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Chapter 1

Introduction

Understanding the propagation of sound waves in three states of matter has

attracted active research interests for more than a century now [7, 8]. With

strengths of inter-atomic/molecular interacting forces varying in many or-

ders of magnitude, energy-transfer in gas, liquid and solid medium subjected

to pressure due to sound waves occurs via two different modes. Highly dis-

cordant atomic movements in gases allow absorption of sound waves at low-

frequencies through large collisional excitations [9], while in solids, restrained

motion of atoms result in vibratory oscillations [10, 11]. Depending on the

viscosity of liquids, their response to sound waves may manifest as collisional

or vibrational [12]. Collective vibrational excitations or quanta of vibrational

energy are termed as phonons [11], viz. acoustic phonons that are linked with

the elasticity, and optical phonons, emerging from harmonious conformity of

atomic arrangements in a solid. Liquids transmit only longitudinal acoustic

waves at low-frequencies in the long-wavelength limit, but absorb transverse

acoustic waves since they lack rigidity [13].

1
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A crystalline solid C in Eucledian space, a structure possessing long-range

atomic positional order is a consequence of spontaneously broken continuous

symmetries of macroscopic disordered state (liquid or gas), and belongs to

a space group containing a discrete set of symmetry elements. The broken

continuous symmetries manifest as branches of acoustic (one longitudinal

and two transverse) phonons which exhibit vanishing energy (or frequency

ω → 0) in the long-wavelength limit (~q → 0). The three acoustic phonon

branches show linear dispersion of frequency with wave-vector (ω ∝ |q|) at

~q → 0, and are the Nambu-Goldstone (NG) bosons [14,15]. Linear dispersion

with a positive slope of transverse acoustic phonons is a characteristic feature

of solids, and a vibrational signature of their elastic rigidity [16].

The symmetry of a crystal C is represented by its space group that con-

tains discrete translational and rotational transformations under which C

is invariant, and belongs to a crystallographic point-group G = Sym(C).

Atomic positions in C are identified by the site-symmetry groups (S′is) or

Wyckoff symbols, which are subsets of G. Group-theoretical principles allow

correlation of each site Si to irreducible representations (irreps) of the group

G. This enables decomposition of any set of atomic displacements (or an

arbitrary elastic vibration) as a superposition of identifiable normal modes

(collective excitations) of a primitive cell of the crystal C [17]. The correla-

tion method is widely used to obtain the precise number of IR, Raman and

hyper-Raman active modes, determining the activity of vibrational modes in

the crystal.

Within harmonic approximation, vibrations or normal modes at each

wave-vector ~q form a set of NxD eigenvectors of the mass-normalized Fourier
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transform of force-constant matrix D
i,j
k,k′ of a crystal with N atoms/call in

D-dimensional space, and form an orthonormal basis [18]. Positive eigenval-

ues of Di,j
k,k′ (equal to the square of vibrational frequency (ω2)) signify local

stability of a crystal. Phonon spectra or dispersion of ω with respect to ~q

along various lines in BZ connecting the high-symmetry points, the latter

being representations of family of atomic planes of the crystal in the recipro-

cal (momentum) space [19]. Vibrational properties of crystals in equilibrium

are experimentally determined from Raman spectroscopy or inelastic neutron

scattering.

Acoustic phonons in the long-wavelength limit (~q → 0) capture the elastic

response (non-zero stress) of a crystal to mechanical strain [20]. At wave-

lengths of the order of inter-atomic distances, periodicity of the crystal entails

deviation from linear dispersion of ω versus |q| of sound wave [11] and re-

sulting in a vanishing slope dω
d|q| at ~q ∈ Brillouin Zone (BZ) boundaries. In a

three-dimensional crystal, the softest acoustic phonons at the BZ boundary

and the optical branch with the maximum frequency represent saddle points

in the ω(q) dispersion. These critical points in the BZ lead to singularities in

the density of vibrational states g(ω) known as van Hove singularities [21].

Optical phonons exist in a crystal with multi-atom basis in its unit cell,

and thus are signatures of atomic arrangements and inter-atomic interac-

tions. In most crystals, optical phonons exhibit frequencies higher than the

regime of linear dispersion of acoustic bands for ~q → 0. Unstable phonons

with imaginary ω signify lattice instabilities that result in structural transi-

tions to low-symmetry phase [22], possibly in response to external perturba-

tions namely strain [23], magnetic [24] or electric field, temperature [25] or
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chemical-doping. Low-frequency phonons result in internal structural rear-

rangements at low energy-cost and make dominant contributions to vibra-

tional entropy, with enhanced plausibility of polymorphism [26] or significant

conformational changes [27].

While frequencies of optical modes at special q-points are pivotal in struc-

tural phase transitions, the nature of their dispersion in momentum space is

yet another interesting feature. Certain crystals host normal (optical) modes

with frequencies that are independent of wave-vector ~q, that is, grad(ω(q))

= 0. Such flat bands of phonons across the entire BZ too exhibit strong

peaks in g(ω) or a van Hove singularity [21]. When they occur at low ω,

they cause interesting emergent phenomena reminiscent to inherent disorder

or anharmonicity [28,29].

Spontaneously broken continuous symmetries of disordered state and

emergent acoustic phonons in the long-wavelength limit associated with elas-

tic rigidity, and their couplings with optical modes lead to multiscale lattice-

dynamics of crystals. Understanding the relevance of these concepts to the

response of complex crystals (many atoms/cell) like metal-organic frame-

works (MOFs), subjected to mechanical strain (ε) and thermal perturbation

forms the core objective of this thesis. Mechanical response of a crystal in-

volves elastic stresses, flexibility, phase transition or amorphization. Thermal

perturbations give rise to varied nature of electronic and phononic excita-

tions, and can result in wide variation in thermodynamic properties of ma-

terials. Fundamental origins of physical phenomena viz. flexibility, crystal-

to-amorphous structural transition and associated non-linear elasticity, and

deviation of T3-dependence of heat capacity (known as the Boson Peak) of
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crystalline solids are still unclear. In this thesis, we present first-principles

theoretical analysis of response of crystals to mechanical stress fields, and

develop phonon-based picture of (a) flexibility, (b) amorphization, (c) Bo-

son peak and (d) structural transitions. We show that optical phonons of

specific symmetry give rise to flexibility of crystals, in contrast to acoustic

phonons that represent NG modes of elastic rigidity. Coupling between opti-

cal and acoustic phonon is shown to be crucial to flexibility, amorphization,

structural phase transitions of crystals induced by mechanical deformation

or kinetic arrest during synthesis.

In Part A of this thesis (Chapters 3 to 6), we unravel the origin of flexibil-

ity, amorphization and Boson peak of crystals by understanding (i) the non-

linear couplings between volumetric and shear strains in the long-wavelength

limit, (ii) coupling between relevant optical modes and acoustic phonons,

(iii) geometric origin of destabilization of a crystal (MOF-5) at infinitesi-

mally strains, (iv) contributions of distinct atomic vibrations at low-ω, both

of acoustic and optical character, to a peak in C(T)/T3 of crystalline ma-

terials at low-T. We have used metal-organic frameworks (MOFs) as model

systems, that are ordered, truly crystalline porous structures with large unit-

cell dimensions.

While Au is a noble metal with FCC crystal structure, incipient stress-

fields in constrained geometries can stabilize its non-FCC phases. In Part B

(Chapters 7 and 8), we understand the temperature-dependent stability of

kinetically arrested non-fcc (bc(o,t)) phases in bipyramidal Au microcrystals

with penta-twinned tips. We study the evolution of elastic strains in bc(o,t))

phases in response to prolonged ion-irradiation and thermal annealing of
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microcrystals, to understand experiments carried out by our collaborators,

Professor G. U. Kulkarni and group, at JNCASR.

In Chapter 2, we present an overview of two quantum-mechanical com-

putational methods employed in theoretical study of materials, (a) first-

principles density functional theory (DFT) and density functional pertur-

bation theory (DFPT), (b) density-functional tight binding approach. The

topics here include Born-Oppenheimer approximation, Hohenberg-Kohn the-

orems, and Kohn-Sham equations. The algorithm to solve the Kohn-Sham

equations to self-consistency and determination of ground state properties

are briefly discussed. Further, two approaches for the calculation of phonons

in crystals viz. frozen phonon method and linear response method are ex-

plained, with a discussion on their applicability and limitations. DFTB is

parametrized directly within DFT and its calculations exhibit better scala-

bility with number of atoms. Hence, it is widely employed for calculations

of atomic and electronic structures, total energies and forces of large sys-

tems. The details of tight-binding scheme, and procedure of parameteriza-

tion, starting from second-order expansion of Kohn-Sham total energy with

respect to charge fluctuations are explained.

In Part A of this thesis (Chapters 3 to 6), we understand the origin of

flexibility, amorphization and Boson Peak of crystals, considering MOFs as

model systems.

MOFs have emerged as technologically relevant and fundamentally in-

teresting class of crystalline materials [30, 31] with ultra-high porosity (up

to 90% free volume) [32], low crystal densities and large internal surface ar-

eas. Their synthesis involves judicious assembly of molecular building units
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bonded to strong ligand groups, to provide requisite directionality in con-

struction of pre-determined topology of the framework [33,34]. The rational

design and functionalization allow high degree of structural and chemical tun-

ability of MOFs with extensive potential applications in gas storage and sep-

aration [35,36], catalysis [37], proton-conducting membranes for fuel cells [38]

and drug delivery [39].

The structural and dynamical stability of these networks in response

to external perturbations depends largely on the dynamics of their inter-

molecular degrees of freedom [40,41] and the strength of non-linear couplings

between them. With a plethora of MOF structures encompassing diverse

topologies reported till date, the nature of their structural transformations

in response to mechanical strain and temperature vary extensively; certain

MOFs exhibit large flexibility or reversible changes in pore-dimension up to

large strains, while others undergo rapid amorphization leading to a partial

or complete pore-collapse.

We now discuss the atomic structures of crystals studied in this thesis:

(a) porous MOFs: MOF-5 and ZIF-8, and (b) non-porous crystals considered

for understanding the concept of structural flexibility: ZrW2O8 and ZnO.

MOF-5

MOF-5 (Zn4O(BDC)3, (BDC)2−=1,4-benzodicarboxylate) has a cubic struc-

ture (space group: Fm3̄m) that consists of Zn4O(CO2)6 units each containing

four ZnO4 tetrahedra with a common O-vertex [33], and remaining O-atoms
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of each tetrahedra bound pairwise to C atoms (Figure 1.1a) to form carboxy-

late groups. These octahedral secondary building units (SBU) are linked to

benzene rings along 〈001〉 direction. The benzene rings lie in {110} planes,

with adjacent rings in mutually perpendicular orientations. This arrange-

ment results in directionally constrained SBU imparting a high degree of

stiffness to the MOF-5 crystal.

ZIF-8

ZIF-8 (Zn-(MeIm)2, Me=CH3-, IM=Imidazole group) has a sodalite struc-

ture (space group: P213) with Zn-N4 tetrahedra corner-sharing with four five-

membered Methyl-substituted Imidazole (Me-IM- or CH3-C3N2H2) linkers.

The resulting three-dimensional network shows six-membered rings along

[111] and four-membered rings along [001] (Figure 1.1b), and enclose a cube-

octahedron pore. The IM linkers are oriented on {112} planes, and aligned

alternately in out-of-plane direction.

ZrW2O8

ZrW2O8 crystallizes in a cubic structure (space group: P213) that is sim-

ilar to NaCl, but lacking the inversion centre. Each face-centred Zr atom

serves as a hinge to two WO4 tetrahedra. W atom and one O-atom of

each of the tetrahedra are aligned along the three-fold [111] axis (Figure

1.1c) [42]. Since the two WO4 tetrahedra are not symmetric with respect to

each other, these form crystallographically distinct entities and can undergo

independent rotations. The presence of singly-coordinated O-atom to W and
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a large inter-tetrahedral distance (∼2.41 Å) invokes displacements of rigid-

tetrahedra along the [111] or orientational disorder about [111]. A significant

difference between the lengths of 4 W-O bonds of WO4 tetrahedra (∼1.83 Å

and ∼1.73 Å) augments the tendency of these entities to undergo structural

distortion in response to perturbations namely temperature, pressure or ho-

mogeneous strains. Liberational modes of tetrahedra have been linked to

bond shortening and negative thermal expansion coefficient of ZrW2O8 [43].

ZnO

ZnO has a wurtzite structure formed by two inter-penetrating hcp lattices,

consisting of Zn and O atoms respectively. The lattices have the common

c-axis, with an ideal vertical distance of 3/8c between them. Zn (or O) at

(0,0,0) are coordinated with 4 nearest O (or Zn) atoms forming a tetrahedron,

which in turn has 12 tetrahedra as its nearest neighbors (Figure 1.1d).

Flexibility of MOFs is associated with their tendency to undergo coop-

erative structural transformation [44] in response to external stimuli, while

maintaining their crystallanity and coordination network. In a broad sense,

stimuli may be related to host-guest interaction, mechanical deformation,

thermal, electrical or magnetic perturbations [45]. Flexibility is a property

crucial to their structural tunability is ubiquitously known to emerge from

framework dynamics involving breathing and swelling modes, linker rota-

tion or sub-lattice sliding [46, 47]. While flexibility is intuitively linked to

reversible response and low elastic moduli [44] or soft vibrational modes of a

crystal, its quantitative measure is still lacking. In Chapter 3, we introduce
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(a) (b)

(c) (d)

Figure 1.1: Atomic structures of crystals considered in this thesis: (a) MOF-
5, (b) ZIF-8, (c) ZrW2O8, and (d) ZnO.

a precise measure of structural flexibility tensor (0 < F̄ s < 1) of a crystalline

material as the fractional release of elastic strain-energy or stress through

symmetry-preserving internal structural rearrangements. We determine flex-

ibility of distinct classes of crystals viz. ZnO, ZIF-8, MOF-5 and ZrW2O8

with respect to hydro-static (εh) and rhombohedral shear (εr) deformation

using first-principles density functional theoretical analysis. Similar to the

flowability of liquids, flexibility of crystals involves contributions from large

structural rearrangements corresponding to soft phonons. Surprisingly how-

ever, we show that flexibility can be dominated by hard phonons that couple
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strongly with strain field, highlighting its multi-scale origin. While rigidity

of a system generally manifests through Goldstone modes emerging at the

breaking of a continuous symmetry, flexibility causes reduction in this rigid-

ity by symmetry-preserving internal continuous degrees of freedom. This

concept of flexibility generalizes to any long-range ordered state emerging

from continuous symmetry-breaking.

MOF-5 is a metal-organic framework (MOF) with large pore volume and

exceptional thermal stability [1]. However, it undergoes irreversible amor-

phization at minuscule pressures, of the order of 10 MPa [48]. Earlier studies

have attributed this crystal-to amorphous structural transition to rupture

of the carboxylate bonds of its rigid secondary building unit (SBU) [3, 48],

leading to complete pore-collapse. With multitude of vibrational degrees of

freedom (DoFs) of MOF-5 spanning a broad range of frequencies, prefer-

ential cleavage of its strong carboxylate (C-O) bonds in response to small

pressures of a few MPa is quite inconceivable. In Chapter 4, through first-

principles phonon-spectral analysis, we demonstrate that a stable MOF-5

crystal cannot sustain hydrostatic compression, primarily due to symmetry-

lowering torsional forces that distort its octahedral SBUs upon infinitesimal

strain, εh ∼ -0.003. Group-theoretical analysis of phonons of MOF-5 unrav-

els the role of triply degenerate phonons with relatively higher frequencies in

its destabilization leading to an order-to-disorder structural phase transition

at very small compressive strains. At large strains, we show that MOF-5

structures distorted along the randomized eigenvectors of the flat, unstable

phonon bands relax to lower-energy states, disrupting the long-range order
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of the MOF-5 crystal and resulting in its amorphization, with colossal re-

lease of stresses. The microscopic mechanism of destabilization involving

orientational disordering in SBUs of MOF-5 is generalizable to many other

MOFs that encase directionally constrained rigid building units in their three-

dimensional network structure [34].

Amorphization of yet another stable porous framework, ZIF-8 [49], on

ball-milling [50] or in response to modest pressure (P∼ 0.3 GPa) [51] has been

a subject of active research for many years. Its crystal-to-amorphous struc-

tural transition is largely attributed to its exceptional low shear modulus [52]

and occurrence of shear instability upon compression [53]. In Chapter 5, we

first establish the inherent non-linear elastic behavior of ZIF-8 due to higher-

order moduli in its elastic strain-energy with respect to hydrostatic (εh) and

rhombohedral shear (εr) strains, and coupling between long-wavelength TA

and LA phonons. Dynamical stability of ZIF-8 at large shear stains (εr ∼

0.07) counters the role of soft shear modulus (C44) in its destabilization [52].

However, ZIF-8 undergoes a shear instability (i.e. negative C44) and dynam-

ical lattice instability at hydrostatic compressive strain εh ∼ -0.035. At large

compressive strains, the soft unstable modes form non-dispersive flat bands

throughout the BZ. Relaxation of (2 x 2 x 2) hydro-statically strained cells

of crystalline ZIF-8 distorted along random combinations of eigen-vectors of

unstable modes shows disruption of its long-range order leading to amor-

phization. Analysis of densified structure obtained on ball-milling and mod-

eled using reverse Monte-Carlo approach [50], unfolds significant distortion

of ZnN4 tetrahedra in addition to the loss of long-range order.

Amorphous MOFs largely involve collapse of the porous structure of their



13

crystalline counterparts in response to mechanical stains with or without

guest species. This enhances their gas-storage capacity, with a potential

application in irreversible long-term capture of harmful gases or molecular

substances [54, 55]. Furthermore, collapse of zeolitic structures has been

reported to produce inorganic glasses. Recently, amorphous MOFs have been

reported to exhibit chemical versatility and efficiency in separation of ions

and similar-sized molecules [56]. Quite interestingly, a Zr-based amorphous

MOF, UiO-66 exhibits superior capacitance than its crystalline counterpart

and hence is a promising material for supercapacitor electrode material [57].

Ubiquitous occurrence of Boson peak (BP) in glassy and amorphous

phases, and its stark absence in crystals, have intrigued researchers for sev-

eral decades. Lack of sharp spectroscopic signatures and appearance of broad

vibrational peaks in glasses at low frequencies make it challenging to probe

their atomic-structure details and microscopic structural origin. In Chapter

6, we provide evidence for BP(s) in crystalline MOFs, manifesting as (a) peak

in C(T )/T 3 at very low-T, and (b) multiple peaks in reduced density of states

g(ω)/ω2 at low-frequencies through analysis of two model MOFs: MOF-5 and

ZIF-8. Lattice vibrations that constitute BP of MOF-5 represent compos-

ite phonons resulting from strong coupling between quasi-localized acoustic

branches at the BZ boundary and flat non-dispersive optical phonons. In

ZIF-8, BP emerges from shear modes, as well as modes that involve buck-

ling or rippling of IM-ring about metal centers. Distinct nature of these

atomic vibrations highlight the role of underlying topology and chemical in-

teractions responsible for BP in crystals, and elucidates that its origin is not

quite universal. While BP was attributed to low-ω van Hove singularity in
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crystals in earlier studies [58, 59], our work shows that it has contributions

from soft acoustic modes (ω → 0, |q|→ 0) of certain crystals (ZIF-8 in the

present case), coupling of flat (non-dispersive) optical phonons with LA and

TA phonon branches, indicating that multiple strong discontinuities in the

density of states g(ω) at low ω can, in principle, constitute BP, and give rise

of deviation of C(T) with respect to the Debye model.

In Chapter 7, we understand how incipient elastic stresses stabilize the

non-fcc (bc(o,t)) phases of Au in twinned bipyramidal microcrystals at am-

bient conditions [60]. We determine the temperature-dependent free energies

of experimentally-observed (bc(o,t)) structures with respect to fcc Au, and

attribute their stability to soft phonons. We present a soft mode-based mech-

anism that captures the trends in stability of non-fcc phases of noble metals.

A systematic study of time-dependent irradiation of corrugated bi-pyramidal

Au-micro-crystals with low-energy Ar+ ions, carried out by our experimental

collaborators, has shown controlled transformation of one metastable non-

fcc phase to another in the core of micro-crystals, bco → bct → bct1. These

structures differ primarily in the magnitude of locked-in strains along the

[001]-direction, resulting in the shift of (002) XRD peak of bct-Au to lower

2θ values. In contrast to thermal annealing that gives rise to spatially non-

homogeneous elastic strains, structural changes induced by Ar+ irradiation

emerge as uniform strains across the entire microcrystallites, as character-

ized by narrow XRD peaks on prolonged exposure. In Chapter 8, we present

a plausible mechanism of heat transfer that leads to homogeneous elastic

strains in the core of micro-crystallite with a thickness of about 200-250 nm,
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that is significantly larger than the mean-free path of electrons in Au crys-

tal (∼ 40 nm). We propose that a transient thermodynamic state at the

collision cascade-core interface manifests as a time-lag τ between heat flux

and temperature-gradient [61], invoking a non-Fourier mechanism of heat

conduction by electrons on ion-irradiation of Au-microcrystallite. Electrons

in non-equilibrium percolate into the core as a thermal wave with a finite

speed that depends on time-lag. Larger the τ , slower is the wave. Additive

character of structural changes provides an evidence of correlation between

elastic strains at consecutive time-intervals of ion-irradiation. Emergent hot

excited electrons in the core of Au-microcrystallites tune the elastic strains

of non-fcc phases, as demonstrated by optimization of strained structures at

varying width of Fermi-Dirac distribution of electrons in Au.

Finally, in Chapter 9, we summarize the ideas developed in this thesis.

We suggest future research directions in the study of mechanical response of

MOFs and study of generalized aspects of flexibility.



Chapter 2

Theoretical Formalism

Materials are composed of nuclei bound together by electrons. Since the typ-

ical energy scales for electrons far exceed those associated with the degrees of

freedom of the massive nuclei, the lowest energy ground state of the electrons

determines the structure of the nuclei, thus precisely determining the ground

state material-properties viz. equilibrium crystal structure, charge density,

phase transition between structures, and many others. This key concept has

guided the the development of accurate, robust methods to treat electronic

ground state, and hence the understanding of structure of materials at the

atomic scale.

By far, the most widespread approach for ‘first-principles’ quantitative cal-

culations of material-structure and properties is density functional theory

(DFT). This chapter discusses the formulation of density functional the-

ory, and the underlying independent-particle approximations to address real

many-body problems of electrons in materials.

16
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Further, the response of a material to external stimulus, namely, the dis-

placements of nuclei about their mean positions, can be studied from their

vibrational spectrum, measured experimentally by inelastic neutron scatter-

ing, infra-red absorption, etc. Theoretically, this response can be determined

through changes in electronic energies (Etotal), forces on the nuclei (FI), and

force constants (CIJ) with changes in atomic positions, leading to the calcu-

lation of full phonon dispersion curves. The later part of this chapter reviews

two approaches of phonon calculations, namely, frozen phonons and linear

response [62].

2.1 Introduction

The fundamental Hamiltonian for a system of electrons and nuclei is given

by:

Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
,

−
∑
I

h̄2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
(2.1)

The terms on the right-hand side of Eq. 2.1 represent, in order, the kinetic

energy of electrons, Coulomb interactions between electrons and the nuclei,

the Coulomb interactions between pairs of electrons, kinetic energy of nuclei,

and Coulomb interactions between pairs of nuclei. The nuclear kinetic energy

can be ignored, considering the mass MI to be infinity, relative to that of

electrons. This is called the Born-Oppenheimer or adiabatic approximation.

Within this approximation, the nuclear dynamics does not cause electronic
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transitions, allowing the total wavefunction to be written as a product of

electronic and nuclear wavefunctions:

Ψni({r, R}) = χni(R)ψi({r, R}) (2.2)

where χni(R) is the nuclear wavefunction which is a function of coordinates

R and depends on both vibrational and electronic quantum numbers, n and

i, respectively. The electronic wavefunction, ψi(r,R), is a function of both

the nuclear and electronic coordinates, but only depends upon the electronic

quantum number or electronic state, i.

For each electronic state i, each nuclear wavefunction is determined as:

[
−
∑
J

h̄2

2MJ

∇2
J + Ui({R})− Eni

]
χni(R) = 0; (2.3)

and the many-body wavefunction for the electrons, ψi(r,R) is obtained by

solving time-independent Schrödinger equation:

Ĥelecψi(r, R) = Eiψi(r, R) (2.4)

Here, the electronic hamiltonian is given as:

Ĥelec = T̂ + V̂ext + V̂int (2.5)

with kinetic energy operator for electrons (T̂ ), potential acting on electrons

due to the nuclei (Vext), and electron-electron interactions (Vint). The three
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terms can be written as:

T̂ =
∑
i

− h̄2

2me

∇2
i , V̂ext =

∑
i,I

VI(|ri −RI |), V̂int =
e2

2

∑
i 6=j

1

|ri − rj|
(2.6)

The ground state wavefunction Ψo, the state with lowest energy, can be

determined by minimizing the total energy with respect to all the param-

eters in Ψ({ri}), with the constraint that Ψ must obey the particle sym-

metry and conservation laws. While all the other terms in Eq. 2.6 are

exactly known in terms of Ψ, the exact value of electron-electron Coulomb

interactions, Vint cannot be computed, and thus need to be approximated.

Two independent-particle approaches, effective single-particle and Hartree-

Fock, do not include electron correlations. Hartree-Fock approach includes

electron-electron Coulomb interaction in the energy, while neglecting the

correlations in wavefunctions. The ‘effective single-particle’ theories have an

effective potential that incorporates some effect of real interaction, without

an interaction term explicitly included in the effective Hamiltonian.

2.2 Density Functional Theory

Density functional theory is a theory of correlated many-body systems, hav-

ing close associations with independent-particle methods. The works of

Hohenberg-Kohn in 1964, and Kohn-Sham in 1965 have led to the formu-

lation of DFT, which has now become the basis of present-day methods for

treating electrons in atoms, molecules, and condensed matter.
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2.2.1 Hohenberg-Kohn theorems

The two theorems proposed by Hohenberg and Kohn set the basis to formu-

late density functional theory as an exact theory of many-body systems.

Theorem I: For any system of interacting particle in an external potential

Vext(r), the potential Vext(r) is determined uniquely by the ground state par-

ticle density, no(r), except for a constant. Thus all properties of the system

can be completely determined, once the ground state density no(r) is known.

Theorem II: A universal functional for the energy E[n] in terms of the

density n(r) can be defined, for any external potential, Vext(r). For any

particular Vext(r), the exact ground state energy of the system is the global

minimum value of this functional, and the density n(r) that minimizes the

functional is the exact ground state density no(r). The total energy func-

tional, as uniquely determined by n(r), is given by:

EHK [n] = T [n] +

∫
d3rVext(r)n(r) + Eint[n] + EII (2.7)

and EII denotes the classical interactions of nuclei with one another.

A functional FHK [n], which includes kinetic and potential energies of in-

teracting electron system, can be defined as:

FHK [n] = T [n] + Eint[n] (2.8)
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Thus, if the functional FHK [n] is known, then by minimization of total en-

ergy with respect to n(r), the exact ground state density and energy can be

determined.

The operational difficulty in the above formulation is that there is no known

way to extract kinetic energy directly from the density . When represented in

terms of a set of N wavefunctions, the derivatives of kinetic energy as a func-

tion of number of electrons are discontinuous at integer occupation numbers.

This implies that the exact functional will vary in a non-analytic manner as

a function of number of electrons. This leads to Kohn-Sham approach, where

kinetic energy is treated in terms of orbitals and interaction terms explicitly

modeled as functionals of the density.

2.2.2 Kohn-Sham Ansatz

The approach proposed by Kohn and Sham for electronic structure calcu-

lations is to replace the original many-body problem by an auxilliary inde-

pendent particle problem. The density of the original system is assumed to

be equal to that of non-interacting system, and the interactins are incorpo-

rated into an exchange-correlation functional of the density. The auxiliary

hamiltonian of the system has a kinetic operator and an effective local po-

tential, Vσ
eff (r) acting on an electron of spin σ at a point r. The Kohn-Sham

Schrödinger-like equations can be expressed as :

(Hσ
KS − εσi )ψσi (r) = 0 (2.9)
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where the εi are the eigenvalues, and Hσ
KS is the effective hamiltonian

Ĥσ
KS = −1

2
∇2 + V σ

KS(r), using Hartree atomic units (2.10)

The expression for the ground state energy functional can be written as:

V σ
KS = Vext(r) + VHartree(r) + VXC(r) (2.11)

where EHartree is the self-interaction energy of density n(r). The density of

the system is given by:

n(r) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2 (2.12)

and the kinetic energy Ts, as a functional of orbitals, is given by:

Ts =
1

2

∑
σ

Nσ∑
i=1

∫
d3r|ψσi (r)|2 (2.13)

The total electronic energy, EKS given by:

EKS = Ts[n]+

∫
drVext(r)n(r)+

1

2

∫
d3rd3r′

n(r)n(r’)

|r− r’|
+EII+EXC [n] (2.14)

when minimized with respect to either the density n(r), or the effective po-

tential Vσ
eff (r) leads to the ground state of the system. The only crucial

ingredient that needs to be determined for obtaining the exact solution for

the Kohn-Sham equations (Eq. 2.9-2.11) is the exchange-correlation func-

tional EXC , the approximations to which are discussed below.
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2.2.3 Exchange-correlation functionals

In the Schrödinger equation, the motion of each electron is coupled to the

motion of every other electron through Coulomb repulsions among them.

This repulsion lowers the electrostatic energy, and the energy reduction is

termed as the exchange-correlation energy of the system. The exchange-

correlation potential, VXC in the effective Hamiltonian (Eq. 2.10) is given

by:

VXC =
δEXC
δn(~r)

(2.15)

Accurate approximations of EXC are necessary to obtain ground state energy

and density. Kohn and Sham proposed a non-empirical approximation using

exchange-correlation energy per electron, εuniformxc (n) of an electron gas of

uniform density n. This is called ‘local density approximation (LDA)’. The

real system with nonuniform density is assumed to locally consist of infinites-

imal volume elements, each with a uniform electron density. This leads to

the following relation for EXC :

ELDA
XC [n] =

∫
d3rn(~r)εuniformxc (n(~r)) (2.16)

This approximation is exact for uniform density and correct and accurate for

systems with spatially-varying density.

To make the functional more accurate, the idea of exchange-correlation en-

ergy in terms of density, n(~r), can be extended to include additional exact

constraints into the approximations. Adding a second element, the gradient

of density, gives rise to ‘generalized gradient approximation (GGA)’ of the
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exchange-correlation functional, which is expressed as:

EGGA
XC [n] =

∫
d3rn(~r)εapproxxc (n(~r),∇n(~r) (2.17)

2.2.4 Solving Kohn-Sham equations

The set of Schrödinger-like one-electron equations i.e. Eqs 2.9-2.11, need to

be solved such that the Veff (r) and density n(r) are consistent. The steps

involved in solving these equations to acheive self-consistency are as under:

1. Consider a trial electron density, n(r).

2. Calculate Veff (r) using Eq. 2.11.

3. Solve for electron wavefunctions (Eq. 2.9 and 2.10).

4. Calculate a new electron density using Eq. 2.12.

5. Check for the convergence of n(r). If achieved, calculate total energy

EKS (Eq. 2.14), forces, stresses, and eigenvalues, otherwise reiterate the

calculations from Step 2.

2.3 Force and stress from electronic structure

2.3.1 Force theorem

The force theorem, derived by Feynman in 1939, states that the force on the

nucleus is strictly in terms of the charge density, independent of the electron

kinetic energy, exchange, and correlation. In electronic structure theory, this

is termed as ”Hellmann-Feynman theorem”. The force FI acting on a nucleus
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RI is given as:

FI = − ∂E

∂RI

= −
∫
d3rn(r)

∂Vext(r)

∂RI

− ∂EII
∂RI

(2.18)

It is important to note that Eq. 2.18 follows if the electron density is held

constant to first order as the nucleus moves.

2.3.2 Stress calculations

In condensed matter, the state of a system is specified by the forces on each

atom and the stress. The forces that act upon (or through) the surface

of the element, due to the surrounding material contribute to the stresses

transmitted throughout the volume of the element. Strain is deformation of

a material that causes a displacement u of a point ri → r’i, as a function of

the coordinate r. The strain tensor εαβ, can be defined as:

εαβ =
1

2
(
∂uα
∂rβ

+
∂uβ
∂rα

) (2.19)

over Cartesian indices, α,β. In quantum mechanics, if a system is in equi-

librium and the strain is homogeneous over macroscopic regions, the macro-

scopic average stress tensor σαβ is defined in terms of energy and strain tensor

εαβ per unit volume as:

σαβ = − 1

Ω

∂E

∂εαβ
(2.20)
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The stress-strain relations describe elastic phenomena in materials. For ex-

ample, the elastic constants are given by:

Cαβ;γδ =
1

Ω

∂2Etotal
∂uαβ∂uγδ

= −∂σαβ
∂uγδ

(2.21)

Further, the above definition of stress (Eq. 2.20) with the assumption of

homogeneous scaling of space, that include electronic wavefunctions and po-

sition of nuclei. However, to obtain the correct value of stress, one one must

impose an additional requirement that the force on each atom vanishes on re-

laxation, FI = 0, in presence of the homogeneous strain εα,β. In other words,

the system attains an energy-minumum with respect to all internal degrees

of freedom. Only for simple crystal structures and certain symmetric strains,

the positions of the nuclei are fixed by symmetry. In most real materials, the

displacements of atoms on relaxation, at which FI ≈ 0 is satisfied, are:

uα =
∑
β

εαβuβ + uintα (2.22)

The first term represents uniform scaling of space, Rα → (δαβ + εαβ)Rβ.

The second term shows deviation from the unrelaxed structure, or “internal

strains”, which are crucial for estimating stress-strain curves in low-symmetry

materials. The calculation of these internal strains is one of the key areas

where theoretical analysis makes precise information about the atomic struc-

ture accessible, in contrast to the difficulty in resolving the atomic positions

in a strained systems through experiments.
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2.4 Pseudopotentials

The idea behind construction of pseudopotentials is to replace the strong

Coulomb potential of the nucleus and the effect of tightly bound core elec-

trons by an effective ionic potential acting on the valence electrons. The

aim of pseudopotential theory is to find effective potentials that represent

the scattering over the desired energy range. Most present-day electronic

calculations are based on ‘ab initio norm-conserving pseudopotentials’ and

‘ultrasoft pseudopotentials’.

2.4.1 Norm-conserving pseudopotentials (NCPPs)

The norm-conserving pseudofunctions ψPS are normalized and are solutions

of model potential chosen to reproduce the valence properties of an all-

electron calculations. The orthogonality condition:

〈ψσ,PSi |ψσ
′,PS

j 〉 = δi,jδσ,σ′ (2.23)

needs to be satisfied so that the Kohn-Sham equations has the same form:

(Hσ,PS
KS − ε

σ
i )ψσ,PSi (r) = 0 (2.24)

To be defined as a good ab initio pseudopotential, it is required that the

NCPP equals the atomic potential outside the “core region” of radius Rc, the

logarithmic derivatives of the all-electron and pseudo wavefunctions agree at

Rc, the first energy derivative of the logarithmic derivatives of the pseudo-

and ‘real’ wave functions agree at Rc, and the norm-conservation condition
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is satisfied.

2.4.2 Ultrasoft pseudopotentials

Ultrsoft pseudopotentials accurately calculate the effective potential by a

transformation that re-defines the problem in terms of a smooth function,

and an auxilliary function around each ion core that represents the rapidly

varying part of the density. The condition of norm-conservation is general-

ized. Thus, the critical radius Rc much larger than for the norm-conserving

pseudopotential can be chosen, while maintaining the desired accuracy.

2.5 Calculation of Phonons

Vibrational spectra provide wealth of information about the lattice-dynamical

behavior of solids. Accurate information on the force constants, static dielec-

tric constants, piezoelectric constants, electron-phonon interactions etc. can

be provided by theory of phonons, which is ultimately a part of electronic

structure. The total energy, within Born-Oppenheimer approximation, can

be viewed as a function of the positions of the nuclei E({Ri}). The two

approaches in the calculation of phonons using first-principles theory are:

(1) Direct calculation of total energy as a function of the positions of the

atoms (frozen phonon method)

(2) Perturbative approach involving calculations of the derivative of energy

(response function method)
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2.5.1 Frozen phonons

In frozen phonon method, a small, but finite perturbation is frozen in the

system, and the total energy and forces are calculated with nuclei “frozen” at

positions {RI}. The forces on atoms can be calculated within the framework

of density functional theory, which makes it a direct approach for phonon

calculations. Then, the force constant matrix elements defined by numerical

dervatives of displacements are calculated as :

CI,α;J,β ≈ −
∆FI,α
∆RJ,β

(2.25)

and dynamical matrix D̃I,α;J,β is computed from the force constant matrix

as:

D̃I,α;J,β = CI,α;J,β
1√

MIMJ

(2.26)

Phonon frequencies and eigenvectors are obtained by diagonalization of the

dynamical matrix. However, this technique determines phonon dispersion

curves for a crystal only with large “supercell” calculations, whose size de-

pends on commensurability of perturbation, hence increasing the computa-

tional cost of phonon calculations at lower q-points.

2.5.2 Density Functional Perturbation Theory

Perturbative theory involves systematic expansion of hamiltonian Ĥo+λ∆Ĥ

in the powers of the perturbation. The first order expressions depending

on unperturbed wavefunctions and ∆Ĥ to the first-order are given as the

“generalized force” on an atom. To obtain the interatomic force constants
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(IFCs), we need to compute second derivatives of ground state energy of a

system of spin-less electrons with respect to the perturbation i.e. nuclear

displacements, which can be calculated using efficient electronic structure

methods. This is given by:

∂2E({R})
∂RI∂RJ

=

∫
∂n(r)

∂RJ

∂V[R](r)

∂RI

dr + δIJ

∫
n(r)

∂2V[R](r)

∂RI∂RJ

dr +
∂2EN({R})
∂RI∂RJ

(2.27)

The linear response of the charge density with respect to atomic positions

can be calculated as:

∂n(r)

∂RI

= 4Re

N/2∑
n=1

ψ∗n(r)
∂ψn(r)

∂RI

(2.28)

The derivatives of KS orbitals, ∂ψn(r)
∂RI

are calculated as:

(HSCF − εn)
∂ψn(r)

∂RI

= −
(
∂VSCF (r)

∂RI

− ∂εn
∂RI

)
ψn(r) (2.29)

with first-order derivative of self-consistent potential given as:

∂VSCF (r)

∂RI

=
∂V[R](r)

∂RI

+ e2
∫

1

|r− r′|
∂n(r′)

∂RI

dr′+

∫
δυxc(r)

δn(r′)

∂n(r′)

∂RI

dr′ (2.30)

and first-order derivative of the KS eigenvalue, εn, expressed as:

∂εn
∂RI

=

〈
ψn

∣∣∣∣∂VSCF∂RI

∣∣∣∣ψn〉 (2.31)

The Eqs. (2.28-2.31) form a set of self-consistent equations for calculation of

second-order derivatives of ground state energy. Solution of the linear system
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of equations can be obtained by employing efficient iterative techniques such

as conjugate gradient or the steepest descent. Fourier transform of the matrix

of inter-atomic force constants, CI,α;J,β(R) is denoted as C̃I,α;J,β(q), and rep-

resents the second derivative of energy with respect to atomic displacements

u at a wave-vector q:

C̃I,α;J,β(q) =
∑
R

exp−q.RCI,α;J,β(R) (2.32)

Phonon frequencies ω(q) are the solution of secular equation:

det

∣∣∣∣ 1√
MIMJ

C̃I,α;J,β(q)− ω2(q)I

∣∣∣∣ = 0 (2.33)

where MI , MJ are the atomic masses and I is the identity matrix. The

dispersion of frequencies ω(q) at q-points along various high-symmetry lines

in the first Brillouin Zone is often used to view the vibrational spectrum of

a crystalline solid. Other information derived from the phonon calculations

includes phonon density of states and electron-phonon coupling.

2.6 Density Functional Tight Binding approach

The standard tight-binding method involves representation of eigenstates of

Hamiltonian in orthogonalized basis of atom-like orbitals, and expressing the

inter-atomic charge fluctuations or short-range repulsive interactions as a

parameterized Hamiltonian matrix, where the matrix elements are fitted to

the electronic properties of a reference structure. Density functional tight-

binding (DFTB) is a quantum-mechanical approach, parameterized directly
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from DFT [63]. It is used for calculation of total energies, and derived prop-

erties, of large systems primarily because of its simplicity and better scaling

with respect to DFT [64]. This requires the availability of accurate parame-

ters for constituent entities, akin to tight binding method.

In DFTB, the Hamiltonian matrix elements are explicitly determined

within a non-orthogonal basis of atomic orbitals, and charge distribution

in the chemical bonds of multi-atom systems is treated in a self-consistent

manner [65]. Tightly bound electrons of atoms are treated perturbatively

to incorporate the effect of inter-atomic interactions, particularly the short-

range repulsion.

The total energy E[n] within DFT (Equation 2.8) expressed as a func-

tional of electron density n(r), and the energy of the Kohn-Sham system of

non-interacting electrons as in Equation 2.14, form the basis of DFTB for-

mulation. Here, the charge density n(r) that minimizes the energy of system

is assumed to be in close neighborhood of the charge density no(r) of free and

neutral atoms. For multi-atom system, n(r) = no(r) + δn(r), δn(r) being

small. Expanding E[n] at no to second-order in fluctuations δn(r), the energy

becomes:

E[δn] ≈
∑
a

fa〈ψa|−
1

2
∇2 + Vext + VH [no] + Vxc[no]|〉

+
1

2

∫ ∫ ′
(
∂2Exc[no]

∂n∂n′
+

1

|r− r′|
)∂n∂n′

− 1

2

∫
VH [no](r)no(r) + Exc[no] + EII −

∫
Vxc[no](r)no(r)

(2.34)

where fa ∈ [0,2] is the occupation of a single-particle state ψa with en-

ergy Ea. The total energy E[n] in DFTB involves band-structure energy
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(EBS) with no charge transfer, energy due to charge fluctuations primarily

from Coulomb interactions and xc-contributions (ECoul), and repulsive en-

ergy (Erep), as expressed in Equation 2.34 with terms in first, second and

third line respectively. Thus, the quality and transferability in DFTB is de-

termined by EBS, ECoul, and the chosen structures for fitting the parameters

of repulsive potentials E ′rep with respect to inter-atomic distance RIJ [66].

The Hartree term
(
− 1

2

∫ ∫ no(r)no(r′)
|r−r′| d3rd3r′

)
of the repulsive energy is

computed by dividing the total volume into atomic volumes, and the sum

is computed over atom pairs taking into account the atomic number and

inter-atomic distances, since no(r) is spherically symmetrical for free atoms.

Similarly, the ion-ion repulsions (EII) can be approximated taking into ac-

count each pair of atoms depending only on the atomic number. Further, the

Erel includes on-site contributions from each atom depending only on no(r),

and thus introduce a shift in total energy by a constant value.

The energy as a function of charge fluctuation (δn) corresponding to

Coulomb and xc-interactions involves double integrals over the space. In

order to convert the integral into sum over atomic pairs IJ , electronic fluctua-

tions over the space are decomposed into atomic contributions by considering

volumes vI and computing atomic-charge fluctuations ∆qI as:

∆qI ≈
∫
v1

δn(r)d3r (2.35)

and the total charge fluctuations δn(r) is:

δn(r) =
∑
I

∆qIδnI(r) (2.36)
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The on-site energy, i.e. I = J , depends on Hubbard U, which is the differ-

ence between ionization energy (IE) and electron affinity (EA), as 1
2
UI∆q

2
I .

For I 6= J , the Coulomb energy Ecoul[δn] depends on electrostatic inter-

actions as:

1

2
∆qI∆qI

∫
vI

∫ ′
vJ

δnIδn
′
J

|r− r′|
(2.37)

between ∆qIqJ , with an assumption that charge fluctuations about each

atom I, δnI are spherically symmetrical and generally modeled using a Gaus-

sian profile. Hence, energy due to Coulomb interactions between the atoms

can be estimated from fluctuations in the charge distributions δnI(r) of each

atom I.

To model the repulsive energy due to core tightly bound electrons, TB

approach employs minimal localized radial basis, typically real spherical har-

monics. With these basis functions {φ}, the band structure energy EBS then

becomes

EBS =
∑
a

fa
∑
µν

ca∗µ c
a
νH

o
µν , (2.38)

where, Ho
µν = 〈φµ|Ho|φν〉. The matrix elements Ho

µν are the relevant param-

eters in the TB approach.

The atomic charges qI in terms of {φ} are expressed as:

qI =
1

2

∑
a

fa
∑
µν

ca∗µ c
a
νSµν (2.39)

where, Soµν = 〈φµ|φν〉 such that such that µ belongs to I and ν to some other

atom J, signifying overlap of non-orthogonal orbitals. The fluctuations in

atomic charges ∆qI = qI − qoI , where qoI is the number of valence electrons in
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the neutral atom.

The total energy expression that includes EBS, ECoul and Erep becomes:

E =
∑
a

fa
∑
µν

ca∗µ c
a
νH

o
µν +

1

2

∑
IJ

γIJ(RIJ)∆qI∆qJ +
∑
I<J

V IJ
rep(RIJ) (2.40)

Here, γIJ(RIJ) =
∫
v1

∫ ′
vJ

∂nI∂n
′
J

|r−r′| = erf(CIJRIJ )
RIJ

for a spherical symmetric Gaus-

sian charge distribution. Thus, formulation of DFTB largely involves esti-

mating of matrix elements Ho
µν and Sνµ and repulsive potentials V IJ

rep(RIJ).

2.6.1 Estimation of matrix elements Ho
µν and Sµν

In TB approach, minimal basis functions φν = Rν(r)Ỹν(θ, φ) used for the

expansion of electronic eigenstates [66], are not the atomic orbitals of free

atoms but are localized basis functions, but are obtained by introducing a

spherically symmetric confinement potential of the form r2i, i > 1. These

localized orbitals are used to calculate the overlap matrix elements Sνµ for

orbital pairs ν and µ given by:

Sµν =

∫
φ∗µ(r)φν(r)d3r (2.41)

The overlap matrix obtained is real and symmetric. For orbitals belonging

to different atoms, the integral in Equation 2.41 is computed by considering

φν at RI = 0 and φµ at RJ = R. The dependence on RIJ is incorporated

by Slater-Koster transformation rules [67]. The Hamiltonian matrix element

Ho
µν for basis states µ and ν is given by:
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Ho
µν =

∫
φ∗µ(r)

(
1

2
∇2 + Vs[no]

)
φν(r) (2.42)

where, the effective potential Vs[no](r) = Vext(r) + VH(r) + Vxc(r) is com-

puted at neutral density no(r) of the system. The diagonal elements Ho
µµ are

approximately equal to the eigen-energies of the free-atom orbitals. With

the off-diagonal matrix elements Ho
µν for µ localized around I and ν around

J, and the contributions from other atoms assumed to be small, Ho
µν can be

evaluated from the potential Vs[no](r) = Vs,I[no, I](r)+Vs,J[no,J](r), where

Vs,I [no, I](r) is the Kohn-Sham potential corresponding to atomic density.

2.6.2 Estimation of repulsive interactions

The repulsive term Vrep is reminiscent to Exc in DFT in the sense that both

embed details of electronic interactions that dictate the nature of chemical

bonds. DFTB uses a set of structures, namely dimers, trimers, polyhedra

etc, with different chemical environments obtained using DFT. The differ-

ence in forces |FDFT − FDFTB| are minimized, and the fitting parameters

are obtained. Generally, smoothing splines or low-order polynomials are

chosen for repulsive functions Vrep(r). These functions computed from the

fitted parameters are required to be short-ranged, monotonic and smooth

for transferability and performance of DFTB in simulation of an unknown

structure.



Chapter 3

Origin of structural flexibility

of crystals: soft and hard

vibrations acting in sync

3.1 Introduction

Flexibility of a solid is a term referred ubiquitously to describe its tendency

to accommodate changes in shape, size or its form on external perturbation,

without compromising structural identity. In proteins, it is known in the

context of their ability to respond to environmental changes while retain-

ing their chemical structure [68–70]. In low-density porous framework solids

with weak interactions between their isostatic rigid building units, flexibility

is associated with a density window [71] in which their polyhedral struc-

ture remains intact [72] as the structure undergoes conformational changes,

the latter determined by topological features namely, degrees of freedom and

37
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number of constraints at the junctions between rigid units [47,73]. While this

refers to the tendency of a material/solid to allow internal structural reori-

entations in response to homogeneous strains through low-frequency phonon

modes [44, 74], the precise measure of flexibility is currently lacking and its

origin in the microscopic degrees of freedom constrained by symmetry is un-

clear [75].

One approach to understand structural flexibility is through intuitively

analogous physical property of the liquid state: flowability [76, 77]. With a

plethora of low-energy internal DoFs in liquid, it readily undergoes struc-

tural rearrangements when subjected to shear strain, while maintaining the

local-coordination and symmetry (in this case, P1) at each site. An or-

dered crystalline solid, however, is the consequence of spontaneously broken

continuous translational and rotational symmetries, and is characterized by

Goldstone bosons [14] manifesting as longitudinal and transverse phonons.

Its long-range order constrains the atoms (or molecules) of a crystal to main-

tain a well-defined spatial arrangement, giving rise to a finite restoring force

(internal stress) against an external perturbation ε̄, resulting in a non-zero

rigidity (slope of transverse acoustic phonons) [78]. Because of the finite

elastic moduli, viz. shear rigidity and bulk modulus, there is accumulation

of structural stresses in the presence of homogeneous strains, eventually re-

sulting in either plastic deformation or phase change (as in ductile metals) or

rupture (as in brittle solids or glasses). An alternative mechanism of elastic

softening, which circumvents structural disintegration and phase transfor-

mations, through internal structural rearrangements reminiscent to liquids

(or glasses) is, presented here as, the structural flexibility (see Figure 3.1 for
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illustration).

  

(0,0,0), (1/3,1/3,1/2)
(0,0,0 ± u), (1/3,1/3,1/2 ± u)

u: Continuous symmetry-preserving 
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(Elastic 
stiffness)

Rigidity + elastic softening
→ Flexible crystal

(0,0,0) 

(1/4,1/4,1/4)
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}

Figure 3.1: (Color online) Schematic for structural flexibility.

3.2 Results and Discussion

We first present a quantitative measure of structural flexibility (F̄ s ten-

sor) of a crystalline material as the fractional release of elastic stress or

strain-energy upon internal structural rearrangements through symmetry-

preserving normal modes of homogeneously deformed structure, isomorphic

to symmetry-preserving vibrations with identity (Γ1) representation. Illus-

trating mechanical responses of structurally distinct classes of crystals C with
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hydro-static (εh) and rhombohedral (εr) strains as the prototypic perturba-

tions, we unravel that symmetry-preserving modes of deformed crystals C

allow 0 < F̄ s < 1, rendering intrinsic flexibility to a crystal (as shown in ZnO,

ZIF-8, MOF-5 and ZrW2O8). ZnO, with a simple wurtzite structure and a

single mode with Γ1 representation in its parent phase, represents an appro-

priate model crystal to understand the concept of structural flexibility F s
i .

Metal-organic frameworks (MOFs) form a class of ordered, crystalline nano-

porous materials consisting of metal-centered polyhedra, connected through

organic linkers. With diverse topologies and secondary-building units, MOFs

are classified as rigid or flexible. While ZIF-8 is known to be flexible, MOF-5

is considered rigid [44, 79]. ZrW2O8 is an interesting crystal that exhibits

negative thermal expansion driven by soft normal modes, and thus is highly

flexible. Structural details of these crystals is provided in Chapter 1. From

the analysis of bond stiffness matrix (inter-atomic force constants) of these

materials, we highlight that, in addition to large structural rearrangements,

analogous to flowability of liquids, flexibility of solids greatly involves release

of strain energy or stresses through coupling of symmetry-preserving optical

modes with the strain-field. Through the interplay of symmetry-preserving

modes spanning broad range of energies, structural flexibility of a crystal

induces elastic softening, allowing it to accommodate large homogeneous

strain.

Flexibility is associated with the ability of a solid to accommodate ho-

mogeneous deformation through internal displacements (optical phonons),

without a phase transition or loss of structural integrity. To quantify this

property, we define a dimensionless structural flexibility tensor, F̄ s ∈ [0,1]
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for uniform strain tensor ε̄ applied to a reference crystal CRef (ε = 0, ~d =

0) such that a component F s
i for strain εi is:

F s
i =

Eo(εi, ~d = 0)− Erelax(εi, ~d = ~drelax)

Eo(εi, ~d = 0)− Eref (ε̄ = 0, ~d = 0)
(3.1)

where, Eo(εi, ~d = 0) is the energy of a strained structure with no internal

relaxation and Erelax(εi, ~d = ~drelax) is its energy after relaxation to minimum-

energy state. Since Fsi is the fractional release of strain-energy of uniformly

deformed crystal C through internal displacements that maintain its space-

group symmetry G, projection of ~drelax (that is, ∆~s = dlα, a (3N x1) vector

quantifying change in internal structure, see Methods) onto normal modes

{ûν~q=0} is non-zero only for ν ∈ {A1g} of the strained crystal C.

In the harmonic approximation, the energy E, in terms of homogeneous

strain εi (here, hydrostatic strain εh and rhombohedral strain εr) and internal

displacements {uν}, is:

E(εi, {uν}) =
1

2
Cbareε2i +

∑
ν

(
gνεiuν +

1

2
Kνu

2
ν

)
(3.2)

where, Cbare is the un-relaxed elastic modulus of the reference crystal Cref

[80] relevant to the component of applied strain-tensor, Kν is the spring

constant of mode ν, obtained from the eigen-spectrum of second-order force-

constant matrix, and gν is the first-order coupling-strength of ν with εi.

Minimization of E with respect to uν gives uν = −gνεi
Kν

. Substituting uν in

Equation 3.2, the flexibility arising from a symmetry-preserving mode F s
i (ν)

= (gν)2

CbareKν
. Since the response ∂uν

∂εi
determines the spatial extent of internal
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structural rearrangements through a mode ν with εi and gν = −Kν
∂uν
∂εi

, F s
i (ν)

is re-written as:

F s
i (ν) =

Kν(
∂uν
∂εi

)2

Cbare
(3.3)

and the structural flexibility of a crystal is F s
i =

∑
ν F

s
i (ν), where the sum

is over the set of Γ1 modes in the homogeneously deformed crystal C. While

for εh, C = Cref , that is, the crystal-symmetry is maintained on hydrostatic

strains, the shear-deformed crystal C = D̄Cref , where D̄ is the deformation-

gradient tensor with εii = 0, and εij 6= 0, typically has a lower symmetry.

Transformation of Cref in accordance with irreducible representation matrix

(or symmetry label) isomorphic to D̄ maps it onto the deformed crystal

C. For instance, T2g irrep of Oh group maps the cubic structure (Fm3̄m

symmetry) onto C in response to rhombohedral shear strain. Lower the

symmetry of C, larger is the set of symmetry-preserving modes in C (see the

number of Γ1 modes of strained crystals C considered here in Table 3.1 [17]).

Clearly, Equation 3.3 indicates that a competition between a mode with

large stain-phonon coupling, gν = −Kν
∂uν
∂εi

, and un-relaxed elastic modulus

Cbare determines the structural flexibility F s
i , upto first-order. This definition

also represents a fractional release of stresses on structural optimization.

Hence, in terms of a component of elastic modulus tensor, Fs = 1-
Crelij

Cbareij
,

clearly corroborating the intuitive notion of flexibility emerging from soft

relaxed elastic modulus Crel
ij [81].

To illustrate the concept of flexibility given in Equation 3.3, we present

F̄ s with respect of hydrostatic and rhombohedral strains (F s
h versus εh
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Figure 3.2: Illustration of quantitative measure of flexibility of ZIF-8, MOF-
5, ZrW2O8 and ZnO crystals with respect to (a) hydrostatic strain εh, and
(b) rhombohedral shear strain εr. In general, Fsr is higher than Fsh for all
crystals.

and F s
r versus εr) for structurally disparate crystalline systems viz. ZnO,

ZIF-8, MOF-5 and ZrW2O8 (see Figure 3.2a and b). Quite evidently, the

structural flexibility F s
i shows wide variation across the materials consid-

ered here, and the perturbations (εh and εr) applied. Further, while Fsh is

essentially constant for ZIF-8, MOF-5 and ZnO over the considered range

of strains, εi ∈(-0.02 to 0.02), the expansion-compression asymmetry in Fsh

of ZrW2O8 originates primarily from non-linear elastic behavior (i.e. strain

derivatives of Bbare) as well as anharmonic (i.e. phonon-phonon coupling)

contribution to Erelax. These aspects are not pursued here and will be the

undertaken in the future.

To understand the origin of the large differences in F̄ s, or the measure

of fractional release in strain energies or structural stresses with respect to

homogeneous strains, we first determined the bare elastic moduli, viz. bulk

modulus Bbare and shear modulus Cbare
44 , upto second order, for each of the
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materials considered (see Table 3.1). Quite evidently, Cbare
44 is lower than

Bbare for all the crystals, indicating a generic tendency of higher flexibility

on application of rhombohedral shear strain εr, which breaks the symmetry

of the reference crystal Cref .

Table 3.1: Bare elastic moduli and number of symmetry-preserving phonons
of the crystals considered in this study

Bbare (GPa) Cbare
44 (GPa) NA1g(εh) NA1g(εr)

MOF-5 38.2 29.7 9 78

ZIF-8 83.8 72.8 18 79

ZrW2O8 154.8 84.6 11 107

ZnO 128.3 87.9 1 7

A rather high value of F s
i of ZIF-8 with both hydrostatic and shear strains,

despite its large bare elastic moduli than of MOF-5, indicates that internal

strains (uν) dominate its structural flexibility. This applies also to ZrW2O8,

which exhibits significantly higher flexibility than ZnO. Quite clearly, ZIF-8

derives its higher hydrostatic flexibility F s
h from the larger set of symmetry-

preserving modes, and ZnO, with a single Γ1 phonon in its P63mc phase,

possesses a non-zero Fsh, albeit with a very small value of ∼0.01. Increase

in the number of symmetry-preserving degrees of freedom gives rise to a

larger F s
r of ZnO (∼ 0.45) with respect to εr (see Table 3.1 and Fig. 3.2).

Counter-intuitively, ZrW2O8, with 11 Γ1 irreps, as against 9 modes in MOF-

5, shows a relatively lower value of F s
h (see Fig. 3.2a). This stems from its

value of Bbare (∼ 155 GPa), which is about 4 times as that of MOF-5. In

addition to a lower Cbare
44 with respect to Bbare of each material, a larger set of

symmetry-preserving modes in shear-deformed structure gives rise to greater
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shear flexibility F s
r . While flexibility of a crystal is thus not directly related

to bare elastic moduli, the foregoing analysis distinctly highlights the role of

symmetry-preserving irreps as the primary source of non-trivial flexibility.

To understand in detail the origin of F̄ s, precise contributions of each

symmetry-preserving mode ν to flexibility F s
i of C (using Equation 3.3) can

to be determined (see Tables 2-9 for Kν ,
∂uν
∂εi

and Fs(ν) of the Γ1 modes with

contributions greater than 1% to total flexibility Fs of the the four materials

with respect to εh and εr). While soft modes (weak spring constants i.e. low

Kν), in general, dominate the atomic displacements (i.e large ∂uν
∂εi

) in response

to homogeneous strains, these modes are not the primary contributors to Fs

(see Tables 2-9). Flexibility, which is defined as the fractional release in

energy or stress due to internal structural arrangements, can predominantly

originate from stronger springs (i.e. larger Kν), due to large coupling of

these modes with homogeneous strain εi (gν = Kν
∂uν
∂εi

). Thus, a structure

that encompasses low-energy modes which support internal rearrangements

at the atomic scale, and higher-frequency vibrations which absorb a rather

large fraction of energy through stronger strain-phonon coupling strength,

exhibits high flexibility. This is in stark contrast to widely-accepted concept

of flexibility and its origin solely in low-frequency modes [44, 82]. Quite

interestingly, the co-operating soft and hard modes and their contributions

to structural rearrangements and flexibility respectively is well-corroborated

in all crystals considered here (ZIF-8, ZrW2O8, MOF-5 and ZnO) with εr.

While this holds for ZIF-8 and ZrW2O8 in response to εh, softest symmetry-

preserving mode of MOF-5 shows a rather low ∂uν
∂εh

(see Fig.), signifying a

lack of low-energy modes that allow structural rearrangements. Further, in
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comparison to ZIF-8, these modes of MOF-5 show a rather limited response

to εh due to smaller internal strains (∂uν
∂εh

) allowed along each mode, thus

corroborating its low flexibility (or rigidity) [47, 79]. Vanishingly low Fsh of

ZnO arises from a single high-energy Γ1 mode (Kν = 11.8 eV/Å2, see Figure

3.1) that couples very weakly with εh.

To determine whether the nature of modes that contribute to flexibility

are specific to a material-system or show certain common features, we filter-

out the two sets of symmetry-preserving modes of ZIF-8, MOF-5 and ZrW2O8

under strain εh and εr, one, that dominate structural rearrangements, and

two, that contribute dominantly to flexibility F s
i (see Fig. 3.3, 3.4, 3.5).

Low-energy modes that assist in internal structural rearrangements represent

linker rotations, commonly known as breathing modes (as in ZIF-8 and MOF-

5) (see top panels of Fig. 3.3 and 3.4) [44,73], liberations of WO6 octahedra

(as in ZrW2O8) (see top panels of Fig. 3.5) [42], and shearing of constituent

tetrahedra (as in ZnO). Quite invariably, the high-energy modes (see bottom

panel of Fig. 3.3, 3.4, 3.5) exhibit stretching or twisting modes of molecular

entities of the crystals [83].

With a sound understanding of emergence of structural flexibility from

high-energy symmetry-preserving modes of uniformly deformed crystal C, we

now illustrate its fundamental aspect in terms of elastic softening, both bulk

modulus and shear rigidity. Elastic moduli of a crystal, which are the con-

sequence of broken continuous symmetry of liquids, manifests as Goldstone

modes (two transverse branches and one longitudinal branch with positive

slopes) of solids. Crystals with certain symmetries, as considered in the
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present study, host a finite number of symmetry-preserving modes that cou-

ple with homogeneous strain εi, constituting continuous internal symmetry-

preserving degrees of freedom, denoted by uA1g . Response of uA1g through

structural relaxation causes release of strain-energy and elastic softening, that

counters the emergent modulus of a crystal, and is termed here as structural

flexibility Fs. Quite clearly, higher the Fs, larger is the energy (or stress)

release, softer the relaxed elastic modulus Crel
ij [81]. Thus, optical modes,

though their coupling with acoustic modes, are pertinent to the flexibility

of a crystal. The concept of flexibility presented here applies to any long-

range ordered state arising from broken-continuous symmetry, like electronic

polarization or magnetization.

Methods:

The internal strains, or atomic displacements {~drelax} can be represented as

a (3N x1) vector ∆~s = dlα, where dlα = flα - ilα, flα and ilα being reduced

(crystal) atomic coordinates of lth atom in α-direction of relaxed and unre-

laxed structures, respectively. Projections onto normal modes of crystal is

expressed as: ∆~s =
∑

ν∈{A1g}(∆~s.ûν)ûν~q=0. Here, {ûν} are the normalized

eigen-displacements (~uν~q =
~el~q√
Ml

) of symmetry-preserving phonons of C, and

~q = 0 is omitted for brevity.
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Figure 3.3: Symmetry-preserving modes and flexibility of ZIF-8 crystal with
respect to homogeneous strain εh (left panel) and εr (right panel): low-energy
modes that allows large structural rearrangement (upper panel; (a) and (c))
and high-energy modes that dominate flexibility (lower panel; (b) and (d)).
Soft modes (a) and (c) represent rotation of IM-linkers. Hard modes denote
stretching vibrations, as in (b), with respect to εh; and twisting of IM ring,
as in (d), with respect to εr.
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Figure 3.4: Symmetry-preserving modes and flexibility of MOF-5 crystal with
respect to homogeneous strain εh (left panel) and εr (right panel): unlike
soft modes in ZIF-8, low-energy mode with respect to εh, as in (a) does not
support large structural rearrangement, i.e. low ∂uν

∂εh
, and denote rotation of

C-H bonds of benzene linker. Here, higher-energy mode dominates internal
strain and flexibility, as in (b), and exhibit change in bond-lengths of linker.
Response to εr is similar to that in ZIF-8; low Kν , large ∂uν

∂εr
, as in (c), and

large Kν exhibits high Fν , as in (d). While the former represents liberation
of BDC-group, latter is linked to distortion of benzene-group.
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Table 3.2: Relative contributions
of symmetry-preserving modes of
ZIF-8 to its Fsh with respect to hy-
drostatic strain εh

Kν
∂uν
∂εh

Fν
( eV
Å2

) (Å) (%)

19.21 -19.54 36.0

6.57 25.74 21.4

118.01 3.69 7.9

101.32 3.82 7.2

0.30 -60.88 5.5

51.23 -4.11 4.2

4.50 13.87 4.2

0.49 41.50 4.1

32.59 -4.38 3.1

71.28 -2.60 2.4

0.03 120.38 2.1

Table 3.3: Relative contributions
of symmetry-preserving modes of
ZIF-8 to its Fsr with respect to
rhombohedral shear strain εr

Kν
∂uν
∂εh

Fν
( eV
Å2

) (Å) (%)

18.05 11.87 8.1

12.37 11.85 5.5

18.09 -9.04 4.7

24.71 -7.13 4.0

12.37 9.94 3.9

71.52 4.07 3.8

109.23 3.21 3.6

0.72 38.23 3.3

74.63 -3.65 3.1

51.58 4.03 2.6

6.80 10.81 2.5

120.56 -2.51 2.4

6.57 -10.17 2.2

109.23 -2.42 2.0
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Table 3.4: Relative contributions
of symmetry-preserving modes of
MOF-5 to its Fsh with respect to
hydrostatic strain εh

Kν
∂uν
∂εh

Fν
F

( eV
Å2

) (Å) (%)

13.48 13.28 42.6

31.01 6.50 23.5

98.53 -3.21 18.2

19.00 4.98 8.4

8.65 4.22 2.8

52.75 -1.51 2.2

4.74 -4.77 1.9

Relative contributions of
symmetry-preserving modes
of MOF-5 to its Fsr with respect
to rhombohedral shear strain εr

Kν
∂uν
∂εh

Fν
F

( eV
Å2

) (Å) (%)

12.58 9.62 20.0

9.27 12.29 12.9

123.72 2.53 7.3

0.66 -31.52 6.1

96.88 2.32 4.8

30.17 -4.13 4.8

9.27 7.30 4.6

123.72 -1.80 3.7

96.88 -1.88 3.2

5.47 -7.59 2.9

2.12 -11.66 2.6

30.17 3.05 2.6

12.58 -4.66 2.5
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Table 3.5: Relative contributions
of symmetry-preserving modes of
ZrW2O8 to its Fsh with respect to
hydrostatic strain εh

Kν
∂uν
∂εh

Fν
( eV
Å2

) (Å) (%)

57.86 4.30 40.5

11.20 4.85 30.1

92.94 -2.00 17.1

53.46 1.59 5.1

19.00 1.71 2.1

6.48 2.54 1.6

2.78 -3.21 1.1

1.46 -3.92 0.8

0.81 5.20 0.8

0.52 5.65 0.6

Table 3.6: Relative contributions
of symmetry-preserving modes of
ZrW2O8 to its Fsr with respect to
rhombohedral shear strain εr

Kν
∂uν
∂εh

Fν
( eV
Å2

) (Å) (%)

92.89 3.42 29.9

73.23 -2.98 17.9

92.89 1.69 7.3

92.89 -1.47 5.5

0.61 16.53 4.6

8.19 4.47 4.5

0.30 18.11 2.8

21.67 -2.10 2.6

8.19 3.41 2.6

2.37 6.17 2.5
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Figure 3.5: Symmetry-preserving modes and flexibility of ZrW2O8 crystal
with respect to homogeneous strain εh (left panel) and εr (right panel): low-
energy modes that allows large structural rearrangement (upper panel; (a)
and (c)) and high-energy modes that dominate flexibility (lower panel; (b)
and (d)).



Chapter 4

Twist without split :

Mechanism of amorphization of

MOF-5 at ultra-low pressures

4.1 Introduction

In the last three decades, MOFs have emerged as a class of technologically

relevant crystalline materials, essentially because of their porous structure

with large pore-size and ultra-high surface area in their pristine form [84].

Constructed rationally from molecular polyhedra, directed by rigid secondary

building units (SBUs), and connected by a variety of organic linkers, MOFs

exhibit a plethora of blueprint-target structural networks and properties [85].

This inherent reticular design gives rise to a large number of inter-molecular

degrees of freedom (DoFs) [86,87] within a periodic unit of MOFs, permitting

54
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a range of structural conformations in response to external strains [88]. Low-

frequency atomic vibrations associated with linker rotations, or bond-bending

and buckling [89] contribute predominantly to vibrational entropy or lattice

disordering of MOFs, leading to their structural phase-transition or amor-

phization. The SBUs, however, have been widely accepted to impart elastic

rigidity, robustness and directionality to their extended three-dimensional

network [1, 34].

Amorphization of MOFs, as characterized by the loss of long-range order

of crystalline structure, is generally detrimental to their porosity [48,90,91].

Certain MOFs, for instance ZIF-4, undergo reversible amorphization in low-

pressure regime [92], and others exhibit irreversible amorphization on com-

pression through collapse of their pore volume, either retaining the short-

ranged order [93] or by undergoing endothermic bond-rupture [94]. While

the crystal-to-amorphous transition in these MOFs requires hydrostatic pres-

sure in a few GPa, an exceptionally stable porous MOF-5 amorphizes at

vanishingly low pressure of the order of 10 MPa, that is, about a 100 times

lower! [3, 48]. This is quite atypical since the structure of MOF-5 consists

of a rigid octahedral SBU encasing ZnO4 tetrahedra, bonded with strong

carboxylate groups [1]. Studies of pressure-response of MOF-5 carried out

so far ascribe this irreversible amorphization, and consequent pore-collapse,

to the breaking of carboxylate bonds [3,48,95]. This is believed to originate

from the anharmonic dynamics of unstable non-dispersive phonon branches

in response to external perturbation and kinetic stabilization of a plethora

of amorphous phases within the high-symmetry structure [96]. While local
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atomic vibrations explain structural transitions that give rise to coopera-

tive phenomena at the nano-scale, for instance emergence of ferro-electricity

in HfO2 [97], their manifestation as preferential cleavage of strong carboxy-

late (C-O) bonds of MOF-5 in response to pressure within a few MPa, is

quite inconceivable. Therefore, it is imperative to understand the nature of

bond-breaking, or its lack thereof, in porous MOF-5 crystal to establish its

stability-window, as well as in its suitability among other candidate MOFs

for prospective applications.

4.2 Results and Discussion

In this work, we study the structural and dynamical response of MOF-

5 to compressive strains, and understand the mechanism of its crystal-to-

amorphous transition. In contrast to the earlier reports [3, 48, 95], we find

that MOF-5 undergoes an order-to-disorder transition at infinitesimal hydro-

static strain εh ∼ -0.003, which emerges from symmetry-lowering torsional

forces and destabilization of its SBU about the central O-atom. Lattice-

dynamical and group-theoretical analysis of phonons of MOF-5 unravel the

role of triply-degenerate normal modes of its Fm3̄m phase associated with its

structural transition. Using first-principles density-functional tight-binding

approach, we show that at large compressive strains, structures distorted

along the randomized unstable phonon-eigenvectors relax to lower energies,

disrupting the long-ranged order of the MOF-5 crystal and resulting in its

amorphization. With noticeable spread in the framework angle, Zn-O-Zn,

while retaining the C-O bond lengths of the pristine crystal, the simulated
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amorphous structures at εh ∼ -0.08 highlight that amorphization of MOF-5

originates primarily from orientational disordering of ZnO4 tetrahedra of the

SBU, while ruling out the possibility of bond-rupture.

Our calculations are based on first-principles density functional theory

(DFT), with plane-wave basis and pseudopotential method as implemented

in Vienna Ab initio Simulation Package (VASP) [98]. The ionic core-valence

electron interactions are modeled with ultrasoft pseudopotentials [99] and

electronic exchange-correlation functional is approximated with a general-

ized gradient approximation (GGA), as parameterized by Perdew-Burke-

Ernzerhof [100]. Kohn-Sham wave-functions are represented in a plane-wave

basis sets truncated with an energy cutoff of 560 eV. A uniform (2 x 2 x 2)

k-mesh is used for sampling the Brillouin Zone of primitive cell of MOF-5,

while atomic relaxation is carried out with steepest gradient method until

the Hellman-Feynman forces are lower than 1.0 meV/Å on each atom. The

force-constants (or Hessian matrix) are obtained from symmetry reduced set

of atomic displacements using a finite-difference method in VASP with a

step-size of 0.025 Å. Large dimensions of primitive cell of MOF-5 (over 12

Å) in each direction, with a system-size of 106 atoms, enable the calculation

of all the force-constants with a (1 x 1 x 1) primitive cell. Hessian matrices at

specified q points are then computed using Phonopy [101] code. Manifesta-

tions of lattice-instabilities at larger strains, and the breakdown of long-range

order are analyzed by structural optimization of (2 x 2 x 2) and (3 x 3 x 3)

supercells using density functional tight-binding method, as implemented in

DFTB+ code [102] with parameters from the set 3ob-3-1 [103,104].

MOF-5 has a cubic structure that consists of Zn4O(CO2)6 secondary
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building units (SBU) with octahedral geometry (Fig. 4.1), each containing

four ZnO4 tetrahedra with a common O-vertex (henceforth referred to as OC-

atom) [1], and the remaining peripheral O atoms (referred to as OP -atom) of

each tetrahedra are bound, in pairs, to C atoms of the carboxylate groups (see

Figure 4.1c and d). These units form the Bravais sites of two interpenetrat-

ing fcc lattices, linked to benzene rings along [001] directions. Two carboxy-

late groups with a sandwiched benzene ring form a 1,4-benzodicarboxylate,

commonly known as the BDC group. Octahedral geometry imposes strin-

gent directionality constraints on the OP atoms and the metal (Zn(II)) sites,

imparting a high degree of stiffness to the SBU. Further, site-symmetry in-

equivalence of O atoms (OC and OP ) gives rise to deviations in Zn-OC and

Zn-OP bond lengths of bulk MOF-5 (∼ 0.003 Å), and correspondingly dif-

ference of ∼4o between OC-Zn-OC and OC-Zn-OP bond angles, rendering the

tetrahedra inherently distorted. Despite these small differences in topological

parameters, the MOF-5 crystal exists in an fcc lattice with Fm3̄m symmetry,

as corroborated by simulated XRD pattern showing high peak-intensity for

(110), (121) and (220) peaks (Figure 4.1e).

Vibrational spectrum of MOF-5 crystal confirms its local stability in the

cubic Fm3̄m phase [105] (see Fig. 4.2a). Further, it exhibits flat phonon

bands at very low frequencies (ω ∼ {0.6-0.8} THz and {1.3-1.7} THz) which

are essentially dispersion-less, which signifies that the eigen-vectors of these

normal modes can be chosen to be highly localized in the real space. Irreps

of these low-energy phonons, ~uν~q = 1√
Ml
~eν~q, ~q = 0 are tabulated in Table 4.1,

along with symmetry of the structures they generate.
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Figure 4.1: Structure of MOF-5 crystal: (a) Cubic structure viewed along
[110] direction. Adjacent SBUs are rotated by 900 about each other, and are
bonded through organic linkers (i.e. benzene rings) along 〈100〉. Dashed box
delineates the 1,4-benzodicarboxylate or the BDC group [1]. Constituents
of the SBU: (b) inner Zn4O

C tetrahedron forms its core, (c) each of the
Zn is bonded with three peripheral oxygen to form four ZnOCOP tetrahe-
dra, and (d) pairs of OP atoms of adjacent tetrahedra are bonded to C
atoms, exhibiting an octahedral geometry of the SBU. (e) Simulated XRD
shows high peak-intensity primarily along (110), (121), (220) planes, and the
corresponding q-values agree closely with the experimental observations for
single-crystal MOF-5 [2].
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Figure 4.2: Low-frequency region of phonon dispersion of bulk MOF-5: (a)
εh = 0, showing stable phonons, confirming its local stability in Fm3̄m phase,
(b) upon vanishingly small hydrostatic compression, εh ∼ -0.003, lattice in-
stabilities appear across the BZ. Overlap of eigen-vectors of stable structure
εh = 0 with that of dynamically unstable configuration εh = -0.003 show
de-stabilization of higher-frequency phonons (marked by circles), with point-
group symmetries T1g, T2u and T2g (see Table 4.1). These modes give rise to
torsional forces on the SBU octahedron, through (c) rotation of BDC group
(ω = -1.7 THz), (d) in-plane displacements of BDC-group (ω = -1.43 THz),
and (e) rotation of BDC group and shearing of SBU through displacements
of OC atoms (ω = -1.2 THz).
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Table 4.1: Symmetry labels and calculated frequencies of soft phonons modes
Γ-point of bulk MOF-5 subjected to volumetric strains; εv = 0.0 and εv
= -0.009. Column III and IV show resulting subgroups of Fm3̄m and the
symmetry label respectively, corresponding to the normal mode of primitive
MOF-5 crystal.

εh = 0.0 εh = -0.003 Resulting Irrep

ω (THz) ω (THz) structure

3.1 -1.7 P-1 (2)

T1g3.1 -1.7 P-1 (2)

3.1 -1.7 C2/m (12)

1.6 -1.4 C2 (5)

T2u1.6 -1.4 C2 (5)

1.6 -1.4 Imm2 (44)

2.9 -1.2 P-1 (2)

T2g2.9 -1.2 P-1 (2)

2.9 -1.2 C2/m (12)

1.5 0.4 P1 (1)

T1u1.5 0.4 Cm (8)

1.5 0.4 P1 (1)

0.6 1.1 Fm-3 (202) A2g

1.4 1.2 C2 (5)

T2u1.4 1.2 C2 (5)

1.4 1.2 Imm2 (44)

0.7 1.3 P-1 (2)

T1g0.7 1.3 P-1 (2)

0.7 1.3 C2/m (12)

0.8 1.4 Fmmm (69)
Eg

0.8 1.4 I4/mmm (139)
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In response to hydrostatic compression, MOF-5 loses its structural sta-

bility in the parent Fm3̄m phase at infinitesimally small strain, εh = -0.003,

with a corresponding normal stress σ1 ∼0.12 GPa. This is evident from the

unstable optical branches i.e. phonons with imaginary frequencies, occurring

across the first Brillouin Zone (BZ) of MOF-5 (Fig. 4.2(b)). Relatively higher

stress σ1 to destabilization than that observed in pressure-induced structural

transitions of MOF-5 is attributed to calculations at 0K, in contrast to exper-

iments [48] at ambient conditions (T ∼ 300 K). Projections of eigen-vectors

of these unstable modes onto the stable normal modes of unstrained MOF-5

show maximum overlap with relatively higher-frequency phonons (ω = 3.11,

1.63 and 2.92 THz) (See Table 4.1). Concurrently, very low-energy A2g, Eg

and T1g modes of MOF-5 with ω < 1 THz exhibit noticeable hardening upon

compression (see Table 4.1). Appearance of strain-induced lattice instabil-

ity with respect to relatively higher-frequency phonons, while excepting the

softer ones, is quite intriguing and requires further analysis.

To this end, we understand the strain-dependence, both compression and

expansion, of low-frequency optical phonons with ω < 1.0 THz, and soft

transverse (TA) and longitudinal acoustic (LA) phonon bands of MOF-5 (Fig.

4.3). In unstrained MOF-5, the flat, non-dispersive modes resonate with the

softest TA phonons at the X-point (see Fig. 4.3). On compression (εh =

-0.003), while the Γ-X TA branch softens, the low-frequency optical modes

(ω < 1.0 THz) undergo mode-repulsion with Γ-X TA phonons, and exhibit

coupling with TA branch along Γ-K. This abrupt hardening occurs concur-

rently with the lattice instability of MOF-5 in its parent phase and desta-

bilization of its higher-frequency phonons at εh = -0.003. With hydrostatic
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expansion, εh > 0, the cubic symmetry is preserved until relatively larger

strains (εh ∼0.008) as the strength of coupling between TA branch along Γ-

X and flat optical modes continuously decreases (see Fig. 4.3). Nonetheless,

at εh = 0.01, overlap of acoustic and optical phonon branches leads to lattice

instability across the BZ. This reinforces that structural destabilization of

MOF-5 is driven by coupling between TA and stable soft optical branches

that give rise to composite (or hybridized) normal modes at BZ boundaries.

Visualization of the eigen-modes of relatively higher-frequency phonons,

that become unstable on vanishingly small compressive strains, show rotation

and in-plane displacements of the BDC groups (See Fig. 4.2c,d,e). These

groups act like chemical fasteners to each pair of ZnOP
3 OC tetrahedra (Fig.

4.1a), generating non-zero torque (Fig. 4.2c,e) or linear motion (Fig. 4.2d)

upon hydrostatic strains, resulting in twisting of one side of SBU relative

to the stationary one, about the central oxygen OC . Consequent torsional

forces destabilize the rigid SBU at infinitesimal compression εh ∼ -0.003,

clearly indicating that the MOF-5 crystal cannot sustain hydrostatic com-

pression in its parent Fm3̄m phase. Thus, despite a large pore volume (∼

3100 m2/g) [106], as well as low bulk modulus (about 15.84 GPa) [107], desta-

bilization of MOF-5 in response to infinitesimal strains emerges primarily

from geometrical constraints and emergent structural instabilities. Such dis-

tortions have been observed in paddle-wheel SBU involving conformational

twist of four carboxylates in the equatorial plane [108] around the rotational

4-fold axis, which results in reversible pre-amorphization in response to small

pressures (∼ 0.7 GPa).
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As these instabilities are weak and arise at minuscule strains, we deter-

mine the energetics of structural distortions with respect to each of these

triply-degenerate modes in one of three directions: mode A (C2/m): ω =

3.113 THz, mode B (Imm2): ω = 1.628 THz, and mode C (C2/m): ω =

2.918 THz (Table I), as a function of hydrostatic compression. We freeze-in

varying amplitudes (uν in Å) of eigen-displacements of these modes in MOF-

5 structures relaxed to their energy-minimum at varying strains (i.e. εh =

[0.0, -0.004]), and obtain the energy, E(εh, uν)-E(εh, uν=0). Interestingly, en-

ergies of all the three modes (A, B and C) show a transition from quadratic

dependence on uν for |εh|> -0.003, to quartic-dependence (i.e. anharmonic,

or double-well potential) in uν for εh < -0.003 (Fig. 4.4 for ω = 3.3 THz) with

very small changes in energies, within a few meV/formula unit of MOF-5 for

relatively large values of uν . This clearly indicates an order-to-disorder struc-

tural phase transition [109] at very small hydrostatic strain (εh ∼ -0.003).

While the foregoing discussion illustrates the mechanism of destabiliza-

tion of MOF-5 crystal in Fm3̄m phase, we now elucidate the nature of in-

ternal structural rearrangements and changes in the long-range order that

arise with respect to the unstable vibrational-modes upon varying hydro-

static strains. Since amorphization involves disruption of long-range order,

and periodic cell of a lattice imposes spatial limit on the range of effect of

inter-atomic interactions, we demonstrate the structural changes in MOF-5

due to flat unstable phonons across the BZ by considering (1 x 1 x 1), (2

x 2 x 2) and (3 x 3 x 3) supercells, containing 106, 848 and 2862 atoms re-

spectively. We introduced {~u} into the strained structures of MOF-5, |εh|∈
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(a) (b)

(c) (d)

Figure 4.5: Structural distortions and amorphization upon relaxation with
respect to lattice instabilities in (3 x 3 x 3) supercells of MOF-5: (a) at εh =
-0.003, MOF-5 crystal undergoes mis-orientations about OC-atom of SBU.
This manifests as breaking of octahedral symmetry and rotation of benzene
rings about [100] axis. (b) at εh = -0.025, the distorted structure at energy-
minimum shows off-centering of OC atoms from the (0,0,0) lattice sites of
Fm3̄m phase. At |εh|> 0.05, (c) and (d), colossal structural distortions lead
to complete dis-positioning of building units about the {100} planes, while
maintaining the short-range order in Zn-O4 tetrahedra.
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Figure 4.6: Changes in energies and stresses on structural distortion with
respect to unstable phonon modes: (a) energies and (b) stresses of structures
distorted with random combinations of unstable phonon modes, and opti-
mized to minimum-energy keeping cell-shape and cell-volume fixed. Increase
in strain energies with εh are significantly smaller in (2 x 2 x 2) and (3 x 3 x
3) deformed supercells, in comparison to the corresponding (1 x 1 x 1) cells.
Stresses increase upto |εh| = 0.015, but remain essentially constant at higher
|εh|, indicating enhanced degree of internal rearrangements allowing isobaric
compression of MOF-5 crystal. Inset of (b) shows significant decline in pore
volumes of deformed (3 x 3 x 3) supercells on compression.
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{0.003, 0.8}, each optimized while preserving Fm3̄m symmetry. The atomic

displacements {~u} (with respect to the reference structures) are represented

in terms of unstable modes ~uν :

~u =
9∑

ν=1

cν~uν

cν : random ∈ {0.0, 1.0}

(4.1)

where the sum is over 9 unstable phonon modes (See Fig.). Using density-

functional tight-binding method, we carried-out energy-minimization of the

distorted structures at a fixed cell-shape and cell-volume. This resembles

conditions typically occurring at high strain rates or compression carried out

in diamond anvil cell (DAC), without a hydrostatic medium.

Optimization of strained MOF-5 structures with lattice distortions cor-

responding to randomized unstable phonon modes results in lowering of its

crystal-symmetry from Fm3̄m to P1 at very low εh ∼ -0.003, with negligi-

ble change in the strain-energy (∼ 10 meV/f.u.) (see inset of Fig. 4.6a).

Mis-orientations of ZnO4 tetrahedra about OC arising from rotations or dis-

placements of the BDC groups (see Fig. 4.2c,d,e) and consequent distortion

of octahedral SBU, give rise to deviation in COCC bond angles by ±1.5o

from 90o in pristine Fm3̄m phase (see Fig. 4.5a), resulting in a lower stress

relative to the dynamically unstable constrained cubic structure. Crystal-

lanity or long-range order of pristine MOF-5 is preserved in this distorted

polymorph, as evident from sharp features in its structure-factor, S(~q), upto

q ∼ 10Å−1 (Fig. 4.7a).
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Figure 4.7: Signatures of crystal-to-amorphous transition of MOF-5 with
hydrostatic strains: (a) Structure factor S(|~q|) of (3 x 3 x 3) distorted cells,
showing significant decrease in the height of the most dominant peak at low
|~q|, and lack of sharp features at |~q|> 6Å with increase in |εh|. (b) Variations
in framework angle, Zn-OC-Zn, that signify the degree of mis-orientations of
ZnO4 tetrahedra about central OC atom. Large spread in Zn-OC-Zn angles
results in the loss of long-range order of MOF-5 crystal at higher |εh|.

Degree of structural disorder increases with hydrostatic strains (|εh|>

0.015) (Fig. 4.5). Loss of long-range order on compression is evidenced by

the reduction in strain energies, as well as release of stresses due to inter-

nal structural rearrangements of (2 x 2 x 2) and (3 x 3 x 3) strained cells,

compared to that in corresponding (1 x 1 x 1) distorted structures (see Fig.

4.6). Gradual changes in strain energies with |εh| invalidate the plausibility

of bond-breaking events in the compressed structures. Further, a decline in

S(|~q|) at very low |~q|, by about 55% at εh ∼ -0.08, and absence of sharp

features beyond |~q|∼ 4-6Å−1 corroborate crystal-to-amorphous transition of

MOF-5 (Fig. 4.7), arising from structural relaxation with randomized un-

stable lattice modes. Amorphous-MOF-5 structures exhibit significant den-

sification. For instance, at εh = -0.08, there is a reduction in pore volume by

about 33% relative to pristine MOF-5, with little increment in pressure (P
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∼ 0.07 GPa). Indeed, this decline in porosity is fully consistent with signif-

icant reduction in the surface area of pressure-induced amorphous structure

of MOF-5 [48].

Since the lattice instability is associated with misorientations of ZnO4

tetrahedra about the central OC atom, amorphization of MOF-5 at large

compressive strains originates from order-to-disorder transition of MOF-5

[110, 111], with concurrent release of structural stresses. This is in contrast

to the proposed mechanism of irreversible amorphization of MOF-5 involving

rupture of a few carboxylate groups of MOF-5 [48].

We now analyze the topological features of optimized distorted structures

at varying hydrostatic compression. ZnOP
3 OC tetrahedra described by Zn-O

bond lengths and O-Zn-O angles, and carboxylate groups, with C-OP bonds

and OP -C-OP angles, characterize the short-range order and local coordi-

nation in pristine and distorted MOF-5 structures. Framework parameter,

namely Zn-OC-Zn angle, can reveal disruption of octahedral symmetry or de-

gree of mis-orientations in the SBU, that results in the loss of long-range order

of MOF-5. In addition to featureless S(|~q|) at large |~q|, significant spread in

Zn-OC-Zn with increase in |εh| (see Fig. 4.7b), indeed confirm amorphiza-

tion of MOF-5 crystal, originating primarily from orientational disordering

of ZnOP
3 OC tetrahedra about the central OC atom of SBU. With deviation

of ± 5o in OP -C-OP bond angles, and negligible change in b(C-O), ± 0.03

Å (see Fig. 4.8a,b), cleavage of carboxylate bonds is essentially ruled out.

Nonetheless, substantial tetrahedral distortion, as evident from changes in

O-Zn-O (± 20-25o) angles, while preserving b(Zn-O) within ±0.05Å (Fig.
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4.8c,d), reinforces that amorphization of MOF-5 is driven by internal struc-

tural rearrangements, rather than catastrophic bond-breaking events.

In conclusion, we have demonstrated that a stable MOF-5 crystal can-

not sustain hydrostatic compression, primarily due to symmetry-lowering

torsional forces that distort its octahedral SBUs upon infinitesimal strain,

εh ∼ -0.003. Relatively higher-frequency triply degenerate phonons become

unstable at very small compressive strains leading to an order-to-disorder

structural phase transition, essentially ruling-out the breaking of carboxy-

late bonds at low pressures. At large strains, relaxation of MOF-5 structures

distorted along the randomized eigenvectors of the flat, unstable phonon

bands exhibit disruption of long-range order of the MOF-5 crystal, result-

ing in its amorphization. The microscopic mechanism of destabilization in-

volving orientational disordering in SBUs of MOF-5 is generalizable to many

other MOFs that encase directionally constrained rigid building units in their

three-dimensional network structure [34].



4.2 Results and Discussion 72

1.27 1.28 1.29 1.3
b(C-O)

0
50

100
150
200
250
300

b
(C

-O
) 

(a
rb

. 
u
n
it

s)

1
.9

2

1
.9

6

2
.0

0

2
.0

4

2
.0

8

b(Zn-O)

0

10

20

30

40

50

ρ
(b

(Z
n
-O

))

9
0

1
0
0

1
1
0

1
2
0

1
3
0

O-Zn-O angle

0

0.05

0.1

0.15

0.2

ρ
(O

-Z
n
-O

)

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

O-C-O angle

0

0.3

0.6

0.9

1.2

ρ
(O

-C
-O

)

(a) (b)

(c) (d)

Figure 4.8: Local structural distortions on crystal-to-amorphous transition of
MOF-5 with hydrostatic compression: (a) C-OP bond lengths, and (b) OP -
C-OP angle of the carboxylate group. Small variations in b(C-OP ) negate
the possibility of bond-breaking, in contrast to the prediction of Erkartal
et. al. [3]. (c) Zn-O bond lengths, and (d) O-Zn-O bond angles of ZnO4

tetrahedra, indicating significant distortions of local structural motifs with
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.



Chapter 5

Non-linear elasticity and

amorphization of ZIF-8:

Lattice-dynamical analysis

5.1 Introduction

By virtue of their chemistry and network topology, zeolitic-imidazole frame-

works (ZIFs) form an interesting class of crystalline nano-porous metal-

organic frameworks [30] with highly tunable structural metrics, and ex-

ceptional thermal and chemical stability [49]. Consisting of rigid molecu-

lar polyhedra interconnected by a variety of organic linkers, ZIFs exhibit a

plethora of chemical properties that enable their widespread applications in

gas-storage [112] and separation [113], heterogeneous catalysis [114], and drug

delivery [115]. While porosity of a framework [32] is crucial, practical appli-

cations de facto depend on its mechanical and thermal stability [116] against

73
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external perturbations [117, 118]. When subjected to hydrostatic compres-

sion, ball-milling or nano-indentation, crystalline ZIFs have been shown to

undergo reversible [119] or irreversible [50, 120] amorphization [121]; with a

concomitant decline in porosity [51], or a sudden structural-collapse [122]

limiting their suitability in many structure-sensitive applications. Recently,

investigations of structural and functional properties of amorphous-MOFs

has been the focus of extensive research [54–57] in order to uncover their

industrial and technological relevance. Therefore, it is essential to develop

proper understanding of different mechanisms of crystal-to-amorphous tran-

sitions to attain better controllability and structural tunability in response

to mechanical strains.

Amorphous ZIFs (aZIFs) have been known to retain their structural

motifs (metal-centred tetrahedra and organic linkers) and local coordina-

tion of their crystalline counter-parts, but lack the long-range periodic or-

der [50,123], as identified by pair-distribution functions or XRD- diffraction

or neutron scattering experiments. Disorder in the network topology gives

rise to broader diffraction peaks and diffuse scattering, and loss of medium-

or long-range order as characterized by featureless Bragg diffraction pattern

at longer-distances [124]. Dynamics of amorphization has revealed cooper-

ative structural rearrangements [125], twisting, mis-orientations of organic

linkers, and framework reconstruction [123]. While the studies establish

structural, geometrical, topological and dynamical signatures that charac-

terize the amorphous state of ZIFs, the mechanism of crystal-to-amorphous

transition, as well as distinction in structures of amorphous phases synthe-

sized from dissimilar routes [124] is still unclear. Computational studies of
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deformation-response to hydrostatic pressures have attributed amorphization

of ZIFs to very low shear modulus [52], shear instability (C44 < 0) [53, 126],

breathing modes associated with linker-rotation at very low-frequencies [126],

and distortion of ZnN4 tetrahedra or fracture [127], with no structural evi-

dence of disruption of the long-range order.

Ramification of strains, hydrostatic or non-hydrostatic, pertinent to amor-

phization of ZIFs on ball-milling or nano-indentation is yet an unsettled topic

in their mechanical response to external perturbations. Understanding the

nature of structural transitions, and changes in constituent building units and

framework topology is indispensable in selection of robust structures among

the candidate ZIFs to be brought into service, as well as in judicious de-

sign of amorphous frameworks for desired applications. Among the plethora

of ZIF structures known till date, ZIF-8 has been known to exhibit high

thermal stability and high porosity in its as-synthesized form [49]. Existing

in a sodalite structure [128], encasing a cube-obtahedral pore, its tendency

to amorphize on ball-milling or application of modest pressures (P ∼ 0.3

GPa) [51, 53] has been a subject of active research for sometime now. We,

thus consider ZIF-8 as the prototypic MOF for lattice-dynamics based study

of its crystal-to-amorphous transition in response to both hydro-static (εh)

and non-hydrostatic (rhombohedral shear εr) strains, within the framework

of density-functional tight-binding approach.
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5.2 Results and Discussion

We first establish inherent non-linear elastic behavior of ZIF-8, in terms

of coupling between long-wavelength acoustic phonons (and homogeneous

strains) and dispersive soft optical-phonons. Dynamical stability of ZIF-8 at

large shear stains (εr ∼ 0.07) counters the role of soft shear modulus (C44) in

its destabilization [52]. Upon compression, however, the higher-order mixed

moduli (C144 and C1144) give rise to a shear instability (i.e. negative C44),

which also manifests as dynamical lattice-instability at εh ∼ -0.035 driven

by soft-optical phonons of ZIF-8. While loss of shear rigidity, and hence

enhanced fluidity of cubic ZIF-8, favors lowering of its structural symmetry,

crystal-to-amorphous transition emerges dominantly from unstable modes

throughout the BZ that become non-dispersive at εh ∼ -0.10. Relaxation of

(2 x 2 x 2) strained cells of crystalline ZIF-8 distorted with respect to random

combinations of the eigen-vectors of the unstable modes results in disrup-

tion of long-range order leading to its amorphization. Analysis of densified

structure obtained on ball-milling and modeled using reverse Monte-Carlo

approach [50], exhibits significant distortion of ZnN4 tetrahedra in addition

to the loss of long-range order. This structure shows good agreement with

simulated (2 x 2 x 2) distorted cell of ZIF-8 deformed with large hydrostatic

and shear strains.

Our calculations are based on third-order density-functional tight-binding

(DFTB3) method as implemented in DFTB+ [102]. To parameterize the

inter-atomic interactions, the Slater-Koster files are used from parameter sets
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3ob-3-1 [129,130], and Hubbard parameter is included to represent electron-

electron interactions. Herein, the electronic exchange-correlation energy is

approximated by a generalized gradient approximation (GGA) with the func-

tional form given by Perdew-Burke-Ernzerhof (PBE). van der Waals (vdW)

interactions are included with a Lennard-Jones dispersion, as implemented

in DFTB+, with parameters taken from Universal Force Field (UFF) [131].

Integrations over the Brillouin Zone (BZ) are carried out with a uniform (2

x 2 x 2) k-mesh for bulk ZIF-8. Variable-cell relaxation of the structure is

carried out using conjugate-gradient algorithm, with a low force-tolerance of

10−8 Ha/Bohr to obtain the correct crystal symmetry (space group: 217)

and reduce the stresses to ∼ 0.01 kbar. Cell parameters of the relaxed struc-

ture deviate by ∼0.66% from the experimental value. Force-constants of

bulk- and strained ZIF-8 structures are obtained using a (2 x 2 x 2) super-

cell with finite-difference method applied on symmetry-inequivalent displace-

ments with a step-size of 0.04 Å to determine the Hessian matrix (matrix of

the second derivatives of the energy with respect to atomic displacements)

with Phonopy code [101]. Subsequently, dynamical matrices and correspond-

ing phonon-eigenfunctions at a specified q-point are then computed along the

specified BZ path [4].

Vibrational spectrum of ZIF-8 confirms its structural stability in the cu-

bic I4̄3m phase (See Fig. 5.1). Branches of soft transverse acoustic phonons

along different directions are manifestations of low-shear elastic moduli of

the crystal (see Ref. [81]). Unlike low-dimensional frameworks, for instance

CuPA-2, that encompass a combination of strong covalent or coordination

bonds and weak inter-molecular interactions, and show highly anisotropic
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elastic response [132], ZIF-8 exhibits almost isotropic elastic behavior as evi-

dent for slopes of acoustic branches along different directions. This is ascribed

to its near-spherical, cube-octahedral pore.

In response to rhombohedral shear strain εr, ZIF-8 exhibits a non-zero

hydrostatic stress σ1 (see Fig. 5.3a), that signifies a third-order coupling

between hydrostatic (longitudinal acoustic phonons) and shear (transverse

acoustic phonons) strains. This is reminiscent to acousto-elastic effect [133]

observed in certain materials [134, 135]. The strength of coupling between

homogeneous strains is obtained by polynomial expansion of strain-energy

density Ẽ = E
Vo

in higher orders of strain components (εh and εr), upto

fourth order as:

Ẽ =
1

2
Boε

2
h +

1

2
C44ε

2
4 +

1

3
B1ε

3
h +

1

2
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3
r

+
1
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4
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2
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4 +
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3
4 +

1

4
C4444ε

4
4

(5.1)

The coefficients are then obtained by fitting Equation 5.1 with the strain

energies obtained from ab-initio calculations (see Table 5.1).

The value of linear elastic moduli of the ZIF-8 crystal, Bo = 8.50 GPa

and C44 = 1.07 GPa are in close agreement with the experimental and first-

principles DFT-based reports [136]. Further, derivatives of bulk modulus,

B1 and B2, have negative values. Negative B1, or a positive ∂Bo
∂P

indicates

a reduction in compressibility or structural hardening at larger compressive

strains.

A low value of shear modulus C44 of ZIF-8 [52] has been intuitively
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Figure 5.1: Vibrational signatures of ZIF-8 crystal: (a) Phonon spec-
trum of ZIF-8 crystal, confirming its lattice stability. Atomic vibrations
corresponding to low-frequency optical branches exhibit (b) in-plane rota-
tion of IM-linker, (c) shearing modes about the 4-membered rings of ZIF-8,
(d) buckling and rotations of IM linkers, and distortion of Me-group, and (e)
pore-opening modes associated with rotations of IM linkers.
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Table 5.1: Non-linear elastic moduli of ZIF-8

Elastic Fitted

modulus value (GPa)

Bo 8.50

C44 1.07

B1 -13.3

C144 -4.78

C444 2.86

B2 -29.31

C1144 -45.85

C1144 44.00

C4444 40.38

thought to be linked to its destabilization and amorphization. However, vi-

brational spectra of sheared ZIF-8 crystal show structural stability retained

until large εr = 0.07 beyond which there is an appearance of lattice instability

(see Fig. 5.2c), associated with pore-opening vibrations and Methyl-group

rotations (see Fig. 5.2d). Introduction of random combinations of the eigen-

vectors corresponding to a single non-dispersive unstable phonon band into

a (2 x 2 x 2) conventional cell of ZIF-8 (2208 atoms) with εr = 0.08, and re-

laxation of the distorted structure to an energy-minimum shows retention of

its long-range order. This is evidenced by sharp features in pair-distribution

function (PDF) for r ≥ 6Å, and its similarity with the PDF of pristine ZIF-8

crystal (see Fig. 5.2e). This clearly shows that in the absence of hydrostatic

strains, shear deformation does not induce a structural disorder or disrupt the

long-range order of ZIF-8 crystal. Shear-deformed structures exhibit signifi-

cantly high-density of low-frequency (≤ 1 THz) phonon modes, as compared
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Figure 5.2: Vibrational spectrum of ZIF-8 upon shear deformation: (a) spe-
cial points in the BZ of a rhombohedral crystal, and dispersion along the path
described in Figure 19 of Ref. [4], phonon spectrum with (b) εr = 0.04, and
(c) εr = 0.08. A significant increase in the density of low-frequency modes,
in comparison to that in bulk ZIF-8 (Fig. 5.1a). Structural destabilization
manifests as a dispersion-less phonon band across the BZ. (d) Atomic dis-
placements in the unstable mode at ~q = 0 represent bending of IM-group,
and rotation of three H atoms about central C-atom of Me-group. Structural
distortions with respect to these vibrations do not amorphize the ZIF-8 crys-
tal, as evident from its pair-distribution function of the relaxed structure,
(e).

that of the unstrained crystal (see Fig. 5.2b and c).

Taking into account the non-linear couplings between strains, the C44

depends on hydrostatic strain εh as:

C44(εh) =
∂2E

∂ε24
= C44(εh = 0)+C144εh+2C444εr+C1144ε

2
hε

2
h+2C1444εhεr+3C4444ε

2
r

(5.2)

Values of C44(εh) at varying εh ∈ {0.0, 0.07} indeed show an onset of shear

instability (negative C44) at εh ∼ -0.04 (See Fig. 5.3). This clearly indicates



5.2 Results and Discussion 82

0 0.5 1 1.5 2 2.5 3 3.5

ε
r
 (10

-2
)

0.00

0.03

0.06

0.09

0.12

σ
α
 (

G
P

a
)

α = 1 (normal)
α = 4 (shear)

0 1 2 3 4 5 6 7

ε
h
 (10

-2
)

-1.8

-1.2

-0.6

0

0.6

1.2

C
4

4
 (

G
P

a
)

(b)(a)

Figure 5.3: Non-linear elasticity and shear instability of ZIF-8 crystals: (a)
on-zero σ1 with εr at εh =0.0, (b) dependence of shear modulus C44 on hy-
drostatic strains εh. The modulus becomes negative at εh ∼ -0.04, signifying
an elastic instability.

the role of higher-order mixed elastic moduli C144 and C1144 in driving the

elastic instability of ZIF-8.

Calculated phonons of minimum-energy structures of ZIF-8 at varying εh

show continuous softening of low-frequency optical phonon bands (ω < 1.5

THz) (see Fig. 5.4). This leads to a de-coupling from relatively higher-energy

modes that remain essentially un-altered on compression (Fig. 5.4a). The

soft-modes correspond to rotations/distortion of methyl (Me)-group, shear-

ing of 4-membered channel or in-plane rotation or twisting of IM-linker about

Zn2+ ions (see Fig. 5.1b,c,d). Pore-opening modes of vibrations associated

with symmetric linker-rotation (Fig. 5.1e) have a slightly higher frequency

(ω ∼ 1.3-1.4 THz) and show no softening with increase in |εh|. This indi-

cates that these vibrations do not drive structural transitions of ZIF-8 on

hydrostatic compression, in contrast to the destabilization mechanism re-

cently proposed by Jefferson et al. [126], while confirming the co-existence

of these modes in both porous crystalline and disordered ZIF-8 obtained on
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Figure 5.4: Phonon spectrum of ZIF-8 upon hydrostatic compression: (a) εh
= -0.02, and (b) εh = -0.035. The latter shows negative slope of transverse
acoustic phonons, and instability with respect to low-frequency optical modes
at the zone boundaries.

compression or ball-milling [137].

Enhanced strength of coupling between transverse acoustic phonons and

soft optical modes upon compression leads to structural destabilization (un-

stable modes) at strain εh = -0.035 (see 5.4b), close to strain at which elastic

instability occurs, εh = -0.039. The corresponding pressure leading to insta-

bility is ∼ 1 GPa, which is slightly higher than the pressure Pc ∼ 0.3-0.4

GPa estimated with MD simulations at 300 K. With further increase in |εh|,
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Figure 5.5: Change in phonon spectrum of ZIF-8 on large hydrostatic com-
pression: Unstable phonons across the BZ, (a) dispersive at εh = -0.06 and
(b) flat non-dispersive εh = -0.1. Transverse phonons with negative slopes
signify shear elastic instability, and loss of rigidity along all directions.

the soft optical bands become increasingly unstable, until they form non-

dispersive (flat) bands of unstable modes in a structure with εh ∼ -0.1 (See

Fig.5.5).

While the foregoing analysis establishes dynamical and shear-elastic in-

stabilities of ZIF-8 crystal with εh, it is yet to determine if the ensuing soft

modes drive its crystal-to amorphous transition on compression. To elucidate

this, we distorted 2x2x2 strained (εh = -0.06 and -0.1) optimized supercells

(2208 atoms) of ZIF-8, a random combination of eigenvectors of the unstable

modes in their BZ (see Fig 5.5), and optimized them to their energy-minimum

until the atomic forces were smaller than 10−5 Ha/Bohr. Quite clearly, both

structures, with εh = -0.06 and -0.1, amorphize, as is evident from the fea-

tureless PDF of these structures (see Fig. 5.6a) beyond 6 Å [123], as well as

significant framework-distortion (see Fig. 5.6b). The structurally disordered

state retains the local coordination of ZnN4 tetrahedra as well as IM-ring,

but shows large deviation in the inter-tetrahedral structural parameters, that

is, Zn-Zn distance and Zn-Im-Zn angle (see Fig. 5.6c), signifying folding or

crumpling of the framework. Since the crystal-to amorphous transition with
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compressive strains is the consequence of relaxation with respect to optical

instabilities in crystalline ZIF-8, and is insensitive to pore volume, this cor-

roborates the displacive nature of transition [124, 125], involving collective

atomic rearrangements.

Ball-milling and nano-indentation of ZIFs have been associated with shear

instability [53], as well as structural anisotropy [81]. Shear instability appears

in ZIF-8 at εh = -0.035 (see Fig. 5.4). To understand relative contribution of

hydrostatic and shear strains to amorphization during the ball-milling pro-

cess, we first examined the structural features of the ball-milled am-ZIF-8

structure, modeled using Reverse Monte Carlo (RMC) method [50] with a

box of 50.303 Å containing 512 ZIF-8 formula units (f.u.). Clearly, density

of this structure corresponds to effective εh ≈ -0.13 w.r.t pristine, p-ZIF-8

(12 f.u., ao = 16.998 Å), suggesting significant reduction in porosity during

amorphization. Atomic structure of a-ZIF-8 involves large deviation in Zn-N

bond lengths and N-Zn-N bond angles (Fig. 5.7) with respect to crystalline

ZIF-8, indicating significant distortions of the ZnN4 tetrahedra, in addition

to large deviation in the network connectivity. Large asymmetry in distri-

bution of Zn1-N-Zn2 angles indicates shear deformation during ball-milling,

in addition to compressive strains. This prompted us to analyze the struc-

tural changes in the relaxed (2 x 2 x 2) ZIF-8 cell, compressed with varying

rhombohedral shear strains (εr), and distorted with respect to soft unstable

modes.

Since the modeled structure has significantly high density, we considered

compressive strains εh = -0.06, -0.1 and -0.14, each deformed with εr = 0.06.

Structural features of the distorted configurations (Zn-N bond lengths and
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Figure 5.6: Structural signatures of amorphization of ZIF-8 on hydrostatic
strains, εh =-0.06 and εh =-0.1: (a) structure of amorphous ZIF-8 with εh =-
0.1, distorted (2 x 2 x 2) cell relaxed with respect to unstable phonons across
the BZ, (b) PDF of amorphous structures exhibit short-ranged coordination
environment of ZnN4 tatrahedra and IM-rings, while loss of long-range order.
Structurally, this is evident in large variations in Zn-Zn distances and Zn-
Im-Zn framework angles, (c).
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N-Zn-N angles) are obtained after their energy-optimization, and compared

with the modeled a-ZIF-8 structure through RMC method (see Fig. 5.7).

Interestingly, the compressed structures with large densities, εh = -0.1 and

-0.14 show significant spread in Zn-N bond lengths and N-Zn-N angles, and

are in better agreement with the a-ZIF-8 than the structures encasing a

combination of hydrostatic and rhombohedral shear strains (Fig. 5.7). This

indicates that destabilization of ZIF-8 is driven by spatially inhomogeneous

shear deformation or sliding of different regions of the crystal with respect to

each other, which originates from instability of transverse acoustic phonon

bands at the zone boundaries (see Fig. 5.5b) [138,139]. Rhombohedral shear

strains give rise to lower-symmetry distorted crystals at large |εh|, as evident

from sharp features in the distribution of Zn-N bond lengths in configuration

with εh = -0.14 and εr = 0.06.

In conclusion, we have demonstrated the inherent non-linear elastic be-

havior of ZIF-8 due to higher-order moduli in its elastic strain-energy with

respect to hydrostatic (εh) and rhombohedral shear (εr) strains, and cou-

pling between long-wavelength TA and LA phonons. We show that ZIF-8

undergoes a shear instability (i.e. negative C44) arising from higher-order

mixed elastic moduli, and dynamical lattice instability emerging from nega-

tive slope of transverse phonon at hydrostatic strain εh ∼ -0.04. Distortion

of (2 x 2 x 2) supercells with randomized eigen-vectors of unstable phonons

results in disruption of its long-range order leading to amorphization of ZIF-

8 at large compressive strains. Densified a-ZIF-8 structure, modeled with

RMC approach, shows good agreement with compressed distorted structure



5.2 Results and Discussion 88

1.8 2 2.2
b(N-Zn)

0

6

12

18

24

30

Modelled (RMC)

ε
h
 = -0.06, ε

r
 = 0.06

ε
h
 = -0.10, ε

r
 = 0.06

ε
h
 = -0.14, ε

r
 = 0.0660

120

180

ρ
(b

(N
-Z

n
))

4 4.8 5.6 6.4

1.8 2 2.2
b(N-Zn)

0

6

12

18

24

30

Modelled (RMC)

ε
h
 = -0.06

ε
h
 = -0.10

ε
h
 = -0.1460

120

180

ρ
(b

(N
-Z

n
))

4 4.8 5.6 6.4

60 80 100 120 140 160
N-Zn-N angles

0

0.02

0.04

0.06

0.08

0.1

ρ
(N

-Z
n
-N

)

Modelled (RMC)

ε
h
 = -0.06, ε

r
 = 0.06

ε
h
 = -0.10, ε

r
 = 0.06

50 75 100 125 150
N-Zn-N angle

0

0.02

0.04

0.06

0.08

ρ
(N

-Z
n
-N

)

Modelled (RMC)

ε
h
 = -0.06

ε
h
 = -0.10

ε
h
 = -0.14

(b)

(a) (c)

(d)

Figure 5.7: Distributions of structural parameters, Zn-N bond lengths (top
panels) (a),(c) and N-Zn-N bond angles (bottom panels) (b),(d) of amor-
phized ZIF-8 upon ball-milling as modeled using RMC approach and com-
parisons with ZIF-8 structures simulated with (2 x 2 x 2) cells encasing
varying degree of strains, and internal distortions



5.2 Results and Discussion 89

devoid of homogeneous shear strains εr, clearly indicating that spatially-

heterogeneous, cooperative shear-sliding results in structural disorder, and

eventually in amorphization of ZIF-8.



Chapter 6

Boson Peak in crystalline

frameworks: A not-so-peculiar

feature of glasses

6.1 Introduction

Deviation from T3 dependence of specific heat capacity C(T) of insulators

at very low temperatures (T ∼ 1 - 10 K) has been considered as a charac-

teristic of amorphous (disordered) and glassy systems, with respect to their

crystalline counterparts [140,141]. In accordance to Debye model of specific

heat, density of vibrational states g(ω) ∝ ω2 results in C(T) ∝ T3. Spectro-

scopic analysis of excess of low-energy excitations over Debye-type vibrations

(i.e. collective modes reminiscent to sound waves in a medium) represents a

peak in reduced density of states g(ω)/ω2 at low ω, that manifests as a peak

90
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in C(T)/T3 at low-T in the calorimetric analysis. Boson Peak (BP) is a com-

mon reference to deviation from Debye law in glasses or amorphous systems.

This peculiar feature was first observed as associated with a broad band

(ω ∈ 30-120 cm−1) in the Raman spectrum of fused quartz [142]. Crystals,

however, exhibit acoustic excitations with linear dispersion ω ∝ |k| relation

for ω < 1 THz and thus follow Debye model for thermal heat capacity (C

∝ T3). Unraveling the origin of excess vibrational modes at low frequencies

that appear in glass and amorphous systems has been an active area of re-

search for quite a long time. Earlier studies have attributed the low-energy

modes in glasses to lattice disorder; positional or orientational [143–146], and

librational or floppy modes [147–149]. Dynamics of glassy states has been

associated with transition in the nature of transverse acoustic phonons from

propagating to localized (or diffusive), that is, Ioffe-Regel limit [150], or an-

harmonic phonon-phonon interactions leading to acoustic damping [148,151].

Low-energy modes of disordered states (glass or amorphous) that dom-

inate their thermodynamic properties at low-T (T ∼ 1 - 10 K) are largely

associated with two distinct regimes of phonon spectrum of their crystalline

forms: (a) localized nature of soft vibrational modes, for instance, libera-

tions of rigid tetrahedra in SiO2 glass at large wave-vectors ~q (|~q|> 1.5-2

Å−1) [152], (b) scattering of acoustic modes of the crystal by structural inho-

mogeneities that appear beyond a coherence length in glasses [139,153]. The

former are optical phonons with their softness originating from geometry and

short-range order of the crystalline phase, the latter arises from structural

disorder of the glass that couples with sound waves in the low-q region (or

long wavelength limit).
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Due to symmetry and periodicity of a crystal and an underlying Brillouin

Zone (BZ), frequency dispersion ω versus |q| exhibits extrema or saddle

points at BZ boundaries [154], that manifest as singularities in density of

vibrational states g(ω) versus ω. Recently, signatures of BP in glasses were

shown to be equivalent to van Hove singularity of the crystalline phase with

the same chemical composition [58, 155]. This equivalence has been associ-

ated with lower packing-density of a glass [155] and is achieved by tuning

the lattice dimension of the considered poly-crystal. While low-frequency

phonons that constitute BP in glasses may resemble certain attributes of

crystals, viz. van Hove singularity, elastic damping [156], broken inversion

symmetries [157], we show here that the nature of atomic vibrations associ-

ated with BP is, by no means, universal [58,150,156].

6.2 Results and Discussion

We first present a rather generic appearance of Boson Peak, both in reduced

density of vibrational states g(ω)/ω2 versus ω and C/T 3 versus T at very

low-T, in a class of ordered crystalline materials, metal-organic frameworks

(MOFs). Through analysis of vibrational spectra of two model systems,

MOF-5 and ZIF-8, within harmonic approximation, we show that BP is a

characteristic vibrational feature of low-frequency vibrations at nanometer

length scale, regardless of the degree (or nature) of disorder. Through anal-

ysis of phonons that contribute to BP in two crystals with distinct chemical

and topological characteristics, our work provides evidence that disproves

the notion that Boson peak is a peculiar feature of glasses or amorphous
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systems. We highlight that coupling of acoustic phonons with low-frequency

optical modes give rise to resonance and formation of composite vibrational

modes at BZ boundaries, with ∂ω
∂q
→ 0 and hence large contributions to BP.

These modes exhibit both localized vibrations as well as cooperative rear-

rangements, depending on the structural topology. Further, mapping of the

BP to van Hove singularity that corresponds to softest acoustic modes of the

crystalline phase may be erroneous, since multiple soft-phonon bands may

constitute the BP at low temperatures.

Structurally, MOFs consist of chemical polyhedra (tetrahedra or octahe-

dra) centered at metal ions, connected by organic linkers, forming a rela-

tively large unit cell, that hosts a multitude of internal degrees of freedom

(optical phonons). With linear dimension of unit cell over 1 nm, the wave-

vectors corresponding to the boundaries of their first BZ are about an order

of magnitude lower than most simple systems, and is about 0.5 Å−1. This

momentum vector |~q| is comparable to magnitude of scattering vectors Q in

inelastic X-ray or neutron scattering experiments on thermal properties of

glasses, and correspond to acoustic attenuation (or scattering) by structural

inhomogeneities [158]. Understanding the structural and dynamical features

of glasses at the nano-metric length-scale pose a challenge since in this region

wave-vector selection rules are not obeyed [159]. The vibrational modes of

glasses with q < qc appear as a broad peak in g(ω)/ω2 at low ω, thus masking

their spectroscopic signatures. Therefore, study of vibrational properties of

MOFs have a natural advantage in terms of wave-vectors quite relevant to

the coherence length ζc (about a nano-meter) of glasses.
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Atomic structures and crystal symmetries of MOF-5 and ZIF-8 are de-

tailed in Chapter 1. Our calculations are based on density functional theory

(DFT) and plane-wave pseudo-potential method as implemented in Quan-

tum Espresso [160]. Electronic exchange-correlation energy is treated us-

ing generalized-gradient approximation as parameterized by Perdew-Burke-

Ernzerhof [161], and the ionic core-valence electrons interactions are modeled

with ultra-soft pseudopotentials. Kohn-Sham wave-functions are expanded

in plane-wave basis truncated at energy cutoff of 580 eV. Integrations of

Brillouin Zone are performed on a uniform 2 x 2 x 2 mesh of k-points.

Variable-cell optimization of the two MOFs is carried out until the Hellman-

Feynman forces on each atom are lower than 0.001 eV/Angstrom and normal

components of stress becomes ∼ 0.01 kBar. Force-constant matrix, within

harmonic approximation, is obtained with frozen-phonon method, while em-

ploying symmetry constraints to reduce the number of inequivalent atomic

displacements in the cell. Normal-mode frequencies at arbitrary wave vectors,

and the phonon dispersion are obtained using Phonopy code [101]. From the

vibrational DoS g(ω), obtained by computing frequencies of modes on a fine

q-mesh (21 x 21 x 21) in the first Brillouin Zone, we determine reduced DoS

(g(ω)/ω2) as well as temperature-dependent heat capacity C(T) of system of

N atoms [162] within harmonic approximation, using:

C(T ) = 3NkB∆ω
∑
{w}

[(
hω

2kBT

)2

sinh−2
(

hω

2kBT

)
g(ω)

]
(6.1)

Here the frequency interval ∆ω = 0.0299 THz (i.e. 1 cm−1) and g(ω) follows

the normalization condition
∑
{w} g(ω)∆ω = 1, NMOF−5 = 106 and NZIF−8
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= 138.

Phonon dispersion of the MOFs viz. MOF-5 and ZIF-8 show multi-

tude of modes at sub-THz frequency (Figure 6.1a,b) that manifest as peaks

in g(ω)/ω2 (Figure 6.1c), and result in a peak in C(T)/T3 at low T (see

inset of Figure 6.1c). While BP is generally absent in most crystalline

solids, it is observed in framework materials like MOFs [163], for instance,

[(CH3)2NH2]Zn(HCOO)3 at T ∼25K. Its presence is typically associated

with order-disorder structural transitions or inherent glassy behavior of MOFs

[163]. In contrast to a single Lorentzian-type peak at low frequencies seen in

the reduced density of states g(ω)/ω2 of glasses at very low frequencies upto

∼1 THz (Fig.1 in Ref. [144]), g(ω)/ω2 of MOFs exhibits several such peaks

with reduced intensities at higher ω (Figure 6.1c). Indeed, C(T )/T 3 vs. T of

MOF-5 obtained using TGA-DSC technique (Fig. 2 of Ref. [164]) provides

an experimental evidence for excess heat capacity over that of Debye model,

though at slightly higher temperatures, T > 30K. Interestingly, the intensity

of strongest peak in C(T)/T3 of MOFs is about an order of magnitude larger

than in metallic glass or disordered high-entropy alloy [144].

In MOF-5, the first BP in g(ω)/ω2 emerges from the saddle point of softest

TA phonons at the BZ boundary, as well as flat optical branches (independent

of |q|) that collectively give rise to a prominent van Hove singularity in g(ω)

[154]. Couplings between the Γ-X TA branch and localized optical modes give

rise to resonance and formation of composite modes at the BZ boundary with

ω ∼ 0.72 THz. This is evident from the similar character of vibrations at X-

point (edge of softest TA branch) and soft optical mode with ω ∼ 0.75 at the

Γ-point, both with quasi-localized, non-propagating atomic displacements
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Figure 6.1: Low-ω vibrational spectra of MOF-5 and ZIF-8 and Boson peaks:
(a) low-frequency phonon dispersion of MOF-5 exhibits flat non-dispersive
phonon bands with ω < 1 THz. Softest acoustic branch along Γ-X couples
with optical branches leading to composite (or hybridized) modes at BZ
boundary. (b) phonon spectrum of ZIF-8 shows very soft transverse acoustic
branches with comparable slopes along different crystallographic directions.
Longitudinal acoustic phonons in ZIF-8 couple strongly with dispersionless
optical phonon bands at relatively higher frequency ω ∼ 1.35 THz. (c) Low-
frequency bands in MOF-5 and ZIF8 manifest as peaks in g(ω)/ω2 at very
low-ω, as well as a peak in C(T)/T3 at low-T (see inset), providing evidence
for occurrence of BP in crystalline MOFs.
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(a) (b)

Figure 6.2: Low-frequency localized vibrations in MOF-5: (a) a composite
mode at X-point arising from coupling of softest transverse acoustic modes
along Γ-X with flat optical bands at the X-point, which exhibits buckling of
benzene rings in the equatorial plane, (b) optical mode at Γ-point with ω ∼
0.72 THz, involving linker rotation.

(see Fig. 6.2). These modes exhibit buckling [165] and rotation, respectively,

of benzene rings in the equatorial planes of carboxylate-octahedra, while the

rings along the axial direction of the octahedra remain stationary. Similar

rotational oscillations associated with low-energy intra-molecular modes have

been reported in single crystal 2-bromobenzophenone (2-BrBP) [166], that

exhibit deviations from T3 dependence of C(T) at very low-T.

Higher-frequency modes, peak B in Fig. 6.1c, at ω ∼ 1.4 THz, repre-

sent asymmetric buckling or rotations of linkers (see Fig. 6.3), former being

reminiscent to vibrations observed in network glasses [165]. This peak, sig-

nificantly smaller in intensity, emerges primarily from the superimposition

of acoustic branches at multiple zone boundaries (See Fig. 6.1a) with a

nearly-flat optical band. To understand the relative contribution of each
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peak in g(ω)/ω2 of MOF-5 to the height of BP in C(T)/T3 over the higher-

frequency Debye modes, we computed C(T)/T3 versus T excluding the acous-

tic branches below the van Hove singularity (ω > 0.55 THz), the dominant

peak (ω > 1.0 THz), and the second peak (ω > 2.0 THz) (see Fig. 6.4a).

The acoustic branches with ω < 0.55 THz have negligible contribution to BP

in C(T)/T3, as evident from the comparable values of C(T)/T3 correspond-

ing to ω > 0 and ω > 0.5 THz. While the most dominant peak in g(ω)/ω2

(peak A in Fig. 6.1a) gives rise to a sharp peak in C(T)/T3 at low-T, one-

sixth of the height of C(T)/T3 is contributed by high-frequency modes (1.0<

ω < 2.0 THz) (see Fig. 6.4a)! This clearly suggests that strong coupling of

acoustic phonons with low-energy dispersion-less optical modes is responsible

for a Boson Peak in C(T)/T3 of certain crystals, like MOF-5 in the present

case. Contribution of higher-frequency modes to the BP of MOF-5 reinforces

that van Hove singularity, which is the discontinuity in g(ω) emerging from

the softest acoustic phonons at a BZ boundary and soft flat dispersion-less

phonons throughout the BZ [154], is inadequate in explaining the origin of

BP in crystals. Moreover, correlation of BP with the van Hove singularity,

as proposed in Ref. [58], arises primarily from the cell-dimension of the poly-

crystal, about a nano-meter, that corresponds to relatively small wave vectors

at the BZ boundary |q|∼ 0.4-0.8 Å−1, quite relevant to thermodynamics of

glassy and amorphous system at low-temperatures [158].

In ZIF-8 crystal, multiple peaks appear in g(ω)/ω2, the strongest one

occurring at vanishingly low ω ∼ 0.4 THz (see Fig. 6.1c). These excess

low-frequency modes collectively give rise to a peak in C/T3 at low-T (see
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(a) (b)

Figure 6.3: Relatively higher-frequency vibrations of MOF-5 (1.25 < ω <
1.5 THz): (a) ω ∼ 1.37 THz involving asymmetric buckling, and (b) ω ∼
1.30 THz involving asymmetric rotation of benzene linkers about the sec-
ondary building unit represented by the eigen-modes at the Γ- and L-point
respectively.

Fig. 6.1c). The first two peaks (peak I and II in Fig. 6.1b) originate primar-

ily from flattening of acoustic branches on the boundaries of BZ, the third

peak (peak III) emerges from coupling of longitudinal acoustic branches with

a dispersion-less optical branch, and the fourth peak (peak IV) represents

relatively higher-frequency flat optical bands over the entire BZ. Acoustic

phonons softer than the most dominant peak in g(ω)/ω2 (ω < 0.32 THz),

exhibit a noticeable contribution to heat capacity, about half the height of

C(T)/T3 at low-T (see Fig. 6.4b). High-frequency peaks, however, con-

tribute marginally to BP in C(T)/T3, that is, less than one-tenth of the peak

height arises from modes with ω > 1.1 THz. This indicates that ZIF-8 derives

its BP primarily from very low-frequency transverse acoustic (TA) phonons,
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Figure 6.4: Contributions of low-energy acoustic and optical modes to BPs
in: (a) MOF-5, where acoustic branches do not contribute to the peak in
C(T)/T3 at low-T, while modes that constitute first and the second peaks in
g(ω)/ω2 give rise to BP in C(T)/T3, in the ratio of 5:1. (b) ZIF-8, where the
acoustic branches with frequencies less than the van Hove singularity (ω <
0.32 THz) have a noticeable contribution to the peak in C(T)/T3, as evident
from the difference between the heights of peaks corresponding to ω > 0 and
ω > 0.32 THz. In addition, soft modes with 0.32 < ω < 1.0 contribute to
BP, while higher-energy modes of ZIF-8 (ω > 1.0) essentially follow Debye
model.

in contrast to MOF-5. Since acoustic phonons in different crystallographic

directions at |~k|→ 0 and at the BZ boundaries collectively contribute to the

peak in C/T3 at low T, the Boson peak of ZIF-8 has a multi-scale origin:

(a) from acoustic modes in the long-wavelength limit, and (b) structural

inhomogeneities at length scales of the order of unit-cell dimensions.

The softest TA modes at N-point of the BZ of ZIF-8 (Fig. 6.1b) represents

stratified chain-like atomic motions (see Fig. 6.5a) along the periphery of its

square- and hexagonal-channels, separated by regions of very small atomic

displacements. These resemble coherent atomic vibrations that constitute a

BP in B2O3 glass [167], as well as shear bands in glasses that are responsi-

ble for their structural instability in response to external strains [168]. At
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(c)(b)(a)

Figure 6.5: Nature of atomic vibrations of very low-frequency modes that
constitute Boson peak of ZIF-8: (a) mode at N-point (ω ∼ 0.37 THz) shows
shear bands, separated by atoms with very small atomic displacements, (b)
mode at H-point (ω ∼ 0.51 THz) exhibits rippling, buckling, in-plane dis-
placements and distortions of IM linkers about stationary metal centers, and
(c) mode at H-point (ω ∼ 0.75 THz) exhibits cooperative motions of atoms
in small regions of the crystal that slide with respect to each other.

H-point, the TA phonons exhibit rotations or rippling of organic linkers (IM

rings) with respect to the stationary metal-ions (positioned at the center

of Zn-N4 tetrahedra) (see Fig. 6.5b). An optical-mode at the Γ-point with

slightly higher frequency (ω = 0.75 THz) (Fig. 6.1b) shows regions of cooper-

ative atomic motion resulting in spatially-inhomogeneous shear deformation

(see Fig. 6.5c) [139]. Nature of soft lattice vibrations of ZIF-8 suggests

its tendency to undergo disordering through incoherent motion of IM-rings

about the metal ions, or sliding of different regions of the crystal with respect

to each other.

In conclusion, we demonstrate Boson peak(s) in crystalline metal-organic

frameworks, (MOFs), that manifest as (a) a peak in C(T )/T 3 at very low-T,

and (b) multiple peaks in reduced density of states g(ω)/ω2 at low-ω through

analysis of two model MOFs: MOF-5 and ZIF-8. Lattice vibrations associ-

ated with BP of MOF-5 represent composite modes resulting from strong



6.2 Results and Discussion 102

couplings between quasi-localized acoustic branches at the BZ boundary and

localized non-dispersive optical phonons. In ZIF-8, however, BP emerges

from shear modes, as well as buckling or rippling of IM-ring about the metal

centers. This elucidates that vibrational modes that constitute the BP are

not quite universal, and strongly depend upon the underlying topology and

chemical interactions in the crystal. While BP was attributed to low-ω van

Hove singularity in crystals in earlier studies, our work shows that it origi-

nates from soft acoustic modes, flat (non-dispersive) optical phonons, as well

as relatively higher-frequency vibrations (1 < ω < 2 THz), indicating that

multiple strong discontinuities in the density of states g(ω) at low ω can, in

principle, constitute BP, and give rise of deviations of C(T) from the Debye

model.



Chapter 7

Ambient stable tetragonal and

orthorhombic phases in

penta-twinned bipyramidal Au

microcrystals

7.1 Introduction

Noble metals, namely Ag, Pt and Au, exist in the fcc crystal structure. In

recent years, they are increasingly being synthesized and stabilized in various

morphologies, namely nano-ribbons, nano-wires, nano-sheets, nano-crystals

or nano-tubes, for potential applications in catalysis, optics and plasmon-

ics [169–172]. These morphologies belong to distinct symmetry classes, for

instance, cubic, icosahedral [170], decahedral (or pentagonal bi-pyramidal)

103
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[169], or do-decahedral [171], and exhibit significant differences in their sur-

face area-to-volume ratios, degrees of locked-in stresses, and structural stabil-

ity. With lateral dimensions in nano-scale, nano-wires or nano-sheets exhibit

structural stresses [173], which tend to stabilize either through fragmentation

or anisotropic growth into crystallites with larger sizes.

In particular, nano-particles with decahedral geometry are quite inter-

esting [169]. While the cubic fcc/hcp structure has 6-fold symmetry of the

(111) plane, the decahedron has planes with 5-fold symmetry representing

spatially inhomogeneous atomic coordination at its base [174]. Stacking of

these planes results in a configuration of quin-tupled twins intersecting along

a single axis, giving rise to inherent stresses, that manifest as elastic strains

in a structure with respect to the ground-state fcc configuration. The build-

ing unit of the decahedron crystallite is thus a body-centred orthorhombic

(bco) phase [175], in contrast to body centred tetragonal (BCT) with c/a =
√

2 in the cubic fcc crystal.

Growth of decahedral nuclei along [011] into a nano-wire with lateral

dimension in a few nano-meter and length about a few micro-meters stabilizes

non-fcc phases, that appear as varying degree of strains in the core and

surface region [176]. The spontaneity in deposition of subsequent shells of

atoms in kinetically-driven growth is primarily to neutralize surface charges

by accommodating addition atoms. In contrast to annealing of crystals,

that results in enhanced ductility, nano-wires have been shown to exhibit

fragmentation to nano-rods. This suggests that surface stresses in nano-sized

nuclei act as glue for the layer-by-layer growth of penta-twinned crystallites.

In recent years, science and art of tuning the crystal-growth kinetics
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relevant to unconventional morphologies and exploring the metastability of

non-fcc phases of Au has fascinated our experimental collaborators, Prof. G.

U. Kulkarni and group. A series of systematic studies on synthesis and char-

acterization of pentagonal bipyramidal crystals of Au with length-scales in

micron and lateral dimension ∼200-250 nm [177], have led to extraordinary

stabilization of bc(o,t) phases of Au. This has extended the science of uncon-

ventional pseudo-symmetric crystals to a realm of length-scales where surface

and elastic effects can co-exist, and allow structural strengthening while re-

taining the lucrative surface properties of the nano-crystals. In the present

work1, studies carried-out by Prof. Kulkarni’s group demonstrated that the

penta-twinned structure of the Au microcrystals [177] hosts bc(o,t) phases in

the core, while being enveloped by high-index corrugated facets (hk0) (h or

k > 2) along the length, and (111) closed-packed fcc at the tips. The non-fcc

phases in Au bipyramids are highly stable in the ambient conditions. While

they are stable under e-beam exposure, the strains in bipyramids could be

released by annealing at elevated temperatures with minimal change in mor-

phology. Stabilization of non-fcc phases in Au microcrystallites is sensitive

to the kinetics of reaction, and favored within the temperature range 200-

250o. Within this range, the rate of thermal annealing is lower than the

speedy growth of the microcrystallites resulting in strains locked in the form

of non-fcc phases. Here, we present a first-principles theoretical analysis

of the stability of non-fcc phases as indexed from the XRD-powder pattern

1Ambient stable tetragonal and orthorhombic phases in penta-twinned
bipyramidal Au microcrystals,

Gangaiah Mettela, Meha Bhogra, Umesh V. Waghmare, and Giridhar U. Kulkarni
Journal of the American Chemical Society 2015 137 (8), 3024-3030
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of Au-microcrystallites. From the estimation of temperature-dependent free

energies of elastic distortions in the fcc structure, we confirm the presence

of such phases and also present a soft mode-based model that captures the

trends in the stability of non-fcc phases of noble metals, in general.

Our calculations are based on first-principles density functional theory

(DFT) as implemented in Quantum Espresso (QE) package [160] with Perdew-

Zunger functional [178] of the exchange-correlation energy approximated

with a local density approximation (LDA). The interaction between ionic core

and valence electron is represented with projector augmented wave (PAW)

method [179]. Plane-wave basis set is truncated with an energy cutoff of 40

Ry in the expansion of KohnSham wave functions (and a corresponding cut-

off of 400 Ry for charge density), and integrations over Brillouin Zone (BZ)

are sampled with a uniform (24 x 24 x 16) k -mesh for the bct type of unit

cell.

The elastic constants of fcc Au were calculated from strain-energy as:

Cij =
1

Vo

∂2Etotal
∂εiεj

(7.1)

where Etotal is the total energy, Vo is the volume of unit cell and εi is a strain

component in Voigt notation. For normal strains, the elastic compliance

matrix with cubic symmetry is written as:

C =


C11 C12 C12

C12 C11 C12

C12 C12 C11

 (7.2)
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with C11 and C12 as independent constants. Dynamical matrices (DMs) and

phonon frequencies are obtained using the DFT linear response method [102]

on a uniform (4 x 4 x 2) mesh of q-points, which are Fourier-interpolated to

wave vectors on a finer mesh used in determination of Helmholtz free energies

as a function of temperature within a harmonic approximation:

Fvib = Etotal +
kBT

Nq

∑
q,i

log

[
2 sinh

(
h̄wiq
2kBT

)]
, (7.3)

where Nq is the number of q-points on (20 x 20 x 12) mesh in the BZ, and

ωiq is the frequency of ith normal mode at a wave-vector q.

XRD peak analysis revealed the presence of non-fcc phases with compres-

sion along c-axis and expansion along a and b axes. In the bct form of fcc

lattice, a′ = b′ = a/
√

2 and c′ = c, where a, b, and c are the lattice param-

eters of fct. In fcc structure, c′/a′ =
√

2. Experimentally obtained lattice

parameters of the bct structure are, a′ = b′ = 2.9062Å and c′ = 4.0503Å

with c′/a′ = 1.394 (deviation of -1.44% from the fcc structure). The indexed

lattice parameters of bco structure are a′ = 2.9165Å, b′ = 2.8907Å, and c′ =

4.0337Å with c′/a′ = 1.383 and c′/b′ = 1.395, with strain along the a-axis

slightly higher than that along b. The bct volume is ∼0.62% higher, while

that of bco is higher by only 0.03% with reference to the unstrained bct (c′/a′

=
√

2) structure.
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7.2 Theroretical Analysis

We analyzed the non-fcc (bct and bco) phases of Au-microcrystallites treat-

ing them as strained forms of the fcc structure. The structural response

governing these small strains (within 2%) is determined by elastic moduli

(see Table 1) of fcc Au. Our calculated estimates of C11 and C12 for Au are

210 and 177 GPa respectively, which are in good agreement with the corre-

sponding observed values of 202 and 170 GPa [180]. The value of C11−C12

C11+2C12
,

which measures the propensity to undergo tetragonal distortion over uniform

compression is very small (= 0.058) for Au, suggesting that Au has a ten-

dency to exhibit fcc to bct transformation in the presence of normal strains.

A higher value of C44 (45 GPa) as compared to C11 − C12 (also referred to

as C ′) further suggests the preference for deformation through tetragonal

strains (εxx, εyy, εzz) over shear strains (εxy or εyz). For Au, the eigenvalues

of elastic constant matrix C (Equation 7.2) are λ = {542, 32, 32} GPa, and

the eigenvectors of λ = 32 GPa give two soft modes of deformation of the

fcc Au: ~d1 = εxx = εyy = −( εzz
2

) and ~d2 = εxx = −εyy, εzz = 0. The former

results in a bct, while the latter (or a linear combination of the two) results

in a bco structure.

We determined the energy landscape of bct and bco structures obtained

by imposing normal strains εxx, εyy and εzz ∈ [-0.01, 0.01]. The bct structure

with strain along the soft mode ~d1 is a local minimum of energy as a function

of εxx and εyy at a given εzz, and is within 0.5 meV/atom relative to fcc Au

(c′/a′ =
√

2) (See Fig. 7.1). Such a small energy difference suggests that

certain bct configurations can become energetically favorable in the presence
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of internal geometric strains emerging from constrained morphology of the

particle. Further, the energy landscape for strains εxx = εyy at εzz = 0 is

rather shallow and exhibits local minima near εxx = -εyy with ∆E ≤ 1.0

meV/atom. For εzz 6= 0.0, the bco configurations resulting from deformation

~d3 = p~d1 + q ~d2; p, q ∈ Z (Z being an integer) have lower energies than the

other bco structures, such as the bco structures with εxx = 0.006, εyy = 0.002,

εzz = -0.008 and εxx = -0.008, εyy = -0.002, εzz = 0.01 (See Fig. 7.1). The

aforementioned analysis shows that the structures resulting from imposed

strains along ~d1, ~d2 or ~d3 have lower energies at 0K than the other strained bct

and bco configurations (including the ones observed in Au microcrystallites).

Analysis of vibrational spectra of the strained configurations supports the

observation of non-fcc (bct and bco) phases with c′/a′ <
√

2 in Au microcrys-

tals (See Fig. 7.2). Configurations with strains along ~d1, bct I (εxx = 0.006,

εyy = 0.006, εzz = -0.012) and bct II (εxx = -0.006, εyy = -0.006, εzz = 0.012),

show softening of the longitudinal acoustic (LA) modes (Mode I in Figure

7.2b) along Γ-S (1/2,1/2,0) in bct I and hardening in bct II, suggesting pos-

sible stabilization of bct I (with negative εzz) through thermal fluctuations in

the a′− b′ plane. Deformation ~d2 present in bco I (εxx = 0.005, εyy = -0.005,

εzz = 0.0) preserves the volume of fcc structure and thus shows negligible

changes in the vibrational spectra.

The observed non-fcc phases, bct III (εxx = 0.007, εyy = 0.007, εzz =

-0.008) and bco II (εxx = 0.011, εyy = 0.002, εzz = -0.012) with c′/a′ <
√

2

exhibit significant softening of LA mode along Γ-S and transverse acoustic

(TA) modes along Γ-T (1/2,0,1/2) and Γ-U (0,1/2,1/2) directions (Figure

7.2d), indicating their stabilization through shear strain (εxz) fluctuations.
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Figure 7.1



7.2 Theroretical Analysis 111

Figure 7.1: (contd) Energy landscapes of strained non-fcc (bc(o,t)) configu-
rations at different εzz values: (a)-(e) εzz < 0.0, (f) εzz = 0.0 and (g)-(k) εzz
> 0.0



7.2 Theroretical Analysis 112

Figure 7.2: Phonon spectra of fcc, bct I and bct II configurations, (b) eigen-
vectors of low-energy acoustic modes at S(1

2
,1
2
,0) point (mode I softens in bct

I and hardens in bct II), (c) eigenvectors of low-energy transverse acoustic
modes at T(1

2
,0,1

2
) point, (d) phonon spectra of bct III and bco II, (e) phonon

density of states (v-DoS) of non-fcc configurations compared with that of fcc
Au, and (f) vibrational contribution to free energies of non-fcc configurations
with reference to the fcc structure of Au at finite temperatures.

In addition, bct III shows softening of high-energy optical modes (120-160
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cm−1). An increase in the number of low-frequency modes of non-fcc config-

urations with c′/a′ <
√

2 (bct I, bct III and bco II) and decrease for c′/a′ >
√

2 (bct IV: εxx = -0.007, εyy = -0.007, εzz = 0.008) are evident in density of

vibrational states.

The contribution of soft vibrational modes (Figure 7.2d) to free ener-

gies of the non-fcc configurations is significant and stabilizes them at finite

temperatures (T > 300 K ), supporting the occurrence of certain bct and

bco phases (bct III and bco II) in geometrically strained Au microcrystallites

through thermal activation (see Figure 7.2f). This is in contrast to the bct

IV configuration (c′/a′ >
√

2) which destabilizes with temperature, clearly

showing a strong effect of c′/a′ ratio on the stability of strained phases. The

free energies of configurations with strains along ~d1 and ~d2 remain essentially

unchanged by thermal effects. This can be traced to significantly smaller

stresses in the configurations obtained with ~d1 and ~d2 modes of deformation,

but higher induced stresses in bct III, bct IV and bco II structures (σxx of

-1.3, 1.5, and -0.8 GPa respectively). Thus, the induced deviatoric stresses

are relevant to thermal stabilization of non-fcc phases of Au with (c′/a′ <
√

2).

Annealing at elevated temperatures releases the internal stresses in Au

bipyramids through relaxation of strains associated with the bct and bco

structures. Within the elastic range, the smaller the induced stresses, the

slower is the rate of relaxation of strains [181]. Thus, reduction of non-

fcc phases to fcc Au on annealing occurs at relatively high temperatures

(∼500oC).

The relevance of vibrations to non-fcc phases of Au was noticed earlier.
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Table 7.1: Coefficients of terms relevant to time-temperature relationship

Metal C11 (GPa) C12 (GPa) C44 (GPa) C11-C12 (C ′) (GPa) C11−C12

C11+2C12

Au 210 177 45 33 0.058

Ag 132 97 51 35 0.107

Pd 234 176 72 58 0.098

Pt 358 254 77 104 0.120

Note: The values in bold are determined in the present work.

Soft vibrational modes identified here constitute elastic signatures relevant

to fcc to non-fcc phase transition, which capture the trends in the stability

of non-fcc phases in other noble metals. The lowest value of C11−C12

C11+2C12
for Au

(0.058) indicates its stronger tendency to undergo tetragonal (or orthogo-

nal) distortion over uniform compression, when compared with other noble

metals, namely, Ag, Pd, and Pt (see Table 1) [180]. Comparable values of

C11 − C12 or C ′ for Au and Ag suggest a feasibility of tetragonal phase in

both these metals for small structures, consistent with the occurrence of bct

phase in Ag nanowires observed at ambient pressure. Lastly, higher shear

elastic constant C44 of Ag, Pd, and Pt as compared to Au further suppresses

the thermal stabilization of their non-fcc phases due to weaker contribution

of the transverse (or shear) acoustic modes to free energy.

In conclusion, theoretical calculations elucidate temperature dependence

of the free energies of certain non-fcc (bct and bco) structures and highlight

the role of internal stresses and relevance of soft modes in their stabiliza-

tion. The analysis of elastic compliances reveals how C11−C12

C11+2C12
singles Au out

from the noble metals in its propensity to form bct and bco structures when

subjected to strains inherent to the pentagonal-bipyramidal morphology.



Chapter 8

Ion-irradiation induced thermal

electronic wave and

homogeneous structural

transformations of non-fcc

phases of Au microcrystallites

8.1 Introduction

Our experimental collaborators, Professor G.U. Kulkarni and group have

been involved in tuning the synthesis of unconventional non-fcc phases of

Au at the micro-scale. This has led them to achieve as high as 92% mole

fraction of non-fcc phases in pentagonal bipyramidal Au microcrystallites.

The penta-twinned structure hosts bc(o,t) phases [177] in its core [182], while

115
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being enveloped by high-index corrugated facets (hk0) (h or k > 2) along the

length, and (111) planes of closed-packed fcc at the tips. The appearance

of these metastable phases, as characterized by varying degrees of elastic

strains with respect to fcc Au has been attributed to the kinetic arrest of

residual stresses in the microcrystallites [183] during their growth in the

intermediate temperature range (∼200-250oC), essentially due to sluggish

rate of thermal diffusion. Stability of bc(o,t) phases in the microcrystallites

at ambient conditions is quite remarkable, with their unscathed existence

even after 6 years of their synthesis!

Recently, Prof. Kulkarni’s group has been exploring processes/perturbations

that may induce variations in the locked-in stresses, and either destabilize

the non-fcc phases transforming to native fcc Au or stabilize other non-fcc

configurational states in its wake. This would enable them to tailor the

phase structure opening up prospects of wider applications of Au micro-

crystallites. In the present work, they have carried out a systematic study

of time-dependent irradiation of Au microcrystallites with low-energy Ar+

ions. With ion energies (1-5 keV) typically used for cleaning surfaces in high

vacuum, they showed that the prolonged exposure results in a controlled

transformation of one metastable phase to another at the core of the crys-

tallites, from bco → bct → bct1, which differ primarily in the magnitude of

locked-in strains along the [001]-direction. In contrast to thermal annealing

that gives rise to spatially non-homogeneous elastic strains as observed from

significant XRD peak broadening (see Fig. 8.2), structural changes induced

by Ar+ irradiation emerge as uniform characteristic strains locked across the

entire microcrystallites with a thickness of ∼200-250 nm. XRD patterns of
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Figure 8.1: XRD patterns collected after Ar+ bombardment at 1.2 keV en-
ergy with emission current of 10 mA with irradiation-time. The magenta lines
show the length and at different positions width of the bipyramid. Black line
shows new shifted peaks [5].

the irradiated samples with varied time of exposure show contiguous shifts

in the (002) peak and lowering of FWHM values, indicating enhanced degree

of order in irradiated microcrystallites on prolonged ion exposure (see Fig.

8.1).

8.2 Results and Discussion

Here, we present a plausible mechanism that elucidates the ramifications of

low-energy ion irradiation on targets with dimensions larger than nano-scale,

and percolation of ion-energy beyond a few nanometers from the surface. We

propose that the transient thermodynamic state at the cascade-core interface
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Figure 8.2: (Evolution of XRD-peak widths on annealing of Au microcrystal-
lites. The peaks broaden with increase in annealing temperature, in contrast
to narrow peaks observed on prolonged ion-exposure [5].

manifests as a time-lag between heat flux and temperature-gradient, invoking

the non-Fourier mechanism of heat conduction by electrons on ion-irradiation

of Au microcrystallites. Electrons in non-equilibrium penetrate into the core

as a thermal wave at a finite speed, which is determined by the time-lag

at the cascade-core interface. Longer is the time-lag, slower is the wave.

This slow thermal wave of electrons can travel undeterred to ∼200-250 nm

into the particle, a distance significantly larger than the mean-free path of

electrons (∼40 nm) in Au. Through first-principles theoretical analysis, we

show that the hot excited electrons in the core of microcrystallites tune the

elastic strains of non-fcc phases, and explain structural changes from bct →

bct-I → fcc, as obtained from indexing of XRD powder-diffraction pattern.

Metastable bct-I structures that emerge on varied durations of ion-irradiation
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show a systematic deviation primarily in c, with minimal changes in a′ and

b′ parameters, and manifest as monotonous shifts in (002) XRD-peak posi-

tions with respect to those of un-irradiated (pristine) Au microcrystallites.

This indicates a correlation between metastable elastic strains (along [001]

in present case) and consecutive irradiation intervals, with insignificant de-

gree of random structural distortions or stochasticity in the process. Further,

shifts in (002) XRD-peaks towards lower 2θ values, with no signs of peak-

broadening suggest penetration of thermal energy into the entire microcrys-

tallite (thickness ∼200 - 250 nm) (see Figure 8.1), and minimal fraction of

energy dissipation due to phonon-phonon interactions. The effect is further

evident from the additive nature of irradiation-induced structural transitions

observed in Au microcrystallites, wherein a continuous exposure to Ar+ beam

(3 keV, 1 mA) for 65 min brings in a similar transformation as the three in-

termittent exposures at t = 10, 25 and 65 min, each separated in time by ∼8

hours [5]. “Quenching” of internal structure at each interval of Ar+ irradia-

tion, insensitive to changes at the surface due to vacuum transfer, suggests a

separation of the “core” of the microcrystallite from its corrugated surface.

This is in contrast to structural changes observed on thermal annealing,

which give rise to a broadened XRD peak (see Fig. 8.2), suggesting a rather

non-homogeneous spatial distributions of elastic strains. Disparate nature

of structural transformations in Au microcrystallites on ion-irradiation and

annealing is quite puzzling and requires a deeper understanding of the mech-

anism of heat-transfer active at very short times (of the order of 10−12 sec,

or at time-scales of electron-electron relaxation times (10−10-10−9 sec).

Thermal conductivity of metals has a contribution from heat transfer
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by its conduction electrons. Annealing at high temperatures gives rise to

enhanced activity of lattice vibrations, due to higher rate of electron-ion

collisions and reduction of mean-free path of electrons in the medium [184],

thus limiting the thermal conductivity. Heat dissipation from electrons to

lattice involves strong electron-phonon [185] interactions, resulting in greater

degree of lattice disorder in the annealed samples. This spatial disorder

appears as broad XRD peaks, with respect to as-synthesized particles.

While the understanding of structural transformations upon thermal an-

nealing is relatively straightforward, absence of peak-broadening and en-

hanced spatial homogeneity in ion-irradiated samples, with thickness exceed-

ing the mean-free path of electrons in Au by about an order of magnitude, is

quite intriguing. Further, the evolution of elastic strains along the [001] di-

rection of bc(o,t) phases, with minimal structural randomness, cannot be ex-

plained by heat-transport mechanism based on macroscopic continuum-based

Fourier diffusion model, hence a compelling need for alternative explanation.

Ion-irradiation of microcrystallites, that exhibit a corrugated surface [177]

with relatively low atomic density, would initially tend to reduce the size of

voids to recover the atomic density of Au at the surface, and subsequently

lead to rise in the number density of recoil atoms. Sluggish changes in the

core structure during the initial few minutes (∼8 min for 1.2 keV, which is

significantly shorter for higher energy ions, E > 1.2 KeV) of ion-exposure

affirm the initial preconditioning of non-closed packed surface layers. Result-

ing distortions of the lattice or displacement cascade with high defect density

near the surface (i.e. vacancies, interstitials, residual stresses) [186] leads to

diminished mean free path of electrons λ and sharp decline in their thermal
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diffusivity, by about two orders of magnitude, as seen in MD simulation of

ion-irradiation of Ag [6]. High rate of inelastic ion-target collisions [187] re-

sults in heating-up of this locally inhomogeneous region, l ion ∼10−7 cm, to

very high temperatures [188].

With the core essentially in the ambient state beneath the collision cas-

cade, large temperature-gradient across the cascade-core interface results

in a thermal discontinuity. This characterizes a transient non-equilibrium

state [189], at small time scales, wherein heat flux (q) across the interface

lags the temperature-gradient (∇T ) between the cascade and the core by

time τ . Introduction of τ in the Fourier model of heat conduction appears

as: q(r, t+τ) = −K∇T (r, t) [190], where r and t are space and time variables,

and K is the thermal conductivity of Au in the crystallite-core.

For small τ , the resulting spatio-temporal heat flux q(r,t) and tempera-

ture T(r,t) are:

q(r, t) + τ
∂q(r, t)

∂t
= −K 5 T (r, t) (8.1)

From continuity equation −∇.q(r, t) = cp
∂T (r,t)
∂t

, heat response q(r, t) in non-

equilibrium state can be expressed in terms of temperature-gradient as:

52 T (r, t) =
1

D

[
∂T (r, t)

∂t
+ τ

∂T 2(r, t)

∂2t

]
(8.2)

where, D is the thermal diffusivity of the medium, D = K/cp. Equation 8.2

has a
τ
D
∂2T (r,t)
∂t2

term added to the Fourier-diffusion equation, which signifies

transmission of waves of temperature with a speed C2 = D
τ

. If the phase-

time lag τ is finite, that is, heat flux response to a thermal discontinuity is

insufficient, the speed C of the wave is bound to decrease. Thus, hot excited
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Figure 8.3: Genesis of wave-like heat-transfer on ion-irradiation of Au mi-
crocrystallites

electrons, heated to temperature in the order of 105 K within the cascade due

to increased electron-ion coupling strength [185], travel across the interface

and permeate into the core [191] as a thermal-wave.

Heat-transfer mechanism described by the hyperbolic equation (Equation

8.2) has been shown to arise from electron-ion non-equilibrium during short-

pulse laser heating [192]. While finite velocity of heat propagation has been

observed in response to non-equilibrium state of electron-lattice system at

short-times, its genesis in non-Fourier heat transfer and wave-nature has

hitherto not been highlighted. For instance, Brorson et. al. [193] showed
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Figure 8.4: Explanation of penetration of electronic excitations farther into
the crystallites than the mean free path of electrons in Au by hyperbolic wave-

theory of heat transfer. Here, Θ(x, t) =
TEl(x,t)−T 0

El

T IEl−T
0
El

, where T 0
El is temperature

of the core electrons, and T IEl is temperature within the hot cascade, T0 = 0
K and TC = 104K, as observed in MD simulations [6]. (a) Decay of thermal
excitations at the cascade-core interface (x = 0) by varying speeds of wave-
propagation CEl. Here, CEl = vF , vF being the Fermi velocity of electrons
in Au. The penetration to farther depths is quite evident at values of CEl

that are an order of magnitude lower than vFermi. (b) For CEl = vF/25, the
time-dependence (in sub-picosecond range) of Θ(x, t), which results in wave-
fronts with decreasing magnitudes at x > 0. Non-zero height of discontinuity
up to 300 nm show the penetration of electronic excitations to this depth.
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that in an Au-film of thickness up to 300 nm, electronic excitation induced

by femto-second lasers travel at CEl ∼ vFermi (∼1.4 x 108 cm/s). In the

sub-surface of Au microcrystallites, however, very low D value of the trapped

electrons within the cascade is expected to increase the time-lag τ of the heat

flux across the interface, hence lowering the speed of emergent thermal-wave

constituting hot electrons, or CEl < vFermi (see Fig. 8.3).

Here, we first understand the evolution of electronic excitations away

from the interface (at x = 0) for varying velocities of propagation of hot

electronic wave, and obtain the penetration depth of thermal energy (Figure

8.4). Electronic heating at the surface due to ion-impact and electron-lattice

interactions has been shown to result in local TEl of about 104-105K [6,

194], while the lattice away from the surface remains essentially at ambient

temperatures. Here, we consider the distribution of fractional change in TEl,

i.e. Θ(x, t) =
TEl(x,t)−T 0

El

T IEl−T
0
El

, where T IEl and T 0
El are electronic temperatures at

the interface (x = 0) and ground-state TEl (x >> 0) respectively: T IEl = 104

K and T 0
El = 0 K. Distribution of Θ(r, t) is computed for varying speeds of

heat transfer at time t = 100 fs, using the analytical solution of Equation 8.2

obtained by Baumeister [195] et. al. (Figure 8.4a).

To further probe the spatio-temporal nature of thermal disturbance trav-

eling at finite speed, we obtain the spatial-range as well as the limiting time

of the thermal-wave to decay in an Au crystal with DAu ∼ 1.12 cm2/s (Figure

8.4b). While speeds CEl ∼ vFermi allow penetration depth ∼75 nm [193] in

∼100 fs, the wave decays beyond this thickness, that is, TEl ∼ TL. For lower

speeds, CEl ∼ 5 x 106 cm/s (or vFermi/25) for instance, the wave travels to

larger depths (∼ 300 nm) within 200 fs (Figure 8.4b). These results indeed
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indicate that heat transfer by hot electronic wave, which primarily arises from

a finite time-lag τ between the onset of heat propagation and temperature

gradient∇T at the interface, allows electronic excitations to penetrate to sig-

nificantly larger depths, as compared to the mean-free path of the electrons

in crystalline fcc-Au (∼38 nm in crystalline gold at low TL [196]) [190,197].

Lower the speed of wave CEl, farther the penetration depth. Formation of

its wave-front or temperature discontinuity for low CEl at a finite time t >

0 gives the magnitude of thermal disturbance felt at a distance x.

Additive nature of structural transformations [5], and anisotropic elastic-

strain response on ion-irradiation of Au microcrystallites provide strong ev-

idence for wave-like heat transfer and correlations between elastic strains of

bc(o,t) phases at consecutive durations, and hence the applicability of hyper-

bolic equation of heat-flux (Equation 8.1). Enhanced homogeneity of elastic

strains on irradiation over the particle dimension (∼200-250 nm) cannot be

explained by Fourier-diffusion equation, q(r, t) = −K 5 T (r, t).

We now examine the nature of structural transformations that result from

electronic excitations in the core of the crystallites. Prolonged ion-irradiation

results in a cumulative increase in the average volume of the particle by

∼0.9% at 1030 min. Considering lattice heating due to electron-phonon and

phonon-phonon interactions, with coefficient of volumetric expansion of 42 x

10−6K−1, this corresponds to ∆T ∼210K. Since temperature of thermolysis

during the synthesis of particles is ∼(200-250oC), this thermal energy is in-

adequate to change the mole fraction of non-fcc phases, as has been observed

on ion-irradiation of crystallites (See Fig. 8.1d). Nonetheless, the volume-

expansion corresponds to an increment in electronic energy, expressed as an
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increase in the width of Fermi-Dirac distribution by ∼ 0.54 eV (or ∆TEl ∼

6250 K) [198]. This indicates the dominant role of electron-electron thermal-

ization and subsequent ion-electron interactions in time-dependent stabiliza-

tion of varying elastic strains in the non-fcc phases upon ion irradiation.

With the particle core essentially at low temperatures, TL ∼ 300 K, and

weak el-ph coupling strength of Au (of the order of 2.2 x 1016 W/m3/K

[199], excited electrons thermalize primarily through el-el interactions [200].

Since Au has fully filled 4d-orbitals below EF and an s-band at the Fermi

level, its relatively low density of states (e-DoS) at EF would result in an

efficient energy transport from electrons at high TEl to the lattice, as reported

in Cu, unlike structural disordering in Ni having high density of 3d-states

at EF [201, 202]. Thus, low-energy ion irradiation of metals and resulting

structural transformations are essentially an electronic-structure-dependent

process, and is significantly influenced by electronic excitations [194], and

electron-phonon coupling.

Equilibrated electrons follow Fermi-Dirac (FD) quantum statistics at a

low electronic temperature (TEl ∼ 103-104) and high electron density (ρE)

of a material. Since the longitudinal dimension of the crystallites is ∼10−3

cm (>> a ∼4 Å), across which energy-transfer from electronic subsystem

to the lattice occurs, it is justified to consider the non-fcc phase within the

core of the particle as a periodic crystal to study the evolution of non-fcc

phases with ion-irradiation. To understand the variations in elastic strains

with electronic temperature, we carried-out structural-optimization of bc(o,t)

structures with varied width of FD-distribution.

In the fcc structure, (111) plane subtends an angle δ = 54.74o with
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Figure 8.5: (a) Schematic of bct cell used in the simulations, and (b) volumes
of relaxed configurations for a fixed TEl and across varying TEl values.

(001) plane. Geometrically, bc(o,t) phases indexed in the experiments have

the following relations with fcc Au: (001)fcc = (001)bc(o,t) and (111)fcc =

(110)bc(t,o) [183]. Also, cfcc = cbc(t,o) and afcc/
√

2 = a′bct. Since the non-

fcc metastable structures vary only in the length of cell-vectors with ion-

irradiation, while maintaining their orthogonality, it signifies that δ is a free-

parameter which allows corresponding changes in a′ and c, while leaving the

angles α, β, γ = 90o (Figure 8.5a). Therefore, starting with variable cell-

optimized bct-form of fcc Au (a′ = b′ = 2.927 Å and c = 4.139 Å; c/a =
√

2), the angle δ (between (101)bct and (001)bct) was changed from 53o-56o

in the interval of 0.125o, and a′ and c (a′ = r cos(δ), c = r sin(δ)) values

were obtained (see Figure 8.5a), to keep b′ constant. This gives a general

bco structure as the starting configuration (with unequal strains along the

crystal axes). All the experimentally obtained c values with varying duration

of ion-irradiation fall well within the c values corresponding to δ in 53o - 56o.

An unconstrained relaxation of these configurations invariably results in
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Figure 8.6: Lattice parameters of the minimum-energy structures obtained on
constrained-optimization of bco phase with varying electronic temperatures.
To superimpose the bc(o,t) structures obtained with an increase in irradiation
time t (Figure 8.1d) to the cells relaxed with increase in TEl, we scale the
cell-dimensions a, b and c with the observed lattice constant (a = 4.081 Å).
The dashed red lines show dimensions of bulk fcc Au. The two triangular
regions with dashed lines show that as c/a′ increases, the changes in a′ (and
b′) become smaller, for a fixed change in c-parameter.
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stabilization of fcc structure (c/a′ =
√

2) in each case. This confirms the

kinetic, and not thermodynamic origin of the non-fcc phases in Au micro-

crystallites [183]. Hence, we performed constrained energy-optimization for

a range of electronic temperatures TEl by fixing the c values of derived con-

figurations, and variable a′ and b′ until the stress components (σaa and σbb)

reduce to ∼0 GPa. At a particular TEl, energies of all the strained structures

considered show very small variation (within ± 5 meV/atom). This primar-

ily stems from small changes in volume at a fixed TEl (Figure 8.5b), that is,

as the c-parameter increases towards
√

2, the a′ (and b′) values tend toward

1 (as shown by the arrow in Figure 8.6).

With increase in electronic excitations, the volume of a phase is bound

to increase. However, the a′ and c of optimized parameters show that as

cbc(o,t) → cfcc (horizontal red dashed line), variation in a′ (and b′ ) becomes

significantly smaller than that in c (shown by comparison of two dashed

triangles for TEl = 5445 K). This indicates a rather unimpeded structural

change along c-direction, in response to electronic excitations, while con-

strained variations in the a′b′ plane of bct-Au. Interestingly, the computed

minimum-energy structures at different TEl show good agreement with the

bct-I structures observed in XRD-powder patterns, confirming the pertinence

of elevated electronic temperature in varying c/a′ ratio with ion irradiation-

dosage.

Since changes in a′ (and b′) are significantly slower than that in c with

TEl, in agreement with bct-I structures, we gather the c-values at each TEl

that fall within the range of a′ of indexed structures (in {1.0054-1.0055}).

The resulting c-values are then fitted against TEl (see Fig. 8.7). TEl has a
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quadratic dependence on c as:

TEl = a0 + a1c+ a2c
2 (8.3)

The c-values corresponding to bct-I observed with prolonged irradiation time

t (in min) also show a quadratic dependence as:

c = b0 + b1t+ b2t
2 (8.4)

a′is and b′is are tabulated in Table 8.1. Thus, TEl has a higher-order depen-

dence on t, given as:

TEl = (a0+a1b0+a2b
2
0)+(a1b1+2a2b0b1)t+(a1b2+a2b

2
1+2a2b0b2)t2+2a2b1b2t

3+a2b
2
2t

4

(8.5)

As the coefficient b2 is very small, fourth-order term in t can be ignored

(See Table 8.1). The curve TEl versus t shows a rather rapid growth of

TEl at short times, leading to its saturation at prolonged durations of ion-

irradiation. With high-rate of sputtering on ion-irradiation and concomitant

reduction in the lateral thickness of the crystallites, the height of wave-front

of thermal electronic wave will continuously increase (Figure 8.4a), resulting

in higher values of TEl at large t. This further corroborates the wave-like

transfer of electronic energy into the core Au microcrystallites upon ion-

irradiation.

In conclusion, we have presented a non-Fourier mechanism of heat trans-

fer by electrons on ion-irradiation of Au microcrystallites, with its genesis in
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Figure 8.7: Empirical relation between irradiation-time t and electronic tem-
perature TEl within the core of Au microcrystallites: (a) Dependence of
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Table 8.1: Coefficients of terms relevant to time-temperature relationship

a0 -4.48e+7 K

a1 2.20e+7 K/Å

a2 -2.69e+6 K/Å2

b0 4.051 Å

b1 5.16e−5 Å/min

b2 -3.05e−8 Å/min2

the transient thermodynamic state at the cascade-core interface that mani-

fests as a time-lag between heat flux (q) and temperature-gradient (∇). We

demonstrate that the thermal wave of electrons traveling at a speed about

an order of magnitude lower than the Fermi velocity of Au can propagate

undeterred to ∼200-250 nm into the particle within ∼ 100 fs, a distance

significantly larger than the mean-free path of electrons (∼ 40 nm) in Au.

Emergent hot excited electrons in the core of the microcrystallites tune the

elastic strains of non-fcc phases, with significant changes along the [001] di-

rection, as obtained by optimization of strained bc(o,t) structures at varying

widths of Fermi-Dirac distribution of electrons. The computed structures

show a good agreement with the bct-I structures obtained by indexing the

XRD powder-diffraction patterns.



Chapter 9

Summary and future directions

In this thesis, we have presented a quantitative measure of mechanical flexibil-

ity F̄ s ∈ [0,1] of a crystalline solid and demonstrated that flexibility results in

reduction of elastic rigidity of a crystal associated with its Nambu-Goldstone

bosons (acoustic phonons) through their coupling with continuous internal

structural degrees of freedom. The concept is outlined in Figure 9.1.

Through phonon-spectral analysis, we understand the mechanisms of

crystal-to-amorphous transition, and origin of Boson Peak(s) in two chemi-

cally and topologically distinct metal organic frameworks, porous crystalline

Liquid
(flowable)

Solid
(Rigid)

Continuous symmetry-
preserving DoFs Flexible 

solid

Broken continuous 
symmetry

A
1g

 phonons

(Hard & soft)

Goldstone theorem

Present work (Chapter 3)

Figure 9.1: Origin of the structural flexibility of a crystal.
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Figure 9.2: A picture of Flexibility, Amorphization and Boson Peak in crys-
talline materials in terms of interacting phonons.

materials, MOF-5 and ZIF-8. Fundamentally, the three phenomena, (a) flex-

ibility, (b) amorphization, and (c) Boson Peak share a common feature in the

coupling between long-wavelength acoustic phonons (homogeneous strains)

and optical phonons. Distinct character of optical modes responsible for

these emergent phenonomena can be seen in Figure 9.2.

In Part B, we have presented a soft phonon-based analysis of stability

of non-fcc phases in Au microcrystallites with a penta-twinned geometry.

We further uncovered the fundamental differences between the mechanisms

of heat-transfer through annealing and prolonged ion-irradiation in terms of

distribution of strains along the thickness of the microcrystallite. We have
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Figure 9.3: Non-Fourier mode of heat conduction in a metal-microcrystallite
upon ion-irradiation.

presented a plausible mechanism of non-Fourier heat conduction by elec-

trons in ion-irradiated Au microcrystallites which is responsible for a rather

atypical narrowing of XRD-peaks on prolonged exposures to low-energy Ar+

irradiation. The mechanism is outlined in Figure 9.3:

On the basis of ideas developed in this thesis, it would be interesting to

explore:
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• General “flexibility” measure; LR order, for example, chemical, electri-

cal, magnetic etc.

• Crystal-to-amorphous transitions in other complex crystals that exhibit

inherent non-linear elasticity.

• Crystals other than MOFs that show a Boson Peak in C(T)/T3 at

low-T.

• Pressure-induced changes in Boson Peak(s) of crystalline materials.
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Yazaydin, R. Q. Snurr, M. OKeeffe, J. Kim, et al., “Ultrahigh porosity

in metal-organic frameworks,” Science, vol. 329, pp. 424–428, 2010.

[33] O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi,

and J. Kim, “Reticular synthesis and the design of new materials,”

Nature, vol. 423, pp. 705–714, 2003.

[34] D. J. Tranchemontagne, J. L. Mendoza-Cortés, M. OKeeffe, and O. M.

Yaghi, “Secondary building units, nets and bonding in the chem-

istry of metal–organic frameworks,” Chemical Society Reviews, vol. 38,

pp. 1257–1283, 2009.
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[61] M. O¨ ziş ik and D. Tzou, “On the wave theory in heat conduction,”

J. Heat Transfer, vol. 116, pp. 526–535, 1994.

[62] R. M. Martin. Cambridge University Press, 2004.



Bibliography 144
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