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Insights into the Regulatory Mechanisms of Xenophagy as 

Revealed by Chemical Genetics 

Introduction 

Macroautophagy (herewith autophagy) is an intracellular process in which a part of the 

cytoplasm is sequestered in double membrane vesicles called autophagosomes that eventually 

fuse with lysosomes resulting in degradation of its contents. This process occurs at basal level 

in normal cells whereas it gets induced under certain conditions like nutrient starvation, 

hypoxia, and infection. The cargo for degradation could be cytoplasmic long lived proteins, 

aggregated proteins, damaged or superfluous organelles, or intracellular pathogens (Morishita 

and Mizushima, 2019). The specialized type of autophagy involved in capturing and clearing 

of intracellular pathogens is known as xenophagy. The process of xenophagy provides defence 

mechanism against a broad spectrum of intracellular pathogens such as bacteria, virus and 

parasites (Jo et al., 2013). 

Aim and scope of the study: 

Xenophagy functions as a part of innate immune system eliminating a wide range of 

intracellular pathogens like bacteria, viruses and protozoans. However, pathogens have 

evolved ways to subvert xenophagy to facilitate their survival (Birmingham et al., 2006). 

Additionally, depending on the pathogen studied, the mechanism of xenophagy evasion differs 

mediated by the virulence genes of the pathogen. For example, bacterial infections 

predominantly evade capture by autophagosomes or prevent fusion with lysosomes whereas 

viral infections utilize autophagosomes as replicating niche. Hence, restoration of xenophagy 

block imposed by pathogens through genetic or pharmacological methods would enhance the 

clearance of intracellular pathogens and provide insights into host-pathogen mediated 

molecular events that control xenophagy (Kuo et al., 2015). Although investigations addressing 

the xenophagy mediated pathogen clearance are well-studied in the past few decades, 

molecular pathways that regulate the process are still underexplored.  

With this brief introduction, the objectives for the current study are as follows, 

1. Screening and validating small molecule chemical modulators that induce xenophagy. 

2. Investigations on the mechanism of action of the compound to induce xenophagy. 

3. Identifying the upstream regulatory pathways that impinge on xenophagy.  



4. Development and standardization of high throughput xenophagy screening 

The chapters are divided to accommodate the above mentioned objectives in the following 

manner. 

Chapter 1: General introduction about autophagy and xenophagy. 

Chapter 1 is the review of literature about the process of autophagy and xenophagy. In addition, 

the role of autophagy in health and disease with emphasis on intracellular infections will be 

discussed. Further, host-pathogen interactions that modulate xenophagy and the evasion 

strategies employed by the pathogens will be elaborated. Importantly, various genetic and 

pharmacological approaches to modulate xenophagy will be discussed in detail. Finally, the 

current status and the future perspective of the field will be summarized.  

Chapter 2: Materials and methods 

In this chapter the materials and methods used in this study are discussed. The materials used 

include lists of strains, plasmids and primers. The methods section contain details about the 

pilot screening of the compounds, HTS screening, wide-field and live cell fluorescence 

microscopy, immunofluorescence, electron microscopy, western blot analysis and gene 

expression analysis. In addition, the image processing, image quantitation and statistics details 

are described.  

Chapter 3: Acacetin decreases Salmonella replication  

Chapter 2 describes the pilot-scale screening of xenophagy inducers to decrease intracellular 

Salmonella typhimurium. The chapter also highlights the validation of the selected xenophagy 

inducer, acacetin. Further, the results pertaining to acacetin action are discussed. Acacetin 

decreases the intracellular Salmonella replication in cell lines such as epithelial and 

macrophage cell lines. Acacetin increases the recruitment of xenophagy proteins to 

intracellular bacteria enhancing cargo recognition. In addition to the xenophagy induction, 

acacetin induces general autophagy in mammalian cells. Results describing the autophagic flux 

and involvement of critical autophagy regulatory pathways like mTOR, ERK modulated by 

acacetin are discussed.  

 

 



Chapter 4: Mechanism of action of acacetin.  

Chapter 3 discusses the results pertaining to the mechanism of acacetin action. Investigations 

on cargo recognition mediated by acacetin, revealed enhanced phosphorylation of autophagy 

adaptor protein, p62 (SQSTM1). Additionally, fluorescent and electron microscopy images 

revealed increase in lysosomal biogenesis and autophagy. Following this observation, the 

involvement of crucial transcriptional regulator, TFEB in acacetin mediated autophagy 

induction is studied. Further, we show that induction of TFEB during Salmonella infection is 

beneficial, as it helps the host cells by increasing the proteolytic activity of lysosomes. This 

leads to decrease in the replication of Salmonella in Salmonella containing vacuoles (SCVs). 

The results obtained from in cellulo based assays were also verified in vivo mouse model of 

infection. 

Chapter 5: Identification of upstream regulators of TFEB. 

Chapter 4 describes the attempts made to identify the upstream regulator of TFEB. Preliminary 

results of gene expression analysis of acacetin treated cells will be discussed. Shortlisted 

candidate genes from gene expression analysis were tested for its ability to induce TFEB 

nuclear translocation in an image-based assay. Future work aimed at validating the putative 

regulators of TFEB obtained from the study will be discussed.  

Chapter 6: Development of HTS to identify novel compounds. 

Chapter 5 describes the development of HTS for xenophagy to identify novel compounds that 

regulate xenophagy. The pilot-scale screening described in chapter 1 was scaled up to test a 

large number of compounds/genes for their xenophagy effect. The development of HTS 

involves the generation of luminescent Salmonella, standardization of infection assay on 96-

well microtitre plates. The proof-of-principle screening was carried out using a custom-made 

small molecule library comprising of 410 compounds was carried out. The results and future 

work pertaining to identification of novel xenophagy inducers will be elaborated.  



Chapter 7: Discussion and future directions 

Chapter 6 summarises the overall xenophagy-pathogen insights obtained by the study 

explained in the preceding chapters. Briefly, we have identified a novel small molecule 

modulator of xenophagy, acacetin. The compound functions by activating a transcriptional 

regulator, TFEB which is regulated by its phosphorylation status to induce lysosomal 

biogenesis and autophagy. Interestingly, the results of this study indicate that TFEB is kept 

transcriptionally inactive post Salmonella infection. Acacetin treatment during infection 

increased the proteolytically active lysosomes inhibiting intracellular Salmonella replication. 

We attempted to identify the upstream regulator of TFEB by gene expression analysis. The 

future work of the study includes validation of putative genes/pathways shortlisted from the 

gene expression analysis for its ability to modulate TFEB and xenophagy.  
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Chapter 1 

Introduction 

 

1.1 Overview 

 

Cells maintain homeostasis by a continuous process of synthesis and degradation of their 

constituent proteins and organelles. This facilitates the cell to remain as a dynamic entity 

responding rapidly to changing extracellular environment. The landmark discovery of 

lysosomes in 1955 by Prof. Christian de Duve led to the identification of pathways by which 

the cell degrades proteins and organelles (De Duve et al., 1955; De Duve and Wattiaux, 1966). 

The two major intracellular degradation systems include the Ubiquitin-Proteasome System 

(UPS) and macroautophagy.  

UPS is a two-step process for degrading short-lived and soluble proteins in eukaryotes. It 

involves tagging of a substrate protein with multiple ubiquitin molecules through covalent 

attachment and subsequent degradation of the tagged protein by 26S proteasome. It is a tunnel-

shaped protein complex made up of a 20S core particle and two 19S cap protein subunits. The 

process involves the action of three enzymes to conjugate ubiquitin to the lysine residues of 

the substrate- E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 

(ubiquitin ligase). The ubiquitinated proteins are recognized by 19S cap protein and the 

proteolysis occurs in 20S core subunit (Myung et al., 2001).  

Macroautophagy is an intracellular degradation process in which a part of the cytoplasm is 

sequestered in double-membrane vesicles called autophagosomes that eventually fuse with 
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lysosomes resulting in degradation of its contents (De Duve and Wattiaux, 1966). The process 

is constitutively active at basal levels whereas gets induced under conditions such as nutrient 

starvation, infection and hypoxia. The cargo for degradation could be cytoplasmic long-lived 

proteins, aggregated proteins, intracellular pathogens, damaged or superfluous organelles. It is 

an evolutionarily conserved process that is indispensable for maintaining cellular homeostasis 

(Meijer et al., 2007). The degraded products like amino acids and basic building blocks are 

recycled back to the cytoplasm and participate in cellular anabolic processes (Rabinowitz and 

White, 2010).     

1.2 Autophagy: a historical perspective 

 

The process of autophagy was first observed in electron micrographs (EM) of rat liver cells 

containing mitochondria encapsulated within ‘dense bodies’ containing lysosomal enzymes 

(Novikoff et al., 1956). Parallelly, other groups (Ashford and Porter, 1962; Clark, 1957; 

Novikoff and Essner, 1962) also observed cytoplasmic contents isolated in membranous 

compartments which were also positive for lysosomal enzymes. The process was termed as 

‘autophagy’ by Christian de Duve in 1963 meaning “self-eating” (auto- self; phagy- eating) at 

the Ciba Foundation Symposium on lysosomes. Following this, Arstila and BF Trump spotted 

double-membranous structures containing cytoplasmic contents without hydrolytic enzymes 

indicating the existence of autophagosomes before lysosomal fusion (Arstila and Trump, 

1968). Subsequent studies identified various signalling cues that induce the process. This 

includes induction by glucagon, nutrient starvation, and insulin levels emphasizing the strong 

relationship between autophagy and cellular metabolism (Deter et al., 1967; Mortimore et al., 

1983). Among the first mechanistic insights into the process were the discoveries of autophagy 

inhibitors such as 3-methyl-adenine and wortmannin by their inhibitory activity on 

phosphatidylinositol 3-kinase (Blommaart et al., 1997; Seglen and Gordon, 1982). Despite 
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multiple studies, the molecular players involved in autophagy was not known. In this regard, 

the breakthrough discovery was made in the early 1990s by Prof. Y. Ohsumi’s group where 

yeast was used as a model system to study autophagy (Takeshige et al., 1992). Using a yeast 

genetic screen, the group identified mutants that failed to accumulate autophagic bodies during 

starvation. Analyses of these mutants revealed 15 autophagy-related genes. Parallel studies by 

Klionsky’s group identified Cytoplasm-to-vacuole targeting (Cvt) pathway which shares 

molecular players with macroautophagy. Cvt pathway is now considered as selective 

autophagy of vacuolar enzymes, aminopeptidase and mannosidase (Harding et al., 1995). A 

unified nomenclature was framed for naming the autophagy-related genes as ATGs. 

Furthermore, other ATG genes, as well as ATG orthologues in higher eukaryotes, were 

reported subsequently showing that the process is evolutionarily conserved (Kabeya et al., 

2000; Meijer et al., 2007; Reggiori and Klionsky, 2002). Key discoveries in this regard that 

shifted the focus to mammalian autophagy include identification of Atg5-Atg12 conjugation 

system in mammals (Mizushima et al., 1998a; Mizushima et al., 1998b) and identification of 

homologue of yeast Atg8 referred to as microtubule-associated protein 1 light chain 3 

(MAP1LC3, hereafter LC3) (Kabeya et al., 2000). LC3 serves as the sole marker for the process 

involved from autophagosome biogenesis to degradation. Hence, various assays follow LC3 

for monitoring autophagic flux. Further studies showed that there are at least six Atg8 

homologues present in mammalian cells: three members of LC3 subfamily and three members 

of gamma-aminobutyric receptor-associated protein (GABARAP) subfamily (Kabeya et al., 

2004).  

These landmark discoveries have contributed immensely to delineating the process in terms of 

both molecular details as well as its crosstalk with cellular metabolism. The 2016 Nobel Prize 

in Physiology or Medicine was awarded to Prof. Yoshinori Ohsumi for the discoveries in 

mechanisms of autophagy.  
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1.3 Types of autophagy 

 

There are three types of mechanistically distinct autophagy seen in eukaryotic cells: 

microautophagy, macroautophagy and chaperone-mediated autophagy (CMA) (Figure 1.1).  

Microautophagy involves direct engulfment of cytoplasmic contents at the lysosomal surface 

by invagination, protrusion and septation. EM studies have revealed the extension of the 

lysosomal membrane to enwrap a “micro” portion of the cytoplasm (De Duve and Wattiaux, 

1966; Oku and Sakai, 2018). A similar observation was made in yeast Pichia pastoris to 

degrade peroxisomes in glucose-rich media. Finger-like projections from vacuoles are seen to 

capture clusters of peroxisomes (Tuttle and Dunn, 1995). Genetic screens have identified 

molecular players involved in the process such as Atg18 (Guan et al., 2001) and Vac8 (Wang 

et al., 1998) both of which are needed for vacuolar membrane protrusion and proteins such as 

Atg4, Atg8 and Atg24 are required for regulating the process (Ano et al., 2005; Tamura et al., 

2010).  

On the other hand, CMA is a selective form of autophagy for a pool of cytosolic proteins. This 

selectivity is achieved by the presence of CMA-specific amino acid motif, KFERQ in the 

substrates. The process begins by unfolding of the substrate proteins by a cytosolic chaperone, 

Hsc70 (heat shock cognate protein 70KDa) and its co-chaperones such as Bag1, Hip and Hop 

(Cuervo and Dice, 1996). Following this, substrates are targeted to lysosomal surface initiating 

LAMP2A (Lysosome-associated membrane protein 2A) multimerization and CMA 

translocation-complex formation. Eventually, the substrates are translocated across the 

lysosomal membrane for degradation (Tekirdag and Cuervo, 2018). Although autophagy is 

conserved across all eukaryotes, CMA is observed only in mammals as LAMP2A is considered 

as CMA receptor which is absent in yeast, worms, and flies.   
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Among the other types, the macroautophagy (herein autophagy) is the well-studied process. It 

is a bulk degradation of cytoplasmic contents captured in double-membrane autophagosomes 

fusing with lysosomal compartments.      

 

 

Figure 1.1. Types of autophagy pathways. (a) Macroautophagy captures cytoplasmic cargo in 

autophagosomes which eventually fuses with lysosomes to form autolysosomes and results in 

degradation of the substrates. (b) Microautophagy engulfs substrates at the vicinity of lysosomes. (c) 

Chaperone mediated autophagy selectively degrades protein substrates harbouring KFERQ motif. 

Major events include recognition of substrates by Hsc70 chaperone and translocating the substrates 

across the lysosomal membrane by LAMP2A. Reprinted with permission from Li et al., (Li et al., 2018). 
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1.4 Molecular mechanisms of autophagy 

 

Autophagy is a multistep process involving several proteins at different steps in a sequential 

manner (Reggiori and Klionsky, 2013). Autophagy begins with an isolation membrane at pre-

autophagosomal structure or phagophore assembly site (PAS) located closer to the vacuole in 

yeast (Tooze and Yoshimori, 2010). Following this, the phagophore expands to capture the 

cargo in a double-membrane vesicle called autophagosome. The autophagosomes then mature 

to fuse with lysosomes forming autolysosomes, where the autophagosomal contents are 

degraded. The degraded products are then exported back to the cytoplasm through lysosomal 

membrane permeases and transporters. These by-products are re-used by the cell as building 

blocks for anabolic processes.      

At the molecular level, the process is orchestrated by a cascade of multiple proteins (Itakura 

and Mizushima, 2010). The process can be explained in different stages as follows (Figure 

1.2). 

a. Induction of autophagy 

Nutrient starvation was the earliest identified stimuli for autophagy induction. The cellular 

pathway involved in nutrient sensing; Target of Rapamycin (TOR) complex, especially TOR 

complex C1 (TORC1) plays a major role in the regulation of the process. TORC1 intricately 

regulates Atg13 phosphorylation status to mediate its interaction with Atg1. In nutrient-rich 

conditions, the kinase activity of TOR causes Atg13 hyperphosphorylation preventing its 

complex formation with Atg1. When TOR kinase activity is inhibited by starvation or by 

pharmacological inhibitor such as rapamycin, Atg13 associates with Atg1 forming complex 

with Atg17, Atg31 and Atg29 (Noda and Ohsumi, 1998). The mammalian Atg1 homologues, 

Unc-51-like kinases 1 and 2 (ULK1/2) binds putative Atg17 homologue, focal adhesion kinase 

family interacting protein of 200 kDa (FIP200) during autophagy conditions. Additionally, 
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FIP200 deficient cells show impaired autophagosome formation (Hara et al., 2008). Further 

studies indicated that FIP200, apart from participating in autophagosome biogenesis, also 

interacts with Atg16L1 during the expansion of the autophagosomes (Nishimura et al., 2013). 

The mammalian ULK1/2 complex (ULK1/2-Atg13-FIP200-Atg101) phosphorylates and 

Beclin1 (yeast Atg6 homologue) and Ambra1 (activating molecule in Beclin 1-regulated 

autophagy) for downstream autophagy activation (Di Bartolomeo et al., 2010; Fimia et al., 

2007; Russell et al., 2013). Subsequent studies identified energy-sensing AMPK pathway, 

ERK (extracellular signal-regulated kinase) and Akt signalling pathways to also play a critical 

role in regulating the process (Arico et al., 2001; Budovskaya et al., 2004; Kim et al., 2011; 

Liang et al., 2007; Russell et al., 2014).    

b. Phagophore formation and nucleation 

Phagophore formation occurs in yeast near the vacuole at the position referred to as pre-

autophagosomal structure (PAS). However, there is no defined location for phagophore 

formation in mammalian cells. Studies suggest that it occurs at multiple cytosolic membranous 

structures such as ER, trans-Golgi network and late endosomes (Axe et al., 2008). Additionally, 

the membrane source for phagophore formation is not well understood. It is hypothesized that 

there is de novo synthesis of membranes needed for the process using cytosolic lipids. Atg17 

is the first protein to get recruited to PAS followed by Atg31 and Atg29, forming a ternary 

complex (Ragusa et al., 2012). Additionally, Atg17 interacts with the kinase activity of Atg1 

complex consisting of Atg13 (Reggiori and Ungermann, 2012). Atg1 complex, in turn, 

interacts with Atg9. Atg9 is the only transmembrane protein involved in autophagy, which is 

shown to shuttle between membrane sources and expanding phagophore to deliver membrane 

(Mari et al., 2010; Reggiori et al., 2005; Suzuki and Ohsumi, 2007). Atg23 and Atg27 are 

involved in the anterograde transport of Atg9 vesicles to PAS, whereas, Atg1, Atg2 and Atg18 

are essential for the retrograde transport (Gomez-Sanchez et al., 2018; Mari et al., 2010; Nagy 
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et al., 2014; Reggiori et al., 2004). Elegant study by Yamamato et al showed that approximately 

three Atg9 vesicles (each containing 27 molecules of Atg9) are involved in each round of 

autophagosome formation (Yamamoto et al., 2012). Mammalian Atg9 homologue, Atg9A 

localizes to trans-Golgi network and late endosomes during nutrient-rich conditions and during 

autophagy conditions is trafficked from plasma membrane via clathrin-coated endosomes to 

recycling endosomes to autophagosome formation site (Puri et al., 2013).     

Phagophore formation also requires the participation of class III phosphatidylinositol (PI)-3 

kinase complexes especially complex-I which consists of Vps34 along with its binding 

partners, Atg14, Vps15 and Atg6 (Simonsen and Tooze, 2009). Atg14 directs the recruitment 

of complex-I to PAS. Vps34 utilizes PI as the substrate for generating phosphatidylinositol 

triphosphate (PI3P) which serves as a platform for binding FYVE domain-containing proteins 

like Atg18-Atg2 complex to PAS (Obara and Ohsumi, 2008, 2011; Obara et al., 2008; Suzuki 

et al., 2007). Other effector proteins that PI3P recruits in mammalian cells include WD-repeat-

interacting phosphoinositide (WIPI) and double FYVE domain-containing protein 1 (DFCP1), 

both of which are needed for autophagosome biogenesis (Burman and Ktistakis, 2010). 

Phosphorylation of Beclin1 by ULK1/2 complex activates Vps34 kinase complex that binds 

either with regulatory proteins such as Atg14L, UVRAG (UV Radiation Resistance 

Associated), BIF1 (Bax-interacting factor 1), Ambra1, to promote autophagy or with Rubicon 

(RUN domain protein as Beclin-1 interacting and cysteine-rich containing) and Bcl-2, to inhibit 

autophagy in a context-dependent manner (Russell et al., 2013).  

c. Expansion of the phagophore and cargo capture 

There are two ubiquitin-like conjugation systems involved in the autophagy process: Atg7-

Atg3-Atg10 and Atg5-Atg12-Atg16 (Kuma et al., 2002; Ohsumi and Mizushima, 2004). Atg7 

acts like E1 ubiquitin-activating enzyme activating Atg12 in an ATP-dependent manner 
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(Tanida et al., 1999). Activated Atg12 is then acted upon by Atg10 (E2-like ubiquitin carrier 

protein) that potentiates covalent linkage formation with Atg5 (Mizushima et al., 2003). 

Further, the Atg5-Atg12 complex then conjugates with Atg16L1 to induce curvature into the 

growing phagophore (Mizushima et al., 1999; Mizushima et al., 1998a).  

The second ubiquitin-like system is involved in the processing of Atg8. Full-length Atg8 upon 

activation is cleaved at its carboxyterminal exposing a glycine terminal by a cysteine protease, 

Atg4. This processed Atg8 is activated by Atg7 to form Atg8-I which is then transferred to E2-

ubiquitin carrier protein, Atg3. Atg8 is then covalently attached to phosphatidylethanolamine 

(PE) by the action of ATG12-ATG5–ATG16L1 complex forming Atg8-II, making it 

compatible for membrane association (Ichimura et al., 2000; Nair et al., 2012). Atg8-II is found 

on both internal and external surfaces of the autophagosomes where it is known to mediate 

selection of cargo and hemifusion of the autophagosomal membranes. To support this 

phagophore expansion, several cellular compartments such as plasma membrane, ER, Golgi 

and mitochondria are proposed as membrane source (Axe et al., 2008; Hayashi-Nishino et al., 

2009; Ravikumar et al., 2010; Wei et al., 2018). Recent reports also highlight the dynamic 

membrane interactions such as ER-mitochondria and ER-plasma membrane contact sites 

crucial for autophagosome biogenesis (Chan and Tang, 2013; Morel, 2020; Rowland and 

Voeltz, 2012).   

d. Fusion with lysosomes 

After completion of autophagosome formation, it is transported towards lysosomes for fusion. 

This vesicular movement takes place on microtubules in a plus-end directed manner potentiated 

by adaptor proteins such as Rab7 and FYCO1 (FYVE and coiled-coil (CC) domain-containing 

protein). Studies suggest that autophagosomes prior to fusion with lysosomes, fuse with early 

and late endocytic compartments which deliver membrane fusion machinery to 
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autophagosomes (Eskelinen, 2005). Autophagosomes are also shown to fuse with multi-

vesicular structures forming amphisomes which finally fuse with lysosomes forming 

autolysosomes. Additionally, autophagosomes ideally have the same pH as that of cytosol and 

during the maturation process become acidic. Molecular genetic screens have identified 

proteins such as SNAREs (soluble N-ethylmaleimide-sensitive fusion (NSF) attachment 

protein receptors) (Vam3, Vam7, Vti1, Ykt6), Rab7 and members of HOPs (homotypic fusion 

and protein sorting) complex (Vps16, Vps18, Vps33, Vps39) to be involved in fusion 

machinery (Jani et al., 2016; Nair et al., 2011).  After fusion with lysosomes, Atg8 present on 

the outer membrane of autophagosomes is recycled back into the cytoplasm. This recycling 

again requires the activity of Atg4 for removal of PE from Atg8 (Abreu et al., 2017; Nair et al., 

2012).  Continuous progression of autophagy also requires the activity of a PI3P-phosphatase, 

Ymr1, in the absence of which, the recycling of Atg proteins is perturbed (Cebollero et al., 

2012b).  

Recent studies have concentrated on understanding the biochemical properties of autophagy 

proteins by in vitro reconstitution of autophagosomes using yeast machinery proteins. 

Recombinant proteins along with membrane platforms are purified and studied to recapitulate 

the de novo formation of autophagosomes. Initial insights regarding membrane binding ability 

of Atg1 as well as Atg17 complex architecture was identified by in vitro reconstitution of 

protein complex comprising of Atg17, Atg31, Atg29, Atg1 and Atg13 (Ragusa et al., 2012).  

Further, a study by Rao et al identified that Atg17 physically interacts with Atg9 in vitro by 

employing artificial Atg9 vesicles and purified Atg1 complex proteins such as Atg1, Atg17 

and Atg13 (Rao et al., 2016).  Other key observations made using in vitro reconstitution studies 

include identification of Atg3 as membrane curvature sensor (Nath et al., 2014) as well as 

composition and activity of conjugation systems that are required for Atg8 lipidation (Hanada 

et al., 2007; Ichimura et al., 2004; Kaufmann et al., 2014). A recent study by Makarska et al 
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have carried out a near-complete in vitro reconstitution of autophagosome biogenesis. The 

study utilized Atg9 proteoliposomes and highlighted that Atg9 vesicles serve as a platform for 

recruiting autophagy machinery proteins (Sawa-Makarska et al., 2020). 

 

Figure 1.2. The process of autophagy and the molecular players participating at different stages. 

Image used with permission from Lippai and Szatmari (Lippai and Szatmari, 2017).  

1.5 Transcriptional regulation of autophagy 

 

Autophagy is constitutively active in basal levels in most cells of the body to maintain the 

homeostasis of the cell (Mizushima and Komatsu, 2011). However, the process can be 

upregulated transcriptionally by a variety of cellular stimuli including starvation, misfolded 

protein aggregation and intracellular pathogen invasion (Fullgrabe et al., 2014). Transcription 
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factors switch between “on” and “off” states in response to physiological signals to regulate 

the temporal expression of its downstream targets. Further, some transcription factors are 

employed to either exclusively upregulate or downregulate the autophagy process. 

Additionally, few known transcription factors can function as both activator and inhibitor of 

the process depending on the external cues or stimuli (Figure 1.3 and Table 1.1).  

a. Master regulators: TFEB and ZKSCAN3 

Transcription factor EB (TFEB) belongs to microphthalmia/transcription factor E (MiTF) 

family of transcription factors that are characterized by the presence of a basic Helix-Loop-

Helix, a basic domain and a leucine zipper domain. The other members of the family include 

TFE3, TFEC and MiTF. Members of MiTF family bind to a 10 base-pair GTCACGTGAC 

consensus sequence. This consensus sequence was identified by the in silico study of Ballabio’s 

group in the promoter of lysosomal genes (Sardiello et al., 2009). Overexpression of TFEB in 

multiple cell lines induced co-ordinated induction of a large set of genes involved in lysosome 

biogenesis. The promoter sequence was hence referred to as Coordinated Lysosomal 

Expression And Regulation (CLEAR) motif (Settembre et al., 2011). Subsequent studies by 

the same group identified that TFEB in addition to lysosomal genes also induces the expression 

of autophagy genes (Palmieri et al., 2011; Martina et al., 2012; Puertollano et al., 2018).  

A Zinc finger family DNA binding protein, ZKSCAN3 (zinc finger transcription factors 

harbouring Kruppel-associated box (KRAB) and SCAN domain) was identified by Chauhan et 

al as a repressor of lysosomal and autophagy genes (Chauhan et al., 2013). Interestingly, 

ZKSCAN3 functions in an opposing manner to TFEB and is kept inactivated during starvation. 

Transcription factors with the KRAB domain are typically known for repressing gene 

expression (Urrutia, 2003). ZKSCAN3 is predominantly localized in the nucleus and binds the 

KRDGGG consensus sequence on DNA. A large set of more than 60 genes related to lysosomal 

biogenesis and autophagy are reported to be repressed by ZKSCAN3. Additionally, silencing 
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of ZKSCAN3 activates TFEB suggesting that these two transcription factors function as master 

regulators of lysosomal biogenesis and autophagy genes. 

b. FOXO  

The forkhead family of transcription factors consist of four members in mammals, namely, 

FOXO1, FOXO3, FOXO4 and FOXO6. Activation of FOXO members is mediated in response 

to growth factors and insulin. Recent studies have identified FOXO3 to transcriptionally induce 

autophagy genes (Zhou et al., 2012). Similar to MiTF, FOXO3 also exhibits nucleo-

cytoplasmic shuttling. In the presence of growth factors, Akt phosphorylates FOXO3 which 

leads to its cytoplasmic retention. Subsequent studies have shown that FOXO family proteins 

regulate autophagy in a transcription-independent manner. Acetylation of FOXO1 in the 

cytoplasm enhances its binding to Atg7 and favours autophagy initiation (Banreti et al., 2013).  

c.  E2F1 and NFkB crosstalk 

E2 transcription factor (E2F) is well-studied for its role in regulating cell cycle mediated by its 

inhibitory interaction with retinoblastoma tumour suppressor protein. E2F family member, 

E2F1 regulates several genes involved in autophagy (Polager et al., 2008). Among the target 

genes, E2F1 regulates BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3) to 

positively regulate autophagy. This regulation is mediated by disrupting the Bcl2-Beclin1 

interaction thereby releasing Beclin1 making it available to induce autophagy. Additionally, 

Nuclear factor kappa-light-chain-enhancer of activated B-cells (NFkB) competes with E2F1 

for repressing BNIP3 expression to mediate a tight regulation of the process (Trocoli and 

Djavaheri-Mergny, 2011).        

A growing number of studies highlight the complex transcriptional gene network involved in 

regulating autophagy. Other key transcriptional factors involved in the autophagy process are 

summarized in the table below.  
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Table 1.1: Transcriptional regulation of autophagy 

Name Target genes Activation Autophagy 

effect 

Reference 

ATF4 ATG5, ULK1 ER stress, hypoxia Induced (Pike et al., 2013) 

ATF5 mTOR Oncogenic stress Suppressed (Sheng et al., 2011) 

-catenin SQSTM1 Development, 

nutrient stress 

Suppressed (Petherick et al., 

2013) 

C/EBP BNIP3, LC3, 

ULK1 

Circadian and 

nutritional 

signalling 

Induced (Ma et al., 2011) 

CHOP ATG5, LC3B ER stress, viral 

infection 

Induced (Rouschop et al., 

2010) 

CHF1 ATG4, ATG9, 

ATG5, BNIP3, 

LC3 

Serum stimulation Induced (Yu et al., 2010) 

E2F1 ULK1, BNIP3, 

LC3A, ATG5 

Hypoxia Induced  (Polager et al., 2008) 

FOXO3 ATG5, ATG12, 

ATG14, BECN1, 

BNIP3, LC3, 

VPS34, ULK1/2 

Starvation and 

oxidation stress 

Induced (Sanchez et al., 

2012; Zhao et al., 

2007) 

GATA1 LC3 Cytokine signalling Induced (Kang et al., 2012) 

HIF1 BNIP3 Hypoxia Induced (Zhang et al., 2008) 

Jun BECN1, 

MAP1LC3B 

Pro-inflammatory 

cytokines, 

environmental 

stress 

Induced (Raingeaud et al., 

1995) 

NF-kB BCL2, BECN1, 

BNIP3, SQSTM1 

Cytokines, 

hypoxia, ER stress 

Both (Copetti et al., 2009) 

p53 ATG2, ATG4, 

ATG7, ATG10, 

ULK1 

DNA damage, 

activated 

oncogenes,  

Induced (Crighton et al., 

2006; Kenzelmann 

Broz et al., 2013; 

Stambolic et al., 

2001) 

p63 ATG3, ATG4, 

ATG5, ATG7, 

ATG9, ATG10, 

BECN1, LC3, 

ULK1 

DNA damage Induced (Huang et al., 2012) 

p73 ATG5, ATG7, 

UVRAG 

DNA damage Induced (Rosenbluth and 

Pietenpol, 2009) 

SMAD ATG5, ATG7, 

BECN1 

Cytokines Induced (Pan et al., 2015) 

PML-RAR BECN1, 

SQSTM1 

Constitutively 

active 

Both (Isakson et al., 2010) 

SOX2 ATG10 Cancer Induced (Cho et al., 2013) 

SREBP2 LC3, ATG4B, 

ATG4D 

Lipid metabolism Induced (Seo et al., 2011) 
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Name Target genes Activation Autophagy 

effect 

Reference 

STAT1 ATG12, BECN1 Myocardial 

infarction 

Suppressed (McCormick et al., 

2012) 

STAT3 BCL2, BNIP3, 

ATG3, BECN1, 

CTSB, HIF1A 

Cytokines and 

growth factor 

Suppressed (Dauer et al., 2005) 

TFE3 ATG16L1, 

ATG9B, 

GABARAP-L1, 

WIPI, UVRAG 

Starvation Induced (Martina et al., 2014) 

TFEB ATG4, ATG9, 

BCL2, SQSTM1, 

ATG5, UVRAG, 

WIPI, BECN1, 

LC3, 

GABARAP, 

Starvation, Protein 

aggregation, 

infection 

Induced (Palmieri et al., 

2011; Settembre et 

al., 2011) 

CREB ATG7, ULK1, 

TFEB 

Starvation Induced  (Seok et al., 2014) 

Ume6 ATG8 Starvation Suppressed (Bartholomew et al., 

2012) 

ZKSCAN3 LC3, ULK1, 

WIPI 

Starvation Suppressed  (Chauhan et al., 

2013) 
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Figure 1.3. Transcriptional regulation of autophagy process. In response to induction stimuli, 

transcription factors are activated to regulate the expression of target genes. Colour coding indicates 

their effect on autophagy; labelled in green represents autophagy inducers, red represents autophagy 

inhibitors and yellow represents factors that function in both induction and inhibition of autophagy. 

Image used with permission from Chandra et al., (Chandra et al., 2016).  

1.6 Selective autophagy 

 

Autophagy, initially perceived as a process for bulk degradation of cytoplasmic contents was 

subsequently understood to also selectively degrade cargoes such as superfluous or damaged 

organelles, aggregated proteins, and invading pathogens to maintain cellular homeostasis 

(Rogov et al., 2014). Mechanistically, both bulk (non-selective) and selective autophagy 

utilizes the same core proteins required for autophagosome formation, maturation and fusion 

with lysosomes. Additionally, in selective autophagy, there is involvement of a subset of 

proteins referred to as receptor/adaptor proteins which bridge the cargo to autophagosomes 

(Rogov et al., 2014). The mechanism of cargo recognition can be majorly of two kinds- 

ubiquitin-dependent and ubiquitin independent. In the ubiquitin-dependent mechanism, the 

cargoes are tagged with ubiquitin (Korolchuk et al., 2010). Further systemic studies identified 

that K63-linked ubiquitin chains give specificity to autophagy-mediated capture as opposed to 

K48-linked ubiquitin chains that are targeted to proteasomal mediated degradation. 

Ubiquitinated cargoes are then recognized by autophagy specific adaptor proteins. These 

adaptor proteins serve as a bridge to link the ubiquitinated cargoes to growing autophagosomes 

by interacting with Atg8 homologue proteins. As mentioned earlier, there are six Atg8 

homologues present in mammalian cells, LC3A, LC3B, LC3C, GABARAP, GABARAPL1, 

GABARAPL2/GATE16. Adaptor proteins are characterized by the presence of conserved LC3 

Interacting Region (LIR) and ubiquitin-binding domain. Analysis of multiple LIRs revealed 

the core consensus sequence [W/F/Y] XX [L/I/V], where X is any amino acid (Birgisdottir et 

al., 2013). There are also certain autophagy proteins (Atg1/ULK1, Atg3) that are not 
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conventional adaptors but contain LIR for interaction with Atg8 family proteins. Further, by 

analysing the multiple LIRs, their preference in selective binding to LC3s and GABARAPs 

was determined defining the GABARAP Interaction Motif (GIM) sequence- (W/F)-(V/I)-X2-

V (Wirth et al., 2019). For example, PLEKHM1-GIM binds GABARAP with multifold higher 

affinity than LC3 (Rogov et al., 2017). In addition to ubiquitin-mediated selective autophagy, 

there are also adaptor proteins present on the organelles that can recruit LC3 for 

autophagosome formation independently of ubiquitin (Khaminets et al., 2016). Similar to 

adaptor proteins that bind Atg8 family proteins, there are also Atg5-binding adaptor proteins 

such as TECPR1, ALFY and Atg16L1 for cargo selection (Chen et al., 2012; Filimonenko et 

al., 2010). However, the recruitment of these ATG5-binding proteins to cargo remains unclear. 

Studies indicate that cargo localized ATG5 and its binding partners, ATG12-ATG16L1 further 

recruit ULK1 complex initiating autophagosome formation. Depending on the cargoes that are 

recognized (Table 1.2), the selective autophagy can further be classified as aggrephagy 

(autophagy of aggregated proteins), mitophagy (autophagy of mitochondria), ribophagy 

(autophagy of ribosomes), xenophagy (autophagy of intracellular pathogens), lipophagy 

(autophagy of lipids).  
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Table 1.2: Types of selective autophagy and their adaptor proteins 

Selective 

Autophagy 

Cargo Adaptor proteins Reference 

Cytoplasm to 

vacuole targeting 

(cvt) 

Precursor 

aminopeptidase and 

-mannosidase 

Atg19p, Atg34p (Scott et al., 2001) 

(Hutchins and 

Klionsky, 2001) 

Mitophagy Damaged/superfluous 

mitochondria 

Atg32, Atg33, Nix, 

Bnip3 

(Lazarou et al., 

2015) 

Xenophagy Intracellular 

pathogens 

p62, NDP52, OPTN, 

TAX1BP1 

(Deosaran et al., 

2013; Thurston et 

al., 2009; Zheng et 

al., 2009) 

Nucleophagy Nuclear envelope NVJI, Atg39 (Mochida et al., 

2015) 

Aggrephagy Aggregated proteins p62, OPTN, NBR1, 

Cue5, TOLLIP 

(Korac et al., 

2013; Pankiv et 

al., 2007) 

Ribophagy Ribosomes Ubp3, Bre5 (Cebollero et al., 

2012a) 

Lysophagy Damaged lysosomes Galectin3, NDP52 (Hasegawa et al., 

2015) 

Reticulophagy Endoplasmic 

reticulum 

FAM134B, Atg40 (Cebollero et al., 

2012a; Khaminets 

et al., 2015) 

Pexophagy Superfluous 

Peroxisomes 

Atg30, Atg36 (Deosaran et al., 

2013; Farre et al., 

2008; Manjithaya 

et al., 2010) 

Lipophagy Lipid droplets P62 (Singh et al., 

2009) 

Ferritinophagy Ferritin nuclear receptor 

coactivator 4 NCOA4 

(Mancias et al., 

2014) 

Zymophagy Zymogen p62 (Grasso et al., 

2011) 

Clockophagy Circadian clock 

proteins 

p62 (Liu et al., 2019; 

Yang et al., 2019) 

Mid body disposal Mid body during 

cytokinesis 

p62, NBR1 (Pohl and Jentsch, 

2009) 
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1.7 Xenophagy 

 

Xenophagy refers to autophagic capture of non-host entities (“xeno” – foreign “phagy”- eating) 

such as intracellular pathogens. In xenophagy, diverse intracellular pathogens including 

bacteria, viruses and protozoans (Ling et al., 2006) are captured by double membranous 

autophagosomes for degradation in autolysosomes. Mounting evidence suggests that 

xenophagy functions as an innate immune mechanism of the host (Deretic and Levine, 2009).  

Although autophagy was identified in 1963, the first evidence of xenophagy came from the 

study by Rikihisa in 1984, where polymorphonuclear leukocytes (PMNs) incubated with 

pleomorphic bacteria, Rickettsiae showed accumulation of double-membranous 

autophagosome like structures containing bacteria. These structures were also positive for the 

lysosomal enzyme, acid phosphatase showing that it is a degradative compartment for the 

entrapped bacteria (Rikihisa, 1984). Subsequent studies showed that xenophagy is active 

against diverse intracellular infections such as bacteria, virus, fungi, and protozoa (Ahmad et 

al., 2018; Mauthe et al., 2016; Mori et al., 2018; Sancho-Shimizu and Mostowy, 2018) (Figure 

1.4). The earliest genetic evidence that xenophagy restricts microbial replication was observed 

during Sindbis virus infection. The study by Liang et al showed that overexpression of Beclin1 

protected mice against Sindbis virus encephalitis and reduced neuronal death (Liang et al., 

1998). Further, protozoans such as Toxoplasma gondii replicates in parasitophorous vacuoles 

preventing its fusion with lysosomes. However, autophagy induction is shown to overcome the 

fusion block and enhances its fusion with lysosomes (Andrade et al., 2006; Ling et al., 2006). 

Furthermore, the role of xenophagy during other protozoan infections such as Plasmodium spp 

and Leishmania spp are also reported (Agop-Nersesian et al., 2017; Besteiro et al., 2006). The 

interaction of various pathogens with xenophagy process is summarized in the table below 

(Table 1.4). Additionally, xenophagy is now studied in multiple host systems such as 
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Dictyostelium discoideum (Otto et al., 2004), Caenorhabditis elegans, Drosophila (Kuo et al., 

2018), plants (Kershaw and Talbot, 2009) and mammalian cells. 

 

Figure 1.4. The process of xenophagy during virus, bacteria, and parasite infections. Image used 

with permission from Levine et al., (Levine et al., 2011)  

 

Table 1.4: Role of xenophagy during intracellular infections. Table adapted from 

Ammanathan et al., (Ammanathan et al., 2020). 
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1.7.1 Non-canonical xenophagy: LC3 associated phagocytosis (LAP) 

 

LAP is a form of non-canonical xenophagy that shares most of the canonical xenophagy 

machinery proteins along with few distinct molecular players. The key feature that 

differentiates both the processes is single-membraned LAPosome mediated capture of 

intracellular pathogens. Similar to canonical xenophagy, class-III PI3K mediated PI3P 

generated on LAPosome recruit LC3. Eventually, the LC3 bound LAPosomes fuse with 

lysosomes for degradation of the captured pathogens. Studies identified Rubicon, as a protein 

needed exclusively for LAP but not canonical xenophagy (Martinez et al., 2015). Rubicon acts 

as a negative regulator of autophagy by binding to Vps34 or Rab7 (Matsunaga et al., 2009; 

Nakamura et al., 2019; Zhong et al., 2009). Clearance of L. monocytogenes, Saccharomyces 

cerevisiae is impaired in LAP-deficient macrophages highlighting the importance of LAP 

(Sanjuan et al., 2009; Yang et al., 2012a). Additionally, during viral infection, Rubicon also 

binds IRF3 and IRF7 to negatively regulate interferon signalling and facilitate viral replication 

(Kim et al., 2017; Wan et al., 2017). In vivo studies suggest that Rubicon deficiency leads to 

increased levels of pro-inflammatory cytokines such as IL-1β, IL-6 and IL-12 in response to 

infection (Yang et al., 2012a; Yang et al., 2012b). These studies suggest LAP as a critical 

process regulating immunotolerance.  

1.7.2 Xenophagy during bacterial infectious diseases 

 

Bacteria enter host cells predominantly by a process referred to as phagocytosis (in case of 

phagocytic cells) or endocytosis (in case of non-phagocytic cells). Conventionally, 

phagosomes fuse with lysosomes for degradation of the contents. However, pathogens, in order 

to establish intracellular infection, have evolved mechanisms to overcome phagocytosis -

mediated degradation in lysosomes. This phagocytic evasion is achieved by using multiple 
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strategies by different pathogens (Desai and Kenney, 2019; Ottemann and Kenney, 2019). One 

of the common modes of evasion is by preventing the fusion of phagosomes with lysosomes. 

Pathogens impose “phagosome arrest” by modifying the phagosomes into its replicating niche. 

The modified phagosomes are not recognized by host cells as conventional vesicles for fusion 

with lysosomes. This is seen in the case of pathogens such as Mycobacterium tuberculosis, 

Salmonella typhimurium among others (Gutierrez et al., 2004). Alternatively, pathogens such 

as Group A Streptococcus, Listeria monocytogenes, Shigella flexneri secrete lysins to damage 

phagosomes and enter cytosol for their replication (Ogawa and Sasakawa, 2006; Tan et al., 

2018). Similarly, S. typhimurium secretes various effectors for facilitating invasion and 

intracellular survival. The well-studied effectors that are involved in xenophagy evasion 

include SseL, SifA SsaV, SsrB (Mesquita et al., 2012, Ganesan et al., 2017, McGourty et al., 

2012). Recent proteomic studies revealed profiling of Salmonella secretome highlighting 

several novel effectors affecting S. typhimurium pathogenesis (Cheng S et al., 2017).     

The process of xenophagy is shown to target the pathogens replicating in the cytosol as well as 

in arrested or damaged phagosomes (Knodler and Celli, 2011; Yuk et al., 2012). The 

pathogenic cargo is ubiquitinated for subsequent recognition by xenophagy adaptor proteins 

such as p62, NBR1, OPTN, TAX1BP1. However, there are also ubiquitin-independent 

mechanisms involved as seen in case of damaged phagosomes. Membrane damage exposes 

glycans present on the inner surface of phagosomes to the cytosol. Glycans act as damage-

associated molecular patterns (DAMPs) that are recognized by galectins. Galectins are beta-

galactoside-binding proteins that are known to recruit xenophagy adaptor proteins (NDP52) 

and eventually lead to LC3-mediated xenophagosome capture (Thurston et al., 2012; Yuk et 

al., 2012). The process of xenophagy is now proven by many groups as a defence mechanism 

against a huge number of intracellular pathogens in both phagocyte and non-phagocyte cells. 

For example, in bacterial pathogens such as Group A Streptococcus, there is increased 
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intracellular replication in host cells that are devoid of functional xenophagy suggesting its 

importance in eliminating pathogens (Nakagawa et al., 2004). Another well-studied pathogen 

for its interaction with xenophagy is M. tuberculosis. Induction of autophagy by nutritional 

stress, rapamycin, or vitamin D3 increases the fusion of Mycobacterium replicating in arrested 

phagosomes with autophagosomes for degradation (Gutierrez et al., 2004; Yuk et al., 2009).  

Given the importance of xenophagy, pathogens have evolved mechanisms to overcome 

autophagy-mediated capture. There is a continuous battle between the host and pathogen during 

infection. One of the well-studied examples is seen in the case of S. flexneri, which post 

invasion ruptures phagosomes to prevent its fusion with lysosomes. Additionally, to prevent 

xenophagy-mediated capture, S. flexneri secretes IcsB that directly binds to Atg5 preventing 

xenophagosome formation (Krokowski and Mostowy, 2016). Furthermore, the anti-viral role 

of xenophagy captures viral components for degradation to lysosomes. Studies on viruses such 

as Sindbis virus and HIV highlight the protective role of xenophagy. However, many viruses 

are known to manipulate autophagy for their advantage enabling viral replication. For example, 

Kaposi’s sarcoma herpes virus and Herpes simplex virus-1 target Beclin-1 to inhibit 

autophagosome formation (Jordan and Randall, 2012).    

1.7.3 Xenophagy in immunity and inflammation 

 

The functional role of xenophagy is multifaceted, ranging from cell-autonomous defences to 

organismal immune system encompassing innate and adaptive immune responses (Deretic and 

Levine, 2009) (Figure 1.5).  

1.7.3.1 Xenophagy in innate immunity 

 

Extensive research in the past few decades have shown capturing of intracellular pathogens by 

xenophagy for degradation. Further studies on the mechanism of xenophagy identified 



Chapter 1: Introduction 

30 
 

immune-related signalling molecules to regulate the process. For example, host cells express 

pattern recognition receptors (PRRs) such as Toll-like Receptors (TLRs) and nucleotide-

binding oligomerization domains (NOD)-like receptors (NLRs). These receptors recognize 

pathogen patterns such as lipopolysaccharides or peptidoglycans to activate signalling cascades 

that induce xenophagy among other antimicrobial responses. For instance, the study by Xu et 

al showed that xenophagy is induced post TLR4 activation during Mycobacterial infection, 

specifically, TRIF-dependent TLR4 signalling (Xu et al., 2007). Similar to TLRs, the role of 

NLRs to induce xenophagy is also known. Nod1 and Nod2 detect peptidoglycan of bacteria 

and recruits Atg16L1 to the site of bacterial entry and enhance subsequent capture by 

xenophagosomes (Travassos et al., 2010). These signalling pathways induce initiation of 

xenophagosome formation and recruitment of machinery proteins to capture intracellular 

bacteria. Adaptor proteins such as p62, NDP52, TAX1BP1, OPTN recognize ubiquitinated 

bacteria for subsequent recruitment of LC3 (Mostowy et al., 2011; Zheng et al., 2009).  

Xenophagy can also be activated by reactive oxygen species (ROS) commonly produced 

following TLR and Fc receptor stimulation (Shi and Kehrl, 2008). Another known immune 

mediator IL-β, a proinflammatory cytokine produced in response to PAMPs and DAMPs 

activate downstream xenophagy pathway. Apart from the intracellular role of degrading 

pathogens, xenophagy also dampens proinflammatory responses such as type I IFN, IL-1β, IL-

18 (Deretic and Levine, 2018; Levine et al., 2011).   

1.7.3.2 Xenophagy in adaptive immunity   

 

In addition to innate immune signalling, the role of xenophagy in inducing adaptive immune 

signalling is also extensively studied. As xenophagy leads to degradation of pathogens in 

lysosomes, it enhances antigen presentation by major histocompatibility complex class-II 

(MHC-II) (Gannage and Munz, 2009). This autophagy mediated antigen presentation plays a 
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role in thymic selection of T cell repertoire (Nedjic et al., 2008). Other functions of xenophagy 

in adaptive immunity mediate the “fine-tuning” of immune responses. For example, the 

production of Th1 cytokines (TNF and IFN) during infection induce xenophagy while Th2 

cytokines (IL-4, IL-3) inhibit the process (Harris et al., 2007). On a broader level, autophagy 

plays a crucial role in maintaining homeostasis of immune-related cell types such as T-cells, 

B-cells and intestinal granulocytes known as Paneth cells. For instance, autophagy is reported 

essential for the removal of mitochondria during T-cell maturation (Pua et al., 2009) and 

autophagy inhibition shows a significant defect in B-cell development with increased cell death 

(Miller et al., 2008).    
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Figure 1.5. The known functions of autophagy in immunity and inflammation during infection. 

Clockwise from right i) Xenophagy – Intracellular pathogens are captured by double-membraned 

xenophagosomes for fusion with lysosomes. ii) Autophagy degrades ASC and IL-1β to regulate 

inflammation in response to infection. iii) Xenophagy mediated degradation of pathogens in lysosomes 

increases the antigen presentation mediated by MHC-II receptor. iv) Autophagy plays a crucial role in 

T-cell and B-cell development and maturation. Image used with permission from Jang et al., (Jang et 

al., 2019).  

1.7.3.3 Xenophagy in inflammation 

 

Inflammation is an immune response that acts as a double-edged sword, by controlling 

infection but when over exuberantly activated, leads to tissue damage.  Recent studies probe 

the role of xenophagy in inflammatory diseases including infectious diseases and Crohn’s 

disease among others. Xenophagy benefits in controlling inflammation by degrading 

inflammation-promoting microbes such as Helicobacter pylori, Listeria spp. and Shigella spp 

(Watson et al., 2019). Additionally, the role of autophagy in regulating inflammation is 

especially evident in relation to Atg16. Mice deficient in Atg16L1 produced significantly high 

levels of IL-1β and IL-18 both being potent inflammatory cytokines in response to TLR 

activation. Subsequent studies highlighted a key role of autophagy in degrading 

inflammasome, a multiprotein complex involved in the production of pro-inflammatory 

cytokines such as IL-1β and IL-18. This protein complex is assembled in the cytosol in 

response to sensing DAMPs and PAMPs to induce proinflammatory immune responses. The 

canonical inflammasome consists of inactive pro-caspase-1. Oligomerization leads to 

autoproteolysis forming active caspase-1 in turn processing pro-IL-1β and IL-18 generating 

biologically active cytokines. Other components of inflammasome include NLR family 

members (NLPR3 or NLPR4), apoptosis-associated speck-like protein containing a CARD 

(ASC) and AIM-like receptors (ALRs) (Saitoh and Akira, 2016). Studies have shown that ASC 

gets selectively degraded by autophagy post ubiquitination and p62 binding leading to 

suppression of inflammasome activation (Shi et al., 2012). Additionally, autophagy is also 
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shown to reduce IL-1β secretion by degrading pro-IL-1β during nutrient starvation (Harris et 

al., 2011). Autophagy also mediates the turnover of damaged mitochondria to prevent the 

accumulation of ROS. This prevents against damaged-mitochondria mediated activation of 

NLRP3 inflammasome.     

1.7.3.4 Autophagy during inflammatory diseases 

 

Recent studies have highlighted the role of autophagy during disease progression of certain 

inflammatory diseases (Lee et al., 2017; Qian et al., 2017). One of the well-studied examples 

is the involvement of autophagy in Crohn’s disease (CD). It is a chronic inflammatory bowel 

disease characterized by ulceration and neutrophil influx in intestinal epithelia leading to 

persistent inflammation (Rubin et al., 2017). The underlying cause of the disease is both 

environmental and genetic. Genome-wide association studies (GWAS) shortlisted ATG16L1 

T300A as the causative mutation for the disease (Boada-Romero et al., 2016). Interestingly, 

the mutation does not perturb the general autophagy process but displays deficits in 

intracellular bacterial clearance. Studies have also identified single nucleotide polymorphisms 

in other autophagy-related genes such as NOD2 and immunity-related p47 guanosine 

triphosphatase (IRGM) in CD (Quaglietta et al., 2007; Rufini et al., 2015). Subsequent studies 

on IRGM showed a protective role during various intracellular infections. For instance, 

treatment of IFN induces IRGM during Mycobacterial infection to activate autophagy 

(Gutierrez et al., 2004). Further studies on the mechanism revealed that IRGM induces core 

autophagy machinery by interacting with ULK1 and Beclin1 to initiate autophagosome 

formation (Chauhan et al., 2015b, 2016).    

Furthermore, the involvement of autophagy in diseases caused by lung inflammation such as 

cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are reported. 

Mechanistically, mutation of CF transmembrane conductance regulator (CFTR), CFTR-F508 
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deletion showed inflammation of airway epithelial cells. This leads to Beclin1 downregulation 

and subsequent autophagy inhibition leading to protein aggregation and lung inflammation 

(Leung et al., 2017; Luciani et al., 2010). In case of COPD, there is inhibition of autophagy 

observed in lung biopsies of patients, although the mechanism of inhibition is not known (Vij 

et al., 2018).  

Other autophagy loci implicated in causing genetic predisposition towards chronic 

inflammatory diseases include IRGM, DRAM1 (systemic lupus erythematosus), ATG5 

(asthma, rheumatoid arthritis), CLEC16A (multiple sclerosis) (Martin et al., 2012; Orozco et 

al., 2011; Ramos et al., 2011; Schuster et al., 2015; Yang et al., 2013).      

1.8  Xenophagy in therapeutics 

 

Pharmacological or nutritional supplements to modulate xenophagy have shown beneficial 

effects in multiple clinical conditions (Galluzzi et al., 2017). For example, compounds such as 

rapamycin and trehalose which is known for inducing general autophagy flux was also seen to 

induce xenophagy (Donia et al., 2010). Alternatively, many studies have employed high 

content screening platforms to identify novel xenophagy compounds. For instance, during 

Mycobacterium infection, compounds such as nortriptyline, nitazoxanide, carbamazepine, 

valproic acid, naturally occurring trehalose and vitamin D3 have been identified by several 

groups (Lam et al., 2012; Schiebler et al., 2015; Sundaramurthy et al., 2013; Yuk et al., 2009). 

Similarly, many pharmacological screens for xenophagy of HIV is also reported. Compounds 

such as rapamycin, flubendazole, trehalose, SMER28 and Vitamin D3 are shown to induce 

xenophagy for restricting the viral replication (Campbell and Spector, 2011; Chauhan et al., 

2015a; Donia et al., 2010; Floto et al., 2007). Pioneering work by Beth Levine’s group 

identified autophagy-inducing peptide, Tat-Beclin1. It was constructed by fusing region of 

Beclin1 with Tat1 protein of HIV. This peptide prevented the replication of viral and bacterial 
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pathogens (Shoji-Kawata et al., 2013). Furthermore, many phenolic compounds such as 

resveratrol, quercetin, biochanin A present in certain plants have been shown to induce 

xenophagy of S. typhimurium (Al Azzaz et al., 2018; Domiciano et al., 2017; Zhao et al., 2018). 

Another interesting study by Kim et al indicated a novel strategy of studying the xenophagy 

potential of known antibiotics such as isoniazid and pyrazinamide. This study highlighted that 

the antibiotics although exhibit direct antibacterial effect, also significantly induces xenophagy 

for its overall efficacy against M. tuberculosis (Kim et al., 2012). Despite extensive screening 

strategies developed, most compounds exhibit limited specificity towards the autophagy 

process. For example, rapamycin which robustly induces autophagy also affects cellular growth 

and proliferation. Alternatively, certain autophagy modulators such as BafA1 also lead to 

general blockage of vesicular trafficking (Galluzzi et al., 2017). It is therefore, essential to 

identify specific and clinical viable autophagy modulators. Additionally, xenophagy mediated 

pharmacological intervention requires a detailed understanding of the aetiology of the disease. 

This is because certain pathogens are susceptible to xenophagic degradation by chemical 

inducers of the process while others utilize xenophagy for their intracellular survival and hence 

inhibition of the process is beneficial. Therefore, in most cases, pharmacological intervention 

during xenophagy is species-specific.    
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1.9 Aims of the study 

 

Although the regulatory mechanisms of general autophagy are well studied, the upstream 

pathways that modulate xenophagy and how the xenophagic flux is regulated is not completely 

understood. Modulating the xenophagic flux either by genetic or chemical biology means is a 

commonly used approach to study the process. In this study, we have employed a combination 

of both approaches to understand the process and its regulatory mechanisms.  

To study the process, we utilised Salmonella typhimurium as the model pathogen, as its 

involvement in xenophagy is clearly established. Pilot-scale screening for xenophagy specific 

chemical modulators designed to reduce intracellular S. typhimurium replication was carried 

out and the results were summarized in Veena, MS thesis, 2016. The shortlisted small molecule 

candidate is used as the tool in this study to further probe their mechanism of action to induce 

xenophagy. By understanding the pathways/genes targeted by the compound, it would provide 

key insights into the regulatory mechanisms that modulate the process. By employing this 

chemical-genetic approach, we enlisted the following objectives for the study. 

Objectives: 

 Identification and validation of acacetin as a novel xenophagy inducer. 

 Exploring the molecular mechanism of acacetin to induce autophagy/xenophagy. 

 Understanding the upstream regulatory pathways of xenophagy modulated by acacetin. 

 Development of high throughput screening assay to identify novel xenophagy inducers  
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Chapter 2 

Materials and methods 

2.1 Cell Culture 

HeLa, U1752 and RAW 264.7 cell lines were maintained in growth medium comprising of 

Dulbecco’s modified Eagle’s medium (DMEM)( D5648, Sigma-Aldrich) supplemented with 

3.7 g/L sodium bicarbonate, 10% fetal bovine serum (FBS) (PAN, 3302-P121508) and 100 

units/ml of  penicillin and streptomycin (Sigma-Aldrich, P4333) at 5% CO2 and 37 C. ATG5-

/- HeLa cells was a kind gift from Prof. Richard Youle, NIH, USA (Lazarou et al., 2015). 

2.2 Bacterial Strains and construction 

The bacterial strains used in the study are WT Salmonella typhimurium SL1344, mCherry 

expressing Salmonella typhimurium SL1344 (kind gift from Prof. CV Srikanth, RCB, India) 

(Mohapatra et al., 2019). and bioluminescent pAKlux1 expressing Salmonella typhimurium 

SL1344. They were grown in Luria Bertani media at 37 C. 

2.2.1 Generation of luminescent S. typhimurium 

S. typhimurium was electroporated with pAKlux1 (ampicillin resistant) construct to obtain 

bioluminescent bacteria. For the process, electrocompetent S. typhimurium was prepared by 

resuspending 200 ml of 0.5 A600 of bacterial cells in 50 ml of ice cold 10% glycerol and 

centrifuged at 2500 g for 15 minutes at 4 C. This was followed by resuspending the pellet in 

1ml of ice cold 10% glycerol and centrifuged at 2500 g for 15 minutes at 4 C.  The pellet was 

finally resuspended in 200 l of ice cold 10% glycerol. The electrocompetent cells were added 

to 100 ng of pAKlux1 and was pulsed at 2500 V and 5 ms time-constant using BioRad 

electroporator. The pulsed cells were allowed to recover by diluting in 1ml of SOC media 
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(tryptone 2 g, yeast extract- 0.5 g, NaCl- 0.05 g, MgSO4- 0.24 g, and KCl 18.6 mg) for 1 hour 

at 37 C. Finally, 100l of bacterial cells was plated on ampicillin containing LB plates. The 

colonies were confirmed by measuring luminescence at 460 nm using micro-titre plate reader, 

Varioskan Flash. 

2.3 Chemicals and reagents 

The chemicals used in the study include 3-Methyl Adenine (M9281, Sigma-Aldrich), 

wortmannin (W1628, Sigma-Aldrich), acacetin (00017, Sigma-Aldrich), Bay11-7082 (B5556, 

Sigma-Aldrich), U0126 (U120, Sigma-Aldrich), Bafilomycin A1 (11038, Cayman chemical). 

Reagents used in the study include, trypsin EDTA (59418C, Sigma-Aldrich), EBSS (E7510, 

Sigma-Aldrich) OPTI-MEM (31985-070, Invitrogen) and FITC-Dextran (46945, Sigma-

Aldrich), DQ-BSA Red (D12051, Thermo Fisher Scientific), FM 4–64 (F34653, Thermo 

Fisher Scientific), LysoTracker Deep Red (L12492, Thermo Fisher Scientific), CIP (M0290S, 

New England Biolabs), triton X-100 (MB031, HiMedia Laboratories), Vectashield antifade 

reagent with or without DAPI (Vector laboratories, H-1000/H-1200), paraformaldehyde 

(P6148, Sigma-Aldrich), lipofectamine 2000 (11668019, Invitrogen), chemiluminescence 

substrate (170–5061, Clarity Bio-Rad), PVDF membrane (1,620,177, BioRad,), TRIzol 

(15596–026, Ambion), gentamycin (EAI03089, Abbott), Phosphate buffer saline solution 

(PBS) (D6773, Sigma-Aldrich), bovine serum albumin (A7906, Sigma-Aldrich), dimethyl 

sulfoxide (D8418, Sigma-Aldrich).   

2.4 Antibodies  

The primary antibodies used in the study are as follows: anti-TFEB antibody (4240), anti- 

RPS6KB1/p70S6K antibody (9208), anti-p-RPS6KB1/p70S6K (9202) antibody, anti-p-

EIF4EBP1 antibody (2855), anti- EIF4EBP1 antibody (9452), anti-LAMP1 antibody (9091), 

anti- TBK1/NAK antibody (3504), anti-p-TBK1/NAK Ser172 antibody (5483), anti-EEA1 
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antibody (3288), anti-ACTB/β-actin antibody (4970), anti-rabbit IgG antibody conjugated with 

horseradish peroxidase (HRP; 7074) were purchased from Cell Signalling Technology. Anti-

SQSTM1/p62 (ab56416) was purchased from Abcam. Anti-p-SQSTM1/p62 Ser403 (D343-3) 

was purchased from MBL. Anti-TUBB/β-tubulin antibody (DSHB-C1-377) was purchased 

from Developmental Studies Hybridoma Bank. Anti-H3 was a kind gift from Prof. Tapas 

Kundu, JNCASR. Anti-LC3B (L7543, Sigma-Aldrich), anti-p62 (PM045, MBL), anti-β-

tubulin (E7-c, Biogenuix), Anti-rabbit IgG, HRP linked antibody (7074P2, CST), Atto 663 

(18620, Sigma-Aldrich), Atto 488 (62197, Sigma-Aldrich).  

2.5 Plasmid constructs and siRNA 

 

Table 2.1: List of plasmids used in this study 

 

Mammalian expression plasmids (Addgene) 

 

S. No.  Plasmid name Catalogue No. Depositing lab Reference 

1. ptfLC3  

 

21074 Tamotsu Yoshimori (Kimura et al., 

2007) 

2. LAMP1-RFP 1817 Walther Mothes (Sherer et al., 

2003) 

3. pCMV5-FLAG-

Smad1 

14044 Joan Massague (Liu et al., 

1996) 

4. HA-SnoN 

 

10908 Bob Weinberg (Sun et al., 

1999) 

5. TLR4-YFP 13018 Doug Golenbock Unpublished 

6. pcDNA3-RelB 20017 Stephen Smale Unpublished 

7. Myc-Smurf2 13678 Ying Zhang (Zhang et al., 

2001) 

8. BAMBI-Bio-His 51866 Gavin Wright (Sun et al., 

2015) 

9. NOD1-EGFP 131206 Thomas Kufer Unpublished 

10. HA-hTRAF3 44032 Shao-Cong Sun (Liao et al., 

2004) 

11. GADD45 24929 Xin Wang (Yang et al., 

2000) 

12. pcDNA3-FLAG-Fos 

WT 

8966 John Blenis (Murphy et al., 

2002) 
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Mammalian expression plasmids (Addgene) 

 

S. No.  Plasmid name Catalogue No. Depositing lab Reference 

13. BDNF-SEP 83955 Ryohei Yasuda (Harward et 

al., 2016) 

14. 

 

pEGFP-N1-TFEB 38119 Shawn Ferguson (Roczniak-

Ferguson et al., 

2012) 

15. pcDNA3-FLAG-

Rheb-N153T 

19997 Fuyuhiko Tamanoi (Urano et al., 

2007) 

16. pCMV6-XL4 

FLAG-BMP2-Fc 

115771 Davide Comoletti Unpublished 

17. pMSCV-FlagBcl10 18718 Jon Ashwell (Wu and 

Ashwell, 2008) 

18. pcDNA3 Flag-

humanTRAF6 

66929 Michael Karin Unpublished 

19. Flag-SIRT1 1791 Michael Greenberg (Brunet et al., 

2004) 

20. pXJ40 GADD34 Wt 

(1-674aa) 

75478 Shirish Shenolikar (Choy et al., 

2015) 

21. THBS1-bio-His 53417 Gavin Wright  (Sun et al., 

2015) 

22. IKK1-EYFP 111206 Johannes A. Schmid Unpublished 

23. GFP-p38alpha 86832 Rony Seger (Zehorai and 

Seger, 2014) 

24. pCMV6-XL4 

FLAG-BMP2-Fc 

115771 Davide Comoletti Unpublished 

25. pcDNA3-HA-

RAPGEF2 

110162 Daniele 

Guardavaccaro 

(Magliozzi et 

al., 2013) 

Silencing constructs (Sigma-Aldrich) 

 scramble esiRNA SIC001 TFEB esiRNA EHU059261 

Bacterial expression plasmids (Addgene) 

 pAKlux1.1 14073 Attila Karsi (Karsi et al., 

2006) 
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2.6 Protocols used in the study 

2.6.1 Immunofluorescence assay 

HeLa cells (~60% confluency) were seeded on coverslips and was allowed to attach overnight. 

Cells were transfected with plasmid construct(s) using lipofectamine 2000 as per the 

manufacturer’s instructions. Briefly, for a 60 mm dish with cells, reaction mixture containing 

2.5 µg of maxi prep grade DNA and 5 µl of lipofectamine (1:2 ratio) diluted in 100 ul of OPTI-

MEM was added to cells. Forty-eight hours post transfection, compound treatment was carried 

out for the indicated time points. Following this, cells were processed for immunofluorescence 

analysis 

Fixation: Cells were fixed using 4% paraformaldehyde (PFA) for 20 minutes at room 

temperature (RT) kept in dark.  

Washes: The cells were washed using 1X PBS for 10 minutes at RT kept in dark. 

Permeabilization: The cells were permeabilized 0.25% triton X-100 for 20 minutes at RT kept 

in dark. 

Washes: The cells were washed using 1X PBS for 10 minutes at RT kept in dark.   

Primary antibody staining: Primary antibody/antibodies (1:500 dilution) were diluted in 

0.2% Bovine Serum Albumin (BSA) in PBS. The cells were incubated with antibody for 

overnight at 4 °C in dark. In case of probing for more than one protein simultaneously, 

antibodies can be coupled if the species used to raise the antibody is different.   

Washes: After 12-16 hours, cells were washed three times using 1X PBS for 5 minutes each 

at RT kept in dark.   

Secondary antibody staining: Appropriate secondary antibody/antibodies (1:200 dilution) 

were diluted in 0.2% Bovine Serum Albumin (BSA) in PBS. The cells were incubated with 

antibody for 1-2 hours at RT in dark. In case of probing for more than one protein 

simultaneously, antibodies can be coupled if the species used to raise the antibody is different. 
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The antibodies coupled together were previously studied for cross reactivity and background 

fluorescence by using ‘no primary antibody’ control. 

Washes: After 12-16 hours, cells were washed three times using 1X PBS for 5 minutes each 

at RT kept in dark. 

Mounting: The cover slips were mounted on glass slides using Vectashield antifade reagent 

with or without DAPI. Following this, the slides were imaged for fluorescence microscopy 

analysis or stored at 4°C in dark for future use.  

2.6.2 Lysosome staining 

a. LysoTracker Deep Red staining 

LysoTracker Deep Red fluorescent dye at a final concentration of 100 nM was added to HeLa 

cells. Post 20 minutes of incubation at 37 C, the cells were fixed using 4% PFA for 20 minutes. 

Following this, cells were washed with PBS and permeabilized using 0.25% triton X-100. The 

cover slips were mounted using Vectashield antifade reagent with or without DAPI.  

b. DQ-BSA processing assay 

HeLa cells were seeded on cover slips and allowed to attach overnight. DQ-BSA (10 µg/ml) 

was added to HeLa cells or HeLa cells post S. typhimurium infection for 2 hours. In the 

presence of acacetin (50 µM), the DQ-BSA processing was allowed for 4 hours and fixed using 

4% PFA for 20 minutes. For antibody staining, permeabilization with 0.25% triton X-100 for 

20 minutes was carried out. This was followed by anti-LAMP1 primary antibody (1:500 

dilution) incubation overnight at 4 °C and appropriate secondary antibody (1:200 dilution) 

incubation for 1 hour at room temperature. The cover slips were mounted using Vectashield 

antifade reagent with or without DAPI.   

2.6.3 Immunoblotting analysis 

Cells were seeded in 6-well plates and allowed to attach overnight. Following appropriate 

treatments, cells were collected in 1X Laemmli buffer using cell scrapper until the sample 
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buffer becomes viscous. Following this, the samples were boiled for 10 minutes at 95 C. 

Samples were stored at -80 °C until electrophoresed on SDS-PAGE (gel percentage varying 

from 8% to 15% depending on the protein of interest) and transferred onto PVDF membrane. 

The blots were incubated with 5% skimmed milk for 1 hour at room temperature for blocking 

non-specific antibody binding. Primary antibody (1:1000 dilution) was prepared in 0.2% BSA 

in 1X PBS. After incubation with primary antibody overnight at 4 °C the blots were washed 

three times for 5 minutes each in 1X PBST. Following this, appropriate HRP conjugated 

secondary antibody (1:10,000 dilution) was prepared in 5% skimmed milk and incubated with 

secondary antibody for 1 hour at room temperature, signals were obtained using 

chemiluminescence substrate and the image was acquired using gel documentation system (G-

box, Chemi XT 4, Syngene, USA). The band intensities were quantified using ImageJ software 

(NIH). 

2.6.4 TFEB silencing  

HeLa cells were seeded on 6-well plates and allowed to attach overnight. The following day, 

cells were transfected with either scramble control or esiRNA-TFEB using lipofectamine 2000. 

Briefly, reaction mixture containing 1000 ng of esiRNA-TFEB or scramble control diluted in 

100 l OPTI-MEM was added to HeLa cells. After 48 hours of incubation, cells were treated 

with acacetin. After 2 hours of compound treatment, cells were processed either for 

immunoblotting analysis or immunofluorescene assay as explained in the previous sections.  

2.6.5 Cytoplasm-nucleus fractionation of TFEB 

HeLa cells were seeded on 100 mm dish (~60% confluency) and allowed to attach overnight. 

This was followed by transfection of GFP-TFEB using lipofectamine 2000 as previously 

explained. Post 48 hours of transfection, the cells were treated with acacetin. After 2 hours of 

compound treatment, cells were trypsinized and collected in 1X PBS. Following this, cells 

were lysed using a buffer containing 0.8 M sucrose, 150 mM HCl, 5 mM MgCl2, 6 mM β 
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mercaptoethanol and 0.5% NP-40. The samples were centrifuged at 10,000 g for 5 minutes at 

4 C. The supernatant containing cytoplasmic fraction was separated from the nuclear pellet. 

The nuclear pellet was washed twice using the same lysis buffer to remove any cytoplasmic 

contamination. The separated fractions were prepared for immunoblotting analysis as 

explained previously. Samples were electrophoresed on SDS-PAGE (8% or 10% gel 

percentage in order to visualize both phosphorylated and total TFEB protein bands) and 

transferred onto PVDF membrane. After incubation with anti-TFEB antibody overnight at 4°C 

and HRP conjugated secondary antibody for 1 hour at room temperature, signals were obtained 

using chemiluminescence substrate and image was acquired using gel documentation system 

(G-box, Chemi XT 4, Syngene, USA).  

2.6.6 Gene expression analysis 

HeLa cells were seeded on 60 mm dishes and allowed to attach overnight. The following day, 

cells were treated with acacetin for 2 hours. Cells were lysed to isolate total RNA using 1ml of 

TRIzol reagent. After homogenization, samples were centrifuged at high speed (12000 g at 4 

C for 5 minutes). Clear supernatant collected after centrifugation was added to 200 l 

chloroform. This was followed by 2-3 minutes of incubation and proceeded to centrifugation 

at 12,000 g at 4 C for 15 minutes. The aqueous layer containing RNA was collected for 

precipitation of RNA. The samples were then treated with 0.5 ml of isopropanol and incubated 

for 10 minutes. Centrifugation at 12,000 g at 4 C for 10 minutes precipitated white gel-like 

RNA pellet. The pellet was washed using 1 ml of 75% ethanol for 5 minutes at 7500 g at 4 C 

and resuspended the RNA in 30 l of RNase free water. The samples were then subjected to 

DNase treatment for 2 hours at 37 C. The reaction mixture contained 4 g of isolated RNA, 

1X DNase buffer, DNase enzyme and RNase free water in a total reaction volume of 20 l. 

The DNase reaction was terminated by adding 2 l of 50 mM EDTA and heated at 65 C for 

15 minutes.      
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a. RT-PCR: 

Reverse transcription (RT) was carried out to convert isolated RNA into cDNA using Taqman 

reverse transcription kit (Applied Biosystems, N8080234). Briefly, the 20 l reaction mixture 

contained 1 g of DNase treated RNA diluted with RT enzyme, 10X RT buffer, 100 mM 

dNTPs, and 10X random primers. Autophagy and lysosomal specific gene primers which were 

previously reported (Sardiello et al., 2009) were purchased from Sigma-Aldrich. The 

housekeeping gene ACTB was used as normalizing control to calculate the fold change. 

Table 2: List of primers used in this study 

Gene Forward (5’ to 3’) Reverse (5’ to 3’) 

ACTB CATCATGAAGTGTGACGTGGAC CTTGATCTTCATTGTGCTGGGTG 

LC3B ACCGTGTGATCAGTAAGATTCC  GTGACCACTCACATGGGATATAG 

BECN1 CCCGTGGAATGGAATGAGATTA CCGTAAGGAACAAGTCGGTATC 

BCL2 AGATGGAGCATGAATGGTACTG TCTGTGCTCAGCTTGGTATG 

TFEB CCAGAAGCGAGAGCTCACAGAT TGTGATTGTCTTTCTTCTGCCG 

LAMP1 ACGTTACAGCGTCCAGCTCAT TCTTTGGAGCTCGCATTGG 

SQSTM1 GCACCCCAATGTGATCTGC CGCTACACAAGTCGTAGTCTGG 
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The following program for RT-PCR was used 

Initial denaturation 95 C 5 minutes 

Denaturation 95 C 30 seconds 

Annealing 60 C 30 seconds 

Extension 72 C 30 seconds 

Final extension 72 C  5 minutes 

Step 2 to 4 repeated for 40 cycles  

 

b. Microarray analysis: 

Clariom D Affymetrix microarray technology from ThermoScientific was used for microarray 

analysis. The experiment was carried out for two biological replicates with two technical 

replicates each. The data analysis post-run was carried out using Applied Biosystems 

Transcriptome Analysis Console (TAC) Software 4.0. The foldchange of above 2 with p-value 

of less than 0.05 was set as threshold for shortlisting genes.     

2.6.7 Intracellular infection assay 

Single colony of S. typhimurium was grown for 6 hours at 37 °C in a shaking incubator. 

Secondary culture (0.2% inoculum) was grown overnight in micro-aerophilic conditions. 

U1752 or HeLa (WT and ATG5-/-) or RAW264.7 cell lines were infected at a multiplicity of 

infection (MOI) of 200 for 1 hour. The cells were treated with media containing 40 μg/ml 

gentamycin for 1 hour to kill the extracellular bacteria. The cells were then treated with the 

compound and incubated for 4 hours. Finally, the mammalian cells were lysed using lysis 

buffer (0.1% SDS, 1% triton X-100, 1X PBS). The intracellular S. typhimurium were plated on 

Luria Broth plates and incubated at 37 C. After 12-16 hours of incubation, the Colony Forming 

Unit (CFU) were counted. 

2.6.8 Cell viability assay  

HeLa cells were seeded on a 384-well plate and treated with indicated concentrations of 

acacetin. After 15 hours of compound treatment, cell viability was measured using 
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luminescence-based Cell Titre Glo cell viability assay kit (G7572, Promega) using a micro-

titre plate reader (Varioskan Flash, Thermo Fisher Scientific, USA).  

2.6.9 Animal studies 

All procedures carried out in the study were approved by JNCASR and Vipragen Biosciences 

animal ethics committee. BALB/c mice (6–8 weeks of age, female) were distributed into three 

groups namely- uninfected, infected, and infected along with acacetin treatment. Acacetin (20 

mg/kg) was administered intraperitoneally to the infected with acacetin treatment group. The 

compound treatment continued for next 7 days with one injection a day. Other two groups were 

injected with vehicle solvent, dimethyl sulfoxide (D8418, Sigma-Aldrich). Infection 

(1010Salmonella diluted in PBS) was done through oral gavage for the second and third group 

on the first day. Food and water were available ad libitum. All animals were sacrificed on the 

seventh day post infection after 2 hours of compound injection and the organs (liver, spleen 

and intestine) were processed for plating and immunohistochemistry.  

2.6.10 Immunohistochemistry 

Harvested tissues were washed with 40 µg/ml gentamycin to remove extracellular bacteria. 

Fixation: Tissues were fixed using 4% PFA overnight at room temperature (RT).  

Washes: The cells were washed using 1X PBS for 10 minutes at RT. 

Processing: The tissues were exposed to increasing gradient of cryoprotectant, sucrose from 

10% to 15% to finally 30% sucrose. The samples begin to sink in sucrose. After they are sunk, 

the samples are ready for cryo-sectioning. 

Washes: The cells were washed using 1X PBS for 10 minutes at RT.  

Sectioning: The cryostat was set at a temperature of -20 C. All equipment (cutting blade, 

foreceps) used for sectioning was also prechilled to -20 C before use. The tissues were 

embedded using cryoembed onto the block-holder. Serial sections of 40 µm thicknes were 
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collected on gelatin coated slides. Briefly, solution containing 3% gelatin and 0.5% Chromium 

Potassium Sulphate maintained at 65 C was used to coat the glass slides. 

Antigen retrieval: The sections were immersed in Sodium Citrate buffer (pH 6) at 65 to70 C 

for 20 minutes intermittently using a coplin jar. The slides are allowed to remain in the buffer 

until temperature falls below 60 C.  

Equilibration: The Slides were washed using PBSTx (0.1 M PBS containing 0.1% triton x-

100) for 30 minutes.   

Blocking: Sections were incubated in blocking buffer (2% BSA and 1% goat serum made in 

PBSTx) for 4 hours at RT. 

Washes: Sections were washed three times using 1X PBSTx for 10 minutes each at RT.  

Primary antibody staining: Primary antibody/antibodies (1:500 dilution) were diluted in 

0.2% Bovine Serum Albumin (BSA) in PBST. The cells were incubated with antibody for 

overnight at 4°C in dark. In case of probing for more than one protein simultaneously, 

antibodies can be coupled if the species used to raise the antibody is different.   

Washes: After 12-16 hours, cells were washed three times using 1X PBS for 5 minutes each 

at RT kept in dark.   

Secondary antibody staining: Appropriate secondary antibody/antibodies (1:200 dilution) 

were diluted in 0.2% Bovine Serum Albumin (BSA) in PBST. The cells were incubated with 

antibody for 1-2 hours at RT in dark. In case of probing for more than one protein 

simultaneously, antibodies can be coupled if the species used to raise the antibody is different. 

The antibodies coupled together were previously studied for cross reactivity and background 

fluorescence by using ‘no primary antibody’ control. 

Washes: After 4 hours, cells were washed three times using 1X PBS for 5 minutes each at RT 

kept in dark. 
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Mounting: The cover slips were mounted on glass slides using Vectashield antifade reagent 

with or without DAPI. Following this, the slides were imaged for fluorescence microscopy 

analysis or stored at 4 °C in dark for future use. Images were acquired using Olympus FV 3000 

(1.25X objective was used for imaging entire liver section, 40X objective was used for 

observing LC3-II puncta). 

2.6.11 Luciferase-based infection assay for small molecule screening 

 HeLa cells were seeded in 96-well plate and were allowed to attach overnight. The following 

day, HeLa cells were infected with S. typhimurium expressing bioluminescent construct at a 

MOI of 100 for 1 hour. This was followed by treatment with gentamycin and small molecule 

compounds of a custom-made library (410 compounds). After 11 hours of incubation, HeLa 

cells were lysed and intracellular luminescent reading was measured (Varioskan Flash, Thermo 

Scientific, USA). The experiment was performed in triplicate for each compound and in two 

different concentrations (12.5 M and 25 M) with rapamycin (8 M) as a positive control in 

each plate was used.  

2.6.11.1 Data normalization using HTS corrector 

 

The excel file containing RAW luminescent values was uploaded in HTS corrector. A 

background trend based on each well value was evaluated using the option “Background 

evaluation” in “Analysis” tab. Background subtraction was done to get the normalized values. 

2.6.11.2 Data visualization using R studio application 

 

A directory was opened in R studio to save the excel sheet containing normalized luminescent 

values in .csv format. The packages used to get the HTS plot include plyr, tidyr, ggplot2, dyplyr 

(for box plot), forcats, tidyverse, hrbrthemes and viridis (for colours and patterns).    
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2.7 Microscopy 

 

a. Fluorescence microscopy 

Images were acquired on the widefield Delta Vision microscope (29,065,728, API, GE, USA) 

using DAPI, FITC, TRITC, Cy5 filters with Olympus 60X/1.42 NA objective. For every 

experiment, quad filters, ‘Z’ sections and acquisition parameters were maintained constant. 

b. Electron microscopy 

HeLa cells treated with acacetin for 2 hours were further processed for electron microscopy. In 

case of infection assay, HeLa cells post 6 hours of S. typhimurium infection were trypsinized 

and washed with 1X PBS. Cells were fixed using 4% glutaraldehyde in 0.1 M cacodylate buffer 

(pH 7.3) for 1 hour at 4 C. Sample processing for Transmission Electron Microscopy was 

carried out in Christian Medical College, Vellore, India. Briefly, fixed cells were dehydrated 

in ethanol series and embedded in epoxy resin (TAAB laboratory and microscopy, CY212 KIT, 

E009). Ultra-thin sections were stained and observed using Tecnai, G2 F-30 with a point 

resolution of 2.2 Å.  

2.7.1 Image analysis 

Fluorescence images acquired using widefield microscope were deconvolved (nearest 

neighbour algorithm) using Delta Vision SoftWorx software. For TFEB translocation assays, 

intensity of single Z-stack with largest DAPI structure was measured. For colocalization 

analysis, individual Z stacks were analysed using “Colocalization” plugin with “colocalization 

highlighter” option in ImageJ (NIH). The number of colocalized events were counted using 

“cell counter” plugin of ImageJ. Whereas, for experiments that required counting total puncta 

inside cells, projected images (collapsed Z-stacks) were used for quantification. However, all 

representative images are projected images for better clarity. 



Chapter 2: Materials and methods 

73 
 

2.8 Statistical analysis 

 

Graphs were plotted and the significance levels were tested using appropriate statistical test in 

GraphPad Prism (GraphPad software). Statistical tests were performed by comparing the 

means using Unpaired Student t-test or One/Two-way ANOVA followed by the Bonferroni 

test. 3 biological replicates were considered for every analysis unless mentioned otherwise.  
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Chapter 3 

Identification and validation of acacetin as a novel 

 xenophagy inducer 

 

3.1 Overview 

 

In the introduction, we have described in detail the role of autophagy in maintaining cellular 

homeostasis. The process gained importance because of its intricate connection with health and 

disease. Autophagy degrades therapeutically relevant cargoes such as aggregated proteins, 

intracellular pathogens, and damaged organelles. As described earlier, dysfunctional autophagy 

can lead to the progression of diseases such as neurodegeneration, cancer, microbial infections, 

cardiovascular diseases among others. 

In this study, we have explored the selective autophagy of intracellular pathogens referred to 

as xenophagy. It is considered as a part of the innate immune mechanism of the host cell in 

response to intracellular infection. The process of xenophagy is implicated during diverse 

bacterial, viral, and parasitic infections (Deretic and Levine, 2009). However, for the current 

study, we have explored antibacterial xenophagy using Salmonella typhimurium as the 

pathogen model system. 
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3.2 Salmonella typhimurium as a model system for xenophagy 

 

S. typhimurium is a rod-shaped, flagellated, Gram-negative bacterium that is a major causative 

agent for gastroenteritis referred to as salmonellosis in humans and typhoid-like disease in 

mice. S. typhimurium is a member of genus Salmonella enterica, with more than 2500 serotypes 

reported. The pathogen harbours two type-III secretion systems (T3SS), which are encoded by 

Salmonella pathogenicity islands, SPI-I and SPI-II, responsible to impart virulence to the 

bacteria (Castanheira and Garcia-Del Portillo, 2017; Hansen-Wester and Hensel, 2001). The 

T3SS forms a protein complex referred to as “molecular syringe” for translocation of bacterial 

proteins called effectors inside host cytoplasm. Genes encoded by SPI-I is required for invasion 

of host cells, while intracellular survival and replication are dependent on genes encoded by 

SPI-II (Hensel, 2000; Steele-Mortimer et al., 2002). Briefly, effector proteins translocated 

inside host cells lead to drastic changes such as reorganization of cytoskeletal proteins to bring 

about membrane protrusion and finally mediating its own engulfment (Ly and Casanova, 2007; 

Srikanth et al., 2011; Srikanth et al., 2010). After invasion, the effector proteins hijack host 

endocytic pathway as explained below for their intracellular survival.  

3.2.1 The intracellular lifestyle of S. typhimurium 

 

S. typhimurium enter inside host cells either by phagocytosis (in phagocytic cells) or 

Salmonella mediated invasion (in non-phagocytic cells), During the course of infection, 

phagosomes are rich in early endosomal markers in the initial time points which are replaced 

by late endosomal markers after few hours of post-infection (p.i). Salmonella replicates inside 

phagosomes by converting it into its replicating niche referred to as Salmonella containing 

vesicles (SCVs) (Castanheira and Garcia-Del Portillo, 2017; Krieger et al., 2014; Drecktrah et 

al., 2007; Vorwerk, 2015, Liss et al., Cell Host Microbe, 2017). SCVs also develop 

membranous structures called as Salmonella induced filaments (Sifs) (Knuff and Finlay, 2017). 
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The SCVs provide an ideal niche for persistent Salmonella survival as compared to the lethal 

cytosolic environment of macrophages (Sindhwani et al., 2017; Tuli and Sharma, 2019). 

However, the cytoplasm of epithelial cells provides abundant nutrients for the bacteria and is 

conducive for robust replication (Brumell et al., 2002; LaRock et al., 2015; Malik-Kale et al., 

2012) (Figure 3.1).  

 

Figure 3.1. The intracellular lifestyle of S. typhimurium. Upon entry into host cells (1) by Salmonella 

mediated invasion, S. typhimurium can exist in one of the following populations.  (2) Enter cytosol by 

damaging endosomes where (3) rapid replication occurs in the cytosol. (4) Cytosolic ubiquitinated 

bacteria are recognized by xenophagy proteins for autophagy-mediated degradation. (5) In a ubiquitin 

independent manner, damaged bacteria-containing endosomes exposing galectins on the surface are 

captured by xenophagy. (6) Persistent survival occurs in Salmonella containing vacuoles. Image created 

using BioRender.com.  
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3.2.2 Interaction of S. typhimurium with xenophagy machinery 

 

The interactions of S. typhimurium with the process of xenophagy is well studied and reported 

(Siqueira et al., 2018; Wu et al., 2020). Firstly, entry of bacteria inside host cells by disruption 

of membrane integrity leads to loss of amino acids from the cell and causes starvation. This 

inhibits the nutrient responsive kinase, mTOR which in turn leads to activation of autophagy 

(Tattoli et al., 2012). Following invasion, about 30% of intracellular S. typhimurium is reported 

to be recognized by xenophagy machinery in the initial stages of infection (1-1.5hours p.i.) 

(Birmingham et al., 2006). Subsequent studies showed that S. typhimurium is recognized by 

xenophagy machinery by two mechanisms. The first involves a mechanism similar to other 

selective autophagy cargoes where intracellular bacteria targeted to xenophagy are 

ubiquitinated. Following this, adaptor proteins recognize the ubiquitinated bacteria to bridge 

with xenophagosomes for degradation. The second mechanism for S. typhimurium capture is 

by recognizing the damaged SCVs resulted due to pore formation by SPI-II T3SS (Birmingham 

and Brumell, 2006; Kreibich et al., 2015). If this damage caused to SCVs are sufficient to allow 

access to ubiquitin ligases, the vacuolar bacteria are ubiquitinated (Perrin et al., 2004). 

Alternatively, damaged SCVs expose glycans which is usually present on the inner surface of 

SCVs. This glycans are recognized by galectin 8, a cytoplasmic lectin that in turn recruit 

autophagy adaptors to SCVs (Thurston et al., 2012).  

The recognition of intracellular S. typhimurium by adaptor proteins play a crucial role in 

restricting bacterial replication. Major adaptor proteins implicated in xenophagy of S. 

typhimurium include p62, NDP52, TAX1BP1 and OPTN (Mostowy et al., 2011; Tumbarello 

et al., 2015; von Muhlinen et al., 2010; Zheng et al., 2009). Silencing of adaptors such as 

NDP52 and OPTN is shown to weaken xenophagy of S. typhimurium leading to enhanced 

bacterial replication (von Muhlinen et al., 2012; Wild et al., 2011). Elaborate studies on 
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mechanistic aspects of autophagy-mediated cargo recognition identified that that post-

translational modification in UBA domain of adaptor proteins can enhance its affinity to bind 

ubiquitin. For example, phosphorylation of p62 at position Serine 403 that is present in its UBA 

domain increases the binding affinity by to bind ubiquitin by multiple folds. Similarly, 

phosphorylation event in LIR sequence that binds LC3 also enhances recognition. This is seen 

in OPTN (Serine 177 position) to increase its ability to bind the cargoes. Studies indicate that 

although adaptor proteins such as p62 and NDP52 act in the same pathway to capture S. 

typhimurium, they are not redundant as knockdown of either adaptor significantly reduces LC3 

recruitment to Salmonella (Cemma et al., 2011).  Despite multiple xenophagic proteins 

involved, there is a drastic reduction in the recognition of S. typhimurium post 2 hours (Cemma 

et al., 2011). These studies suggest that xenophagy mediated recognition of S. typhimurium is 

an early event and pathogen employ strategies to overcome xenophagy at later stages of 

infection.  

3.2.3 Mechanisms employed by S. typhimurium to escape xenophagy 

 

Although intracellular xenophagy is induced by multiple strategies, S. typhimurium has 

evolved mechanisms to evade the capture and lysosomal degradation. As mentioned before, 

recognition of S. typhimurium by xenophagy adaptor proteins is short-lived occurring 

immediately after infection. Certain S. typhimurium factors have been identified to prevent this 

xenophagic recognition. For example, S. typhimurium effector protein, SseL is a deubiquitinase 

that prevents its ubiquitination and subsequently prevents recognition by xenophagic adaptors 

(Mesquita et al., 2012). Other effectors such as SsaV and SsrB disrupts Sirt1/LKB1/AMPK 

pathway leading to activation of mTOR and thereby inhibiting autophagy (Ganesan et al., 

2017). Besides, studies have also shown this mTOR activation is amplified by recruitment of 

focal adhesion kinase to SCVs (Owen et al., 2014). Additionally, S. typhimurium replicating in 
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SCVs express SifA effector, which perturbs the trafficking of proteases to lysosomes. 

Therefore, the lysosomal activity of the infected cells is compromised providing a niche for 

bacteria to replicate in SCVs (McGourty et al., 2012). Further, effectors such as SseG and SseF 

are involved in maintaining the membrane integrity of SCVs thereby supporting bacterial 

replication (Deiwick et al., 2006). Furthermore, study by Feng et al showed that SseG and SseF 

also inhibits ULK1 activation by blocking Rab 1A activity to generate PI3P. This leads to 

decreased autophagy potential in the host cells (Feng et al., 2018).  

  3.3 Rationale of the study 

 

As explained in the earlier section, the interaction of S. typhimurium with xenophagy is well-

known and the pathogen is shown to overcome host xenophagy to establish intracellular 

infection. It, therefore, provides an ideal pathogen model system to modulate xenophagy. We 

hypothesized that chemical modulation of xenophagy to restore the block imposed by S. 

typhimurium can provide mechanistic insights into the process.  

In pursuit of identifying novel chemical modulators of autophagy, our laboratory had 

previously performed a yeast-based high throughput screening (HTS). Briefly, firefly 

luciferase containing peroxisomal targeting signal, SKL driven under POT1 (Peroxisomal 

Thiolase-I) promoter was used to label peroxisomes for monitoring autophagic flux (Sakai et 

al., 2006). The principle of the HTS assay involves induction of peroxisome biogenesis by 

growing yeast in fatty acid-containing media. The rates of degradation of luciferase targeted to 

peroxisomes were monitored after autophagy induction and in the presence of compounds. 

Those compounds that induced more than 50% peroxisome degradation were shortlisted as 

putative enhancers of autophagy (Mishra et al., 2017). 

Owing to the conserved nature of autophagy, the hits obtained in yeast-based primary screen 

were further tested for their potential in mammalian cells to induce general and selective 
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autophagy. Here we present a pilot-scale secondary assay for screening the autophagy inducers 

for their ability to induce xenophagy. The assay is based on quantitating the reduction of 

intracellular S. typhimurium in the presence of the compounds tested.   

3.4 Results: 

 

3.4.1 Pilot-scale screening for xenophagy inducers 

 

The set of autophagy inducers shortlisted from the HTS were further tested for their ability to 

clear intracellular pathogens. The screening for xenophagy involves monitoring Salmonella 

typhimurium after intracellular infection of host epithelial cell line, U1752, in the presence of 

compounds until 6 hours p.i (Figure 3.2A). The compounds that induced pexophagy in yeast 

and autophagy in mammalian cells were further tested for their ability to induce xenophagy. 

However, most of the compounds tested were not able clear intracellular S. typhimurium 

(Figure 3.2B & Veena, MS thesis, 2016). Acacetin, a plant-derived flavonoid from ENZO 

library of natural compounds, showed a two-fold decrease in the intracellular pathogen 

numbers as observed by colony-forming-unit (CFU) assay. The acacetin-mediated reduction in 

bacteria was tested in other cell lines such as HeLa epithelial and RAW 264.7 macrophages. 

Consistent results were obtained in all the tested mammalian cell lines (Figure 3.2C & Veena, 

MS thesis, 2016).  

Further, the toxicity of the compound was tested using Cell Titre-Glo cell viability assay. It is 

a luminescent based method to determine the number of viable cells in culture by measuring 

the amount of ATP generated by metabolically active cells. The CellTitre Glo reagent utilizes 

the ATP from the viable cells to fuel the reaction of luciferin in the reagent to form oxyluciferin. 

We used various concentrations of acacetin and even at 100 µM concentration, the compound 

did not show any significant loss in cell viability for the 15 hours tested (Figure 3.3A & Veena, 
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MS thesis, 2016). Further, the compound showed a dose-dependent effect in decreasing the 

intracellular pathogen burden and was most effective at 50 µM concentration of the compound 

for 6 hours (Figure 3.3B & Veena, MS thesis, 2016). Therefore, for further experiments, 

acacetin at 50 µM was used for a maximum period of 6 hours. 



Chapter 3: Identification and validation of acacetin as a novel xenophagy inducer 

85 
 

 



Chapter 3: Identification and validation of acacetin as a novel xenophagy inducer 

86 
 

U
n

tr
e a

te
d

S
ta

r v
a
t i

o
n

R
a
p

a
m

y
c in

A
B

-M
E

C
A

S
en

e c io
n

in
e

T
N

P

A
ca

c e t i
n

L
a
p

id
in

e

6
-B

io

R
it

o
d

r in
e

L
iC

l

0 .0

0 .5

1 .0

1 .5

2 .0

F
o

ld
 c

h
a

n
g

e

**

C
F

U
 (

x
1

0
4
) 

Un Aca

HeLa 

0

200

300

100

GM Aca
0

100

200

300

400

1
*

1
0

^
4

 C
F

U

400 **

Un Aca

G
ro

w
th

 m
ed

iu
m

A
ca

ce
ti
n 

50
m

M

0

50

100

150

200

250

1
*
1
0
^

4
 C

F
U

fo
r
 R

A
W

 2
6
4
.7

**

RAW 264.7 

250

Un Aca

G
M

A
c
a
c
e
ti
n
5
0
m
M

0.0

0.5

1.0

U1752 

**

0

200

300

100

400
200

150

100

0

50

A

B

C

Infection of host cells 

with S. typhimurium

Removal of extracellular media 

and compound addition

Host cell lysis 

and plating

1 hour 2-6 hours O/N grown

**



Chapter 3: Identification and validation of acacetin as a novel xenophagy inducer 

87 
 

Figure 3.2. Pilot-scale secondary screening assay to identify xenophagy inducers. (A) Schematic 

of intracellular infection assay. Epithelial or macrophage cell lines were infected with S. typhimurium 

for one hour. This was followed by the removal of extracellular bacteria in the presence of gentamycin. 

The infected host cells were treated with the compounds and incubated until 6 hours p.i. Finally, the 

host cells were lysed, and the intracellular bacteria were plated on Luria Bertani agar plates. (B) Graph 

showing the fold change values for compounds tested in the pilot-scale screening. Starvation (HBBS 

media) and rapamycin (8 M) were used as positive controls. (C) Graph showing CFU values indicating 

intracellular S. typhimurium in U1752 epithelial cells, HeLa epithelial cells and RAW 264.7 

macrophages. Statistical analyses on three independent experiments were performed using unpaired 

student’s two-tailed t-test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent 

mean +/- SEM.     

3.4.2 Validation of acacetin as a xenophagy inducer  

 

Before proceeding to xenophagy assays, we performed certain validation experiments to 

understand the effect of acacetin on host cells as well as on S. typhimurium. In this regard, it is 

possible that acacetin may impart an antibacterial effect like conventional antibiotics, by 

directly targeting bacterial components besides its role in inducing autophagy flux. To 

investigate this aspect, S. typhimurium growth in extracellular Luria Bertani broth in the 

presence of acacetin was monitored. It was noticed that there was no lag in the growth kinetics 

of acacetin treated samples compared to that of untreated cells. However, gentamycin used as 

antibiotic control showed a decrease in the growth of S. typhimurium (Figure 3.3C & Veena, 

MS thesis, 2016).    

Next, we questioned the essentiality of autophagy for the acacetin-mediated decrease in 

intracellular S. typhimurium growth. This was done by performing intracellular infection in 

autophagy-deficient ATG5-/- HeLa cell line. We observed that acacetin was non-functional in 

this autophagy-deficient cell line (Figure 3.3D & Veena, MS thesis, 2016). To further confirm 
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this observation, chemical inhibitors of autophagy such as 3-Methyladenine (3-MA) and 

Wortmannin (Wort) were used in the presence and absence of acacetin. Acacetin failed to 

decrease the bacterial burden as observed by both CFU quantitation and microscopy analysis 

when co-treated with chemical inhibitors (Figure 3.3E-G & Veena, MS thesis, 2016). These 

results highlight that functional autophagy is essential for acacetin-mediated xenophagy effect. 
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Figure 3.3. Acacetin functions in an autophagy-dependent manner to decrease intracellular S. 

typhimurium. (A) Cell viability assay. Graph indicating the percentage of HeLa cell viability post 

acacetin treatment in increasing concentrations (0.001 to 100 µM), for 15 h. (B) Graph showing CFU 

indicating intracellular S. typhimurium infection treated with acacetin in a dose-dependent manner. (C) 

Growth curve of S. typhimurium in Luria Bertani broth containing acacetin. (D) Graph showing CFU 

indicating intracellular S. typhimurium in HeLa cells and ATG5-/- HeLa cells after acacetin treatment 

(N=3). (E-F) Representative microscopy images and quantitation of intracellular mCherry expressing 

S. typhimurium in HeLa cells after various treatments like acacetin, Wort and 3-MA. Scale bar: 5 µm. 

A.U. represents arbitrary units. (G) Graph showing intracellular CFU of S. typhimurium in HeLa cells 

treated with compounds such as acacetin, wortmannin and 3-MA (N=3). Statistical analyses on three 

independent experiments were performed using One-way ANOVA with Bonferroni test: ns- non-

significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM. 

  

Furthermore, there is a close interconnection between the endocytic and autophagy pathways, 

both pathways sharing certain effector proteins and lysosomes as the ultimate destination. 

Endocytosis is an intracellular trafficking pathway which begins with the uptake of 

extracellular cargo in vesicles known as endosomes that eventually fuse with lysosomes for 

degradation of the cargo. To study the effect of acacetin on endocytosis, we temporally 

followed endocytic cargoes such as FM4-64 (pyridinium,4-(6-[4-{diethylamino}phenyl]-

1,3,5-hexatrienyl)-1-(3[triethylammonio] propyl)-,dibromide) dye and FITC (fluorescein 

isothiocyanate)  labelled Dextran beads. The rate of cargo uptake after acacetin treatment was 

temporally quantitated which did not change in the presence of acacetin (Figure 3.4). 

Furthermore, trafficking of FITC-Dextran to lysosomes was studied by analysis colocalization 

between early endosomal marker, EEA1 and lysosomal stain, LysoTracker Deep Red (LysoT). 

Acacetin did not affect the uptake and the temporal recruitment of endocytic markers 

suggesting that the compound does not have any significant effect on endocytosis (Figure 3.5).  
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Figure 3.4. Acacetin does not affect the uptake of endocytic cargoes. Representative microscopy 

images of HeLa cells treated with (A) FITC-Dextran or (C) FM 4-64 at indicated time points. Scale bar: 

5 µm. (B and D) The graphs represent the rate of uptake of FITC-Dextran and FM 4-64 post acacetin 

treatment (n=25, N=3). Quantification of microscopy images were performed on projected images. The 

concentrations of FITC-Dextran and FM 4-64 dye used are 0.1 mg/ml and 5 µM respectively. Statistical 

analyses on three independent experiments were performed using Two-way ANOVA with Bonferroni 

test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM. 
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Figure 3.5. Early and late events of endocytic trafficking are unperturbed by acacetin. (A) 

Representative microscopy images of single Z stack of HeLa cells treated with FITC-Dextran for 15 

min and chased for indicated time points. The cells were also stained with LysoT for 15 min before 

fixation and then immunostained with EEA1. Yellow arrows indicate colocalized points of dextran 

beads with either EEA1 or LysoT. Scale bar: 5 µm. (B) The graph represents the number of colocalized 

events of EEA1+Dextran beads and LysoT+Dextran beads (n=25, N=3). Quantification of microscopy 

images were performed on individual Z slices. The concentrations of FITC-Dextran and LysoT used 

are 0.5 mg/ml and 100 nM respectively. Scale bar: 5 µm. Statistical analyses on three independent 

experiments were performed using Two-way ANOVA with Bonferroni test: ns- non-significant, 

*p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM. 

3.4.3 Acacetin enhances recruitment of receptor proteins to S. typhimurium 

 

Xenophagy mediated capture of intracellular S. typhimurium was quantified by studying the 

temporal recruitment of p62 adaptor protein and xenophagosome membrane protein, LC3. 

HeLa cells post S. typhimurium infection was monitored at different time points through 

immuno-staining. It was seen that acacetin treated samples showed enhanced recruitment of 

p62 (Figure 3.6A and 3.6B) and LC3 (Figure 3.6C and 3.6D) with increasing time points as 

compared to the untreated infected samples where the recruitment was drastically decreased 

post two hours of infection. Further studies by colocalizing to vesicular marker such as LAMP1 

will help in understanding the location of Salmonella (cytosolic or vacuolar) To understand the 

mechanism of p62 recruitment after acacetin treatment, we studied the phosphorylation in the 

UBA domain (S403) of p62 that has been associated with enhanced binding to ubiquitinated 

cargoes (Figure 3.7A). Furthermore, TBK1 is known to phosphorylate p62 at position S403. 

Additionally, the active form of TBK1 is phosphorylated at S172 within its activation loop. 

Thus, monitoring the levels and recruitment of phospho-p62 and phospho-TBK1 can be used 

to assess the effectiveness of cargo capture. As seen in figure 3.7B and 3.7C, there was 

increased recruitment of phospho-TBK1 and phospho-p62 to S. typhimurium. The protein 

levels of phospho-TBK1 and TBK1 was accessed after acacetin treatment. It was seen that 
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acacetin treated samples showed increase in phosphorylated TBK1 whereas the total TBK1 

proteins levels did not change (Figure 3.7D).  

 

Figure 3.6. Acacetin enhances recruitment of receptor proteins to S. typhimurium. (A) 

Representative microscopy images of HeLa cells infected with mCherry expressing S. typhimurium and 

immunostained for p62 at 6 h p.i in the presence and absence of acacetin (n=25, N=3). Scale bar: 5 µm. 

(B) Graph representing the percentage recruitment of p62 to intracellular S. typhimurium induced by 

acacetin. (C) Representative microscopy images of GFP-LC3 transfected HeLa cells and infected with 

mCherry expressing S. typhimurium at 6 h p.i in the presence and absence of acacetin. Scale bar: 10 

µm. (D) Graph representing the percentage recruitment of LC3 to intracellular S. typhimurium induced 

by acacetin. Statistical analyses on three independent experiments were performed using Two-way 

ANOVA with Bonferroni test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars 

represent mean +/- SEM.  
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Figure 3.7. Acacetin enhances recruitment of receptor proteins to S. typhimurium. (A) 

Representative microscopy images of HeLa cells stained for p62 and phospho-p62 at different time 

points p.i and treatment with and without acacetin. (B) Representative microscopy images of HeLa cells 

infected with mCherry expressing S. typhimurium and immunostained for phospho-TBK1 and phospho-

p62 at 6 h p.i in the presence and absence of acacetin (n=25, N=3). Scale bar: 10 µm. (C) Graph 

representing the percentage recruitment of phospho-TBK1 and phospho-p62 to S. typhimurium induced 

by acacetin. Quantification of microscopy images was performed on individual Z slices. (D) 

Representative immunoblot of HeLa cells treated with acacetin and probed with anti-TBK1 and anti-p-

TBK1 antibodies. Statistical analyses on three independent experiments were performed using Two-

way ANOVA with Bonferroni test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars 

represent mean +/- SEM. 

3.4.4 Acacetin induces autophagy in mammalian cell lines. 

 

As mentioned earlier, acacetin was shortlisted for inducing autophagy in yeast. To quantitate 

the autophagic flux in a mammalian cell model, immunoblotting of HeLa cell line lysates 

treated with acacetin for 2 hours was carried out. An increase in LC3-II levels indicating 

activation of autophagic flux was observed (Figure 3.8A and 3.8B). Although LC3-II 

accumulation is a common indicator for autophagy modulation, it could be either due to 

autophagy induction or block in autophagic degradation. To verify if acacetin is a bonafide 

autophagy inducer, a co-treatment of bafilomycin A1 (BafA1) and acacetin was carried out. 

BafA1 is a well-known autophagy inhibitor which blocks degradation and leads to 

accumulation of LC3-II. Co-treatment of BafA1 (100 nM) and acacetin accumulate LC3-II 

levels over and above the accumulation resulted from BafA1 alone. This indicates that acacetin 

leads to induction of autophagy in addition to the inhibition imposed by BafA1 (Figure 3.8C). 

Besides LC3-II accumulation, p62 degradation was also enhanced post acacetin treatment, also 

indicating autophagy induction (Figure 3.8D). Additionally, to identify the step at which the 

autophagy flux is induced by acacetin, we used tandemly tagged RFP-GFP-LC3 plasmid 

transiently transfected in HeLa cells in the presence of acacetin for 2 hours. Compared to 

untreated cells, acacetin treated samples showed a significant increase in the number of 
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autolysosomes (Figure 3.8E and 3.8F). This increase in autolysosomes indicates enhanced 

fusion flux of autophagosomes with lysosomes.     

In addition to inducing the formation of autolysosomes, acacetin treatment also showed an 

increase in the number of lysosomes marked by LAMP1. To differentiate between lysosomes 

and autolysosomes of the cell, we employed immunostaining of LC3 and LAMP1. It was 

noticed that in acacetin treated cells, there was an increase in both LAMP1 positive vesicles 

(indicating lysosomes) as well as LC3 and LAMP1 double positive vesicles (indicating 

autolysosomes) (Figure 3.8G and 3.8H). We further confirmed this observation by using 

electron microscopy (EM). EM analysis of acacetin treated HeLa cells exhibited an increase in 

electron-dense structures indicative of lysosomes (Figure 3.9).  
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Figure 3.8. Acacetin induces autophagy and increases lysosomal population. (A) Representative 

immunoblot for LC3-I to LC3-II conversion in HeLa cells in the presence of the compound for 2 h. (B) 

Fold change in normalized LC3-II levels between growth condition and acacetin treatment were 

quantified (N=3). Statistical analyses on three independent experiments were performed using unpaired 

student’s two-tailed t-test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent 

mean +/- SEM. (C) Representative immunoblot for LC3-II accumulation in the presence of acacetin 

only and acacetin with BafA1 (100 nM). (D) Representative immunoblot for p62 degradation post 

acacetin treatment. (E) Representative microscopy images for tandem RFP-GFP-LC3 transfected HeLa 
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cells treated with acacetin (50 µM) for 2 h. Yellow puncta correspond to autophagosomes whereas red 

puncta correspond to autolysosomes. Scale bar: 10 µm. (F) Fold change in autophagosomes and 

autolysosomes induced by acacetin were quantified (n=25, three independent experiments N=3). (G) 

Representative immunofluorescence microscopy images of HeLa cells stained for LAMP1 and LC3 

after 2 h of acacetin treatment (n=25, N=3). Scale bar: 10 µm. (H) Fold change in lysosomes and 

autolysosomes induced by acacetin were quantified (n=25, N=3). Statistical analyses on three 

independent experiments were performed using One-way ANOVA with Bonferroni test: ns- non-

significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM.  

 

Figure 3.9. Acacetin induces autophagy and increases lysosomal population. Representative 

electron micrographs of acacetin treated HeLa cells. Electron dense structures in the zoomed-in panel 
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represent lysosomes (red arrow). Accumulation of multi-membrane vesicles and double-membrane 

vesicles in acacetin treated cells are indicated by yellow arrows.  

3.5 Discussion 

 

S. typhimurium has evolved multiple mechanisms to evade restriction and enable its persistence 

inside host cells (Brumell and Grinstein, 2004). A multitude of S. typhimurium effectors 

especially factors of T3SS2 is shown to be involved to overcome xenophagy. In this study, we 

used chemical biology approach to induce host xenophagy during intracellular S. typhimurium 

infection. Since autophagy is an evolutionarily conserved process, the small-molecule 

compounds shortlisted in yeast-based screening for autophagy modulators were further tested 

for their ability to induce xenophagy. From the secondary screening for xenophagy, we 

identified acacetin for its potency to decrease intracellular S. typhimurium replication in 

multiple cell lines. Acacetin is an O-methylated flavone naturally found in certain plants such 

as members of Asteraceae family. Like other flavones, acacetin is known to exhibit anti-tumour 

and anti-inflammatory activities. Additionally, acacetin is known to activate ERK/PI3K/Akt 

pathway and cyclin signalling pathways promoting proliferation MCF-7 breast cancer cell line 

(Ren et al., 2018). Incidentally, parallel studies by Zhang et al also reported acacetin as an 

autophagy inducer along with other flavones tested. However, the study did not explore the 

mechanism of acacetin-mediated autophagy induction (Zhang et al., 2018).    

In our study, validation experiments highlighted that acacetin does not directly target S. 

typhimurium like an antibiotic as seen by the unperturbed growth kinetics when grown in Luria 

Broth. Besides, various assays to study the effect of acacetin on HeLa cells were performed. 

Acacetin did not exhibit toxicity on HeLa cells at the concentration used in the study. More 

importantly, acacetin mediated decrease in S. typhimurium was abrogated when tested in an 

autophagy-deficient cell line or chemical inhibition of autophagy. Furthermore, by performing 

uptake assays and recruitment of markers onto endocytic cargo, we showed that acacetin does 
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not affect the kinetics of the endocytic pathway. All results highlighted that acacetin functions 

in a host-mediated mechanism especially requiring functional autophagy. 

Following this, we measured the rate of xenophagic capture in the presence of acacetin. 

Adaptor proteins such as p62/SQSTM1, OPTN, NDP52 serve as bridging proteins to recruit 

ubiquitinated S. typhimurium to LC3 leading to the formation of double-membrane 

xenophagosomes. However, this recognition by adaptor proteins and subsequent recruitment 

of LC3 drastically decreases after 2 hours p.i. The molecular mechanisms that are involved in 

pathogen recognition are still not clear. Our study on acacetin mediated S. typhimurium capture 

showed an increase in the temporal recruitment of p62 and LC3. Further mechanistic 

investigations revealed post-translational modification of p62 in its UBA domain. This 

modification, phospho-S403 of p62 is predicted to form polar contacts with Lys6 and His68 of 

ubiquitin increasing their binding affinity (Matsumoto et al., 2015). Further, this 

phosphorylation event is catalysed by two kinases namely, CK2 (Matsumoto et al., 2011) and 

TBK1 (Pilli et al., 2012). Among the two kinases, acacetin treatment showed increased 

localization of TBK1 to intracellular S. typhimurium. TBK1 is a serine/threonine kinase well-

studied for its role in anti-viral responses such as activation of IRF3 and NF-kB signalling. The 

study by Ritcher et al showed that activation of OPTN by TBK1 mediated phosphorylation led 

to signal amplification (Richter et al., 2016). Apart from p62, other autophagic adaptors 

recruited to S. typhimurium include NDP52, TAX1BP1, NBR1 and OPTN (Wild et al., 2011). 

Additionally, studies revealed that NDP52 specifically recruits LC3C to the intracellular S. 

typhimurium and is also involved in recognizing bacteria replicating in damaged endosomes 

(von Muhlinen et al., 2012). However, the involvement of other adaptor proteins in acacetin-

mediated xenophagy is yet to be explored.  

After establishing acacetin as a potent xenophagy inducer, we next measured the autophagic 

flux induced by acacetin. By performing LC3 processing assay, we saw an increased 
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accumulation of LC3-II which was further increased upon co-treatment with BafA1 going to 

confirm that acacetin indeed is an autophagy inducer. Further, to study the step at which 

acacetin induces autophagy flux, we used mRFP-GFP-LC3 reporter, which showed an increase 

in autolysosomes indicating an increase in autophagosome-lysosome fusion flux. Apart from 

inducing autophagy, immunostaining for the lysosomal marker, LAMP1, also showed an 

increase in general lysosome population of the cell. A similar observation was also seen in 

transmission electron micrographs of HeLa cells treated with acacetin. These results taken 

together establish acacetin as an inducer of xenophagy and suggest that there is an increase in 

both autophagosome-lysosome fusion and number of lysosomes in the cell. In the next chapter, 

we have looked at the upstream pathways that regulate the acacetin mediated xenophagy 

induction.             
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Chapter 4 

Molecular mechanism of acacetin to induce autophagy/xenophagy 

4.1 Overview 

 

In the previous chapter, we elaborated our efforts on identifying novel xenophagy inducers and 

various validation assays carried out to access the xenophagy potential of the shortlisted 

compound, acacetin. Following this, we wanted to study the mechanism by which acacetin 

induces xenophagy flux. Microscopy analysis revealed enhanced autophagosome-lysosome 

fusion as well as an increase in the number of lysosomes in the cell (Chapter 3, Figure 3.8 

and 3.9). This hinted the possibility of a global increase in gene network involved in lysosomal 

biogenesis and autophagy genes. Based on the available literature, we decided to investigate 

the role of Transcription factor EB (TFEB), a transcription factor well known for regulating 

the expression of genes involved in lysosomal biogenesis and autophagy pathways. 

4.2 TFEB - master regulator of lysosomal biogenesis and autophagy genes 

 

Lysosomes are organelles that contain digestive proteases to degrade macromolecules of the 

cell. It is involved in key cellular processes such as endocytosis, phagocytosis, apoptosis and 

autophagy. In silico study of Ballabio’s group in the promoter of lysosomal genes identified 

GTCACGTGAC consensus sequence based on pattern discovery analysis (68 out of 96 genes 

analysed with high confidence p<0.0001). This palindromic 10 base pair sequence referred to 

as CLEAR element is located within 200 bp from the transcription start site. MiTF family 

members are known to bind sequences similar to CLEAR element. Overexpression of TFEB 
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among other MiTF family members induced maximal expression of lysosomal genes. 

Concomitantly, levels of lysosomal enzymes were also induced. Furthermore, microarray 

analysis after TFEB overexpression identified 291 genes upregulated highly enriched in 

lysosomal biogenesis and function (Sardiello et al., 2009). Another study from the same group 

also identified increased expression of autophagy genes inducing the formation of 

autophagosomes after TFEB overexpression. Additionally, there was an increased fusion of 

autophagosomes with lysosomes (Settembre et al., 2011).  

Characterization of TFEB targetome revealed several insights into the integrated regulation of 

lysosomal biogenesis and function (Palmieri et al., 2011). De novo motif analysis of chromatin 

IP peaks revealed the existence of CLEAR element in -300 to +100 bp from lysosomal gene 

transcription start site. The analysis revealed 3468 genes containing CLEAR element and, in 

some cases, multiple CLEAR sites were present. 

Regulation of TFEB activity is majorly achieved by its cellular localization (Sardiello et al., 

2009). This spatial distribution is mediated by phosphorylation/dephosphorylation of TFEB on 

multiple residues. Phosphorylation of TFEB on conserved residues such as Ser211, Ser122, 

Ser142, and Ser138 leads to its sequestration in the cytoplasm. Cytoplasmic TFEB is recruited 

to the lysosomal surface through its direct interaction with mTOR (Martina et al., 2012). 

Conversely, upon TFEB dephosphorylation of the same residues, rapidly translocate TFEB to 

the nucleus to induce expression of its target genes (Puertollano et al., 2018) (Figure 4.1).  

Studies by multiple groups have identified kinases such as mTOR, ERK, GSK3, Akt to be 

involved in phosphorylating TFEB (Palmieri et al., 2017; Parr et al., 2012; Roczniak-Ferguson 

et al., 2012). Similarly, a study by Medina et al identified a phosphatase, calcineurin to mediate 

dephosphorylation and subsequent nuclear translocation (Medina et al., 2015). Several cellular 

stimuli such as nutrient deprivation, pathogen invasion and misfolded protein response are 
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known to cause nuclear translocation of TFEB. Novel regulators of TFEB activation depending 

on the stimuli are recently identified. For example, cyclin-dependent kinases, CDK4/6 is 

reported to modulate TFEB activation during cell cycle (Yin et al., 2020). Similarly, 

autophagy-related GTPase, IRGM regulates TFEB localization in an mTOR-dependent manner 

in response to pathogens (Kumar et al., 2020). Apart from the regulation of TFEB mediated by 

its phosphorylation status, is also fine-tuned by micro RNA in the nucleus. A recent report 

identified miR-30b-5p to bind CLEAR element to suppress the expression of TFEB-dependent 

genes (Guo et al., 2020).      

 

Figure 4.1. Schematic of TFEB activation. Multiple sites of TFEB (S122, S134, S138, S142, and 

S211) when phosphorylated is retained in the cytoplasm either on the lysosomal surface or bound to 

14-3-3 protein. Conversely, dephosphorylation of TFEB on the same sites leads to its nuclear 

translocation to induce lysosomal and autophagy genes. Image created using BioRender.com.  

4.2.1 TFEB during infection 

 

TFEB is a stress-responsive transcription factor that is also shown to provide cytoprotective 

effects during infection (El-Houjeiri et al., 2019; Irazoqui, 2020). In response to 

lipopolysaccharide stimulus, macrophages exhibited TFEB accumulation in the nucleus and 

concomitant induction in host immune genes in addition to the known lysosomal and autophagy 

genes. Conditional knockout of TFEB in macrophages showed decreased expression of 
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proinflammatory cytokines and chemokines such as Colony Stimulating Factor (CSF2), 

interleukin 1β, IL2 and IL27 (Pastore et al., 2016). Additionally, the involvement of TFEB 

during pathogen-specific infections are reported. For instance, during Mycobacterium 

infection, host cells respond by inducing TFEB nuclear translocation. Mechanistically, a study 

by Singh et al, showed that exposure of interferon-gamma to M. tuberculosis infected 

macrophages leads to an increase in intracellular calcium levels activating calcineurin 

phosphatase. Calcineurin dephosphorylates TFEB in specific residues leading to nuclear 

translocation (Singh et al., 2018). Alternatively, pharmacological means of activating TFEB 

such as simvastatin and rifampin is shown to restrict M. tuberculosis replication by inhibiting 

mTOR (Bruiners et al., 2020; Bryk et al., 2020). Studies focussed on identifying pathogenic 

factors in modulating TFEB, revealed the involvement of cell wall lipid component, sulfolipid 

of M. tuberculosis to activate TFEB (Sachdeva et al., 2020). Other bacterial infections that 

replicate in lysosome-derived vacuoles such as Coxiella burnetti modulates MITF members, 

TFEB and TFE3. Studies analysing the genetic remodelling p.i also indicate global changes in 

TFEB gene network. The study by Giansanthi et al indicated modulation of mTOR and TFEB 

signalling pathways in response to enterovirus infection (Alirezaei et al., 2020; Giansanti et al., 

2020).    

The role of TFEB during S. typhimurium infection is limited. The study by Visvikis et al 

showed that TFEB mediated antimicrobial genes provides cytoprotection during S. 

typhimurium infection (Visvikis et al., 2014). Additionally, a study in C. elegans identified the 

role of protein kinase D (PKD) to activate TFEB in response to intracellular S. typhimurium 

and Staphylococcus aureus (Najibi et al., 2016). 
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4.3 Results 

 

4.3.1 Acacetin treatment results in activation of TFEB 

 

Acacetin treated samples led to an increase in both lysosomal and autolysosomal population of 

the cell. As TFEB is implicated as a master regulator of lysosomal and autophagy biogenesis, 

we suspected its involvement in acacetin mediated autophagy/xenophagy induction. We tested 

this hypothesis by treating HeLa cells with acacetin for 2 hours and studying the nuclear and 

cytoplasmic localization of TFEB. As seen in figure 4.2A and 4.2B there was an increase in 

the nuclear TFEB accumulation of the acacetin treated samples. Additionally, immunoblotting 

using total TFEB antibody also revealed a lower molecular band indicative of 

dephosphorylated TFEB in acacetin treated samples (Figure 4.2C and 4.2D). Similarly, 

cytoplasm and nuclear fractionation of acacetin treated HeLa cells showed increased 

accumulation of TFEB in nuclear fraction compared to the untreated sample (Figure 4.2E). 

Following this, we studied the functional readout of translocation which is the transcript levels 

of selected TFEB target genes. As seen in figure 4.2F acacetin treatment for 2 hours in HeLa 

cells showed significant increase in certain TFEB target genes. ASC1 (apoptosis-associated 

speck-like protein containing a CARD) gene does not harbour CLEAR motif and was used as 

the negative control.  
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Figure 4.2: Acacetin enhances nuclear translocation of TFEB. (A) Representative microscopy 

images of HeLa cells treated with and without acacetin for 2 h and immunostained for TFEB. Scale bar: 

5 µm. (B) Fold change in nuclear TFEB intensity induced by acacetin were quantified (n=50, N=3). 

Quantification of microscopy images was performed on individual Z slices. (C) The graph represents 

the fold change in the dephosphorylated form of TFEB caused by acacetin (N=3). (D) Representative 

immunoblot for HeLa cells treated with acacetin and probed for TFEB. Molecular weight shift in TFEB 

band corresponds to dephosphorylated TFEB. β-tubulin was used as a loading control. (E) 

Representative immunoblot of cytoplasmic-nuclear fractionation indicating GFP-TFEB levels in 

nucleus and cytoplasm. H3 and GAPDH were used as nuclear and cytoplasm loading controls 

respectively.  2X concentration of nuclear fraction was loaded compared to cytoplasmic fraction. S.E 

and L.E represent short and long exposure respectively. (F) Fold change in mRNA levels of indicated 

TFEB target genes related to autophagy and lysosomal pathways post 2 h of acacetin treatment (N=3). 

Statistical analyses on three independent experiments were performed using unpaired student’s two-

tailed t-test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM. 
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Further, to visualize the intracellular S. typhimurium populations, we resorted to electron 

microscopy. Electron micrographs of infected HeLa cells showed both vacuolar and cytosolic 

population (Figure 4.3A). Whereas, after 6 hours of acacetin treatment, host-induced capture 

of S. typhimurium was seen with reduced bacterial numbers. Additionally, electron-dense 

lysosomes were seen at close proximity to intracellular bacteria after acacetin treatment 

(Figure 4.3B).  

 

Figure 4.3. Representative electron micrographs of S. typhimurium infected HeLa cells with and 

without acacetin. (A) Untreated infected samples show vacuolar and cytosolic replication. (B) Acacetin 

treated samples show electron-dense lysosomes (red arrow) and host-mediated capture (yellow arrow) 

of S. typhimurium. 

4.3.2 Acacetin treatment results in enhanced capture of S. typhimurium in a 

TFEB-dependent manner 

 

We further investigated the phosphorylation status of TFEB during S. typhimurium infection. 

We noticed that the overall levels of TFEB increased during infection, especially the higher 

molecular weight band which is indicative of phosphorylated TFEB (Figure 4.4A). To test if 

this band was indeed p-TFEB, we treated the infected lysates with calf intestine phosphatase 

(CIP). As seen in figure 4.4B, CIP treated samples showed accelerated migrating bands of 
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TFEB suggesting that infection results in maintaining TFEB in the phosphorylated state. 

Contrastingly, acacetin treatment on HeLa cells during infection showed an increase in 

dephosphorylated TFEB (Figure 4.4C and 4.4D).  

 

Figure 4.4. Acacetin enhances the dephosphorylation of TFEB during S. typhimurium. (A) 

Representative immunoblot indicating the phosphorylation status of TFEB post S. typhimurium 

infection across different time points and MOI. The lower molecular weight TFEB band corresponds 

to dephosphorylated TFEB. (B) Representative immunoblot for infected HeLa cell lysates treated with 

phosphatase (CIP) and probed for TFEB. β-actin was used as a loading control. (C) Representative 

immunoblot indicating the phosphorylation status of TFEB post S. typhimurium infection and acacetin 

treatment in a time-dependent manner. (D) Graph representing the dephosphorylated TFEB induced by 

acacetin post S. typhimurium infection (N=3). β-tubulin was used as a loading control. Statistical 

analyses on three independent experiments were performed using Two-way ANOVA with Bonferroni 

test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM. 
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In order to identify if acacetin mediates its autophagy and xenophagy induction through 

dephosphorylation of TFEB, we silenced TFEB in HeLa cells. Acacetin treatment post TFEB 

silencing did not show accumulation of autolysosomes. This reduction was quantitated by 

overexpressing RFP-GFP-LC3 construct in TFEB silenced HeLa cells treated with acacetin 

(Figure 4.5A and 4.5B). Similarly, LC3-II accumulation was not observed in immunoblotting 

post TFEB silencing in acacetin treated samples in comparison to enhanced LC3-II 

accumulation as seen in scramble control with acacetin treatment (Figure 4.5C). Taken 

together, these results suggest that for acacetin mediated autophagy induction, TFEB is 

necessary. Furthermore, infection of TFEB silenced HeLa cells showed a significant decrease 

in the capture of intracellular Salmonella post acacetin treatment (Figure 4.6A and 4.6B). 

Results cumulatively suggest that during infection, acacetin increases the level of 

dephosphorylated TFEB in the host cells leading to increased capture and degradation of 

Salmonella.   



Chapter 4: Molecular mechanism of acacetin to induce autophagy/xenophagy 

117 
 

   

F
o
ld

 C
h

a
n

g
e

esiTFEBesiScramble
G
M

A
ca G

M
A
ca

0.0

0.5

1.0

1.5

2.0

2.5

Autophagosomes

Autolysosomes

G
M

A
ca G

M
A
ca

0.0

0.5

1.0

1.5

2.0

2.5

Autophagosomes

Autolysosomes

0.0

1.5

1.0

0.5

2.0

2.5

Autophagosomes

Autolysosomes

Un Aca Un Aca

**

A

B

Aca- +           - +

LC3-I

LC3-II

TFEB

Tubulin

esiScramble esiTFEB

C

T
F

E
B

D
A

P
I

G
F

P
-L

C
3

R
F

P
-L

C
3

M
er

g
e

esiScramble esiScramble+Aca esiTFEB esiTFEB+ Aca



Chapter 4: Molecular mechanism of acacetin to induce autophagy/xenophagy 

118 
 

Figure 4.5. Acacetin mediated autophagy induction is TFEB-dependent. (A) Representative 

microscopy images of HeLa cells transfected with either scrambled or TFEB esiRNA for 48 h along 

with tandem RFP-GFP-LC3. Cells were either left untreated or treated with acacetin.  Scale bar: 5 µm. 

(B) The fold change in the number of autophagosomes and autolysosomes post acacetin treatment were 

quantified. Quantification of microscopy images was performed on projected images. (C) 

Representative immunoblot for TFEB levels and LC3-II accumulation in control and TFEB silenced 

HeLa cells treated with acacetin for 2 h. β tubulin was used as loading control. Statistical analyses on 

three independent experiments were performed using Two-way ANOVA with Bonferroni test: ns- non-

significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM.  
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Figure 4.6. Acacetin treatment results in enhanced capture of S. typhimurium in a TFEB-

dependent manner. (A) Representative microscopy images of control and TFEB silenced HeLa cells 

after S. typhimurium infection for 6 h and immunostained for p62 and TFEB. Cells were either left 

untreated or treated with acacetin.  Scale bar: 5 µm. (B) The graph represents the time course recruitment 

of p62 to S. typhimurium induced by acacetin treatment (n=25, N=3). Quantification of microscopy 

images was performed on individual Z slices. Statistical analyses on three independent experiments 

were performed using Two-way ANOVA with Bonferroni test: ns- non-significant, *p<0.05, **p<0.01, 

***p<0.001. Error bars represent mean +/- SEM.  

4.3.3 Acacetin induces TFEB dephosphorylation independent of mTOR 

 

mTOR is the well-studied kinase for its role in phosphorylating TFEB. It is shown that mTOR 

phosphorylates specific serine residues of TFEB such as Ser122, Ser211 and Ser142. The study 

by Martina et al showed that cytoplasmic TFEB shows enhanced affinity for another 

cytoplasmic protein, 14-3-3. Interestingly, this interaction with 14-3-3 is phosphorylation-

dependent. Phosphorylation of Ser211 by mTOR is necessary and sufficient for TFEB to bind 

14-3-3 (Martina et al., 2012). This binding leads to masking of the nearby NLS sequence in 

TFEB thereby preventing its nuclear translocation (Martina et al., 2012; Roczniak-Ferguson et 

al., 2012). Further, the mechanism by which Ser122 and Ser142 mediate TFEB cytoplasmic 

retention is not clear. However, a study by Sha et al revealed that phosphorylation of Ser122 

and Ser142 increases its binding to an E3 ubiquitin ligase, STUB1 thereby increasing the 

proteasome degradation. This study suggests a possible mechanism of regulation by protein 

stability (Sha et al., 2017).      

Most of the known chemical modulators that modulate TFEB phosphorylation status function 

by inactivating mTOR. To study the effect of acacetin on mTOR kinase activity (Figure 4.7A), 

various strategies were employed. Immunoblotting analysis of mTOR substrates revealed 

phosphorylation of its downstream targets such as p70S6K and 4EBP1 was not affected 

(Figure 4.7B). Additionally, the effect of acacetin on mTOR was confirmed after keeping the 
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kinase constitutively active by overexpressing RHEBN153T mutant construct. It was observed 

that acacetin treatment did not affect nuclear TFEB translocation even in the background of 

constitutive mTOR activation (Figure 4.8A-C) going to show that acacetin mediates TFEB 

translocation independent of mTOR kinase activity. Furthermore, mTOR is located on the 

surface of lysosomes in its active form and acacetin treatment did not affect this localization as 

seen by immunostaining with LAMP1 and mTOR (Figure 4.8D and 4.8E).  

 

Figure 4.7. Acacetin functions in an mTOR-independent manner. (A) Schematic of mTOR kinase 

signalling pathway. The activity of mTOR which is located on the lysosomal membrane is regulated by 

Rheb and Rag GTPases. The downstream substrates of mTOR include S6K and 4EBP1. The image was 

created using BioRender.com (B) Representative immunoblot indicating the phosphorylation status of 

mTOR substrates, S6K and 4EBP1 caused by acacetin and Earle’s Balanced Salt Solution (EBSS) 

treatments. β-tubulin was used as a loading control. 
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Figure 4.8. Acacetin induces nucleus translocation of TFEB in an mTOR-independent manner. 

(A) Representative microscopy images of HeLa cells transfected with GFP-TFEB and FLAG-

RHEBN153T constructs. The cells were treated with acacetin for 2 h and immunostained for p-RPS6KB1. 

Scale bar: 10 µm. (B) Immunoblotting of HeLa cells transfected with FLAG-RHEBN153T construct and 

probed for p-RPS6KB1 and compared with untransfected control. (C) The graph represents the 

difference in the intensity of nuclear TFEB signal (N=3). A.U. represents arbitrary units. Quantification 

of microscopy images was performed on individual Z slices.  Each red dot represents a quantified cell. 
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(D) The graph represents the intensity of colocalization between mTOR and LAMP1 in the presence or 

absence of acacetin (N=3). (E) Representative microscopy images of HeLa cells transfected with a 

plasmid expressing RFP-LAMP1 and treated with acacetin for 2 h and immunostained with mTOR. 

Scale bar: 10 µm. Quantification of microscopy images was performed on individual Z slices. A.U. 

represents arbitrary units. Statistical analysis was performed using unpaired student’s two-tailed t-test; 

ns- non-significant, *p<0.05, **p<0.01, ***p<0.001.  Error bars represent mean +/- SEM. 

4.3.4 Acacetin treatment increases the proteolytic activity of Salmonella-

containing vacuoles 

 

Acacetin induces an increase in the number of lysosomes and autolysosomes in the host cell. 

To verify if this increase also concomitantly increase the lysosomal activity of the lysosomes, 

dye quenched-bovine serum albumin (DQ-BSA) was used. DQ-BSA is a BODIPY conjugated 

dye which acts as a protease substrate and is cleaved by lysosomal cysteine and aspartyl 

proteases present in functionally active enzymes (Figure 4.9A). As seen in figure 4.9B and 

4.9D acacetin treatment on HeLa cells showed an increase in DQ-BSA intensity by 

immunofluorescence analysis. This increase corresponds to lysosomal mediated processing 

resulting in brighter mono-conjugates of DQ-BSA. 

During intracellular Salmonella infection, the pathogen replicates in modified Salmonella 

containing endosomes-like structures referred to as Salmonella containing vacuoles (SCVs). 

SCVs resemble lysosomes by membrane composition but do not contain proteases similar to 

functional lysosomes. These protease-deficient vesicles provide an ideal niche for S. 

typhimurium to replicate within cells. In order to verify if acacetin treatment during infection 

can induce functionally active lysosomes, DQ-BSA intensity from SCVs was measured. As 

seen in figure 4.9C and 4.9E, SCVs of acacetin treated cells showed increased DQ-BSA 

processing. DQ-BSA processing to monoconjugates is a sign of increased proteolytic activity 

in the contained vesicles. These results suggest that apart from enhanced acacetin-mediated S. 

typhimurium capture by xenophagy proteins, there is an increase in functional lysosomal 
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numbers which also target SCVs to enhance their proteolytic activity and thus reduce S. 

typhimurium replication.  
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Figure 4.9. Acacetin treatment increases the proteolytic activity of Salmonella-containing 

vacuoles. (A) Schematic of intracellular DQ-BSA processing principle. DQ-BSA is tagged to BODIPY 

dye which is self-quenched due to near proximity. When DQ-BSA reaches lysosomes that are protease 

rich, BSA gets degraded and BODIPY fluoresces. Image created using BioRender.com (B and C) The 

DQ-BSA intensity per cell or SCVs induced by acacetin treatment were quantified (n=25, N=3). 

Quantification of microscopy images was performed on projected images. (D) Representative 

microscopy images of HeLa cells treated with DQ-BSA for 2 h followed by 4 h incubation of DQ-BSA 

along with acacetin treatment. Cells were immunostained for LAMP1 (n=25, N=3). Scale bar: 5 µm. 

(E) Representative microscopy images of mCherry S. typhimurium infected HeLa cells treated with 

DQ-BSA for 2 h followed by 4 h incubation of DQ-BSA along with acacetin treatment. Cells were 

immunostained for LAMP1. Scale bar: 5 µm. Statistical analyses on three independent experiments 

were performed using unpaired student’s two-tailed t-test; ns- non-significant, *p<0.05, **p<0.01, 

***p<0.001.  Error bars represent mean +/- SEM. 

4.3.5 Acacetin induces xenophagy in a mouse model of infection 

 

Salmonella typhimurium is a gastrointestinal infection that typically occurs by ingestion of 

contaminated food or water. Although the majority of the ingested bacteria gets killed in the 

stomach, some may survive and traverse the intestinal epithelium. The primary site of infection 

in the intestine is distal ileum. Salmonella utilizes SPI1 T3SS to drive its entry. This leads to 

infection of both enterocytes and M cells of payer’s patch. Subsequently, there is the 

dissemination of bacteria into distant organs such as liver, spleen and kidney via the lymphatics 

and bloodstream. There are also alternative routes for dissemination through CD+18 

mononuclear phagocytes (Watson and Holden, 2010).   

Previous studies have reported that the xenophagy potential of the organs during Salmonella 

infection is short-lived, returning to basal levels at around 72 hours p.i. To test the efficacy of 

acacetin in inducing xenophagy-mediated bacterial clearance, an in vivo mouse model of 

infection was established. Based on our preliminary studies, we found that administering 1010 

bacteria through oral gavage, disseminates bacteria across key organs involved during 

Salmonella infection like intestine, liver, spleen and kidney at 7 days p.i. Three groups of mice 
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were tested namely uninfected, infected and infected along with acacetin treatment. In this 

infection model, acacetin (20 mg/kg body weight) was administered intraperitoneally starting 

from 1 day before S. typhimurium infection in order to maintain an induced autophagy status 

in the organs. Acacetin treatment continued until 7 days p.i. At the end of 7 days p.i, mice from 

all groups were sacrificed and the number of intracellular S. typhimurium was determined by 

quantitating CFU and autophagy induction was visualized in liver using immunohistochemistry 

(Figure 4.10A). As seen in figure 4.10B, there is a reduction in the number of intracellular 

bacteria in various organs of infected mice like the liver, spleen, and intestine in the acacetin 

treated group. In addition, immunohistochemical analysis revealed induction of autophagy as 

seen by increased LC3-II puncta in the infected group that received acacetin (Figure 4.10C 

and 4.10D).  
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Figure 4.10. Acacetin induces xenophagy in a mouse model of infection. (A) Scheme for infection 

assay. (B) Graph representing the reduction in intracellular S. typhimurium burden in various organs of 

acacetin treated mice (N=10). Statistical analyses of three independent experiments was performed 

using unpaired student’s two-tailed t-test; ns- non-significant, *p<0.05, **p<0.01, ***p<0.001.  Error 

bars represent mean +/- SEM. (C) Graph representing the difference in the number of LC3 puncta per 

microscopy field (1X1 binning and 1024X1024 pixel area) between different groups of mice. Statistical 

analyses on three independent experiments were performed using One-way ANOVA with Bonferroni 

test: ns- non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM. (D) 

Representative immunohistochemistry images of liver cryosections stained for autophagosome 

membrane marker, LC3 (Olympus FV3000 1.25X objective was used for imaging entire DAPI stained 

liver section, 20X objective was used to choose a region of interest stained for LC3 in red and DAPI. 

40X objective was used for observing LC3 puncta, indicated by yellow arrows).  

4.4 Discussion 

 

TFEB plays an important role in regulating the expression of lysosomal biogenesis and 

autophagy pathway genes (Napolitano and Ballabio, 2016; Zhao and Czaja, 2012). The 

transcriptional regulation of TFEB is achieved by its cellular localization. This subcellular 

localization is controlled by its phosphorylation-dephosphorylation status.  

In this chapter, we show that acacetin induces nuclear translocation of TFEB and concomitant 

increase in lysosomal biogenesis and autophagy pathways. Further, silencing of TFEB 

abrogates the ability of acacetin to induce autophagy and xenophagy going to show that 

acacetin functions in a TFEB dependent manner. In our study, we observed that during 

intracellular S. typhimurium infection, there is an accumulation of phosphorylated TFEB. 

Whereas, during acacetin treatment, there is increased dephosphorylated TFEB even in the 

presence of infection.    

Given the importance of autophagy during infection, it is not surprising that TFEB, which is 

considered as the master transcriptional regulator of autophagy is modulated in response to 

intracellular S. typhimurium infection. Previously published literature has shown that 
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Caenorhabditis elegans TFEB homologue, HLH30, induces expression of antimicrobial and 

autophagy genes in response to Staphylococcus aureus and S. typhimurium. There is a nuclear 

accumulation of HLH30 during infection owing to transcriptional expression (Visvikis et al., 

2014). Additionally, another study from the same group identified the role of the kinase, PKD 

to induce TFEB during S. typhimurium infection (Najibi et al., 2016). However, these studies 

monitored TFEB activation only during early time points (2 hours) after intracellular S. 

typhimurium infection. In the current study, we temporally monitored the TFEB status and 

observed an accumulation of phosphorylated TFEB with increasing time points.    

Furthermore, we also showed that acacetin treatment induces proteolytically active lysosomes 

in the host cells. A study by McGourty et al showed that S. typhimurium perturbs intracellular 

trafficking of proteases from ER to lysosomes. The lysosomes of S. typhimurium infection are 

therefore protease deficient (McGourty et al., 2012). In our study, we observed that acacetin 

mediated induction of proteolytically active lysosomes fuses with SCVs. This observation 

indicates that SCVs of acacetin treated cells are proteolytically active thereby disrupting the 

ideal niche of SCVs for S. typhimurium replication. Additionally, we show that acacetin is 

effective in inducing xenophagy during S. typhimurium infection in an in vivo mouse model. 

We observed increase in LC3B-II levels and concomitant reduction in the intracellular bacteria 

in organs of infected mice such as liver and spleen.      
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Chapter 5 

Identification of upstream regulators of acacetin-mediated  

TFEB activation  

5.1 Overview 

 

The previous chapters explained in detail the molecular mechanisms of acacetin action, to 

induce the xenophagy of intracellular S. typhimurium. The key observations include (a) 

Increase in lysosomal population and autophagy-related pathways after acacetin treatment, (b) 

Activation of a key transcriptional regulator of the process, TFEB that regulates the gene 

network of both lysosomal biogenesis and autophagy pathway, and, (c) TFEB activation is 

beneficial during intracellular infection by increasing the proteolytically active lysosomes of 

the host cells.  

Based on our observations, we next wanted to explore the regulation of TFEB. As elaborately 

discussed earlier, TFEB is post-translationally modified by kinases or phosphatases which 

dictates its cellular localization needed for the activation. Studies by multiple groups have 

identified kinases such as mTOR, ERK, GSK3β, Akt and phosphatase calcineurin to modulate 

the phosphorylation status of TFEB. However, acacetin treatment did not modulate the known 

kinases or calcineurin to activate TFEB. Additionally, we hypothesised that crosstalk with 

upstream immune signalling pathways is involved in regulation of xenophagy.  To understand 

these unanswered questions gene expression analyses were carried out. 
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The specific objectives of gene expression analyses include  

1. Identifying the upstream players/pathways that mediate TFEB activation during 

acacetin treatment. 

2. Identifying the molecular players involved in the accumulation of phosphorylated 

TFEB during intracellular S. typhimurium infection. 

3. Studying the crosstalk of immune pathways in inducing xenophagy.    

5.2 Results 

 

5.2.1 Gene expression analyses of acacetin treated HeLa cells 

 

To study the changes in gene expression induced by acacetin, an unbiased approach of 

microarray analysis was performed (Figure 5.1A). The total RNA isolated from HeLa cells 

with and without acacetin treatment for 2 hours was studied. The quality of the isolated RNA 

was measured by calculating the RNA integrity number (RIN) before proceeding to microarray 

analysis. RIN is an algorithm generated by Agilent technologies to measure the degree of RNA 

degradation by electrophoretic separations based on size (Schroeder et al., 2006). The value is 

generated by considering various characteristics of RNA electropherogram such as area under 

28S and 18S rRNA peaks to the total area under the graph, the height of the peaks and the 

distance between 5S and 18S peaks. A higher value of 28S rRNA (which is prone to easy 

degradation by ubiquitous RNases) would indicate a good RNA integrity. A value between 1 

to 10 is assigned with 10 indicating the least degradation. The RIN values of all the samples 

used for microarray analysis were above 8 (Table 5.1).    
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Table 5.1: The RIN values of the samples used in the microarray analysis   

Sample RIN value RNA concentration 

(ng/µl) 

rRNA ratio 

(28s/18s) 

Experiment 1 Untreated 1 8.4 410 1.5 

Untreated 2 8.9 336 2.0 

Acacetin 1 8.8 329 2.0 

Acacetin 2 8.7 187 2.1 

Experiment 2 Untreated 1 8 1521.4 2.08 

Untreated 2 8.1 1681.7 2.07 

Acacetin 1 8 926 2.12 

Acacetin 2 8.1 1401 2.1 

 

Following this, Clariom D Affymetrix microarray technology (ThermoScientific) was used for 

the gene expression analysis of acacetin treated HeLa cells. Clariom D is a next-generation 

transcriptome-profiling tool that provides information regarding gene and exon-level 

expression including alternative splicing events of coding and long non-coding RNA (Zhang 

et al., 2020). It is also aimed at detecting rare and low expressing genes. The data analysis post-

run was carried out using the Applied Biosystems supported Transcriptome Analysis Console 

(TAC) Software 4.0. 

Genes whose expression showed a fold change of 2 and above post acacetin treatment, with a 

p-value less than 0.05 were shortlisted for further analysis. Based on this threshold assigned, 

139 genes were upregulated, and 238 genes were downregulated in the acacetin treated samples 

(Figure 5.1B). The selected genes were further taken forward for gene enrichment analysis. It 

is a bioinformatics approach to designate genes/gene based on the biological processes it is 

known to participate. The software also allows classification based on the model organisms 

such as Homo sapiens, Mus musculus, Drosophila melanogaster. This method of 

understanding of gene lists could be helpful especially while analysing gene expression studies 

such as microarray or RNA seq data as it highlights the pattern or enrichment of genes under 

certain conditions. 



Chapter 5: Identification of upstream regulators of acacetin-mediated TFEB activation 

138 
 

 

Gene expression analysis: Microarray analysis
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Figure 5.1: Gene expression analyses of acacetin treated HeLa cells (A) Schematic of acacetin 

mediated TFEB activation during intracellular S. typhimurium: During intracellular S. typhimurium 

infection there is an increase in phosphorylated TFEB levels. In the presence of acacetin, there is an 

increase in dephosphorylated TFEB levels. The molecular player involved in shifting the 

phosphorylation-dephosphorylation balance during infection as well as by acacetin is currently not 

known. The shaded region indicates the question to be addressed using microarray analysis. (B) Results 

of gene expression analysis. Green arrows indicate upregulated genes whereas red arrows indicate 

down-regulated genes. The threshold for shortlisting genes was fold change in gene expression >= 2 

and p < 0.05. (C-D) Pathway analysis using the Reactome pathway browser of shortlisted upregulated 

genes (C) and down-regulated genes (D) from microarray analysis.    

Further, in order to understand the pathways enriched post acacetin treatment, we used the 

Reactome pathway browser (Haw et al., 2011). Reactome is a manually curated database of 

biological pathways that are currently modelled for Homo sapiens and 17 other non-human 

species. The software detects the pathways that are enriched in the submitted data. To eliminate 

the pathways that are enriched by chance; a probability score is generated using Benjamani-

Hochberg method which is represented as “false-discovery rate” (FDR). The browser lists the 

pathways that are enriched in the submitted list of genes along with the FDR. Additionally, the 

genes that are not found in the Reactome browser are listed as “not found”. Using this pathway 

browser, we analysed the shortlisted genes from microarray of acacetin treated samples. We 

have considered only those genes that are well-annotated with known function curated in the 

Reactome browser for further analysis. Based on this, the number of genes was further 

narrowed to 59 upregulated and 162 downregulated genes. The pathways that are enriched post 

acacetin treatment were analysed (Figure 5.1C and 5.1D).  
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5.2.2 Gene expression analyses of acacetin treated HeLa cells in the presence of S. 

typhimurium infection 

 

Another aspect that we were interested in studying is the identification of the molecular 

player(s) involved in the accumulation of phosphorylated TFEB during S. typhimurium 

infection. (Figure 5.2A) To analyse this, gene expression analysis of an array of immunity-

related genes (540 genes) were tested during intracellular S. typhimurium infection for 6 hours 

in HeLa cells (Kulkarni, 2011; Warren, 2018). We employed NanoString nCounter gene 

expression system which quantitates individual mRNA transcript count (Geiss et al., 2008). 

Additionally, acacetin treatment after the infection was also compared to analyse the immunity-

related genes that are exclusively modulated by acacetin during infection (Figure 5.2B). The 

raw data was analysed using NanoString software, nSolver 4.0.  The threshold to select 

significantly modulated genes was set as mRNA counts of 40 and above with p-value less than 

0.05. The assay enabled investigation of genes induced by acacetin on host with and without 

infection and compared with genes induced by infection on host cells. Additionally, the 

molecular pathways enriched in each group was assessed using the Reactome pathway browser 

to differentiate pathways induced by acacetin with and without infection (Figure 5.2C). 

NanoString gene expression assay was performed along with Dr. Keerti Rawat, Post-doctoral 

fellow, Autophagy laboratory, JNCASR.             
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Figure 5.2: Gene expression analyses of acacetin treated HeLa cells in the presence of S. 

typhimurium infection (A) Schematic of acacetin mediated TFEB activation during S. typhimurium 

infection. As described in figure 5.1A, the infection causes phosphorylation of TFEB. The shaded 

region indicates the question to be addressed using the NanoString nCounter platform. (B) Schematic 

of the three groups used in the gene expression analysis using NanoString nCounter system viz. Group1: 

Hela cells treated with acacetin, Group 2: Hela cells infected with S. typhimurium and Group 3:Hela 

cells infected with S. typhimurium and treated with acacetin.  (C) Alluvial diagram representing the 

changes in gene expression of immune-related genes induced by S. typhimurium infection and acacetin 

treatment. Comparison of results from different groups is represented in the diagram, indicating the 

immune-related genes identified by the analysis, fold change in gene expression and the pathways 

enriched by each group. The threshold for shortlisting genes was no. of mRNA transcript counts >= 40 

and p < 0.05.   

 

The results obtained from the microarray analysis showed induction in an array of TFEB target 

genes after acacetin treatment (Figure 5.3A). Additionally, the gene expression changes 

obtained from both the gene expression platforms showed a similar trend, validating the 

microarray results (Figure 5.3B). Further, to study the role of shortlisted genes in TFEB 

activation, we commenced with the genes modulated in immune-related pathways. In the 



Chapter 5: Identification of upstream regulators of acacetin-mediated TFEB activation 

143 
 

current work, we have analysed the role of NFkB and TGFβ (Transforming Growth Factor- β) 

signalling pathways to regulate TFEB activation, as it was highly enriched in the immune 

system network post acacetin treatment in both the gene expression platforms. 
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Figure 5.3: Validation of microarray analyses of acacetin treated HeLa cells (A) Gene expression 

changes of TFEB target genes induced by acacetin in HeLa cells. (B) Graph comparing the expression 

changes of selected immunity-related genes from microarray and NanoString gene expression 

platforms. Negative value of fold change indicates extent of downregulation while positive value of 

fold change indicates extent of upregulation of the selected genes.   

5.2.3 Image-based screening for genes modulating TFEB nuclear translocation 

revealed the involvement of NFkB signalling pathway. 

 

Both NFkB and TGFβ signalling pathways are well studied for their involvement in immune 

response and its dysregulation are implied in inflammatory diseases (Batlle and Massague, 

2019). However, their role in modulating TFEB activation is not explored. In the current study, 

genes were transiently overexpressed in HeLa cells and immunostained with TFEB for image-

based analysis. The metrics for the genes to be classified as putative inhibitor or inducer depend 

upon the TFEB nuclear translocation. Untreated HeLa cells were used as control (Figure 

5.4A). Based on the study, we identified that 4 out of 7 genes tested from NFkB signalling 

cascade that showed decreased nuclear translocation of TFEB compared to the control cells, 
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whereas there were no significant changes in TFEB nuclear accumulation after overexpressing 

genes related to TGFβ signalling (Figure 5.4B).  

 

 

Figure 5.4: Image-based screening for genes modulating TFEB nuclear translocation revealed the 

involvement of NFkB signalling pathway (A) Schematic for an image-based screening of selected 

genes for TFEB activation. HeLa cells overexpressing the selected genes and immunostained for TFEB 

will be scored for TFEB nuclear translocation. (B) Graph indicating the nuclear TFEB intensity after 

overexpression of NFkB and TGFβ signalling pathway genes. The shaded region indicates the standard 

deviation of control cells.    
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5.2.4 Overexpression of IKK abrogates the acacetin mediated TFEB nuclear 

translocation  

 

To further access the role of NFkB signalling in acacetin-mediated TFEB activation, we 

performed immunostaining analysis in the presence of compound treatment. As 

phosphorylation status of TFEB regulates the subcellular localization of TFEB needed for 

activation, we prioritized kinases or phosphatases of the pathway. One out of the four NFkB 

signalling related genes that showed a reduction in TFEB nuclear accumulation is the kinase,  

IKK (inhibitor of nuclear factor-κB (IκB) kinase). To study the involvement of IKK in 

acacetin-mediated TFEB translocation, HeLa cells transiently overexpressed with YFP-IKK 

were either left untreated or treated with acacetin for 2 hours (Figure 5.5A). Acacetin treated 

samples showed reduced nuclear TFEB accumulation after IKK overexpression, going to 

show that IKK inhibits acacetin-mediated nuclear translocation of TFEB. As expected, cells 

that do not overexpress IKK respond to acacetin treatment by inducing nuclear TFEB 

accumulation as indicated by yellow arrows in the representative images (Figure 5.5B).    

Hence, we conclude that IKK which was obtained as down-regulated hit after acacetin 

treatment in gene expression analysis, could prevent the acacetin-mediated nuclear 

translocation of TFEB. Further experiments to confirm the role of IKK in TFEB 

phosphorylation is underway.     
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Figure 5.5: Overexpression of IKK abrogates the acacetin mediated TFEB nuclear translocation 

(A) Representative microscopy images of HeLa cells overexpressed with YFP-IKK and 

immunostained for TFEB. The yellow arrows point the nucleus of the representative cells. (B) Graph 

showing nuclear TFEB intensity after overexpression of YFP-IKK. (n=50, N=3). Statistical analyses 

on three independent experiments were performed using One-way ANOVA with Bonferroni test: ns- 

non-significant, *p<0.05, **p<0.01, ***p<0.001. Error bars represent mean +/- SEM.   

5.3 Discussion 

 

There is a constant battle between host and pathogen during intracellular infections (Lengeling 

et al., 2001; Monack and Hultgren, 2013). Hence, it is essential to identify the mechanisms by 

which the pathogen evade host immune responses so as to identify potential therapeutic targets 

(Rana et al., 2015). As mentioned earlier, a study by McGourty et al identified that SifA protein 

of S. typhimurium perturbs the functional activity of lysosomes (McGourty et al., 2012). In our 

study we observed an accumulation of transcriptionally inactive TFEB during intracellular S. 

typhimurium infection, indicating another mechanism by which the pathogen affects lysosomal 

biogenesis in addition to autophagy induction. Additionally, in the presence of a xenophagy 

inducer like acacetin, the proteolytic activity of lysosomes was restored. These observations 

posed two questions- 1) What are the molecular players that are modulated to cause 

accumulation of phosphorylated-TFEB during S. typhimurium infection? and 2) What is the 

regulator of TFEB that modulates its subcellular localization upon acacetin treatment?  

To answer these questions, we performed gene expression analysis in two different platforms 

both having their own advantages. For example, microarray analysis is an unbiased approach 

that measured the global transcription changes induced by acacetin. In contrast, the NanoString 

nCounter system is more sensitive than microarray and in comparison, similar in terms of 

sensitivity to TaqMan PCR with the capability to multiplex (Geiss et al., 2008). We, therefore, 

used this system to study an array of more than 500 immunity-related genes. As seen from our 

gene expression analysis, acacetin treatment significantly modulated pathways related to 
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immune response. Additionally, the immune pathways modulated by acacetin during 

intracellular S. typhimurium infection were also identified. By analysing the results from 

NanoString platform, we observed upregulation in genes related to host signalling pathways 

such as MAPK, Ras, TNF and NFkB during infection. Interestingly, acacetin treatment either 

on host cells alone or during infection showed downregulation of genes related to MAPK, TNF 

and NFkB signalling pathways. Further experimentation to confirm the role of these pathways 

on acacetin-mediated xenophagy is needed. Based on an image-based analysis, putative 

modulators of TFEB related to immune signalling pathways were identified. Among the genes 

of NFkB signalling studied, we chose to further work on IKK, as TFEB translocation is 

dependent on phosphorylation-dephosphorylation balance. Additionally, acacetin-mediated 

TFEB nuclear translocation was perturbed when IKK is overexpressed. Further 

characterization of these signalling pathways will help in dissecting the novel upstream 

regulatory pathways of TFEB.    

The NFkB family of transcription factors play a pivotal role in regulating the expression of 

genes related to immune response, cell proliferation and differentiation (Hayden and Ghosh, 

2011). The interplay of the NFkB pathway and autophagy is complex having many facets. 

Briefly, autophagy upon heat shock protein 90 (Hsp90) induction is shown to degrade the 

components of the IKK complex (IKK,β,) (Trocoli and Djavaheri-Mergny, 2011). 

Additionally, NFkB is a transcription factor known to positively regulate genes involved in the 

autophagy process.  This regulation of autophagy by NFkB is mediated in more than one 

mechanism. There is a competitive binding of NFkB with E2F to upregulate BNIP3 expression 

essential for autophagy induction. Additionally, Beclin1 harbours multiple NFkB binding 

consensus sequences suggesting its regulation by p65, a member of NFkB family (Copetti et 

al., 2009).  However, the crosstalk role of NFkB in regulating the master transcription factor 

of autophagy, TFEB is not studied so far. Conversely, a study by Song et al, suggests that 
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TFEB inhibits NFkB signalling to attenuate inflammation in a diabetic mouse model (Song et 

al., 2019). Hence, further investigations to understand the interaction of IKK/NFkB pathway 

and TFEB are essential. Future studies in this regard will be focused on identifying if TFEB is 

a potential substrate of IKK/NFkB pathway genes for phosphorylation status and studying 

the importance of NFkB pathway in inducing xenophagy.   

Overall, our study so far has identified an evasion strategy employed by intracellular S. 

typhimurium, by accumulating phosphorylated TFEB and a concomitant decrease in 

proteolytic active lysosomes of the host. This provides an ideal niche for S. typhimurium to 

replicate intracellularly in SCVs. This observation was made by using a novel small molecule 

inducer of xenophagy, acacetin which reduces intracellular S. typhimurium replication by 

activating TFEB. This leads to an increase in recognition of intracellular S. typhimurium by 

xenophagy adaptors such as p62 and enhanced fusion of proteolytically active lysosomes with 

SCVs. Further investigations into finding the upstream regulator of acacetin-mediated TFEB 

activation revealed putative regulators such as IKK (Figure 5.6). In summary, this study 

utilized a chemical-genetic approach where a chemical xenophagy modulator, acacetin was 

used to understand the molecular pathways regulating xenophagy to restrict replication of S. 

typhimurium. Similarly, as a next step in this line of investigation, results will also be verified 

in other relevant cell lines such as intestinal cell types (CaCo2) and macrophages (Thp1).  
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Figure 5.6: In cellulo molecular mechanisms of acacetin to induce xenophagy. (1) Intracellular S. 

typhimurium infection leads to accumulation of phosphorylated TFEB. The molecular events induced 

by acacetin is labelled in red. Briefly, in the presence of acacetin, (2) there is increased translocation of 

TFEB to nucleus inducing genes involved in lysosomal biogenesis and autophagy, (3) there is enhanced 

recruitment of phospho-p62 and phospho-TBK1 to capture S. typhimurium, (4) there is enhanced fusion 

of proteolytically active lysosomes with SCVs, (5) the acacetin mediated TFEB translocation is mTOR 

independent, (6) Gene expression analysis of acacetin treated host cells with and without S. typhimurium 

identified putative molecular players such as IKK to regulate TFEB nuclear translocation. Image 

created using BioRender.com.  
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Chapter 6 

Development of high throughput screening to identify novel  

xenophagy inducers 

6.1 Overview 

 

As described in the previous chapters, small molecules can be used as tools to modulate 

xenophagy and gain mechanistic insights into the process. It is essential to develop a robust 

and sensitive screening platform to identify novel chemical modulators of the process. 

Previously reported pharmacological screens monitor autophagy reporters like LC3 (Kuo et al., 

2015; Zhang et al., 2007) or alternatively quantitate the bacterial load by techniques such as 

high content imaging (Nagy et al., 2019).   

The conventional xenophagy assay used in our study involves meticulous serial dilution and 

plating of intracellular bacteria followed by counting of CFU. This assay is not amenable to 

screen a large number of small molecules and therefore the development of a high throughput 

screening format that can be used to test several chemical modulators in a single experiment 

was indispensable. S. typhimurium expressing the Photorhabdus luminescens lux operon has 

been used in studies to monitor its growth in real-time. For example, study by Karsi et al 

applied this bioluminescent system to study the Salmonella contamination in food products. 

The study also tested the dependence of bioluminescence activity to bacterial density and 

observed that bioluminescence activity correlates positively with bacterial cell number (Karsi 

et al., BMC Microbiol, 2008). Bioluminescence-based assays have gained importance HTS due 
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to the sensitivity and robustness of the system (Fan F and Wood KV., Assay Drug Dev Techno, 

2007). Bioluminescence reporters are used in both cell-free systems (enzyme activity) as well 

as cell based assays measuring biological response (Kent et al., J Biomol Screen, 2005).       

In this chapter, the development and standardization of screening assay that is based on 

quantitating degradation of bioluminescently tagged bacterial cargo (Brodl et al., 2018) will be 

discussed. Bioluminescence is a process for visible light emission that can be used in the living 

organisms. This is a powerful methodology to monitor the biological processes in real-time 

and more importantly is a non-invasive technique (Fleiss and Sarkisyan, 2019; Wilson and 

Hastings, 1998). We developed a bioluminescence-based assay that as mentioned provides the 

added advantage of real-time and sensitive assessment of intracellular bacterial replication. The 

assay was found to be more time and cost-effective than the conventional CFU assay. After 

successful standardization of the assay, a custom-made small molecule chemical library 

comprising of 410 compounds were screened. The library consists of potent compounds with 

known targets that are not previously reported for their involvement in autophagy.   

6.2 Results 

 

6.2.1 Generation of bioluminescent S. typhimurium strain 

 

The principle of the assay involves measuring the intracellular bacterial burden after treatment 

with compounds. To achieve this, we generated a bioluminescent S. typhimurium strain that 

can be used to monitor bacterial growth in real-time (Figure 6.1A). Bioluminescence has the 

added advantage that there is no need for exogenous addition of substrates. The bacterial vector 

expressing bioluminescent operon was electroporated into S. typhimurium.  

Bioluminescence plasmid, pAKlux1 is derived from the pBBR1 vector that supports broad host 

range (Karsi et al., 2006). The vector contains luxCDABE operon taken from Photorhabdus 
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luminescens conjugated to lacZ promoter. Bacteria expressing this vector catalyze the 

oxidation reaction of long-chain aldehydes and FMNH2 causing the emission of light (Figure 

6.1B). The stability of the pAKlux1 plasmid was previously evaluated by Karsi et al in a variety 

of Gram-negative bacterial strain. The study showed that the plasmid is stable for 5 days with 

continuous subculturing under selection (ampicillin) and for 2 days without antibiotic selection 

in S. typhimurium (Karsi et al., 2008). Further characterization has shown that there are no 

alterations in terms of biochemical and structural phenotypes due to constitutive bacterial 

luciferase. It is therefore considered that luminescence obtained is directly proportional to the 

number of bacteria.  

The plasmid expressing strains were compared for its growth kinetics with the wild type S. 

typhimurium. As seen in figure 6.2A, the plasmid expression caused no alterations in the 

bacterial doubling rate. Additionally, the transformed bacterial strain showed detectable 

luminescence whereas untransformed wildtype S. typhimurium did not show any background 

reading indicating that the reading obtained is exclusively from the expression of luminescent 

vector in the transformed strain (Figure 6.2B).  
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Figure 6.1: Development of a bioluminescence-based assay to monitor intracellular S. 

typhimurium in real-time. (A) Bioluminescent S. typhimurium was constructed by electroporating 

pAKlux1 vector consisting of lux CDABE operon under lacZ promoter. The pAKlux1 expressing 

bacterial strain was used to infect the HeLa cells for one hour. Following this, extracellular bacteria 

were removed and incubated with compounds. After 11 hours of incubation, the host cells were lysed 

to measure the bioluminescence. Monitoring luciferase activity is directly proportional to the number 

of intracellular S. typhimurium.   

6.2.2 Standardization of intracellular infection assay using bioluminescent S. 

typhimurium strain 

 

The assay involves the infection of host cells using bioluminescent S. typhimurium for one 

hour. Following this, the extracellular bacteria is removed and further incubated in the presence 

of compounds to study the effect of the small molecules on intracellular bacterial survival. To 

Infection of host cells with 

pAKlux1- S. typhimurium

Removal of extracellular media 

and compound addition
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set up the bioluminescent based readout, it was essential to standardize the infectivity rate and 

duration of the assay to sensitively monitor the bioluminescence. Firstly, we compared the 

bioluminescence obtained from different multiplicity of infections (MOI) on HeLa cells. It was 

observed that luciferase activity correlates well with the infectivity rate. Further, the assay was 

standardized for the duration that can optimally represent the intracellular bacterial replication. 

An MOI of 200 with an incubation time of 12 hours was finalized (Figure 6.2C). 
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Figure 6.2: Standardization of bioluminescent S. typhimurium for a high throughput format. (A) 

The growth kinetics of wildtype and bioluminescent S. typhimurium by measuring absorbance at 600 

nm. (B) The intracellular bioluminescence reading measured from wildtype and bioluminescent S. 

typhimurium by measuring luminescence at 490 nm.  (C) Intracellular infection of pAKlux1 expressing 

bacterial strain at different MOI in HeLa cells. The bioluminescence was observed after 2 hours and 12 

hours post-infection. The reading corresponds to the number of intracellular S. typhimurium.  
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6.2.3 High throughput chemical screening for xenophagy inducers 

 

After standardizations, the intracellular infection assay was performed in a 96-well format to 

screen for small molecule chemical modulators of xenophagy. The assay included rapamycin 

(8µM), a known xenophagy inducer and chloramphenicol (antibiotic) as positive controls. The 

results observed for positive controls were in concordance with the conventional CFU assay. 

Rapamycin and chloramphenicol treatments showed a significant decrease in the luciferase 

activity indicating reduced intracellular S. typhimurium survival/growth (Figure 6.3A). 

Further, the proof-of-principle HTS was performed using a custom-made library comprising of 

410 compounds. The bioluminescent readings post-infection with pAKlux1 expressing S. 

typhimurium and incubation with compounds were collected (Figure 6.3B).        

6.2.4 HTS data correction using HTS corrector 

 

HTS has emerged as a valuable strategy in modern drug discovery research. However, HTS 

imposes the threat for random and systemic errors occurring in the results. Such errors occur 

majorly because HTS is carried out for a large number of compounds that cannot be 

accommodated in a single plate. Hence the across-plate variations that emerge must be 

normalized to reduce the false-positive rate. It is therefore imperative to imply quality control 

measures to reduce the impact of such errors during HTD data analysis. In this study, we 

employed more than twenty-five 96-well plates to screen the compound library where each 

compound was used in triplicates and two different concentrations (12.5µM and 25µM) 

(Figure 6.3B). Hence, we have used HTS corrector, a software application to analyse the HTS 

data and have applied the necessary correction to the readings (Makarenkov et al., 2006). The 

software was used to perform well-correction by calculating the background subtraction. 
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Finally, sigma distribution to set well-specific standard deviation was applied. The normalized 

data obtained from HTS corrector was further plotted using R Studio for better data 

representation (Refer chapter 2 Materials and methods section Rstudio packages used for 

analysis).     

 

Figure 6.3: Intracellular infection assay using bioluminescent S. typhimurium in a 96-well format. 

(A) The bioluminescence readings obtained from intracellular infection assay. Representative values 

from one plate used in the screening. (B) Normalized bioluminescence readings obtained from the HTS 

of a custom-made compound library consisting of 410 compounds. Each box plot represents the 

readings from a single 96-well plate used in HTS and each dot represent a compound. The red dotted 

line marks the threshold (> - 2.5 S.D) above which the compounds are shortlisted for further studies. 
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The blue arrow points the bioluminescence reading obtained from chloramphenicol control and orange 

arrow points the reading obtained from rapamycin treatment.    

6.3 Discussion 

 

Xenophagy has emerged as an innate immune mechanism of the host to prevent establishment 

of intracellular infection. Studies have shown that modulating xenophagy either genetically or 

pharmacologically have a positive impact on controlling intracellular pathogen survival. Apart 

from identifying modulators, these interventions can also be used as tools for effective 

understanding of the process. 

In the past, high throughput screens with diverse methodologies for studying xenophagy has 

been employed. Existing screening approaches for the process include genetic screens like 

siRNA screen to identify host or pathogen factors that modulate xenophagy as well as 

pharmacological screens to identify novel or repurposed drug-like molecules. Of the two 

approaches, pharmacological small molecule compounds not only give a handle to modulate 

xenophagy but also provide a therapeutic potential.   

In this study, we developed a bioluminescence-based assay to effectively monitor the 

intracellular replication of S. typhimurium. Briefly, we generated bioluminescently labelled S. 

typhimurium to robustly quantitate the bacterial burden in real-time. Following this, 

standardization tests to measure the sensitivity of the assay was carried out. We observed that 

luminescent tagged bacteria showed significantly higher values in comparison with untagged 

S. typhimurium indicating negligible background luminescence. Besides, the growth kinetics 

of both bacterial strains was comparable indicating that presence of operon expressing the 

luminescent protein in bacteria did not affect the growth rate.  

Our results show that bioluminescent S. typhimurium can be effectively used as a tool in high 

throughput screening because of the sensitivity and ability to monitor in real-time. However, 
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in the current study, end-point luminescent readings were collected due to the temperature, 

humidity, and CO2 requirements for maintaining HeLa cells during intracellular infection 

assay.  

Although the primary screening was not aimed at monitoring autophagy or xenophagy specific 

reporter, it can be coupled with a secondary assay that monitors xenophagy potential of the 

high confident hits obtained from the primary screen. For instance, the primary screen hits can 

be further tested on autophagy-deficient cell lines to study its dependency on autophagy. This 

strategy has the added advantage of highlighting compounds that functions solely by inducing 

xenophagy as well as those compounds that couples xenophagy effect with other antibacterial 

strategies like antibiotic effect. Further studies are currently focussed on validating the putative 

hits obtained from the HTS using secondary screening with a xenophagy-specific reporter. 

Furthermore, the short-listed hits for their xenophagy effect can also be verified in other cell 

types such as intestinal epithelial (CaCo2) and macrophages (Thp1) cell types. 

Finally, another interesting aspect emerging in the field that can be coupled with the existing 

platform is bioluminescence imaging (BLI). Applications of BLI during in vivo studies are 

gaining importance as the emission wavelength of luciferase can be imaged from tissues several 

centimetres deep. This technique can be exploited to organismal level studies to monitor in 

vivo bacterial replication from organs of interest (Benaron et al., 1997; Sadikot and Blackwell, 

2005; Tang et al., 2003).   
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Chapter 7 

Discussion and future directions 

7.1 Discussion 

 

To establish infection, pathogens evade host immune system and parallelly, the host employ 

various defence mechanisms thereby imposing a biological arms race (Kwon and Song, 2018; 

Pao and Rape, 2019). Xenophagy is one of the defence mechanisms employed by the host in 

parallel with other strategies such as antimicrobial peptides and reactive oxygen species. As 

expected, pathogens breach these by a plethora of diverse tactics to overcome host defences 

including xenophagy. Therefore, enhancing host xenophagy to mitigate infection progression 

has been reported by many studies (Chiang et al., 2018). 

Although both genetic and pharmacological interventions restore xenophagy, chemical 

modulators provide a distinct advantage wherein apart from revealing insights into the process, 

they can also serve as a potential therapeutic tool. Compounds such as trifluoperazine and 

BRD5631 are such examples - both of them were not only identified for their ability to induce 

xenophagy but showed therapeutic potential by engaging novel intracellular targets (Conway 

et al., 2013; Kuo et al., 2015).   

Recent studies have expanded the horizon of xenophagy encompassing its close nexus with 

inflammation and immunity-related pathways (Deretic et al., 2013; Zhong et al., 2016). This 

has fuelled the search for identifying novel “drug-like” small molecule xenophagy modulators 

to tackle intracellular infections. The main objective of the project was to find such novel 
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compounds that would enhance host immunity through xenophagy and additionally use it as a 

tool to understand the mechanisms of xenophagic flux. 

Although it is ideal to have a strategy that directly measures xenophagic flux to identify 

chemical modulators, we utilised a previously established yeast-based high throughput 

screening (HTS) carried out in our laboratory to identify novel chemical modulators of 

autophagy. It was a luminescent readout based HTS for pexophagy, a selective autophagic 

degradation of peroxisomes (Mishra et al., 2017a; Mishra et al., 2017b). Two compound 

libraries, LOPAC (comprising of 1280 compounds) and ENZO (comprising of 502 

compounds) were screened using this assay. The screening yielded close to 35 primary 

enhancer hits. Owing to the conserved nature of autophagy, the hits obtained from yeast-based 

screening were further tested for their ability to induce xenophagy of intracellular Salmonella 

typhimurium in mammalian cell lines. The colony forming unit (CFU) was quantitated to 

account for the selective degradation of intracellular bacteria. One of the promising candidate 

compounds, acacetin showed a consistent reduction in intracellular S. typhimurium burden in 

both epithelial cell lines (HeLa and U1752) and macrophages (RAW 264.7). Nevertheless, later 

in the study we employed strategies to identify other xenophagy inducers directly by 

monitoring xenophagic flux. Firstly, we developed a bioluminescent based screening assay that 

measures the degradation of intracellular S. typhimurium. By using this assay, we screened a 

custom-made compound library comprising of 410 compounds whose intracellular targets are 

known but not tested previously for their autophagy potential. Apart from screening for novel 

xenophagy inducers, we also invested in another recent approach of measuring the xenophagy 

potential of existing antibiotics. Extrapolating from this rationale, we tested known antibiotics 

and its derivatives to induce xenophagy. In this respect, we identified a vancomycin derivative, 

VanQAmC10 that showed increased autophagic potential compared to conventional 

vancomycin and also higher efficacy against drug-resistant Acinetobacter baumannii (Sarkar 
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et al., 2020). This work was carried out in collaboration with Antimicrobial research laboratory 

at JNCASR.         

The major part of this study is focussed on using the identified xenophagy inducer, acacetin as 

a tool to modulate the process and study the mechanism of xenophagic flux. Investigations 

revealed that acacetin did not affect in vitro Salmonella growth per se in Luria Bertani Broth. 

Similarly, the expression of virulence genes of the pathogen, specifically of Salmonella 

Pathogenicity Island-2 (SPI-2) required for intracellular replication was also not affected by 

acacetin (Veena, MS Thesis, 2016). Further investigations revealed that both genetic (ATG5-/- 

HeLa cell line) or pharmacological inhibition (3-MA and wortmannin) of autophagy abrogated 

the acacetin mediated decrease in intracellular S. typhimurium. Taken together, these results 

suggested that acacetin mediates the reduction in intracellular S. typhimurium burden by 

inducing host-mediated xenophagy. We further showed that acacetin does not affect other 

trafficking pathways like endocytosis which functions in concert with autophagy sharing 

certain molecular effectors and both pathways culminating in the lysosome.  

In terms of autophagy induction, acacetin treatment on HeLa cells resulted in the accumulation 

of LC3-II which further increased when cotreated with BafA1- both of these observations 

together is considered as a gold standard phenotype for autophagy induction. Further, 

microscopic analysis revealed an enhanced fusion of autophagosomes with lysosomes leading 

to accumulation of autolysosomes in the cell post acacetin treatment.    

Further by studying the mechanism of xenophagy induction by acacetin revealed the 

following:- 

1) Acacetin enhances recruitment of xenophagy mediators to efficiently capture the 

pathogen by enhancing post-transcriptional mechanisms 
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As detailed earlier, pathogens exert their virulence to overcome the host defence mechanisms 

such as xenophagy. Studies in the past have identified multiple ways by which S. typhimurium 

prevents xenophagy mediated degradation. One of the evasion strategies is to prevent the 

recognition of S. typhimurium by xenophagic proteins after few hours post-infection (p.i.). The 

recognition by xenophagic adaptor proteins such as p62 and NDP52 is elevated immediately 

after infection (1 to 2 hours p.i.). There is a significant reduction in the recruitment of 

xenophagy adaptor proteins after 2 to 3 hours p.i. which correlates with the expression of 

pathogen virulence genes. Upon acacetin treatment, temporal microscopic studies showed 

increased recruitment of xenophagy machinery proteins such as p62 and LC3 to intracellular 

bacteria. Additionally, we observed that mRNA expression of p62 was not enhanced by 

acacetin treatment and immunoblotting analysis revealed temporal p62 degradation as 

commonly seen during autophagy induced state. We, therefore, wanted to check the reason for 

increased p62 recognition during acacetin treatment. Further mechanistic analysis revealed that 

enhanced recruitment of p62 after acacetin treatment was possibly due to its phosphorylation 

at S403 position in its UBA domain. This post-translational modification is previously reported 

to increase the affinity of p62 to bind ubiquitinated cargoes. Similarly, we also observed 

increased recruitment of TBK1, which phosphorylates p62 at S403 to S. typhimurium after 

acacetin treatment. A similar observation was previously reported where the occurrence of 

enzymatically active TBK1 was shown in the bacterial vicinity and more recently Ravenhill et 

al identified TBK1 bound to ULK1 complex getting recruited to intracellular S. typhimurium 

(Ravenhill et al., 2019; Thurston et al., 2016). This hierarchal cargo recognition is not unique 

to xenophagy but is also reported in other selective autophagy mechanisms such as mitophagy 

to capture damaged mitochondria (Matsumoto et al., 2015).  

2) Functions by activating transcriptional regulator of autophagy and lysosomal 

biogenesis, TFEB 
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As mentioned earlier, acacetin treatment increased both autolysosomes and lysosomes of the 

cell. Studies by Ballabio’s group identified TFEB, one of the members of MITF family to 

control the gene network involved in lysosome biogenesis and autophagy pathways. TFEB 

binds and regulates expression of a larger subset of genes involved in lysosomal biogenesis 

and is therefore referred to as master regulator of lysosomal biogenesis and autophagy. As 

acacetin treatment induces both pathways we investigated the involvement of TFEB in 

inducing acacetin mediated autophagy and xenophagy induction. We observed enhanced 

nuclear translocation of TFEB and concomitant increase in selected target genes of TFEB. 

Activation is mediated by modulating the phosphorylation-dephosphorylation status of TFEB. 

Phosphorylated TFEB is transcriptionally inactive and is localized on the lysosomal surface or 

bound to cytosolic 14-3-3 protein. However, upon dephosphorylation, TFEB translocates to 

the nucleus and induces the expression of its target genes participating in lysosome biogenesis 

and autophagy. Further investigation is needed to identify the role of acacetin in inducing other 

family members of MITF transcription factors such as TFE3. However, we observed that 

silencing of TFEB abrogates the ability of acacetin to induce autophagy and xenophagy. It is, 

therefore, possible that acacetin mediated induction is predominantly mediated by TFEB.     

Studies have shown that activation of TFEB is beneficial during intracellular infections 

(Visvikis et al., 2014). However, the role of TFEB during intracellular Salmonella infection 

was not clear. An existing study by Najibi et al on TFEB and S. typhimurium show that there 

is an induction of TFEB after two hours of Salmonella infection (Najibi et al., 2016). However, 

our study showed that there is a temporal accumulation of phosphorylated-TFEB post S. 

typhimurium infection. This transcriptionally inactive TFEB was observed to be 

dephosphorylated after acacetin treatment. Concomitantly, the number of lysosomes and 

autolysosomes of the host cells was increased after acacetin treatment. Furthermore, there was 
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an enhanced fusion of lysosomes with Salmonella containing vacuoles making them more 

proteolytically active.    

3) Acacetin is effective in an in vivo mouse model of bacterial infection. 

In vivo studies during Salmonella infection emphasized on the importance of xenophagy-

mediated immune response (Benjamin et al., 2013; Conway et al., 2013). These studies 

highlighted that the basal level of autophagy is very low in tissues such as intestine which is 

the major site of gastrointestinal infection like Salmonellosis. Although intestinal epithelial 

cells show initial induction in xenophagy 24 hours post Salmonella infection, it reverts to low 

basal levels by 72 hours.  However, it is not clear if the reversal of xenophagy induction at later 

stages of infection occurs due to the expression of Salmonella virulence. Additionally, studies 

on restoring the in vivo xenophagic block imposed by Salmonella infection is also limiting. In 

the current study, we show that compound treatment in vivo led to an increase in LC3B-II with 

a concomitant reduction in the bacterial burden in the various organs of infected animals. The 

in vivo study was standardized to study at a time where the basal level of xenophagy is low (7 

days after infection). This also provides sufficient time for the bacteria to disseminate to various 

organs such as intestine, liver and spleen. Although acacetin treatment after 7 days of infection 

reduced the bacterial burden in the liver and spleen, the bacterial load from intestinal tissues 

had no significant changes. This is possibly due to the known complex microbial-gut 

interactions. Intestinal epithelial cells accommodate highest microbial flora exhibiting 

symbiotic or commensal relationship with the microbes. Hence more investigations are 

required to understand the intestinal xenophagy regulation (Mahida, 2004).  However, due to 

technical limitations (incompatible antibody specificity), the in vivo status of TFEB after 

acacetin treatment was not studied. However, TFEB is shown to regulate the expression of host 

defence genes during in vivo S. typhimurium infection in C. elegans (Visvikis et al., 2014).  
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The effect of acacetin in reducing intracellular infection phenotype in both in cellulo and in 

vivo models encouraged us to probe further on the regulatory mechanisms of xenophagy using 

acacetin as a tool to induce the process. We first resorted to identifying the upstream molecular 

players involved in activating TFEB. As mentioned earlier, activation leads to its nuclear 

translocation. Dynamic changes in TFEB localization is mainly regulated by its 

phosphorylation status. Multiple conserved serine residues are known to be phosphorylated 

and play a crucial role in determining the subcellular localization (Puertollano et al., 2018). 

The changes in this post-translational modification occur in response to various cellular stress 

conditions such as nutrient starvation. The major kinases implicated in this process include 

mTOR, ERK, Akt, GSK3β. Furthermore, calcineurin dephosphorylates TFEB in response to 

lysosomal calcium release (Medina et al., 2015; Parr et al., 2012; Puertollano et al., 2018; 

Roczniak-Ferguson et al., 2012; Settembre et al., 2012). However, acacetin did not activate 

TFEB through the reported kinases or phosphatase, calcineurin. To identify the novel 

phosphorylation modulator involved in acacetin action, an unbiased gene expression analysis 

was carried out post acacetin treatment. Additionally, an array of key immunity-related genes 

was also studied for its expression after S. typhimurium infection in the presence of acacetin. 

Analysis of the gene expression studies identified putative molecular players that regulate 

TFEB translocation. 

Overall, the results from this study identified a novel xenophagy inducer, acacetin that 

functions by activating a key transcriptional regulator, TFEB. We exploited the ability of the 

acacetin-mediated xenophagy to study the xenophagic flux during intracellular S. typhimurium 

infection. Further characterization revealed putative regulators of TFEB in modulating its 

subcellular localization (Figure 7.1). 
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Figure 7.1: Insights into xenophagy-pathogen interactions revealed by the study. (1) Intracellular 

S. typhimurium infection leads to accumulation of phosphorylated TFEB. (2) In the presence of 

acacetin, there is increased translocation of TFEB to nucleus inducing genes involved in lysosomal 

biogenesis and autophagy. (3) Gene expression analysis of acacetin treated host cells with and without 

S. typhimurium identified putative pathways and molecular players that regulate TFEB nuclear 

translocation. (4) Acacetin treated host cells recruit phosphorylated p62 and phosphorylated TBK1 to 

capture intracellular S. typhimurium. 

The critical insights obtained by characterizing one compound gave us confidence is scaling 

up the chemical screening assay. The key to identifying such potent molecules is to develop an 

effective HTS that evades the time consuming plating methods. To do so, we shifted from the 

conventional CFU based readout to luminescent based assay and by using this new strategy, 

we performed a proof-of-principle screening of a custom-made library comprising of 410 

compounds. Those compounds that decreased the intracellular S. typhimurium load will be 

screened in autophagy-deficient cell lines in a secondary screen to shortlist putative xenophagy 

inducers. 
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7.2 Future directions 

 

In this study, we explored the regulatory aspects of xenophagic flux using chemical genetics 

approach. Briefly, we an employed chemical small molecule, acacetin to modulate xenophagy 

and identify the molecular players that regulate the process. Based on the previously explained 

observations, the study has opened further avenues to explore and understand the intricate host-

pathogen relationship.  

Some of the future aspects of the study include:    

1. Context-dependent regulators of TFEB during intracellular bacterial infection. 

As mentioned earlier, various cellular stress conditions induce TFEB activation. Although 

multiple modulators are known, context-dependent regulators of TFEB is identified in the 

recent past. For example, a recent study by Yin et al identified the role of cyclin-dependent 

kinases, CDK4/6 in modulating TFEB activation during the cell cycle (Yin et al., 2020). 

Similarly, Vojo Deretic’s group reported the role of immunity-related GTPase M (IRGM) in 

regulating TFEB during Mycobacterium infection (Kumar et al., 2020).   

Our study has identified putative regulators of TFEB during intracellular infection of S. 

typhimurium. The verification of the shortlisted pathways to modulate TFEB during acacetin 

treatment and infection is underway. The kinases and/or phosphatases in the verified pathways 

will be studied for their physical interaction with TFEB and the residues that could be post-

translationally modified.  

2. The repertoire of TFEB target genes during bacterial infection. 

Additionally, gene expression analysis has identified genes harbouring CLEAR motif in the 

promoter of some of the immunity-related genes. We would like to further test if those genes 

are putative TFEB target genes. It is also possible that the repertoire of TFEB target genes is 
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context-dependent, and hence the genes identified in the study could be either due to acacetin 

mediated TFEB activation or specifically induced during infection and acacetin treatment. 

3. Broad-spectrum xenophagy induction. 

Mechanistically, xenophagy is a process that is active against a broad spectrum of microbes, 

unlike antibiotics which are specific against a subset of pathogens depending upon the 

mechanism of action of the drug. Hence, we would like to test the ability of acacetin in inducing 

xenophagy against other bacterial infections. We presume that the pathogens that replicate in 

the cytosol, as well as those that modulate the lysosomal activity, could possibly be affected 

by acacetin. 

4. Crosstalk of xenophagy with other immune signalling pathways. 

The extensive gene expression analysis studied in the project during compound treatment and 

infection has identified modulation in immune-related pathways. Apart from studying the 

regulators of TFEB, we would also explore the role of upstream immune signalling pathways 

to induce xenophagy. Additionally, xenophagy is active in both epithelial and immune-related 

cell types. In the current study, most of the observations were made in epithelial cell type. We 

would further extend the analysis in infection relevant cell types such as human macrophages.   

5. Identifying the intracellular physical target of acacetin.  

Additionally, the most challenging aspect of the study will be to identify the intracellular 

physical target of the compound. Techniques such as affinity-based target identification will 

be employed to study the target. Finally, to increase the potency of the compound, structure-

activity relationship studies can be performed to chemically modify the compound to function 

with higher potency at lower concentrations. 
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6. Decoupling xenophagy from homeostatic autophagy. 

Although autophagy and selective autophagy shares the core machinery proteins, there are 

exclusive upstream regulatory molecules and cargo recognition proteins reported (Chandra and 

Kumar, 2016). In our study, the gene expression analysis of acacetin treated HeLa cells with 

infection identified pathways that are different from acacetin treated on HeLa cells in the 

absence of infection. We would in future explore pathways that can specifically modulate 

xenophagy without affecting global autophagy status. Similarly, previous studies from our 

laboratory identified pharmacological compounds that induced only in certain selective 

autophagy types but failed in others. On the contrary, one compound XCT-790, identified in 

our laboratory induced both aggrephagy and xenophagy (Suresh et al., 2018). These studies 

reinforce that depending on the stage of autophagy modulation, either general autophagy or 

selective autophagy can be modulated.   

7. Host-mediated therapies against bacterial infections.  

Antibiotics directly target bacteria and are currently the most effective strategy for infection. 

However, their efficacy in vivo is dependent on two major factors. 

I.  The ability of antibiotics to cross hydrophobic membranes of host cells. For example, 

gentamycin and streptomycin do not cross the cell membrane and is effective only on 

bacteria in tissue fluids (Kadurugamuwa and Beveridge, 1998).  

II. Bacteria most commonly replicate in intracellular phagosomal reservoirs entrapped in 

multivesicular membranes. Antibiotics such as aminoglycosides and macrolides are 

less active in the low pH of phagosomes (Schlessinger, 1988).  
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Another major hurdle is antibiotic resistance, where antibiotics overtime becomes ineffective 

due to the emergence of resistant strains. Hence there is a limitation of “antibiotic-overuse”. In 

agreement with this, increasing evidence highlight the importance of host-mediated strategies 

during infection and warrants the need for modulators that can effectively tackle these issues. 

Taken together we believe that modulation of xenophagy could be explored as a new paradigm 

for clearance of intracellular pathogens as a combinatorial approach with antibiotics.        
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ABSTRACT
Macroautophagy/autophagy functions as a part of the innate immune system in clearing intracellular patho-
gens. Although this process iswell known, themechanisms that control antibacterial autophagy are not clear. In
this studywe show that during intracellular Salmonella typhimurium infection, the activity of TFEB (transcription
factor EB), a master regulator of autophagy and lysosome biogenesis, is suppressed by maintaining it in
a phosphorylated state on the lysosomes. Furthermore, we have identified a novel, antibacterial small molecule
autophagy (xenophagy) modulator, acacetin. The xenophagy effect exerted by acacetin occurs in an MTOR
(mechanistic target of rapamycin kinase)-independent, TFEB-dependent manner. Acacetin treatment results in
persistentlymaintaining active TFEB in thenucleus andalso in TFEBmediated inductionof functional lysosomes
that target Salmonella-containing vacuoles (SCVs). The enhanced proteolytic activity due to deployment of
lysosomes results in clamping down Salmonella replication in SCVs. Acacetin is effective as a xenophagy
compound in an in vivomouse model of infection and reduces intracellular Salmonella burden.

Abbreviations: 3-MA: 3-methyladenine; BafA1: bafilomycin A1; CFU: colony-forming units; DQ-BSA: dye
quenched-bovine serum albumin; EEA1: early endosome antigen 1; FITC: fluorescein isothiocyanate; FM 4-64:
pyridinium,4-(6-[4-{diethylamino}phenyl]-1,3,5-hexatrienyl)-1-(3[triethylammonio] propyl)-dibromide; GFP:
green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; MAPILC3/LC3: microtubule
associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase;
RFP: red fluorescent protein; SCVs: Salmonella-containing vacuoles; SD: standard deviation; SDS: sodium
dodecyl sulfate; SEM: standard mean error; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TFEB:
transcription factor EB.
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Introduction

Intracellular pathogenic bacteria invade mammalian host
cells in membrane bound vesicles called phagosomes (or
endosomes). Among the various anti-microbial strategies,
the host exerts its defense against intracellular bacteria by
directing the phagosomes to fuse with the lysosomes for
degradation. But the pathogens have evolved several survival
mechanisms to prevent this fusion event. Prominent ploys
include causing phagosome arrest or escaping to the cyto-
plasm by damaging phagosomes [1]. Both these outcomes
allow unrestricted access to the nutrient-rich cytoplasm and
provide an ideal environment for the replication of bacteria.
As a countermeasure, the host strategies include a selective
macroautophagy (hereafter autophagy) process known as
xenophagy to capture such intracellular pathogens by encap-
sulating them within a double-membrane vesicle known
as xenophagosome and subject them for lysosomal clear-
ance [2–4]. Several studies employing diverse bacterial
species have highlighted the tactical interplay between the
pathogen and host with respect to xenophagy [5,6].

Salmonella typhimurium is a well-studied bacterium spe-
cies in xenophagy. They enter eukaryotic cells in phagosomes
(or endosomes) mediated by virulence gene island, SPI-I that
codes for type III secretion system. Salmonella can damage the
endosomes and enter the nutrient-rich cytosol. Host response
in capturing such cytosolic bacteria involves tagging them
with ubiquitin [7]. The ubiquitinated bacteria are cargoes
that are recognized by a variety of xenophagy receptor pro-
teins such as SQSTM1/p62 (sequestosome 1), CALCOCO2/
NDP52 (calcium binding and coiled-coil domain 2/nuclear
domain 10 protein 52), OPTN (optineurin), NBR1 (NBR1
autophagy cargo receptor) [8]. These receptor proteins then
bind to MAPILC3/LC3 (microtubule associated protein 1
light chain 3), a phagophore and autophagosomal membrane-
associated protein [9]. Alternatively, Salmonella containing
endosomes-like structures mature into SCVs. These SCVs
are spacious vacuoles that get acidified slowly as compared
to phagosomes containing dead bacteria [10]. Although SCVs
resemble lysosomes due to their membrane composition, they
are devoid of hydrolytic enzymes [11].

Various studies have shown that immediately after
Salmonella invasion, host cells undergo amino acid starvation
and this energy stress leads to the activation of autophagy.
However, this activation is reported to be transient and at
later time points of infection, Salmonella prevents xenophagy-
mediated capture [12,13].

Salmonella invasion in vivo occurs via gastrointestinal
tract by infecting the intestinal epithelium followed by dis-
semination to other epithelial tissues such as liver, kidney,
spleen and mesenteric lymph nodes. Recent studies have
highlighted the role of xenophagy in restricting Salmonella
infection in various organs of mice. However, akin to in
cellulo models, elevated levels of xenophagy as seen during
early stages of infection, drops to basal levels after 2 to 3
d post infection [14].

Several studies have suggested that restoring the xenophagic
potential by intervention through genetic or pharmacological
means results in effective subjugation of intracellular pathogen

survival [15–18]. Although the capture and degradation
mediated processes are well studied, the host mechanisms that
recognize the intracellular pathogens to induce xenophagy
remain unclear. Moreover, the relevance of xenophagy in vivo,
in mammalian immunity is also less explored. Recent studies
have shown activation of TFEB ortholog in Caenorhabditis
elegans, HLH30 (helix loop helix 30) during Staphylococcus
aureus or Salmonella typhimurium infections [19,20]. TFEB is
considered as a master regulator of autophagy and lysosomal
genes [21,22]. The activity of TFEB is determined by its phos-
phorylation status. Phosphorylated TFEB remains in the cyto-
plasm on the lysosomal surface whereas the dephosphorylated
TFEB translocate to the nucleus where it can activate its target
genes which include lysosomal and autophagy genes [23]. Some
of the regulators reported to control TFEB activation
include kinases like MTOR, MAPK/ERK (mitogen-activated
protein kinase), GSK3B (glycogen synthase kinase 3 beta) and
AKT1/PKB (AKT serine/threonine kinase 1) and a phosphatase,
PPP3/calcineurin [23–27]. Inhibition of these negative regulator
kinases or activation of calcineurin results in dephosphorylation
of TFEB.

Thus, modulation of autophagy and lysosomal pathways
can curb intracellular infection. We reasoned that
a previously identified set of small molecule autophagy
inducers from our laboratory may also contain potent xeno-
phagy modulators. In this study we identify and characterize
a xenophagy inducer, acacetin, which reduces intracellular
infection of S. typhimurium in both in vitro and in vivo
models. Acacetin induces TFEB dephosphorylation thereby
increasing lysosomal and autolysosomal populations in the
cell. This effect, during Salmonella infection, helps in restor-
ing the acidification of SCVs thus restricting the replication
of intracellular Salmonella. We also report that TFEB is kept
inactivated during later time points of infection and pro-
longed activation by pharmacological means is beneficial.
This compound-mediated restriction of S. typhimurium is
also seen in a mouse model of infection by translocating
TFEB to the nucleus and inducing xenophagy.

Results

Acacetin induces autophagy in yeast and mammalian cell
lines

Acacetin was previously identified in our laboratory as an
autophagy inducer in yeast based high throughput screening
of ENZO library containing 502 pharmacologically active
compounds [28]. Briefly, the rates of degradation of luciferase
containing peroxisomes in yeast were tested in the presence of
the compounds [29]. Those compounds that decreased the
time taken for 50% peroxisome degradation compared to the
untreated cells were selected as putative autophagy inducers.
Acacetin in a dose-dependent manner increased the autopha-
gic flux (Fig. S1A and B). Because autophagy is an evolutio-
narily conserved process, we next examined the effect of this
compound on mammalian cells. In HeLa cells, as even
100 µM of acacetin did not appear to be toxic after 15 h of
treatment (Fig. S1C), we used 50 µM of acacetin in our
further experiments. HeLa cells transiently expressing tandem
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Figure 1. Acacetin induces autophagy and increases lysosomal population. (A) Representative microscopy images for tandem RFP-GFP-LC3 transfected HeLa
cells treated with acacetin (50 µM) for 2 h. Yellow puncta correspond to autophagosomes whereas red puncta correspond to autolysosomes. Scale bar: 10 µm.
(B) Fold change in autophagosomes and autolysosomes induced by acacetin were quantified (n = 25, three independent experiments N = 3). (C) Fold change
in normalized LC3-II levels between growth condition and acacetin treatment were quantified (N = 3). (D) Representative immunoblot for LC3-I to LC3-II
conversion in HeLa cells in the presence of the compound for 2 h. (E) Representative immunoblot for LC3-II accumulation in the presence of acacetin only and
acacetin with BafA1 (100 nM). (F) Representative immunoblot for SQSTM1 degradation post acacetin treatment. (G) Representative immunofluorescence
microscopy images of HeLa cells stained for LAMP1 and LC3 after 2 h of acacetin treatment (n = 25, N = 3). Scale bar: 10 µm. (H) Fold change in lysosomes
and autolysosomes induced by acacetin were quantified (n = 25, N = 3). (I) Representative electron micrographs of acacetin treated HeLa cells. Electron dense
structures in the zoomed-in panel represent lysosomes (red arrow). (J) Representative immunoblot indicating the phosphorylation status of MTOR substrates,
RPS6KB1/p70S6K and EIF4EBP1 caused by acacetin and Earle’s Balanced Salt Solution (EBSS) treatments. TUBB/β-tubulin was used as a loading
control. Quantification of microscopy images was performed on projected images. Statistical analyses were performed using unpaired two-tailed student’s
t-test; ns- non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent mean ± SEM.
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RFP-EGFP-LC3, when treated with the compound for 2 h in
growth medium, showed a significant increase in autolyso-
some population suggesting an increase in fusion flux
(Figure 1A,B). Immunoblotting also revealed a concomitant
increase in LC3-II levels (Figure 1C,D). Although LC3-II
accumulation is the most common indicator to check autop-
hagy modulation, it could be either due to autophagy induc-
tion or a block in degradation. To verify if the compound is
a bona fide autophagy inducer, cells were treated with the
compound in the presence or absence of fusion inhibitor,
bafilomycin A1 (BafA1). As shown in Figure 1E, immunoblot-
ting with LC3 antibody revealed that the combination
of BafA1 and the compound resulted in further increase in
LC3-II levels over and above that of BafA1 treatment alone,
indicating that the compound indeed induced autophagy.
Similarly, autophagy receptor protein SQSTM1 was degraded
post compound treatment also indicating autophagy induc-
tion (Figure 1F).

In addition to stimulating basal autophagy, acacetin treat-
ment also resulted in an increase in total lysosomal population
as seen by LAMP1 (lysosomal associated membrane protein 1)-
positive vesicles by fluorescence microscopy (Figure 1G,H). The
same observation was also validated by electron microscopy
where an increase in electron dense structures indicative of
lysosomes was seen (Figure 1I and S1D). The compound treat-
ment did not inhibit MTOR activity as revealed by the phos-
phorylation status of its downstream targets such as EIF4EBP1
(eukaryotic translation initiation factor 4E binding protein 1)
and RPS6KB1/p70S6K (ribosomal protein S6 kinase B1)
(Figure 1J). Additionally, p-MTOR and MTOR localization on
lysosomes also did not change upon acacetin treatment, sug-
gesting that MTOR was active in presence of acacetin (Fig. S2A
to S2C). Collectively, these results suggest that acacetin acts in
an MTOR-independent manner to induce autophagy.

Acacetin induces xenophagy of Salmonella typhimurium

Apart from inducing general autophagy, we tested whether
acacetin also induces selective autophagy pathways such as
xenophagy. For this approach, we employed an intracellular
S. typhimurium infection model. The ability of the compound
to clear intracellular bacteria through xenophagy was examined
by adding acacetin to HeLa cells. The compound treatment
showed a reduction in the replication of intracellular
S. typhimurium as quantified by colony forming unit assay and
also exhibited a dose-dependent effect (Figure 2A, S3A, and
SVideo 1–3). Similarly, we also validated these results in RAW
264.7 macrophages (Figure 2A).

Furthermore, to understand whether the compound works
through autophagy, we examined the bacterial burden from
autophagy deficient HeLa cells (ATG5−/-) treated with acacetin.
The compound was ineffective in lowering the intracellular
bacterial burden which was similar to that of untreated samples
(Figure 2B). Similar results were obtained when autophagy
inhibitors such as 3-methyladenine (3-MA) and wortmannin
were used (Figure 2C, S3B and C). These results suggest that
autophagy is essential for the compound-mediated xenophagy
action. In addition, the decrease in bacterial burden could be
due to a potential antibacterial property of the compound along

with autophagy, as seen for certain antibiotics such as Isoniazid
and Pyrazinamide [30]. We therefore examined the growth of
extracellular S. typhimurium in the presence of acacetin. As
seen in Figure 2D, there was no apparent lag in the bacterial
growth between the untreated and compound-treated samples.

Xenophagy induction involves capture of pathogens by
autophagy related receptor proteins (SQSTM1, NDP52, OPTN
and NBR1) and xenophagosome membrane proteins (LC3 and
its isoforms). To elucidate the xenophagy-dependent action of
acacetin, recruitment of SQSTM1 and LC3 to intracellular
S. typhimurium was studied post compound treatment. As seen
in Figure 2E-H acacetin treatment for 6 h resulted in increased
recruitment of autophagic proteins to bacteria in a temporal
manner. As opposed to untreated infected cells where
S. typhimurium is known to evade xenophagy capture, acacetin
treatment resulted in increased recruitment of SQSTM1 and
LC3. In order to understand the mechanism of SQSTM1 recruit-
ment to S. typhimurium post acacetin treatment, we specifically
studied the S403 phosphorylation in the ubiquitin-associated
domain (UBA) of SQSTM1 that has been associated with
enhanced binding to ubiquitinated cargoes (Fig. S4A).
Furthermore, TBK1 (TANK-binding kinase 1) phosphorylates
SQSTM1 at S403. Active TBK1 itself is phosphorylated at S172
within its activation loop. Thus, monitoring the levels and
recruitment of p-SQSTM1 and p-TBK1 can be used to assess
effectiveness of cargo capture [31]. As seen in Figure 2I,J, there
was an increased recruitment of p-TBK1 and p-SQSTM1 to
Salmonella post acacetin treatment until 6 h tested.
Immunoblotting analysis revealed an increase in p-TBK1 levels
of HeLa cells post acacetin treatment (Fig. S3D). Furthermore,
to differentiate the cytosolic S. typhimurium from those con-
tained in SCVs, we resorted to electron microscopy. Electron
micrographs of infected HeLa cells exhibited both vacuolar and
cytosolic intracellular S. typhimurium populations (Figure 2K,L).
Upon compound treatment, host-induced capture of
S. typhimurium was observed with reduced bacterial numbers
and increased electron dense lysosomal structures 6 h post
infection (Figure 2M, S3E). These observations suggest that
acacetin increased the xenophagic potential of cells.

Acacetin treatment results in enhanced capture of
S. typhimurium in a TFEB-dependent manner

Given the ability of the compound to induce lysosomal bio-
genesis along with increased autophagy flux, we suspected
a potential role for TFEB, which upon dephosphorylation,
translocate to the nucleus to transcriptionally upregulate its
target genes. Such increased nuclear translocation of TFEB
was seen by immunofluorescence staining of HeLa epithelial
cells treated with acacetin for 2 h (Figure 3A,B). In addition,
immunoblotting analysis showed a distinct dephosphorylated
TFEB band (Figure 3C,D) and increased TFEB in nuclear
fraction of acacetin-treated cell lysates (Figure 3E). Similarly,
2 h of acacetin treatment also led to transcriptional induction
of TFEB target genes related to autophagy and lysosomal
pathways (Figure 3F). Finally, to study the involvement of
MTOR in acacetin-mediated TFEB dephosphorylation,
MTOR was constitutively activated by over expressing the
RHEBN153T (Ras homolog enriched in brain) mutant [32].
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Figure 2. Acacetin induces xenophagy of S. typhimurium. (A) Graph showing CFU indicating intracellular S. typhimurium in HeLa cells and RAW 264.7 after acacetin
treatment (N = 3). (B) Graph showing CFU indicating intracellular S. typhimurium in HeLa cells and ATG5−/− HeLa cells after acacetin treatment (N = 3). (C) Graph
showing CFU indicating intracellular S. typhimurium in HeLa cells after various treatments like acacetin, wortmannin and 3-MA (N=3). (D) Growth curve of
S. typhimurium in cell free Luria Broth containing acacetin. (E) Graph representing the percentage of time course recruitment of SQSTM1 to S. typhimurium induced
by acacetin. (F) Graph representing the percentage of time course recruitment of LC3 to S. typhimurium induced by acacetin. (G) Representative microscopy images of
HeLa cells infected with mCherry expressing S. typhimurium and immunostained for SQSTM1 at 6 h post infection (n = 25, N = 3). Scale bar: 5 µm. (H) Representative
microscopy images of GFP-LC3 transfected HeLa cells and infected with mCherry expressing S. typhimurium at 6 h post infection. Scale bar: 10 µm. (I) Representative
microscopy images of HeLa cells infected with mCherry expressing S. typhimurium and immunostained for p-TBK1 and p-SQSTM1 at 6 h post infection (n = 25, N = 3).
Scale bar: 10 µm. (J) Graph representing the percentage recruitment of p-TBK1 and p-SQSTM1 to S. typhimurium induced by acacetin. Quantification of microscopy
images was performed on individual Z slices. (K-M) Representative electron micrographs of S. typhimurium infected HeLa cells (showing (K) Vacuolar and (L)
cytoplasmic Salmonella population) with and without acacetin. Red arrows indicate electron dense lysosomes and yellow arrows indicate host mediated capture of
S. typhimurium. Statistical analyses on three independent experiments were performed using unpaired two-tailed student’s t-test; ns- non-significant, *p < 0.05,
**p < 0.01, ***p < 0.001. Error bars represent mean ± SEM. The concentrations of 3-MA, wortmannin and acacetin used were 5 mM, 100 nM and 50 µM respectively.
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Figure 3. Acacetin enhances nuclear translocation of TFEB. (A) Representative microscopy images of HeLa cells treated with acacetin for 2 h and immunostained for
TFEB. Scale bar: 5 µm. (B) Fold change in nuclear TFEB intensity induced by acacetin were quantified (n = 50, N = 3). Quantification of microscopy images were
performed on individual Z slices. (C) The graph represents the fold change in dephosphorylated form of TFEB caused by acacetin (N = 3). (D) Representative
immunoblot for HeLa cells treated with acacetin and probed for TFEB. Molecular weight shift in TFEB band corresponds to dephosphorylated TFEB. TUBB/β-tubulin
was used as a loading control. (E) Representative immunoblot of cytoplasmic-nuclear fractionation indicating TFEB levels in nucleus and cytoplasm. 2X concentration
of nuclear fraction was loaded compared to cytoplasmic fraction. S.E and L.E represents short and long exposure respectively. (F) Fold change in mRNA levels of
indicated TFEB target genes related to autophagy and lysosomal pathways post 2 h of acacetin treatment (N = 3). (G) Representative immunoblot indicating the
phosphorylation status of TFEB post S. typhimurium infection across different time points and MOI. The lower molecular weight TFEB band corresponds to
dephosphorylated TFEB. (H) Representative immunoblot indicating the phosphorylation status of TFEB post S. typhimurium infection and acacetin treatment in a time
dependent manner. (I) Graph representing the difference in dephosphorylated TFEB induced by acacetin post S. typhimurium infection (N = 3). TUBB/β-tubulin was
used as a loading control. Statistical analyses on three independent experiments were performed using unpaired student’s two-tailed t-test; ns- non-significant,
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent mean ± SEM.
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Upon expression of this mutant, phosphorylation of RPS6KB1
increased (as shown by both immunoblotting and fluores-
cence microscopy analysis) suggesting that overexpression of
this dominant mutant resulted in constitutive activation of
MTOR (Fig. S5C). In addition, cells transfected with this
construct (as represented by enhanced p-RPS6KB1 staining)
showed translocation of TFEB to the nucleus upon acacetin
treatment (Fig. S5A and B). These results suggest that acace-
tin-mediated TFEB translocation into the nucleus occurs in an
MTOR-independent manner.

We further investigated the levels and phosphorylation
status of TFEB during S. typhimurium infection. We noticed
that the overall levels of TFEB increased during infection,
especially the higher molecular weight band (Figure 3G). To
test if this band was indeed p-TFEB, we treated the lysates
with calf intestine phosphatase (CIP). CIP treated samples
showed accelerated migrating bands of TFEB (dephosphory-
lated) suggesting that infection results in maintaining TFEB in
a phosphorylated state (Fig. S5D). Contrastingly, acacetin
treatment during infection resulted in increase in depho-
sphorylation status of TFEB (Figure 3H,I) thus reversing the
Salmonella-mediated block in TFEB dephosphorylation.

In order to access the dependency of acacetin on TFEB, we
silenced TFEB in HeLa cells. Acacetin-mediated autophagy
induction was significantly decreased upon TFEB silencing
as seen by reduced LC3-II puncta in microscopy and absence
of LC3-II accumulation by immunoblotting analysis (Fig. S6A
to S6C). Additionally, to selectively evaluate if dephosphor-
ylation of TFEB is also important for xenophagy, we tested the
bacterial capture upon TFEB silencing. In cells silenced for
TFEB, the acacetin-mediated SQSTM1 recruitment was sig-
nificantly reduced (Figure 4A,B) confirming the role of TFEB
in acacetin action. Results thus far suggested that acacetin
exerts its effect by mediating dephosphorylation of TFEB
and subsequent autophagy and xenophagy induction.

Acacetin treatment increases the proteolytic activity of
Salmonella-containing vacuoles

To verify if the acacetin induced increase in the number of lyso-
somes also corresponds to a concomitant increase in the lysosomal
activity, cells were treated with dye quenched-bovine serum albu-
min (DQ-BSA). It is a derivative of bovine serum albumin that is
heavily conjugated to BODIPYdye that acts as a protease substrate
and gets cleaved by lysosomal cysteine and aspartyl proteases such
as CTSB and CTSD. As shown in Figure 5A,C, acacetin treatment
resulted in increased fluorescence of DQ-BSA due to lysosomal-
mediated processing resulting in brighter mono-conjugates of
DQ-BSA. In addition, to study the effect of acacetin on fluid
phase endocytosis, we temporally followed reporter cargoes such
as fluorescein isothiocyanate (FITC) labeled Dextran beads and
pyridinium,4-(6-[4-{diethylamino}phenyl]-1,3,5-hexatrienyl)-
1-(3[triethylammonio] propyl)-,dibromide (FM 4–64) dye.
Furthermore, FITC-Dextran was colocalized with early endoso-
mal marker EEA1 (early endosome antigen 1) and the acidified
late endosomes or lysosomes stain, LysoTracker Deep Red. As
seen in Fig. S7, there was neither any significant difference
between the rate of uptake (Fig. S7A to S7D) nor in the temporal

colocalization between the endocytic and lysosomal markers
(Fig. S8A and B). These results suggest that acacetin treatment,
for the time assessed, did not perturb the uptake and trafficking of
endocytic cargoes. Taken together, acacetin specifically increases
the number of functional lysosomes in addition to enhancing
autophagy flux.

SCVs are modified Salmonella containing endosomes-like
structures that resemble lysosomes by membrane composi-
tion but do not contain proteases similar to functional lyso-
somes [11]. These protease-deficient vesicles provide a niche
for S. typhimurium to replicate within cells. In addition to
increasing the number of active lysosomes in cells, acacetin
treatment also increases the proteolytic activity of SCVs pre-
venting bacterial replication, as seen by DQ-BSA processing
in the SCVs (Figure 5B,D). DQ-BSA processing to monocon-
jugates is a sign of increased proteolytic activity in the con-
tained vesicles. These results suggest that apart from
enhanced acacetin-mediated S. typhimurium capture by xeno-
phagy proteins, there is an increase in functional lysosomal
numbers which also target SCVs to enhance their proteolytic
activity and thus reduce S. typhimurium replication.

Acacetin induces xenophagy in mouse model of infection

Salmonella invasion via gastrointestinal route establishes
infection initially in the intestine followed by dissemination
to other organs like liver, kidney, spleen and lymph nodes. It
is reported that the xenophagy potential of the organs during
Salmonella infection is short lived, returning to basal levels
at around 72 h post infection [14]. In order to test the
efficacy of acacetin in inducing xenophagy-mediated bacter-
ial clearance, an in vivo mouse model of infection was
established. Based on our preliminary studies, we found
that administering 1010 bacteria through oral gavage, disse-
minates bacteria across key organs involved during
Salmonella infection like intestine, liver, spleen and kidney
at 7 d post infection. Additionally, the concentration of
acacetin to be tested was decided based on previously avail-
able reports that did not show any change in body weight or
mortality. Three groups of mice were tested namely unin-
fected, infected and infected along with acacetin treatment.
In this infection model, acacetin (20 mg/kg body weight) was
administered intraperitoneally starting from 1 d prior to
Salmonella infection in order to maintain an induced autop-
hagy status in the organs. Acacetin treatment continued until
7 d post infection. At the end of 7 d post infection, mice
from all groups were sacrificed and the number of intracel-
lular Salmonella was determined by counting the number of
colony-forming units (CFU) and autophagy induction was
visualized in liver using immunohistochemistry (Figure 6A).
Results obtained are comparable to the study done by
Benjamin et al highlighting the role of in vivo xenophagy
[14]. As seen in Figure 6B, there is a reduction in the
number of intracellular bacteria in various organs of infected
mice like liver, spleen, and intestine in the acacetin treated
group. In addition, immunohistochemical analysis revealed
induction of autophagy as seen by increased LC3-II puncta
(Figure 6C,D) in the infected group that received acacetin.
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Discussion

In the constant battle between the host and pathogens for one
upmanship, both sides employ several strategies and counter
strategies. One powerful mechanism the host cells employ is
xenophagy that functions in concert with other antimicrobial
strategies of the host cell and is implicated in a number of
intracellular bacterial infections [33]. However, in order to
successfully establish infection, bacteria deploy diverse tactics

to down regulate xenophagy. Host capabilities for counter-
acting this subversion resulting in enhanced clearance of
intracellular bacteria and hence mitigate infection pathology
has been reported by several studies [34].

Chemical biology approaches to understand xenophagy has
two-fold benefits. Characterization of xenophagy “hits” not only
provides insights into this process, their specificity can also
reveal therapeutic potential. For example, chemical modulators

Figure 4. Acacetin treatment results in enhanced capture of S. typhimurium in a TFEB-dependent manner. (A) Representative microscopy images of control and TFEB
silenced HeLa cells post S. typhimurium infection for 6 h and immunostained for SQSTM1 and TFEB. Scale bar: 5 µm. (B) Graph represents the time course recruitment
of SQSTM1 to S. typhimurium induced by acacetin treatment (n = 25, N = 3). Quantification of microscopy images were performed on individual Z slices. Statistical
analysis was performed using unpaired student’s two-tailed t-test; ns- non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent mean ± SEM.
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of xenophagy like trifluoperazine, BRD5631 act through distinct
but diverse mechanisms suggesting therapeutically novel strate-
gies to induce xenophagy [18]. In this study, we identify and
characterize a novel xenophagy modulator acacetin that clears
intracellular S. typhimurium infection in anMTOR-independent
but TFEB-dependent manner. Although prolonged exposure of

high concentration of acacetin has been shown to induce apop-
tosis in cancer cells recently [35], we show that at the lower
concentrations used in our study, acacetin robustly induces
autophagy and is effective as a xenophagy inducer in curbing
S. typhimurium infection both in cell lines and in an in vivo
model.

Figure 5. Acacetin treatment increases the proteolytic activity of Salmonella-containing vacuoles. (A) Representative microscopy images of HeLa cells treated
with DQ-BSA for 2 h followed by 4 h incubation of DQ-BSA along with acacetin treatment. Cells were immunostained for LAMP1 (n = 25, N = 3). Scale bar:
5 µm. (B) Representative microscopy images of mCherry S. typhimurium infected HeLa cells treated with DQ-BSA for 2 h followed by 4 h incubation of DQ-BSA
along with acacetin treatment. Cells were immunostained for LAMP1. Scale bar: 5 µm. (C and D) The differences in DQ-BSA intensity per cell or SCVs induced
by acacetin treatment were quantified (n = 25, N = 3). Quantification of microscopy images were performed on projected images. Statistical analyses on three
independent experiments were performed using unpaired student’s two-tailed t-test; ns- non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. Error bars
represent mean ± SEM.
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Acacetin treatment resulted in an overall increase in the
number of autolysosomes. Further, increased formation of auto-
lysosomes suggests that acacetin treatment results in enhanced
fusion of autophagosomes and lysosomes thus leading to an

increased number of autolysosomes. In spite of this increase in
autolysosome number, autophagosomes number did not decline
upon acacetin treatment, further suggesting that the overall
autophagy flux is upregulated in presence of acacetin. When

Figure 6. Acacetin induces xenophagy in mouse model of infection. (A) Scheme for infection assay. (B) Graph representing the reduction in intracellular
S. typhimurium burden in various organs of acacetin treated mice (N = 10). (C) Graph representing the difference in number of LC3-II puncta per microscopy
field (1X1 binning and 1024 × 1024 pixel) between different groups of mice (N=3). (D) Representative immunohistochemistry images of liver cryosections stained for
autophagosome membrane marker, LC3 (Olympus FV3000 1.25X objective was used for imaging entire DAPI stained liver section, 20X objective was used to choose
a region of interest stained for LC3 in red and DAPI. 40X objective was used for observing LC3 puncta, indicated by yellow arrows). Quantification of microscopy
images were performed on projected images. Statistical analyses of three independent experiments was performed using unpaired student’s two-tailed t-test; ns-
non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent mean ± SEM.
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tested for its xenophagy potential, acacetin was able to inhibit
intracellular S. typhimurium multiplication. Detailed mechanis-
tic analysis revealed the following: Firstly, the compound treat-
ment induced enhanced recruitment of autophagy receptor
proteins such as SQSTM1 to Salmonella. This increased recruit-
ment of SQSTM1 after acacetin treatment is possibly facilitated
by phosphorylation of SQSTM1 (S403) in its UBA domain
thereby enhancing its binding affinity to ubiquitinated cargoes
rather than transcriptional induction of SQSTM1. Additionally,
phosphorylation of TBK1 and its recruitment to S. typhimurium
both were increased. These observations are in agreement with
the published literature where p-TBK1 has been shown to be
actively phosphorylating SQSTM1 at S403 in its UBA domain.
Such a mechanism has been shown for capturing damaged
mitochondria by the selective autophagy process known as
mitophagy [31]. Secondly, acacetin functions by activating the
transcription factor TFEB, a master regulator of lysosome bio-
genesis and autophagy pathways [36]. Phosphorylated TFEB is
localized on the lysosomes, but upon dephosphorylation, it
migrates to the nucleus and activates the expression of several
genes involved in lysosomal biogenesis and autophagy related
pathways [37]. However, TFEB-mediated mechanisms are com-
plex with multiple phosphorylation sites and co-ordinated reg-
ulation of this phosphorylation-dephosphorylation balance by
a number of kinases (MTOR, ERK, GSK3B, Akt) and the phos-
phatase, calcineurin governs the metabolic state of the cell [38].
Apart from increasing autophagy flux in presence of acacetin,
TFEB also promoted autolysosome formation. Thirdly, acacetin
treatment promoted TFEB translocation into the nucleus.
Previous studies have shown that activation and translocation
of MiT-TFE family of transcription factors (TFEB, TFE3) that
regulate lysosome biogenesis and autophagy, increase the innate
immune response of LPS-activated macrophages [39]. In fact,
phagocytosis of bacteria and IgG opsonized beads activate TFEB.
A study by Gray et al showed that depletion of TFEB lead to
a loss in pathogen restriction by downregulating lysosomal
degradation during infection [40]. In addition, the TFEB ortho-
log in C. elegans, HLH30 has been reported to be activated
during S. typhimurium and S. aureus infection and provide
cytoprotection [20,41]. Our results show that upon Salmonella
infection, although TFEB levels increase, it is maintained in
a transcriptionally inactive, phosphorylated form. However, aca-
cetin treatment resulted in increased levels of dephosphorylated
form of TFEB with a concomitant induction of autolysosome
numbers and enhanced xenophagy flux.

A recent study on xenophagy in mice during Salmonella
infection highlighted the role of ATG5, an essential autophagy
protein needed for autophagosome formation [14]. Intestinal
knockdown of Atg5 increased the bacterial load in mice,
suggesting the importance of xenophagy-mediated host
immune response. Similarly, a previous study by Conway
et al reported the requirement of another autophagy protein,
ATG16L1 for xenophagy during Salmonella infection [42].
Although the above studies emphasized the role of xenophagy
process, the molecular mechanisms that induce xenophagy
in vivo are not well known. Here, we show that consistent
acacetin treatment in vivo led to increase in LC3B-II levels,
with a concomitant restriction of bacterial infection. Together,
our data suggests a mechanism to overcome the reported host

xenophagy inhibition mediated by intracellular pathogens
such as S. typhimurium [14].

Furthermore, some of the well-known potent TFEB inducers
like torin1, work by inhibiting MTOR, a critical kinase that
regulates cellular growth and survival. It is therefore essential
to identify TFEB inducers that function in an MTOR-
independent manner such as acacetin. Similar studies exploring
the mechanisms of MTOR-independent TFEB activation are
reported [24,26] and in particular, a small molecule compound
trehalose, activates TFEB by inhibiting Akt and enhances clear-
ance of protein aggregates [27].

Thus, we show that identifying potent xenophagy inducers
can strengthen the host response against pathogens. As
a potential translational application, such molecules can be envi-
saged as a host mediated therapy which may be especially effec-
tive when dealing with multidrug resistant pathogens.

Materials and methods

Chemicals and antibodies

3-MA (M9281), wortmannin (W1628), acacetin (00017), anti-
LC3B antibody (L7543), Atto 663 (41176), trypsin EDTA
(59418C), EBSS (E7510) and FITC-Dextran (46945) were pur-
chased from Sigma-Aldrich. Anti-TFEB antibody (4240), anti-
RPS6KB1/p70S6K antibody (9208), anti-p-RPS6KB1/p70S6K
(9202) antibody, anti-p-EIF4EBP1 antibody (2855), anti-
EIF4EBP1 antibody (9452), anti-LAMP1 antibody (9091), anti-
TBK1/NAK antibody (3504), anti-p-TBK1/NAK Ser172 antibody
(5483), anti-EEA1 antibody (3288), anti-ACTB/β-actin antibody
(4970), anti-rabbit IgG antibody conjugated with horseradish
peroxidase (HRP; 7074) were purchased from Cell Signaling
Technology. Anti-SQSTM1/p62 (ab56416) was purchased from
Abcam. Anti-p-SQSTM1/p62 Ser403 (D343-3) was purchased
from MBL. Anti-TUBB/β-tubulin antibody (DSHB-C1-377) was
purchased from Developmental Studies Hybridoma Bank. Anti
H3 was a kind gift from Prof. Tapas Kundu, JNCASR. DQ-BSA
Red BSA (D12051), FM 4–64 (F34653), LysoTracker Deep Red
(L12492) were purchased from Thermo Fisher Scientific.
Bafilomycin A1 (11038) was purchased from Cayman chemical.
CIP (M0290S) was purchased from New England Biolabs.

Plasmid constructs, esiRNA and bacterial strains

Plasmids used inmammalian cell culture include ptfLC3 (21074,
deposited by Tamotsu Yoshimori), pEGFP-N1-TFEB (38119,
deposited by Shawn Ferguson), LAMP1-RFP (1817, deposited
byWalther Mothes), RHEBN153T (19997, deposited by Fuyuhiko
Tamanoi) were purchased from Addgene. Bacterial strains used
for infectious studies include untagged and mCherry expressing
S. typhimurium (kind gift from Dr. C.V Srikanth, RCB, India).
For silencing experiments, TFEB esiRNA (EHU059261-20UG)
and scramble esiRNA (SIC001-10NMOL) were purchased from
Sigma-Aldrich.

Cell culture

RAW 264.7 and HeLa cells were grown in Dulbecco’s Modified
Eagle’s Medium (DMEM; Sigma-Aldrich, 5648) supplemented
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with 3.7 g/L sodium bicarbonate (Sigma-Aldrich, S5761), 10%
fetal bovine serum (FBS; Gibco, 10270–106) and 100 units/ml
of penicillin and streptomycin (Gibco, 15140–122) and main-
tained in 5% CO2 at 37°C. ATG5

−/- HeLa cells was a kind gift
from Prof. Richard Youle, NIH.

Immunofluorescence microscopy

Cells were seeded on coverslips and allowed to attach overnight.
Cells were transfected with plasmid constructs (ptf-LC3/GFP-
LC3) using lipofectamine 2000 (Invitrogen, 11668019) as per the
manufacturer’s instructions. After 48 h post transfection, com-
pound treatment was carried out for indicated time points and
cells were fixed using 4% paraformaldehyde (Sigma-Aldrich,
P6148). For antibody staining, permeabilization with 0.25%
Triton X-100 (HiMedia Laboratories, MB031) was followed by
primary antibody incubation overnight at 4°C and appropriate
secondary antibody incubation for 1 h at room temperature. The
cover slips were mounted using Vectashield antifade reagent
with or without DAPI (Vector laboratories, H-1000/H-1200).

DQ-BSA processing assay

HeLa cells were seeded on cover slips and allowed to attach
overnight. DQ-BSA was added to HeLa cells or HeLa cells post
S. typhimurium infection for 2 h. The DQ-BSA processing was
allowed for 4 h and fixed using 4% paraformaldehyde.

Immunoblotting

Cells were seeded in 6-well plates and allowed to attach over-
night. After 2 h of compound treatment, cells were collected in
Laemmli buffer (10% SDS (HiMedia Laboratories, GRM886),
10 mM DTT (ThermoFisher Scientific, R0862), 20% glycerol
(Merck, 1.07051.0521), 0.2M Tris-HCl (Merck, 1.93315.0521),
0.05% bromophenol blue (ThermoFisher Scientific, 115-39-9),
pH 6.8) and boiled for 10 min at 95◦C. Samples were electro-
phoresed on SDS-PAGE and transferred onto PVDF membrane
(BioRad, 1,620,177). After incubation with primary antibody
overnight at 4°C and HRP conjugated secondary antibody for
1 h at room temperature, signals were obtained using enhanced
chemiluminescence substrate (Clarity Bio-Rad, 170–5061) and
image was acquired using gel documentation system (G-box,
Chemi XT 4, Syngene, USA). The bands were quantified using
ImageJ software (NIH).

Infection assay

Single colony of S. typhimurium (kind gift from Dr. C.V.
Srikanth, RCB, India) was grown for 6 h at 37°C in a shaking
incubator. Secondary culture (0.2% inoculum) was grown over-
night in micro-aerophilic conditions. HeLa (WT and ATG5−/-)
or RAW264.7 cell lines were infected at amultiplicity of infection
(MOI) of 200 for 1 h. The cells were treated with media contain-
ing 40 µg/ml gentamycin (Abbott, EAI03089) for 1 h to kill the
extracellular bacteria. The cells were then treated with the com-
pound and incubated for 4 h. Finally, the mammalian cells were
lysed using lysis buffer (0.1% SDS, 1% Triton X-100, 1X PBS

(Sigma-Aldrich, D6773)) and the intracellular S. typhimurium
was plated and the CFU was counted.

Fluorescence microscopy and analysis

Images were acquired on the widefield Delta Vision microscope
(API, GE, USA, 29,065,728) using DAPI, FITC, TRITC, Cy5
filters with Olympus 60X/1.42 NA objective. Post-acquisition,
the images were deconvolved using Delta Vision SoftWorx
software. For Fig. S3A and Figure 6D, confocal microscopy
(Zeiss, LSM880) was used without deconvolution. For analyzes
that involved colocalization (Figure 2E,F,J, 3B, 4B, S2C, S3B,
S5B, S8B), individual Z-stacks were analyzed using
Colocalization plugin with “colocalization highlighter” option
in ImageJ (NIH) and the number of colocalized events were
counted using cell counter plugin of ImageJ . Whereas, for
images that required counting total puncta inside cells or
measuring total intensities of cells (Figure 1B,H, 5C,D, 6C,
S3B, S6B, S7C, S7D), projected image (collapsed Z-stacks)
were used for quantification. Graphs were plotted and signifi-
cance levels were tested using unpaired two-tailed student’s
t-test in GraphPad Prism software. However, all representative
images are projected images for better clarity.

Live cell microscopy

GFP-LC3 transfected HeLa cells were infected with mCherry-
S. typhimurium for 15 min (MOI 400) and were treated with
gentamycin for 15 min. The cells were then washed with 1X
PBS and were treated with the compound and imaged on
FV10i- Olympus confocal live cell imaging microscope using
60X water immersion lens with confocality aperture set to 1.0.
Images were taken at an interval of 15 or 20 min (Five
Z sections of 1 micron each). The intensity of the Red channel
was analyzed using Image J – Stacks T function- intensity vs.
time plot plugin.

RNA extraction and quantitative PCR

Total RNA from samples was isolated using TRIzol (Ambion,
15596–026). Reverse transcription was carried out using
Taqman reverse transcription kit (Applied Biosystems,
N8080234). Autophagy and lysosomal specific gene primers
which were previously reported [21,43,44] were purchased
from Sigma-Aldrich. The housekeeping gene ACTB was
used as normalizing control to calculate the fold change.

Primers used

Gene Forward Reverse

ACTB CATCATGAAGTGTGACGTGGAC CTTGATCTTCATTGTGCTGGGTG
LC3B ACCGTGTGATCAGTAAGATTCC GTGACCACTCACATGGGATATAG
BECN1 CCCGTGGAATGGAATGAGATTA CCGTAAGGAACAAGTCGGTATC
BCL2 AGATGGAGCATGAATGGTACTG TCTGTGCTCAGCTTGGTATG
TFEB CCAGAAGCGAGAGCTCACAGAT TGTGATTGTCTTTCTTCTGCCG
LAMP1 ACGTTACAGCGTCCAGCTCAT TCTTTGGAGCTCGCATTGG
SQSTM1 GCACCCCAATGTGATCTGC CGCTACACAAGTCGTAGTCTGG
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Electron microscopy

Sample processing for Transmission Electron Microscopy was
carried out in Christian Medical College, Vellore, India.
Briefly, HeLa cells were trypsinized and washed with 1X
PBS. Cells were fixed using 4% glutaraldehyde in 0.1 M caco-
dylate buffer (pH 7.3) for 1 h at 4◦C. Fixed cells were dehy-
drated in ethanol series and embedded in epoxy resin (TAAB
laboratory and microscopy, CY212 KIT, E009). Ultra-thin
sections were stained and observed using Tecnai, G2 F-30
with a point resolution of 2.2 Å.

Cell viability assay

HeLa cells were seeded on a 384-well plate and treatedwith different
concentrations of acacetin. After 15 h of compound treatment, cell
viability was measured using luminescence-based Cell Titer Glo cell
viability assay kit (Promega, G7572) using a micro-titer plate reader
(Varioskan Flash, Thermo Fisher Scientific, USA).

Immunohistochemistry

Liver cryosections of 40 µm thickness were collected on gela-
tine coated slides. Every eighth section was used for immu-
nostaining. Equilibration of the sections was done using 0.1 M
PBS (pH 7.4) for 10 min. This was followed by blocking using
3% bovine serum albumin (Sigma-Aldrich, A7906) for 4 h.
Then, the sections were incubated for 36 h in primary anti-
body. After washes the sections were incubated in fluorescent
secondary antibody for 4 h. The sections were mounted using
Vectashield mounting media after required washing. Images
were acquired using Olympus FV 3000 (1.25X objective was
used for imaging entire liver section, 40X objective was used
for observing LC3-II puncta).

Animal studies

All procedures carried out in the study were approved by
JNCASR Institutional Animal Ethics Committee. BALB/c
mice (6–8 weeks of age) were distributed into three groups
namely- uninfected, infected and infected along with acacetin
treatment. Acacetin (20 mg/kg) was administered intraperito-
neally to the infected with acacetin treatment group. The com-
pound treatment continued for next 7 d with one injection
a day. Other two groups were injected with vehicle solvent,
dimethyl sulfoxide (Sigma-Aldrich, D8418). Infection (1010)
was done through oral gavage for the second and third group
on the first day. All animals were sacrificed on the seventh day
post infection after 2 h of compound injection and the organs
(liver, spleen and intestine) were processed for plating and
immunohistochemistry.

Statistical analysis

For all observations made in this study, a minimum of three
independent experiments were performed. For fluorescence
microscopy based analysis, at least 25 cells per experiment (so
across three experiments, a minimum of 75 cells) were con-
sidered for quantification. Immunoblotting and microscopy

image quantifications were performed using ImageJ software
with appropriate plugins (NIH) mentioned elsewhere. The
significance levels between the control and test groups were
tested using unpaired two-tailed student’s t-test where ns-
non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. Error
bars represent mean ± SEM. All statistical tests and graphs
were plotted using GraphPad prism.

Video 1: HeLa cells infected with S. typhimurium SL1344
at MOI of 400 for 15 min followed by gentamycin treatment
(40 µg/ml) for 15 min. Fresh medium was added to the cells
and imaged every 20 min for 5 h 40 min. Scale bar: 10 µm.

Videos 2&3: HeLa cells infected with S. typhimurium
SL1344 at MOI of 400 for 15 min followed by gentamycin
treatment (40 µg/ml) for 15 min. Fresh medium containing
50 µM of acacetin was added to the cells and imaged every
15 min for 5 h 45 min. Scale bar: 10 µm.
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autophagy to suppress the antiviral interferon response
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ABSTRACT

Foot-and-mouth disease virus (FMDV) is a picornavirus that causes

contagious acute infection in cloven-hoofed animals. FMDV

replication-associated viral protein expression induces endoplasmic

reticulum (ER) stress and the unfolded protein response (UPR), in turn

inducing autophagy to restore cellular homeostasis. We observed that

inhibition of BiP (also known as HSPA5 and GRP78), a master

regulator of ER stress and UPR, decreased FMDV infection confirming

their involvement. Further, we show that the FMDV infection induces

UPR mainly through the PKR-like ER kinase (PERK; also known as

EIF2AK3)-mediated pathway. Knockdown of PERK and chemical

inhibition of PERK activation resulted in decreased expression of

FMDV proteins along with the reduction of autophagy marker protein

LC3B-II [the lipidated form of LC3B (also known as MAP1LC3B)].

There are conflicting reports on the role of autophagy in FMDV

multiplication. Our study systematically demonstrates that during

FMDV infection, PERK-mediated UPR stimulated an increased level

of endogenous LC3B-II and turnover of SQSTM1, thus confirming the

activation of functional autophagy. Modulation of the UPR and

autophagy by pharmacological and genetic approaches resulted in

reduced numbers of viral progeny, by enhancing the antiviral interferon

response. Taken together, this study underscores the prospect of

exploring PERK-mediated autophagy as an antiviral target.

KEYWORDS: Autophagy, Foot-and-mouth disease virus, Interferon,

LC3, p-eIF2α, PERK, Unfolded protein response

INTRODUCTION

Foot-and-mouth disease virus (FMDV), is a positive-sense

non-enveloped RNA virus of the Picornaviridae family. It is a

major cause of contagious acute viral infection in cloven-hoofed

animals, though asymptomatic persistent infection is also reported

(Knowles and Samuel, 2003). FMDV proliferates rapidly and

causes vesicular lesions on oro-nasal mucosa and the interdigital

cleft. Worldwide, there exist seven serotypes – O, A, C, Asia1,

South African Territories (SAT) 1, SAT2 and SAT3. In addition,

numerous variants and subtypes have also been reported (Bachrach,

1968). The infection causes high morbidity in adult animals and

high mortality in young animals, leading to reduced animal

productivity and economic loss (Grubman and Baxt, 2004). Also,

FMD is considered as the most important constraint for international

trade of animals and animal products (Leforban, 1999).

FMDV derives membranes from the endoplasmic reticulum (ER)

and pre-Golgi membranes of the early secretory pathway for its

replication (Midgley et al., 2013; Moffat et al., 2005). FMDV 2B

protein localizes mainly in the ER exerting viroporin-like activity

and increases Ca2+ levels in the cytosol. Also, the 2BC protein

inhibits host protein secretion (Moffat et al., 2005), therefore it is

likely that FMDV infection induces ER stress. The induction of ER

stress results in the activation of the unfolded protein response

(UPR). During this process, BiP (also known as HSPA5 and

GRP78), a major ER chaperone is released from ER transmembrane

signal transducers, including PKR-like ER kinase (PERK; also

known as EIF2AK3), inositol-requiring enzyme 1 (IRE1; also

known as ERN1), and activating transcription factor 6 (ATF6),

leading to their activation (Lee, 2005). The UPR promotes cell

survival either by attenuating translation mediated by

phosphorylation of eIF2α to reduce the load of unfolded proteins

(Malhotra and Kaufman, 2007; Ron and Walter, 2007) or by

enhancing the ER protein folding capacity via ER chaperone

expression through the PERK–ATF6–IRE1α pathway (Harding

et al., 2000b; Hetz, 2012). The UPR also targets misfolded proteins

for degradation (Harding et al., 2002). UPR activation consequently

induces an adaptive cellular homeostasis response – autophagy

(Jheng et al., 2014; Senft and Ronai, 2015). Autophagy is

responsible for sequestering damaged organelles and cytoplasmic

protein aggregates within double-membrane vesicles for degradation

and recycling (Klionsky and Emr, 2000). While some viruses

suppress the autophagy pathway, a few others appear to utilize this

pathway to benefit their replication by avoiding the host immune

response. The study of the intrinsic link between ER stress and

autophagy is gaining research importance in RNA virus infections

for the purpose of developing antiviral strategies (Jheng et al., 2014).

Although the involvement of autophagy in FMDV infection has

been reported earlier, the mechanism of its induction and

implication in FMDV multiplication is not clear. There exist

ambiguous reports on the role of autophagy during FMDV infection

(Medina et al., 2018; Rodriguez Pulido and Saiz, 2017). Earlier

studies showed that FMDV induces and utilizes autophagosomes at

an early stage of the replication (Berryman et al., 2012; O’Donnell

et al., 2011). It has also been reported that the 2B protein of FMDV

disturbs cellular Ca2+ homeostasis and induces autophagy (Ao et al.,

2015), in contrast to an earlier report showing that the interaction of
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FMDV 2C protein with Beclin1 prevented the fusion of lysosomes

to autophagosomes, allowing virus survival (Gladue et al., 2012).

Another study showed that FMDV induces autophagy only at the

early stage of infection and viral 3C protease degrades the Atg5–

Atg12 complex, suppressing autophagy at a later time point of

infection (Fan et al., 2017). While our study was underway, a recent

work reported that FMDV induces complete autophagy, with the

fusion of autophagosomes and lysosomes for subsequent

degradation (Sun et al., 2018). Although a very recent study

showed the activation of PERK and ATF6 mediated UPR during

FMDV infection, however, they reported that these pathways did

not influence FMDV replication (Han et al., 2019). Even more

recently, Yang et al. (2020) showed that FMDV 3A protein

upregulates the autophagy-related protein leucine-rich repeat

containing protein 25 (LRRC25), which negatively regulates

RLR-mediated type I interferon (IFN) signaling by interacting

with Ras-GAP SH3-binding protein 1 (G3BP1). However, the role

of ER stress-mediated UPR and autophagy, and their function in

modulating innate immunity during FMDV infection mostly

remains unclear. Therefore in this study, we aimed to

systematically investigate FMDV-induced ER stress, UPR and

autophagy, and their role in innate immune responses.

Our results demonstrate that FMDV infection induces ER stress

and the UPR response through the PERK-mediated pathway. The

induction of the autophagymarker lipidated LC3B (LC3B-II; LC3B

is also known as MAP1LC3B) is influenced by PERK activation

during the virus infection. This work also provides insights into the

fact that the FMDV replication in cells is dependent on the

expression of PERK and the autophagy marker LC3B-II.

Furthermore, the inhibition of PERK pathway and autophagy

significantly restricted FMDV replication by enhancing the levels of

antiviral IFN-β and IFN-λ3 levels. Overall, these results help in the

understanding of FMDV pathogenesis and host cellular antiviral

mechanisms for the future development of antiviral strategies.

RESULTS

FMDV infection induces ER stress and activates the

PERK-mediated pathway of UPR

To study the impact of viral infection on cellular ER, we observed

for ER morphology at 4 h post infection (hpi) [1 multiplicity of

infection (MOI)] by transmission electron microscopy (TEM) in

LFBK cells. FMDV-induced ER stress caused a dilation of the ER

lumen (Fig. 1A, right panel). SYBR green based quantitative real-

time RT-PCR (RT-qPCR) in relation to that of the housekeeping

β-actin gene was carried out to monitor the levels of ER stress and

UPR marker genes. The genes encoding BiP, PERK, ATF4 and

IRE1 were upregulated in the range of 1.8–2.5-fold at 6 hpi

(1 MOI). However, there was no significant upregulation of the

genes encoding ATF6 and CHOP (C/EBP homologous protein; also

known as DDIT3) (Fig. 1B). ATF6 transcript level remained

unchanged, suggesting that the FMDV-induced UPR signaling may

not utilize the ATF6-mediated pathway. Although IRE1 was

significantly (P<0.05) upregulated at 6 hpi, there was no apparent

splicing of its downstream XBP1 mRNA up to 12 hpi with FMDV,

while the positive control, treatment with tunicamycin, led to

splicing of XBP1 mRNA with the appearance of both spliced

(269 bp) and unspliced (295 bp) forms (Fig. 1C), suggesting that the

FMDV-induced UPR response is also independent of the IRE1–

XBP1 pathway. Western blot analysis of the cells infected with

FMDV (1 MOI) showed distinct enhancement in the BiP protein

level and the PERK protein expression from 4 hpi (Fig. 1D),

correlating with the data of real-time quantification of increased

mRNA levels of the genes encoding BiP and PERK. To further

investigate whether activation of the PERK pathway leads to

phosphorylation of the downstream eIF2α transcription factor,

immunofluorescence was carried out using an anti-p-eIF2α

antibody which showed an increase in the fluorescence of

phosphorylated eIF2α (p-eIF2α) at 6 hpi (1 MOI) (Fig. 1E).

Furthermore, the time course of phosphorylation of the PERK

substrate eIF2α was assessed by immunofluorescence following

FMDV infection. A time-dependent virus cytopathic effect associated

with the p-eIF2α signal was evident (Fig. S1). In line with this, the

mRNA level of ATF4 was increased at 6 hpi (Fig. 1B). Taken

together, these results indicate that FMDV infection triggers ER stress

and induces the UPR through the PERK-mediated pathway.

PERK-mediated UPR induces autophagy to promote FMDV

replication

To understand the relationship between ER stress-induced UPR and

autophagy, VER-155008 (20 μM) an inhibitor of BiP (Macias et al.,

2011), which is a target of both the ER stress response and UPR, was

used to treat LFBK cells 1 h prior to infection. Our results indicated

a significant reduction in the viral titer at 12 hpi (1MOI) upon VER-

155008 treatment (Fig. 2A). Similarly, the PERK pathway was

inhibited by treatment with ISRIB (Rabouw et al., 2019), which

reverses the effects of eIF2α phosphorylation. ISRIB (200 nM)

treated and infected cells showed a decrease in autophagy marker

protein LC3B-II, an absence of SQSTM1 degradation and,

correspondingly, there was a reduction in viral protein levels and

the viral titer (Fig. 2B–D). The concentrations of the VER-155008

and ISRIB drugs used in this study did not affect cell viability

(Fig. S2).

To preclude any non-specific effect caused by chemical

inhibition, knockdown of the PERK gene was carried out. Two

PERK-specific artificial microRNAs (amiRNAs) with different

targets in 5′-UTR (miR-PERK-T1 and miR-PERK-T2) along with

negative control (miR-Neg) were expressed in LFBK cells. The

reduction in expression of PERK protein was more significant in

cells expressing miR-PERK-T2 (data not shown); hence, further

work was done using miR-PERK-T2. Upon FMDV infection (1

MOI) of PERK-specific amiRNA-expressing cells, expectedly

PERK expression was reduced, resulting in decreased LC3B-II

conversion and reduced SQSTM1 degradation. Also, the virus

replication was affected, as seen by decreased viral protein

expression (Fig. 3A). The knockdown of PERK also resulted in

the reduction of extracellular progeny virus titer (P<0.05) at 6 and

12 hpi (Fig. 3B). Furthermore, the levels of IFN-β and IFN-λ3

proteins in the infected culture supernatant of cells expressing miR-

PERK-T2, as determined by ELISA, showed a significant increase

at 8 and 12 hpi (Fig. 3C,D). Therefore, these results suggest that

PERK knockdown reduces FMDV replication by enhancing the

levels of anti-viral IFNs. The data indicate that the ER stress is

induced during FMDV infection, which in turn activates the PERK

pathway of UPR-mediated autophagy.

FMDV infection induces double-membrane vesicles

characteristic of autophagosomes

To confirm the induction of autophagy during FMDV infection, we

investigated the cellular changes associated with the virus infection,

using TEM. Double-membrane vesicles resembling autophagic

vesicles were observed in FMDV-infected (1 MOI) LFBK cells at 6

hpi (Fig. 4B). However, similar vesicles were absent in the

uninfected LFBK cells (Fig. 4A). A magnified view of the part

highlighted in FMDV infected cell shows the presence of double-
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membrane vesicles, characteristic of autophagosomes (Fig. 4C). A

quantification showed that the number of autophagosome vesicles

per cell was significantly increased in FMDV-infected cells

(Fig. 4D).

FMDV infection upregulates the gene transcripts for proteins

involved in the initiation of autophagy

To further investigate the effect of FMDV infection on autophagy,

the expression of candidate genes involved in autophagy activation

was studied. There was clear evidence of upregulation of ATG9A

and LC3B by 2.6-fold, and ULK1 by 3.3-fold in 6 h infected

(1 MOI) samples (P<0.05), but there was no significant change in

SQSTM1 level (Fig. 5A). These data suggest that there is an

upregulation of autophagy initiation genes during FMDV infection.

FMDV infection induces functional autophagy

The Atg12–Atg5–Atg16L complex assists in the conjugation of

LC3B-I with phosphatidylethanolamine (PE), which is essential for

the formation of the autophagosomal membrane. The conversion of

cytosolic LC3B-I into PE-conjugated LC3B-II is indicative of

increased autophagic activity (Kabeya et al., 2000; Klionsky et al.,

2008). Western blotting results showed an increase in the levels of

Atg5–Atg12 conjugate together with an increase in LC3B-II in cells

infected with FMDV (1 MOI) from 4 hpi onwards and that further

maintained for more than 9 hpi (data not shown). Rapamycin-

treated cells were used as autophagy-positive control (Fig. 5B,C).

The adaptor protein SQSTM1, mediating selective autophagy, gets

degraded by the autophagolysosome pathway. It accumulates when

autophagy is inhibited and its level decreases when functional

autophagy is induced, thus serving as a marker for autophagic flux

(Klionsky et al., 2008). Western blot analysis showed a gradual

decline in the levels of SQSTM1 protein from 4 hpi (Fig. 5B,D),

suggesting the activation of functional autophagy with the fusion of

autophagosomes with lysosomes for its degradation.

The induction of autophagy brings about the association of

LC3B-II to the autophagosomal membrane, revealing a

Fig. 1. FMDV causes ER stress and activates the PERK pathway-mediated UPR in LFBK cells. (A) TEM image showing the normal rough ER (left panel)

and dilated rough ER in the FMDV-infected (1 MOI, 4 hpi) cells (right panel) indicated by arrows. The insets show magnified view of the normal rER

(left panel) and dilated rER (right panel). N, nucleus; C, cytoplasm. Scale bars: 1 µm. (B) RT-qPCR-based analysis of transcripts involved in ER stress and UPR,

at 6 hpi (1 MOI). Bar graph showing relative expression levels (fold change±s.d.) of BiP, ATF6, IRE1, PERK, ATF4 and CHOP, calculated by the 2−ΔΔCt

method using β-actin as an endogenous control. The level of BiP, IRE1, PERK and ATF4 were significantly increased at 6 hpi compared to uninfected

state (*P<0.05; **P<0.01). (C) Agarose gel (2%) electrophoresis of XBP1 fragments (unspliced, 295 bp; spliced, 269 bp), obtained by RT-PCR of RNA

isolated from LFBK cells treated with tunicamycin (Tm, 2.5 μg/ml) or infected with FMDV (1 MOI), for 3, 6 and 12 h. Splicing of XBP1 was detected with Tm

treatment but not with FMDV infection. Ctrl, control cells. (D) Western blotting for BiP and PERK protein levels and viral protein expression in FMDV-infected

(1 MOI) cells (from 0.5 to 9 hpi), with tunicamycin-treated (2.5 μg/ml) cells serving as a positive control for ER stress. GAPDH level served as loading control,

while blotting for viral structural proteins (VP1 and VP3) served as infection control. The levels of BiP and PERK were enhanced from 4 hpi. (E) Widefield

immunofluorescence microscopy of LFBK cells mock or FMDV infected (1 MOI) for 6 h, following fixing and immunostaining for phospho(Ser51)-eIF2α (using

anti-p-eIF2α antibody) in red and FMDV (using anti-3AB antibody) in green. Nuclei (blue) are stained with DAPI. The p-eIF2α expression is prominently observed

in cells infected with FMDV. Scale bars: 10 µm.
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characteristic punctate pattern (Klionsky et al., 2008). The

widefield immunofluorescence microscopy revealed a

significant increase (P<0.01) in characteristic endogenous

LC3B puncta in FMDV-infected LFBK cells (1 MOI at 6 hpi)

(Fig. 5E,F). These puncta were similar to those seen in cells

treated with the autophagy inducer rapamycin (5 µM) (Fig. S3).

This confirmed the activation of autophagy.

Suppression of autophagy reduces the FMDV titer by

enhancing the antiviral IFN levels

The inhibition of autophagic flux by bafilomycin A1, a specific

inhibitor of the V-ATPase (Yamamoto et al., 1998) prevented the

degradation of LC3B-II (Fig. 6A, right panel) compared to no

BafA1 treatment (Fig. 6A, left panel). Consequently increased

accumulation of SQSTM1 was observed in BafA1-treated cells

(Fig. 6A, right panel, B). This resulted in reduced virus replication,

as evidenced by considerably low viral protein expression in BafA1-

treated cells (Fig. 6A, right panel, C), confirming the positive

correlation between LC3B, SQSTM1 turnover and FMDV

replication.

In addition, the extracellular viral titer was significantly reduced

in cells treated with autophagic flux inhibitor BafA1 at 6 and 12

hpi (P<0.01). Furthermore, treatment with spautin-1, which acts

by blocking the initiation of autophagy (Liu et al., 2011), also

caused a significant reduction (P<0.01) in the viral titer at 12 hpi.

However, the virus titer increased significantly in FMDV-infected

cells treated with the autophagy inducer rapamycin compared to

control FMDV-infected cells at 12 h (P<0.05) (Fig. 6D). To

understand the antiviral mechanism of autophagy inhibition,

RT-qPCR for IFN-β and IFN-λ3 transcript levels were analyzed in

the BafA1- and spautin-1-treated and FMDV-infected (1 MOI)

LFBK cells. The IFN-β and IFN-λ3 transcripts were upregulated in

the range of 4.5–6-fold at 8 hpi in the presence of autophagy

inhibitors (Fig. 6E).

Knockdown of LC3B reduces FMDV replication by enhancing

antiviral IFN levels

Two of LC3B-specific amiRNAs (miR-LC3B-ORF and miR-

LC3B-5′UTR) along with negative control (miR-Neg) were

expressed in LFBK cells. Western blotting showed that there was

a reduction in the expression of LC3B in cells expressing miR-

LC3B-ORF and miR-LC3B-5′UTR, but it was more significant in

the latter (data not shown). Therefore, miR-LC3B-5′UTR was used

for our study. Upon FMDV infection (1 MOI) of LC3B-specific

amiRNA-expressing cells, expectedly LC3B expression was

decreased and SQSTM1 turnover was impeded, and the virus

replication was affected as seen by decreased viral protein

expression (Fig. 7A). The knockdown of LC3B also resulted in

reduction of extracellular progeny-virus titer (P<0.05) at 6 and 12

hpi (Fig. 7B).

In addition, cells expressing miR-LC3B-5′UTR leading to

knockdown of LC3B had enhanced levels of IFN-β and IFN-λ3

transcript levels of 8- and ∼11-fold respectively at 8 hpi (1 MOI) as

determined by RT-qPCR (Fig. 7C). Furthermore, the levels of IFN-

β and IFN-λ3 proteins in the infected culture supernatant of cells

expressing miR-LC3B-5′UTR, as determined by ELISA, showed a

significant increase at 8 and 12 hpi (Fig. 7D,E). These data reveal

that suppression of autophagy affects the replication ability of

FMDV by enhancing IFN levels.

DISCUSSION

During infection by cytoplasmic viruses, host organelles like ER,

are utilized for virus replication. It is known that FMDV derives

replication site membranes from ER and pre-Golgi membranes

(Midgley et al., 2013; Moffat et al., 2005). In the process, induced

ER stress initiates the UPR to restore cellular homeostasis (Pincus

et al., 2010). Here, we have investigated the role of ER stress, the

UPR and autophagy in FMDV replication. We demonstrated by

TEM that the FMDV infection induces volume expansion and

dilation of the ER due to stress. During ER stress, pronounced

dilation of the ER lumen occurs in pancreatic β cells and also in

yeast cells under UPR-inducing conditions (Bernales et al., 2006;

Despa, 2009). This suggests that FMDV infection-associated stress

causes a dilation of ER. This, in turn, activates UPR signaling for

cell survival. Analysis of mRNA transcripts of ER stress-associated

UPR genes during FMDV infection showed that the levels of BiP,

PERK, ATF4 and IRE1α were significantly upregulated at 6 hpi.

However, the levels of CHOP and ATF6 remained unchanged

(P>0.05). Furthermore, the protein levels of BiP and PERK were

enhanced from 4 h post-FMDV infection and the phosphorylation

of eIF2α was also observed from 6 hpi, indicating the involvement

of ER stress-associated UPR.

Among the three arms of the UPR, the level of ATF6 mRNA did

not alter. Therefore, we then studied the downstream effect of

IRE1α and PERK activation. Activation of IRE1 is generally

determined by measuring the splicing of mRNA encoding the

XBP1 (Chen et al., 2014; Hetz et al., 2011). We observed that

during FMDV infection, the splicing event was not apparent,

suggesting that FMDV did not activate the IRE1–XBP1 pathway.

However, an enhanced level of PERK protein and Ser51

phosphorylation of eIF2α were evident. The transcript level of

ATF4 was increased significantly (P<0.01) at 6 hpi, the time point at

which enhanced phosphorylation of eIF2α was observed. This is in

line with the fact that eIF2α phosphorylation at Ser51 results in the

repression of global protein synthesis and preferential translation of

selected genes, such as ATF4 to reduce ER stress (Rajesh et al.,

2015). It was reported previously that ATF4mRNA transcript levels

Fig. 2. Pharmacological inhibition of ER stress and PERK–eIF2α

signaling reduces FMDV titer and LC3B-II levels. (A) Bar graph showing the

progeny virus titer (log10) at 6 and 12 h in the supernatant of cells infected with

FMDV (1 MOI) with or without treatment of BiP inhibitor VER-155008 (20 μM).

(B) Western blotting for autophagy marker LC3B-II and SQSTM1 protein

expression following FMDV infection (1 MOI) for 3 and 6 h, without or with

treatment of PERK inhibitor, ISRIB (200 nM). ISRIB treatment significantly

reduced LC3B-II level and viral protein expression. (C) Bar graph showing

quantitative determination of band intensity ratio of LC3B-II to GAPDH in the

FMDV-infected LFBK cells without or with ISRIB treatment. (D) Bar graph

showing the progeny virus titer (log10) at 6 and 12 h in the supernatant of cells

infected with FMDV (1 MOI) with or without treatment of ISRIB. Results in A, C

and D are mean±s.d. of three independent experiments. *P<0.05, **P<0.01.
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are elevated in response to ER stress (Harding et al., 2000a; Dey

et al., 2010), as well as in response to amino acid starvation (Siu

et al., 2002). This could possibly be because the expression of ATF4

is subject to both transcriptional regulation and translational control.

On the other hand, the mRNA level of CHOP, which plays a role in

the induction of apoptosis (Nishitoh, 2012; Oyadomari and Mori,

2004), was not significantly altered during FMDV replication.

Therefore, upregulated ATF4 likely influences the induction of

autophagy (Matsumoto et al., 2013; Rzymski et al., 2010).

Furthermore, FMDV-infected cells treated with VER-155008, a

novel small-molecule inhibitor of BiP, a master regulator of UPR

(Macias et al., 2011), caused a reduction in virus titer (P<0.05),

suggesting that mitigation of UPR negatively influenced FMDV

replication. Our results are partly in agreement with the very recent

study that showed activation of PERK–eIF2α and ATF6 branches of

UPR signaling while inhibiting the IRE1α pathway during FMDV

infection (Han et al., 2019). However, they reported that either

overexpression or knockdown of PERK or ATF6 did not affect

FMDV multiplication (Han et al., 2019). By contrast, we found

that treatment with ISRIB, a potent inhibitor of the PERK pathway

(Rabouw et al., 2019), and knockdown of PERK, achieved by

transient expression of specific amiRNA, significantly reduced the

viral protein expression. Thus, we find that the PERK pathway is

important for FMDV multiplication. The UPR and autophagy

occur simultaneously following ER stress (Schröder, 2008).

Furthermore, ER stress-mediated PERK and eIF2α

phosphorylation is known to induce LC3 conversion (Kouroku

et al., 2007). Therefore, we investigated the role of the PERK–p-

eIF2α–ATF4 pathway on autophagy. We found that the PERK

pathway inhibitor ISRIB, as well as gene silencing of PERK by

amiRNA significantly reduced the FMDV induced LC3B-II levels

and associated degradation of SQSTM1, thus suggesting that

PERK and p-eIF2α play an important role in FMDV replication by

Fig. 4. TEM of FMDV-infected LFBK cells reveals presence of

autophagosomes. (A) Mock-infected cells. (B) FMDV infection (1 MOI) for

6 h. FMDV-infected cells showed the presence of vesicles. (C) Magnified view

of the part highlighted by the square in B, showing the double membranous

nature of the vesicles (indicated by arrows). N, nucleus; C, cytoplasm.

(D) Quantification (mean±s.d.) of the number of autophagosome vesicles

per cell in mock and FMDV-infected LFBK cells. Counting was obtained

from 10 each of mock and FMDV-infected cells. **P<0.01.

Fig. 3. Knockdown of PERK results in reduction of LC3B-II levels, decreased FMDV replication and increased antiviral IFN response. (A) Western blot

showing levels of PERK, LC3B-II and SQSTM1 proteins upon FMDV infection (1 MOI) in LFBK cells at 3 and 6 hpi with knockdown of PERK. The miR-Neg

was used as negative control. The blot shows significant reduction in the level of PERK and LC3B-II, absence of SQSTM1 degradation and reduced viral

protein expression in cells expressing miR-PERK. A significant increase in the level of PERK, LC3B-II and SQSTM1 degradation and viral protein expression

was seen at 6 hpi in miR-Neg expressing cells. (B) Bar graph showing the extracellular virus yield (log10) at 6 and 12 hpi (1 MOI) of LFBK cells expressing

the indicated amiRNA, as determined by TCID50method in BHK-21 cells and expressed as titer/ml. The data show that knockdown ofPERK reduces the viral titer.

(C) Bar graph showing the extracellular IFN-β protein yield following FMDV infection (1 MOI) in LFBK cells following knockdown of PERK signaling. The data

show that knockdown of PERK enhances IFN-β level during FMDV infection. (D) Bar graph showing the extracellular IFN-λ3 protein yield following FMDV

infection (1 MOI) in LFBK cells following knockdown of PERK. The data show that knockdown of PERK enhances IFN-λ3 level during FMDV infection.

All data in B–D represent the mean±s.d. of three independent experiments. *P<0.05, **P<0.01.
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prompting activation of functional autophagy. Since there are

ambiguous reports on the role of autophagy in FMDV replication,

we examined the FMDV-infected cells under a transmission

electron microscope for autophagosome-like vesicles, as this is

one of the valid methodologies to monitor autophagy (Klionsky

et al., 2008). We observed that FMDV infection induced an

increased accumulation of double-membrane structures

resembling autophagosomes. These structures were similar to

the autophagy vesicles induced by rapamycin, a positive control

for autophagy (Lee et al., 2013). Thus, our data suggest that

induction of ER stress via the PERK pathway of UPR prompts

autophagy during FMDV infection.

Furthermore, widefield immunofluorescence microscopy of

FMDV-infected LFBK cells revealed an increase in the level of

endogenous LC3B. The colocalization of FMDV with LC3B is

indicated by yellow puncta, which shows the association of FMDV

with autophagosomes in LFBK cells. A western blot analysis of

FMDV-infected cell lysates showed a gradual increase in the

conversion of endogenous LC3B-I to LC3B-II and associated

degradation of SQSTM1, suggesting a positive correlation between

Fig. 5. FMDV infection induces autophagy in LFBK cells. (A) RT-qPCR

analysis for ULK1, ATG9A, LC3B and SQSTM1 performed on cDNA prepared

from RNA isolated from LFBK cells infected with FMDV (1 MOI) for 6 h, by

SYBR green RT-qPCR. The mRNA level of the β-actin was used as an internal

control. Results are mean±s.d. for three independent experiments.

(B) Western blot analysis for Atg5–Atg12 levels, the turnover of LC3B-I to

LC3B-II, SQSTM1 degradation and viral protein expression in FMDV-infected

(1 MOI) cells. Rapamycin-treated (5 µM) cells were used as a positive

control of autophagy. Level of GAPDH was used as a loading control,

while blotting for viral structural proteins (VP1 and VP3) served as infection

control. (C) The band intensity ratio of LC3B-II to GAPDH as measured with

densitometry, representing level of autophagy in FMDV-infected cells.

Compared to mock control, significant increase was observed from 4 hpi

onwards, similar to rapamycin, positive control for autophagy. (D) The band

intensity ratio of SQSTM1 to GAPDH, representing level of autophagic

flux as measured with densitometry. Compared to mock control, significant

decrease was observed from 4 hpi onwards, as seen with rapamycin. Results

in C and D represent the mean±s.d. of three independent experiments.

(E) Widefield immunofluorescence microscopy of LFBK cells mock infected or

FMDV infected (1 MOI) for 6 h, following fixing and immunostaining for

endogenous LC3B (using anti LC3B antibody) in red and FMDV (using anti

3AB antibody) in green. The nucleus (blue) is stained with DAPI. LC3B

expression is prominently observed in cells infected with FMDV.

Scale bars: 10 μm. (F) Graph showing the mean±s.d. number of endogenous

LC3B-II puncta in FMDV-infected (1 MOI) and control cells, counted from at

least 100 cells using ImageJ quantification tool. *P<0.05; **P<0.01.

Fig. 6. Pharmacological inhibition of autophagy reduces viral titer by

increasing the antiviral IFN response. (A) Western blot analysis for the

turnover of LC3B-I to LC3B-II, SQSTM1 degradation and viral protein

expression in FMDV-infected (1 MOI) cells, in the absence (left panel) or

presence (right panel) of BafA1 (100 nM). Cells were harvested at indicated

time points and extracts analyzed with anti-LC3B antibody, anti-SQSTM1

antibody and polyclonal antibody against purified serotype O FMDV,

respectively. The level of GAPDH was used as a loading control. (B) Bar graph

showing quantitative determination of band intensity ratio of SQSTM1 to

GAPDH in the FMDV-infected LFBK cells without or with BafA1 treatment.

(C) Bar graph showing quantitative determination of band intensity ratio of viral

protein VP3 to LC3B-II, both normalized to GAPDH, without or with

treatment of BafA1, at indicated time points post infection. Viral proteins were

significantly reduced in BafA1-treated cells. (D) Bar graph showing the

extracellular virus yields following FMDV infection (1 MOI) in presence of

autophagy inhibitors BafA1 (100 nM) and spautin 1 (20 µM) or autophagy

inducer rapamycin (5 µM), determined by the TCID50 method in BHK-21 cells

and expressed as titer/ml. The data show that inhibition of autophagy reduces

extracellular viral yield. However, cells treated with the autophagy inducer

rapamycin showed an increase in the virus titer at 12 h (P<0.05) compared to

control-infected cells. (E) SYBR green based RT-qPCR analysis for antiviral

genes IFN-β and IFN-λ3, performed on cDNA prepared from the RNA

isolated from LFBK cells infected with FMDV (1 MOI) for 8 h with or without

autophagy inhibitor (BafA1 or spautin-1) treatment. The mRNA level of

the β-actin was used as an internal control. The data show that inhibition of

autophagy enhances IFN response to FMDV infection. Results in B–E are

mean±s.d. of three independent experiments. *P<0.05, **P<0.01.
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virus replication, LC3B lipidation and SQSTM1 turnover. This also

suggested the induction of autophagic flux (Klionsky et al., 2008),

involving a fusion of the autophagosome with lysosome, during the

course of FMDV infection. A previous study had shown that Atg5–

Atg12 conjugate, a ubiquitin-protein ligase (E3)-like enzyme for

LC3–PE conjugation, decreased through degradation mediated by

the viral protease 3Cpro (Fan et al., 2017). However, in contrast, our

study clearly showed that the level of Atg5–Atg12 complex

increased during the course of FMDV infection, indicating that

the Atg5–Atg12 conjugate helps in the continuous formation of

autophagosomes. Upon assessing the effect of autophagy-

modulating drugs on FMDV replication, rapamycin (a known

autophagy inducer) treatment caused an increase in the viral titer in

the infected cells. The viral titer considerably reduced in the

presence of autophagy-initiation blocker spautin-1 (Liu et al.,

2011). Furthermore, bafilomycin A1, an inhibitor of fusion between

autophagosomes and lysosomes, also reduced the FMDV

replication, which is in contrast to what was shown in a previous

report where no effect of BafA1 was observed in MCF-10A cells

(Gladue et al., 2012). We also observed that BafA1 treatment

significantly increased LC3B levels and decreased SQSTM1

turnover together with the reduction in virus multiplication. Our

data suggest that FMDV infection induces functional autophagy.

The virus relies on the autophagic flux for its multiplication, as

BafA1 treatment reduced the virus replication. Furthermore, to

study the dependence of FMDV infection on autophagy, LFBK

cells with knockdown of LC3B, a known autophagy marker, were

infected with the virus. This affected SQSTM1 degradation and

significantly reduced FMDV protein expression and the titer,

suggesting that FMDV replication is dependent on autophagy.

Both type I and III IFNs are well recognized as anti-FMDV

molecules (Ma et al., 2018; Perez-Martin et al., 2012). We,

therefore, estimated their levels by blocking PERK pathway and

autophagy. PERK knockdown by means of amiRNA enhanced the

level of IFN-β and IFN-λ3 proteins and reduced viral replication.

Earlier studies have shown that activation of PERK promotes

ligand- and Jak-independent phosphorylation of IFNAR1, leading

to its ubiquitylation and degradation. This enables efficient viral

replication (Liu et al., 2009). However, our study indicated that

PERK may as well be negatively controlling the production of

antiviral IFNs. Furthermore, we noticed that inhibition of FMDV-

associated autophagy upon knockdown of LC3B or chemical

inhibition resulted in enhancement of the IFN-β- and IFN-λ3-

encoding genes, over and above the levels induced by the virus

infection alone. It was noted previously that the Atg5–Atg12

conjugate directly associates with the CARD domain of the RIG-I

and IFN-β promoter impairing their interaction (Jounai et al., 2007).

Also, it has been reported that autophagy diminishes the early IFN-β

response to influenza Avirus (Perot et al., 2018) and knockdown of

autophagy-related genes increased the expression of IFNs and IFN

signaling pathway in hepatitis C virus-infected hepatocytes

(Shrivastava et al., 2011). These results, taken together, suggest

that autophagy may interfere with the RIG-mediated IFN

production during FMDV infection, and therefore inhibition of

autophagy enhances the levels of the antiviral IFNs.

In summary, this study substantiated that FMDV infection

induces ER stress and PERK-mediated UPR, and for the first time,

demonstrated the link between PERK-mediated UPR and the

activation of autophagic flux. The autophagy in turn, affected IFN

production to promote virus multiplication (Fig. 8). Therefore,

blocking of the PERK pathway and autophagic flux reduced FMDV

multiplication, with a concomitant increase in the levels of antiviral

molecules IFN-β and IFN-λ3. We, therefore, propose that this

pathway offers potential targets to develop therapy against FMDV

Fig. 7. Knockdown of the autophagy marker LC3B results in reduction of FMDV replication by increasing the antiviral IFN response. (A) Western

blot showing levels of LC3B and SQSTM1 proteins upon FMDV infection (1 MOI) in LFBK cells with knockdown of LC3B using miR-LC3B-5′UTR. The

miR-Neg was used as negative control. The blot shows significant reduction in the level of LC3B and absence of SQSTM1 degradation and reduced viral protein

expression in cells expressing the LC3B gene-specific amiRNAs. (B) Bar graph showing the extracellular virus yield (log10) at 6 and 12 hpi (1 MOI) of LFBK cells

expressing the indicated amiRNA, as determined by the TCID50 method in BHK-21 cells and expressed as titer/ml. The data show that knockdown of LC3B

reduces the viral titer. (C) RT-qPCR-based analysis of IFN-β and IFN-λ3 transcripts performed on cDNA prepared from the RNA isolated from amiRNA miR-

LC3B-5′UTR-expressing LFBK cells infected with FMDV (1 MOI) for 8 h. The miR-Neg was used as negative control. The mRNA level of the β-actin was used as

an internal control. (D) Bar graph showing the extracellular IFN-β protein yield following FMDV infection in LFBK cells following knockdown of the LC3B gene

using amiRNA miR-LC3B-5′UTR. miR-Neg was used as negative control. The data show that knockdown of LC3B enhances IFN-β level during FMDV infection.

(E) Bar graph showing the extracellular IFN-λ3 protein yield following FMDV infection in LFBK cells following knockdown of LC3B gene using specific

amiRNA miR-LC3B-5′UTR. The miR-Neg was used as negative control. The data show that knockdown of LC3B enhances IFN-λ3 level during FMDV

infection. Data in B–E represent the mean±s.d. of three independent experiments, *P<0.05; **P<0.01.
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infection. These findings could form the basis for further

investigations to explore the interactions of non-enveloped RNA

viruses with the host cell and may help elucidate molecular targets

for the development of novel antiviral strategies in the future.

MATERIALS AND METHODS

Cells and virus

LFBK, a porcine origin cell line (Swaney, 1988), provided by PIADC

(ARS), and the baby hamster kidney 21 (BHK-21) cell line (clone 13,

ATCC) were used in this study. The cells were maintained in Glasgow’s

minimum essential medium (GMEM) (Himedia, India) supplemented with

10% fetal bovine serum (FBS; USA origin), 60 μg/ml penicillin (Sigma,

P3032), 100 μg/ml streptomycin (Sigma, S9137) and 100 μg/ml kanamycin

(Sigma, K1377), in a humidified incubator with 5% CO2 at 37°C.

FMDV serotype O/IND/R2/75, a vaccine strain (passage level 5–8), was

used in this study. The virus titer was determined by a median tissue culture

infective dose (TCID50) assay (Reed and Muench, 1938) in BHK-21 cells.

Uniformly, 1 MOI was used in the study.

Chemicals, antibodies and other reagents

Oligonucleotide primers for PCR (Table S1) were designed using Primer 3

plus software, and were commercially synthesized (Shrimpex Biotech,

India). Bafilomycin A1 (B1793), Rapamycin (R0395), Spautin-1

(SML0440), Tunicamycin (T7765), ISRIB (SML0843) and VER-155008

(SML 0271) were obtained from Sigma-Aldrich. Anti-LC3B antibody

(3868S), anti-SQSTM1 antibody (5114S), anti-Atg5 antibody (A0731),

anti-PERK antibody (3192S), anti-phospho-eIF2α, Ser51 (3398S) and anti-

BiP antibody (3183S) were purchased from Cell Signaling Technology.

Anti-GAPDH antibody (SC-59540) was from Santa Cruz Biotechnology.

The monoclonal antibody against FMDV 3AB protein (10H9D8) and rabbit

hyperimmune serum raised against 146S mature virus antigen of FMDV

serotype O were from our laboratory stocks. Atto-633 anti-rabbit-IgG

(Sigma, 41176), Alexa-Fluor-488 anti-mouse-IgG (ThermoFisher

Scientific, A-11001), Alexa-Fluor 488 anti-rabbit-IgG (ThermoFisher

Scientific, A-11008), anti-mouse-IgG HRPO (Dako, P0260) and anti-

rabbit-IgG HRPO (Dako, P0448) conjugates were also used. Porcine IFN-β

ELISA kit (E0086Po) and porcine IL28B (IFN-λ3) ELISA kit (E0471Po)

were procured from Bioassay Technology Laboratory.

Cell culture and infection of virus

LFBK cells seeded either in six-well plates (1.5×106 cells/well) or in

24-well plates (2.0×105 cells/well) were infected with FMDV serotype O, at

a multiplicity of infection (MOI) of 1. After 1 h adsorption, the cells were

washed twice in GMEM (without FBS), pH 6.5, and cultured in GMEM,

pH 7.4 (with 5% FBS).

Construction of plasmids expressing PERK- and LC3B-specific

pre-miRNA

Pre-miRNA sequences were designed using the guidelines of Block-it RNAi

designer tool (Invitrogen Inc.), for the porcine PERK and LC3B gene. For

PERK, two targets (T1 and T2) within the 5′UTR were analyzed, while for

LC3B, one targeting 5′UTR and other targeting ORF regions were analyzed.

The effective artificial miRNAs that gave better knockdown were chosen for

the study. The sequences of thesemiRNAs are given in Table S2. The required

sense and antisense oligonucleotides for desired miRNAs were synthesized

(Eurofins Genomics), annealed and were cloned into pcDNA™6.2-GW/miR

vector, as described previously (Basagoudanavar et al., 2018) to generate

pcDNA6.2-miR-PERK-T1, pcDNA6.2-miR-PERK-T2, pcDNA6.2-miR-

LC3B-5′UTR and pcDNA6.2-miR-LC3B-ORF. As a negative control,

pcDNA™6.2-GW/miR-neg control plasmid (Invitrogen) was used.

Knockdown of PERK and LC3B in cell lines using gene-specific

amiRNA and evaluation of the effect on FMDV replication

LFBK cells were transfected with recombinant plasmids expressing

pre-miRNAs targeting PERK and LC3B and negative control miRNA.

After 24 h of plasmid delivery, the selection was carried out using

blasticidin 6 µg/ml. The cells were maintained under the selection pressure.

To evaluate the effect of the amiRNAs targeting PERK and LC3B on

FMDV replication, LFBK cell lines expressing PERK- and LC3B-specific

amiRNAwere infectedwith FMDVat aMOI of 1. The infected cell lysatewas

analyzed bywestern blotting. Extracellular progeny-virus titer was assayed by

using the TCID50method (Reed andMuench, 1938). The protein levels in the

supernatant of infected cells were determined by using the porcine IFN-β and

IFN-λ3 ELISA kit as per the manufacturer’s protocol and analyzed using four

parameter logistic curve-fit software (www.elisaanalysis.com).

Drug treatment and infection of virus

LFBK cells (1.5×106 cells/well) were seeded in a six-well dish and

incubated overnight. The cells were pre-treated with drugs – bafilomycin A1

(100 nM), rapamycin (5 μM), spautin-1 (20 μM), tunicamycin (2.5 μg/ml),

VER-155008 (20 μM) or ISRIB (200 nM) – for 1 h prior to FMDV infection

and also added after adsorption.

Transmission electron microscopy

Cells were fixed in 3% glutaraldehyde (TAAB UK, G002) in phosphate

buffer (pH 7.2) for 24 h and post fixed in 1% osmium tetroxide for 1 h,

followed by dehydration in grades of ethyl alcohol. Later, samples were

cleared in propylene oxide, embedded in Araldite CY212 resin (TAAB UK,

E009) and polymerized at 60°C for 48 h. The blocks were cut using a Leica

EM UC7 ultramicrotome (Leica Mikrosysteme, Austria) and stained by

using uranyl acetate and lead citrate (Frasca and Parks, 1965). The stained

sections were scanned under JEM 1400 plus TEM (JEOL Japan) at 80 KVA

and images captured using Gatan SC 1000B camera.

RNA isolation and RT-qPCR analysis

Total RNA from the samples was extracted using RNeasy mini kit (Qiagen,

74104). Reverse transcription was carried out with Genesure™ H Minus

strand cDNA synthesis kit using oligo(Dt) primers (PureGene, PGK163).

RT-qPCR was performed using the Maxima SYBR Green/ROX qPCR

Master Mix (Thermo Scientific, K0221) in Applied Biosystems 7500 real-

time thermal cycler (Applied Biosystems, CA, USA). Each sample was run

in duplicate. The fold change in expression levels of the genes was

calculated by 2−ΔΔCt method (Livak and Schmittgen, 2001), relative to that

of the housekeeping β-actin (ACTB) gene.

Fig. 8. Model representing autophagy activation and its effect on

interferon production during FMDV infection. The virus replication induces

ER stress and the PERK–eIF2α–ATF4 pathway of the UPR, triggering

autophagy. The induced autophagy promotes FMDV replication. However,

autophagy by unknown mechanism negatively affects RIG-I/RLR signaling

involved in antiviral IFN production. Therefore, inhibition of autophagy

enhances the IFN levels.
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XBP1 splicing assay

An X-box-binding protein 1 (XBP1) fragment was PCR amplified from

the cDNA isolated from FMDV-infected or tunicamycin-treated cells,

using the specific primers pXBP1F, 5′-GGATGCCTTAGTTACTGAAG-

3′, and pXBP1R, 5′-GTCCTTCTGGGTCGACTTCT-3′. The PCR

amplicons were checked in 2% agarose gel and visualized using a UV

transilluminator.

SDS-PAGE and western blot analysis

Lysates from the cells following drug treatment or infection or knockdown

of LC3B, were prepared using RIPA lysis buffer (Amresco, N653)

containing a protease inhibitor cocktail (Sigma, P2714) and 0.1 mM

PMSF (SIGMA, P7626) for 10 min. Protein samples (10 µg per lane) were

subjected to SDS-PAGE and transferred to a polyvinylidene fluoride

(PVDF) membrane of either 0.22 or 0.45 µm pore size (Merck,

ISEQ08100, BM7JA0926A). The membrane was incubated overnight at

4°C with a primary antibody (1:500) and for 1 h with species-specific

HRP-conjugated secondary antibody (1:1000). Gels were visualized using

SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific,

RB231022) in a chemiluminescent imager (UVITEC Mini HD9). The

protein band intensity was measured by densitometry (myImage Analysis,

Thermo Scientific).

Immunofluorescence microscopy

LFBK cells (0.5×105 cells/well) were seeded on a coverslip (Genetix,

20012) in a 24-well-dish and incubated overnight. After infection with

FMDV (1 MOI), for a required time, the cells were fixed with 4%

paraformaldehyde (HiMedia, TCL119) for 15 min at 4°C and permeabilized

using 0.1% Triton-X100 (Amresco, 0694). The cells were blocked with

Tris-buffered saline (TBS) containing 3% bovine serum albumin (Alfa

Aesar, J65788) and 0.02% Tween 20 (Merck, 8.22184) for 30 min at room

temperature. Then the cells were incubated for 1.5 h with rabbit anti-

LC3B (1:500), anti-peIF2α (1:100) or anti-3AB (1:100) mouse

monoclonal antibody at 37°C, followed by probing with anti-species

fluorescent dye conjugated secondary antibody for 1 h (1:500). The

fluorescence signals were visualized using a widefield Delta Vision

microscope (API, GE) with an Olympus 60×/1.42 NA objective. Post-

acquisition, the images were deconvolved using DV softWoRX software.

The number of LC3B-II punctae in the cells were quantified by using the

projected image (collapsed Z-stacks). The colocalization of proteins was

observed by analyzing the individual Z-stacks using the ‘Colocalization’

plugin in ImageJ (NIH).

Statistical analysis

All values are expressed as mean±s.d. Statistical analyses were performed

using Student’s t-test to identify statistical significance between groups.

P<0.05 was considered significant.
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A B S T R A C T

Macroautophagy (herein autophagy) is an intracellular pathway in which cytoplasmic components are captured
by double-membrane vesicles (autophagosomes) that eventually fuse with lysosomes to degrade the cargo. Basal
levels of autophagy in all eukaryotic cells maintain cellular homeostasis and under conditions of stress, orga-
nelles and proteins not essential for survival are degraded. Apart from these functions, cargoes like aggregated
proteins, damaged organelles and intracellular pathogens, which are otherwise harmful to cells, are also se-
lectively captured by autophagy and are destined for degradation. In terms of infectious diseases, pathogens are
cleared by a specific form of autophagy known as xenophagy. This lysosomal mediated degradation of pathogens
also increases the antigen presentation of cells thereby inducing a further immune response. The process of
xenophagy provides a broad spectrum of defense mechanism to capture bacterial, viral and protozoan patho-
gens. However, pathogens have developed ingenious mechanisms to modulate xenophagy to enhance their in-
tracellular survival. Meanwhile, certain pathogens also induce deleterious effects such as chronic inflammation
and overexpression of oncogenes in the host system. This over time can increase the susceptibility of the host for
tumorigenesis. Hence targeting tumor through anti-microbial mechanisms like xenophagy could be a novel
strategy for combinatorial anti-cancer therapy. The recent developments in understanding the role of xenophagy
in combating cancer causing pathogens will be discussed in this review.

1. Introduction

Autophagy is an evolutionarily conserved intracellular degradation
process occurring in eukaryotic cells. During autophagy, a part of the
cytoplasm is sequestered in double-membrane vesicles called autop-
hagosomes that eventually fuse with lysosomes leading to the break-
down of its contents. This process occurs at basal levels to maintain the
cellular homeostasis by turnover of long-lived proteins and damaged
organelles [1]. It is also well known as a cellular stress response
pathway that is up-regulated during conditions of nutrient deprivation,
intracellular infections and when aggregated/misfolded proteins accu-
mulate [2,3]. The degraded products of autophagy fuel the anabolic
pathways that are important for cell survival especially during stress.

Christian de Duve, well known for his discovery of lysosomes,
coined the term “Autophagy” meaning “Self-eating”. It was named after
he observed electron micrographs containing damaged mitochondria
enclosed in electron-dense structures in the rat liver sections [4]. Fur-
ther studies showed that autophagy is a lysosomal mediated degrada-
tion process involving the capture of cytoplasmic cargoes in double-
membrane vesicles.

The process of autophagy involves multiple steps that include
phagophore induction, elongation, autophagosome completion and

fusion with lysosomes [5]. This is followed by breakdown of cargo in
lysosomes and efflux of the end products such as amino acids back to
the cytoplasm (Fig. 1).

Initial studies projected autophagy as a non-selective process cap-
turing the cytoplasmic components into autophagosomes for degrada-
tion. Later studies provided evidence that apart from the bulk de-
gradation of cytoplasmic contents, there are also cargoes that are
recognized selectively by means of autophagy receptors. Non-selective
autophagy serves as an energy source during starvation whereas, in the
case of selective autophagy, unwanted cytoplasmic cargoes such as
damaged organelles and aggregated proteins are cleared so as to
maintain cellular homeostasis. This selective autophagy is achieved by
adaptor proteins that are not only involved in cargo recognition but also
recruit autophagy machinery proteins such as Atg8/LC3 (Light Chain 3)
through motifs known as Atg8-Interacting Motif (AIM) or LC3
Interacting Region (LIR). The various known selective autophagy
pathways include mitophagy (autophagy of mitochondria) [6], ag-
grephagy (autophagy of aggregated proteins) [7], xenophagy (autop-
hagy of pathogens), pexophagy (autophagy of peroxisomes) [8], ribo-
phagy (autophagy of ribosomes) [9], nucleophagy (autophagy of
nucleus) [10], and lipophagy (autophagy of lipid bodies) [11].
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1.1. Xenophagy

Autophagy of intracellular micro-organisms is termed as xenophagy
(Xeno- foreign; phagy- eating). The host cell (phagocyte/non-phago-
cyte) employ a variety of defense mechanisms to prevent pathogens
from establishing infection. Xenophagy is one of the innate defense
systems of the cells against multiple intracellular pathogens. It mediates
direct capture of the pathogens for lysosomal mediated degradation as
well as in augmenting the adaptive immunity by increasing the antigen
presentation (Fig. 2).

1.2. Discovery of xenophagy

Although the process of general autophagy was discovered in 1963,
xenophagy was first observed in a study by Rikisha in 1984, where

guinea pig polymorphonuclear leukocytes (PMNs) incubated with
Rickettsia (a gram-negative bacteria), showed autophagosome-like
structures containing bacteria [12]. These structures were also positive
for acid phosphatase, a component of lysosomes, showing that it is a
degradative compartment for the entrapped bacteria. Xenophagy serves
as a defense mechanism against various pathogen types like bacteria,
virus, and parasites. The role of xenophagy in medically relevant pa-
thogens such as Group A Streptococcus [13], Mycobacterium [14],
Salmonella [15], Shigella [16,17]; HIV [18], Sindbis virus [19], and
Toxoplasma [20] are well studied (Table 1).

1.3. Mechanism of xenophagy

Bacteria enter cells by phagocytosis (in the case of phagocytic cells)
or by endocytosis (non-phagocytic cells). The conventional pathway for

Fig. 1. Steps of autophagy process. Upon in-
duction of autophagy, a double membrane
precursor structure, the phagophore (1)forms
which elongates forming double-membrane
vesicles called autophagosomes (2 and 3).
These vesicles fuse with lysosomes forming
autolysosomes (4) wherein degradation of the
captured cytosolic cargo occurs. The degraded
products are subsequently recycled back into
the cytoplasm for anabolic processes (5).

Fig. 2. Modes of pathogen capture by xeno-
phagy. A- Bacterial capture by xenophagy. 1.
Recognition of cytosolic bacteria by ubiquitin
(blue dots) followed by binding of xenophagy
adaptor proteins (red structures) and autopha-
gosome membrane protein, LC3 (blue lines). 2.
The fusion of bacteria containing autophago-
somes to lysosomes for degradation. B- Virus
capture by xenophagy. 1. Recognition of intact
virus or viral particles by autophagosomes. 2.
The captured virus replicates in autophago-
somes and prevents fusion with lysosomes.
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phagosome/endosome is to fuse with lysosomes for degradation.
However, pathogens have developed several ways by which they can
avoid fusion with lysosomes. One strategy they employ is to prevent
fusion with lysosomes and reside in their modified endosomes as seen in
Legionella, Mycobacterium, and Salmonella. Apart from endosomal en-
trapment, bacteria can also lyse the endosomes to escape into the cy-
tosol. The best-studied examples of bacteria that enter cytosol include
Listeria, Shigella, and Salmonella. Xenophagy induction during bacterial
infection occurs by interaction of bacterial cell wall components such as
LPS with PAMPs of the host cell. One of the well-known PAMPs, TLR4,
in TRIF dependent pathway induces downstream pathways such as
NFkB, MAPK and autophagy [21]. Subsequent studies have expanded
the repertoire of TLRs involved in xenophagy induction [22]. Ad-
ditionally, intracellular bacteria exposed to host cytoplasm gets ubi-
quitinated [23]. Ubiquitination leads to recognition by various xeno-
phagy adaptors such as p62, NDP52 leading to capture of pathogens in
xenophagosomes [24] (p62/Sequestosome (SQSTM1), Nuclear Dot like
Protein (NDP52), Neighbor of BRCA1 (NBR1), Optineurin(OPTN))
capturing them in xenophagosomes (pathogen-containing autophago-
somes). The adaptor proteins contain domains that bind to ubiquitin as
well as recruit LC3 through their LIR domain. The ubiquitinated bac-
teria in cytosol get coated with such adaptor proteins and LC3, thereby
inducing autophagosomes formation around them [25,26].

In addition to the cytosolic bacteria, the pathogens often reside in
self-styled vacuolar compartments such as Salmonella Containing
Vacuoles (SCVs) for Salmonella. These pathogen specific compartments
are also targeted by the autophagic machinery. This capture could be
either intact phagosomes or remnants of damaged phagosomes. For
example, vacuolar capture of Salmonella residing in SCVs is an ubi-
quitin-independent xenophagy process, wherein galectin8, a lectin that
marks damaged membranes recruits the autophagy adaptor protein
NDP52. It, in turn, engages the autophagy machinery by binding to LC3
[27]. However, Pathogens also evade xenophagy by modulating the
process in more than one way. In the case of Salmonella, one of the
virulence factors, namely SifA, sequesters host Rab9 impairing the

retrograde transport of mannose-6-phosphate pathway. This causes
impairment in proteases loading in lysosomes leading to accumulation
of lysosome-like structures characterized by membrane composition but
devoid of proteases to actively degrade the cargo [28]. This also pro-
vides conditions optimum for Salmonella to replicate in SCVs by
growing tubular structures known as Salmonella-induced filaments
which exhibit higher metabolic activity rate to combat the nutritional
stress in the intra-vacuolar environment [29]. Salmonella also utilizes
host factors such as HOPS (HOmotypic fusion and Protein Sorting), to
facilitate fusion with endosomal structures for their intracellular sur-
vival [30]. Recent screening for host factors by Krebich et al. identified
Atg5 to be important to maintain the integrity of SCVs [31].

Viruses being obligate parasites require significant interaction with
the host for its survival. Similar to bacterial infection, viral components
are also reported to induce host immune sensors. Involvement of cell
surface TLRs (TLR2 and TLR4) recognize viral envelope components
leading to downstream cascade activation including autophagy [32].
Furthermore, after entry into host cells, viral uncoating occurs exposing
viral nucleic acid products such as DNA, single/double-stranded RNA.
These components are recognized by endosomal TLRs and RNA heli-
cases (RIG1 and MDA5) [33]. Autophagy is shown to capture virions or
viral proteins in autophagosomes to mediate degradation in autolyso-
somes [34,35]. Besides mediating lysosomal degradation, autophagy
can also deliver viral components to endosomes that contain toll-like
receptors enhancing viral recognition. This further initiates type-I in-
terferon signalling. Interferons are cytokines which have anti-viral
properties. Interferon response, especially IFNα and IFNβ, are con-
sidered as frontline defense mechanisms during viral infection. Ad-
ditionally, studies have also shown that autophagy targets viral proteins
to MHC class II loading compartments to generate CD4T-cell response.
Thus autophagy acts as a part of both innate and adaptive systems to
mount anti-viral responses [34].

Table 1
Role of xenophagy during intracellular infections.

Pathogen Disease Host/pathogen effectors

Streptococcus pyogenes Pharyngitis, Rheumatic fevers, Skin
infections.

Streptolysin causes the escape of bacteria to cytosol, where it is captured by
xenophagosomes [36].

Staphylococcus aureus Skin infection, sinusitis, food poisoning Xenophagy enhances the survival of S. aureus due to inflammasome degradation [37].
Salmonella typhimurium Gastroenteritis Salmonella escaping from endosomes into cytosol are captured by xenophagy [15].
Mycobacterium tuberculosis Tuberculosis Xenophagy induction leads to INF production which is shown to inhibit M. tuberculosis

replication [38].
Legionella pneumophila Legionellosis- fever, muscle pain and

shortness of breath
Induces xenophagy in type IV system secretion (T4SS, also known as the secretion system
Dot/Icm)-dependent manner [39].

Shigella flexneri Shigellosis- diarrhoea and abdominal
pain

Xenophagy is activated by the recognition of IcsA (surface protein) by ATG5 [17].

Helicobacter pylori Peptic ulcers and gastritis Xenophagy block caused by H. pylori facilitates in its intracellular survival [40].
Listeria monocytogenes Listeriosis- gastroenteritis

(immuno-compromised patients can get
meningitis)

Listeriolysin causes the escape of bacteria to cytosol, where it is captured by
xenophagosomes. At later time points of infection, Listeria escapes xenophagy by expressing
ActA protein that forms actin tail and mediates bacterial movement within cells. [41].

Coxiella burnetii Q fever C. burnetti can survive and replicate in the harsh environment of large, acidified
phagolysosome-like vacuoles [42].

Porphyromonas gingivalis Periodontitis and infection of
gastrointestinal tract and colon.

Bacteria get sequestered in xenophagosomes, but it evades the fusion with lysosomes [43].

Parvovirus B19 Erythema infectiosum Increase in LC3 II levels during virus replication is observed
and inhibition of autophagy led to more virus-induced cell death [44].

Poliovirus Poliomyelitis Inhibition of autophagy decreased poliovirus yield [45].
Hepatitis C Jaundice HCV induces autophagic vacuoles and recruitment of LC3 and Apg5 [46].
Influenza A Influenza The virus causes accumulation of autophagosomes through preventing fusion to lysosomes

[47].
Human immunodeficiency virus (HIV) Acquired Immune Deficiency Syndrome

(AIDS)
HIV Gag-derived proteins co-localizes and interacts with the autophagy factor LC3 and is
seen to be degraded [18].

Varicella zoster virus (VZV) Varicella (Chicken pox) VZV induces xenophagy at later time points of infection [48].
Epstein-Barr virus(EBV) Infectious mononucleosis EBV blocks autophagic flux during re-activation from latency [49].
Herpes Simplex Virus (HSV) Herpes encephalitis HSV protein γ34.5 inhibits xenophagy by binding to Beclin1 [50].
Sindbis virus Sindbis fever Binds to Beclin1 inhibiting xenophagy [51].
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1.4. Cancer and autophagy

Cancer refers to a group of genetic diseases involving accumulation
of DNA mutational changes that leads to rapid cell division and tumor
formation. Cancer initiation and progression requires some physiolo-
gical changes in cellular properties. These changes contribute towards
oncogenesis and are collectively termed as ‘hallmarks of cancer’. The
dual role of autophagy in cancer is well reported [52,53]. Apart from
invasion and metastasis, autophagy also has a role in modulating other
hallmarks of cancer. Cytoprotective autophagy prevents cancer initia-
tion. In the absence of autophagy, cells accumulate ubiquitylated pro-
tein aggregates, misfolded proteins, and damaged organelles like mi-
tochondria. Such an environment in the cell interior is conducive to the
production of reactive oxygen species (ROS), causing metabolic in-
sufficiency and increased proteotoxicity. This is a threat to the survival
of the cell as well as the integrity of the genome. Autophagy acts as the
guardian of the genome by preventing the accumulation of random
DNA mutations which can in turn initiate tumours. On the other hand,
high levels of autophagy in cancers with Kras or Braf mutations allow
them to achieve sustained proliferation [54]. One of the major tumor-
protective roles of autophagy in cancer is to help in the survival of
tumor cells before they become vascularized. High levels of autophagy
combat oxidative stress in tumor cells and aids in their survival prior to
vascularization [55]. On the other hand, solid tumors battle severe
hypoxic conditions and in this context, they switch to aerobic glycolysis
for ATP production (rather than oxidative phosphorylation) to mini-
mise reliance on oxygen through the blood supply. In addition, autop-
hagy also scavenges biomolecules within the cell to provide new sub-
strates for TCA cycle. This sustains ATP production in solid tumors even
in the absence of oxygen [56].

1.5. Pathogen associated cancers

For a long time now, infections are known to be a major cause of
sporadic cancer initiation by causing DNA damage or genomic in-
stability (Table 2). This is achieved by pathogen-mediated chronic in-
flammation and release of toxic metabolites. Bacterial effector proteins
interact and activate host oncoproteins that cause cell-cycle dysregu-
lation triggering carcinogenesis progression [57,58].

2. Mechanisms of pathogen mediated oncogenesis

2.1. Inflammation

Inflammation as a physiological process is a double-edged sword. It
is an adaptive host response against invading pathogens but excess
inflammatory response, especially against endogenous aggressors, can
be harmful. In a typical inflammatory response against infection, pha-
gocytes recruited to the site of infection secrete pro-inflammatory cy-
tokines such as Tumor Necrosis Factor alpha (TNFα) and chemokines
which further amplify the inflammatory response by engaging more
cells of the immune system at the site of infection [59]. Finally, this
cascade primes dendritic cells which in turn activates adaptive immune
response.

In a normal physiological state, inflammation is highly regulated by
a balance between pro and anti-inflammatory cytokines. Perturbations
in this fine-tuned balance of inflammation regulating chemicals or a
long persistence of infectious agents can lead to chronic inflammation
and ultimately neoplastic transformation. Xenophagy acts as a part of
innate immune system in controlling intracellular infection.
Recognition of pathogens by xenophagy leads to their capture in xe-
nophagosomes and eventual degradation in lysosomes, thus reducing
the intracellular pathogen load. Studies have shown that xenophagy
mediated clearance of intracellular pathogens could possibly control
inflammation. Elegant studies have identified several bacterial strains
which can infect human tissues causing inflammation [60,61]. Some of
them are discussed in detail.

2.2. Helicobacter pylori

Helicobacter pylori is a common gram-negative bacterium that in-
fects approximately 50 % of the world population. H. pylori infection
has a strong correlation with the occurrence of peptic ulcer, gastritis,
and gastric adenocarcinoma. H. pylori virulence factors namely, cyto-
toxin associated gene-A (CagA) and vacuolating cytotoxin (VacA) can
modulate host cellular pathways. CagA, which is secreted by Type IV
secretion system, can activate a series of signalling cascades inside the
cell, finally resulting in activation of NFκB (nuclear factor kappa light
chain enhancer of activated B cells) pathway and production of inter-
leukin-8. This results in severe and chronic inflammation [62,63].
Prolonged inflammation of gastric epithelium is a major factor in the
development of peptic ulcer and peptic adenocarcinoma due to

Table 2
Modulation of xenophagy by carcinogenic pathogens.

Pathogen Cancer Association Xenophagy

Borrelia burgdorferi B cell lymphoma Xenophagy controls Borrelia infection as well as reduce cytokine production [82].
Chlamydia trachomatis increases the risk for invasive squamous-cell

carcinoma of the uterine cervix
Captured by xenophagosomes but are not degraded in lysosomes due to reduced
lysosomal enzyme activity [83].

Helicobacter pylori predisposal to gastric cancer or MALT
lymphoma

Prolonged exposure to the vacuolating cytotoxin (VacA), produced by H. pylori,
prevents maturation of the autolysosome [40].

Mycoplasma prostate cancer Genital mycoplasmaUreaplasmaparvum evade xenophagy by inducing significant
endosomal–lysosomal damage [84,85].

Neisseria gonorrhoeae Bladder cancer Captured by xenophagosomes but avoid degradation by secreting proteases such as
IgAP that cleaves lysosomal proteins [86,87].

Salmonella typhi and Salmonella
typhimurium

Gallbladder carcinoma Cytoplasmic Salmonella gets recognized by xenophagy proteins [88].

Hepatitis C virus (HCV) Liver cancer Replicates in xenophagosomes. Autophagy inhibition reduces HCV replication. The
release of virions also requires autophagy [89].

Hepatitis B virus (HBV) Hepatocellular cancer Replicates in xenophagosomes. The release of HBV through exosomes requires
autophagy [90,91].

Human Papilloma Virus (HPV) Cervical cancer E5 downregulates xenophagy proteins and E6 prevents fusion of xenophagosomes to
lysosomes [92], [93].

Human T Lymphocyte Virus Type 1
(HTLV-1)

T-cell leukemia Tax protein mediates replication of HTLV in LC3 positive xenophagosomes [94].

Epstein-Barr Virus (EBV) B and T cell lymphomas, nasopharyngeal
carcinomas

Latent Membrane Protein 1 (LMP1) induces xenophagy. The xenophagosome
membrane is used for viral replication [95].

Kaposi Sarcoma Herpesvirus (KSHV) Skin cancer (Kaposi Sarcoma) Expresses Bcl2 that binds with BECN1 preventing xenophagosomes formation [96].
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generation of oxidative stress and accumulation of mutations.

2.3. Salmonella typhimurium

Salmonella infects epithelial cells using type III secretion system
(T3SS) encoded by its pathogenicity genes called Salmonella patho-
genicity islands 1/2 (SPI1/SPI2). It can modify the host endosomes into
replicating vacuoles called Salmonella containing vacuoles (SCVs). Gall
bladder epithelium acts as a niche for persistent intracellular Salmonella
along with Salmonella extrusion from infected cells. This leads to release
of Salmonella into gall bladder lumen causing infiltration of macro-
phages and neutrophils, leading to a strong inflammatory response.
Patients with gall stones exhibit biofilm formation on the gall stone
surfaces and demonstrate very high Salmonella replication that is
clinically related to the initiation of gall bladder cancer [64,65].

2.4. Activation of oncoproteins

Oncoproteins are coded by host oncogenes and are defined by their
ability to transform and promote cancer/tumor growth. Interestingly,
certain pathogens express proteins that are capable of interacting with
the host oncoproteins and cause cell transformation leading to tumor-
igenesis.

As previously described, H. pylori induce severe inflammation
mediated by its virulence factor CagA. Additionally, CagA can directly
bind to oncoprotein, SHP-2 (Src homology region containing protein -2)
and affect the functioning of cell cycle kinases such as MAPK pathways
[66]. This CagA mediated activation of MAPK pathway also induces the
expression of c-jun and c-fos proto-oncogenes that are also implicated
in cell transformation [67]. Other examples include p37, a Mycoplasma
lipoprotein that is expressed on the bacterial membrane which is also
shown to modulate properties like cell adhesion, migration and inva-
sion [68].in vitro studies have shown M. fermentas and M. penetrans
mediated transformation to malignancy on cell lines mainly caused by
overexpression of c-ras and c-myc oncoproteins [69].

Viral-derived oncoproteins play a major role in cellular transfor-
mation and contribute to tumor initiation. Transformed host cells
continuously undergo cell division synthesizing the viral genome along
with its own cellular genome - a desirable trait for the viral propaga-
tion. The well-studied oncoproteins of DNA viruses include T antigen of
Simian Vacuolating virus 40 (SV40), E6 and E7 of papillomavirus, and
E1A of adenovirus. All three oncoproteins function in a similar manner
by inactivating a particular cellular protein known as retinoblastoma
that is essential for regulating cell replication [70,71]. On the contrary,
oncoproteins of retroviruses function either by expressing viral proto-
oncogenes such as v-src of Rous sarcoma virus or insert provirus into
host cellular genome, both activating multiple proto-oncogenes ex-
pression leading to neoplastic transformation [72].

2.5. Toxic secondary metabolites

2.5.1. Reactive oxygen species (ROS)
ROS is a defense weapon used by phagocytic cells to kill in-

tracellular pathogens. It is generated by host NADPH oxidase in re-
sponse to microbial recognition and inflammation. ROS is directed to
pathogen-containing phagosomes where they cause oxidative damages
such as DNA strand breakage, deamination, and base oxidation on pa-
thogens. However, there are pathogens that survive the oxidative en-
vironment created by ROS. This is seen in the case of S. typhimurium,
which is capable of rapidly fixing the DNA strand damage created by
ROS and replicate normally in oxidative conditions [73]. Similarly, in
the case of KSHV, by a mechanism still not identified, ROS can re-
activate virus from latency and increase the viral load [74]. The gen-
erated ROS can dysregulate multiple downstream signalling pathways
like MAPK, Akt, NFκB among others. These pathways are directly in-
volved in cancer-promoting cellular properties such as survival,

motility, and adhesion [75].

2.6. Nitrosamines

N-nitrosamines are well known potent carcinogens. Inflammation-
mediated production of reactive nitrogen oxide species can be further
processed in the stomach to nitrosamines by acid reactions that are
catalyzed by bacteria. Additionally, activated macrophages show in-
creased production of nitrites and nitrates. Patients with bladder in-
fections rapidly absorb nitrates, secondary amines, and nitrosamines
leading to cellular DNA damage of the host [76].

3. Impact of xenophagy on carcinogenesis

As mentioned in the earlier section, excessive inflammatory re-
sponses can have adverse effects leading to tumor initiation.
Inflammatory responses during infection are mediated by a multi-
protein complex called inflammasome, to release pro-inflammatory
cytokines, particularly interleukin-1β (IL-1β) [77]. Autophagy, being a
quality control mechanism of the cell keeps a check on the excessive
and unwarranted inflammatory response. The process controls in-
flammation indirectly by removing damaged organelles of the cell.
Furthermore, autophagy can also have a direct effect by degrading
components of inflammasome. Inflammasomes are assembled multi-
protein complexes that lead to secretion of cytokine precursors such as
pro-IL1β and pro-IL-18. Inflammasome activation is inhibited by pre-
venting accumulation of inflammasome agonists such as mitochondrial
ROS and oxidized mitochondrial DNA. Individual components of in-
flammasome can also be directly degraded by autophagy in a SQSTM1/
p62 dependent manner [78].

Altered levels of autophagy are a hallmark of several inflammatory
disorders. Genome-Wide Association Studies (GWAS) have identified
links between genetic polymorphisms in autophagy loci with a predis-
position to inflammatory diseases. The most well-studied link is for
Crohn's Disease (CD), an inflammatory bowel disease with poly-
morphisms in genes encoding ATG16L1, NOD2 and IRGM [79]. Ana-
lysis of ATG16L1 and IRGM polymorphisms during H. pylori infection
revealed downregulation of xenophagy. In addition, polymorphism in
these genes makes the individual more susceptible to bacterial infec-
tions including H. pylori. Finally, the combined effect of these mutation
(s) and H. pylori infection has been shown to significantly increase the
risk of gastric cancer [80]. These studies highlight the possibility of
tumor initiation due to dysfunctional xenophagy.

In another example, infection with Salmonella at tumor sites induced
a strong xenophagic response by the cancer cells and surprisingly, led to
an eventual reduction in tumor growth. Although the exact mechanism
is not known, xenophagy mediated cell death through inactivation of
Akt/mTOR/p70S6K has been shown to contribute to the decline in
tumor size [81].

4. Modulation of xenophagy by carcinogenic pathogens

4.1. Bacteria

In order to establish infections, pathogens overcome the host in-
duced defense mechanisms including xenophagy by targeting different
stages of the process (Table 1 and 2). A study by Raju et al. showed that
during H. pylori infection, while limited exposure of its virulence factor,
VacA induced xenophagy, sustained exposure made the cell un-
responsive to the toxin, resulting in reduced xenophagy [40,80]. Si-
milarly, patients infected with CagA+ H. pylori showed decreased au-
tophagic flux with an accumulation of autophagy adaptor protein, p62
compared to patients infected with CagA− H. pylori although the me-
chanism by which these factors inhibit the process is not clear [63].

Another carcinogenic pathogen, Chlamydia trachomatis that causes
cervical and ovarian cancer, although gets captured by
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xenophagosomes, it interestingly, decreases contents of lysosomal en-
zymes post-infection and thereby preventing its lysosomal mediated
killing [83].

4.2. Viruses

Viruses play a significant role contributing close to 15 percent in
human cancer development. Elaborate studies on viral pathogenesis
revealed mechanisms that viruses adapt to overcome immune responses
including xenophagy.

Host immune system detects the presence of cytoplasmic DNA,
which is a sign of viral infection and initiates anti-viral interferon re-
sponse by an enzyme called cGAS (cyclic guanosine monophosphate-
adenosine monophosphate synthase) along with its adaptor protein
STING, (stimulator of interferon genes) shortly referred to as cGAS-
STING pathway. The viral oncoproteins E7 and E1A are known to an-
tagonize this immune response by direct binding to STING [97]. This
abrogates the function of STING protein that apart from being involved
in interferon production also induces autophagy [98].

Viruses can also directly target the autophagy process and thereby
prevent degradation in lysosomes. Examples of such mechanisms in-
clude HPV, which causes cervical cancer, anogenital cancer, head and
neck cancer, and skin cancers. Oncoproteins of HPV, E5, and E6 are
involved in inhibiting autophagy in more than one way. E5 down-
regulates key autophagy proteins like BECN1, LC3, ULK1 whereas E6
decreases the fusion of autophagosomes to lysosomes [99]. Similarly,
herpesviruses express proteins such as ICP34.5 and viral Bcl2 both of
which bind to Beclin1 and prevent autophagosome formation.

Viruses like poliovirus and hepatitis C can also utilize autophagy for
its survival by converting the double membrane autophagosomes to its
own replicating niche and in addition prevent fusion of such vesicles
with lysosomes.

5. Antimicrobial agents for cancer treatment

There is increasing evidence for using antibiotics in combination
with other anti-cancer drugs for the targeted treatment of particular
cancer types. To mention a few, Nifuroxazide, a nitrofuran antibiotic,
selectively targets aldehyde dehydrogenase1 (ALDH1) which is a de-
toxifying enzyme that protects cells from alkylating agents. Studies
have shown that using this drug on melanoma cells which generally has
high ALDH1 levels, show a regression in tumor initiating cells [100].
Similarly, ionophore antibiotics like salinomycin and its multiple de-
rivatives have shown anti-cancer properties in various cancer types
including those on multidrug-resistant tumors. Although over-
expression of Bcl2 and BAX proteins are seen upon salinomycin treat-
ment, the exact mechanisms by which salinomycin induce apoptosis of
cancer cells is not clear [101].

While using antibiotics for tumor treatment has been well ad-
dressed, there are limited studies on antibiotics inducing autophagy for
anti-cancer treatment. Clarithromycin, a commonly used macrolide
antibiotic against various bacterial infections including Helicobacter, is
also shown to have an effect on mucosa-associated lymphoid tissue
lymphomas (MALT) and incidentally, Helicobacter infection can lead to
initiation and development of MALT [102,103]. Further studies by
other groups observed autophagy inhibition by clarithromycin on
myeloma cells leading to apoptosis. In another example, violacetin, a
bis-indole pigment produced by select bacterial species, was shown to
induce autophagy and apoptosis of head and neck cancer cells
[104,105]. Similarly, tigecycline, a tetracycline antibiotic induced au-
tophagy and prevented gastric cancer cell proliferation [106].

Recent studies have identified pharmacological methods to mod-
ulate xenophagy during intracellular bacterial infections. Rapamycin, a
well-known autophagy inducer also induces xenophagy [107]. Simi-
larly, studies from various groups have screened for compounds that
could induce xenophagy. To mention a few, BRD5631 was identified to

have antibacterial effect against Mycobacterial species [22]. Recently,
we reported identification of plant derived flavonoid, acacetin to induce
xenophagy and reduce intracellular Salmonella replication [108]. Ad-
ditionally, certain antibiotics like isoniazide and pyrazinamide apart
from having direct antibiotic effect also induce xenophagy to bring
about an effective clearance mechanism [109].

6. Discussion

The selective form of autophagy, i.e. xenophagy is an evolutionary
conserved innate immunity pathway that plays a key role in the pa-
thogenesis of several clinically important infections. Xenophagy is
known to directly capture pathogens or indirectly mediate immune
responses to control intracellular infection. Genetic or pharmacological
induction of xenophagy has shown promising results in controlling in-
fection and thereby exerting its secondary effects in reducing in-
flammation [22,110]. Given the enormous scale of cancer research, a
cure(s) for cancer still appear only in the horizon. There have been
diverse approaches towards cancer therapies, including some out of the
box ideas, and perhaps connecting the possibility of xenophagy as a
possible tool to fight cancer falls in this category. There are emerging
evidences of how xenophagy manipulates tumor microenvironment. As
both carcinogenic pathogens and inflammation are shown to be drivers
of carcinogenesis, these studies provide confidence in employing xe-
nophagy as a possible strategy for anti-cancer combinatorial therapy.
Employing anti-microbial agents for anti-cancer treatment is also ben-
eficial because presence of pathogenic (viral) products in the tumor
cells, help in developing targeted therapies to cancer cells and distin-
guishing the normal cells.

However, the prolonged or excessive use of antibiotics through the
combination of antibiotics and anticancer agents might increase anti-
biotic resistance to pathogens. Therefore, as an alternative to anti-
biotics, compounds that induce host anti-microbial mechanisms like
xenophagy can be tested. Few compounds such as rapamycin,
BRD5631, acacetin are known to induce xenophagy and do not have
antibacterial properties. However, their efficiency in treating carcino-
genic bacteria is yet to be elucidated [22]. Inducing host immune re-
sponse also has an additional advantage of tackling multiple pathogens
irrespective of pathogen type.

Although modulating xenophagy can be beneficial in combinatorial
therapy, before employing it as a treatment, it is essential to study in
detail the evasive mechanisms employed by varied pathogens against
xenophagy. Apart from preventing self-degradation, some pathogens
have also evolved strategies to make use of autophagy for their in-
creased replication and survival converting autophagosomes as an in-
tracellular niche protected from other cellular immune mechanisms.
Hence it is critical to know the type of pathogen and the specific stage
of xenophagy that has to be modulated.

Similarly, it is also important to be cautious while employing au-
tophagy/xenophagy as a strategy for cancer treatment. It is well proven
by multiple studies that autophagy plays a dual role in tumor initiation
and development. It contributes to tumor suppression during initial
stages by suppressing inflammation and reactive oxygen species.
However, during later stages of tumor, autophagy is known to support
cancer cells survive nutrient starvation and hypoxic microenvironment
of the solid tumors. This can be a double-edged sword. In this regard,
this field is still in its infancy and extensive research is hence imperative
to understand the nexus between cancer and xenophagy. This would
help in deciphering effective combinatorial therapeutic approaches to
treat pathogen mediated cancer.
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ABSTRACT: Vancomycin is a standard drug for the treatment of multidrug-
resistant Gram-positive bacterial infections. Albeit, development of resistance
(VRE, VRSA) and its inefficacy against persistent infections is a demerit. It is also
intrinsically inactive against Gram-negative bacteria. Herein, we report a
vancomycin derivative, VanQAmC10, that addresses these challenges. Van-
QAmC10 was rapidly bactericidal against carbapenem-resistant A. baumannii (6
log10 CFU/mL reduction in 6 h), disrupted A. baumannii biofilms, and eradicated
their stationary phase cells. In MRSA infected macrophages, the compound
reduced the bacterial burden by 1.3 log10 CFU/mL while vancomycin exhibited a
static effect. Further investigation indicated that the compound, unlike
vancomycin, promoted the intracellular degradative mechanism, autophagy, in
mammalian cells, which may have contributed to its intracellular activity. The
findings of the work provide new perspectives on the field of glycopeptide
antibiotics.

The threat of antimicrobial resistance (AMR) has been
reiterated several times by the World Health Organ-

ization (WHO) and other international healthcare organiza-
tions.1 The upsurge in incidences of multidrug resistance and
pan-drug resistance in Gram-negative bacteria (MDR-GNB
and PDR-GNB) has become a severe health challenge.2

Additionally, bacterial pathogens often evade the host immune
system and antibiotic treatment, thereby persisting within the
host. These infections usually result from the ability of bacteria
to form biofilms or survive within mammalian cells and are
difficult to treat.1,3 This necessitates the need for development
of drugs for the treatment of complicated bacterial infections.
Semisynthetic approaches are an attractive and clinically
successful strategy toward achieving this goal. Although
vancomycin has been widely used in the clinic for the
treatment of MRSA infections, resistance has been reported in
Enterococci and Staphylococci (vancomycin-resistant Staph-
ylococcus aureus, VRSA; and vancomycin-resistant Enterococci,
VRE).4,5 Further, its inefficacy against Gram-negative bacteria
and intracellular Gram-positive bacteria limits broad clinical
usage.6,7 Efforts have been directed to this end, which involve
semisynthesis and nanoparticle-based approaches through
encapsulation of vancomycin.8−16 Previously, we had reported
a cationic lipophilic vancomycin derivative that could eradicate
Gram-negative bacteria both in vitro and in vivo. Although the
derivative exhibited good activity, its LD50 was 28 mg/kg.17

This warranted an improvement in molecular design to reduce

toxicity while maintaining similar antibacterial activity.
Morover, the multifaceted antibacterial activity of a semi-
synthetic glycopeptide against Gram-negative biofilms and
intracellular bacteria remains underexplored.4,18 In this repect,
we report the design of a nontoxic vancomycin derivative,
VanQAmC10 (Scheme 1), and its efficacy against acquired
resistance in Gram-positive bacteria and intrinsic resistance in
Gram-negative bacteria to vancomycin. Further, the effect of
the compound on biofilms of A. baumannii and the mammalian
cellular degradative pathway, autophagy, was investigated.

Design and Synthesis. In various biophysical studies and
molecular dynamic simulations against polymeric and small
molecular systems, our group reported that the inclusion of an
amide bond between the cationic moiety and the hydrophobic
moiety imparts additional hydrogen bonding capability to the
bacterial lipids.19,20 This enhances the selective toxicity toward
bacterial cells over mammalian cells. Therefore, the lipophilic
moiety conjugated to vancomycin here contained an amide
group between the cationic center and lipophilic moiety. A
simple three step synthetic scheme was followed to obtain
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VanQAmC10 (Scheme 1). In the first step, decylamine was
conjugated to bromoacetyl bromide to obtain the brominated

amide (1a). Nucleophilic substitution of the bromide in 1a
with Boc-protected N,N-dimethyl propanediamine yielded 1b,

Scheme 1. Synthesis of Semi-Synthetic Vancomycin Derivative

Figure 1. Antibacterial activity and mechanism of action of VanQAmC10. (A) MIC against Gram-positive bacteria. (B) Time-kill kinetics against A.
baumannii R674. Inhibition of cell wall biosynthesis in A. baumannii upon treatment with test compounds investigated through (C) accumulation
of UDP-MurNAc-L-Lys-γ-Glu-m-DAP-D-Ala-D-Ala observed by absorbance at 260 nm. (D) Mass spectrum of UDP-MurNAc-PP (structure inset)
identified at m/z 1194.334. (E) SEM micrographs of A. baumannii treated with VanQAmC10 against exponentially growing bacteria (scale bar, 1
μm). *<50 cfu/mL.
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which was deprotected to obtain the amphiphilic precursor 1c
with a primary amine group. Then the compound, 1c, was
reacted with the carboxylic acid group of vancomycin using
N ,N ,N ′ ,N ′ - t e t r amethy l -O - (1H-benzot r i a zo l -1 -y l ) -
uraniumhexafluoro-phosphate as a coupling agent to obtain the
lipophlic cationic vancomycin derivative, VanQAmC10. The
final product was purified through reverse-phase HPLC with
around 70% yield and was characterized using HPLC,
1HNMR, 13CNMR, and HR-MS.
In Vitro Antibacterial Activity. VanQAmC10 exhibited

activity comparable to that of vancomycin against vancomycin-
sensitive bacteria (MIC 0.4 μM against MRSA, 0.5 μM against
E. faecium, Figure 1A). Against vancomycin-resistant bacteria, a
100−330-fold enhancement in activity as compared to
vancomycin was observed. It showed a minimum inhibitory
concentration (MIC) of 0.1 μM and 0.2 μM against VISA and
VRSA, repectively, and 2.2 μM and 4 μM against VRE VanA
and VanB phenotypes, respectively. Vancomycin showed a
MIC of 250 μM (VRE VanA) and 750 μΜ (VRE VanB; Figure
1A). The activity of the compound was also tested against
various Gram-negative pathogens such as E. coli, K. pneumo-
niae, P. aeruginosa, and A. baumannii (Table 1 and Table S1).

While the compound showed some activity against E. coli and
P. aeruginosa, the highlight of the work was its potency against
A. baumannii (Table 1). A. baumannii is notorious due to its
unprecedented ability to acquire resistance to most antibiotics,
which led to the World Health Organization categorizing it as
the number one critical priority pathogen for drug discovery.
Given the challenge presented by infections caused by this
pathogen, this finding is promising toward extending the use of
vancomycin against this pathogen.21 VanQAmC10 showed an
MIC in the range 3.9−15.5 μM against various multidrug-
resistant clinical isolates of A. baumannii. The bacteria tested
were resistant to the currently used antibiotics, levofloxacin,

meropenem, ceftaroline and only susceptible to polymyxin B
and tigecycline. Its bactericidal activity was rapid; 4 log10
CFU/mL reduction was observed within 2 h at around 3 ×
MIC (28 μM), while complete killing (6 log10 CFU/mL
reduction) was observed in 6 h (Figure 1B). At 7 μM (just
below MIC), the compound initially showed a 2.5 log10 CFU/
mL reduction at 4 h and then subsequent growth up to 24 h.
The incorporation of the lipophilic cationic moiety permitted
interaction with the negatively charged bacterial membrane
and resulted in depolarization and permeabilization of both the
outer and inner membranes of the bacteria (Figure S1). The
outer membrane permeabilization caused by the lipophilic
cationic vancomycin derivative permits the entry of the
compound to the cell wall region and thereby inhibits cell
wall biosynthesis (Figure 1C and D). The membrane
disruptive mode of action was further supported by the SEM
images of VanQAmC10 treated cells where cell debris and lysis
are visible (Figure 1E).

Disruption of Biofilms of Carbapanem-Resistant A.
baumannii. A. baumannii is notorious for biofilm related
infections.22 Most of the conventional antibiotics are rendered
ineffective due to the permeability barrier created by the
extracellular polymeric matrix (EPS).3 Therefore, the activity
of VanQAmC10 against A. baumannii biofilms was of immense
interest. Confocal laser scanning microscopy showed that
VanQAmC10 treated biofilms were disrupted and their
thickness reduced to 2.2 μm at 50 μM, while untreated and
vancomycin treated biofilms were 11 and 8.8 μm thick (Figure
2A). This reduction was comparable to that of colistin taken at
the same concentration. The conjugation of the cationic
lipophilic moiety onto vancomycin facilitated interaction with
the negatively charged components of the EPS, resulting in
disintegration of the biofilms. To further investigate biofilm
eradication, the viability of bacteria within these disrupted
biofilms upon treatment at various concentrations was
determined. VanQAmC10 reduced the number of viable
bacteria in a concentration dependent manner. At 10 μM, it
reduced cell viability by 1.8 log10 CFU/mL. At higher
concentrations of 25 μM and 50 μM, 2.8 log10 CFU/mL and
3.8 log10 CFU/mL reduction was obtained, respectively.
Colistin, on the other hand, could completely eliminate the
viable cells (6 log10 CFU/mL reduction). Tobramycin was
found to be ineffective, while vancomycin caused a 1 log10
CFU/mL reduction of viability of bacteria within the biofilm at
50 μM (Figure 2B).

Eradication of Stationary Phase Cells of A. bauman-
nii. Biofilms consist of bacteria in various metabolic phases;
the reduction in viable cells in biofilms indicated activity
against stationary phase bacteria as well. While vancomycin did
not show any significant reduction in viability (0.6 log10 CFU/
mL), VanQAmC10 reduced cell viability by 3 log10 CFU/mL
and 5.5 log10 CFU/mL at 5 μM and 10 μM respectively within
2 h (Figure 2C). Since the integrity of the membrane is crucial
for bacterial survival irrespective of its metabolic state, the
membrane-disruptive nature of the compound resulted in this
rapid bactericidal activity (Figure S2). The currently used
antibiotic, tobramycin, showed a lower activity with a 2.7 log10
CFU/mL reduction, while colistin completely killed the
stationary-phase bacteria (Figure 2C). However, the advantage
of VanQAmC10 offered over colistin was that it did not induce
any observable resistance in A. baumannii (Figure S3). Up to
19 passages, the compound showed no increase in MIC, while
colistin induced resistance from the sixth passage itself. The

Table 1. Antibacterial Activity of VanQAmC10 against
Clinical Isolates of Gram-Negative WHO Priority Pathogen
A. baumanniia

MIC (μM)

A. baumannii PMB Mero Levo Tige Ceft VanQAmC10

NR-13374 <0.4 83.4 88.6 6.8 >85.9 7.7
NR-13375 <0.4 >167 177 6.8 >85.9 7.7
NR-13376 <0.4 167 177 3.4 >85.9 3.9
NR-13377 <0.4 167 177 6.8 >85.9 3.9
NR-13378 <0.4 >167 22 6.8 >85.9 3.9
NR-13379 <0.4 >167 11 3.4 >85.9 3.9
NR-13380 <0.4 10.4 22 6.8 >85.9 7.7
NR-13381 <0.4 >167 1 6.8 >85.9 7.7
NR-13382 <0.4 >167 22 3.4 >85.9 7.7
NR-13383 <0.4 83.4 11 3.4 >85.9 3.9
NR-13384 <0.4 >167 177 6.8 >85.9 7.7
NR-13385 <0.4 >167 88.5 6.8 >85.9 7.7
NR-17777 <0.4 2.6 22 1.7 21.5 15.5
NR-17786 <0.4 10.4 1.3 3.4 >85.9 3.9
NR-19299 <0.4 167 44.3 3.4 >85.9 3.9
BAA-1605 <0.4 167 22 6.8 >85.9 7.7
ATCC 17978 <0.4 <1.3 22 <0.8 21.5 7.7
MTCC 1425 ND ND ND ND ND 6.25
ABR 674 ND >64 ND ND ND 10
aLevo, levofloxacin; Mero, Meropenem; Tige, tigecycline, PMB,
Polymixin B, Ceft, ceftaroline; N.D. Not determined.
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membrane-disrupting, nonspecific targeting by the vancomycin
derivative may have contributed to this lack of propensity to
induce resistance.
Toxicity. The in vitro and in vivo toxicity of the compound

was then tested. The HC50 of the compound was found to be
greater than 1000 μM as opposed to 100 μM for a vancomycin
derivative of comparable activity lacking an amide between the
cationic center and lipophilic moiety (Figure S4).17 The LD50

in mice, when administered intravenously, was found to be 70
mg/kg as opposed to 28 mg/kg for the derivative lacking the
amide spacer.17 The H-bonding ability of the amide moiety has
been reported to result in better interaction with the polar
head groups of the bacterial membrane than with the
mammalian cell membrane. This increased interaction due to
H-bonding ability with the bacterial membrane makes up for
the lower chain length of the hydrophobic moiety which results

Figure 2. Activity of VanQAmC10 against biofilms and stationary phase of A. baumannii. (A) Confocal laser scanning images of biofilms of a
multidrug resistant strain when mature biofilms were left untreated, treated with vancomycin, VanQAmC10, and colistin at a concentration of 50
μM each (scale bar, 5 μm). (B) Viability of bacterial cells in biofilms post-treatment with test compounds. (C) Viability of stationary phase cells 2 h
post-treatment with test compound. *<50 cfu/mL.

Figure 3. (A) Intracellular killing kinetics of VanQAmC10 against MRSA. (B) Schematic of the tandem mRFP-GFP-LC3 assay. (C) Representative
microscopic images of merged GRP and RFP channels of RFP−GFP−LC3 expressing HeLa cells treated with indicated compounds at 100 μM for
2 h (scale bar 10 μm). (D) Comparison of the number of puncta per cell of autolysosomes (red) and autophagosomes (black) in treated and
untreated cells. (E) Activity of compounds against intracellular Salmonella typhimurium.
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in reduced interaction with the lipid membranes. Both the
factors together probably contributed to the enhancement in
the selectivity of the compound toward bacteria.
Intracellular Activity and Autophagy. Intracellular

survival of S. aureus is a critical contributor to persistence,
and vancomycin is known to be intracellularly ineffective.23 On
treatment with VanQAmC10, mouse macrophages infected
with MRSA resulted in a lower intracellular bacterial burden.
The untreated intracellular bacterial burden increased by 0.5
log10 CFU/mL and 1.6 log10 CFU/mL in 6 and 12 h (Figure
3A). Upon treatment with vancomycin at 60 μM, around 0.5
log10 CFU/mL reduction in the intracellular bacterial burden
was observed up to 12 h. VanQAmC10 (at 40 μM) exhibited
better intracellular activity than the parent drug. One log10
CFU/mL and 1.3 log10 CFU/mL reduction in bacterial titer
was observed in 6 and 12 h, respectively. The morphology of
the RAW 264.7 cells post incubation with VanQAmC10
remained unaffected (Figure S5). Compounds that induce
autophagy have been reported to reduce intracellular survival
of pathogens.24 The 1.3 log reduction of intracellular pathogen
prompted us to explore if VanQAmC10 exhibits such a
property. Autophagy is a cellular degradative pathway that is
crucial for defense against pathogen invasions. The process
involves the fusion of the lysosome with the phagosome.25 An
upregulation in the process is associated with the clearance of
intracellular pathogens. A tandem mRFP-GFP-LC3 assay was
performed to study the effect of VanQAmC10 on autophagy
(Figure 3B). The induction of autophagy was monitored by
quantitating the autophagic vesicles by tagging the LC3
protein, which is a biomarker for autophagosomes and
autolysosomes. HeLa cells were transfected with a tandem
red fluorescence protein−green fluorescence protein−LC3
expressing plasmid (mRFP-GFP-LC3). The GFP signal is
sensitive to the acidic and proteolytic conditions of the
lysosome lumen, and hence, its fluorescence is quenched, while
that of RFP is stable.26 The combination of an acid-sensitive
GFP with an acid-insensitive RFP allows the visualization of
change from autophagosomes (neutral pH) to autolysosomes
(with an acidic pH). Upon induction of autophagy, the GFP-
RFP labeled LC3 proteins are employed in the formation of
autophagosomes. These are positive for both GFP and RFP
and, hence, appear yellow. Fusion with the lysosome results in
a drop of pH leading to quenching of GFP fluorescence,
making the autophagolysosomes appear red.27 Both vancomy-
cin and VanQAmC10 showed a higher number of autophago-
somes as compared to the untreated cells (Figure 3C and D).
However, interestingly, VanQAmC10 promoted the fusion of
autophagosomes with lysosomes. A 2-fold increase in the
number of red puncta as compared to vancomycin-treated and
untreated cases was observed. Vancomycin on the other hand
showed no increase, which is in accordance with a literature
report that vancomycin blocks autophagy. S. aureus is known to
prevent phagosomal maturation during infection in order to
create a niche for replication.28 The upregulation of autophagy
may have therefore contributed to the reduction of intracellular
bacteria.29 This was further supported by the 2-fold reduction
of intracellular Salmonella typhimurium exhibited by Van-
QAmC10, although it was inactive against the exponentially
growing bacteria (MIC > 200 μM, Figure 3E). Vancomycin, as
expected, did not show any significant reduction. This finding
indicates the potential for exploring the role of the host
immune system as a combinatorial mechanism with an

antibiotic effect to enhance the efficacy in battling intracellular
pathogens.
With the severity of AMR on the rise, strategies to fight

them are necessary. Bacterial infections are further complicated
by the inherent ability of bacteria to form biofilms and reside
within macrophages which protect them from the antimicro-
bial action of the host immune system and external agents.
This is the first report of a vancomycin derivative effective
against multiple aspects of bacterial infections. VanQAmC10
could eradicate biofilms and associated cells of carbapenem
resistant A. baumannii and does not induce resistance. Another
important finding is the ability of the compound to promote
autophagy, which is a contributing factor to its ability to clear
intracellular pathogens. This multifaceted antibacterial activity
of the compound offers a new perspective to the field of new
glycopeptide antibiotics.
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Mechanistic insights into aggrephagy, a selective basal autophagy process to clear
misfolded protein aggregates, are lacking. Here, we report and describe the role
of Estrogen Related Receptor α (ERRα, HUGO Gene Nomenclature ESRRA), new
molecular player of aggrephagy, in keeping autophagy flux in check by inhibiting
autophagosome formation. A screen for small molecule modulators for aggrephagy
identified ERRα inverse agonist XCT 790, that cleared α-synuclein aggregates in
an autophagy dependent, but mammalian target of rapamycin (MTOR) independent
manner. XCT 790 modulates autophagosome formation in an ERRα dependent manner
as validated by siRNA mediated knockdown and over expression approaches. We show
that, in a basal state, ERRα is localized on to the autophagosomes and upon autophagy
induction by XCT 790, this localization is lost and is accompanied with an increase
in autophagosome biogenesis. In a preclinical mouse model of Parkinson’s disease
(PD), XCT 790 exerted neuroprotective effects in the dopaminergic neurons of nigra
by inducing autophagy to clear toxic protein aggregates and, in addition, ameliorated
motor co-ordination deficits. Using a chemical biology approach, we unrevealed the role
of ERRα in regulating autophagy and can be therapeutic target for neurodegeneration.

Keywords: estrogen related receptor α, autophagy, XCT 790, small molecule screen, Parkinson’s disease, mTOR
independent modulator, neuroprotection

INTRODUCTION

Proteostasis machineries associated with the clearance of various cellular cargos including
toxic proteins and damaged organelles in eukaryotic cells primarily include the chaperone, the
Ubiquitin–Proteasome System (UPS), and the autophagy pathways (Hipp et al., 2014). UPS
predominantly degrades short-lived proteins via tagging them with ubiquitin at specific amino
acid residues (Hipp et al., 2014). The bulk degradation of long-lived proteins or organelles is
mediated largely by the evolutionarily conserved cellular process referred to as macroautophagy
(hereafter autophagy). A selective degradation mechanism called aggrephagy can help cells to
clear the toxic, long-lived, aggregate-prone proteins. Misfolded and aggregate prone proteins
are substrates for autophagy (Nixon, 2013). Intracellular accumulation of misfolded protein
aggregates is an evident feature of several neurodegenerative diseases including Parkinson’s
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disease (PD). Owing to their hydrophobic nature, these
aggregates sequester cellular proteins, thereby, perturbing
cellular proteostasis machineries leading to neuronal death.
Neurons are non-dividing cells and can’t dilute out the
aggregates and, thus, more sensitive to proteotoxicity (Nixon,
2013). This condition is further exasperated upon aging as
proteostasis efficiency decline. Recent studies highlight the
importance of autophagy in curbing cellular cytotoxicity as a
consequence of impaired clearance of aggregate prone proteins.
Brain specific autophagy knockout mice (Atg5) display age
related accumulation of protein aggregates, which eventually
leads to neurodegenerative phenotypes, indicating that basal
autophagy is vital for clearing protein aggregates (Hara et al.,
2006). Additionally, tissue-specific knockdown of Atg7 in
central nervous system of mice resulted in accumulation of
inclusion bodies in autophagy-deficient neurons (Komatsu
et al., 2006). Autophagy is shown to be dysfunctional during
the neurodegenerative disease pathology (Nixon, 2013). Thus,
restoration of autophagy through pharmacological approaches
using small molecules has been reported to be neuroprotective
(Sarkar et al., 2007; Khurana and Lindquist, 2010; Rajasekhar
et al., 2015; Suresh et al., 2017). Small molecule that
induces or restores defunct autophagy could aid in toxic
aggregate clearance and essential for maintaining the cellular
and organismal homeostasis (Rajasekhar et al., 2014, 2015).
Broadly, small molecule autophagy modulators can be classified
into mammalian target of rapamycin (MTOR)-dependent or
-independent types, depending on its mechanism of action.
Since MTOR has autophagy independent functions, targeting
MTOR could have adverse side effects in patients with
immunosuppression and impaired wound healing processes.
Hence, this warrants for identifying new small molecules that are
MTOR-independent with potent aggrephagy function/induction
capabilities. More importantly, identifying the new molecular
players that helps to decipher mechanistic interplay of autophagy
and neuroprotective basic mechanisms remain a challenge.

In this study, we discovered a novel autophagy inducer,
XCT 790, that was identified previously in our laboratory
from a high-throughput screening of library containing
pharmacologically active compounds (LOPAC1280) in yeast.
XCT 790, a thiadiazoleacrylamide, is the most selective inverse
agonist of the orphan nuclear receptor, Estrogen-Related
Receptor α (ERRα; Busch et al., 2004) was identified as a ‘‘Hit’’.
Due to lack of any known natural ligand, XCT 790 has been
used as a tool to delineate the lesser known functions of ERRα

in different biological processes (Ariazi and Jordan, 2006). XCT
790 cleared α-synuclein aggregates in an autophagy-dependent
manner in human neuronal cells. It significantly induced
autophagy through an MTOR-independent mechanism and
ERRα-dependent manner. This neuroprotective compound
uncovers the role of ERRα in a basic autophagy pathway. We
found that ERRα inhibits autophagy in fed conditions, thus,
helps in regulating the basal autophagic flux. Additionally,
in a preclinical mouse model of PD, XCT 790 was found to
have a neuroprotective role through clearing the toxic protein
aggregates as evidenced by immunohistological and behavior
analyses.

MATERIALS AND METHODS

Chemicals and Antibodies
XCT 790 (X4753), 1-methyl-4-phenyl-1,2,3,6-tetra
hydropyridine (MPTP, M0896), anti LC3 antibody (L7543),
anti-FLAG antibody (F3165), 3-Methyl Adenine (3-
MA) (M9281), DMEM F-12 (D8900), Penicillin and
Streptomycin (P4333), DMEM (D5648), 3,3′-Diaminobenzidine
(DAB, D3939), Trypsin EDTA (59418C), and Atto 663
(41176) were purchased from Sigma-Aldrich. Anti-phospho 4E-
BP1T37/46 antibody (2855) and total 4E-BP1 antibody (9452),
Anti-phospho P70S6K T389 antibody (9239) and total P70S6K
antibody (9202), Anti-phospho AMPK antibody (8359) and
total AMPK antibody (8359), Anti-phospho ULK1 antibody
(8359) and total ULK1 antibody (8359) and anti-rabbit IgG,
HRP (7074) antibody were purchased from Cell Signaling
Technology. Cell Titre Glor kit (G 7571) was procured from
Promega. Anti-GAPDH (MA5-15738) and anti-β-tubulin
(MA5-16308) antibodies were purchased from Thermo
Scientific. Anti-p62 (ab 56416), Anti-ERRα (ab 16363) and
Anti-Pgk1 (ab 38007) antibody were purchased from Abcam.
Anti-EGFP (11 814 460 001) antibody was purchased from
Roche. Anti-mouse IgG, and HRP (172-1011) antibody were
purchased from Bio-Rad. Anti-A11 (AB9234) was purchased
from Merck Millipore. Anti-Tyrosine hydroxylase (TH; N196)
antibody was purchased from Santa Cruz Biotechnology.
FITC conjugated anti-rabbit secondary antibody (F7512),
and Cy3 conjugated anti-rabbit secondary antibody (C2306)
were purchased from Sigma-Aldrich. CMAC-Blue (C2110) was
purchased from Life Technologies. Bafilomycin A1 (11038) was
purchased from Cayman chemical. VECTASTAIN Elite ABC
Kit (PK-6101) was purchased from VECTOR laboratories.

siRNA, Plasmid Constructs and Bacterial
Strains
For mammalian cell culture studies, plasmids used were ptf LC3
(Kimura et al., 2007; gift from Tamotsu Yoshimori, Addgene
#21,074), EGFP-synuclein (Furlong et al., 2000; gift from David
Rubinzstein, Addgene number #40,822). For infection studies,
strains used were untagged or mCherry plasmid (Addgene
#36,084) expressing S. typhimurium SL1344 (gift from Prof.
C. V. Srikanth, RCB, India). pCMV flag ERRα was a gift
from Toren Finkel (Ichida et al., 2002; Addgene plasmid
#10,975). ERRα siRNA (L-0, 03, 403–00) and scrambled siRNA
(D-001810-10-05) were procured from Dharmacon.

Mammalian Cell Culture, Infection and
Autophagy Assays
SH-SY5Y cells were cultured in DMEM-F12 containing 10%
FBS (Life technologies). HeLa cells were cultured in DMEM
containing 10% FBS (Pan-Biotech). Cell lines were maintained
at 37◦C and 5% CO2. The autophagy assays were performed by
seeding equal numbers of sub-confluent HeLa or SH-SY5Y cells
in 6-well dishes and allowed to attach for 24 h, then treated
with XCT 790 (5 µM, Figure 1, Supplementary Figures S1A,B)
and/or 3-MA (5 mM) and/or lithium chloride (10 mM) in fed
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condition for 2 h. After treatments, the cell lysates were analyzed
by immunoblotting.

RFP-EGFP-LC3 assay: sub-confluent HeLa and/or SH-SY5Y
cells were seeded into 60 mm cell culture dishes, then transfected
with ptf LC3 construct and/or siRNA, and allowed to express
for 48 h. Cells were trypsinized, seeded again on poly-D-lysine
coated cover slips in a 12 or 24 well plates and allowed to attach.
After appropriate treatments, the coverslips containing cells
were processed for imaging. For immunofluorescent antibody
staining, the cover slips were incubated in primary antibody at
4◦C for overnight followed by secondary antibody incubation at
room temperature.

Intracellular colony forming unit (CFU) assay:
S. typhimurium SL1344 were grown overnight at 37◦C under
micro-aerophilic conditions. HeLa cells were infected at a
multiplicity of infection (MOI) of 200 for 1 h. The cells were
treated with media containing gentamycin (100 µg/ml) for 1 h
to kill the extracellular bacteria. The cells were then treated with
XCT 790 (10 µM) and incubated further for 4 h. The HeLa
cells were lysed using lysis buffer (0.1% SDS, 1% Triton X-100,
1× PBS) and the intracellular Salmonella were plated on LB
plates, incubated overnight at 37◦C, and the CFU was counted.

Immunoblot Analysis
Mammalian cell lysates preparation: after treatments, cells were
collected in Laemmli buffer to perform LC3 processing assay,
P70S6K, AMPK, ULK1 and 4E-BP1 immunoblotting. Samples
were electrophoresed onto SDS-PAGE (8%–15%) and then
transferred onto PVDF (Bio-Rad) membrane through Transblot
turbo (Bio-Rad). Blots were stained with Ponceau S, and then
probed with appropriate primary antibodies at 4◦C for overnight
and subsequently HRP-conjugated secondary antibody. Signals
were attained using enhanced chemiluminescence substrate
(Clarity, Bio-Rad) and imaged using a gel documentation system
(G-Box, Syngene) and then bands were quantitated using ImageJ
software (NIH).

Microscopy
For imaging the mammalian cells, after appropriate
treatments, coverslips containing cells were fixed using 4%
paraformaldehyde (PFA; Sigma) and then permeabilized using
Triton X-100 (0.2%, HiMedia). Coverslips were mounted on
slide using antifade, Vectashield mounting medium (Vector
Laboratories). For antibody staining, coverslips were blocked
using 5% BSA for 1 h at room temperature, then incubated with
primary antibody at 4◦C, overnight and then subsequently
probed with corresponding fluorescent dye conjugated
secondary antibody.

Images were acquired using DeltaVision Elite widefield
microscope (API, GE) with following filters: FITC (490/20 and
529/38), TRITC (542/27 and 594/45) and Cy5 (632/22 and
676/34). Acquired images were processed using DV softWoRX
software.

Cell Viability Assay
SH-SY5Y cells were seeded onto tissue culture treated 96-well
plate and then transfected with EGFP-α-synuclein only, and/or

co-transfected with siRNA. To cells, appropriate drugs were
added (24 h) after 48 h of transfection. Using luminescence-based
CellTitre-Glor (Promega) kit, the cell viability was assayed using
automated microtitre plate reader Varioskan Flash (Thermo
Scientific).

Animal Studies
All procedures in this study were approved by Committee for
the Purpose of Control and Supervision of Experiments on
Animals (CPCSEA) and JNCASR Institutional Animal Ethics
Committee and conducted as per their guidelines. Inbred male
C57BL/6J mice (3–4 months old) were used for all experimental
groups (n = 6). The animals were maintained under standard
laboratory conditions i.e., temperature 25◦ ± 2◦C, 12 h light: 12 h
dark cycle and 50 ± 5% relative humidity with ad libitum access
to food and water.

MPTP.HCl and XCT 790 Treatment
The mice were distributed into three groups: vehicle, MPTP
and MPTP+XCT 790, and injections were administered
intraperitoneally. The vehicle group was injected with dimethyl
sulfoxide (DMSO) i.e., the solvent. The MPTP group received
23.4 mg/kg MPTP.HCl in 10 ml/kg body weight of saline,
administered four times at 2 h interval (Jackson-Lewis and
Przedborski, 2007). The MPTP+XCT 790 group mice were
injected with 5 mg/kg body weight of XCT 790 dissolved in
DMSO, alongside the first MPTP injection. The treatment
was continued by administering XCT 790 in ‘‘an injection a
day regime’’ for 6 days. All the mice were sacrificed 7 days
after MPTP administration and the brains were processed for
immunohistochemistry.

Tissue Processing for
Immunohistochemistry
The mice were anesthetized using halothane inhalation and
perfused intracardially with saline, followed by 4% buffered PFA
(pH 7.4). The brains were removed quickly and post fixed in
the same buffer for 24 h to 48 h at 4◦C and cryoprotected in an
increasing gradient of sucrose. Coronal midbrain cryosections of
40 µm thick were collected serially on gelatinized slides. Every
sixth midbrain section was used for immunostaining.

Immunoperoxidase Staining of Tyrosine
Hydroxylase (TH)
The immunoperoxidase labeling protocol was a slight
modification of that reported earlier (Vidyadhara et al., 2016).
Briefly, the endogenous expression of peroxidase was quenched
using 0.1% H2O2 in 70% methanol, followed by blocking of
non-specific staining by 3% buffered solution of bovine serum
albumin for 4 h at room temperature. The sections were then
incubated with the rabbit polyclonal anti-TH antibody (1:800,
Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), followed
by anti-rabbit secondary antibody (1:200 dilution; Vector
Laboratories, Burlingame, CA, USA). The tertiary labeling
was performed using avidin–biotin complex solution (1:100,
Elite ABC kits; Vector Laboratories, Burlingame, CA, USA).
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The staining was visualized using 0.05% solution of DAB,
in 0.1 M acetate imidazole buffer (pH 7.4) with 0.1% H2O2.
Phosphate buffered saline (0.01 M) containing 0.3% Triton
X-100 (0.01 M PBST, pH 7.4) was used as both diluent and
washing buffer. Appropriate negative controls were processed
identically.

Stereological Quantification of
TH-Immunoreactive (TH-ir) Neurons at
SNpc
Stereological quantification of TH-ir dopaminergic neurons
was performed using optical fractionator probe (Vidyadhara
et al., 2016, 2017). The SNpc was delineated on every sixth
TH-ir midbrain section (Fu et al., 2012) using 4× objective of
the Olympus BX61 Microscope (Olympus Microscopes, Japan)
equipped with StereoInvestigator (Software Version 7.2, Micro-
Brightfield Inc., Colchester, VT, USA). The cells were counted
using oil immersion lens (100×), with a regular grid interval
of 22,500 µm2 (x = 150 µm, y = 150 µm) and counting
frame of 3600 µm2 (x = 60 µm, y = 60 µm). The mounted
thickness averaged to 25 µm. A guard zone of 4 µm was
implied on either side, thus, providing 17 µm of z-dimension to
the optical dissector. The quantification was performed starting
with the first anterior appearance of TH-ir neurons in SNpc to
the caudal most part in both hemispheres and added to arrive
at the total number. The volume of SNpc was estimated by
planimetry.

Densitometry Based Image Analysis
The offline evaluation of TH expression was performed
on high magnification images of TH immunostained nigral
dopaminergic neurons using Q Win V3 (Leica Systems,
Germany); a ‘‘Windows’’ based image analysis system (Alladi
et al., 2010; Vidyadhara et al., 2017). A cumulative mean was
derived from the values obtained from sampling approximately
200 dopaminergic neurons per animal and expressed as gray
values on a scale of 0–255, where ‘‘255’’ meant absence of staining
and ‘‘0’’ equaled intense staining.

Immunofluorescence Based Double
Staining of SNpc Dopaminergic Neurons
The sequential immunolabeling procedure was used to
co-label the TH and LC3 and/or A11 (Alladi et al., 2010).
First, the midbrain sections were equilibrated with 0.1 M
PBS (pH 7.4) for 10 min and then incubated with buffered
bovine serum albumin (3%) for 4 h to block non-specific
epitopes. Then, the sections were incubated in rabbit
anti-LC3 antibody (1:1000) and/or anti-oligomer antibody
(A11, 1:1000) for 72 h at 4◦C. After subsequent washes, the
sections were incubated in corresponding fluorescent secondary
antibody (1:200) overnight at 4◦C. Co-labeling with TH was
performed on the same sections using rabbit anti-TH antibody
(1:500), followed by secondary labeling. PBST (0.01 M, pH
7.4) was used as both working and washing buffer. The
sections were then mounted using Vectashield mounting
medium.

Behavioral Studies
Open Field and Rotarod experiments were performed using 3–4-
month-old C57BL/6J male mice. The experimental procedures
were modified from references: Brooks and Dunnett (2009),
Patil et al. (2014) and Liu et al. (2015). All the animals were
handled for three consecutive days by experimenters prior to
the start of training session. Mice were habituated to behavior
room (light intensity maintained at 100 lux) for 15 min before
the commencement of handling, training and tests. The health
of each mouse was monitored every day before training or
test sessions by recording their body weight. The behavioral
experiments were scheduled in such a way that the fatigue of one
behavioral test does not affect the other. Thus, Open Field trials
(low stress activity) were done in forenoon, whereas, Rotarod
trials (high stress activity) were performed in the afternoon.
Double blind approach was taken in which the experimenters
were unaware of the drug treatment given to the animals as
well as the results of data analysis. Data were represented as bar
diagram using GraphPad prism 5 software.

Open Field Trials
Open Field tests were done in a wooden box (Open Field arena)
of dimensions: 50 cm × 50 cm × 45 cm in which the internal
surface was coated with white polish. The Open Field arena was
custom made in JNCASR. Mice were trained in an Open Field
arena for two consecutive days prior to the day of actual tests.
During training or tests, a single mouse was left in the Open Field
arena for 5-min to explore. The activity of mouse was recorded
with the help of a digital camera (SONYr color video camera,
Model no. SSC-G118) supported by the software SMART v3.0.04
(Panlab Harvard Apparatus, Holliston, MA, USA). At the end of
5-min, the mouse was removed and returned to its home cage.
The Open Field arena was cleaned with 70% ethanol and dried
before placing the next mouse in it. The distance traveled in
the zone periphery was calculated by SMART v3.0.04 software
(Panlab Harvard Apparatus, Holliston,MA, USA). The data were
compared, analyzed and represented as bar diagrams by using the
software GraphPad prism5.

Rotarod Trials
Rotarod was custommade at the mechanical workshop, National
Centre for Biological Sciences, Bengaluru, India. The instrument
includes a textured horizontal rod (diameter 3.3 cm) made of
Delrin. The rod was fixed at a height of 30 cm above a platform,
which was cushioned for comfortable fall of mice from rotating
rod. The rod was divided into three small areas (9.3 cm each)
by fitting two circular discs (diameter 40 cm) made up of Teflon
to allow three mice, completely shielded from each other, to be
trained simultaneously. The speed of rotation was incremented
from 5 rpm to 20 rpm manually by an electric motor fitted
in the instrument. The mice were trained for five consecutive
days prior to the day of injection. The training was given by
gradually increasing the speed of the rod from lower to higher
rpm by accelerating at the rate of 1 rpm/5 s. On 1st day, the
mice were trained at 5–10 rpm, on 2nd day 7–12 rpm, on 3rd
day 13–20 rpm and at 20 rpm (fixed) on 4th and 5th day. During
training and tests, mice were placed on the non-rotating rod and
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were allowed to balance themselves before increasing the speed
manually. For every rpm, the mice were given a stabilization
period of 5 s. Mice that failed to learn to stabilize on the rod
were given two more chances. Once the stabilization period
was completed successfully, the mice were allowed to run on
the rotating rod for 60 s at the respective rpm. The entire
Rotarod trial was recorded on a digital camera (SONYr HDR-
CX405) and the latency to fall was calculated manually. The
data obtained were compared, analyzed and plotted as mean
latency to fall in the form of bar diagrams using GraphPad
prism5.

Statistical Analysis
One-way or Two-way ANOVA followed by Bonferroni’s post
hoc test was applied to derive statistical significance. Values were
expressed as mean± SEM.

RESULTS

Modulation of Mammalian Aggrephagy and
Xenophagy by XCT 790
Toxic protein aggregates and intracellular pathogens are known
to be substrates of the autophagy pathway for their effective
cellular degradation (Deretic and Levine, 2009; Nixon, 2013).
Based on a previous small molecule screening for aggrephagy
inducers from our laboratory (Suresh et al., 2017), we identified
thiadiazoleacrylamide, XCT 790, as a drug-like molecule
that abrogates α-synuclein cellular toxicity, and intracellular
Salmonella typhimurium. We tested the potential of XCT
790 to clear toxic α-synuclein protein aggregates, and Salmonella
burden through autophagy in mammalian cells such as human
neuroblastoma SH-SY5Y and HeLa cell lines.

To test the modulation of mammalian autophagy and
its flux by XCT 790, we used immunoblot analysis based
LC3 (autophagosome marker) and microscopy-based tandem
RFP-EGFP-LC3 assays. In tandem RFP-EGFP-LC3 assay,
XCT 790 treatment significantly induced autophagosomes and
autolysosomes formation in both SH-SY5Y (control vs. XCT
790 treated, autophagosomes, ∼2-fold, P < 0.05; autolysosomes,
∼4-fold, P < 0.01 Supplementary Figure S2A) and HeLa
cells (control vs. XCT 790 treated, autophagosomes, ∼5-fold,
P < 0.001; autolysosomes, ∼2-fold, P < 0.001 Figure 1B).
Additionally, XCT 790 treatment enhanced accumulation of
LC3-II levels indicating the induction of autophagy (∼2.5-fold,
untreated vs. XCT 790, P < 0.001, Figure 1A). These results
clearly demonstrated that XCT 790 modulates mammalian
autophagy.

We then addressed whether XCT 790 protects SH-SY5Y
cells from EGFP-α-synuclein mediated toxicity. Overexpression
of EGFP-α-synuclein in SH-SY5Y cells was toxic leading to
significant cell death as measured by cell viability assay (∼4-fold,
vector control or untransfected vs. α-syn transfected, Figure 1C).
Upon administration of XCT 790 to cells overexpressing EGFP-
α-synuclein, the cell viability increased significantly than that of
untreated cells (∼4-fold, α-syn over expressed cells, untreated
vs. XCT 790 treated, P < 0.001, Figure 1C) and comparable to

that of vector control (vector control vs. α-syn over expressed
cells XCT 790 treated, ns, P > 0.05, Figure 1C). We observed
that the potential of XCT 790 to protect cells from EGFP-α-
synuclein toxicity is abrogated in presence of pharmacological
autophagy inhibitor, 3-MA (α-syn over expressed cells, XCT
790 vs. XCT 790 + 3-MA, ∼4-fold, P < 0.001, Figure 1C)
that is comparable to that of XCT 790 untreated cells (α-syn
over expressed cells, untreated vs. XCT 790 + 3-MA, ns,
P > 0.05, Figure 1C). These results clearly demonstrate that
XCT 790 protects human neuroblastoma cells from EGFP-
α-synuclein mediated toxicity in an autophagy dependent
manner.

We also checked if XCT 790 clears the intracellular bacterial
cargo. Upon XCT 790 treatment, we observed significant
reduction in the intracellular S. typhimurium SL1344 compared
to untreated (∼2-fold, untreated vs. XCT 790 treated, P < 0.001,
Figure 1D). We also observed increased recruitment of
autophagy adaptor protein p62 and autophagosome membrane
marker LC3 to S. typhimurium SL1344 (Figure 1E).

This study identifies XCT 790 as an autophagy inducer with a
potential to clear toxic protein aggregates. We demonstrate that
XCT 790 exerts protection to the cells against EGFP-α-synuclein
mediated toxicity by inducing autophagy which helps clear the
toxic aggregates.

XCT 790 Modulates Autophagy Through an
MTOR Independent Pathway
Autophagy is regulated by MTOR-dependent and
MTOR-independent pathways that are amenable to chemical
perturbations (Kim et al., 2011). To delineate the mechanism of
autophagy modulation by XCT 790, we examined the activity
of MTOR through monitoring its substrates such as P70S6K
and 4EBP1. Upon XCT 790 treatment, MTOR activity was
unaffected as revealed by its substrates such as phospho-P70S6K
and phospho-4EBP1 protein levels which were comparable
to that of nutrient rich condition (Figure 1F; Supplementary
Figure S2B). In contrast, the levels of phospho-P70S6K and
phospho-4EBP1 were attenuated under starvation conditions
where autophagy was regulated in an MTOR-dependent
manner. Lithium Chloride (10 mM) is known to induce
autophagy through anMTOR independent mechanism served as
a positive control (Sarkar et al., 2005; Figure 1F, Supplementary
Figure S2B). These observations asserted that XCT 790 is MTOR
independent autophagy modulator.

We further examined whether XCT 790 exerts its
effect through AMPK pathway, one of the predominant
MTOR-independent mechanisms known to regulate autophagy.
It was observed that treatment of XCT 790 for 2 h did not
affect the activity of AMPK, as evident by the unchanged
T172 phosphorylation of AMPK (Figure 1G) when compared
to nutrient rich conditions. AMPK promotes autophagy
in an MTOR-independent manner by directly activating
ULK1 through phosphorylation of Ser 555 (S555). Whereas,
under nutrient sufficiency, high MTOR activity inhibits
ULK1 activation by phosphorylating ULK1 at Ser 757 (S757)
and disrupting the interaction between ULK1 and AMPK (Kim
et al., 2011). Therefore, we further examined the regulation of

Frontiers in Molecular Neuroscience | www.frontiersin.org 5 April 2018 | Volume 11 | Article 109

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Suresh et al. Estrogen Related Receptor α Regulates Aggrephagy

FIGURE 1 | XCT 790 modulates aggrephagy and xenophagy in mammalian cells. (A) Representative Western blot of LC3 processing assay in SH-SY5Y cells treated
with XCT 790 (2 h) under growth condition and normalized LC3-II levels were quantified (n = 3). β-tubulin was used as a loading control. Statistical analysis was
performed using one-way ANOVA and post hoc Bonferroni test. Error bars, mean ± SEM. ns-non significant, ∗∗P < 0.01, ∗∗∗P < 0.001. (B) Representative
microscopy images of tandem RFP-EGFP-LC3 assay in HeLa cells treated with XCT 790 for 2 h. Yellow puncta was autophagosomes and red was autolysosomes.
Fold change in autophagosomes and autolysosomes by XCT 790 were quantified (n = 50 cells and three independent experiments). Scale bar was 15 µm. Statistical
analysis was performed using one-way ANOVA and post hoc Bonferroni test. Error bars, mean ± SEM. ns-non significant, ∗∗P < 0.01, ∗∗∗P < 0.001. (C) Graph
indicating the cell viability read out of SH-SY5Y overexpressing EGFP-α-synuclein treated with XCT 790 in presence of pharmacological autophagy inhibitor 3-MA.
Cell viability was analyzed using CellTitre Glo (Promega) assay. More RLU readout was indicative of more cell viability and vice-versa (three independent experiments).
Statistical analysis was performed using one-way ANOVA and post hoc Bonferroni test. Error bars, mean ± SEM. ∗∗∗P < 0.001. (D) Graph for colony forming unit
(CFU)s indicating the intracellular burden of S. typhimurium treated with XCT 790 (10 µM) for 6 h. CFU represent survival of S. typhimurium within the host cells. Fold
change between the untreated and XCT 790 treated samples were quantified (three independent experiments). Statistical analysis was performed using two-tailed
paired t-test. Error bars, mean ± SEM. ns-non significant, ∗∗P < 0.01, ∗∗∗P < 0.001. (E) Representative microscopy images of HeLa cells infected with mCherry
expressing S. typhimurium treated with XCT 790 for 6 h. Cells were immunostained for either p62 or LC3 in untreated and XCT 790 treated samples (n = 25 cells
and three independent experiments). Scale bar 10 µm. (F) Representative Western blots of MTOR substrates—P70S6K (phospho and total form) and 4EBP1
(phospho and total form)—regulation by various treatments like XCT 790, EBSS and LiCl. β-tubulin was used as a loading control. Normalized p-P70S6K levels were
quantified for three independent experiments. Statistical analysis was performed using one-way ANOVA and the post hoc Bonferroni test. Error bars,

(Continued)
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FIGURE 1 | Continued
mean ± SEM. ns-non significant, ∗P < 0.05. (G) Representative Western blots
of signaling pathway proteins like AMPK (phospho and total form) and ULK1
(phospho and total form) regulation by XCT 790 and EBSS. Normalized
p-AMPK, p-ULK1 (S555), p-ULK1 (757) levels were quantified for three
independent experiments. β-tubulin was used as a loading control. Statistical
analysis was performed using one-way ANOVA and the post hoc Bonferroni
test. Error bars, mean ± SEM. ns-non significant, ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001.β-tubulin was used as a loading control. Concentrations of XCT
790, 3-MA and LiCl used were 5 µM, 100 nM and 10 mM.

levels of activating (S555) and inhibitory (S757) phosphorylation
of ULK1 by XCT 790. Consistent with unchanged levels of
phosphorylated AMPK after treatment with XCT 790 for
2 h, the downstream phosphorylation of ULK1 at S555 was
unaffected and comparable to the nutrient rich conditions
(Figure 1G). This suggests that XCT 790 does not exert its
effects through AMPK pathway. Importantly, MTOR-dependent
phosphorylation of ULK1 at S757 remained unaltered in XCT
790-treated cells unlike in starvation conditions, where a
concomitant decrease in the phospho-ULK1 S757 protein levels
is observed. These results further confirm that XCT 790 acts
through an MTOR-independent mechanism but not through
AMPK pathway.

XCT 790 Induces Autophagy Through
Regulation of Estrogen-Related Receptor
Alpha (ERRα)
XCT 790 was found to be the first potent and selective inverse
agonist of ERRα (Busch et al., 2004). To elucidate the role of
ERRα in contributing to the function of XCT 790 as autophagy
inducer, we used the following two approaches: (a) siRNA-based
silencing of ERRα; and (b) over expression of ERRα.

To evaluate the level at which the knockdown exerted
its effect, cells were transfected with siRNAs targeting ERRα.
A non-targeting pool was used as a control. The effects
of knockdown on regulation of autophagy by ERRα 48 h
post-transfection were monitored by microscopy-based tandem
RFP-EGFP-LC3 assays. Knockdown efficiency was confirmed
by Western blotting to be around 80% (Scrambled vs. ERRα

siRNA, P < 0.001, Figure 2A). Consistent with the effect of
XCT 790, knockdown of ERRα also resulted in a significant
induction of autophagosomes (∼5-fold, Scrambled vs. ERRα

siRNA treated, P < 0.001, Figure 2B) and autolysosomes (∼3-
fold, Scrambled vs. ERRα siRNA treated, P < 0.001, Figure 2B).
Autophagosome and autolysosome numbers in XCT 790 treated
and ERRα downregulated cells were found to be comparable.
These results suggested that XCT 790 modulated autophagy
through ERRα.

We addressed this question through another approach to
understand the autophagy modulation upon overexpression
of ERRα. In ERRα over expressed cells, we found more
autophagosomes (∼2-fold, P < 0.01, ERRα overexpressed vs.
untreated) and less autolysosomes (∼2-fold, P < 0.01, ERRα

overexpressed vs. untreated) than that of control (Figures 2D,E).
From this, we could interpret that autophagy was inhibited at its
autophagosome to lysosome fusion step upon over expression of

ERRα. When XCT 790 was treated in ERRα over expressed cells,
more autophagosomes (∼2-fold, P < 0.01, ERRα overexpressed
vs. untreated) and less autolysosomes (∼2-fold, P < 0.01, ERRα

overexpressed vs. untreated) than that of untreated were found
(Figures 2D,E). This autophagic scenario was similar to that
of only ERRα over expressed cells (Autophagosomes; ERRα

over expressed + XCT 790 vs. ERRα overexpressed only, ns,
P> 0.05 andAutolysosomes; ERRα over expressed + XCT 790 vs.
ERRα overexpressed only, ns, P > 0.05, Figures 2D,E). When
ERRα was over expressed, the autophagic modulating ability of
XCT 790 was indeed abrogated.

Collectively, these results suggest that XCT 790 modulates
autophagy through ERRα.

ERRα Regulates Autophagy by Localizing
Onto Autophagosomes
From knock down and over expression of ERRα studies,
there was a clear indication that ERRα could modulate
autophagy pathway. Autophagy was induced upon ERRα

downregulation (Figures 2B,C) but inhibited when over
expressed (Figures 2D,E). We examined whether active
transcription was required for autophagic function of XCT 790.
Upon XCT 790 treatment in the presence of actinomycin D,
the autophagosomes and autolysosomes were similar to that
of only XCT 790 (XCT 790 + Act D vs. XCT 790 only,
P > 0.05, Supplementary Figures S3A,B). This result indicates
that autophagic activity of XCT 790 remained unaffected
when active transcription was inhibited. Subsequently, we
attempted to know whether ERRα localizes to autophagic related
structures such as autophagosomes and autolysosomes. Pearson’s
Colocalization Coefficient (PCC) of ERRα with autophagosomes
(∼0.85) were found to be significantly more than that with
autolysosomes (∼0.3) under nutrient rich condition (∼2.5-fold,
autophagosomes vs. autolysosomes, P > 0.001, Figures 3A,B).
In basal autophagy conditions, colocalization of ERRα with
autophagosomes was significantly reduced in ERRα silenced
and XCT 790 treated cells (∼3.5-fold, untreated or scrambled
siRNA vs. ERRα siRNA, P < 0.001, Figures 3A,B). Significantly
more ERRα colocalized with autophagosomes when ERRα

was over expressed (control or scrambled siRNA vs. ERRα

over expressed, P < 0.001, Figures 3A,B). Colocalization of
ERRα with autolysosomes was not regulated compared to that
of control (control or scrambled siRNA vs. ERRα siRNA or
XCT 790 or ERRα over expressed, P > 0.05, Figures 3A,B)
suggesting that ERRα might not interact with the autolysosomes.
ERRα could localize, most likely, to autophagosomes than
autolysosomes through its non-canonical LIR motif that might
interact with LC3 to localize onto autophagosomes.

These results suggest that, perhaps, ERRα might regulate
autophagy through its localization with the autophagosomes.

XCT 790 Alleviates MPTP Induced
Dopaminergic Neuronal Loss
A significant proportion of dopaminergic neurons in Substantia
Nigra pars compacta (SNpc) were lost after MPTP treatment
(∼68%, MPTP vs. Vehicle, P < 0.001, Figures 4A,B,
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FIGURE 2 | XCT 790 modulates autophagy through estrogen related receptor α (ERRα). (A) ERRα protein levels after transfecting either scrambled siRNA
(100 picomoles) or ERRα siRNA (100 picomoles) for 48 h in HeLa cells was analyzed by Western blotting and then quantified (n = 3). β-tubulin was used as a loading
control. Statistical analysis was performed using two-tailed paired t-test. Error bars, mean ± SEM. ∗∗∗P < 0.001. (B,C) Microscopy images (B) of tandem
RFP-EGFP-LC3 assay in XCT 790 treated HeLa cells (2 h) post ERRα siRNA transfection (48 h). Cells were immunostained for ERRα in various treatments. Scale bar
was 15 µm. Quantification (C) of autophagosomes (yellow puncta) and autolysosomes (red puncta) modulated by XCT 790 treatment in ERRα siRNA transfected
cells (n = 50 cells and three independent experiments). Statistical analysis was performed using one-way ANOVA and the post hoc Bonferroni test. Error bars,
mean ± SEM. ns-non significant, ∗∗∗P < 0.001. (D,E) Microscopy images (D) of tandem RFP-EGFP-LC3 assay in XCT 790 treated HeLa cells (2 h) post ERRα Flag
transfection (48 h). Cells were immunostained for ERRα in all treatment groups. Scale bar used was 15 µm. Quantification (E) of autophagosomes (yellow puncta)
and autolysosomes (red puncta) modulated by XCT 790 treatment in ERRα Flag transfected cells (n = 50 cells and three independent experiments). Statistical
analysis was performed using one-way ANOVA and the post hoc Bonferroni test. Error bars, mean ± SEM. ns-non significant, ∗∗P < 0.01, ∗∗∗P < 0.001.
Concentration of XCT 790 used was 5 µM.

Supplementary Figure S4A) as previously described (Jackson-
Lewis and Przedborski, 2007). Co-administration of XCT
790 with MPTP, however alleviated this loss by 80% (MPTP+Co
vs. Vehicle, P < 0.05; XCT 790 vs. MPTP, P < 0.01,

Figures 4A,B). In a congruent manner, volume of SNpc
reduced significantly after MPTP injection (MPTP vs. Vehicle,
P < 0.01, Supplementary Figure S4C), whereas the shrinkage
was prevented by approximately 85% when MPTP and XCT

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 April 2018 | Volume 11 | Article 109

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Suresh et al. Estrogen Related Receptor α Regulates Aggrephagy

790 were administered together (MPTP+Co vs. MPTP, P < 0.01,
Figure 4B, Supplementary Figure S4C).

Cellular Tyrosine Hydroxylase (TH)
Expression Was Preserved in XCT 790
Co-treatment Group
The cellular TH expression of individual TH-immunoreactive
(TH-ir) dopaminergic, as measured by densitometry, was
significantly reduced in surviving neurons in MPTP group
(MPTP vs. Vehicle, P < 0.001, Supplementary Figure S4B).
TH expression in the nigral neurons of MPTP and XCT 790
co-treated mice was comparable to that of the vehicle control
group. Thus, XCT 790 significantly alleviated theMPTP-induced
depletion of cytoplasmic TH expression (MPTP+Co vs. MPTP,
P < 0.001, Supplementary Figure S4B).

XCT 790 Enhances Autophagy and Clears
Toxic Protein Aggregates in an in Vivo
Mouse Model of PD
In neurons, the autophagy process is indispensable for clearing
the misfolded toxic protein aggregates (Hara et al., 2006).
During the neurodegenerative progression, autophagy would
be defunct and becomes incompetent to maintain cellular
proteostasis (Nixon, 2013). To delineate the mechanism of
neuroprotective action of XCT 790, we examined the autophagy
status in the various mice treatment cohorts. Our cell
lines result strongly indicates that XCT 790 might exert
neuroprotection through modulating autophagy. In MPTP
toxicity model, the LC3 puncta per neuron was reduced
significantly than that of vehicle treated (∼0.8-fold, vehicle
vs. MPTP treated, P < 0.01, Figures 4C,D) indicating
the dysfunctional autophagy during neurodegenerative disease
progression. Interestingly, XCT 790 only cohort exhibited
significantly increased LC3 puncta per cell compared to that
of vehicle treated cohort (∼3-fold, vehicle vs. XCT 790 only,
P < 0.001, Figures 4C,D). This demonstrated that XCT 790 is
a strong autophagy inducer in the dopaminergic neurons of
SNpc. We observed significantly increased LC3 puncta per cell
in the MPTP and XCT 790 co-administered than that of vehicle
treated cohort (∼3-fold, vehicle vs. MPTP+Co, P < 0.001,
Figures 4C,D). These results demonstrate that XCT 790 could
induce autophagy in the SNpc of brain and remarkably surpass
the autophagic deficit caused due to pathogenesis.

During protein aggregation, the toxic misfolded protein
oligomeric species is shown to be accumulated in the neurons
(Luk et al., 2012). We examined whether autophagy induction
by XCT 790 could clear the toxic oligomeric intermediates
in the neurons. In a vehicle treated cohort, the occurrences
of aggregates were significantly less compared to that of
MPTP treated cohort (∼6.5-fold, vehicle vs. MPTP treated,
P < 0.001, Figures 4E,F). These observations reaffirming that
toxic misfolded protein aggregates are formed during disease
pathology. Upon co-administration of MPTP along with XCT
790, we observed a significant reduction in the toxic aggregates
compared to that of MPTP only treated cohort (∼6-fold, MPTP
vs. MPTP+Co, P < 0.001, Figures 4E,F). We found that

FIGURE 3 | ERRα localizes onto autophagosomes to modulate autophagy.
(A) Microscopy images of tandem RFP-EGFP-LC3 assay in HeLa cells
transfected (48 h) with either ERRα siRNA or ERRα Flag treated with XCT
790 for 2 h. Cells were immunostained for ERRα. n = 50 cells and three
independent experiments were performed. Scale bar was 15 µm.
(B) Pearson’s colocalization coefficient (PCC) analyses of ERRα with either
autophagosome (yellow) or autolysosomes (red) in HeLa cells transfected
(48 h) with either ERRα siRNA or ERRα Flag treated with XCT 790 for 2 h were
plotted. Statistical analysis was performed using one-way ANOVA and post
hoc Bonferroni test. Error bars, mean ± SEM. ns-non significant,
∗∗∗P < 0.001.

aggregate reduction in the MPTP+Co cohort were comparable
to that of vehicle treated cohort (MPTP+Co vs. vehicle, ns,
P > 0.05. Figures 4E,F) indicating its strong potential to clear
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FIGURE 4 | XCT 790 is neuroprotective by degrading toxic protein aggregates
through inducing autophagy in dopaminergic neurons of midbrain of mice.
(A) Representative photomicrographs of whole brain and SNpc for various
cohorts namely vehicle, MPTP (23.4 mg/kg of body weight) and MPTP+Co
(Co-administration of MPTP and XCT 790: MPTP; 2 mg/kg of body weight
and XCT 790; 5 mg/kg of body weight, n = 4 animals per cohort). Scale bar is
600 µm. (B) Graph representing the unbiased stereological quantification of
tyrosine hydroxylase (TH)-ir dopaminergic neurons in SNpc for above
mentioned cohorts. Statistical analysis was performed using one-way ANOVA
and the post hoc Bonferroni test. Error bars, mean ± SEM. ∗∗P < 0.01,
∗∗∗P < 0.001. (C) Representative IHC photomicrographs of SNpc
dopaminergic neurons double stained for A11 (toxic oligomer marker) and TH
(dopaminergic marker) antibodies for the above-mentioned cohorts
(n = 4 animals per cohort). Scale bar is 50 µm. (D) Plot indicating the
A11 puncta per dopaminergic neuron in SNpc was quantitated for all cohorts.
Statistical analysis was performed using one-way ANOVA and the post hoc
Bonferroni test. Error bars, mean ± SEM. ns-non significant, ∗∗∗P < 0.001. (E)
Representative fluorescent IHC photomicrographs of dopaminergic neurons in
SNpc double stained for LC3 (autophagy marker) and TH (SNpc marker)
antibodies for various cohorts namely vehicle, MPTP, XCT only and MPTP+Co
(n = 4 animals per cohort). Scale bar is 50 µm. (F) Graph representing the
LC3 puncta per neuron for various cohorts. Statistical analysis was performed
using one-way ANOVA and the post hoc Bonferroni test. Error bars,
mean ± SEM. ns-non significant, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

misfolded toxic protein aggregates. In addition, the presence
of aggregates in the steady state level of cell in the XCT
790 only was comparable to that of vehicle cohort (vehicle
vs. XCT 790 only, ns, P > 0.05, Figures 4E,F). This result

indicates that administrated dosage regimen was not exerting
any proteotoxic stress to the neurons. We demonstrated that
XCT 790 could clear the pathological toxic misfolded protein
aggregates upon disease progression, one of the main causative
of neurodegeneration.

Mechanistically, XCT 790 exerts neuroprotection by clearing
misfolded protein aggregates through inducing autophagy as
demonstrated in the in vivo preclinical mouse model of PD.

XCT 790 Ameliorated MPTP-Induced
Behavioral Impairments
PD patients exert movement disorder symptoms such as motor
co-ordination, exploration and locomotion disabilities that can
be recapitulated in a MPTP mice toxicity model. As our data
shows neuro-protective role of XCT 790 at both cellular and
tissue level, we wished to test whether its effect can be translated
up to behavioral level. To address this, we performed a set of
well-known behavioral experiments—Rotarod and Open Field

FIGURE 5 | XCT 790 ameliorates MPTP-induced behavioral impairments.
Latency to fall for various cohorts such as vehicle, MPTP and MPTP+Co on
both day 13 (A) and 15 (B) were monitored using Rotarod test (n = 8 animals
per cohort). Statistical analysis was performed using one-way ANOVA and the
post hoc Bonferroni test. Error bars, mean ± SEM. ns-non significant,
∗∗∗P < 0.001. (C) Representative trajectory maps were indicated for all the
mentioned cohorts. (D,E) Plots indicating the peripheral distance traveled by
mice were assessed through Open Field test on both day 13 (D) and 15 (E;
n = 8 animals per cohort). Statistical analysis was performed using one-way
ANOVA and the post hoc Bonferroni test. Error bars, mean ± SEM. ns-non
significant, ∗∗P < 0.01, ∗∗∗P < 0.001.
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tests—specific for assaying the movement disorders. The scheme
for behavior assay is illustrated in Supplementary Figure S5.

To test the exploratory ability of mice, the distance traveled
in periphery zone of open field arena was compared across
different cohorts. We observed that distance traveled in the
zone periphery was drastically reduced in MPTP treated cohort
compared to that of vehicle treated cohort (MPTP vs. vehicle
control, P < 0.001, Figures 5D,E) on both day 13 and
day 15, validating the MPTP’s effect on exploratory ability.
Upon co-administration of XCT 790 along with MPTP, the
distance traveled were significantly longer than that of MPTP
cohort (Co vs. MPTP cohort, P < 0.001, Figures 5D,E),
and, more importantly, comparable to that of vehicle treated
cohort on both day 13 and day 15 (Co vs. vehicle control,
P > 0.05, Figures 5D,E). Importantly, exploratory behavior of
various cohorts was evident in the represented trajectory maps
(Figure 5C).

Rotarod test, another standard behavioral assay to test motor
co-ordination, was also employed. In this test, the time spent
by mice on a horizontal rotating rod (latency to fall) was
used to assess the motor co-ordination ability across different
cohorts. In parallel to the results observed in Open Field, the
co-treated cohort showed improved latency to fall compared to
that of MPTP treated cohort (Co vs. MPTP cohort, P < 0.001,
Figures 5A,B), which showed reduced latency to fall against
vehicle treated cohort on both day 13 and day 15 (MPTP vs.
vehicle control, P < 0.001, Figures 5A,B). In addition, the results
of vehicle treated, and co-treated cohorts were fairly comparable
(Co vs. vehicle control, P > 0.05, Figures 5A,B) on both days.

Therefore, these results demonstrate restoration of
exploratory and motor coordination abilities in MPTP toxicity
model, upon administration of XCT 790. Therefore, XCT
790 ameliorates the behavioral disabilities of MPTP treated
mouse model.

DISCUSSION

Currently, there are no therapeutic interventions available
for neurodegenerative diseases. New strategies to curb
neurodegeneration involve identification of druggable targets,
and novel small molecules are necessary. In this study, we
identified small molecule XCT 790 as a novel ERRα mediated
autophagy modulator that ameliorates α-synuclein toxicity and
exerts neuroprotection in a preclinical mouse model of PD.

Lewy bodies are primarily due to the aggregation of
misfolded proteins such as α-synuclein that exert cellular
toxicity leading to neuronal death (Wakabayashi et al., 2007).
Such aggregates result in perturbation of cellular homeostasis
due to exaggerated proteotoxicity that trigger apoptosis and
eventual loss of neurons (Hara et al., 2006). In addition,
cellular proteostasis efficacy and also compensatory action
among protein quality control machineries decline with age;
as a result the relatively non-dividing neuronal population
are more susceptible to proteostatic insult (Anglade et al.,
1997). Crucial protein quality control pathways like autophagy
are impaired in neurodegenerative disease pathologies (Nixon,
2013). Neurons with defective autophagy hamper the turnover

of proteins and harbor protein aggregates such as ubiquitin
positive inclusions and Lewy bodies (Komatsu et al., 2006).
Genetic ablation of neuronal autophagy function results in
progressive accumulation of neuronal aggregates and such
mice manifest neurodegenerative symptoms (Hara et al., 2006).
Conversely, genetically enhancing autophagy flux results in,
among other things, marked clearance of autophagy adaptors
(p62) that are involved in ubiquitin aggregate capture and
perhaps contributing to the extended life span of such mice (Pyo
et al., 2013). Corroborating such observations, pharmacological
studies have implied that autophagy inducing small molecules
have therapeutic potential as they restore autophagy flux
which eventually mitigates neuronal loss and improves motor
co-ordination inmodels of PD (Sarkar et al., 2007;Williams et al.,
2008; Khurana and Lindquist, 2010). In this context, our study
reveals the small molecule XCT 790 as an autophagy enhancer
that exerts neuroprotective action.

Autophagy, a tightly regulated process is maintained at low
(basal) levels during fed condition and elevated in presence of
stress such as starvation (Hara et al., 2006). This low level of
autophagy is maintained by negative regulation by MTOR. We
now show that, in addition to MTOR pathway, ERRα negatively
regulates autophagy flux. When the ERRα inverse agonist, XCT
790, relieves this regulation, the number of autophagosomes
and autolysosomes increase several folds. Furthermore, it is
known that MTOR activity is not perturbed in the absence of
ERRα (Chaveroux et al., 2013). We, therefore, investigated the
interdependance of MTOR and ERRα in controlling autophagy
and show that XCT 790 induces autophagy independent of
MTOR signaling, a well-desired characteristic for further drug
development to combat adverse side effects. In addition, MTOR
regulates transcription of Ubiquitin Proteasome System (UPS)
related genes leading to degradation of ERRα upon induction of
autophagy by rapamycin (Chaveroux et al., 2013). Our results
suggest that autophagy inhibiting activity of ERRα in nutrient
rich conditions is through MTOR independent mechanism. In
autophagy triggering conditions, where basal inhibitory activity
needs to be removed, ERRα gets ubiquitinated and degraded by
UPS (Chaveroux et al., 2013), that corroborates our findings.

Among the MTOR independent pathways, AMPK regulates
autophagy flux. Previously, XCT 790 was reported to modulate
AMPK pathway in ERRα independent fashion (Eskiocak
et al., 2014). We observed XCT 790 modulates autophagy
by not regulating the AMPK pathway, one of the reported
MTOR independent pathways, but through subcellular ERRα

localization dynamics.
XCT 790 is reported to be the most selective inverse agonist

of ERRα (Eskiocak et al., 2014). Though it is known that ERRα

localizes primarily in the cytoplasm (Sladek et al., 1997; Ju et al.,
2009), its cytoplasmic function is not yet reported. Thus, apart
from its transcriptional function in nucleus (Sladek et al., 1997),
our findings reveal a cytoplasmic role for ERRα in autophagy.
Recently, ERRα has been shown to up regulate autophagy
related genes in the context of clearance of Mycobacterium in
a transcriptional-dependent manner (Kim et al., 2018). Our
results further demonstrate that XCT 790 not only induces
aggrephagy but also clears intracellular Salmonella burden via
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recruiting autophagy related proteins such as LC3 and p62. Thus,
ERRα uniquely induces selective autophagy pathways by both
transcriptional-dependent and -independent mechanism to clear
misfolded aggregates and intracellular pathogens.
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Growing amount of evidence in the last two decades highlight that macroautophagy
(generally referred to as autophagy) is not only indispensable for survival in yeast but
also equally important to maintain cellular quality control in higher eukaryotes as well.
Importantly, dysfunctional autophagy has been explicitly shown to be involved in various
physiological and pathological conditions such as cell death, cancer, neurodegenerative,
and other diseases. Therefore, modulation and regulation of the autophagy pathway
has emerged as an alternative strategy for the treatment of various disease conditions
in the recent years. Several studies have shown genetic or pharmacological modulation
of autophagy to be effective in treating cancer, clearing intracellular aggregates and
pathogens. Understanding and controlling the autophagic flux, either through a genetic
or pharmacological approach is therefore a highly promising approach and of great
scientific interest as spatiotemporal and cell-tissue-organ level autophagy regulation
is not clearly understood. Indeed, chemical biology approaches that identify small
molecule effectors of autophagy have thus a dual benefit: the modulators act as tools
to study and understand the process of autophagy, and may also have therapeutic
potential. In this review, we discuss different strategies that have appeared to screen
and identify potent small molecule modulators of autophagy.

Keywords: autophagy, high throughput, chemical biology, luciferase, small molecule screening, fluorescence
microscopy

INTRODUCTION

Macroautophagy (herein autophagy) is a major intracellular process that is critically crucial for
maintaining cellular homeostasis. Autophagy has been reported in several organisms from different
kingdoms ranging from yeast to humans suggesting that it is an evolutionarily conserved process.
This process was first reported by Christian de Duve (Deter et al., 1967), when he observed
organelles captured within the lysosomes with the help of electron microscopy (De Duve and
Wattiaux, 1966). This entire phenomenon of cargo capture and ultimately its degradation in the
lysosomes is called “autophagic flux” (Klionsky, 2007; Rabinowitz and White, 2010; Boya et al.,
2013).
Basal levels of autophagy occur in all cells during nutrient rich conditions and help in housekeeping
functions to maintain cellular quality control by clearance of damaged or surplus organelles
and misfolded proteins, recycling and providing basic building blocks like amino acids for
reuse (Mizushima and Klionsky, 2007; Musiwaro et al., 2013). However, the levels of autophagy
are highly modulated in response to different stimulus, both intracellular and exogenous
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such as starvation, pathogen invasion, organelle damage and
protein aggregation in cytoplasm (Takeshige et al., 1992; Komatsu
and Ichimura, 2010). Because autophagy is central to maintaining
cellular homeostasis, defective autophagy has been attributed to
a variety of disease conditions such as cardiovascular diseases,
atherosclerosis, certain myopathies, innate and adaptive immune
responses, neurodegeneration and cancer (Choy and Roy, 2013;
Kroemer, 2015).

Dysfunction of autophagy leads to cell death, cancer,
neurodegenerative, and other diseases. Therefore, studying the
molecular aspects of autophagy is of current research interest
for the treatment of various disease conditions. Genetic and
pharmacological modulation of autophagy has been shown to
be beneficial in many such situations (Rubinsztein et al., 2012).
Modulation of autophagy has been shown to be beneficial in
diseases such as diabetes, cancers, neurodegenerative disorders
and some infectious diseases (Sarkar et al., 2007; Sarkar and
Rubinsztein, 2008). Several studies in the recent years have
discovered novel or repurposed drugs for restoring autophagic
balance. For instance, Rapamycin, an autophagy inducer and
its analogs were used by Ravikumar et al., to abrogate
neurodegeneration in a Drosophila based model by enhancing
the rates of autophagy (Ravikumar et al., 2004; Sarkar, 2013a).
In some of these studies, distinct assays have been developed and
used for a High Throughput Screening (HTS) to identify small

molecules that modulate autophagy (Table 1). Several autophagy
modulators have been discovered in the recent past but very few
of them have led to potential candidate drug molecules. Many
of these compounds are specific toward different targets in the
autophagy pathway. For example, specific screens to identify
novel candidate molecules such as ULK1 (Rosenberg et al., 2015),
ATG4 (Ketteler and Seed, 2008), class III phosphatidylinositol 3-
kinase (Farkas et al., 2011), and MTOR (Butcher et al., 2006), have
been carried out. In addition, compounds with broad spectrum
effects have also been identified as well (Sarkar, 2013b). The
scope for the discovery of new autophagy modulators that can
be later taken up to clinical trials is ever increasing. It has been
postulated that deeper insights into autophagy through chemical
modulation can lead to better understanding of various diseases.
In addition, understanding of the mechanism of these molecules
may provide deeper mechanistic insights and understanding
of the finely regulated process of autophagy. Chemical biology
approach to study autophagy can be compared to a genetic screen
(Tsukada and Ohsumi, 1993; Thumm et al., 1994; Harding et al.,
1995; Titorenko et al., 1995), where further studies on the hits
reveal more about the mechanism of autophagy. For example,
just as the identification of a gene and its function, a manner in
which a small molecule modulates autophagy can also shed some
light regarding the regulation of autophagy (Seglen and Gordon,
1982; Kunz et al., 1993). In search of potential candidate drugs

TABLE 1 | Autophagy modulators identified through High Throughput Screening of Chemical compound libraries.

Compound Autophagy General/Selective Mechanism of Reference

name modulation autophagy modulator autophagy modulation

ARP101 Inducer General Induction of autophagosome biogenesis Jo et al., 2011

Bay 11 Inhibitor General Inhibition of autophagosome biogenesis Mishra et al., 2017a

BRD5631 Inducer Aggrephagy/Xenophagy – Kuo et al., 2015

Carbamazepine Inducer Xenophagy By myo-inositol depletion and AMPK activation Schiebler et al., 2015

Cardiac glycosides, e.g.,
Digoxin, Helveticoside

Inducer General Inhibition of Na+K+ATPases leading to increase in
Ca2+ levels

Hundeshagen et al.,
2011

KU55933 and Gö6976 Inhibitor General Inhibition of PI3K Farkas et al., 2011

Loperamide Inducer Aggrephagy Regulation of intracellular Ca2+ levels Zhang et al., 2007

P29A03 Inducer General Increase in Beclin levels Lee et al., 2013

P23C07 Inhibitor General Inhibition of autophagosomes fusion with
lysosomes

Lee et al., 2013

Rottlerin Inducer General Inhibition of mTOR through TSC2 pathway Balgi et al., 2009

6-Bio Inducer Aggrephagy GSK-3 beta inhibitor Suresh et al., 2017

Fasudil Inducer General – Iorio et al., 2010

Flubendazole Inducer Xenophagy Microtubules destabiliser Chauhan et al., 2015

Minoxidil and clonidine Inducer Aggrephagy Modulation of cAMP levels Williams et al., 2008

Niclosamide Inducer General Inhibition of mTOR Balgi et al., 2009

Perhexiline Inducer General Inhibition of mTOR Balgi et al., 2009

SEN177 Inducer Aggrephagy Inhibition of glutaminyl cyclase Jimenez-Sanchez
et al., 2015

SMER10, SMER18, SMER28 Inducer Aggrephagy – Sarkar et al., 2007

Trifluoperazine Inducer Aggrephagy/Xenophagy Increase in FYVE containing vesicles Zhang et al., 2007

Tamoxifen Inducer Xenophagy Estrogen and G protein coupled receptor GPR30
antagonist shown to inhibit intracellular Toxoplasma

Dittmar et al., 2016

Valproic acid Inducer Xenophagy By myo-inositol depletion and AMPK activation Schiebler et al., 2015

XCT 790 Inducer Aggrephagy/Xenophagy ERR alpha inhibitor Suresh et al., 2018

ZPCK Inhibitor General Inhibition of cargo degradation within lysosomes Mishra et al., 2017a
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that moderate autophagy, identifying small molecule modulators
of autophagy is the primary step. Small molecule study will
further enhance the understanding of autophagy and related
pathways. Thus, having a robust, sensitive assay to monitor
autophagic flux that could be performed at a high throughput
rate for the purpose of screening modulators of autophagy is of
primary importance (Figure 1). In this review, we discuss some
of the pharmacological strategies undertaken in the recent past to
identify novel autophagy modulators (Table 2).

CONVENTIONAL AUTOPHAGY ASSAYS

The real time analysis of autophagy in cells tissues principally
been performed via qualitative measures. These assays identify
autophagosomes or measure the conversion of LC3I to LC3II
(Atg8 in yeast) either through western blotting or microscopy
(Klionsky et al., 2016). Owing to the conserved nature of
autophagy (Mizushima et al., 1998; Kabeya et al., 2000; Meijer
et al., 2007), the use of yeast as a model system to study
autophagy is still widely recognized, even after the identification
of homologous Atg sequences in mammalian cells. This is
primarily because of the ease of handling and the vast array of
biochemical and genetic tools available to carry out autophagy
studies. Several different techniques to monitor autophagy are
well established in yeast (Torggler et al., 2017). For example,
Pho8160 assay provides readout for bulk autophagy (Noda
et al., 1995). Wild type alkaline phosphatase protein moves from
ER (inactive) to vacuole where it gets activated. Deletion of
first 60 amino acids from the N-terminal makes the mutated
protein cytosolic which is taken up by the autophagosome
machinery along with other cytosolic contents and delivered to
vacuole for bulk degradation. The action of vacuolar proteases
activates the Pho8160, which can act on different substrates
to dephosphorylate them. Depending on the substrate being
used, the readout could be measured using either photometry or
fluorimetry.

Other classical assays in yeast include monitoring the
degradation of fluorescent tagged Atg8 (GFP-Atg8), either
through microscopy or immunoblotting (Kirisako et al., 1999;
Suzuki et al., 2001; Meiling-Wesse et al., 2002). Similarly,
autophagic degradation of certain different cargoes like
PGK1 or radiolabeled long-lived proteins and organelles like
peroxisomes (discussed in later sections) and mitochondria
can be chased (Tsukada and Ohsumi, 1993; Kissova et al.,
2004; Sakai et al., 2006; Welter et al., 2010; Motley et al.,
2012).

Although yeast studies provide a reliable and efficient way
to study autophagy, considering the complexity in higher
eukaryotes, the results cannot be always extrapolated. Keeping
the role of autophagy in different physiological and pathological
contexts in mind, several different autophagy assays have been
developed in cell culture (Tooze et al., 2015; Orhon and Reggiori,
2017). Many of these assays rely on the status of LC3B protein,
which is a mammalian homolog of yeast Atg8 protein and
is involved in biogenesis and maturation of autophagosome
(Kabeya et al., 2000; Mizushima and Yoshimori, 2007; Weidberg

et al., 2010; Nguyen et al., 2016). LC3 gets conjugated
to phosphatidyl ethanolamine (PE) on the autophagosome
membrane and is the sole marker for autophagosomes right from
the biogenesis to its degradation. The form of LC3B conjugated
to PE is called LC3B II, while the cytosolic, unconjugated form
is referred to as LC3B I. This led to development of various
LC3 based assays for monitoring the autophagic flux. Other
autophagy marker protein widely utilized for the purpose of
autophagy assays is p62/SQSTM1, which is an adaptor protein
that helps in cargo sequestration (Bjorkoy et al., 2005). Different
fluorescent reporters are tagged to these markers (mRFP/GFP-
LC3) to visualize them under the microscope (Kabeya et al.,
2000). In vivo studies have also been conducted in the past
using the fluorescently labeled LC3 marker. Mizushima et al.,
used a transgenic mice model expressing the GFP-LC3 protein
to show that autophagy occurs in all the cell types. The basal
levels of autophagy vary in different tissues and starvation
stimulus induces autophagy over and above the basal levels
in all the tissues (Mizushima et al., 2004). Tandem fluorescent
tags on these proteins (mRFP/mCherry-GFP-LC3) provide an
added benefit of visualizing different stages of autophagic
flux (Kimura et al., 2007). This reporter is an indicator of
conversion of autophagosomes into autolysosomes upon fusion
with lysosomes, wherein the autophagosomes emit both mRFP
and GFP signals (mRFP+ GFP+) whereas the autolysosomes emit
only mRFP signal (mRFP+ GFP−) because GFP is acid-labile and
is quenched in the acidic environment of the autolysosomes.

The cytoplasmic autophagic flux of proteins is too small to be
chased over a time course using an assay (Welter et al., 2010).
The turnover rate of cytosolic proteins through basal autophagy
is less and does not provide a broad window or physiological
range to carry out a screen using protein degradation as a
measure. In turn, having an inducible cargo that is specifically
degraded through autophagy provides a higher working range.
The inadaptability of the conventional autophagy assays into a
high throughput setting presents a major limitation and hence
makes the small molecule screening a very cumbersome process
(Cheong and Klionsky, 2008; Wang and Subramani, 2017).

HIGH THROUGHPUT ASSAYS TO
MONITOR AUTOPHAGY

Multiple aspects and steps of the autophagy pathway have been
exploited to establish several different HTS assay systems both in
yeast and mammalian cells. These have also led to identification
of potent novel autophagy modulators (Figure 1). Studies
on these modulators have not only revealed their therapeutic
potential but led to better understanding of the autophagy
process.

Growth Based Autophagy Assays
MTOR is a nutrient sensor and hence is central to cells growth.
MTOR also is a regulator of the autophagy pathway (Noda
and Ohsumi, 1998; Loewith and Hall, 2011). Rapamycin, an
inhibitor of MTOR, activates autophagy pathway (Abraham and
Wiederrecht, 1996). This understanding has been widely utilized
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FIGURE 1 | Workflow for screening autophagy modulators. (A) Growth based screening: growth inhibition can be induced in yeast due to over expression of
aggregate proteins or rapamycin treatment. This cytostatic effect exhibited by yeast can be used as a platform to screen compounds that rescue the growth lag
through autophagy induction. After compound treatments, analysis of yeast growth curves identifies the compounds that rescued the growth lag.
(B) Fluorescence/Luminescence based screening: fluorescent or luminescent reporters are tagged to autophagy proteins for transfection in yeast or mammalian
model systems. Modulators of autophagy from chemical libraries are obtained by analyzing the fluorescent/luminescent signal intensities or by visualizing the
autophagic vesicle formation by microscopy. (C) In silico screening: structures of autophagy proteins/motifs of interest can be obtained from data sources like
Protein Data Bank and can be used as a model system to identify chemical molecules that bind using in silico modeling softwares. The selected lead molecules are
then verified in biological system to validate its ability to modulate the process.
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TABLE 2 | Summary of HTS assays for compound libraries.

Model Assay principle Read out Compound(s) Autophagy Reference

system identified modulation

Yeast Rescue of rapamycin induced growth inhibition Growth based assay LY-83583 – Butcher et al., 2006

Rescue of rapamycin induced growth inhibition Growth based assay SMER 10, 18, and 28 Inducer Sarkar et al., 2007

Rescue of rapamycin induced growth inhibition Growth based assay SMIRs Inhibitor Sarkar et al., 2007

Rescue of SNCA α-synuclein induced
growth lag

Growth based assay 6-Bio Inducer Suresh et al., 2017

Degradation of luciferase tagged peroxisomes Luminescence Bay11, ZPCK Inhibitor Mishra et al., 2017a

Mammalian
cells

Increase in number of autophagosomes
(GFP-LC3)

Fluorescence microscopy ARP101 Inducer Jo et al., 2011

Increase in number of autophagosomes and
autolysosomes (mCherry-GFP-LC3)

Flow cytometry Cardiac glycosides Inducer Hundeshagen et al.,
2011

Degradation of autophagy adaptor proteins
(GFP-p62, GFP-NBR1)

Flow cytometry Lactacystin Inhibitor Larsen et al., 2010

Reduction in intracellular Mycobacterium
tubercluosis

Fluorescence microscopy Valproic acid Inducer Schiebler et al., 2015

Increase in autophagosomes and
autolysosomes (mCherry-GFP-LC3)

High-content fluorescent
microscopy

Flubendazole Inducer Chauhan et al., 2015

Degradation of lipid droplets Fluorescence microscopy P23C07 Inhibitor Lee et al., 2013

Ratio of GFP-LC3 (autophagosomes) and
cytosolic RFP-LC31G (internal control) using
the probe GFP-LC3-RFP-LC31G

High-content fluorescent
microscopy and flow
cytometry

Deslanoside, Cladribine Inducer Kaizuka et al., 2016

Ratio of GFP-LC3 (autophagosomes) and
cytosolic RFP-LC31G (internal control) using
the probe GFP-LC3-RFP-LC31G

High-content fluorescent
microscopy and flow
cytometry

Mebendazole
Nelarabine

Inhibitor Kaizuka et al., 2016

Clearance of A30P α-synuclein Fluorescence microscopy Minoxidil and clonidine Inducer Williams et al., 2008

Quantitation of Nuclear LC3 High-content fluorescent
microscopy

NSC179818,
NSC60785

– Kolla et al., 2018

Degradation of luciferase tagged adaptor
protein (Luc2p-p62 and Luc2p-p621U)

Luminescence Temozolomide Inducer Min et al., 2018

Renilla Luc tagged LC3 turnover Luminescence KU55933 and Gö6976 Inhibitor Farkas et al., 2011

Comparison of data expression pattern In silico data mining Fasudil Inducer Iorio et al., 2010

to develop assays to monitor autophagy via MTOR activity.
Butcher et al., developed an assay that monitored the growth
of yeast cells each harboring a different plasmid from a pool
of 3900 overexpression plasmids in the presence of rapamycin,
which is an inhibitor of MTOR (Butcher et al., 2006). Yeast
cells when cultured in the presence of rapamycin, undergo
growth inhibition, because of block in TOR pathway. From the
pool of overexpression plasmids, candidate gene products were
identified that suppressed the cytostatic effect of rapamycin and
were involved in the TOR pathway. They also characterized
the mechanism of LY-83583. LY-83583 is a novel molecule
that suppressed the rapamycin-induced growth inhibition and
its several candidate targets were also implicated. Sarkar et al.
(2007), used yeast to identify small molecule enhancers (SMERs)
and inhibitors (SMIRs) of rapamycin using the same strategy.
From the screening, 21 SMIRs and 12 SMERs were listed that
were structurally non-redundant. They identified SMERs that
could enhance autophagy independently of MTOR, and these
SMERs (SMER 10, 18, and 28) when tested in mouse and
Drosophila models decreased the toxicity associated with mutant
Huntington protein, also reflecting on the therapeutic potential
of these compounds (Sarkar et al., 2007). The HTS utilized a
chemical genetic suppressor platform to rescue or elevate the

growth inhibitory properties of rapamycin on wild type yeast cells
(Huang et al., 2004). Therefore, because of the involvement of
MTOR pathway in regulating autophagy, a simple screen based
on the growth of yeast was able to give therapeutically potent
small molecule hits.

A growth-based neurotoxicity assay in yeast was also utilized
by Suresh et al., to identify novel autophagy enhancer 6-Bio that
ameliorates α-synuclein toxicity. The compound 6-Bio effectively
cleared toxic aggregates in an autophagy dependent manner
in both yeast as well as mammalian cells. More importantly,
the action of the compound was conserved and showed
neuroprotection in a pre-clinical mouse model of Parkinson’s
disease (Suresh et al., 2017).

Fluorescence Based High Throughput
Assays
Fluorescence based microscopy assays are the most commonly
used techniques to monitor autophagic flux. Autophagy, being
a multistep process involving several molecular players, presents
with a number of markers that can be tagged with a fluorescent
probe and the autophagy rates can be monitored. Interestingly,
this has also been exploited to design several high content-based
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imaging strategies to screen for novel autophagy modulators
(Figure 1).

Clearance of toxic poly glutamine aggregates in cell culture
was also demonstrated by using autophagy enhancers obtained
from an image based HTS of GFP tagged LC3 puncta
representing autophagosomes (Zhang et al., 2007). The number,
size and intensity of the autophagosomes were analyzed and
quantified using high throughput fluorescence microscopy. GFP-
LC3 was used as a probe in an automated microscopy cell-
based assay to identify chemical enhancers that rapidly led to an
increase in autophagosome content (Balgi et al., 2009). The same
reporter was also used by Jo et al. (2011), to identify ARP101, that
inhibits matrix metalloproteinase-2 (MMP-2) selectively; as an
inducer of autophagy- associated cell death in cancer cells. A high
content, flow cytometry based screening approach was used to
screen Prestwick Chemical Library containing FDA approved
drugs by looking at autolysosome formation and degradation
and also endolysosomal activities under basal and stimulated
autophagy conditions (Hundeshagen et al., 2011). This study
used three different probes to investigate different stages of
autophagic flux (GFP-LC3 for autophagosome, mCherry-GFP-
LC3 for autophagosome and autolysosome) and endocytic
activity (GFP-Rab7). From the screening, cardiac glycosides were
validated as potent enhancers of autophagic flux. The same GFP-
LC3 probe has also been used by Kuo et al. (2015), to screen
59,541 small molecules prepared by stereoselective diversity-
oriented chemical synthesis and identification of enhancers of
autophagy.

Larsen et al. (2010), followed the degradation of three
fluorescent tagged autophagy markers: GFP-p62, GFP-NBR1, or
GFP-LC3 by flow cytometry of live cells after their promoter
has been turned off. Relative degradation rates of these three
promoters was analyzed under basal autophagy conditions.
Through single cell analysis, GFP-LC3B was found to be the most
stable protein whereas GFP-NBR1 was the reporter that was most
effectively degraded. The degradation of GFP-p62 was observed
to show the strongest response to nutrient limitation condition
and was reported to be the best reporter out of the three.
Chemical screening strategies have also been used to identify
novel target processes that activate autophagy (Chauhan et al.,
2015). In this study, LC3B puncta in HeLa cells stably expressing
mRFP-GFP-LC3B were analyzed using high-content (HC) image
analysis of and revealed a novel role of microtubules, which when
altered resulted in autophagy induction.

Autophagy dependent degradation of lipid droplets (LDs)
was also used for the development of a high content screening
platform to discover novel autophagy modulators (Lee et al.,
2013). In this study, an indolizine-based fluorescent skeleton
called Seoul-Fluor (SF) (Kim et al., 2011) that stains the
hydrophobic LDs was used and its subsequent degradation via
autophagy was followed.

Two anticonvulsants were discovered as mTOR independent
autophagy enhancers, from a functional cell-based screening
of FDA-approved drugs that were further shown to clear
intracellular population of Mycobacterium tuberculosis (Schiebler
et al., 2015). In this screen, a library of 214 compounds was
screened for its ability to kill intracellular luminescent strain of

M. bovis BCG (bacille-Calmette-Guerin, live attenuated strain of
M. bovis) within macrophages. These hits were further validated
both in primary macrophages and autophagy null cells and also
for their effect on autophagy in an mTOR independent manner.
The probe GFP-LC3-RFP-LC31G developed by Kaizuka et al.
(2016), serves as a cumulative index for autophagy activity. The
probe utilizes the protease activity of the ATG4 family of proteins.
Upon cleavage of the fusion protein by ATG4, GFP-LC3 gets
associated with the autophagosomes and then degraded upon
subsequent fusion to lysosomes. RFP-LC31G on the other hand
is cytosolic due to the deletion of glycine at the C-terminal of
LC3. This probe can be utilized in different settings like high
throughput microscopy, flow cytometry and microplate readers
and is also amenable to screening small molecule modulators of
autophagy by comparing the ratio of GFP/RFP.

A high content screening in HeLa cells using EGFP-
LC3 reporter identified several autophagy inhibitors. These
compounds were then further analyzed using an array of
phenotypic cell-based assays. The screening strategy identified
several hitherto unknown target proteins amongst the well
defined targets like Vps34 and ULK1 (Peppard et al., 2014). In
a first of a kind, a high content screening using the fluorescent
LC3 reporter, a library of 1539 chemical compounds was aimed
to identify modulators that affected the nuclear localization of
LC3. Potent modulators were identified that may help in the
understanding of LC3 nuclear-cytoplasmic localization (Kolla
et al., 2018).

Parkinson’s disease associated protein A30P α-synuclein
is a substrate for autophagy and has been used to study
aggregate clearance by autophagy in the past. One such study
used A30P α-synuclein clearance by autophagy as a primary
screen to identify novel autophagy enhancers. Using this
screen L-type Ca2+ channel antagonists, the K+ATP channel
opener minoxidil, and the Gi signaling activator clonidine
were identified as autophagy inducers that work independent
of MTOR. This important discovery revealed that MTOR is
dispensable for autophagy induction. The authors showed that
cAMP can modulate autophagy by controlling IP3 activity
(Williams et al., 2008). As MTOR is central to several other
pathways as well, identification of an alternative pathway
opened the scope of controlling autophagy independent of
MTOR.

Luminescence Based High Throughput
Assays
Luciferase being a sensitive reporter protein comes in handy
when an assay has to be scaled to a high throughput format
(Figure 1). Availability of different luciferase variants further
helps in the design of an assay according to the needs. These
luciferase variants have different degrees of sensitivity (Nanoluc
is more sensitive to Firefly luciferase), different sizes and spectra
(Renilla luciferase is smaller in size to Firefly luciferase) or
different properties (Gaussian luciferase is secretory in nature
while Renilla luciferase is cytosolic and Firefly luciferase naturally
has a peroxisomal targeting signal). Depending on the need of
the assay and the process to be studied, an appropriate luciferase
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variant may be used in the study. A Gaussian luciferase reporter
based assay that quantitatively measures the autophagy rate by
monitoring proteolytic activity of ATG4B, can be done at a
large scale and is quantifiable (Ketteler and Seed, 2008). This
luciferase release assay is well suited for upstream signaling
events that either increase or decrease the rates of autophagy.
A luciferase-based assay that exploited the property of long lived
proteins to be solely degraded via autophagy pathway provided
a direct relevance of the autophagy modulation in aggregate
prone cells. This assay demonstrated autophagic clearance of
an expanded polyglutamine in vitro and in vivo conditions
(Ju et al., 2009). This assay takes into account the selective
degradation of autophagy cargo using a sensitive luciferase-based
reporter. Dynamic and sensitive assay could be achieved by
following the cargo that is selective for degradation through
autophagy. Peroxisomes provide highly inducible cargo with
high turnover rates which are specifically degraded through
autophagy machinery under starvation conditions (Sakai et al.,
2006). This high turnover of peroxisomes when combined to
the sensitivity of luciferase reporter, provides a very sensitive
assay to monitor autophagic flux which is also amenable to
high throughput setting. Based on this principle, Mishra et al.,
designed a screening strategy that allows measurement of
autophagic cargo (facultative organelle, peroxisomes) clearance
rather than ATG8 based changes in autophagosome number.
The principle of the assay is based on detection of the levels
of firefly and Renilla luciferase activities to monitor the flux
of selective and general autophagy, respectively, in S. cerevisiae
(Mishra et al., 2017b). Reporter strains were constructed
that expressed Renilla luciferase and firefly luciferase with a
peroxisome targeting signal (PTS1) under a fatty acid responsive
promoter. These cells when grown in the presence of fatty
acid or glycerol containing media, leads to the expression
of peroxisomal firefly luciferase and Renilla luciferase which
is cytosolic. These cells are then subjected to starvation to
induce autophagy. Induction of autophagy leads to selective
autophagic degradation of peroxisomes (pexophagy) and also
non-selective bulk degradation of cytoplasm. The rate of decay in
firefly luciferase activity depicts pexophagy whereas Renilla levels
depict general autophagy. The dual luciferase assay provides
the added advantage of monitoring autophagy in real time, is
more sensitive and gives kinetic assessment of two different
types of autophagy processes simultaneously. Interestingly, the
action of the autophagy modulators identified from the screen
was conserved across higher eukaryotes (Mishra et al., 2017a).
The autophagy inhibitor Bay11 identified from the screen acted
at the autophagosome biogenesis step and ZPCK inhibited
the degradation of cargo inside the vacuole/lysosome. These
inhibitors had a conserved mode of action across yeast, animals
and plants.

Luciferase based HTS autophagy assay has been reported
for mammalian cells as well. In a study by Min et al. (2018),
a luciferase variant Luc2p was fused with the wild type
p62/SQSTM1 or a deletion version of p62 (p62 lacking the
ubiquitin binding domain) and transfected into glioma cells. The
lysates from the two populations (wild type and mutant p62)
were compared to monitor the autophagic flux. The performance

of this probe was reported to be comparable to GFP-LC3-RFP-
LC31G probe described earlier in the review (Min et al., 2018).

In vitro and in silico Assays
In recent years, many groups have also carried out a target
driven autophagy screen using purified proteins and substrates.
To identify substrates for ULK1 that might be involved in the
process of autophagy, Egan et al. (2015), screened degenerate
peptide libraries to identify a consensus motif for ULK1 mediated
phosphorylation. After identifying novel phosphorylation sites,
multiple targets for ULK1 were discovered. These substrates
were then used to screen for potent inhibitors of ULK1
phosphorylation.

Renilla luciferase based turnover of LC3 was used to screen
two kinase inhibitor libraries for identifying inhibitors of
autophagic flux (Farkas et al., 2011). This study identified specific
and more potent inhibitors of the upstream signaling component;
class III phosphatidylinositol 3-kinase. Inhibitors specific to
Ulk1 kinase activity, an upstream protein involved in autophagy
initiation were obtained from a screen that utilized purified
stress-activated Ulk1 and then looked at the phosphorylation of
its substrate, Atg13 at Serine 318 position (Rosenberg et al., 2015).

Iorio et al. (2010) used the large dataset of drug expression
pattern integrated into “drug network” and identified the
previously hitherto unknown functions of several well
characterized drugs. This is a dataset of expression profiles
constructed while comparing the transcriptional responses
induced by different small molecules in human cell lines.
Through data mining, they identified fasudil as a novel
autophagy enhancer taking the help of the same drug network
(Iorio et al., 2010).

DISCUSSION

Although the core autophagy machinery and the proteins
involved in disease conditions might be known, but the
exact mechanism of action and how the autophagic flux
is regulated is not completely understood which leads to
many unanswered questions. Understanding and controlling the
autophagic flux either through a genetic or pharmacological
approach is a highly promising approach and of great scientific
interest. Studies with genetic modulations of autophagic flux
have been carried out in the past with immense success.
Yoshinori Ohsumi, a pioneer in autophagy field was awarded
the Nobel Prize in 2016 for his contribution to the study
of autophagic flux. However, chemical modulation has an
advantage over genetic manipulations that the phenotype
could be observed just on the addition of the compound
and the action could be reversed on its withdrawal. The
method is less laborious, and the putative modulators could be
used as leads for pharmacological purposes in certain disease
conditions. However, there are limitations associated with the
chemical approach because of the bioavailability issues, toxicity
and the secondary or off-target effects associated with the
chemical compound. Also, tissue specific effects are difficult to
monitor.
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To identify novel small molecule modulators of autophagy
having a robust and sensitive screening system is the primary
step. Therefore, HTS assays for autophagy are of utmost
importance as they enable us to screen several small molecules
in a small space of time with the inclusion of all possible
biological and technical replicates. The data obtained from
these assays should be amenable for direct comparison between
the control and test groups and statistical analysis. Several
high throughput assays have been developed in the recent
past to identify small molecule modulators of autophagy.
But some limitations associated with these assays must be
overcome for a highly potent and effective HTS assay system.
Many of these assays have issues with sensitivity and range.
They do not directly look at the cargo or possess a higher
physiological working range to detect smaller changes in

autophagic flux. Although these assays are quantitative but
may lack in one of the many parameters required to attain
an ideal autophagy assay. An ideal assay would incorporate all
these properties such as cargo build up, high sensitivity, ease
of experimentation, broader physiological range, and live cell
readout in a single high throughput format. Dynamic, sensitive
and highly effective assay could be achieved by following the
cargo that is inducible and selective for degradation through
autophagy.
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Multifaceted Housekeeping Functions 
of Autophagy

1  Introduction
Autophagy, an intracellular evolutionarily con-
served process, involves engulfment of unwanted 
proteins and organelles by double-membrane 
vesicles, called autophagosomes, which then fuse 
with the lysosomes/vacuole, and the engulfed 
cargo is subsequently degraded. It is a cell sur-
vival mechanism under stress conditions and it 
also play important roles in many other intra-cel-
lular processes like protein and organelle turno-
ver and transport of some of the vacuolar 
enzymes. This process can be divided into various 
steps, including autophagy induction, nucleation, 
autophagosome formation, maturation, fusion 
with the lysosomes/vacuole, degradation of the 
cargo, and recycling of the precursor molecules, 
such as amino acids, lipids, and nucleotides, back 
to the cytoplasm. Autophagy is a tightly regulated 
cellular mechanism and its flux varies depending 
on the cell type(s) of an organism. Autophagy is 
involved in various physiological roles, such as 
cellular homeostasis, embryonic development, 
antigen presentation, protein quality control, and 
maintenance of the amino-acid pool during star-
vation conditions. It is also implicated in various 
pathophysiological diseases, such as infection, 
cancer, diabetes, and neurodegeneration.

Autophagosomes: The “Pac-
Man” like double membrane 
vesicles involved in macroau-
tophagy.

Sarika Chinchwadkar, Sreedevi Padmanabhan, Piyush Mishra, Sunaina Singh, 
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Abstract | Autophagy is an evolutionarily conserved intracellular deg-
radation process in which cytoplasmic components are captured in 
double membrane vesicles called autophagosomes and delivered to lys-
osomes for degradation. This process has an indispensable role in main-
taining cellular homeostasis. The rate at which the dynamic turnover of 
cellular components takes place via the process of autophagy is called 
autophagic flux. In this review, we discuss about the orchestrated events 
in the autophagy process, transcriptional regulation, role of autophagy 
in some major human diseases like cancer, neurodegeneration (aggre-
phagy), and pathogenesis (xenophagy). In addition, autophagy has non-
canonical roles in protein secretion, thus demonstrating the multifaceted 
role of autophagy in intracellular processes.
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Although autophagy is predominantly a 
cytosolic event, the nucleus exerts a consider-
able control in the extent of autophagy response, 
especially during adverse conditions, such as 
starvation. Depending on the cargo it captures, 
autophagy is broadly classified as general and 
selective autophagy. For example, as a response 
to nutrient deprivation, general autophagy is 
triggered where it captures random portion of 
cytosol. In contrast, selective autophagy ensures 
specific capture of cytosolic cargo, such as dam-
aged or superfluous organelles. When selective 
autophagy captures and degrades mitochondria, 
the process is termed as mitophagy. Similarly, 
autophagic degradation of peroxisomes (pex-
ophagy), Golgi (golgiphagy), ER (ER-phagy), 
ribosomes (ribophagy), etc., have been docu-
mented.1 The genes comprising the autophagy 
machinery are named as ATG (AuTophaGy 
related gene).1

2 � Process of Autophagy
2.1 � Autophagy Induction
The initial characterization of autophagy flux 
with respect to involvement of molecular play-
ers was carried out in yeast extensively. Although 
recycling of the cytoplasmic contents happens at 
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steady state levels by basal autophagy, autophagy 
flux increases drastically when it is induced. 
Autophagy induction happens when the cells 
are under stress conditions, such as amino acid 
starvation1 (Fig.  1). Alternatively, autophagy can 
also be induced using drugs, such as rapamycin,2 
which targets the TOR (Target of Rapamycin), a 
major serine-threonine kinase involved in nutri-
ent sensing and cell growth regulation.3 Both 
amino-acid starvation and rapamycin inhibit 
TOR activity and induce autophagy. Under the 
nutrient rich conditions, TOR is active and it 
negatively regulates kinase activity of Atg1 by 
hyper-phosphorylating Atg13 and thus disturb-
ing the Atg1–Atg13 association, required for 
downstream processes of autophagy.4 When 
autophagy is induced either by nutrient limita-
tion or by rapamycin, TOR becomes inactive and 
does not phosphorylate Atg13 and thus increases 
affinity of Atg13 towards Atg1, further passing the 
signal for nucleation of different autophagy pro-
teins (Fig. 1).

2.2 � Nucleation of Autophagy Proteins
When autophagy is induced, nucleation of 
autophagy proteins takes place at a site called the 
pre-autophagosomal structure or phagophore 
assembly site (PAS) which is present near the vac-
uole. The very first autophagy-related protein 
(ATG) that is recruited at PAS is Atg17. Atg17 and 
Atg11 act as scaffold in general autophagy and 
selective autophagy, respectively.5 In general 
autophagy, Atg17 interacts with Atg31 which then 
interacts with Atg29 and thus forms a ternary 
complex. Atg17 also interacts with Atg13 and thus 
links the trimer to Atg1.6–8 Recent study showed 
that Atg1 tethers Atg9 vesicles at PAS.9 Atg9 is a 
transmembrane protein required for autophagy, 
and its transport from peripheral sources, such as 
mitochondria, ER, to PAS is believed to be impor-
tant for providing a membrane source for the for-
mation of autophagosomes.10, 11 Atg23 and Atg27 
are involved in anterograde transport of Atg9, 
wherein Atg9 vesicles are brought to PAS.12 Ret-
rograde transport of Atg9 from PAS to peripheral 

Phagophore Assembly Site 
(PAS): The site inside cells 

that gives birth to autophago-
somes.

Figure 1:  Schematic demonstrating the various steps in the autophagy process. The yeast and human 
autophagy proteins involved in nucleation, expansion, autophagosome maturation and completion, fusion, 
and degradation processes are mentioned.
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membrane sources require Atg1, Atg2, and 
Atg18.13 Another complex important for PAS for-
mation and initiation of autophagosomes is Class 
III PI3-K complex (VPS34, Atg6/VPS30, VPS15, 
and Atg14) which forms PI3P (Phosphatidylino-
sitol-3-phosphate) that is present in the 
autophagosomal membranes.14 Graef et  al. in 
2013 also have shown that the PAS containing 
multiple Atg proteins are tethered to ER exit sites. 
Localization of all these ATG proteins and the 
hierarchy of the complexes they form at the PAS 
have been determined. These orchestrated signal-
ing events lead to a double membrane vesicle for-
mation called an autophagosome 15 (Fig. 1).

2.3 � Biogenesis, Maturation, 
and Completion of Autophagosomes

The initiation of the autophagosome biogenesis 
starts with formation of an isolation membrane 
at PAS. Atg8 is one of the important proteins that 
is present on the inner and outer membrane of 
the autophagosomes and it remains associated 
with the autophagosomes throughout the process 
of autophagy right from the formation of isola-
tion membrane to the autophagosome degrada-
tion in the vacuole.16 Atg8 is inserted in the 
autophagosomal membranes in the form of Atg8-
PE (Phosphatidylethanolamine). Two ubiquitin-
like conjugation systems help in the formation of 
Atg8-PE, the first being the Atg7–Atg3–Atg10 
conjugation system and the second Atg5–Atg12–
Atg16.17 Atg4 is a cysteine protease that helps in 
conjugation of Atg8 with PE by cleaving the 
C-terminal Arg residue and exposes the Gly for 
conjugation. The recycling Atg8 from the Atg8-
PE present at the outer membrane of the 
autophagosomes also requires Atg4 for the cleav-
age of PE from Atg8. Thus, Atg4 plays dual role of 
conjugation and recycling of Atg8.18 As explained 
earlier, the membrane source for autophagosome 
formation is further contributed by transport of 
Atg9 vesicles along with Atg41.19 Thus, Atg8, 
along with Atg4, Atg7–Atg3–Atg10 complex, and 
Atg5–Atg12–Atg16 help in autophagosome for-
mation and maturation (Fig.  1). An important 
protein required for autophagosome completion 
is a PI3P phosphatase, Ymr1 in the absence of 
which recycling of the Atg proteins from the 
autophagosomal membrane is blocked and the 
Atg proteins remain associated with autophago-
somes inside the cytoplasm.20 Once the 
autophagosomes are completely formed, they are 
transported to the vacuole and are fused with the 
vacuole.

Phagophore/isolation 
membrane: The beginning 
structure that grows into an 
autophagosome.

2.4 � Fusion of Autophagosomes
As in the case of any vesicle destined to fuse with 
a membrane, autophagosomes also involve three 
major conditions for fusion with the vacuole—
(1) interaction of Rab like GTPase, (2) tethering 
to the vacuole, and (3) SNARE-pair interactions 
leading to membrane fusion.

Ypt7, an yeast Rab GTPase, was shown to be 
involved in the homotypic vacuolar fusion along 
with Sec17 and Sec18.21–23 Tethering of the vesi-
cles is mediated by a complex called as the class C 
VPS complex or the Homotypic fusion and Vacu-
olar Protein Sorting complex also known as 
HOPS. HOPS consists of six subunits Vps18, 
Vps11, Vps16, Vps33, Vps39, and Vps41.24–26 
HOPS complex functions as an effector for 
Ypt7.25

A number of SNARE proteins also mediate 
the process of membrane fusion. Vam3 is a 
v-SNARE (also a syntaxin homologue) that local-
izes to the vacuolar membrane and has been 
shown to be important for both cytoplasm to 
vacuole delivery of Ape1 and for the fusion of 
autophagosomes to the vacuole.27 Vam7 was later 
shown to be functioning together with Vam3 in 
vacuolar fusion.28 Another v-SNARE Vti1 was 
reported to interact with Vam3 in both alkaline 
phosphatase pathway (Golgi-vacuole) and CVT 
pathway (one of the selective autophagy path-
ways). Along with these two other proteins which 
form a complex and function in the fusion step 
are Ccz1 and Mon1 which were identified in a 
screen of mutants defective in autophagy and 
CVT pathways.29

The fusion of outer membrane of the 
autophagosomes leads to the delivery of single 
membrane autophagic bodies into the vacuolar 
lumen which is then degraded.

2.5 � Degradation of Autophagosomes 
and Its Contents

Takeshige et al. reported that yeast strain which 
was defective in vacuolar proteinases showed 
accumulation of autophagic bodies inside the 
vacuole.2 Pep4 and Prb1 were the two mutants 
that accumulated autophagic bodies post star-
vation. Aut5/Cvt17 was identified to be an 
important component of the degradation 
machinery owing to its lipase activity.30 Cvt17 
was shown to be the lipase which degrades 
the membrane of the autophagic body in the 
vacuole.31 Moreover, acidification of the yeast 
vacuoles was shown to be important for the 
degradation per se.32

SNAREs: Proteins involved in 
fusion of cytoplasmic vesicles.

Tethering complexes-HOPS: 
Tethering complexes-HOPS-
Multi subunit protein 
complex that help anchor-
ing autophagosomes and 
lysosomes.

CVT pathway: Cytoplasm-to-
Vacuole pathway that delivers 
proteins from cytoplasm to 
the vacuole.

Autophagic bodies: Single 
membrane vesicles inside 
yeast vacuoles as a result 
of autophagosome vacuole 
fusion.
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2.6 � Recycling of Degradation Products
One of the major roles of autophagy is to pro-
vide nutrients to the cell during nutrient limiting 
conditions. This requires not only degradation of 
part of cytoplasm but also effective recycling of 
the breakdown products to the cytoplasm. Aut4 
which was later named as Atg22 was first identi-
fied to be involved in the degradation step as the 
mutants of Aut4 accumulated autophagic bodies 
in the vacuole.33

3 � Autophagy in Higher Eukaryotes
The highly conserved nature of autophagy 
assisted in the identification of orthologs of 
yeast autophagy genes in mammals. As in yeast, 
autophagy in mammals is responsible for cel-
lular homeostasis and quality control. Basal lev-
els of autophagy in the cell remove misfolded 
proteins and damaged organelles. Induced 
autophagy, on the other hand, combats nutri-
ent starvation, intracellular bacterial infection, 
oxidative stress, genomic damage, or accumu-
lation of toxic protein aggregates (Fig.  2). The 
process of autophagy begins with the assimi-
lation of tetrameric ULK1 complex compris-
ing of ULK1, FIP200, Atg101, and Atg13 at 
the membrane nucleation site or ‘Phagophore 
assembly site’ (PAS). The ULK1 kinase activ-
ity is necessary for recruiting the Class III PI3-K 
complex I kinase, Vps34 along with regulatory 
subunits Beclin1, p150, Atg14L, and AMBRA1 at 
the PAS. The PI3P produced by Vps34 activity 
brings FVYE domain containing proteins, such 
as WIPI2 and DFCP1, to the nucleation site.34, 35  
Expansion of the phagophore is facilitated by 
Atg9 which brings membrane from various 
cellular organelles as well as the two conjuga-
tion systems; Atg5–Atg12–Atg16L and LC3.36, 37  
Ubiquitin like protein Atg12 is activated by E1 
ligase Atg7, transferred to E2 ligase Atg10 and 
eventually conjugates with Atg5. The Atg5–Atg12 
non-covalently binds to Atg16L and forms an 
Atg5–Atg12/Atg16L complex which is targeted to 
the PAS. The second conjugation system involves 
LC3, an ubiquitin like protein, which is generally 
present in the cytoplasm. It is cleaved by protease 
Atg4 to expose a C-terminal glycine which gets 
conjugated to phosphatidylethanolamine (PE) 
with the help of Atg7 and Atg3 which are E1 and 
E2 ligases, respectively. The PE conjugated LC3 
binds to the inner and outer membranes of the 
expanding autophagosome.38–40 The autophago-
some cargo recognition and capture are facilitated 
by ubiquitin-binding adaptor proteins like p62/
SQSTM1 which bind to polyubiquitinated cargo 

on one end and LC3 through the LC3 interacting 
region (LIR) on the other end.41 Isolation mem-
brane nucleation and elongation, cargo recogni-
tion and capture, and eventual closure result in 
the completion of double-membrane autophago-
somes. Once completed, autophagosomes move 
along microtubules assisted by cytoskeletal motor 
proteins dynein and dynactin to fuse with lys-
osomes. The fusion of autophagosomes with 
lysosomes is mediated by small GTPases Rab7, 
autophagosomal SNARE Syntaxin17 (Stx17), 
lysosomal SNARE VAMP8, and tethering proteins 
of HOPS complex. Proper lysosomal function is 
important for autophagosome-lysosome fusion 
as autophagy inhibitors BafilomycinA1 and Chlo-
roquine (CQ) inhibit fusion by affecting lysoso-
mal pH. The end function of autophagic process 
is the degradation of cargo inside lysosomes by 
hydrolases like CathepsinB/D and recycling of 
biomolecules.37, 42, 43

4 � Signaling Regulation of Autophagy
The highly conserved serine/threonine kinase 
mTOR (mammalian Target Of Rapamycin) 
senses nutrient signals in a cell and regulates its 
growth and division. Two complexes of mTOR, 
mTORC1, and mTORC2 are localized to different 
subcellular compartments. In the presence of 
amino acids and growth factors like Insulin-like 
growth factor (IGF), protein kinase B (PKB/Akt) 
is activated by phosphoinositide-dependent 
kinase-1 (PDK1). Akt phosphorylates TSC1 
which blocks its interaction with TSC2, and 
hence, TSC1/2 complex is not formed which 
allows small GTPase Rheb to remain active. The 
mTORC1 complex is targeted to the lysosome by 
Ragulator-Rag complex where it is activated by 
Rheb and the active mTORC1, in turn, negatively 
regulates autophagy by inhibitory phosphoryla-
tion of ULK1 hence preventing ULK1 complex 
formation. During nutrient and metabolic 
stresses, the low levels of ATP in cells are sensed 
by AMPK which phosphorylates and activates 
TSC1/2 complex thereby inactivating Rheb and 
further mTORC1, hence allowing autophagy 
upregulation. AMPK also directly regulates 
autophagy independent of mTOR by phospho-
rylating and activating ULK1 independent of 
mTOR.44, 45

5 � Transcriptional Regulation 
of Autophagy

Understanding the process of autophagy 
in an unabridged manner requires study of 
nuclear events that control autophagy along 

mTOR: A protein that nega-
tively controls autophagy.
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with cytoplasmic process that unfold during 
autophagy. Nuclear regulation of autophagy 
is mediated by transcription factors, miRNAs, 
epigenetic marks, and histone modifications. 
These factors regulate both rapid and long-term 
responses to autophagy. More than about 20 
transcription factors are now known to regu-
late autophagy.46 Transcriptional regulation of 

autophagy can be via both mTOR-dependent 
and independent mechanisms. The first clue to 
the transcriptional regulation of autophagy came 
when in the yeast cells; Atg8 was found to be 
transcriptionally up-regulated via inactivation of 
the TOR signaling cascade.16

Studies by Settembre et al. gave new impetus 
to transcriptional regulation of autophagy. They 

Figure  2:  Canonical and non-canonical autophagy flux: under basal levels, autophagy helps in main-
taining the cellular homeostasis by getting rid of cellular waste and superfluous components. Stimulation 
through several factors, such as starvation, stress, or chemicals, leads to induction of autophagy. The 
initiation complex comprising of Atg1 complex and Class III PI3K complex along with several accessory 
proteins helps in nucleation at the site of autophagosome biogenesis also referred to as Pre-autophago-
somal structure (PAS). Addition of membrane from several different sources leads to the expansion of 
autophagosomal membrane (phagophore). Atg9 along with accessory proteins is known to provide mem-
brane to the developing phagophore from different sources, such as plasma membrane, endoplasmic 
reticulum, mitochondria, and Golgi. A ubiquitin ligase like system delivers Atg8 to the developing mem-
brane and leads to the autophagosome expansion around the cargo and finally captures of the cargo. 
The cargo could be: (1) destined for degradation inside the lysosome through the canonical form of 
autophagy or; (2) could be secreted out of the cell through non-canonical function of autophagy referred 
to as unconventional protein secretion. (1) The cargo destined for degradation could comprise of cyto-
plasmic components like misfolded proteins, dysfunctional or damaged organelles or superfluous com-
ponents under the basal levels of autophagy. However, autophagy also serves a cytoprotective role by 
getting rid of any intracellular pathogen or protein aggregates. The mature autophagosome along with its 
constituents fuses with the lysosome. Lysosomal enzymes act upon the cargo and degrade it into simpler 
building blocks like amino acids and ATP that are eventually pumped back into the cytosol to be reused 
by the cell. (2) Many newly synthesized or processed peptides could also be taken up by the autophagy 
machinery and delivered to the plasma membrane for secretion out of the cell. Such phenomenon of 
unconventional protein secretion through autophagy has been observed for several peptides that lack any 
conventional leader sequences for secretion.
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identified TFEB as the master positive regula-
tor of autophagy. The two extensively studied 
major regulators of autophagy are TFEB and 
ZKSCAN3.47, 48 TFEB is a basic-helix-loop-helix-
leucine zipper transcription factor which is a 
master positive regulator of autophagy. It controls 
expression from nexus of genes involved in lyso-
some biogenesis (and function) and autophagy. 
It regulates the expression of genes that contain 
Coordinated Lysosomal Expression and Regula-
tion (CLEAR) DNA sequences.47 ZKSCAN3 is 
a zinc finger family protein that contains KRAB 
(KRuppel-Associated Box) and SCAN domains. 
Silencing of ZKSCAN3 shows induction in 
autophagy and lysosome biogenesis, while their 
presence down-regulates the expression of large 
array of genes involved in autophagy and lyso-
some biogenesis.47, 48 TFEB and ZKSCAN3 play 
antagonistic role to each other in regulating 
expression of autophagy genes. Under nutrient 
rich conditions, mTORC1 in its active state phos-
phorylates TFEB on the lysosome membrane pre-
venting it from entering the nucleus. This, in turn, 
prevents the activation of the genes harboring 
CLEAR DNA sequences. On the contrary, ZKS-
CAN3 has an antagonistic role. It is present in the 
nucleus where it down-regulates the expression 
of multitude of genes involved in autophagy and 
lysosome biogenesis. During starvation condi-
tions, calcineurin dephosphorylates TFEB allow-
ing it to enter the nucleus and positively regulate 
the expression of genes involved in autophagy 
and lysosome biogenesis. Concomitant to TFEB 
translocation to the nucleus, ZKSCAN3 is relo-
cated to the cytoplasm releasing the negative 
control on the expression genes of autophagy 
and lysosome biogenesis.49 Core autophagy genes 
transcriptionally regulated by TFEB are ATG4, 
ATG9, BCL2, LC3, SQSTM1, UVRAG, WIPI, and 
by ZKSCAN3 are ULK1 and WIPI, respectively.

Similarly there are other TFs, such as hypoxia 
inducing factor (HIF-1),50 FOXO,51 p53,52 
NF-κB,53 and many others, that play a direct or 
indirect role in autophagy under different envi-
ronmental stress conditions.

Transcriptional regulation of autophagy has 
also been addressed in the yeast model. Here, 
Ume6, Pho23, and Rph1/KDM4 are the three 
master transcriptional repressors of autophagy 
related genes in yeast.54–56 Ume6 is associated 
with histone deacetylase complex which includes 
Sin3 and Rpd3, and negatively regulates the 
transcription of Atg8. Under nutrient replete 
conditions, the absence of any of these three 

components leads to an increase in Atg8, and 
consequently, autophagic activity is augmented. 
During autophagy, a protein kinase named 
Rim15 is responsible for phosphorylating Ume6, 
thereby dissociating it from Sin3 and Rpd3. The 
absence of Rim15 from cells leads to reduction in 
the synthesis of Atg8 at basal level. The authors 
have demonstrated Rim15 as a positive regula-
tor of autophagy that acts upstream of Ume6 to 
regulate Atg8 synthesis.54 Pho23 is another tran-
scriptional repressor of autophagy that negatively 
regulates ATG9 and thus controls the frequency 
of autophagosome formation. It also down-reg-
ulates the expression of other autophagy-related 
genes, such as ATG7, ATG14, and ATG29. Studies 
show that deletion of PHO23 in yeast cells leads 
to an increase in the autophagosome forma-
tion and the number of autophagic bodies. This 
increase is possibly due to an increase in the levels 
of Atg9.55 Rph1/KDM4 is a histone demethylase 
that negatively regulates the expression of ATG7, 
ATG8, ATG9, ATG14, and ATG29. It regulates 
autophagy in histone demethylase independ-
ent manner. In nutrient rich conditions, Rph1 
keeps autophagy induction under check. How-
ever, under starvation, Rph1 phosphorylation 
by Rim15 causes partial degradation of this pro-
tein, thereby leading to induction of autophagy.56 
Thus, as in mammalian cells, yeast too has tran-
scriptional machinery devoted to control expres-
sion of autophagy genes.

In many genetic and neurodegenerative dis-
eases, autophagy becomes dysfunctional. Mech-
anisms that promote autophagy and mediate 
cellular clearance of toxic protein aggregates are 
being identified that serve as the novel thera-
peutic targets. For example, over expression of 
TFEB rescues cytoxicity of α-synuclein in rat 
model of Parkinson’s disease57 and also clears the 
polyQ Huntingtin protein.58 Recently, HEP14 
and HEP15 (small molecules) have been shown 
to increase biogenesis of lysosomes by activating 
TFEB. This increases the clearance of the cyto-
toxic aggregates from the cell and also increases 
the degradation of lipid droplets.49 Thus, modu-
lating the expression of TFs can help enhance 
autophagy which may be beneficial in alleviating 
disease conditions.

6 � Autophagy in Disease
Dysfunctional autophagy is implicated in various 
diseases and disorders, such as cancer, intracellu-
lar infections, and neurodegeneration.
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7 � Cancer
The role of autophagy in maintaining cellu-
lar homeostasis is undeniably important and 
any perturbations in this can accumulate dam-
aged organelles, oxidative stress, and misfolded 
proteins in a cell leading to genomic damage 
and even tumorigenesis. This concept was very 
elegantly proven in experiments with mice hav-
ing deletion of essential autophagy genes like 
BECLIN, ATG5, and ATG7 which made them 
prone to spontaneous tumors.59 Beclin1 dele-
tions were also identified in human breast, pros-
tate, and ovarian cancer samples.60 However, 
understanding the role of autophagy in cancer 
is not as simple as that. Autophagy can also pro-
vide survival advantage to tumor cells in a solid 
tumor which are facing nutrient limitation and 
hypoxia. Cancers, such as pancreatic and lung 
cancer, have been shown to have high basal lev-
els of autophagy. On gene deletion of essential 
autophagy genes, tumor regression occurred in 
these cells. Hence, the role of autophagy in can-
cer is complex and requires an understanding of 
the stage and type of cancer. It definitely prevents 
the onset of tumorigenesis by limiting genomic 
damage but may be pro-cancer in established 
tumors.61–63

8 � Xenophagy
Autophagy, apart from serving as a metabolic 
pathway providing building blocks like amino 
acids during conditions of nutritional stress, is 
also involved in degrading intracellular patho-
gens. The process of capturing and eliminating 
intracellular pathogens by autophagy is called as 
xenophagy. The process of xenophagy provides a 
broad spectrum of defense mechanism to capture 
bacterial, viral, and protozoan pathogens. Pleth-
ora of studies in recent times has shown that xen-
ophagy acts as a part of innate immune system 
against huge number of intracellular pathogens 
in both phagocytic and non-phagocytic cells.

Although the conventional autophagy was 
discovered in 1963 by de Duve,64 xenophagy 
remained unknown until electron micrographs 
of guinea pig polymorphonuclear leukocytes 
(PMNs) infected with Rickettsiae (Gram-negative 
pleomorphic bacteria) showed autophagosome 
like structures containing bacteria.65 Following 
this, notable discoveries on xenophagy in Group 
A Streptococcus,66 Mycobacterium,67 Salmonella,68 
Shigella,69 HIV,70 Sindibis virus,71 Toxoplasma72 
showed that xenophagy is a conventional defense 
mechanism of host against various pathogen 
types.

8.1 � Pathogen Capture by Xenophagy
Post entry, some pathogens escape into cytosol 
to prevent fusion with lysosomes. This also pro-
vides them with sufficient nutrition from the 
cytosol to replicate efficiently.73 These cytosolic 
pathogens are targeted by xenophagy machinery 
that captures them in double membrane vesi-
cles (xenophagosomes) and delivers them to the 
lysosomes.74

Recognition of cargo for xenophagic capture 
occurs via ubiquitination of the pathogens which, 
in turn, is recognized by autophagy adaptor pro-
teins like p62, NDP52, Optineurin, and NBR1. 
These adaptors bridge interactions with the ubiq-
uitin and the autophagy machinery by interacting 
with LC3. This enables autophagosome forma-
tion around the pathogen.75 Pathogen-specific 
adaptor proteins like septins (in case of Shigella 
and Listeria) and Tecpr1 (in case of Shigella) are 
also shown to recruit autophagy machinery to the 
pathogens.76, 77

Salmonella enterica serovar Typhimurium is 
a well-studied pathogen that gets restricted by 
xenophagy. Inside the host cells, Salmonella can 
reside either inside membrane bound endosomes 
or enter into cytosol by rupturing the endosomes. 
There are temporal changes in the intracellular 
Salmonella replicating niche in terms of morphol-
ogy and recruitment of host factors. At later time 
points (6–8 h p.i), membrane bound endosomes 
develop into replicative vesicles for salmonella 
called as Salmonella Containing Vacuole (SCVs) 
which is characterized by its tubular structure. 
Adaptors like p62, NDP52, and optineurin rec-
ognize ubiquitin positive Salmonella, and NDP52 
also recognizes galectin that are bound to dam-
aged Salmonella containing endosomes. In a 
ubiquitin independent pathway, Salmonella gets 
captured to autophagosomes through diacylglyc-
erol present on SCVs. Almost 25–30% of intra-
cellular bacteria are shown to be captured by 
autophagosomes at early time points like 1 h post 
infection and the recruitment drastically falls at 
later points.68 One of the speculated reasons for 
surpassing xenophagy is translocation of Salmo-
nella virulence effectors, especially sseL which has 
deubiquitinase activity that could essentially pre-
vent the ubiquitination of the pathogen. Another 
reason being repression of autophagy by Salmo-
nella at later time points through mTOR activa-
tion.78, 79

The mechanism of subversion differs between 
pathogens. Another example is in the case of Shi-
gella flexneri which causes shigellosis can escape 
from the phagosome/endosome and move within 
the host cells by directing actin polymerization 
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using its virG gene. VirG is an outer membrane 
protein that accumulates on one end of the bac-
terium and mediates bacteria’s polar movement. 
It is also known to be the target of autophagy 
machinery via interaction with Atg5. Recent stud-
ies have shown that an effector protein of Shigella, 
IcsB, acts as anti-Atg5-binding protein, by hav-
ing a strong affinity for the same binding region 
on VirG as that of Atg5. Hence, mutants of icsB 
are captured by autophagosomes more rapidly.69 
Thus, although xenophagy exists, it is suppressed/
subverted by most pathogens to evade detection 
and capture.

Impairment of xenophagy is also known to 
play role in the chronic infection of Crohn’s dis-
ease. Genome Wide Association Studies (GWAS) 
have provided evidence for the contribution of 
two autophagy genes, ATG16L1,80 and immu-
nity-related GTPase M (IRGM) in the disease 
pathogenesis.81 Subsequent studies show that 
single-nucleotide polymorphism occurring at 
ATG16L1 (T300A) does not impair the general 
autophagy process but show deficits in intracel-
lular bacterial clearance.82

8.2 � Signaling Pathways of Xenophagy
Recent studies have shed light on signaling path-
ways that lead to xenophagy activation even prior 
to ubiquitination of pathogens. Pattern recogni-
tion receptors are host proteins of immune sys-
tem that recognize pathogen products initiating 
anti-microbial signals. These receptors could be 
either membrane bound (e.g., Toll-like receptors) 
or cytoplasmic (e.g., NOD-like receptors). Both 
are shown to play role in inducing xenophagy.83, 84  
IRGM is human gene shown to interact with 
NOD2 during infection, and together, they 
recruit Ulk1 and Beclin1 to initiate autophagy.85 
Similarly, membrane bound TLR4 has been 
shown to be involved in LPS-induced xenophagy. 
This activation also facilitates incorporation of 
VPS34 to autophagy vesicle formation.

Among other genetic factors that regulate 
xenophagy, TFEB, a mammalian transcription 
factor whose role is well studied in lysosomal 
biogenesis gets activated during Staphylococcus 
aureus infection in a pathogen-specific manner, 
while a similar effect is not seen in E.coli infec-
tion. In addition to lysosomes biogenesis, HLH30 
(Caenorhabditis elegans homolog of TFEB) is also 
shown to induce number of autophagy genes, 
such as Atg2, Atg16, ULK1, among others. TFEB 
activation also seems to increase the tolerance to 

bacterial infection by prolonging the life span of 
infected C.elegans in comparison to autophagy 
mutants.86

In addition to the immediate innate response 
that xenophagy elicits, considerable research has 
been done to find its contribution to adaptive 
immunity in macrophages and antigen presenting 
cells. Atg5-deficient dentritic cells show reduced 
MHC class II representation of antimicrobial 
peptides and this, in turn, also affects the T-cell 
priming.87 These cells also show reduced IL2 and 
interferon gamma production in response to viral 
infections.

These studies suggest that xenophagy is a con-
served innate immunity pathway that pathogens 
evade to establish infection. Thus, enhancing 
xenophagy that rescind the block imposed by the 
pathogens would enhance the host immunity to 
fight against infectious agents. In this direction, 
screening for compounds that could enhance 
clearance of intracellular pathogens by xenophagy 
has been done for pathogens like Toxoplasma and 
Mycobacterium.88, 89

9 � Aggrephagy
One of the hallmarks of life threatening neuro-
degenerative diseases is neuronal death caused 
by accumulation of misfolded toxic protein 
aggregates, such as α-synuclein, β-amyloid, hun-
tingtin polyQ repeats, FUS, and TDP43. Cellular 
proteostasis involving the clearance of superflu-
ous cellular organelles and other cargos, includ-
ing toxic proteins, is maintained through the 
chaperones, the Ubiquitin–Proteasome System 
(UPS), and the autophagy pathways.90 Chap-
erone and UPS functions are choked by the 
misfolded protein aggregates. Misfolded pro-
teins are substrates for autophagy.91 A selective 
autophagy pathway, aggrephagy, is a cellular 
degradation mechanism to clear the toxic, mis-
folded proteins. Recent studies highlight the 
importance of autophagy in maintaining organ-
ismal homeostasis. Brain-specific autophagy 
knockout mice (Atg5) accumulate p62 protein 
aggregates in neurons, and subsequently mani-
fest neurodegenerative phenotypes, illustrating 
the vital role of basal autophagy for aggregate 
clearance.92

Autophagy is dysfunctional in neurodegen-
erative disease pathologies.91 Thus, restoring 
autophagy through pharmacological approaches 
using small molecules has been reported to have 
beneficial neuroprotective effects.93–95
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10 � Non‑canonical Roles of Autophagy
Besides the canonical role of cellular homeostasis 
and degradation, autophagy process also has 
some moonlighting functions which are underex-
plored. Involvement of autophagy machinery is 
seen in several contexts which do not involve cap-
ture and delivery of the cargo to the lysosome for 
degradation via a double membraned autophago-
some. Such non-canonical autophagy processes 
include LC3-Associated Phagocytosis (LAP) and 
autophagy mediated unconventional protein 
secretion are two such examples. These non-
canonical functions were explicitly put forth in a 
recent review by the pioneers in the field.96 Some 
of the pleiotropic functions of autophagy include 
their role in cell survival and apoptosis, cellular 
transport, secretion, signaling, transcriptional 
and translational responses, membrane organiza-
tion, and microbial pathogenesis.

The non-canonical roles can be looked upon 
from two diverse perspectives:

1.	 As macroautophagy involves formation of 
vesicles and membranous structures, these 
could be harnessed by other cellular and 
non-cellular processes.

2.	 Moonlighting functions of Atg proteins.

10.1 � Harnessing Autophagy Machinery 
for Other Cellular Processes

The prime role of autophagy is turnover and 
is accompanied by the process of dynamic 
membrane biogenesis.97, 98 The double lay-
ered autophagosome membrane formation to 
entrap cargoes is an orchestrated, dynamic pro-
cess with the involvement of several Atg proteins 
and requires PI3-K activity. This property has 
been elegantly exploited by the pathogens that 
infect mammalian cells. Virus and bacteria have 
evolved mechanisms not only to evade the deg-
radative action of autophagy but also to hijack 
the host autophagy machinery for their multi-
plication. In this section, we will focus only on 
the non-canonical role of autophagy proteins 
in microbial pathogenesis. LC3 in mammals 
mediates the recruitment of the substrates onto 
the autophagosomes via their LC3-interacting 
regions (LIR). Some of the examples that utilize 
the Atg proteins besides their degradative func-
tions are discussed below:

1.	 Influenza A virus redirects LC3-conjugated 
membranes meant for autophagy to the cell 
surface for budding of stable viruses.99 The 
ion-channel matrix protein of the virus 

Non-canonical autophagy: 
Moonlighting functions of 
autophagy such as those 
involved in protein secretion.

Macroautophagy: An 
intracellular mechanism 
to capture, degrade and 
recycle unwanted, damaged or 
surplus cytoplasmic materi-
als. Commonly referred as 
autophagy.

Virions: Virus particles.

(M2) recruits the central player of 
autophagosomal membrane or the landing 
pad of cargo receptor, LC3, inhibiting the 
fusion to lysosomes, thereby aiding in the 
transport of virions to the plasma mem-
brane.100

2.	 In Mycobacterium tuberculosis infection, 
Atg5 is found to play a unique role of pro-
tection by preventing PMN-mediated 
immunopathology. Knockout studies sup-
port an additional, ATG16L1 independent 
role of ATG5 in protecting the mice from M. 
tuberculosis infection.101

3.	 Another study from an unbiased siRNA 
screen has indicated the involvement of 
ATG13 and FIP200 in the picornavirus rep-
lication that is independent of their canoni-
cal autophagy functions.102 The host and 
the viruses exploit the autophagy machinery 
along with the autophagy-related membra-
nous structures to either restrict or enhance 
viral replication that is non-canonical of the 
autophagy functions. Autophagy proteins, 
including Beclin1, LC3, Atg4B, Atg5, Atg7, 
and Atg12, positively regulate the Hepati-
tis C viral replication,103 whereas in murine 
norovirus, some of the autophagy proteins 
are required by the IFN-γ activated mac-
rophages to inhibit viral replication com-
plex.104 Non-involvement of ULK com-
plex distinguishes the non-canonical from 
canonical autophagy.105 There is a general 
notion that a single ATG gene deletion leads 
to specific block in the autophagy process, 
but the above-mentioned examples provide 
evidence that the Atg proteins also exhibit 
many of the non-canonical roles during 
viral infection.106

4.	 In Mouse Hepatitis Virus (MHV) infec-
tion, as unlipidated LC3 (LC3-I) promotes 
viral replication in Double-Membrane 
Vesicles (DMVs) without utilizing ATG5107 
and LC3-II,108 it suggests that the canonical 
autophagy is not involved. Detailed analy-
sis of the vesicles indicates that the DMVs 
are another LC3-presenting membrane that 
is distinct from the canonical double mem-
brane autophagosomes.

5.	 Zikavirus, a member of the Flaviviridae fam-
ily, causes microcephaly affecting the cen-
tral nervous system.109 This virus produces 
a variety of intracytoplasmic inclusions 
termed as “virus factories” in the infected 
cells. The zika virus infected skin fibroblasts 
demonstrate that the virus not only blocks 
the autophagic flux but also hijacks the 
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autophagic machinery for its own replica-
tion.110, 111

In all the above examples, we see that the 
ability to form membrane structures of the 
autophagy proteins is being exploited by the 
virions to promote their viral budding and rep-
lication, thereby aiding in their survival and 
infection.

10.2 � Moonlighting Functions of Atg 
proteins

(i)	Role in Unconventional Protein Secretion
Beyond its role of cellular self-eating and 

homeostasis, autophagy proteins also play an 
important role in unconventional protein secre-
tion whose mechanism is not well elucidated.

The conventional secretory proteins enter 
endoplasmic reticulum via signal peptides, 
whereas the unconventional secretory proteins 
destined for secretion follow an alternate traf-
ficking route. The process by which proteins 
that are devoid of canonical leader sequence still 
get secreted is termed as unconventional protein 
secretion.

Extensive studies of two main cargoes studied 
till this date have provided us clues on autophagy-
mediated unconventional protein secretion.

1.	 First, the secretion of mature cytokine, IL1-
β, is found to be controlled by the process 
of autophagy.112 Its secretion is presumed 
to involve Rab proteins and MVBs.113 The 
matured form of the IL1-β is released out-
side the cell after cleavage from its precur-
sor form. Although Caspase-1 mediated 
IL1-β release is reported, elegant studies by 
Zhang et  al, 2015 have demonstrated that 
the translocation of the unconventional 
secretory protein, IL1-β into a secretory vesi-
cle, is mediated by autophagy, multivesicular 
bodies (MVBs), and Golgi-associated pro-
teins (Golgi Reassembly Stacking Protein-
GRASPs).

2.	 The second cargo is the Acyl-CoA-binding 
protein (Acb1) that gets secreted outside 
the cell by unconventional protein secre-
tion upon starvation in yeast. Genetic stud-
ies in yeast114 have demonstrated that Acb1 
is unconventionally secreted via vesicles 
and are captured in a new compartment 
called CUPS (Compartment for Uncon-
ventional Protein Secretion).115 These 
studies in yeast have revealed that the core 
autophagy machinery is a necessary requi-

site for autophagosome construction, sug-
gesting that secretory autophagosomes must 
be formed. This secretion is found to be 
GRASP-dependent and autophagy-medi-
ated, and plays an important role in peroxi-
some biogenesis providing some clues on 
membrane source for autophagosome bio-
genesis.116

Multiple lines of evidence demonstrate the 
interplay of autophagy and unconventional pro-
tein secretion in the clinical and pathophysiologi-
cal context.

1.	 The GRASP-dependent unconventional 
secretion of CFTR, the Cystic Fibrosis 
Transmembrane conductance Regulator, 
demonstrates a physiological relevance of 
unconventional protein secretion in the 
cystic fibrosis disease. Autophagy-mediated 
trafficking of CFTR leads to proper inser-
tion of the protein to the plasma mem-
brane, whereas the transgenic overexpres-
sion of GRASP rescued the phenotype of the 
ΔF508-CFTR mice.117

2.	 Autophagy plays a significant role in polar-
ized secretion of lysosomal contents in oste-
oclastic bone resorption.118

3.	 Impairment of autophagosome–lysosome 
fusion promotes tubulin polymerization-
promoting protein (TPPP/p25α) to secrete 
α-synuclein, the hallmark protein of Par-
kinson’s disease, in an unconventional man-
ner.119

4.	 Another unconventionally secreted protein, 
Insulin Degrading Enzyme (IDE), was found 
to be mediated through autophagy-based 
unconventional secretion upon statin induc-
tion120 and also has disease relevance in Alz-
heimer’s disease.121

5.	 Secretion of β-amyloid aggregates formed 
in the Alzheimer’s disease is also mediated 
by autophagy. Knockout studies in mice 
neuronal Atg7 was found to influence the 
β-amyloid secretion thereby affecting the 
plaque formation, a pathological hallmark 
of AD.122

6.	 Atg16L1 not only regulates cellular 
autophagy but also acts as Rab33A effec-
tor by secreting the hormone from the 
dense core vesicles of the neuroendocrine 
PC12 cells.123 Another example of the com-
bined role of Atg5, Atg7, Atg4B, and LC3 is 
observed in the polarized secretion of lyso-
somal contents (cathepsin) in the osteo-
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clasts.118 Defects in Atg4B and Atg5 in mice 
are found to manifest balance related disor-
ders due to deficient secretion of otoconins 
by vestibular sensory cells in the inner 
ear.124, 125

(ii)	 Role in cell division:

The non-canonical role of autophagy proteins 
has gained significance, especially in microbial 
pathogenesis. The functional importance of local-
ization of PfAtg8 to apicoplast, a four membrane-
bound non-photosynthetic plastid, provides 
clue for non-canonical function of autophagy 
in Plasmodium falciparum.126 In the apicompl-
exan parasite Toxoplasma gondii, TgATG8 is vital 
for normal replication of the parasite inside the 
host cell. Recent studies have demonstrated that 
another key role of apicoplasts bound TgATG8 is 
involved in centrosome-driven inheritance of the 
organelle during cell division.127

In the Zika virus infected patients, microceph-
aly is brought about by the abnormal function 
of centrosomes affecting neural brain devel-
opment.128, 129 As this process is coupled with 
hijacked autophagy machinery, it is presumed 
that autophagy proteins are probably involved in 
cell division too.

(iii)	Role in inflammatory disease control:

The LC3-Associated Phagocytosis (LAP) is 
one of the prime non-canonical functions of 
autophagy that is required for effective clearance 
of apoptotic cells.130 In canonical autophagy, LC3 
conjugates to the autophagosomal membranes 
facilitating maturation upon fusion with lys-
osomes. Rubicon, a Beclin-1-binding protein, is 
found to be required for LAP but not for canoni-
cal autophagy.131 In Systemic Lupus Erythema-
tosus (SLE), the pathogenesis is brought about 
by the defects in clearance of dying cells. LAP is 
found to inhibit autoinflammatory responses 
caused by dying cells implicating its link in 
inflammatory disease control of SLE.105 Even in 
viral RNA-mediated infection, the immunostim-
ulatory RNA (isRNA)-mediated type I interferon 
production is negatively regulated by the Atg12–
Atg5 conjugate132, 133 demonstrating its sup-
pressor activity in the innate antiviral immune 
signaling aiding cell survival.

Studies reveal interplay between inflam-
masomes (multiprotein complex that activates 
caspase-1) and autophagy. While autophagy 
negatively regulates inflammasome activa-
tion, autophagy induction is dependent on the 

presence of specific inflammasome sensors. 
Autophagosomes degrade inflammasomes via the 
selective autophagic receptor p62 and autophagy 
plays a role in the biogenesis and secretion of the 
proinflammatory cytokine IL-1β.134–138

The involvement of the adaptor protein, 
ATG16L1, in the inflammatory bowel disease 
(Crohn’s disease) is characterized by dramatic 
increase in commensal bacteria.139 Deletion stud-
ies in ATG16L1-WD repeat domain and T300A 
mutant of mouse embryonic fibroblasts did not 
affect xenophagy or the normal autophagic func-
tion indicating its differential role in Crohn’s 
disease.140

(iv)	Role in lipidogenesis and development:

Lipid droplet formation in mammalian white 
adipocytes involves massive cytoplasmic remod-
eling within the cells. Besides the conventional 
roles in autophagy, several autophagy genes have 
been implicated to have “non-autophagy roles”. 
For example, Atg2 and LC3 are also involved in 
lipid droplet biogenesis in mouse hepatocytes and 
cardiac myocytes,141, 142 while knockout stud-
ies in mice for Atg5 and Atg7 have revealed their 
additional roles in adipogenesis.143, 144 The mice 
fed with high fat diet in the Atg12 lacking pro-
opiomelanocortin expressing neurons exhibited 
aggravated obesity which demonstrates an auxil-
iary function of Atg12 in diet-induced obesity.145 
In addition, Atg5-independent non-canonical 
autophagy generates autophagosomes in a Rab9-
dependent manner. Such Atg5-independent 
autophagy is found to be required for iPSC 
reprogramming that mediates mitochondrial 
clearance.146

The versatility of the autophagy proteins in 
all the cellular processes opens new avenues to 
explore its moonlighting functions. It is impera-
tive to understand the discrete functions of the 
autophagy proteins besides their central role in 
degradation and cellular homeostasis.

10.3 � Open Questions in Autophagy
Although the field has garnered much inter-
est now with the award of the Nobel Prize to 
Prof. Yoshinori Ohsumi for his contributions 
to understanding the mechanism of autophagy, 
several autophagy-related frontiers remain 
unchallenged. Questions pertaining to under-
standing basal autophagy and the mechanisms 
that regulate it are still open. How various 
intracellular membrane sources contribute to 
autophagosome biogenesis and the factors that 
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govern autophagosome size and number is still an 
active area of research. In spite of identification 
of a conserved set of core autophagy proteins, 
their actual roles in autophagosome construc-
tion and mechanisms regulating autophagosome-
lysosome fusion are not clear. The contribution 
of autophagy in cell death is controversial and 
the case of “cell death by over eating oneself” is 
highly debatable.147, 148 Finally, restoration of 
impaired autophagy in several disease states via 
small molecule autophagy modulators has been 
shown to be promising in many cases, but bon-
afide and exclusive modulators are still elusive. 
Discovery of such small molecules will not only 
further our understanding of autophagy flux but 
will also fuel the tremendous therapeutic poten-
tial autophagy holds.
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JNCASR scientists find a way to boost innate immune system against intracellular 

infection 

A promising way to deal with intracellular pathogens including multi-drug- resistant bacteria 

is to induce a pathway of the human immune system known as xenophagy say researchers at 

the Autophagy laboratory, Molecular Biology and Genetics Unit of the Jawaharlal Nehru 

Centre for Advanced Scientific Research, Bangalore, an autonomous unit of the Department 

of Science and Technology.  

Xenophagy is the selective degradation of intracellular pathogens such as bacteria which are 

captured and degraded by autophagy — an intracellular process responsible for lysosomal 

mediated degradation of cellular cargoes. Autophagy related discoveries earned Prof. 

Yoshinori Ohsumi the 2016 Nobel prize for physiology or medicine. JNCASR scientists have 

found a pharmacological tool to modulate autophagy, which can help induce xenophagy. 

They have filed a patent for this process, which is pending at present.  

Inducing xenophagy is effective against a wide range of bacterial species and also in viruses 

and parasites — unlike antibiotics that act only on select pathogens. Furthermore, combining 

the effects of xenophagy with antibiotics has shown positive effects in treating infections. 

 

While xenophagy has been studied to an extent, the molecular principles behind this process 

are poorly understood. This is further complicated by the fact that each pathogen has its 

unique way of subverting xenophagy, necessitating the need to identify tools to induce the 

process during infection.  

In the present work, acacetin, a plant-derived flavonoid, was used to induce xenophagy 

against Salmonella typhimurium infection. The efficacy of this small-molecule compound has 

been demonstrated both in cellulo and in vivo.  

While xenophagy occurs in the cytoplasm, the present work published in Autophagy on 19 

November 2019, highlights nuclear control of the process through a master transcriptional 

regulator called TFEB.  



TFEB, considered as a master regulator of autophagy and lysosomal genes, was kept in a 

transcriptionally inactive form during infection by typhoid causing bacteria.  Rescuing TFEB 

function during infection-induced xenophagic capture of bacteria as well as lysosomal 

biogenesis, and both these steps are critical in eliminating the intracellular bacteria.  

The identified drug-like compound was further tested for their potential in disease models 

such as intracellular S. typhimurium infection in epithelial and macrophage cell lines. The 

compound does not directly affect the growth of bacteria but induced host xenophagy 

machinery to capture the bacteria and increased its fusion with lysosomes. Additional 

experiments revealed activation of TFEB to induce active lysosomal population inside cells.   

Although the process is shown to restrict infection, there are no well-studied compounds that 

could induce the process during in vivo infection. Interestingly, the basal level of xenophagy 

in tissues such as intestine, liver, and spleen are low, which are also regions that are 

commonly affected during bacterial infection. It is, therefore, essential to induce the process 

transiently during infection to be effective in curbing intracellular infection. 

 

This research group has also identified novel genetic as well as pharmacological modulators 

of autophagy. Pilot-scale screening of essential genes identified two protein complexes, 

namely septin (Barve et al., J Cell Sci., 2018) and exocyst (Singh et al., J Mol Biol., 2019) 

that are involved in autophagosome biogenesis. Furthermore, a high throughput screening of 

more than 2,00,000 compounds comprising of 16 libraries have identified multiple autophagy 

modulators that could temporally and transiently regulate the process (Mishra et al., 

Autophagy, 2017; Suresh et al., Autophagy, 2017; Vats et al., Mol Biol Cell, 2019). 

 

Publication: 

Ammanathan V, Mishra P, Chavalmane AK, Muthusamy S, Jadhav V, Siddamadappa C, 

Manjithaya R. Restriction of intracellular Salmonella replication by restoring TFEB-mediated 

xenophagy. Autophagy. 2019. Nov 19:1-14. doi: 10.1080/15548627.2019.1689770. 

Patent details: 



“Method for modulating autophagy and applications thereof” Patent number: 

US20180369186A1. 
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