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Synopsis

Proteins are biological molecules that perform a number of critical cellular functions.
Any variations or mutations in the amino acid sequence of a protein, mostly occurring by
random chance, can affect its structure, function or both. In a given cellular context these
mutations can have a downstream effect of increasing or reducing the cellular fitness,
the latter of which may be compensated by secondary mutations. Thus to predict the
disease phenotypes such as Alzheimer’s or cancers or antibiotic resistance associated with
the mutations in bacteria, or to understand how to engineer proteins, it is important to
understand the effects of single and correlated mutations. Acknowledging the importance
of the mutational effects, and using the large scale data which has become available
through the advancements in the sequencing technologies, in this thesis I raise a few
conceptual questions related to how using computational tools mutational effects can be
predicted, interpreted, or used for deciphering phenotypic effects.

Chapter 1 presents a brief introduction to proteins, a survey of the different ex-
perimental approaches that are used for understanding how proteins function and how
computational approaches using molecular dynamics simulations, bioinformatics and
machine learning can be used to complement the learnings from the experimental ap-
proaches. The remaining chapters in the thesis are organized under two broad umbrellas:
correlated mutations are discussed in Part I, and the prediction and interpretation of
mutational effects are discussed in Part II.

While mutations occur randomly, proteins in the cells selected for fitness do have
mutational changes in various regions that are correlated. These correlations, which may
be quantified using alignments of large sequence libraries of homologous proteins, become
a way of inferring structural or functional relations among the different amino acids. In
Part I of this thesis, we explore the possibility of using correlated mutations in viruses
as a way of defining their complexity (Chapter 2), a way of capturing the asymmetry
in the correlations (Chapter 3), and the incompleteness of the important mutations
identified using sequence, structure, or dynamics information (Chapter 4).

Viruses have high mutation rates and hence evolve rapidly by accumulating mutations
that help them in escaping from the host immune response and drugs. However, most
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viruses have only around 10 proteins, making amino-acid level mutational patterns the
only way of studying the systems-level complexity. In Chapter 2, we attempt to define
viral genomic complexity using amino acid co-variance networks. By applying the methods
of network analysis, we demonstrate the differences in the nature of the network (random
versus power-law) in different viruses and also find an interesting relation between the
network density and the virus-Richter scale, the only metric to date which quantifies the
mortalities due to each infection.

While amino acid co-variance analyses are used to capture structural and functional
interactions between amino acids, there has been no measure to capture the asymmetry
in the interactions such as when a compensation is required for a mutation. In Chapter
3, we introduce one such way of capturing such asymmetric relations using conditional
probabilities, and demonstrate examples of how some compensatory effects are captured
by it.

In several occasions, such as while studying allosteric effects in proteins, or for
identifying hotspot mutations, one uses correlation based methods. However, the analyses
are performed using multiple sequences or protein structure or molecular dynamics, a
choice mainly driven by one’s scientific training. The implicit assumption being that all
methods should identify the same amino acids. In Chapter 4, we compare the findings
from these three approaches and suggest the lack of completeness in any one, and point
to the need for complementing the approaches.

Recent developments in massively parallel mutagenesis experiments, also known as
deep mutational scans, have increased the number of mutational effects that can be
studied by several orders of magnitude. Deep mutational scans have generated a wealth
of mutational effect data for a number of proteins, and are heading towards generating
hundreds of thousands of double or triple mutants. In Part II of this thesis, we ask several
questions around predicting accurately using artificial intelligence (AI) models (Chapter
5), classifying using simpler models (Chapters 6, 7) and interpreting the contributions
of individual factors to every single mutation (Chapter 8).

We ask whether computational predictions can be used for reducing and complementing
the deep mutational scan experiments. In Chapter 5, we ask two different questions, by
what degree one may be able to reduce the number of experiments and if it is possible
to strategize the design of the mutational studies, such as a random or a site-directed
choice of mutations such as an ANH (Alanine, Aspargine, Histidine) scan, in a way to
obtain the best possible predictions with the minimal data.

Although the mutational scans have become exhaustive and accurate, both in experi-
ments and predictions, there is still a missing gap between these libraries of data and
the qualitative intuitions about what affects a protein’s function. In Chapter 6, deep



mutational data sets are used to quantify the intuitions about the role of parameters such
as conservation, solvent accessibility on protein function. We develop rules of thumb for
classifying the mutational effects using any of the individual parameters, and demonstrate
how the quality of this classification can be enriched by combining multiple parameters.

Continuing on a similar theme of simplified models, we asked whether it is possible
to develop human comprehensible Artificial Intelligence (AI) model for the mutational
effects prediction. A typical decision tree used for classification can have a depth of 10 to
100. In Chapter 7, we ask if the decision tree for mutational effects prediction can be
truncated to fit in an A4 size paper (depth of 5) and hence develop a simpler model with
comparable accuracy.

The rules of thumb or a truncated decision tree developed although intuitive, com-
promise on accuracy. AI community is undergoing a philosophical shift, revisiting the
trade-off between accuracy and interpretability, and creating models such as SHapley
Additive exPlanations (SHAP) to make the AI predictions interpretable. In Chapter
8, we use SHAP to make a first attempt to build interpretable models in the field of
mutational effects prediction. Using the contributions of individual factors for every single
prediction, we could extract cleaner correlation patterns between the mutational effects
and individual variables, that are otherwise hidden in the multi-variable dependence.

Another question we ask with the deep mutational scan libraries, in Chapter 9, is if
there is an alternative reason behind the codon bias, beyond the tRNA availability, mRNA
toxicity. We explore how the choice of the codons can reduce the potentially deleterious
mutational effects. The thesis thus takes advantage of the large scale mutational data
that is available, uses the developments in network theory, AI to predict or interpret the
phenotypic effects arising from the mutations.
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100, 122, 136, 168, 189, 191, 201, 211, 226, 237). The coloring convention
for PDBs is: Impact 0 - gray, Impact 1 - blue, Impact 2 - cyan, Impact 3 -
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3.3 Directed networks and their functional relevance. Residue networks for
A. DHFR (PDB Id:3QL3) and B. Serine protease (PDB Id:3TGI). The
direction of the arrow shows is in the direction of impact. The thickness
of the arrows is proportional to 1/r where r is the distance between pair
of amino acids in the crystal structure. The functional annotation of the
amino acids inferred from literature is shown as well. . . . . . . . . . . . 54
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shows that the impact does not trivially repeat the same information
contained in conservation. B. Impact vs. dependency shows again in
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4.5 Based on each of the pair-wise interaction measures shown in Fig 4.1,
amino acid pairs that are separated at least by two amino acids were
rank ordered and the strongest 100 connections were selected to construct
interaction networks. The union of all three networks is shown for A. Serine
protease and B. DHFR. Each edge is weighted proportional to the number
of networks it belongs to. Connections in each network or intersection of
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5.1 Systematic increase of training data size improves prediction quality. The
experimental data on the relative fitness of E. coli with mutations in
β-lactamase was modeled. The fraction of the complete data that was
used for training and validation was systematically reduced in four steps
from 85% to 15% to see how the quality of computational predictions of
fitness changes. It can be seen that the quality of predictions when trained
with 50% is comparable with the one trained at 85% data. The prediction
quality is tabulated in Table D.1 of Appendix D. Results from predictions
of other proteins are in Figures D.3 to D.5 of Appendix D. . . . . . . . . 83

5.2 Representation of the types of mutations in the training set influences the
results. A comparison of the different strategies we used for choosing the
training set with 15% data completeness. In an extension of the concept
of alanine-scan, the fitness outcomes from alanine (A), asparagine (N)
and histidine (H)-scans at each amino acid position were used as the
training set, and the fitness scores for all other 17 mutations at every
site were predicted. The results were compared to other strategies that
used random (Random 15%) or site-directed protocols (position range
scan, wild type residue type scan and SASA range scan) for choosing
the minimal set required for training. The results suggest that choosing
mutations randomly or performing an ANH scan is better than scanning
all mutations at a few positions. . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Augmenting with scores at different assay conditions did not improve
predictions. At 15% mutational completeness, the data size was augmented
by combining data from six different assay conditions. There was no
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6-fold. The R2

test with and without data augmentation was 0.61 and 0.66
respectively. More detailed results are in Figure D.10 of Appendix D.
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the 650 µg/ml drug concentration assay. In this case also the predictive
ability of the models trained at only one concentration or at multiple
concentrations was similar. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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5.4 A few variables contribute significantly. The relative importance of different
variables in the predictive model trained with 85% data from β-lactamase
mutations was evaluated. The sensitivity of the model to a variable was
quantified as the percentage increase in the mean squared error (MSE)
between the prediction and the experimental values when the variable
was replaced with its average calculated across all mutations. BLOSUM
score, average commute time and hydrophobicity of the mutant have the
highest contribution while some of the variables have little contributions
in the model. None of the variables we used is perfectly correlated to any
other variable, however, the poor contributions suggest that they could be
correlated to a non-linear combination of other variables. . . . . . . . . . 87

5.5 Random scan obtains comparable predictions for different amino acids.
The test set of random 25% scan was sorted based on the amino acid after
mutation and the amino acid in the wild type. The quality of predictions
as quantified by Pearson correlation is shown for (A) the amino acid after
mutation (B) the amino acid in the wild type. Amino acids are colored
according to their type: red (positively charged), blue (negatively charged),
green (polar), white (hydrophobic). The random scan results in roughly
uniform quality of predictions for all substituted amino acids. . . . . . . 89

6.1 Effect of conservation. (A) The relationship between conservation and
fitness was studied using the homologous sequences for TEM-1 β-lactamase
(Pfam ID PF13354). It can be seen that the number of neutral substitutions
decreases considerably for amino acids with conservation > 60%. The
black filled circle and the red line represent mean and median of the fitness
respectively. The whiskers are plotted at 1.5 times the interquartile range
and black open circles show the outliers. (B) Changes in F1 score for
the neutral and deleterious classes and the average of both plotted as the
threshold for conservation to classify the mutations is varied. . . . . . . . 106

6.2 Effect of solvent accessibility. (A) Solvent accessibility for all amino acids
of β-lactamase was calculated using the 3D protein structure (PDB ID:
1M40). SASA versus fitness shows a half-triangular pattern. The deviations
from this half-triangular pattern are noted in the main text. For details
about the box plot representation, see Figure 6.1. (B) Substitutions are
classified as neutral and deleterious based on a chosen SASA threshold
and the quality of resulting classification is quantified using F1 score. F1
scores when different SASA thresholds are used is shown. . . . . . . . . . 107
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6.3 Effect of BLOSUM substitution score. (A) Fitness scores for substitutions
in β-lactamase as a function of the BLOSUM62 score for the substitution.
See Figure 6.1 for details about the box plot representation. (B) F1 score
when each of the substitution matrix score is used as a threshold to classify
mutations as neutral and deleterious. Average of F1 scores of both classes
is also plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Effect of charge variation. The mutational effect scores are shown in a
two-dimensional matrix representation with each row representing the
amino acid substituted by and each column the position along the amino
acid sequence of β-lactamase. All substitutions with no change in the
charge type of the amino acid are highlighted in red filled circles with the
size of the circle representing the fitness score and others in open blue
circles of equal size. There are many substitutions for which the fitness is
heavily compromised even with no change in the charge type. . . . . . . . 109

6.5 Effect of catalytic distance. (A) Fitness changes are shown with respect
to the distance between wild-type residue and the closest catalytic residue.
See Figure 6.1 for details about the box plot representation. (B) F1 score
for the neutral, deleterious classes and the average of both are plotted as
the catalytic distance threshold for classification is varied. . . . . . . . . 110

6.6 Reducing false predictions by combining parameters. Venn diagram show-
ing the number of substitutions that do not follow the intuitions related
to different structural and sequence related properties of the wild type
and the substituting amino acids. Thresholds indicated in the figure were
used on each of the individual parameters, to classify the mutations as
deleterious or neutral. The central region indicates that there are only
2 false-neutral predictions when all five variables classify the mutation
as neutral. The number of total false neutral predictions when only one
variable is used is given in brackets below the variable labels. . . . . . . . 113
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7.1 Decision tree for mutational effects. A decision tree of maximum depth 5
levels was developed. The decision flow begins with the central node which
explores whether conservation is less than 0.356 as the first question. At
every node, if the condition is satisfied the decision flows along the arrow
and along the straight line otherwise. A notation such as (n.212, d.42)
indicates that in the training data 212 neutral and 42 deleterious mutations
reached this node. The colorbar on the top is a qualitative illustration
of the color code for the decision nodes, depending on whether the node
represents a deleterious, or neutral mutation or can not be classified as
one of these. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Illustration of decision tree usage. The effects of four mutations (S53A,
E63D, V74T, F230A) is illustrated in the decision tree. The parameters
used for this analysis are given in Table 7.2. Green lines show the paths
along the decision tree for these mutations. Three of them resulted in true
predictions, while the prediction of S53A using this tree was not correct. 130

8.1 Decomposing the contributions. Illustration of the contributions of various
factors to the effects of mutating Alanine in position 79 to Tyrosine (A79W)
in β-lactamase: A. Fitness effect B. Solubility effect. As indicated by the
direction of the arrows, the factors in pink contribute to an increase in the
fitness or solubility and those in blue have the opposite effect. Whether a
specific factor tends to increase or decrease the mutational effect depends
on the individual case. The descriptive parameters are labeled along with
the values they assume in this specific instance, for the specific mutation.
The illustrations are generated using the Python implementation of SHAP
((https://github.com/slundberg/shap)). . . . . . . . . . . . . . . . . . . . 136

8.2 Summarizing the contributions. We analyzed the deep mutational scan
data where the consequences of any of the 19 possible amino acid substi-
tutions at each of the positions (61-215) were measured. The individual
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mutations are summarized in the plot. Along each line, one finds the
name of the descriptive parameter, a distribution of the SHAP values
across the complete set of mutations, along with the color indicator of the
fitness/solubility outcome associated with mutation. . . . . . . . . . . . . 137
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8.3 Correlation of contributions to solubility and fitness. The SHAP values
defining the contribution of each variable to fitness and solubility are shown.
From the data it is clear that the contributions from these three descriptive
parameters, conservation, number of contacts and BLOSUM are mostly
correlated i.e., if the parameter contributes to an increase in fitness it
also contributes to an increase in the solubility. This is not true for all
variables, which are shown in the Figures F.2 to F.4 of Appendix F, where
they are uncorrelated or negatively correlated. The color bar represents
the experimentally observed fitness changes among all the mutations studied.138
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relative to conservation and the distance from the catalytic site do not
show a clear pattern of what one can expect from substituting an amino
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amino acid. G, H. SHAP contributions show a contrasting behavior where
the distance from the catalytic site has opposite effects on fitness and
solubility, in line with the classifications[9]. The colorbar is the same as in
Figure 8.3, and represents the observed fitness changes. . . . . . . . . . . 139
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Chapter 1

Introduction

1.1 Proteins

1.1.1 Protein Structure

Proteins are very important biological macromolecules that are involved in many cellular
processes. Transport molecules such as haemoglobin, antibodies which are related to
immune response, enzymes which catalyze chemical reactions, and structural matrices
such as keratin or collagen are all proteins. In an apparently striking recursive role, all
proteins are synthesized by other special proteins called ribosomes.[1] Thus any quest
for understanding the basic cellular or disease biology mostly narrows the search to
activity of some proteins or their failure. Whether it is non-communicable diseases such
as cancers or Alzheimer’s or communicable diseases with bacterial or viral infections, the
fundamental interest is always in knowing what went wrong with the most important
proteins in healthy cells or how to block the bacterial or viral proteins from performing
their expected functions.[2–4]

Chemically speaking, proteins are polypeptide chains, linear polymers of amino acids
connected by peptide bonds.[5] They are synthesized by ribosomes, with combinations
of the 20 naturally occurring amino acids, appearing in a unique sequence. The linear
polypeptide chain, which is also known as the primary structure of the protein, undergoes
further physical transformations and levels of organization before it becomes functional.[6]
Driven by non-bonded interactions such as hydrogen bonds or salt bridges among the
amino acids which are either near or distal in sequence, proteins achieve secondary
structures such as helices, β-sheets, turns or coils, which are further organized into a
tertiary folded structure.[6] The ability to form different secondary structures varies for
the side chains of different amino acids.[7] An even further organization into a quaternary
structure happens with proteins which are multimeric in nature.[8]

1
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The sequence hypothesis categorically states that the three dimensional structure and
the function of the protein are both uniquely determined by its sequence.[9] While the
hypothesis is empirically true, several aspects of the sequence-structure-function relation
in the proteins are not understood. Three dimensional protein structures that are formed
by a hydrophobic collapse are delicately balanced by the loss of entropy and gain of
enthalpy.[10, 11] From this delicate balance, which is only a marginal stability of a few
kcal/mol for most of the proteins, it has been difficult to predict the unique structure
of the protein. A well defined structure is very crucial for the proper functioning of a
protein,[6] and its knowledge is required for understanding how a specific protein works
or how to design drugs that target it.[12, 13]

The most commonly used method to determine the three-dimensional structure of
proteins is X-ray crystallography, where the purified and crystallized protein is subjected
to X-ray beam and the resulting diffraction pattern is analyzed to infer the structure.[5]
Though the structure can be obtained at atomic detail, the requirement that the protein
needs to be crystallized, which is a difficult task, limits the applicability of the method.
Further, it is difficult to infer the structure of the flexible regions of the proteins using
X-ray crystallography, as they appear to be the missing regions in the crystal structure.
Whether the crystal structure does have a correspondence with the protein structure in
solution while performing its function is an additional question that is sometimes cast on
the X-ray structures. Electron microscopy techniques are also being used for obtaining
domain level information in very large protein assemblies or of entire virus.[14, 15] For
atomistic mechanisms and interpretations, these analyses should be combined with data
on finer scale structures.[16]

1.1.2 Protein Dynamics

However, protein structure is only one of the components contributing to its function.
Dynamics of the protein is critical for resulting in the functional effects.[17, 18] The
simplest illustration of dynamics is with enzymes, where parts of the protein (typically
referred to as the lid) have to move to create space for the substrate(s) to enter the
catalytic region of the enzyme.[19] While the actual dynamics itself can not be captured,
cryo-electron microscopy does reflect the dynamic heterogeneity of the protein, providing
a snapshot of the configurations that are assumed by the protein, some with higher
probability and others with much lower probability.[20]

Tracking the dynamics of the proteins thus maps the transitions across these different
configurational or functional states. One of the extremes of the dynamical transitions
happens soon after the synthesis of the protein, where the long unstructured polypeptide
chain folds into the native structure.[21, 22] One of the early interests of the physicists
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who were fascinated by proteins was the modelling of their folding landscapes. It was
mainly motivated by the puzzle surrounding the quick rates of protein folding, despite
a feared disparity as raised by Levinthal’s paradox. Several models such as the folding-
funnel concept addressed some of these issues.[23, 24] Much of the functionally interesting
structural transitions are less dramatic, with some of them requiring as little as an
Angstrom of movement of the appropriate amino acids.[25] The functionally relevant
dynamics thus happen in a smaller subset, conformational subspace of all possible
dynamical transitions.

Physiological length and time scales

Exploring the biologically interesting dynamical processes in proteins span across different
time scales, from a few femtoseconds to seconds. Interestingly all of these are spontaneous
and driven by the thermal motions of the atoms, which suggests that chemical and
physical intuitions can be useful for studying the biological phenomena. For example,
vibrational motions are in pico-second time scale where as large conformational changes
like domain motions happen in milliseconds timescale while the folding and unfolding
events occur on a few minutes to a few days respectively, depending upon the stability of
the proteins. On the one extreme of studying the dynamics of proteins, popular techniques
such as Fluorescence resonance energy transfer (FRET) across the fluorophores at different
locations in the protein are very helpful to capture distance changes on the order of
20-80 Å. Vibrational spectroscopic studies, on the other hand, probe the local vibrational
modes of the protein on the scale of a few picoseconds using infrared techniques, for
example. Finding the appropriate tools in the scales of length (0.5-5 Å) and times (µs-s),
where the protein is mostly in its native state and performing biological activities is more
complicated than working with either of the extremes.

Fluorescence techniques are a major source of dynamic information about proteins.
They make use of the fluorescence property of the aromatic groups of the amino acids -
tryptophan, tyrosine and phenylalanine - by having them as the probes to study protein
conformation, dynamics, and intermolecular interactions. Given the timescale separation
from the radiative fluorescence decay, these methods are ideal for monitoring dynamics
on microseconds or longer timescales. However, the information one gathers from these
studies is coarse grained and is mostly limited to understanding whether the excited
molecule can undergo a radiative transition or it is hindered by the local environment
of the excited amino acid. A systematic replacement of different amino acids with
tryptophans can provide the details of the conformational changes at different positions
of interest.[26] The implicit assumption in this approach is that the structure or function
of the protein is not compromised by this replacement of amino acids, which is not true



1.1 Proteins 4

in many cases.
Nuclear magnetic resonance (NMR) in contrast to a crystallized structure with a

tight packing is used for resolving the solution structure that is most relevant to the
cellular context. Relaxation of 15N nuclei of backbone is affected by the dynamics of the
protein and measuring this relaxation time helps in identifying the flexible regions of
the protein.[27] Deuterium does not have a peak in the NMR spectrum, and this fact
is exploited by probing the hydrogen exchange reaction (NH →ND) of the backbone
amide when the solvent is heavy water. The hydrogen of the backbone amide gets
exchanged upon exposure to deuterated solvent, resulting in the disappearance of the
corresponding peak. The disappearance of the peaks thus reflect the conformational
changes that make residues solvent exposed over time.[27] Thus, NMR can determine the
solution structure of small proteins and hence makes it possible to obtain structural and
dynamical insights into the functional form of the proteins. The technique is especially
suited to the functional timescales of milliseconds to seconds which are of functional
relevance. However, these techniques are usually limited to smaller proteins with 50-100
amino acids.

Computational methods: Molecular dynamics

While dynamics of the proteins driven by thermodynamic forces are what cause the
proteins to behave as they should to be performing the functions in living cells, these
microscopic details across the length and timescales of interest are not easy to be
captured by any of the experimental techniques. Molecular dynamics (MD), a method
of computer simulation, has emerged as a complementary approach to the experimental
techniques.[28, 29] Classical MD simulations are based on evolving the trajectories of
atoms in the molecular systems, with the parameterized interaction potentials between
bonded and non-bonded atoms (force-fields) according to Newton’s laws of motion.
Specifically for biomolecular systems, the MD simulation algorithms can be used for
obtaining a few millisecond long trajectories on a few million atoms corresponding to a few
hundreds of amino acids (along with other accompanying atoms from water, membranes,
etc). The force-fields which are based on quantum mechanical calculations, are optimized
for the native structure of the protein. Hence, the MD simulation trajectories have been
able to capture several interesting aspects of protein dynamics and function, starting from
the fleeting hydrogen bonds within the protein with the solvent to the conformational
changes of protein domains, to functional motions such as opening of the enzyme lids. But
arriving at the native fold and following the conformational dynamics within the native
fold are both different and difficult challenges and one is mostly limited to working with
native conformation obtained from X-ray crystallography or NMR, to study the dynamics
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that happens around this configuration. Advanced sampling methods such as replica
exchange molecular dynamics (REMD),[30] umbrella sampling,[31] Metadynamics[32]
have enhanced the sampling of several large scale movements, but despite these advances
MD is still far from being the complete tool for microscopic analysis on biological systems
where a clear separation of degrees of freedom and timescales is not possible.

Computational models: Bioinformatics

As the physics based simulation models and experiments suffer from their inherent
limitations, information based models are gaining prominence. The basis of this focus
on bioinformatic tools, is on several grounds – the sequence hypothesis asserts that the
sequence information is sufficient for understanding the structure and function (and
implicitly the dynamics) of the protein, because of the advances in the sequencing
technologies an increasing number of sequences of proteins that are structurally or
functionally related are becoming available, machine learning algorithms with implicit
rules are able to predict patterns which are otherwise hard to derive from explicit rules
that are based on physical parameters and forces. As such bioinformatic tools are
becoming increasingly relevant to predict protein structure,[33] and function.[34, 35]

Using a multiple sequence alignment (MSA) of sequences of DNA, RNA, or amino
acid codes across different proteins or their variants could be analyzed for understanding
functional, structural, or evolutionary relationships among these sequences. The informa-
tion from the N × L matrix of N sequences all of length L after inserting the required
gaps (“-”)to align the different sequences becomes the starting point of various analyses.
The simplest one being the variability across any column of this matrix, which reflects
the lack of conservation of the amino acid and how it is tolerated across homologous po-
sitions. The next level of consideration is the groups of contiguous regions in this aligned
sequence which can characterize protein families, identify shared regions of homology
from the multiple sequence alignments. Consensus sequences formed by identifying the
most occurring amino acid at each of the L positions can help to develop a sequence
“finger print” which allows the identification of members of distantly related protein
family (motifs). While the variability of amino acids across species is not too uncommon,
sometimes a minor change such as the change of a single amino acid (mutation) within
the same species can lead to a loss of the protein’s structure or function.

The reason for the persistent structure or function with multiple changes or mutations
in the proteins has been typically attributed to compensatory effects[36] of either the
structurally neighboring amino acids or amino acids which are distal in sequence and
structure but yet affect through allosteric effects.[37] A few frameworks for obtaining
the relations between distal amino acids have been proposed based on the simultaneous
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changes that happen while considering pairs of amino acids in the multiple sequences.
Co-evolution,[38] is a statistical measure of how pairs of amino acids change relative to
their respective consensus positions. With no immediate causal inference, or a sense of
spatial distal distance, these co-evolutionary relations when they are strong, suggest a
statistical relation of simultaneously changing amino acids. Starting from the co-evolution
as a basis, and by applying the appropriate eliminating higher order effects from the
co-evolution matrices, other formalisms direct coupling analysis (DCA)[39] and statistical
coupling analysis (SCA)[40] have been developed. These different analyses were meant
to capture the distance metrics between co-evolving amino acids with the intention of de
novo structure prediction[33] and the functional demarcations and correlations across the
different contiguous regions, also known as “sectors” respectively.[40]

However, as with all experimental techniques, and molecular dynamics simulations,
there are limitations to the sequence based methods. The results may be biased by
the numbers and types of sequences that are chosen. The de novo structure prediction
has been successful on smaller proteins, and of course the while an amino acid may be
deemed important, it is not easy to understand whether the dynamical nature of the
protein confers this role. The methods using structure, dynamics and sequence have been
evolving independently, shining light on complementary aspects of protein function.

1.1.3 Mutations

In most practical concerns of understanding basic cellular or disease biology, what is
interesting in several occasions is something that is more fine grained than the details of
the large-scale long-timescale unfolded to folded transformation, and simpler than deter-
mination of the complete three dimensional structure of the protein or the conformational
changes that happen on milliseconds timescales. Most common mutations in the DNA
are at the level of a single nucleotide polymorphism (SNP). These SNPs are referred
to as synonymous or non-synonymous depending on whether they result in a change
in the amino acid they code for or not. Deletion or insertion of base pairs can either
lead to deletion or insertion of amino acids or even more complicated changes such as
frame shift mutations.[1] It is empirically believed that the the mutation rate correlates
inversely with the length of the genome.[41] As such, most common changes in the genetic
material, implicated in diseases like cancer,[42] sickle-cell anemia[43] or in studying the
development of drug resistance in bacteria can mostly be traced to SNPs.[44, 45]

Understanding the effects of SNPs, which result in at most a change of a single amino
acid in a protein of a few hundred amino acids, on the structure or dynamics of proteins
are extremely important. At a simple intuitive level, the effect seems perturbative,
as a small perturbation on top of a large background. However, this is far from the
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truth, as some of the single mutations can cause structural instability or/and functional
impairment, and others leave the function of proteins unaltered.

Mutational effects

There are several biochemical intuitions about amino acid substitutions. For example,
proline and glycine are called helix breakers[6] as these amino acids cannot form the
hydrogen bonds to maintain the helical structure. Substitutions to these amino acids
can disturb the secondary structure of the proteins. Mutations occurring at the sites
which are buried are more likely to lead to a loss of structure or function. Substitutions
of amino acids which lead to a change of charge type or a decrease in volume can be
deleterious. However, proteins are complex and these intuitions do not always hold. Thus,
understanding the effects of mutations in vitro and in cellulo requires more detailed
experimental studies complemented by theoretical models.

Mutagenesis studies

Mutagenesis experiments which introduce random or systematic substitutions of amino
acids in a protein sequence were used to assess the functional consequences of muta-
tions. Initial studies had access only to natural variants and mutations that occur
spontaneously.[46]. Later the use of X-rays[47] and chemical mutagens[48] by which
mutations could be induced randomly revolutionized the field. But the major limitation
of this classical in-vivo approach was that it required a specific phenotype to select the
variant of interest from the pool of thousands of mutants. Development of transposon
mutagenesis technique[49, 50] where natural mobile segments of DNA could be transferred
to the genome of interest made it possible to make a single insertion mutation in bacterial
genomes.[51]

However, with the advent of newer in-vitro mutagenesis technologies such as ran-
dom, site directed mutagenesis, any desired mutation could be performed. Error-prone
polymerase chain reaction (epPCR)[52] is commonly used to induce mutations randomly
along the DNA sequence. But it is not possible to get all possible amino acid substi-
tutions through this method. On the contrary, oligonucleotide primers can be used
to introduce specific mutation at a desired location. Unlike random mutagenesis this
method of site-directed mutagenesis[53] can generate all mutants, but is expensive and
time consuming. Together the two techniques have empowered biochemists to perform
mutations for understanding the functional effects of mutations. Even interestingly, the
unexpected changes in kinetics of folding or catalysis due to mutations have revealed
how the different amino acids are involved in the transition states of these different
processes.[5] One of the techniques which evolved as a systematic way of evaluating the
roles of different amino acids is alanine scan.[54] Factors like non-bulky side chain, retains
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main-chain conformation and charge neutrality make alanine a natural choice for this
substitution scan. In alanine scan mutagenesis[54] each amino acid in the protein is
replaced by alanine, one at a time, to study the importance of an amino acid in function
or maintaining the structural stability of the protein.

Deep mutational scans

Though generating mutant libraries were feasible with these methods, selection of mutants
required developments in the sequencing technologies. With the introduction of high-
throughput screening, large libraries of variants could be screened. A new paradigm in
mutational scans, deep mutational scan (DMS), has emerged.[55] DMS involves probing
the functional/structural consequences of all possible single point mutations in a protein,
considering one substitution at a time. The simplest deep mutational scan is a set of
thousands of single point mutations on one single protein.[55] Newer studies[56–58] are
pushing the envelope of the mutations to simultaneous multiple mutations, increasing
the number of substitutions variants studied to a few hundred thousands. The two
positive aspects of the DMS are that the problem of protein purification is averted and
the phenotypic consequences of the mutations which are the downstream effects of the
protein mutations can be studied. It uses any of the mutagenesis techniques along with
high-throughput screening to select for mutants of desired phenotype. The change in
population size of each variant before and after the selection condition which is relevant
for the function of the protein under study quantifies the effect of mutation on the fitness
of the organism. Figure 1.1 illustrates this concept pictorially as well as shows how the
deep mutational scanning data is typically visualized.

Phenotypic effects

If predicting the structure or dynamics of proteins, or their subtle changes due to
mutations are difficult, predicting the downstream effects of a protein modification at
a cellular level (phenotypic effects) are even more complicated. However, these are the
studies that are most relevant for understanding diseases or devising possible cures.
Molecular dynamics studies, which are with atomistic details, are typically repeated for
every mutation that needs to be studied. This trivial repetition of calculations does not
scale well computationally when several mutations are physiologically interesting. This
is in reality a limitation of the, otherwise very attractive, models which are based on
physical intuitions.

AI based predictions

As the emergent phenomena appearing from the interactions of hundreds of thousands of
degrees of freedom within a protein and subsequent protein-protein interactions become
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Figure 1.1: Schematic representation of deep mutational scanning experiments: Deep
mutational scanning is a new way of performing mutational scanning simultaneously
on thousands of variants of a protein. Variants of the protein of interest are expressed
in/transformed to bacterial cells and the frequency of cells with different variants is
monitored as the cellular function of the protein is challenged. The cells with functionally
advantageous variants increase in frequency and the changes in the relative frequencies
after the selection process are used to infer the effect of mutation on cellular fitness. The
variant effect scores obtained in this way for all possible single amino acid substitutions
in a protein are typically represented as a colormap as shown on the right.

harder to predict, one resorts to the implicit models based on artificial intelligence (AI)
or machine learning (ML). AI based techniques have gained lot of interest in the recent
past for modeling many complex problems in biology[59] like predicting structure and
function of proteins. For example, in what is called supervised learning, the AI model is
trained on a sample set of data (X,y), with input vector X and output y. An example
of (X,y) in the biological contexts we just described is a set of descriptive parameters
X which quantify the nature of the mutation and y can be the change in the cellular
fitness. The size of the data set thus goes as m × (n + 1), where for each of the m
different experiments or trials or in the example mentioned the number of mutations, one
has the data for the n descriptive parameters and the observed output. In a traditional
regression approaches, the emphasis is on obtaining the functional relation y = f(X).
However with complicated systems, this functional relation may be non-trivial. Further in
most practical scenarios, one may require reliable predictions even if deriving an explicit
mathematical model relating them is not possible.

An example of a supervised learning AI model is Neural Networks (NN) model.[60]
The model mimics the way human brain learns and recognizes patterns and has a layered
structure similar to the connected neurons in our brain. A typical neural network
architecture has one input layer, one or more hidden layers and one output layer as
shown in Figure 1.2. Input layer is the first layer where the features or variables used for
prediction are fed, and the output layer is the last layer. The layer(s) in between the
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Figure 1.2: Schematic of a shallow neural network. The architecture of a shallow neural
network with 2 inputs, 1 hidden layer with 4 neurons and 1 output is shown. w ’s are the
weights and b’s are the biases. At a hidden neuron j, the inputs are processed as g(zj)
where g is the activation function and zj =

∑
(wij xi) + bj. wij is the weight of ith input

at jth hidden neuron and bj is the bias at neuron j. The output of the hidden neuron is
passed to the next layer. One of the common choices for g, a sigmoidal function is also
shown inside the hidden neurons.

input and output layers are known as the hidden layer(s) and can be more than one. The
nodes in each layer are called neurons. The non-linear transformation is performed in
the hidden neuron using an activation function and the output of each layer is the input
for the next layer. Training of the neural network, involves the optimization of the model
parameters weights, W ’s and biases, b’s. It is possible that the network generated after
training predicts the data used for training very well, but cannot predict any unseen data.
This is termed as over-training and there are different methods to prevent over-training.
In early stopping method, an additional data set called the validation set is used for
checking the quality of prediction on untrained data, there by exercising a check for
over-training before proceeding to the final predictions on the test data set. Validation
set does not directly influence the tuning of weights and biases, but decides when the
training has to be stopped. As the error in prediction of training reduces upon training,
error in validation set also will reduce upto a certain number of iterations after which it
starts increasing. The training process is then stopped.

Decision trees are another AI based approach for supervised learning and can be
used for both regression and classification.[61] It works by splitting the training set data
samples into two subsets based on any of the input feature so as to have lesser variability
for the dependent variable within each subset. Each of these subsets are further divided
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into two and this splitting is continued until each subset achieves a desired homogeneity
for the dependent variable or further division does not improve the homogeneity. This
approach of generating decision tree is called recursive binary splitting. The typical
architecture of a decision tree with a depth of 2 grown following this procedure is shown in
Figure 1.3. The cost function or the measure of inhomogeneity which is minimized at each
split can be different, for example in classification Gini impurity defined as 1−

∑N
i=1 p

2
i

where pi is the fraction of occurrence of ith class at a given node. The weighted sum of the
Gini impurity of the subnodes is calculated for division based on each input feature and
the one which brings highest reduction in the impurity compared to the parent node is
chosen. Entropy, defined as

∑N
i=1−pi log2 pi is also used as cost function. For regression,

the variance of the dependent variable is used as cost function. One of the advantages
of the decision trees are that it is simple, intuitive and less abstract as compared to
other AI approaches. On the other hand it suffers from the problem of overfitting and
combining predictions of an ensemble of decision trees is a widely used approach to tackle
overfitting, such as the random forest method[62]. In random forest, decision trees are
created by training on randomly selected N data points from a trainimg set of size N,
but the samples being chosen with replacement which means the same sample can occur
multiple times. Trees created in this way are different as they are trained on different
data sets. To make the multiple trees even more uncorrelated, in random forest only a
subset of features are considered for split at a given node. For classification the class
assigned by majority of the trees in the ensemble is the predicted class and for regression
the average of prediction from all trees is the final prediction.

Supervised learning methods, where a part of the data is used for training the model,
are used in AI for either for making quantitative predictions of the output, y, which
is a continuous variable or for classifying the data based on the features, where the
output y is now a categorical variable. Unsupervised learning involves learning from
the input vector X alone. The output is not known and the model adapts as new data
becomes available. Unsupervised learning helps in understanding the structure in the
data, minimal dimensions that are required for describing the system, clustering to
identify groups and identify association rules between groups.

AI for mutational effects

Machine learning algorthims have been used for predicting the functional effects of
mutations on proteins. By training on mutational data gathered over decades from across
different studies, using biophysical or biochemical intuitions as descriptive parameters, the
several models for predicting the effects of mutations emerged. SIFT[63] and Evolutionary
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Feature 2 
    < 5

Feature 1 
    < 0.5

Feature 1 
   < 0.25

Figure 1.3: Schematic of a decision tree. Illustration of the architecture of a trained
decision tree with a depth of 2 for classification is shown. The rectangles and circles
represent the nodes of the tree. The top most node is called root node and the 4 nodes in
the lowest level that do not split are called leaf nodes. The nodes are colored according
to the majority class at each node. The data points are fed to the root node (node 11) of
the decision tree, and the ones that satisfy the condition specified at that node will reach
node 21 and others at node 22. At node 21 the data points are subdivided based on the
value of feature 2 and at node 22 based on the value of feature 1. The class of each data
point is then predicted depending on the leaf node they end up in.
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action use evolutionary information for the prediction, SNAP2[64] different sequence-
related information, Polyphen2 both sequence and structure information and SNPs3d[65]
- structural. SNAP2[64] and Polyphen2[66] are supervised methods, both based on
machine learning techniques. SNAP2 is trained on an extensive data set of Protein
Mutant Database[67] and Polyphen2 on human Mendelian disease-associated and neutral
variants. All of these except SNAP2 are classifiers classifying mutation as neutral and
non-neutral. SNAP2 score quantifies the mutational effect. Quantitative prediction of
mutational effects has been attempted[68, 69] from the pair-wise co-variation of amino
acids (EVmutation). Later accounting for multi-site interactions, DeepSequence,[69]
improved the predictions further. DeepSequence has been found to outperform other
methods in predicting the functional effects of mutations.[70] However, like all other
models, these predictions are far from being complete. For example, how a mutation
affects the cellular fitness may vary qualitatively depending upon the drug used against
the growth of these cells i.e., the functional effects of mutations are context dependent.
This brings the discussion back to the molecular nature of the mutations or the factors
that interact with the proteins.

1.1.4 Challenges to be addressed

The deep mutational scan experiments are advancing to unravel the effects of simulta-
neous double or triple mutations with hundreds of thousands of studies on the same
protein, simultaneously cryo-electron microscopy based methods are revealing heteroge-
nous structures of proteins including how the interaction complexes are formed. Most
theorists attempt to understand the molecular details such as the mechanisms of diseases,
suggest newer modifications for example like engineering proteins, or to reduce the exper-
imentation that is required. However, in the steps towards understanding the function
of proteins or its modifications, the theoretical models, while very advanced are still
catching up with the experiments. The timescales involved, complex non-perturbative
nature of interactions and the desire for understanding a molecular level picture leaves
no one tool whether it is molecular dynamics or machine learning as the perfect tool for
understanding the function of proteins. Obtaining complementary learnings from the
protein sequences, structures and dynamics to predict functions seems almost unavoidable.
When a wholistic understanding of the proteins is required to develop an understanding
into the most critical functions of the cells, leaving out any one of the approaches only
compromises the goal.

There are several challenges faced by the biologists today. Bacteria have been
developing antibiotic resistance. For example, newer strains of proteins called β-lactamase
which is instrumental in the antibiotic resistance of E. coli or K. pneumonia are developing.
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One such example is the New Delhi β-lactamase, which is a resistant strain that is now
globally spread. Viruses with about 10 proteins, have a genome size that is at least 1000
times smaller than the bacterial genomes. Although the genome is much simpler, it is
harder to treat many viral infections - HIV or avian influenza - for example. Some how
the rate of mutation, which is inversely proportional to the genome size, compensates
for the fewer numbers of proteins, and confers the fitness advantage which is otherwise
surprising. Disease models, which study the evolution or epidemiology of the infections
still fail to make apparently simple predictions such as which is the strain of flu that is
next going to infect a country.

Several molecular level and theoretical questions arise in the light of the challenges
faced by communicable or non-communicable diseases. How do mutations occur, which
are the mutations are deleterious or advantageous? Are the origins of the effects of
mutations structural or dynamical in nature? If a mutation is deleterious, should it be
compensated by others? Is it easy to assess how many such compensatory mutations
may be expected to occur in nature? How do different amino acid substitutions affect
the function of the proteins? Can the solubility which is a very important criterion for
the heterologous expression of proteins be tuned with amino acid substitutions without
significantly compromising their function? These are some of the questions we explore
in the thesis, motivated by experiments, combining the sequence-structure-dynamical
information as much as possible.
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Correlated Mutations





Chapter 2

Statistical Characteristics of Amino
Acid Covariance as Possible
Descriptors of Viral Genomic
Complexity

Abstract

At the sequence level it is hard to describe the complexity of viruses which allows
them to challenge host immune system, some for a few weeks and others up to a complete
compromise. Paradoxically, viral genomes are both complex and simple. Complex because
amino acid mutation rates are very high, and yet viruses remain functional. Simple
because they have barely around 10 types of proteins, so viral protein-protein interaction
networks are not insightful. In this work we use fine-grained amino acid level information
and their evolutionary characteristics obtained from large-scale genomic data to develop a
statistical panel, towards the goal of developing quantitative descriptors for the biological
complexity of viruses. Networks were constructed from pairwise covariation of amino
acids and were statistically analyzed. Three differentiating factors arise: predominantly
intra- vs inter-protein covariance relations, the nature of the node degree distribution and
network density. Interestingly, the covariance relations were primarily intra-protein in
avian influenza and inter-protein in HIV. The degree distributions showed two universality
classes: a power-law with exponent -1 in HIV and avian-influenza, random behavior in
human flu and dengue. The calculated covariance network density correlates well with the
mortality strengths of viruses on the viral-Richter scale. These observations suggest the
potential utility of the statistical metrics for describing the covariance patterns in viruses.
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Our host-virus interaction analysis point to the possibility that host proteins which can
interact with multiple viral proteins may be responsible for shaping the inter-protein
covariance relations. With the available data, it appears that network density might be
a surrogate for the virus Richter scale, however the hypothesis needs a re-examination
when large scale complete genome data for more viruses becomes available.

2.1 Introduction
The genome size and complexities in different organisms vary widely. While bacteria
have genes encoding several thousand types of proteins, most viruses have barely around
ten types of proteins. This is true for viruses as benign as common flu to the lethal ones
like ebola. As the number of base-pairs encoding these genes across the species varies
from hundreds of millions to tens of thousands, the mutation rate which is the chance of
making an error over a generation increases by many orders of magnitude.[1, 2] Despite
this high rate of mutations or errors in the amino acids of viral proteins, many viruses
remain functional and infect the hosts possibly because many deleterious mutations
are compensated by other mutations. Continuously evolving viruses thus become much
more unpredictable both for the immune system as well as the drugs developed against
them. Characterizing the evolutionary behavior of viruses will thus be an important step
towards understanding the complexity of viruses. Yet, to date there is no theoretical way
of describing the complexity of viruses and their evolution.

One way of describing the systems-level complexity involved in healthy and diseased
cells is by studying interaction networks. Biological networks can be formed out of
transient molecular interactions such as in proteins interacting with other proteins.[3, 4]
Metabolic[5] and gene regulatory networks[6] are other examples of functional cellular
networks. Disease networks on the other hand try to connect genotypes with phenotypes.[7,
8] Protein-protein interaction networks have been used to describe the complexity of
different systems from E. coli to humans.[9] Protein-protein interaction networks reveal
several insights into the cellular functioning, such as the proteins in the network hubs
which ubiquitously interact with other proteins, the evolutionary conservation of the
networks across different species, and systems-level stability of the networks under removal
of certain proteins.

Viruses have high rates of mutation, possibly arising out of their complex interactions
with hundreds of human host proteins[10] during viral replication and pathogenesis.[11]
Viral proteins evolve either to reduce certain interactions or to maintain them as the host
proteins themselves undergo mutations.[12, 13] There is increasing number of studies
that reveal these virus-host interactions. The focus of the present work is however, to
statistically describe the viruses at the complete genome level, selecting a scale that is
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bigger than a single protein and smaller than the virus-host interactions. Since viruses
have only around ten types of proteins, building interaction maps either at the protein level
or at the domain level will have too little information to draw systems level inferences or
to compare one virus with another. Since the uniqueness of viruses is their high mutation
rates, fine-graining with a focus on amino acid interactions is statistically and biologically
more meaningful.[14–17] Finer scale manifestations of protein-level interactomes[18] have
been studied in the domain-level interactomes of C. elegans [19] as well as in the amino
acid level interactions in viruses.[16, 17] The consequences of such studies span from the
potential that it may be possible to define a systems-level metric for the viral complexity
to identifying suitable strategies for drug discovery by highlighting the amino acid level
interactions. In this work, we explore the former aspect on how viral or viral genomic
complexity may be defined, a question that has not been asked so far to the best of
our knowledge. Amino acid level covariance can arise either from structural constraints
between proximal amino acids or because of functional constraints from amino acids
at distal sites or other proteins or due to phylogeny.[20, 21] Several studies focused on
building amino acid interaction networks, starting from the three dimensional structural
data of proteins.[14, 15, 22] The utility of structure based methods is limited to availability
of the structures, and to structurally proximal relations. Conversely, using amino acid co-
evolutionary couplings from abundant homologous sequence data of multiple species,[23]
bioinformatic approaches such as Statistical Coupling Analysis (SCA),[24] Direct Coupling
Analysis[25] and GREMLIN[26] could predict hotspots of proteins, active sites of enzymes,
de novo three dimensional structures,[27, 28] protein-protein contacts,[29] functionally
related clusters of amino acids[30] and the vulnerability of viruses.[31] In this study, we
use amino acid covariance networks from whole genome data to study the systems level
characteristics of viruses. Earlier studies had explored and identified the genome-wide
amino-acid co-variational couplings in various viruses.[17] The analysis was based on the
smaller data sets available then, and the mechanism underlying the observed power-law,
which is different from the ones in commonly studied complex networks, was not explored.
In this work, we use large-scale complete genome data obtained from thousands of
sequences of each virus to build amino acid covariance networks. We further use these
network characteristics to probe the systems level complexity of the interaction networks,
with possible implications for defining the biological complexity of viruses.
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2.2 Results

2.2.1 Amino acid covariance networks

Degree of conservation is a statistical measure at individual amino acid level, and
covariance is its extension to pairwise amino acid interactions. In this work we create a
systems level extension of this pairwise covariance, the amino acid covariance network,
which can represent the statistical nature of the variations in the complete viral genome
across patients. Large scale genomic data of viruses was obtained from the NCBI servers
(Methods section). With the current publicly available data, and our constraint that
complete genome data from at least 1000 patients is available, only five viruses were chosen
for analysis: HIV-1 subtype B (referred to as HIV), hepatitis subtype B (referred to as
hepatitis), dengue, avian and human influenza subtype A (referred to as human influenza);
however, the availability of such data is increasing. Multiple Sequence Alignment (MSA)
of the complete genome data from all patients was performed. Using consensus sequence
as a reference, the entire MSA was converted into a binary representation, 1 if the amino
acid at a given position in a sequence is the same as that in the consensus sequence,
0 otherwise. Using the Statistical Coupling Analysis protocol,[24] weighted covariance
matrix C that quantifies the relations among the different amino acids was created.
The covariance matrix was further corrected for phylogeny effects by eliminating the
component corresponding to the highest eigen value, as well by removing the modes with
eigenvalues smaller than the eigenvalues of a random matrix (Methods section). Since
the sequences for viruses which are from a cohort rather than across multiple species
are closely related, the modes other than the first one also could have contribution from
phylogeny and hence the covariance can have phylogenetic origin. The data on pairwise
covariance was then converted into a network representation, where the amino acids form
the nodes and the covariance relations form the edges or the connections between the
nodes. The network representation allows visualization and analysis of the relations at
a complete genome level, more intuitively than with covariance matrices, C. If in the
covariance matrix any element Cij relating amino acids i and j exceeds a threshold C,
|Cij| > Cth, then the covariance relation is considered to be significant and an edge i —j

is created in the network. As it is demonstrated later, the threshold did not affect the
broad statistical conclusions. The amino acid covariance networks for the viruses are
shown in Figure 2.1.
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Figure 2.1: Covariance network from complete genome analysis of different viruses:
(A) HIV, (B) avian influenza and (C) Hepatitis (D) Dengue (E) Human influenza. The
networks are generated using covariance strength as a weight. The side bar indicates the
different types of proteins found in these viruses, as well as the coloring notation used.
The networks show three to four major clusters. While in HIV, each cluster has a mixed
representation from all the proteins, avian influenza clusters are mainly from intraprotein
covariance relations. Network representations were generated using Cytoscape. [32]
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2.2.2 Intra-protein vs. inter-protein clusters

Using the complete genome data from different patients, the covariance networks for
different viruses were constructed. We performed the Principal Component Analysis
on the covariance matrix, rank ordered the eigenvalues and used Cattell’s criterion[33]
for noting the significant number of clusters. This criterion resulted in about 3 to 4
significant clusters for all the viruses. Clustering of nodes was also performed in Cytoscape
software, using correlation as a weight (Figure 2.1) with the goal of observing patterns
which are more general than those seen in pairwise relations and this analysis also
resulted in 3 to 4 significant clusters. As can be seen, the amino-acid composition of
each of the clusters in the viruses was noticeably different. In HIV the inter-protein
covariance relations are much stronger. The same qualitative difference is quantitatively
summarized by the number of connections within and between different proteins in Tables
A.1 to A.5 of Appendix A. The summary of the fine-grained inter- versus intra-protein
covariance relation strengths in each of the clusters is visualized as chord-diagrams and
the compositions of the clusters from different proteins are represented in Figures A.1
to A.5 and A.6 respectively (Appendix A). Seen at the protein-protein interaction level,
clearly there are interactions between any pair of proteins, however, the differences in
the numbers of interactions or the overall strengths come from basing the analysis at
an amino acid level. For dengue, hepatitis and human influenza also the clusters have
residues from multiple proteins.

2.2.3 Node degree distribution

One advantage of transforming the covariance matrix into a network is that several
systems-level statistical analyses can be performed. The complexity of the networks is
analyzed by studying its node-degree distribution, n(k) - the number of times a node
with a certain number of edges k appears in the network.[34] Two commonly observed
universality classes in these distributions - power-law and Poissonian, suggest a systematic
or random underlying basis,[34] and these occur in the amino acid degree distributions
as well. In HIV, power-law n(k) ∼ k−γ, γ ∼ 1, was significantly observed, while dengue
and human influenza show random distribution (Figure 2.2). Hepatitis and avian
influenza on the other hand showed a mixed behavior including both powerlaw and
random behaviors (Figure 2.2). We further analyzed the role of the threshold by varying
Cth in the analysis of hepatitis. As shown in Figure 2.3, as the Cth was increased
from 0.50 to 2.0, the powerlaw component becomes more pronounced (similar data
for other viruses is shown in Figures A.7 to A.10 of Appendix A. The data shows a
clear separation of network connections arising from two different origins, an organized
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Figure 2.2: Node degree distribution from the complete genome data in different viruses
showing a range of behavior from a pure power-law (HIV) to a pure-random network
behavior (dengue and human influenza). The dashed line in the panels for hepatitis and
HIV is shown for reference and corresponds to power-law with exponent -1. A cutoff
Cth = 0.7 was used as a threshold for establishing network edge connections. The effect
of changing the cutoff is discussed separately.

network of covariance above a certain threshold and random network connections at
lower thresholds of covariance. Within this powerlaw regime a further change in cutoff
did not result in a change in the exponent significantly. We also performed another
simple phylogenetic check by comparing the analysis on dengue serotype 1 (Figure A.11
of Appendix A), with that on the combined data from all dengue serotypes. While this
analysis does not prove that the phylogenetic effects were negligible, it does suggest that
even strong phylogenetic corrections such as performing the analysis only on one subtype
did not change the conclusions.

The analysis presented so far is the statistical description of data collected from
patients and is averaged over all the years of sample collection. In order to study the
temporal evolution patterns, we performed time analysis on the data set which is most
abundant, human influenza (subtype A). We divided the complete genome data from
human influenza into periods where the number of sequences is similar (∼ 2000 complete
genomes each). A node-distribution analysis shows that over this period, there is no
significant change in the covariance complexity of viruses (Figure A.12 of Appendix A).
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Figure 2.3: Node degree distribution sensitivity was studied in hepatitis network by
changing the cut-off value used for defining edge connectivity between the nodes. At a
very low cut-off there is a mixed behaviour in the node degree distribution, with both
power-law as well as a random component. As the cut-off is increased, the random
component is selectively removed, while preserving the power-law component. This
suggests a clear separation of network connections from random and systematic origins.
By choosing a threshold value, one can filter and study just the systematic component.
The dashed line corresponding to power-law with exponent -1 is drawn for reference.

2.2.4 Network density

Network density is the fraction of the edges (connections) between the nodes in a network
relative to the total number of edges possible between the nodes from purely combinatorial
considerations that edges can be formed between any pair of nodes. The densities were
calculated using Cytoscape software, and they range from sparse to dense networks.
These parameters are related to the qualitative nature of the node-degree distribution,
as the sparse networks tend to be scale-free, while dense networks are more likely to
be random networks. In fact, network density parameter quantified the transition from
different degrees of randomness to systematic connections which result in power-laws, and
we wanted to compare this with a known metric of biological complexity. The only scale
that we are aware of, that makes a direct comparison between the impact of different
viruses is the Virus Richter scale,[35] which ranks viruses according to the logarithm of
the mortality they cause. The network density for each virus was calculated by choosing
the threshold which was the cusp of the transition between random to powerlaw behaviors.
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Figure 2.4: The relation between the complexity of the virus, as described by Virus
Richter scale, and its network characteristic - density (�)

The network density from our calculations was plotted against the virus Richter scale in
Figure 2.4, and the two are anti-correlated with a Pearson correlation -0.929 (p ≈ 0.07).

2.2.5 Robustness of networks

In typical network analyses, pairwise relations are used for constructing the network, and
the systems-level statistical properties are interpreted from it. As such it is important to
see the effect of the removal of a few nodes and the edges connected to them.[36] The
change in the system level properties such as network diameter on the removal of a few
nodes has been interpreted as the sensitivity of the network to a random or targeted
attack.[36] We checked for the robustness of amino acid covariance network by removing
different fractions of nodes and all the edges connecting to them, the spirit being that the
critical amino acids or groups of them can be a potential drug target. The nodes to be
removed were chosen according to two strategies: (a) randomly or (b) by picking those
with the highest degree, to simulate a random error or a targeted attack, Figure 2.5
shows how the effective diameter - a metric of network connectivity - is affected by the
targeted or random removal. Targeted removal has the highest effect on HIV followed by
avian influenza. For these two virus covariance data sets, the difference between targeted
and random removal of nodes is significant, compared to all other viruses. The disruption
of the network in the case of HIV, with the removal of a small fraction of the nodes,
suggests that very few nodes act as hubs and moderate most of the interactions in the
network. The overall characteristics of robustness may be intuitively expected from the
the power-law distribution of nodes.
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Figure 2.5: The robustness of the networks is studied by calculating the change in the
network diameter in response to targeted and random removal of nodes.[36] HIV and
avian-influenza data show a significant difference between targeted and random removal,
the latter being much lower, suggesting that these networks can be destabilized more by
a targeted attack. After removing a very high fraction of nodes, networks breaks down
into smaller disconnected clusters, resulting in a decreased diameter, and this part of the
data where the network is heavily destabilized is not shown in this graph.

2.2.6 Powerlaw exponent

The powerlaw exponents, γ ∼ 1, observed in our study is different from the usually
observed power-laws with γ ∼ 2− 3 for which there are several mechanistic explanations
including influencer models.[34] In our analysis the exponent was also robust to halving the
data sets, and needed an alternative interpretation relevant for covariance. Considering
amino acid conservation (φ) as a surrogate for their fitness, we developed a fitness based
model.[37] The model uses two distributions derived from the whole genome data: (a) the
distribution of the conservation among the amino acids, p(φ) (Figure A.13 of Appendix A)
(b) the covariance fitness potential of the node η(φ) corresponding to a given conservation
of the amino acids. The latter can be modeled as a gaussian distribution, with minimal
covariance fitness for amino acids with very high and very low conservation, a peak in
between at φm and standard deviation σ. Considering a pair of amino acid nodes i and
j, and two random numbers r1 and r2 drawn from a uniform distribution, edge i —j is
created in our model if r1 ∗ r2 ≤ η(φi) ∗ η(φj). This algorithm generates a node-degree
distribution with γ ∼ 1 (Figure A.14 of Appendix A). The model explains power-law
with exponent γ ∼ 1, random distribution, and a transition to the powerlaw, as seen in
hepatitis (Figure 2.3). For example, for HIV, the conclusion is relatively invariant for
a gaussian with φm = 0.6− 0.7 and σ = 0.02− 0.07. As the parameters go out of this



2.3 Discussion 33

range, node degree distribution eventually transforms to a random network model.

2.2.7 Correlation with host protein interactions

We examined the possible relation of covariance couplings to host-virus interactions, with
the interactomes from dengue, human influenza and HIV-1. Two different comparisons
were made: (i) the number of common host proteins between a pair of proteins and the
total number of inter-protein covariance couplings for this pair (Figure A.15 of Appendix
A) (ii) the importance of a viral protein in the combined virus-host interactome, quantified
by the eigenvector centrality, and the number of total covariance couplings a protein has
(Figure A.16 in Appendix A). Other centrality measures were also analyzed, but there
was no difference in the conclusions. The two different comparisons showed correlation
between the number of covariance couplings and the strength of interactions in the
interactome. The same pattern could not be seen in the interactome data we used for the
other viruses. With the data available, the viral interprotein interactions were classified
as direct, indirect mediated by host proteins, and non-existent (Figure A.17 of Appendix
A), but no clear inference could be drawn. We performed a complementary analysis by
counting the number of viral proteins that each host protein interacts with. The analysis
represented in Figure 2.6 shows that the viral proteins are clustered closely in dengue
and influenza interactomes because many of the host proteins interact with more than
one viral protein, making the couplings stronger.

2.3 Discussion
Amino acid mutations are robustly networked: Mutations occur very frequently
among viral proteins. Yet among these variations occurring at different sites, in different
viral proteins, there are interdependencies. Most co-evolution or covariance based studies
focused on bacterial proteins, and very few on viral proteins. Some examples are of
intraprotein co-evolutionary interactions in the GAG polyprotein of HIV subtype B,[31]
with the goal of identifying collectively-coordinated functional units within these proteins,
as well as the co-variation networks in genome wide virus data.[17] While interesting
questions on genome-wide relationships among different viruses had been raised in that
work, in a similar spirit as the present work, the analyses were based on less than hundred
sequences. Several issues remained unclear - the sensitivity of these analyses to larger
data sets, to a different choice of the definition of covariance, the origins of power-law and
possible connections to the biological complexity of viruses. These are the questions we
explored in this work. Even with the choice of larger data sets, the covariance relations
remained.

Almost all the networks are robust to the random or targeted removal of about 10%
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Figure 2.6: Analysis of host-virus interactions was performed using the interactomes
of human protein with HIV, dengue and human influenza (details in Methods section).
The networks of interactions are shown in (A), (B), (C) with the host and viral proteins
represented in cyan and red colors respectively. The number of viral proteins any given
human protein is interacting with is denoted as the node-degree (viral) and the number
of such proteins in the interactome are indicated on the y-axis in (D), (E), (F). HIV has
the highest number of proteins interacting with a single viral protein and dengue has the
largest number of host proteins interacting with more than one viral protein.

of nodes and they start showing differential behavior beyond this (Figure 2.5). The
differences in network characteristics relative to a random or a targeted node removal
(Figure 2.5), combined with one of the interpretations in the network theory,[36] leads
us to a possible hypothesis. Scale free (powerlaw) networks were originally speculated
to be stable against any attack, and only later[36] it was learnt that while this may
be true under a random attack, these networks are vulnerable to a targeted attack. A
possible inference, specifically for the viral complexity, is that the viruses with powerlaw
covariance networks may be vulnerable to an attack on a group of their amino acids in a
targeted manner. This inference is conceptual in nature, suggesting that there might be
a better way to design drugs targeting even these otherwise complicated viruses. The
drug targets may be chosen from either the same protein or from multiple proteins, as
suggested by the strength of intra- or inter-protein interaction networks. However, the
practical choices of drug targets, chosen from the networks, and the possible consequences
are out of the scope of the present work.
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Networks are statistically significant: Most co-evolution studies focused on using
homologous sequences of bacterial proteins originating from different species for their
analysis, and required the number of sequences[30, 38] to be anywhere from 100 to
1000. Without highlighting the mathematical details, using a metric of distance between
sequences, a concept of effective sequences was introduced[30, 38] to discount the sequences
that are close to one another within the same cluster of sequences and but are further
apart from the other clusters. The sequences which are with an identity better than 0.8
were effectively considered to be the same sequence, thus weighing down the total number
of sequences. The present analysis is different from the commonly used co-evolution
studies in several ways: (i) Sequences are from within the subspace of the same virus,
representing polymorphisms, rather than from the hypothetical sample set from all viruses
or all proteins. Thus the sequence identities are high and a cutoff of 0.8 was not relevant
(ii) Further, weighting of the sequences was not used in our covariance network generation
(iii) By choosing increasing homology cut-offs over 0.9 (Figure A.18 of Appendix A),
which are still relevant for the virus polymorphisms, the number of effective sequences
increases over 100. We thus believe that the size of the sequence data sets used was
sufficient, although it might appear to be insufficient based on the standard definitions
of number of effective sequences. Further, to eliminate the possibility that the observed
patterns in the node degree distribution are an artefact because of the higher number
of effective sequences of HIV and avian influenza, the covariance analysis was repeated
using randomly selected 200 sequences from the alignment. Even with this significantly
reduced number of sequences, the statistical nature of the couplings did not change for
HIV and avian influenza. The characteristics of the distribution remained the same for
all the viruses as shown in Figure A.19 of Appendix A.

We further verified the statistical significance and reliability by (i) halving the number
of sequences, which did not change the conclusions (ii) evaluating the p-value of the
connections, which for all the connections turned out to be < 0.01. We also repeated the
analyses separately on the raw covariance matrix. Although the number of connections
drastically increased compared to that when the cleaned matrix was used, the statistical
characteristics such as powerlaw dependence and the anticorrelation with the virus Richter
scale did not change (data not shown). Understanding that several eigenvalues, not just
the first one could be contributing to phylogenetic effects,[21] we repeated the calculations
by removing the contributions from top 5 and 10 eigenvalues until the networks had very
few connections. The results shown in Figures A.20 and A.21 of Appendix A suggest that
the qualitative patterns of powerlaw and random network did not change. We thus believe
that the covariance connections observed in our analysis were statistically significant.
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The analysis was repeated using an alternative method, MaxSubTree,[39] for identify-
ing the covariance relations. The two objectives of this investigation were to use a method
that is suitable for finding co-evolving or covarying residues from sequences with variable
divergences[39] and also to show that the topology of the covariance network is not
sensitive to the choice of our method. As dengue virus had the least diverged sequences,
the analysis was performed using the publicly available code for MaxSubTree.[39] We
observed random topology for the covariance network generated using this method also
(Figure A.22 of Appendix A).
Covariance is related to conservation: The general pattern in node-degree distribu-
tion was that some networks are scale-free with powerlaw distribution and others are
random networks. In fact, it was seen that two different classes of covariance, scale-
free and random component, were simultaneously present and the scale-free component
became significant at higher thresholds (Cth) for some viruses. While the formation
of random network connections at lower thresholds may be expected, having powerlaw
distributed patterns at higher thresholds is non-trivial and we discuss further about a
possible explanation below.

While the covariance networks can be statistically described using scale-free or random
node-degree distributions, insights into the covariance come from the observed exponent,
γ ∼ 1, in the scale-free distribution. Random networks (Erdos-Renyi model), small
world networks (Watts-Strogatz model [40]) and self-similar networks (Barabasi-Albert
model[41, 42]) arising in diverse contexts such as WWW, protein-protein interactions,
citation networks, etc have been well studied. The powerlaw with γ ∼ 1 observed in the
covariance network is different from the typical powerlaws γ varying from 2 to 3 and is
closer to the behavior in co-authorship networks. Some of the mechanisms that explain
the observed phenomena are preferential attachment model[34] where newer edges are
added to a node depending on its current degree, or based on its pre-defined fitness or
a potential for a degree. Unlike a citation network, there is no reason to believe that
the covariance network evolves with a continuous increase in the number of nodes and
edges. In the model presented in this work, powerlaw with exponent γ ∼ 1 was derived
assuming that the covariance between a given pair of amino acids depends simultaneously
on the conservation of both these amino acids under consideration. The model captures
the observed powerlaw with the minimal assumption that the covariation of a pair of
amino acids is related simultaneously to their conservations, which seems plausible.
Comparative mortality from viruses: An important question to pursue is about why
the human immune system finds it easy to fight certain infections and not others. On the
surface, defining the complexity of the viral infections seems plausible because the viral
genome is relatively simple, and is about 1000 times smaller than the bacterial genome.
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An attempt to define and quantify the complexity of the viral genome seems relevant
and timely, especially since the genomic data is becoming readily available. However, it
is difficult to describe complexity, and even more to quantify it with one single measure.
The lack of a simple and precise metric for complexity is a challenge both in biology
as well as from theoretical calculations. For biological complexity of viruses, here we
use the strength on virus Richter scale[35] as a surrogate measure. Virus Richter scale
indicates mortality from viruses, which implicitly includes several factors from how fast
the virus mutates to how poor the public health provisions are. We use virus Richter
scale as, to the best of our knowledge, there is no other metric comparing the strengths
of viruses or difficulty of developing vaccines against them. Figure 2.4 shows a plot
between the virus strength and the network characteristic - network density. Richter scale
data for avian influenza was not available and hence was not included in this analysis.
The observed anti-correlation between the network density which is a network metric
and the biological metric is obtained from just four viruses (p = 0.07), and needs to be
re-evaluated when further data becomes available. However, it raises the possibility that
the complexity of the biology and the pathogenicity of the virus may be reflected in the
amino acid covariance networks.

Node-degree distribution of the covariance networks, depending on the virus, was
demonstrated to assume qualitative patterns ranging from predominantly powerlaw to a
predominantly random network distribution. It was also clear from the results that the
random component quantitatively has a higher contribution to the node degree. Thus
the higher values of the network density in Figure 2.4 reflect higher contributions from
the random components, and the reducing network density describes the transition from
primarily random network to one with a powerlaw. The former type of network was
seen more sensitive to random attacks (Figure 2.5), which offers a plausible thread of
logic for why with the continuously decreasing network density, decreases the randomly
networked connections making the overall network of interactions resilient to random
attacks on them.
Classifying the complexity of viral genomes: One might also have a similar feeling
for which viruses are complex: either by examining the phylogenetic trees of the evolved
sequences (Figures A.23 and A.24 of Appendix A) or even simply by knowing the time
since when they infected the hosts: Influenza and hepatitis infections go back to thousands
of years, the youngest among dengue serotype strains is about 200 years old and HIV and
avian influenza are relatively younger with less than hundred years of exposure to their
human hosts. Other works in the literature[43] have clustered viruses based on the shape
of phylogenetic tree and found HIV and hepatitis C virus clustered together while dengue
and human influenza A appeared in another cluster along with many other viruses. Thus
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introducing the network based analysis may at first seem redundant. However, the present
work aims at developing several comparative measures between different viruses. Three
different metrics were used, two of them qualitative: (1) are the amino acid covariance
relations primarily intra-protein or mixed? (2) Is the node degree distribution scale-free
or does it form a random network and (3) a quantitative measure of the network density.
The complete genomic data from the five different viruses can be classified according to
these metrics, and an anti-correlation with the viral Richter scale and the network density
could also be observed. The standard deviation of the pairwise identities in the sequence
data was also found to be negatively correlated with virus richter scale (Figure A.25 of
Appendix A). The work thus raises questions on whether these statistical parameters
can be used for describing the whole genome level viral evolution, distinguishing the
viruses and the possibility to correlate these statistical metrics to the complexity of the
viruses. When more data on viruses becomes available, it remains to be seen whether
these three metrics are sufficient to classify the genomic complexity of viruses. The
work also raises the possibility that by a suitable choice of target amino acids from the
networks of covariance, it may be possible to destabilize the networks of even the complex
viruses, with possible implications for drug discovery.
Host-virus interactions may be responsible for interprotein interactions: In-
teraction with host machinery and adaptation is an inevitable part of the virus infection
cycle.[11] The multitude of coevolutionary relations among viral proteins could be arising
out of direct interactions among themselves as well as because of the common interaction
partners in the host. These interaction networks involve hundreds of human proteins[10]
and viral proteins adapt with mutations in these host proteins.[12, 13] We investigated
the possible correlation of number of common interaction partners and the number of
covariance connections for protein pairs for HIV, human influenza and dengue (Methods
section) and is shown in Figure A.15 of Appendix A. The positive correlation between
the strength of covariance couplings and the number of common interacting host proteins
in dengue virus was partly reassuring about the utility of covariance method, although
the no pattern could be seen in the other two virus-host interactions.

By studying the host-virus protein interactome, we could observe (Figure 2.6) that
dengue and human influenza have host proteins which interact with more than one
viral protein. The evolution of viral proteins under the selection pressure from the
host-virus protein-protein interaction may thus lead to a higher level of randomization in
the interactions compared to HIV, where a very large number of host proteins interacted
mostly with a single viral protein.
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2.4 Conclusions
By using a network representation of amino acid covariance we had seen three different
characteristics in the large scale complete genome data -a differentiable clustering with
significant intra-protein or inter-protein couplings, the node degrees which have a struc-
tured power-law or random origins and the network density parameter. When genomic
data from more viruses becomes available, it will be interesting to see if these three
different measures of statistical complexity of genomes can be used to classify viruses into
different categories, with a possible mapping to their biological or pathogenic complexity.
Further it will be interesting to see if the inter-protein or intra-protein couplings are
related to the host adaptation (HIV) or the host being a neutral carrier (avian influenza)
and how such patterns evolve with time as the viruses adapt from being pandemics to
epidemics.

2.5 Methods
Sequence selection: The complete genome data was curated from publicly available
databases. With the two constraints that the complete genome data has to be available,
and the number of sequences have to be more than 1000, we identified five viruses from
the NCBI servers (https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?opt=
virus&taxid=10239&host=human#). The individual protein data from different samples
are available at the NCBI servers. However it was convenient to work with sources where
the data curated by patient identity. The complete genome datasets available in the
protein format were downloaded from different sources: HIV (http://www.hiv.lanl.gov),
dengue (https://www.viprbrc.org/brc/home.spg?decorator=flavi_dengue), hepatitis
(https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?seqtype=2), human and avian influenza
(http://platform.gisaid.org/). Any sequence where information about all the proteins
was not available was deleted from the analysis.

Multiple Sequence Alignment: Multiple sequence alignment of the curated sequences
was performed using Clustal-Omega. Sequences which had a gap frequency more than
20% were excluded from the analysis.

Consensus sequence: The consensus sequence for each virus was generated using the
most occurring amino acid at every given position. Using this sequence as a reference, the
entire complete genome dataset was converted into a binary format: 1 if the amino acid
in a given sequence matches amino acid at the corresponding position in the consensus
sequence. This binarization or creating boolean strings is similar to the method used
in Statistical Coupling Analysis,[30] which identified several functional relations among
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different amino acids.

Covariance networks: The chance of covariation Cij between a pair of amino acids
i and j is calculated by averaging the columns i and j of the boolean sequences using
either an unweighted or weighted protocol following the Statistical Coupling Analysis
protocol.[30] Unweighted and normalized covariance is defined as:
Cunweighted
ij = (〈xixj〉s − 〈xi〉s〈xj〉s) /

(√
〈x2i 〉s − 〈xi〉2s

√
〈x2j〉s − 〈xj〉2s

)
, where xi is the ith

column in the boolean sequence and 〈〉s denotes the average over sequences. Weighted
covariance is defined as
Cweighted
ij = φiφj |〈xixj〉s − 〈xi〉s〈xj〉s|, where φi = ln ((〈xi〉s(1− qai)) / (qai(1− 〈xsi 〉s))),

and qai is the probability with which the amino acid ai at position i in the consensus
sequence occurs among all proteins. In the present work we use Cweighted

ij and an undirected
network link i − j is created if Cij exceeds a chosen cutoff c. The sensitivity of the
analysis to c is discussed in the article.

Spectral cleaning: Since the correlation matrix C is symmetric, its eigenvalues are
real and the eigenvectors can be used for spectral decomposition as: C =

∑
k λk|k〉〈k|.

The component corresponding to the highest eigenvalue of the correlation matrix is
the contribution from phylogeny and is removed. Also the contribution from all the
components having eigenvalues smaller than the second highest eigenvalue of the correla-
tion matrix of randomized alignment is removed. So the cleaned correlation matrix is:
Ccleaned =

∑r
k=2 λk|k〉〈k| where λ2 > λ3 > ...λr > λRan. λRan is the limiting value of the

eigenvalue from the continuum of eigenvalues expected for the random matrix.

Network parametersMost network analyses, such as obtaining node degree distribution,
clustering, network density were performed using Cytoscape[32]. Network diameter was
calculated using NetworkX module of Python[44].

Clustering : We have used prefuse force directed layout with covariance as the edge
weight for visualizing the covariance networks. In this layout, communities appear as
groups of nodes,[45] hence it helps in identifying the community structures in networks.

Cattell’s criterion: The eigen values of the correlation matrix was sorted in the
descending order and plotted. The number of clusters is determined as the number of
eigen values preceding the sharp change in the eigen values[33].

Robustness of network: 1) Error or Random removal : Nodes were selected randomly
and removed. All the edges connecting to them were also removed. 2) Trageted attack
: The nodes were sorted according to degree and the nodes with higher degree were
removed first.
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Number of effective sequences: Number of effective sequences was calculated as
N(I) =

∑n
k=1 1/Nk where Nk is the number of sequences having identity > I with the

kth sequence and n is the total number of sequences in the alignment. It was calculated
before binarizing the alignment.

Virus-Host interactions: For virus-host interactions we found the most comprehen-
sive data for: HIV, human influenza and dengue and we present the analyses for the
same. The protein-protein interactions in the virus-host system was downloaded from
virus mentha[46] (https://virusmentha.uniroma2.it/) for human influenza and HIV.
For dengue virus the interactions with human host were obtained from DenvInt[47]
(https://denvint.000webhostapp.com/index.html) as it had more records. Human protein
interactome was obtained from mentha[48] (http://mentha.uniroma2.it/). The centrality
measures for the combined protein interaction network of virus and host was calculated
using the Networkx module of Python.

Chord diagrams: Chord diagrams showing protein-protein interaction strengths were
prepared using the online tool Circos (http://circos.ca/)[49].

Phylogenetic tree: Rooted binary phylogenetic trees for all viruses were created in
Matlab2017 using the Bioinformatics Toolbox. The seqlinkage function was used with
the Jukes-Cantor pairwise distances between sequences.

MaxSubTree analysis: MaxSubTree[39] being a combinatorial approach can identify
co-evolving amino acids from sequence alignments having variable divergence. The
program is available at http://www.ihes.fr/,carbone/data7/MaxSubTree.tgz.

Data Availability: The datasets and the codes used for the analyses in the present
study are available at https://doi.org/10.17605/OSF.IO/S3VUB
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Chapter 3

Amino Acid Impact Factor

Abstract

Amino acid mutations in proteins are random and those mutations which are bene-
ficial or neutral survive during the course of evolution. Conservation or co-evolution
analyses are performed on the multiple sequence alignment of homologous proteins to
understand how important different amino acids or groups of them are. However, these
traditional analyses do not explore the directed influence of amino acid mutations, such
as compensatory effects. In this work we develop a method to capture the directed
evolutionary impact of one amino acid on all other amino acids, and provide a visual
network representation for it. The method developed for these directed networks of inter-
and intra-protein evolutionary interactions can also be used for noting the differences
in amino acid evolution between the control and experimental groups. The analysis is
illustrated with a few examples, where the method identifies several directed interactions
of functionally critical amino acids. The impact of an amino acid is quantified as the
number of amino acids that are influenced as a consequence of its mutation, and it
is intended to summarize the compensatory mutations in large evolutionary sequence
data sets as well as to rationally identify targets for mutagenesis when their functional
significance can not be assessed using structure or conservation.

3.1 Introduction
Amino acid co-evolution analysis captures evolutionary patterns as has been presented in
Chapter 2. A number of co-evolutionary methods have been developed[1–6], some methods
combined the predictions from different algorithms to identify drug resistance patterns in
a cohort.[7] But unlike all these methods bayesian networks show directional dependencies
between amino acids, with potential implications for HIV-1 drug resistance.[8] While

47
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potentially Bayesian networks can be very powerful, the directional relations may not be
robust nevertheless.[8] Furthermore, they solve inverse problem from the data which may
not be as intuitive as the co-evolution networks.

Asymmetric or directional dependencies effects have been studied in other biological
contexts such as in gene expression data[9] and regulatory networks.[10] However, in
the context of mutations, all the efforts focused on developing symmetric co-evolution
measures of amino acid pairs, and they can not suggest a directed relation between them.
The idea is to capture how many amino acids j are likely to undergo a compensatory
change in response to a change in amino acid i, which may be important for structure or
function of the protein. These relations can be obtained between pairs of amino acids that
are either within the same protein or between two interacting proteins. In order to visualize
the (un)directed co-evolutionary relations, an effective tool is network representation,
which has been used in metabolic interaction networks,[11] protein-protein interaction
networks,[12, 13] gene regulatory networks,[14] amino acid interaction networks[15] and
protein structural analysis[16, 17] as well. In this work we introduce an asymmetric
measure of the directed influence of one amino acid over another amino acid from the
same or another protein, use network representation for visualizing it, and illustrate the
method with examples.

3.2 Methods
Sequence selection and alignment: All the sequence data other than for HIV-1 was
obtained from Pfam database.[18] We used the full alignment provided by Pfam. For HIV-
1 proteins, the data was obtained from Los Alamos server (https://www.hiv.lanl.gov/).
Both the databases give aligned sequences. So separate sequence alignment was not
performed. But the alignment was truncated to the reference protein sequence and all
sequences having more than 20% gaps were eliminated from the alignment.
Master sequence: A master sequence is constructed for the MSA by using the most
occurring amino acid in each position. Following the master sequence creation, each
amino acid in the MSA is converted into a binary representation, denoting it by "1" if
the amino acid at a given position in a sequence is the same (conserved) as the one at the
same position in the master sequence, "0" otherwise. Gap is treated as 21st amino acid.
When gap becomes the mostly occurring amino acid, the second highest amino acid at
that position is taken. While this binary classification may seem restrictive, generalizing
this definition did not practically change the conclusions, as discussed later.
Directed Network: For any given pair of amino acids (i, j ) two conditional probabilities
are calculated:
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a. P (j = 1|i = 1) = (No. of sequences with i=1 and j=1)
(No. of sequences with i=1 and j=0 or 1)

, and

b. P (j = 0|i = 0) = (No. of sequences with i=0 and j=0)
(No. of sequences with i=0 and j=0 or 1)

As a probability P (j = 1|i = 1) and P (j = 0|i = 0) are positive numbers between 0

and 1, We consider an amino acid to be of a certain impact if both P (j = 1|i = 1) and
P (j = 0|i = 0) are simultaneously greater than or equal to a value 0 ≤ γ ≤ 1 which is
suitably chosen depending upon the specifics of the protein and the data set used.
Statistical analysis: Statistical significance of the relation between each pair of amino
acids was evaluated by a permutation test (2000 random shuffling of the columns). If
p-value obtained from this statistical test was below 0.01 directional dependence was
considered significant and used for further analysis.
Directed networks: If there is a directional dependence between two amino acids,
treated as nodes in the network terminology, they are considered to be connected by a
directed edge. The network representations for these data sets were created by displaying
the directed connections.
Impact Factor: Impact factor of an amino acid i with a cut-off γ is defined as the
number of amino acids j for which P (j = 1|i = 1) ≥ γ as well as P (j = 0|i = 0) ≥ γ.
Impact factor of amino acids is also interesting when considering inter-protein interactions.
In this case as well, a similar protocol is followed. MSA of the first protein is joined with
the MSA of the second protein, after matching the identities of each of the sequences
and ensuring that both the proteins are from the same sample. The rest of the analysis
is the same, finding the impact of residue i from the first protein, considering residue
j from the second protein. The impact factor of amino acid i on the second protein is
defined as the total number of all such residues j.
Dependency Factor: Similar to the impact factor, we define a dependency factor. The
dependency factor of an amino acid j is the total number of amino acids which impact it
with the same cut-off γ.

3.3 Results

3.3.1 Asymmetric relations and Impact calculation

In this work, we introduce directional co-evolutionary interactions among pairs of amino
acids, either from the same protein or from two different proteins. We use multiple
sequence alignments from homologous proteins to construct a master sequence, relative
to which an amino acid in a sequence is coded "1" if it is the most occurring amino
acid and "0" if it mutates to other alternatives (see Methods section). The dependence
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between amino acids i and j, schematically shown in Figure 3.1A is evaluated as follows.
A definition of asymmetric dependence between amino acids at site i and j was designed
using two conditional probabilities P (j = 1|i = 1) and P (j = 0|i = 0). The first of the
two conditional probabilities reflects how amino acid i, when it is conserved, imposes
conservation on j and the second reflects how a mutation in i imposes a compensatory
mutation on j. When both these probabilities are greater than a predefined cut-off γ, i
is considered to have an impact on j. The total number of such influences exerted by
the amino acid i is defined as its impact factor. While there may be alternative creative
ways to define asymmetry, the definition used here captures the directional correlations
in a simple and intuitive way. The choice of γ is discussed later.

We illustrate the calculation of intra-protein impact using two proteins: Dihydrofolate
reductase (DHFR) and Serine protease. DHFR plays an important role in the hydride
transfer from NADPH to dihydrofolate in the reduction reaction of dihydrofolate to
tetrahydrofolate. Figure 3.1B shows the two conditional probabilities discussed above for
all 158 amino acids with amino acid D27 as the reference. It can be seen that on using a
cut-off γ = 0.8, amino acid 27 does not have an impact on any other amino acid, while
with a cut-off of 0.7, it has an impact on three other amino acids L32, D37 and F153.
A partial network which shows all amino acids that are impacted by amino acid 27 is
then constructed (Figure 3.1C). Another example of impact calculation was performed
on serine protease, an enzyme catalyzing peptide bond cleavage. In the present work,
the cut-off was used strictly, without including the few data points that may be slightly
less than the cut-off. The impact factor analysis with γ = 0.7 identified 16 amino acids
from DHFR and 28 amino acids from serine protease and shown on their respective three
dimensional structures (Figure 3.2). The structural mapping shows that the high impact
residues could be spread out everywhere, with no specific spatial preference.

3.3.2 Cut-off and Impact factor

To check the sensitivity of the analysis to cut-off parameter as well as to data curation, we
repeated the analyses on serine protease. Firstly the analysis was performed by changing
γ = 0.7 to 0.8. Many residues that were having impact with γ = 0.7, continued to appear
with γ = 0.8 (Table B.1 in Appendix B). However, for every amino acid that appeared
at γ = 0.7, γ = 0.8 reduced the number of amino acids it impacted. Thus, while the
relative rank order of importance according to either of the choices of γ seems to be
similar, we further explored if there is a limit to the choice of γ. In the network science
terminology, the impact factor we defined is one of the centrality measures called the
out-degree, which is the number of connections going outward from a given node.[19] It
is obvious that as the cut-off is reduced, qualitatively number of nodes as well as the
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Figure 3.1: The work flow of creating directed networks. A: Schematic of the Multiple
Sequence Alignment and impact calculation B: Example of the impact analysis of one of
the amino acids of DHFR performed on 2303 sequences obtained from Pfam database[18]
(Pfam Id: PF00186) using PDB id 3QL3 as a reference. The green and blue lines drawn
at 0.7 and 0.8 represent the two cut-offs. Amino acid 27 impacts no amino acids with
γ = 0.8 and 3 at γ = 0.7. The data point at (1, 1) is the identity relation showing the
dependence of 27 on itself. It is not used in the analyses. C: Partial network that was
constructed for the impact of amino acid 27 and γ = 0.7.

A B

Figure 3.2: Amino acid residues with non-zero impact factor represented on the three
dimensional structures of proteins: A. DHFR. B. serine protease. Impact factor (amino
acids) for DHFR is: 3 (27), 2 (3, 57, 146), 1 (13, 14, 22, 31, 32, 55, 58, 90, 95, 135, 138,
149) and for serine protease is 8 (196), 3 (140, 194), 2 (19, 34, 102, 142, 182, 183, 184,
216, 228), 1 (29, 32, 40, 42, 57, 58, 100, 122, 136, 168, 189, 191, 201, 211, 226, 237).
The coloring convention for PDBs is: Impact 0 - gray, Impact 1 - blue, Impact 2 - cyan,
Impact 3 - green, Impact 8 - red.

number of outward going connections increase. We make a statistical comparison at the
complete network level by using node-degree distribution,[19] which plots number n vs.
the number of nodes with n outward going connections. The node-degree distributions
were analysed with different choices of γ for serine protease and DHFR (Figures B.1
and B.2 in Appendix B). The node degree distribution with power-law and poissonian
distributions are used to differentiate between ordered and random nature of network
connections.[19] InFigures B.1 and B.2 of Appendix B, one can see that below a certain
cut-off the graphs transition from power-law behavior towards poissonian distribution,
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suggesting a transition to random-networks. The choice of cut-off can thus be limited by
these node-degree distributions to avoid the system-level random connections.

When the number of sequences were halved, the master sequence itself can change
in principle, especially if a site has a conservation less than 30% or where there are two
residues with comparable frequency of occurrence. Among all the proteins we studied,
even though there were a few changes in the master sequences when the data set was
randomly halved, there were no changes in the amino acid interaction networks, except
in the case of Phosphoglycerate kinase (PGK). For PGK one residue position which had
appeared in the network had many connections and were not retained when the number
of sequences were changed.

3.3.3 Directed networks and Functional relevance

Distal mutation in DHFR: Using the present approach we summarize the compen-
satory mutations seen in the 2303 DHFR homologous sequences from the Pfam database
(Pfam Id :PF00186). Performing the impact factor analysis in DHFR shows that 16 amino
acids have impact with γ = 0.7. 21 connections were identified using the conditional
probability criteria described in the Methods section and all of them except one were
found to have p-value less than 0.01. The residues obtained with γ = 0.7 are shown on
the three dimensional structure of DHFR labeled with the color coding corresponding to
impact factor (Figure 3.2A). All the identified directed interactions are shown in Figure
3.3A as a network representation. The residues near to the folate binding pocket are
found to have impact on each other. Also the catalytic residue F31 has an impact on
catalytic residue I94. More interestingly the mutation at the residue position V13 has an
impact on residue G121 which may be essential for maintaining the correlated dynamics
between Met20 loop and the region near G121 and hence the catalytic activity.[20, 21]
Also it is notable that most of the interacting pair of residues identified in this way are
near in structure even though are far in sequence. The residues belonging to each of the
disconnected components of the network have comparable conservation.
Catalytic residues in Serine Protease: Impact analysis on 14659 sequences obtained
from Pfam (Pfam Id:PF00089) homologous to the 223 residue long serine protease shows
that there are 28 residues with non-zero impact factor at γ = 0.7, 11 with γ = 0.8

and 3 with γ = 0.9. Amino acids G216, G226, D189 and V183 which were functionally
associated with the rates of catalysis experimentally and in the sector analysis (red sector)
are captured with this impact analysis.[22] In the case of serine protease also most of the
residue pairs identified are near in structure as clear from the network representation
of the interactions (Figure 3.3B). Most interestingly the catalytic triad (H57, D102 and
S195) are found to have impact on each other. Also the co-evolving disulphide bond
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pair C42 and C58 plays important role in catalysis by optimally positioning H57 of the
catalytic triad.[23]
Compensatory mutations in HIV protease and Gag: HIV protease cleaves the
Gag and Gag-Pol polyproteins into individual proteins and hence is vital for the viral
maturation. Many of the drugs for HIV target protease. The impact factor analysis
on 2550 HIV-1 subtype B protease sequences downloaded from the Los Alamos HIV
database(http://www.hiv.lanl.gov/) identified 28 compensatory mutation pairs with
γ = 0.8. Residue L76 which is located near to the active site cavity is found to have a
high impact factor of 6. The compensatory mutation pair V32-M46 has previously been
observed experimentally[24] which showed that the reduced replication capacity of the
virus due to the mutation V32I is restored by mutation M46I.

HIV virus gains resistance against the protease inhibitors on accumulation of multiple
mutations not only in protease but also in the Gag polyprotein[25–27]. Our Gag-Pol inter-
protein impact factor analysis with γ = 0.9 captured some of the possible compensatory
mutations: positions near to the cleavage sites in Gag - A431, G381, P133 acting as
compensatory mutations for the protease mutations at L76, L38 and G52 respectively.
Changing the cut-off from γ = 0.9 to 0.8 resulted in the intra-protein connections
increasing from 901 to 1336 and comparably, the inter-protein connections increasing
from 266 to 521, highlighting the number of inter-protein compensatory effects.
Compensatory Mutation in PGK: Phosphoglycerate kinase (PGK) is involved
in the ATP generating step of glycolytic pathway: the reversible reaction of 1,3-
bisphosphoglycerate and ADP to 3-phosphoglycerate and ATP. The catalytic residues of
PGK is highly conserved across different species. But it is observed that the residue 219

of PGK which is crucial in the dynamics facilitating catalysis is lysine in all Eukaryotes
and Bacteria where as it is threonine or serine in Archaea.[28] The loss of catalytic activity
due to this mutation (K219S) is found to have been restored by compensatory mutations
at the positions 239 and 403.[28] Through our impact factor analysis of the Pfam family
PF00162 with γ = 0.8 we could capture the compensatory mutation at the site 403.

3.4 Discussion

3.4.1 Directed co-evolution

The present work develops two principles: directed co-evolutionary relationships between
amino acids and a quantification of it by counting the number of such dependencies.
Amino acids in the primary chain of the protein contribute to its structural stability or
function and mutations of these amino acids are differentially tolerated. At a simplistic
level, considering the tolerance to the variations in amino acids and/or its neighbors, they
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Figure 3.3: Directed networks and their functional relevance. Residue networks for
A. DHFR (PDB Id:3QL3) and B. Serine protease (PDB Id:3TGI). The direction of the
arrow shows is in the direction of impact. The thickness of the arrows is proportional to
1/r where r is the distance between pair of amino acids in the crystal structure. The
functional annotation of the amino acids inferred from literature is shown as well.

may be grouped as: (i) absolutely essential and hence can not mutated, (ii) essential but
may tolerate certain substitutions, (iii) essential and tolerate substitutions with suitable
compensatory mutations and (iv) not-essential. The present method for identifying
directed co-evolutionary relation is mainly to address the amino acids in group (iii).
Groups (i) and (ii) are mostly captured by conservation analysis. In fact, if an amino
acid is so essential that it was never replaced or evolved among the sequences studied,
it will not appear in any co-evolutionary analysis. Further, the directed co-evolution
relation developed should not be construed as a description of causal relationships. It
represents a statistical summary of the interdependencies among different amino acids
while studying large sets of sequence data to identify possible compensatory effects.

In general, when the conditional probabilities of the mutation of one amino acid
relative to all other amino acids are studied, such as in Figure 3.1, the number of relations
are few. When the positions i and j are uncorrelated, P (j = 1|i = 1) = P (j = 1).
Similarly, P (j = 0|i = 0) = P (j = 0), which is identically 1−P (j = 1). So, all the amino
acid mutations that are uncorrelated scatter in the anti-diagonal way, as seen in Figure
3.1B. With a relatively high cut-off γ, only a few amino acid relations appear in the zone
of interest, which is on the top-right corner. This could be seen from the average number
of impact relations that were identified after seeking a significance level p < 0.01 (Table
B.2 in Appendix B). Although we look for directed relations between amino acids, at
times the relations may be reciprocated. These reciprocal relations which are signature
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of co-evolution are incidental, but the focus of the present analysis remains to be the
relation between a specific pair, one specific direction at a time.

3.4.2 Relation to conservation and dependency

Functional residues tend to have a higher conservation. Recent studies suggest that most
of the information that is contained in the important amino acids identified using SCA
is reflected by their conservation.[29] However, under certain conditions, a mutation at
these positions can be compensated by changes in other amino acids. We studied the
relation of the amino acid impact factors obtained in our calculations to their respective
conservation scores. For DHFR and serine protease (Figure 3.4A) as well as for HIV-1
protease and reverse transcriptase (Figure B.3 in Appendix B), we see that the impact
factor can not be directly inferred from conservation data alone, and as such it is not a
trivial repetition of conservation. Amino acids with low conservation can have a high
impact and vice-versa. The spread in conservation for the high impact residues is much
broader for DHFR and serine protease as they are obtained from across the species
(Figure 3.4A), compared to that in HIV-1 protease and reverse transcriptase which are
obtained from the polymorphisms in the cohort (Figure B.3 in Appendix B). Despite
these characteristic differences expected in the conservation patterns in these viral and
non-viral proteins, the conclusion about lack of its correlation with impact could be seen
in both cases.

Figure 3.4B shows impact versus dependency for DHFR and serine protease. There are
several amino acids which have both high impact and dependency. This counter-intuitive
behavior comes from some reciprocal relations. It is also possible that these amino acids
are intermediates in the interaction network. However for many of these amino acids the
higher the impact, the lesser the dependency, which highlights the importance of looking
at directed compensatory effects as well rather than co-evolutionary measures alone.

3.4.3 Three-state model

One apparent limitation that arises from the above analyses is that they use a binary-
model: at any position the amino acid corresponds to the one in master sequence or not.
Practically, in the data sets we used, we saw a few discrete scenarios where two dominant
polymorphisms occurred with comparable frequencies. Hence, without complicating for
the theoretical possibility of large number of polymorphisms, we performed a three-state
model as the next step towards generalizing our model. In this model we considered
residues which occur with a frequency more than 35% at a position to be distinct states.
Since there can be at most two states which have a frequency more than 35%, the amino
acid code in a sequence is replaced by "1" or "2" depending on the polymorphic state
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A B

Figure 3.4: Comparisons of impact with other measures: A. Impact vs. conservation
shows that the impact does not trivially repeat the same information contained in
conservation. B. Impact vs. dependency shows again in addition to the expected negative
correlation between the two, there are several deviations from it. Impact was calculated
with γ = 0.7. (Size of the marker shows the density of points at that position)

and "0" if it did not belong to either. So the conditional probabilities to be satisfied for
position i to have an impact on position j is:
P (j = 1|i = 1) ≥ γ, P (j = 2|i = 2) ≥ γ and P (j = 0|i = 0) ≥ γ

or P (j = 2|i = 1) ≥ γ, P (j = 1|i = 2) ≥ γ and P (j = 0|i = 0) ≥ γ

When we repeated the analysis with γ = 0.7, the new three-state definition was
relevant only to a few amino acids: 1, 6 and 14 amino acids from serine protease, DHFR
and PGK respectively. However despite this three state generalisation, these positions
from serine protease and DHFR did not appear in the directed co-evolution network. But
in the case of PGK, 2 out of 14 had appeared in the network when the binary model is
used and the connections involving these residues do not appear when this new definition
is used. Thus in the spirit of the inclusive definition of identifying important residues,
a more restrictive binary-state definition with slightly more network connections seems
suited for the analysis.

3.4.4 Significance of impact analysis

Using the directed network analysis, several critical amino acids with functional signifi-
cance could be identified as discussed in the previous section. The perfectly conserved
amino acids that never evolve, which are very likely with high functional significance,
do not appear in the analysis by the nature of the definition. Those amino acids could
anyway be identified using the conservation analysis. The significance of the present
analysis should thus be seen as one that identifies amino acids which are likely to have
functional repercussions unless compensated, and are not obvious from the standard
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conservation analyses. Thus the present analysis is to be treated as an inclusive analysis,
rather than a comprehensive one, to suggest which amino acids should be included into
further analyses - experimental or theoretical. In that sense, the residues requiring the
most number of compensatory mutations, may be considered as the significant ones in the
analysis. This knowledge may be useful while studying intra- or inter-protein amino acid
correlations among large sets of evolutionary or cohort data, and for forming a rational
basis for performing site directed mutagenesis experiments. The meaning of the numeric
value of the impact factor itself may not be obvious, especially when comparing analyses
across two different protein families. However, within one protein family the impact
factor rank-orders the different amino acids by summarising the evolutionary data and
prioritising them for mutagenesis experiments.

3.4.5 Resistance models

The notion and definition of directed networks can be generalised to other cases. For
example, in analysing the clinical data of the bacterial strains from the group of patients
who respond (sensitive) to a drug versus those that do not (resistant), the same principles
may be used. Resistance to antibiotics poses a severe public health problem, and usually
there is a strong correlation between drug usage patterns in a cohort or a geographic
region[30] and the development of bacterial resistance. Mutations of amino acids from
critical bacterial or viral proteins that are the targets in drug design, may lead to a fitness
advantage. However, these mutations may have to be compensated by other mutations
in other sites in the same or other proteins.[31, 32]. For example, in ribosomal protein
S12, which is a usual drug target, K42N mutation may be compensated by as many as
35 mutations from both the same protein as well as from others[31]. It is important to
identify these compensations that go on in the drug-resistant cohort from the perspective
of avoiding problems with secondary drug resistance.

With such background about cohorts and compensatory mutations, one might design
questions such as - which are the amino acids j that had a compensatory mutation
(j = 0) in the resistant group when a drug targeting amino acid i is used. These
mutations in j contribute to a structural or functional compensation for a mutation in i
that made it drug resistant, rather than requiring a reversion of the mutation in i.[31]
Thus comparing the resistant and sensitive cohorts one can evaluate if the conditional
probabilities Presistant(j = 0|i = 0) and Psensitive(j = 1|i = 1) exceed a threshold, γ. The
method is equally applicable when i and j are from the same protein or from two proteins
whose sequences are juxtaposed to perform similar analysis. This analysis is a simpler
alternative to the Bayesian analyses that are sometimes used for the specific mutations
in the drug-resistance group.[8]
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Directed co-evolutionary relationships can be useful either from the protein design
or drug design perspective. Considering the compensatory effects, one may plan to add
simultaneous mutations along with mutations that contribute to the specific functional
gain or design combination therapies such that the primary group of amino acids targeted
by the drug, as well as those that undergo consequent mutations are simultaneously
targeted.

3.5 Conclusions
We introduced a way to measure and visualise the directed influence of amino acids on
one another. The directed influence network summarizes the compensatory mutations
under functional constraints in response to changes of key amino acids in homologous
sequences. We demonstrate the utility of the method using evolutionary sequences from
a few proteins. The principal results seem to be unaffected by changes in parameters
and identify effects from compensation to distal mutations, as well as the binding pocket
and catalytic residues. The simple and intuitive definition of the directional impact of
amino acid interactions can bring a new perspective to the field that had so far relied on
symmetric co-evolution.
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Chapter 4

Correlations from Structure, Sequence
and Dynamics are Complementary
Rather than Synonymous

Abstract

Amino acid interaction brings structural stability as well as structural changes according
to the environment required for the function of the protein. There have been different
approaches based on sequence, structure or dynamics of the protein for identifying such
important interactions. In this work we compare the interactions and amino acids iden-
tified by each of these methods for the proteins rat trypsin protease and dihydrofolate
reductase. We found that the overlap of connections that are ranked top based on
the strength in all three analyses are few while structure and dynamics share 40% of
pairs in common even when as little as 100 connections are chosen. Though it is well
established that the sequence information can be used to predict protein structure and
dynamics of the protein is highly correlated with the structure, we find that there is
unique information in each of these and the complete understanding of all important
interactions requires analyses based on sequence, structure and dynamics of the protein.

4.1 Introduction
Proteins perform several critical cellular functions. Experimental,[1, 2] theoretical[3, 4]
and computational[5, 6] efforts over decades have elucidated several aspects of how
proteins fold and function. Despite this rich landscape of studies, it is still hard to predict
how proteins function. Even in the background of new detailed studies such as large
scale mutational scans,[7] predicting how and why a given mutation affects the function
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and the pathways of effect propagation has not been easy. The emphasis is thus on
functionally critical amino acids, proximal or distal amino acids that influence these
functional amino acids and the pathways that connect them.

There are evidences to show that the dynamic nature of proteins is required for their
function.[8] However the dynamics centers around the native structure of the protein which
is uniquely determined by its sequence. Thus in principle any of the three descriptors-
sequence, structure and dynamics should be sufficient to understand the protein function
or the mutational effects, which are important from basic biology and protein design
perspectives.

The simplest sequence based analysis uses conservation of an amino acid seen in
multiple sequence alignments of homologous proteins.[9] Pair-wise co-evolution relations
which measure the statistical chance that an amino acid mutates whenever there is
a change in the others became a way for identifying effects which cannot be easily
interpreted from structure.[10–12] These analyses look for amino acid positions that
evolve together hence effects of change at one position compensating for the effects of
amino acid substitution at another position. The co-evolving group of amino acids termed
as sectors are found to be associated with specific functions related to catalysis and
stability.[13]

Some of the structure based analyses explore how an amino acid may be critical for
the protein function because it is a functionally important one such functional amino acid,
or interacts through a pathway of residues connecting the two.[14] Commute time which
is the time required for a signal to travel to and fro between two amino acids is used for
quantifying this speed of communication and to identify the pathways between them.
Residues though far from the catalytic sites can affect catalysis if has indirect interaction
with the catalytic site. Commute time analysis can identify even these allosteric sites
along with the structural contacts.

Dynamics is another crucial factor that determines the function of the protein. It has
been observed that correlated motion of groups of residues bring out structural changes
which are functionally important. For example binding and unbinding of ligands require
simultaneous movement of a group of residues.[15] Understanding this correlated motion
of residues will help in figuring out the allosteric pathway and hence in designing better
drugs. Molecular dynamics simulation studies using elastic network or all-atom models
have been used for this purpose. Dynamic cross correlation,[16] inter-residue distance
fluctuation and other information theoretic approaches[17, 18] are proposed to capture
residues with correlated dynamics. The concept of "dynamics sectors" similar to as that
in the case of sequences where amino acids are grouped based on the dynamics also
exist.[19, 20]
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Each of the above mentioned approaches based on sequence,[13] structure[14] and
dynamics have been used individually to identify important amino acids or interactions.
The choice of the method was mostly dictated by the training of the individual scientists.
Irrespective of the choice of the approach, more often than not, a strong signal in any
of these approaches was used to justify the observed allosteric effects. Since sequence,
structure and dynamics are related, it is implicitly believed that these three approaches
predict the same critical amino acids, without any systematic validation. To the best of
our knowledge, these approaches have not been examined for false positives, with a goal
of building predictability. All studies lacked a comprehensive and detailed comparison of
methods based on sequence, structure and dynamics. In this study we attempt to compare
the results from analyses based on each of the sequence, structure and dynamics aspects
for two proteins, serine protease and dihydrofolate reductase (DHFR), and highlight both
the similarities and differences. Serine protease and DHFR were chosen because of the
availability of mutational as well as computational analysis for comparisons.

4.2 Methods
Sequence analysis: The multiple sequence alignment for rat serine protease and E. coli.
dihydrofolate reductase were obtained from Pfam database[21] with pfam IDs PF00089
and PF00186 respectively. As the full alignment had more than 43,000 sequences the
analysis was performed using randomly selected 10,000 sequences which had an identity
more than 20%. All sequences with a gap frequency more than 20% compared to the
reference sequence were removed from the alignment. The positions with gap frequency
more than 20% were not included in the analysis. The alignment was then binarized by
assigning 1 to the mostly conserved amino acid at a position and 0 to any other amino
acid. The Statistical Coupling (SC) matrix was calculated following Halabi et al.[13]
using this alignment. The top most eigen component as well as the components with
eigenvalues smaller than that of the SC matrix calculated for a random alignment were
removed. This cleaned SC matrix scores were used for all further analyses.
Commute time analysis: In this analysis the signal propagation in proteins is modeled
as a discrete-time, discrete-state Markov process in which information is transferred
across the network of amino acids as obtained from the 3D structure of the protein.
The strength of communication between two amino acids A and B is then quantified
based on the number of steps taken for signal to travel from A to B and then back to
A which is called as commute time.[14] In order to calculate this, the protein structure
is considered as a network of n nodes, where n is the number of amino acids in the
protein. The strength of interaction, also called affinity between two residues is defined
as aij = Nij/

√
NiNj where Nij is the number of atom-atom contacts within 4 Å between
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residues i and j and Ni and Nj are the number of heavy atoms in residues i and j. The
probability of transferring information present at residue j to residue i is calculated as
mij = d−1j aij where dj =

∑n
i=1 aij. M = mij is called the Markov transition matrix. The

hitting time or the average number of steps taken for signal to travel from residue j to i
is then determined by solving the self consistent set of equations, Hij = 1 +

∑n
k=1Hjkmki.

Commute time is then calculated as Cij = Hij +Hji. For more details see Chennubhotla
et al.[14]
Molecular dynamics simulations: Molecular dynamics simulations were performed
for both proteins using the PDB IDs 3TGI (serine protease) and 3QL3 (DHFR) as the
starting structures and GROMACS 5.1.4[22]. The structures were energy-minimized
using steepest descent algorithm followed by NVT and NPT simulations each of 1ns long
with 2 fs as the time step. All bonds involving hydrogen were constrained using LINCS
algorithm. Velocity rescaling was used as thremostats in NVT and NPT simulation. For
equilibration Parrinello-Rahman barostat was used. The NPT equilibration was followed
by the 100 ns production run in the NPT ensemble at 300 K and 1 bar pressure. The
trajectory was saved at every 1 ps. This 100 ns trajectory was used for the dynamics
related calculations. We understand that this trajectory is very short as compared to the
timescales of the functional dynamics of proteins which is of the order of milliseconds to
seconds. But to fully sample this dynamics, the trajectories have to be a few orders of
magnitude longer than that, which apart from our limitations on computational time,
may also raise questions on the suitability of force fields. While acknowledging these
limitations, in this work, we perform simulations of 100 ns, as is the common practice
while searching for dynamical cross-correlations, and analyse this data of equilibrium
fluctuations around the native structure.
Inter-residue distance fluctuations: The inter-residue distance fluctuation was cal-
culated as 〈|∆rij|2〉 = 〈|∆rj −∆ri|2〉 where ∆ri = ri−〈ri〉t and ri and rj are the position
vectors of the Cα carbon atoms of residues i and j respectively. 〈ri〉t is the average
position of residue i over the 100 ns trajectory.
Node strength from networks: The node strength which is the sum of all edge
weights that a node is involved in were calculated using Networkx module of Python.
For structure and dynamics related networks, inverse of commute time and inverse of
inter-residue distance fluctuation respectively were used as the weight of interaction.
Whereas for sequence, the co-evolution values were used as weight.

Network representation: Cytoscape was used to create all network representations.
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4.3 Results

4.3.1 Pair-wise interactions

We performed pair-wise amino acid co-evolution based on Statistical Coupling Analysis
(SCA),[13] commute time analysis[14] using the structure, and inter-residue distance
fluctuations from molecular dynamics simulation respectively. Qualitatively two amino
acids are believed to be interacting when the correlations in SCA are higher or the
commute time or distance fluctuation matrices is lower. The SC, commute time and
inter-residue distance fluctuation matrices calculated (Methods) for serine protease and
DHFR and are given in Figure 4.1A,4.1C,4.1E and 4.1B,4.1D,4.1F respectively. The
correlation between these matrices are given in Table C.1 of Appendix C. From this
matrix representation, it can be seen that the commute-time and fluctuation matrices
have similar patterns as these are expected to be linearly related in the elastic network
framework of proteins. A matrix representation such as the one in Figure 4.1 is helpful
for visualizing the similarity pattern as well as to quickly note if a specific interaction
i− j is strong. For other analyses we translated the interaction matrices into networks
by using the matrix elements as adjacency factors.

4.3.2 Hubs of interaction

In the network representation we performed analyses beyond noting the individual pair-
wise relations. It is possible that some residues interact with many others, acting as the
hubs of interaction, thus assuming a central and critical role in the protein. In order to
identify these residues, the residues were sorted according to the total node interaction
strength in the complete residue-residue interaction network, and the ones having high
interaction strength were selected. This procedure was repeated for all three interaction
networks. In Figure 4.2 the node strength of all residues in each of the networks is
represented as different node attributes in the contact network of the protein. The
residues in the core of the protein has higher node strengths more than the ones on the
surface. This particular representation which serves as a two-dimensional projection of
the protein structure helps in visualizing the layout of different important amino acids.

4.3.3 Comparison of highly interacting residues

We investigated how similar the important nodes selected from the different approaches
are. Figure 4.3 shows the number of residues that are common between important residues
of structure, sequence and dynamics networks when the top 20 nodes from each network
are selected. As shown in Figure4.4 the convergence of the three approaches is poor
when less than 50 amino acids are chosen from each of the methods. It can also be seen
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Figure 4.1: Pair-wise amino acid interactions obtained by analyses based on sequence,
structure and dynamics - A,C,E are of serine protease and B,D,F are of DHFR. Amino acid
co-evolution (A and B) from the multiple sequence alignment (MSA) of the protein was
calculated using SCA protocol. Strength of interaction based on structure was quantified
as the commute-time (D and E) between amino acid pairs and fluctuations in the inter-
residue distances (F and G) calculated from the all-atom MD simulation trajectory was
used to determine amino acids with correlated dynamics. Lower commute-time and lower
inter-residue distance fluctuation correspond to stronger interaction.
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Figure 4.2: Depiction of centrality measures for all amino acids on the contact network
of the proteins (A) Serine protease (B) DHFR. The structural contacts were determined
from the PDB structure of the protein. All residue pairs having contacts (atoms within 4Å)
are shown as connected with the edge thickness proportional to the number of contacts.
The size, color and border thickness of the nodes represent the node weights in the
co-evolution, commute time and inter-residue distance fluctuation matrices respectively.
The catalytic residues are highlighted with blue borders.

that the structure and dynamics has higher overlap, but this convergence is also far from
being ideal. Varying the number of nodes chosen, the common nodes increases and this
variation is higher compared to the case of random selection.

Figure 4.3: Venn diagram showing the overlap of top 20 nodes selected based on the
node strength in each of the pair-wise interaction matrices (Fig 4.1) for A. Serine protease
and B. DHFR. The selected nodes are given in Tables C.2 and C.3 of C.
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4.3.4 Comparison with experimental data

The residues and interactions ranked top in each of the networks were compared with
the experimental data available. The residues M42 and Y111 of DHFR which appear
in all three approaches were captured in the sector analysis[11] also. M42 being in the
adenosine binding subdomain of DHFR can be functionally important. A55 and Y228
are the residues of serine protease that appear in the top 20 residues selected based on
each of the sequence, structure and dynamics. A55 and Y228 are related to catalysis
and belong to red and green sector respectively. These sectors were defined the study
of Halabi et al.[13]. Of the reported catalytic residues of DHFR, I5, M20, D27, K28,
F31, L54 and I94, only I5 (Dynamics) and I94 (Structure) are selected at least by one
of these methods. In the case of serine protease the catalytic residues D102, H57 and
S195 are the ones that appear in the top 20 of one of the methods. While dynamics and
structure suggest residues in the core, sequence analysis detect residues that are solvent
exposed also. On analysing the importance of residues that were chosen by each method,
it can be seen that the blue sector residues which are related to stability, do come in
the top 20 of sequence and dynamics, but none in the structure. Also interestingly most
of the residues selected by structure are related to catalysis and belong to the green
sector. Top 20 residues selected based on SCA has representation from catalytic residues,
binding pocket and also the ones related to stability. For DHFR both residues in the
binding pocket and the ones related to catalysis appear in the top 20 residues of sequence,
structure ad dynamics.

4.3.5 Interaction networks

Interaction networks were created by selecting top 100 residue pairs separated by at east
two residues in between. For the commute-time matrix and inter-residue fluctuation
matrix, the pairs with lower values were chosen. The connections identified from all
three matrices are shown in the network representation in Figure 4.5. The edges common
between different networks such as sequence and structure are shown in different colors.
While there was a large overlap of edges between structure and dynamics networks,
the sequence network had fewer connections common with the structure and dynamics
networks. Most of the interacting residue pairs identified based on structure and dynamics
were structurally closer compared to the ones chosen based on SC.

4.3.6 Effect of data size

To understand if data size limitations can be captured within the scope of our calculations,
we repeated the analyses using trajectory averaged structure,50 ns of MD and selecting
sequences with higher sequence identity. The overlap did not change as shown in Figures
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Figure 4.4: The number of top nodes chosen from the networks based on sequence,
structure and dynamics is varied and the intersection of these sets of nodes is plotted for
A. Serine protease and B. DHFR.

Figure 4.5: Based on each of the pair-wise interaction measures shown in Fig 4.1, amino
acid pairs that are separated at least by two amino acids were rank ordered and the
strongest 100 connections were selected to construct interaction networks. The union of
all three networks is shown for A. Serine protease and B. DHFR. Each edge is weighted
proportional to the number of networks it belongs to. Connections in each network or
intersection of networks are colored differently.
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C.1-C.3 of AppendixC.

4.3.7 Comparison of interaction networks

As the analysis of identifying common edges between the networks when 100 top connec-
tions were considered showed poor overlap, we explored whether the networks converge by
choosing higher number of connections. In Figure 4.6 the ratio of number of connections
that are common between all three networks with the number of connections chosen from
each of the networks is shown.

Figure 4.6: Variation in the fraction of common connections in all three networks with
the number of connections chosen from each of the networks is shown for A. Serine
protease and B. DHFR.

4.4 Discussion
In this work, we followed some of the different methods that are being used to identify
the important amino acids in a protein and compared the results. In principle, sequence
contains the complete information of how a protein should function. However, the implicit
assumption in such a statement is that one is aware of the complete atomic level details
of the sequence in the primary structure, rather than just the simplified representation
with the 20 alphabets from A to Y. In the absence of such atomic details, the simplified
alphabetic representation of the sequences can be complemented with multiple sequences
or structural and dynamical information. Thus using multiple sequences, structure and
dynamics of the protein one should be able to identify important amino acids. Guided by
this fundamental belief, many attempts have been made to identify critical or allosteric
interactions. In the spirit of the recent study that compared sequence with dynamics[19],
we used different methods based on sequence, structure, or dynamics that are being used
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for identifying residues which can lead to deleterious effects upon mutation. However,
as the results in Fig. 4.4 show, this is not true. The edges that connect pairs of amino
acids, possible interpretation being local or allosteric effects, as seen in Figure 4.6, have
not much in common. The same is true of the important amino acids we identified. Out
of a total of 20 amino acids each that we rank ordered using the three criterion, only 2 of
them were common. We curated the critical amino acid mutations that are reported in
the literature and all these methods capture a fraction of these amino acid mutations.
These differences raise a few questions on the convergence with data size, convergence
with the number of predictions made, true positives and predictability.
Convergence with data size. In reality, none of the three methods are complete –
basing analysis on one single structure, or molecular dynamics that has inherent sampling
limitations or multiple sequences which may not be sufficient in number or in divergence
can cause limitations to the results that can be obtained from these different approaches.
It is not easy to increase the data size to a point where these limitations will not exist. To
check if the data size, within the limits of the calculations we could perform easily, affects
the results, the analyses were repeated with half-the length of the simulation trajectory,
half the number of sequences in alignment, and a different averaged structure obtained
from the simulations. Within this range of variation, there were no (or no significant)
differences in the amino acids or edges that we could find, which leaves the question
whether the discrepancies can be solved by a reasonable extension of the data size.
Convergence with size of selection. The 20 amino acids chosen from each of the
methods was an illustration, although there was no specific meaning associated with the
number 20. By varying the number of amino acids that are chosen, as one may expect,
the overlap between the three predictions continues to increase, trivially becoming perfect
when all the amino acids are chosen. However, surprisingly, even when top 50% of the
amino acids were chosen from each of the overlap still does not cross 70% Since the
number of edge connections scale as N2, where N is the number of the amino acids,
convergence of the edges when a certain number of selections are made is slower compared
to the convergence of the amino acids.
False positives. Because of the differences in the methods, it thus becomes imperative
that while inferring the important amino acids or edges from calculations, one must be
aware of the number of selections that should be made before the experimentally observed
interesting amino acid or pair-wise correlation appears in the analyses. Otherwise, there
is a risk that one may be ignoring several of strongly correlated false positives before
identifying a medium correlation that is experimentally observed. Alternatively said, the
predictive capacity of the correlations rather than the a posteriori justification needs to
be evaluated.
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Complementary predictions. Until the differences in the predictions from the ap-
proaches can be resolved, another way to consider these different predictions is to treat
them as being complementary as many approaches now are using sequence, structure,
and dynamics based information in the models driven by artificial intelligence to make
predictions of the mutational effects.

4.5 Conclusion
We performed a detailed comparison of the results from structure, sequence and dynamics
approaches to identify important residues and interactions. It is found that the nodes,
interactions chosen according to each of the aspects do have overlap, but many of them are
unique to each. Though this fact appears to be trivial, there was no systematic analysis
and quantification of the same before. Interestingly, the selected nodes or edges do not
converge completely even when 75% of them are selected. The convergence behaviour is
sublinear though much higher than a random selection would have. Our study suggests
the importance of considering all three aspects to understand the role of an amino acid
in the function of a protein.
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Chapter 5

Deep2Full: Evaluating Strategies for
Selecting the Minimal Mutational
Experiments for Optimal
Computational Predictions of Deep
Mutational Scan Outcomes

Abstract

Performing a complete deep mutational scan with all single point mutations may not be
practical, and may not even be required, especially if predictive computational models
can be developed. Computational models are however naive to cellular response in the
myriads of assay-conditions. In a realistic paradigm of assay context-aware predictive
hybrid models that combine minimal experimental data from deep mutational scans
with structure, sequence information and computational models, we define and evaluate
different strategies for choosing this minimal set. We evaluated the trivial strategy of a
systematic reduction in the number of mutational studies from 85% to 15%, along with
several others about the choice of the types of mutations such as random versus site-
directed with the same 15% data completeness. Interestingly, the predictive capabilities
by training on a random set of mutations and using a systematic substitution of all amino
acids to alanine, asparagine and histidine (ANH) were comparable. Another strategy
we explored, augmenting the training data with measurements of the same mutants at
multiple assay conditions, did not improve the prediction quality. For the six proteins we
analyzed, the bin-wise error in prediction is optimal when 50-100 mutations per bin are
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used in training the computational model, suggesting that good prediction quality may
be achieved with a library of 500-1000 mutations.

5.1 Introduction
Mutations are changes in the nucleotide sequence of an organism, and its effects may be
noticeable across the scales from protein expression, cellular or organismal level. Most
mutations are usually found to be neutral or deleterious across the scales, while a very
few of them turn out to be beneficial i.e. confer an increase in phenotypic fitness.

While mutations at the active sites of enzymes are relatively easy to interpret,
understanding how distal mutations affect the catalytic activity is a challenge on its
own. Predicting a change in cellular or organismal fitness upon a single mutation in
proteins is further complicated, since fitness is a downstream effect and an immediate
correlation with changes in structural stability and dynamics of the protein may not be
easy. However, such an understanding will have an enormous impact, whether it is for
identifying disease causing mutations in the human genome or for designing antibiotics.
The development of high-throughput technologies has driven newer and massively parallel
approaches in the exploration of mutational landscapes at a cellular phenotypic level.
Methods such as deep mutational scan[1, 2] or site saturation mutagenesis[3] now made it
possible to study the fitness consequences of a very large number (∼ 105) of independent
mutations of the same protein.

But performing such experiments is highly resource demanding. Further, as the
interest in the study of simultaneous multiple mutations increases, such as in the case
of drug resistance and compensatory mutations,[4] the number of mutational studies
required will increase by orders of magnitude. Thus, alternative or complementary
approaches that quantify the fitness effects of a wide range of amino acid mutations have
to be developed.

Several computational tools have been developed to predict the functional effects of
mutations: SIFT[5] is based on evolutionary information obtained from the sequences of
proteins and their homologs whereas SNAP2[6], PON-P2[7] use other features such as
functional annotations along with evolutionary information. Tools such as SNPs3d[8]
and Polyphen[9] use information about the 3D structure of the protein also. Condel[10],
CADD[11], REVEL[12] and PON-P[13] are predictors that combine the predictions of
other tools. Unsupervised methods using sequence covariation (EVmutation)[14] proposed
statistical energy scores to be correlated to the fitness effects of mutations, and newer
developments in this methodology (DeepSequence)[15] exploit the latent variables to
improve the predictions. Another Global epistatic model GEMME has been shown to
have better quality of prediction for viral proteins.[16] Recently, deep mutational scan
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data from different proteins was used for developing a global quantitative model for
mutational effects predictions (Envision),[17] which was then used for predicting the
effects of all possible single amino acid substitutions in the proteomes of human, mouse,
frog, zebrafish, fruit fly, worm, and yeast.

None of these models has the flexibility to adapt when the assay conditions are changed.
There have been Proteins Specific Predictors (PSP)[18] which are developed by training
on data of specific proteins to classify mutations. Making quantitative predictions of the
downstream effects of mutation under an external selection pressure is not easy. While it
may be too soon for computational methods to completely replace wet-lab experiments,
they are certainly at a stage where they can be used to reduce the number of experiments
required and hence the costs of generating such large data sets. The next paradigm in the
evolution of the models is thus a combination of partial data from deep mutational scans
with computational models. Recently it was demonstrated that the large fractions of data
missing from mutational scans can be imputed[19, 20] using machine learning approaches.
It is thus clear that exploiting the information about the system and the mutations, one
can predict the effects of missing mutations. Continuing on a similar theme, we explore
a complementary question about better ways of designing DEEP mutational scan to
develop predictions for a FULL mutational scan (DEEP2FULL). Specifically we ask if
there is a better strategy to design the experiments with minimal number of mutations
and to prioritize experiments rationally, and yet achieve the best possible predictions for
the rest of the mutations. In this work, we use publicly available deep mutational scan
data on six proteins and illustrate the outcomes of a few strategies we define for choosing
the minimal set of mutations.

5.2 Results

5.2.1 Neural network models for predicting fitness

To computationally predict the outcomes of deep mutational scans we developed artificial
neural network (ANN) models, using variables which can describe the physico-chemical
properties of the wild type amino acid and the substitutions, and partial experimental
data on the fitness consequences of the mutations. Seventeen different descriptive
parameters (Methods section), including 4 parameters derived from the protein structural
information, 7 variables from sequence information and 6 others from co-evolutionary
information were used in our models. The experimental data we used consisted of relative
fitness of the mutant cells with respect to the wild type under selection pressure from
different stressors or their concentrations. ANN is similar in philosophy to the goal
of predicting the downstream effects of the mutations, as the clarity of what happens
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at the intermediate stages, also known as layers, is compromised in favor of the end
results it generates. While it lacks the simplicity of a linear regression model, it can
in principle embody all the complex non-linear interactions that occur at the different
stages of the effect propagation, starting from the mutation and ending with the change
in fitness. Although several machine learning approaches such as random forests[19] may
be useful for making predictions, we chose to work with artificial neural networks. We
used feedforward neural network with Levenberg-Marquardt back-propagation algorithm
implemented in the Neural Network Toolbox of Matlab along with the early stopping
criterion for termination of training. For each data set chosen for modeling, neural
network models were built by subdividing it into training, validation and test sets. Apart
from the input and output layers, all neural networks had a single hidden layer and the
number of neurons in this layer was chosen based on the coefficient of determination (R2)
for the training and validation set predictions (Methods).

5.2.2 Impact of sampling size on the model’s predictive ability

The first strategy we evaluated was a systematic reduction of the size of the experimental
data that was used to train the model. From the complete mutational scan data that
was available, a set of randomly chosen variants was used for training and validation and
a systematic reduction in the size of this set (85%, 50%, 25% and 15%, respectively) was
made for developing four different models. We analyzed six proteins - β-lactamase,[21]
aminoglycoside 3’-phosphotransferase (APH(3′)-II),[22] heat shock protein 90 (Hsp90),[23]
mitogen-activated protein kinase 1 (MAPK1),[24] ubiquitin-conjugating enzyme E2 I
(UBE2I)[19] and thiamin pyrophosphokinase (TPK1).[19] The selection was based on the
criterion that data on at least 2500 mutations are available although the assays measured
different phenotypes. Some of these experiments measured a change in the average rate
of cell division upon mutation,[19] while others measured a consequent variation in the
population.[21] The predictions of the model developed using 85% of data for β-lactamase
is shown in Figure D.1 of Appendix D and a comparison of the same with experimental
data in Figure D.2 of Appendix D. Results from models trained on smaller data sets
are summarized in Figure 5.1 for β-lactamase and for the other five proteins in Figures
D.3 to D.5 of Appendix D. As expected, the overall quality of predictions improves with
increase in the data used for training although the improvement is sublinear (Table D.1
of Appendix D). As can be seen from these results, except for the case of TPK1 the
Pearson correlation between predicted and experimental fitness begins to saturate when
more than 50% of the data is used for training the model.
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A B C D

Figure 5.1: Systematic increase of training data size improves prediction quality. The
experimental data on the relative fitness of E. coli with mutations in β-lactamase was
modeled. The fraction of the complete data that was used for training and validation
was systematically reduced in four steps from 85% to 15% to see how the quality of
computational predictions of fitness changes. It can be seen that the quality of predictions
when trained with 50% is comparable with the one trained at 85% data. The prediction
quality is tabulated in Table D.1 of Appendix D. Results from predictions of other
proteins are in Figures D.3 to D.5 of Appendix D.

5.2.3 Comparing complementary ANH and four other mutational

scans trained on 15% of data

One common feature of the four models developed above is that they are all trained on
mutations randomly selected from across the sites and possible substitutions (random
scans). We further explored if using systematically chosen mutations in model development
can help improve the prediction quality. We performed these analyses with the smallest
amount of data to have a better chance of observing the differences. We first used the
fitness scores from alanine scan, and predicted the outcomes for all other 19 mutational
scans. However, in our search for the minimal and predictive data set, alanine scan data
was not satisfactory (R2

test = 0.38, Figure D.6 of Appendix D). Hence we performed
other comparative analyses starting with an augmentation of the alanine scan. It was
recently discovered[25] that in multiple deep mutational scan data sets the fitness changes
upon mutation to any amino acid is best correlated statistically with the fitness scores
associated with asparagine (N) and histidine (H) substitutions. Taking a cue from this
observation, we combined the commonly used alanine (A) scan, with asparagine (N) and
histidine (H) scans, thus choosing one from each charge type - hydrophobic (A), polar
(N) and charged (H), to develop an ANH scan. We then used ANH mutational scan data
which is 3/20 or 15% of the full mutational scan data, as a strategy to train the neural
network model and to predict the remaining 17 amino acid scan results at every site.
The ANH scan data was further divided as 85% for training and 15% for validation of
the model. As seen in Figure 5.2A and Table D.2 of Appendix D, the fitness predictions



5.2 Results 84

ANH scan Random 15% Position range scan Wildtype residue type scan SASA range scan

Figure 5.2: Representation of the types of mutations in the training set influences the
results. A comparison of the different strategies we used for choosing the training set
with 15% data completeness. In an extension of the concept of alanine-scan, the fitness
outcomes from alanine (A), asparagine (N) and histidine (H)-scans at each amino acid
position were used as the training set, and the fitness scores for all other 17 mutations
at every site were predicted. The results were compared to other strategies that used
random (Random 15%) or site-directed protocols (position range scan, wild type residue
type scan and SASA range scan) for choosing the minimal set required for training. The
results suggest that choosing mutations randomly or performing an ANH scan is better
than scanning all mutations at a few positions.

improve relative to the one obtained by training on alanine scan data (R2
test = 0.62). The

results from training the models with either ANH-scan or a random scan, both with 15%
data, are comparable, with one working slightly better than the other depending on the
protein.

We explored a few other systematic mutagenesis schemes based on the concept of
site-directed mutagenesis. We asked if having the data for all 19 mutations at a few
positions could improve the prediction quality. We used three different ways of identifying
these positions: 1) Position range scan - Residue positions were randomly chosen to have
an approximately uniform sampling of the sites along the primary sequence; 2) Wild type
residue type scan - Depending upon the distribution of wild type amino acids, in this scan
wild type positions were chosen to ensure that there is a nearly uniform representation
of the 20 amino acids in the training set; 3) SASA range scan - Residue positions were
chosen in such a way that the distribution of solvent accessibility is uniform over the
training and validation sets. The idea was to have representation from the residues with
different levels of solvent exposure in the training set. The results for β-lactamase are
shown in Figure 5.2 and those for the other five proteins are summarized in Figures D.7
to D.9 of Appendix D. The results for all three position based scans, all trained on 15%
data, were poorer than those from a random or ANH scan.
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5.2.4 Augmenting data with transverse assay conditions

We also investigated whether with the same number of mutations, the prediction quality
could be improved by using transverse data from different assay conditions. The rationale
for evaluating this strategy was to compensate for the number of mutants with the
number of cultures with different stressor concentrations. We trained our models using
15% of the mutational data, but with the fitness changes measured at six different drug
concentrations, [21] thus enhancing the total data used for training by 6-fold. Plotting
the fitness change for each mutation with log [ampicillin] displayed a regular sigmoidal
pattern in the dose-response curve, thus raising the possibility that the augmentation
brings more structured data and improves predictability. We compared the mutational
effects predictions for the studies at 2500 µg/ml using two models, one trained on data
from six different concentrations and the other trained only on the data from experiments
performed at concentration 2500 µg/ml. However, contrary to our expectations as shown
in Figure 5.3, there was no significant difference in the prediction quality by using data
at different concentrations for training. The same was also true for the predictions of the
mutational effects at 650 µg/ml drug concentration.

5.2.5 Variable importance and models with fewer variables

The primary aim of the work was to reduce the experimental data needed for building
the model. However, conceptually it is also interesting to ask if the role of different
predictive variables used in the model can be quantified and if the model itself can be
simplified. We illustrate the relative importance of the different descriptive variables
using our calculations on the fitness (dis)advantage in E. coli exposed to ampicillin,
conferred by the single point mutations in TEM-1 β-lactamase,[21] although the scope of
the analysis is general. For investigating the contribution of individual input variables in
the predictions, the input variable was kept fixed at its mean value for all the samples and
the network was retrained. The change in mean squared error (MSE) on the removal of a
variable is used for quantifying the importance of that input variable. Figure 5.4 shows
the difference in MSE when each variable is replaced by its mean value. BLOSUM which
represents the substitution effects based on evolutionary data has the highest contribution
to the predictions. Hydrophobicity index of the amino acid to which the mutation is
made and the average commute time are the other variables with significantly higher
contributions. In addition to the 17 variables, we also added the statistical coupling
energy[14] as an additional variable to see if it improved the correlation between the
predictions and the observations. No improvement was noticed, possibly because other
variables including the ones from co-evolution data already implicitly accounted for
this factor (Table D.3 of Appendix D). Since the proximity of an amino acid to the
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trained on 6 assay conditions

trained on data only from 2500 μg/ml drug

Figure 5.3: Augmenting with scores at different assay conditions did not improve predic-
tions. At 15% mutational completeness, the data size was augmented by combining data
from six different assay conditions. There was no improvement in the prediction quality
although the data was enhanced 6-fold. The R2

test with and without data augmentation
was 0.61 and 0.66 respectively. More detailed results are in Figure D.10 of Appendix D.
Similar analysis was performed by developing model trained on data from the 650 µg/ml
drug concentration assay. In this case also the predictive ability of the models trained at
only one concentration or at multiple concentrations was similar.

catalytic site could be of high functional significance, we developed a model with this
factor as an additional descriptive variable. The catalytic residues were identified in
β-lactamase and the distance of every amino acid to the nearest catalytic residue was
computed. This additional input variable did not improve the predictions either. As in
the case of statistical coupling energy, the information contained in this variable could
be represented by other variables like conservation, number of contacts and commute
time. So statistical coupling energy and distance from catalytic sites were not used in
any other analysis in this work. We also analyzed the contributions at a coarse level,
creating neural network model for alanine scan mutations using only (1) sequence based
variables and (2) structure based variables. The sequence based model performed better
than the structure based one, R2 values being 0.54 and 0.25 respectively for the sequence
and structure based models for the test set chosen from the alanine scan data set.

We selected fewer variables and developed minimal models using two different measures
to rank the individual variables: Pearson correlation of the individual variables with the
measured fitness and the change in MSE on replacing the variables with their averages.
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Figure 5.4: A few variables contribute significantly. The relative importance of different
variables in the predictive model trained with 85% data from β-lactamase mutations was
evaluated. The sensitivity of the model to a variable was quantified as the percentage
increase in the mean squared error (MSE) between the prediction and the experimental
values when the variable was replaced with its average calculated across all mutations.
BLOSUM score, average commute time and hydrophobicity of the mutant have the
highest contribution while some of the variables have little contributions in the model.
None of the variables we used is perfectly correlated to any other variable, however, the
poor contributions suggest that they could be correlated to a non-linear combination of
other variables.

Using these two criteria models were developed using 7 and 6 variables respectively
(Methods section). Average correlation, average commute time, number of contacts
of the wild type amino acid, and BLOSUM score for the substitution were the most
relevant variables according to both of these criteria. The results obtained (Figure D.11
of Appendix D) from these two reduced models are of comparable quality to the ones
constructed with 17 variables. However, in the interest of the scope of the present work
which is about reducing data rather than reducing variables all our analyses are presented
with the results of model trained on 17 predictive parameters.

5.2.6 Quality analysis of output and input

The quality of predictions in our analysis was verified based on three different measures -
(1) the overall R2

prediction, Root Mean Square Deviation (RMSD) and Pearson correlation,
all three metrics suggested that the quality of our predictions were comparable with
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other models which use partial data for prediction (Table D.5 of Appendix D). It is
notable that R2, which is very sensitive to outliers also had shown that the predictions
are reasonable even at low data completeness, (2) the prediction data was segregated
either based on the amino acid before or after mutation. The outcomes for some of the
amino acids are relatively poor as seen from the individual regression plots (Figures D.12
and D.13 of Appendix D). Amino acid wise prediction quality can be summarized using
their Pearson correlation values also as shown in Figure 5.5. We further analyzed and
found that the quality of predictions for different amino acids (Figure 5.5B) was not
correlated with their frequency in the training set. It can be seen that the effects of some
amino acid mutations do not span the entire range of fitness scores, hence predictions
could not be improved. (3) For a predicted fitness, the variation in the experimental
values. This is summarized in Figure D.2 of Appendix D with histograms of experimental
fitness generated from the predicted fitness variation around -3, -2, -1 and 0. While these
histograms show a variation relative to the predicted fitness, it must be noted that even
in different trials of the experiment, there is a significant variation. We also investigated
the prediction quality for amino acids with different solvent exposure (Figure D.14 of
Appendix D). As can be seen, in general the predictions were better in quality for the
solvent exposed residues. This could be because of the lower variability in fitness scores
at higher SASA range.

Across the six proteins we studied, the quality of the predictions varied. We checked if
it is possible to define a measure for the quality of input data which forces a requirement
on the size of the data set used for training. It is apparent from the experimental data that
the range of measured fitness varies depending on the protein and stressor concentration.
It also appears from our results that the prediction quality may be slightly better when
the fitness effects in the experiments span a broader range. In an attempt to clarify these
effects of input data quality and size, we defined a quality metric of the input data as
the ratio of the range over which the training data spans and the standard deviation of
the data centered around what appears to be the neutral mutations. The motivation for
choosing such a metric is that the wider range of mutational scores and the separability
of neutral mutations from the rest will lead to improved predictions. Mutational effect
scores for β-lactamase measured under different concentrations of ampicillin (2500 µg/ml

, 625 µg/ml, 156 µg/ml, 39 µg/ml) were available in the study by Stiffler et al..[21] We
developed models for each of these data sets and the quality of inputs and output is
plotted in Figure D.15A of Appendix D showing a correlation that, as the quality of the
input data increases, the prediction quality improves as well. Similar input-output quality
analysis was made for all proteins and random scans with systematically increasing data
as shown (Figure D.15B of Appendix D). The results although not very conclusive suggest
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Figure 5.5: Random scan obtains comparable predictions for different amino acids. The
test set of random 25% scan was sorted based on the amino acid after mutation and
the amino acid in the wild type. The quality of predictions as quantified by Pearson
correlation is shown for (A) the amino acid after mutation (B) the amino acid in the wild
type. Amino acids are colored according to their type: red (positively charged), blue
(negatively charged), green (polar), white (hydrophobic). The random scan results in
roughly uniform quality of predictions for all substituted amino acids.

that the predictability of the fitness may be improved by using data obtained at high
stressor concentrations.

5.3 Discussion

5.3.1 Scanning strategies: Training with reduced data

The goal of Deep2Full was to evaluate how the data required for developing the computa-
tional model can be systematically reduced, and if for a given size of data a systematic
sampling can improve the quality of predictions. Having additional data of fitness scores
from other assay conditions such as different drug concentrations with the smaller training
sets did not improve the prediction quality. Quite intuitively, the quality of prediction for
all the proteins improves with increase in the training data from 15% to 85%. We used
two different metrics of quality - RMSD and Pearson correlation. Although the prediction
quality increases, the improvement does not scale linearly with the data size (Figure D.16
of Appendix D). With both these measures we could see a sign of saturation when more
than 50% of the data was used for training. We also analyzed the error across the range
of experimentally measured fitness. Ten bins of equal widths were created dividing the
experimentally observed fitness in each protein and RMSD for the test set was calculated
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for each bin. For all the proteins, the error systematically increases as the expected effects
of mutations increase (Figure D.17 of Appendix D). To further understand this RMSD,
we plotted RMSD for each bin relative to the number of data points in this range that
were used for training the model (Figure D.18 of Appendix D). The two observations that
come out are a power-law behavior in the error and that increasing training data from
each bin beyond 50 to 100 did not improve the predictions significantly. This optimal
choice along with a 10-bin division suggests about 500-1000 mutations to be required for
developing neural network models. However it appears that one can increase the data
used for training in each bin selectively to achieve this optimality. This training data size
is approximately 15-25% of the data in the cases we studied.

5.3.2 Scanning strategies: Choosing mutations for training

We asked if there is a better way of choosing the mutations that are used for training
the model, guided either by the physico-chemical factors or on the experimental ease of
obtaining those mutations. We performed these analyses at the lowest level of data (15%)
that yields reasonable predictions, the rationale behind it being that any differences in
the strategies will be pronounced and easy to infer. A consistent pattern noted in our
study of all six proteins is that at 15% completeness, randomly selecting variants as
well as the systematic ANH scan yielded results of comparable quality. The alternative
of training the model by selecting all 19 substitutions at a few positions, selected for
a representation across SASA or wild type amino acid range were poorer in predictive
ability. These trends were consistent in the different metrics we used for determining the
quality of predictions - RMSD and Pearson correlation (Table D.2 of Appendix D). It is
clear from this analysis that in developing a model, a training set having representation
from every position in the protein is much more valuable than having all substitutions at
a few sites.

The underlying objective of this exercise was to see if the efforts of constructing the
mutant libraries, clones and sequencing can be reduced, without compromising on the
quality of the learning. In our model, a random scan implies a random and unbiased choice
of the mutation from across the primary sequence where a transition from any amino acid
to another is feasible, such as the ones that could be achieved with mutagenesis techniques
like POPCode[19] and single-site saturation mutagenesis.[26] We also investigated another
scenario where the SNPs may be generated by an error-prone PCR (epPCR), which
has an inherent bias against certain mutations.[27, 28] When the model was trained
on data set same in size to that of Random 25% scan, but the mutants being chosen
from SNPs which were theoretically considered achievable by epPCR,[29] the prediction
quality was comparable (Figure D.19 of Appendix D and Table D.1 of Appendix D) for
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all the six proteins we studied. A detailed cost-benefit analysis considering the number
of experimentally realizable mutations which could range from 15% to 85% of data
completeness and the accuracy of predictions, will be required to choose between epPCR
and site-directed mutagenesis techniques for generating mutant libraries.[30]

5.3.3 Need for hybrid models

Scoring models such as SNAP have been used for classifying the mutations as fitness-
neutral or non-neutral.[31] Other recent co-evolution based models have shown a good
correlation of the fitness variations observed in deep mutational scans with the predictions
of the evolutionary statistical energy[14] and DeepSequence[15]. As shown in Figure D.20
of Appendix D, for the specific example considered, the relations between the scores
and cellular fitness using 15% and 50% of randomly selected mutations are at least as
noisy or worse than the models we used. Envision[17] was a model that was ambitiously
developed to make unsupervised predictions for the deep mutational scan. The model
was validated using leaving-one-protein-out protocol. However, as it can be seen from
Table D.5 of Appendix D, when using the model for a newer protein such as TPK1
and UBE2I the predictions were not satisfactory. This limitation of the generalized
model may be more likely because the mutational effects in proteins are complicated
to predict, rather than because of the shortcomings in the specific model. As noted in
Table D.5 of Appendix D some of the unsupervised computational predictions that are
reported in the literature had good correlations with the experimental data. This raises a
question on why the present work focuses on hybrid computational models with minimal
experimental data, when the models may possibly be developed with no experimental
data. From the deep mutational scan studies on β- lactamase,[21] one can see that the
fitness outcomes change with the stressor concentration and with the type of the stressor
(stressors: cefotaxime and ampicillin). It was also highlighted in the mutational studies of
APH(3′)-II[22] that the fitness landscape depends sensitively on the type of the antibiotic,
even when all of them are believed to interact with the same active site. A model that
does not use partial experimental data will certainly be insensitive to these differences
in the assay conditions. Further, compared to a generic model, one may be able to use
highly descriptive protein-specific variables which may improve the predictions.

Newer hybrid models[19] combined partial experimental observations along with other
biophysical descriptors to impute the missing data. They could establish that it is
possible to achieve predictions that are comparable to the experimental variance across
the trials. We used a similar approach of hybrid model and obtained predictions for
TPK1 and UBE2I comparable with those from other works[19] (Table D.4 of Appendix
D). The predictive ability of our models for the proteins β-lactamase, APH(3′)-II and
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Hsp90 are also comparable with that of Envision, where 80% of data was used to develop
models for individual proteins[17](Table D.5 of Appendix D). The hybrid models and the
strategies will gain prominence as the experimental emphasis shifts towards simultaneous
multiple mutations. However, in the present hybrid approach using experimental data
and computations one encounters at least two disadvantages that expertise in building
computational models and experimental data are required for model development.

5.3.4 Scope and limits of Deep2Full

Although the results of our computational predictions are comparable to those from other
hybrid models, the focus of the present work was different. Our goal in this work was not
to validate whether the missing data can be predicted, but rather to evaluate if there is
a rational way of planning the reduced experimentation. The scope of Deep2Full was
to conceive a few ways of designing the minimal number of experiments that will be
helpful in training models and evaluating their efficacies in making the predictions for
the complete set of variants. It appears that a randomized set of mutations presents
the best training set, followed by a charge based training set. While it is preliminary to
say, it appears that by optimizing the stressor concentrations in the assays, one may be
able to obtain comparable quality of results with fewer mutations. A re-evaluation of the
strategies considering the costs or convenience associated with them may be a subject of
future work.

Though approaches like Deep2Full which use AI methods can reliably predict the
mutational effect, these models are complex and do not help in understanding the relation
between inputs and output or help in developing intuitions. In the coming chapters
multiple approaches to address this limitation are presented.

5.4 Conclusions
Deep2Full was developed in the context of a new paradigm of hybrid models that train
the computational models with partial deep mutational scan data from across assay
conditions, to quantitatively predict the fitness outcomes of a full-set of mutations. By
combining this phenotypic deep scan data with structure, sequence and co-evolutionary
information, the possible outcomes of a full set of deep mutational scan were predicted.
We addressed two questions, how much the data size used for training can be reduced
and if there is a better way of performing these mutations. To train the models, we found
that a representation from all positions of the protein was required. The neural network
models which were constructed with seventeen variables from - structure, sequence or
co-evolution could in principle be simplified by as few as seven variables, although the
model reduction was not the emphasis of the present work. Variation in the experimental
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data in the different trials, and the choice of the phenotype being measured, such as
the differential rate of growth or changes population size, are the limitations the model
begins with and this quality of data certain imposes constraints on the size of the data
that is necessary for training a reliable model. Regardless, it appears that the best way
to enhance the prediction is with a random scan of the sites and substitutions.

5.5 Methods
Data sets chosen: Deep2Full was developed for the deep mutational scan data of 6
proteins: β-lactamase[21], aminoglycoside 3’-phosphotransferase (APH(3′)-II)[22], heat
shock protein 90 (Hsp90)[23], mitogen-activated protein kinase 1 (MAPK1)[24], ubiquitin-
conjugating enzyme E2 I (UBE2I)[19] and thiamin pyrophosphokinase (TPK1)[19]. Data
used for calculations involving mutational effect scores of β-lactamase at different concen-
trations of ampicillin was obtained from the study of Stiffler et al.[21]. Unless mentioned
otherwise, the analyses on β-lactamase were preformed on the average of the two trials
of the experiments at 2500 µg/ml concentration of ampicillin. For APH(3′)-II, Hsp90
and MAPK1, the computational models were built using the curated data from Gray
et al.[25] Fitness scores for UBE2I and TPK1 were obtained from the study of Roth et
al.[19] The total number of mutants used for developing model in each data set was:
β-lactamase - 3952, APH(3′)-II - 4234, Hsp90 - 4021, MAPK1 - 4470, UBE2I - 2563
and TPK1 - 3181. For the modeling efforts, we chose to work with proteins for which
structural information and data on at least 2500 mutations were available.
Division of data set: The variants for training and validation were chosen according
to the strategy in each case. Fitness scores of the chosen variants were then grouped
into 3 bins and data points in each bin were divided into training and validation sets
in the ratio 85:15. For example, in the random 50% scan, we used 42.5%(= 0.85*50)
for training and 7.5%(=0.15*50) for the validation set and the rest for testing. For the
random scans the choice of mutations used for developing model is representative of the
complete data set, as suggested by the similarity of SASA distributions for the complete
data set and the training set which are similar (Figure D.21 of Appendix D).
Choice of parameters: A total of 17 descriptive parameters were used in the our
modeling. The structural variables for each amino acid that could be calculated from a
reference protein structure were included in the model - (1) Solvent accessible surface
area (SASA) (2) Secondary structural order, with a binary value 1 if the residue is part of
a helix or β-sheet, and 0 otherwise (3) Number of structural contacts an amino acid has
with a 4 Å cutoff (4) Average commute time,[32] which reflects the average connectivity
of a given amino acid with the rest of the protein. The second group of independent
parameters was based on the sequence information - (5) BLOSUM substitution matrix
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(BLOSUM62) score, which is the probability of substitution of an amino acid by other
amino acids inferred from evolutionary information[33] (6) Hydrophobicity on the Kyte-
Dolittle scale[34] of the amino acid after mutation (7) Hydrophobicity of the amino acid
in the wild type (8) Position specific scoring matrix (PSSM) score for the amino acid
after mutation calculated from the multiple sequence alignment (MSA) using PSI-BLAST
(9) PSSM score for the wild type amino acid (10) Conservation of the amino acid. The
third group of independent parameters was based on the properties of co-evolutionary
networks that were constructed using the multiple sequence alignment (MSA) of hundreds
of homologous proteins. This group is supposed to reflect the importance of an amino
acid in an undirected co-evolutionary network - (11) Average co-evolution score of each
amino acid (12) Degree centrality, the number of nodes to which a node is connected
(13) Betweenness centrality, quantifying the importance of a node in connecting other
pairs of residues (14) Closeness centrality, the inverse of the sum of distances to all other
nodes (15) Eigenvector centrality, which considers not just the number of connections
a node has, but also the connectivity of the immediately connected nodes. Directed
network information is also included in the model - (16) Impact factor[35], the number
of compensatory mutations required for mutations at a residue position is calculated
based on conditional probabilities (17) Dependency factor, which is the counterpart of
impact factor is the number of residues which are likely to influence a mutation at a given
position. Details about calculation of these parameters are described in the following
sub-sections.
Multiple Sequence Alignment(MSA) and inputs calculated using MSA: For
β-lactamase MSA was obtained from the Pfam database (Pfam ID: PF13354). Only 208

residues (positions 51− 260) of the E. coli β-lactamase appeared in the Pfam alignment.
So all the calculations and analyses were performed for the fitness effects of substitutions
at these positions (3952 data points). For other proteins, homologous sequences were
obtained through PSI-BLAST search and were aligned using Clustal Omega.
The variables calculated from MSA are:
Conservation: Conservation was calculated as the percentage occurrence of the most
frequently occurring residue at a given position.
Position specific scoring matrix (PSSM): PSSM was calculated from MSA using PSI-
BLAST and it quantifies the probability of occurrence of each amino acid at each position
of the protein.

Co-evolution network and properties: Multiple Sequence Alignment (MSA) for the
protein of interest was truncated to the reference sequence and sequences with a gap
frequency less than 20% were used in the analysis. Consensus sequence was generated
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using the amino acid with the highest frequency at a given position. Following the
Statistical Coupling Analysis protocol, [36] MSA was converted into a boolean sequence,
with a 1 if the amino acid is the same as in the consensus sequence and 0 otherwise.
Undirected network : The co-evolutionary relation between two amino acids i and j

is calculated as proposed by Halabi et al.[36], Cij = φiφj |〈xixj〉s − 〈xi〉s〈xj〉s|, where
φi = ln ((〈xi〉s(1− qai)) / (qai(1− 〈xsi 〉s))), and qai is the probability with which the
amino acid ai at position i in the consensus sequence occurs among all proteins. xi is the
ith column in the boolean sequence and 〈〉s denotes the average over sequences.
The co-evolutionary matrix is converted into a network representation using a cutoff c. If
Cij > c, we consider an undirected co-evolutionary network i — j to be present. In the
present analysis weighted co-evolutionary matrix was used and the cut-off chosen was 1.
We calculated different centrality measures - eigenvector centrality, degree etc. for the
amino acid network described above, using the igraph module in python.[37]
Directed network : Using the binary representation of the multiple sequence alignment,
we created a directed influence network, in a co-evolutionary sense, with the following
conditional probabilities:

P (j = 1|i = 1) = No. of sequences with i=1 and j=1
No. of sequences with i=1 and j=0 or 1

P (j = 0|i = 0) = No. of sequences with i=0 and j=0
No. of sequences with i=0 and j=0 or 1

where i and j represent positions. If both P (j = 1|i = 1) and P (j = 0|i = 0) are
simultaneously greater than a value P (we used P = 0.8) then position i has an impact
on j. A directed network is constructed by identifying all such pairs of residues. In this
directed network, the number of outgoing links is considered the impact of an amino
acid, and the number of incoming links is considered its dependency. The impact and
dependency are supposed to summarize how many simultaneous mutations are forced or
forced-upon by a mutation.[35]
Average commute time: The hypothesis that the structural and dynamical connec-
tivity of an amino acid to other amino acids determines the importance of an amino
acid has been put forward.[32] The average commute time has been used for identifying
hotspot amino acids. The resistance matrix is constructed using the number of atom-atom
contacts between amino acids i and j, which are within 4 Å . The resistance matrix is
then used for average commute time calculations as per the algorithm suggested in Ref.
[32]. All structural variables including average commute time were calculated using the
protein structure obtained using the Protein Data Bank (PDB) identifiers: β-lactamase -
1M40, APH(3′)-II - 1ND4, Hsp90 - 2CG9, MAPK1 - 4NIF, UBE2I - 2UYZ and TPK1 -
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3S4Y.

Neural network model: All neural network calculations were performed using the
Neural Network Toolbox of Matlab2017b. All neural network models had the architecture
with an input and output layer and a single hidden layer. The number of neurons in
the hidden layer was varied from 2 to 20 for most of the 15% scans, and from 10 to 45
for the other scans where the training sets were larger. Since the initial weights and
biases can affect training, for each choice of the number of hidden neurons, 200 neural
network models were constructed with random initialization of weights and biases. The
predictions from each of these 200 trained models were treated as different trials of the
same experiment, and the score for each mutant was calculated as the average of the 200
model predictions. R2 value for the combined set of training and validation data was
monitored with the increase in the number of hidden neurons as illustrated in Figure
D.22B of Appendix D. The number of hidden neurons was then chosen as the one with
which the R2 value is the highest (Optimal number of hidden neurons given in Table D.6
of Appendix D). In all these above mentioned calculations we used Levenberg-Marquardt
algorithm with mean square error as the performance function for training the network.
Early stopping criterion was used to prevent overtraining. The parameters performance
goal (trainParam.goal), the minimum performance gradient (trainParam.min_grad) and
maximum number of validation fails before the training is stopped (trainParam.max_fail)
were set to 10−7, 10−8 and 100 respectively. Default values in the trainlm algorithm of
Neural Network Toolbox of Matlab R2017b was used for all other parameters.

Models with reduced set of variables: The important variables were identified in
two ways: (1) Assuming a linear relation between the fitness and input variable, the
fraction of variance in the fitness data explained by the input variable is calculated as
the square of the Pearson correlation between the input and fitness. Variables with the
fraction of variance explained more than 0.1 were chosen to develop the model and were
conservation, average correlation, average commute time, contacts, BLOSUM, SASA and
PSSM score for the wild type amino acid; (2) Neural network models were developed by
fixing each of the inputs to its average value and the percentage increase in the mean
squared error upon this is used to quantify variable importance. 6 important variables
were chosen based on this: impact, average correlation, average commute time, contacts,
BLOSUM and hydrophobicity of the substituted amino acid.
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Chapter 6

Towards Developing Intuitive Rules for
Protein Variant Effect Prediction
Using Deep Mutational Scan Data

Abstract

Protein structure and function can be severely altered by even a single amino acid mutation.
Predictions of mutational effects using extensive artificial intelligence (AI) based models
although accurate, remain as enigmatic as experimental observations in terms of improving
intuitions about the contributions of various factors. Inspired by Lipinski’s rules for
drug-likeness, we devise simple thresholding criteria on five different descriptors such as
conservation, which have so far been limited to qualitative interpretations such as high
conservation implies high mutational effect. We analyse systematic deep mutational scan
data of all possible single amino acid substitutions on 6 proteins to firstly define these
thresholds, and then to evaluate the scope and limits of the predictions. At this stage, the
approach allows us to comment easily and with a low error rate on the mutations classified
as neutral or deleterious by all the descriptors, and not on the complete set of mutations.
We hope that complementary to the accurate AI predictions, these thresholding rules or
their subsequent modifications will serve the purpose of codifying the knowledge about
the effects of mutations.

6.1 Introduction
As has been discussed in the previous chapter, deep mutational scan [1] studies have been
generating unprecedented amounts of data[2–7] parallel to which computational methods
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have been developed to predict the mutational effect scores[8–13]. These models use
tens to hundreds of variables that represent the site-specific factors, or the interactions
with the immediate neighborhood. Though all these predictors may not work well for all
proteins, as the detailed analysis of the predictive power of different predictors shows,[14]
the performance of these AI based computational models may be considered satisfactory
depending on the specific requirements, and many of these are easy to use with a web
interface.[10, 11] Thus the experimental data or its computational predictions are at a
stage where they can reliably generate libraries of the effects of mutations. Both these
approaches are used referentially for knowing the effects of specific mutations rather
than to contribute towards an understanding of the mutational landscape. However, in
general, there has been a growing criticism against the lack of transparency in the AI
based models that is leading to the emergence of interpretable or explainable AI.[15]
The approach can be used to understand the contributions of each variable to individual
predictions as is presented in Chapter 8.[16] However, even with the accurate predictions
of AI, and interpretable contributions to these predictions, there is no codification of the
knowledge or a reconciliation with the classical intuitions about the effects of mutations.

In the field of rational drug discovery, two very different approaches are used to screen
through the leads to identify the activity or the drug-likeness. One is using highly accurate
prediction models for quantitative structure activity relationships,[17] the other is using
intuitive rules of thumb known as Lipinski’s rules,[18] to classify the drug candidates.
The latter, while not meant to be an accurate prediction of activity, is an intuitive and
practically useful tool and our approach in this work is inspired by it. We revisit the
qualitative intuitions on how different physico-chemical factors are independently likely
to affect the function of proteins, most of which are based on site-specific descriptors
such as conservation and neighborhood descriptors such as number of contacts. We ask if
quantitative rules of thumb can be derived. The limitations in accuracies arising from
such rules are also quantified along with these thresholds. We demonstrate the results of
combining different intuitive rules for improving the reliability of predictions, albeit for a
small set of mutations.

6.2 Methods
The present analyses are based on the deep mutational scan data obtained for seven
proteins - β-lactamase,[19] aminoglycoside 3’-phosphotransferase (APH(3’)-II),[20] heat
shock protein 90 (Hsp90),[21] mitogen-activated protein kinase 1 (MAPK1),[22] ubiquitin-
conjugating enzyme E2 I (UBE2I),[12] thiamin pyrophosphokinase (TPK1)[12] and
β-glucosidase (Bgl3).[23] The structures of these proteins were obtained from protein
data bank repository using PDB identities 1M40, 1ND4, 2CG9, 4NIF, 2UYZ, 3S4Y and
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1GNX, respectively. Hydrogen atoms were added to the structure, using GROMACS.[24]
Solvent accessible surface area (SASA) for each wild type residue was calculated using
these structures with the gmx sasa tool of GROMACS[24] and a probe radius 1.4 Å.
For β-lactamase and β-glucosidase homologous sequences were obtained from Pfam
database[25](Pfam ID: PF13354 and PF00232 respectively) using PDB ID as the query.
For other proteins, sequences obtained through PSI-BLAST search were aligned using
clustal omega. The alignment was then truncated to the reference sequence and the
sequences with more than 20% gaps were removed. Conservation is quantified as the
frequency of highest occurring amino acid at each position in the alignment. While
studying the effect of a categorical charge type change, amino acids were grouped into
four categories - Positively charged (R, H, K), negatively charged (D, E), polar (S, T,
N, Q, C) and hydrophobic (A, V, I, L, M, F, Y, W). P and G were not included in any
group.

While analyzing the data for β-lactamase, relative-fitness,[19]
R = log10

(
fmutant/fwild−type

)
where f is the ratio of allele counts in the selected and

unselected population was used as a measure of phenotypic outcome of mutations. Zero,
negative and positive R reflect neutral, loss of function and gain of function mutations
respectively. Interestingly, two independent deep scan studies [19, 26] of β-lactamase in
E. coli obtained a non-linear, but highly correlated outcomes ( Figure E.1 in Appendix
E). We chose to work with the data of Stiffler et al. [19] as it was 100% complete with all
19 substitutions studied for all wild type amino acids in the mutagenized region. For the
proteins APH(3’)-II, Hsp90 and MAPK1 the data was obtained from the study of Gray et
al.[27] where the mutational scores are available as relative fitness (R). Fitness scores as
growth rates for TPK1 and UBE2I were obtained from Weile et al.[12] Log2 enrichment
ratio for variants of Bgl3 was taken from the study of Romero et al.[23] Since the relative
fitness data we used was quantitative, to perform a classification analysis, a choice of
fitness threshold was required. The fitness distribution from each protein was fit to a
bi-gaussian model, which is supposed to represent the neutral and deleterious mutation
groups. All mutations with a fitness score more than (µ− 2σ) where µ, σ are the mean
and standard deviation of the gaussian mode corresponding to the neutral mutations
are considered neutral and others as deleterious. Unlike the case of other proteins, for
MAPK1, the positive and negative scores represented deleterious and neutral mutations
respectively and the choice of threshold was adapted accordingly for this data set.
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6.3 Results

6.3.1 Developing thresholds for classification

We analyzed the deep mutational scan data of 7 proteins, β-lactamase, APH(3’)-II,
Hsp90, MAPK1, UBE2I, TPK1 and Bgl3 for which structural information as well as
mutational effects data of at least 2500 substitutions are available (Methods). 6 of
these data sets (22421 variants) were used for obtaining the thresholds and the data
on Bgl3 (2732 variants) was used for an independent validation. Six physico-chemical
parameters - conservation, charge type change, solvent accessible surface area (SASA),
number of structural contacts, BLOSUM substitution matrix score and distance from the
catalytic site (catalytic distance) were studied for identifying correlations with fitness.
Each of these descriptive parameters depends either on structure, sequence or the nature
of substitutions. All the parameters are site-specific, intuitive, and are widely used for
inferring mutational effects. In the following sections, the fitness data of each protein was
individually studied relative to each of these physico-chemical parameters. Specifically
for the mutational data of β-lactamase, we studied in detail to see if correlations of
the physico-chemical parameters and the deviations from them were intuitive. When it
appeared that all the mutational effects could be inferred from one parameter or the other,
we performed two statistical analyses of fitness relative to every parameter, Spearman
correlation and F1 score. The Spearman correlation of the phenotypic outcomes relative
to these individual parameters prompted us to perform thresholding relative to each of
these parameters. To identify the threshold on a given parameter, we scan across the
complete parameter range and use F1 score[28] to quantify the quality of classification at
each value of the parameter for both the neutral and deleterious classes. F1neutral can be
calculated as F1neutral = 2× (Precision× Recall)/(Precision + Recall). Here precision is
the ratio of number of true neutral predictions to total number of neutral predictions and
recall is the ratio of number of true neutral predictions to number of observed neutral
mutations. Similarly F1deleterious is also calculated and the threshold at which the average
of F1 scores of both neutral and deleterious classes (F1avg = (F1neutral + F1deleterious)/2)
is maximum was chosen as optimal. The procedure was repeated with each parameter for
all proteins except Bgl3. The Bgl3 data was used as a test set for evaluating the utility
of the thresholds obtained in classifying variants of a new protein.

6.3.2 Conservation threshold

Typically, evolutionary conservation reflects the functional importance of an amino acid.
Figure 6.1 shows the relation between conservation and the fitness effects from deep scan
data of TEM-1 β-lactamase. As suggested by the mean fitness value for a given range of
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conservation highlighted in Figure 6.1, there is a reduction in fitness when conserved amino
acids are mutated. However, conservation alone does not clearly resolve the effect on fitness
as one can see several exceptions with high fitness consequences for substitutions at poorly
conserved sites and low fitness consequences at highly conserved positions. We highlight
the exceptions to the expected intuitions: (1) The amino acids that have less than 20%
conservation and yet severely affect function upon mutation (Relative fitness, R < -1). The
mutations N52C, K55(C,P), E58(C,F,H,I,L,M,P,V,W,Y), S82(C, P), S98P, N100C, T140P,
T141(F,K,P,W,Y), E197(F, L), P219(F,I,W,Y), F230(C,D,E,G,I,K,L,N,P, Q,R,S,T) and
S258P are deleterious even though the wild type residue is poorly conserved. All these
substitutions are away from the catalytic sites and other than N52C, S82C, N100C, F230I
and F230L, involved a charge type change. Interestingly, most of these substitutions
also involved a loss of solubility [29] which could be the reason for reduced functional
fitness. (2) The amino acids were conserved (> 80%) but their substitution did not
affect the function significantly. G156D, G156E, G156N and G236A are the substitutions
which are neutral despite high conservation. Also in these cases the wild type amino
acid is substituted with amino acid of different charge type. As conservation quantifies
only variability at a specific position and does not distinguish different substitutions, we
calculated position specific scoring matrix (PSSM) using PSI-BLAST and explored its
relation with fitness. We observe only a weak correlation (Figure E.2).

We further attempted to quantify a threshold for the general intuition that higher the
conservation, greater are the fitness consequences of substituting it. We scanned across
for different values of the threshold and quantified the F1 score for both neutral and
deleterious classes (Figure 6.1). The same analysis performed for the other five proteins
is shown in Figure E.3 of Appendix E. It can be seen that the intuition holds for all
proteins as indicated by the change in the mean fitness with conservation. The optimal
threshold for conservation according to the F1 score was 0.35 for β-lactamase. For the
other five proteins we studied the threshold varied in the range 0.45 to 0.9 (Table 6.1).

6.3.3 Solvent accessible surface area (SASA) threshold

The relation between fitness and SASA of wild type amino acid which reflects how
buried the amino acids are is shown in Figure 6.2 (alanine scan results in Figure E.4 of
Appendix E). The intuitive learning from this figure is that substitutions at amino acids
which are completely buried can potentially range from neutral to deleterious, while the
effect tapers off for amino acids with high SASA values which have minimal effect on
fitness. The mutations defining the frontier and showing the highest fitness compromise
at any given SASA, were recorded by taking note of the alanine scan mutations near the
triangular border in the plot. Of the amino acids P27, L57, R61, R65, F66, S70, K73,
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Figure 6.1: Effect of conservation. (A) The relationship between conservation and
fitness was studied using the homologous sequences for TEM-1 β-lactamase (Pfam ID
PF13354). It can be seen that the number of neutral substitutions decreases considerably
for amino acids with conservation > 60%. The black filled circle and the red line represent
mean and median of the fitness respectively. The whiskers are plotted at 1.5 times the
interquartile range and black open circles show the outliers. (B) Changes in F1 score for
the neutral and deleterious classes and the average of both plotted as the threshold for
conservation to classify the mutations is varied.

R93, Y105, S130, N132, N136, D157, R161, E166, R222, W229 and W290, which are on
the frontier of highest fitness loss, most are near the binding pocket. W229 is known
to have an allosteric effect on the function.[30] However, the reasons for the functional
compromise of mutations at P27 and R222 are not clear. The data on average supports
the intuition that amino acids which are completely buried and have a zero or reduced
solvent accessible area do not tolerate mutations. At intermediate solvent accessibility
conditions, interestingly, a reduction in volume of the amino acid seems to be more
deleterious in general. This could be because of the cavities being created which affects
the packing of the residues. It is known that cavity creating mutations reduce the stability
of proteins.[31] Applying a thresholding condition on SASA that classifies the fitness
consequences of mutations as neutral or deleterious, we obtain 0.3 nm2 as the optimal
threshold (Figure 6.2 and Table 6.1). For other proteins the optimal threshold for SASA
was observed to be in the range 0.1 to 0.4 nm2 (Table 6.1). The fitness distributions at
different ranges of SASA for these proteins are given in Figure E.5 of Appendix E. The
distributions for APH(3’)-II, Hsp90 and MAPK1 follow similar trend as seen in the case
of β-lactamase and for TPK1 and UBE2I there is comparatively higher variability in
fitness even at lower solvent accessibility.
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Figure 6.2: Effect of solvent accessibility. (A) Solvent accessibility for all amino acids
of β-lactamase was calculated using the 3D protein structure (PDB ID: 1M40). SASA
versus fitness shows a half-triangular pattern. The deviations from this half-triangular
pattern are noted in the main text. For details about the box plot representation, see
Figure 6.1. (B) Substitutions are classified as neutral and deleterious based on a chosen
SASA threshold and the quality of resulting classification is quantified using F1 score.
F1 scores when different SASA thresholds are used is shown.

6.3.4 Threshold for number of inter-residue contacts

Inter-amino acid interactions mediated by hydrogen bonds, salt bridges, stackings etc
determine how much a substitution disturbs the overall structural stability and function.
While the biochemical details of the different interactions may be explored, and whether
or not the nature of the substitutions conform with the existing interactions may also
be investigated, a simpler metric is the total number of inter-residue interactions any
given residue is involved in. We studied this by counting the number of atom level
interactions that an amino acid is involved in, and the sensitivity to its substitution.
We used the native structure of the protein obtained from the protein data bank and
along with an interaction cutoff of 4 Å to count interactions. Figure E.6 of Appendix E
shows that the relation between fitness and number contacts is weak. While the average
trends are intuitive, like substitutions of residues with higher number of contacts result
in larger fitness effect, the variation in fitness for a given number of contacts is high.
An optimal threshold for the number of inter-residue contacts was found to be 14 for
β-lactamase. The F1 score variation with respect to number of contacts for other proteins
and the optimum thresholds obtained are given in Figure E.7 of Appendix E and Table
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6.1 respectively. There is an intuitive monotonous variation in mean fitness with number
of contacts for the cases of APH(3’)-II and UBE2I whereas for Hsp90, TPK1 and MAPK1
the fitness changes do not seem to have dependence on the number of contacts.

6.3.5 BLOSUM threshold

All other physico-chemical metrics mentioned so far depend on the wild type amino acid
alone, and do not reflect the nature of the substitution. We use BLOSUM65 matrix
which statistically summarizes the naturally occurring substitution probabilities across
all proteins to see if the fitness effects of an amino acid substitution can be captured
by it. A plot of BLOSUM score of substitutions and their fitness effects in β-lactamase
are shown in Figure 6.3. One can also infer an optimal threshold for the BLOSUM for
β-lactamase from this. The dependence of fitness on BLOSUM matrix score can be seen
for all proteins in Figure E.8 of Appendix E.
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Figure 6.3: Effect of BLOSUM substitution score. (A) Fitness scores for substitutions
in β-lactamase as a function of the BLOSUM62 score for the substitution. See Figure 6.1
for details about the box plot representation. (B) F1 score when each of the substitution
matrix score is used as a threshold to classify mutations as neutral and deleterious.
Average of F1 scores of both classes is also plotted.

6.3.6 Charge-invariant fitness map

Another physical intuition about the nature of the substitutions is that charge type
changes can disrupt local interactions or solvent accessibility and lead to a loss of structure
and function. Four amino acid categories were considered - positively charged, negatively



6.3 Results 109

Parameter

Protein
name β-

lactamase
APH(3’)-

II Hsp90 MAPK1 UBE2I TPK1
Average
thresh-
old

Fitness
cut-off -0.5 -2.5 -0.3 0.5 0.2 0.4 -

Conservation 0.35 0.5 0.85 0.9 0.45 0.55 0.6
SASA (nm2) 0.3 0.2 0.2 0.1 0.2 0.4 0.2
Contacts 14 19 25 20 18 14 18
BLOSUM -1 -3 -3 -3 -2 -1 -2

Table 6.1: Threshold for parameters. Thresholds for different parameters were obtained
by maximizing F1avg which is the average of F1 scores of neutral and deleterious class
predictions. The thresholds were obtained for each parameter and data from every single
protein. For a parameter, the average of thresholds obtained for the 6 proteins was
calculated to obtain the average threshold.

charged, polar and hydrophobic (Methods section). In an attempt to highlight the
functional effects that are not intuitively expected, we present the analysis only for the
mutations where the charge type of the mutant is the same as the charge type of the
wild type, yet the mutation causes a severe loss in fitness (Figure 6.4). Since charge type
change is categorical in nature, the consequences of this prediction can be summarized in
a contingency table, rather than a parameterized dependence as: 2401 true positives, 569
true negatives, 1536 false positives and 491 false negatives.

Figure 6.4: Effect of charge variation. The mutational effect scores are shown in a two-
dimensional matrix representation with each row representing the amino acid substituted
by and each column the position along the amino acid sequence of β-lactamase. All
substitutions with no change in the charge type of the amino acid are highlighted in red
filled circles with the size of the circle representing the fitness score and others in open
blue circles of equal size. There are many substitutions for which the fitness is heavily
compromised even with no change in the charge type.
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6.3.7 Threshold for distance from catalytic site

Substitution of catalytic and binding pocket residues: Substitution of catalytic
residues are expected to be mostly deleterious, which is also the reason the conservation is
usually correlated to the distance from the catalytic site.[32] Any substitution in the five
reported catalytic residues in β-lactamase - S70, K73, S130, E166 and A237, other than
A237S and A237G leads to high fitness compromise. In catalysis, the backbones of S70
and A237 in conjunction form an oxyanion hole stabilizing a reaction intermediate, [33]
thus tolerating some side chain substitutions at A237. The intolerance of all substitutions
except of S and G could probably be because of size constraints. In addition to the
catalytic sites noted above, residues M69, Y105, N132, N170, K234, S235, G236, G238,
E240, M272, form the binding pocket. Among these, N132 and K234 are the most
sensitive ones as all 19 mutations at these positions result in reduced fitness (R < -0.5).
Substitution of distal amino acids: From all mutations that lead to a loss of function
[19], the mutations which also were independently seen to lead to a loss of solubility [29]
were eliminated. 57 substitutions of 16 wild type amino acids were more than 1.5 nm,
away from the catalytic residues and yet lead to R < −1.5. All these substitutions are
either buried (SASA < 0.3 nm2) or have higher inter-residue contacts (> 15) except for
two which are evolutionarily not favoured (BLOSUM < 0 ). It is also possible that the
substitutions had long range effects such has been observed in the case of some other
proteins.[34, 35] The fitness effects of all the amino acid mutations studied in β-lactamase
are summarized as a function of the distance from the catalytic site in Figure 6.5. 1.5
nm as a threshold distance from the catalytic residues to classify the effects of mutations
optimized the true and false positive predictions.

0.25 0.75 1.25 1.75 2.25 2.75
Catalytic distance (nm)

3

2

1

0

Fi
tn

es
s

A

Coil
Helix
Sheets

0.25 0.75 1.25 1.75 2.25 2.75
Catalytic distance (nm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

B

Neutral
Deleterious
Average

Figure 6.5: Effect of catalytic distance. (A) Fitness changes are shown with respect to
the distance between wild-type residue and the closest catalytic residue. See Figure 6.1 for
details about the box plot representation. (B) F1 score for the neutral, deleterious classes
and the average of both are plotted as the catalytic distance threshold for classification
is varied.
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6.4 Discussion

6.4.1 From intuitions to thresholds

Conservation of an amino acid has been a traditional benchmark to understand the
functional relevance of amino acids as well as to infer the potential effects of their
mutations. The intuitions such as when the conservation of an amino acid is sufficiently
high, the chance of its mutation affecting the function is also high were developed
either from mutational studies or by comparing homologous proteins with sequence
alignments. In this intuitive classification, two aspects remain qualitative, how high the
conservation should be for it to be important and the quality of the resulting classification.
Technically this information may be derived by compiling the data on all the mutations
available, but has not been done to our knowledge. However, the variations across
proteins, experiments make comparisons difficult. The present work uses the publicly
available systematic large data sets on mutational effects to shed light on both these
aspects for six proteins. The thresholds obtained for the six proteins are all summarized
in Table 6.1. It appears that the conservation threshold optimizing the false positives
and false negatives vary widely from 0.35 to 0.9 for different proteins. The question
then arises whether the thresholds vary with larger data sets, or if one can identify
universal thresholds. To address this question, one has to work with relatively large
data sets, with reliable quantitative measurements of the mutational effects. At this
stage, the deep mutational scan measurements with different assay conditions and varying
levels of stressor concentrations are indicative of the overall trends rather than precise
measurements. Since to the best of our knowledge the thresholds were not defined so far,
and we suggest the use of averages of the thresholds obtained from the different proteins
and defer the universality aspect until a later occasion.

6.4.2 Optimization has to balance several factors

Any classification method has to balance between true and false positives, and is likely
to be biased by the over representation of the neutral or deleterious in the training. The
same is true for the rules of thumb we developed. We chose F1avg score as the measure to
quantify this balance. But as F1 score focuses only on one class we decided the optimal
threshold as the one which maximizes the average of F1neutral and F1deleterious. It is clear
from the data that there is no clear parameter that can be used as a threshold or a rule
of thumb for improving the true positives, without also increasing the false-positives.
The false-positives and false-negatives were both minimized simultaneously by using the
sum of F1neutral and F1deleterious scores. Because of this optimization, any threshold or
rule based classification will be partly incorrect. Further, the data we used from the
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deep mutational scan has a larger fraction of neutral mutations (64%). Thus, there
may be unavoidable biases in making predictions, which may be addressed with larger
data in the future. Not withstanding this limitation, we probed in detail the exceptions
to the thresholding rules for β-lactamase. What appears to be an exception to the
monotonous relation between conservation and fitness was explained by a charge type
change. The ambiguity in the sensitivity of amino acids which are in the intermediate
ranges of SASA could be clarified by the change in volume upon mutation. Thus, while
each of the physico-chemical parameters is not complete, they may complement each
other. This is expected, since proteins are complicated, and predicting structural or
functional consequences of mutations with a single biophysical or biochemical parameter
is non-trivial.

6.4.3 Multifactorial classification

Before attempting a multifactorial classification based on thresholding, we developed
a logistic regression model by training on 70% of the data from the six proteins. The
probability of a substitution being deleterious (Pdel) we obtained was:
Pdel = 1/[1 + exp(1.99− 1.97×Conservation− 0.014×Contacts + 0.72× SASA + 0.33×
BLOSUM + 0.12×Qc)]

where Qc represents a charge type change, 1 if there is no change and 0 otherwise.
The model was tested on the remaining 30% and had an accuracy of 0.70, better than
the accuracy from the individual variables. Taking cue from this, a threshold based
classification with several biochemical intuitions was systematically explored in Figure
6.6. In the analysis, a subset of mutations (2892 of them) from β-lactamase which result
in a fitness compromise (R <= −0.5) were analyzed. Each mutation was independently
classified as neutral or deleterious using different descriptors and their corresponding
threshold values. The numbers appearing in the different overlap regions in Figure 6.6
indicate the number of mutations for which the variables defining the overlap all result
in a false-neutral prediction. The interesting region in the center shows that when all 5
variables classify a mutation as neutral there are only 2 false predictions. In addition to
this combined representation, one can also see how the number of false-neutral predictions
reduces as the number of descriptors are increased one after another (Figures E.9 and
E.10 of Appendix E). Of course, in this approach now a new kind of uncertainty will
remain for a fraction of the substitutions when about half of the descriptors suggest a
deleterious effect and others point to neutrality.
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Figure 6.6: Reducing false predictions by combining parameters. Venn diagram showing
the number of substitutions that do not follow the intuitions related to different structural
and sequence related properties of the wild type and the substituting amino acids.
Thresholds indicated in the figure were used on each of the individual parameters, to
classify the mutations as deleterious or neutral. The central region indicates that there
are only 2 false-neutral predictions when all five variables classify the mutation as neutral.
The number of total false neutral predictions when only one variable is used is given in
brackets below the variable labels.

6.4.4 Common thresholds for many proteins

It is clear that the thresholds of the physico-chemical parameters that we obtained for
different proteins varied significantly. For each protein, when multiple threshold criteria
were satisfied the error rate in those cases was smaller. We asked if it is possible to define
universal thresholds or at least common thresholds for the data sets we have studied. For
each of the physico-chemical parameters, we used an average derived from the different
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proteins, i.e., the row averages in the Table 6.1. By using these averages as thresholds,
we re-calculated how the error rate drops for all six proteins as shown in Figure E.11 of
Appendix E. The results are encouraging, at this stage and suggest that by qualifying for
at least three conditions with the threshold criterion, the chance of false-predictions drops
significantly. The details of true and false, neutral and deleterious classifications when
these average thresholds are applied individually on each protein are given in Table E.1 of
Appendix E. The classification based on average thresholds performs better for variants
which are suggested as either neutral or deleterious by all variables compared to the
classification based on BLOSUM substitution score as variants with score < 0 considered
as deleterious and all others as neutral (0.76 versus 0.66, McNemar’s p-value =0). The
average thresholds were tested on an independent data set of β-glucosidase (Bgl3)[23]
that was not used for obtaining the common thresholds. Interestingly, the fraction of
false neutral and false deleterious obtained are low, 0.07 and 0.16 respectively. We also
performed F1 score analysis by combining data sets of all proteins and defined a common
threshold across proteins for each parameter. The thresholds obtained from this analysis
were same as the average threshold for number of contacts, SASA and BLOSUM and for
conservation a threshold of 0.5 was obtained. As there is only change in the conservation
threshold, we did not repeat any other analyses with these set of thresholds. Leave one
protein out analysis in which the thresholds obtained for five proteins are averaged and
the quality of predictions are tested on the data set of the sixth protein was performed.
In all cases the quality of predictions was similar to that as with the average of thresholds
for all six proteins (Table E.2). We also explored the variation in the thresholds on using
another criterion for threshold determination such as maximizing the difference between
True Positive Rate (TPR) and False Positive Rate (FPR) as obtained from an ROC
analysis. While there were small changes in the threshold for individual proteins, the
common threshold for number of contacts and BLOSUM score remained the same. For
conservation and SASA the thresholds changed from 0.6 to 0.5 and 0.2 to 0.3 respectively.
The effect of small variations such as this is discussed in the Section 6.4.6.

6.4.5 Effect of experimental error on the thresholds

We wanted to check whether the thresholds identified are robust against the uncertainty
in the experimentally determined fitness scores, using the measurement errors available
for β-lactamase, TPK1 and UBE2I. In the present work, any variant is first classified as
neutral or deleterious by checking its fitness relative to a bi-gaussian distribution, and then
the predictive capacity of the variable was evaluated. However, for some of the variants
the two extremes for their fitness accounting for the error (variant fitness - standard
deviation and variant fitness + standard deviation) can suggest different classifications,
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creating an uncertainty in what was meant to be a reference. We eliminated these
uncertain variants from our analysis and recalculated the thresholds for the variables.
For TPK1 eliminating these variants did not change any threshold, for β-lactamase the
BLOSUM threshold changed from -1 to -2 and for UBE2I the threshold on the number
of contacts changed from 18 to 22. However, while averaging to obtain the common
thresholds, only the average threshold for number of contacts changed from 18 to 19.
This variation was within the scope of the sensitivity analysis we perform in Section 6.4.6
below, and practically the threshold may be considered robust relative to the experimental
errors.

6.4.6 Sensitivity analysis

Since the thresholds from different proteins varied, and the data was not sufficient to
comment on universal thresholds, we performed a sensitivity analysis for the qualitative
changes in conclusions with small changes in the thresholds. We varied the average
thresholds (thav) by an amount δth which is approximately equal to 10% of the maximum
value for that parameter. We quantified the fraction of wrong predictions for both
the neutral and deleterious classes when each parameter was varied, one at a time, as
(thav ± δth). We find that for the mutations which are predicted as neutral or deleterious
by all five variables, this fraction remains same in most of the cases though there are
differences in the number of mutations identified on changing the threshold. (Table E.3
of Appendix E)

6.4.7 Scope of present work in the context of existing AI predic-

tors

Advances in artificial intelligence are leading discoveries in several areas of science and
engineering. The same is true for protein effects predictions, where models such as
SNAP[10], Envision[11] or others[12] continue to improve the accuracy of classifications
or fitness predictions. Many of the models have even created a easy to use web based
interface. The SNAP predictions are analyzed from this perspective by choosing only
those mutations which were classified with an expected accuracy greater than 80%. The
number of neutral or deleterious predictions we obtain with the average thresholds listed
in Table 6.1 are also shown in Table 6.2. It can be seen that though for a smaller set,
the fraction of false predictions when thresholding criteria are used is comparable to
that of SNAP. Clearly, when considering the complete set of mutations, the present
work is no match to the AI models. However, in several areas of AI, there has been
a concern about the lack of transparency in the way AI treats the predictions, with a
two-fold motivation: 1. assuming the predictions are correct, is it possible to find the



6.5 Conclusions 116

contributions to each individual prediction so that one has a better understanding of the
final output. For example, such factor contributions can help find mutations where the
solubility and fitness changes from the mutation are both acceptable. 2. Although on
average the prediction quality is high, how can one be sure that a specific prediction is
reliable? Is it possible to, for example, correlate the factor contributions, with known
intuitions so that one gains confidence in the final prediction of the effects? Thus, there
is always a need for intuitions or at least rules of thumb which empirically codify the
observations. Further, despite the ability to have accurate calculations, in other parts
of the literature the qualitative statements about critical parameters being high or low
continue to exist. The present work, while acknowledging its shortcomings relative to the
AI based models aims to improve the qualitative intuitions by quantifying them with
thresholds. Of course, the limitations are that it is not easy to comment on mutations
where the suggestions from the five parameters are not correlated, and it is possible
to comment only on mutations where all the parameters suggest the mutation to be
neutral or deleterious. Given this limitation, when a mutation is implicated for a disease,
for example, the present method is not useful for classifying such critical mutations.
Instead it can be used as an inverse approach where the mutations suggested by the
thresholds to be deleterious or neutral can be believed to be so with a high degree of
accuracy. The limitation of the thresholding could be related to the small training set or
the site-specific nature of the descriptors we chose which may fail to capture distal effects
of mutations. The present approach is an important step toward codifying the learnings
from a pedagogical perspective and is helpful for quick analysis when all parameters
suggest a similar outcome. The question of whether these thresholds can be universal
is beyond the scope of the present work and should be revisited with data much larger
than what has been used and descriptors that capture long range effects of mutations.

In line with the idea of having a simple, interpretable model for mutational effect
prediction, as presented in this Chapter, in the coming chapters we attempt to develop
models that have a transparent decision process but are more accurate than the thresholds.

6.5 Conclusions
Different physico-chemical factors describing native amino acids or their substitutions
were evaluated in this work for their potential to capture the loss of protein function upon
mutation. Visual representations of the large scale mutational data on six proteins were
used to establish correlations, albeit weak ones, between the individual descriptors and
the functional effects. We attempted to obtain a double quantification of the common
intuitions such as when the descriptor is sufficiently large it is likely to have a significant
effect. Threshold values for the descriptors which can be used for classification and the
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SNAP predictions with
expected accuracy ≥ 80%

Using averaged thresholds

Protein
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tions
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dicted
as dele-
terious

Fraction
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ous

predic-
tions

β-
lactamase 802 0.13 1317 0.04 200 0.18 183 0

APH(3’)-
II 1156 0.03 673 0.47 289 0.04 186 0.45

Hsp90 578 0.01 1151 0.59 231 0.02 260 0.58

MAPK1 594 0.02 1507 0.44 185 0.03 447 0.40

UBE2I 32 0.06 751 0.26 146 0.14 161 0.11

TPK1 655 0.41 668 0.31 183 0.37 207 0.31

Bgl3§ 665 0.14 695 0.17 140 0.07 190 0.16

Table 6.2: SNAP predictions with expected accuracy ≥ 80% were selected and the
fraction of false neutral/deleterious predictions for this set of mutations were calculated.
Using the average of thresholds tabulated in Table 1, mutations predicted as neutral
or deleterious by all five variables were identified and the fraction of false predictions
for these sets are given in the table. It can be seen that the quality of classification
achieved using just simple thresholding criteria compare with that of SNAP though for a
smaller set of mutations. §Bgl3 data which was not used for training, was added as an
independent validation
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consequent false predictions were discussed. Combination of these simple rules of thumb
improves the confidence in the predictions, although of a smaller set of mutations. The
approach thus attempts to quantify the physico-chemical intuitions, which we believe is
complementary to the more accurate but complex machine learning based approaches.
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Chapter 7

A4 Size Decision Tree

Abstract

Understanding how amino acid substitutions can affect protein function is impor-
tant in basic biology as well as in protein engineering. With the availability of more
data and advanced artificial intelligence (AI) models, it is becoming possible to make
reliable predictions of the mutational effects. However, to our knowledge the philosophical
shift from predictability to interpretability has not caught on yet in mutational effects
predictions. In this work, we build a decision tree (AI model) and condense it into a
compact representation. The method, while approximate, is intended to transfer the
power to make decisions from computers to humans, thereby allowing the possibility of
learning about the factors that contribute to the mutational effects, with lesser abstraction
than black box model.

7.1 Introduction
The rules of thumb developed for mutational effect prediction in the previous chapter
are based on intuitions about the correlation between different properties of the wild
type amino acid or the substitution and mutational effect. While the extreme cases of
these variables may be easy to interpret, the classification is otherwise fuzzy with no
thresholds or clear rules for separating the neutral from the deleterious effects. The
other completely different approach for prediction is by using computational models
that use artificial neural networks, random forests or decision trees[1] such as Deep2Full
presented in Chapter 5. But as has been mentioned before, these models are trained
on tens to hundreds of thousands of mutations, and use tens to hundreds of predictive
variables. Some of the models such as SNAP[2] give predictive scores as well as expected
accuracy and combining these the two gives good predictions of the effects. However,
one shortcoming of depending on these approaches, which had been true in general for
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artificial intelligence (AI) based models excepting the newer ones on interpretable AI, is
that while the end result may be predicted, one does not develop any insights into the
predictions. For example, decision trees are common in several areas of data analysis.
The implicit assumption is that the decisions are taken by computers, and the emphasis
is typically on constructing the most detailed tree which may be humanly unreadable, or
construct ensembles of such trees which make it even more difficult to track the process.
To the best of our knowledge, either in other areas of data sciences or in mutational
effects predictions, there has been no effort to simplify the decision trees to achieve
a transparency in the decision process. Here, we attempt to find a middle ground by
developing an AI based decision tree model, but presenting it in a compact format with
a goal to make the decision process of classification transparent.

7.2 Methods
To develop a simple decision tree for neutral/deleterious classification, we used the
mutational effects data from systematic and extensive deep mutational scan studies.
Around 22,000 mutational effect scores (14445 neutral and 7976 deleterious mutations)
from six proteins (β-lactamase,[6] APH(3’)-II,[7] Hsp90,[8] MAPK1,[9] UBE2I,[10] and
TPK1[10]) were collated. The classification of variants to neutral and deleterious was
done as described in the Methods section of Chapter 6. Five different physico-chemical
parameters characterizing the wild type amino acids and their substitutions were cal-
culated - conservation, solvent accessible surface area (SASA), number of atom-atom
contacts, BLOSUM65 substitution matrix score,[11] and by noting whether a mutation
involves a change in charge type. Details of calculation of these parameters can be found
in the Methods section of Chapter 6.

A decision tree analysis works as follows: several questions regarding every data point
represented by the multiple descriptive parameters are asked, one at a time. Depending
on whether the answer to a question is true or false, the decision path bifurcates. The
process is repeated until each of the paths reaches a ‘dead end’ node (known as the leaf)
where there is only one possible answer to the question asked, no further bifurcations are
possible. The number of times the questions were asked in a path becomes the depth
of the decision tree. A part of the data with known outcomes is used for training the
classification model, and another part is used for testing predictions. The decision tree
we used was trained using DecisionTreeClassifier algorithm of scikit-learn[12] in Python.

7.3 Results and Discussion
The decision tree trained on 70% of the complete data set (Methods section) had a
depth of 35 levels which had a prediction accuracy of 0.78 for the test set. Keeping in
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mind our goal that the model representation should fit an A4 size page, we restricted the
decision tree to a maximum depth of 5. With this restriction of the depth to 5 levels,
training with data between 40-70% did not significantly change the quality of output
results. The overall accuracy for the test set was 0.71 and 0.73 respectively when trained
with 50% or 70% of the data (Table 7.1). We finally selected a model that uses 70% of
the data for training.

The simple decision tree model we developed is shown in Figure 7.1. Each node in
this decision tree checks for a condition on one of the five descriptive physico-chemical
parameters we chose for describing the amino acid mutations, and bifurcates towards
the arrow if the condition is satisfied. The number of neutral and deleterious mutations
at each node are also shown. At the last leaf of this decision tree, depending on the
likelihood of having a neutral or deleterious mutation, a statistical conclusion about the
neutrality is also made. It must be noted that a single mutation one is interested in may
follow a decision path that ends at a leaf with higher prediction accuracies. The intent
behind generating a decision tree that may be laid out on an A4 sheet was to facilitate a
manual tracking of the logic of the decisions. A practical way one may use the decision
tree shown in Figure 7.1 is for protein engineering, to check if deleterious mutations
can be avoided. We validated that the predictions of deleterious mutations suggested
by Figure 7.1 are non-trivial, and these effects can not be guessed with biochemical
intuitions such as the distance from the active site. In deed, the deleterious mutations
predicted from the tree were non-trivial. As an example, we illustrate in Figure 7.2, the
fitness consequences of 4 substitutions in β-lactamase. The 5 physico-chemical properties
corresponding to these mutations are given in Table 7.2. The decision flow for these
mutations is shown in Figure 7.2. In the examples shown, there were 3 true predictions
and one wrong prediction.

The decision tree developed was validated using the complete 2732 mutational effect
scores from the deep mutational scan data of the protein β-glucosidase (Bgl3). The
accuracy of prediction obtained was 0.75, comparable to the test set that had only
variants of the proteins used for training, suggesting that the model may work for new
data sets also. We compared our predictions with that of SNAP2 and found that the
accuracy of SNAP2 predictions is lower for our training and test sets, the exact values
being 0.62 and 0.61, respectively. For the Bgl3 data set the accuracy was 0.73 similar to
the prediction quality we obtained with the decision tree developed.

While in nature it is believed that there is a unique relation between sequence,
structure and function, there are wide gaps in understanding these relations. Predicting
structure or function from sequence changes, is non-trivial, and it escapes simple rules and
intuitions or codification of the knowledge or empiricism into formulas. However, with
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large data sets becoming available, it is clear that the many of the effects can be predicted
reliably using the methods of AI, which use several descriptive parameters, complicated
analyses, and computation. The philosophical debate that persists in the community of
statisticians,[13] about whether the models should be predictive or interpretable thus
becomes relevant for the protein mutational effects as well. Creating a decision tree based
classification is one of the approaches used in AI. However in a typical AI decision tree
approach, the emphasis is on developing the most detailed decision tree and to let the
flow of decision logic happen in the computer. Since the focus of the AI methods was on
effects prediction, we asked if an interpretation of the decision logic may be possible in
the decision tree analysis of mutational effects. Without constraints, the depth of the
decision tree depends upon the quality and size of the feature set as well as the data. To
represent a legible decision tree in an A4 size, we worked with 5 levels of decision making.
Practically the trade-off between the decision levels and the accuracy was not high (test
set prediction accuracy of 0.73 with a depth of 5 compared to 0.78 for the complete
tree with depth 35). While we understand the limitations of using a single decision tree
such as its sensitivity to the training set and bias for the dominant class, we believe
this hybrid approach fills the gap between the qualitative gut feelings about the factors
governing the effects and the high accuracy models which remain black boxes in terms of
understanding. We hope the transparent decision process helps develop intuitions about
mutational effects and empowers the user to make educated guesses about the mutational
effects. In Chapter 8 we make use of the newer developments in the field of explainable
AI to develop interpretable as well as accurate model for mutational effect prediction.

7.4 Conclusions
Using artificial intelligence methods, we developed a simple decision tree which balances
the simplicity of representation at the cost of a small loss of accuracy in predictions. The
decision tree can be revisited in the future with more structured data. In a period where
there is access to libraries of data from experiments and computations, we hope the
simplicity of the approach serves as a reference for regaining intuitions about mutations.
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Figure 7.1: Decision tree for mutational effects. A decision tree of maximum depth
5 levels was developed. The decision flow begins with the central node which explores
whether conservation is less than 0.356 as the first question. At every node, if the
condition is satisfied the decision flows along the arrow and along the straight line
otherwise. A notation such as (n.212, d.42) indicates that in the training data 212 neutral
and 42 deleterious mutations reached this node. The colorbar on the top is a qualitative
illustration of the color code for the decision nodes, depending on whether the node
represents a deleterious, or neutral mutation or can not be classified as one of these.
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Figure 7.2: Illustration of decision tree usage. The effects of four mutations (S53A,
E63D, V74T, F230A) is illustrated in the decision tree. The parameters used for this
analysis are given in Table 7.2. Green lines show the paths along the decision tree for
these mutations. Three of them resulted in true predictions, while the prediction of S53A
using this tree was not correct.
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Data used
for

training

Test/
Training

True
Neutral
(TN)

False
neutral
(FN)

True
deleterious

(TD)

False
deleterious

(FD)
Accuracy

70% Training 8228 2550 3014 1902 0.72
70% Test 3551 1055 1357 764 0.73
50% Training 5668 1615 2362 1565 0.72
50% Test 5672 1659 2340 1540 0.71

Table 7.1: The contingency table for the training and test sets when 70% and 50% of
the data was used for training. Accuracy was defined as the ratio of number of true
predictions (TN+TD) to the total number of data points.

Variant Conservation No. of
contacts

SASA
(nm2)

BLOSUM
substitu-
tion
score

Charge
type change

S53A 0.286 8 0.941 1 Yes

E63D 0.487 4 1.308 2 No

V74T 0.408 15 0.000 0 Yes

F230A 0.179 32 0.117 -2 No

Table 7.2: The physico-chemical parameters used for performing a trial of the decisions
for the 4 mutations from β-lactamase shown in Figure 7.2 are given here.
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Chapter 8

Interpreting Mutational Effects
Predictions, One Substitution at a
Time

Abstract

Artificial intelligence (AI) based methods for mutational effects predictions are im-
proving in accuracy, because of the exhaustive experimental data they are trained on, and
advances in algorithms. As the prediction quality improves, the next natural question
to ask countering the ‘black box’ image of AI is if the predictions can be interpreted.
We applied one of the approaches developed in the field of explainable AI, to decipher
the factors contributing to the changes in cellular fitness and protein solubility arising
from mutations. Juxtaposing the observations from these two desirable outcomes and
focusing on the individual factors uncovers the contributions and quantifies the intuitions
about how different factors such as conservation, distance from the catalytic site affect
fitness and solubility. Embedding interpretability along with the prediction algorithms
will enable transparency and inspire confidence into models as well as contribute to the
understanding of how mutations affect proteins.

8.1 Introduction
Ability to make reliable mutational effects predictions using machine learning approaches
brings one to a natural point of asking the questions that are being asked in other areas
where machine learning is used, such as why the predictions should be trusted[1] or
alternatively if the predictions can be interpreted[2, 3]. The philosophical debate about
predictability versus interpretability[4] is being revisited in several areas of machine

133
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learning, specifically when one is interested in controlling the effects by developing an
understanding for the contributing factors. In this chapter this notion of interpretability or
explainability in the context of mutational effects prediction is introduced. Interpretability
begins with a small shift in perspective, from asking how do various factors contribute to
the set of predictions, to what is the contribution of the various factors to an individual
prediction. In a linear regression model, knowing the measured outcome, it is trivial to
understand the relative contributions from the different factors. The same is not true
while working with machine learning models, which have non-trivial and non-explicit
relations between the inputs and the outcome. The simple decision tree developed in the
previous chapter was a step towards that, but the interpretability was gained at the cost
of accuracy of predictions.

We use the method SHAP (SHapley Additive exPlanations)[5, 6] that is being used in
several areas of machine learning, to interpret the contributions to the mutational effects.
SHAP is based on the game theoretical questions raised by Shapley[7] about how the gain
can be shared by different contributing players. In SHAP, the feature contributions are
additive, thus making their relation to the outcome easy to interpret. We apply SHAP
to interpret the outcomes of fitness[8] and solubility[9] in the deep mutational scans of
β-lactamase protein. The interpretability allows us to revisit the classical intuitions on
how different factors can influence mutations from a quantitative perspective.

8.2 Methods
Deep mutational scan data. The deep mutational scan data of the mutational effects
of β-lactamase on fitness was obtained from Stiffler et al. 2015[8] and solubility from
Klesmith et al. 2016[9]. We use the yeast surface display (YSD) data on the effects of
mutations on solubility [20] and the changes in relative fitness of E. coli when a mutant
containing strain is challenged with 2500 µg/ml ampicillin [19]. The analyses on the
solubility were presented for the substitutions on positions 61-215 [20], with protein
data bank identity 1M40,[10] and for consistency, we chose to work with the same set of
mutations both for the solubility and cellular fitness.
Descriptive variables for AI model. We used distance from the catalytic site in
addition to the 17 features that were used to develop Deep2Full[11] in Chapter 5. Distance
from catalytic site was calculated as the distance of the amino acid from the nearest
catalytic site. Calculation of other variables can be found in the Methods section of
Chapter 5.

All the 18 variables are referred as follows in figures: Solvent accessible surface area -
SASA, Secondary structure (Ordered/disordered) - SS, Contacts - Contacts, Distance
from the catalytic site - Catalytic_dist, Average commute time - Av_commutetime,



8.2 Methods 135

BLOSUM62 substitution matrix score - Blosum, Hydrophobicity of the wild type amino
acid - Wt_hb, Hydrophobicity of the amino acid after mutation - Mut_hb, Position
specific scoring matrix score for the wild type amino acid - PSSM_w, Position specific
scoring matrix score for the amino acid that is substituted by - PSSM_m, Conservation -
Conservation, Average co-evolutionary correlation - Av_corr, Degree centrality - Degree,
Betweenness centrality - Betweenness, Closeness centrality - Closeness, Eigenvector
centrality - Eigenvector, Impact - Impact and Dependency - Dependency
AI model. Using the 18 descriptive parameters and the experimental measurements
for each of the mutations, the AI analyses were performed using Python. For predicting
the effects, we used XGRegressor implemented in the XGBoost package. 75% of the
mutational data from amino acids 61-215 was used for training and the remaining 25% for
predictions. As shown in Figure F.1 of Appendix F, the Pearson correlation coefficients
for the test sets compared to the experiments were good (0.88 for fitness and 0.79 for
solubility).
Interpretable AI model. SHapley Additive explanation (SHAP) uses the formalism
where an explanation model g is defined in terms of the parameter set zi' defining
each instance (in our case each individual mutation) and their corresponding additive
contribution φi weights.[5, 6]
g(z') = φ0 + Σi φizi'
The explanatory model is subject to three conditions known as:
Local accuracy – which ensures that it matches the calculated effect f(z) when z' = z, i.e.,
g(z') = f(z) when z' = z,
Missingness – which ensures that if a variable z' = 0, then the weight corresponding to
it, φi = 0.
Consistency – when an input’s contribution increases or stays the same regardless of the
other inputs, then its weight should not decrease.

By solving for these three conditions, one obtains the SHAP contribution weights
corresponding to each individual input instance. We used the SHAP implementation
by Lundberg (https://github.com/slundberg/shap) for performing the interpretable AI
calculations, where corresponding to each mutational effect calculation, all the are
determined. The results presented in this work discuss these SHAP weight factors
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Figure 8.1: Decomposing the contributions. Illustration of the contributions of various
factors to the effects of mutating Alanine in position 79 to Tyrosine (A79W) in β-
lactamase: A. Fitness effect B. Solubility effect. As indicated by the direction of the
arrows, the factors in pink contribute to an increase in the fitness or solubility and
those in blue have the opposite effect. Whether a specific factor tends to increase or
decrease the mutational effect depends on the individual case. The descriptive parameters
are labeled along with the values they assume in this specific instance, for the specific
mutation. The illustrations are generated using the Python implementation of SHAP
((https://github.com/slundberg/shap)).

8.3 Results and Discussion

8.3.1 Noting the contributions from the individual factors to in-

dividual mutations.

The XGRegressor model we used for making the predictions of the fitness and solubility
gave good performance on a statistical level (Pearson correlation coefficients of 0.88, 0.79
for fitness and solubility, F.1 of Appendix F). Taking confidence in these predictions, we
applied SHAP method to mutational effects calculations, and obtained the contributing
factors in each individual mutation. Figure 8.1 illustrates the predictions for a specific
mutation A79W and the factors contributing to it. The predicted fitness (-1.45) and
solubility (-0.81) for this mutation compare well with the experimental observations
(-1.64, -1.10 respectively). The interpretable aspect of the prediction is shown in the
decomposition of the various factors, firstly segregated by positive and negative contribu-
tions: factors labeled in pink aiding a better fitness or solubility, and those in blue having
the opposite effect. The length of the bar representing each factor reflects the magnitude
of its contribution to the specific outcome. For example, the statistical descriptor of
the likelihood of substitution (BLOSUM62) which has a value of -3 contributes in a
comparable way to reducing both the fitness and the solubility. On the other hand,
the average co-evolutionary relation an amino acid shares with all other amino acids
(avg_corr) which has a value of 0.3357 has opposite effects on fitness and solubility.
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Figure 8.2: Summarizing the contributions. We analyzed the deep mutational scan
data where the consequences of any of the 19 possible amino acid substitutions at each
of the positions (61-215) were measured. The individual contributions to A. fitness
and B. solubility obtained from each of these mutations are summarized in the plot.
Along each line, one finds the name of the descriptive parameter, a distribution of the
SHAP values across the complete set of mutations, along with the color indicator of the
fitness/solubility outcome associated with mutation.

8.3.2 Summarizing the contribution of the individual factors in

the complete set

The impact obtained from individual factors is then summarized to understand the
variables that have the most significant role in the set of predictions (Figure 8.2).
Observing the range of the values assumed, one can infer that conservation, SASA,
BLOSUM, along with the hydrophobicities of the wild type and mutant amino acids
contribute significantly to both solubility and fitness. However, one can notice in the
illustrations that at times the distribution of the data points labeled pink (higher outcome)
and blue (lower outcome) for the some of the variables is different when comparing fitness
and solubility (Figures 8.2A and 8.2B).

8.3.3 Identifying factors making correlated contributions to fit-

ness and solubility.

We further examined the contributions of each of the parameters to fitness and solubility
in the same analysis, to see if they are correlated, anti correlated or uncorrelated. As
shown in Figure 8.3, the contributions from three variables, conservation, BLOSUM
and number of contacts have a good positive correlation. The contributions of other



8.3 Results and Discussion 138

Figure 8.3: Correlation of contributions to solubility and fitness. The SHAP values
defining the contribution of each variable to fitness and solubility are shown. From the
data it is clear that the contributions from these three descriptive parameters, conservation,
number of contacts and BLOSUM are mostly correlated i.e., if the parameter contributes
to an increase in fitness it also contributes to an increase in the solubility. This is not true
for all variables, which are shown in the Figures F.2 to F.4 of Appendix F, where they
are uncorrelated or negatively correlated. The color bar represents the experimentally
observed fitness changes among all the mutations studied.

variables to the fitness and solubility do not have strong correlations (Figures F.2 and
F.3 of Appendix F).

8.3.4 Extracting intuitive patterns about the effect of different

factors.

There are several intuitions about how factors such as conservation or distance from
the catalytic site should influence the protein function or its solubility. Many of these
intuitions still need to be quantified. Klesmith et al.[9] performed a very careful analysis
using naÃŕve Bayesian classification to clarify the chance that a mutation characterized by
a parameter is statistically likely to be deleterious or neutral. They observe an interesting
trade-off such as that the distance from the catalytic site has opposite effects on solubility
and fitness. We ask if one can go beyond the classification models to quantify these
dependencies using SHAP analysis. The scatter plots in Figures 8.4A, 8.4B show that
the relation of fitness and solubility to conservation is not easy to infer. Naively, while
observing the relation of the outcomes to a single variable in a multi-factorial system,
one may expect either a poor correlation or even a lack of it. However, when we plot the
contributions to fitness and solubility using the SHAP analysis (Figures 8.4E, 8.4F), the
dependence of the component becomes much more predictable. Figures 8.4C, 8.4D, 8.4G,
8.4H illustrates how the distance from the catalytic effect makes predictable contributions
to the fitness, and solubility. Interestingly the two outcomes (Figures 8.4G, 8.4H) show
an opposite dependence on the distance from the catalytic site, as was seen using a
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classification model [9]. The lower panel of Figure 8.4 shows a detailed quantitative
relation between the contributing factors and the measurable outcomes. Similarly, Figure
F.4 of Appendix F illustrates the effect of the number of contacts.

8.3.5 From non-linearity to linearity.

The above analysis provides two new perspectives. Firstly it uncovers the patterns in the
contributions from the individual factors, when they exist (such as in Figures 8.4E-H)
and secondly the additive nature of the SHAP contributions makes it possible to obtain
an outcome in relatively simple terms, unlike with the machine learning algorithms. It is
true that the non-linearity is only masked by making suitable transformations. Thus the
interpretability converts the non-linear predictive models into interpretable, simplified
representation, in which one can audit the contributions from the different factors to, for
example, the simultaneous and conflicting requirements on solubility and fitness.

Figure 8.4: Extracting relations. The scatter plots of A-D of fitness and solubility
relative to conservation and the distance from the catalytic site do not show a clear
pattern of what one can expect from substituting an amino acid with high conservation or
further away from catalytic site. On the contrary, E,F. the SHAP contributions highlight
a very clear pattern of reducing SHAP values with increasing conservation which suggests
that the fitness and solubility decrease with the substitution of a conserved amino acid. G,
H. SHAP contributions show a contrasting behavior where the distance from the catalytic
site has opposite effects on fitness and solubility, in line with the classifications[9]. The
colorbar is the same as in Figure 8.3, and represents the observed fitness changes.

8.3.6 Perspective.

Seeing the emphasis and developments on explainability of AI predictions in several areas
of science and engineering, it is clear that the mutational effects predictions should also
benefit from such analyses. The explainability analyses can serve several purposes:
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Validation of Correctness – An important consequence of explaining the effects is that
by validating that the factors that one believes are indeed the most relevant ones in
calculations, a sense of correctness of individual predictions may be developed.
Protein Engineering – The analyses such as understanding the trade-offs between solubility
and fitness[9] have been strongly motivated from the perspective of designing better
proteins. The same is true when a direct correlation between measured fitness and
solubility cannot be inferred (Figure F.5 of Appendix F), where the individual components
are more predictable and hence reliable.
Developing intuitions – The developments in the fields of deep mutational scan have
a great value to add to the intuitions that are pedagogically taught, such as larger
conservation implies greater impact. The patterns of dependence of the mutational
effects on the individual parameters allows one to go beyond predictions to learning and
developing of rules.
Understanding protein function is not easy. At times a single mutation can lead to
deleterious effects, and yet evolutionarily one sees homologous proteins with as little as
50% sequence identity performing similar functions. One has to resort to advanced AI
methods to predict the effects of one or more mutations, to note how mutations affect,
or compensate for each other, or to reduce the experimentation required. Introducing
explainability into the analyses can potentially help in an improved learning about how
mutations affect the proteins.

8.4 Conclusions
Artificial intelligence based models are making reliable predictions of the mutational
effects, whether it is changes in solubility or the cellular fitness. In this work we asked the
next natural question which is, if there is access to a large pool of systematic mutational
scans, and reliable AI based models, can one explain the different factors that contribute
to each individual mutational effect? In asking so, with the standard tools that are
available, we uncover quantitative patterns in contributions of the different variables to
fitness and solubility, sometimes inline and at times opposing.
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Chapter 9

Using Deep Mutational Scan Data for
Understanding Site Specific Codon
Usage Bias

Abstract

Codon usage bias defines the unequal use of the multiple codons which encode the
same amino acid. This preference which varies across genomes, and even across genes
has been interpreted using arguments on the efficiency of translation, and reduction of
the errors due to mutations. The latter has been mostly calculated using generalized
substitution matrices and reduction in chemical distance across amino acid substitutions.
In this work, we use deep mutational scan data to ask if the site-specific preference for
the codons can be predicted. Interestingly, the sites for which the codon predictions are
correct are complementary to those from tRNA availability, and comparable in number.

9.1 Introduction
Amino acids are encoded by three-nucleotide codes, known as the codons. Other than
tryptophan and methionine, all other amino acids are encoded by multiple codons,
represented by different permutations of the nucleotides. Interestingly these synonymous
codons do not occur with the same frequency, and the preference of some synonymous
codons over others in the DNA is known as the codon usage bias.[1, 2] There is a strong
correlation between GC content of the genome and the codon bias. However, the preferred
codons used for encoding an amino acid varies across genomes[1] as well as across the
genes within the same genome.[3] The observed bias in codon usage has been interpreted
using the mutation-selection-drift balance model[4–6] which incorporates two major
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factors that contribute to codon usage bias, the mutational bias and the selection force
on synonymous codons. Mutational bias refers to the variations in the probabilities of
different codons getting mutated. These variations can give rise to non-uniform frequency
of codons. Since mutational biases are organism specific, the codon usage also varies
between organisms.[7]

Selection for translational efficiency that act on synonymous codons is another expla-
nation for the codon usage bias.[8] The correlation between codon usage bias and gene
expression level[9] supports this hypothesis.[3] The observation that the availability of
tRNA with the corresponding anti-codon for preferred codons is higher[3, 8, 10] suggests
the possibility of more accurate and faster translation of these codons resulting in higher
translational efficiency and a positive selection for these codons. Apart from the tRNA
availability, several other factors, such as the co-occurrence bias or codon pair-bias, are
believed to determine the speed of translation. Co-occurrence bias which is the clustering
of synonymous codons corresponding to the same tRNA in parts of the gene, facilitates
the availability of tRNA near ribosome faster by recharging the tRNA that exited the
ribosome and hence improve the translation efficiency.[11] Codon pair-bias, which is a
result of preference for certain pairs of codons over others, also affects the choice of
codon.[12, 13] In addition to translational efficiency, the codon usage is also determined
by its effect on the transcription,[14] the stability of mRNA structure[15] and half life[16]
and its influence on co-translational protein folding.[17]

All the above mentioned selection pressures act on synonymous codons. But there
have been theoretical models which showed that selection at the amino acid level to
reduce the deleterious effects of substitutions also affect the codon usage.[18, 19] In
these models, the amino acid substitution effects were determined based on substitution
matrices which are not site-specific such as Grantham matrix .[18] In fact, the selection
pressure on the amino acids is so important that mutation-selection arguments have
been used to understand the overall architecture of the genetic code.[20–23] It has been
postulated that the evolution of codon-amino acid pairs has been in such a way as to
reduce the effect of nucleotide substitution, defined as the chemical distance between
amino acids.[20–23]

Now with the availability of the phenotypic fitness effects data of all single amino
acid substitutions from deep mutational scans, instead of general amino acid substitution
matrices based on the chemical distances, a fitness based selection criterion can be applied.
A deep mutational scan study of TEM-1 β-lactamase focussed on the measurements of
the fitness effects of mutations, and its bearings on the understanding of the general
codon architecture. The significant effect of synonymous codons on the fitness was mainly
seen for amino acids 2 to 10 of TEM-1 β-lactamase.[24] By averaging the contributions
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of the synonymous and non-synonymous codons resulting from 1-, 2-, and 3-base pair
substitutions, they could show a general trend of declining fitness with higher number of
nucleotide substitutions.[24] In this work, we use deep mutational scan data of all single
amino acid substitutions to ask a different question, if the site specific preferences for the
codon usage bias can be predicted.

9.2 Results and Discussion

9.2.1 Average deleteriousness upon single nucleotide substitu-

tion

The wild type amino acid at each position was used as a reference, and all codons that
could in principle code for this amino acid are compared to see if an ideal codon could be
identified. The comparison was based on the deleteriousness that could arise by starting
from a choice of the codon, and tolerating up to one single nucleotide substitution. This
tolerance leads to 9 possible substitutions, some of which are synonymous, and others
are non-synonymous including stop codons. The relative-fitness measurements for the
non-synonymous amino acid substitutions could be obtained from deep mutational scan
experiments, such as the ones for TEM-1 β-lactamase[25] and APH(3′)-II[26]. These
experiments report the mutational effect score for a substitution of amino acid a to b
at site i is the relative-fitness,[25] Ra,b

i = log10
(
f b,i/fa,i

)
where f is the ratio of allele

counts in the selected and unselected population was used as a measure of phenotypic
outcome of mutations. While considering the fitness effect upon mutation, it is also
important to account for the translational efficiency that comes from the availability of
the codon after substitution, so that the mutated mRNA sequence can be translated.
For every amino acid site in the protein, the averaged deleterious consequence of one
single substitution was calculated using the relative-fitness measurements for these 9
substitutions from the deep mutational scan data:

∑9
b=1 tRNAR

a,b
i /9. For the stop

codons, the maximum loss of fitness (Ra,stop
i = −4) seen in these data sets was assigned.

The gene copy numbers in E. coli obtained from http://gtrnadb.ucsc.edu were used as
a surrogate for the tRNA availability. For APH(3′)-II the missing variant effects were
predicted using the neural network model developed by training on the data of other
variants as has been done in Chapter 5. The average deleteriousness consequence of a
single mutation was calculated for every possible codon that can encode the wild type
amino acid at that site. It is apparent from Figures 9.1 and 9.2 and Figures G.1 and
G.2 of Appendix G that the codons can have very significant differences relative to one
another in terms of stability against potential loss of fitness. We explored to see whether
this loss of fitness for the individual amino acids was correlated with the codon usage bias
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(Figure 9.3 and Figure G.3 of Appendix G). Relative codon usage for a codon calculated
as the ratio of observed frequency of that codon in the complete genome to the frequency
expected if all synonymous codons were used equally for E. coli was obtained from Sharp
et al.[27] No specific pattern was observed, however we worked with the minimization of
this potential loss of fitness in the section below.

9.2.2 Complementarity of tRNA availability and minimization

of loss of fitness criteria

We used the minimization of the deleteriousness calculated as above, as a criterion to
choose the ideal codon. Clearly, this approach was not suited for all the amino acid
positions, but only for 89 out of the 250 amino acids in β-lactamase and 83 out of the
253 positions of APH(3′)-II. Interestingly, the codons that are identified as ideal by the
availability of tRNA are comparable in number (75 in β-lactamase and 74 in APH(3′)-II)
and are complementary to the loss of fitness criterion (Figure 9.4).

Figure 9.4: Number of correctly predicted synonymous codons based on average of
tRNA availability weighted fitness and tRNA availability are compared. The number
of correct predictions in each case and the overlap between them are shown for (A)
β-lactamase and (B) APH(3′)-II.

9.2.3 Search for patterns

While the complementarity between tRNA availability and the loss of fitness criteria
was encouraging, we analyzed the data to see if there are any patterns in the suitability
of one criterion or the other. It is generally observed that major codons are chosen for
functionally important amino acids[28, 29] as well as secondary structure and codon
choices are related.[30] We investigated whether of the two complementary predictors,
loss of fitness or tRNA availability, one of them better predicts the choice of codons for
an amino acid in a given secondary structure. Both the criteria had comparable accuracy
for all secondary structures (Tables G.1 and G.2). Similar estimation of accuracy of
prediction was performed for the different amino acid depending on their chemical nature,
or conservation, and no significant differences were found. At this point, although the
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Figure 9.1: The average of tRNA weighted fitness scores of variants that are possible
with one nucleotide change for every synonymous codon of amino acids except M and W
in β-lactamase are shown. Colours within each subplot correspond to different residue
positions in the protein with the specific amino acid. Square symbol indicates the codon
in the WT sequence. The results for the remaining 9 amino acids are given in Figure 9.2
.
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to codon usage for the possible codons of each amino acid for β-lactamase. Codon usage
is defined as the ratio of number of observed occurrence to that of the expected if all
codons for an amino acid were used equally. If fitness effects influence codon usage
significantly an increase in fitness with the increase in codon usage is expected.
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two criteria we used for choosing the optimal codon were found to be complementary,
and of significant value together, we could not identify which criterion suits which amino
acid. Whether a combination of both these criteria into an artificial intelligence model, or
adding additional details such as the nucleotide substitution probability or the recognition
of mRNA by wobbling with the tRNA will improve the predictability of the site-specific
codon bias will be explored in the future.

9.3 Conclusion
We defined a new site-specific criterion for codon usage bias. This criterion uses deep
mutational scan data from non-synonymous mutations, and rank orders the synonymous
codons at each amino acid position in the protein using the potential loss of fitness upon
a single nucleotide substitution. Interestingly the codons identified by this minimization
of loss of fitness effect were complementary to those predicted by tRNA availability.
Additional factors such as wobble-pairing, chance of substitution, effect of multiple
substitutions have to be considered in a future work to see if the predictive capacity for
the choice of the codon can be improved.

Bibliography
[1] R. Grantham, C. Gautier, M. Gouy, R. Mercier, and A. Pave, “Codon catalog usage

and the genome hypothesis,” Nucleic acids research, vol. 8, no. 1, pp. 197–197, 1980.

[2] P. M. Sharp and W.-H. Li, “An evolutionary perspective on synonymous codon usage
in unicellular organisms,” Journal of molecular evolution, vol. 24, no. 1-2, pp. 28–38,
1986.

[3] T. Ikemura, “Codon usage and trna content in unicellular and multicellular organ-
isms.,” Molecular biology and evolution, vol. 2, no. 1, pp. 13–34, 1985.

[4] H. Akashi, “Inferring weak selection from patterns of polymorphism and divergence
at" silent" sites in drosophila dna.,” Genetics, vol. 139, no. 2, pp. 1067–1076, 1995.

[5] H. Akashi, R. M. Kliman, and A. Eyre-Walker, “Mutation pressure, natural selection,
and the evolution of base composition in drosophila,” in Mutation and Evolution,
pp. 49–60, Springer, 1998.

[6] M. Bulmer, “The selection-mutation-drift theory of synonymous codon usage.,”
Genetics, vol. 129, no. 3, pp. 897–907, 1991.

[7] S. L. Chen, W. Lee, A. K. Hottes, L. Shapiro, and H. H. McAdams, “Codon usage



9.3 Conclusion 151

between genomes is constrained by genome-wide mutational processes,” Proceedings
of the National Academy of Sciences, vol. 101, no. 10, pp. 3480–3485, 2004.

[8] S. Kanaya, Y. Yamada, M. Kinouchi, Y. Kudo, and T. Ikemura, “Codon usage and
trna genes in eukaryotes: correlation of codon usage diversity with translation effi-
ciency and with cg-dinucleotide usage as assessed by multivariate analysis,” Journal
of molecular evolution, vol. 53, no. 4-5, pp. 290–298, 2001.

[9] M. Gouy and C. Gautier, “Codon usage in bacteria: correlation with gene expressivity,”
Nucleic acids research, vol. 10, no. 22, pp. 7055–7074, 1982.

[10] S. Kanaya, Y. Yamada, Y. Kudo, and T. Ikemura, “Studies of codon usage and trna
genes of 18 unicellular organisms and quantification of bacillus subtilis trnas: gene
expression level and species-specific diversity of codon usage based on multivariate
analysis,” Gene, vol. 238, no. 1, pp. 143–155, 1999.

[11] G. Cannarozzi, N. N. Schraudolph, M. Faty, P. von Rohr, M. T. Friberg, A. C.
Roth, P. Gonnet, G. Gonnet, and Y. Barral, “A role for codon order in translation
dynamics,” Cell, vol. 141, no. 2, pp. 355–367, 2010.

[12] G. A. Gutman and G. W. Hatfield, “Nonrandom utilization of codon pairs in
escherichia coli,” Proceedings of the National Academy of Sciences, vol. 86, no. 10,
pp. 3699–3703, 1989.

[13] J. R. Buchan, L. S. Aucott, and I. Stansfield, “trna properties help shape codon
pair preferences in open reading frames,” Nucleic acids research, vol. 34, no. 3,
pp. 1015–1027, 2006.

[14] X. Xia, “Maximizing transcription efficiency causes codon usage bias,” Genetics,
vol. 144, no. 3, pp. 1309–1320, 1996.

[15] A. Lazrak, L. Fu, V. Bali, R. Bartoszewski, A. Rab, V. Havasi, S. Keiles, J. Kappes,
R. Kumar, E. Lefkowitz, et al., “The silent codon change i507-atc? att contributes
to the severity of the δf508 cftr channel dysfunction,” The FASEB Journal, vol. 27,
no. 11, pp. 4630–4645, 2013.

[16] V. Presnyak, N. Alhusaini, Y.-H. Chen, S. Martin, N. Morris, N. Kline, S. Olson,
D. Weinberg, K. E. Baker, B. R. Graveley, et al., “Codon optimality is a major
determinant of mrna stability,” Cell, vol. 160, no. 6, pp. 1111–1124, 2015.



9.3 Conclusion 152

[17] S. Pechmann and J. Frydman, “Evolutionary conservation of codon optimality reveals
hidden signatures of cotranslational folding,” Nature structural & molecular biology,
vol. 20, no. 2, p. 237, 2013.

[18] B. R. Morton, “Selection at the amino acid level can influence synonymous codon
usage: implications for the study of codon adaptation in plastid genes,” Genetics,
vol. 159, no. 1, pp. 347–358, 2001.

[19] P. Błażej, D. Mackiewicz, M. Wnętrzak, and P. Mackiewicz, “The impact of selection
at the amino acid level on the usage of synonymous codons,” G3: Genes, Genomes,
Genetics, vol. 7, no. 3, pp. 967–981, 2017.

[20] C. R. Woese, “On the evolution of the genetic code.,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 54, no. 6, p. 1546, 1965.

[21] C. J. Epstein, “Role of the amino-acid ?code?and of selection for conformation in
the evolution of proteins,” Nature, vol. 210, no. 5031, pp. 25–28, 1966.

[22] T. Sonneborn, “Degeneracy of the genetic code: extent, nature, and genetic implica-
tions,” in Evolving genes and proteins, pp. 377–397, Elsevier, 1965.

[23] M. Archetti, “Codon usage bias and mutation constraints reduce the level of er-
rorminimization of the genetic code,” Journal of Molecular Evolution, vol. 59, no. 2,
pp. 258–266, 2004.

[24] E. Firnberg, J. W. Labonte, J. J. Gray, and M. Ostermeier, “A comprehensive,
high-resolution map of a gene?s fitness landscape,” Molecular biology and evolution,
vol. 31, no. 6, pp. 1581–1592, 2014.

[25] M. A. Stiffler, D. R. Hekstra, and R. Ranganathan, “Evolvability as a function of
purifying selection in tem-1 β-lactamase,” Cell, vol. 160, no. 5, pp. 882–892, 2015.

[26] A. Melnikov, P. Rogov, L. Wang, A. Gnirke, and T. S. Mikkelsen, “Comprehen-
sive mutational scanning of a kinase in vivo reveals substrate-dependent fitness
landscapes,” Nucleic acids research, vol. 42, no. 14, pp. e112–e112, 2014.

[27] P. M. Sharp, L. R. Emery, and K. Zeng, “Forces that influence the evolution of
codon bias,” Philosophical Transactions of the Royal Society B: Biological Sciences,
vol. 365, no. 1544, pp. 1203–1212, 2010.

[28] H. Akashi, “Synonymous codon usage in drosophila melanogaster: natural selection
and translational accuracy.,” Genetics, vol. 136, no. 3, pp. 927–935, 1994.



9.3 Conclusion 153

[29] N. Stoletzki and A. Eyre-Walker, “Synonymous codon usage in escherichia coli:
selection for translational accuracy,” Molecular biology and evolution, vol. 24, no. 2,
pp. 374–381, 2007.

[30] M. Orešič and D. Shalloway, “Specific correlations between relative synonymous
codon usage and protein secondary structure,” Journal of molecular biology, vol. 281,
no. 1, pp. 31–48, 1998.



9.3 Conclusion 154



Chapter 10

Conclusions and Future Outlook

The advent of next generation sequencing technologies has made DNA sequencing to
be cheaper, faster and more accurate. This development has provided access to very
valuable genetic information, as exhaustive as the whole genome sequencing to identifying
the single nucleotide polymorphisms implicated in diseases. Specifically in this thesis
we investigate several conceptual questions on predicting and interpreting the effects of
mutations. We used data such as large sequence alignments of rapidly mutating viruses
and libraries of mutational effects to ask questions whose relevance will increase with
increasing availability of data.

Viral complexity. We explored if the complexity of a viral genome can be defined using
the mutational patterns obtained from large sequence alignments. Within the data
available, the differences in the density of amino acid covariance network were seen to be
correlated with the biological complexity quantified as the number of mortalities. But
this surprising pattern raises more questions. The number of complete viral genome data
available, varied between 1000 to 8000, which is an order of magnitude higher than about
a decade ago, which can be expected to increase much more in the coming years. When
more data on several other viruses will be available, it will be interesting to see whether
the correlation we observed between co-evolutionary networks and biological complexity
persists. Would it be possible to design drugs based on the clusters of co-varying amino
acids? In case of pandemics, would it be possible to obtain enough sequences, sort them
by the time of collection to see if there are any quantitative trends that show a transition
from a lethal to a manageable infection?

Directed effects in amino acid coevolution. Pairs and clusters of symmetric amino
acid interactions have been extremely useful in identifying hotspot residues in proteins.
But most relations, including co-evolutionary relations are asymmetric, and hence we
introduced a way of defining and quantifying this asymmetry using amino acid impact
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factor. We could identify a few critical relationships among amino acids, and their
functional roles. These asymmetric relations identified from mutations raise further
questions on whether they could be helpful in identifying the directionality of dynamical
or functional relationships among the amino acids in wild type proteins, and if they are
useful in identifying the pathways of allosteric communication in the proteins.

Sequence, structure, or dynamics. Directed or undirected, how much of the amino acid
correlation information obtained independently through sequence, structure and dynamics
based approaches is common? Conceptually they should all contain the same information.
However, possibly because none of the methods are complete by themselves, the important
amino acids that are selected using any of the methods turn out to be different from the
ones selected using other approaches. In which case, how does one combine these three
sets of information? It remains to be seen whether using the three sets of information
combined using simple rules or artificial intelligence can be helpful in predicting the
important amino acids in the protein which can or can not tolerate mutations.

Deep2Full. In the context of large scale mutagenesis data we asked if computational
models can be built to reduce the number of variants characterised. What we performed
using data on single mutations, where the predictions were tested against the measured
data serves as a validation at this stage. As the emphasis shifts towards double, triple
mutants, the hybrid models which combine partial experimental data with artificial
intelligence models will become very valuable. While working with multiple mutants, the
additive or compensatory effects are hard to predict. It will be interesting to explore
whether some of the parameters we computed from the symmetric and asymmetric
co-evolutionary patterns capture these compensatory effects and if they do, how we can
build a reliable genotype to phenotype model for the mutational effects in proteins.

Interpreting mutational effects. In working with computational or theoretical models,
transparency of how prediction is made is as important as the prediction. Especially
while working with artificial intelligence models, this transparency can serve to interpret
the physical basis of the predictions or at least clarify how the predictions are made,
and possibly help learn more about the system. To achieve transparency in mutational
effects predictions, we worked with different approaches, from developing simple rules of
thumb, to a decision tree that can be tracked with ease to using methods of interpretable
artificial intelligence. These approaches attempt to take the computational predictions
and large sets of experimental data beyond the libraries they are, to initiate a dialogue
with the biochemists. Biochemists have intuitions about relation between mutational
effects and structural and evolutionary information about the protein. How does this
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new class of experiments which can probe tens of thousands of mutations or artificial
intelligence approaches which can predict most or all of these mutations add to what the
biochemists already know? With the new experiments, new analyses, are we strengthening
the intuitions or are there any new learnings? These questions become interesting as
more experiments with large scale mutational data, with reliable range of phenotypic
effects become available.

Codon usage bias. Mutational effects libraries can be useful in understanding other cellular
phenomena as well such has been attempted in predicting the choice of synonymous
codon. Evolutionary models considering the selection at the amino acid level were based
on general substitution matrices and can comment only about the codon usage at the
complete genome level. But with the deep mutational scan data set we can explore the
codon preferences at each amino acid position. A computational model to predict the
same considering other selection pressures also as inputs can be developed when more
data become available.

The world of proteins is fascinating, and working with data from large scale experiments
and advanced algorithms for effects predictions opens up the possibility to ask interesting
questions that were not possible earlier. While the sequence or mutational effects data
is orders of magnitude larger than what was available a decade ago, it is clear that the
fields exploring the functional roles of proteins using next generation sequencing are still
nascent. We hope the questions we asked in the thesis will add to the repertoire of the
next generation studies on understanding proteins.
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Appendix A

Statistical Characteristics of Amino
Acid Covariance as Possible
Descriptors of Viral Genomic
Complexity

Protein GAG POL VIF VPR TAT REV VPU ENV NEF

(No. of
amino
acids)

(500) (1003) (192) (96) (100) (116) (82) (856) (205)

GAG 75 176 74 24 34 56 23 162 63

POL 180 154 43 56 110 56 317 133

VIF 37 23 23 46 17 146 54

VPR 1 9 11 5 36 10

TAT 9 34 8 95 27

REV 19 18 112 44

VPU 8 74 24

ENV 226 140

NEF 53

Table A.1: Table showing the number of inter-protein and intra-protein amino acid
covariance relations from HIV data, with Cth = 0.7.
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Protein NP PB2 HA M1 M2 NA NS1 NEP PA PB1-F2 PB1

(No. of (498) (759) (566) (252) (97) (469) (230) (121) (716) (90) (757)
amino
acids)

NP 30 42 51 118 65 7 168 16 91 94 83

PB2 40 29 129 58 2 163 35 115 69 104

HA 5641 164 26 1019 273 17 63 31 54

M1 130 144 16 353 42 206 118 174

M2 32 2 182 11 106 52 92

NA 6976 27 10 3 13 2

NS1 2694 1377 281 182 253

NEP 180 34 15 30

PA 148 93 163

PB1-F2 645 114

PB1 60

Table A.2: Table showing the number of inter-protein and intra-protein amino acid
covariance couplings from avian influenza data, with Cth = 0.7.

Protein NP PB2 HA M1 M2 NA NS1 NEP PA PB1-F2 PB1
(No. of
amino
acids)

(498) (759) (565) (252) (97) (470) (230) (121) (716) (57) (757)

NP 572 918 3103 552 468 2259 1198 335 858 445 1031

PB2 371 2389 436 372 1803 932 275 710 475 850

HA 7218 1808 1509 8913 3876 702 2651 1087 2170

M1 153 259 1348 680 149 470 198 401

M2 94 1121 539 130 382 169 401

NA 3429 2916 533 1943 778 1625

NS1 688 354 968 462 931

NEP 48 246 143 273

PA 343 340 771

PB1-F2 566 330

PB1 429

Table A.3: Table showing the number of inter-protein and intra-protein amino acid
covariance couplings from human influenza data, with Cth = 0.7.
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Protein HBe HBc HBx LHBs MHBs SHBs Pol HBSP
(No. of
amino
acids)

(214) (185) (154) (400) (281) (226) (845) (113)

HBe 33 77 52 228 102 53 524 79
HBc 30 42 236 106 58 505 73
HBx 50 367 222 142 677 100
LHBs 850 986 660 3065 508
MHBs 253 383 1650 280
SHBs 114 1090 191
Pol 2698 917

HBSP 82

Table A.4: Number of inter-protein and intra-protein amino acid covariance couplings
for hepatitis at Cth = 0.7.

Protein ancC M E NS1 NS2a NS2b NS3 NS4a k NS4b NS5
(No. of (114) (75) (495) (352) (218) (130) (619) (127) (23) (249) (899)
amino
acids)
ancC 155 243 1206 740 726 358 1136 371 29 296 1737
M 83 897 527 495 256 861 250 31 222 1267
E 2177 2720 2527 1295 4133 1334 109 1092 6198

NS1 807 1607 826 2450 801 65 704 3638
NS2a 840 788 2273 837 56 656 3619
NS2b 178 1192 404 27 320 1833
NS3 1891 1205 109 1005 5683
NS4a 199 31 343 1845
k 1 23 155

NS4b 126 1525
NS5 4257

Table A.5: Table showing the number of inter-protein and intra-protein amino acid
covariance couplings from dengue virus data, with a Cth = 0.7.
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Figure A.1: Chord diagrams showing the strength of intra and inter protein interactions
in each cluster of the covariance network of HIV. Size of the chord diagram is proportional
to the number of amino acids in the cluster. Color indicates the protein. The network
from Figure 2.1 of Chapter 2 is shown for reference. The proteins with most interactions
are labeled in these chord diagrams.

Figure A.2: Chord diagrams showing the strength of intra and inter protein interactions
in each cluster of the covariance network of avian influenza. The size of the chord diagram
is proportional to the number of amino acids in the cluster. Color indicates the protein.
The network from Figure 2.1 of Chapter 2 is shown for reference. The proteins with most
interactions are labeled in these chord diagrams.
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Figure A.3: Chord diagrams showing the strength of intra and inter protein interactions
in each cluster of the covariance network of hepatitis. The size of the chord diagram is
proportional to the number of amino acids in the cluster. Color indicates the protein.
The network from Figure 2.1 of Chapter 2 is shown for reference. The proteins with most
interactions are labeled in these chord diagrams.

Figure A.4: Chord diagrams showing the strength of intra and inter protein interactions
in each cluster of the covariance network of human influenza. The size of the chord
diagram is proportional to the number of amino acids in the cluster. Color indicates the
protein. The network from Figure 2.1 of Chapter 2 is shown for reference. The proteins
with most interactions are labeled in these chord diagrams.
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Figure A.5: Chord diagrams showing the strength of intra and inter protein interactions
in each cluster of the covariance network of dengue. The size of the chord diagram is
proportional to the number of amino acids in the cluster. Color indicates the protein.
The network from Figure 2.1 of Chapter 2 is shown for reference. The proteins with most
interactions are labeled in these chord diagrams.
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Figure A.6: Protein composition of clusters in the covariance network of all five viruses.
The color scheme for proteins is indicated in the last column.
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Figure A.7: Variation in the node degree distribution of HIV covariance network as the
cutoff Cth is changed.
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Figure A.9: Variation in the node degree distribution of avian influenza covariance
network as the cutoff Cth is changed.
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Figure A.11: Node degree distribution from the covariance network of dengue serotype
1. The analysis was performed on 1696 sequences, as a way of comparing the statistical
behavior of one serotype with the combined serotype data.
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Figure A.12: Variation of the node degree distribution over years in the human influenza.
Human influenza data was sorted according to the year of incidence and 4 groups of
about 2000 patients each were made. No noticeable trend in the node degree distribution
was observed in the data between 2002-2016.
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Figure A.13: Distribution of the conservation of amino acids in different viruses.
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Figure A.15: A comparison of pairwise viral protein interaction strengths obtained
from two different methods is shown. Number of inter-protein connections from our
covariance analysis is compared with the number of host proteins commonly interacting
with both the viral proteins, in (A) dengue (B) human influenza and (C) HIV.

Figure A.16: A comparison of the relative importance of different viral proteins in
our amino acid interaction network and in virus-host interactome is shown. Eigenvector
centrality of the viral protein in the virus-host protein interactome is compared with the
number of covariance relations the protein has for (A) dengue (B) human influenza and
(C) HIV
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Figure A.17: Analysis of the viral inter-protein contacts, as direct, mediated by host
proteins, or non-existent was performed where data was available. The results are shown
for (A) HIV and (B) human influenza by plotting against the strength of inter-protein
interactions from covariance analysis. No clear pattern was observed for the data available.
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Figure A.18: The change in number of effective sequences with identity cut-off for the
five viruses.
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Figure A.19: The node degree distribution for HIV, hepatitis, dengue, human influenza
and avian influenza for the covariance network generated using 200 randomly selected
sequences from the complete data.
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Figure A.20: Node degree distribution of networks generated from the covariance
matrix after removing the contribution of top 5 eigen components.
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Figure A.21: Node degree distribution of networks generated from the covariance
matrix after removing the contribution of top 10 eigen components. With the elimination
of so many eigen components, the number of connections in the networks is reduced.
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Figure A.22: Node degree distribution for the covariance network of dengue virus
generated using MaxSubTree method (Cth = 1.7). The random nature of the distribution
could be seen.
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Figure A.23: Phylogenetic trees generated from the sequence data used for avian
influenza, human influenza (subtype A) HIV-1 (subtype B), hepatitis B and dengue (all
serotypes). The phylogenetic tree for dengue serotype 1 is shown as well.
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Figure A.24: Phylogenetic trees generated from the sequence data used for avian
influenza, human influenza (subtype A), HIV-1 (subtype B) hepatitis B and dengue (all
serotypes) in an unrooted representation.
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Figure A.25: Virus Richter scale versus (A) mean of the pair-wise sequence identities
for the sequences in the alignment (B) standard deviation of the pair-wise sequence
identities
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Amino Acid Impact Factor

177



Appendix B 178

Residue Id Impact factor Impact factor Impact factor
Full data, γ = 0.7 Full data, γ = 0.8 Half data, γ = 0.8

19 2 - -
29 1 1 1
32 1 1 1
34 2 - -
40 1 1 1
42 1 - -
57 1 1 1
58 1 1 1
100 1 - -
102 2 1 1
122 1 - -
136 1 1 1
140 3 - -
142 2 - -
168 1 - -
182 2 - 1
183 2 - -
184 2 - -
189 1 1 1
191 1 - -
194 3 - -
196 8 1 -
201 1 1 1
211 1 - -
216 2 - -
226 1 1 1
228 2 - -
237 1 - -

Table B.1: Table showing the variation of impact factor with different data set sizes
and with cut-offs 0.7 and 0.8 in the case of serine protease.
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Protein

No. of
residues

included in
the analysis

Reference
sequence id γ

Total no. of
connections
identified

No. of
connections
discarded
because
p-value >

0.01

Serine
Protease 216 TRY2_RAT 0.7 48 0

DHFR 158 DYR_ECOLI 0.7 21 1

PGK 398 PGK1_HUMAN 0.8 361 0

HIV protease 99 K03455 0.8 44 16

HIV reverse
transcriptase 440 K03455 0.8 340 182

GAG-POL
polyprotein 1503 K03455 0.9 2486 1319

Table B.2: Table showing the number connections that are identified with a chosen γ
as well as the number of connections with p-value > 0.01 that were discarded from the
analysis. The Pfam alignment did not have all the residues in the reference PDB, so the
analyses do not include all the sequence positions which are present in the pdb.
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Figure B.1: The change in node-outdegree distribution for serine protease. The x-axis
indicates the number of out-going connections from a node, and the y-axis shows how
many such connections are present. The different subplots represent the same analysis
performed with different choices of the cut-off. It can be seen that when the cut-off goes
below 0.6, the network begins show a transition from an scale-free to random network.
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Figure B.2: The change in node-outdegree distribution for DHFR. The x-axis indicates
the number of outgoing connections from a node, and the y-axis shows how many such
connections are present. It can be seen that when the cut-off goes below 0.6, the network
begins show a transition from an scale-free to random network.
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Figure B.3: Impact-Conservation analysis showing the residues with impact at γ = 0.8
on y-axis and conservation on x-axis for HIV-1 protease and reverse transcriptase.
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Correlations from Structure, Sequence
and Dynamics are Complementary
Rather than Synonymous

Figure C.1: Variation in the convergence when the sequence alignment consisted of
sequences only with identity more 40%. For (A) Serine protease (B) DHFR.

Pair/Protein Serine protease DHFR

Sequence and Structure -0.27 -0.15

Sequence and Dynamics -0.22 -0.05

Structure and Dynamics 0.72 0.6

Table C.1: Pearson correlation between the sequence, structure and dynamics correlation
matrices.
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Figure C.2: Variation in the convergence on using the first 50 ns long MD trajectory
comapred to the 100 ns. For (A) Serine protease (B) DHFR

Figure C.3: Convergence of the connections identified from each of the sequence,
structure and dynamics based approaches as the structural analysis was performed on
the average structure obtained from the MD trajectory compared to the PDB structure
for (A) Serine protease (B) DHFR

Residue No. Residue Analysis
55 A seq,str,dyn
228 Y seq,str,dyn
195 S seq,str
197 G seq,str
51 W seq,dyn
31 V str,dyn
42 C str,dyn
44 G str,dyn
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Residue No. Residue Analysis
45 S str,dyn
194 D str,dyn
213 V str,dyn
29 Y seq
40 H seq
57 H seq
122 A seq
124 P seq
136 C seq
141 W seq
180 M seq
189 D seq
201 C seq
215 W seq
220 C seq
225 P seq
237 W seq
238 I seq
30 Q str
43 G str
102 D str
117 R str
142 G str
196 G str
198 P str
199 V str
211 G str
212 I str
46 L dyn
52 V dyn
53 V dyn
54 S dyn
105 L dyn
106 I dyn
200 V dyn
209 L dyn
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Residue No. Residue Analysis
210 Q dyn
227 V dyn
229 T dyn

Table C.2: Top 20 residues identified for serine protease using each of the approaches
-sequence, structure and dynamics are given in the table. Third column shows the analyses
in which the specific residue is ranked in top 20.

Residue No. Residue Analysis
42 M seq,str,dyn
111 Y seq,str,dyn
100 Y seq,str
153 F seq,dyn
4 L str,dyn
61 I str,dyn
92 M str,dyn
93 V str,dyn
112 L str,dyn
113 T str,dyn
154 E str,dyn
11 D seq
18 N seq
21 P seq
22 W seq
23 N seq
27 D seq
32 K seq
45 H seq
52 R seq
53 P seq
55 P seq
59 N seq
81 A seq
121 G seq
125 F seq
133 W seq
3 S str
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Residue No. Residue Analysis
8 L str
30 W str
35 T str
38 K str
43 G str
94 I str
95 G str
96 G str
99 V str
5 I dyn
6 A dyn
40 V dyn
41 I dyn
60 I dyn
109 K dyn
110 L dyn
114 H dyn
155 I dyn
156 L dyn

Table C.3: Top 20 residues identified for DHFR using each of the approaches -sequence,
structure and dynamics are given in the table. Third column shows the analyses in which
the specific residue is ranked in top 20.
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Appendix D

Deep2Full: Evaluating Strategies for
Selecting the Minimal Mutational
Experiments for Optimal
Computational Predictions of Deep
Mutational Scan Outcomes

RMSD Pearson correlation

Scan /
Protein

Random
15%

Random
25%

Random
50%

Random
85%

SNS-
Random

25%
Random

15%
Random

25%
Random

50%
Random

85%
SNS-

Random
25%

β-
lactamase

0.67 0.64 0.57 0.54 0.65 0.81 0.83 0.87 0.89 0.83

APH(3’)-
II

1.11 1.12 1.05 0.98 1.18 0.69 0.68 0.72 0.78 0.68

Hsp90 0.22 0.20 0.19 0.17 0.21 0.72 0.77 0.82 0.85 0.75

MAPK1 0.41 0.40 0.35 0.33 0.42 0.62 0.63 0.74 0.77 0.63

UBE2I 0.33 0.30 0.28 0.27 0.30 0.52 0.59 0.66 0.67 0.61

TPK1 0.39 0.39 0.38 0.35 0.42 0.24 0.23 0.26 0.42 0.24

Table D.1: RMSD and Pearson correlation for the test set of scans varying the number
of training data points.
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RMSD Pearson correlation

Scan /
Protein

ANH
Scan

Random
15%

Position
range
scan

WT
residue
type
scan

SASA
range
scan

ANH
Scan

Random
15%

Position
range
scan

WT
residue
type
scan

SASA
range
scan

β-
lactamase 0.71 0.67 0.92 0.90 1.03 0.80 0.81 0.65 0.67 0.53

APH(3’)-II 1.13 1.11 1.32 1.31 1.39 0.67 0.69 0.52 0.54 0.49

Hsp90 0.22 0.22 0.39 0.31 0.33 0.75 0.72 0.30 0.37 0.50

MAPK1 0.42 0.41 0.57 0.52 0.55 0.62 0.62 0.31 0.39 0.33

UBE2I 0.31 0.33 0.46 0.40 0.41 0.56 0.52 0.20 0.32 0.31

TPK1 0.39 0.39 0.45 0.40 0.43 0.25 0.24 0.13 0.19 0.10

Table D.2: RMSD and Pearson correlation for the test set of the 15% scans.

Variable Pearson correlation with EVmutation

Conservation -0.49

SASA 0.39

Contacts -0.36

Average commutetime 0.34

Average co-evolution -0.32

Closeness centrality -0.27

Eigenvector centrality -0.25

Degree centrality -0.23

Table D.3: Table showing the Pearson correlation of different variables that was
considered in our study as inputs for the neural network with the EVmutation score.
Negative values indicate anti-correlation.

Pearson correlation RMSD

Random 85% Envision Random 85% Roth et al.

β-lactamase 0.89 0.85 0.54 -

APH(3’)-II 0.78 0.84 0.98 -

Hsp90 0.85 0.76 0.17 -

UBE2I 0.67 - 0.27 0.24

TPK1 0.42 - 0.35 0.34

Table D.4: Comparison of prediction quality of Deep2Full with other methods which
used partial deep scan data to complete the map. For Envision the Pearson correlation for
the test set of individual protein models developed by training on 80% of deep mutational
scan data was obtained from Figure 2 of Gray et al.[1].
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Spearman correlation

Protein Deep-
Sequence EVmutation SNAP2 Envision ANH

scan
Random
15%

Random
25%

Random
50%

Random
85%

β-
lactamase 0.78 0.72 0.71 0.74* 0.80 0.81 0.83 0.86 0.88

APH(3’)-
II 0.59 0.54 0.49 0.64* 0.67 0.68 0.67 0.72 0.77

Hsp90 0.53 0.49 0.43 0.31* 0.53 0.56 0.59 0.65 0.70

MAPK1 -0.24 -0.25 0.30 -0.44 0.60 0.59 0.60 0.71 0.75

UBE2I 0.55 0.51 -0.51 0.09 0.56 0.52 0.59 0.65 0.66

TPK1 0.26 0.25 -0.22 0.27 0.25 0.24 0.24 0.26 0.42

Table D.5: Comparison of prediction quality of our models with that of existing
methods which do not use partial data for generating the model. For DeepSequence[2]
and EVmutation[3], the data was taken from the supplementary information of Riesselman
et al.[2]. *Extracted from the supplementary figure 8 on Leave-One-Protein-Out analysis
of Gray et al.[1].

Scan /
Protein

Random
85%

Random
50%

Random
25%

Random
15%

ANH
scan

Position
range
scan

WT
residue

type scan

SASA
range
scan

blact 41 31 30 15 13 20 20 20

agk 26 33 28 15 15 20 12 20

hsp90 42 30 12 12 11 20 9 20

mapk1 35 21 28 19 20 17 15 20

ube2i 16 12 40 25 23 20 14 18

tpk1 40 40 36 15 20 20 15 14

Table D.6: Optimal number of hidden neurons for all proteins and scans.
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Figure D.1: Computational fitness map: Computational predictions of the quantitative
gain or loss in fitness of E. coli resulting from amino acid changes in β-lactamase when
challenged with 2500 µg/ml concentration of ampicillin. The panel includes the training,
validation and test sets. In this specific case the training and validation sets add up to
85% of the mutational scan data.

Figure D.2: Distribution of predictions over the range of fitness: Quality of predictions
when the model was trained with 85% data is shown at different sections of the data.
Distributions were constructed by taking data which are 0.3 units wide (0.15 to -0.15,
-1.15 to -0.85, -2.15 to -1.85 and -3.15 to -2.85). The predictions made around fitness
score 0 or predicted as neutral are more reliable as the spread in the experimental data
corresponding to these predictions is lower.
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Figure D.3: Results from training the model with systematically reduced data sets:
Fitness scores obtained computationally by training the models on decreasing sizes of
data sets. Training, validation and test sets for β-lactamase and APH(3′)-II are shown.
The RMSD and Pearson correlation for the test set for all proteins and for all scans are
given in Table D.1.
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Figure D.4: Comparison of the predicted scores using models developed by training on
datasets of varying sizes with the experimental fitness scores for Hsp90 and MAPK1.
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Figure D.5: Fitness scores obtained computationally by training the models on de-
creasing sizes of data sets. Training, validation and test sets for UBE2I and TPK1 are
shown.
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Figure D.6: Insufficiency of alanine scan for training the model: The experimental
fitness data on substitution at every amino acid position of β-lactamase with alanine was
used for training the model. This strategy which only used 5% of the full mutational data
for predicting the fitness of all other 19 mutational scans did not give good predictions.
We did not use alanine scan for any further analysis.
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Figure D.10: Results from augmenting the data with transverse assay conditions: For
the same amino acid substitutions we included the fitness data obtained at different
antibiotic concentrations: 0, 10, 39, 156, 625 and 2500 µg/mL in the training set.
Predictions for the remaining 85% of the mutations that were not used in the training
are shown and augmenting do not improve the results.
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Figure D.11: Feature selection: Predictions from models with reduced number of
variables. (A) Using the variables impact, average correlation, average commute time,
contacts, BLOSUM and hydrophobicity of mutant which were chosen based on the variable
impact analysis (B) Using variables chosen based on the pearson correlation between
the input variables and fitness: conservation, average correlation, average commute
time, contacts, BLOSUM, SASA, PSSM score for wild type amino acid (C) Using all 17
variables. The models with fewer variables have comparable predictive abilities as that
the one using all variables. The adjusted R2 values for the test set are 0.74, and 0.74 and
0.78 respectively for A, B and C. The variables average correlation, average commute
time, contacts and Blosum are common in A and B.
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Figure D.12: Prediction quality relative to the wild type amino acid: Predictions from
ANH were also analyzed by classifying them according to the wild type amino acid
which gets mutated. The analysis shows that there is variability in the predictability of
substitution of different amino acids such as asparagine (N) and tryptophan (W) having
high prediction quality and histidine (H) and glutamine (Q) relatively poor. The dashed
red lines are guidelines with slope 1.



Appendix D 200

− 4

− 3

− 2

− 1

0
A C D E F

− 4

− 3

− 2

− 1

0
G H I K L

− 4

− 3

− 2

− 1

0
M N P Q R

− 2 0
− 4

− 3

− 2

− 1

0
S

− 2 0

T

− 2 0

V

− 2 0

W

− 2 0

Y

Predicted score

E
x

p
e

ri
m

e
n

ta
l 

sc
o

re

Figure D.13: Quality of output relative to the substituted amino acid: Predictions from
ANH were analysed by classifying them according to the amino acid to which mutation
is performed. It can be seen that the predictability of all amino acids is comparable.
However, the predictions to alanine (A), asparagine (N), histidine (N) are notably better
because of the training set that was used. The dashed red lines are guidelines with slope
1.
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Figure D.14: Distribution of error along SASA: Prediction error (Predicted fitness -
experimental fitness) for the test set of random 15% scan for β-lactamase as a function
of solvent exposure. The box plot shows the distribution of errors at different values of
SASA. At higher values of SASA, error is lower.
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Figure D.15: Output quality versus input quality: Quality of data used in training
defined as the ratio of the range of mutational effect scores in the training set and the
standard deviation of the mode corresponding to the neutral substitutions with the
prediction quality shown in Pearson correlation between the predictions and measured
fitness for the test set was used as a measure of the quality of output. Quality of input vs
and quality of output is compared for (A) models developed for mutational effect scores
measured for β-lactamase under different concentrations of ampicillin (B) random scans
performed for the six proteins. Comparison in the same system has a trend, while no
clean trend could be seen in the comparisons across different protein and scans.
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Figure D.16: Quality of predictions using different random scans: The quality of
predictions as seen from the Pearson correlation between predicted and experimental
data in general improve for all proteins. This improvement slows down beyond 50% data
usage except for TPK1.
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Figure D.7: Results from training the model on mutations chosen with different
strategies: Fitness scores obtained computationally by training the models on 15% of
data chosen in different ways. The training, validation and test sets for β-lactamase and
APH(3′)-II are shown. The RMSD and Pearson correlation for the test set for all proteins
and for all scans are given in Table D.2.
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Figure D.8: Computational predictions of the models trained with 15% of data chosen
with different strategies for Hsp90 and MAPK1.
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Figure D.9: Computational predictions of the models trained with 15% of data chosen
with different strategies for UBE2I and TPK1
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Figure D.17: Distribution of error over the range of fitness: RMSD of test set calculated
across the range of experimental fitness for all the six proteins. The experimentally
observed fitness was divided into 10 bins in each of the cases and RMSD was quantified
for each bin. As it can be seen, errors are fairly systematic, which suggests that the
RMSD relative to the expected values is fairly a constant for several of the cases.
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Figure D.18: Reduction of error with the increasing number of training points per bin:
RMSD of test set calculated for different ranges of the experimental fitness scores versus
the number of points in the training set in each bin. A power-law behavior emerges.
It can also be seen that having more than 100 points for training from a bin does not
improve the predictions significantly, which suggests an approximate 100×10 bins = 1000
data points for training.
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Figure D.19: Comparing the results of randomly choosing from SNS versus randomly
choosing from all possible substitutions: Comparison of quality of predictions by models
generated by training on randomly selected variants from the complete data and randomly
selected mutations achievable through single nucleotide substitutions (SNS). 25% of data
was used for training and validation. The RMSD and Pearson correlation for the test
set for both scans and for all proteins are given in Table D.1. It can be seen that the
performance of both models are comparable.
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Figure D.20: Comparison of mutational effect score predictions from unsupervised
methods with the experimental score: A comparison of how the scores from SNAP2 and
Evolutionary statistical energy relate to the experimentally observed fitness of E. coli
arising from β-lactamase mutations is shown in this figure. The scores are compared for
the complete experimental data as well as by randomly selecting 15%, 50% of the data.
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Figure D.21: Random scan is representative: Distribution of SASA for the complete
data as well as the training set of random 15% scan for β-lactamase. The distributions
are similar showing that the random choice of mutations is representative of the complete
data set.



Appendix D 210

0 20 40 60 80 100 120

Iteration number

0.0

2.5

5.0

7.5

10.0

12.5

15.0
M

e
a
n
 s

q
u
a
re

 e
rr

o
r

A

Training

Validation

15 25 35 45 55 65 75 85

Number of hidden neurons

0.80

0.81

0.82

0.83

0.84

0.85

0.86

R
2

B

Training+Validation

15 25 35 45 55 65 75 85

Number of hidden neurons

0.75

0.76

0.77

0.78

0.79

R
2

C

Test

Figure D.22: Convergence of neural network model training and test: Results demon-
strating how the choice of number of hidden neurons was made for β-lactamase for the
random 85% scan. (A) For a given choice for the number of neurons in the hidden layer,
41 in this case, mean square error calculated for the training set as well as the validation
set as the iteration proceeds. The quality of predictions for training data improves, and
beyond the optimal number of iterations, the error of predictions for the validation set
increases. To avoid this problem of overtraining early stopping criterion was used to
terminate the iterations. When this worsening consistently occurs for 100 iterations, the
training is terminated. The iteration at which the validation set has the lowest error is
then chosen. (B) Similar calculation was repeated by changing the number of neurons,
and the R2 for training and validation was monitored as a function of the number of
neurons. The decision about the optimal number of neurons was made considering the
performance both in the training and the validation sets. In this case, 41 neurons in the
hidden layer was considered optimal. (C) R2 value for test set, obtained by performing
the calculations at any given number of neurons is also shown. In this specific case, this
graph is used an a posteriori justification for our choice of 41 neurons in the hidden layer.
As it can be seen although with higher number of neurons the training and validation may
saturate, the test set can worsen, and attention needs to be paid to avoid this problem
by over training.
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Towards Developing Intuitive Rules for
Protein Variant Effect Prediction
Using Deep Mutational Scan Data
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Figure E.1: A comparison of the results reported in two different deep mutational scan
experiments where the mutations in β-lactamase and their fitness effects on E. coli were
studied. The two dashed lines passing through 0 and 1 represent the wildtype fitness in
the Stiffler et al.[1] and Firnberg et al.[2] experiments respectively.
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Figure E.2: Comparison of fitness with ∆PSSM (= PSSMwildtype − PSSMmutant)
obtained from the Position Specific Scoring Matrix (PSSM). Conservation of amino acid
is dependent only on the amino acid position and mainly capture average fitness effect
upon substitution and cannot give information about specific substitutions being made.
To capture the specific mutation information, we use the position specific scoring matrix
(PSSM) as a reference, which has been developed by combining the knowledge about all
possible substitutions. PSSM score was calculated using PSI-BLAST for the multiple
sequence alignment (MSA) of β-lactamase. The fitness effect shows a dependence, albeit
weak.
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Figure E.3: Fitness dependence on the amino acid conservation at a position and
the quality of classification quantified using F1 score as the conservation threshold for
classification is varied are shown for the proteins APH(3’)-II (A,B), Hsp90 (C,D),
MAPK1 (E,F), UBE2I (G,H) and TPK1 (I,J). In the box plots, the black filled circle
and the red line represent mean and median of the fitness respectively. The whiskers are
plotted at 1.5 times the interquartile range and black open circles show the outliers.
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Figure E.5: Correlation of fitness with SASA and the F1 scores quantifying the quality
of classification as the SASA threshold is varied for the proteins APH(3’)-II (A,B),
Hsp90 (C,D), MAPK1 (E,F), UBE2I (G,H) and TPK1 (I,J). Details about the box
plot representation are given in Figure E.3.
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Figure E.6: A. The effect of packing was studied by plotting fitness relative to the
number of contacts. No strong relation was observed. B. F1 score of neutral and
deleterous classes and the average of both as the number of contacts threshold is changed.
For details of box plot representation see Figure E.3.
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Figure E.7: Fitness scores with respect to number of contacts of the wild type amino
acid and the F1 scores at different number of contacts thresholds chosen for classification.
Data is shown for the proteins APH(3’)-II (A,B), Hsp90 (C,D), MAPK1 (E,F), UBE2I
(G,H) and TPK1 (I,J). (Box plot representation details are given in see Figure E.3.)
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Figure E.8: Correlation between fitness and BLOSUM substitution matrix score and
the F1 scores when the BLOSUM threshold for classifying mutations to neutral and
deleterious is varied for APH(3’)-II (A,B), Hsp90 (C,D), MAPK1 (E,F), UBE2I (G,H)
and TPK1 (I,J). See Figure E.3 for details of box plot representation.
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Figure E.9: Reduction in the number of mutations predicted wrongly as neutral as the
number of criteria used is increased is shown for the case of β-lactamase. The order in
which thresholds related to different variables are included is shown in the legend.
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Figure E.10: Reduction in the number of mutations predicted incorrectly as neutral as
the number of variables used is increased. Although the error fraction decreases as shown
in Figure E.9, the number of mutations which are classified as neutral or deleterious by
all variables also decreases.
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Figure E.11: Reduction in the chance of false-neutral predictions as the number of
variables used for classification are increased. Threshold used for each variable is the
average values given in Table 1. The trajectory for which the sum of error fractions is
the least is shown for each protein. The order in which different threshold criteria are
included for each protein is: 1) β-lactamase: SASA-Charge type change-Blosum-No.of
contacts-Conservation, 2) APH(3’)-II: Blosum-No. of contacts-Charge type change-
SASA-Conservation, 3) Hsp90: Conservation-Charge type change-SASA-Blosum-No. of
contacts, 4) MAPK1: Conservation-Charge type change-SASA-Blosum-No. of contacts,
5) TPK1: Charge type change-SASA-Conservation-No. of contacts-Blosum, 6) UBE2I:
SASA-Charge type change-No. of Contacts-Blosum-Conservation, 7) Bgl3: SASA-Charge
type change-No. of contacts-Blosum-Conservation.
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Variable Protein True
neutral

False
neutral

True
deleterious

False
deleterious

Conservation

Beta-lactamase 1537 1731 625 59

APH(3’)-II 2621 649 439 525

Hsp90 2306 129 493 1093

MAPK1 2168 214 888 1200

UBE2I 1357 636 378 192

TPK1 909 1008 786 478

No. of
contacts

Beta-lactamase 1071 962 1394 525

APH(3’)-II 2058 422 666 1088

Hsp90 2235 364 258 1164

MAPK1 1973 498 604 1395

UBE2I 974 470 544 575

TPK1 872 1047 747 515

SASA

Beta-lactamase 1268 803 1553 328

APH(3’)-II 2277 466 622 869

Hsp90 2349 250 372 1050

MAPK1 2041 326 776 1327

UBE2I 1236 448 566 313

TPK1 962 1085 709 425

BLOSUM

Beta-lactamase 1013 963 1393 583

APH(3’)-II 1752 379 709 1394

Hsp90 1850 203 419 1549

MAPK1 1915 374 728 1453

UBE2I 893 373 641 656

TPK1 821 793 1001 566

Table E.1: Number of true and false predictions for each protein using the average
thresholds.
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Variable Protein Threshold True
neutral

False
neutral

True
deleterious

False
deleterious

Conservation

Beta-lactamase 0.65 1579 1917 439 17

APH(3’)-II 0.6 2621 649 439 525

Hsp90 0.55 2167 102 520 1232

MAPK1 0.5 1720 166 936 1648

UBE2I 0.6 1357 636 378 192

TPK1 0.6 909 1008 786 478

No. of
contacts

Beta-lactamase 19 1083 1007 1349 513

APH(3’)-II 18 2058 422 666 1088

Hsp90 17 2072 320 302 1327

MAPK1 18 1973 498 604 1395

UBE2I 19 1020 522 492 529

TPK1 18 872 1047 747 515

SASA

Beta-lactamase 0.2 1268 803 1553 328

APH(3’)-II 0.2 2277 466 622 869

Hsp90 0.2 2349 250 372 1050

MAPK1 0.3 1809 281 821 1559

UBE2I 0.2 1236 448 566 313

TPK1 0.2 962 1085 709 425

BLOSUM

Beta-lactamase -2 1013 963 1393 583

APH(3’)-II -2 1752 379 709 1394

Hsp90 -2 1850 203 419 1549

MAPK1 -2 1915 374 728 1453

UBE2I -2 893 373 641 656

TPK1 -2 821 793 1001 566

Table E.2: Number of true and false predictions for each protein when the threshold
obtained by averaging the thresholds of other proteins (Leave One Protein Out analysis)
is used. The threshold obtained by averaging over other 5 proteins is given in 3rd column.
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Protein Variable
Predicted as neutral Predicted as deleterious

thav thav-δth thav+δth thav thav-δth thav+δth

TNP* FFP* TNP FFP TNP FFP TNP FFP TNP FFP TNP FFP

β-lactamase

Conservation

200 0.18

180 0.16 207 0.18

203 0

309 0.04 124 0

No of
contacts 120 0.16 243 0.18 243 0.00 117 0

SASA 242 0.21 152 0.13 203 0.00 203 0

BLOSUM 125 0.08 220 0.19 267 0.00 100 0

Hsp90

Conservation

231 0.02

240 0.00 269 0.04

260 0.58

290 0.61 182 0.51

No of
contacts 160 0.03 272 0.03 357 0.59 107 0.38

SASA 270 0.03 186 0.03 122 0.75 275 0.57

BLOSUM 148 0.02 251 0.03 335 0.59 151 0.60

APH3’-II

Conservation

289 0.04

276 0.04 307 0.07

186 0.45

258 0.50 126 0.41

No of
contacts 206 0.03 344 0.07 236 0.47 107 0.50

SASA 342 0.06 263 0.03 131 0.48 232 0.47

BLOSUM 172 0.02 330 0.05 240 0.50 96 0.42

MAPK1

Conservation

447 0.40

485 0.42 380 0.37

185 0.03

152 0.03 215 0.03

No of
contacts 586 0.41 234 0.43 124 0.05 232 0.03

SASA 203 0.33 514 0.43 257 0.03 157 0.04

BLOSUM 571 0.44 256 0.38 122 0.02 199 0.04

UBE2I

Conservation

146 0.14

131 0.13 148 0.14

161 0.11

192 0.16 124 0.10

No of
contacts 90 0.16 195 0.14 184 0.13 103 0.11

SASA 165 0.15 129 0.14 79 0.10 163 0.11

BLOSUM 96 0.09 159 0.16 182 0.14 95 0.09

TPK1

Conservation

183 0.37

138 0.37 194 0.36

207 0.31

238 0.32 156 0.30

No of
contacts 134 0.36 207 0.37 280 0.29 87 0.29

SASA 222 0.36 141 0.38 119 0.36 264 0.31

BLOSUM 134 0.28 195 0.38 263 0.31 111 0.29

Table E.3: Table showing the sensitivity of quality of predictions with small variation
in the thresholds. The change in threshold, δth was chosen to be approximately 10%
of the maximum value of the given variable. When a variable threshold, thav is varied
by ±δth, keeping all other variable thresholds same, the number of variants predicted
as neutral/deleterious and the fraction of false prediction in each case are given. The
column thav is for the case when the average thresholds are used for all variables.
*TNP and FFP stands for total number of predictions and fraction of false predictions
respectively.
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Interpreting Mutational Effects
Predictions, One Substitution at a
Time

Figure F.1: Quality of predictions. 75% of the mutational data was used for training
the models. The quality of the model was judged by comparing the predictions to
the observations. The scatter plots show that both A. fitness and B. solubility can be
predicted with a good reliability.
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Figure F.2: Correlation of contributions to solubility and fitness. The SHAP values
defining the contribution of each variable to fitness and solubility are shown. From the
data it is clear that the contributions from these descriptive parameters to fitness (x-axis)
and solubility (y-axis) are poorly correlated i.e., knowing a parameter contributes to an
increase in fitness does not immediately clarify its possible contribution to solubility.
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Figure F.3: Correlation of contributions to solubility and fitness. A continuation F.2,
showing the contributions from some more parameters to fitness and solubility are poorly
correlated.
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Figure F.4: Extracting relations. The scatter plots of A. fitness and B. solubility
relative to the number of contacts the wild type amino acid has in its structure do not
show a clear pattern. On the contrary, the SHAP contributions to C. fitness and D.
solubility show a very clear pattern of reducing SHAP values with increasing contacts,
which suggests that the fitness and solubility decrease with the substitution of a tightly
packed amino acid. The colorbar is the same as in Figure 8.3 of Chapter 8, and represents
the observed fitness changes.
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Figure F.5: Correlation between outcomes of multi-factorial contributions. The fitness
and solubility from the experimental data is shown. While some of the factors contributed
similarly to both solubility and fitness, some others in an opposite way, and many others
in an uncorrelated way. Hence, the net result of the multi-factorial effect is a poor
correlation between the fitness and solubility. However, seeing the nice patterns such as
those in Figures 4, 5 it is apparent that the fitness and solubility can be reconstructed
from the knowledge of the individual factors.
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Appendix G

Using Deep Mutational Scan Data for
Understanding Site Specific Codon
Usage Bias
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Figure G.1: The average of tRNA weighted fitness scores of variants that are possible
with one nucleotide change for every synonymous codon of all amino acids except M and
W in APH(3′)-II. Colours within each subplot correspond to different residue positions in
the protein with the specific amino acid. Square symbol indicates the codon in the WT
sequence. The results for the remaining amino acids are given in Figure G.2.
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Figure G.2: See caption of Figure G.1.
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Figure G.3: The tRNA weighted fitness distributions plotted with respect to codon
bias for the possible codons of each amino acid separately for APH(3′)-II.
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No.
of
amino
acids

tRNA weighted
fitness tRNA availability

No. of
correct

predictions

Fraction of
correct

predictions

No. of
correct

predictions

Fraction of
correct

predictions

Secondary
Structure

helix 113 36 0.32 42 0.37

sheets 44 15 0.34 20 0.45

coil 93 38 0.41 34 0.37

Chemical
nature of
amino acid

charged 71 34 0.48 31 0.44

polar 53 15 0.28 19 0.36

hydrophobic 126 40 0.32 46 0.37

Conservation

<= 0.25 31 12 0.39 8 0.26

> 0.25 219 77 0.35 88 0.40

<= 0.5 122 44 0.36 43 0.35

> 0.5 128 45 0.35 53 0.41

<= 0.75 181 66 0.36 68 0.38

> 0.75 69 23 0.33 28 0.41

Table G.1: The fraction of correct predictions using each of the scoring method shown
separately for amino acids in β-lactamase in different structural context, or having
chemical different nature or functional importance as quantified using conservation.

No.
of
amino
acids

tRNA weighted
fitness tRNA availability

No. of
correct

predictions

Fraction of
correct

predictions

No. of
correct

predictions

Fraction of
correct

predictions

Secondary
Structure

helix 96 26 0.27 35 0.36

sheets 45 14 0.31 15 0.33

coil 112 43 0.38 47 0.42

Chemical
nature of
amino acid

charged 74 28 0.38 30 0.41

polar 39 15 0.38 13 0.33

hydrophobic 140 40 0.29 54 0.39

Conservation

<= 0.25 81 32 0.40 28 0.35

> 0.25 172 51 0.30 69 0.40

<= 0.5 173 60 0.35 70 0.40

> 0.5 80 23 0.29 27 0.34

<= 0.75 219 72 0.33 82 0.37

> 0.75 34 11 0.32 15 0.44

Table G.2: The fraction of correct predictions using each of the scoring method shown
separately for amino acids in APH(3′)-II in different structural context, or having different
chemical nature or functional importance as quantified using conservation.
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