspondence can be obtained between the Rer1 and Re (see equation 4.4). While performing
the simulations, we varied Rer1 at different η and later scaled Rer1 back to Re using the relation
described below:

Re =
ω1r2

1
νr

=

(
ω1r2

1
ν

)(
δ

r1

)
=

(
1
η
−1

)
Rer1. (4.4)

We present detailed phase diagrams of patterns in the (Re,η) plane for Ma = 1 and Pr = 1.
The resolution tests for various radius ratio η = 0.5 to η = 0.8 are described in Table B.3 to
Table B.6 of Appendix B.

4.3 Phase Diagram of Flow Patterns: Stationary and Non-
Stationary States

Figure 4.2 summarizes all patterns for a range of radius ratio η = r1/r2 ∈ (0.3,0.8) that have
been obtained from the simulations starting from the resting initial conditions by changing Re
∈ (50,800). The Taylor vortices having different number of rolls are marked by the following
symbols - plus (blue) for 2 rolls, square (black) for 4 rolls, square (half-filled black) for 4
rolls, hexagon (green) for 6 rolls, octagon (pink) for 8 rolls. The non-stationary patterns are
marked using red star (localized vortex oscillations) and ∞ symbol (travelling wave solutions).
In comparison to the results presented in Chapter 3, a new non-stationary state, called LVO,
has been identified at η ∼ 0.6.

Figure 4.3 shows the magnified region in the (Re,η) plane, focussing on the transition
from the base state of circular Couette flow (CCF) to Taylor Vortex flow (TV F) across
different radius ratios ranging from wide gap (η = 0.3) to narrow gap (η = 0.8). The filled
yellow coloured circular markers joined using the dash-dotted line shows the critical isoline
marking the transition from CCF −→ TV F for the incompressible case; we use Ma = 0.1 in
order to characterize the transition in case of incompressible Taylor-Couette for the identical
geometrical parameters. The filled red coloured markers joined by dashed line characterize the
transition scenario for the case of Ma = 1. The critical Reynolds number for CCF −→ TV F
transition varies non-monotonically within, with a minimal at η ≈ 0.5. This is similar to the
incompressible TCF, Esser & Grossmann (1996).

We define a quantity ∆Re, where
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Fig. 4.2 Phase diagram of patterns illustrating the dependence of critical Reynolds numbers
on radius ratio, η , for Ma = 1 and Pr = 1; the dotted line with yellow markers corresponds
to Ma = 0.1. All states have been identified by starting simulations from the rest state. CCF
(circular Couette Flow); TV F (Taylor Vortex Flow); TWS (Travelling Wave Solution); LVO
(Localized Vortex Oscillations).

∆Re = Recr(Ma = 1)−Recr(Ma = 0.1) (4.5)

is the difference between the critical Re between the compressible (Ma= 1) and incompressible
(Ma = 0.1) TCF. Figure 4.4 shows the plot of ∆Re versus η . It is seen that the magnitude
of ∆Re decreases with increasing η which implies that compressiblity (Ma) effects are less
significant in smaller gap-width, TC-cell as the diffusive effects become dominant at η −→ 1.
This later observation is similar to the linear stability results of Manela & Frankel (2007).
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Fig. 4.3 Magnified phase diagram illustrating the dependence of Reynolds number on radius
ratio; plotted as a function of Reynolds number of the inner cylinder rotation (Re) versus the
radius ratio (η); The dashed line shows transition from CCF −→ TV F with variation of η

for Ma = 1; dash-dotted line with yellow circular markers shows the transition from CCF −→
TV F for Ma = 0.1
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Fig. 4.4 Plot of ∆Re versus η , where ∆Re = Recr(Ma = 1)−Recr(Ma = 0.1), Eqn. (4.5), is the
magnitude of difference between the critical Re as a function of radius ratio (η) between the
compressible (Ma = 1) and incompressible (Ma = 0.1) TCF. The magnitude of ∆Re decreases
with increasing η .
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4.3.1 Flow Patterns at moderate to narrow gap

Occurrence of localized oscillations

In figure 4.2, we found the occurrence of localized oscillations in the present fluid system for
a range of Reynolds number Re ∈ [333,375] for radius ratios of η ∈ [0.59,0.6]. Figures 4.5
(a) and 4.5 (b) show the time evolution of (a) radial kinetic energy KEu and (b) axial kinetic
energy KEw, (see equation 2.31 in Chapter 2), the grid-points along axial and radial directions
(Nz ×Nr) are taken to be 101×101. Figure 4.5(c) shows the space-time plot of radial velocity
(u) at the mid-gap along the mid-height (r = r1 +δ/2) of localized oscillations for Re = 333,
η = 0.6, Ma = 1 and Pr = 1. The red color in the plot shows the location of radially outward
jet which is no longer at the mid-height of the computational domain.

The time period (τ) of these localized oscillation is τ = 0.043 and the corresponding
dimensionless frequency, based on viscous time scale, is fv = 23.31.

Figure 4.5(d) shows the velocity vectors on (r,z) plane superimposed on temperature
contour plots over one cycle of oscillation.

Existence of perfect pitchfork bifurcation CCF −→ TV F

In an infinite cylinder, or, a periodic system in computations of TCF, the onset of Taylor vortex
flow (TV F) from circular Couette flow (CCF), admits a perfect pitchfork bifurcation (Andereck
et al. (1986)). The amplitude equation for such bifurcatio, up-to cubic order in amplitude A ,
can be written as (Golubitsky et al. (2012), Strogatz (2001)):

dA

dt
= α1A +α2A

3, (4.6)

where A is the order parameter and α1 and α2 are functions of Re, etc. The equilibrium
amplitude (dA /dt = 0) is given by:

Aeq =±
√

−α1

α2
∼
√

Re−Recr (4.7)

For the present system, the order parameter A could be taken as the radial velocity (u) at the
mid-gap and mid-height of the computational domain. The positive and negative signs of A

correspond to the existence of Taylor-rolls with radially outward and radially inward jet at
the mid-height of the computational domain, respectively. Equation (4.7) suggests that the
equilibrium amplitude can be measured as a function of the distance from bifurcation point.
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Fig. 4.5 Time evolution for (a) radial kinetic energy KEu; (b) axial kinetic energy KEw, (see
equation 2.31 in Chapter 2), the grid-points along axial and radial directions (Nz ×Nr) are
101× 101. (c) Space-time plot of radial velocity (u) at the mid-gap along the mid-height
(r = r1 +δ/2) of localized oscillations. (d) Velocity vectors on (r,z) plane are superimposed
on temperature contour plots over one cycle of oscillation for Re = 333, η = 0.6, Ma = 1 and
Pr = 1.
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Fig. 4.6 Variations of (a) the radial velocity at mid-height and mid-plane with Re, (b) its

magnified view near primary bifurcation. The exponent α , where u ∝

(
Re−Recr

Recr

)α

, comes

out to be 0.506 close to the CCF −→ TV F bifurcation with 95% confidence bounds α ∈
[0.4753,0.5366]; (c) Axial velocity (w) at the mid-height and mid-plane with Re, and its (d)
the magnified part showing CCF −→ TV F transition; the black dotted line shows the zero
axial velocity (w) line for perfectly symmetric Taylor vortices about the mid-height.

Figures 4.6 (a,b) and 4.7 (a,b) show the variation of radial velocity (u) at the mid-gap and
mid-height of the domain with the normalized distance from the bifurcation point,

ε =
Re−Recr

Recr (4.8)

for radius ratios of η = 0.7 and η = 0.8, respectively. Figure 4.6(b) and figure 4.7(b)
are magnified portion of figure 4.6(a) and figure 4.7(a), respectively, showing the onset of
Taylor-vortices from CCF . It is noted that, the exponent β , where
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Fig. 4.7 Same as figure 4.6, but for η = 0.8. The exponent α , where u ∝

(
Re−Recr

Recr

)α

,

comes out to be 0.5489 close to the CCF −→ TV F bifurcation with 95% confidence bounds
α ∈ [0.4801,0.6176].

u = α

(
Re−Recr

Recr

)β

, (4.9)

is determined using least-square fitting. From figure 4.6(b) α ≈ −31.12 and β ≈ 0.506,
in the 95% confidence bound for α ∈ [−32.65,−29.59] and β ∈ [0.4753,0.5366], utilising
the MATLAB software. Similarly, from figure 4.7(b) α ≈ 75.95 and β ≈ 0.5489, in the 95%
confidence bound for α ∈ [62.07,89.82] and β ∈ [0.4801,0.6176].

The exponent close to the bifurcation from CCF −→ TV F comes out to 0.5, which shows
that the present system follows the amplitude scaling of cubic-Landau equation (4.6).
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Asymmetric Taylor Vortices

In the phase diagram in figure 4.2, we found the existence of asymmetric 4-roll state at η = 0.7.
Figure 4.8 shows flow structures illustrating density (ρ) contours with the arrows showing the
flow in meridional (r− z) plane with magnitude of

√
u2 +w2 denoted in the length of arrow:

(a) Re = 86 (4 roll) with radially inward jet at the mid-height; (b) Re = 214 (assymetric 4 roll);
(c) Re = 300 (2 roll) and (d) Re = 343 (4 roll) with radially outward jet at the mid-height. The
blue colour denotes lower density and the red colour denotes higher density. Streamline plots
have been created using the surface LIC module of the paraview Software (Ahrens et al., 2005).
Figure 4.8 (b) shows Taylor rolls with different vortex sizes stacked along the axial extent of
the periodic domain - this is called asymmetric 4-roll state.

In order to quantify the asymmetry of vortices far from the bifurcation point (Re −
Recr)/Recr, we plot the variation of axial velocity (w) at mid-height and mid-plane with
Re (see panel (c) and (d) of figure 4.6). For asymmetric four roll structure, we see the axial
velocity (w) at mid-height and mid-plane to be positive in magnitude, also evident from the
panel (b) of figure 4.8, because of axially downward shift in Taylor vortices. This flow structure
is robust and has been checked with different grid sizes (see Appendix B for detailed simula-
tions). This asymmetry can be attributed to the choice of domain length as described in Meyer
(1967). Meyer (1967) carried out numerical simulations for axisymmetric incompressible TCF
for Reynolds number based on inner cylinder, Rer1 = ωir2

1/ν = 2000, η = 0.833 and stationary
outer cylinder, for two different domain lengths and concluded that there is insufficient freedom
in a restricted domain pertaining to the genesis of asymmetries, which provides evidence for
preferred length.

Following the asymmetric four roll state, we encounter a pair of symmetric vortices about
the mid-height of the computational domain, see figure 4.8 (c) for Re = 300. However figure
4.6 (c) shows a large negative magnitude of axial velocity (w) at mid-height and mid-plane, and
this is attributed to the structure of Taylor rolls. The centers of Taylor rolls do not lie along the
mid-gap, and are placed towards the outer cylinder, along with a small axial shift; consequently,
the magnitude of axial velocity (w) at mid-height and mid-plane turns out to be negative.

For a radius ratio of η = 0.8, we find three symmetric pairs of rolls as the primary roll
state from purely azimuthal circular Couette flow. Figure 4.7 shows the variations of (c) axial
velocity (w) at the mid-height and mid-plane with Re, and its (d) the magnified part showing
CCF −→ TV F transition; the black dotted line shows the zero axial velocity (w) line for
perfectly symmetric Taylor vortices about the mid-height. The axial velocity (w) at mid-height
and mid-plane initially turns out to be positive and later negative with increasing Re, purely
because of axial displacement in Taylor rolls. Figure 4.9 portays the flow structures illustrating
ρ contours with the arrows showing the flow in meridional (r− z) plane with magnitude of
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(a) (b)
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Fig. 4.8 Flow structures illustrating density (ρ) contours with the arrows showing the flow
in meridional (r− z) plane with magnitude of

√
u2 +w2 denoted by the length of arrow; (a)

Re = 86 (4 roll) with radially inward jet at the mid-height; (b) Re = 214 (assymetric 4 roll);
(c) Re = 300 (2 roll) and (d) Re = 343 (4 roll) with radially outward jet at the mid-height. The
blue colour denotes lower density and the red colour denotes higher density. Streamline plots
have been created using the surface LIC module of software paraview (Ahrens et al., 2005).
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(a) (b)

Fig. 4.9 Flow structures illustrating ρ contours with the arrows showing the flow in meridional
(r− z) plane with magnitude of

√
u2 +w2 denoted by the length of arrow; (a) Re = 125 (6 roll)

and (b) Re = 200 (8 roll). The blue colour denotes lower density and the red colour denotes
higher density. Adjacent panels on the right hand side of contour plots show the streamline plot
created using surface LIC module of paraview software (Ahrens et al., 2005).

√
u2 +w2 denoted by the length of arrow; (a) Re = 125 (6 roll) and (b) Re = 200 (8 roll). The

blue colour denotes lower density and the red colour denotes higher density. Adjacent panels
on the right hand side of contour plots show the streamline plot created using surface LIC
module of paraview software (Ahrens et al., 2005).

4.3.2 Flow patterns in short-cylinders

Here we discuss results corresponding to short-cylinders with aspect ratios of Γ ≤ O(1), which
corresponds to η = 0.3 and η = 0.4. Figure 4.10 presents the flow structures illustrating the
LIC streamline plots. Different points numbered on each panel refer to various instants over
one cycle of oscillation (see the central panel). The control parameters are η = 0.3, Γ = 0.673
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and Re = 700. The 2-roll vortex state breaks into a 4-roll state over the period of one cycle
of oscillation and rejoins into a 2 roll state. Figure 4.11 shows the corresponding density
colormaps with the arrows showing the flow in meridional (r,z) plane. The red colour shows
higher density and blue colour shows lower density. The velocity vector plots reveal that the
rolls near the inner cylinder are much stronger in comparison to the rolls formed near the outer
cylinder (O(10) larger in magnitude).
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Fig. 4.10 Flow structures illustrating the streamline plot created using surface LIC module
of paraview software (Ahrens et al., 2005); different points numbered on the figure shows
various instants over one cycle of oscillation (see the central panel); The control parameters are
η = 0.3, Γ = 0.673 and Re = 700.
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Fig. 4.11 Same as figure 4.10, but illustrates the density ρ contours with the velocity-vector
maps showing the flow in meridional (r− z) plane.

4.4 Torque scaling

A complimentary way to characterize the onset of Taylor rolls CCF −→ TV F is look at the
variation of the effective-nusselt (Nuω ) number with the Reynolds number (Re). As described
in the previous section, along with monitoring the radial velocity (u) at mid-height and mid-
plane, we have computed the effective-nusselt (Nuω ) near the inner cylinder. In this section, we
present the dimensionless torque (Nuω ) near the inner cylinder, as a function of Re for different
radius ratios (η = 0.5,0.6,0.7,0.8). At higher Re (after the occurrence of Taylor vortices from
CCF regime), the transport of angular momentum (L = ρvr) is governed by simultaneous
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(a) (b)

(c) (d)

Fig. 4.12 Variation of effective-nusselt (Nuω ) number as described in Eckhardt et al. (2007),
with Ta corresponding to (a) η = 0.5, (b) η = 0.6, (c) η = 0.7 and (d) η = 0.8. The black
line shows fitting Nuω = αTaβ close to the CCF −→ TV F transition.

molecular and convective effects. In CCF regime, the radial (u = 0) and axial velocities
(w = 0) over the domain is zero and the base flow is purely azimuthal (v > 0) resulting in
purely molecular transport of angular momentum (L ). With the onset of Taylor vortices,
both radial (u > 0) and axial velocities (w > 0) become non-zero giving rise to large scale
circulation in the (r,z) plane which increases with increasing Re. The convective transport of
angular momentum comes into motion and with increasing Re, the convection effects become
more pronounced. In analogous to the heat current in thermally driven Rayleigh Benard flow
(RBF), Eckhardt et al. (2007) defined local angular momentum current(Jω ), which relates the
sum of Reynolds stress (< u,ω >A(r),t) (convective transport) and the product of kinematic
viscosity (ν = µ/ρ) with the radial derivative of < ω >A(r),t profile (molecular transport) as
described below:
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(a) (b)

(c) (d)

Fig. 4.13 Variation of effective-nusselt (Nuω ) number as described in Eckhardt et al. (2007),
with Ta corresponding to (a) η = 0.5, (b) η = 0.6, (c) η = 0.7 and (d) η = 0.8. The blue line
shows fitting Nuω = αTaβ beyond the onset of TV F from CCF . The green line in panel (c)
shows the scaling for 2 vortex state, which appears after 4-roll asymmetric state in η = 0.7.

Jω = r3(⟨uω⟩A(r),t −
µ

ρ

∂

∂ r
⟨ω⟩A(r),t), (4.10)

where, ⟨...⟩A(r),t denotes a spatial average of cylindrical surface coaxial with the bounding
cylinders of radius r, (r1 ≤ r ≤ r2) and the temporal average. The first term in Eqn. (4.10)
denotes Reynolds stress and the second term is transverse derivative of averaged angular
momentum (L = ρvr), and is related to the dimensionless torque (Σ) , Σ = 2πhµ2G/ρ , where
G = Jω ρ2

µ2 . For the current problem, Eqn. (4.10) reduces to:

Jω = r3(⟨uω⟩t −
µ

ρ

∂

∂ r
⟨ω⟩t), (4.11)



4.4 Torque scaling 75

owing to the axisymmetric nature of the problem. In terms of azimuthal velocity (v),

Jω = r3
(
⟨uv

r
⟩t −

µ

ρ

∂

∂ r
⟨v

r
⟩t

)
= r3

(
⟨uv

r
⟩t −

µ

ρ

∂

∂ r
⟨v⟩t

r

)
,

and hence,

Jω = r3
(
⟨uv

r
⟩t −

µ

ρ

1
r

∂ ⟨v⟩t

∂ r
+

µ

ρ
⟨v⟩t

r2

)
. (4.12)

The laminar value of local angular momentum current (Jω
l ), is given by

Jω
l = 2

µ

ρ
ω1

r2
1r2

2
r2

2 − r2
1
=

2 µ

ρ
v1r1

1−η2 , (4.13)

The effective-Nusselt number (Nuω ) is given by

Nuω = Jω/Jω
l . (4.14)

Following Eckhardt et al. (2007),for the inner cylinder rotating (ω1 > 0), and stationary outer
cylinder (ω2 = 0), the Taylor number is defined as:

Ta =
(1+η)6

64η4 Re2. (4.15)

We choose the following function to describe the dependence of effective - Nusselt number
(Nuω) with Taylor number (Ta):

Nuω = α(Ta)β (4.16)

Figure 4.12 shows the variation of effective-nusselt (Nuω ) number as described in Eckhardt et al.
(2007), with Ta corresponding to (a) η = 0.5, (b) η = 0.6, (c) η = 0.7 and (d) η = 0.8. The
black line shows fitting Nuω = αTaβ close to the CCF −→ TV F transition. The coefficients
α and β are determined by least-square fitting all data of Nuω vs Ta, using equation (4.16).
The coefficients corresponding to figure 4.12 (a) α ≈ 0.01142 and β ≈ 0.5202, in the 95%
confidence bound for α ∈ [0.007634,0.01522] and β ∈ [0.4822,0.5582]; (b) α ≈ 0.023 and
β ≈ 0.4368, in the 95% confidence bound for α ∈ [0.0197,0.02629] and β ∈ [0.4205,0.453];
(c) α ≈ 0.01045 and β ≈ 0.5196, in the 95% confidence bound for α ∈ [0.006259,0.014] and
β ∈ [0.476,0.5633] and (d) α ≈ 0.00322 and β ≈ 0.629, in the 95% confidence bound for
α ∈ [0.002345,0.0042] and β ∈ [0.6014,0.6566] utilising the MATLAB software.

Figure 4.13 shows the variation of effective-nusselt (Nuω ) number, with Ta corresponding to
(a) η = 0.5, (b) η = 0.6, (c) η = 0.7 and (d) η = 0.8. The blue line shows fitting Nuω =αTaβ

beyond the onset of TV F from CCF . The coefficients α and β are determined by least-square
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Fig. 4.14 Variation of effective-nusselt (Nuω ) number as described in Eckhardt et al. (2007)
with Ma for η = 0.5

fitting all data of Nuω vs Ta, using equation (4.16). The coefficients corresponding to figure
4.13 (a) α ≈ 0.0718 and β ≈ 0.3154, in the 95% confidence bound for α ∈ [0.05345,0.09015]
and β ∈ [0.2884,0.3423]; (b) α ≈ 0.1307 and β ≈ 0.2415, in the 95% confidence bound for
α ∈ [0.06685,0.1945] and β ∈ [0.1971,0.286]; (c) α ≈ 0.162 and β ≈ 0.2416, in the 95%
confidence bound for α ∈ [0.1223,0.2017] and β ∈ [0.2191,0.2641] and (d) α ≈ 0.05891 and
β ≈ 0.3313, in the 95% confidence bound for α ∈ [0.0333,0.08452] and β ∈ [0.2905,0.3721]
utilising the MATLAB software. The blue line in figure 4.13 (a,b) shows that at a larger Ta
(beyond the onset of TV F), the scaling of effective-nusselt (Nuω ) number with Ta changes,
even though, the number of vortices in the periodic box remains constant. This is attributed to
fact that at higher Ta, the rolls are not symmetric about the mid-height and are axially displaced.
Figure 4.13 (c) shows different scaling of Nuω with Ta (see the black and the blue line) and is
attributed to the fact that the Taylor rolls become increasingly asymmetric (in terms of size of
vortices, see figure 4.8 (a,b)). The green line in figure 4.13(c) shows the scaling for 2 vortex
state, which appears after 4-roll asymmetric state in η = 0.7 and the coefficients corresponding
to α ≈ 0.06559 and β ≈ 0.3033, in the 95% confidence bound for α ∈ [0.060,0.071] and
β ∈ [0.2961,0.3106]. It is noted from the figure 4.13 (c), that the transport decreases as the
number of Taylor rolls in the domain drops from four to two. Following this decrease in
transport, it again increases as the four roll state re-appears at larger Ta. Figure 4.13 (d) shows
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different scalings, in the black and blue lines, corresponding to 6-rolls and 8-rolls, flow state,
respectively.

Figure 4.14 shows the variation of effective-nusselt (Nuω ) number with Ma for η = 0.5 for
different Re. In the CCF regime, we find the Nuω is O(1) irrespective of Ma. The magnitude
of Nuω decreases with increase in Ma, as shown in the curves corresponding to Re = 100,
Re = 120 and Re = 150, in the TV F regime. This can be explained from the equation (4.12),
where the first term corresponding to Reynolds stress slightly decreases when Ma is increased
for a given Re. However, the second term in the equation (4.12) becomes more negative since
the kinematic viscosity near the inner cylinder increases (ν = µ/ρ , where µ is constant but
due to the radial stratification of density, ρ near inner cylinder decreases with increase in Ma).
The third term is not affected in the Re range we envisage. The independent contribution from
these terms causes the effective-nusselt (Nuω ) to decrease with increasing Ma.

4.5 Summary

The existence of stationary and non-stationary patterns was found and a comprehensive phase
diagram in (Re,η) plane was plotted that summarized these findings. It was seen that the
compressiblity (Ma) effects are less significant in smaller gap-width, TC-cell as the diffusive
effects become dominant at η −→ 1. This later observation was similar to the linear stability
results of Manela & Frankel (2007). We found a new state called Localized Vortex Oscillations
(LVO) in the Taylor vortex pair for η ∼ 0.6 for 300 ≤ Re ≤ 400. We verified that the periodic
boundary conditions in axial direction admits supercritical pitchfork bifurcation at the onset of
TV F from CCF , and the order parameter, ∆u (radial velocity at the mid-height and mid-gap of
the computational domain) showed a square-root scaling (∆u ∝

√
ε), with the driving parameter

(ε) being the distance from the critical point, where ε = (Re−Recr)/Recr. The axial velocity
(w) at mid-height and mid-gap acts as an effective order parameter to quantify the “degree of
asymmetry” in asymmetric stationary flow patterns. We also found the existence of side by side
two rolls in short - cylinders with aspect ratios Γ ≤ O(1) at high Re in the parameter regime
of the Travelling wave (TWS) flow state. The Taylor rolls near the inner cylinder are stronger
compared to the rolls formed near the outer cylinder, which is ascertained from the velocity
vector maps over the meridional plane in the present system.

The scaling u = α

(
Re−Recr

Recr

)β

close to the bifurcation from CCF −→ TV F comes out

to be β ∼ 0.5, which shows that the present system follows the amplitude scaling of cubic-
Landau equation. The scaling of effective-Nusselt number (Nuω) with Taylor number (Ta)
are presented for different radius ratio (η) for CCF −→ TV F transition. Increase in fluid
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compressibility decreases the effective-Nusselt number (Nuω) near the inner cylinder, at a
given Re for η = 0.5.



Chapter 5

Proper Orthogonal Decomposition of the
Flow Field in Compressible TCF

5.1 Introduction

The concept of Proper Orthogonal Decomposition (POD) was used for different purposes
independently by Kosambi (1943), Karhunen (1946) and Loeve (1955). This is also known as
Kosambi-Karhunen–Loève decomposition, or, principal component analysis (Jolliffe, 1986) or
singular value decomposition (Golub & Van Loan, 1990). The proper orthogonal decomposition
(POD) was introduced in the context of atmospheric turbulence by Lumley (1967). A complete
description on POD can be found in Holmes et al. (2012) and is excellently reviewed in Tropea
& Yarin (2007). The POD has been used to compute low-dimensional models that are able to
describe Coherent Structures of turbulence. Reduced-order modelling is based on projecting
the governing equations of motion onto subspaces spanned by the POD basis functions (also
referred to as Galerkin projection) resulting in a set of nonlinear ordinary differential equations
(ODEs).

The earliest work on POD dates back to Bakewell Jr & Lumley (1967) where they have
measured two-point correlations of streamwise velocity component near the wall region of a
fully developed turbulent pipe flow of glycerine. They have reconstructed the two-point correla-
tion tensor using incompressibility and closure assumption. By using the numerical simulation
data on channel flow results from Kim et al. (1987), Moin & Moser (1989) carried out extensive
POD analysis to identify coherent structures. In the context of free shear flows, Glauser et al.
(1987) carried out POD of axisymmetric turbulent jet and demonstrated the effectiveness of
POD in determining the shape of eigenfunctions. In the context of Rayleigh Benard convection
(RBC), Sirovich & Park (1990) and Park & Sirovich (1990) carried out POD on the numerical
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data obtained from solving the Boussinesq equations for a fully inhomogeneous turbulent flow.
They calculated three dimensional empirical eigenfunctions. Rodriguez & Sirovich (1990)
extended POD to the Ginzburg-Landau (GL) equation and generated optimal basis and used
Galerkin projection to reconstruct the dynamical system. Kirby & Armbruster (1992) used
a conditional POD and a "moving" POD in order to the study of bifurcation scenarios in the
Kuramoto-Sivashinsky equation. Extensive details on POD can be found in Berkooz et al.
(1993).

In the context of Taylor-Couette flows (TCF), Imomoh et al. (2010) used spectral analysis
and POD to identify flow transitions and structural characteristics of the flow states preceding
turbulence. Gul et al. (2018) used Particle Image Velocimetry (PIV) together with the POD to
measure torque and the instantaneous flow fields to understand the hysteresis in the measured
torque in a Taylor–Couette system with a radius ratio (η) of 0.917 and aspect ratios (Γ) between
22 to 88.

In this chapter, we carry out Proper Orthogonal Decomposition (POD) on the computed
flow fields obtained from the DNS of compressible Taylor-Couette flow. The primary goal is to
identify structure of first few modes that contain about 95% of the fluctuating energy.

5.2 Method of Proper Orthogonal Decomposition

Proper orthogonal decomposition (see Berkooz et al. (1993)) is used to find an optimal basis
set of spatial modes Φn(X) for a vector field U(X , t) with respect to its total energy content∫ ⟨Φn(X)2⟩dX , where ⟨·⟩ denotes the temporal average. The spatial modes are identified such
that they maximize the projection of U(X , t) which leads to the following eigenvalue problem:

∫
Ω

M

∑
k=1

⟨Um(X , t)Uk(X ′, t)⟩Φk
n(X

′)dX ′ = λnΦ
m
n (X), (5.1)

where M is the dimension of the vector field and the spatial domain Ω(x = (x,y,z) ∈ Ω).
The POD modes span an orthonormal basis allowing the decomposition of the vector field
U(X, t):

U(X , t) =
∞

∑
n=1

anΦn(X) (5.2)

The projection coefficients an are equal to the eigenvalues λn via

⟨an(t)am(t)⟩= δnmλn (5.3)
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where δnm is the Kronecker symbol. The eigenvalue (λn) associated with a POD mode is
a measure of its energy content and the principal objective of this method is to restrict the
decomposition (5.2) to a few modes so that the flow dynamics can be analysed in a low-order
subspace which is able to capture the most of the energy content of the flow field U(X, t). By
projecting the POD modes on the velocity field, corresponding velocity vectors (eigen-modes)
for the POD modes are determined. Since the eigenvalues are ordered in a descending manner,
the first mode represents the highest energy. For more details, the reader is referred to the book
by Holmes et al. (2012).

Fig. 5.1 Schematic diagram of snapshot POD, originally proposed by Sirovich & Park (1990);
This diagram has been adapted from Tropea & Yarin (2007).

Let U(X), with X = (x, tn) ∈D =R3×R+, denote a set of snapshots obtained at N different
time steps (tn) over a spatial domain Ω(X = (x,y,z)∈Ω). These snapshots can be experimental
or numerical data of velocity fields, temperatures, density, etc. taken at different time steps.
Following Lumley (1967), a coherent structure is defined as the deterministic function which is
best correlated on average with the realizations U(X). In other words, we construct a function
Φ (to be an element of L 2 (D), the collection of square-integrable functions defined on the
flow region D) that has the largest mean square projection on to the observations |(U(X),Φ)|2.
Figure 5.1 shows the schematic diagram of snapshot POD, originally proposed by Sirovich &
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Park (1990), this diagram has been adapted from Tropea & Yarin (2007). The red line over the
sequence of snapshots denotes the correlation over them. The velocity vectors from N time
steps are arranged to form a velocity matrix, such that each row contains all the velocities at a
single time-step. An auto-covariance matrix (C) where C(X,X′) = U(X)⊗U(X′), (where the
superscript ′ denotes the complex conjugate and ⊗ is the dyadic product) using the velocity
matrix U is formed while performing this operation

which can be written as a Fredholm integral eigenvalue problem∫
D

C(X,X′)Φ(X′)dX′ = λΦ(X), (5.4)

in other words,
CΦi = λiΦi (5.5)

is solved. The eigenvectors Φi are combined with the velocity matrix U to obtain the POD
modes, in the following way:

Φi =
UiΦi

||UiΦi||
. (5.6)

These POD modes (Φi) are arranged according to the eigenvalues λ in the descending order
such that the first few POD modes carry the maximum energy of the fluid system. Since the
modes are ordered according to their magnitude of energy content (λ1 > λ2...λN−1 > 0), the
most energetic POD mode is the first mode, which is related to the dominant coherent structure,
if any, existing in the flow. In this chapter, we use “The Method Of Snapshots” proposed by
Sirovich (1987). It is a numerical procedure which is computationally less-intensive.

5.2.1 Applications of POD in compressible flows

The key idea of performing Proper Orthogonal Decomposition (POD) is to determine a nested
family of subspaces, of increasing but finite dimensions, that optimally span the data, and the
error in the projection onto each subspace spanned by these modes, are minimized. Most of
the POD tools have been applied to study incompressible flows. In an incompressible flow, we
employ POD to the velocity fields only. The pressure enforces the incompressibility constraint
in the pressure poison equation, and may in fact be eliminated completely from the equations of
motion. As Rowley et al. (2004) points out that in the compressible flows, the thermodynamic
variables (ρ,T ) are also dynamically important. This poses the question, whether to treat the
thermodynamic variables (ρ,T ) separately from the velocity fields (u,v,w), or perform POD
on a mixed vector-valued variable (U = [u,v,w,ρ,T ]). To compute POD modes, we first need
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to define an appropriate inner product.

⟨U1,U2⟩=
∫
(u1u2 + v1v2 +w1w2 +ρ1ρ2 +T1T2) (5.7)

As Rowley et al. (2004) reports, the above formulation presents a problem, since one cannot
add velocity (u,v,w) and density (ρ) and temperature (T ), in which scenario, one could simply
non-dimensionalize the flow variables, but the appropriate choice of non-dimensionalization
is critical. Rowley et al. (2004) presents a energy norm based on the integrated stagnation
enthalpy. For a 2D configuration, Rowley et al. (2004) introduced a vector-valued variable
q = (u,v,a), where u and v are the velocities and a is the local sound speed, and defined a
family of inner product as follows -

⟨q1,q2⟩=
∫ (

u1u2 + v1v2 +
2ξ

γ(γ −1)
a1a2

)
(5.8)

where γ is the ratio of specific heats and ξ is a parameter; If ξ = γ then the induced energy
norm gives q2 = 2h0 , twice the total enthalpy of the flow, and for ξ = 1 then the induced norm
gives twice the total energy of the flow. For more details, one is encouraged to read Rowley
et al. (2004) and Rowley & Williams (2006).

Similar to the equation (5.8), Mack (1984) presented a norm in the context of compressible
boundary layer flow as:

⟨p1, p2⟩=
∫

∞

0
(p′1M p2)dy (5.9)

where, p = [u,v,w,ρ,T ]tr; “tr” stands for the transpose. As presented in Mack (1984), M is a
diagonal positive definite matrix, as follows

M = diag[ρ0,ρ0,ρ0,T 0/ρ
0
γMa2,ρ0/γ(γ −1)T 0Ma2] (5.10)

where the superscript denotes the base state profiles of velocity (v0), density (ρ0) and tempera-
ture (T 0) for a given combination of Reynolds number (Re) and Mack number (Ma).

In the present study, we use (M ) as scaling matrix, which corresponds to the mack norm
(Mack, 1984) and has been extensively used in many transient growth studies in compressible
flows (Hanifi et al. (1996), Malik et al. (2006)). As described in Malik et al. (2006), the
definition of energy is free from any contribution due to pressure work or pressure related terms
in the governing equations. Since pressure work is conservative, its contribution to the total
fluctuation energy should vanish. In the present context of POD of compressible Taylor Couette
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flows, we use the following scaling matrix -

M = diag[ρ0,ρ0,T 0/ρ
0
γMa2,ρ0/γ(γ −1)T 0Ma2] (5.11)

as a result, we have the composite covariance matrix (U),

U =

[√
ρ0u,

√
ρ0w,

√
T 0

ρ0γMa2 ρ,

√
ρ0

γ(γ −1)T 0Ma2 T
]

(5.12)

with appropriate scaling factors. Recall that, the base state profiles of velocity (v0), density (ρ0)

and temperature (T 0) are axially invariant and hence can be treated as vectors in the meridional
(r,z) plane.

Snapshots of the fluctuation velocity fields (u,w), temperature (T ) and density fields (ρ)
are extracted from the DNS of compressible TCF with a constant sampling period of 0.01 in
non-dimensional time units (as per viscous time scale), making a statistical dataset of 1000
samples. The mean of the scalar fields density (ρ) and temperature (T ) was subtracted from
the ensemble before applying the snapshot POD. The same has been checked with a statistical
dataset of 2000 samples and the eigenmodes with associated eigenspectra found out to be
invariant.

Fig. 5.2 The POD eigenspectrum (cumulative) for Re = 210(TV F), Ma = 1, Pr = 1, η = 0.5,
Γ = π/2; The vector visualisations corresponding to points A, B and C shows the flow in the
meridional plane (r,z) for first three POD modes.
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5.3 Results: POD Spectra and Associated Modes in Com-
pressible TCF

5.3.1 The POD spectra and the associated modes
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Fig. 5.3 Eigenfunctions of POD modes (a− d) 1st mode, (e− h) 2nd mode and (i− l) 3rd
mode for Re = 210(TV F), Ma = 1, Pr = 1, η = 0.5, Γ = π/2; (a,e, i) radial velocity (u),
(b, f , j) axial velocity (w), (c,g,k) density (ρ) and (d,h, l) temperature (T ).
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Fig. 5.4 The POD eigenspectrum (cumulative) for Re = 500(TV F), Ma = 1, Pr = 1, η = 0.5,
Γ = π/2; The vector visualisations corresponding to points A, B and C shows the flow in the
meridional plane (r,z) for first three POD modes.

In this section, we present the results on POD analysis of the flow fields for the radius
ratio, η = r1/r2 = 1/2. The Mach number (Ma) and the Prandtl number (Pr) of the system
is unity. The aspect ratio (Γ) of the present system turns out to be π/2. The eigenvalues
obtained from POD of radial-axial velocity fields represent the energy carried by the modes,
respectively. Figure 5.2 illustrates the POD eigenspectrum (cumulative) for Re = 210(TV F),
the vector visualisations corresponding to points A, B and C shows the flow in the meridional
plane (r,z) for first three POD modes, where the first three modes are sufficient to capture
more than 95% of the total energy norm of the system. It is noted that the vector visualisation
corresponding to the first POD mode (see panel A of figure 5.2) admits a radially inward jet
at the meridional plane at the mid-height (slight axial displacement is attributed to periodic
boundary conditions). Higher modes have Taylor rolls with considerable axial displacement
(see panel B) and existence of multiple rolls (see panel C of figure 5.2).

Figure 5.3 shows the eigenfunctions of POD modes where the 1st mode (a−d), 2nd mode
(e−h) and 3rd mode (i− l) are portrayed with different panels (a,e, i) showing radial velocity
(u), (b, f , j) axial velocity (w), (c,g,k) density (ρ) and (d,h, l) temperature (T ). Analyzing
the density (ρ) (c,g,k) and temperature (T ) (d,h, l) modes, one comes to the conclusion that
the perturbation temperature is lower near the outer cylinder, consequently the perturbation
density to be higher at the location. This can be explained from the base state equations (see
chapter 2), where a temperature maxima at the mid gap asymmetrically towards the inner
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cylinder. As the Reynolds number (Re) of the flow is increased (for given Ma and Pr), the
viscous dissipation increases resulting in larger hump in the temperature profile and the radial
location of the temperature maxima shifts closer to the inner cylinder in comparison to the base
state distribution, resulting in negative temperature perturbation near the outer cylinder.
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Fig. 5.5 Eigenfunctions of POD modes (a− d) 1st mode, (e− h) 2nd mode and (i− l) 3rd
mode for Re = 500(TWS), Ma = 1, Pr = 1, η = 0.5, Γ = π/2; (a,e, i) radial velocity (u),
(b, f , j) axial velocity (w), (c,g,k) density (ρ) and (d,h, l) temperature (T ).

Similarly, figure 5.4 illustrates the POD eigenspectrum (cumulative) for Re = 500(TV F),
the vector visualisations corresponding to points A, B, C, D and E shows the flow in the
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Fig. 5.6 Eigenfunctions of POD modes (a− d) 4th mode and (e− h) 5th mode for Re =
500(TWS), Ma = 1, Pr = 1, η = 0.5, Γ = π/2; (a,e, i) radial velocity (u), (b, f , j) axial
velocity (w), (c,g,k) density (ρ) and (d,h, l) temperature (T ).

meridional plane (r,z) for first five POD modes, where the first five modes are sufficient to
capture more than 95% of the total energy norm of the system.

Figure 5.5 shows the eigenfunctions of POD modes where the 1st mode (a−d), 2nd mode
(e−h) and 3rd mode (i− l) are portrayed with different panels (a,e, i) showing radial velocity
(u), (b, f , j) axial velocity (w), (c,g,k) density (ρ) and (d,h, l) temperature (T ). Similarly,
figure 5.6 shows eigenfunctions of POD modes 4th mode (a− d) and 5th mode (e− h) are
shown in different panels (a,e, i) radial velocity (u), (b, f , j) axial velocity (w), (c,g,k) density
(ρ) and (d,h, l) temperature (T ). The dominant density (ρ) and temperature (T ) modes shows
similar nature in comparison to the Re = 210 case.

5.3.2 Temporal dynamics

The snapshot dataset in the meridional plane (r,z) has been projected onto the POD basis modes
in order to calculate the associated POD coefficients:
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Fig. 5.7 Time dependence of the first three POD coefficients for Re = 210 (TWS), Ma = 1,
Pr = 1, η = 0.5, Γ = π/2; (a) a1(t), (b) a2(t) and (c) a3(t).

an(t) =
∫

U(X , t) ·Φn(X)dX (5.13)

The time series of the amplitudes for Re = 210(TWS) are shown in figure 5.7 and for Re =
500(TWS) in figure 5.8. Panels (a), (b) and (c) of figure 5.7 shows the time dependence of
amplitudes a1(t), a2(t) and a3(t), respectively. Panels (a), (b), (c), (d), (e) and (f) of figure 5.8
shows the time dependence of amplitudes a1(t), a2(t), a3(t), a4(t) and a5(t), respectively.
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Fig. 5.8 Time dependence of first five POD coefficients for Re = 500 (TWS), Ma = 1, Pr = 1,
η = 0.5, Γ = π/2; (a) a1(t); (b) a2(t); (c) a3(t); (d) a4(t) and (e) a5(t).
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5.4 Summary

This chapter presents the results on Proper Orthogonal Decomposition (POD) applied to the
radial-axial (u,w) velocity fields, density (ρ) and temperature (T ) fields obtained from DNS
of compressible Taylor-Couette flow. Using the “method of snapshots” on the radial-axial
fluctuation velocity (u,w) spectra combined with density (ρ) and temperature (T ) perturbations,
scaled with Mack norm, obtained from the DNS, over the (r,z) plane for various Re in the
the wide-gap regime (η = 0.5), we find that the first three POD modes (at Re = 210) and the
first five POD modes (at Re = 500) are sufficient to capture more than 95% of the total energy
content of the present system. The temporal dynamics is shown by projecting the fields onto
the POD basis modes.

The tools of POD based analysis and Galerkin projection provide a statistical method to
derive reduced-order models from data (both DNS and experiments). The implications of POD
eigenmodes and corresponding eigenfunctions have not been investigated; this can be done by
using the POD based decomposition and applying Galerkin projection on the compressible
Navier-Stokes equations (NSE) to derive a set of coupled non-linear ordinary differential
equations (ODE’s) and would be an interesting work to carry forward. Further analysis is
required to shed light on these issues.





Chapter 6

Cellular States and Propagating vortices
in Axisymmetric Compressible TCF :
Independently Rotating Cylinders

6.1 Introduction

The last five chapters focussed on the effect of compressibility (Ma) and radius ratio (η = r1/r2)
on the pattern formation scenario of the Taylor-Couette flow of an ideal gas with periodic
boundary conditions at the top and the bottom end-walls. The present study focusses on the
genesis of novel cellular states (Heise et al., 2008) in the finite cylinders. In contrast to the
assumption of infinite cylinders manifested by periodic boundary conditions, the stationary
end-walls at the top and the bottom of the domain are simulated using no-slip boundary
condition which decreases the azimuthal velocity (v) from some finite value from the bulk to
zero, generating a boundary layer circulation near these walls. This flow gives rise to so called
Ekman vortices (Coles, 1965) which are directed radially inwards at the stationary end-walls.
Experiments in Taylor–Couette flow (TCF) are done with stationary lids at the top and bottom,
breaking the axial translational invariance and the endwalls induce Ekman vortices at any finite
rotation rate. These end walls are responsible for breaking the perfect pitchfork bifurcation for
transition from purely azimuthal circular Couette flow (CCF) (that holds for infinite cylinders)
to Taylor vortex flow (TV F) (Benjamin (1978), Benjamin & Mullin (1981), Jones (1982),
Czarny et al. (2003), Heise et al. (2008), Abshagen et al. (2010), Hoffmann et al. (2013)).

In this chapter, we report results from numerical investigations of Taylor-Couette flow
(TCF) of an ideal gas in finite cylinders obtained from independently rotating inner-cylinder



94
Cellular States and Propagating vortices in Axisymmetric Compressible TCF : Independently

Rotating Cylinders

(0 < Rei < 300) and outer cylinder (−300 ≤ Reo ≤ 300), where

Rei = ω1r1δ/ν (6.1)

and,
Reo = ω2r2δ/ν (6.2)

are the Reynolds number of inner and outer cylinder, respectively, and ω1 and ω2 are inner
and outer cylinder angular velocities, δ = r2 − r1 is the gap-width, and ν is the kinematic
viscosity at inner cylinder. The Mach number (Ma) of the flow and the Prandtl number (Pr)
of the fluid are set to unity. The geometrical parameters: (a) radius ratio (η = r1/r2) is 1/2
(wide-gap limit) and (b) the aspect ratio (Γ = h/δ , where h is the height of the computational
domain) is four. The emergence of localized cellular Taylor vortex state (Abshagen et al.,
2010) is found in the counter-rotation regime (Rei ∈ [150,300] and Reo ∈ [−100,−300]). We
also report axisymmetric propagating vortices, previously observed by Hoffmann et al. (2013)
in incompressible TCF, which travel from mid-height towards end walls, where they get
annihilated and the cycle continues. The phase diagram consisting of stationary and travelling
patterns is constructed in the (Rei,Reo) plane.

6.2 Numerical method and boundary conditions

The details of the numerical method are described in Chapter 2 of the current thesis. Compu-
tations were initialised from the rest state (u = v = w = 0) with unit density and temperature
(ρ,T = 1) for all reported runs. The inner and outer cylinders are placed at the dimensionless
radial locations of r1 = η

(1−η) and r2 = 1
(1−η) , and the top and bottom endwalls are placed

at z1 = h and z2 = 0, respectively. We employ no-slip and Dirichlet boundary condition for
velocities (u,v,w) and temperature T , respectively, at the cylinder walls as well as at the top and
bottom lids of the domain. The dimensionless boundary conditions can be written as follows -

u = 0, w = 0 at r1 =
η

(1−η)
and r2 =

1
(1−η)

(6.3)

u = 0, w = 0 at z1 = 0 and z2 = h (6.4)

v = Rei at r1 =
η

(1−η)
; v = Reo at r2 =

1
(1−η)

(6.5)

v = 0 at z1 = 0 and z2 = h (6.6)

T = 1 at r1 =
η

(1−η)
; T =

T2

T1
= χ at r2 =

1
(1−η)

(6.7)
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Fig. 6.1 Schematic diagram of (a) Taylor-Couette setup, the inner cylinder (r = r1) is rotating
with angular velocity ω1 and the outer cylinder (r = r2) is rotating with ω2. The gap-width
between the two cylinders is δ = r2− r1 and the axial extent of cylinder is h; z = 0 corresponds
to the bottom plate and z = h corresponds to top plate. The four walls (the inner and outer
cylinder and two stationary endwalls) are kept at isothermal boundary condition.

T = 1 at z1 = 0 and z2 = h (6.8)

6.3 Code Validation For Independently Rotating Cylinders

6.3.1 Localized cellular state: incompressible Taylor-Couette flow

The code has been found to validate the streamline plot of cellular state (see Fig. 6.2) for
moderate aspect ratio (Γ = 4) and Rei = 150 and Reo = −300 where Rei and Reo are the
Reynolds number of the inner and outer cylinders, presented in Abshagen et al. (2010). A
symmetric pair of small vortices always formed closer to the inner cylinder and a pair of large
vortices near the outer cylinders. Note that, we employed finite lids at the top and the bottom of
the cylinder instead to periodic boundary conditions.

6.3.2 Grid Independence Test

In order to check the grid dependency of present computations, a set of runs are performed
for two different grid-sizes at Rei = 100 and Reo =−100 with Ma = 1, Pr = 1, η = 0.5 and
Γ = 4. The temporal evolution of global kinetic energies based on (i) radial kinetic energy
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Fig. 6.2 Comparison of streamline plot of cellular state for an aspect ratio of Γ = 4 and
Rei = 150 and Reo =−300. The left panel shows the plot taken from Abshagen et al. (2010);
the right panel shows the surface LIC contour for Ma = 0.1 (current code).
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Fig. 6.3 Time evolution for (a) KEu, Eq. (6.9), and (b) KEw, Eq. (6.10) Rei = 150 and
Reo =−100; grid-points along axial and radial directions (Nz×Nr) are as follows:41×41 (red)
and 61×61 (black).

(KEu) (ii) axial kinetic energy (KEw) are given by:

KEu =

〈
1
2

ρu2
〉
= 2π

1/(1−η)

∑
η/(1−η)

2π

k

∑
0

(
1
2

ρu2
)

r∆r∆z, (6.9)
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Fig. 6.4 Grid independence study for Rei = 150 and Reo = −100; surface LIC plots in (r,z)
plane (a) 41×41 grid (b) 61×61 grid; contour-maps of azimuthal (v) velocity with (c) 41×41
grid (d) 61×61 grid. Six vortex state consists of two Ekman rolls and two pair of small vortices
near mid-height close to the inner wall.

KEw =

〈
1
2

ρw2
〉
= 2π

1/(1−η)

∑
η/(1−η)

2π

k

∑
0

(
1
2

ρw2
)

r∆r∆z, (6.10)

Panel (a) and (b) of figure 6.3 shows the variation of KEu and KEw with time, respectively. All
the simulations are started from rest. Figure 6.4 presents grid independence study for Rei = 150
and Reo =−100 and the surface LIC plots in (r,z) plane (a) 41×41 grid (b) 61×61 grid. The
contour-maps of azimuthal (v) velocity with (c) 41×41 grid (d) 61×61 grid are also shown.
The six vortex state consists of two Ekman rolls and two pair of vortices symmetrically placed
at the mid-height. The flow patterns look strikingly similar even with a coarser grid of 41×41
and robust.

Panels (a) and (b) of figure 6.5 shows upsweep/downseep protocol. During each run the
Reynolds number of the inner cylinder (Rei) is increased from 100 to 150 from t = 0 to t = 110
and then decreased back to 100 from t = 110 to t = 220; Rei was changed in steps of dRe = 1
after every 20000 time-steps, corresponding to a ramp-rate of dRe/dt ∼ 0.45, where t is the
dimensionless time based on visous time scale. Figure 6.5 shows the grid independence study
Rei = 150 and Reo =−100 where the surface Line Integral Convolution (LIC) plots (Ahrens
et al., 2005) in (r,z) plane (a) 41×41 grid (b) 61×61 grid and the contour-maps of azimuthal
(v) velocity (c) 41×41 grid (d) 61×61 grid. It is clear that 41×41 grid is good enough to
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choose as grid size for the present simulations, as per the present computational power, however
a grid clustering at the four walls would be important to resolve the boundary layers at large
enough rotation rates.

150100 100

(a)

150100 100

(b)

Fig. 6.5 Time evolution for (a) KEu, equation 6.9, and (b) KEw, equation 6.10, during quasi-
static upsweep/downsweep in Reynolds number of the inner cylinder (Rei) for Reo = 100,
Ma = 1 and Pr = 1; grid-points along axial and radial directions (Nz ×Nr) are as follows:
41×21 (red), 41×41 (blue) and 61×41 (black); during each run the Reynolds number of the
inner cylinder (Rei) is increased from 100 to 150 from t = 0 to t = 110 and then decreased
back to 100 from t = 110 to t = 220; Rei was changed in steps of ∆Re = 1 after every 20000
time-steps, corresponding to a ramp-rate of dRe/dt ∼ 0.45, where t is the dimensionless time
based on visous time scale.

6.4 Phase Diagram of Patterns

Figure 6.6 shows the phase diagram of different patterns in (Rei,Reo) plane; grossly identified
as the stationary and non-stationary patterns. In the Taylor-Couette flow (TCF) with stationary
endwalls, we observe the formation of Ekman cells adjacent to top and bottom walls. However,
we observe a flow state with 4 roll state with two large rolls located at the two corners of the
domain, resulting in inward flow (towards inner wall) at each end and two small rolls situated
symmetrically about the mid-height of the computational domain. This novel state corresponds
to setting up of saddle in the flow (previously reported in incompressible literature by Abshagen
et al. (2010) for the same parameter regime with axisymmetric compuatation and experiments).

Figure 6.7 shows the streamlines drawn using Surface-LIC module of paraview software
(Ahrens et al., 2005) for Rei = 50 and (a) Reo =−300, (b) Reo =−100, (c) Reo = 100, and
(d) Reo = 300 for Ma = 1, Pr = 1, η = 0.5, Γ = 4. These streamlines show the Ekman vortices.
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Fig. 6.6 Phase diagram illustrating the dependence of Rei on Reo for Ma = 1 and Pr = 1 for
independently rotating inner-cylinder (0 < Rei < 300) and outer cylinder (−300 ≤ Reo ≤ 300);
β = 1 corresponds to inviscid Rayleigh line and β =−1 corresponds to solid-body rotation;
the dotted line shows the stability boundary f (Rei,Reo) for η = 0.5 (Replotted from Esser &
Grossmann (1996)).

It is noted that a pair of vortices are formed at the corner near the outer cylinder, which is
different from the Taylor vortices, formed near the mid-height (see 6.8 (a)).

The emergence of localized cellular Taylor vortex state (Abshagen et al., 2010) is found
in the counter-rotation regime (Rei ∈ [150,300] and Reo ∈ [−100,−300]). We also report
axisymmetric propagating vortices (previously observed by Hoffmann et al. (2013) in incom-
pressible fluid systems), which travel from fixed end plates towards mid-height, where they get
annihilated and the cycle continues. The phase diagram consisting of plethora of stationary and
travelling patterns are constructed in the (Rei,Reo) plane.

Streamlines (see figure 6.8 (a−d)) drawn using Surface-Line Integral Convolution (LIC)

module of paraview software (Ahrens et al., 2005) are displayed. Panels (e−h) in the figure
6.8 shows the azimuthal velocity contours for fixed rotation of inner cylinder, Rei = 150,
Ma = 1, Pr = 1, η = 0.5, Γ = 4 and different rotation rates for outer cylinder, (a) Reo = 0,
(b) Reo = −100, (c) Reo = −200, (d) Reo = −300. Interestingly, the meridional (r − z)
flow pattern for the aspect ratio of Γ = 4, shown in figure 6.8 (a), contains only a pair of
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(a) (b) (c) (d)

Fig. 6.7 Streamlines drawn using Surface-LIC module of paraview software (Ahrens et al.,
2005) for Rei = 50 and (a) Reo =−300, (b) Reo =−100, (c) Reo = 100, and (d) Reo = 300
for Ma = 1, Pr = 1, η = 0.5, Γ = 4.

vortices stacked along its axial extent. The flow pattern in meridional plane at Rei = 150 and
Reo =−100 six symmetric large vortices (end wall vortices are slightly larger) near the inner-
cylinder coexisting with an array of four smaller vortices near the rotating outer cylinder. The
vortices near the outer cylinder is somewhat irregular in orientation and corresponding velocity
vector plots (see panel ( f ) of figure 6.9) confirm that the array of smaller vortices near the
outer cylinder are of much weaker strength compared to domainant vortices in proximity to the
inner cylinder, which has been previously reported in flow patterns pertaining to short cylinders
(Γ ∼ O(1)) in axially periodic boundary conditions (see Chapter 4 of the current thesis). Flow
patterns illustrating azimuthal vorticity (Ωθ = ∂zu−∂rw) (a−d) and temperature (T ) contours
with the arrows showing the flow in meridional plane with magnitude of

√
u2 +w2 denoted

in the length of arrow (e− h) for Rei = 150, Ma = 1, Pr = 1, η = 0.5, Γ = 4 for different
(a,e)Reo = 0, (b, f )Reo = −100, (c,g)Reo = −200, (d,h)Reo = −300 are enumerated. It is
noted from panel (e) of figure 6.9 (Rei = 150 and Reo = 0 ) that there is an “outward” jet at
the mid-height of the cylinder and two “inward” jets near two end-walls. We find that the
radially outward jet at the mid-height is accompanied by lower density (higher temperature)
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Fig. 6.8 (a−d) Streamlines drawn using Surface-LIC module of paraview software (Ahrens
et al., 2005). (e− h) Azimuthal velocity contours for Rei = 150, Ma = 1, Pr = 1, η = 0.5,
Γ = 4 for different; (a,e) Reo = 0, (b, f ) Reo =−100, (c,g) Reo =−200, (d,h) Reo =−300.
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Fig. 6.9 Flow patterns illustrating azimuthal vorticity (Ωθ = ∂zu−∂rw) (a−d) and temperature
(T ) contours with the arrows showing the flow in meridional (r− z) plane with magnitude
of

√
u2 +w2 denoted in the length of arrow (e−h) for Rei = 150, Ma = 1, Pr = 1, η = 0.5,

Γ = 4 for different; (a,e)Reo = 0, (b, f )Reo =−100, (c,g)Reo =−200, (d,h)Reo =−300.
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Fig. 6.10 (a) Streamlines drawn using Surface-LIC module of paraview software (Ahrens
et al., 2005) for Rei = 300 and Reo =−100, Ma = 1, Pr = 1, η = 0.5, Γ = 4. Central panels
shows the color-maps in the (r,z) plane of (b) azimuthal velocity (v) contours; (c) density (ρ)
contours and (d) radial-axial velocity vectors are superimposed on the background color-map
of the temperature (T ) fields.

and the radially inward jets are accompanied by higher density (lower temperature), which can
be safely inferred from panels (e− f ) of figure 6.9. For a given Reynolds number of inner
cylinder (Rei = 150), with increasing strength of counter-rotation (−200 ≤ Reo ≤ −300), a
saddle point is formed at the mid-height near the outer cylinder and propagates towards the
inner cylinder (see panels (g) and (h) of figure 6.9).

Figure 6.10 shows the (a) streamlines drawn using Surface-LIC module of paraview
software (Ahrens et al., 2005) for Rei = 300 and Reo =−100, Ma = 1, Pr = 1, η = 0.5, Γ = 4.
Central panels shows the color-maps in the (r,z) plane of (b) azimuthal velocity (v) contours
and (c) density (ρ) contours and the (d) radial-axial velocity vectors are superimposed on the
background color-map of the temperature (T ) fields. It is seen from the panel (a) of figure
6.10, there are four corner vortices in the domain apart from the three pair of Taylor-rolls.
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1 3 4 52 6

Fig. 6.11 (a) Surface Line Integral Convolution (Ahrens et al., 2005) illustrating the creation
and annihilation of vortices in the gap between two cylinders for Rei = 200, Reo = −300,
Γ = 4, Ma = 1 and Pr = 1. These LIC contours cover one period of oscillation (1−6) of the
propagating vortices (pV ) with time interval between snapshot (1) and (2) corresponding to
0.132 dimensionless times units and between (2)-(6) is 0.044 dimensionless times units, as
per the viscous time scale. (b) Schematic diagram for the creation and annihilation of vortices
in the gap between the inner and the outer cylinder; Ekman rolls have been not shown in the
schematic to ensure clarity.

6.4.1 Propagating vortices

We report novel flow pattern, consisting of propagating vortices, being generated near both
end walls and travelling towards the mid-height of the cylinder ultimately annihilated. This
was previously reported by Hoffmann et al. (2013) where they argued that the propagating and
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Fig. 6.12 Space time plots illustrating (a) radial velocity (u) and (b) axial velocity (w) at the
mid-gap along the mid-height (r = r1 +δ/2) of numerically simulated propagating vortex state
(pV ). The control parameters are Rei = 200, Reo =−300, Ma = 1, Pr = 1, η = 0.5 and Γ = 4.

the stationary vortices are generated by shear driven transport from Ekman circulation near
both end walls. Figure 6.11 (a) shows the Surface Line Integral Convolution (Ahrens et al.,
2005) illustrating the creation and annihilation of vortices in the gap between two cylinders for
Rei = 200, Reo =−300, Γ = 4, Ma = 1 and Pr = 1. These LIC contours cover one period of
oscillation (1−6) of the propagating vortices (pV ) with time interval between snapshot (1) and
(2) corresponding to 0.132 dimensionless times units and between (2)-(6) is 0.044 dimensionless
times units, as per the viscous time scale. These axisymmetric propagating vortices travel
towards mid-height generated from stationary end walls, where they get annihilated and the
cycle continues (see panels numbered (1−6) of figure 6.11). Figure 6.11 (b) presents schematic
diagrams for the creation and annihilation of vortices in the gap between the inner and the outer
cylinder; corresponding to every surface LIC contours placed vertically above it. The Ekman
rolls presented in the corner of the LIC contours have been not shown in the schematic to ensure
clarity. We start our description of vortex generation and propagation mechanism at t1 = 0;
panel numbered (1) in figure 6.11(b), when the cellular state portrays six vortices, i.e. four
vortices symmetrically placed about the mid-height as well as two Ekman rolls (shown in panel
(1) LIC plot but not shown in schematic diagram corresponding to panel (1)) near the finite
endwalls. In snapshot (2), two new vortices appear close to the inner cylinder wall, namely 6/7.
In snapshot (3), two more new vortices (namely 5/8), appear from the finite endwalls near the
inner cylinder wall. In snapshot (4), the inner pair of vortices (6/1 and 7/4) start come closer to
one another and finally disappear in (5). Finally, in (5) the vortices namely 5 and 8 come closer
to 2 and 3, respectively, as shown in figure (6). The final state (6), after one cycle of oscillation
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exhibits six vortices, which is the initial state (1). The time period of vortex generation from
finite lids on the top and bottom of the computational domain and annihilation at the mid-height
is τv ∼ 0.308, corresponding to the frequency, based on viscous time scale is fv ∼ 3.

Figure 6.12 shows the space-time plots for Rei = 200, Reo =−300 Ma= 1, Pr = 1, η = 0.5,
Γ = 4 for (a) radial velocity (u) and (b) axial velocity (w) at the mid-gap along the mid-height
(r = r1 +δ/2) of numerically simulated propagating vortex state (pV ). These plots indicates
that the innermost vortices (2/3) lie between both vortex annihilating defects.

6.5 Summary

We have analysed the flow patterns of Taylor-Couette flow (TCF) of an molecular gas in
finite cylinders obtained from independently rotating inner-cylinder (0 < Rei < 300) and
outer cylinder (−300 ≤ Reo ≤ 300) by numerically integrating compressible Navier-Stokes
equations (NSE) and energy equations, accompanied by ideal gas equation of state. The Mach
number (Ma) of the flow and the Prandtl number (Pr) of the the fluid is set to unity. The
geometrical parameters: (a) radius ratio (η = r1/r2) is 1/2 (wide-gap limit) and (b) the aspect
ratio (Γ = h/δ ) is four. The emergence of localized cellular Taylor vortex state (Abshagen
et al., 2010) is found in the counter-rotation regime (Rei ∈ [150,300] and Reo ∈ [−100,−300])
in the compressible TCF. These axisymmetric vortices are located near the inner cylinder. We
also report axisymmetric propagating vortices (previously observed by Hoffmann et al. (2013)
in incompressible TCF), which travel towards mid-height generated from stationary end walls,
where they get annihilated and the cycle continues. The phase diagram consisting of stationary
and travelling patterns is constructed in the (Rei,Reo) plane.



Chapter 7

Summary and Outlook

The focus of the present dissertation was to study the spatio-temporal pattern formation and
transport in Compressible Taylor-Couette flow. Using the Direct Numerical Simulations (DNS)
to study the axisymmetric Taylor-Couette flow (TCF) of an ideal gas with inner cylinder
rotating, the solutions were presented as functions of (i) Reynolds number (Re) based on the
rotation rate of the inner cylinder, (ii) peripheral Mach number (Ma) of the flow and (iii) the
radius ratio (η = r1/r2), where r1 and r2 corresponds to the radii of inner and outer cylinders,
respectively. The primary bifurcation from the pure azimuthal circular Couette flow (CCF)

leads to the well known Taylor Vortex flow (TV F), and the phase diagrams consisting of new
patterns were enumerated in the (Re,Ma) and (Re,η) plane.

A detailed introduction about Taylor-Couette Flow, and its compressible counterpart, which
is essentially the flow between two differentially rotating concentric cylinders, along with
its historical development and the role of using Direct Numerical Simulations to unravel the
underlying flow physics was given in Chapter 1. Chapter 2 presented the time-dependent
axisymmetric compressible Navier-Stokes equations along with the continuity and energy
equations for a mono-atomic perfect gas and the finite difference method. We employed
no-slip and Dirichlet boundary conditions for velocity fields (u,v,w) and temperature field
(T ), respectively. Axially periodic boundary conditions were used in all simulations. The
present DNS code was validated via comparisons with (i) the base state results presented
in Welsh et al. (2014) for (a) the compressible TCF 1 ≤ Ma ≤ 3 and 1 ≤ Pr ≤ 15, where
Pr denotes the Prandtl number of the fluid, and (b) its incompressible limit for the primary
transition (CCF −→ TV F) using Ma = 0.01, (ii) the base state results for low prandtl number
Pr ≤ 1 for various Ma ∈ [1,3] obtained from the analytical results of azimuthal velocity (v)
and temperature (T ) and numerical result for the density (ρ), (iii) the global response, or, the
pseudo Nusselt number (Nuω) for the incompressible case using Ma = 0.1, presented in Ostilla
et al. (2013) were summarized in Chapter 2.
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7.1 Present Results

In Chapter 3, the effect of compressibility (Ma) on TCF of molecular gases was investigated
and the effect of Ma on the onset of primary instability, which is the transition from purely
azimuthal circular Couette flow (CCF) to Taylor vortex flow (TV F) for η = 0.5 and Γ =

h/δ = π/2, where Γ is the aspect ratio, h is the height of the computational domain and δ

(= r2 − r1) is gap width between two cylinders, was analyzed. It was found that at constant
Re, with increasing Ma, a strong density stratification occurs along the radial direction which
affects the specific angular momentum, (L = ρvr), locally causing dL

dr > 0 for Ma ≥ 1.5.
Interestingly, for a given Re, the radial profiles of L for different Ma crossed each other at
a fixed radial location (rL ) from the inner cylinder; rL was found to be invariant in CCF
regime and decreased in TV F regime with increasing Re. It was shown that the compressibility
primarily affects the density distribution within the gap between two rotating cylinders by
causing an accumulation of mass near the stationary outer cylinder and played a pivotal role in
restraining the onset of instability. A new time-dependent, axially propagating, axisymmetric
flow state, called the Travelling wave solution (TWS), was identified in TC cells at higher Re.
Time series was analysed for the axial velocity (w) and radial velocity (u) measured at the
mid-gap between the inner and outer cylinders at the mid-height of the computational domain.
Low frequency axially propagating waves were found and a comprehensive phase diagram in
(Re,Ma) plane was plotted that summarized these findings. Alternate regions of rarified and
dense layers were identified from the axial density (ρ) profile at the mid-gap and the extent
of axial stratification [∆ρ = ρ(z)(max) - ρ(z)(min)] was found to increase with Re and the
effect becomes more pronounced with increase in the Ma. An outward jet at the mid-height of
computational domain was manifested which was accompanied by a lower density and two
inward jets of relatively higher density were formed at the top and bottom of the computational
domain. Transport in compressible Taylor vortices was calculated and the analyses of density
(ρ) fields and axial-radial velocity (u,v,w) fields revealed that the compressibility diminished
the radial (Qr), azimuthal (Qθ ) and axial (Qz) transports.

Chapter 4 highlighted the effects of radius ratio (η) and compressibility (Ma) on the onset
of Taylor vortices from the base state of circular Couette flow (CCF). It was seen that the
compressiblity (Ma) effects are less significant in smaller gap-width, TC-cell as the diffusive
effects become dominant at η −→ 1. This later observation was similar to the linear stability
results of Manela & Frankel (2007). We found a new state called Localized Vortex Oscillations
(LVO) in the Taylor vortex pair for η ∼ 0.6 for 300 ≤ Re ≤ 400. We verified that the periodic
boundary conditions in axial direction admits supercritical pitchfork bifurcation at the onset of
TV F from CCF , and the order parameter, ∆u (radial velocity at the mid-height and mid-gap of
the computational domain) showed a square-root scaling (∆u ∝

√
ε), with the driving parameter
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(ε) being the distance from the critical point, where ε = (Re−Recr)/Recr. The axial velocity
(w) at mid-height and mid-gap acts as an effective order parameter to quantify the “degree of
asymmetry” in asymmetric stationary flow patterns. We also found the existence of side by side
two rolls in short - cylinders with aspect ratios Γ ≤ O(1) at high Re in the parameter regime of
the Travelling wave (TWS) flow state. The Taylor rolls near the inner cylinder were stronger
compared to the rolls formed near the outer cylinder, which was ascertained from the velocity

vector maps over the meridional plane in the present system. The scaling u = α

(
Re−Recr

Recr

)β

close to the bifurcation from CCF −→ TV F comes out to be β ∼ 0.5, which shows that
the present system follows the amplitude scaling of cubic-Landau equation. The scaling of
effective-Nusselt number (Nuω) with Taylor number (Ta) were presented for different radius
ratios (η). Increase in fluid compressibility decreases the effective-Nusselt number (Nuω) near
the inner cylinder, at a given Re for η = 0.5.

Chapter 5 portrayed the results on Proper Orthogonal Decomposition (POD) on the flow
fields obtained from Taylor-Couette flow. POD is a technique that takes a set of input data
and creates an orthogonal basis constituted by functions which are the solutions of an integral
eigenvalue problem. Using the “method of snapshots” on the radial-axial velocity (u,w) spectra
combined with density (ρ) and temperature (T ) perturbations, scaled with a weight matrix
corresponding to Mack norm (Mack, 1984), over the (r,z) plane for various Re in the the
wide-gap regime (η = 0.5), it was found that the first three POD modes (for Re = 210) and
first five POD modes (Re = 500) were sufficient to capture more than 95% of the total energy
content of the present system. The temporal dynamics was shown by projecting the fields onto
the POD basis modes in order to calculate the associated POD coefficients and, were plotted in
phase diagrams.

Chapter 6 presented the results from numerical investigations of Taylor-Couette flow (TCF)
of an ideal gas in “finite” cylinders obtained with independently rotating inner-cylinder (0 <

Rei < 300) and outer cylinder (−300 ≤ Reo ≤ 300), where Rei = ω1r1δ/ν and Reo = ω2r2δ/ν

are the Reynolds number of inner and outer cylinder, respectively, and ω1 and ω2 are inner and
outer cylinder angular velocities, δ = r2−r1 is the gap-width, and ν is the kinematic viscosity at
inner cylinder. All these simulations were done by assuming axisymmetric flow. The emergence
of localized cellular Taylor vortex state (Abshagen et al., 2010) was found in the counter-rotation
regime (Rei ∈ [150,300] and Reo ∈ [−100,−300]). We also reported axisymmetric propagating
vortices (previously observed by Hoffmann et al. (2013) in incompressible TCF), which travel
from end walls towards mid-height, where they get annihilated and the cycle continues. The
phase diagram consisting of stationary and travelling patterns was constructed in the (Reo,Rei)

plane for Ma = 1 and Pr = 1.
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7.2 Future Work

Compressible Taylor-Couette flow (TCF) is extremely diverse in its complexity and the present
work can be extended in multiple directions. Some of the future directions for this work are
listed as follows.

1. Towards the non-axisymmetric compressible Taylor-Couette flow, code development
(ongoing work), parallelization and pattern formation.

2. The Taylor-Couette (TC) geometry serves as a canonical test bed for probing the rhe-
ological responses of shear-driven flow of granular material. Instabilities and pattern
formation scenario for dilute granular fluid would be an interesting avenue of research
(ongoing work).

3. Towards Taylor-Couette flow with rotating endwalls (ongoing work).

4. Towards development of POD based low-dimensional using Galerkin projection on
compressible Navier-Stokes equations.
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Fig. A.1 Phase plots for (u(x, t),w(x, t)) for grid-points along axial and radial directions (Nz×Nr)
are 61× 61; Rec(= Recr) corresponds to the critical Reynolds number for purely azimuthal
CCF to Taylor vortex flow (TV F) for η = 1/2, Ma = 1 and Pr = 1, for Reynolds numbers
(a) Re = 210, (b) Re = 250, (c) Re = 290, (d) Re = 350, (e) Re = 400, ( f ) Re = 450, (g)
Re = 500 and (h) Re = 600.
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Fig. A.2 Time dependence of local axial velocity at mid-height and mid-plane of the computa-
tional domain; An enlargement of the figure showing a single wave; Single-sided axial velocity
fluctuation power spectra. Only the last 3

4 of the time series is used for fast Fourier transform in
order to suppress initial transients.
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Fig. A.3 Time dependence of local axial velocity at mid-height and mid-plane of the computa-
tional domain; An enlargement of the figure showing a single wave; Single-sided axial velocity
fluctuation power spectra. Only the last 3

4 of the time series is used for fast Fourier transform in
order to suppress initial transients.
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Fig. A.4 Time dependence of local axial velocity at mid-height and mid-plane of the computa-
tional domain; An enlargement of the figure showing a single wave; Single-sided axial velocity
fluctuation power spectra. Only the last 3

4 of the time series is used for fast Fourier transform in
order to suppress initial transients.
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126 Resolution Tests

Rer1 Re Nz ×Nr ∆z×∆r ∆t Analysis
50 116.67 41×41 0.038×0.057 1×10−6 CCF
55 128.33 41×41 0.038×0.057 1×10−6 CCF
60 140 41×41 0.038×0.057 1×10−6 CCF
65 151.67 41×41 0.038×0.057 1×10−6 CCF
70 163.33 41×41 0.038×0.057 1×10−6 CCF
75 175 61×61 0.026×0.038 1×10−6 TV F - 2roll
80 186.67 41×41 0.038×0.057 1×10−6 TV F - 2roll
83 193.67 41×41 0.038×0.057 1×10−6 TV F - 2roll
85 198.33 41×41 0.038×0.057 1×10−6 TV F - 2roll
95 221.67 101×101 0.016×0.023 5×10−7 TV F - 2 roll
105 245 101×101 0.016×0.023 5×10−7 TV F - 2 roll
200 466.67 101×101 0.016×0.023 5×10−7 TWS
300 700 101×101 0.016×0.023 5×10−7 TWS

Table B.1 Computational details for η = 0.3, Ma= 1.0 and Pr = 1.0. The columns illustrate the
inner cylinder Reynolds number (Re), number of grids, grid spacing; ∆z = π

2Nz
and ∆r = 1−η

ηNr
,

the time step size, analysis of the states. Re = ((1/η)−1)∗Rer1 , where Rer1 corresponds to
the computational Reynolds number based on chosen length scale as inner cylinder radius.

Rer1 Re Nz ×Nr ∆z×∆r ∆t Analysis
50 75 41×41 0.038×0.037 1×10−6 CCF
51 76.5 41×41 0.038×0.037 1×10−6 CCF
53 79.5 41×41 0.038×0.037 1×10−6 CCF
55 82.5 41×41 0.038×0.037 1×10−6 CCF
57 85.5 41×41 0.038×0.037 1×10−6 CCF
60 90 41×41 0.038×0.037 1×10−6 CCF
65 97.5 41×41 0.038×0.037 1×10−6 CCF
66 99 41×41 0.038×0.037 1×10−6 TV F - 2roll
67 100.5 41×41 0.038×0.037 1×10−6 TV F - 2roll
70 105 61×61 0.026×0.0245 1×10−6 TV F - 2roll
80 120 61×61 0.026×0.0245 1×10−6 TV F - 2roll
90 135 61×61 0.026×0.0245 1×10−6 TV F - 2roll

100 150 61×61 0.026×0.0245 1×10−6 TV F - 2roll
200 300 61×61 0.026×0.0245 1×10−6 TWS
300 450 101×101 0.016×0.015 5×10−7 TWS
500 750 101×101 0.016×0.015 5×10−7 TWS

Table B.2 Computational details for η = 0.4, Ma= 1.0 and Pr = 1.0. The columns illustrate the
inner cylinder Reynolds number (Re), number of grids, grid spacing; ∆z = π

2Nz
and ∆r = 1−η

ηNr
,

the time step size, analysis of the states. Re = ((1/η)−1)∗Rer1 , where Rer1 corresponds to
the computational Reynolds number based on chosen length scale as inner cylinder radius.
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Re(= Rer1) Nz ×Nr ∆z×∆r ∆t Analysis
80 41×41 0.038×0.024 5×10−6 TV F - 2roll

120 41×41 0.038×0.024 5×10−6 TV F - 2roll
150 41×41 0.038×0.024 5×10−6 TV F - 2roll
180 41×41 0.038×0.024 5×10−6 TV F - 2roll
182 41×41 0.038×0.024 5×10−6 TV F - 2roll
183 41×41 0.038×0.024 1×10−6 TWS
183 61×61 0.025×0.016 1×10−6 TWS
185 61×61 0.025×0.016 1×10−6 TWS
185 81×81 0.025×0.016 5×10−7 TWS
188 61×61 0.025×0.016 1×10−6 TWS
190 61×61 0.025×0.016 1×10−6 TWS
230 61×61 0.025×0.016 1×10−6 TWS
250 61×61 0.025×0.016 1×10−6 TWS
270 61×61 0.025×0.016 1×10−6 TWS
290 61×61 0.025×0.016 1×10−6 TWS
300 61×61 0.025×0.016 1×10−6 TWS
360 61×61 0.025×0.016 1×10−6 TWS
370 61×61 0.025×0.016 1×10−6 TWS
380 61×61 0.025×0.016 1×10−6 TWS
382 61×61 0.025×0.016 1×10−6 TWS
383 61×61 0.025×0.016 1×10−6 TV F - 2roll
384 61×61 0.025×0.016 1×10−6 TV F - 2roll
385 61×61 0.025×0.016 1×10−6 TV F - 2roll
388 61×61 0.025×0.016 1×10−6 TV F - 2roll
400 61×61 0.025×0.016 1×10−6 TV F - 2roll
410 61×61 0.025×0.016 1×10−6 TV F - 2roll
450 61×61 0.025×0.016 1×10−6 TV F - 2roll
475 61×61 0.025×0.016 1×10−6 TV F - 2roll
476 61×61 0.025×0.016 1×10−6 TWS
477 61×61 0.025×0.016 1×10−6 TWS
478 61×61 0.025×0.016 1×10−6 TWS
500 61×61 0.025×0.016 1×10−6 TWS
500 81×81 0.019×0.012 1×10−6 TWS
500 101×101 0.016×0.0099 5×10−7 TWS
550 61×61 0.025×0.016 1×10−6 TWS
600 61×61 0.025×0.016 1×10−6 TWS
600 101×101 0.016×0.0099 5×10−7 TWS
650 61×61 0.025×0.016 1×10−6 TWS
700 61×61 0.025×0.016 1×10−6 TWS
700 101×101 0.016×0.0099 5×10−7 TWS
800 61×61 0.025×0.016 1×10−6 TWS
800 101×101 0.016×0.0099 5×10−7 TWS

Table B.3 Computational details for η = 0.5, Ma= 1.0 and Pr = 1.0. The columns illustrate the
inner cylinder Reynolds number (Re), number of grids, grid spacing; ∆z = π

2Nz
and ∆r = 1−η

ηNr
,

the time step size, analysis of the states.
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Rer1 Re Nz ×Nr ∆z×∆r ∆t Analysis
77 51.33 41×41 0.038×0.016 1×10−5 CCF

100 66.67 61×61 0.026×0.011 1×10−6 CCF
101 67.33 61×61 0.026×0.011 1×10−6 CCF
102 68 61×61 0.026×0.011 1×10−6 CCF
103 68.66 61×61 0.026×0.011 1×10−6 CCF
104 69.33 61×61 0.026×0.011 1×10−6 CCF
105 70 61×61 0.026×0.011 1×10−6 CCF
110 73.33 41×41 0.038×0.016 5×10−6 CCF
110 73.33 61×61 0.026×0.011 1×10−6 CCF
120 80 41×41 0.038×0.016 5×10−6 TV F - 2roll
120 80 61×61 0.026×0.011 1×10−6 TV F - 2roll
130 86.67 41×41 0.038×0.016 5×10−6 TV F - 2roll
130 86.67 61×61 0.026×0.011 1×10−6 TV F - 2roll
140 93.33 41×41 0.038×0.016 5×10−6 TV F - 2roll
140 93.33 61×61 0.026×0.011 1×10−6 TV F - 2roll
150 100 41×41 0.038×0.016 5×10−6 TV F - 2roll
150 100 61×61 0.026×0.011 1×10−6 TV F - 2roll
200 133.33 61×61 0.026×0.011 1×10−6 TV F - 2roll
250 166.67 61×61 0.026×0.011 1×10−6 TV F - 2roll
300 200 61×61 0.026×0.011 1×10−6 TV F - 2roll
400 266.67 101×101 0.016×0.0066 5×10−7 TV F - 2roll
500 333.33 101×101 0.016×0.0066 5×10−7 TWS
600 400 101×101 0.016×0.0066 5×10−7 LVO
700 466.67 101×101 0.016×0.0066 5×10−7 TWS
800 533.33 101×101 0.016×0.0066 5×10−7 TWS

Table B.4 Computational details for η = 0.6, Ma= 1.0 and Pr = 1.0. The columns illustrate the
inner cylinder Reynolds number (Re), number of grids, grid spacing; ∆z = π

2Nz
and ∆r = 1−η

ηNr
,

the time step size, analysis of the states: Localized Vortex Oscillations (LVO). Re = ((1/η)−
1) ∗Rer1 , where Rer1 corresponds to the Reynolds number based on chosen length scale as
inner cylinder radius.
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Rer1 Re Nz ×Nr Nuω ∆t Analysis

100 48.85 41×41 0.9948 1×10−5 CCF
120 51.42 41×41 0.9948 1×10−5 CCF
150 64.28 41×41 0.9948 5×10−6 CCF
150 64.28 61×61 0.9966 1×10−6 CCF
160 68.57 61×61 0.9966 1×10−6 CCF
170 72.86 61×61 0.9965 1×10−6 CCF
180 77.14 61×61 0.9964 1×10−6 CCF
192 82.28 61×61 1.0071 1×10−6 TV F - 4roll
194 83.14 61×61 1.0204 1×10−6 TV F - 4roll
196 84 61×61 1.0340 1×10−6 TV F - 4roll
198 84.85 61×61 1.0475 1×10−6 TV F - 4roll
200 85.71 101×101 1.0740 5×10−7 TV F - 4roll
230 98.57 61×61 1.2496 1×10−6 TV F - 4roll
250 107.14 61×61 1.3510 1×10−6 TV F - 4roll
270 115.71 61×61 1.4443 1×10−6 TV F - 4roll
300 128.57 101×101 1.5960 5×10−7 TV F - 4roll
400 171.43 101×101 1.9214 5×10−7 TV F - 4roll

450 192.86 101×101 2.0844 5×10−7 TV F - 4roll
500 214.29 101×101 2.1754 5×10−7 TV F - 4roll
500 214.29 151×101 2.1512 5×10−7 TV F - 4roll
550 235.7 101×101 2.2689 5×10−7 TV F - 4roll
600 257.14 101×101 2.3633 5×10−7 TV F - 4roll
620 265.7 101×101 2.4009 5×10−7 TV F - 4roll
640 274.28 101×101 2.4383 5×10−7 TV F - 4roll
660 282.86 101×101 2.0131 5×10−7 TV F - 2 roll
680 291.43 101×101 2.0511 5×10−7 TV F - 2 roll

700 300 101×101 2.0874 5×10−7 TV F - 2roll
700 300 151×101 2.0922 5×10−7 TV F - 2roll
700 300 171×101 2.0934 5×10−7 TV F - 2roll

800 342.86 101×101 2.2523 5×10−7 TV F - 2roll
800 342.86 121×101 2.6027 5×10−7 TV F - 2roll
800 342.86 151×101 2.6181 5×10−7 TV F - 2roll

Table B.5 Computational details for η = 0.7, Ma= 1.0 and Pr = 1.0. The columns illustrate the
inner cylinder Reynolds number (Re), number of grids, grid spacing; ∆z = π

2Nz
and ∆r = 1−η

ηNr
,

the time step size, analysis of the states. Re = ((1/η)−1)∗Rer1 , where Rer1 corresponds to
the Reynolds number based on chosen length scale as inner cylinder radius.
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Rer1 Re Nz ×Nr Nuω ∆t Analysis

200 50 41×41 0.9970 5×10−6 CCF
200 50 61×61 0.9980 1×10−6 CCF
300 75 41×41 0.9970 5×10−6 CCF
300 75 61×61 0.9980 1×10−6 CCF
320 80 61×61 0.9980 1×10−6 CCF
330 82.5 61×61 0.9980 1×10−6 CCF
340 85 61×61 0.9980 1×10−6 CCF
350 87.5 61×61 0.9980 1×10−6 CCF
360 90 61×61 0.9980 1×10−6 CCF
370 92.5 61×61 0.9980 1×10−6 CCF
380 95 61×61 0.9980 1×10−6 CCF
382 95.5 61×61 0.9979 1×10−6 CCF
384 96 61×61 0.9987 1×10−6 TV F
386 96.5 61×61 1.0026 1×10−6 TV F
388 97 61×61 1.0078 1×10−6 TV F

390 97.5 61×61 1.0116 1×10−6 TV F-6 roll
400 100 101×101 1.0566 5×10−7 TV F-6 roll
410 102.5 101×101 1.0945 5×10−7 TV F-6 roll
420 105 101×101 1.1316 5×10−7 TV F-6 roll
430 107.5 101×101 1.1673 5×10−7 TV F-6 roll
440 110 101×101 1.2073 5×10−7 TV F-6 roll
450 112.5 101×101 1.2351 5×10−7 TV F-6 roll
460 115 101×101 1.2672 5×10−7 TV F-6 roll
470 117.5 101×101 1.2982 5×10−7 TV F-6 roll
480 120 101×101 1.3282 5×10−7 TV F-6 roll
490 122.5 101×101 1.3572 5×10−7 TV F-6 roll
500 125 101×101 1.3853 5×10−7 TV F-6 roll

600 150 101×101 1.6091 5×10−7 TV F- 8 roll
700 175 101×101 1.8173 5×10−7 TV F- 8 roll
800 200 101×101 1.9892 5×10−7 TV F- 8 roll

Table B.6 Computational details for η = 0.8, Ma= 1.0 and Pr = 1.0. The columns illustrate the
inner cylinder Reynolds number (Re), number of grids, grid spacing; ∆z = π

2Nz
and ∆r = 1−η

ηNr
,

the time step size, analysis of the states. Re = ((1/η)−1)∗Rer1 , where Rer1 corresponds to
the Reynolds number based on chosen length scale as inner cylinder radius.



Appendix C

Responses to Reviewer’s Questions

1)Section 2.3: A brief discussion on the advantages of a Dufort-Frankel leapfrog type scheme
would be useful. Is there any restriction on the refinement path with regard to the stability/con-
sistency?

Some advantages of Dufort-Frankel leapfrog type scheme (see Hellevik (2018)) are:

(i) Dufort-Frankel scheme is unconditionally stable about a diffusion equation.

(ii) It is second order accurate in space and time, as well as explicit in nature. Generally,
implicit methods have this accuracy, however, since there is matrix inversion involved, they are
computationally expensive.

Regarding the refinement path is concerned, as described in Hellevik (2018) , the Dufort-
Frankel scheme is known to pose restriction in time step sizes, arising from the consistency
constraints, not from the stability point of view. However, in the present simulations the choice
of time step size is generally 1/10th of the time step size, based on the viscous CFL number.

CFL =
ν∆t
∆x2 =

µ

ρ

∆t
(∆x)2 (C.1)

I restrict the CFL, to be around 1, since theoritically, Dufort-Frankel scheme is unconditionally
stable for linear diffusion equation, and choose the time step size:

∆t =
(∆x)2ρmin

µ
(C.2)

where ρmin corresponds to minimum density in the domain, appearing at the inner cylinder.

2)Section 2.3: Bullet point 6 in solution procedure. I do not fully understand the meaning
of computational splitting. Splitting errors if any would be present at each time time level
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of advancement? Do these errors accumulate over time and then a filter is necessary to
suppress them? What would happen if the filter were not applied? Typically, direct numerical
simulations do not rely on filtering as they tend to resolve all the scales without invoking
numerical instability at the highest wavenumbers. It would be good to expand and explain the
need and the role of filtering.

To avoid computational splitting caused by leapfrog scheme, as described in ? , filtering is
performed after every m time steps is used according to the following equation-

Θ
n±1/2 =

(Θ n +Θ n±1)

2
(C.3)

In the present simulations, m = 11, and results are invariant for m = 21 and m = 31.

Yes, they are present at each time level of advancement, and, the errors accumulate over
time and a filter is used to supress the computational mode. If the filter were not applied then
the solution will blow up, after a certain number of time steps.

Need and Role of filtering:
Let us consider the following equation:

dU
dt

= iωU (C.4)

where i =
√
−1 and ω is a real number. Let us define G, the amplification factor, as follows:

Un+1 = GUn (C.5)

Now if we write a leapfrog scheme for the oscillation equation above, we will have

Un+1 −Un−1 = (2∆t)iωU (C.6)

Case 1: ω = 0.
The leapfrog scheme takes the following form:

Un+1 −Un−1 = 0 (C.7)

which corresponds to the exact solution. It is noted that, all the values of U at the even time
steps will be governed by the physical initial condition and the odd time steps, will be governed
by U(n = 1). We can consider the following choices (a)U(n = 1) = U(n = 0), we get the
exact solution without any oscillations; (b) U(n = 1) =−U(n = 0), we will have oscillations
(U(n) = (−1)nU(n = 0), which would give rise to entirely computational mode, for we have
set ω = 0 ). On the other hand,
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Case 2: ω be some positive real number. (C.6) can be rearranged as

Un+1 − iω(2∆t)Un −Un−1 = 0 (C.8)

Putting (C.5) in (C.8),

G2 − iω(2∆t)G−1 = 0 (C.9)

Two possible values for G are G± = iω∆t ±
√

1− (ω∆t)2

Hence,
Un+1
± = G±Un (C.10)

Comments: (i) Origin of the computational mode is purely due to the leapfrog scheme, and it is
evident from Eqn. C.10, that we get two solutions for a first order equation. One of them has to
be purely computational in nature.

(ii) Also for ∆t −→ 0, the computational mode will remain.
Hence, in the present numerical experiments, we filter the solution after every m time steps,

(details on variation of m on the solutions have been highlighted in figure 2.3 of the present
thesis), and the filtering is done after using the following method, illustrated in Harada(1980a)
Θ n±1/2 = (Θ n+Θ n±1)

2 .

3)The candidate has considered a reasonably large data set for validation of the DNS code.
The test results do indicate that the DNS code yields accurate results over the parametric space
investigated. Nonetheless, a convergence check would be more convincing and conclusive
(establishing convergence in terms of mesh spacing and the time step size).

Convergence checks for Ma = 1, Pr = 1 and η = 0.5 at sufficiently large enough Re, has
been showed in Figure 3.1. Convergence check for Ma = 1, Pr = 1 for different radius ratios
have been incorporated in the Appendix B of the present thesis.

One particular case for temporal convergence at Re = 383, Ma = 1 and Pr = 1 is shown
below in figure C.1.

4)The phrase “For any arbitrary physical quantity....”is repeated (pages 20 and 22)
Corrected.

5)Equation 2.18: should the superscripts be (n) and not (n+1)?
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Fig. C.1 Temporal evolution of the (a) radial (KEu) and (b) axial (KEw) kinetic energy; red
solid indicates for time step, dt = 1×10−6 and the black solid line shows dt = 5×10−7.

The superscript should be (n+1) instead of (n). As discussed in Harada(1980a), in order to
ensure mass conservation, two time levels (n-1) and (n+1) are allowed for the space derivatives
in the right hand side of the mass conservation (viz. Equation 2.18 of the thesis). The explicit
version of the equation evaluated at the backward time level (n-1) is numerically unstable and
the implicit form is unconditionally stable. Hence, the mass conservation follows in the time
and space using present staggered grid arrangement and this implicit form of the equation.

6)The unnumbered equation that follows Equation (3.2): Is cis is a non-dimensional
Reynolds number based on isentropic speed of sound?

Here, cis is the dimensionless isothermal speed of sound. The correction has been imple-
mented. Let us consider, cisr as the dimensional sound speed, whose expression is given as
follows:

cisr =

√
d pr

dρr
=
√
(cp − cv)Tr (C.11)

In order to make the above quantity dimensionless, we use the velocity reference scale as per
viscous time scale:

vr =
µr

ρrδ
(C.12)

Hence, the dimensionless sound speed (cis) is

cis =
cisr

vr
(C.13)
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=⇒ c2
is =

(cp − cv)Trρ
2
r δ 2

µ2
r

(C.14)

and the subscript “is” denotes the quantity being evaluated at isothermal conditions. Tr,
ρr and µr denotes the reference scale for temperature, density and shear viscosity at the inner
cylinder, cp and cv are specific heats at constant pressure and volume, respectively. Note that,
Eq.C.11 is used to calculate the peripheral/wall Mach number, Ma = vin/cisr, where vin is
the velocity at the inner cylinder wall, since both the cylinders have been kept at isothermal
conditions.

7)If possible, it would be useful to add/discuss results from linear stability analysis in the
context of DNS results shown in figure 3.4.

Our results (in the light of figure 3.4) in the context of the linear stability presented in Welsh
et al. (2014) are as follows:

(a) As shown in figure C.2(a) the critical Re for the CCF −→ TVF transition increases with
increase in Ma, more prominently for Ma > 1.5, which explains that compressibility stabilizes.

(b) Also, from figure C.2(a), it is noted that the critical Re for the transition from CCF −→
TVF is nearly same for low Mach numbers (Ma ≤ 1).

(c) It is also noted from figure C.2(a) that the scaling of Re vs Ma changes at higher Mach
number, which enforces the point (a).

8)It would be useful to discuss (qualitatively) how three dimensionality could alter the
summary given in Section 3.5. Are there additional stabilizing/destabilizing mechanisms that
could influence these conclusions in three dimensional compressible flow?

Three dimensional computations will involve azimuthal variations (∂/∂θ(·) ̸= 0) in the
scalar (ρ and T ) and the vector fields (u,v,w). The current findings (in axisymmetric TCF)
indicate that, in general, compressibility stabilises the TCF of dilute gases, in par with the
linear stability data provided by Manela & Frankel (2007) and Welsh et al. (2014). As is
well-known for the case of incompressible TCF, the axisymmetric Taylor-rolls lose stability
to non-axisymmetric wavy vortices, with increasing inner cylinder rotation. In the current
simulations, the observed axially-propagating wave is observed at higher Re, which need not
be the case for the full 3-dimensional case. However, in the literature of incompressible TCF,
people have found time dependent phenomena, both numerical and experimental, arising from
purely axisymmetric flow. (see Von Stamm et al. (1994), Gerdts et al. (1994) and Heise et al.
(2013)). Since there is little to no evidence of such axially traveling axisymmetric waves in the
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Fig. C.2 Variation of Re with Ma for η = 0.5, Pr = 1 and k = 4, where k is the axial wavenum-
ber.

axially periodic incompressible TCF, we conjecture that this is a purely compressible effect
when restricted to a particular symmetry-subspace. Since, Chapter 3 essentially considers only
inner cylinder rotation, the non-axisymmetry would not change the genesis of Taylor rolls from
purely azimuthal circular Couette flow (CCF). However, at large enough Reynolds number Re
and Mach number Ma, the flow might develop density stratifications in azimuthal direction,
which in presence of azimuthally travelling waves, can significantly alter the radial, axial and
azimuthal transports.

9)Is it possible to derive the scaling law exponents for the frequency (equation 3.16 and
3.17) and effective Nusselt number through physical arguments. The adapted approach is an
honest one and one would appreciate that. But the deviations in the pre-factor and exponent
are quite large for the confidence bound chosen. Perhaps coming from physical arguments and
then commenting on the suitability of it with respect to the data is an option worth exploring.
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Scaling argument between frequency and Re−Rel p may not yield an exponent 1/2 for large
enough Re. The canonical amplitude equation for the Hopf bifurcation is similar to pitchfork
bifurcation, hence, is expected a scaling exponent of 1/2 over the variation of order parameter
vs control parameter near Re ∼ Recr.

Physical explanation of the effective Nusselt number variation with Taylor number (Ta)
is in general complex, because as the gap width changes, the density near the inner cylinder
(ρic) also changes. However, a quantity Nuω

ρic
variation with Ta can be explained in the light of

incompressible TCF (see Eckhardt et al. (2007)).

10)It might be worth considering a few simulations(time/resource permitting) with very
long extended domains to ensure domain independence of the number of rolls, the characteristic
roll size etc.

Taylor Vortex Flow

Circular Couette Flow

Fig. C.3 Schematic linear stability diagram depicting the variation of Reynolds number Re with
axial wavenumber k for radius-ratio η = 0.5, Prandtl number, Pr = 1 and for a finite Mach
number Ma.

A series of numerical simulations in large computational boxes (large aspect ratios, axially
extended domains) has to be done in order to probe the wavelength or the characteristic roll
sizes and the number of rolls for different radius ratios, apart from η = 0.5. As shown in figure
C.3, long extended domains will correspond to very small values of axial wavenumber, as a
result of which, one can look for the instability of highest wavelengths, if any. This will be
considered in future works.

11)Since the work focuses mostly on compressibility effects, local Mach number contours
could be informative, especially for high Mach number flows. This could be beyond the scope
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of present work but an intriguing question that one is tempted to ask is when one can expect
flow features unique to compressible flows(such as shocks, shocklets etc.)

We use the local isentropic speed of sound in ideal gases:

cs =
√

γ(cp − cv)T (r,z) (C.15)

T (r,z) denotes the dimensional temperature, in K. The local “azimuthal” and “meridional”
Mach numbers [Mala and Mlm] are defined as:

Mlm =
(u2 +w2)1/2

cs
(C.16)

and,

Mala =
v(r,z)

cs
(C.17)

where v(r,z) is the local azimuthal velocity and u(r,z) and w(r,z) are the radial and axial
velocities, respectively. Figure C.4 displays the contours of local Ma.

It is seen that the “relative” Mach number in the azimuthal plane (Marel = Mlm ∗Mamax)

remains subsonic for all cases; therefore the shocks/shocklets are not expected in the meridional
plane over the range of Re and Ma studied.

12) In Chapter 6, the boundary conditions on the lid and rotating wall (6.5) and (6.6)
seem to suggest a discontinuity in the azimuthal velocity component. Is there a singularity (in
stress/pressure) and is it problematic?

There will be singularities because of the discontinuity in the azimuthal velocity (v), at the
four corners of the computational domain.

However, since the present arrangement of the grids are staggered, i.e. ρ and T are defined
at the center of the cell at the blue filled circles, radial, u and azimuthal, v at the side faces at
the red filled circles and w at the top and bottom of the cell at the black filled circles (refer to
Figure 2.2 of the thesis), the corner values never propagate inside the domain. In the problems
involving mixed boundary conditions, like stress free top walls, where we need to calculate
radial and axial derivatives of the scalar (ρ and T ) and vector fields (u,v,w) at the boundary, we
might encounter problems because of this discontinuity. In the present code, all the boundary
conditions are essentially Dirichlet and henceforth, it is not problematic for the Re, we envisage.

However, we found the results to be self-consistent with increasing grid size for the
parameters considered in this thesis. Grid independence of the solutions have been checked
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Fig. C.4 Steady state snapshot of local Mach number contours (Ma) based on (a,b,c) merid-
ional velocity (

√
u2 +w2) on (r,z) plane and (d,e, f ) azimuthal velocity. The control parameters

are η = 0.5, Γ = π/2, Re = 100, Pr = 1 for (a,d) Ma = 0.1, (b,e) Ma = 1 and (c, f ) Ma = 3.

for Ma = 1, Pr = 1 for different Re by varying the number of grid points in the radial (Nr) and
axial (Nz) for (Nr ×Nz) ∈ [41×21], [41×41], [61×41] and [61×61].

Also, the results presented in Chapter 6 are limited to Ma= 1 and Pr = 1. For high Ma(∼ 3)
and higher Pr(∼ 10), we might encounter problems at large enough co and counter-rotations.
This can be resolved using regularization of the discontinuities (see Lopez et al. (2004)), and
the modified boundary condition of azimuthal velocity (v) at the stationary top and bottom
endwall would be

v = Rei exp
[
−
(

r− r1

ε

)2]
r1 ≤ r ≤ rmid (C.18)
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v = Reo exp
[
−
(

r2 − r
ε

)2]
rmid ≤ r ≤ r2 (C.19)

where, rmid = (r1 + r2)/2 and ε is a very small number, say ε = 0.001.

13)Overall thesis has been drafted quite carefully and there are very few errors that one can
find. One round of review for correction of typos would remove this.

Corrected. Thank you.
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