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Preface 

The thesis work pertains to the design and fabrication of neuromorphic devices towards 

mimicking human-like memory and behavioral patterns. It is organized into six chapters. 

Chapter I introduces the concept of neuromorphic devices and their various types. In its 

latter part, the scope of the thesis work is presented. Chapter II introduces characterization 

techniques used for the work. 

Chapter III deals with the fabrication of an inorganic artificial synaptic network (ASN) via a 

simple self-forming technique and emulation of human-like behavioral patterns by applying 

carefully designed electrical pulse signals. This chapter contains three sections. Chapter IIIA 

describes the fabrication and characterization details. A continuous Ag film is dewetted by 

thermal treatment in ambient atmosphere to form disconnected islands having branches, 

nanogaps and nanoparticles, thus resembling the biological neural network. With voltage 

pulse signals, basic synaptic behaviors such as short-term plasticity (STP), long-term 

plasticity (LTP), and spike parameter-dependent plasticities are emulated. Chapter IIIB deals 

with the emulation of higher-order learning behaviors in the fabricated neuromorphic 

device by applying the custom-designed pulse configuration. Behaviors such as associative 

learning, interest-based learning, and behavior under supervision are demonstrated. 

Chapter IIIC portrays an interesting study of mimicking neural damage in the ASN device. 

The device is damaged by applying colossal electrical signals and physical scratches to mimic 

the real scenario, and under such damage, the device behavior is studied.  

Chapter IV describes the fabrication of metal-organic based flexible neuromorphic devices. 

A simple solution-based technique is used to fabricate metal nanoparticles in the carbon 

matrix by thermolysis of Pd hexadecanthiolate. Resistive and neuromorphic device behavior 

is observed by fabricating the device at different temperatures. A flexible device is fabricated 

on a Kapton tape and excellent bending stability is demonstrated. More importantly, the 

device shows synaptic behaviors in the bent state.  

Chapter V explains the fabrication of optoelectronic devices towards emulating memory and 

artificial visual system. This chapter contains three sections. Chapter VA covers the 

fabrication of the Au-Si device using an electroless deposition technique. I-V measurement 
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shows the presence of trap states and is explored to mimic basic synaptic behaviors (STP, 

LTP) and also the famous Ebbinghaus forgetting curve. Chapter VB elucidates the fabrication 

of a Au-Si photodetector. The electroless deposition process is optimized to accomplish large 

area, high-performing photodetector. Chapter VC describes the emulation of a primitive 

artificial visual system using the fabricated Au-Si photodetector (representing the eye) and 

the Ag-ASN neuromorphic device (representing the brain). Optical pulse signals are 

converted to voltage signals by the photodetector and are processed by the ASN device. 

In Chapter VI, a summary of the thesis work and an outlook are provided. 
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Chapter I 

Introduction 

I.A Artificial Intelligence 

Artificial Intelligence (AI) aims to simulate human intelligence in machines so that they can 

think like humans, and perform human-like cognition [1]. Although the present-day 

supercomputers can perform excellent calculations, they are very slow and inefficient 

compared to the human brain! [2,3] For example, a supercomputer takes around 500 s to 

emulate 5 s of human brain activity by consuming ~ MWs of energy [4]. This is much due to 

the conventional von Neumann computer architecture, where the memory and processing 

units are physically separate and are connected by limited interconnects known as bus 

bars [5,6]. During processing, data shuttles between these units, which makes the process 

slow and inefficient. Besides, limited transistor density in a processor chip also influences 

the computational ability. Although the advancing lithography technique is endeavoring to 

miniaturize transistors to the lowest dimension possible [7] to create a high density on 

board, the computational performance is still under satisfying. As the transistor scaling 

down approaches the theoretical limit, their packing density in a chip may not hold the 

famous Moore’s law any further [8]. 

While the human brain is believed to process information by parallel computing, this is 

possible due to the massive neurons (~ 1011) in the human brain interconnected in a 

complex manner to form synapses [9]. These enormous interconnections (~ 1015 synaptic 

junctions) lead to excellent cognitive abilities (synaptic activities) such as thinking, learning 

from experience, abstract ideas, efficient memory management (sensory memory – SM, 

short-term memory/plasticity – STM/P, long term memory/plasticity – LTM/P), complex 

associative learning and others [10]. Astonishingly, these complex processes take only 20% 

of total body energy (~ 20 W) [11]. This is the reason that AI aims to mimic real intelligence 

or the human brain. 

Inspired by this massive synapse density, efforts are increasing from industry to fabricate 

high-density transistor interconnections on the processor chip [12]. Such neuromorphic 
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chips have been developed and some of them include IBM’s TrueNorth, APT’s SpiNNaker, 

Intel’s Loihi [13–15]. Although their performance is better than conventional processors, 

they are not even close to the human brain efficiency. There are several other approaches 

such as software-based and hardware-based techniques proposed to efficiently accomplish 

AI in the recent past (Figure I.1).  

Figure I.1: Schematic illustration of AI platforms.  

Software-based platform 

Currently, software-based platforms are well established to perform AI [16]. Here, complex, 

intelligent algorithms are embedded in the conventional computing platform to perform 

specific tasks. These algorithms are able to learn from experience/training like humans. 

They have shown considerable success in performance and they do blend with our day to 

day activities. Some common examples are Alexa, Siri, Google Assistant, AlphaGo, AlphaZero, 

etc. [17–19] These are realized with the help of programming algorithms such as artificial 

neural network (ANN), machine learning (ML), deep learning (DL) etc. [15] Although these 

methods are successfully implemented, they are inefficient in terms of speed, space and 

energy consumption. For example, the gaming algorithm, AlphaGo has defeated a human 

player in the Go game by consuming ~ MWs of energy to play a single game with enormous 

space for a computer platform [20]. And, these algorithms require enormous training data 

sets to learn and perform efficiently.  

Artificial Intelligence 

Software 

ANN ML DL

Hardware

Neuromorphic/Synaptic 
devices

Filaments Traps PCM Ion
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Neuromorphic computing 

Recently, NVMs/memristors combined with software platforms (ANNs) have been 

promising to show enhancement in the performance of brain-inspired computing known as 

neuromorphic computing [21–23]. Taking advantage of their tunable and history-dependent 

conductance states, several features such as pattern and image recognition, handwritten 

digit recognition, etc., have been demonstrated [24–27]. However, they again rely on  

software platforms, thus making it inefficient. Besides, they do not show temporal dynamics 

in the conductance state which is essential for emulating STM, LTM and other synaptic 

activities required for emulating efficient AI [28].  

I.B Neuromorphic/synaptic devices 

Neuromorphic or synaptic devices are the one which emulate the synaptic activities by 

mimicking the biological synapse without the aid of software platforms or CMOS supporting 

circuits. In the human brain, synapses are the junctions where two neurons meet (Figure 

I.2a,b) [29]. The presence of massive synaptic junctions is believed to give rise to superior 

cognitive abilities [30]. A synapse consists of pre- and post-neurons separated by a gap (~ 

20 nm) called the synaptic cleft (Figure I.2b). Information is received from the external world 

through sensory systems present in the body and sent to the brain as an action potential 

(neuronal voltage spikes). This action potential travels through the neuron. When it reaches 

the synapse, neurotransmitters (Ca2+, Na+, K+ ions) present in the pre-synaptic neuron get 

released into the synaptic cleft and are collected by the receptors present in the post-

synaptic neuron, thus passing the information in the neural network [30]. During this, the 

current in the synaptic junction changes (EPSC/IPSC), thereby changing the channel 

conductance, known as neuroplasticity (Figure I.2c) [31,32]. This neuroplasticity is believed 

to be responsible for memory formation [33]. Neuroplasticity or synaptic weight can be 

modulated based on the input spiking condition, leading to different types of memories such 

as SM, STM and LTM (Figure I.3a). As a common example, brain generally tends to forget an 

OTP (one-time password) due to low rehearsal (STM, typically lasting ~ tens of seconds), 

while can retain a  mobile number for longer times (LTM, typically retained for a period of 

minutes to years) due to large rehearsal. Along with rehearsal (number of spikes), other 
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spike parameters such as how frequent the information is revised (spike frequency), 

duration of a learning event (spike width/duration) and the temporal difference between 

the pre- and post-synaptic signals (spike timing, Hebbian learning) also modulate the 

synaptic plasticity (Figure I.3b,c) [34].  

In neuromorphic devices, the device conductance/current is assigned to the synaptic 

behavior and the stimulating pulses (voltage/light) represent the learning signal (action 

potential). The conductance of the device can be tuned by various mechanisms such as 

conducting filament bridging, carrier trapping and detrapping, phase change in materials, 

ion migration [35], etc. Although memristors and neuromorphic/synaptic devices have 

different features [28], the terminology is interchangeably used in literature.  

 

Figure I.2: a) Schematic showing the neuron interconnection. b) Two neurons meet at a junction 

called the synapse. Action potential stimulates the neurotransmitters to get released into the 

synaptic cleft. Figure adapted with permission from Reference 29; copyright 2016 John Wiley and 

Sons. c) Typical excitatory post-synaptic current (EPSC) of a rat neuron. Figure adapted with 

permission from Reference 30; copyright 2007 Elsevier. 
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Filamentary bridges 

Electrochemical metallization memory (ECM): ECM devices rely on the electrochemical 

dissolution of an active electrode to form metal ions and their deposition on an inert 

electrode to form filaments [36,37]. A typical ECM device consists of metal-ion conductor-

metal (MIM) architecture [38,39]. The basic switching mechanism involves anodic 

oxidization (M→M+ + e) of a reactive metal electrode (Ag, Cu, Ni, etc.) in response to an 

applied potential, M+ migration in the presence of the electric field, and cathodic reduction 

(M+ + e→M) of the metal ions at the inert electrode (Pt, W, etc.) thus forming 

filaments [37,40]. Ag/Ag2S cell is a frequently explored device, as shown in Figure I.4b [41]. 

With the application of electrical signals, Ag electrodes dissolve to form Ag+ ions. These ions 

migrate through the Ag2S electrolyte to the inert electrode in the presence of an electric field 

and thus get reduced to form filaments (Figure I.4a). The typical switching nature of the 

device is shown in Figure I.4c. By applying increased number of voltage pulse signals, STP to 

LTP transition is demonstrated (Figure I.4d,e).  

Valence change memory (VCM): In a typical VCM device architecture, an insulator/dielectric 

is sandwiched between two metal electrodes (MIM) which need not  be reactive [42,43]. The 

device typically has a low conducting state due to the insulating channel. When the electric 

field is applied, the interface barrier height is lowered due to the migration of oxygen 

vacancies, leading to the formation of conducting filaments that bridge the two electrodes 

thereby switching the device to a high conducting state. Often, precise stoichiometric control 

Figure I.3: Schematic showing the basic synaptic activities such as a) sensory memory (SM), short-

term memory (STP), long-term memory (LTP) b) spike parameter dependent plasticity (SPDP) c) 

spike timing dependent plasticity (STDP).  
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of the active material is important for such devices. A wide range of oxide materials have 

been explored towards the development of neuromorphic devices. Lu et al., reported 

emulation of STP and LTP in a Pd/WOx/W device (Figure I.5a) [44]. Here, a Tungsten bottom 

electrode was first fabricated using e-beam lithography and then it was rapidly thermal 

annealed at 400 °C for the formation of WOx, followed by coating a top Pd electrode. Synaptic 

activity was demonstrated with five electrical pulse signals of  an amplitude of 1.3 V and a  

width of 1.3 ms applied at different spike intervals (Figure I.5b). For a longer pulse interval, 

the filaments relax back quickly showing STP, while for a shorter pulse interval, the stable 

filaments formed give rise to LTP (Figure I.5c,d).  

In these types of devices, the dimensions of the filaments play a major role in deciding their 

stability, thereby  leading to the emulation of STP and LTP [41]. Thinner filaments (diameter 

in ~ few nm) will have a lower volume energy than their surface energy, thus dissolving 

quickly, resulting in an STP behavior. Meanwhile, thicker filaments (diameter ~ few tens of 

nm) will have a higher volume energy than their surface energy, thus remaining stable for a 

long time leading to LTP behavior. The dimension of filaments can be controlled by 

controlling the number of pulses or current compliance. Increasing pulse number or current 

Figure I.4: a) Schematic ECM cell. When an electric field is applied, the Ag electrode dissolves and 

the ions drift towards the inert electrode and get reduced to form conduction filaments. b) schematic 

of the device. c) Typical I-V characteristics showing the switching behavior. d) LTP is emulated by 

applying 15 electrical pulses. e) STP is emulated with 5 electrical pulses. Figure adapted with 

permission from Reference 41; copyright 2015 American Chemical Society.  
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compliance increases the ion density in the channel thereby favoring the formation of thick 

filaments.   

Phase change memory (PCM): Phase change materials are widely studied for memory 

applications due to their fast switching speed, high packing density and so on [21]. In a 

typical PCM device, a phase change material sandwiched in between two electrodes can be 

reversibly switched between a crystalline phase and an amorphous phase by Joule heating. 

The crystalline state shows a high conducting state while the amorphous state shows a low 

conducting state. Chalcogenide glass, GST (Ge2Sb2Te5), is one of the most widely used 

materials for memory devices (Figure I.6) [4]. In general, a short electric pulse, Joule heats 

and quenches the material to create amorphous regions while a wide electric pulse is applied 

to crystallize the material by annealing. Cross-sectional TEM image shows the crystalline and 

amorphous regions formed in the GST material (Figure I.6b) and simulation of the generated 

temperature during the electrical pulse signal is depicted in Figure I.6c. The STDP beaviour 

is shown in Figure I.6d. Recently, STP and LTP behaviors were demonstrated in a lignin-

Figure I.5: a) Schematic of the device and oxygen vacancy filaments. b) Five electric pulse signals. c) 

STP is emulated when the spike interval was 299 ms. d) LTP is emulated for shorter spike interval of 

199 ms. Figure adapted with permission from Reference 44; copyright 2011 American Chemical 

Society. 
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based synaptic device (Figure I.6e-g) [45]. Joule heating results in the carbonization of lignin 

and can transform to an amorphous carbon matrix or to graphitic structures, which change 

the conductance state. 

Figure I.6: a) Schematic of the PCM crossbar device array. b) Cross-sectional TEM images showing 

the crystalline and amorphous phase change in the material. c) Simulation showing the temperature 

generated during the electrical pulse signals. d) STDP. Figure adapted with permission from 

Reference 4; copyright 2012 American Chemical Society. e) Schematic of the lignin-based device. f) 

STP emulated with 10 pulses. Inset showing the pulse configuration. g) LTP emulated with 50 pulses. 

Figure adapted with permission from Reference 45; copyright 2017 American Chemical Society. 

Trap assisted devices: It is highly possible to have defect states in materials or at their 

interfaces due to the presence of defects or dangling bonds formed during the fabrication 

process. These states can trap the carriers when the electric pulse is applied. After removing 

the pulse signal, the trapped charges slowly get released to the active channel giving rise to 

a decay nature to the device conductance/current, thus mimicking EPSC behavior. For 
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intense pulse signals, the carriers get trapped in deep trap states leading to the permanent 

change of the device conductance emulating LTP. Several organic and inorganic materials 

and their interfaces have been explored in literature towards the fabrication of 

neuromorphic devices [3,35,46]. Figure I.7a shows a schematic representation of the 

shallow and deep trap states in an amorphous Si-based device [47]. When illuminated by 

light pulses, filling of shallow (illuminated by 635 nm wavelength) and deep (illuminated by 

450 nm wavelength) trap states results in STP and LTP behavior (Figure I.7b,c). A commonly 

observed synaptic behavior, relearning, which requires less rehearsal, was also 

demonstrated in the device (Figure I.7d).   

Ion migration: Ion migration is often observed in perovskite (ABX3) based devices, where 

the halide (X) ions having low activation energy can migrate in response to the applied 

Figure I.7: a) Schematic of the trap states in amorphous Si-based device. b) Lower energy light 

illumination (635 nm) results in the capture of carriers in shallow trap states, thus emulating STP. c) 

Relatively higher energy light illumination (450 nm) results in the capture of carriers in both shallow 

and deep trap states, leading to STP and LTP formation. d) Relearning process with a lower number 

of rehearsal pulses. Figure adapted with permission from Reference 47; copyright 2020 John Wiley 

and Sons. 
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electric field [2]. In literature, a combination of halide ion migration and vacancy defects has 

been explored for artificial synaptic devices. In one example, organometal halide perovskite, 

CH3NH3PbBr3 with buffer-capped conducting polymer were investigated to emulate synaptic 

activity (Figure I.8a) [29]. Since the activation energy of bromine ion (~ 0.2 eV) was lower 

than that of the lead ion ( ~ 0.8 eV), it migrates easily under an applied electric field and gets 

trapped in the vacancy defect (Figure I.8b) leading to the EPSC behavior (Figure I.8c).  

Emulating higher-order cognition 

Apart from STP, LTP and SPDP, mimicking higher-order cognition is also important to 

accomplish next-generation neuromorphic artificial intelligence (Figure I.9a) [48]. Several 

reports in literature demonstrate emulation of complex cognitive function in devices often 

relying on CMOS supporting circuits [49–52]. Li et al., demonstrated sleep-wake cycle 

autoregulation in a Bi2O2Se/HfO2 transistor relying on a complex CMOS based recurrent 

neural circuit model [53]. Associative learning is a complex activity performed by the brain, 

which helps the body to prepare for an expected or likely event. 

Figure I.8: a) Schematic of the device. b) Schematic showing the ion migration and trapping in the 

active region. c) EPSC response for the applied electric pulse. Figure adapted with permission from 

Reference 29; copyright 2016 John Wiley and Sons. 
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 In devices, this is demonstrated by mimicking the famous Pavlov’s dog experiment [54]. An 

unconditioned signal (food) generates an unconditioned response (salivation). At the same 

time, a conditioned signal (bell) does not generate any response. A training was then 

initiated by applying food and bell sign als together so that, post-training, the bell signal 

alone generates the salivation response showing the association between the signals. In 

devices, food and bell are simulated by electrical pulse signals, and a conductance switch 

represents the salivation response. Hosaka et al., reported associative learning in a NiOx 

Figure I.9: a) Schematic showing the next-generation AI. Figure adapted with permission from 

Reference 48; copyright 2020 John Wiley and Sons. b) Classical conditioning mimicked in a 

neuromorphic device. Figure adapted with permission from Reference 58; copyright 2017 John 

Wiley and Sons. c) Schematic representation of an artificial visual system. d) Current modulation in 

an optoelectronic device with bias voltage. e) Interest-based memory formation. Figure adapted with 

permission from Reference 59; copyright 2019 American Chemical Society. f) Schematic of the device 

architecture for mimicking motor neuron function. Figure adapted with permission from Reference 

60; copyright 2018 American Association for the Advancement of Science. 
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based device while relying on an external CMOS comparator circuit [50].  In the recent past, 

efforts have been found in literature to emulate human-like behaviors without the aid of 

supporting circuits [55–57]. Yang et al., demonstrated associative learning in a flexible 

Ag/Al2O3 device (Figure I.9b) [58]. A set voltage (+5 V) was applied as a food signal to which 

the device switches to a high conducting state (salivation) while a reset voltage (-5 V, as bell 

signal) keeps the device in a low conducting state (no response). During training, set and 

reset voltage is applied in succession such that, post-training, the device switches to a high 

conducting state for the reset voltage (association). In another example, Li et al., mimicked 

interest-based memory formation in an optoelectronic oxide-based Schottky junction 

synaptic device (Figure I.9c-e) [59]. In general, the photoresponse of a device can be 

modulated with the bias voltage. Thus, in the device, the bias voltage was increased to 

increase the device response, thereby the memory retention to mimic interest-based 

memory formation (Figure I.9d). It was shown that at a low bias voltage (low interest), the 

Figure I.10: a) Schematic of the optoelectronic device based on amorphous Si. b) Schematic of the 

artificial visual system and c) mimicking color-coded pattern recognition in the device. Figure 

adapted with permission from Reference 47; copyright 2020 John Wiley and Sons. d) Schematic of 

the poly-Si/SiO2/Si3N4 FinFET. e) Carrier trapping in the device resulting in synaptic fatigue. f) Joule 

heating for releasing the trapped carriers. g) Simulation of temperature generation during Joule 

heating h) Fatigue and recovery of the device during electrical stimulation. Figure adapted with 

permission from Reference 61; copyright 2018 John Wiley and Sons. 
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memory retention of the device was poor while at a higher bias voltage (high interest), the 

memory retention was for a longer period (Figure I.9e). Lee et al. has reported an artificial 

neuromuscular system in an organic nanowire synaptic transistor (Figure I.9f) [60]. Synaptic 

activities under strain have also been demonstrated. On integrating a photodetector, the 

synaptic device was actuated for light signals, thus simulating motor response analogous to 

the biological muscle tension responses during contraction. A color recognizing artificial 

visual system was proposed by Li et al., in an amorphous Si-based photonic synapse (Figure 

I.10a) [47]. The device showed volatile and nonvolatile synaptic plasticity for different 

wavelengths of illumination. Thus, a pattern with color-coded information was illuminated 

and the device could identify the actual information (Figure I.10b,c). Due to excess learning 

activities, bio synapses undergo fatigue. Choi et al., demonstrated this synaptic fatigue and 

its recovery in a poly-Si/SiO2/Si3N4 based FinFET device (Figure I.10d) [61]. After 105 cycles 

of electrical pulsing, the device conductance dropped, indicating fatigue. This was due to the 

carriers being captured in deep trap states (Figure I.10e). An electrical Joule heating was 

then performed to release these trapped carriers (Figure I.10f,g), thus recovering the device 

(Figure I.10h).  

I.C Scope of the thesis 

In this era of big data, computing platforms based on the conventional von Neumann 

computer architecture are failing to meet the computational demand. Neuromorphic devices 

show promising results in terms of mimicking efficient computational abilities of the human 

brain. An ideal neuromorphic device should be able to emulate higher-order brain cognition 

without the aid of software platforms or CMOS supporting circuits. It is clear from the 

preceding discussion that the present-day neuromorphic devices involve complex 

fabrication processes, intricate material designs, and emulate limited synaptic behaviors. 

Also, higher-order learning is mimicked in devices often relying on external CMOS 

supporting circuits. Also, it is essential to fabricate devices that mimic different human 

abilities such as visual system, flexible neurons and so on, for next-generation neuromorphic 

artificial intelligence. This thesis explores simple processes for fabrication of on-synapse 



Chapter I 

14 

intelligence, i.e. neuromorphic devices that emulate intelligence without the aid of external 

CMOS circuits or of software platforms.   
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Chapter II 

Fabrication and Characterization Techniques 

In this thesis, neuromorphic devices have been designed to emulate various human-like 

cognitive activities. To synthesize, characterize, and study them, a state-of-the-art laboratory 

environment with the necessary, appropriate tools is required. This chapter summarizes the 

establishment of the cleanroom facility and the details of the instruments used for 

characterization.  

Cleanroom Fabrication Facility: 

Various fabrication and characterization tools discussed below were set up in a class 1000 

cleanroom facility. The operation conditions and fabrication recipes were optimized. This 

facility will continue to serve its purpose for various fabrication and device studies. 

 

Cleanroom facility 
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Characterization techniques:  

Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX)  

SEM was performed using a Nova NanoSEM 600 and Inspect 50 equipment (FEI Co., The 

Netherlands). EDX mapping was performed using EDX Genesis V4.52 (USA) attached to the 

SEM column operating at 15 kV.  

Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) measurements were carried out with a FEI TALOS 

F200S G2 instrument. Samples for TEM were prepared by transferring the materials on a 

holey carbon Cu grid.  

X-ray Diffraction (XRD)  

XRD measurements were performed using a Rigaku diffractometer. 

X-ray Photoelectron Spectroscopy (XPS) 

XPS was carried out with OMICRON spectrophotometer (1 x 10-10 Torr vacuum) with an X-

ray source of Al K𝛼 (1486.6 eV). Samples for XPS (solid substrates) were mounted on the 

stub using high vacuum compatible Ag paint and drying in a vacuum.  

Optical Microscope 

The optical microscope from Leica Microsystems (DM2700M), with objectives of 5-150x, 

was used to capture images in reflective and transmission modes. 

UV-vis spectroscopy 

Reflectance measurements were performed using a Perkin-Elmer Lambda 900 UV/vis/NIR 

spectrophotometer.  

Atomic Force Microscopy (AFM) and Conducting AFM (CAFM) 

Sample topography and thickness analysis were performed using the Bruker Innova AFM 

instrument. Contact and tapping modes were used for surface analysis. Electrical 

measurements were carried out using conducting mode, where a conducting tip was 

contacted on the sample surface with applied bias voltage. Both the height and 

deflection/amplitude information were recorded at a scan rate of 1 Hz, and stored in a 512 

× 512 pixel format. Images were processed using offline softwares. 



Fabrication and Characterization Techniques 

21 

Keithley Semiconductor Characterization System 

Electrical characterization of the device was performed using Keithley 4200, 2450, 2461 and 

4225 PMU. Regular I-V and voltage list sweeps were used for generating linear and 

customized pulse signals.  

Probestation 

Vacuum Probestation (up to 10-7 Torr) with four micro-positioners was used along with 

Keithley for electrical measurements. Gold-coated tungsten tip (10 µm tip size) was used to 

make electrical contact with the device contact pads.  

Linkam Temperature Stage 

Temperature-dependent measurements were carried out using a Linkam temperature stage 

under a nitrogen atmosphere.   

Optical Chopper 

Light pulses for photoresponse measurement were generated using Thorlabs MC 1000A 

optical chopper. 

Oscilloscope 

Analog signals were measured using Tektronix DPO 4104 oscilloscope with a 1 GHz sampling 

frequency.  

Maskless Photolithography 

Image sensors and gap electrodes were fabricated using IMP SF 100 maskless 

optolithography instrument.  The DMD micromirror chip allows patterned UV light (365 nm) 

according to the software mask, thus avoiding the requirement of a physical mask.  

 



 

22 



 

23 

Chapter IIIA 

An Artificial Synaptic Network: Fabrication, Characterization, 

and Emulating Synaptic Activity * 

Summary 

A novel structure resembling the biological neural network has been realized based on a 

simple self-forming process. The self-formed Ag artificial synaptic network with branched 

islands resembled neurons, synaptic junctions and neurotransmitters. Electromigration of 

metal between the nanogaps in response to the applied electric field was found responsible 

for the switching behavior and different neuroplasticity. This hierarchical structure 

facilitated various learning activities such as STP, LTP, potentiation, depression and spike 

parameter dependent plasticity. The self-assembly technique was highly reproducible. 

Remarkably, the fabricated device showed excellent stability over a year.  

IIIA.1 Introduction 

Human brain, comprising of nearly hundred billion neurons with several order higher 

number of synapses, accomplishes massive parallel processing and unmatched cognitive 

actions, which in essence is the subjective conscious intelligence experienced by every 

individual [1]. Inspired by this, efforts are on worldwide to develop artificial intelligence (AI) 

and in particular artificial neural networks (ANNs), to mimic intelligence with the help of 

complex algorithms incorporated on the currently available high-speed computational 

platforms [2]. However, solving intricate real-world problems, unstructured data 

classification, pattern recognition etc., which a biological brain routinely deals with in real 

time, have posed tremendous challenges even to the state-of-the-art computers [3]. The 

present day computing is based on von Neumann architecture with physically distinct 

process and memory units and their swift communication required for high end computing 

poses a clear challenge [4]. In other words, sequential processing available with the present 

configuration is expensive in terms of energy, space as well as speed [5,6], which a biological 

brain manages extremely efficiently. A biological synaptic junction, unlike the conventional 

computing units, appears to handle both processing and memory parallelly [7], an aspect 

*Paper based on this study: Mater.Horiz., 7, 2970 (2020). 
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closely linked to its ability to change with the circumstance, termed neuroplasticity [8]. 

While neuroplasticity in relation to memory and processing is still being investigated, efforts 

in the literature are on the increase to mimic different levels of neuroplasticity using artificial 

synaptic devices [9,10]. 

Short-term potentiation (STP) and long-term potentiation (LTP) are the basic synaptic 

functions essential for neuroplasticity. Like potentiation, the depression and spike 

parameter dependent plasticity (SPDP) are also an essential aspect of the neuroplasticity 

that contributes to the learning activity. Biologically, this is achieved by 

increasing/decreasing the influx of ions (Na+, K+, Ca2+) at a neuron which bind around the 

synaptic vesicle thereby inducing the release of neurotransmitters responsible for the 

synaptic plasticity [9,11]. Higher the ion concentration in the synaptic cleft, higher is the 

synaptic strength modulation. Given these bio-findings, artificial synaptic devices employ 

conductance change of the active channel whose strength and retention (short-term or long-

term) can be defined by the voltage pulse/spiking parameters. Wide range of materials and 

their interfaces have been explored to mimic this synaptic plasticity in devices. Both organic 

and inorganic materials have displayed impressive synaptic activities [4,9,12-16]. Oxides 

such as TiO2, HfO2, TaO and ZnO and their interfaces [15-21] facilitate electric field assisted 

conducting channels via drifting of ions/vacancy, thus serving a memristive behavior, are 

also capable of synaptic actions [22]. Similarly, electrochemical metallization (ECM) based 

synaptic devices such as Ag2S based atomic switch and Ag/Ag2S junctions have also been 

developed [23-25]. Recently, diffusion based memristors have also been realized and 

combining them with resistive memory devices have resulted in varied synaptic plasticity 

[26]. In addition, carrier trapping and detrapping interfaces responding to either optical or 

electrical stimulus have also been demonstrated to serve as potential synaptic junctions [27-

29]. Recently, a self-assembly technique was also introduced as an additional fabrication 

step for improved device performance [30-32]. However, these vacancy and trap based 

devices provide a capacitive decay nature to the conductance which is rather best suited to 

represent the forgetting nature of memory [33] in contrast to dynamically stable memory 

obtained using metallic filaments. Although these devices were able to mimic the 

aforementioned basic synaptic actions, they involve intricate fabrication processes and are 
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generally expensive. Moreover, efforts are concentrated on fabricating single synaptic 

junctions rather than mimicking hierarchical bio neural network which is the reason for 

accomplishing massive cognitive actions. 

IIIA.2 Scope of the present investigation 

A synaptic device forms an essential component of hardware-based neuromorphic artificial 

intelligence. These brain-inspired intelligent devices are more efficient in terms of speed, 

energy and space. Most present-day synaptic devices attempt to emulate only basic synaptic 

functions and involve intricate fabrication processes often demanding precise stoichiometric 

combination. Also, the device architecture is focused to fabricate single synaptic junction in 

lieu of exploring colossal network as in the brain. Fabrication of synaptic devices based on 

self-forming process is not explored much. This method, if applied, is benefited with easy 

processing, scalability and cost-effectiveness. Here a novel device architecture is proposed 

for synaptic device fabrication. A device architecture containing a dewetted island- 

structured Ag film on glass substrate was realized which could exhibit learning behaviors. 

IIIA.3 Experimental details 

Ag-ASN fabrication: Glass or SiO2/Si substrate was sonicated in acetone, IPA and DI water 

for 5 min and dried under nitrogen. The substrate was then loaded to e-beam evaporator for 

Ag deposition. ~30 nm Ag was deposited at chamber vacuum of ~10-6 torr. Later the 

substrate was placed on a hot plate maintained at 300 °C for 30 s and then immediately 

cooled to room temperature by placing on a cold surface. 

Device fabrication: Au gap electrodes were fabricated by shadow masking technique and 

maskless photolithography. 

IIIA.4 Results and discussion 

As the first step in device fabrication (see Schematic in Figure IIIA.1a), a ~ 30 nm thick Ag 

film was deposited on the substrate (glass or SiO2(300 nm)/Si) using a e-beam evaporator, 

which was then subjected to heating at 300 °C in ambient air for 30 s. This caused dewetting 

of the uniform film to form nanostructured island-like morphology. The presence of residual 

stress in the deposited film and the surface free energy difference between the film and the 
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substrate may drive this transformation [34]. The surface roughness of the dewetted film as 

obtained from AFM measurement was ~ 35 nm (Figure IIIA.1b) with the height profile 

displaying the variation in the island thickness. From the SEM image in Figure IIIA.1c, it is 

evident that the film is discontinuous with particle size ranging from 50 to 500 nm. These 

particles appear to have coalesced to form locally connected agglomerate networks with 

random branches extending over few µms, also seen in the magnified AFM image (Figure 

Figure IIIA. 1: a) Schematic of the device fabrication process. b) Low and high magnification contact 

mode AFM imaging of the annealed film. Height profile along the yellow line is shown. c) SEM image 

of the annealed film showing the discontinuous agglomerates. d) Magnified SEM view revealing the 

presence of smaller nanoparticles between the agglomerates (red arrows indicate the nanogaps). An 

agglomerate is shown with branches marked (B1, B2, B3).  
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IIIA.1b). Such local networks are seen separated from one another by nanogaps (see red 

marks in Figure IIIA.1d). From the microscopy analysis, it may be observed that the islands 

tend to branch out typically hosting around 5 branches. At a higher magnification, one may 

observe that the nanogaps are filled with smaller Ag nanoparticles whose average diameter 

is ~ 20 nm as estimated from the histogram in Figure IIIA.2. This bimodal size distribution 

serves favourably to form artificial synaptic network (Ag-ASN) which is the subject matter 

of interest.  

Figure IIIA.2: Size distribution of the small Ag particles (inset) present in between the agglomerates.   

While causing dewetting of the Ag film, there is a possibility of surface oxidation. This was 

examined by subjecting the film to XRD, XPS and HAADF-STEM elemental mapping. HAADF 

image of the transferred Ag particles is shown in Figure IIIA.3a and the corresponding STEM 

elemental mapping, shown in Figure IIIA.3b, confirms the presence of Ag in major quantity 

with no detectable oxygen signal which is also seen in the line profile (Figure IIIA.3c). The 

lattice fringes in the HRTEM image shown in Figure IIIA.3d, are indexable to Ag(111). 

Further, XRD pattern shown in Figure IIIA.3e also confirms that there is no detectable 

oxidation of Ag metal. Since the above techniques are limited to bulk of the material, the film 

was subjected to XPS analysis to probe the surface in more detail. Core level XP spectra is 

shown in Figure IIIA.3f. It can be noted that there is a negative shift (0.4 eV) in the 3d peak 

position which can be attributed to the mild surface oxidation. From all these techniques, it 
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was confirmed that there is no significant oxidation during the thermal treatment, which is 

in accordance with the literature [35]. 

 

 

 

Figure IIIA.3: a) HAADF image of the Ag granules transferred on to the holey carbon grid b) 

elemental mapping c) elemental line profile along the yellow line in (b) revealing the Ag dominance 

with no detectable oxidation. d) HRTEM image of the Ag particle and the lattice fringes are indexable 

to Ag(111). e) XRD pattern of the annealed film on glass showing the dominant (111) peak with no 

detectable oxidation. f) Core level XP spectra in Ag 3d region. 

Figure IIIA.4: Electrical characteristics of the synaptic device. a) SEM image of the device. b) 

Typical I-V response of the synaptic device (current compliance = 100 µA). c) Conduction 

retention of the permanently switched device.  
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The device fabrication was completed by establishing Au electrodes separated by ~ 7 µm on 

the island Ag film (Ag-ASN) via e-beam evaporation (FigureIIIA.4a). FigureIIIA.4b shows the 

I-V characteristics of the device exhibiting typical switching behavior. Initially, the device 

was in the high resistance state (HRS, typically > 1 GΩ) which is understandable as Ag-ASN 

consists of discontinuous islands barely connected. With the bias voltage sweeping in 

positive polarity (0 - 1.5 V), the device switched to a low resistance state (LRS, ~ 5 kΩ) which 

is seen as saturation for the set current compliance of 100 µA. It continued to retain the state 

even on reversing the voltage down to ~ -0.3 V, when it resets itself into the high resistance 

state. When the device was permanently switched, an excellent conductance retention over 

30 days was observed as shown in Figure IIIA.4c. The measured on/off ratio was as high as 

~ 106. Since the Ag-ASN consists of disconnected sub-micrometer islands with nanoparticles 

spread in between, the conduction at low voltages is expected to be dominated by tunneling. 

At the threshold voltage and beyond, the electric field may be sufficient to drive the 

formation of conductive bridges across the nanogaps leading to the low resistance state of 

the device. 

Figure IIIA.5: Temperature dependent electrical resistance of the device. a) Temperature 

independent resistance reflects the tunneling type conduction in high resistance state. b)  Linear 

increase in low resistance state with temperature indicates the metallic nature of the conduction 

filaments. Bias voltage was 100 mV. 

Temperature dependent resistance measurements in Figure IIIA.5a show that the HRS is 

independent of the temperature which confirms the tunneling based conduction. Its nature 
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was carefully examined (see Figure IIIA.6) following the field enhanced thermionic emission 

(FE) and Fowler–Nordheim (FN) tunneling models [36]. 

 
(IIIA.1) 

  

 
(IIIA.2) 

Figure IIIA.6: Conduction mechanism in HRS and LRS state. a) I-V characteristics in HSR state 

was analysed with b) F-N tunnelling and c) FE tunnelling. d) ohmic nature displayed in LRS state.  

Where I is the current, V, voltage, A, Richardson’s constant, T, absolute temperature, ε, 

dielectric permittivity, q, electronic charge, φ, barrier height and k, Boltzmann constant. A 

linear relation between ln(I) and V1/2 is followed below ~ 0.7 V (see Figure IIIA.6c), 

indicating the domination of FE tunneling and at higher voltages, the linearity is seen in the 

variation of ln(I/V2) with 1/V, supporting the F-N tunneling (Figure IIIA.6b). Beyond ~ 1.2 
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V, the electric field is high enough to cause electromigration of Ag atoms bridging the 

nanogaps thereby switching ON the device. The ohmic nature of the filaments was confirmed 

by the linear I-V (Figure IIIA.6d) as well as from the temperature dependence of the LRS 

(Figure IIIA.5b) with a coefficient (TCR) of ~ 0.0011 K-1, less than that of the bulk (0.0038 K-

1), which is expected for disordered systems. The presence of conducting metallic filaments 

under the applied voltage was also observed in conducting AFM measurements (Figure 

IIIA.7). 

Current compliance set during the device switching is known to influence the I-V 

characteristics. Here I-V sweep was performed with different compliance level ranging from  

Figure IIIA.7: Conducting AFM measurement was performed to realize the conduction path created 

in the device during electrical bias. Top figure shows the contact mode topography image of the 

device. For CAFM, the electrode was connected to ground and the tip was biased. When the tip was 

biased at 1 V, conduction path appeared due to the electromigration of Ag to bridge the nanogap. Due 

to the short-term stability these filaments relax back and when scanned with 0.1 V tip bias, majority 

of the conduction paths were vanished except for those near the electrode.  

10 – 100 µA as shown in Figure IIIA.8. During 10 µA compliance, the device switched to high 

conducting state and while retracing back, conductance drops to original value before 

reaching 0 V (Figure IIIA.8a) suggesting weak stability of switched state. When the 

compliance was increased to 50 µA (Figure IIIA.8b) and then to 100 µA (Figure IIIA.8c), the 

stability of switched state became better which is observed as high conducting state during 

the mild reverse voltage sweep. This indicates that retention of conducting state can be tuned 

with current compliance which in turn can emulate STP and LTP. In order to emulate the STP 
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and LTP memory in the present device, a pulse sequence was adopted along with a current 

compliance, as it is customarily done for such devices [24]. After examining the I-V sweep at 

different rates, a pulse sequence, 20 pulses of 2 V amplitude with 50 ms width as well as 

interval (Figure IIIA.9), was found optimal. The chosen pulse sequence was applied with a 

background reading voltage of 0.1 V as shown in Figure IIIA. 10 (lower panel) with the 

current compliance set to 100 µA. During the pulse sequence, the device switched to LRS 

(high conducting state) and the conductance state was retained beyond the pulse sequence 

for few seconds (0.1 - 20 s) before decaying back to HRS (low conducting state), thus 

emulating STP (Figure IIIA.10 and Figure IIIA.11a). Increasing compliance for applied 20 

pulses varied the STP retention showing the possibility of STP to LTP transition and when 

the compliance was increased to 500 µA, the device retained high conductance even beyond 

1500 s, thus emulating LTP. 

Figure IIIA.8: I-V characteristics under different current compliance of a) 10 µA b) 50 µA c) 100 µA. 

 

Figure IIIA.9: Pulse configuration. 20 pulses of 2 V amplitude and 50 ms width as well as interval 

with 0.1 V reading voltage.    
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In addition, increasing the pulse number to 300 also resulted in prolonged stability of 

conductance above 200 s thus emulating LTP. Increasing the number of pulses is analogues 

to rehearsal of learning event as typically observed in biological system. Low current 

compliance results in the formation of thin, weak filaments which may be unstable and 

breakup easily leading to low conductance of the device, while a higher current compliance 

or large number of pulses produces thick stable filaments which can sustain for longer  

Figure IIIA.10: Synaptic behavior emulated with pulsed voltage signals. Bottom panel represents 

the voltage signal of 2 V amplitude. Short-term potentiation is emulated with 100 µA current 

compliance while long-term potentiation is emulated with 500 µA current compliance. Inset shows 

a schematic of a neuronal synapse. 

 

Figure IIIA.11: Rehearsal dependent STP to LTP transition. a) STP is emulated with 20 pulses while 

b) LTP is emulated with 300 pulses. Current compliance was set to 100 µA. 
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periods of time [24]. Thus, by controlling the current compliance or pulse number, STP and 

LTP can be readily realized in the designated Ag-ASN. Over 30 batches of samples were 

prepared for the fabrication of synaptic devices to validate the reproducibility. Figure IIIA.12 

shows the I-V switching characteristics and STP behaviour of some of the devices. Notably, 

excellent device reproducibility was observed in terms of conductance switching and 

learning behavior. 

 Ambient stability of the device is also an important aspect in practical application. To 

investigate this, the device was stored in lab ambient condition for over a year and then 

Figure IIIA.13: Device stability in ambient condition. a) I-V characteristics showing the switching 

nature of the device in fresh condition and stored in ambient for one year. b) STP behavior emulated 

in the aged device (2 V ×20 pulse, 50 ms width and interval, 100 µA current compliance). 

Figure IIIA.12: Device reproducibility. a) Resistive switching behaviour of over 30 devices is shown 

using the I-V characteristics. b) STP behaviour emulated in different devices using typical pulse signal 

(2 V ×20 pulse, 50 ms width and interval, 100 µA current compliance). c) Cumulative distribution of 

threshold switching voltage (Vth). 
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subjected to electrical measurement. From Figure IIIA.13a, the device switching voltage was 

seen shifted to a higher value (1st cycle) possibly due to the mild surface oxidation. However, 

the device recovered to its pristine state during the subsequent I-V cycle (2nd cycle) which 

may be attributed to joule heating leading to decomposition of oxide formation [37]. In 

addition, STP nature was also emulated in the aged device thus showing good ambient 

stability (Figure IIIA.13b). Memory strength is also influenced by pulse/spike parameters 

such as width, frequency and number. The strength is seen to increase with each of these 

parameter (Figure IIIA.14). Further, important feature in learning is the potentiation and 

depression were also emulated using positive and negative stimulus as shown in Figure 

IIIA.15.  

Figure IIIA.14: Conductance modulation with a) pulse width (single pulse with 2 V amplitude), b) 

pulse interval (20 x 2 V pulses with 50 ms width) and c) pulse number (2 V pulse with 50 ms width). 

 

Figure IIIA.15: Potentiation and depression. 20 potentiation pulse and 20 depression pulse were 

applied to show the tunability of conductance. Pulse width was 50 ms. 
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Figure IIIA.16a shows an oversimplified schematic of the biological neural network. Neurons 

interact with each other in a complex network via junctions called synapse. Nanogap 

separation at this junction is known as synaptic cleft where the neurotransmitter gets 

released to form memory and cognition. Figure IIIA.16b,c shows the SEM image of the 

artificial synaptic network prepared by annealing Ag film. The resulting structure consists of 

a network of Ag agglomerates separated by nanogaps filled with isolated nanoparticles. This 

geometry resembles the biological neural network with agglomerates as neurons, nanogaps 

between the branched edges as synapses and nanoparticles as neurotransmitters. From the 

image analysis (Figure IIIA.17) the approximate neuron-like agglomerate density was found 

Figure IIIA.16: a) Schematic of the biological neural network. It is a collection of neurons and 

neurites having dendrites and axons. Neurons meet at the synaptic junction, the latter being the 

building block of memory and cognitive systems. Synapse is activated by releasing the 

neurotransmitter into the synaptic cleft in response to the input stimuli. Single synapse is shown in 

the right. b) SEM image of the artificial synaptic network resembling the biological counterpart. c) 

Magnified SEM image shows mimicking of biological synapse with small nanoparticles as 

neurotransmitters. d) Formation of conduction filament under applied field due to electromigration.  
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to be around 1.1 × 109 per square inches with several times higher synapse-like nanogaps 

thus making it highly suitable for high performance synaptic device.  When the electric field 

is applied as a neural signal electromigration of Ag facilitates the filament formation in the 

nanogaps as shown in Figure IIIA. 16d, thus emulating the neurotransmitter-like dynamics 

at synapse.  

IIIA.5 Conclusions 

In conclusion, a novel structure that resemble bio neural network formed via simple 

fabrication process is proposed. The Ag islands with branched edges enabled controlled 

electromigration of metal atoms via voltage spiking and current control to form a variety of 

filamentous growths between the islands across the nanogaps as examined using 

microscopy techniques. The nanogaps filled with nanoparticles between the islands 

resemble the biological synapse. With voltage spikes representing the pre-synaptic signal, 

neuroplasticity such as STP, LTP, potentiation, depression, spike duration dependent 

plasticity (SDDP), spike rate dependent plasticity (SRDP) and spike number dependent 

plasticity (SNDP) were emulated. Several batches of devices were fabricated demonstrates 

Figure IIIA.17: SEM image was analysed using ImageJ and average agglomerate density was found 

to be around 1.1 × 109 per square inch. Considering average 5 nanogap-like synapse per agglomerate, 

average synapse density will be 5.5 × 109 per square inch. Bio neural network has approximately 

1.28 × 1013 synapses per cubic inch. Considering average size of a neuron, in-plane synapse density 

will be around ~109 per square inch. 
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the good reproducibility. Moreover, the device showed excellent ambient stability over a 

year. 
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Chapter IIIB 

Higher-Order Learning in an Artificial Synaptic Network * 

Summary 

With the interesting device architecture, i.e. artificial synaptic network, resembling the bio 

counterpart, and carefully designed voltage pulse configuration, several higher order 

synaptic activities were emulated, importantly, without the aid of external CMOS or 

equivalent circuitry. Behaviors close to human psychology such as first and second order 

associative learning, supervision, impression of supervision and interest-based learning 

were realized. A prototype kit developed to emulate Pavlov’s dog behavior clearly 

demonstrates the potential of the device towards neuromorphic artificial intelligence. 

IIIB.1 Introduction 

As discussed earlier, the brain-inspired synaptic devices are promising circuit elements for 

neuromorphic artificial intelligence. Although wide variety of materials have been explored 

to fabricate synaptic devices, their functions are often limited to STP, LTP and SPDP [1-3]. 

Mimicking higher level cognitive actions in device is highly challenging but at the same time 

is very essential requirement for accomplishing effective brain-inspired computing.  

One of many components of intelligence is associative learning, often typified by Pavlov’s 

dog. Here, a stimulus that generates an obvious response, is associated to a neutral stimulus 

through repeat learning cycles, such that post association, the neutral stimulus alone will be 

able to generate the anticipated response. There are limited reports on devices which clearly 

emulate such a complex learning behavior [4, 5]. Yang et al.,[4] demonstrated classical 

conditioning in Al2O3/PI based flexible device while compromising the reset ability of the 

device. Mathews et al.,[5] utilized multigated MoS2 transistor with threshold current concept 

to mimic the same. In many cases, CMOS hardware integration was adopted to demonstrate 

the behavior [6-8]. Moreover, these devices are limited to first order association while 

human brain does exhibit higher order association capability. Recently, more human-like 

interest-based learning in an optoelectronic synapse and sleep-wake-cycle in an electronic 

synapse have also been realized using a variety of active materials and configurations [9,10]. 

*Part of this Chapter is from: Mater.Horiz., 7, 2970 (2020). 
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Although, few reports deal with mimicking advanced behavioral patterns, the material 

system employed for the purpose are highly varied often accompanying supporting circuits 

or software-based platforms. A table presented here compares the behavioral performance 

of multi-terminal devices from the literature. For an effective brain inspired neuromorphic 

artificial intelligence or on-synapse artificial intelligence, the main challenge is to emulate all 

these cognitive actions in a given material system without the aid of external circuits, thus 

saving on energy and speed. 

IIIB.2 Scope of the present investigation 

In literature, several organic and inorganic materials have been explored to fabricate 

synaptic devices which emulate STP, LTP and SPDP. Although these devices were able to 

mimic the aforementioned basic synaptic actions, emulating neuromorphic artificial 

intelligence with these alone is nowhere near. For an effective brain-inspired artificial 

intelligence, it is crucial to emulate higher level cognitive functions. This chapter proposes 

an innovative approach to emulate higher order learning in the ASN device. Reading voltage 

is often used for measuring the state of the device during and after pulsing. In this study, 

reading voltage is also used as modulatory signal and optimized to emulate supervision as 

well as interest-based learning. While increasing reading voltage was exploited to emulate 

supervision behaviour, withdrawing reading voltage in step and gradual manner mimicked 

impression of supervision. Further, higher reading voltages were used to create interest-

based learning. By carefully configuring pulse signals, first and second order classical 

conditioning were also demonstrated. Interestingly, all these synaptic actions were 

emulated in a single material system without the aid of any CMOS circuits. A plug-and-play 

kit emulating Pavlov’s dog behavior has been developed for ready demonstration of the 

capability of the synaptic device. 

IIIB.3 Experimental details 

Customized pulse signal configuration was achieved by exploiting the voltage list sweep 

mode in Keithley 2450. Gradual withdrawal of the voltage is performed by keeping the same 

withdrawal rate for all voltage levels. 

 



Higher-Order Learning in an Artificial Synaptic Network 

45 

IIIB.4 Results and discussion 

To explore the higher order learning capability of the device, a few behavior patterns have 

been tried out, viz behavior under supervision, interest-based learning and associative 

learning. The first case may be taken to relate to a real scenario wherein a fickle-minded 

junior, being supervised by a senior, may perform well only under strong supervision. 

Working with the device, 2V pulse sequence was assigned as the task given, the conductive 

state to represent the junior’s behavior (higher the conductance, better is the behavior) and 

the reading voltage applied (2 to 300 mV) to the strength of the supervision. Under mild 

supervision (2 mV), the (conductance state) retention was only for a fraction of a second (~ 

0.2 s) and then it decayed to its initial value (see Figure IIIB.1). When the supervisory reading 

Figure IIIB.1: Behavior under supervision. Reading voltage was increased to represent different 

supervising strength.  Improved conductance retention represents the increased attentiveness.  
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voltage was increased to 10 mV and then to 100 mV, the junior’s retention increased but not 

beyond 2 s. When a moderate supervision of 200 mV was applied, the performance was 

somewhat better but there were several random attempts to escape to the original low 

conductance state. However, under strict supervision (300 mV), a consistent retention was 

seen all through. From the behavioral pattern summarized in Figure IIIB.2, one can see that 

under low supervision strength (2 to 100 mV), the device conductance was often limited to 

lower values, implying a tendency to be generally lazy, while under moderate level 

supervision (200 mV), an increased conductance (attentiveness) was observed with 

intermittent lazy intervals. A supervision with 300 mV produced a stable conductance state 

attributable to full attentiveness. Increase in reading voltage is expected to increase the 

Coulombic attraction, thereby increasing the filament stability and thus its retention.   

Further the study was advanced to examine the effect of withdrawal of supervision to a lower 

level for a short duration before resetting back to the original level. In real scenario, there 
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Figure IIIB.2: Distribution of conductance for different supervising voltages. Frequency here 

represents the instances (counts) of achieved conductance value (junior’s behavior) attained by the 

device after pulse signal or during the supervision voltage. During low supervision voltages (2-100 

mV), maximum (peak) count is appearing at low conductance value suggesting that the junior tends 

to be lazy while under strict supervision (300 mV), the count is maximum for high conductance value 

representing full attentiveness. However, during moderate supervision (200 mV), there are two 

peaks at both high and low conductance values suggesting intermittent attentiveness. 



Higher-Order Learning in an Artificial Synaptic Network 

47 

are occasions where the supervision is withdrawn either abruptly attending to an emerging 

requirement or gradually so as to leave behind just an impression of supervision. In the first 

case of abrupt removal of supervision, the junior may relax back to the original behavior 

after a little while, but with the gradual ‘unnoticed’ removal of supervision, the junior 

meticulously continues to remain in the attained state, just under the impression of senior’s 

Figure IIIB.3: Withdrawing the supervision to different levels for 1 s, 3 s, 5 s relaxation time. 
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presence. A common example of the latter case is of a child that often thinks that the mother 

is always nearby even when she slowly slips away to attend to some work. To mimic both 

scenarios, the device was first subjected to strict supervision (300 mV) and it was then 

withdrawn momentarily (TR) to lower levels (250 to 2 mV) as shown in Figure IIIB.3. When 

the supervision was withdrawn for 1 s TR, the conductance (behavior) was unperturbed even 

during and after the lowest supervision strength of 2 mV. Similar behavior was observed for 

2 s TR. But when TR was prolonged to 3 s or beyond, the conductance showed minor 

instability at each withdrawal and finally dropped to initial state even under moderate 

supervision strength (i.e. in case of TR of 5 s, the conductance drop was at 180 mV). As shown 

in the histogram in Figure IIIB.4, these refer to cases when the supervision was withdrawn 

suddenly by a step change in the voltage value. A gradual change of supervision is emulated 

by gradually withdrawing the voltage at a defined rate. We choose highest TR (5 s) for this 

case. When the supervision was withdrawn gradually at a rate of 60 mV/s, the device 

conductance dropped to the initial state on reaching the lowest supervision strength of 2 mV 

(see inset, Figure IIIB.5). Remarkably, the supervision withdrawal was ‘unnoticed’ when 

withdrawal was performed at a slow rate of 10 mV/s as shown in Figure IIIB.5. This rate-

dependent retention of conductance is mainly attributed to the device architecture.  In the 

Ag-ASN device, filaments are formed between the metal islands in response to the applied 

electric field. This system is expected to be associated with parasitic capacitance. During the 

step-change/higher withdrawal rate in the electric field, the polarity reversal of the electric 
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Figure IIIB.4: Histogram representing the stability of the conduction state for different 

withdrawing voltages.  
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field due to the capacitance effect may act as a reset voltage and thus disrupt the filament. 

Whereas at a very low withdrawal rate (10 mV/s), smoother decay is expected as the 

filaments remain undisturbed. 

While the above examples pertain to unmotivated states, an interest-based activity does not 

warrant supervision at any level! Thus, interest-based learning or memory is an important 

process in biological systems. The retention of such memory depends on the interest 

expressed during the learning process. A deep interest should lead to a stronger memory 

thereby leading to its long retention that can be recollected over a period of time while a 

poor interest with short retention would make the memory decay immediately. To emulate 

this behavior in the device, we define two reading voltages; the reading voltage applied in 

the background during and after the pulse sequence to represent the strength of the interest 

expressed and the one after a 10 s gap to represent the recollection ability. The former was 

varied in the range, 300 – 500 mV, to represent varying interest strengths, while the second 

mild reading voltage of 100 mV represented the recollection process (Figure IIIB.6a). Figure 

Figure IIIB.5: Impression of supervision. Stable conduction state for slow rate (10 mV/s) of 

withdrawal (inset: 60 mV/s withdrawal rate). Pulse sequence is omitted for clarity. 
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IIIB.6b shows the response of the device for 300 mV which stands for a lower degree of 

interest. It is evident that the device which switched to a high conducting state during the 

pulse sequence (indicating the memory formation), dropped itself to the non-conducting 

state after a 10 s gap when recollection using 100 mV was attempted. When the interest 

strength was set to 400 mV (moderate interest), the device continued to recollect the 

memory up to ~ 160 s as shown in Figure IIIB.6c. Finally, with high interest strength (500 

mV), the memory recollection was excellent and it was up to ~ 2800 s (Figure IIIB.6d). Thus, 

Figure IIIB.6: Emulation of interest-based learning/memory. a) Bottom panel represents the 

applied pulse sequence. Different reading voltages indicate the interest levels. b) 0.3 V 

represents the low interest c) 0.4 V represents the moderate interest d) 0.5 V represents the 

high interest. After the pulse signal, a time gap of 10 s is given and the memory retention is 

measured with a mild reading voltage of 0.1 V. 
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interest modulation is achieved by varying the reading voltage in the pulse sequence. Here, 

the voltage pulse facilitates the filament formation while the reading voltage stabilizes it. A 

higher reading voltage leads to stabler filaments and thereby, longer retention.  

One of the complex learning processes observed in the brain is associative learning. Pavlov’s 

dog [11] is a famous example of associative learning and the same experiment is commonly 

performed to emulate this classical conditioning in electronic synapse. On feeding, the dog 

responds by salivating while an unconnected event such as the ring of a bell does not produce 

any response. A training process is then initiated by feeding the dog while ringing the bell. 

The dog salivates on noticing the food but begins to associate the bell ring with food. In a 

Figure IIIB.7: Pavlov’s dog experiment. Food (20 pulses of 2 V with 50 ms width as well as 

interval) and bell (20 pulses of 0.5 V with 50 ms width as well as interval) signals were fed to 

the device and response was noted using 100 mV reading voltage. Device respond to the food 

signal but not to the bell signal. During training, food and bell (10 sets) signals were fed 

simultaneously. Now the device associates bell with food and starts responding for the bell 

signal alone and has a retention up to 30 mins where the extinction occurs. Now rehearsal is 

performed with lower number of training sets (5 sets) and the behavior is recovered. Current 

compliance is set to 100 µA.  
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following instance of bell ringing without providing food, the dog begins to salivate purely 

because of the association created during training. To emulate this behavior in the synaptic 

device, 20 x 2 V pulses was assigned to food and 20 x 0.5 V to the bell as shown in Figure 

IIIB.7. From the figure, we see that the food signal put the device into a high conducting state 

(salivation) while the bell signal did not induce any response since the assigned voltage is 

below the switching threshold. A training sequence towards associative learning was then 

imparted by applying the food and bell pulse sequences in immediate succession (training) 

for 10 sets. The device which switched to high conducting state (salivating) responding to 

the first set continued to remain salivating even after the 10th set, which is rather expected.  

However, when the bell pulse sequence alone was applied, amazingly, the device responded 

Figure IIIB.8: Dissociation of the classical conditioning. Here, after the extinction, the device did not 

respond to the bell signal. The food signal was then applied without the bell signal and the device 

responded. Because of the previous association, the device could respond to the immediate bell 

signal but not to the latter signals as this behavior decayed. However, the device continued to 

respond to the food signal without the bell signal. As there was no association between the food and 

bell signals, interestingly, the device did not respond to the following bell signal (illustrating 

complete dissociation).  
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implying its associative learning ability, which in the present case, relates to bell with the 

food. This association was strong enough to retain up to ~ 30 mins after which an extinction 

was observed with the device no longer responding to the bell. Here, since the bell signal 

alone was applied to observe the retention of association, the absence of reward system 

leads to dissociation of the bell signal from the food signal, which is commonly observed in 

psychological behavior. The dissociation behavior is clearly shown in Figure IIIB.8. Here one 

may note that after extinction when the food (reward) signal was applied followed by the 

bell signal, device responded showing the optimistic thinking nature in expecting the reward. 

Also, repeating the same signal sequence did not result in salivation which is rather expected 

due to the previous disappointment. To recover the association, the device was subjected to 

a retraining process and interestingly, a lower number of food-bell training sets (5) was 

found enough this time. This is consistent with the general fact that relearning after 

forgetting is easier than virgin learning. In the device, the presence of residual filament traces 
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Figure IIIB.9: Only food pulse is applied for 10 cycles without bell pulse. The device showed 

response for the food. Now a bell pulse is applied to check whether the device will respond due to 

previous large number of food cycle. But it can be seen that the device did not respond to the bell 

pulse. This clearly shows that food must be accompanied with bell pulse to create association. 
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leading to preferential path [12] may facilitate easier relearning. This way, the residual 

filament traces represent the residual calcium ions present in the post-synapses in a bio-

neural system. The device readily responded to the bell signal showing a recovery. Many 

other signalling conditions were tried out to ensure the true associative learning ability of 

the device. It is crucial to confirm that application of large food signal alone does not create 

the anticipated associative response. In order to investigate this, 10 set of food signal alone 

was applied to the device followed by bell signal as shown in Figure IIIB.9. It is clear from 

the figure that the food signal alone is not able to generate the anticipated association 

typically obtained with the food-bell sequence. In addition, a large time-gap between the 

food and the bell signals during the training is also not expected to build the association since 

it acts as two isolated events. Figure IIIB.10 shows that when the food and bell signals were 

separated by 60 s, no association was created.  

While the association response is at the verge of extinction, a higher intensity of neutral 

stimulus may cause the anticipated association response, often encountered in real scenario. 

Referring to the Pavlov’s dog example, when the bell signal is about to go extinct, applying a 

louder bell is expected to invoke the response for that moment. To investigate this, 0.7 V 

pulse amplitude is selected as louder bell which by itself was not able produce any response. 

Figure IIIB.11 shows the typical association between food and bell for 10 set of training 

sequence. Typical dissociation was seen for successive bell signals and when it was about to  

Figure IIIB.10: Large gap between food and bell signals will not be able to create the association. 

Here the food and bell signals were applied with a large gap of 60 sec. Even after 10 sets of such pulse 

sequence, the device shows no response to the bell signal displaying no association. 
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Figure IIIB.11: Response for louder bell. While extinction of association, a louder bell invokes the 

association. The set current compliance was 100 µA. 

Figure IIIB.12: Second order association. Food (2 V) and bell (0.5 V) signals are associated in a 

typical manner and then the association of bell signal with the sound of the cabinet door (0.2 V) was 

established successfully.  
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extinct, louder bell signal was applied. Interestingly, the device responded to the louder bell 

as well as normal bell. However, due to the lack of reward system, extinction was seen for 

the following louder bell which is rather expected.  

The human brain generally seen to exhibit higher cognitive ability. One of them is the higher 

order associative learning. For example, a person’s name, his/her physical appearance and 

voice are generally highly associated; referring to one leads to invoking other traits. While 

the above measurement was pertaining to first order associative learning, the device can also 

be subjected to second order associative learning activity. This time three signals were 

chosen to represent different input stimuli. Extending the previous measurement, in Figure 

IIIB.12, 2 V and 0.5 V represent food and bell, while 0.2 V was chosen to represent the sound 

associated with the opening of the cabinet door where the bell is kept, as a real-world 

example. A reading voltage of 10 mV was chosen in order to avoid its influence on the latter 

signal. Food and bell were associated in usual manner as discussed previously. Post 

successful association, the bell signal was associated to cabinet door sound signal using a 

training sequence. Excitingly, the device responded to cabinet door signal showing a 

concrete second order association. In order to validate the true second order association, 10 

set of bell (0.5 V) pulse alone was applied followed by inspection with the cabinet door (0.2 
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Figure IIIB.13: In order to authenticate the true association, large bell pulse was applied after 

successful first order association. When probed with cabinet door signal, no response was observed 

due to the absence of training.  

 



Higher-Order Learning in an Artificial Synaptic Network 

57 

V) signal. Figure IIIB.13 shows that the device did not show second order association only 

for bell signal thus ensuring the true association.  

The stability of the filaments is governed by the pulse configuration and reading voltage 

there by leading to the different synaptic activities as discussed. In short term dynamics, 

stability of the weak filaments is influenced by the reading voltage. As the electric field 

becomes stronger, the filaments tend to be more stable as discussed in the supervision 

behavior. Also, sudden withdrawal of this electric field perturbs the stability while a slow 

rate withdrawal has negligible effect. In addition, higher reading voltages above 300 mV 

during the pulse sequence helps to form thick filaments which will be stable for long time 

and retains even in the absence of the reading voltage thus lead to interest-based learning. 

Since the ASN has diverse nanogaps, during food pulse filaments are formed between  

Figure IIIB.14: Schematic showing the hypothesized mechanism of associative learning in 

device.  

Figure IIIB.15: Digital photograph of the interactive prototype kit and the device. 
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Table IIIB.1: Synaptic performance comparison of multi-terminal devices from the 

literature. Advanced behavioral patterns can be emulated either using hardware-based 

configuration or using software based neural networks. Here, only hardware based 

behavioral studies are considered for comparison.  

Material Supporting 
circuit 

Signal STP LTP P/D Supervision Impression 
of 
supervision 

Interest/ 
mood 
based 
learning 

Associative 
learning 

Ref 

First 
order 

Second 
order 

ITO/Nb:SrTiO3/ITO - O ✔ ✔ - - - ✔ - - 9 

ITO/Al2O3/PI/Ag - E - - - - - - ✔ - 4 

Pt/FeOx/SiO2/Pt ✔ E - - - - - - ✔ - 7 

Ni/NiOx/Ni/Au ✔ E - ✔ - - - - ✔ - 6 

Pt/Ge0.3Se0.7/SiO2/ Cu ✔ E - - - - - - ✔ - 13 

Au NPs/ pentacene ✔ E - - - - - - ✔ - 14 

Pt/Ag/SiOx:Ag/Ag/ Pt 
+ Pt/Ta2O5/TaOx/ Pt 

✔ E - - - - -   ✔ - 15 

ITO/ Chitosan /ITO - E - - ✔ - - - ✔ - 16 

ITO/PEDOT:PSS/ 
CuSCN/ 
CsPbBr3PNs/Au 

- O + E ✔ ✔ ✔ - - - - - 17 

Mo/CdS/ ZTO/Mo - O ✔ ✔ - - - - ✔ - 18 

Au/PMMA/MAPbI3/Si 
NM/SiO2/ Si 

- O ✔ ✔ - - - ✔ - - 19 

ITO/PCBM/ 
MAPbI3:SiNCs/ Spiro-
OMeTAD/Au 

- O ✔ - - - - - - - 20 

poly-Si/SiO2/Si3N4/ 
SiO2/Si 

- E ✔ ✔ ✔ - - - - - 21 

Au/La1.875Sr0.125NiO4/ 
Au 

- O ✔ ✔ - - - - - - 22 

Au/IGZO/alkylated 
GO/ion gel/ Au 

- O + E ✔ ✔ ✔ - - - - - 23 

Au/WS2/ PZT/Au - O + E ✔ ✔ ✔ - - - - - 24 

Pt/TiN/ 
Pr0.7Ca0.3MnO3/Pt 

✔ E - - ✔ - - - ✔ - 25 

Au/Ag-ASN/Au - E ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ This 
work 

O = Optical, E = Electrical, P = Potentiation, D = Depression 
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reasonably smaller nanogaps which has a set current compliance (100 µA) handling capacity 

(red color bridge in case i, Figure IIIB.14). Whereas conical filaments try to bridge relatively 

large nanogaps but will get ruptured due to low ampacity owing to their thin dimension 

(cyan color bridge in case ii, Figure IIIB.14). But during training, the presence of bell pulse 

stabilizes the thinner filaments (case iii) and thus, post association, the device will respond 

to the bell pulse alone (case iv). Using the device, a prototype Pavlov’s dog interactive kit has 

been fabricated (Figure IIIB.15) and its performance is demonstrated in the movie. In the 

prototype, the three switches correspond to the food, bell and training signals. The food switch 

imparts 20 pulses of a 2 V signal (indicated by green LED), the bell switch imparts 20 pulses of a 0.5 

V signal (indicated by red LED) and the training switch imparts one set of both, food and bell signals. 

The conductance state of the device is indicated by the blue LEDs. In the present context, it indicates 

the dog’s position; either at its home (a glowing blue LED in the bottom right of the prototype box) 

or running towards food and salivating (transition in blue LEDs towards green LED). When the food 

switch is pressed, the dog response is indicated by transition in blue LEDs which is not seen for the 

bell switch. Two sets of training signals are provided and then the response for bell is inspected. Since 

the training was insufficient, the dog showed no response of salivation. An additional 5 sets of 

training are imparted, and then the dog responds to the bell switch, indicating the association 

depicted by the transition in the blue LEDs. Repeated inspection with the bell switch without the food 

switch showed an extinction as expected. 

IIIB.5 Conclusions  

By exploiting the bio neural network like structure and massive artificial synaptic junctions 

in ASN higher cognitive actions were emulated. By varying the reading voltage (10 to 300 

mV) to the two-terminal device, supervision behavior was imitated. With carefully designed 

pulse configuration, impression of supervision was also mimicked by gradually (10 mV/s) 

withdrawing supervision voltage. Contrary to the unmotivated learning, interest-based 

learning was accomplished using higher reading voltages (300 to 500 mV). First and second 

order associative learning was emulated by configuring three voltage signals. Interestingly, 

all of these synaptic actions were emulated in a single material system without the aid of any 

CMOS circuits and multi-terminal electrodes. A prototype kit developed to emulate Pavlov’s 

dog behavior clearly demonstrated the potential of the device towards neuromorphic 

artificial intelligence. 



 Chapter IIIB 
 

60 

References 

[1] D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H. S. P. Wong, Nanoelectronic Programmable 

Synapses Based on Phase Change Materials for Brain-Inspired Computing, Nano Lett. 12, 

2179 (2012). 

[2] Y. Park and J. S. Lee, Artificial Synapses with Short- and Long-Term Memory for Spiking 

Neural Networks Based on Renewable Materials, ACS Nano 11, 8962 (2017). 

[3] W. Xu, H. Cho, Y. H. Kim, Y. T. Kim, C. Wolf, C. G. Park, and T. W. Lee, Organometal Halide 

Perovskite Artificial Synapses, Adv. Mater. 28, 5916 (2016). 

[4] C. Wu, T. W. Kim, T. Guo, F. Li, D. U. Lee, and J. J. Yang, Mimicking Classical Conditioning 

Based on a Single Flexible Memristor, Adv. Mater. 29, 1602890 (2017). 

[5] R. A. John, F. Liu, N. A. Chien, M. R. Kulkarni, C. Zhu, Q. Fu, A. Basu, Z. Liu, and N. 

Mathews, Synergistic Gating of Electro-Iono-Photoactive 2D Chalcogenide Neuristors: 

Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity, Adv. Mater. 30, 

1800220 (2018). 

[6] S. G. Hu, Y. Liu, Z. Liu, T. P. Chen, Q. Yu, L. J. Deng, Y. Yin, and S. Hosaka, Synaptic Long-

Term Potentiation Realized in Pavlov’s Dog Model Based on a NiOx-Based Memristor, J. 

Appl. Phys. 116, 214502 (2014). 

[7] X. Wan, D. Liang, F. Gao, X. Lian, and Y. Tong, Hardware Implementation of Classical 

Conditioning with Iron-Oxide-Based Memristors, Appl. Phys. Express 11, 114601 

(2018). 

[8] Y. Van De Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. 

Marinella, A. Alec Talin, and A. Salleo, A Non-Volatile Organic Electrochemical Device as 

a Low-Voltage Artificial Synapse for Neuromorphic Computing, Nat. Mater. 16, 414 

(2017). 

[9] S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen, G. Gong, W. Xue, X. Yi, J. Shang, and R. W. Li, An 

Oxide Schottky Junction Artificial Optoelectronic Synapse, ACS Nano 13, 2634 (2019). 

[10] Z. Zhang, T. Li, Y. Wu, Y. Jia, C. Tan, X. Xu, G. Wang, J. Lv, W. Zhang, Y. He, J. Pei, C. Ma, G. 



Higher-Order Learning in an Artificial Synaptic Network 

61 

Li, H. Xu, L. Shi, H. Peng, and H. Li, Truly Concomitant and Independently Expressed 

Short- and Long-Term Plasticity in a Bi2O2Se-Based Three-Terminal Memristor, Adv. 

Mater. 31, 1805769 (2019). 

[11] I. P. Pavlov, Conditioned Reflexes: An Investigation of the Physiological Activity of the 

Cerebral Cortex, Ann. Neurosci. 17, 136 (2010). 

[12] S. La Barbera, D. Vuillaume, and F. Alibart, Filamentary Switching: Synaptic Plasticity 

through Device Volatility, ACS Nano 9, 941 (2015). 

[13] M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and H. Kohlstedt, An 

Electronic Version of Pavlov’s Dog, Adv. Funct. Mater. 22, 2744 (2012). 

[14] O. Bichler, W. Zhao, F. Alibart, S. Pleutin, S. Lenfant, D. Vuillaume, and C. Gamrat, 

Pavlov’s Dog Associative Learning Demonstrated on Synaptic-like Organic Transistors, 

Neural Computation 25, 549 (2013). 

[15] Z. Wang, M. Rao, J. W. Han, J. Zhang, P. Lin, Y. Li, C. Li, W. Song, S. Asapu, R. Midya, Y. 

Zhuo, H. Jiang, J. H. Yoon, N. K. Upadhyay, S. Joshi, M. Hu, J. P. Strachan, M. Barnell, Q. 

Wu, H. Wu, Q. Qiu, R. S. Williams, Q. Xia, and J. J. Yang, Capacitive Neural Network with 

Neuro-Transistors, Nat. Commun. 9, 8409 (2018). 

[16] F. Yu, L. Q. Zhu, H. Xiao, W. T. Gao, and Y. B. Guo, Restickable Oxide Neuromorphic 

Transistors with Spike-Timing-Dependent Plasticity and Pavlovian Associative Learning 

Activities, Adv. Funct. Mater. 28, 1804025 (2018). 

[17] F. Ma, Y. Zhu, Z. Xu, Y. Liu, X. Zheng, S. Ju, Q. Li, Z. Ni, H. Hu, Y. Chai, C. Wu, T. W. Kim, 

and F. Li, Optoelectronic Perovskite Synapses for Neuromorphic Computing, Adv. Funct. 

Mater. 30, 1908901 (2020). 

[18] S. W. Cho, S. M. Kwon, M. Lee, J. W. Jo, J. S. Heo, Y. H. Kim, H. K. Cho, and S. K. Park, Multi-

Spectral Gate-Triggered Heterogeneous Photonic Neuro-Transistors for Power-Efficient 

Brain-Inspired Neuromorphic Computing, Nano Energy 66, 104097 (2019). 

[19] L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu, Y. Zhang, X. Pi, and D. Yang, Optically 

Stimulated Synaptic Devices Based on the Hybrid Structure of Silicon Nanomembrane 



 Chapter IIIB 
 

62 

and Perovskite, Nano Lett. 20, 3378−3387 (2020). 

[20] W. Huang, P. Hang, Y. Wang, K. Wang, S. Han, Z. Chen, W. Peng, Y. Zhu, M. Xu, Y. Zhang, 

Y. Fang, X. Yu, D. Yang, and X. Pi, Zero-Power Optoelectronic Synaptic Devices, Nano 

Energy 73, 104790 (2020). 

[21] J. Hur, B. C. Jang, J. Park, D. Il Moon, H. Bae, J. Y. Park, G. H. Kim, S. B. Jeon, M. Seo, S. Kim, 

S. Y. Choi, and Y. K. Choi, A Recoverable Synapse Device Using a Three-Dimensional 

Silicon Transistor, Adv. Funct. Mater. 28, 1804844 (2018). 

[22] L. Zhao, Z. Fan, S. Cheng, L. Hong, Y. Li, G. Tian, D. Chen, Z. Hou, M. Qin, M. Zeng, X. Lu, 

G. Zhou, X. Gao, and J. M. Liu, An Artificial Optoelectronic Synapse Based on a 

Photoelectric Memcapacitor, Adv. Electron. Mater. 6, 1900858 (2020). 

[23] J. Sun, S. Oh, Y. Choi, S. Seo, M. J. Oh, M. Lee, W. B. Lee, P. J. Yoo, J. H. Cho, and J. H. Park, 

Optoelectronic Synapse Based on IGZO-Alkylated Graphene Oxide Hybrid Structure, Adv. 

Funct. Mater. 28, 1804397 (2018). 

[24] Z. D. Luo, X. Xia, M. M. Yang, N. R. Wilson, A. Gruverman, and M. Alexe, Artificial 

Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal 

Dichalcogenide Memristive Transistors, ACS Nano 14, 746 (2020). 

[25] K. Moon, S. Park, J. Jang, D. Lee, J. Woo, E. Cha, S. Lee, J. Park, J. Song, Y. Koo, and H. 

Hwang, Hardware Implementation of Associative Memory Characteristics with 

Analogue-Type Resistive-Switching Device, Nanotechnology 25, 495204 (2014). 

 



Higher-Order Learning in an Artificial Synaptic Network 

63 

 

 

 

 

  

A movie showing the performance of the Pavlov’s dog interactive kit. 
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Chapter IIIC 

Emulating Neural Damage in an Artificial Synaptic Network * 

Summary 

An important phenomenon in biological systems known as synaptic fatigue and recovery, 

occurring due to colossal learning events, has been successfully demonstrated in the ASN 

device.  Also, with the device switched to LTP, the effect of an accident or of a stroke-induced 

physical damage was emulated by mildly scratching the active region using a 

nanomanipulator. The damaged device showed neuroplasticity behavior analogous to a 

biosystem such as damage dependent memory formation and short-term memory loss. 

Interestingly, a common phenomenon called “tip of the tongue experience” is also mimicked 

in the device.  

IIIC.1 Introduction 

The human brain is an excellent computing system known to mankind till date. Owing to its 

massive cognitive abilities performed with great efficiency, researchers have been fascinated 

to try and mimic those behaviors in electronic devices and accomplish an excellence in their 

performance [1–3]. Although the brain performs complex cognition, it is prone to damage by 

fatigue, accidents or stroke-induced physical injury and others [4–6]. Excessive learning 

activity is a major cause of synaptic fatigue, where the synapse gets depleted of 

neurotransmitters due to the high frequency signal spikes, leading to its failure [7–9]. On the 

contrary, a physical injury ruptures the neuronal interconnections or the synaptic network 

which is essential for the memory/learning activity. After experiencing such damage, the 

memory/learning activity fails significantly depending on the extent of damage. In a synaptic 

fatigue, the synapse stops responding to the neuronal action potential, thus showing no 

response.  Also, if the physical damage is minor, new neural connections can form during the 

successive medication therapy, thus evoking learning/memory activity. But in case of severe 

damage, new neural connections may not be feasible even after intense medication leading 

to the short-term memory loss condition [7,10,11]. It is highly challenging to emulate these 

important features in neuromorphic devices.  

*Part of this Chapter is from: Mater.Horiz., 7, 2970 (2020). 
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Limited studies exist in emulating synaptic fatigue and recovery in neuromorphic devices. 

Choi et al., for the first time, showed the possibility of recovering the device after a fatigue in 

a trap assisted silicon FinFET architecture [12]. A series of voltage spikes were intentionally 

imparted to the device. After 105 cycles, due to the capture of electrons in deep trap levels, 

the device showed 30% degradation in the conductance indicating the fatigue. Joule heating 

was then performed to release the trapped electrons thereby recovering the device. 

Although there was degradation in the conductance, complete fatigue and then recovery was 

not observed. Relating to physical damage, Guo et al., reported intrinsic healing ability of a 

PEDOT:PSS/hydrogel based neuromorphic device [13]. After the active channel was cut with 

a blade, the device was healed by water treatment via PSS swelling and dynamic hydrogen 

bonding. After healing the active channel, the device behavior was restored fully. In another 

report, Mathews et al., reported an ion gel based device showing complete healing ability 

owing to intermolecular interactions and reduced glass transition temperature [14]. These 

examples more closely resemble the healing feature of biological tissues rather than 

recovery of synaptic network damage.  

IIIC.2 Scope of the present investigation  

Along with mimicking synaptic behaviors, it is also important to emulate the bio system's 

damage and recovery features in neuromorphic devices to produce promising next-

generation artificial neuromorphic systems. But at the same time, it is highly challenging to 

mimic these features in electronic devices, one of the factors being the device architecture. 

Even in the existing limited examples, these features are not fully emulated. And moreover, 

the device consists of complex architecture and involves an intricate fabrication process. 

Furthermore, in a real scenario, memory/learning activity is impaired after injury, which is 

not explored in the literature. Thus, in the present work, taking advantage of the close 

resemblance of the ASN structure to a bio-neural network, several damage-dependent 

memory features were explored. Large number of voltage signal spikes were intentionally 

applied to the device to emulate synaptic fatigue and are then recovered by voltage sweep. 

Apart from mimicking synaptic fatigue, the recovery of the device also features the 

robustness of the device. In addition, scratches were introduced in the active channels to 

mimic a physical injury and emulate memory impairment.  
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IIIC.3 Experimental details 

Scratch damage was performed on a two-terminal ASN device using a nanomanipulator 

integrated with FESEM. The tip size of the nanomanipulator ranges from 150 nm to a few 

microns. For scratch damage, a tip size of ~1 µm was chosen. Keithley 4200 SCS was used to 

apply the electrical pulse signal.  

IIIC.4 Results and discussion 

Synaptic fatigue is an interesting feature observed in biological systems. Due to colossal 

learning, the biological synapse gets depleted of neurotransmitters causing fatigue. 

Fortunately, biological systems diagnose this condition and initiate retrieval of 

neurotransmitters back into the neurons thereby recovering the synapses [15,16]. A similar 

behavior was emulated in the ASN device. After experiencing a large number of learning 

events (> 104 cycles), the device underwent fatigue and did not respond to the usual 2 V pulse 

sequence (Figure IIIC.1a). This might have occurred due to the depletion of metal in the 

preferential filament path owing to large switching cycles. To recover the switching 

behavior, a high voltage I-V sweep was performed with 100 nA current compliance as 

Figure IIIC.1: Observation of synaptic fatigue and recovery. a) Due to the colossal learning cycle (> 

104), the device did not respond, undergoing fatigue similar to the biological synapse. b) To 

reactivate, the device was subjected to voltage sweep at a higher voltage range where it recovers the 

switching behavior. c) Further, under the application of usual voltage pulses, the device starts 

responding, thus displaying the synaptic recovery. (20 pulses of 2 V, 50 ms width as well as interval, 

100 mV reading voltage, 100 µA current compliance). 
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damage protection as shown in Figure IIIC.1b. The device then switched to a high conducting 

state at ~ 7.5 V. This may be attributed to the electromigration of metal either in previous 

filament path or in a new susceptible path, indicating structural plasticity. The device was 

again subjected to a 2 V pulse sequence in STP configuration and an efficient switching was 

observed showing the synaptic recovery (Figure IIIC.1c).  

Further, to emulate the effect of physical injury in the device, a scratch was introduced in the 

active region using a nanomanipulator. Figure IIIC.2a shows the schematic illustration of the 

damage process and the corresponding SEM images are shown in Figure III.2b,c. Before the 

damage, I-V sweep was performed to confirm the device’s switching nature, as shown in 

Figure IIIC.2: a) Schematic illustration of the scratching process using a nanomanipulator. b) SEM 

image of the nanomanipulator scratching process. c) Magnified view of the scratch damage.  

Figure IIIC.3: I-V characteristics of the device before performing the damage. Inset showing the 

schematic illustration of the filament path.  
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Figure IIIC.3. Later the device was subjected to LTP pulse configuration to form stable 

conducting filaments. Once achieved, the active region was scratched using the 

nanomanipulator until the device conductance dropped to its initial value (Figure IIIC.4), 

which is an indication of the rupture of the active filament path. This is analogous to memory 

failure during physical injury to the brain, whose recovery depends on the extent of damage. 

To recover the device switching behavior, I-V sweep was performed, as shown in Figure 

IIIC.5a. Interestingly, the device switched at a higher threshold voltage during the I-V sweep, 

thus indicating new filament path formation. Once the switching voltage was optimized by 

successive I-V cycles, usual pulse signals were applied to emulate STP and LTP. In Figure 

IIIC.5b, although slight perturbed STP was observed in the beginning, it recovered during 

successive cycles (Figure IIIC.5c). Similarly, LTP was emulated with 500 µA current 

compliance showed minor fluctuation in conductance (Figure IIIC.5d). This perturbance in 

emulating synaptic action shows the effect of damage similar to that observed in its bio 

counterpart. Another scratch was introduced to observe the effect of intense damage, (Figure 

IIIC.6a) while the device was switched back to LTP state. From Figure IIIC.6b, the rupture of 

filament path is indicated by a drop in the conducting state as discussed earlier. Again, I-V 

sweep was performed to check the possibility of a new filament connection, as shown in 

Figure IIIC.7a. Interestingly, the device once again showed switching behavior indicating a 

Figure IIIC.4: Device was switched to LTP state, and a first scratch was introduced using the 

nanomanipulator. Inset shows the schematic representation of filament rupture. SEM image shows 

the scratch by nanomanipulator. (20 pulses of 2 V, 50 ms width as well as interval, 100 mV reading 

voltage, 500 µA current compliance). 
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new structural connection. Emulation of STP in Figure IIIC.7b showed that during the first 

few cycles, highly perturbed conductance was observed, which got improved in the 

successive cycles. Whereas in emulating LTP using typical pulse configuration, the device 

could not retain the conductance state for longer (above 60 s) time (Figure IIIC.8a-c). Even 

increasing the current compliance to a higher value (5 mA) did not result in the LTP showing 

its permanent damage (Figure IIIC.8d). This is very similar to the condition of short-term 

memory loss in the brain after intense damage.  

Another interesting phenomenon observed in day to day activity is the temporary memory 

loss and its recollection commonly known as the ‘tip of the tongue experience’ [17,18]. Most 

of the time, information that slipped from memory can be reminisced by the continuous 

Figure IIIC.5: a) I-V characteristics of the device after 1st damage. Inset showing the schematic 

illustration of new filament path formation. b) STP behavior in the first cycle. c) Improved STP 

behavior in the 2nd cycle. d) Minor fluctuations in LTP behavior after damage. (20 pulses of 2 V, 50 

ms width as well as interval, 100 mV reading voltage). 
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effort of recollection often intercepted by a relaxing sleep. Here a similar behavior is 

observed in the ASN device. First, the device was switched in STP condition, as shown in 

Figure IIIC.9a. After a few seconds (~10 s), the conductance dropped to the original value 

resembling memory loss. Now the reading voltage was continually applied as an effort of 

Figure IIIC.6: a) SEM image showing the 2nd scratch damage generated using the nanomanipulator. 

b) Device was switched to LTP state and the 2nd scratch was introduced using the nanomanipulator. 

Bottom inset shows the schematic illustration of a filament rupture. (20 pulses of 2 V, 50 ms width 

as well as interval, 100 mV reading voltage, 500 µA current compliance). 

 

Figure IIIC.7: a) I-V characteristics of the device after 2nd scratch damage. Inset showing the 

schematic illustration of the possible new filament path formation. b) STP behavior of the device 

after 2nd damage. (20 pulses of 2 V, 50 ms width as well as interval, 100 mV reading voltage, 100 µA 

current compliance). 
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recollection. Amazingly, after a definite time interval (~90 s), the device switched itself to a 

high conductance state resembling the memory recall. Reproducibility is shown in Figure 

III.9b. The possible mechanism is illustrated in Figure IIIC.10. During the pulse sequence 

application, the conductive filament is formed due to the electromigration (Figure IIIC.10a) 

which later relaxes back due to the short-term dynamics (Figure IIIC.10b). During this 

relaxation process, if the gap between the filament and the island is sufficiently narrow 

(~few nm), then the Coulombic attraction can lead to the ‘jump to contact’ phenomenon 

thereby reconnecting the filament (Figure IIIC.10c) [19,20]. The probability of occurrence of 

this behavior in the ASN device was found to be around 10%.  

 

Figure IIIC.8: a) Conductance retention shows that the device fails to emulate LTP behavior even for 

several cycles (b, c). d) Even after increasing the current compliance to 5 mA did not improve the 

retention thus indicating the permanent LTP damage. (20 pulses of 2 V, 50 ms width as well as 

interval, 100 mV reading voltage). 
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IIIC.5 Conclusions 

Exotic damage-dependent memory recovery features were emulated in the ASN device. The 

device experienced fatigue after >104 switching cycles analogous to the synaptic fatigue 

observed in the brain. Recovery of the synapse was achieved by performing I-V sweep for 

facilitating electromigration. Introducing a physical damage to the system induced a 

perturbed synaptic activity thus emulating memory impairment and short-term memory 

loss phenomena as observed in the human brain. A commonly seen feature known as tip of 

the tongue experience is also observed in the device.   

 

Figure IIIC.9: Tip of the tongue experience. a) Device conductance behavior for usual STP pulse 

configuration is shown. Typical STP behavior is observed by the conductance drop in 10 s. Reading 

voltage is continuously applied as a recollection effort and after ~90 s, the conductance jump was 

observed. b) Behavior observed for different cycles. (20 pulses of 2 V, 50 ms width as well as interval, 

100 mV reading voltage, 100 µA current compliance). 

 

Figure IIIC.10: Schematic illustration of possible mechanism. a) Filament formation during the 

application of pulse sequence. b)  Filament rupture due to short-term dynamics. c) Coulombic 

attraction may lead to ‘jump to contact’ phenomena.  
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Chapter IV 

Fabrication of Metal-Organic based Flexible  

Neuromorphic Device 

Summary 

A simple solution-based method for fabricating neuromorphic devices has been 

demonstrated in this chapter. A metal-organic based Palladium hexadecanethiolate (Pd 

thiolate) precursor was used in device fabrication by optimizing the thermolysis conditions. 

It was found that device thermalization at various temperatures plays a crucial role in tuning 

the device’s synaptic performance. While the device thermalized at higher temperature 

showed resistive switching behavior accompanied by potentiation, SNDP and SRDP; a 

relatively lower thermolysis temperature did not show the anticipated response. 

Interestingly, the device thermalized at a relatively moderate temperature emulated 

essential synaptic functions such as STP and LTP. A flexible synaptic device was fabricated 

using Kapton tape, which demonstrated an excellent stability over 1000 bending cycles and 

a bending radius up to 1 mm.  

IV.1 Introduction 

Concerning brain-inspired computing, new circuit elements such as neuromorphic devices, 

in particular, show highly promising results in mimicking synaptic activities such as STP, 

LTP, spike-parameter dependent plasticity (SPDP), and other complex cognitions [1,2]. A 

literature survey shows enormous efforts put into the development of inorganic- and 

organic-based neuromorphic devices emulating synaptic functions. Inorganic materials such 

as h-BN, ZnO/TiOx, Ag:Ta2O5, SiOxNy:Ag, ZnO/WS2, and Ag2S have shown their ability to 

mimic essential synaptic functions such as STP, LTP to further SPDP [3–12]. However, the 

fabrication process is intricate, expensive, and often depends on the careful tuning of the 

material stoichiometry. On the other hand, organic materials are advantageous as they are 

easily and economically processable and are highly scalable. Materials such as P(VDF-

TrFE)/pentacene, FT4-DPP/PEO etc., have shown commendable features with regard to 

synaptic activities [13–17]. Several neurons undergo bending and stretching during body 
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movements. Thus, along with mimicking synaptic functions, achieving flexibility in 

neuromorphic devices is imperative for wearable and implantable applications.  

Flexible electronics is an essential requirement for accomplishing artificial nervous system 

and future wearable applications [18]. In most neuromorphic materials, due to the 

fabrication process parameters, mainly high-temperature, extending them to flexible 

substrates is challenging. Further, the intrinsic rigid nature of the materials is also a 

hindrance. Several inorganic and organic systems have been explored towards development 

of flexible neuromorphic devices [19–24]. Ding et al. showed a flexible amorphous IGZO-

based synaptic transistor bendable up to 10 mm bending radius [25]. Zhang et al. showed a 

room temperature fabricated ZnO/ITO-based flexible device and demonstrated switching 

behavior in a 10 mm bending radius [26]. In another example, Lu et al. fabricated a poly(vinyl 

alcohol)-graphene oxide based hybrid neuromorphic device and demonstrated switching 

behavior at a 10 mm bending radius for 1000 cycles [27]. Li et al. studied polyimide/ethyl 

viologen diperchlorate based device and found the performance degradation below 10 mm 

bending radius [28]. While Wan et al. prepared a chitosan-based synaptic transistor with an 

estimated bending ability of 5 mm [29].  

IV.2 Scope of the present investigation  

Metallic filament based neuromorphic devices can show stable conductance dynamics 

mimicking human memory. But due to the rigid nature of inorganic systems, these devices 

are prone to bending damages. While organic systems have Young's modulus lower than 

inorganic systems, it makes them highly suitable for flexible electronics [30].  However, 

devices based on organic materials often rely on trap-assisted synaptic activity, which show 

decay behavior in the conductance state, typically representing the forgetting curve of the 

human brain [31–33]. Also, the ambient stability of organic systems is yet another issue for 

practical applications. A metal-organic system can demonstrate properties from both 

inorganic and organic systems, such as stable memory dynamics and, simple processing and 

flexible nature respectively, thus achieving improved device performance. An insulating 

organic matrix with nucleated metal nanoparticles during thermolysis is explored to 

fabricate neuromorphic devices in the present invenstigation. The thermolysis temperature 
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was optimized to accomplish a better synaptic performance. Moreover, this solution-based 

process is endowed with simplicity and scalability. Importantly, demonstrating device 

properties in the bent state is imperative for future flexible electronics, which is often 

ignored in the literature. Excitingly, the present device fabrication is extended to a flexible 

substrate to demonstrate an excellent bending performance. 

IV.3 Experimental details  

Solution preparation: 0.2 M Palladium hexadecanethiolate, Pd(SC16H35)2 was prepared as 

follows. 45 mg Pd(OAc)2 was dissolved in 1 mL toluene and stirred for 3 hours. Later the 

stirred solution was added to hexadecanethiol in toluene and stirred for another 3 hours. 

Post reaction, an orange-yellow colored solution was obtained. 

Device fabrication: Glass substrate was sonicated in acetone, IPA, and DI water for 10 min 

respectively. Au (50 nm thick) gap electrode (gap ~20 µm) was then fabricated using a 

shadow masking technique and e-beam evaporation. For device fabrication, 100 µL of Pd 

thiolate solution was drop coated and heated at 200 °C, 230 °C, and 250 °C using a hotplate 

for different durations. For fabricating a flexible neuromorphic device, Au gap electrodes 

were fabricated on a Kapton tape (thickness ~50 µm) followed by drop coating Pd thiolate 

precursor and then annealing at 230 °C. 

IV.4 Results and discussion 

Figure IV.1a illustrates the schematic of the device fabrication process. Au gap electrodes 

were fabricated on a clean glass substrate via shadow masking followed by e-beam 

evaporation. The substrate was then drop coated with Pd-thiol solution and subjected to 

thermolysis at different temperatures. While annealing, partial decomposition of thiol was 

facilitated, resulting in Pd nanoparticle nucleation whose size can be tuned by the annealing 

temperature [34]. Thus, after thermolysis, a nanocomposite film of Pd nanoparticles in the 

carbon matrix was obtained. Thermolysis was performed in the temperature range of 200 

°C to 250 °C. While thermalizing, the device resistance was monitored at constant intervals 

to make sure to not create excess Pd metal nanoparticles leading to a completely conducting 

system. While fabricating at 200 °C, the device remained non-conducting even after 

annealing for 3 hours, suggesting a much lesser possibility of Pd nanoparticle nucleation. A 
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typical forming process was then performed on this device by sweeping the voltage from 0-

100 V with a set current compliance of 100 nA for damage protection. From Figure IV.1b, it 

can be noted that the device did not show resistance switching behavior even for sweeping 

till 100 V, suggesting that the thermolysis was unsuccessful in producing sufficient 

nanoparticle/percolation density required for resistance switching. Another device was 

fabricated by increasing the thermolysis temperature to 230 °C while monitoring the 

resistance at intervals. At around 50 mins of annealing, the device showed resistance of ~10 

MΩ indicating sufficient nucleation of Pd nanoparticles. The formation of these nanoparticles 

is further confirmed by the forming process, and Figure IV.1c shows that switching was 

observed at ~24 V. Also, it can be noted from the forming I-V curve that while sweeping, the 

device current drops before reaching 0 V, which is an indication of the short-term switching 

behavior.  

Figure IV.1: Device fabrication. a) Schematic illustration of device fabrication. b) Electrical forming 

process showing no switching behavior observed in device thermalized at 200 °C. c) Resistance 

switching observed in the device thermalized at 230 °C. Inset shows the schematic representation of 

preferential filament path formed during the process.  
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To study the potential of the formed device to emulate synaptic actions, it was subjected to 

further electrical characterisation. Figure IV.2a shows the I-V switching behavior of the 

device. The forming process facilitates the preferential path for filament formation and thus 

helps optimize the switching voltage. Observing the I-V sweeps more carefully, a drop in the 

current value before reaching back to 0 V suggests evidence of short-term conductance 

retention. To investigate this short-term dynamic, pulsed signals were applied, which are 

more analogs to the bio-neural signals. Figure IV.2b shows a single pulse of 10 V amplitude, 

300 ms width with a 5 µA current compliance, and a background reading voltage of 10 mV 

applied to the device. The figure shows that the device switches to a high conducting state 

while applying the pulse and remained in that state even after the pulse was stopped for ~30 

s and then dropped back to the initial state, thus emulating STP. In a general psychological 

Figure IV.2: Synaptic behavior emulated in device thermalized at 230 °C. a) I-V sweep shows the 

switching behavior. b) STP is emulated with a single pulse of 10 V, 300 ms width, and 5 µA current 

compliance, while c) LTP is emulated with 20 pulses showing rehearsal-based learning. d) Increasing 

the compliance to 100 µA shows LTP behavior for a single pulse signal.  
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observation, reviving the learning event creates long-lasting and robust memory. This 

rehearsal event can be electrically stimulated by increasing the number of pulses. Figure 

IV.2c shows that while increasing the pulse number to 20, as a rehearsal event, the 

conductance state was retained for more than 500 s, thus emulating LTP. Along with 

rehearsal, often current compliance is also used to realize STP to LTP transition. Here 

increasing the compliance to 100 µA resulted in LTP emulation for a single pulse/learning 

event shown in Figure IV.2d.  

With current technology advancing towards flexible electronics, it is highly demanding to 

fabricate compatible flexible neuromorphic devices. Given the organic matrix and metal 

nanoparticles filled in them, the Pd thiolate device is more suitable to exhibit flexible nature. 

The precursor was drop coated on a Kapton tape with prefabricated Au gap electrodes to 

investigate the device flexibility aspect. Thermolysis at 230 °C was performed as discussed 

previously, followed by the electrical forming process. A digital photograph of the flexible 

device is shown in the inset of Figure IV.3a. I-V characteristics of the flexible device in flat 

and 2 mm (bending radius) bent state is shown in the figure. Remarkably, the switching 

behavior was observed even in the bent state. Further, to study the device bending stability, 

over 200 bending cycles were performed, and I-V switching was observed. From Figure 

IV.3b, device stability while bending was commendable. One of the essential aspects of a 

flexible device is to maintain an active conductance state while bending. To investigate this, 

Figure IV.3: Flexible synaptic device. a) I-V characteristics of the device in flat and 2 mm bent state. 

Inset shows a digital photograph of the flexible device. b) I-V characteristics over 200 cycles show a 

good bending capability of the device. 
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the device was switched to a high conductance state via LTP pulse configuration. Later, to 

inspect the conductance state stability, the device was bent from a flat state to a 1 mm 

bending radius. Excitingly, there was no significant change in the conductance value during 

bending, as shown in Figure IV.4a. The device was also returned to the flat position in steps, 

and a stable conductance was seen throughout. Besides, the device was subjected to over 

1000 bending cycles with a 2 mm bending radius, and no significant conductance change was 

observed, suggesting superior bending stability of the flexible device as shown in Figure 

IV.4b. The excellent bending stability achieved may be attributed to the strain relaxation to 

the organic matrix while bending. More importantly, synaptic actions such as STP and LTP  

Figure IV.4: Bending test.  a) Conductance variation while bending and releasing b) Conductance 

retention over 1000 bending cycles shows robust bending stability of the device.  

 

Figure IV.5: Synaptic behavior in a bent position. Rehearsal based STP (1 pulse) to LTP (20 pulses) 

transition shown in the device in 2 mm bent position. Pulse configuration: 5 V amplitude with 300 

ms width and interval and set current compliance of 5 µA.  
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were also emulated while the device was bent to 2 mm bending radius, as shown in Figure 

IV.5.  

To study the influence of higher thermolysis temperature, another fresh substrate was 

coated with Pd thiolate and subjected to thermolysis at 250 °C. While monitoring, a 

resistance of ~10 MΩ  was achieved within 5 min. Later the device was subjected to a typical 

forming process, as shown in Figure IV.6a. It can be noted that the device switched to a high 

conducting state and retained the switched state, until it reached back to 0 V, suggesting 

long-term memory retention. To investigate the device ability in mimicking synaptic actions, 

this device was subjected to further electrical measurements. Figure IV.6b shows the bipolar 

I-V sweep characteristics, which displays typical resistive switching behavior that is stable 

Figure IV.7: a) Spike number dependent plasticity (SNDP). b) Stable multileve conductance states.   

 

Figure IV.6: Studying the switching behavior of the device thermalized at 250 °C. a) Typical forming 

process. b) Bipolar I-V dual sweep cycles showing the excellent reproducibility interms of 

conductance  switching.  
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over 100 cycles. In biosystems, reviving the information repeatedly will increase the synaptic 

weight/memory strength known as potentiation. Figure IV.7a shows that with increasing the 

pulse numbers, device conductance increases resembling synaptic potentiation. 

Interestingly, these conductance states were stable over 3000 s as shown in Figure IV.7b, 

displaying the device’s multilevel conductance switching ability. Further, SFDP and SDDP 

were also demonstrated, which is shown in Figure IV.8. Thermolyzing at 250 °C resulted in 

a more conducting system as observed in low on/off ratio and emulation of only long-term 

memory in the device. 

Retention of the memory state is another essential requirement in any data storage 

application. From Figure IV.9a, it is found that the conductance was highly stable over 20 

Figure IV.8: a) Spike-frequency dependent plasticity (SFDP) and b) Spike-duration dependent 

plasticity (SDDP).  

 

Figure IV.9: a) Conductance retention of the device over 20 days with no significant variation. b) 

Temperature-dependent resistance measurement of the device in low resistance state (LRS) 

showing the metallic nature of the conducting filament.   
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days in ambient. Temperature-dependent resistance measurement in the high conducting 

state revealed the conducting filament’s metallic nature, as shown in Figure IV.9b. The 

calculated TCR was found to be ~4×10-4 K-1, lower than that of the bulk system which is 

expected for the disordered connection.  

IV.5 Conclusions 

A simple solution-based fabrication process was developed for fabricating neuromorphic 

devices. Synaptic behaviors were observed in a device fabricated at 230 °C, and essential 

synaptic functions such as STP and LTP are demonstrated. In contrast, heating at 250 °C 

resulted in a resistive switching device, showing different SPDP. Moreover, the device 

showed multilevel conducting states, which were stable for over 3000 s. The device 

fabrication was extended to a flexible substrate using a Kapton tape, successfully. The 

device's excellent bending ability was demonstrated by bending over 1000 cycles and up to 

1 mm bending radius.  
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Chapter VA 

Emulating the Ebbinghaus Forgetting Curve in an 

Optoelectronic Neuromorphic Device * 

Summary 

An optoelectronic neuromorphic device has been fabricated using a simple solution-based 

technique. Essential synaptic plasticity such as STP, LTP, and SPDP was emulated using 

electrical and optical stimuli. The decaying nature of the device current resembles the 

famous Ebbinghaus forgetting curve, which describes how information is lost in the human 

brain over time. The characteristic relaxation constant was tuned with input stimulus 

parameters similar to biosystems. 

VA.1 Introduction 

The human brain is gifted with an efficient memory management system. Not all the 

memories stay in the brain eternally, thus classified into sensory memory (SM), short-term 

memory (STM), and long-term memory (LTM) [1]. Information received from the external 

world is processed and stored in the brain, tend to decay with time [2]. The information loss 

significantly depends on several factors such as the rehearsal, frequency of learning, and 

other parameters. This information loss was formulated by Hermann Ebbinghaus in 

1885 [3]. Quantitatively the information loss is expressed by the following equation [4]. 

P = ∆EPSC/∆EPSC(0) = exp⁡(−t/τ)𝛽       

Where P is the probability/possibility of recall, t is time,  is the characteristic relaxation 

time, and  is a stretch index ranging from 0 to 1. 

Brain-inspired neuromorphic devices are the future of hardware-based artificial 

intelligence. These devices aim to mimic the synaptic functions of the human brain.  Different 

types of materials, starting from metal oxide systems to polymers, have been explored in the 

literature to fabricate such devices [5–9]. Of them, vacancy- and trap-based neuromorphic 

devices tend to exhibit the decaying nature of their current/conductance [10–13]. Although 

*Part of this Chpter is from: ACS Appl. Electron. Mater., 1, 577 (2019). 
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they are best suited to emulate the Ebbinghaus forgetting curve, they are less discussed in 

this context. Earlier Aono et al. demonstrated the forgetting curve in an inorganic system 

based on Ag2S atomic switch using STM tip [1]. Later, Hosaka et al. discussed in more detail 

the Ebbinghaus forgetting curve in a NiO-based device [14]. Similar discussion was then 

followed in other materials [15–17].  

In devices, modulating synaptic plasticity is crucial to emulate several psychological 

behavioral patterns [18]. To accomplish this emulation, multi-electrode geometry is 

generally explored [19]. In contrast, an optoelectronic device that responds to both light and 

electrical signals, comes  with advantages such as reducing the multi-electrode fabrication 

step [20].  

VA.2 Scope of the present investigation 

About 80% of the information is perceived through vision and is then processed by the 

human brain. Thus, optoelectronic neuromorphic devices have attracted a wide range of 

applications, including artificial visual systems. Most of the fabrication process involves 

complex techniques, and achieving both electrical and optical activation in devices is 

challenging. In the present investigation, a simple solution-based technique is explored for 

fabricating an optoelectronic neuromorphic device. Along with essential synaptic plasticity, 

the famous Ebbinghaus forgetting curve is also emulated. Often in literature, the trap 

assisted systems are suggested to mimic associative learning. In the present investigation, 

the issues associated with such measurements are discussed.   

VA.3 Experimental details  

Device Fabrication: Si (n type, (100), 3-9 Ω-cm) substrate was sonicated in acetone and IPA 

for 10 min, followed by RCA cleaning and dried under nitrogen. This substrate was immersed 

in a plating solution of 5 mM HAuCl4 in HF for the desired time. Once the plating was done, 

the substrate was rinsed in DI water and dried under nitrogen. For electrical measurement, 

copper wire contacts were taken from the top and bottom sides using Ag paste. 

Electrical Measurement: Keithley 2450 was used for electrical pulse measurement.  

 



Emulating the Ebbinghaus Forgetting Curve in an Optoelectronic Neuromorphic Device 

91 

VA.4 Results and discussion 

Schematic of the fabrication process is shown in Figure VA.1a. It is a simple process of 

electroless plating of Au on Si [21]. A clean n-type Si substrate was immersed in a petri dish 

containing a stoichiometric ratio of HAuCl4 in HF. Thus, Au film got deposited on the Si surface 

by galvanic displacement.  The FESEM image in Figure VA.1b shows granular nature of the 

deposited Au film, and the interface is clearly evident in the cross-sectional image (see inset). 

The deposition process led to the formation of a nanostructured surface and the roughness 

as measured using AFM was found to be ~12 nm (Figure VA.1c). The core level spectra in the 

Au 4f region (Figure VA.1d), contains besides Au0 (83.7 eV), a feature related to gold silicide 

as well (84.1 eV) [21–23]. The formation of Au silicide at the interface during electroless 

deposition is well known in literature [22,24,25]. This study exploits the silicide interface as 

a p-type semiconducting junction (hereafter termed as Au/p-silicide/n-Si).   

Since the device was fabricated using a solution-based process, one can expect trap states to 

be present at the interface. Evidence of these trap states can be observed by performing a 

simple dual I-V sweep. Figure VA.2a shows the dual sweep I-V characteristics of the 

fabricated Au-Si device in the dark. Interestingly, the device showed typical diode I-V 

Figure VA.1: a) Schematic of the fabrication process. b) FESEM image of the grown Au film (inset: 

cross sectional image). c) AFM image of Au plated Si surface showing the granular morphology. d) 

Core level spectra in Au 4f region. 
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characteristics. Also, the presence of hysteresis is an indication of interfacial traps in the 

system. Using suitable electrical pulse signals, these traps can be explored to emulate 

different synaptic plasticity such as STP, LTP, SPDP, etc. To mimic pre-synaptic signaling 

condition, an electrical pulse signal of 2 V amplitude, 300 ms pulse width is applied to the 

device in the dark with a background reading voltage of 100 mV as shown in Figure VA.2b. 

It can be observed that during the application of the pulse, the device current increased, and 

when the pulse was withdrawn, the current slowly decreased to its original state to 

emulating excitatory post-synaptic current (EPSC) as seen in the biological synapse [26]. The 

EPSC retention was up to 30 s before returning to its original value after the pulse, thus 

depicting STP. From the psychological observation, it is known that increased rehearsal will 

increase memory retention and hence can lead to LTP, where the memory can be retained 

for several minutes to days. To emulate this, 5 pulses of 2 V amplitude with 300 ms width as 

well as  interval was applied to the device, and the current was measured with time (Figure 

Figure VA.2: Synaptic activity. a) I-V characteristics of the device. Inset showing the schematic of 

device. b) STP emulated with single electrical pulse signal. c) LTP emulated with 5 electrical pulse 

signals. d) Increased reading voltage demonstrates the mood-dependent synaptic activity. 
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VA.2c). As seen from the figure, an increased number of pulses resulted in increased EPSC 

retention beyond 150 s, thus emulating LTP. Another interesting behavior commonly 

observed is the mood-based learning/memory activity, where under a good mood, memory 

retention is longer. Here to emulate mood in the device, background reading voltage is varied 

while applying the pulse signal. During 100 mV reading voltage, which can be considered as 

neutral mood, the EPSC retention was around 30 s, as seen in Figure VA.2b. When the reading 

voltage was increased to 200 mV to represent good mood (Figure VA.2d), memory retention 

exceeded 90 s, thus emulating mood-based learning.  

The EPSC signal showed a decay behavior that closely resembles the forgetting curve of 

human memory. According to Ebbinghaus, information stored in the brain is lost very 

quickly in the initial stage of learning, and it can be influenced by several factors involved 

during learning activity, as discussed earlier [4]. To study these influence, different pulse 

configurations were applied to the device. Firstly, the pulse amplitude was varied from 1 to 

5 V, and the EPSC was measured as shown in Figure VA.3a. As seen from the figure, the EPSC 

strength increased with increasing signal amplitude, also shown in Figure VA.3b. Fitting the 

Figure VA.3: Electrical pulse. a) Influence of spike amplitude. b) EPSC variation with amplitude. c) 

Influence of spike amplitude on the forgetting curve (decay constant,  is shown). 

 

Figure VA.4: a) Influence of spike width. b) EPSC variation with width. c) Influence of spike width 

on the forgetting curve (decay constant,  is shown). 
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decay current with the Ebbinghaus forgetting equation showed that the increased amplitude 

increased the decay constant, indicating slower decay of the information as shown in Figure 

VA.3c. The characteristics relaxation constant was in seconds which is similar to the value 

observed in biosystems [27]. Besides, spike duration and rehearsal-based effects were also 

studied. In the case of spike duration, a pulse signal of 2 V amplitude was applied with 

varying width in the range of 100-3000 ms, as shown in Figure VA.4a. EPSC modulation and 

decay constant in the forgetting curve are shown in Figure VA.4b and Figure VA.4c, 

respectively. Similarly, the pulse number is varied from 1-100, and corresponding behaviors 

are shown in Figure VA.5.   

Interestingly, the junction was responding to optical signal showing photodetection action. 

Thus, optical signals were also experimented as input stimuli to emulate synaptic functions. 

At first, optical pulse signals with varying pulse duration (1-30 s) was applied to the device 

biased at -2 V (photodiode region). Figure VA.6a,b showed that with increasing pulse width, 

the EPSC magnitude and the retention were increased, thus showing STP and LTP nature. 

Further, the EPSC decay was analyzed with the Ebbinghaus equation as shown in Figure 

VA.6c. The decay constant extracted for the fitting curve displayed that when illumination 

width increased from 5 s to 30 s, the decay constant increased from 3 s to 14 s, showing a 

strong influence of width on forgetting rate. Further, illumination was done for a longer 

duration, such as 5 min, and found that the device achieved permanent plasticity where the 

EPSC stayed above 40% even after 5000 s (Figure VA.6d). Optical pulse numbers varying 

from 1-10 were applied with 5 s width (ON time) and an interval (OFF time) for emulating 

rehearsal-based learning. Analogous to general observation, Figure VA.7 shows that EPSC 

Figure VA.5: a) Influence of spike number. b) EPSC variation with spike number. c) Influence of spike 

number on the forgetting curve (decay constant,  is shown). 
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strength increased with increasing number of pulses and the decay constant increased from 

0.2 s to 4 s. It is interesting to note that the device did not show any synaptic activity for 60 

Figure VA.6: Optical pulse signaling. a) Influence of optical spike width. b) EPSC variation with width. 

c) Influence of spike width on the forgetting curve (decay constant,  is shown). d) LTP is achieved 

by illuminating a single optical pulse of 5 min pulse width.  

 

Figure VA.7: a) Influence of spike number. b) EPSC variation with spike number. c) Influence of spike 

number on the forgetting curve (decay constant,  is shown). 
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s of light illumination when biased with 0 V, as shown in Figure VA.8. Thus, the device can 

still act as a photodetector.  

Multi-input synaptic devices possess the advantage of modulation of the synaptic plasticity 

without modifying the pre-synaptic input signal. To demonstrate this, a 20 pulse electrical 

signal of 2 V amplitude with 300 ms width and interval was applied to the device as a pre-

synaptic signal, and EPSC was measured as shown in Figure VA.9a. Now to study the 

influence of modulatory signal, the light was illuminated along with the new set electrical 

signal. Interestingly, the EPSC strength was increased significantly, and the decay constant 

was found to be increased from 9 to 23 s showing a strong influence of the modulatory signal 
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Figure VA.8: No synaptic action observed during the zero bias condition. 

 

Figure VA.9: a) modulating the synaptic plasticity using both electrical and optical signals. b) Effect 

of modulating signal on the forgetting curve (decay constant,  is shown). 
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(Figure VA.9b). Such modulation is useful in emulating higher-order behavior patterns like 

environment-dependent learning or memory activity.  

Classical conditioning is one of the complex learning activities that occurs in the brain, 

commonly known by Pavlov’s dog experiment as previously discussed. It is highly 

challenging to emulate this cognition in neuromorphic devices. Several trap-based systems 

in the literature claim to emulate this classical conditioning with threshold current concept. 

Often these measurements are not carefully studied to validate the true association nature. 

Here, with detailed pulse sequences, issues related to mimicking such associations, in trap-

based devices are discussed. Here, 2 V, 20 pulses is assigned as a food signal, and 0.5 V, 20 

pulses as a bell signal (Figure VA.10a). First, a bell and food pulses are individually applied 

to the device in the dark to study the EPSC modulation. From this observation, a current 

threshold of 215 µA as salivation threshold is set since the bell pulse alone could not 

overcome this value. A training sequence is initiated by applying 5 sets of food and bell pulses 

Figure VA.10:  Classical conditioning. a) 2 V signal is used as a food signal and 0.5 V signal is used as 

a bell signal. While training, food and bell pulses were applied in succession. A magnified view of the 

highlighted region is shown in (b). 
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together to create an association between these signals as typically done for such devices. 

Another strategy to define the training signal is to apply the combined food and bell strength 

as shown in Figure VA.11. In both cases, as expected, the bell pulse response measured post-

training was above the salivation threshold, thus showing the association (Figure VA.10b, 

Figure VA.11b). Over-application of successive bell pulses without the reward system (food), 

the EPSC reduced below the salivation threshold, which is typically observed dissociation 

behavior. Here an important aspect to remember is the decaying nature of the device EPSC 

response. Hence applying a bell pulse on the decay tail leads to the enhanced EPSC 

overcoming the threshold. This is clarified by applying larger food pulses alone without the 

bell signal during training, as shown in Figure VA.12. It can be noted that a similar classical 

conditioning response can be achieved without any conditioning signal. Thus, such a trap 

assisted system may not be the right candidate for emulating complex associative learning 

activity. Besides, a detailed pulse sequence needs to be supported to validate the true 

association nature.  

Figure VA.11:  Classical conditioning. a) 2 V signal is used as a food signal and 0.5 V signal is used as 

a bell signal. While training, combined amplitude (2.5 V) of food and bell pulses were applied. A 

magnified view of the highlighted region is shown in (b). 
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VA.5 Conclusions  

A simple solution-based technique is used to fabricate an optoelectronic neuromorphic 

device. Electroless deposition of Au on Si resulted in Silicide-Si junction exhibiting diode-like 

behavior. The presence of interfacial trap states was exploited to emulate synaptic functions 

using both electrical and optical pulses. Besides, the famous Ebbinghaus forgetting curve is 

Figure VA.12: To verify the association, only food signals were applied during training (a). A 

magnified view of the highlighted region is shown in (b). It is observed that a similar classical 

conditioning response was achieved without a bell pulse during training, which suggests inaccurate 

associative learning. c) Decay nature of the EPSC during the pulsing.  
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also mimicked. Often overlooked associative learning in trap assisted system is also 

discussed. Modulation of synaptic plasticity using optical pulse is demonstrated.  
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Chapter VB 

A High-Performance Photodetector * 

Summary 

A simple solution-based method for fabricating high-performance photodetector has been 

developed. The Au nanostructure formation improves the light harvesting and enhances the 

device response. This economical method facilitates the fabrication of large-area detectors 

within a minute. The fabricated device operates in self-powered mode with high on/off ratio, 

fast response, high detectivity and is able to detect very low light intensities in the range of 

~ pW in a broad spectral range. A protective coating provides excellent stability to the device 

under harsh conditions without compromising its performance. Image sensing capability 

was also accomplished by the pixelated fabrication. The demonstrated prototypes have 

revealed the potential of the detector for commercial applications. 

VB.1 Introduction 

In this era of new materials, an important property that is often explored and exploited is 

photoconductivity. A whole range of photodetectors using carbon nanotubes [1], 

semiconductor quantum dots [2], nanorods [3], nanowires [4], nanoribbons [5], spherical 

nanoshells [6], perovskites [7], and thin films [8] as active elements have been developed 

with commendable properties. Recently, 2D materials have shown potential as next-

generation photoconductors. While graphene based detectors working at 40 GHz have 

exhibited responsivity in the range of a few mA/W [9–11], transition metal dichalcogenides 

show responsivity ranging from 10-5 to 103 A/W but slow respond in few ms [12–14] 

Topological insulators such as Sb2Te3 show detectivity of 1011 Jones with even slower times,  

~ few minutes [15]. However, due to their atomically thin dimension, inevitably there will be 

insufficient light absorption. Individually, all these materials own advantages and 

constraints. In the context of high performance concerning all figure of merits, the device 

interface plays a key role. A position-dependent photoresponse measurement demonstrated 

a relatively stronger photodetection at the metal-channel interface and a high responsivity 

at p-n junction interface [16–18]. A considerable success has been achieved in the case of 

hybrids of 2D materials [19–24]. Responsivity as high as 109 A/W was shown in graphene-

*Paper based on this study: ACS Appl. Electron. Mater., 1, 577 (2019). 
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MoS2 hybrid [20]. Also, heterojunction architectures of semiconducting materials have 

demonstrated an enhanced performance relative to pristine systems [25-28]. However, 

improving all the figure of merits in a single device is still challenging.  

With emphasis on interfaces, even the conventional semiconductor structures are being 

revisited. Si and its interfaces with new materials such as graphene [29,30], TMDs [31,32] 

and topological insulators [33] are shown to exhibit excellent properties. The plasmonic 

contribution from metal nanoparticles onto the interface properties has also been 

emphasized [34–38]. Enhanced responsivity is seen in Au nanoparticle decorated Si [36] and 

two-fold increased photocurrent in MoS2-Au plasmonic photodetector [34] has been 

observed. Although these techniques lead to good performing detectors, they are highly 

process involved and limited to small areas.  

VB.2 Scope of the present investigation 

High-performing large-area photodetectors are essential for optoelectronic applications. 

However, the existing photodetectors are limited to small areas, and at larger areas, the 

response slows down because of increased device capacitance. Capturing photon flux over a 

large area is particularly important for low-light conditions. This aspect becomes crucial in 

security applications and motion detection, in general. Besides, the trade-off between device 

active area and response speed limits the detector size. In the earlier section (Chapter VA), 

evidence of photodetection was demonstrated in the Au-Si device. In this work, Au-Si 

interface was revisited while making use of the silicide interface. The Au-Si interface usually 

brought about by the galvanic deposition of the metal, is relatively well studied for SERS 

[39,40], patterned deposition [41], and surface enhanced infrared spectroelectrochemistry 

[42]. Although the process is commonly known, the photodiode action of the interface is not 

much exploited. Here, the fabrication of Au-Si photodetector using a simple electroless 

plating method is demonstrated. Being a solution-based technique, the method enabled large 

area fabrication without compromising the detector response. The metal nanostructures 

enhance the performance of the fabricated detector through trapping the incoming photon 

flux. This self-powered detector displays high figure of merits and long-term environmental 

stability. The utility of the detector is demonstrated in the form of a power cum lux meter 

and also in a model security application.  
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VB.3 Experimental details 

Device Fabrication: Si (n type, (100), 3-9 Ω-cm) substrate was sonicated in acetone and IPA 

for 10 min, followed by RCA cleaning and dried under nitrogen. This substrate was immersed 

in a plating solution of 5 mM HAuCl4 in HF for different durations. Once the plating was done 

the substrate was rinsed in DI water and dried under nitrogen. For electrical measurement, 

copper wire contacts were taken from the top and bottom sides using Ag paste.  

Image sensor was fabricated using maskless lithography technique. A clean Si substrate was 

spin coated with AZ photoresist (1.4 µm thick) and patterned using IMP Xpress 100. Au 

electrodes were deposited using physical vapor deposition technique. The same patterning 

technique was repeated to create the photoresist window of 100 µm for electroless 

deposition. After Au nanostructure growth, the substrate was cleaned with acetone to 

remove the photoresist mask followed by DI water and dried under nitrogen. 

VB.4 Results and discussion 

The device fabrication process is discussed in the previous section (Chapter VA). In brief, a 

clean n-type Si substrate was immersed in a petri dish containing a stoichiometric ratio of 

Figure VB.1: FESEM images of the grown Au film for different duration showing the granular 

connected film.  
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HAuCl4 in HF for different durations. Thus, Au film got deposited on the Si surface by galvanic 

displacement. Figure VB.1 shows the SEM images of the film deposited for different 

durations. For a given concentration of the plating solution, the Au film thickness depends on 

the plating time (Figure VB.2a). The thickness is seen to increase linearly for the chosen 

concentration (5 mM) up to 80 s, beyond which it nearly saturates to ~ 73 nm. As the film is 

granular in nature, mean diameter of the granules and film fill factor were analyzed.  The SEM 

images (Figure VB.1) were loaded to the ImageJ software with 8-bit filter. The analyzed mean 

diameter of the granules from SEM images is plotted against the thickness in Figure VB.2b, 

along with the fill factor (see Figure VB.2b). Both variations are linear. The slope of the 

diameter versus thickness curve (3.32) stands for the aspect ratio of the disk-like granules. 

At the same time, that associated with the fill factor variation (0.49), represents the sluggish 

nature of the film growth and limited connectivity among the granules. The latter plays an 

important role in device performance.  

The reflectance of Au/p-silicide/n-Si was examined over a wide wavelength range, 300-1500 

nm (Figure VB.3a) with different thicknesses of the Au film. The control Si substrate, although 

less reflective (< 1%) in the visible region, reflects well beyond 1100 nm owing to its 

bandgap, which explains the limited spectral range accessible by the conventional Si 

detectors. At higher Au silicide thicknesses, the reflectance is dropped to less than 4% in IR 

region, which may be understood as due to enhanced internal scattering among the 

nanoparticle aggregates in the Au film. The observed drop in the reflectance at higher 

wavelengths is attributed to nanostructured surface. Agglomerates with the size range 100-

Figure VB.2: a) Variation of Au film thickness with plating time. b) Change in average agglomerate 

size and fill factor with film thickness. 
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400 nm (approximately 8-12 nanoparticles) can red shift the absorption beyond 1100 nm 

via trapping and coupling the incident light into the underlying semiconducting layer. Also, 

the light harvesting beyond 1100 nm is influenced by the nanoparticle and underlying 

semiconductor interface [35–38,43–45]. These collective effects strongly reduce the 

reflectance of Si from 46% to less than 4% in IR region (Figure VB.3b), which is important in 

the present device.  

A device was fabricated by taking Ag paste contacts from the bottom n-Si and the top gold 

film. Figure VB.4a shows the I-V characteristics of the device in dark and illumination 

conditions. The device displayed a diode behavior with an ideality factor close to one (1.2). 

The dark current was under µA/cm2 during the reverse bias. Under the illumination of 1 Sun, 

the reverse current increased by over three orders. It is noteworthy that the device can also 

operate at zero bias with a high on/off ratio of 4 × 104.  These kind of self-powered devices 

are required for practical applications since they are energy efficient. 

To understand the optimum film thickness for best performance, photoresponse at different 

film thicknesses was studied as depicted in Figure VB.4b for both dark and illuminated 

conditions. As seen, there was no observable change in the dark current with the film 

thickness, while the photocurrent was significantly enhanced. At lower film thicknesses (< 

40 nm), although there existed a junction, the performance was low due to a lower fill factor 

Figure VB.3: a) Reflectance spectra of the bare Si and Au of different thicknesses grown on Si. b) 

Comparison of reflectance in visible (600 nm) and IR (1300 nm) regions (read out at the vertical 

dotted lines in (a) for different film thicknesses. Less number of curves are shown in (a) to avoid 

crowding.  
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(Figure VB.2b) and the Au film coverage was not enough to conduct the generated 

photocurrent. For ~ 45-65 nm, the performance was maximum due to the optimum 

conducting network grown over the junction. This condition provides efficient light 

harvesting and charge conduction resulting in better device performance. Above ~ 65 nm, 

the fill factor was greater than 80% when the shadowing effect dominated, thus diminishing 

the light reaching the junction and hence the photocurrent. Thus, ~ 55 nm was considered 

optimal thickness of Au thin film, the same was adopted for further device fabrication. 

Figure VB.4c compares the spectral responses of the devices, one with ~ 55 nm Au film 

thickness and another, bare Si. A weak response of less than 5 mA/W was displayed by bare 

Si. Interestingly, the responsivity of Si was enhanced by plating the substrate. The device 

exhibits wide spectral sensitivity from 300-1200 nm and the peak responsivity, 310 mA/W, 

Figure VB.4: a) I-V characteristics of the device in dark and light conditions. b) Variation of the dark 

and photocurrent for different film thicknesses. c) Broad spectral response of the device compared 

with bare Si device. d) Uniform photovoltage response of the large area (500 mm2) device for local 

illumination. 
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was observed at 920 nm. This wide spectral range from UV to NIR is highly important for 

broadband detection.  

In addition, uniformity is another important factor deciding the performance of the device. 

Ideally, the response should be the same over the entire area of the device when illuminated 

locally. Figure VB.4d shows the photovoltage response of the device at different regions 

under local illumination. An optical microscope with a 100x objective was used to illuminate 

the device locally. Only minimal variation (< 5%) was seen over the entire area (500 mm2) of 

the device, owing to the well–defined interface. Also, a 4" wafer photodetector was 

fabricated, amounting to an area of ~ 8000 mm2 (excluding the edge isolation and contact 

area). The photoresponse along with the device photograph is shown in Figure VB.5.  

In order to study the response time of the detector, an optical chopper was used to generate 

light pulses (see inset, Figure VB.6c) and the photovoltage was monitored using an 

oscilloscope. The response was noted at zero bias voltage while varying the chopper 

frequency (Figure VB.6a). It is observed that the output was stable at different frequencies 

indicating the capability of the device for high frequency applications. Figure VB.6b shows 

that only 27% drop in the relative balance was observed (which corresponds to the 3dB 

cutoff value) at high frequency of 3000 Hz which is in agreement with the response of 

Figure VB.5: I-V behavior of the large area photodetector fabricated on a 4-inch wafer (inset: 

photograph of the fabricated 4-inch detector). 
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commercial detector measured under similar conditions (Figure VB.7). The response time is  

defined as the time taken to rise from 10% to 90% of the maximum value. Figure VB.6c shows 

Figure VB.6: a) Response of the device for different chopping frequencies. b) Relative balance of the 

detector with chopping frequency. c) Rise/fall time of the detector (inset: chopper measurement). d) 

Capacitance variation with different device areas (inset: device architecture). e) Response of the 

device for different illumination intensities. f) Detectivity variation with the illumination intensity 

(red laser, 634 nm). 

 



A High-Performance Photodetector 

111 

the magnified temporal response at 3000 Hz, from which the rise and fall times were 

measured to be 40 and 100 µs.  This value is comparable with most two terminal Si based as 

well as other organic photodetectors reported in the literature (Table VB.1). Interestingly 

the response time remained almost similar with increasing device area (Figure VB.8). This is 

attributed to the device architecture considered in the measurement (inset, Figure VB.6d).  

The device consists of a sandwiched silicide layer between bottom n-Si (~ 20 kΩ) and top 

nanostructured gold film (~ 5 kΩ). Point contacts were taken from the top and bottom side 

using Ag paste where the strong field lines are confined to the local region and fades away 

Figure VB.7: Relative balance of commercial and fabricated detectors with chopping frequency. Area 

of the detectors was to be 1 cm2 and 1 mm2 for fabricated and commercial respectively. 

Figure VB.8: Response of the detector with an area a) 10 mm2 b) 300 mm2. Despite increasing  the 

device area to a few hundred mm2, the response degradation is minimal. 
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from the contact. This results in an invariant capacitance value for different device areas 

keeping the speed to the µs range (Figure VB.8).  

Fabrication of low light response photodetector has become a great challenge and is one of 

the most active research topics in optoelectronics field. For applications including security 

systems, night vision cameras, motion sensors etc., the detector should detect very low light 

intensity. Thus, detectivity is yet another important factor for a photodetector. It expresses 

how low light a device can detect. Here the device was illuminated with different intensities 

of light (red, 634 nm) and the response is plotted in Figure VB.6e. As seen, the device is able 

to respond in the nW range. The detectivity of the device is shown in Figure VB.6f and it is as 

high as 5 × 1013 Jones at 634 nm and expected to be higher at 920 nm due to peak 

responsivity, ~ 1015 Jones (see Figure VB.9). This indicates the potential use of the device in 

the aforementioned applications.  

To exploit the image sensing capability of the device, a 25-pixel image sensor was fabricated 

using the conventional photolithography process (Figure VB.10a). Au electrodes were 

fabricated for each pixel followed by an open window using photoresist masking for 

electroless deposition. Figure VB.10a displays the image sensor array after electroless 

plating in the form of a 5 × 5 pixel array with a pixel dimension of 100 µm. To study each 

pixel, the light was illuminated locally to individual pixel and the corresponding  

Figure VB.9: Detectivity measurement under red LED used to illuminate the entire active area of the 

device. a) Photocurrent response for different illumination intensity shows that fabricated detector 

is able to detect very low light intensities (pW/cm2). b) Detectivity variation with illuminated 

intensity. 
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photoresponse was illustrated into a mapping profile in Figure VB.10b. It is noteworthy that 

there is no dead pixel. All pixels were active and responded well when illuminated 

individually and the photoresponse has no cross-talk between the pixels. Later, using a 

maskless lithography system, the alphabet ʻJʼ was illuminated on this image sensor and its 

response was noted. The highlighted pixels in Figure VB.10b were illuminated and the 

measured photovoltage response was normalized to ON (red) and OFF (blue) states. Figure 

VB.10c depicts the normalized photovoltage response of the pixels where ‘J’ is replicated.    

Environmental stability is one of the major requirements in the photodetector technology 

for practical applications. Here a negative epoxy UV curable resin (SU8) was used as a 

protective coating for the device. This resin is a well-known transparent photoresist used in 

Figure VB.10: a) Optical microscope images of Au electrodes for each pixel, photoresist mask with 

open windows for pixel fabrication by electroless plating, Au nanostructures grown after electroless 

plating followed by removal of the photoresist, individual pixel showing active element and contact 

electrode (scale bar 100 µm). b) Normalized photovoltage response of the pixels when illuminated 

individually. Selected pixels were then exposed to light; the illuminated pixels are marked with 

dashed rectangles that form the letter ‘J’. c) Response for alphabet ‘J’ illumination (response is 

normalized to ON (red) and OFF (blue). 
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photolithography, and once hard baked, it is highly stable in harsh conditions [46]. Standard 

coating process was adopted in this case and it was hard baked at 150 °C for 15 minutes. The 

reflectance study was carried out on SU8 coated Au/p-silicide/n-Si heterojunction, indicating 

only 2% rise in reflectance as shown in Figure VB.11a. Further, the I-V characterization 

(Figure VB.11b) in dark and light conditions before and after the protection coating reveals 

that there is no significant degradation in light sensitivity, suggesting that the detectivity is 

intact. In fact, the diode behavior improved with the coating due to lesser dark current and 

no ambient interaction. To understand the stability of the coating, the device was kept in the 

environmental test chamber for five days and the response was measured. Under this harsh 

condition of 85% RH at 85 °C, the device exhibited excellent stability (Figure VB.11c). Using 

this, a prototype security system, a USB compatible LUX meter and power meter were 

realized with the help of an Arduino board. In the security system prototype, the fabricated 

detector was mounted beside a commercial detector inside a toy house for comparison and 

connected to the same external circuit to trigger warning lights and security buzzer (Figure 

VB.12b). The door was opened to allow only weak scattered light as a sign of menacing 

activity. With such low level of lighting the fabricated detector could be activated turning on 

the buzzer and the warning lights while the commercial detector required intense light to get 

activated. In addition, prototype LUX and power meters were fabricated by mounting the 

device inside a 3D printed box along with the Arduino chip. With proper calibration, the 

devices could display the readings on a connected mobile phone as shown in Figure VB.12a. 

The range of measurement varies from 0-200000 for LUX meter and 0.5-30 mW/cm2 for the 

Figure VB.11: a) Comparison of reflectance before and after the SU8 protective coating. b) Response 

of the device with and without the SU8 protection coating. c) Stability of the device examined under 

85% RH at 85 °C for five days. 
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power meter. The range and resolutions are limited by the reading capacity of the Arduino 

chip.  

VB.5 Conclusions 

Here a simple solution method for fabricating a low-cost, large-area photodetector based on 

light harvesting Au nanostructures grown on a Si substrate leading to a Au silicide (p)−(n) Si 

active interface is reported. The process is quick, taking only minutes to fabricate a detector 

of any arbitrary area. This detector exhibits a fast response (∼40 μs) and can detect low light 

intensities (few pW) with high detectivity (∼1015 Jones). The device covers a broad spectral 

range from 300 to 1200 nm. In addition, it shows excellent uniformity throughout the entire 

500 mm2 area with <5% variation in response. Notably, the detector operates in self-

powered mode with a high on/off ratio (104), thus making it energy efficient. With a 

commonly available protective coating, excellent environmental stability is shown for the 

device under harsh conditions for several days. The photodetector utility is demonstrated as 

a prototype imaging system, lux and power meter, and also as a tool for security applications. 

Figure VB.12: a) Prototype LUX and power meter (active area = 14 × 14 mm2) with values displayed 

using a mobile phone. b) Detector mounted in a toy house for undesired motion detection. Schematic 

is on the left. 'Door close' photograph is taken with the 'roof' removed. 
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Table 1. Comparison of the device performance with some of the large area detectors from 

literature.  

   a)Calculated 
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Chapter VC 

A Primitive Artificial Visual System 

Summary 

A primitive artificial visual system has been demonstrated using an Au-Si photodetector and 

an Ag-ASN neuromorphic device. The photodetector reported in Chapter VB was used for 

converting optical signals into electrical stimuli and is then processed by the neuromorphic 

device. Essential synaptic activities, such as STP and LTP were emulated. More interestingly, 

a primitive visual perception concept was also demonstrated in the system. Excitingly, the 

synaptic functions were emulated with no external bias voltage.  

VC.1 Introduction  

In the human brain, about 80% of the information is received through vision, and half of the 

cerebral cortex is involved in processing that information [1,2]. Thus, an artificial visual 

system plays a crucial role in next-generation hardware-based artificial intelligence. Several 

optoelectronic neuromorphic devices have been explored in the literature towards 

fabricating devices responding to optical signal and emulating synaptic plasticity [3–10]. Li 

et al., proposed an ITO/Nb:SrTiO3 based optoelectronic device for mimicking interest-

modulated human visual memories [11]. Yang et al., reported an optoelectronic synaptic 

device based on the hybrid structure of silicon nanomembrane and perovskite for LTM-

based mimicking of visual learning and memory processes under different mood states [12].  

VC.2 Scope of the present investigation   

In the human visual system, information is perceived by the eye and converted to an 

electrical signal. This information is then processed by the brain, thus creating different 

types of memory. Existing literature is mostly focused on fabricating optoelectronic 

neuromorphic devices where optical signals are used as input stimuli to form the memory in 

the device itself. However with this arrangement,  the photodetection ability of the device 

may be hindered due to a change in its conducting state during memory formation. Shen et 

al., combined In2O3 UV detector and Ni/Al2O3 memory device for mimicking the human visual 

system architecture [13]. However, the utilization of a non-volatile memory device lacks the 
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processing ability seen in the human brain. These issues are addressed in the present 

investigation by mimicking the human visual system, utilizing the Au-Si photodetector 

discussed in Chapter VB, and Ag-ASN neuromorphic device discussed in Chapter III.  

VC.3 Experimental details   

The photodetector array was fabricated by connecting nine individual detectors (1x1 cm) in 

series to produce the required photovoltage. The output of the array was fed to the Ag-ASN 

device via copper wire contacts. Electrical current measurement was performed using 

Keithley 2450.  

VC.4 Results and discussion  

Figure VC.1: a) Schematic illustration of the human visual system. b) Mimicking the visual system 

architecture using the photodetector array and Ag-ASN neuromorphic device.  
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The schematic of the human visual system architecture is shown in Figure VC.1a. Information 

in the form of an optical signal is received by the eye, which converts them into an electrical 

signal and then processed by the brain for further cognition or storage. This architecture is 

mimicked using Au-Si photodetector and Ag-ASN neuromorphic device, as shown in the 

schematic Figure VC.1b. Optical pulse signals were illuminated on to the photodetector gets 

converted into pulsed electrical signals. A mild illumination was also provided to the 

photodetector array for generating a constant photovoltage of ~ 100 mV as a background 

reading voltage. These signals were then received by the Ag-ASN device. Depending on the 

signal parameters, different visual synaptic plasticities was emulated. To emulate the visual 

short- and long-term memory, optical signals of 5 and 15 pulses were applied as shown in 

Figure VC.2. During the application of the 5 optical signals, the photovoltage (~0.92 V) 

generated from the photodetector is shown in Figure VC.2a. This pulsed stimulus switches 

the Ag-ASN device to a high conductance state. The conductance retention was found to be 

around 60 s before dropping to its initial value, thus emulating visual short-term plasticity. 

While applying 15 pulses, the conductance retention was more than 350 s, thus emulating 

LTP as shown in Figure VC.2b. Excitingly, no external bias voltage was applied to mimic these 

features.  

Persistence of vision is a phenomenon where an object perceived by the eye does not cease 

for some time even after the optical signal from the object has stopped [14–16]. This is the 

reason for experiencing the visual perception of motion [17]. To emulate this, 5 optical pulse 

signals of 250 ms width were applied to the photodetector with two different pulse intervals 

Figure VC.2: Emulating STP with 5 pulses a) and LTP with 15 pulses b). Pulse width and the interval 

was ~ 700 ms. 
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as shown in Figure VC.3. In the case of a shorter pulse interval (0.25 s), a continuous 

conductance state was archived in the Ag-ASN device, thus mimicking the visual perception 

(Figure VC.3a). For longer pulse interval (10 s), the switched conductance state dropped to 

its initial value after each pulse as shown in Figure VC.3b, thus mimicking the flickering visual 

perception.  

VC.5 Conclusions   

The human visual system was mimicked using a photodetector array and neuromorphic 

device.  An optical stimulus was converted to an electrical signal by the photodetector and 

then processed by the Ag-ASN device to emulate different visual memories such as STP and 

LTP.  More interestingly, a primitive visual perception of motion, was also demonstrated. 

Excitingly, the synaptic functions were emulated with no external bias voltage.  
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Chapter VI 

Summary and Outlook 

In this thesis, simple processes for fabricating next-generation neuromorphic devices were 

demonstrated. A novel structure resembling the biological neural network was realized 

based on a simple self-forming process. The self-formed Ag-ASN with branched islands 

resembled a biological neural network with neurons, synaptic junctions and 

neurotransmitters. This hierarchical structure facilitated various learning activities such as 

STP, LTP, potentiation, depression and spike-dependent plasticity behaviors (Chapter IIIA). 

With this interesting device architecture and carefully designed voltage pulse configurations, 

several higher-order synaptic activities were emulated, importantly, without the aid of 

external CMOS or of equivalent circuitry. Behaviors close to human psychology such as 

associative learning, supervision, impression of supervision and interest-based learning 

were realized. Excitingly, second-order associative learning was emulated for the first time 

in a neuromorphic device. A prototype kit developed to emulate Pavlov’s dog behavior 

clearly demonstrates the potential of the device towards neuromorphic artificial intelligence 

(Chapter IIIB). In addition, damage induced plasticity such as fatigue and recovery, short-

term memory loss was also demonstrated.  Interestingly, a common phenomenon called “tip 

of the tongue experience” is also mimicked in the device (Chapter IIIC). A flexible 

neuromorphic device was fabricated using a simple solution-based method that uses a 

metal-organic based Palladium hexadecanethiolate precursor. Excellent stability over 1000 

bending cycles and a bending radius up to 1 mm was demonstrated (Chapter IV). An 

optoelectronic neuromorphic device was fabricated using a simple solution-based 

technique. Along with STP, LTP, and SPDP the famous Ebbinghaus forgetting curve, was also 

emulated (Chapter VA). Exploiting the optical response of the device high-performance 

photodetector was developed by optimizing the fabrication process. This device operates in 

self-powered mode with a high on/off ratio, fast response, high detectivity and is able to 

detect very low light intensities in the range of ~ pW in a broad spectral range. Image sensing 

capability was also accomplished by the pixelated fabrication. The demonstrated prototypes 

have revealed the potential of the detector for commercial applications (Chapter VB). A 

primitive artificial visual system was demonstrated using the Au-Si photodetector and an 
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Ag-ASN neuromorphic device. Essential synaptic activities such as STP and LTP were 

emulated. More interestingly, a primitive visual perception concept was also demonstrated 

in the system. Excitingly, the synaptic functions were emulated with no external bias voltage 

(Chapter VC). 

 Having demonstrated on-synapse intelligence in an Ag-ASN device, studies can be extended 

to synapse density dependent learning activity and structural plasticity which are yet to be 

explored in the literature. The neuromorphic device with an excellent flexibility and an active 

synaptic plasticity in the bent state can be further explored to emulate motor neuron 

functions. An artificial visual system which showed visual synaptic plasticity and visual 

perception can be investigated towards emulating image, pattern and color recognition 

abilities. By integrating the various features of the aforementioned devices, a system can be 

developed towards complete neuromorphic artificial intelligence.  
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