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Candida species complex 

Candida species are the most common cause of local or systemic fungal infection in 

immunocompromised humans. These species are members of the CUG-Ser1 clade (Figure 

1.1), of the fungal phylum of Ascomycota. The majority of Candida infections are caused by 

five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, 

and Candida krusei (1, 2). In addition, cases of Candida auris infection are rapidly emerging 

 
Figure 1.1 Phylogram of Saccharomycotina, a subphylum of Ascomycota. 

Major clades of fungal subphylum Saccharomycotina are shown in color-coded branches. 

Collapsed nodes bearing multiple species are represented with triangles. The phylogram was 

generated using Evolview (3) from the phylogenetic tree data presented in reference (4). 
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worldwide (5). Except for C. auris, these species are majorly clonally propagated and contain 

a diploid genome (6). Due to the clonal nature of reproduction, multiple clinical isolates bear 

identical patterns of loss of heterozygosity (LOH) at certain portions of their genomes. This 

phenomenon of LOH is well documented in the case of C. albicans clinical isolates (7, 8). 

Absence of meiosis in C. albicans is puzzling because certain Candida species, including a 

haploid species Candida lusitaniae undergoes sexual cycle and carries a similar set of 

meiosis-specific genes (9). However, it is worth noting that Ime1, the master regulator of the 

meiotic program in Saccharomyces cerevisiae, is absent in Candida species (6). Genome 

sequencing of several clinical isolates revealed rare genomic changes possibly generated 

through para-sexual reproduction (Figure 1.2) (7, 8). In line with this genomic evidence, a 

cryptic parasexual cycle has been first reported in an experimentally manipulated laboratory 

strain of C. albicans (10) and subsequently studied in both C. albicans and C. tropicalis (11-

14). Moreover, the fusants obtained from artificially induced parasexual mating show fitness 

advantage (15). Recently, it was found that drug-induced mating competence and parasexual 

recombination led to the evolution of fluconazole-resistant C. albicans strains (16). However, 

direct evidence of the parasexual cycle in a natural cell population and its contribution 

towards the pathobiology of Candida species remain elusive. 

 

 
Figure 1.2 Parasexual mating cycle of Candida species. 

Schematic showing three key steps during the homothallic and heterothallic mating cycle in 

Candida species. Both homothallic and heterothallic mating requires fusion of two diploid 

opaque cells, which produce an unstable tetraploid intermediate. The tetraploid intermediate 

undergoes random loss of chromosomes and achieves a stable diploid state (also termed as 

the parasexual cycle). Compared to the white cells, ‘opaque cells’ are larger in size, more 
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elongated, and form darker and flat colonies on solid agar (17). Later, it was identified that 

the opaque cells mate 106 times more efficiently than the white cells (18). The figure was 

adapted from reference (19). 

 

 

 
Figure 1.3 Structural and numerical genomic alterations. 

Schematic shows examples of base substitutions, chromosomal structural changes, whole 

chromosome aneuploidy and segmental aneuploidy in a diploid genome. 

 

 

The absence of true meiosis and crossovers limits the emergence of new alleles and 

compromise the fitness of a pathogenic species. However, strict selection under challenging 

host environments, especially the presence of antifungal drugs, often led to the emergence of 

isolates carrying large-scale structural and numerical changes (Figure 1.3) in their genomes 

(20). Among these large-scale genomic changes, the specific contribution of segmental 

aneuploidy and trisomy to the evolution of drug resistance has been studied in C. albicans 

(21). Similarly, whole chromosome aneuploidy of Chr1 and Chr4 is also associated with the 

development of fluconazole resistance in the human fungal pathogen Cryptococcus 

neoformans (22). Further, identification of isochromosome formation in drug resistant 

isolates of C. albicans revealed a correlation between fluconazole resistance and increased 

copy number of genes involved in the biosynthesis of ergosterol (23-25), which is a 

component of the cell membrane in fungi. Many of these genome-wide studies could be 
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conducted in C. albicans due to the availability of a chromosome-level genome assembly 

(26-30). Although these studies demonstrated an association of genomic alterations with drug 

resistance in C. albicans, the validity of this notion remains to be explored in C. tropicalis in 

the absence of a chromosome-level genome assembly. 

 

Candida tropicalis, an emerging human pathogenic budding yeast species 

In the last 30 years, there has been a significant increase in the incidence of fungal 

infections in humans (31). Among different fungi, the members of the genus Candida are the 

most frequently recovered species from human fungal infections. Until recently, C. albicans 

was considered to be the major Candida species involved in human fungal infections 

worldwide. However, in parallel with the overall increase of fungal infections, it has been 

observed that infections caused by non-Candida albicans Candida (NCAC) species are 

increasing (32-34). It was found that C. tropicalis is the most frequently isolated NCAC 

species from the bloodstream and urinary tract infections worldwide and particularly in India 

(35). Additionally, C. tropicalis is often found in patients admitted to ICUs, especially in 

patients with cancer, requiring prolonged catheterization, and receiving broad-spectrum 

antibiotics (36, 37). C. tropicalis possesses a diversity of virulence factors that induce serious 

damage to patients and increases the mortality risk (38). For example, this species appears to 

possess a higher potential for dissemination in the neutropenic host than C. albicans and 

other NCAC species. This propensity for dissemination in some way may explain the 

reported relatively high mortality associated with C. tropicalis (39, 40). However, more work 

is necessary to get deeper insights into the strategies used by C. tropicalis to change from a 

harmless commensal microorganism to become a human pathogen of serious clinical 

concern. 

 

Globally, the infections due to C. tropicalis have been increasing steadily, 

proclaiming this organism to be an emerging pathogenic yeast (41). In the Asia-Pacific 

region, NCAC species constitute 50 – 80% of all isolates. The incidences of candidemia vary 

from 1-12 per 1000 ICU admissions in India. Another worrying trend has been the emergence 

of triazole resistance in some of the centers of India, with 10-14% of C. tropicalis isolates 

demonstrating resistance to antifungals (42). The reasons for this organism’s prevalence and 

its resistance to fluconazole have been difficult to elucidate. In a recent report published in 

2015, the authors studied 1400 ICU acquired candidemia cases out of which 918 Candida 
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strains were collected. Among these isolates, C. tropicalis (n = 382; 41.6%) was the most 

prevalent species followed by C. albicans (n = 192; 20.9%) and  

Figure 1.4 Cellular targets of various classes of antifungal drugs and key mechanisms of 

drug resistance in Candida species. 

Various classes of antifungal drugs, including allylamines, azoles, polyenes, echinocandins 

target glucan and ergosterol biosynthetic pathway components (e.g., Erg1 and Erg11) or 

destabilize ergosterol. In the absence of ergosterol, both the structure and function of the cell 

membrane are compromised. Similarly, amphotericin B leads to ergosterol aggregation on the 

cell membrane, which causes pore formation and damages membrane integrity. Cells that 

show resistance against these drugs often show upregulation of genes implicated in ergosterol 

biosynthetic pathway (1), and genes encoding efflux pump proteins (2), which can 

compensate the membrane damage, and reduce the intracellular drug concentration, 

respectively. 

 

 

C. parapsilosis (n = 100; 10.9%). Drug resistance, as well as multidrug resistance, is also 

being reported in C. tropicalis clinical isolates (43). Among these 918 isolates multi-drug 

resistance was noted in C. tropicalis (n = 4; 23.5%), C. auris (n=4; 23.5%) and C. krusei 

(n=3; 17.6%) (43). Apart from India, C. tropicalis was also reported to cause the majority of 

ICU-acquired candidemia in Pakistan (44). In C. albicans, the most common mechanisms of 

drug resistance (Figure 1.4) involve mutations in a target gene (e.g., ERG11) of the drugs or 
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over-expression of efflux pumps like ABC transporters (CDR1 and CDR2), and the major 

facilitator super-family efflux pump (MFS-MDR) (45). Another commonly found mechanism 

of drug resistance in C. albicans, is mediated through genome rearrangements such as whole 

chromosome and segmental aneuploidy (25, 45). The possibility of such genome 

rearrangements as a mechanism for drug resistance in C. tropicalis has not been studied in 

detail and needs to be explored. However, fragmented genome assembly remains the key 

limitation to perform such studies in C. tropicalis. 

 

In addition to drug resistance, the mechanism of this organism’s pathogenicity and the 

consequent immune response in the host remain to be determined. In order to understand the 

effects of genome rearrangements on the pathobiology of C. tropicalis, a properly annotated 

gapless chromosome-level genome assembly is essential. Though the genome sequencing of 

C. tropicalis has been done at Broad Institute, MIT (Candida Sequencing Project, Broad 

Institute of Harvard and MIT; http://www.broadinstitute.org), the supercontigs have not been 

assigned to individual chromosomes (6). Moreover, identification of ORF present in the C. 

tropicalis genome but absent in the fragmented genome assembly indicates the scope of 

further improvement in the genome assembly of C. tropicalis (46). However, the construction 

of a reliable genome assembly of C. tropicalis chromosomes with homogenized and inverted 

repeat-associated centromeres can be a challenging task to accomplish. Nevertheless, recent 

improvements in the sequencing techniques offer a critical advantage in this area. 

 

Evolution of DNA sequencing techniques  

The famous discovery of the double-helical structure of the DNA by J. D. Watson and 

F. H. C. Crick opened up a new area of molecular biology research (47). Subsequently, it was 

demonstrated how elegant structural properties of complementary base pairing between two 

antiparallel strands in a DNA double helix facilitates a semi-conservative model of DNA 

replication (48). These fundamental studies formed the bedrock for recent advances in 

sequencing technology. Determination of the exact order of nucleotides in a DNA polymer 

was first demonstrated independently by Sanger et al. (49) using a chain termination reaction 

mediated by incorporation of dideoxynucleotides and Maxam and Gilbert (50) using a 

chemical cleavage procedure. Sanger’s approach of DNA sequencing was commercialized by 

Applied Biosystem Instruments (ABI), which constitute the first-generation sequencers.  

 



Chapter 1: Introduction 

 

 

 

8 

Even though the Sanger and Maxam-Gilbert sequencing methods offer a high level of 

accuracy, both lack the speed and throughput required for the sequencing of larger genomes 

in shorter times. Therefore, alternative techniques have been developed. Among these 

methods, sequencing by hybridization (51), ligation-cleavage (52), and pyrosequencing (53) 

were widely used. The method of ‘pyrosequencing’ works by detecting the incorporation of a 

nucleotide through the luminescence of a specific fluorophore attached to each of the four 

nucleotides. This method quickly gained attention because of its scalability and amenability 

to automation, which are characteristic features of the second-generation sequencers. The 

first commercially available pyrosequencing was developed by Roche/454 on the GS-FLX 

platform. Parallelly, the first Solexa sequencing platform ‘Genome Analyzer’ was developed 

that utilized four unique-dyes for labeling of nucleotides (54). Ligase-based chemistry of 

sequencing was applied in another popular approach developed by Applied Biosciences 

termed as ‘SOLiD’. All the next generation sequencing (NGS) techniques described above, 

works through an imaging-based detection method. An alternative approach to determine the 

change in current by measuring the change in pH due to a single proton release was 

implemented in the ‘Ion-torent’ technique developed by Thermo Fisher. 

 

These second-generation sequencing platforms were developed and employed during 

the human genome sequencing project (HGP) and led to rapid development in NGS 

technologies. Consequently, the cost of sequencing was reduced dramatically and facilitated 

the sequencing of several eukaryotic genomes. However, the quality of the genome 

assemblies produced using these methods can vary between the contig level to chromosome-

level, depending on the complexity of the genome and the coverage of NGS data. Another 

confounding factor is the read length of the NGS data. Despite the advantage of speed and 

scalability, the length of the reads obtained from the second generation NGS techniques 

remained short, in the range of 28-700 bp. This poses a challenge to assemble the repetitive 

loci, often spanning over a few Mbs. The development of long-read sequencing techniques 

offered a possible solution to this problem. 

 

Long-read/ 3rd generation sequencing techniques 

At the beginning of 2011, the PacBio RS platform was launched by Pacific 

Biosciences (PacBio). In this technique of Single Molecule Real-Time (SMRT) sequencing, 

the template molecules are size selected to enrich the long reads. The size selected DNA 
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fragments are then used to generate libraries, which are single-stranded circular hairpins 

known as SMRTbell. When the library is loaded in a SMRT cell, the SMRTbells diffuse into 

smaller cavities known as Zero-mode waveguides (ZMW). The SMRTbell then binds to the 

DNA-polymerase immobilized at the bottom of each ZMW. As the synthesis proceeds, 

during the incorporation of nucleotides, a distinct fluorescence signal is produced from each 

of the four nucleotides labeled with a specific fluorescence dye. Since the radius of the 

ZMWs is shorter than the wavelength of the light produced, it cannot escape the ZMW well 

and detected by a sensor located bellow the ZMWs.  

 

The entire process of sequencing is recorded in a movie that provides the time 

information along with the fluorescence pattern. Together, these two data can be used to find 

the rate of nucleotide incorporation at a given base-pair, allowing identification of certain 

chemical modifications of the base present on the template DNA. The difference between a 

modified and an unmodified base is expressed as the IPD ratio. This approach can detect 4-

methylcytosine, 5-methylcytosine, 5-hydroxymethylcytosine, 6-methyladenine, and 8-

oxoguanine (www.pacb.com/basemod). Due to the size selection and the improved sequence 

chemistry, the PacBio SMRT sequencing approach can produce up to ~80 kb long sequence 

reads. SMRT-sequencing does not involve PCR amplification during the library preparation 

step, and hence the reads are free from PCR-duplicates, a common artifact found in Illumina 

and other NGS platforms. However, SMRT-sequencing suffers from an error rate as high as 

15% in single-pass mode, which can be corrected further by increasing the coverage (55). 

Another limitation of SMRT-sequencing is that the read length is dependent on the 

processivity of the polymerase used for sequencing. 

 

A recently developed approach, the Oxford Nanopore sequencing technique, was first 

commercialized in 2012. Oxford Nanopore sequencing is also available on three different 

scales: MinION, GridION, and PromethION. The extreme portability offered by the MinION 

system allows real-time sequencing of the samples at the site of collection. The currently 

available Oxford Nanopore MinION system can deliver reads more than 150 kilobases (56), 

but the read length can be extended even up to 1 Mb (57). Since the longer reads can provide 

larger scaffolds, one of the main applications of the Oxford Nanopore sequencing technique 

is to generate de novo genome assembly. 
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In this approach of sequencing, a processive enzyme attaches to the 5′ end of the 

template strand and guides the template strand through the nanopore. This process generates 

ionic current due to the differences in the shifting nucleotide sequences through the pore. 

This change in ionic current can be detected as separable events using a suitable sensor. This 

process of template strand transfer through the nanopore is known as ‘1D read’. 

Alternatively, with the help of a hairpin adapter ligated to one end of the DNA duplex, 

transfer of the complementary strand results in the sequencing of both the strands in a process 

known as ‘2D read’. Oxford Nanopore sequencing generates long high quality reads. For 

example, 1D reads over 300 kb, and 2D reads up to 60 kb have been achieved using the 

Escherichia coli genomic DNA template (58). Longer reads generated in this approach are 

extremely helpful in assembling the repetitive elements in a genome assembly. For example, 

36-kb + MinION reads were used to resolve a putative 50-kb gap in the human Xq24 

reference sequence (59). More recently, the same group could, for the first time, generate a 

linear assembly of centromere DNA of the human Y chromosome composed of a few mega 

base pairs of alpha-satellite repeats (57). These lines of work demonstrate the potential use of 

the Oxford Nanopore sequencing approach to assembly repetitive DNA sequences of the 

genome. Other advantages of this approach, similar to the PacBio SMRT sequencing 

technique, include the identification of modified bases and the absence of PCR duplicates. In 

addition, the Oxford Nanopore sequencing technique offers portability to remote areas and 

direct sequencing of freshly collected samples and generate sequencing data in real-time on 

the spot. However, this technique also suffers from an error rate as high as 15% in 1D mode 

(55), which can be compensated using higher coverage.  

 

Development of computational algorithms for analysis of genome sequencing data 

The development of sequencing techniques started producing a vast amount of 

sequence data, which needed efficient computational approaches for assembling a genome 

and subsequent analyses. During the sequencing of the Drosophila genome using the shotgun 

method, the Celera assembler was developed, which could perform de novo assembly from 

~3 million reads in less than a week on an eight-core machine with 32 Gb memory (60). The 

Celera assembler follows an overlap-layout-consensus (OLC) approach. In the first step, the 

reads are used in a matrix-based all-versus-all pair-wise read comparison. Next, the overlap-

maps are used to generate an approximate read layout to define the order and orientation of 

the reads, following which the multiple sequence alignment (61) based consensus is 
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generated and contigs are assembled. A similar OLC-based strategy was employed in other 

contemporary assemblers, including Arachne (62, 63), CAP, and PCAP (64) for shotgun 

sequence data and Newbler (65) for the Roche 454 platform. An improved OLC-based 

software EDNA (66) was designed for unpaired short reads of uniform length obtained from 

the SOLiD and Solexa platform. This assembler discards duplicate reads and generate error-

free overlaps (67). However, extensive time requirement for the analysis was a major 

limitation of these methods. Therefore, more efficient algorithms were needed. 

 

 
Figure 1.5 Euler’s solution to the ‘seven bridges of Königsberg’ problem and the origin 

of the graph theory. 

A. Schematic showing the seven bridges (gray arches) over the Pregel river that separated the 

four connected landmasses (black filled circles marked with A, B, C, and D) of Königsberg, 

Prussia. The challenge was to travel to all four parts of the city using each of these seven 

bridges only once. B. Graphical representation of seven edges (the seven bridges shown as 

black lines) connecting four vertices (connected landmasses). This graphical representation 

for ‘seven bridges of Königsberg’ problem allowed Euler to devise a general model to predict 

if a solution to such problems exists or not. One can find a solution to this problem if they 

write all possible paths. However, that would take a long time for problems involving more 

bridges and landmasses. The application of the graph theory can significantly reduce the time 

required to solve such problems. 

 

 

An elegant solution for a computationally efficient approach of de novo genome 

assembly came from a 300 years old puzzle: the ‘Bridges of Königsberg problem’ (Figure 

1.5). This problem was solved by Leonhard Euler in 1735, which opened up a new branch of 

mathematics: the graph theory. Euler’s solution was later adapted by Nicolas de Burjin to 

find a cyclic sequence of letters taken from a given alphabet for which every possible word of 

a certain length (k) appears as a string of consecutive characters in the cyclic sequence 

exactly once (68). This strategy of construction of de Burjin graphs (DBG) was employed in 

SOAPdenovo (69) and Velvet (70) assembler. Although both OLC and DBG approaches 
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offer robust assembly, by avoiding the computationally exhaustive all-versus-all search, DBG 

offers better efficiency for a large volume of short-read sequence data over the OLC-based 

assemblers. Markedly different from these two approaches, a greedy-graph based algorithm is 

followed in SHARCGS (71) and SSAKE (72) assembler, where the basic operation is to add 

a read or a contig for a given read or contig. This operation is repeated until no more addition 

is possible. A comparative analysis of different assembly strategies employed in a set of 24 

academically available de novo genome assemblers suggests DBG-based assemblers perform 

better for the large genomes using large datasets, while the OLC-based assemblers are 

preferred for assembling smaller genomes and smaller data sets (73). 

 

Both DBG- and OLC-based assemblers facilitated the construction of de novo 

genome assembly of a large number of prokaryotic and eukaryotic genomes using short 

reads. However, the short-read assembly often breaks at the repetitive regions of the genome. 

Initially, two solutions were proposed to address this problem: (a) end sequencing of a large 

piece of cloned DNA (e.g., BACs) (74) and (b) use of paired-end sequence data from longer-

fragment libraries. However, it was found that none of these two approaches can effectively 

assemble all types of repetitive regions (75). In such cases, long reads obtained from PacBio-

SMRT-seq, Oxford Nanopore, or other platforms can be used to improve the contiguity of the 

genome and resolve the repetitive regions accurately. One major caveat of the long-read 

sequencing techniques is the high error rate. Therefore, a solution was proposed in the form 

of a hybrid assembly technique combining the accuracy of short-read sequences and the 

contiguity of the multi-kilobase long reads. In this method, high-quality short reads are used 

to correct the PacBio long reads, which achieves >99.99% base-call accuracy. These 

corrected reads are then used for the construction of de novo genome assemblies following 

the OLC approach. The use of this method also demonstrated a significant improvement in 

contiguity over the second-generation assemblies (76). Later along with the development of 

the Oxford Nanopore sequencing technique, Canu (77) was developed, which could integrate 

single- or paired-end sequence data from various platforms. In addition, Canu generates 

graph-based assembly outputs for integration with complementary phasing and scaffolding 

techniques (77). This advantage of long-read-based assembly for phasing the haplotype 

difference in the diploid genomes was further improved in FALCON-Unzip (78), Supernova 

(79), and Purge-Haplotigs (80). The phasing of haplotype and the contiguity of the genome 

assembly was shown to be further improved when the long-read sequencing data was 

combined with the contact probability information obtained from chromatin conformation 
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capture sequencing (3C-seq) or Hi-C based experiments (81). These tools offer a promising 

solution for haplotype phasing for species where sexual reproduction is rare or absent. 

However, when available, a combination of long read sequence data from parental and 

offspring genome can be used to develop high quality phased genome assembly (82). 

 

 
Figure 1.6 Schematic depicting key steps in variant detection using GATK software. 

 

 

In a diploid genome, two alleles of the same genes are distributed on the homologous 

chromosomes. A given locus is called ‘heterozygous’ when the two alleles are not identical to 

each other. The heterozygosity can arise due to three major ways. First, the two alleles can 

differ by one single nucleotide, which is termed as single nucleotide polymorphism (SNP). 

Second, insertion or deletion of one or a few bases known as indels. The third type of 

heterozygosity arises due to a deletion or a duplication of a region spanning across multiple 
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kb of a genome and termed as copy number variation (CNV). Another type of structural 

variation might arise between the two homologs of a chromosome due to a balanced 

translocation. During the early days of cytogenetics, structural genomic variations were 

studied using staining of metaphase chromosome spread and fluorescence in situ 

hybridization (FISH). A major limitation of these assays was the lack of resolution. Later, the 

development of hybridization-based techniques such as comparative genome hybridization 

(CGH) facilitated the detection of smaller variations, including CNVs, SNPs, and indels, but 

failed to detect chromosomal translocation events (83). 

 

Initial genome assemblies developed using the shotgun method for inbred lines of 

mouse and selfing hermaphroditic species Caenorhabditis briggsae carried little 

heterozygosity as expected (84). Later, the development of improved assembly algorithms 

allowed the construction of genome assemblies, even for the heterozygous genomes. The 

availability of whole-genome sequence data of different isolates of a single species helped to 

understand the polymorphism present in a population. Genome Analysis Tool-kit (GATK) is 

one of the most popular and computationally robust pipelines developed during the 1000 

Genomes Project and the Cancer Genome Atlas (85). GATK is developed using the 

programming principle of MapReduce (85). By doing so, GATK can distribute large datasets 

into clusters and allow efficient use of parallel computation. GATK can also be used for the 

identification of structural variations in the diploid genome by implementing the base quality 

recalibration and indel realignment in the HaplotypeCaller (86). A flow chart describing the 

key steps in the variant calling procedure in GATK is presented in figure 1.6. 

 

In the last 45 years, the rapid development of sequencing techniques and improved 

assembly algorithms initially allowed genome sequencing of the well-studied model 

organisms as well as other closely related species across various domains of life (Figure 1.7). 

Huge resources of genome sequence data eased reverse genetics and molecular dissection of 

various aspects of evolution, disease, development, drug resistance, among others. With the 

availability of more genome-wide data sets, the influence of spatial genome organization on 

the regulation of DNA replication, chromosome segregation, genome maintenance, and 

expression of gene-sets became clearer. Although the linear one-dimensional DNA sequence 

of the chromosomes provides little or no information about its spatial organization inside the 

nucleus, a gapless genome assembly empowered further analysis of the higher-order genome 

organization. 
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Figure 1.7 Landmark events of genome sequencing in the last 45 years. 

Color-coded doughnut plots showing the relative proportions of genome assemblies across 

different domains of life available at different time intervals in the NCBI Assembly database 

(87) during the last 45 years. The bottom panel shows a bar chart depicting the total number 

of chromosome-level genome assemblies available for species belonging to different domains 

of life till April 2020. 

 

 

Higher-order genome organization in eukaryotes 

One of the most significant changes during the evolution of Eukarya is the 

partitioning of the nuclear genome into linear chromosomes. Each chromosome contains a 

polymer of DNA organized into a compact three-dimensional structure with the help of 

several structural proteins. The fundamental unit of chromatin packaging is a nucleosome, 

which was initially identified as ‘beads on a string’ structure (88-91). In general, a single 

nucleosome core particle comprises of histone octamer: two molecules of each of histone 

H2A, H2B, H3 and H4 and wrapped with ~147 bp DNA double helix in about 1.75 left-

handed super helical turns providing ~7 fold compaction into a disk-like structure of about 11 

nm in diameter and 5.5 nm in height (92, 93). This level of compaction is not enough to fit 
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the entire genome inside the nucleus. Therefore, a better understanding of the higher-order 

chromatin structure is the need of the hour. 

 

Available methods for studying genome organization 

The fundamental unit of the chromatin is a nucleosome. The structure of a single 

nucleosome can be studied using various structural techniques such as fluorescence 

resonance energy transfer (FRET), small-angle X-ray scattering (SAXS), NMR, 

hydrogen/deuterium exchange followed by mass spectrometry (HDX–MS) coupled with 

molecular dynamics (MD) simulation (94). However, precise arrangement of the 

nucleosomes facilitating higher-order chromatin compaction remained a debatable topic 

among different research groups. Based on in vitro data, two alternative models, namely (a) 

solenoid and (b) zigzag models, were proposed to explain the secondary structure of 

chromatin into a ~30 nm fiber (95).  

 

 
Figure 1.8 Schematic of the key steps in a typical Hi-C experiment. 
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A typical Hi-C experiment starts with the chemical crosslinking of the chromatin to preserve 

the spatial genomic interactions between (trans) and within (cis) the chromosomes. Second, 

the crosslinked chromatin sample is digested with a given restriction enzyme. Biotinylated 

base analogs are incorporated into the staggered cut ends by an end-filling reaction in the 

third step. Subsequently, the digested and biotinylated chromatin fraction is allowed to ligate 

in a diluted condition, which reduces the chances of random ligation events by increasing the 

chances of ligation of ends that are in closer proximities in vivo. At this step, chimeric 

ligation junctions are created either between two different DNA molecules held together in 

proximity or between two ends of the same DNA molecule. The later produces self-ligated 

circles. In the fifth step, the ligated chromatin fraction is fragmented by a mechanical force 

such as sonication. Next, the chromatin fragments are subjected to streptavidin pull-down, to 

enrich the biotin-labeled ligation junctions specifically. In the seventh step, the DNA fraction 

of the streptavidin-precipitated chromatin fragments are purified, and adapter-ligated to 

prepare a library for Illumina sequencing. This library is then sequenced which produces cis 
or trans chimeric reads spanning over a ligation junction signature sequence. Finally, the 

Illumina reads are analyzed to identify the spatial genomic interactions. 

 

 

However, in vivo evidence for a ~30 nm chromatin fiber structure remained elusive 

(96). Alternatively, FISH allows the visualization of large genomic regions. With the 

development of chromosome conformation capture (3C) (97), which offers a significant 

improvement in spatial resolution of two genome regions over FISH (98), it was possible to 

study chromatin structure in kilo base-pair resolution. The principle of the 3C experiment is 

‘proximity ligation’, which preferentially generates chimera of two spatially proximal loci 

over any other combination of two random genomic loci. In this experiment, crosslinked 

chromatin is digested with a restriction enzyme (RE) and allowed to ligate in a diluted 

condition. A dilution reaction condition reduces the chances of random ligation and increases 

the proportion of ligated products between DNA loci, which are spatially proximal to each 

other. The presence of chimeric molecules, which serve as evidence of interactions between 

the two given loci, can then be tested by polymerase chain reaction (PCR) (99). 

 

Although 3C offers a unique way to study the chromatin structure in vivo, the use of 

this method is limited to test only specific spatial contacts in the genome at a time. 

Subsequent improvements in the 3C method addressed this issue to allow detection of 

multiple spatial interactions in a genome through circular chromosome conformation capture 

(4C) (100) and chromosome conformation capture carbon copy (5C) (101). In another variant 

technique termed as Hi-C, NGS following a modified 3C protocol, allows the identification 

of all versus all interactions in the genome. In this modified protocol, digested DNA ends are 

biotin labeled. Pulldown of the chimeric molecules by streptavidin allows enrichment of 
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ligation junctions (102, 103). The schematic of the key steps in a typical Hi-C experiment has 

been shown (Figure 1.8). Later, modified Hi-C or genome conformation capture or 3C-

sequencing was developed, in which the biotin ligation step is avoided (104, 105) (Figure 

1.9). However, the majority of 3C-sequencing reads originate from the genomic regions, and 

fewer reads are generated from chimeric DNA fragments. A comparison of different variants 

of ‘C-techniques’ for their ability to detect spatial interactions is presented (Figure 1.10). 

 

 
Figure 1.9 Schematic of the key steps in 3C-seq experiment. 

The key steps in a 3C-seq experiment are identical to that of a typical Hi-C experiment (as 

described in figure 1.8), with one major exception. Unlike Hi-C, incorporation of the 

biotinylated base analogs in the end-filling reaction to specifically label and enrich the 

ligation products is not performed in a 3C-seq experiment. As a result, the percentage of 

chimeric reads obtained in 3C-seq can be significantly lower than that of a Hi-C experiment. 

 

 

Analysis of 3C-seq or Hi-C data involves the identification of chimera between the 

two DNA loci joined at a hybrid-restriction site sequence while eliminating products of self-

ligation. Moreover, this analysis requires data normalization steps to avoid the effect of 

CNVs and maintain uniformity across the entire genome. Therefore, accurate mapping of the 

spatial contacts in a relatively large eukaryotic genome can be computationally intensive. 
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Newer algorithms were developed to address these issues, although certain tools were already 

available for quality filtering, trimming, and mapping of reads (106). In addition, the steps 

followed during the Hi-C experiment, such as crosslinking, chromatin fragmentation, biotin- 

 
Figure 1.10 A comparison of different variants of ‘C-techniques’  

Schematic of contact probability matrix indicating the types of data generated by 3C and 

related techniques. A 3C experiment queries interactions between one locus to another (black 

circle), 4C identifies interactions of a single locus with the rest of the genome (black 

rectangle), 5C generates an interaction matrix of a set of loci (blue rectangles), whereas by 

using Hi-C, one finds out genome-wide chromatin interactions (green square). This figure 

was adapted from the reference (107). 

 

 

labeling, and re-ligation, can induce biases and complicate the interpretation of sequence data 

(108-110). Thus, one of the major challenges in the analysis of Hi-C data is the application of 

the correct normalization method to eliminate biases in the raw data, if any. 
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Methods for normalization of Hi-C data follows two broad approaches: (a) explicit 

approach, and (b) implicit approach. In the explicit approach, it is assumed that all sources of 

systematic biases are known based on biases determined empirically from the observed data. 

For example, the variability in restriction enzyme fragment lengths, GC content, and 

sequence mappability are identified as three major sources of experimental bias in Hi-C data 

(111). On the contrary, an implicit model assumes that each locus should receive equal 

sequence coverage after biases are removed (108). Two such widely used models are (a) 

iterative correction and eigenvector decomposition (ICE) (112) and (b) Knight and Ruiz 

algorithm (113). The basic assumption of both these models is that all parts of the genome 

interact equally with each other. Due to this assumption, both models fail to avoid the effect 

of CNVs present in the genome. This issue was addressed in the newly developed models, 

such as ‘LOIC/CAIC’ and ‘OneD’, which can be used to accurately interpret Hi-C data, 

especially in cases like cancer cells carrying multiple CNVs in their genome (114, 115). 

 
Figure 1.11 Hierarchical chromatin organization inside the cell nucleus. 

A simplified scheme showing hierarchical chromatin organization. The DNA wraps around 

histone octamers to form a typical canonical nucleosome. This 10 nm chromatin fiber can 

form loops that are held together by cohesin or other chromatin-associated proteins. This 

chromatin fiber can be further compacted into compact chromatin domains, which can 

interact among themselves to form higher-order chromatin structures known as chromatin 

compartments. Compartment A is identified as transcriptionally active parts of the genome, 

while the transcriptionally inert regions are organized into Compartment B. In the interphase 
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nuclei, several compartments are associated with a chromosome and form the so called 

‘chromosome territory’. The concept of this drawing is adapted from reference (116). 

 

 

Analysis of Hi-C data led to the identification of genomic domains that are folded into 

compact local structures or topologically associated domains (TAD) (Figure 1.11). Newer 

algorithms were developed for statistical analysis of the contact probability data to study 

local chromatin compaction and identify these self-associating genomic domains. Some of 

the widely used algorithms for TAD calling are Directionality Index (DI) (117), Armatus 

(118), TADtree (119), insulation score (IS) (120), IC-finder (121). These algorithms assess 

the self-association properties of chromatin for genome-wide identification of TADs. For 

example, DI is a statistical tool that measures the imbalance between the upstream and 

downstream contacts of a genomic locus. The DI statistic is then used to call domains with 

respect to the inherent bias state of each locus conferred from the Hidden Markov model 

(HMM) analysis (117). Similarly, IS for a given bin is defined as an average number of 

interactions across that bin in close vicinity. The local minima of IS lie at the TAD borders 

(120). Additionally, principal component analysis of the genome-wide contact probability 

matrix identified two major compartments in the human genome named Compartment A and 

Compartment B (103). Two genomic loci belonging to the same compartment are found to be 

spatially proximal to each other than to another pair of loci belonging to separate 

compartments. Moreover, genomic loci belonging to Compartment A were found to be less 

compact and poised for gene expression than the loci belonging to Compartment B (103).  

 

Structure and function of topologically associated domains (TADs) 

Statistical analysis of the spatial contacts revealed TADs as one of the conserved 

features of genome organization in a wide range of species. TADs were initially identified in 

human and mouse cells as megabase-size local chromatin interaction domains (117, 122). 

Subsequently, similar higher-order chromatin structures were identified in flies (104, 123), 

worms (124), plants (125), yeasts (126-128), and even in bacteria (129). Evidence for the 

existence of these chromatin domains has also been obtained from high-resolution imaging 

studies (130) and super-resolution chromatin tracking at single-cell resolution (131). These 

observations indicate that TAD-like structures are fundamental units of the chromatin 

organization in vivo. However, the length of DNA folded into one domain varies both within 

and across the species. For example, in Caenorhabditis elegans, TADs of ~1 Mb length are 
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present on the X chromosome (120). Similarly, hundreds of kilobases long TADs have been 

identified in mammals (117). On the contrary, smaller TADs of ~100 kb length have been 

observed in Drosophila melanogaster (104) and Schizosaccharomyces pombe (126). It is also 

important to mention that a large TAD can be composed of several smaller sub-TADs. 

Improvement in data resolution may lead to the identification of additional sub-TADs, which 

are part of a larger TAD (Figure 1.12). For example, an improved resolution of Hi-C data led 

to the identification of >4000 TADs in D. melanogaster genome (132), while an earlier study 

reported approximately 1300 TADs (133). The use of Hi-C data generated from a population 

of cells may also influence the identification of TADs due to the inherent heterogeneity and 

cell to cell variability in TAD structures (134). Such heterogeneity is also evident from the 

observation that two alleles can independently interact with different parts of the genome 

(134, 135). 

 

Figure 1.12 Integration of contact probability data and the chromatin binding of 

cohesin and CTCF reveals TADs and sub-TAD structures. 

Integration of the contact probability heatmap along with the ChIP-seq data of a genomic 

locus confirms spatial contacts between the anchor points bound to cohesin and CTCF, which 

facilitates the formation of topologically associated domains (TADs) in mammals. Based on 

these data, this given locus appears to carry two TADs, each of which is composed of two 

smaller subdomains. A model representing the approximate spatial organization of the 

genomic locus is shown on the top. 

 

 

Identification of TAD-like structures across species raised questions about their 

function, which revealed a wide range of biological functions of TADs ranging from 
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development to cognition. Earlier studies reported transition in chromatin state in response to 

the environmental and developmental cues (136). Subsequent studies uncovered the 

biological role of TADs in the regulation of gene expression (137-139), deciding cell fate 

during differentiation (140-142), and cognition (143, 144). Importantly, dysregulation in 

domain structures can be associated with certain diseases (135, 145, 146), and therefore, 

alteration in chromosomal domains can act as potential biomarkers for disease diagnostics 

(147). In addition, probing the higher-order chromatin organization provided a structural 

basis of long-range interactions between gene promoters and other distal regulatory elements 

such as enhancers (148). The spatial genome organization in TADs also correlates with 

replication timing (149). Recently it was found out that the deletion of early replicating 

control elements can affect the domain-wide replication timing, A/B compartmentalization, 

and TAD structures (150).  

 

What regulates the dynamic nature of the TADs? Studying the structure of TADs in 

multiple model systems identified both underlying DNA sequence (151) and multiple 

conserved architectural proteins such as cohesins, CCCTC-binding factor (CTCF), polycomb 

repressor complex (PRC) are involved in maintaining the TAD structure (152-154). CTCF 

and cohesins facilitate close contact between the boundary loci flanking a TAD and thereby 

forming a loop-like structure. In metazoan species, including Homo sapiens, C. elegans, and 

D. melanogaster boundaries of TADs are enriched with insulator elements and active genes, 

but the interiors generally contain a relatively uniform chromatin state (155). Mechanisms 

facilitating the dynamics of TAD structures remain poorly understood until a ‘loop extrusion’ 

mechanism of a new TAD formation was demonstrated (156). Recently, high-resolution 

imaging produced compelling evidence of loop extrusion, which is facilitated by condensins 

and cohesins (157, 158). 

 

Higher-order chromatin structure in yeasts 

A structural homolog of mammalian CTCF has not been identified in the budding 

yeast genome. However, Hi-C (127) and Micro-C (128) based studied reported presence of 

TADs in S. cerevisiae. Intriguingly, the length of TADs reported in these two studies are 

significantly different from each other. While the majority of TADs identified from the 

analysis of the Micro-C data were smaller than 10 kb, TADs as long as ~400 kb were 

identified from Hi-C analysis. These studies revealed fundamental properties of the TAD 
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boundaries as nucleosome-depleted and transcriptionally active loci. A clear homolog of 

CTCF remains unidentified in S. cerevisiae, but the presence of chromatin remodeler Sth1, 

cohesin loader Scc2 and Forkhead transcription factor Fkh1 and Fkh2 at the boundary regions 

indicate a putative role of these proteins in the maintenance of TAD structures (127, 128). 

Similarly, higher-order chromatin structures were studied in fission yeast S. pombe using Hi-

C analysis, which identified cohesion dependent globules (126). Dynamic reorganization of 

TADs takes place during different stages of the cell cycle in S. pombe, as the cohesion-

dependent large domains of 300 kb - 1 Mb length formed during mitosis are gradually 

restructured to smaller domains of 30 - 40 kb (159). Similarly, observation of cohesion- and 

condensin-dependent chromatin reorganization during different stages of the cell cycle in S. 

cerevisiae indicates the existence of a conserved mechanism (160). 

 

The adoption of non-random positioning of chromosomes in interphase nuclei in 

preferred conformations (161-163) allows disparate DNA elements to engage in replication 

(164) or transcription ‘factories’(165). Genetic and cell biological analysis in S. cerevisiae 

revealed Rabl-like conformation in yeast nuclei, in which centromeres, as well as telomeres 

of all chromosomes are located in a close physical proximity (166-168). However, high-

resolution contact probability data obtained from Hi-C experiments allowed the construction 

of a structural model revealing spatial contacts within and between all the chromosomes 

present in S. cerevisiae (169). Similar to the budding yeast species S. cerevisiae, spatial 

genome organization facilitating trans-interactions among the centromeres of different 

chromosomes is also observed in fungi, apicomplexans, flies, plants, mice and humans (170, 

171) carrying highly divergent underlying centromere DNA sequences. Especially, clustering 

of the centromeres has been identified to be a conserved feature of the fungal genome 

organization. However, the significance of such a non-random genome organization at the 

centromere is not well understood. 

 

Centromere 

The primary constrictions were first described by Walther Flemming (172). Later 

these structures were identified as centromeres, which serve as the chromosomal binding sites 

of spindle microtubules. In most organisms, centromeres are localized chromosomal 

domains, present only once in every chromosome. The centromere-kinetochore complex 

ensures timely and accurate attachment of the spindle microtubules to facilitate the faithful  
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Table 1.1: A comprehensive list of fungal species belonging to Ascomycota, 

Basidiomycota and Mucoromycota with known or predicted centromeres and their 

features. 
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1 
Saccharomyces 

cerevisiae 

Plasmid 

stability 

assay, CDE 

11.87 16 Yes No No 
~120-125 

bp 

~125 

bp 
(173) 

2 
Saccharomyces 

paradoxus 
CDE, Hi-C 11.94 16 Yes No No 

~120-125 

bp 
NA 

(174, 

175) 

3 
Saccharomyces 

uvarum 

CDE, 

plasmid 

stability 

assay 

11.60 NA Yes No No 
~120-125 

bp 
NA (176) 

4 
Saccharomyces 

bayanus 

CDE, 

plasmid 

stability 

assay 

11.86 NA Yes No No 118-121 bp NA 
(177, 

178) 

5 
Zygosaccharomyces 

rouxii 

CDE, 

plasmid 

stability 

assay 

9.76 7 Yes No No 
167-169 

bp 
NA 

(179, 

180) 

6 
Vanderwaltozyma 

polyspora 
CDE 14.67 NA Yes No No 

109-120 

bp 
NA (178) 

7 
Saccharomyces 

mikatae 
Hi-C 11.47 NA Yes No No ~125 bp NA (175) 

8 
Saccharomyces 

kudriavzevii Hi-C 11.85 16 Yes No No ~125 bp NA (175) 

9 Candida glabrata 

Synteny, 

conserved 

elements, 

plasmid 

stability 

assay 

12.47 13 Yes No No 107-113 bp NA 

(181, 

182) 

 

10 
Naumovozyma 

castellii 

Ndc10, 

Ndc80 ChIP-

seq 

11.23 10 Yes No No ~110 bp 
~110 

bp 

(183) 

11 
Naumovozyma 

direnensis 

Synteny, 

conserved 

sequence 

13.75 

 
11 Yes No No ~110 bp NA 

12 Lachancea meyersii CDE 11.26 8 Yes No No 
125-138 

bp 
NA 

(178, 

180, 

184) 

 

13 Lachancea dasiensis CDE 10.70 8 Yes No No 116-128 bp NA 

14 Lachancea nothofagi CDE 11.31 8 Yes No No 
126-128 

bp 
NA 

15 
Lachancea 

thermotolerans 
CDE 10.39 8 Yes No No 

127-138 

bp 
NA 
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16 Lachancea waltii CDE 10.91 NA Yes No No 
127-139 

bp 
NA 

17 Lachancea mirantina CDE 10.11 8 Yes No No 115-118 bp NA 

18 
Lachancea 
fermentati CDE 10.26 8 Yes No No 

186-197 

bp 
NA 

19 Lachancea cidri CDE NA  Yes No No 
187-217 

bp 
NA 

20 Lachancea kluyveri CDE 11.50 8 Yes No No 
187-200 

bp 
NA 

21 Lachancea fantastica CDE 11.33 7 Yes No No 
124-136 

bp 
NA 

22 
Eremothecium 

gossypii 
CDE-like 

elements 
9.13 7 Yes No No 

199-202 

bp 
NA 

(178, 

185) 

23 
Eremothecium 
cymbalariae 

CDE-like 

elements 

9.66 

 
8 Yes No No ~200 bp NA 

(186, 

187) 

24 Eremothecium coryli CDE-like 

elements 
9.09 NA Yes No No ~200 bp NA (186) 

25 Kluyveromyces lactis 

CDE-like 

elements 

(KlCDE) 

10.70 6 Yes No No ~200 bp NA 
(182, 

188) 

26 
Kluyveromyces 

marxianus 

Plasmid 

stability 

assay, 

conserved 

KlCDE 

elements 

10.90 8 Yes No No ~260 bp NA (189) 

27 
Kluyveromyces 

wickerhamii Hi-C 9.80 NA NA No No NA NA (175) 

28 Candida lusitaniae 
CENP-A 

ChIP-seq 
12.11 8 Yes No No 4-4.5 kb 

4-4.5 

kb 
(190) 

29 Candida dubliniensis 
CENP-A 

ChIP-seq 
14.04 8 NA No No 3-5 kb 

3-5 

kb 
(191) 

30 Candida albicans 
CENP-A 

ChIP-PCR 
14.67 8 No No No 2.9-4 kb 

2.9-4 

kb 
(192) 

31 Candida tropicalis 
CENP-A 

ChIP-seq 
14.63 7 No No No 9-22.4 kb 

3-5 

kb 
(193) 

32 
Scheffersomyces 

stipitis 

Plasmid 

stability 

assay, Hi-C 

15.48 8 NA No Yes NA NA 
(175) 

 

33 
Debaryomyces 

hansenii Hi-C 12.06 7 NA No No 
1186-4402 

bp 
NA 

(194) 

34 Kuraishia capsulata Hi-C 11.37 7 NA NA Yes 
851-6741 

bp 
NA 

35 Ogataea polymorpha 
Bioinformatic 

prediction 
8.97 7 NA NA Yes 10-20 kb NA (195) 

36 
Komagataella 

pastoris 

CENP-A 

ChIP-seq 
9.35 4 Yes No No 

5,354-

6,655 bp 

5,35

4-

6,65

5 bp 

(196) 

37 
Blastobotrys 
adeninivoran 

Bioinformatic 

prediction 
NA NA NA  No ~1 kb NA (197) 

38 Yarrowia lipolytica 

Plasmid 

stability 

assay 

20.55 6 NA No No ~1 kb NA 
(182, 

198) 

39 Zymoseptoria tritici CENP-A 

ChIP-seq 
37.68 21# No Yes Yes 

5.57-13.55 

kb 

5.57-

13.5

5 kb 

(199) 
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40 
Malassezia 
sympodialis 

Bioinformatic 

prediction, 

Mtw1 ChIP-

seq 

7.72 8 Yes No No 81-1152 bp 
2-5 

kb 

(200, 

201) 

41 Malassezia furfur CENP-A 

ChIP-qPCR 
7.79 NA Yes No No 

168-721 

bp 
NA 

(201) 

42 Malassezia globosa H3/H4 ChIP-

PCR 
8.93 NA Yes No No 

107-455 

bp 
NA 

43 Malassezia restricta Bioinformatic 

prediction 
7.29 9 Yes No No 

594-687 

bp 
NA 

44 Malassezia sloffiae H3/H4 ChIP-

PCR 
8.42 NA Yes No No 

477-583 

bp 
NA 

45 Malassezia nana Bioinformatic 

prediction 
7.57 NA Yes No No 

512-794 

bp 
NA 

46 Malassezia dermatis Bioinformatic 

prediction 
7.54 NA Yes NA No 

499-848 

bp 
NA 

47 
Malassezia 

vespertilionis 
Bioinformatic 

prediction 
7.58 NA Yes NA No 

521-1200 

bp 
NA 

48 Malassezia japonica Bioinformatic 

prediction 
8.35 NA Yes NA No 

497-598 

bp 
NA 

49 Epichole festucae Hi-C 35.04 7 NA NA No ~10 kb NA (202) 

50 Neurospora crassa 

Plasmid 

stability 

assay 

41.10 7 Yes Yes Yes 
175–300 

kb 
NA (203) 

51 
Schizosaccharomyce

s pombe 

Plasmid 

stability 

assay 

12.81 3 No Yes Yes 40-100 kb 

10-

15 

kb 

(204) 

52 
Schizosaccharomyce

s octosporus 

CENP-A 

ChIP-seq 
11.63 3 No Yes Yes 66-77 kb 

10-

15 

kb 
(205) 

53 
Schizosaccharomyce

s cryophilus 

CENP-A 

ChIP-seq 
11.55 3 No Yes Yes 73-85 kb 

10-

15 

kb 

54 
Cryptococcus 
amylolentus 

CENP-A 

ChIP-seq 
20.26 14 NA NA yes 22-48 kb 

10-

15 

kb 

(206) 

55 
Cryptococcus 
neoformans 

CENP-A 

ChIP-seq 
18.59 14 NA Yes Yes 27-64 kb 

27-

64 

kb 

(207) 

56 
Cryptococcus 
deneoformans 

CENP-A 

ChIP-seq 
19.05 14 NA Yes Yes 29-110 kb 

29-

110 

kb 

57 
Cryptococcus 
deuterogattii 

CENP-A 

ChIP-seq 
17.47 14 NA No Yes 8-21 kb 

8-21 

kb 

58 Ustilago maydis 
Bioinformatic 

prediction 
20.06 23 NA No Yes 14.5 kb NA 

59 Ustilago bromivora 
Bioinformatic 

prediction 
20.70 23 NA Yes Yes 27.8 kb NA 

60 Ustilago hordei Bioinformatic 

prediction 
24.63 NA NA Yes Yes 39.3 kb NA 

61 Magnaporthe oryzae 
CENP-A 

ChIP-seq 
38.75 7 Yes Yes Yes 

57-109 kb 

 

57-

109 

kb 

(208) 

62 Trichoderma reesei 3C-seq 32.68 7 Yes NA Yes 30-43 kb NA (209) 

63 
Fusarium 

graminearum 

CenH3-ChIP-

seq 
36.66 4 Yes Yes No 

150-300 

kb 

174-

287 

kb 

(210) 
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64 Mucor circinelloides 
Mis12 and 

Dsn1 

ChIP-seq 

36.56 9 Yes Yes Yes 15-73 kb 

744-

1132 

bp 

(211) 

*Centromere type: 1-27: point centromeres, 28-49: short regional centromeres, 50-63: long regional 

centromeres, 64: mosaic centromere; NA: Data not available; #Z. tritici contains 13 core and 8 accessory 

chromosomes. 

 

 

segregation of sister chromatids. Initial studies on centromere biology were facilitated by 

fungal model systems due to the ease of laboratory manipulation and availability of genome 

assembly. To date, the identity of centromeres from over 60 fungal species has been 

predicted by DNA sequence analysis; a majority of them are validated by genetic and/or 

biochemical experiments (Table 1.1). Initially, cloning of centromere DNA on a replicative  

 
Figure 1.13 Phylogenetic distribution of fungal species with known centromeres in 

Ascomycota, Basidiomycota, and Mucoromycota.  

Left, a maximum-likelihood based tree of 55 fungal species with known centromeres was 

generated from the conserved orthologs identified in these species using OrthoFinder (212), 

MAFFT (213), FastTree (214). Blastobotrys adeninivorans, Epichloe festucae and some 

species belonging to the genera Lachancea and Malassezia with known centromere loci were 

not included in this phylogenetic tree as the complete annotation of ORFs are not available. 

The branches and the groups of species are color-coded based on the centromere type. 

Orange and red, unconventional and conventional point centromeres respectively; green, 

short regional; blue, long regional and pink, mosaic-type centromere. Nine nodes, marked 

with black circles numbered from one to nine, containing species with similar centromere 

type, were collapsed and represented as triangles. Right, the internal species-level tree 
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topology of the collapsed nodes is expanded, and branches are color-coded as described in 

the left panel. 

 

 

plasmid and scoring for its mitotic stability allowed genetic dissection of functional DNA 

elements. Later, the use of chromatin immunoprecipitation (ChIP) assays led to the 

identification of kinetochore-bound domains on these centromeres. Based on the length of the 

kinetochore bound domain centromeres identified in three fungal phyla Ascomycota, 

Basidiomycota, and Mycoromycota (Figure 1.13) can be categorized into four major classes. 

These are a. point centromere, b. short regional centromere, c. long regional centromere, and 

d. mosaic centromere. Comparative analyses of the structural and functional properties of the 

fungal centromeres facilitated the detection of the evolutionary patterns within a group of 

closely related fungi. One of the major findings from these studies is the non-universality of 

the factors that define and regulate centromere structure and function. 

 

Point centromere 

Molecular understanding of centromere DNA was initiated by the cloning of 

centromeres in S. cerevisiae that led to the construction of the first artificial minichromosome 

(173). The 125-bp long ‘point’ centromere of S. cerevisiae, roughly the same length of DNA 

wrapped around a single nucleosome, consists of conserved DNA elements (CDEs): CDEI, 

CDEII, and CDEIII (215). CDEI and CDEIII share conserved but degenerate motifs of 8 and 

26 nucleotides, respectively (216). Although the highly AT-rich CDEII (78-86 bp) (217) is 

not conserved, its length is important for centromere function (218). A single base-pair 

mutation in the CCG-motif in CDEIII is sufficient to abolish the centromere function. 

Centromeric nucleosomes contain centromere-specific histone H3 variant CENP-ACse4 (219). 

Binding of kinetochore proteins facilitates bending of the DNA flanking CDEII, which has an 

intrinsic ability to form curves (220, 221). These physical properties and DNA sequence 

recognition by the point centromere-specific protein complexes contribute to the genetic 

identity of centromere DNA, enabling these sequences to de novo assemble kinetochore 

components. Approximately 25 closely related Saccharomycetes in the fungal phylum of 

Ascomycota have been found to contain conventional CDE-like elements at their centromeres 

(178). In these organisms, the length of CDEII varies from 93 bp in Lachancea waltii to 161 

bp in Kluyveromyces lactis (178, 188, 222). These conserved structural features of 

centromere DNA shared by organisms in the subphylum Saccharomycotina indicate a single  
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Figure 1.14 DNA sequence, structural, and chromatin properties of seven major fungal 

centromere types. 

Left, schematic of the centromere organization highlighting the centromeric chromatin 

domain (purple) and flanking pericentric region (pink) in each representative type of fungal 

centromeres. Line diagrams are not drawn to scale. A representative arrangement of 

nucleosomes in each type of centromere is shown in a dotted box. Right, the presence or 

absence of various determinants of centromere structure and function is shown. Transposon 

refers to the presence of either full-length or truncated version of it in at least one centromere 

of a given species. Centromere-specific DNA sequence elements include conserved DNA 

sequences present exclusively at the centromeres, but not necessarily common to all 

centromeres. Centromere-specific elements include CDEs (S. cerevisiae), an AT-rich motif 

(M. circinelloides), pericentric repeats (C. tropicalis and S. pombe), and full length Tcn 

retrotransposons (C. neoformans). 

 

 

origin of point centromere. More recently, the unconventional point centromeres that harbor 

CDEs, different from those of S. cerevisiae, have been reported in Naumovozyma castellii 

and Naumovozyma dairenensis (183). The genetic identity of these unconventional point 

centromeres also revealed a rapid co-evolution of the CBF3 complex components Ndc10 and 

Cep3, which recognize diverged point centromere DNA sequences (183). 

 

Short regional centromere 

Most other fungal species have regional centromeres spanning beyond a single 

nucleosome and are not strictly defined by the underlying DNA sequence (Figure 1.14). The 

short regional centromere (< 20 kb) was first identified in a CUG-Ser1 clade species C. 

albicans that contains unique DNA sequence spanning 3-5 kb long CENP-ACse4-bound 

centromeric chromatin (192, 223). Lack of sequence conservation and the inability of 

centromere DNA to stabilize a centromeric plasmid carrying an autonomously replicating 

sequence (ARS) suggested a DNA sequence-independent inheritance of centromere function 

(224). Centromeres of Candida dubliniensis also share similar features, containing unique 

DNA sequences that are remarkably diverged from their C. albicans counterparts (191). AT-

rich short regional centromeres on unique DNA sequences were identified in another CUG-

Ser1 clade species Candida lusitaniae (190). Using various genetic, genomic and 

biochemical approaches, short regional centromeres were identified in other 

Saccharomycetes, including Kuraishia capsulata (194), Ogataea polymorpha (195), 

Blastobotrys adeninivorans (197), and Yarrowia lipolytica (225). Unusual short regional 

centromeres of Y. lipolytica carry conserved blocks of 9-14 bp regions with dyad symmetry 

(198). 
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Inverted repeat (IR)-associated short regional centromeres were identified in the 

CUG-Ser1 clade species C. tropicalis (193), which diverged ~39 million years ago from C. 

albicans. Unlike the unique centromeres in C. albicans, all seven centromeres of C. tropicalis 

are highly homogeneous (226), containing 2-3 kb long CENP-ACse4-bound mid-core flanked 

by 3-5 kb long IRs. Intriguingly, the entire mid-core flanked by IRs present on a plasmid can 

facilitate the de novo recruitment of CENP-ACse4 and improve its mitotic stability, albeit at a 

lower frequency than that of S. cerevisiae (193). Similar IR-associated centromeres were 

identified in Komagataella phaffi that consist of ~2 kb IRs flanking ~1 kb mid regions (196). 

Zymoseptoria tritici, a filamentous ascomycete, contains 5.5-13.5 kb CENP-ACenH3 enriched 

centromeric chromatin (199). Apart from these ascomycetes described above, organisms of 

the Malassezia species complex of the fungal phylum Basidiomycota also possess short 

regional centromeres that are highly AT-rich with 2-5 kb long centromeric chromatin (201). 

 

Long regional centromere 

 A class of DNA sequence-dependent long regional centromeres (>20 kb) were 

identified in the fission yeast S. pombe (227-229). The length of fission yeast centromeres 

ranges from 40-110 kb encompassing the kinetochore-bound central core (CC) region flanked 

by various types of repeats (204) (Figure 1.14). The central regions of CEN1 and CEN2 of S. 

pombe share homology, whereas the central region of CEN2 is unique (204). The pericentric 

region consists of dg and dh class of repeats (229). However, a part of CC and one arm of 

pericentric chromatin proved to be sufficient for the establishment of centromere identity and 

proper segregation of minichromosomes (230). Similar repeat-associated long regional 

centromeres were identified in closely related Schizosaccharomyces species: 

Schizosaccharomyces cryophilus and Schizosaccharomyces octosporus (205, 231). 

 

Long regional centromeres, which are rich in transposons, have been reported in both 

Ascomycota and Basidiomycota (Figure 1.14). Centromeres of Neurospora crassa, 

Magnaporthe oryzae, and C. neoformans are highly repetitive and harbor both active and/or 

truncated transposon elements (207, 208, 232). The length of centromeres ranges from 150-

300 kb of heterochromatic DNA in N. crassa (232). The repeats at the centromeres of N. 

crassa introduce numerous C:T and G:A transitions by repeat-induced point mutation (RIP) 

(97) randomly through recurring cycles of an unknown mechanism leading to centromere 

DNA sequence divergence (233, 234). AT-rich centromeres of M. oryzae contain 57-109 kb 
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centromeric chromatin (235). Analysis of 3C-seq data revealed putative centromeric regions 

containing clusters of Tdh5 retrotransposon spanning 18-27 kb regions on all chromosomes 

of Debaryomyces hansenii (194). The RNAi-proficient species of the Cryptococcus species 

complex harbor 20-110 kb long centromeric chromatin. RNAi seems to help maintain full-

length retrotransposons at centromeres in these organisms (207). A correlation between 

accumulation or loss of retrotransposons with alteration in the centromere length has been 

reported in the Cryptococcus as well as the Ustilago species complex (207). 

 

Mosaic centromere 

Most fungal centromeres studied to date are enriched with CENP-A (236). The loss of 

CENP-A has been described in kinetoplastid kinetochores present in Trypanosomes (237). In 

addition, certain insect lineages lacking CENP-A (238) harbor holocentric chromosomes, 

implying an independent transition to holocentricity (diffuse centromeres along the entire 

length of a chromosome) upon CENP-A loss in these lineages (237, 238). Among fungi, 

CENP-A loss has been recently reported in an early diverging sub-phylum Mucoromycotina 

(211). Strikingly, Mucor circinelloides has monocentric chromosomes in spite of lacking 

CENP-A. The average kinetochore binding length is 941 bp with a conserved AT-rich motif 

in this organism. These centromeres are mosaic-type given their point centromere-like 

kinetochore binding domain and unusually long pericentric regions (Figure 1.14). These 

pericentric regions range between 15-75 kb interspersed with Grem-LINE1 elements, which 

are repeats of LINE1-like non-LTR retrotransposable elements. The diversity in both the 

length and the structure of fungal centromeres hint that additional factors beyond centromere 

DNA play crucial role in the establishment and propagation of centromeric chromatin. 

 

Establishment and propagation of centromere identity 

  The establishment of centromeric chromatin involves interactions between 

kinetochore proteins and centromere DNA that can either be at the level of primary DNA 

sequence, chromatin architecture, and/or three-dimensional conformation of the genome. 

Factors required for the maintenance of centromeric chromatin include heterochromatin 

components, transcriptional status, replication timing, and spatial chromosomal interactions. 

The establishment of centromeric chromatin on naked DNA sequences was first 

demonstrated by improved mitotic stability of minichromosomes in S. cerevisiae (173). 

However, in many fungal species, the mode of centromere establishment is independent of 
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the underlying DNA sequence. In S. pombe, a heterochromatic environment facilitated by the 

HP1 homolog Swi6 and RNAi-mediated machinery helps in the efficient recruitment of 

CENP-ACnp1 to the central regions (Figure 1.15A) (239, 240). On the other hand, the 

epigenetic nature of centromeres in C. albicans that lacks RNAi and conventional 

heterochromatin does not permit the stabilization of a kinetochore on an externally 

introduced centromeric plasmid (224). This raises possibilities that species-specific factors 

are involved in centromere establishment. This plasticity of centromeric chromatin has been 

exemplified in experiments carried out in fungal species when studied in neocentromere 

formation, transgene silencing at the centromere, artificial centromere construction, and 

dicentric inactivation. 

 
Figure 1.15 Molecular determinants of centromere formation in fungi.  

A. Maintenance of centromeric heterochromatin at the outer repeats in S. pombe is mediated 

by RNAi-dependent machinery, where both strands of the outer repeats are transcribed by 

RNA polymerase II. Double-stranded RNA molecules are generated with the help of RNA-

dependent RNA polymerase I (Rdp1) and processed by Dicer (Dcr1) to yield small 

interfering RNAs (siRNAs). The resulting duplex siRNAs are loaded onto the Argonaute 

(Ago1) complex and converted into single-stranded siRNAs after cleavage and release as the 

passenger strand in the RNA-induced transcriptional silencing (RITS) complex. The RITS 

complex also recruits H3K9 methyltransferase, Clr4. H3K9 methylation stabilizes the 

association of RITS with centromeric chromatin and also provides binding sites for Swi6. B. 

Experimental deletion of native centromere leads to formation of neocentromeres at a site 

proximal or distal to the native centromere in C. albicans. Note that the frequency of 

neocentromere activation, proportional to the area of halo around the blue circles, is higher at 

the centromere-proximal location than the centromere-distal sites in C. albicans. In S. pombe, 
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a heterochromatin-mediated mechanism guides the activation of neocentromeres at sub-

telomeric regions. C. The spatial clustering of centromeres, either constitutive or cell cycle 

stage-specific, is a unique feature across fungal species. (Left and middle panels) Clustering 

patterns for representative fungal species have been depicted by kinetochores (green) 

arranged at the periphery of the nuclear mass (black). Right, the microscopic observations of 

spatial clustering have been supported by 3C-seq and derived techniques. Evolutionarily 

conserved clustering of centromeres near the spindle pole body at the nuclear periphery in 

fungi is shown as a schematic drawing. 

 

 

Neocentromeres, which are sites acquiring centromeric properties in the event of 

native centromere inactivation, serve as an excellent tool to study factors contributing to 

centromere establishment. Systematic deletion of CENP-ACse4 binding and the flanking DNA 

sequences in C. albicans resulted in the formation of neocentromeres in close proximity to 

the deleted region (241) (Figure 1.15B). An independent study reported the activation of both 

proximal and distal neocentromeres in C. albicans (242). Strikingly, Hi-C studies indicated 

that even the distal neocentromere clusters with other native centromeres of various 

chromosomes. This indicates that proximity to the CENP-A–rich zone or CENP-A cloud 

where endogenous centromeres cluster together at the nuclear periphery is a stronger 

determinant than the DNA sequence itself for neocentromere establishment in this organism 

(241). This was seen to be consistent in C. dubliniensis as well (241). On the other hand, the 

conditional deletion of a centromere in S. pombe produces survivors in which chromosomes 

are largely rescued by telomeric fusions with another chromosome or, in rare cases, activate a 

neocentromere at a sub-telomeric region (243) (Figure 1.15B). The similarities in the 

heterochromatin environment at both these loci and the presence of sequences homologous to 

the dg and dh elements identified in the sub-telomeric regions explain the preferential 

activation of neocentromeres at these loci (244). 

 

Reversible transgene-silencing is a unique feature of centromeric chromatin. When a 

transgene, URA4 or ADE2, is integrated at the central region of centromeres in S. pombe, the 

transgene undergoes reversible transcriptional silencing, rendering variable expression 

patterns (245-247). However, the expression of the same transgene integrated at the outer 

repeats was efficiently turned off due to the highly heterochromatic nature of these repeats 

(248). The boundary of centromeric heterochromatin that retains the property of reversible 

silencing was determined in C. albicans by integrating URA3 as a transgene at the core and 

centromere-flanking regions. This study suggested that flexible positioning of CENP-ACse4 

within a domain that permits neocentromere activation when the native centromeric DNA 
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sequence was deleted (249). In S. pombe, however, the tRNA genes were identified as the 

boundary elements between CENP-ACnp1 chromatin and flanking heterochromatin regions 

(250). These studies indicate that low levels of CENP-ACse4 can be present beyond the 3-5 kb 

region of centromeric chromatin in the absence of any boundary elements in C. albicans, 

while CENP-ACnp1 is restricted by defined boundary elements in S. pombe. Structural 

boundary elements are not identified in other classes of regional centromeres, and thus, it is 

not well understood what restricts the length of the functional centromeric chromatin that 

seeds kinetochore assembly. 

 

New insights into factors required for centromere function could be gained by 

studying the fate of dicentric chromosomes. In S. cerevisiae, dicentric chromosomes are 

unstable but are stabilized exclusively by DNA rearrangements when one of the two 

centromeres becomes inactivated (251). The artificial dicentric chromosome generated in S. 

pombe using site-directed recombination led to a cell cycle arrest at the interphase stage. Less 

than 1% of the survivors were shown to inactivate one of the centromeres either by DNA 

sequence rearrangement or by heterochromatinization of centromere DNA sequence leading 

to epigenetic inactivation (252). The fact that in spite of the presence of several potential 

neocentromere sites, the native centromere always serves as the sole functional centromere 

indicates the existence of an active suppression mechanism to keep neocentromeres dormant. 

Maintenance of centromeric chromatin involves the efficient propagation of already 

established centromeric chromatin marks. Even the genetically determined point centromere 

in S. cerevisiae displays an epigenetic mode of maintenance. Chl4 is a non-essential 

kinetochore protein in S. cerevisiae. A centromeric plasmid introduced into chl4 mutants 

display reduced mitotic stability. Whereas if the same mutation is introduced after the 

centromere is allowed to establish on the plasmid centromere, 50% of the cells show high 

mitotic stability, indicative of the semi-essential role of Chl4 in centromere maintenance 

(253). In S. pombe, when various centromeric plasmids with incomplete centromere DNA 

sequences were transformed, the mitotically unstable plasmid switched to a stable state by 

epigenetic means. Strikingly this stable state was efficiently propagated in subsequent cell 

divisions (254). These observations evoked interest in understanding the changes in the 

structure and composition of the chromatin environment of the centromeric plasmids. 
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Structure and properties of centromeric chromatin 

Despite the divergence of the centromere DNA sequences, the centromeric histone H3 

variant CENP-A is a unifying feature that specifies the centromere location in most fungal 

species. CENP-A is considered as the molecular marker for centromere specification, as it is 

excluded from the rest of bulk chromatin. CENP-A targeting domain (CATD) of CENP-A is 

required for its efficient targeting to the centromere (255). 

 

Most of the biophysical and structural studies on centromeric chromatin have been 

performed in S. cerevisiae and S. pombe. Initial methods to dissect the differences between 

CENP-A nucleosomes and H3 nucleosomes utilized in vitro reconstitution assays. There are 

ongoing debates regarding the stoichiometry and DNA binding properties of CENP-A 

chromatin, which differs significantly from H3 chromatin. First, the budding yeast 

centromeric nucleosome forms a stable octamer containing two molecules of CENP-ACse4 

that wrap the DNA in a left-handed manner both in vitro and in vivo (256). Second, partial 

micrococcal nuclease digestion of centromeric chromatin generates a 125-bp fragment, 

shorter than the 147-bp fragment protected in an H3 nucleosome (257). The tight association 

of Cbf1 and the CBF3 complex to the tetramer nucleosome has been proposed to help in the 

formation of the bigger centromeric complex. Later it was shown that a dimer of Ndc10 binds 

to ~50 bp fragment of centromere DNA, leaving ~80 bp DNA to wrap around a single 

nucleosome (258). Finally, CENP-A nucleosomes induce an alternative topology, which is 

positive supercoiling, consistent with right-handed wrapping (259). This altered handedness 

has been suggested for kinetochore accessibility and binding of non-histone proteins that can 

regulate the centromeric activity. Later, the measurement of DNA linking number difference 

(DLk) revealed that the positively supercoiled centromere DNA achieves a DLk value of +0.6 

in the CEN-ARS plasmid context. Induction of positive supercoiling of the centromeric 

nucleosome remains unaffected by alterations of CDEII length and Cbf1 binding to CDEI, 

but lost when the CDEIII sequence was mutated (260). 

 

In vitro reconstitution experiments revealed the presence of a single octameric 

nucleosome at the budding yeast point centromere, which comprises of a dimer of CENP-

ACse4, two molecules each of H2A, H2B, and H4 (261). It has also been proposed that the 

chaperone Scm3 evicts H2A, H2B leaving two copies each of Scm3, CENP-ACse4, and H4 to 

form a hexameric nucleosome at the centromere (262). The hexameric model is difficult to 
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reconcile as previous reports show that H2A is important to maintain centromere function 

(263). Another proposed model for centromeric chromatin is the hemisome model, which 

was only observed in the interphase cells of Drosophila (264). It was later shown that CDEII 

is a good substrate for hemisome formation under high salt concentrations in S. cerevisiae 

(265). This also provides structural evidence for the importance of AT-rich regions at the 

centromeres. AT-rich regions are stiff to prevent octamer formation, and hence favor 

hemisomes. 

 

Regional centromeres of S. pombe have multiple nucleosomes of CENP-A, which 

have distinct chromatin properties than bulk H3 chromatin, as seen by MNase digestion 

assays (266). The array of CENP-A nucleosomes is orderly positioned in the unique mid-core 

sequences of S. pombe. The smeary pattern obtained upon MNase digestion of centromere 

DNA was largely attributed to the protection rendered by the kinetochore complex. Similar 

smeary patterns were observed in fission yeast centromeres during meiosis (61) and also in C. 

albicans centromeres (224). A contrasting report emerged where the in vivo chemical 

mapping of nucleosome positioning in S. pombe revealed a fuzzy positioning of CENP-A 

nucleosomes at the central core (267). The reason for such an irregular positioning was 

attributed to the AT richness of the central core. On the other hand, centromeres in C. 

albicans do not show any AT-richness, even though they display the smeary MNase 

digestion pattern similar to S. pombe. High-resolution mapping of centromeric nucleosomes 

revealed that H3 nucleosomes are nearly absent from the central core in S. pombe (268). The 

central core is also enriched with two H4 molecules per nucleosome that are unpositioned 

and widely spaced than the flanking H3 nucleosomes. The same study revealed the 

enrichment of CENP-T and Scm3 throughout the central core, with CENP-T linking adjacent 

CENP-A nucleosomes. Scm3 has shown to copurify with CENP-ACse4 in vitro (269). In vivo, 

Scm3 dissociates from the centromere transiently during early mitosis, whereas CENP-ACse4 

is constitutively present at the centromeric nucleosome (269). Hence, it is favorable to 

consider Scm3 to be a stable incorporator of CENP-A rather than a constitutively present 

structural component at the centromeric nucleosome. 

 

Intriguingly, dyad symmetry at the centromere DNA of S. pombe was found to be 

correlated with enrichment of non-B-form DNA, which remains conserved in other domains 

of life (270). Centromere DNAs are found to be covalently modified in certain fungal 

species. Cytosine methylation of DNA (5mC) has been implicated in the formation of 
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heterochromatin in N. crassa (271, 272), which is also present in Cryptococcus species (207). 

On the contrary, the centromeres in C. albicans are devoid of DNA CpG methylation marks 

(273). Therefore, the requirement of these covalent modifications for centromere function is 

not conserved across all fungal models. Together, the higher-order centromeric and 

pericentromeric chromatin structure, the unusual secondary structure of centromere DNA and 

its covalent modification might influence the complex regulation of centromere identity. 

 

The structural organization and topology of the centromeric chromatin are studied in 

detail in S. cerevisiae. The three-dimensional structure of the centromeric and 

pericentromeric chromatin was dissected using microscopic studies of fluorescently labeled 

spindle pole body proteins, centromeric markers, and cohesin molecules (274-276). These 

studies revealed the presence of pericentric loops with the centromeres located at the apex of 

each loop (276). These loops display coordinated motion and stretching in metaphase (277). 

Higher-order organization of pericentric chromatin through loops is proposed to function as 

nonlinear spring, which helps in mitotic force balance (274) and facilitates correct orientation 

and stabilization of the microtubule attachment sites (277). 

 

Regulation of centromere identity in space and time 

The positioning of centromeres at the nuclear periphery near SPBs in a transcription-

poor zone facilitates spindle attachment and shields the centromere from pervasive 

transcription (278). Centromeres are clustered throughout the cell cycle in S. cerevisiae (279) 

and C. albicans (223) and the existence of a CENP-A-rich zone or CENP-A cloud at a 

perinuclear space has been proposed (241). In S. cerevisiae, a locally enriched population of 

CENP-ACse4 molecules at pericentromeres serves as a reservoir for the rapid incorporation of 

CENP-ACse4 in an event when they are prematurely evicted from the centromeres (280). The 

CENP-A cloud hypothesis stems from the activation of native centromere-proximal 

neocentromeres in C. albicans (241, 281). Unlike budding yeast, centromeres in fission yeast 

cluster during interphase and uncluster for a brief period during mitosis (282). These 

clustered centromeres are attached to the nuclear envelope near the site of SPBs during 

interphase (283). In C. neoformans, unclustered centromeres in interphase eventually cluster 

at the mitotic onset in a microtubule-dependent manner (284). Apart from unicellular yeasts, 

centromere clustering has also been observed in filamentous fungi like Fusarium 

graminearum, N. crassa, M. oryzae, wherein with the exception of M. oryzae, all centromeres 
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were found to constitutively cluster as a single punctum by fluorescence microscopic 

analyses (Figure 1.15C) (235, 285). Despite the differences in the centromere clustering 

patterns across fungal species examined to date, it has been consistently shown that 

centromere clustering is important for proper kinetochore-microtubule attachment during 

mitosis (283, 286, 287). 

 

 Recent progress in microscopic imaging and sequencing techniques has enabled the 

successful mapping of distinct compartments within the nucleus to address fundamental 

questions regarding the structure and functional states of chromosomes. 3C-sequencing in S. 

cerevisiae revealed that the clustered centromeres are present in close spatial proximity, 

leading to physical interactions between different chromosomes (Figure 1.15C) (169). In S. 

pombe, where heterochromatin is a major determinant of centromere organization, 

centromere-proximal regions interact with a higher contact frequency, as revealed by Hi-C 

analysis. A similar correlation supported by Hi-C analysis in N. crassa revealed predominant 

interactions across constitutively heterochromatic regions enriched with H3K9me3 and HP1. 

Due to the conserved clustering features of fungal centromeres, Hi-C and related techniques 

have been used to accurately predict centromere loci in fungal genomes (175).  

In the absence of heterochromatic marks and well-defined DNA sequences, what determines 

the clustering of centromeres remains an enigma. Clustering of C. albicans centromeres, 

which are devoid of conventional heterochromatin, indicates the involvement of additional 

factors facilitating this process (249). As discussed previously, centromere clustering favors 

the site of centromere formation in subsequent cell cycles, possibly by CENP-A nucleation. 

Surprisingly, even in the CENP-A-deficient species M. circinelloides, centromeres are 

constitutively clustered both in the spore and the germinating tube (Figure 1.15C) (211). 

 

Although the biological implications for the conserved spatial organization of 

centromeres in fungi remain to be explored, its impact on the replication program of the 

genome is being revealed recently (160, 288). Centromeres are spatially and temporally 

distinguishable from the rest of the genome owing to their distinct clustering patterns and 

replication timing, respectively. Centromeres are replicated in the earliest part of the S phase 

in certain Saccharomyces species (289), C. albicans (290), and S. pombe (291). What is the 

significance of fungal centromeres being early replicating? Early replication timing ensures 

proper kinetochore assembly at the centromeres (292) and helps to maintain the viability of 

cells in the face of any replication stress in S. cerevisiae (293). Early replication of 
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centromeres due to the early firing of the centromere-proximal origins can be attributed to 

their characteristic clustering and nuclear sub-positioning (294). The relocation of a 

centromere to a late firing region resets the replication timing of the latter, reinstating that the 

mere presence of a centromeric sequence can modulate replication timing (289). DNA 

replication fork pause at centromeres helps in centromere DNA loop formation, which is 

essential for sister centromere separation and kinetochore assembly in S. cerevisiae (295, 

296). In S. pombe, centromeres and the sub-telomeric regions have similar heterochromatin 

environment but differ in their replication timings. The heterochromatin protein Swi6 helps in 

early replication of centromeres (297, 298), exhibiting the prominent role played by 

heterochromatin in influencing replication timing and the consequent effect on centromere 

function. 

 

The temporal effect on the DNA replication origin firing has also been studied in C. 

albicans, in which deletion of a native centromere gives rise to a neocentromere with the 

activation of an early firing neo-origin (290). This clearly states that centromeric location 

positively influences the replication timing of the adjacent regions. In Y. lipolytica, a 

centromere-linked replication origin, helps to maintain plasmid stability (225). Hence, 

centromere-proximal origins seem to have a role more than just acting as initiator sites for 

DNA replication. 

 
Figure 1.16 Centromere mediated karyotype evolution in fungal species.  

A possible consequence of chromosome breakage at centromere. The resulting acentric 

fragments can be stabilized by fusion with other chromosomes, eventually leading to an 
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altered karyotype as observed in the species complexes belonging to Ascomycota and 

Basidiomycota. 

 

 

Cause and consequence of centromere mediated genome rearrangements  

The mechanisms contributing to the rapid evolution of centromere DNA, especially in 

asexual fungi, remain unclear. Genome synteny analyses in C. albicans, and C. tropicalis 

helped identify genomic rearrangements near centromeres suggesting inter-centromeric 

translocations in the last common ancestor (193). A similar inter-centromeric translocation 

has been observed in the common ancestor of S. cryophilus and S. octosporus (205). These 

examples indicate that centromeres can mediate karyotypic rearrangements. In fungi, 

centromere mediated rearrangements can lead to a change in chromosome number. One such 

example is found in Eremothecium gossypii, where a break at the centromere following 

fusion of the broken arms with two other chromosomes in the ancestor led to chromosome 

number reduction (178). A similar mechanism of centromere breaks resulting in chromosome 

number alteration has been reported recently in the Malassezia species complex (201) (Figure 

1.16). In mammals, centromere-proximal translocation events are popularly known as 

Robertsonian translocation, which causes sterility in humans (299) and often linked with the 

heterogeneity of carcinomas (300). Robertsonian translocations are also proposed to be a 

driver of speciation in mice (301). Since chromosomal rearrangements mediated large 

karyotypic differences creating incompatible homolog pairing, reproductive isolation, and 

speciation (302), centromere mediated karyotype reshuffling can be one of the mechanisms 

driving speciation. Striking evidence supporting this notion was obtained from experimental 

evolution based study, which showed karyotype shuffling after CRISPR guided centromere 

scission led to reproductive isolation in C. neoformans (303). 

 

Although the number chromosomes present in different species can be different, the 

biological significance of this factor remains elusive. To address this question, two 

independent groups adopted an elegant approach chromosome engineering, which involves 

CRISPR mediated centromere deletion following fusion of the acentric chromosomes 

through the telomeres (132, 304). Applying this technique, each of these two groups 

constructed a strains of S. cerevisiae with either one or two chromosomes. Then they have 

used this strain to assay for changes in phenotypic traits, compaction of chromosomal 

domains, and tested for reproductive isolation between the engineered strain and the parental 
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strain. These studies showed chromosome number change leads to reproductive isolation. 

Although the reduction in chromosome number led to a reduction in the spore production and 

compromised fitness across environments, the overall transcriptome and properties of local 

chromatin compaction remained unperturbed (132, 304). 

 

Karyotypic rearrangements often lead to the repositioning of centromeres or the 

formation of neocentromeres. For example, the fusion between two chromosomes can create 

a dicentric chromosome with two active centromeres, the catastrophic consequence of which 

was originally identified in maize and described as ‘breakage-fusion-bridge’ cycle leading to 

genomic instability (305). Since then, the occurrence of the ‘breakage-fusion-bridge’ cycle 

has been reported in cancers (306), tetraploid mouse cells (307), D. melanogaster (308), C. 

elegans (309) and fungal pathogen Zymoseptoria tritici (310). However, inactivation of one 

centromere can rescue the fused chromosome and stabilize the karyotype (306, 311, 312). On 

the contrary, acentric chromosomal fragments originating from chromosome breakage can be 

stabilized by the formation of neocentromeres, which was first identified in humans (313). 

Other examples of naturally occurring neocentromeres are reported in plants (314). Apart 

from these two cases, centromere repositioning events on an evolutionary time scale may 

lead to the formation of evolutionary new centromeres (ENCs), which are often associated 

with speciation in mammals (315, 316). It was found that the location of one centromere in 

horse varies across individuals (317, 318). The driving force facilitating centromere 

relocation was proposed to be associated with chromosomal inversion and translocation in 

certain cases (319). 

 

However, the altered karyotype should also offer a fitness advantage for it to be 

selected over the ancestral karyotype. Since it is difficult to predict the factors driving 

speciation, the fitness advantages conferred by species-specific rearrangements are not well 

understood. One of the ways to achieve karyotypic alteration is through centromere-mediated 

chromosomal rearrangements. An example of such a translocation includes the bipolar to 

tetrapolar mating-type transition in the Cryptococcus species complex involving a pericentric 

inversion, thereby rewiring the regulation of the mating-type locus (206). Another instance 

where karyotype alteration provides specific fitness advantage involves the generation of an 

isochromosome of chromosome 5L in C. albicans, which confers fluconazole resistance (25). 

Thus, centromere DNA, one of the guardians of genome stability, may contribute towards 

chromosomal rearrangements and possibly speciation. Studies using engineered in vivo 
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model systems showed that the success of the DSB repair through the HR pathway depends 

upon efficient identification of the template donor. This process of ‘homology search’ is 

facilitated by the physical proximity and the extent of DNA sequence homology (320-322). 

In C. tropicalis the centromeres are formed on highly homogenized inverted repeat (HIR)-

associated DNA sequences. Therefore, it is possible that genomic rearrangements through 

spatially proximal and HIR-associated centromeres in the last common ancestor led to the 

loss of HIRs and the emergence of ENCs in C. albicans. 

 

Rationale of the present study 

Our previous analysis suggested that centromeres of C. tropicalis are located near 

interchromosomal synteny breakpoints (ICSBs), which are relics of ancient translocations in 

the common ancestor of C. tropicalis and C. albicans (193). Additionally, the subcellular 

localization of the kinetochore proteins as a single punctum per nucleus indicated the 

clustering of centromeres in C. tropicalis (193). These observations suggest an intriguing 

possibility that ICSBs are specifically enriched near the centromere cluster. However, due to 

the nature of the then-available fragmented genome assembly, the genome-wide distribution 

of the ICSBs and the spatial organization of the genome in C. tropicalis remained unknown. 

Therefore, the influence of the spatial proximity on the outcome of the translocations near the 

centromeres guiding the karyotype evolution in the CUG-Ser1 clade remains as a hypothesis 

to be tested. 

 

Available information and plan for construction of chromosome-level genome assembly 

of C. tropicalis 

The currently available nuclear genome assembly of C. tropicalis type strain MYA-3404 

contains 23 contigs for the nuclear genome and one contig for the mitochondrial genome, 

comprising of 14.58 Mb, with a contig N50 of 221,103 bp (ASM633V3) (6). However, 14 

unique sequences associated with the telomeric repeats have been identified in C. tropicalis, 

which indicate the presence of seven pairs of telomeres and, therefore, seven chromosomes 

(6). Later, the identification of seven centromeres in this species supported the idea that this 

species contains seven pairs of chromosomes in its nuclear genome (193) (Figure 1.17). 

Therefore, the currently available assembly of the C. tropicalis nuclear genome in 23 

scaffolds contains 16 gaps, which need to be closed to construct a complete chromosome-

level genome assembly. 
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Figure 1.17 Identification of seven inverted repeat-associated centromeres in contig-

level genome assembly of C. tropicalis. 
A. Assembly of C. tropicalis nuclear genome in 23 contigs is represented in the order of 

increasing length (x-axis) (6). B. Genome-wide binding profile of conserved kinetochore 

proteins CENP-ACse4 and CENP-C revealed by ChIP-seq analysis identified seven 

centromeres in C. tropicalis. Plots showing enrichment of CENP-ACse4 (red), and CENP-C 

(green) ChIP-seq reads (y-axis) across the genomic coordinates (x-axis) at seven distinct 

locations on C. tropicalis genome of seven different contigs (193). C. Analysis of the 

centromere DNA sequences revealed the presence of 2 - 3 kb long inverted repeat flanking 

the CENP-A- and CENP-C-bound region on all seven centromeres (323). 

 

 

Identification of HIR-associated centromere in this species raises another concern 

about the contiguity of the assembly across the centromeres. As the available contigs were 

generated using short Illumina sequence reads, there is a chance of mis-assembly creating a 

chimeric chromosome in which the chromosome arms are 

 

A.

C.

B.
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Figure 1.18 Homogenized inverted repeat-associated centromere loci in C. tropicalis 
increases the possibility of mis-assembly. 
A. Total number of bases (Ntot), number of aligned bases (Naligned), number of conserved 

bases (Nconserved), percent aligned, and percent conserved bases among the IRs, and mid 
elements of seven centromeres in C. tropicalis as reported previously (323). B. Left, 
schematic drawing of four chromosomes showing the actual karyotype and right, possible 

mis-assembly due to swapping of chromosomal arms at the homogenized centromeres. 

 

 

swapped at the centromere (Figure 1.18). In addition, the current genome assembly has 

multiple N-gaps. Therefore, we chose to leverage the recent development in the long-read 

sequencing chemistry and performed SMRT sequencing of the already sequenced C. 

tropicalis strain MYA-3404. Additionally, we used 3C-seq data to validate the contiguity 

across the chromosomes. There have been additional improvements over the 24-contig 

assembly (Assembly A) by Dr. Geraldine Butler’s group at School of Biomolecular and 

Biomedical Science, University College Dublin, Ireland. This improved genome assembly 

consists of 16 contigs (Assembly B). Therefore, our effort of construction of chromosome-

level genome assembly of C. tropicalis started with these contigs (Assembly B). 

 

 

 

Actual karyotype Mis-assembly at centromere

A.

B.
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Summary of the present work 

Centromeres of C. albicans form on unique and different DNA sequences, but a closely 

related species, C. tropicalis, possesses homogenized inverted repeat-associated centromeres. 

In addition, centromere DNA of C. tropicalis can initiate de novo CENP-ACse4 recruitment on 

a plasmid and improves its mitotic stability. On the contrary, DNA sequence-dependent de 

novo centromere establishment is absent in C. albicans. To investigate the mechanism of 

centromere-type transition, we improved the fragmented genome assembly and constructed a 

chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, 

chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of 

engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq 

data, which revealed spatial proximity among the centromeres as well as telomeres of seven 

chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric 

translocations in the common ancestor of C. albicans and C. tropicalis. Identification of 

putative centromeres in closely related Candida sojae, Candida viswanathii and C. 

parapsilosis indicate loss of ancestral HIR-associated centromeres and establishment of 

evolutionary new centromeres in C. albicans. Based on these results, we propose that spatial 

proximity of the homologous centromere DNA sequences facilitated karyotype 

rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 

clade. 
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Construction of chromosome-level assembly of C. tropicalis  

Our efforts to construct a chromosome-level assembly of C. tropicalis type strain 

MYA-3404 comprises of five key steps (Figure 2.1). First, the SMRT-seq long reads were 

used for scaffolding the Assembly B contigs using Single Molecular Integrative Scaffolding 

(SMIS) software (https://github.com/fg6/smis) producing Assembly C. Second, we integrated 

our contour clamped homogenized electric field (CHEF) gel data, de novo assembled contigs 

generated using the SMRT-seq data, and contact probability data to join two contigs and 

rectify a mis-join in Assembly C, which produces assembly D. Third, based on the analysis 

of the genome sequence data and genetic analysis, we identified the smaller contigs present in 

assembly D as heterozygous loci in the diploid genome of C. tropicalis strain MYA-3404. 

 

 
Figure 2.1 Schematic showing the stepwise construction of the gapless chromosome-

level assembly (Assembly2020) of C. tropicalis. 
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Fourth, using the de novo contigs generated from the SMRT-seq data, the preexisting N-gaps 

were filled, and the sub-telomeres were scaffolded. The fifth and final step was polishing of 

the chromosomes with Illumina sequence data using Pilon (324). The final assembly of C. 

tropicalis strain MYA-3404 in seven complete chromosomes was named as Assembly2020. 

A schematic of this procedure is detailed in figure 2.1. Genome sequencing of C. tropicalis 

strain MYA-3404 was performed on PacBio Sequel platform with version V2 chemistry. The 

genomic DNA molecules were size selected to enrich ~20 kb long fragments and used for 

library preparation (Materials and methods). This run generated 996041 

 

 

reads with an average read length of 5.8 kb. This data was used to scaffold the contigs present 

in Assembly B using SMIS (https://github.com/fg6/smis) with the default parameters 

(Materials and methods). This analysis led to the joining of four more contigs and produced 

Assembly C with 12 contigs comprising of 14652842 bp (Table 2.1). Additionally, the 
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SMRT-seq reads were used to run Canu (77) and FALCON (78, 325) to generate de novo 

assemblies of C. tropicalis. 

 

Figure 2.2 CHEF-karyotyping, analysis of de novo contigs and 3C-seq contact 

probability data indicate contig5 and contig6 are parts of the same chromosome. 

A. An ethidium bromide (EtBr)-stained CHEF gel image where the chromosomes of the C. 
tropicalis strain MYA-3404 and C. albicans strain SC5314 were separated (Materials and 
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methods). The known sizes of C. albicans chromosomes are presented for size estimation and 

validation of the chromosomes of C. tropicalis in the newly constructed Assembly2020. B. A 

synteny map of de novo FALCON generated contig 000002_F with respect to contig5 and 

contig6 indicate that these two contigs should join in a 3' to 3' orientation. The synteny map 

was generated using Symap (326) (Materials and methods). C. The 3C profile (bin size = 10 

kb) of 3′-terminal bin of contig6 (anchor; gray vertical line) showing its contact probabilities 

(blue dots) with bins on contig5 and contig6. D. The 3C profile (bin size = 10 kb) of 3′-

terminal bin of contig5 (anchor; gray vertical line) showing its contact probabilities (blue 

dots) with bins on contig5 and contig6. E. The cartoon representation of chromosome 2 

assembly by fusing contig5 and contig6 in a tail-to-tail (3′ to 3′) orientation based on the 3C 

profile results. 

 

 
Figure 2.3 Use of contact probability data from 3C-seq experiment for correction of 

mis-assembly of contig13 in Assembly C. 
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A. and B. 4C-like plot showing contact probability profiles (blue dots) of ChrR and Chr6, 

respectively, with respect to the anchor bin ChrR:0k-10k. C. and D. 4C-like plot similar to A 

and B, with respect to the anchor bin at ChrR:10k-20k. Both anchor bins are located on the 

contig13 fused to the 5′ end of ChrR. In all the plots the y-axis represents corrected contact 

probability and x-axis represents the chromosomal coordinates. 

 

 
In Assembly C, the length of contig5 is 1379441 bp. However, we could not detect 

any chromosome of this size in our CHEF gel analysis (Figure 2.2A). It was also found that 

1255791 bp long contig6 does not carry any centromere, suggesting it is part of another 

chromosome. We performed a dot plot analysis between Assembly C and the de novo 

assembled contigs by FALCON (78, 325) to prove that contig5 and contig6 are indeed part of 

the same chromosome. This analysis suggested that the contig5 and contig6 are joined 

together through their 3' end in a single chromosome (Figure 2.2B). Based on this data, we 

joined contig5 and contig6. In addition, the contact probability decay pattern also supported 

that these two contigs are part of the same chromosome (Figure 2.2C - E). The sequence 

coverage analysis and contact probability decay pattern suggested that the contig13 of 

Assembly B is wrongly assembled in Assembly C (Figure 2.3A - D). We corrected the mis-

assembly. Therefore, after joining of contig5 with contig6 and correction of mis-assembly of 

contig13 resulted in Assembly D, which contain seven chromosome-length scaffolds, and 

five small contigs. We referred these five small contigs as orphan haplotigs (OH). 

 

One of these five OHs, contig12 carries mating type locus (MTLα), which is present 

as a heterozygous locus in the diploid genome of C. tropicalis (10). Therefore, this 

observation indicated a possibility that the other smaller contigs present in Assembly D are 

also heterozygous loci in the diploid genome of C. tropicalis. To test this possibility, 

sequence coverage on these contigs were analyzed. Quantification of the sequence coverage 

suggested that all five OHs are either partly or completely heterozygous regions (Figure 2.4A 

- B). Further, analysis of the de novo contigs generated by diploid-aware assembler Canu (77) 

suggested that these OHs are heterozygous loci, the chromosomal coordinates for which were 

also mapped (Figure 2.4C). In order to experimentally validate that the OHs are indeed 

heterozygous loci, we performed genetic analysis. 

 

We constructed C. tropicalis strains monosomic for Chr5 and used them to 

demonstrate that loss of one homolog of Chr5 leads to loss of one of the two alleles of the 

orphan contigs: contig14 and contig16, that are mapped on Chr5. Since the sch9 mutants in 
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C. albicans were viable but lost chromosomes at a significantly higher rate than the wild-type 

(327), we adopted the same strategy to delete both copies of SCH9 homolog in C. tropicalis. 

Next, a reporter strain was created in this sch9 mutant strain background of C. tropicalis to 

assay for loss of a Chr5 homolog. These strains (2n-1) that lacked one homolog of Chr5 were 

used to confirm the heterozygosity of orphan haplotigs (OHs) of CtChr5 (Figure 2.5A). 

 

 
Figure 2.4 Analyses of the sequence coverage data and de novo contigs suggest orphan 
haplotigs are heterozygous loci in C. tropicalis genome. 
A. IGV track images showing the coverage of 3C-seq data on the y-axis (number of reads 
mapped per bin for each million of the total reads) over the orphan contigs and a control 
locus from Chr1. B. A violin plot showing the distribution of 3C-seq read coverage across the 
OHs (bin size = 5 bp) and a control region on Chr1 was generated using deepTools2 
bamCoverage script. C. OHs were mapped to the chromosomes by performing two step 
BLAST analysis. First, the de novo contig bearing OH locus was identified. Next, 10 ORFs 
present on each side OH homology region located on the de novo contig were used as query 
sequences against the chromosomes of C. tropicalis Assmebly2020. The allelic difference 
between the OH and its chromosomal homolog is depicted by color-coded ORFs (orange and 
green arrows). 
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Figure 2.5 Genetic analysis of engineered monosomic strains to confirm heterozygosity 

of the orphan haplotigs.  

A. Schematic for construction of monosomic strain with only one homolog of Chr5. B. 

Schematic showing the positions of HindIII sites (vertical black lines) and the length of the 

expected bands detectable by the probe used (red bars) in Southern hybridization to confirm 

sch9 deletion strain (CtKG001). Phosphorimage of the blot showing result of the southern 
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hybridization experiment for confirmation of transformants of sch9△/sch9△ mutant strain 

(CtKG001). C. Different number of cells (105, 104, 103, and 102) of CtKG002 and CtKG003 

were plated on CM+FOA plate along with wild-type controls, as shown in schematic. 

Isolated FOAR colonies were picked up, patched on CM-URA, and YPDU plates, incubated 

at 30℃ for 48 h and imaged. Loss of MTL alleles in each of individual FOAR colonies were 

tested using multiplex PCR experiment with the parental control strain CtKG002. The EtBr 

stained gel picture for the multiplex PCR experiment is shown with the bands for MTLa and 

MTLα marked with blue and red arrowheads, respectively. D. and E. Experimental validation 

of the allelic nature of contig16 and contig14, respectively, using Southern blot analysis. The 

length of restriction fragments polymorphism between the alleles after digesting with ClaI 

and EcoRI (restriction enzyme sites are indicated using blue arrowheads) are graphically 

represented for contig16 and contig14, respectively. The lanes in ethidium bromide stained 

gels (left) and corresponding phosphorimages (right) represent the wild-type MYA-3404 (2nd 

lane) and the monosomic aneuploid strains. The location of the probes used in this 

experiment are marked using red bars. The genotype of each strain used in this experiment, 

and the primers used to amplify probes are mentioned in Appendix-I and Appendix-II, 

respectively. 

 

 

The SCH9 homolog in C. tropicalis was identified in a BLAST search using CaSCH9 

as the query sequence against the C. tropicalis proteome. A putative homolog of SCH9 was 

located on Chr1:1994521-1996662 and encoded by the Crick strand. A deletion cassette 

(pKG1) for double homologous recombination-mediated deletion of SCH9 ORF was 

constructed by cloning upstream and downstream homology regions in pSFS2a plasmid 

(328). This construct was transformed into CtKS102 (ura3::FRT/ura3::FRT 

his1::FRT/his1::FRT arg4::FRT/arg4::FRT CSE4/CSE4::CSE4-TAP (CaHIS1)) for the 

deletion of both copies of SCH9 ORF by recycling the CaSAT1 marker after the deletion of 

the first copy of SCH9 gene. Independent colonies of the sch9/sch9 null mutant strain 

CtKG001 (ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT) were confirmed using Southern 

hybridization (Figure 2.5B). Primers used in this study are mentioned in Appendix-II. 

 

Upstream and downstream homology regions of the target intergenic locus (Chr5_497_kb) in 

Chr5 were amplified, and cloned into pBSCaURA3 plasmid (193) to construct pKG2 

(Appendix-III). This cassette was released by restriction digestion with BamHI and ApaI and 

transformed into the sch9 mutant strain CtKG001 (ura3::FRT/ura3::FRT 

his1::FRT/his1::FRT arg4::FRT/arg4::FRT CSE4/CSE4::CSE4-TAP (CaHIS1) 

sch9::FRT/sch9::FRT) to construct the reporter strain CtKG002 (ura3::FRT/ura3::FRT 

his1::FRT/his1::FRT arg4::FRT/arg4::FRT CSE4/CSE4::CSE4-TAP (CaHIS1) 

sch9::FRT/sch9::FRT Chr5-497kb/ Chr5-497kb::CaURA3). Similarly, we integrated 
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CaURA3 into the target intergenic locus (Chr5_497_kb) of CtKS102 (ura3::FRT/ura3::FRT 

his1::FRT/his1::FRT arg4::FRT/arg4::FRT CSE4/CSE4::CSE4-TAP (CaHIS1)) to create a 

control strain CtKG003 (ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

CSE4/CSE4::CSE4-TAP (CaHIS1) Chr5-497kb/ Chr5-497kb::CaURA3). In both CtKG002 

and CtKG003 the short arm (5¢ end) of one of the two homologs is marked with CaURA3 

marker and the long arm (3¢ end) carries the heterozygous MTL locus (MTLa or MTLα) with 

two distinct alleles present on two homologs. Concomitant loss of one of the MTL alleles 

together with CaURA3 marker would indicate loss of one homolog of Chr5. 

 

 

 

Different cell numbers (105, 104, 103, and 102) of the reporter strain CtKG002 and the 

control strain CtKG003 were plated on complete media (CM) + 5-FOA and incubated for 48-

72 h at 30°C. Multiple FOAR colonies appeared for CtKG002 strain but no colonies appeared 

for the control strain CtKG003. The colonies were then patched on YPDU and CM-URA 

plates to confirm the loss of the CaURA3 marker. Next, PCR was performed to confirm the 

loss of one of the MTL loci (MTLa or MTLα) in these colonies using a multiplex PCR 

strategy described previously (Figure 2.5C) (13). We devised a Southern strategy to 

distinguish between two alleles for each of contig14 and contig16. In this strategy, using the 

monosomic strains of Chr5, CtKG101 – CtKG105 (ura3::FRT/ura3::FRT 

his1::FRT/his1::FRT arg4::FRT/arg4::FRT CSE4/CSE4::CSE4-TAP (CaHIS1) 

sch9::FRT/sch9::FRT Chr5 monosomy), as controls we demonstrate that the contig14 
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(Figure 2.5D) and contig16 (Figure 2.5E) are indeed heterozygous loci in the diploid genome 

of C. tropicalis strain MYA-3404. 

 

Next, the de novo contigs generated using Canu (77) and FALCON (78, 325) were 

used for scaffolding the sub-telomeres and filling the N-gaps present in the chromosomes 

present in assembly D. Using this approach, all 14 sub-telomeres on seven chromosomes 

were scaffolded (Table 2.2, Figure 2.6A). Two different strategies were employed to fill the 

N-gaps flanked by either unique or repetitive sequences (Figure 2.6B - C; Materials and 

methods). All 104 N-gaps were filled using these two strategies (Table 2.2). Next, to examine 

if the gaps were closed correctly, 3C-seq data and SMRT-seq data were mapped on the 

chromosomes, and the read mapping on these coordinates was checked by manual inspection 

using IGV (329). Finally, the chromosomes were polished with the 3C-seq data using Pilon 

(324) to rectify base-pair-level errors. After following all the five steps, the final 

chromosome-level genome assembly of C. tropicalis type-strain MYA-3404 contain 

14609527 bp in seven telomere-to-telomere long gapless chromosomes. We named this 

chromosome-level genome assembly of C. tropicalis as Assembly2020. 

 

 

Figure 2.6 Schematic of the strategy followed for N-gap filling and scaffolding of sub-

telomeres.  

A - B. Strategy-I and strategy-II (Materials and methods) for filling N-gaps without flanking 

repeats or with flanking repeats, respectively. Repeats are presented as black arrows. C. 

Schematic for scaffolding of sub-telomeres using the de novo assembled contigs. Telomeric 

repeats are presented as purple arrows. 
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The chromosomes were named in the order of their length from chromosome 1 (Chr1) 

through chromosome 6 (Chr6), and the chromosome containing rDNA locus is named as 

chromosome R (ChrR). Accordingly, the centromeres on each chromosome are named after 

the respective chromosome number. Additionally, we assembled the genome sequence of 

each chromosome in a way to consistently maintain the small arm of chromosomes at the 5′ 

end. The statistics of the intermediate and final genome assemblies are summarized (Table 

2.3). In this chromosome-level assembly, 1278 out of 1315 Ascomycota-specific BUSCO 

(330) gene sets could be identified compared to 1255 identified using assembly A (Materials 

and methods). Inclusion of 23 additional gene sets as compared to Assembly A suggests 

improved contiguity and completeness of Assembly2020 (Table 2.4). 

 

Validation of the genome assembly with CHEF gel and chromoblot analysis  

Comparison between the chromosome bands observed for C. tropicalis strain MYA-3404 

with reference to the C. albicans reference strain SC5314 in CHEF-gel suggested that the 

length of the two smallest chromosomes are in perfect agreement with the assembly (Figure 

2.2A). However, the other five chromosomes appear as four bands at the top portion of the 

gel (Figure 2.2A). Previously, the identity of five chromosomes carrying centromeres has 

been determined using chromoblot analysis (193), where a centromere adjacent unique locus 
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from each of Chr1, Chr2, Chr3, Chr5, and Chr6 were used as probes to identify the 

corresponding chromosomes in the CHEF-gel by chromoblot experiments. Therefore, to 

confirm the correct assembly of the remaining two chromosomes ChrR and Chr4, chromoblot 

analysis was performed. First, a centromere-proximal locus upstream of CEN4 was used as 

the probe (Probe A). This probe detected two bands in the chromoblot experiment. To 

confirm the observation, and eliminate the possibility of one of the bands being an artifact, a 

second probe (Probe B) was selected from the telomere-proximal region of the opposite arm 

of Probe A. However, the same two bands were detected in this experiment. This result 

confirmed the validity of the initial result and implied that the two homologs of Chr4 in C. 

tropicalis strain MYA-3404 are of different sizes (Figure 2.7A). Comparison with the band 

lengths with the chromosome-bands observed for C. albicans (SC5314) suggests the 

difference between the two homologs is ~250 kb. Since the smaller homolog (Chr4B) 

matched with the assembled length, it was suspected that the larger homolog Chr4A carries a 

~250 kb long duplicated region. 

 

 

 

Similarly, using an analogous approach, a centromere-proximal locus of ChrR was 

used as a probe to examine the correct length of ChrR. In this experiment, the probe detected 

the topmost band migrating ~2.8 Mb (Figure 2.7B). However, the assembly length of Chr1 is 
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2.8 Mb. To confirm if the topmost band observed in the CHEF-gel contains both Chr1 and 

ChrR, a centromere-proximal probe from Chr1 was used. In this experiment, both the probes 

from Chr1 and ChrR detected the same band. This experiment suggests that the length of 

ChrR is ~700 kb longer than the assembled length of ChrR. This difference in the length of 

ChrR can be explained by the presence of rDNA locus on it. Although we have used SMRT-

seq reads with an average length of ~6 kb, the rDNA locus is not completely assembled. 

Similarly, the length of the rDNA locus in C. albicans is ~700 kb (27). Based on this fact and  

the experimental evidence, we speculate that the length of the rDNA locus in C. tropicalis is 

~700 kb.  

 
Figure 2.7 CHEF-chromoblot analysis for validation of the assembly of Chr4 and ChrR 

A. Top, a schematic showing genomic location of probes (black triangle) used for Southern 

hybridization experiment on Chr4. Bottom, EtBr stained gel images and corresponding 

phosphoriamges obtained from Southern hybridization experiments using a centromere-

proximal (Probe A) and a centromere-distal probe (Probe B). B. Top, a schematic showing 

genomic location of Probe C and Probe D located on Chr1 and ChrR. Bottom, an ethidium 

bromide stained gel picture and phosphoriamges obtained from Southern hybridization 

experiments using centromere-proximal probes from Chr1 (Probe C) and ChrR (Probe D). 

 

 

Large CNVs lead to copy-number dependent fluconazole resistance in C. tropicalis 

To test if the difference in the length of two homologs of Chr4 is due to copy number 

variation (CNV) of a region, a sequence coverage analysis was performed. The simple 

rationale behind this analysis is that the number of reads obtained from any given genomic  
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Figure 2.8 Copy number variation in C. tropicalis strain MYA-3404 is correlated to 

increased gene expression.  

A. IGV track images showing coverage of 3C-seq data (pink), SMRT-seq data (cyan), GC 

percent profile (red), ORF density (maroon), and the mRNA-seq heatmap profile (purple) for 

Chr4, Chr5, and ChrR (Materials and methods). Each of the CNV loci DUP4, DUP5, and 
DUPR is marked (black bar) and labelled with the respective length mentioned within the 
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parenthesis. B. Bean plots showing quantification of 3C-seq data coverage over DUP4, 
DUP5, DUPR, and chromosome averages for Chr4, Chr5, and ChrR (chromosome average 

for ChrR was calculated excluding the reads mapped on rDNA locus). Mean value of 

sequence depth is mentioned for each locus or chromosome. C. Bean plots showing 

quantification of the average gene expression level of DUP4, DUP5, and DUPR loci along 

with the genome average control. Unpaired t-test was performed to test the statistical 

significance of difference between genome average and each of the CNV loci. The x-axis of 

B and y-axis of C represents log10(read count per million mapped reads) per 2 bp and 1000 bp 

bins, respectively and obtained using bamCoverage utility of deepTools2. 

 

 

locus is proportional to their copy number. Therefore, the copy number of a given genomic 

locus was estimated as follows: 

 

"#$%	'()*+, = 	'()*+,	#.	,+/01	)/$$+0	$+,	2*	#.	/	345+'	6#7(1
/5+,/3+	'()*+,	#.	,+/01	)/$$+0	$+,	2*	/7,#11	8ℎ+	3+'#)+	

 

To detect the CNVs across the genome, both SMRT-seq reads and 3C-seq reads were 

mapped on the chromosomes of Assembly2020 using BLASR (331) and Bowtie2 (332), 

respectively (Materials and methods). Next, the number of aligned reads were counted using 

deepTools2 (333) and the sequence coverage across all seven chromosomes was visualized 

using IGV (329). In this analysis, three long regions were identified, which are present in 

more than two copies in the genome of C. tropicalis strain MYA-3404 (Figure 2.8A). These 

three long CNV loci present on Chr4, Chr5 and ChrR were named as DUP4, DUP5, and 

DUPR, respectively. Estimation of copy number suggests that DUP4 and DUP5 are present 

in three copies in the genome, while the DUPR locus is present in four copies (Figure 2.8B). 

Quantification of read mapping in high-resolution facilitated an accurate estimation of the 

length of these CNV loci. The largest among the three CNVs, DUP4, spans over a ~235 kb 

long region and present on the larger homolog of Chr4. The other two CNV loci, DUPR and 

DUP5, span across DNA regions of ~80 kb and ~23 kb, respectively. The identification of 

CNV of the DUP4 locus explains the previously observed length difference between the 

homologs of Chr4. 

 

To examine whether presence of CNVs influences the expression level of a given 

locus, an mRNA sequencing experiment was performed in C. tropicalis isolate MYA-3404. 

Illumina RNA-seq reads were mapped on the chromosomes of Assembly2020 using STAR 

(334). Global quantification of genomic transcripts was performed using deepTools2 (333) 
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and visualized using IGV (329). Examination of the transcription status revealed a noticeable 

increase at DUP4 and DUPR, but not at DUP5 (Figure 2.8A). However, we found that the 

transcriptional bias at the DUP4 and DUPR locus is independent of the ORF density and the 

overall base composition of the underlying DNA (Figure 2.8A). Precise quantification of the 

transcription level suggested that increased copy number of DUP4 and DUPR loci is directly 

correlated with an increase in the average gene expression level compared to the genome 

average (Figure 2.8C). 

 

 
Figure 2.9 The dupR mutants shows fluconazole sensitivity. 
Various dilutions of cells (2x104, 2x103, 2x102, and 2x101 from left to right) for each of the 
dupR deletion mutant strains (genotypes are mentioned in Appendix-I), the wild-type strains 
of C. tropicalis (MYA-3404) and C. albicans (SC5314) were spotted on YPDU plates 
without or with different concentrations of fluconazole and the plates were incubated at 30°C 
for 36 h before images were taken. 
 
 

Our result of the genome-wide profiling of mRNA sequencing data in C. tropicalis, 

suggests that the increased copy number of the genomic DNA sequence can positively 

influence the overall expression level of a given locus. However, at this point, it was not clear 

if the increased expression profile of DUP4 and DUPR loci translates into a phenotype. 

Therefore, we deleted at least one copy of the entire length of both the DUP4 (~235 kb) and 

DUPR (~80 kb) loci in MYA-3404 strain background and generated dup4 

(DUP4/DUP4/DUP4::CaSAT1; three independent transformants CtKG300S1, CtKG300S2, 

and CtKG300S3) and dupR (DUPR/DUPR/DUPR/DUPR::CaSAT1; three independent 

transformants CtKG400S1, CtKG400S2, and CtKG400S3) mutant strains (Materials and 
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methods). We used these mutant strains to test the contribution of these CNVs on the 

fluconazole-resistance phenotype in C. tropicalis by performing a dilution spotting assay. 

 

Figure 2.10 Dilution spotting assay to test fluconazole sensitivity of the dup4 mutant 

strains. 

Various dilutions of cells (2x104, 2x103, 2x102, and 2x101 from left to right) for each of the 

dup4 deletion mutant strains (genotypes are mentioned in Appendix-I), the wild-type strains 

of C. tropicalis (MYA-3404) and C. albicans (SC5314) were spotted on YPDU plates 

without or with different concentrations of fluconazole and the plates were incubated at 30°C 

for 36 h before images were taken. 

 

 

In this assay, various dilutions of cells for each of the deletion mutants, the wild-type 

strains of C. tropicalis (MYA-3404) and C. albicans (SC5314) were spotted on YPDU plates 

without or with different concentrations of fluconazole. We observed that the dupR mutants 

show a dose-dependent reduction in growth compared to the parental control strain in the 

presence of fluconazole. This result suggests that the DUPR locus is implicated in 

fluconazole resistance of MYA-3404. However, all three dupR mutant strains show a 

significantly higher level of fluconazole resistance than the wild-type strain of C. albicans 

(SC5314). This observation indicates that additional genomic factors contribute to 

fluconazole resistance in C. tropicalis (Figure 2.9). On the contrary, the dup4 mutants do not 

show a significant growth disadvantage when challenged with fluconazole in a similar 

dilution spotting assay (Figure 2.10).  
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Figure 2.11 The dupR mutants show compromised membrane function. 
A. Various dilutions of cells (2x104, 2x103, 2x102, and 2x101 from left to right) for each of 

the dupR deletion mutant strains (genotypes are mentioned in Appendix-I) and the wild-type 

strains of C. tropicalis (MYA-3404) were spotted on YPDU, YPDU with 0.75% DMSO and 

YPDU with 0.75% DMF plates and incubated at 30°C for 36 h before images were taken. B. 

Flow-chart of the experimental outline to test the effect of DMSO and DMF treatment on the 

cell morphology of wild-type and dupR mutant strain (CtKG400S1). C. Representative 

microscopic images of cells, as observed using 100x magnification in a bright-field 

microscope. D. Representative field view of wild-type (MYA-3404) and dupR mutant 
(CtKG400S1) cells stained using FM 4-64 dye before and after DMSO treatment. The red 

arrows points at the unusual morphology of the vacuolar membrane, which are not observed 

in wild-type cells. E. A bar chart showing proportion of wild-type (MYA-3404) and dupR 
mutant (CtKG400S1) cells (n>100) with circular (blue), irregular (orange), and broken (gray) 

morphology of vacuolar membrane before and after DMSO treatment. 
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 To understand why the dupR mutants display a fluconazole sensitive phenotype, we 

annotated the ORFs present in the dupR locus by performing BLAST search using the amino 

acid sequences for each of the 32 ORFs as query against the C. albicans genome. Using this 

approach, orthologs of 26 out of 32 ORFs present on DUPR locus could be annotated. On the 

other hand, five of these ORFs were uncharacterized in C. albicans, and the ortholog for one 

ORF could not be detected. One of these 26 annotated ORFs is UPC2. UPC2 encodes for a 

transcription factor, which regulates the ergosterol biosynthetic pathway in C. albicans, and 

transcriptionally induced by antifungal drugs and anaerobicity (335, 336). It was also known 

to autoregulate its expression (337). Therefore, we suspected that the increased copy number 

of UPC2 might lead to further upregulation of its own expression and increased fluconazole 

resistance. To test, if the fluconazole sensitivity of the dupR mutants arises due to 

compromised membrane function, a dilution spotting assay was performed. In this assay, the 

dupR mutants and the parental strain MYA-3404 were challenged with organic solvents 

dimethyl sulfoxide (DMSO) and dimethylformamide (DMF), which can affect membrane 

integrity and thereby enhance the permeability (338). In this dilution spotting assay, it was 

found that the dupR mutant strains are sensitive to both the organic solvents at a 

concentration, in which the parental strain MYA-3404 did not show any growth defect 

(Figure 2.11A). 

 

Next, we performed cell biological experiments to know if the DMSO and DMF 

sensitivity of the dupR mutants are associated with compromised membrane morphology. In 

this experiment, the parental strain and the dupR mutant strain (CtKG400S1) were treated 

with 0.75% DMSO for 150 min in YPDU at 30℃ and the cells were observed under the 

microscope (Figure 2.11B). While the parental strain (MYA-3404) grew as yeast cells both 

before and after DMSO treatment, only after DMSO treatment the yeast cells of dupR mutant 

strain (CtKG400S1) became pseudohyphal, which can be a general manifestation of cellular 

stress (Figure 2.11C). We then studied the morphology of the cell membrane by performing 

fluorescence microscopy of cells stained with FM 4-64 dye. Both the mutant and the wild-

type cells were treated with DMSO for 150 min, recovered and stained with FM 4-64 dye 

following microscopic observation (Figure 2.11B). We noted that upon DMSO treatment, the 

integrity of vacuolar membranes is compromised in the dupR mutant strain CtKG400S1 but 

not in MYA-3404 (Figure 2.11D). The vacuolar membranes in dupR mutant cells 

accumulated unusual aggregates, which are rarely observed in MYA-3404. In addition, the 

vacuolar membrane appeared to be disrupted/broken in certain cells. This phenotype was 
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aggravated upon DMSO treatment in dupR mutant, while the MYA-3404 cells remained 

unperturbed. This observation suggests that the vacuolar membrane organization or 

maintenance function in dupR mutant cells is compromised. This observation may explain the 

reduced viability of these cells upon exposure to fluconazole, which targets biosynthesis of 

ergosterol, one of the key membrane lipids in yeasts (339). 

 
Figure 2.12 Genome-wide mapping of SNP/indels and CNVs in C. tropicalis. 
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A. A circos plot showing genome-wide distribution of various sequence features. Very high 

sequence coverage at rDNA locus is clipped for clearer representation and marked with an 

asterisk. B. Models showing possible sequence of events shaping present-day configuration 

of ChrR in C. tropicalis strain MYA-3404.  

 

 

Identification of SNPs and indels in C. tropicalis strain MYA-3404 

The diploid genome of C. tropicalis carries two homologs for each of the seven 

chromosomes. Ideally, the two homologs should harbor exactly the same DNA sequences. 

However, as it was observed for Chr4 of MYA-3404, often, the two homologs can be 

different. The difference between the homologs can be in the form of large duplications or 

deletion, giving rise to CNVs. However, changes at the base-pair level in the DNA sequences 

of the two homologs are also possible, which generates Single Nucleotide Polymorphisms 

(SNPs) or insertion-deletions (indels). Previously, the SNPs in the genome of C. tropicalis 

have been identified by Butler et al. 2008 (6). However, the improved chromosome-level 

assembly of C. tropicalis strain MYA-3404 now allows a high-precision identification and  

 

Table 2.5 Type of effects due to the SNPs. 

Type (alphabetical order)  Count Percent 

downstream_gene_variant  85,877 39.08% 

intergenic_region  23,377 10.638% 

intron_variant  333 0.152% 

missense_variant  7,150 3.254% 

splice_acceptor_variant  1 0% 

splice_region_variant  46 0.021% 

start_lost  6 0.003% 

stop_gained  37 0.017% 

stop_lost  8 0.004% 

stop_retained_variant  21 0.01% 

synonymous_variant  11,577 5.268% 

upstream_gene_variant  91,315 41.55% 

mapping of SNPs and indels. To identify the SNPs and indels, the paired-ended 3C-seq data 

was used. However, to avoid any spurious hits due to chimeric reads obtained after 3C, only 
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reads that mapped completely were taken forward for this analysis using the genome analysis 

tool kit (GATK) software (Materials and methods) (85). Based on this analysis, a total of 

37668 high confidence SNPs and 10900 Indels distributed over14609527 bp total genome 

were identified, which represents a genome average of one SNP per 388 bases and one indel 

per 1340 bp. Next, these SNPs and indels were mapped on the chromosomes and their 

relative abundance across the chromosomes was visualized using IGV. Primary inspection of 

the SNP and indel distribution across the chromosomes revealed a long SNP and indel 

depleted region on the left arm (5′ end) of the ChrR. This locus (LOHR) spanning ~800 kb 

from the 5′ end of ChrR till the centromere-proximal region also encompasses the DUPR 

locus (Figure 2.12A). Present-day configuration of ChrR in MYA-3404 genome carrying four 

copies of DUPR locus within the LOHR locus might have arisen due to a duplication event 

following a break-induced replication (BIR)-like event (Figure 2.12B). 

 

Table 2.6 Type of effects due to the indels. 

Type (alphabetical order)  Count Percent 

conservative_inframe_deletion  108 0.18% 

conservative_inframe_insertion  157 0.25% 

disruptive_inframe_deletion  229 0.37% 

disruptive_inframe_insertion  217 0.35% 

downstream_gene_variant  23,560 38.09% 

frameshift_variant  349 0.56% 

intergenic_region  10,082 16.30% 

intron_variant  103 0.17% 

splice_acceptor_variant  1 0.00% 

splice_region_variant  8 0.01% 

start_lost  8 0.01% 

stop_gained  5 0.01% 

stop_lost  3 0.01% 

upstream_gene_variant  27,029 43.70% 

 

The SNPs and indels may lead to mutations in coding sequences in the genome. 

However, to understand the impact of a particular SNP/indel, annotation of the ORFs is 

required. Multiple tools are available for ab initio gene prediction from the genome FASTA 

files. One such widely used tool is Augustus (340). Augustus is a generalized hidden Markov 

model-based tool for ab initio gene prediction, and it has been already trained for gene 

prediction in C. tropicalis (340). Therefore, Augustus was used for gene prediction in the 
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chromosome-level genome assembly of C. tropicalis. In this analysis, a total of 6129 ORFs 

were identified in the haploid genome of C. tropicalis type-strain MYA-3404. Next, to 

predict the nature of the mutation caused by a particular SNP or indel was analyzed using 

SNPeff (341). In this analysis, we detected certain cases where start codon is lost, stop codon 

is gained or lost due to the SNPs (Table 2.5) and indels (Table 2.6). However, most of the 

SNPs and indels are located away from the coding sequences. 

 

Haplotype phasing of MYA-3404 genome 

Analysis of SNPs, indels, and CNVs characterizes the genetic variation present in the 

diploid genome of in the C. tropicalis strain MYA-3404. However, it does not reveal the 

linkage information among the alleles. Conventionally the haplotyping of the offspring can 

be performed if the parental linkage information is available. However, this approach cannot 

be applied to organisms that do not undergo true meiosis. Therefore, the haplotyping of C. 

albicans was performed by comparative genomic hybridization (CGH) analysis (29) and later 

Illumina sequencing (26) of a set of monosomic isolates in which one of the eight 

chromosomes is present in one copy. Although this approach is the best available one to date, 

it may generate a biased result. In a scenario where the only functional allele of two unlinked 

essential genes are located on two different homologs, an aneuploid strain lacking either of 

the homologs will never be recovered. The only way this aneuploid can be recovered if the 

homologous chromosomes undergo recombination to retain the functional alleles of both the 

genes. However, this recombination event will remain undetected and portray an incorrect 

haplotype that is not present in the parental strain. Therefore, in spite of extensive efforts to 

generate all the aneuploid strains and their genome sequencing, there are chances of error in 

the results.  

 

Recently, a new computational tool-set FALCON and FALCON-Unzip was 

developed for haplotyping, which uses the long read SMRT-seq data together with the 

contact probability information from Hi-C experiment to reliably phase the haplotypes (78, 

325) (Figure 2.13A). Therefore, we used FALCON to perform haplotyping of the C. 

tropicalis strain MYA-3404 using the long-read SMRT-seq data and the 3C-seq data. Details 

of the scripts and parameters used are described in the methods section. This analysis 

generated 16 phased pseudo haplotigs comprising of total 14860026 bases for phase0 contigs 

and 14886827 bases for the phase1 contigs. In order to identify and map the genomic 
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variation between the phased haplotigs, phase0 and phase1 contigs were aligned against each 

other using MUMmer (342), and the output delta file was analyzed using Assemblytics (343) 

(Figure 2.13B). 

 
Figure 2.13 Phasing of diploid genome of C. tropicalis using FALCON.  

A. The schematic of the steps followed by FALCON-Unzip during phasing of diploid 

variations. Modified from reference (325). B. The bar charts showing the number (y-axis) of 

haplotype-specific genomic variants of sizes ranging from 50 bp to 20000 bp (x-axis) 

(Materials and methods). This plot was generated by Assemblytics (343) after identification 

of haplotype specific differences by MUMmer (342). C. A synteny dot-plot between the 

chromosome level genome assembly and the de novo assembly obtained from FALCON 

pipeline, as generated by the Symap using the default parameters. The larger blocks were 

highlighted by a blue rectangle. 
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Figure 2.14 Analysis of chromoblots, 3C-seq contact probability data, de novo contigs 

and sequence coverage validates a balanced heterozygous translocation between Chr1 

and Chr4. 

A. Schematic of the balanced heterozygous translocation between Chr1B and Chr4B. DUP4 

locus is highlighted with the black striped box. The junction between Chr1 and Chr4 on 

Chr1B and Chr4B are marked with black and purple arrows, respectively. B. The contact 

probability heatmaps (bin size = 10 kb) of Chr1 and Chr4 of C. tropicalis showing a 

butterfly-like pattern (chromatin contacts split into two blocks) in the interchromosomal area. 

The 3C-seq reads were mapped to Assembly2020 (top) with Chr1A and Chr4A genomic 

sequences. We have also mapped the 3C-seq reads to an alternate assembly (bottom) with 

Chr1B and Chr4B sequences. Alternate assembly has been generated by exchanging the 

genomic sequences at the translocation breakpoint in Chr1 and Chr4. Coordinate of 

translocation was mapped using two de novo assembled contigs supporting the junctions. 

Chromosome labels and their corresponding ideograms are shown on the heatmap. Color-bar 

represents the contact probability in log2 scale. C. An ethidium bromide stained gel picture 

and phosphoriamges obtained from Southern hybridization using a probe from part of Chr1, 

which is exchanged with Chr4 (probe E) and another probe from part of Chr4, that is 

exchanged with Chr1 (Probe F). The black triangles point to the genomic coordinates of the 

probes used in this experiment (top). F. IGV tracks showing 3C-seq (blue) and SMRT-seq 
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coverage (yellow) across the translocation junctions on each of the unaltered homolog of 

Chr1 (black border) and Chr4 (purple border), respectively. 

 

 

 

 
Figure 2.15 Chromosomal features of C. tropicalis strain MYA-3404 as revealed in 

Assembly2020. 

An ideogram of seven chromosomes of C. tropicalis as deduced from Assembly2020 and 

drawn to scale. The genomic location of the three loci showing copy number variations 

(CNVs): DUP4, DUP5 and DUPR located on Chr4, Chr5 and ChrR respectively are marked 

and shown as using black mesh. The CNVs for which the correct homolog-wise distribution 

of the duplicated copy is unknown are marked with asterisks. Homolog-specific differences 

for Chr1 and Chr4, occurred due to an exchange of chromosomal parts in a balanced 

heterozygous translocation between Chr1B and Chr4B, is highlighted with black borders. 

 

 

Next, the haplotigs generated by FALCON and the chromosomes of Assembly2020 

were compared in a dot-plot analysis using Symap (326). This analysis confirmed the 

contiguity across six out of the seven centromeres (Figure 2.13C). Moreover, de novo contigs 

were found to be co-linear to the chromosomes except for one translocation between Chr1 

and Chr4. To validate the possibility of heterozygous balanced translocation between Chr1 
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and Chr4 (Figure 2.14A), we analyzed the contact probability data obtained from the 3C-seq 

experiment (Figure 2.14B). This analysis, combined with the analysis of de novo contigs 

generated by diploid-aware assembler Canu (77), led to the precise identification of the 

translocation site. This translocation resulted in the exchange of ~392 kb region from the 3′ 

end of Chr4 with ~343 kb of the 5′ end of Chr1. In order to verify the translocation 

chromoblot experiments were performed. In a chromoblot strategy exploiting the size 

difference between the two homologs of Chr4, it was identified that the translocation 

occurred between the smaller homolog of Chr4 and one of the two homologs of Chr1 (Figure 

2.14C). We also mapped both the 3C-seq and SMRT-seq data on Chr1 and Chr4 to show that 

one set of homologs were not involved in translocation (Figure 2.14C). Based on the results 

described so far, an ideogram was drawn to show various chromosomal features of C. 

tropicalis strain MYA-3404 (Figure 2.15). 
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Conserved principle of genome organization in C. tropicalis 

Although centromere DNA sequences change rapidly (191), kinetochore proteins 

remain relatively well conserved across species (344). Previous studies in C. albicans led to 

the identification of conserved kinetochore proteins such as CENP-ACse4, CENP-CMif2, Nuf2, 

and Dad1 (287). Localization of CENP-ACse4 and CENP-CMif2 and Nuf2 were studied in C. 

albicans, where all three proteins show a punctate localization throughout all stages of cell 

cycle (287, 345). Based on the sequence identity, the homologs of CENP-ACse4, CENP-CMif2, 

Nuf2, and Dad1 were identified and characterized as bona fide kinetochore proteins in C. 

tropicalis (193). We also studied the subcellular localization of inner and outer kinetochore 

proteins in C. tropicalis. Next, we analyzed the genome-wide 3C-seq data to study the 

physical contacts between the centromeres. In this analysis, we could find evidence that 

higher-order chromatin structures exist in C. tropicalis genome. Together, these experiments 

and analysis of 3C-seq data improve our understanding of the overall spatial organization of 

the nuclear genome in C. tropicalis. 

 

 
Figure 3.1 Nuclear localization of CENP-ACse4 in C. tropicalis. 
A. A representative field image of C. tropicalis (strain CtKS102) cells expressing Protein-A 

tagged CENP-ACse4. CENP-ACse4 signals (red) were obtained using anti-Protein-A antibodies 

by indirect immuno-fluorescence microscopy. Nuclei of the corresponding cells were stained 

by DAPI (blue). The images were acquired using a DeltaVision imaging system (GE 

Healthcare Life Sciences) and processed using FIJI software (346). B. Representative image 

of a C. tropicalis cell (strain CtKS102) showing localization of CENP-ACse4 as two closely 

spaced puncta within a single nucleus. C. A 3D reconstruction showing clustered 

kinetochores marked by CENP-ACse4 (red) at the periphery of the DAPI-stained nucleus 

(blue) using Imaris software (Oxford Instruments) in C. tropicalis. 
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Co-localization of CENP-ACse4 with DAPI stained genome in C. tropicalis 

We studied the colocalization between the CENP-ACse4 representing the clustered 

kinetochores and DAPI stained nuclear mass using fluorescence microscopy to study the 

spatial location of the centromere-kinetochore clusters in the nucleus. For this experiment, a 

strain CtKS102 (genotype) of C. tropicalis was constructed in which one of the two alleles of 

CENP-ACSE4 was tagged with a Protein-A epitope with CaHIS1 marker and expressed from 

its native promoter at the native genomic locus. The colocalization of Protein-A tagged 

CENP-ACse4 with the DAPI stained nuclear mass in CtKS102 was performed by indirect 

immune-fluorescence microscopy using a delta vision fluorescence microscope (GE 

Healthcare Life Sciences). The detailed protocol for this experiment is presented in the 

Materials & methods section. Examination of the colocalization pattern of CENP-ACse4-

Protein-A and DAPI stained nucleus revealed two features of the centromere-kinetochore 

clustering in C. tropicalis. First, the presence of a single punctum per nucleus indicated 

clustering of all seven centromere-kinetochore complexes at a distance, which is below the 

resolution limit of the light microscope (Figure 3.1A). The observation of the single CENP-

ACse4-Protein-A punctum during the different stages of the cell cycle proves that the clustered 

organization of the centromere-kinetochore complex remains intact during all stages of the 

cell. However, in rare instances, cells with two CENP-ACse4 foci in a single nucleus were also 

observed, which probably represents a transient state during biorientation of the replicated 

centromere-kinetochore complexes (Figure 3.1B). This phenomenon was originally described 

as kinetochore breathing in S. cerevisiae (347). Second, the CENP-ACse4-Protein-A punctum 

was localized at the periphery of the nucleus during all stages of the cell cycle. This 

observation supports Rabl conformation of nuclear organization and indicates the 

maintenance of the Rabl configuration during different stages of the cell cycle in C. tropicalis 

(Figure 3.1C). 

 

Localization of inner and outer kinetochore proteins in C. tropicalis  

 To extend our understanding of the spatial clustering of the centromere-kinetochore 

complex, we studied the localization patterns of inner kinetochore protein CENP-CMif2 and 

Outer kinetochore protein Nuf2 in C. tropicalis. For this experiment, two separate strains 

were constructed. In each case, one of the two alleles of NUF2 (strain CtKG500) or CENP-

CMIF2 (strain CtKG501) was C-terminally tagged with a GFP epitope and expressed from 
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their native promoters (Figure 3.2A). These tagged strains CtKG106 (ura3::FRT/ura3::FRT 

his1::FRT/his1::FRT arg4::FRT/arg4::FRT NUF2/NUF2::NUF2-GFP (CaHIS1)) and  

 
Figure 3.2 Localization of inner and outer kinetochore proteins in C. tropicalis. 
A. Schematics showing strategy for GFP-tagging of kinetochore proteins, Nuf2 and CENP-

CMif2 in C. tropicalis strain CtKG500 and CtKG501, respectively. B. Representative field 

images showing localization of GFP tagged Nuf2 and CENP-CMif2 in C. tropicalis strain 

CtKG500 and CtKG501, respectively. Images were acquired using a DeltaVision imaging 

system (GE Healthcare Life Sciences), and the images were processed using FIJI software 

(346). Scale, 5 µm. Genotype of each strain is mentioned in Appendix-I. 

 

 

CtKG107 (ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

MIF2/MIF2::MIF2-GFP (CaHIS1)) were used to perform fluorescent microscopy that 

revealed clustered kinetochores as a single punctum per nucleus. Similar to the localization of 

CENP-ACse4, both the kinetochore proteins remain clustered during various stages of the cell 

cycle (Figure 3.2B). These results indicate that the centromere-kinetochore complex in C. 

tropicalis follows a very similar pattern of clustering to what is observed in C. albicans 

(223).  

 

Analysis of chromosome conformation capture sequencing (3C-seq) data reveals a 

conserved Rabl conformation of chromosomes in C. tropicalis 

Two independent methods, namely Juicer (348) and Homer (349), were followed to 

analyze the spatial organization of the chromosomes. First, Juicer (348) was used for the 

analysis of 3C-seq data in a CPU based machine. The details of the parameters used, and the 
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script followed are presented in the materials and methods section. The Juicer output was 

visualized using a Java-based tool Juicebox (350). Analysis of the all versus all interactions 

 
Figure 3.3 The contact probability matrix of the C. tropicalis genome reveals significant 

CEN-CEN and TEL-TEL trans interactions. 

A. A genome-wide contact probability matrix (bin size = 10 kb) generated using 3C-seq data 

showing spatial contacts between seven chromosomes in the C. tropicalis genome. The trans 

interactions between CEN5 and other centromeres are pointed with blue arrowheads. The 

trans contacts between the telomeres at 3′ end of Chr5 and the 5′ end of Chr6L with other 

telomeres are pointed with black arrowheads. Chromosome labels and their corresponding 

ideograms are shown on the heatmap. Color-bar represents the contact probability. A section 

of the heatmap is enlarged in the inset. B - D. Contact probability heatmap of Chr4, Chr5 and 

ChrR is presented after applying coverage-normalization using Juicebox. The location of 

CNV loci are marked (black) on the ideogram drawn. The rDNA locus on ChrR is marked in 

green. 

 

 

across the seven chromosomes in C. tropicalis revealed a prominent diagonal across the 

contact probability matrix representing expected strong cis interactions between neighboring 
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regions of the genome (Figure 3.3A). However, a prominent cross-like pattern of contact-

depleted bins was observed near the centromeres of each chromosome, indicating that the 

centromeres are excluded from interacting with the rest of the chromosomal arms (Figure 

3.3A). 

 
Figure 3.4 The contact probability matrix of the C. tropicalis genome obtained from 

analysis of 3C-seq data using Homer. 

A genome-wide contact probability matrix (bin size = 5 kb) generated using 3C-seq data 

showing spatial contacts between seven chromosomes (cartoon ideogram shown on the top 

and left) in the C. tropicalis genome. The heatmap was generated using Java TreeView 

software (351). Color-bar represents the contact probability. 

 

 

Apart from the cis interactions, an examination of the contact probability matrix 

revealed three distinct features of the genome-wide trans contacts across seven chromosomes 

in C. tropicalis. First, a prominent pattern in the contact probability matrix was observed at 

the interchromosomal areas corresponding to the centromere coordinates. This characteristic 

pattern of contact probability highlights the trans interactions among the centromeres (Figure 

3.3A). Second, a cross-like pattern indicating a lack of cis contacts between a centromere and 
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chromosome arms (Figure 3.3B - D) was found to maintain a similar pattern for their contact 

with the arms of other chromosomes (Figure 3.3A). This observation suggests that each 

centromere is spatially positioned away from all chromosomal arms, including its own. Third, 

a significantly higher contact probability between the ends of the chromosomes was observed 

(Figure 3.3A). Thus, the telomeres of the chromosomes seem to interact with each other in C. 

tropicalis. The extent of interaction among the telomeres seems to be weaker than the trans 

interactions among the centromeres, as evident from the heatmap color density. However, a 

detailed analysis of the contact probability matrix revealed an interaction between the two 

telomeres of the same chromosome as well as interactions among telomeres of different 

chromosomes. These three distinct spatial contact patterns observed in the C. tropicalis 

genome indicates that the centromeres and telomeres are clustered away from each other 

(352). Independent analysis of the 3C-seq data using Homer (353) also revealed the 

clustering of centromeres as well as telomeres. (Figure 3.4). 

 

Evidence of topologically associated domains (TADs) in C. tropicalis 

Analysis of the cis contacts across the chromosomes can identify higher-order local 

structures formed because of the interaction between two relatively distant but linked loci. 

Based on the nature of their organization, such structures can be classified as loops or 

topologically associated domains (TADs). The 3C-seq data was analyzed using Homer (353) 

to study the higher-order chromosomal organization in C. tropicalis. Based on the calculation 

of directionality index and insulation score parameters, analysis of our 3C-seq data at 10 kb 

resolution led to the identification of 44 TADs and 37 loops across seven chromosomes of C. 

tropicalis (Figure 3.5A - G; Materials and methods). Previously, the length of TADs in the S. 

cerevisiae genome was studied using Micro-C (128), which found the length of TADs is ~5 

kb. However, in another study using Hi-C data (127), it was found that the TADs in G1 cells 

of S. cerevisiae can extend up to 400 kb in length. In our study, sorting of the TADs in 

different length categories reveals that the majority (23/44) of them are 20-40 kb in length 

(Figure 3.5H). Since the identification of smaller TADs requires contact probability data in 

the sub-kilobase resolution, we cannot rule out the possibility of additional TADs smaller 

than 10 kb being present in the C. tropicalis genome. However, this is the first evidence for 

the presence of TADs in any CUG-Ser1 clade species and further studies are required to 

understand structural and functional aspects of these higher-order chromatin structures. For 

example, high-resolution mapping of TADs in drug-resistant and sensitive clinical isolates of 
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C. tropicalis might identify the contribution of the spatial genome organization on the 

development of drug resistance in this and related species. 
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Figure 3.5 Identification of putative TADs in the C. tropicalis genome. 

A. - G. The 3C-seq data was analyzed using Homer and contact probability matrix was 

generated at 5 kb resolution for each of the seven chromosomes of C. tropicalis. Chromatin 

compaction feature across the length of each chromosome was analyzed by Homer using 
directionality index (a) and insulation score (b) statistic and respective profiles are presented 

at the top of each matrix. Genomic location of each of the 37 loops (c) and 44 TADs (d) 

identified in this analysis are labelled on top of the contact probability matrix for each 

chromosome. Contact pattern at each TAD is highlighted using a yellow triangle. These plots 

were visualized in Juicebox by loading the matrix and individual annotation tracks (a, b, c, 

and d) generated by Homer. H. A bar chart showing a length-frequency distribution of the 44 

TADs identified in C. tropicalis genome using Homer. The number of TADs belonging each 

of the length categories (x-axis) is mentioned on top of each bar. 
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Rapid evolution of centromere-types in closely related members of the CUG-Ser1 clade 

Identification of HIR-associated small regional centromeres in C. tropicalis (193) in 

contrast to C. albicans (192) and C. dubliniensis (191), where the centromeres form on 

unique and different DNA sequences, is remarkable. Such a rapid transition in centromere 

structure has not been observed previously in any other closely related species complex. 

However, it remained unknown if the HIRs associated centromeres emerged in C. tropicalis 

or lost in C. albicans and C. dubliniensis. The identification of IR-associated centromeres in 

early diverging species Komagataella pastoris (196) suggests that IR-associated centromere-

type can be present in the ancestral lineage. Therefore, an attractive hypothesis could be that 

the ancestral lineages retained DNA sequence dependent centromere, which could have been 

lost in the derived lineages with a transition into epigenetic centromere types. If this 

hypothesis is true, the HIR-associated centromere DNA sequences similar to what is 

identified in C. tropicalis should also be present at the centromeres of other closely related 

species. In addition, these HIR-associated centromere DNA sequences should be able to 

initiate de novo centromere function. However, answers to these questions critical to assess 

the validity of such a hypothesis remain unknown at this point. Even if the hypothesis is 

valid, the driving force behind the centromere type transition remains elusive at this point. 

 

Therefore, the closely related members of the CUG-Ser1 clade present a unique 

opportunity to study the transition in centromere structure and function from an evolutionary 

standpoint. Our previous analysis suggested that certain centromeres of C. tropicalis are 

located near ICSBs (193). This observation indicates a possibility that interchromosomal 

recombination events occurred near the centromeres in the common ancestor of C. tropicalis 

and C. albicans. What are the factors that aided these translocations? The sub-cellular 

localization of the kinetochore proteins as a single punctum per cell indicated physical 

proximity between the centromeres in C. tropicalis (193). Therefore, the influence of the 

spatial proximity on the outcome of the translocations near the centromeres guiding the 

karyotype evolution in closely related human fungal pathogens of the CUG-Ser1 clade 

remains as a hypothesis to be tested. However, due to the nature of the then-available 

fragmented genome assembly, the genome-wide distribution of the ICSBs, as well as the 

spatial organization of the genome, remained unknown. Therefore, it could not be concluded 

if the ICSBs are specific to the centromeres, or they are also located elsewhere in the 

genome.  
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Mitotic stability assay of the centromeric constructs 

The presence of 3-4 kb IRs with highly homogenized sequences on all seven centromeres 

of C. tropicalis suggests a conserved biological function of these sequence elements. We 

hypothesized that these IRs could initiate DNA sequence-dependent de novo activation of 

centromere function. Therefore, we used pCtCEN5 and pmid5, carrying entire CtCEN5 DNA  

 
Figure 4.1 DNA sequence dependent regulation of centromere identity in C. tropicalis. 
A. Schematic representation of the plasmid constructs used for mitotic stability assay in C. 
tropicalis. B. Outline of the experimental procedure and the formula used for determination 
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of mitotic stability. C. A bar chart showing fold change in mitotic stability (y-axis) of the 

plasmid constructs (x-axis) compared to the pARS2 parental backbone. Significance of 

difference between pCEN5 and other constructs was tested using one-way ANOVA analysis. 

D. A bar chart showing relative CENP-ACse4 enrichment on pmid5, pCEN501, pCEN502 and 

pCEN5 plasmids. Significance of difference between pCEN5 and other constructs was tested 

using one-way ANOVA analysis. E. Ethidium bromide (EtBr) stained gel pictures showing 

PCR products obtained using input, IP (+Ab) and no antibody control (-Ab) fractions of 

recovered DNA in a chromatin immunoprecipitation (ChIP) experiment (Materials and 

methods). This ChIP experiment was performed using C. tropicalis strain CtKS300 

(Materials and methods) to test relative enrichment of Nuf2-GFP on native centromere 

(nCEN5), plasmid borne centromere (pCEN5), and plasmid borne CaURA3 locus. Relative 

genomic location of the PCR amplified regions from each of nCEN5, pCEN5, and CaURA3 
locus are shown using blue, red and orange horizontal lines, respectively. The location of the 

SalI restriction site on the pCEN5 is shown using red triangle. E. EtBr stained gel pictures 

showing PCR products obtained using input, IP (+Ab) and no antibody control (-Ab) 

fractions of recovered DNA in a ChIP experiment (Materials and methods). This ChIP 

experiment was performed using C. albicans strain CaKG001 (Materials and methods) to test 

relative enrichment of CENP-ACse4 on native centromere, centromere distal locus, plasmid 

borne centromere (pCaCEN5), and plasmid borne CaURA3 locus. This experiment was 

performed using two independent transformants, Transformant I (left) and Transformant II 

(right) generated by transforming pCaCEN5 in CaKG001 strain. Genotype of each strain 

used in this experiment is mentioned in Appendix-I. 

 

 

and only the central core (CC) DNA sequence of CtCEN5, respectively, in a yeast replicative 

plasmid (323) (Figure 4.1A) to assay for their mitotic stability. To negate the possibility of a 

size-dependent increase in mitotic stability and to test the contribution of both orientation and 

sequence of the IRs, we constructed three additional plasmids pARS2-λ, pCEN501 and 

pCEN502 (Figure 4.1A) (Materials and methods). We transformed these plasmids in the C. 

tropicalis strain CtKS06 (ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT) 

and used the transformants to assay for the mitotic stability of each construct (Materials and 

methods) (Figure 4.1B). We found that pCtCEN5 showed a significant improvement in the 

mitotic stability compared to the pARS2. However, altering one of the IRs into a direct repeat 

orientation in pCEN501 or replacing both the IR sequences of C. tropicalis with those of 

CEN5 of C. albicans in pCEN502 led to a significant reduction in the mitotic stability (Figure 

4.1C). 

 

Structure and sequence dependent de novo CENP-ACse4 recruitment on the C. tropicalis 

CEN-ARS plasmid 

Based on the results of the mitotic stability assay, we suspected that the full-length 

centromere DNA cloned in pCEN5 might activate de novo kinetochore assembly. We 
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designed a ChIP based experiment to test this possibility and check for de novo CENP-ACse4 

recruitment on pCEN5. For this experiment, a C. tropicalis strain CtKS102 

(ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT CSE4/CSE4::CSE4-TAP 

(CaHIS1)) was generated in which one of the two alleles of CENP-ACSE4 is C-terminally 

tagged with Protein-A epitope. Next, the centromeric plasmid constructs, pCEN5, pCEN501, 

pCEN502, and pmid5 were transformed into CtKS102, and three independent transformants 

carrying each of these constructs were taken forward to perform a ChIP assay to test CENP-

ACse4 recruitment on these plasmids. The presence of a unique SalI sequence in the constructs 

but not on the native centromeres allowed this ChIP assay to detect the presence of CENP-

ACse4, specifically on the plasmid-borne centromere. The relative level of CENP-ACse4 

enrichment on the plasmid-borne centromere was calculated with respect to that of the native 

centromere. This experiment clearly demonstrated de novo recruitment of CENP-ACse4 on 

pCEN5 but not on the other constructs with altered orientation or CaCEN5IRs (Figure 4.1D). 

Based on these results, we conclude that the IRs present at the centromeres of C. tropicalis 

facilitates de novo CENP-ACse4 recruitment in both sequence- and orientation-dependent 

manner. 

 

Next, to test whether the recruitment of CENP-ACse4 on pCEN5 leads to the 

recruitment of other kinetochore proteins, we constructed a C. tropicalis strain CtKG500 

(ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT NUF2/NUF2::NUF2-

GFP (CaHIS1)) which expresses the outer kinetochore protein Nuf2 with a C-terminal GFP 

epitope (Materials and methods). This strain was transformed with pCEN5, and the 

transformants were used to perform ChIP assay for the detection of Nuf2 on pCEN5. In this 

assay, we could detect the recruitment of Nuf2 on pCEN5 (Figure 4.1E). This experiment 

indicates de novo assembly of the kinetochore on the plasmid-borne centromere in C. 

tropicalis. 

 

The CaCEN5IR fails to recruit CENP-ACse4 in C. tropicalis cells. However, it remains 

unknown if the species-specific IR sequences can facilitate de novo CENP-ACse4 recruitment 

through a separate mechanism in C. albicans. Therefore, to test the possibility of CENP-ACse4 

recruitment by the IR-associated CEN5 present in C. albicans, a similar CEN-ARS construct 

pCaCEN5 was generated. Similar to pCEN5, while cloning of the CC element, we inserted a 

unique SalI restriction enzyme site, which is absent in the genome. Therefore, the SalI site 

specific primers could be used to distinguish between native and plasmid-borne centromere 
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sequence in the ChIP experiment. To test the de novo CENP-ACse4 recruitment on pCaCEN5, 

a C. albicans strain CaKG001 ( arg4Δ/arg4Δ, leu2Δ/leu2Δ, his1Δ/his1Δ, 

ura3Δ::imm434/ura3Δ::imm434, iro1Δ::imm434/iro1Δ::imm434 CSE4/CSE4-

TAP(CaSAT1)) was constructed, in which, one of the two alleles of CENP-ACSE4 is C-

terminally tagged with Protein-A epitope. Using this strain, a ChIP assay was performed, 

which could not detect CENP-ACse4 recruitment over pCaCEN5 while the presence of CENP-

ACse4 on native CaCEN5 could be detected (Figure 4.1F). 

 

Identification of homogenized inverted repeat (HIR)-associated centromeres in closely 

related CUG-Ser1 clade species 

Recent advances in DNA sequencing technologies led to the development of high-

quality genome assemblies of multiple closely related members of CUG-Ser1 clade and other 

ascomycetes. For example, chromosome-level genome assemblies are publicly available for 

C. parapsilosis (ASM18276v2) (354), which have diverged from the last common ancestor 

before the divergence between C. albicans and C. tropicalis (4). The presence of HIR-

associated CENs in C. parapsilosis genome would prove that the last common ancestor of C. 

albicans and C. tropicalis had HIR-associated CENs. On the contrary, absence of HIR-

associated CENs in C. parapsilosis would indicate that the HIRs were gained in C. tropicalis 

rather than being lost in C. albicans and therefore prove our hypothesis wrong. In such a 

case, presence or absence of HIR-associated centromere in other species, closely related to C. 

tropicalis should allow inference of the possible trajectory followed during the centromere 

type transition among the members of CUG-Ser1 clade. Two species, C. sojae and C. 

viswanathii, share a closer ancestry with C. tropicalis (4, 355). Genome assemblies for both 

C. viswanathii and C. sojae are available in the NCBI genome database. However, a highly 

fragmented assembly of C. sojae in 511 scaffolds is not suitable for the identification of the 

putative centromeres. Therefore, we generated an improved genome assembly of C. sojae and 

used the publicly available genome assembly of other closely related species to perform 

bioinformatic analyses for identification of the IR-associated putative centromeres among 

these CUG-Ser1 clade members. 

 

To generate an improved genome assembly of C. sojae strain NCYC-2607 

(equivalent strain designations are CBS 7871, JCM 1644, MUCL 46191), we performed 

Illumina and Oxford Nanopore sequencing and used both the datasets to develop an improved 
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genome assembly (Materials and methods). First, the Oxford Nanopore sequence reads were 

used to develop a de novo genome assembly using Canu (77). Canu produced 42 contigs, 

which included seven chromosome-length scaffolds. These contigs were then polished using 

paired-end Illumina sequence data using Pilon (324) to rectify base-pair level errors. This 

genome assembly of C. sojae in 42 contigs consists of a total of 15187968 bp with the N50 of 

1778095 bp (Table 4.1). Details of the sequence data and the parameters used for Canu and 

Pilon run are presented in the materials and methods section. 

 

Table 4.1 Statistics for the C. sojae genome assembly 

Parameters C. sojae assembly 

asm_contigs 42 

asm_esize 1774739 

asm_max 3035446 

asm_mean 361618 

asm_median 33579 

asm_min 3595 

asm_n50 1778095 

asm_n90 310959 

asm_n95 55971 

asm_total_bp 15187968 

 

With the new and improved genome assembly, we mapped the SNPs and indels present in the 

C. sojae genome. This analysis revealed that most parts of the C. sojae genome are 

homozygous. However, all seven centromere-proximal genomic loci retained heterozygosity 

(Figure 4.2). This genome-wide loss of heterozygosity in C. sojae compared to the mostly 

heterozygous genome of C. tropicalis and C. albicans is intriguing. Therefore, we performed 

an inter-species comparative analysis of the SNP/indel-poor loci. We found that in C. 

albicans and C. sojae, part of the genomic region syntenic to the LOHR locus of C. tropicalis 

is also SNP/indel poor (Figure 4.3). Previous studies have revealed a link between LOH and 

transition from pathogenic to symbiotic lifestyle in C. albicans (356). Whether the genome-

wide loss of heterogeneity in C. sojae is associated with a non-pathogenic lifestyle of this 

species remains to be explored. 
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Figure 4.2 Identification of SNPs and indels in the C. sojae strain NCYC-2607. 

The circos tracks represent the SNP density in red (A), positions of the centromeres (as 

brown bars) (B) Indel density in orange (C), Illumina sequence coverage in yellow (d). The 

sequence coverage at the rDNA loci is clipped for clearer representation and marked with an 

asterisk. The genomic contigs marked as a to g are tig00000002, tig00000008, tig00000017, 

tig00000001, tig00000038, tig00000050 and tig00016100, respectively. 

 

 

The publicly available genome assembly of C. viswanthii (ASM332773v1) includes 

30 contigs comprising of total 24170 kb in a partially diploid assembly that contains 

duplicated contigs, one of which carry identical DNA sequence mapping to either partially or 

entirely to another contig. However, the genome assemblies of other species used for 

comparative genomic analysis does not contain duplicated contigs. Therefore, to maintain 

uniformity of comparative analysis across all four species, we identified the duplicated 

contigs present in the genome assembly of C. viswanthii (ASM332773v1) (Materials and 

methods) and excluded them from the assembly to obtain ASM332773v1_modified 

assembly. 
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Figure 4.3 Partial conservation of a LOH block in each of the C. albicans, C. tropicalis 
and C. sojae genome. 

The circos tracks represent the SNP density in red (a), positions of the centromeres (as brown 

bars) (b) Indel density in orange (c), Illumina sequence coverage (the sequence coverage at 

the rDNA loci is clipped for clearer representation and marked with an asterisk) (d). The 

ribbon plot is drawn by connecting the genomic coordinates of the conserved single copy 

orthologs between C. tropicalis and C. sojae (teal), and C. tropicalis and C. albicans 
(purple). 
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Figure 4.4 Identification of HIR-associated centromeres in the CUG-Ser1 clade. 

A. Schematic of the method used for the identification of putative centromeres in C. sojae, C. 
viswanathii, and C. parapsilosis. Putative centromeric loci in these species were tested for 

gene synteny with C. tropicalis (for C. sojae and C. viswanathii), presence of IRs, and 

overlap with intergenic/ORF-free regions. B. Genome-wide synteny of conserved ortholog 
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pairs between C. sojae and C. tropicalis. C. Genome-wide synteny between conserved 

ortholog pairs between C. viswanathii and C. tropicalis. The location of the centromere on 

each chromosome is marked with a black bar. Chromosome numbers are marked at the 

beginning of each chromosome or contigs in colored filled circles. Here, a to g are 

tig00000002, tig00000008, tig00000017, tig00000038, tig00000050, tig00016100, 

tig00000001 and h to n are NW_020797881.1, NW_020797885.1, NW_020797858.1, 

NW_020797886.1, NW_020797884.1, NW_020797877.1 and NW_020797878.1, 

respectively. Contigs that are either <100 kb in length or do not carry putative centromeres 

(for C. sojae) or duplicated in the genome assembly (for C. viswanathii) were excluded from 

this analysis. The chromosomal coordinates of the ortholog pairs are connected using lines. 

D. and E. Circos plots similar to that of B and C, showing 10 ORFs on both sides of each 

centromere of C. tropicalis connected to the corresponding genomic loci carrying homologs 

in C. sojae and C. viswanathii, respectively. 
 

 

Next, the newly developed genome assembly of C. sojae, modified assembly of C. 

viswanathii (ASM332773v1_modified) and the publicly available genome assemblies of C. 

parapsilosis (ASM18276v2) were used for identification of the putative centromeres in these 

species. We used three criteria to identify the putative centromeres in C. sojae and C. 

viswanathii (Figure 4.4A). First, the entire genome was scanned using YASS (357) for the 

presence of IR-associated structures. Second, the IRs identified in this search were manually 

inspected for overlap with the intergenic regions in the genome. Third, the synteny between 

the centromeres of C. tropicalis and theses IR-associated loci in C. sojae and C. viswanathii 

were analyzed. This analysis showed that these loci are orthologous to the centromeres of C. 

tropicalis (Figure 4.4B - E). Based on this analysis, seven putative centromeres were 

identified in C. sojae (Table 4.2), and six putative centromeres were identified in C. 

viswanathii (Table 4.2). The putative centromeres of C. sojae are comprised of ~2 kb central 

core (CC) region flanked by 2.6-12 kb long IRs (Table 4.3). The length of CC and IRs ranged 

from 5-10 kb and 2.6-3.7 kb, respectively, in C. viswanathii (Table 4.4). Similarly, eight 

unlinked IR-associated loci were also identified in C. parapsilosis genome (Table 4.1), which 

are present once in each of the eight chromosomes. Moreover, these putative centromeres 

overlap with ORF-free regions of the genome and they are poorly transcribed (Figure 4.5A), 

similar to the centromeres of C. albicans (Figure 4.5B). Taken together, identification of IR 

associated putative centromeres in C. parapsilosis, C. sojae, and C. viswanathii indicate that 

the centromeres of the last common ancestor of C. tropicalis and C. albicans were IR 

associated structures. 
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Table 4.2 Genomic coordinates of putative HIR associated centromeres in C. sojae, C. 

viswanathii, and C. parapsilosis 

Species CENs Coordinate 

C. sojae 

1 Tig2:2493969-2501301 

2 Tig8:1905358-1914164 

3 Tig38:934048-941518 

4 Tig17:1062429-1069512 

5 Tig50:549697-575759 

6 Tig16100:638309-647019 

R Tig1:623000-630276 

C. viswanathii 

1 NW_020797858.1:473076-485506 

2 NW_020797886.1:1829726-1842348 

3 NW_020797884.1:937333-949114 

4 NW_020797885.1:1322147-1333995 

6 NW_020797877.1:349856-362272 

R NW_020797881.1:1345731-1360763 

C. parapsilosis 

1 HE605203.1:362,588-368,324 

2 HE605204.1:470,757-476,666 

3 HE605205.1:1,281,284-1,287,683 

4 HE605206.1:1,309,222-1,314,566 

5 HE605207.1:658,126-664,775 

6 HE605208.1:888,702-895,821 

7 HE605209.1:470,949-477,776 

R HE605202.1:209,424-215647 
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Figure 4.5 Putative centromeres of C. parapsilosis are ORF-free and transcription poor 

loci similar to the centromeres of C. albicans. 
IGV track images showing transcription status (number of transcripts mapped per kb of 

genomic region) at the genomic loci proximal to the putative centromeres (red) of C. 
parapsilosis (left) and C. albicans centromeres (right). Two replicates of mRNA-seq data are 

shown as top two tracks as lighter and darker shades of blue and teal for C. parapsilosis and 

C. albicans, respectively. The location and orientation of the ORFs (>300 bp) are shown in 

the lowermost track as black bars. 
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Table 4.3 Length of the centromere DNA elements in C. sojae 

CEN* outer LR 
(bp) left repeat 

(bp) central core 
(bp) right repeat 

(bp) outer RR 
(bp) 

CENR 1389 2649 1967 2661 1386 
CEN1 3957 2691 2138 2594 4009 
CEN2 ND 3363 2111 3333 ND 
CEN4 ND 2493 2068 2523 ND 
CEN3 ND 2633 2207 2631 ND 
CEN5# 12092 2174 11797 
CEN6 ND 3313 2086 3312 ND 

*Syntenic to CtCENs   ND: Not detected #Outer repeat is fused with the IR flanking the 

central core 

 

Table 4.4 Length of the centromere DNA elements in C. viswanathii 

CEN* 
left repeat 

(bp) 

central core 

(bp) 

right repeat 

(bp) 

CEN1 3238 5955 3238 

CEN2 3792 5180 3651 

CEN3 3228 5326 3228 

CEN4 3115 5619 3115 

CEN6 3165 6090 3162 

CENR 2617 9798 2618 

*Syntenic to CtCENs 

 

All seven centromeres of C. tropicalis are highly homogenized (193). To test whether, 

the IR-associated putative centromeres identified in C. sojae, C. viswanathii and C. 

parapsilosis are also homogenized, pair-wise sequence alignments were performed between 

all pairs of the putative centromeres in each species. This analysis revealed a high level of 

sequence homology among the IR-associated centromeres present in each species. We noted 
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that the DNA sequences of the IR are more conserved than the DNA sequences of the CCs 

present within a species (Figure 4.6A). 

 
Figure 4.6 Intra- and inter-species conservation in homogenized inverted repeat-

associated centromeres in the CUG-Ser1 clade. 

A. Violin plots show the distribution of the percent sequence identity values obtained from 

pair-wise alignment of the left repeats (LR), the central cores (CC), and right repeats (RR) 

within C. viswanathii (Cv; orange), C. sojae (Cs; green), C. tropicalis (Ct; gray), and C. 
parapsilosis (Cp; brown). The sequence identity between all possible pairs of CC, LR, RR, 

and LR-RR pairs was calculated in blastn analysis using Clustal Omega. The median value 

for each dataset is depicted as a horizontal blue bar on each of the violin plots. B. Violin plots 

showing distribution and median (horizontal blue bar on each of the violin plots) of percent 

sequence identity values obtained from pairwise DNA sequence alignment of all possible 

combinations for each of seven random loci (Random), centromeric left repeats (LR), central 

cores (CC) and right repeats (RR) between species-pairs as indicated, using Clustal Omega. 

The significance of difference between percent sequence identity of centromere elements and 
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random loci for all three species pairs were tested using the Mann-Whitney U test (P < 0.05) 

and the P value summary for each comparison is represented with asterisks. C. A dot-plot 

matrix representing the sequence and structural homology of centromeres among species of 

the CUG-Ser1 clade was generated using Gepard (Materials and methods).  

 

 

However, the sequence conservation across the CC elements of C. viswanathii 

centromeres are comparatively higher than other species (Figure 4.6A). Further, an 

examination of the cross-species conservation in the CC and IR DNA sequences revealed that 

the IRs remain well conserved across C. tropicalis, C. viswanathii and C. sojae but the CCs 

remain comparatively less conserved. However, both IRs and CCs across these three species 

show a significantly higher level of conservation compared to DNA sequences of random 

genomic loci (Figure 4.6B). Next, we performed a dot-plot analysis of the putative 

centromeres identified in C. viswanathii, C. sojae, and C. parapsilosis along with the known 

centromeres of C. albicans, C. tropicalis, and C. dubliniensis using Gepard (358) (Figure 

4.6C). This analysis highlighted the inter-species conservation of structure as well as DNA 

sequences among HIR-associated centromeres. We also noted that each centromere DNA 

sequence is completely unique in C. albicans and C. dubliniensis, where HIRs are absent. 

 

 
Figure 4.7 Identification of an inter-species conserved and centromere-enriched DNA 

sequence motif in CUG-Ser1 clade species. 
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A. A logo plot showing the 12 bp long inter-species conserved motif (IR-motif), identified 

using MEME-suit (Materials and methods). B. The density of the IR-motif on centromere 

DNA and across the entire genome of each species was calculated as the number of motifs 

per kb of DNA. Note that C. albicans and C. dubliniensis centromeres that form on unique 

and different DNA sequence do not contain the IR-motif. C. IGV track images showing the 

IR-motif density across seven chromosomes of C. tropicalis, and contigs containing the 

putative centromeres in C. sojae, and C. viswanathii. Location of the centromere is marked 

with a red arrowhead. 

 

 

 
Figure 4.8 Organization of IR-motifs on homogenized inverted repeat-associated 

centromeres of C. tropicalis, C. sojae and C. viswanathii. 
A., B., and C. shows IR-motif distribution across the HIR-associated centromeres of C. 
tropicalis, C. sojae, and C. viswanthii, respectively. D. A representative figure showing a 

zoomed view of the IR motif distribution on C. tropicalis CEN1 DNA. The motifs on the 

Crick strand (red) and Watson strand (blue) are color-coded. E. A heatmap showing the 

percent of IR-motifs present in converging and diverging orientation with respect to the 

central core region for each of the HIR associated centromeres present in C. sojae, C. 
tropicalis, and C. viswanathii. F. Average number of IR-motifs per 250 bp on the IRs is 
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plotted in the y-axis as a function of the distance from the start of CC (x-axis) for C. 
tropicalis (red), C. sojae (yellow), and C. viswanathii (blue). 

 
 

Inter-species conservation of the HIR-associated centromere DNA sequences 

indicates a conserved biological function, which may implement through conserved DNA 

motifs. Therefore, IR DNA sequences from all the centromeres of C. tropicalis and the 

putative centromeres of C. sojae and C. viswanathii were used as the input query sequences 

to identify conserved motifs using MEME suite (359). This analysis identified a conserved 

12-bp motif, which we named as IR-motif (Figure 4.7A). We found that the IR motif is 

enriched at the centromeres of C. tropicalis, C. viswanathii and C. sojae but not in C. 

albicans or C. dubliniensis (Figure 4.7B). Therefore, our previous observation that the 

pCaCEN5 fails to facilitate de novo CENP-ACse4 recruitment together with the absence of the 

IR-motifs in C. albicans possibly mean a functional significance of the inter and intra-species 

conserved IR-motif in CUG-Ser1 clade. Moreover, the CEN-enriched motif was found to be 

specifically concentrated on the IRs but not at the central core regions in HIR-associated 

centromeres present in C. tropicalis (Figure 4.8A) as well as at the putative centromeres in C. 

soaje (Figure 4.8B) and C. viswanathii (Figure 4.8C). Additionally, we detected that the 

direction of the IR-motif is diverging away from the central core of the centromeres in C. 

tropicalis (Figure 4.8D), and this pattern remains conserved in C. soaje and C. viswanathii as 

well (Figure 4.8E). However, we noted that the clusters of IR-motif are located at a variable 

distance from the central core in these three species (Figure 4.8F). The importance of this 12-

bp conserved motif on the centromere function is yet to be determined. 

 

Analysis of the interchromosomal synteny breaks (ICSBs) in C. tropicalis genome 

Identification of the HIR-associated putative centromeres in the closely related 

members of the CUG-Ser1 clade revealed a rapid transition from the IR-associated ancestral 

centromere type to the unique centromere type. However, the driving force facilitating this 

transition remained unknown. Our previous analysis showed that none of the centromeres in 

C. tropicalis are orthologous to C. albicans (193). In addition, certain centromeres of C. 

tropicalis are located near the ICSBs when compared to the C. albicans genome (193). This 

observation indicates a possibility of centromere-proximal translocations associated with the 
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transition in centromere type. Now, with the identification of HIR-associated putative 

 

Figure 4.9 Genome-wide mapping of ICSBs on C. tropicalis genome reveals spatial 

regulation of centromere-proximal translocations in their common ancestor. 

A. A scaled representation of the color-coded orthoblocks (relative to C. albicans 
chromosomes) and interchromosomal synteny breakpoints (ICSBs) (white lines) on C. 
tropicalis (Materials and methods). Orthoblocks are defined as stretches of the target genome 

(C. tropicalis) carrying more than two syntenic ORFs from the same chromosome of the 
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reference genome (C. albicans). The centromeres are represented with red arrowheads. B. 

Synteny maps of C. tropicalis chromosomes (the lowermost line of each panel, marked by 

filled black circles numbered from 1 to R), with respect to C. albicans chromosomes (lines 

above the C. tropicalis chromosomes), in the order of Chr1 to ChrR (top to bottom) for all 

panels. Centromeres, red triangles. The ORFs (represented as beads) are color-coded: 

inverted, red and non-inverted, green. The more conserved the reciprocal best hits (RBH) are, 

the darker are the shades of red/green color. C. A smooth-line connected scatter-pot of the 

chromosome-wise ICSB density, calculated as number of ICSBs per 100 kb of the C. 
tropicalis genome (y-axis) as a function of the linear distance from the centromere in nine 

bins, which are a) within 100 kb of centromere (bin I), b) 100-200 kb (bin II), c) 200-300 kb 

(bin III), d) 300-400 kb (bin IV), e) 400-500 kb (bin V), f) 500-600 kb (bin VI), g) 600-700 

kb (bin VII), h) >700 kb to telomere proximal 200 kb (bin VIII), and i) 200 kb from the 

telomeres (bin IX). Chr6 was excluded from the analysis, as it does not have any ICSBs. D. A 

violin plot comparing the distribution of the orthoblock lengths (y-axis) at three different 

genomic zones, which are a) the centromere-proximal zone (CP, within 300 kb from the 

centromere on both sides), b) the centromere distal zone (CD, beyond 300 kb from the 

centromere to telomere proximal 200 kb), and c) telomere-proximal zone (TP: within 200 kb 

from the telomeres). Orthoblocks, which span over more than one zone, were assigned to the 

zone with maximum overlap. The centromere-distal dataset was compared with the other two 

groups using the Mann-Whitney U test and the respective P values are presented. 

 

 

centromeres in early-diverging C. parapsilosis, it is more logical to conclude that the 

common ancestor of C. tropicalis and C. albicans possessed HIR-associated centromeres. We 

speculate that the DNA sequence homology among the spatially clustered centromeres 

favored inter-centromeric translocations in the last common ancestor of C. tropicalis and C. 

albicans. Therefore, we attempted to map the genome-wide distribution of ICSBs to test if 

these relics of the ancient translocations are specifically enriched at the centromeres of C. 

tropicalis. 

 

Using the chromosome-level Assembly2020 of C. tropicalis and publicly available 

chromosome-level assembly of the C. albicans reference genome of SC5314 strain 

(ASM18296v3), we performed a detailed genome-wide synteny analysis following four 

different approaches. We used two published analysis tools, Symap (326) and Satsuma 

synteny (360), and a custom approach (Materials and methods) to identify the ICSBs based 

on the synteny of the conserved single-copy orthologs (Figure 4.9A). 

 

Next, we compared and validated the results obtained from our custom approach of 

analysis with another published tool Synchro (Figure 4.9B) (361). All four methods of 

analysis detected that six out of seven centromeres (except CEN6) of C. tropicalis are located 

proximal to multiple ICSBs, which are rare at the chromosomal arms (Figure 4.9A). 
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Additionally, we found a convergence of orthoblocks from as many as four different 

chromosomes (for CEN2) within 100 kb of centromeres.  

 
Figure 4.10 ORF-level synteny of the centromere proximal loci in C. tropicalis with 

respect to C. albicans genome. 
A. Zoomed view of the centromere specific ICSBs on CEN2, CEN3, CEN5 and CENR 

showing the color-coded (relative to C. albicans chromosomes) ORFs flanking each 

centromere. C. tropicalis-specific unique ORFs proximal to CEN3 and CEN5 are shown in 

red. B. The zoomed view of the reciprocal best hit (RBH) orthologs proximal to the 

centromeres of C. tropicalis for chromosome R, 2, 3, and 5 where each centromere is located 

at an ICSB. C. Zoomed view of centromere-proximal loci in Chr1, Chr4, and Chr6, in which 

centromere is located at an intra-chromosomal synteny breakpoint. 
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To correlate the frequency of translocations with the spatial genome organization, we 

quantified ICSB density (the number of ICSBs per 100 kb of the genome) for different zones 

across the chromosome for all chromosomes except CtChr6 (Figure 4.9C). Our analysis 

reveals that the ICSB density is maximum at the centromere-proximal zones for all six 

chromosomes, but drops sharply at the chromosomal arms. However, the ICSB density near 

the telomere-proximal zone for Chr2, Chr4, and ChrR show an increase compared to the 

chromosomal arms, albeit at a lower magnitude than centromeres. We also compared the 

lengths of orthoblocks across three different genomic zones - the centromere-proximal (0 - 

300 kb from the centromere on both sides), centromere-distal (>300 kb from the centromere 

to 200 kb away from the telomere ends), and telomere-proximal (0 - 200 kb from the 

telomere ends) zones. This analysis further reveals that the lengths of the orthoblocks located 

proximal to centromeres and telomeres are significantly smaller than orthoblocks located at 

the centromere-/telomere-distal zones (Figure 4.9D). 

 

The ORF-level synteny analysis detected four out of seven centromeres (CEN2, 

CEN3, CEN5, CENR) in C. tropicalis to be precisely located at the ICSBs, while at least one  

ICSB is mapped within ~100 kb of CEN1 and CEN4 (Figure 4.10A - B). However, no ICSB 

could be identified on Chr6. Intriguingly, intra-chromosomal synteny breakpoints were found 

adjacent to CEN1, CEN4 and CEN6 (Figure 4.10C). This observation indicates that intra-

chromosomal rearrangements led to the loss of HIR-associated DNA sequences. 

 

Our observation indicates a possibility of inter-centromeric translocations in the 

common ancestor of C. albicans and C. tropicalis. If such inter-centromeric translocations 

occurred, then the ORFs present near different centromeres in C. tropicalis should converge 

together on the C. albicans genome. Indeed, we found at least ten instances where such 

convergence is detected (Figure 4.11A). Intriguingly, four such loci are proximal to the 

centromeres (CEN3, CEN4, CEN7, and CENR) in C. albicans (Figure 4.11B - E). This 

observation supports the idea that HIR-associated centromeres in the common ancestor of C. 

albicans and C. tropicalis located at close proximity facilitated inter-centromeric 

translocation events. We also note that the other four centromeres (CEN1, CEN2, CEN5, and 

CEN6) are located proximal to ORFs, homologs of which are also proximal to certain 

centromeres in C. tropicalis (Figure 4.11A). Together, these observations posit that the 

ancestral HIR-associated centromeres are lost in C. albicans and evolutionary new 
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centromeres (ENCs) formed proximal to the ancestral centromere loci on unique and 

different DNA sequences (192). 

 

 
Figure 4.11 Genome-wide synteny analysis between C. albicans and C. tropicalis finds 

evidence of inter-centromere translocations in the last common ancestor. 

A. Circos plot showing the ICSBs (purple lines on the outer-most circle) on C. tropicalis 
chromosomes (marked with black filled circles). The centromere-proximal ORFs present in 

C. tropicalis are connected to their homologs present on C. albicans chromosomes (marked 

by purple filled circles) by color-coded lines (based on their origin). The positions of 
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centromeres are marked with black lines of the inner-most circle in each chromosome. The 

genomic locations in C. albicans chromosomes showing the convergence of ORFs from at 

least two centromere-proximal loci of C. tropicalis are marked with red (proximal to the C. 
albicans centromere) and purple (a non-centromere locus) triangles. Note that all centromeres 

of C. albicans are proximal to ORFs, homologs of which are proximal to centromeres of C. 
tropicalis. B - E. Circos representation showing the convergence of centromere-proximal 

ORFs of C. tropicalis chromosomes near the centromeres on C. albicans Chr4, ChrR, Chr3, 

and Chr7, respectively. Chromosomes of C. tropicalis and C. albicans are marked with black 

and purple filled circles, respectively, at the beginning of each chromosome. 

 

 

 
Figure 4.12 Centromere-proximal interchromosomal rearrangements leads to loss of 

inosine-uridine nucleoside N-ribohydrolase homolog.  
A. Schematic of genes flanking centromere on CtChr3. The ORFs are color-coded based on 

the location of their orthologs on C. albicans chromosomes. The species-specific Inosine-

uridine nucleoside N-ribohydrolase gene in C. tropicalis is shown in red. B. Line diagram of 

the polypeptide with the annotation of Nucleoside hydrolse superfamily domain obtained 

from conserved domain database. C. Pairwise sequence alignment of Inosine-uridine 

nucleoside N-ribohydrolase homolog (top) with cdd:COG1957 (PSSMID 224868) (bottom) 

as generated by conserved domain database. D. Distribution of this gene in closely related 

species complex. The phylogeny is adapted from reference (362) and the time scale was 

adapted from reference (4). 
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Do these extensive translocations lead to the loss of genes in the derived species? To 

answer this question, we scanned the centromere-proximal regions for the presence of ORFs 

unique to C. tropicalis. In this analysis, two unique ORFs proximal to the centromere, in 

CtChr3 and CtChr5 (Figure 4.10A), were detected. The unique ORF proximal to the CEN3 of 

C. tropicalis (Figure 4.12A) is 1107 bp long and encodes for a 368 amino acid long protein 

containing a conserved nucleoside hydrolase domain (CDD ID: cl00226) (Figure 4.12B - C). 

BLAST search against C. albicans proteins failed to identify any ortholog. A more 

comprehensive search among other closely related species detected its homolog in 

Debaromyces hansenii and C. sojae, but not in the intermediate species (Figure 4.12D). This 

observation exemplifies the role of centromere mediated genomic rearrangements in loss or 

gain of species-specific genes creating variation among the majorly clonally propagated 

members of the CUG-Ser1 clade. 
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In this study, we improved the current genome assembly of the human fungal 

pathogen C. tropicalis by employing SMRT-seq, 3C-seq, and chromoblot experiments, and 

present Assembly2020, the first chromosome-level gapless genome assembly of this 

organism. We further identified three large-scale duplication events and a heterozygous 

balanced translocation in its genome, phased the diploid genome of C. tropicalis, and mapped 

SNPs and indels. We constructed a genome-wide chromatin contact map and identified 

significant centromere-centromere as well as telomere-telomere spatial interactions. 

Comparative genome analysis between C. albicans and C. tropicalis reveals that six out of 

seven centromeres of C. tropicalis are mapped precisely at or proximal to ICSBs. Strikingly, 

ORFs proximal to the centromeres of C. tropicalis are converged into specific regions on the 

C. albicans genome, suggesting that inter-centromeric translocations may have occurred in 

their common ancestor. Moreover, the presence of HIR-associated putative centromeres in C. 

sojae and C. viswanathii, like in C. tropicalis, suggests that such a centromere structure is 

plausibly the ancestral form in the CUG-Ser1 clade but lost both in C. albicans and C. 

dubliniensis. We propose that loss of such a centromere structure might have occurred during 

translocation events involving centromeres of homologous DNA sequences in the common 

ancestor, to give rise to ENCs on unique DNA sequences and facilitated speciation. 

 

Unlike other centromeres, CEN6 of C. tropicalis did not seem to undergo inter-

centromeric translocations. A closer analysis revealed that three CEN6-associated ORFs of C. 

tropicalis are absent in the C. albicans genome while the other flanking ORFs remain 

conserved. This observation can be explained by a double-stranded DNA break at the 

centromere followed by the fusion of broken ends resulting in the loss of those ORFs. 

 

The availability of the chromosome-level genome assembly and improved annotations 

of genomic variants and genes absent in the publicly available fragmented genome assembly 

of C. tropicalis should greatly facilitate genome-wide association studies to understand the 

pathobiology of this organism including the cause of antifungal drug resistance. Besides, this 

study sheds light on how genetic elements required for de novo centromere establishment in 

an ancestral species could be lost in the derived lineages to give rise to epigenetically-

regulated centromeres. 

 

C. tropicalis is a human pathogenic ascomycete, closely related to the well-studied 

model fungal pathogen C. albicans (363). These two species diverged from their common 
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ancestor ~39 million years ago (226) and evolved with distinct karyotypes (193), having 

different phenotypic traits (364), and ecological niches (365). While C. albicans remains the 

primary cause of candidiasis worldwide, systemic ICU-acquired candidiasis is primarily 

(30.5-41.6%) caused by C. tropicalis in tropical countries including India (43), Pakistan (44), 

and Brazil (366). Moreover, the occurrence of drug resistance, particularly multidrug 

resistance, in C. tropicalis is on the rise (43, 367, 368). Therefore, relatively less-studied C. 

tropicalis is emerging as a major threat for nosocomial candidemia with 29-72% broad 

spectrum mortality rate (369). Fluconazole resistance in C. albicans can be gained due to 

segmental aneuploidy of Chr5 containing long IRs at the centromere, by the formation of 

isochromosomes (25), which was also identified in Chr4 with IRs at its centromere (370). All 

seven centromeres in C. tropicalis are associated with long IRs with the potential to form 

isochromosomes. 

 

Genetic variability is absolutely necessary for the successful survival of a pathogen. In 

the absence of true meiosis in majorly clonally propagated Candida species, the chance of 

appearance of new alleles is lower than other species with true meiosis. However, due to the 

highly plastic nature of its genome, mitotic recombination in C. albicans can lead to 

karyotypic changes (371) in addition to whole chromosome aneuploidy, or segmental 

aneuploidy, which confer specific selection advantage such as resistance against antifungal 

drugs (20). Such large scale chromosomal changes are often associated with a diseased state 

if not fatal in metazoans (372). Paradoxically, extensive genomic plasticity allows the human 

fungal pathogen C. albicans to thrive in challenging environments inside the host. The 

existence of such mechanisms in C. tropicalis is largely unknown. Identification of the long-

duplicated regions, balanced heterozygous translocation, long track LOH, and recovery of 

Chr5 monosomic strains of C. tropicalis in this study provide evidence that C. tropicalis can 

tolerate considerable genomic changes. We also found that an increase in genomic copy 

number can lead to an increased expression of genes located on those loci. Moreover, we 

demonstrate that the increased copy number of DUPR locus confers extensive fluconazole 

resistance in MYA-3404 strain of C. tropicalis. What are the other genomic changes driving 

drug resistance in the clinical isolates of C. tropicalis? Our chromosome-level assembly of C. 

tropicalis can now be used to perform genome-wide association studies to understand the 

genomic alterations responsible for the emergence of drug resistance.  
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Since the mechanism of homology search during HR is positively influenced by 

spatial proximity and the extent of DNA sequence homology (321, 373), at least in the 

engineered model systems, it is expected that spatially clustered homologous DNA sequences 

undergo more translocation events than other loci. Although these factors were not shown to 

be involved in karyotypic rearrangements during speciation, a retrospective survey in light of 

spatial proximity and homology now offers a better explanation. For example, the bipolar to 

the tetrapolar transition of the mating type locus in the Cryptococcus species complex was 

associated with inter-centromeric recombination following pericentric inversion (206). 

Similar inter-centromeric recombination has been reported in the common ancestor of two 

fission yeast species, S. cryophilus and S. octosporus (205). These examples raise an 

intriguing notion that centromeres serve as sites of recombination, which may lead to 

centromere loss and/or the emergence of ENCs. This notion is supported by the fact that 

DSBs at centromeres following fusion of the acentric fragments to other chromosomes led to 

chromosome number reduction in Ashbya species (178) and Malassezia species (201). 

Genomic instability at the centromere can also lead to fluconazole resistance, as in the case of 

isochromosome formation on Chr5 of C. albicans (25). Additionally, breaks at the 

centromeres were reported to be associated with cancers in humans (374). 

 

What would be the consequence of the spatial proximity of chromosomal regions with 

high DNA sequence homology in other domains of life? Interchromosomal contacts between 

chromosome pairs have been correlated with the number of translocation events in both 

naturally occurring populations and experimentally induced mammalian cells (375-384). It 

has been suggested that contacts between various chromosomal territories, as well as their 

relative positions in the nucleus, influence the sites and frequency of translocation events 

both in flies and mammals (147, 379, 385-388). While centromeres remained clustered either 

throughout the cell cycle or most parts of it in many fungal species, such is not the case in 

metazoan cells. Nevertheless, one of the well-studied translocation events, Robertsonian 

translocation (RT) involving fusion between arms of two different chromosomes near a 

centromere, is the most frequently detected chromosomal abnormality in humans (389). The 

occurrence of RT was first reported in grasshoppers (390), and subsequently, it has been 

implicated in the karyotype evolution in humans (389), mice (391, 392), and wheat (393). 

Moreover, RTs cause sterility in humans (394), often linked with the heterogeneity of 

carcinomas (300), and implicated in genetic disorders (395). Intriguingly, cytological and Hi-

C based evidence (112) of spatial proximity (reviewed in (170)) among the repeat-associated  
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Figure 5.1 The spatial genome organization remained conserved in the CUG-Ser1 clade 

despite centromere type diversity. 

A. A maximum likelihood-based phylogenetic tree of closely related CUG-Ser1 species 

analyzed in this study. Color-coded branches show presence (red) or absence (gray) of HIRs. 

The centromere structure of each species is shown and drawn to scale. B. A model showing 

possible events during the loss of HIR-associated centromeres and emergence of the unique 

centromere type through inter-centromeric translocations possibly occurred in the common 

ancestor of C. tropicalis and C. albicans. The model is drawn to show translocation events 

involving two C. tropicalis chromosomes (CtChr3 and CtChr4) as representatives, which can 

be mapped proximal to the centromere on C. albicans ChrR (CaChrR) as shown in Figure 

4.11C. C. Rabl-like chromosomal conformation is maintained despite inter-centromeric 

translocations that facilitated centromere type transition. 

 

 

centromere DNA sequences (396) in these species supports a possibility that RTs may have 

been guided by spatial proximity. Similarly, chromoplexy, involving a series of translocation 

events among multiple chromosomes without alterations in the copy number, was identified 

in prostate cancers (397, 398). Although fine mapping of translocation events at the repetitive 

regions in human cancer cells is challenging, the growing evidence that such events are 

associated with the formation of micronuclei (399) supports the idea that the spatial genome 

organization may influence chromoplexy as well (400). 

 

The identification of HIR-associated putative centromeres in C. parapsilosis, C. sojae, 

and C. viswanathii supports the idea that the unique centromeres might have evolved from an 
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ancestral HIR-associated centromere (196) (Figure 5.1A). While HIR-associated centromeres 

of C. tropicalis, C. sojae, and C. viswanathii form on different DNA sequences, a well-

conserved IR-motif was identified in this study that is present in multiple copies on the 

centromeric IR sequences across these three species. Some centromeres in C. albicans carry 

chromosome-specific IRs but lack IR-motifs. Besides, CaCEN5 IRs could not functionally 

complement the centromere function in C. tropicalis for the de novo CENP-ACse4 

recruitment. This indicates a possible role of the conserved IR-motifs on species-specific 

centromere function (193). Therefore, the loss of HIR-associated centromeres in C. albicans 

that are only epigenetically propagated (224) clearly shows how the ability of de novo 

establishment of kinetochore assembly in an ancestral lineage can be lost in a derived lineage. 

However, the mechanism through which IR-motifs may regulate centromere identity remains 

to be explored. 

 

 Loss of HIR-associated centromeres during inter-centromeric translocations must 

have been catastrophic for the cell, and the survivor was obligated to activate another 

centromere at an alternative locus. How is such a location determined? Artificial removal of a 

native centromere in C. albicans leads to the activation of a neocentromere (241, 242), which 

then becomes part of the centromere cluster (281). This evidence supports the existence of a 

spatial determinant, known as the CENP-A cloud or CENP-A-rich zone (241, 401), 

influencing the preferential formation of neocentromere at loci proximal to the native 

centromere (241, 402). We found that the unique and different centromeres of C. albicans are 

located proximal to the ORFs, which are also proximal to the centromeres in C. tropicalis. 

This observation indicates that the formation of the new centromeres in C. albicans may have 

been influenced by spatial proximity to the ancestral centromere cluster. However, new 

centromeres of C. albicans are formed on loci with completely unique and different DNA 

sequences. Similar to centromeres of C. albicans, centromere repositioning events may lead 

to the formation of ENCs, which are often associated with speciation in mammals (315, 316). 

It was found that the location of one centromere in horse varies across individuals (317, 318). 

Although, there are cases where ENCs formed without genomic rearrangements, the driving 

force facilitating centromere relocation was proposed to be associated with chromosomal 

inversion and translocation in certain cases (319). Because of these reasons, it may be logical 

to consider the centromeres of C. albicans as ENCs (Figure 5.1B). Intriguingly, even after the 

catastrophic chromosomal rearrangements, the ENCs in C. albicans remain clustered similar 
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to C. tropicalis (Figure 5.1C). This observation identifies spatial clustering of centromeres as 

a matter of cardinal importance for the fungal genome organization. 
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Media, growth conditions and transformation 

C. tropicalis and C. sojae strains (Genotypes are mentioned in Appendix-I) used in this study 

were grown in non-selective YPDU (2% dextrose, 2% peptone, 1% yeast extract, and 0.01% 

uracil), and incubated at 30°C at 180 rpm. For growing C. albicans strains, YPD media was 

supplemented with 0.1 mg/mL of uridine. The transformation of C. tropicalis was performed 

as described previously (193). The selection of transformants was based on prototrophy for 

the metabolic markers used. In the case of selection for the antibiotic marker (CaSAT1), 

conferring nourseothricin (NTC) resistance, growth media was supplemented with 100 

μg/mL NTC (NTC; Werner Bioagents, CAS No. 96736-11-7). Recycling of the CaSAT1 

marker was done by growing the NTC resistant strains in YPMU (4% maltose, 2% peptone, 

1% yeast extract, and 0.01% uracil) and segregants which are NTC sensitive were selected by 

patching them on YPDU and YPDU supplemented with NTC. For counter selection against 

CaURA3, the 5-Fluoroorotic Acid (5-FOA; Sigma-Aldrich, CAS No. 207291-81-4) was used 

at 1 mg/mL concentration. Transformation of C. tropicalis was performed using the lithium 

acetate mediated transformation technique, as described previously (193). 

 

Construction and confirmation of strains and plasmids 

a. Construction and confirmation of C. tropicalis strains (CtKS101 and CtKS102) 

expressing Protein-A tagged CENP-ACse4 

To tag CENP-ACse4 with TAP, an overlap PCR strategy was employed (Figure 6.1A). The 

CENP-ACSE4 ORF and its downstream sequence were PCR amplified. The Protein-A epitope 

(105) with CaURA3 fragment was PCR amplified from pPK335 (106). Using equimolar 

mixture of these fragments as template, an overlap PCR was setup to amplify a 3 kb CSE4-

TAP-URA-DS cassette (Figure 6.1B). The cassette was transformed in CtKS06 strain and 

transformants were selected on CM-URA plates. The positive transformants were confirmed 

by both PCR and western blot analysis (Figure 6.1C - D). A cassette to TAP tag CENP-ACse4 

using CaHIS1 marker was constructed as follows. First, CaHIS1 was cloned into the EcoRI 

digested pBS to generate pBS-HIS. Then, CENP-ACSE4 ORF with tagged TAP epitope was 

amplified from CtKS101. The amplified fragment was digested by NotI and SpeI and cloned 

into respective sites of pBS-HIS to generate pCENP-A-TAP-HIS. The plasmid was then 

linearized by BstBI and transformed in CtKS06 to generate CtKG001. The positive integrant 
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was confirmed by PCR. Genotype of each strain is mentioned in Appendix-I and the primers 

used to construct and confirm these strains are mentioned in Appendix-II. 

 

 
Figure 6.1 Construction and confirmation of CENP-ACse4-Protein-A tagged strain 

(CtKS101) of C. tropicalis. 
A. Schematic drawing of overlap-PCR strategy for joining three fragments to construct a 

CENP-ACSE4-Protein-A construct. This process involves two key steps: amplification of 

individual fragments with terminal homology (supplied by the primers) to the adjoining 

fragments (1) and an overlap reaction, in which the entire construct is synthesized from the 
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individual fragments (107). B. Left, ethidium bromide stained gel picture showing individual 

fragments amplified from CENP-ACSE4 C-terminus (lane 1), TAP-URA fragment (lane 2), 

and CENP-ACSE4 downstream fragment (lane 3). Right, ethidium bromide stained gel picture 

showing the overlap PCR product constructed from three individual fragments. C. Ethidium 

bromide stained gel picture showing PCR confirmation of the transformants obtained after 

transformation of the overlap PCR product in C. tropicalis. D. Western blots probed with 

anti-Protein-A (top) and anti-PSTAIR (bottom) antibody for confirmation of CENP-ACse4-

Protein-A tagged transformants. Primers used in this experiment are mentioned in Appendix-

II. 

 

 

b. Construction of C. tropicalis strains expressing Nuf2-GFP (CtKG500) and CENP-

CMif2-GFP (CtKG501) 

NUF2-GFP (CtKG500): A 695 bp fragment of NUF2 ORF was PCR amplified and cloned 

into SacII and SpeI sites of pGFP-HIS to obtain the plasmid pNUF2-ORF. A sequence 

downstream of NUF2 (664 bp) was cloned into ApaI and KpnI sites of pNUF2-ORF to 

generate the plasmid pNUF2-GFP. The plasmid was digested with SacII and KpnI to release 

the cassette and then transformed in CtKS06 to obtain the strain CtKG500. 

CENP-CMif2-GFP (CtKG501): A 486 bp fragment of the MIF2 ORF was amplified and 

cloned into SacII and SpeI sites of pGFP-HIS to generate the plasmid pCENP-C-GFP. The 

plasmid was linearized by PmeI and transformed in CtKS06 to get the strain CtKG501. The 

primers used for generation of these strains are mentioned in Appendix-II. Genotype of each 

strain is mentioned in Appendix-I. 

 

c. Construction of dup4 and dupR mutant strains 

The dup4 (CtKG300S1, CtKG300S2, and CtKG300S3) and dupR (CtKG400S1, CtKG400S2, 

and CtKG400S3) mutant strains were constructed by double homologous recombination 

mediated replacement of the entire length of DUP4 (~235 kb) and DUPR (~80 kb) by 

CaSAT1 marker in the MYA-3404 strain. The constructs for replacing DUP4 and DUPR loci 

were constructed using overlap PCR strategy, analogous to what was described in figure 

6.1A. Approximately ~1 μg of these constructs were transformed in MYA-3404 strain and 

the transformants were selected on YPDU+NTC plate. These transformants were subjected to 

PCR analysis to conform if the target locus is replaced by CaSAT1 marker (Figure 6.2). 

Genotype of each strain is mentioned in Appendix-I. The primers used to generate these 

mutants are listed in Appendix-II. 
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Figure 6.2 Double homologous recombination mediated deletion of CNV loci and PCR 

confirmation. 

(A) and (B) represent schematics for the construction of DUP4 (red) deletion mutants using 

CaSAT1 (black), which confers resistance against nourseothricin. The ethidium bromide 

stained gel of PCR products confirmed the desired transformants. (C) and (D) show the same 

for the DUPR locus (orange). The relative location and orientation of the primer pairs used 

for PCR confirmation of the DUP4 and DUPR mutants are shown using blue arrows. 

 

 

d. Construction of pARS2-λ, pCEN501, pCEN502 and pCaCEN5 plasmids 

pARS2-λ: Duplex DNA isolated from bacteriophage lambda (cI857ind 1 Sam 7) from New 

England Biolab (Cat# N3011S) was digested with BamHI and a ~12 kb fragment was cloned 

in the pARS2 backbone at BamHI restriction site. 

 

pCEN501: To clone CtLR5 into direct orientation with respect to CtRR5, a 4032 bp CtLR5 

was PCR amplified using C. tropicalis genomic DNA as the template. The PCR product was 

digested by SalI and PstI and cloned into respective sites of pmid+RR to generate pCEN501. 

The orientation of CtLR5 in pCEN501 was confirmed by NcoI digestion. 
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pCEN502: A 2254 bp left repeat of CEN5 of C. albicans (CaLR5) was PCR amplified using 

C. albicans genomic DNA as the template and digested by PstI and SalI. The digested 

product was cloned between the PstI and SalI sites of pmid8 to generate pmid8-CaLR5. 

Subsequently, a 2317 bp right repeat of CaCEN5 (CaRR5) was PCR amplified using C. 

albicans genomic DNA as the template, digested by BamHI and was cloned into the same 

site of pmid8-CaLR5 to generate pCEN502. The structure of each of these plasmids was 

verified by digesting with at least two different restriction enzymes. 

 

pCaCEN5: To construct pCaCEN5, entire CaCEN5 locus (Chr5A:466262-473964) was 

amplified in two fragments (3692 bp and 4011 bp) using the genomic DNA of MYA-3404 as 

template. These two fragments were cloned in pARS2 in PstI-SalI and SalI-BamHI restriction 

sites, respectively. During the process of cloning, a unique SalI site was introduced between 

these two fragments, which is not present in native CaCEN5 DNA. This pCaCEN5 specific 

SalI site was used to design pCaCEN5 specific primers and distinguish it from the native 

CaCEN5. All primer pairs used to construct these plasmids are listed in Appendix-II. Plasmid 

constructs are listed in Appendix-III. We acknowledge the contribution of Dr. Gautam 

Chatterjee and Sundar Ram Shankaranarayanan for construction of pARS2-λ, pCEN501 and 

pCEN502 plasmids. 

 

Cell lysate preparation and western blot 

Whole cell protein lysates for western blot were prepared by the trichloroacetic acid (TCA) 

precipitation method (403). From overnight grown cultures, 3 OD600 equivalent cells were 

harvested, washed and resuspended in 400 μL of 12.5% ice cold TCA solution. The 

suspension was vortexed briefly and stored at -20°C for 12 h. The suspension was thawed on 

ice, pelleted at 14000 rpm for 10 min and washed twice with 500 μL of 80% acetone (ice 

cold). The washed pellets were air dried completely and resuspended in desired volume of 

lysis buffer (0.1 N NaOH, 1% SDS).  

 

C. tropicalis cell lysates were electrophoresed on SDS-PAGE and blotted onto nitrocellulose 

membrane in a semi-dry apparatus (Bio-Rad). The blotted membranes were blocked by 5% 

skim milk containing PBS (pH 7.4) for 2 h at room temperature and then, were incubated 

with following dilutions of primary antibodies for western blot analysis: anti-Protein A 

antibodies (Sigma, Cat# P3775) 1:5000 and anti-PSTAIRE antibodies (Abcam, Cat No. 
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ab10345) 1:2000, for 3 h at room temperature. Next, the membranes were washed thrice with 

PBST (0.1% Tween-20 in PBS) solution. Anti-rabbit HRP conjugated antibodies (Bangalore 

Genei, Cat No. 105499) (for Protein A western blots) 1:5000 and anti-mouse HRP conjugated 

antibody (Bangalore Genei, Cat No. 105502) (for PSTAIRE western blot) 1:5000 dilution in 

2.5% skim milk powder in 1X PBS were added and incubated for 2 h at room temperature 

followed by three to four washes with PBST solution. Signals were detected using the 

chemiluminiscence method (SuperSignal West Pico Chemiliminescent substrate, Thermo 

scientific, Cat# No. 34080) and imaged using Syngene G-Box gel doc system.  

 

Indirect immunofluorescence microscopy 

Subcellular localization of Protein-A tagged CENP-ACse4 with DAPI (4, 6-Diamino-2- 

phenylindole) stained nuclear mass was performed in CtKG001 following the method 

described previously for C. albicans (38). Asynchronously grown CtKG001 cells were fixed 

with the 1/10th volume of formaldehyde (37%) for 1 h at room temperature. Antibodies used 

were diluted as follows: 1:1000 for rabbit anti-Protein A (Sigma, Cat No. P3775). The 

dilutions for secondary antibodies used were Alexa flour 568 goat anti-rabbit IgG 

(Invitrogen, Cat No. A11011) 1:1000. Cells were observed using a DeltaVision imaging 

system (GE Healthcare Life Sciences), and the images were processed using FIJI software 

(37). 

 

Pulsed-field gel electrophoresis 

C. tropicalis strain MYA-3404 and C. albicans strain SC5314 were grown until the 

exponential phase (~2×107 cells/mL). Cells were washed with 50 mM EDTA and counted 

with a hemocytometer. Approximately 6×108 cells were used for the preparation of 1 mL 

genomic DNA plugs. The plugs were made according to the instruction manual protocol 

(Bio-Rad, Cat No. 170–3593) with CleanCut Agarose (0.6%) and the lyticase enzyme 

provided by the kit. A 0.6% pulsed field certified agarose gel was prepared using 0.5x TBE 

buffer (0.1 M Tris, 0.09 M Boric acid, 0.01 M EDTA, pH 8.0) and PFGE was performed on 

contour-clamped homogeneous electric field (CHEF) system using CHEF-DR II (Bio-Rad) 

module. The running conditions used were as follows: block-I at 100-200 s for 24 h at 4.5 

V/cm/120°, block-II at 200-400 s for 48 h at 2.5 V/cm/120°, block-III at 600-800 s for 120 h 

at 2.5 V/cm/120°. The gel was stained with ethidium bromide (EtBr) and analyzed by 

Quantity One software (Bio-Rad). 
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Preparation of high molecular weight genomic DNA 

Briefly, 50 OD600 equivalent (1 OD600 = ~2×107 cells) cells were collected, washed with 

chilled 50 mM EDTA pH 8.0 and flash-frozen with liquid nitrogen. Next, the cell pellet was 

lyophilized. Then a volume equivalent to 5 mL of glass beads was added to the tube and 

vortexed till the pellet turns powdery. Then 20 mL Cetyltrimethyl ammonium bromide 

(CTAB) extraction buffer (100 mM Tris-HCl pH 7.5, 0.7 M NaCl, 10 mM EDTA, 1% CTAB 

powder, 1% 2-Mercaptoethanol) was added, and the tube was incubated at 65°C for ~30 min 

with occasional mixing by inverting the tube. Subsequently the tube was chilled on ice for 10 

min, and the supernatant was transferred into another tube. An equal volume of chloroform 

was mixed with the supernatant gently inverting for 5 to 10 min. The mix was then 

centrifuged at 3200 rpm for 10 min, and the aqueous phase was carefully pipetted out using 

cut tips to a fresh tube. An equal volume of isopropanol was added into the supernatant and 

mixed gently until white thread-like structures appeared. The mix was incubated at −20°C for 

1 h and centrifuged at 3200 rpm for 10 min to pellet the DNA. The pellet was washed twice 

with freshly prepared 70% ethanol and air-dried. The dried pellet was dissolved in 1 mL of 

1x TE containing RNase A to a final concentration of 100 µg/mL and incubated at 37°C for 

30 to 45 min. Sodium acetate solution was added into the mix to a final concentration of 0.5 

M, and the solution was transferred to several 1.5 mL tubes in the aliquots of 0.4 mL each. 

An equal volume of isopropanol was added to each tube, mixed gently, and centrifuged at 

13,000 rpm for 15 min. The supernatant was decanted, and the DNA pellet was washed with 

70% ethanol. The pellet was air-dried and finally dissolved in 200 µL of 1x TE buffer. The 

quality of the isolated DNA was determined by performing PFGE analysis (switching time 1-

25 s, at 5.8 V/cm/120° for 24 h, 1% agarose gel) on CHEF-DR II module (Bio-Rad). 

 

SMRT sequencing of C. tropicalis strain MYA-3404 on PacBio sequel system 

The genomic DNA fragments of ~20 kb length were size-selected and taken forward for 

library preparation using SMRTbell™ Template Prep Kit (Part No. 100-259-100). PacBio 

sequencing of the C. tropicalis MYA-3404 genome was performed by Sequel SMRT Cell 

1M (Part No. 101-008-000) using Sequel™ Binding Kit 2.0 (Part no. 100-862-200) and 

SMRT Link version 5.0.1.9585. This run generated 996041 reads with an average read length 

of 5.8 kb. 
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Construction of the de novo SMRT assembly and contig stitching using SMIS 

The de novo SMRT assembly using 996041 PacBio raw reads was generated using Canu 1.6 

(77). The program was run in the trimming and correction mode with the ‘-pacbio-raw 

<input.fastq>’ option that produced 135 contigs. For stitching the contigs from Assembly B 

using the PacBio raw reads, we used Single Molecular Integrative Scaffolding 

(https://github.com/fg6/smis) with the default options, to get a 12-contig assembly (Assembly 

C). Details of the assemblies produced by Canu and SMIS are presented in Table 2.3. 

 

Filling N-gaps 

The de novo SMRT contigs were used to fill the existing N-gaps in Assembly A. We used 

500 bases upstream, and downstream regions of the N-gaps as queries against a custom 

BLAST (404) database generated using Geneious® software from the de novo assembled 

contigs and filled these N-gaps upon the mapping of upstream and downstream query 

sequences on the same contig with 100% coverage and more than 95% identity. Using this 

approach, we filled 78 out of 104 gaps leaving 26 gaps on seven chromosomes (Table 2.2, 

Figure 2.6A). We suspected that the remaining gaps were repetitive regions in the genome as 

immediate flanking regions identified multiple hits. To avoid this, we used a second strategy 

in which we used a 1-kb query sequence from either 10 kb upstream or downstream region of 

the N-gap, and performed a BLAST analysis against the de novo contigs generated using 

FALCON (78). All the remaining 26 gaps could be filled using this strategy (Table 2.2, 

Figure 2.6B). Further, to validate our claim, we confirmed the mapping of the Illumina and 

PacBio reads over the newly filled sequence. 

 

Assembly of sub-telomeric regions 

To assemble the sub-telomere regions, we performed a BLAST search using the terminal 

5000 bp sequence of each chromosome as queries against the de novo SMRT contigs and 

identified the contigs containing the 23-bp telomeric repeats specific for C. tropicalis (5¢-

TGATCGTGACATCCTTACACCAA-3¢) as reported previously (6). Schematic of the sub-

telomere scaffolding has been shown (Figure 2.6C). 

 

Mapping of the orphan haplotigs using the de novo SMRT assembly 
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Canu is a diploid-aware genome assembler (77), which generates two contigs from a 

heterozygous locus. Therefore, we used the Canu generated contigs (SMRT assembly) to 

map the orphan haplotigs as heterozygous regions of the genome (see Figure 2.4C). 

Heterozygosity of the orphan haplotigs was demonstrated by the Illumina read coverage 

(Figure 2.4B). For this analysis, the 3C-seq reads were mapped on the OHs and a control 

locus of Chr1 using Bowtie2 (332). The number of mapped reads were counted using the 

bamCoverage utility from deepTools2 (333) and plotted using boxplotR (405). 

 

Pilon polishing of the genome assembly 

The final telomere-to-telomere assembled chromosomes were polished through Pilon (324) 

using the Illumina reads obtained from the 3C-seq experiment. Pilon corrected base-pair level 

assembly errors and validated 99.5-99.8% bases of the seven chromosomes. The polishing 

step was repeated six times when the improvement stalled. 

 

Construction of aneuploids for confirmation of heterozygosity of the OHs 

We constructed C. tropicalis strains monosomic for Chr5 and used them to demonstrate that 

loss of one homolog of Chr5 leads to loss of one of the two alleles of the orphan contigs: 

contig14 and contig16, that are mapped on Chr5. Since the sch9 mutants in C. albicans were 

viable but lost chromosomes at a significantly higher rate than the wild-type (327), we 

adopted the same strategy to delete both copies of SCH9 homologs in C. tropicalis. Next, a 

reporter strain was created in this sch9 mutant strain background of C. tropicalis to assay for 

loss of a Chr5 homolog. These strains (2n-1) that lacked one homolog of Chr5 were used to 

confirm the presence of heterozygosity of orphan haplotigs (OHs) of CtChr5. 

 

a. Deletion of SCH9 in C. tropicalis 

The SCH9 homolog in C. tropicalis was identified in a BLAST search using CaSCH9 as the 

query sequence against the C. tropicalis proteome. A putative homolog of SCH9 was located 

on Chr1:1994521-1996662 and encoded by the Crick strand. A deletion cassette (pKG1) for 

double homologous recombination-mediated deletion of SCH9 ORF was constructed by 

cloning upstream and downstream homology regions in pSFS2a plasmid (328). This 

construct was transformed into CtKS102 for the deletion of both copies of SCH9 ORF by 

recycling the CaSAT1 marker after the deletion of the first copy of SCH9 gene. Independent 
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colonies of the sch9/sch9 null mutant strain (CtKG001) were confirmed using Southern 

hybridization (Figure 2.5B). Primers used in this study are mentioned in Appendix-II. 

 

b. Construction of a reporter strain by integration of URA3 on Chr5 

for isolation of Chr5 monosomic isolates  

Upstream and downstream homology regions of the target intergenic locus (Chr5_497_kb) in 

Chr5 were amplified, and cloned into pBSCaURA3 plasmid (193) to construct pKG2 

(Appendix-III). This cassette was released by restriction digestion with BamHI and ApaI and 

transformed into the sch9 mutant strain CtKG001 to construct the reporter strain CtKG002. 

Similarly, we integrated CaURA3 into the target intergenic locus (Chr5_497_kb) of CtKS102 

to create a control strain CtKG003. In both the strains (CtKG002 and CtKG003) the short 

arm (5¢ end) of one of the two homologs is marked with CaURA3 marker and the long arm 

(3¢ end) carries the heterozygous MTL locus (MTLa or MTLα) with two distinct alleles 

present on two homologs. Concomitant loss of one of the MTL alleles together with CaURA3 

marker would indicate loss of one homolog of Chr5. 

 

c. Isolation and confirmation of the 2n-1 aneuploids for Chr5 

Different cell numbers (105, 104, 103, and 102) of the reporter strain (CtKG002) and the wild-

type control strain (CtKG003) were plated on complete media (CM) + 5-FOA and incubated 

for 48-72 h at 30°C. Multiple FOAR colonies appeared for CtKG002 strain but no colonies 

appeared for the control strain CtKG003. The colonies were then patched on YPDU and CM-

URA plates for confirmation of the loss of the CaURA3 marker. Next, PCR was performed to 

confirm the loss of one of the MTL loci (MTLa or MTLα) in these colonies using a multiplex 

PCR strategy described previously (Figure 2.5C) (13).  

 

Library preparation and sequencing of the library DNA for chromosome conformation 

capture (3C-seq) 

Wild-type C. tropicalis strain MYA-3404 was cultured in non-selective YPDU media and 

500 OD600 equivalent cells were harvested for crosslinking. The cells were cross-linked with 

formaldehyde to a final concentration of 1.5% for 10 min and the cross-linking reaction was 

quenched by adding glycine to a final concentration of 400 mM. The crosslinked cells were 

centrifuged and the cell pellet was stored at -80°C till further use. For making the 3C library 
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of C. tropicalis, the cross-linked cell pellet was first resuspended in 5 mL of ice-cold 1x 

NEBuffer™ DpnII (50 mM Bis-Tris-HCl, 100 mM NaCl, 10 mM MgCl2, 1 mM DTT; pH 6 

@ 25°C) and then lysed by liquid nitrogen grinding in a chilled mortar using a pestle to a fine 

powder. The powdered sample was scraped using a spatula into a pre-chilled tube and 

resuspended in 15 mL cold 1x NEBuffer™ DpnII. Cell lysate containing ~3×108 cells (4 mL) 

was processed for 3C library preparation. This lysate was centrifuged and the pellet was 

resuspended in 1.5 mL of cold 1x NEBuffer™ DpnII and then aliquoted equally into four 1.5 

mL microcentrifuge tubes. Next, the chromatin was solubilized by adding SDS to a final 

concentration of 0.1% in each microcentrifuge tube and the sample was incubated at 65°C for 

exactly 10 min. The reaction was quenched by adding 45 µL of 10% Triton X-100 per tube 

with gentle mixing. Chromatin was then digested with 750 units of DpnII (NEB, Cat No. 

R0543M; 50,000 units/mL) per tube and incubated at 37°C overnight with gentle agitation 

(300 rpm) on a heating block. Next day, the restriction enzyme was heat-inactivated at 65°C 

for 20 min. The digested chromatin fraction in each tube was ligated with 50 U of T4 DNA 

ligase (Invitrogen Cat No.15224090; 1 U/µL) at 16°C for 6 h in a diluted condition (reaction 

volume 8 mL) to favor intra-molecular ligation of cross-linked restriction fragments. Reverse 

cross-linking was performed by adding 100 µL of 10 mg/mL Proteinase K (Invitrogen Cat 

No.25530031) per tube and incubating at 65°C overnight. Next, DNA, which constitutes the 

3C library, was purified using conventional phenol-chloroform extraction and concentrated 

using Amicon Ultra-0.5 mL 30K centrifugal filters. About 1 µg of 3C library was used for 

size selection using Agencourt AMPure XP beads (Beckman Coulter) to select DNA 

fragments of 500-700 bp in length. The paired-end NGS library was prepared using 

NEBNext Ultra II kit, and sequencing was carried out using the Illumina HiSeq 2500 2×101 

bp platform by a third party service provider.  

 

3C-seq data analysis 

a. Mapping of 3C-seq data, contact probability matrix generation, and visualization 

The 3C-seq data was analysed using Juicer in a CPU based system as described before (348). 

The data was aligned on the Assembly2020 and contact probability matrix was generated at 

10 kb resolution. The matrix was visualized using Juicebox (350). Analysis of 3C-seq data 

using Homer (349) was performed as described before. The contact probability matrix was 

generated at 5 kb resolution and visualized using Java TreeView software (351). Outline of 

the script used is presented in Appendix-IV. 
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b. Contig scaffolding 

3C-seq reads were aligned to contig sequences and contact probability matrix was generated 

as described above. The 3C profile of a bin was plotted using values in a single row from the 

contact probability matrix. It is well-established that contact frequency generally shows a 

distance-dependent decay (97). Therefore, the connectivity between two contigs can be 

inferred by investigating the contact probabilities between the terminal bin of a contig and 

loci on the other contig. We acknowledge the contribution of Yao Chen from Dr. Amartya 

Sanyal’s laboratory in School of Biological Sciences, Nanyang Technological University, for 

performing this analysis. 

 

Identification of SNPs, indels and CNVs 

a. Detection of SNPs and indels 

The SNPs and indels were identified using GATK software (85) with the paired-end Illumina 

reads obtained from the 3C-seq experiment in a 12 cores Ubuntu 16.4 system with 96 GB 

memory. Briefly, the 3C-seq reads were mapped to Assembly2020 using Bwa-mem (406) 

paired-end alignment mode following sorting of the resulting SAM file with Picard 

(https://broadinstitute.github.io/picard/), SAM to BAM conversion using SAMtools (407), 

and duplicate marking using ‘MarkDuplicates’ utility of Picard. Next, we used 

GenomeAnalysisTK.jar (version 3.8.0) to call the variants with ‘-ploidy 2’ option, SNPs were 

extracted, filtered with ‘--filterExpression 'QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum 

< -12.5 || ReadPosRankSum < -8.0 || SOR > 4.0' --filterName "basic_snp_filter"’ option 

following base quality score recalibration. Similarly indels were extracted, filtered with ‘--

filterExpression 'QD < 2.0 || FS > 200.0 || ReadPosRankSum < -20.0 || SOR > 10.0' --

filterName "basic_indel_filter"’ option following base quality score recalibration. The data 

tracks were visualized using IGV (329) and presented using Circa software. The script used 

for this analysis is presented in Appendix-V. 

 

b. Read coverage analysis for detection of large-scale CNVs 

To generate a genome-wide read coverage plot, the 3C-seq reads were mapped to 

Assembly2020 using Bowtie2 (332) paired-end alignment mode with ‘--end-to-end’ and ‘--

very-sensitive’ option. The resultant SAM file was converted to BAM format and sorted 

using SAMtools (407). Next, the mapped reads were counted using deepTools2 (333) 
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bamCoverage utility with the BPM normalization method, and the resulting BED file was 

used for downstream calculations or visualization in IGV (329). 

 

Haplotype analysis 

The FALCON, FALCON-Unzip (78), and FALCON-Phase (325) from the pb-assembly suite 

were run locally in a 12 core Ubuntu 16.4 system with 96 GB memory according to the 

instruction provided (https://github.com/PacificBiosciences/pb-assembly). The configuration 

files used for running FALCON, FALCON-Unzip and FALCON-Phase will be available 

upon request. Briefly, FALCON was run using modified fcrun.cfg with the input option 

‘pa_DBdust_option=true’, and ‘pa_fasta_filter_option=streamed-internal-median’. Next, data 

partitioning was performed with ‘pa_DBsplit_option=-x500 -s100’ and 

‘ovlp_DBsplit_option=-x500 -s100’, repeat masking was performed using 

‘pa_HPCTANmask_option = -k18 -h480 -w8 -e.8 -s100’, ‘pa_HPCREPmask_option = -k18 -

h480 -w8 -e.8 -s100’, and ‘pa_REPmask_code=0,300;0,300;0,300’ options. Preassembly was 

generated using the following parameters: ‘genome_size=15000000’, ‘seed_coverage=20’, 

‘length_cutoff=100’, ‘pa_HPCdaligner_option=-v -B128 -M24’, ‘pa_daligner_option=-e.8 -

l1000 -k18 -h480 -w8 -s100 -T10’, ‘falcon_sense_option=--output-multi --min-idt 0.70 --

min-cov 2 --max-n-read 1800’, ‘falcon_sense_greedy=False’. Next, Pread overlapping was 

performed using ‘ovlp_daligner_option=-e.96 -l1000 -k24 -h1024 -w6 -s100’, and 

‘ovlp_HPCdaligner_option=-v -B128 -M24’. Next, the final assembly was generated using 

‘overlap_filtering_setting=--max-diff 100 --max-cov 100 --min-cov 2’ and 

‘length_cutoff_pr=500’. Next, phasing of haplotypes was performed using FALCON-Unzip 

and FALCON-Phase as described (https://github.com/PacificBiosciences/pb-assembly). 

Script used in this analysis is presented in Appendix-VI. 

 

Assessment of the genome assembly completeness using BUSCO 

BUSCO (330) version 3.0.2 was run against ascomycota_odb9 database using the following 

script: ‘python ./scripts/run_BUSCO.py -i genome.fasta -o BUSCO_output -l 

/Path_to_llineage_dir/ -m genome -c 1 -sp candida_tropicalis’. 

 

Oxford Nanopore sequencing of C. sojae strain NCYC-2607 

High molecular weight genomic DNA was isolated from yeast cells, and the average length 

of the DNA fragments of the genomic DNA was checked on a CHEF gel using a CHEF-DR 
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II system (Bio-Rad). Next, the DNA sample was quantified by NanoDrop (ND-1000 

Spectrophotometer, NanoDrop Technologies) and Qubit 3 fluorometer (Thermo Fisher 

Scientific) using dsDNA HS assay kit (Thermo Fisher Scientific, Cat No. Q33230). An 

appropriate amount of DNA was taken forward for library preparation as per the 

manufacturer’s instructions using reagents included in SQK-LSK109 and EXP-

NBD103/EXP-NBD104 kits. DNA samples were then pooled together on a single R9 flow-

cell, and sequenced by the MinION system (Oxford Nanopore Technologies). The 

fragmentation step was skipped to retain the longer fragments. The raw reads were taken 

forward for base calling using Guppy version 3.1.5. A total of 92320 reads containing 

530421800 bp were generated. 

 

Illumina sequencing of C. sojae strain NCYC-2607 

DNA was quantified by Qubit 3 fluorometer (Thermo Fisher Scientific) using a dsDNA HS 

assay kit (Thermo Fisher Scientific, Cat No. Q33230). Approximately 100 ng of intact DNA 

was enzymatically fragmented by targeting 250-500 bp fragment size. The DNA fragments 

with overhangs resulting from fragmentation were end-filled. The 3¢ to 5¢ exonuclease 

activity of end-repair mix removed the 3¢ overhangs, and polymerase activity filled in the 5¢ 

overhangs. To the blunt-ended fragments, adenylation was performed by adding a single ‘A’ 

nucleotide to the 3¢ ends. To the adenylated fragments, loop adapters were ligated and 

cleaved with uracil-specific excision reagent enzyme. The sample was further purified using 

AMPure XP beads (Beckman Coulter, Cat No. A63880), and DNA was then enriched by 

PCR with six cycles using NEBNext Ultra II Q5 master mix (NEB, Cat No. M0544S), 

Illumina universal primers, and sample-specific indexed Illumina primers. The amplified 

products were cleaned up by using AMPure XP beads, and the final DNA library was eluted 

in 15 µL of 0.1x TE buffer. One µL of the library was used to quantify the DNA 

concentration by Qubit 3 fluorometer using the dsDNA HS reagent. The fragment analysis 

was performed on Agilent 2100 Bioanalyzer (Agilent, Model G2939B), by loading 1 µL of 

the library into Agilent DNA 7500 chip. In this experiment, we generated 3501768 paired-

end reads of 2×301 bp length. 

 

De novo genome assembly of C. sojae strain NCYC-2607 

A total of 92320 reads containing 530421800 bp were used for the construction of a de novo 

assembly using Canu (77). Canu was run using default parameters in the trimming and the 
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correction mode with ‘-genomeSize <15m>’, which produced the genome assembly of C. 

sojae in 42 contigs. Next, to rectify the base-pair level errors, we performed five rounds of 

polishing of the contigs using Illumina reads with Pilon (324). 

 

Synteny analysis 

Genome-wide synteny analysis was performed using Symap (326) with the parameters as (a) 

Min. dots 3 (minimum number of anchors required to define a synteny block), (b) top N 2 

(retain the top N hits for every sequence region, as well as all hits with score at least 80% of 

the Nth), (c) BLAT args: ‘-minScore=30 -minIdentity=70 -tileSize=10 -qMask=lower -

maxIntron=10000’. The Satsuma synteny and Synchro software were run using default 

parameters. For the custom approach to map the interchromosomal synteny breakpoints 

(ICSBs), first, the single-copy orthologs were identified using OrthoFinder (212), then the 

corresponding genomic coordinates of the ortholog pairs were sorted and the ICSBs were 

identified. For comparing the FALCON generated contigs with the Assembly2020 

chromosomes, the dot-plot between the two assemblies was generated using the default 

options of Symap version 4.2. 

 

Identification of the putative centromeres in the members of the CUG-Ser1 clade 

The putative centromeres of C. sojae and C. viswanathii were identified as HIR-associated 

intergenic regions syntenic to centromeres of C. tropicalis centromeres. Briefly, the genomic 

loci in C. sojae and C. viswanathii, which are syntenic to the centromeres of C. tropicalis 

were scanned for the presence of inverted repeats falling in ORF-free regions using YASS 

(357) with the default parameters. Pair-wise alignments between seven random genomic loci 

of ~10 kb length, LR, CC, or RR DNA elements were performed using Clustal Omega (408). 

Synteny dot-plot analysis for centromere DNA sequences including the flanking ORF-free 

region in C. albicans, C. dublininensis and the HIR sequences of C. tropicalis, C. sojae, C. 

viswanathii, and C. parapsilosis was generated using Gepard (358) by running it in the 

simple mode with default parameters. The IR sequences from centromeres of C. tropicalis 

and the putative centromeres of C. sojae and C. viswanathii were analysed to identify the 

presence of conserved motifs using motif discovery tool MEME following the default 

parameters with ‘ZOOPS: zero or one site per sequence’ as the motif site distribution 

algorithm, and maximum motif width set to 12 bp. Next, we scanned for the presence of IR-

motifs across the chromosomes including centromere DNA and flanking ORF-free regions in 
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C. albicans, C. dubliniensis, and putative centromeres of C. parapsilosis using FIMO with 

default parameters (359). 

 

Construction of the phylogenetic tree 

The publicly available genomes and the protein fasta files (when available) of C. albicans 

(ASM254v2), C. dubliniensis (ASM2694v1), C. viswanathii (ASM332773v1), and C. 

parapsilosis (ASM18276v2) were downloaded from NCBI database. The protein fasta files 

for C. tropicalis and C. sojae were generated using Augustus ab initio protein prediction 

software and the python script getAnnoFasta.py (340). Because of the partially diploid nature 

of C. viswanathii genome assembly, the duplicated contigs, that carried >100 kb of DNA 

sequence on another contig, were identified from dot-plot analysis (self) using Symap (326), 

and excluded from analysis. The protein fasta files were then used as input files for running 

OrthoFinder V2.3.1 (212). OrthoFinder was run using the default parameters except the -M 

msa option for the construction of maximum-likelihood trees using MAFFT (213) and 

FastTree (214). The tree topology was visualized using Evolview (3). 

 

Total RNA isolation 

Total RNA was isolated form the C. tropicalis yeast cells using Trizol reagent (Ambion, Cat# 

15596018). Cells were grown in YPDU to an OD600 = 0.5. Approximately 4 × 107 cells were 

taken for spheroplasting. Cells were pelleted down at 4,000 rpm, were washed with 1 ml of 

Y1 buffer (2.5 M sorbitol, 0.5 M EDTA, pH 8.0) and were resuspended in 2 ml of Y1 buffer. 

Approximately 20 mg of lysing enzyme (Sigma, Cat# L1412) and 2 μl of β-Mercaptoethanol 

were added and spheroplasting was done at 30°C at 70 rpm. After 90% spheroplasting was 

achieved, spheroplasts were isolated by centrifugation at 1,800 rpm for 5 min. The 

spheroplasts were lysed in Trizol by vortexing and total RNA was extracted using chloroform 

(Fisher Scientific Cat# C607SK-1). The RNA was precipitated using equal volume of 

isopropanol (Merck Millipore, CAS# 67-63-0) and then the RNA pellet was washed in 70% 

ethanol twice and resuspended in nuclease free water (Thermo Scientific, Cat# AM9937). 

After Isolation of total RNA, the genomic DNA contamination in the samples was removed 

by treating with RNAse free DNAse (NEB, Cat# M0303S) as per the manufacturer’s 

protocol. Removal of genomic DNA was confirmed by PCR, in which the 200 bp amplicon 

was detected in samples before DNAse treatment but not after the treatment even after 35 

cycles of amplifications. A schematic of the steps followed is presented (Figure 6.3). Total 
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RNA samples were subjected to quality analysis using Bioanalyzer (Agilent, Model G2939B) 

and the only samples with >7 RNA integrity number (RIN) (409) were taken forward for 

library preparation. 

 

 
Figure 6.3 Schematic of the steps followed during isolation of DNA-free total RNA from 

C. tropicalis cells 

 

 

Transcriptome analysis 

The raw FASTQ files were processes with Trimgalore (102) to remove the sequencing 

adapters followed by removal of bases below quality score (q) 20 as well as reads shorter 

than 20 bp. The adapter and quality trimmed FASTQ files were used to map the paired end 

reads on the genome. For fast and efficient mapping of reads STAR (20) was chosen. The 

output sequence alignment map (SAM) files from STAR were then converted to binary 

alignment map (BAM) format and further processed to sort the reads according to the 

genomic coordinates using Samtools (103). Next, the sorted BAM files were processed with 
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Picard (104) to identify and flag the duplicates using MarkDuplicate utility. Genome-wide 

transcript mapping was quantified using deepTools2 (18) bamCoverage utility with bpm 

normalization option and the resulted browser extensible data (BED) files were used for 

downstream calculations or visualization in IGV (19). A generalized version of the script 

used for this analysis is presented in Appendix-VII. 

 

Mitotic stability assay 

The mitotic stability assay was performed to determine the loss rate of pARS2, pmid5, 

pCEN5, pARS2-λ, pCEN501 and pCEN502 in C. tropicalis. Briefly, the C. tropicalis strain, 

CtKG001 was transformed with above mentioned plasmids. The transformants were streaked 

on CM-Ura plates for single colony purification. Single colonies thus obtained were 

subsequently inoculated in a nonselective media (YPDU) and incubated at 30°C for overnight 

for 8-10 generations. Next day, equal numbers of cells were simultaneously plated on YPDU 

and CM-Ura and incubated at 30°C for 2 days. Colonies grown on both plates were counted 

and the mitotic stability was calculated in percentage as follows: Mitotic stability = (S/NS), 

where S and NS denote the number of colonies grown on selective and nonselective media 

respectively (Figure 4.1B). 

 

Chromatin immunoprecipitation  

The ChIP assays were done as described previously (108). Briefly, each strain was grown 

until exponential phase (~2×107 cells/mL) and cells were cross-linked with formaldehyde 

(final concentration 1%). Chromatin was isolated and sonicated to yield an average fragment 

size of 300–500 bp. Then the DNA was immunoprecipitated with anti-protein A antibodies 

(Sigma, Cat No. P3775) (final concentration is 24 μg/mL) or anti-GFP antibody (Santa Cruz 

Biotech, Cat. No. 9996) (final concentration is 4 μg/mL) and purified. The duration of cross-

linking varies- 15 min for CENP-A and 1 h 45 min for Nuf2. The total, immunoprecipitated 

(IP) DNA, and beads only material were used to determine the binding of kinetochore 

proteins in all seven putative centromeres by semi-quantitative PCR. PCR conditions for 

primers (as listed in Appendix-II) were used as follows: 94°C for 2 min, Tm for 30 s (Tm 

varies with the primers), 72°C for 1 min, for 1 cycle; 94°C for 30 s, Tm for 30 s, 72°C for 1 

min for 24 cycles in case of CENP-A and 27 cycles for Nuf2; 72°C for 10 min. Enrichment 

of a given genomic locus was calculated using qPCR analysis following percent input method 
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and the results were plotted using Graph-pad Prism software. One-way ANOVA was 

performed to analyze the statistical significance of difference between the samples. 

 

Data access 

All the genome sequencing data used in this work and the genome assemblies of C. tropicalis 

(Assembly2020) and C. sojae generated in this study have been submitted to NCBI under the 

BioProject accession number PRJNA596050. 
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Appendix-I: List of strains used in this study 

Strain name Genotype 

SC5314 C. albicans reference strain (Wild-type) 

CaKG001 
arg4Δ/arg4Δ, leu2Δ/leu2Δ, his1Δ/his1Δ, ura3Δ::imm434/ura3Δ::imm434, 

iro1Δ::imm434/iro1Δ::imm434 CSE4/CSE4-TAP(CaSAT1) 
MYA3404 C. tropicalis Clinical isolate (Wild-type) 

NCYC-

2606 
Environmental isolate of C. sojae (wild-type) 

CTKS06 ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

CtKS101 
ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

CSE4/CSE4::CSE4-TAP (CaURA3) 

CtKS102 
ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

CSE4/CSE4::CSE4-TAP (CaHIS1) 

CtKG001 
ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT 

CtKG002 

ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 
CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT Chr5-497kb/ Chr5-

497kb::CaURA3 

CtKG003 
ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

CSE4/CSE4::CSE4-TAP (CaHIS1) Chr5-497kb/ Chr5-497kb::CaURA3 

CtKG101 

ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 
CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT Chr5 monosomy 

Transformant 1 

CtKG102 

ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 
CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT Chr5 monosomy 

Transformant 2 

CtKG103 

ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 
CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT Chr5 monosomy 

Transformant 3 

CtKG104 

ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 
CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT Chr5 monosomy 

Transformant 4 

CtKG105 

ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 
CSE4/CSE4::CSE4-TAP (CaHIS1) sch9::FRT/sch9::FRT Chr5 monosomy 

Transformant 5 

CtKG300S1 DUP4/DUP4/DUP4::CaSAT1  Transformant S1 

CtKG300S2 DUP4/DUP4/DUP4::CaSAT1  Transformant S2 

CtKG300S3 DUP4/DUP4/DUP4::CaSAT1  Transformant S3 

CtKG400S1 DUPR/DUPR/DUPR/DUPR::CaSAT1  Transformants S1 

CtKG400S2 DUPR/DUPR/DUPR/DUPR::CaSAT1  Transformants S2 

CtKG400S3 DUPR/DUPR/DUPR/DUPR::CaSAT1  Transformants S3 

CtKG500 
ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

NUF2/NUF2::NUF2-GFP (CaHIS1) 

CtKG501 
ura3::FRT/ura3::FRT his1::FRT/his1::FRT arg4::FRT/arg4::FRT 

MIF2/MIF2::MIF2-GFP (CaHIS1) 
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Appendix-II List of primers used in this study 

Primer name Sequence Purpose of use 

Construction and confirmation of CtKG001 

KG1 
ATGCGGTACCGTTGGTACCTTCTACAGATG

C 

Amplification and 

cloning of upstream 

homology region of 

SCH9 ORF 
KG2 AGTCCTCGAGAATGGGTGAGCAGATGATGG 

KG3 
ATGCCCGCGGGATGAAGAAATGCAACCAG

CAG 

Amplification and 

cloning of 

downstream 

homology region of 

SCH9 ORF 

KG4 
ATGAGAGCTCCAAAATTGGAATCGTTAGAA

ACGG 

KG5 CAACAATTTAACTTAACATGTGGCAC 

PCR confirmation of 

Sch9::CaSAT1 

KG6 TTCTGAAACTTGAAGGATTAGATAC 

KG7 CAGTGGCTACAACTCAGAGCACGC 

KG8 TTAGAGACACAAACGAACAATGTACC 

Construction and confirmation of CtKG002 and CtKG003, MTL PCR 

KG9 
GATCGGGCCCGGGGAACACCAACTTCAAA

A 

Amplification and 

cloning of upstream 

homology region of 

Chr5-497kb locus 
KG10 

AGTCCTCGAGGAGAGTCATGACACACCACT

TGTTG 

KG11 
ATCGCTGCAGGACTGGAACCTTATGTGAGG

AGACAG 

Amplification and 

cloning of 

downstream 

homology region of 

Chr5-497_kb locus 

KG12 
AGCTGGATCCGACATCATGGATGAGCCTTG

GTAG 

KG13 GAGAAAAAGAAAGAGAAGGATTCTAAGG PCR confirmation of 

Chr5-497_kb::URA3 

transformants KG14 ATCCTTCTTCTTGGCCACCC 

KG15 GGACTGGGAGGGTGCATTGG  
Probe for Southern 

hybridization 

confirmation of the 

sch9/sch9 mutants 
KG16 CTATGTGGGCGTGTGATTGCGC  

KG17 GATTTGGTATGAAAAGAGGAACTCTAAC 
Amplification of 

MTLa locus 
KG18 CTACTAATTTTGAAACCATTTGGAGTCT 

KG19 TAAAACATTAAGCATAGAGGACAAAGAA 
Amplification of the 

MTLα locus 
KG20 AACTTCAAATGCAAAATGTAAAACATAC 
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Amplification of probes used in Southern hybridization experiments 

KG21 GTTATTGAAGAACCTAGAGGG 

Contig14_Probe 

KG22 AGCTTGTAATTCAGGTGACA 

KG23 CTACTCCACAGAAACAATCTCC 

Contig16_Probe 

KG24 CAGGGATACACTTCTTATGACC 

KG25 TGCAGTTGAAATCTCTTGGACC 

Probe A 

KG26 GGATGTTGCGATCACTTTGG 

KG27 GGAAAGATTCAGGATAAACCAATTG 

Probe B 

KG28 CCATTTGACTTGCCCACTC 

KG29 ATCATGAGAATACAAAGAGAAAGTT 

Probe C 

KG30 AACTTTTGTAGTCTATCCAACTCTG 

KG31 GTGCATACGTCACAGTTTGG 

Probe D 

KG32 GATGCTATCATCTCAAACCAAGG 

KG33 GGTGGTTACGGTACCAGATTG 

Probe E 

KG34 CCGGCATTGATTCTGTTACC 

KG35 GTTGTTATCCAGTGTACCAGTTG 

Probe F 

KG36 GGGATTTCTGGTGGTTCAAC 

Construction of Mif2-GFP strain (CtKG501) 

KG113 
TCCCCGCGGAGACCACAAACACCAACTAGC

G 

Amplification and 

cloning of C-terminus 

region of the MIF2 
ORF 

KG119 
CTAAACCTGAAGAAGTTGAAGATACTTGGA

TGAGTAAGGGAGAAGAACTTTTCACTGGAG 

Construction of Nuf2-GFP strain (CtKG500) 

KG127 
ATCACCGCGGGATTATAAACAGGAGAAAAC

CAATTTAGC 

Amplification and 

cloning of C-terminus 

region of the NUF2 
ORF 

KG128 
ATCAACTAGTTTTGATATTTTTGTTTAATTCT

GTCATATATC 

KG129 
ATCGGGGCCCCACTAACCTGTATAGACCAA

ATAATTTG 

Amplification and 

cloning of downstream 

region of the NUF2 
ORF 

KG1 GGGGTACCATTTTATCACCTTTGGGAACAGG 



Appendix 

 

 

163 

Construction of pCEN501 

KG235 
ATGCGTCGACCAATATTTCATCGTGTTTCAC

CCG 
Amplification and 

cloning of LR from 

CtCEN5 KG236 
CAGTCTGCAGAATACTTTGAATCAAGGTTAG

CAATG 

Construction of pCEN502 

KG229 
AGTCCTGCAGGCATTCGAAGGACATTAATTA

ACG Amplification and 

cloning of CaLR5  
KG230 

ATGCGTCGACCAGTACGTTGTGTTTTGAAGT

CCTC 

KG231 
AGCGGATCCCTTTTTATTCCAGTATTCTGATT

GATCTATTTATC Amplification and 

cloning of CaRR5  
KG232 

ATGCGGATCCGATGTTGTTGTGGTAGCCATA

GTGTG 

Construction of pCaCEN5 

KG229 
AGTCCTGCAGGCATTCGAAGGACATTAATTA

ACG 

Amplification and 

cloning of CaCEN5 

KG234 
ATGCGTCGACTGGTGTGTTGCTGCTGCCCTT

AG 

KG231 
AGCGGATCCCTTTTTATTCCAGTATTCTGATT

GATCTATTTATC 

KG233 
ATGCGTCGACCATGTTCCAACTCTCTCATGC

GATC 

Construction of CENP-ACse4-Protein-A strain 

CSE4 1F GAACAGCTACTAGAGAGAGATAG 
CENP-A ORF 

fragment 
CSE4 2R 

CTTTTTCCATCTTCTCTTTTCTAGAATCCAGG

ACTG 

CSE4-3UTR F 
CAATTCGCCCTATAGTGAGTCGTAGTGTACC

ATATAGAATGTAAGAG CENP-A downstream 

sequences 
CSE4 6R GTACCAATAGAGAATTCTAGG 

CSE4 3F 
CCAGTCCTGGATTCTAGAAAAGAGAAGATG

GAAAAAG TAP-CaURA3 

amplification 
CSE4-TAP R 

CTCTTACATTCTATATGGTACACTACGACTC

ACTATAGGGCGAATTG 

KG121 
ATG CGC GGC CGC GTG GGC ATC TAT CGA 

AAT CAG CENP-ACSE4 along 

with TAP amplification 
KG78 

GAC TAG TGG CCA ATT ATA AAT GTG AAG 

GGG G 
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Deletion of DUP4 locus 

KG518US-F CTCGTGACAAGTATCAGAATGTC 

Construction of 

overlap PCR construct 

to delete DUP4 locus 

with CaSAT1 marker  

KG519US-R 
GTATTCTGGGCCTCCATGTCGATTCGAGGGC

GAACTGACAC 

KG520NATF 
GTGTCAGTTCGCCCTCGAATCGACATGGAGG

CCCAGAATAC 

KG521NAT-R 
CATAGAGGCAGTCAAGGCTGCAGTATAGCG

ACCAGCATTCAC 

KG522DS-F 
GTGAATGCTGGTCGCTATACTGCAGCCTTGA

CTGCCTCTATG 

KG523DS-R CTCTCTGAGAATCCTTTCTAAGC 

KG531_Chr4-

conf 
ATCGTGGTTGTTTGGGCC 

PCR confirmation of 

deletion 
KG378 GCCAGAGAAAGAGGTGCTGG 

Deletion of DUPR locus 

KG524_ChrRD

DFP 
CCTTGTTAGTTTCATAAATTGCCGC 

Construction of 

overlap PCR construct 

to delete DUPR locus 

with CaSAT1 marker  

KG525_ChrR-

USR 

GGTATTCTGGGCCTCCATGTCGAACACAGTT

TCAGCGGCCTG 

KG526_chrRNA

TF 

CAGGCCGCTGAAACTGTGTTCGACATGGAG

GCCCAGAATACC 

KG527_Chr-R-

NATR 

GTATGGGGAAAAGAGATTCACGTCCAGTAT

AGCGACCAGCATTCAC 

KG528_ChR-

DSF 

GTGAATGCTGGTCGCTATACTGGACGTGAAT

CTCTTTTCCCCATAC 

KG529_ChrR-

DSR 
CATCAATTGACTGCTACTAGCTTTG 

KG530_ChrR-

conf 
GGCAACTTTTGGGCAACC 

PCR confirmation of 

deletion 
KG378 GCCAGAGAAAGAGGTGCTGG 

ChIP-PCR and qPCR assay 

SalI CC only FP 
ACGCGTCGACGTAGTTATCTAGATGCAATTT

GTTTG For qPCR on native 

CEN5  
RT-pCtCEN RP TATTACCTACAAATAACTTCATCAAGTC 

pCEN8 ChIP FP AACCTTGATTCAAAGTATTGTGTCGAC 

For qPCR on pCEN5 

RT-pCtCEN RP TATTACCTACAAATAACTTCATCAAGTC 
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RT- CC+IR and 

CC FP 
CTTGCATGCCTGCAGGTCGAC 

For qPCR on pmid5 

RT-pCtCEN RP TATTACCTACAAATAACTTCATCAAGTC 

Leu2-3FP (F) TAAAAATCATTTAATTGGTGGTG 

For qPCR on CtLEU2 

Leu2-3RP (R) ACAGCATCTGATGATTTAGCACAT 

Ca21 CTGGTGCAAGACCCTCATAGAAGC  

For PCR on CaCEN7 

Ca22 CCTGACACTGTCGTTTCCCATAGC  

Ca7a ACTCGCCTTCCCCTCCTTTAAAT 
For PCR on CEN7-

distal locus 
Ca7b CCACTACTACGACTGTGGATTCA 

KG506 AGAGTTGGAACATGGTCGAC 

For PCR on pCaCEN5 

KG507 CCACCTTAAAATACGGTCCC 

KG200 ATGCTCATGGTGTCACTGGG 

For PCR on CaURA3 

KG201 ATCCTTCTTCTTGGCCACCC 
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Appendix-III List of plasmids used in this study 

Name Vector/ 
backbone Modification Length 

(bp) References 

pKG1 pSFS2a 
Upstream and downstream 

homology region of SCH9 
ORF is cloned 

8542 This study 

pKG2 pBSCaURA3  

Upstream and downstream 

homology region of 

intergenic locus 

(Chr5_497_kb) is cloned 

5039 This study 

pCENP-A-TAP-

HIS  pBS-HIS CtCENP-A
Cse4

-TAP 

fragment is cloned 
5975 This study 

pCENP-C-GFP  pGFP-HIS C-terminus region of the 

MIF2 ORF is cloned 5803 This study 

pNUF2-ORF  pGFP-HIS C-terminus region of the 

NUF2 ORF is cloned 6012 This study 

pNUF2-GFP  pNUF2-ORF  
downstream homology 

region of NUF2 ORF is 

cloned 
6676 This study 

pARS2-l  pARS2  ~11 kb l -DNA is cloned 15000 This study 

pCEN501 pmid+RR  CtCEN5 LR is cloned is a 

direct orientation to the RR 15149 This study 

pCEN502 pmid8 IRs from CaCEN5 are 

cloned 11818 This study 

pCaCEN5 pARS2 CaCEN5 is cloned 12448 This study 
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Appendix-IV Script used for analysis of 3C-seq data using Homer 
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Appendix-V Script used in SNP/indel analysis using GATK software 
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Appendix-VI Script used in haplotype analysis using FALCON, FALCON-Unzip and 

FALCON-Phase software 
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Appendix-VII Script used for RNA-seq data analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#make geneome1 dir 
mkdir genome1 

 

#genomegenerate (STAR) 
STAR --runMode genomeGenerate --runThreadN 46 --genomeDir genome1 --genomeFastaFiles Ctrop.fasta 

--sjdbGTFfile Ctrop.gtf --sjdbGTFfeatureExon CDS --sjdbOverhang 100 

 

#readmapping (STAR) 
STAR --runThreadN 16 --genomeDir genome1 --readFilesIn 

/media/mml2/candida2/mml_system_data_4.3.19/Candida_tropicalis/Ct_RNAseq_19.2.19/READS_TRIM

MED/MYAD2_R1_val_1.fq 

/media/mml2/candida2/mml_system_data_4.3.19/Candida_tropicalis/Ct_RNAseq_19.2.19/READS_TRIM

MED/MYAD2_R2_val_2.fq --outFileNamePrefix MYAD2_26.04.19 --outSAMtype BAM 

SortedByCoordinate --quantMode GeneCounts --limitBAMsortRAM 6534549647 --twopassMode Basic 

ulimit -n 10000 

 

#readmapping2 
STAR --runThreadN 16 --genomeDir genome1 --readFilesIn 

/media/mml2/candida2/mml_system_data_4.3.19/Candida_tropicalis/Ct_RNAseq_19.2.19/READS_TRIM

MED/MYAD3_R1_val_1.fq 

/media/mml2/candida2/mml_system_data_4.3.19/Candida_tropicalis/Ct_RNAseq_19.2.19/READS_TRIM

MED/MYAD3_R2_val_2.fq --outFileNamePrefix MYAD3_26.04.19 --outSAMtype BAM 

SortedByCoordinate --quantMode GeneCounts --limitBAMsortRAM 6534549647 --twopassMode Basic 

ulimit -n 10000 

 

#samtools sort 
samtools sort -m 1G -@ 46 MYAD2_26.04.19Aligned.sortedByCoord.out.bam -o 

MYAD2_26.04.19Aligned.sortedByCoord.out_sorted.bam 
samtools sort -m 1G -@ 46 MYAD3_26.04.19Aligned.sortedByCoord.out.bam -o 

MYAD3_26.04.19Aligned.sortedByCoord.out_sorted.bam 

 

#samtools index 
samtools index MYAD2_26.04.19Aligned.sortedByCoord.out.bam 
samtools index MYAD3_26.04.19Aligned.sortedByCoord.out.bam 

 

#coverage 
bamCoverage --bam MYAD2_26.04.19Aligned.sortedByCoord.out.bam -o MYAD2@250bp.bdg --binSize 

250 --normalizeUsing BPM --outFileFormat bedgraph -p 46 
bamCoverage --bam MYAD3_26.04.19Aligned.sortedByCoord.out.bam -o MYAD3@250bp.bdg --binSize 

250 --normalizeUsing BPM --outFileFormat bedgraph -p 46 
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Abstract
The centromere, on which kinetochore proteins assemble, ensures precise chromosome
segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also
known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in
nature. However, the evolutionary consequence of these structural diversities on de novo
CENP-A chromatin formation remains elusive. Here, we report the identification of centro-
meres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the
human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres com-
prises a 2 to 5 kb non-repetitivemid core flanked by 2 to 5 kb inverted repeats. The repeat-
associated centromeres of C. tropicalis all share a high degree of sequence conservation
with each other and are strikingly diverged from the unique and mostly non-repetitive cen-
tromeres of related Candida species—Candida albicans, Candida dubliniensis, and Can-
dida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric
inverted repeats and the underlying DNA sequence provide a structural determinant in
CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A load-
ing at centromeres in C. albicans. Thus, the centromere structure and its influence on de
novoCENP-A recruitment has been significantly rewired in closely relatedCandida species.
Strikingly, the centromere structural properties along with role of pericentric repeats in de
novoCENP-A loading in C. tropicalis are more reminiscent to those of the distantly related
fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first
time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.
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9.1
Introduction

Perpetuation of life occurs by the fundamental property of cells to divide. A
somatic cell undergoes a cell cycle that is comprised of essentially two periods:
interphase and mitosis. Interphase can be further divided into G1, S, and G2. G1
and G2 constitute gap phases, involving cell growth that prepare cells for
genome duplication in synthesis (S) phase and subsequent segregation in mitotic
(M) phase, respectively. The mitotic cell cycle ensures equal division of the
duplicated genetic content of the mother nucleus with the help of the kineto-
chore and centromere. The kinetochore is a proteinaceous structure that assem-
bles on centromere (CEN) DNA. The centromere/kinetochore generally appears
as a constricted region of a metaphase chromosome (Figure 9.1a). The kineto-
chore complex interacts with microtubules on one side and centromeric chro-
matin on the other (Figure 9.1a). In most metazoans, multiple microtubules
bind to each kinetochore, with an exception of certain budding yeasts where
only a single microtubule appears to be associated with each kinetochore [1–4].
Apart from these general features of mitosis, organism-specific variations also

exist. Mitosis is broadly classified in two types: closed mitosis and open mitosis
(Figure 9.1b). This distinction primarily refers to the permeability of the nuclear
envelope (NE), a bilayered membrane which along with the nuclear pore com-
plexes (NPCs) regulate the entry and exit of molecules to and from the nucleus.
Closed mitosis is considered to be the more primitive form of eukaryotic cell
division, whereas open mitosis seems to have appeared several times during evo-
lution. Plants and animals share open mitosis predominantly, while most fungi
employ closed mitosis and variations of it. During closed mitosis, the NE
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“The greater the diversity, the greater the perfection.”

—Thomas Berry

A centromere is classically defined as the primary constriction on a metaphase chromosome
[1] that holds the sister chromatids together, binds to spindle microtubules, and brings about
their separation during anaphase. Despite having a conserved and essential function, centro-
meres are among the fastest evolving DNA sequence loci in eukaryotic genomes [2]. With the
advent of molecular biology techniques, centromeres could be mapped and sequenced in a
large number of fungal species. The length of centromere DNA in fungi is found to be highly
variable, classifying them as point (<400 bp), short regional (>400 bp, −20 kb), and large
regional (>20 kb) [3]. Such diversity is achieved by different regulatory factors that have over-
lapping functions required for loading of the centromere-specific histone H3 variant centro-
mere protein A/chromosome segregation 4(CENP-A/Cse4) to DNA to define centromere
identity. Although genetic and epigenetic mechanisms of centromere formation across eukary-
otes are largely conserved, there are examples of molecular innovation and genetic improvisa-
tion that help fungal species to maintain their ploidy across generations. In this review, we
highlight five such genetic and epigenetic factors that define centromere identity in pathogenic
fungi.

DNA sequence and organization of DNA sequence elements

DNA sequence features provide the necessary template to act as a binding platform for kineto-
chore proteins. The genus Candida, which harbors several pathogenic species, presents a
diverse array of centromere types. Candida glabrata carries point genetic centromeres, much
like the 125-bp DNA sequence that serves as a fully functional point centromere in the bud-
ding yeast Saccharomyces cerevisiae [3–5]. Typically, genetic centromeres have specific and
conserved DNA sequence motifs and confer mitotic stability to otherwise unstable plasmids
carrying an autonomous replicating sequence (ARS) during cell division. Despite high-struc-
tural homology in DNA sequence elements, the point centromeres of C. glabrata are not fully
functional in S. cerevisiae, suggesting that centromere function is species-specific [5, 6]. Short
regional genetic centromeres of Candida tropicalis comprise a central core flanked by inverted
repeats, similar to those of the fission yeast Schizosaccharomyces pombe [3, 7]. The sequence
and orientation of these repeats are important for centromere function. Due to the presence of
inverted repeats, the centromeres in C. tropicalis can acquire a hairpin loop-like secondary
structure that might be crucial for kinetochore assembly. Candida albicans and Candida dubli-
niensis, on the other hand, possess unique and different centromere DNA sequences on each
of their chromosomes [8, 9]. While C. tropicalis centromeres can stabilize an ARS plasmid,
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