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Synopsis

Adaptation is a ubiquitous phenomenon that enables a population to survive in its en-

vironment. As natural environments change with time, it is crucial to understand the

dynamics of adaptation in varying environments. When the time scales of the environ-

mental and evolutionary changes are very different, the fluctuations in the environment

can be neglected for the evolutionary process. However, these time scales can overlap,

and then the effect of the time-varying environment plays a major role in determining

the evolutionary fate of the population. This is a less studied problem due to its com-

plexity, but its importance and intriguing features motivated us to understand the effect

of changing environments on the adaptation of a population.

Evolution occurs via evolutionary forces, namely, natural selection, mutation, recom-

bination, and random genetic drift. To understand the evolutionary process, we use the

theoretical population genetics approach to incorporate these forces in a mathematical

model. This thesis considers the adaptation of a single trait with free recombination

and neglects the pleiotropic effects due to other traits. A trait is said to be monogenic

when a single gene controls it, such as sickle cell anemia and albinism, and polygenic,

when many genes influence the trait, for example, quantitative traits such as human

height and weight. We study the adaptation of both the monogenic and polygenic traits

in different environmental conditions that are modeled as a sudden-change in the envi-

ronment and linearly-changing and periodically-varying selection. The primary focus of

the thesis is to understand the effect of changing environments on the survivability of

a population. The thesis is divided into five chapters, and a brief description of each

chapter is given below.

In Chapter 1, we first provide an introduction to the relevant evolutionary forces and

a brief description of the deterministic and stochastic models pertinent to the discussion

in this thesis. Specifically, we discuss two theoretical models: birth-death process and

infinitesimal model that are classical models in population genetics and quantitative

genetics, respectively [1]. Some useful frameworks (branching process and diffusion

theory) used to obtain our results are also described in this chapter [2, 3].

In Chapter 2, we focus on the evolution of a monogenic trait due to a periodically

changing environment. Seasonality and antibiotic cycling are well-known examples of

periodic environmental change which have a significant impact on the survival probability

of a mutant [4]. This motivated us to study a model where the selection pressure

changes its sign with time, and the mutant, which is favorable for certain times, can

become unfavorable at other times [5]. We studied the mutant’s fixation probability (the
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probability that ultimately all the individuals in the population become the mutant type)

in a finite diploid population and found that it depends on the rate of environmental

change, its time of appearance, and its dominance parameter. The interesting results

we found in this study are, (i) an initially beneficial (deleterious) mutant can have a

fixation probability lower (higher) than that for a neutral mutant depending on its

time of appearance and rate of environmental change, and (ii) Haldane’s sieve (fixation

probability of a dominant beneficial mutant in a static environment is higher than when

it is recessive) [6] does not always hold in a time-varying environment. These results

were obtained using a combination of analytical work based on branching process and

diffusion theory, and numerical simulations.

In Chapter 3, we investigate the adaptation of a polygenic trait where selection acts

on a large number of genes to maintain an optimum phenotype. The Fokker-Planck

equation for a polygenic trait is high dimensional, and in general, a mathematically

intractable problem [7]. Therefore, we study an infinitely large population where we can

neglect stochasticity and solve the deterministic equations to understand the evolution

of a polygenic trait due to a linearly changing environment (for example, as a result

of global warming) [8]. Previous work based on an infinitesimal model that neglects

recurrent mutations has shown that the mean trait moves with the speed of the optimum

and there is a constant lag between them [9]. In contrast, our work showed that the

mean trait evolves with a speed lower than that of the phenotypic optimum. This is an

important result that can have a potential application in conservation biology.

The bulk of the thesis describes the evolution of a trait in a changing environment.

However, the stochastic dynamics of adaptation, even under constant selection, are not

well-studied [10]. To get an insight into the problem, we study the relevant Fokker-Planck

equation in Chapter 4, using an eigenfunction expansion method [11]. We found that

(i) the eigenfunctions obey a confluent Heun equation which is a generalization of the

hypergeometric equation [12], and (ii) the first eigenvalue that determines the dynamics

shows a sharp transition: for mutation rate below one, the eigenvalue increases linearly

with increasing mutation rate and then remains a constant.

In Chapter 5, we conclude our main results. We also discuss some interesting open

questions that can be addressed by extending our work.
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Chapter 1

Introduction

Evolution is a heritable change in the characteristics of the population over time, and

adaptation is the evolutionary process by which a population survives in its environ-

ment. Theoretical population genetics aims to understand the adaptation process and

mechanisms of evolution, incorporating evolutionary forces such as natural selection,

mutation, recombination, and random genetic drift in mathematical models. As real

biological evolution is very complex, it is hard to make theoretical progress in models

that include all the complexities of the real population, and therefore, we require simple

models that do not significantly alter the essential properties of the evolutionary process

but are tractable. This Chapter introduces various terms and mathematical techniques

relevant to the thesis and explains how we model the adaptation process.

1.1 Evolutionary Forces

The basic evolutionary processes pertinent to the discussion in this thesis are described

below in some detail.

1.1.1 Natural selection

Natural selection is the cause of adaptation that favors individuals who are better suited

to its environment and gives a comparative advantage in the reproduction or survival

ability of the individuals. A large body of experimental and theoretical work assumes

a constant environment; however, natural environments are seldom static (e.g., climate

change), and it is important to understand the dynamics of adaptation in changing

environments. In this thesis, we study the evolution of a population in both constant
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Fig. 1.1 Schematic diagram of different types of selection that affects the population
frequency (adapted from [1]). The red color line represents the original population,
whereas the blue line shows the population after selection acts on it.

and changing environments; however, our main focus is on the adaptation of a population

in continually changing environments.

Although selection acts on the phenotype (such as the color of a flower) of the pop-

ulation, it alters the allele (different versions of the same gene) frequencies through the

genotypes associated with the phenotypes. Some categories of selection depending on

its effect on the allele frequency, as shown in Fig. 1.1, are described below:

(i) Directional selection: A single extreme phenotype is favored due to this selection.

A classic example of a trait under this selection is the industrial melanism where the

dark peppered moth, which was rare initially, became common in the population in

about 50 years of evolution [2, 3]. In a single biallelic locus model in which a single gene

with two types of allele is assumed to be under selection, the fitness of the advantageous

allele can be written as w1 = 1 + s where s > 0 is the selection coefficient and the wild-

type allele is assigned the fitness w0 = 1. We study the dynamics of allele frequency

when the population is under directional selection in Chapter 2 when the selection coef-

ficient is time-dependent and in Chapter 4 for constant selection.

(ii) Stabilizing selection: It acts against the deleterious alleles and maintains a phe-

notypic optimum in several quantitative traits such as human height and weight [4, 5].

In quantitative genetics, the stabilizing selection is modeled by a Gaussian function,

w(z) = exp[−s(z − z0)2] where z denotes the trait value of an individual, z0 is the

phenotypic optimum, and s is the strength of selection [6]. In Chapter 3, we study the

evolution of a quantitative trait under stabilizing selection when the phenotypic opti-
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mum moves in time to model a changing environment.

(iii) Disruptive selection: This favors the extreme phenotypes and acts against inter-

mediate phenotypes [7]. We will encounter this selection in Chapter 3 when the average

trait value of the population reaches the phenotypic optimum.

1.1.2 Mutation

A mutation is a change in the genetic sequence due to errors during replication or

due to an external environment such as radiation [8]. Mutation creates variation in

the population, and therefore, it is an important evolutionary force required for the

evolution of the population. The mutation, based on its effect on the fitness of the

individual, can be beneficial, neutral, or deleterious for the individual. The change in

the genetic sequence due to a beneficial mutation produces a favorable phenotype, and it

is essential for a population to adapt to its environment; however, biological observations

predict that the beneficial mutations are rare in nature [9]. The neutral mutation alters

the genetic sequence without affecting the phenotype, whereas the deleterious mutation

decreases the fitness of the individual and becomes unfavorable by selection.

1.1.3 Recombination

Recombination is a process by which two strands of DNA recombine to produce a new

combination of alleles that increases the genetic diversity in a population. In a fully

recombining population, the frequency of a genotype can be expressed as the product of

the allele frequency at each locus; however, linkage disequilibrium (nonrandom assort-

ment of alleles at two or more loci) needs to be considered when the recombination rate

is low where the allele frequencies are not sufficient to describe the genotype frequencies

[6]. For this reason, in this thesis, we consider a fully recombining population.

1.1.4 Random genetic drift

Random genetic drift refers to stochastic fluctuations in the allele frequencies of a finite

population due to chance events (for example, an individual can die by chance due to the

finite carrying capacity of the population, even when it is as fit as the other individuals

in the population). Although all populations are subject to random genetic drift, the

fluctuations accumulate slowly and are small in a large population [8]. For this reason, it
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plays a major role in deciding the fate of a new mutant due to its small initial frequency

in the population. Whereas selection tries to fix a beneficial mutant (the frequency of

the mutant becomes one), genetic drift can remove it from the population; similarly, a

deleterious mutant can be fixed in a finite population due to stochastic fluctuations. We

study stochastic models of evolution that include the effect of genetic drift in Chapter 2

and Chapter 4.

1.2 Mathematical Models

In this section, we discuss how we construct mathematical models to incorporate the

above-mentioned evolutionary forces. We assume a biallelic, fully recombining popula-

tion throughout the thesis.

1.2.1 Deterministic models

In an infinitely large population, stochastic fluctuations can be ignored, and the evo-

lutionary dynamics can be described deterministically. Although natural populations

evolve stochastically, deterministic models [10] are useful in developing stochastic theo-

ries, as we shall see below in Sect. 1.3.2.

We first describe some simple deterministic models commonly used in population

genetics. In linkage equilibrium, the mutant’s allele frequency x at a locus evolves due

to selection according to the Wright’s equation as [6],

ẋ =
x(1 − x)

2w̄

∂w̄

∂x
, (1.1)

where w̄ represents the average fitness of the population. In Chapter 2, we consider a

diploid population with a single locus under directional selection whose average fitness

w̄ = exp[sx(x + 2h(1 − x))], where h is the dominance parameter; the special case of

h = 1/2 is studied in Chapter 4. In Chapter 3, we study the evolution of a polygenic

trait that is under stabilizing selection where the average fitness is a function of the allele

frequencies of all loci and given by w̄ = exp[−s{c2+(c1−z0)2}] with c1 =
∑ℓ

i=1 γi(2xi−1)

and c2 = 2
∑ℓ

i=1 γ
2
i xi(1 −xi) are the mean and variance of the trait with effect sizes γi/2

at the ith locus with ℓ number of loci [11].
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The alleles can mutate to each other, and the evolution equation of the allele fre-

quency due to mutation is given by,

ẋ = µ(1 − x) − νx , (1.2)

where the mutant allele changes to the wild type allele with a rate ν and the wild type

becomes the mutant with mutation rate µ. We have considered an equal mutation rate

between the alleles in all the Chapters of the thesis.

We now describe the infinitesimal model, which is a widely used deterministic model

in quantitative genetics to understand the adaptation of a quantitative trait without

taking the genetic details into account. In this model, a trait is assumed to be affected

by selection at infinitely many loci, each of which contributes an infinitesimally small

amount of genetic variance to the trait [12]. To maintain a finite genetic variance VA,

that does not vary with time, if the trait consists of ℓ loci, then the effect on the trait

by a single locus is of order
√

VA/ℓ [13]. Therefore, for an infinitely large number of loci,

each locus has an infinitesimally small effect on the trait, and the allele frequencies also

change infinitesimally, which keeps the genetic variance constant over time.

However, in reality, the number of loci affecting a trait is finite and genetic variance

can also change with time. Therefore, in Chapter 3, we consider a finite-loci model

where the effect size of a locus can be small or large relative to a threshold effect size

which depends on the mutation rate and selection coefficient, but not on the number of

loci [14]. We find that the results obtained in the finite-loci model differ significantly

from those obtained using the infinitesimal model.

1.2.2 Stochastic models

Stochastic models are required to understand the evolution of a finite population which

is subjected to random genetic drift. One such model is a birth-death process which is

a classical continuous-time Markov process (a random process whose transition proba-

bilities for next generation depend only on the present generation and are independent

of the past) where the number i of an allele increases or decreases by at most one in a

small time interval with the birth rate bi and death rate di, respectively, as depicted in

Fig. 1.2. This process deals with the discrete number of individuals and useful to find

the extinction probability of a rare mutant. The probability of the mutant population
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Fig. 1.2 Schematic diagram of a birth-death process (adapted from [15]).

with size i at time t for an absorbing state at zero evolves as [15],

Ṗi(t) = bi−1Pi−1(t) − (bi + di)Pi(t) + di+1Pi+1(t) , (1.3)

with boundary condition Pi(t) = 0 for i < 0 and b0 = d0 = 0. When the birth and

death rates are linear in i, the above equation can be solved using the generating func-

tion method, and the extinction probability P0(t) can be obtained from the generating

function. The birth and death rates may or may not be functions of time. In Chapter

2, we use this process in a changing environment where the birth and death rates are

time-dependent.

1.3 Mathematical Frameworks

To understand the adaptation process, we study the mathematical models analytically

using appropriate mathematical frameworks that are described below.

1.3.1 Branching process

The branching process is a widely used framework to understand various problems rang-

ing from the propagation of neutrons in a nuclear reactor to the extinction probability of

a mutant in a population [16]. In this process, each individual produces a random num-

ber of offspring each generation, independently from other individuals [15]. Figure 1.3

shows a discrete-time branching process where a newly produced mutant gets lost from

the population after t = 5 generations. Since the branching process ignores interaction

between lineages, the birth and death rates in a birth-death process can be linearised,

and the resulting model can be easily solved. We use this framework in Chapter 2 to find

the fixation probability of a mutant (the probability that ultimately all the individuals
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Fig. 1.3 Schematic diagram of a discrete-time branching process starting with a single
individual at t = 0 (adapted from [15]). The mutant becomes extinct after t = 5
generations.

in the population become the mutant type) when the mutant remains beneficial at all

times in a changing environment. The branching process works for a growing population

whose average number of offspring is larger than one, otherwise the population certainly

gets extinct in this process, and therefore, gives the fixation probability to be zero for a

neutral or deleterious mutant. We use diffusion theory described in the next subsection

to compute the fixation probability of neutral and deleterious mutants.

1.3.2 Diffusion theory

The diffusion theory is a general approach to describe a stochastic process defined in

continuous space and time. It can be derived from the discrete Markov chain by scaling

the space and time appropriately by the system size and taking the system size to be

infinite. In population genetics, we require a large population size N → ∞ with weak se-

lection, weak mutation (s, µ → 0) that keeps Ns, Nµ finite. In this limit, one can derive

a forward Kolmogorov (Fokker-Planck) equation and a backward Kolmogorov equation

for the probability distribution of allele frequency. The forward Kolmogorov equation

is mainly used to find the stationary state probability distribution of an allele, whereas

the backward Kolmogorov equation is mostly used to obtain the fixation probability of

a mutant. The Kolmogorov equations are [17],

∂f(x, t)

∂t
= − ∂

∂x
(Mδxf(x, t)) +

1

2

∂2

∂x2
(Vδxf(x, t)) (1.4)

∂f(x, t)

∂t
= Mδx

∂

∂x
f(x, t) +

1

2
Vδx

∂2

∂x2
f(x, t) (1.5)
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where (1.4) represents forward Kolmogorov equation and (1.5) is a backward Kolmogorov

equation. The function f(x, t) represents the probability density function, and Mδx and

Vδx are the mean and variance of the process over a small time interval, respectively.

In Chapter 2, along with the perturbation theory, we use the forward Kolmogorov

equation to find the allele frequency distribution and the backward Kolmogorov equa-

tion to find the fixation probability of a mutant in a periodically changing environment

where the mutant can be beneficial and deleterious during the part of the selection cycle.

In Chapter 4, we carry out the eigenfunction expansion [18] of the allele frequency dis-

tribution when the environment is constant. This method results in recursion equations

for certain coefficients that can be easily solved numerically and thereby allowing one to

construct the eigenfunctions.

1.4 Quantities of interest

We will be mainly concerned with the following two quantities in this thesis.

1.4.1 Fixation Probability

When the mutation rate is low, a newly arisen mutant can either fix or get lost from

the population before a new mutant arises. The diffusion theory discussed in Sect. 1.3.2

shows that the fixation probability of a mutant when a single biallelic locus is under

selection, depends on both the selection coefficient and the size of the population as [19],

Pfix =

∫ p
0 exp {− ∫ x 2Mδx′

Vδx′

dx′}dx
∫ 1

0 exp {− ∫ x 2Mδx′

Vδx′

dx′}dx
, (1.6)

where Mδx = sx(1−x)(x+h(1−2x)) and Vδx = x(1−x)
N

are the mean and variance of the

change in allele frequency x per generation with an initial frequency p in a birth-death

process of a diploid population with intermediate dominance. The fixation probability

of a beneficial mutant approaches hs for large populations and can also be obtained

using the branching process described in Sec. 1.3.1, which shows that the allele is

more favorable if it is dominant (Haldane’s sieve) [20]. But the dominant mutant has a

lower chance of fixation if it is deleterious. The fixation probability of a neutral mutant

depends on its initial frequency p in the population. As the population size increases,

the fixation probability goes towards zero for the deleterious and neutral mutants that

shows the strength of genetic drift decreases with the population size, as shown in Fig.
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Fig. 1.4 The figure shows the fixation probability (1.6) of a de novo, codominant (h =
1/2) mutant with population size. The black dotted line shows the fixation probability
of a beneficial mutant for large population size.

1.4. We generalize the above result (1.6) obtained in the static environment to changing

environment in Chapter 2.

1.4.2 Allele frequency distribution

Due to stochasticity, the allele frequency is distributed according to a distribution whose

variance depends on the size of the population. To find this distribution, we can use

the forward Kolmogorov equation and solve it using the eigenfunction expansion method.

When selection, mutation, and population size are time-independent, we can separate the

time and space part of (1.4) and get a first-order and second-order ordinary differential

equations for the time and space parts, respectively. When selection is absent, the space

part of the diffusion equation obeys the Gegenbauer equation and Gauss hypergeometric

equation in the absence and presence of mutation, respectively [19]. But in the presence

of selection, the second-order differential equation obeys an oblate spheroidal equation in

the absence of mutation, and neither the eigenvalues nor the eigenfunctions are explicitly

known, and the eigenspectrum was not studied in the presence of mutation. In Chapter 2,

we, therefore, use the perturbation method to find the allele frequency distribution and

fixation probability taking the time-dependent selection coefficient as the perturbation

parameter. In Chapter 4, we study the dynamics of adaptation when selection, mutation,
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and drift are present and find that the eigenfunctions obey a confluent Heun equation in

which the Frobenius series or other orthogonal polynomial expansions lead to three-term

recurrence relations for the expansion coefficients that are nontrivial to solve. We use

scaling ideas to find the expressions for the expansion coefficients, and obtain eigenvalues

using a perturbation theory for weak selection and numerically for strong selection.

1.5 Overview of the thesis

In this thesis, we want to understand how a population adapts to its environment under

the action of evolutionary forces described in Sect. 1.1. Whereas the bulk of the thesis

considers the evolution in a continually changing environment, we have also studied the

evolutionary dynamics of a trait due to a single sudden change in the environment.

In Chapter 2, we study the evolution of a monogenic trait in a periodically chang-

ing environment (for example, due to seasonality and drug cycling) [21]. We calculate

the fixation probability of a mutant in a finite, diploid population with intermediate

dominance and find that depending on the rate of environmental change and the time of

appearance of the mutant, an initially beneficial (deleterious) mutant can have a fixation

probability lower (higher) than that for a neutral mutant. We also find an interesting

result that Haldane’s sieve [20] does not always hold in a time-varying environment.

We also investigate the adaptation of a polygenic trait where selection acts on a large

number of genes to maintain an optimum phenotype. However, the incorporation of ge-

netic drift in the evolution equation of the polygenic trait makes it a high-dimensional

diffusion equation which is a complex problem to be solved mathematically. Therefore,

in Chapter 3, we study a deterministic model to understand the evolution of a polygenic

trait due to a linearly changing environment (for example, as a result of global warm-

ing) [22]. In contrast to the previous work, our results show that the mean trait evolves

with a speed lower than that of the phenotypic optimum.

Although our main focus is on the evolution of a trait in a changing environment,

as the dynamics of adaptation under constant selection are not well-understood [19], we

study the relevant forward Kolmogorov equation in Chapter 4, using an eigenfunction

expansion method [23]. We find that the eigenfunctions obey a confluent Heun equation

which is a generalization of the hypergeometric equation [24], and the first eigenvalue

that determines the dynamics shows a sharp transition from a linearly increasing function

of mutation rate to a constant when mutation rate crosses one.
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Our main results are summarized in Chapter 5. Some interesting open problems

related to this thesis are also discussed in this Chapter.
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Chapter 2

The impact of dominance on

adaptation in changing

environments

2.1 Introduction

In this Chapter, we study the evolution of a monogenic trait in a finite, diploid population

due to a periodically changing environment. Our primary purpose in this Chapter is

to understand how the fixation probability of a rare mutant depends on its dominance

coefficient and the rate of environmental change.

Natural environments change with time and a population must continually adapt to

keep up with the varying environment [1–3]. It is therefore important to understand

the adaptation dynamics of a finite population subject to both random genetic drift and

environmental fluctuations. This is, in general, a hard problem but some understanding

of such dynamics has been obtained in previous investigations. For example, when the

environment changes very rapidly, on the time scale of a generation, the dynamics of

adaptation are simply determined by the time-averaged environment [1].

Environments can, of course, vary slowly and recent experiments have shown the

impact of rate of change in the environment on the population fitness [4, 5]. The fixation

probability, fixation time, and adaptation rate in changing environments have also been

studied in a number of theoretical studies [6–14], and it has been found that when the

environment changes at a finite rate, population dynamics are strongly determined by

the environment in which the mutant arose.
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In diploid populations, the degree of dominance also affects the evolutionary dy-

namics; in particular, in a static environment, the fixation probability of a dominant

beneficial mutant is known to be higher than when it is recessive (Haldane’s sieve) [15],

while the opposite trend holds if the mutant is deleterious [16]. How these results are

affected in changing environments is, however, not completely understood.

To understand the adaptive process in variable environments, Uecker and Hermisson

(2011) developed a framework for general time-dependent selection schemes; however,

their analysis was limited to very large populations and did not explicitly address how

dominance affects the fixation process. In this article, we employ their formalism to

study the dynamics of adaptation of a finite, diploid population evolving in an environ-

ment that changes periodically due to, for example, seasonal changes or drug cycling

with a particular focus on the impact of dominance. We find that, in time-dependent

environments, the magnitude of the fixation probability of a rare mutant differs substan-

tially from the corresponding results in the time-averaged environment. Furthermore,

the dependence of the fixation probability on dominance coefficient can differ from that

expected in the static environment depending on the rate of environmental change, the

time of appearance of the mutant and its fitness in the time-averaged environment. How-

ever, when recurrent mutations occur, our results for the average allele frequency and

population fitness suggest that dominance does not have a strong influence on evolution-

ary dynamics.

2.2 Model

We consider a finite, randomly mating diploid population of size N with a single biallelic

locus under selection. The (Wrightian) fitness of the three genotypes denoted by aa, aA,

AA is 1 + s, 1 + hs, 1, respectively, where the dominance coefficient 0 < h ≤ 1. The

population evolves in a periodically changing environment that is modeled by a time-

dependent selection coefficient s(t) = s̄ + σ sin(ωt) where s̄ is the selection coefficient

averaged over a period 2π/ω; in the following, we assume that s̄ is arbitrary but σ >

0. We ignore random fluctuations in the environment so that selection changes in a

predictable fashion. Although dominance can evolve with time [17], for simplicity, here

we assume the dominance coefficient to be constant in time. We also allow mutations

to occur with a constant, symmetric probability µ between the two alleles.

The population dynamics are described by a continuous time birth-death model. Al-

though in a finite population with overlapping generations, Hardy-Weinberg equilibrium
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(HWE) does not strictly hold, it is a good approximation when selection and mutation

are weak and population size is large [18]. In the following, we therefore work in these

parameter regimes and assume that the population is in HWE immediately after mating

(see also Sec. A.1). If the birth rate of an individual is given by its genotypic fitness

and the death rate by one, the number of allele a(A) increases by one if it is chosen

to give birth at rate equal to its marginal fitness, wa(wA) and an allele A(a) is chosen

to die. Taking the effect of mutations on these birth and death processes into account,

we find that the rate rb and rd at which the number i of allele a increases or decreases,

respectively, by one are given by

rb(t) =
(1 − µ)iwa + µ(2N − i)wA

w̄
× 2N − i

2N
(2.1)

rd(t) =
(1 − µ)(2N − i)wA + µiwa

w̄
× i

2N
(2.2)

where wa = (1 + s)x+ (1 + hs)(1 − x), wA = (1 − x) + (1 + hs)x, w̄ = wax+ wA(1 − x)

is the population-averaged fitness and x = i/(2N) is the frequency of allele a.

We study the model described above analytically using an appropriate perturbation

theory and numerically through stochastic simulations in which the time interval ∆

between successive generations, t and t + ∆ is treated as a random variable. We first

choose ∆ from an exponential distribution with rate R(t) = ∆−1
∫ t+∆

t dt′(rb(t
′)+rd(t′)) ≈

rb(t) + rd(t) (the latter approximation is justified for small cycling frequencies as the

correction to it is of order ω). Then the number of allele a and A is changed with a

probability proportional to the rate of the respective event given above [19, 10].

Below we first consider the weak mutation regime (2Nµ ≪ 1) in which once a mutant

has appeared in a clonal population, further mutations may be ignored until the mutant

is fixed or lost; here, we are interested in understanding how the fixation probability

of a rare mutant depends on various environmental and population factors such as the

cycling frequency and dominance parameter. We also briefly explore the strong mutation

regime (2Nµ ≫ 1) in which recurrent mutations occur; our objective is to understand

the effect of mutations and environmental fluctuations on population fitness and the

dynamics of allele frequency.

2.3 Fixation probability of a rare mutant

In a static environment, the fixation probability of a mutant allele in a large population

(N → ∞) under weak selection and weak mutation (s, µ → 0) with finite 2Ns, 2Nµ can
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be described by a backward Kolmogorov equation [20]. For the model described in the

last section, the probability Pfix that mutant allele a present in frequency x at time t

fixes eventually is given by [10]

− Ṗfix(x, t) = s(t)g(x)
∂Pfix(x, t)

∂x
+
x(1 − x)

2N

∂2Pfix(x, t)

∂x2
, (2.3)

where dot denotes a derivative with respect to time and g(x) = x(1 − x)(x + h(1 −
2x)). On the right-hand side (RHS) of the above equation, the first term describes the

deterministic rate of change in the allele frequency [20] and the second term captures

the stochastic fluctuations due to finite population size. Since the left-hand side (LHS)

of (2.3) is nonzero, it is inhomogeneous in time; that is, the eventual fixation probability

depends on the time of appearance ta (or phase θa = ωta) of the mutant [10, 11].

Equation (2.3) does not appear to be exactly solvable, and approximate methods such

as perturbation theory require an exact solution of the unperturbed problem (σ = 0),

which is not known in a closed form for nonzero s̄ [16, 21]. Therefore to obtain an

analytical insight, we study the fixation probability using a branching process for positive

s̄ and analyze the above diffusion equation for s̄ = 0 using a time-dependent perturbation

theory. Some numerical results for negative s̄ are also given. Before proceeding to a

quantitative analysis, we first give a qualitative picture of the process in the following

section.

2.3.1 Qualitative features

In a static environment, a dominant beneficial (deleterious) mutant has a higher (lower)

chance of fixation [16]. In a changing environment, we expect that this result continues

to hold when the mutant is beneficial or deleterious at all times (that is, when σ < |s̄|
for the periodically changing s(t); see Sec. A.2). But it is not obvious how dominance

influences the fixation probability when the mutant is transiently beneficial or deleterious.

Our results for the fixation probability in such situations are shown in Fig. 2.1, Fig. 2.2

and Fig. 2.3 when the mutant arises in an environment which is beneficial, neutral and

deleterious on average, respectively.

In all these cases, in a slowly changing environment, the effect of dominance is found

to be the same as in the static environment (that is, a dominant mutant that starts out

as a beneficial (deleterious) one has a higher (lower) chance of fixation). This is because

when the environment changes infinitesimally slowly (ω → 0), as Fig. 2.4a illustrates

for on average neutral mutation, fixation occurs rapidly compared to the fluctuations in
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selection so that the sign of selection remains the same from origination to fixation of

the mutant.

However, in rapidly changing environments (ω → ∞), as Fig. 2.1, Fig. 2.2 and Fig. 2.3

demonstrate, the impact of dominance on the fixation probability can be different from

that in a static environment. For large cycling frequencies, although the fixation times

are much longer than the time period of environmental change (see Fig. 2.4b), the time

of appearance still plays an important role in determining the chance of fixation as the

mutant must escape the stochastic loss at short times (in fact, Fig. 2.4b shows that the

effect of random genetic drift is strongest in the first seasonal cycle). Then a mutant that

arises in an, on average, neutral environment while selection is positive but the selection

strength is decreasing, will soon encounter an environment with negative fitness effects

that affect a dominant mutant more adversely than the recessive one leading to a lower

chance of fixation of the dominant mutant. In an environment that is beneficial on

average, if a mutant arises while selection is negative, it will spend relatively less time in

the negative cycle and therefore will effectively behave like a beneficial mutant resulting

in the behavior of the fixation probability different from that in the static environment;

a similar argument holds when s̄ < 0.

2.3.2 On average beneficial mutant in a large population

When the mutant is beneficial on average (s̄ > 0) and the population is large enough

(2Ns̄ ≫ 1), one can use a branching approximation to find the fixation probability of a

rare mutant. The basic idea is that a beneficial mutant will get fixed once it is present

in finite frequency in the population, but it must survive the loss due to random genetic

drift when it is initially present in small number compared to the population size. Then,

the probability that i ≪ 2N number of a alleles are present at time t is governed by

Ṗ (i, t) = r−(i+1)P (i+1, t)+r+(i−1)P (i−1, t)−(r++r−)iP (i, t), along with boundary

condition P (i, t) = 0, i < 0, where r−(t) = limN→∞rd/i and r+(t) = limN→∞rb/i are,

respectively, per capita birth rate and death rate of the mutant in a large population.

The probability of eventual fixation, Pfix = 1 − limt→∞P (0, t) is given by [22]

Pfix =
[

1 +
∫ ∞

0
dτ r−(τ)e

∫ τ

0
dt′(r−(t′)−r+(t′))

]−1

. (2.4)
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Fig. 2.1 Fixation probability (2.5) obtained using branching process approximation for
a mutant that is beneficial on average (s̄ = 0.005, σ = 2s̄) for θa = π/4, 7π/8, 5π/4, 7π/4
(clockwise from top left as shown in insets) for h = 0.3 (dotted), 0.5 (dashed), 0.7
(solid). Note that the h-dependence of the fixation probability is different at small and
large cycling frequencies when the mutant is deleterious at the time of appearance.

From (2.1) and (2.2), we obtain r− = 1, r+ = 1 + hs; using these in (2.4), we find that

Pfix =

[

1 +
∫ ∞

0
e

−hs̄t+ hσ
ω

(

cos(ωt+θa)−cos(θa)

)

dt

]−1

, (2.5)

which reduces to (29) of Uecker and Hermisson (2011) for ξ = 1 when h = 1/2 and

s(t) → 2s(t) (note that their expression contains a typographical error). Numerical

studies of (2.5) have shown that the fixation probability is, in general, a nonmonotonic

function of cycling frequency ω and strongly depends on the phase, θa = ωta [10, 12].
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Equation (2.5) is analyzed in Appendix B.1 for hs̄, hσ ≪ 1, and we find that

Pfix =































hs(ta) +
ωσ cos(θa)

s(ta)
, ω ≪ hs̄, hσ and s(ta) > 0 (2.6a)

0 , ω ≪ hs̄, hσ and s(ta) < 0 (2.6b)

hs̄+
h2s̄σ cos(θa)

ω
, ω ≫ hs̄, hσ, any s(ta) (2.6c)

where s(ta) = s̄ + σ sin(θa). Since the fixation probability of a beneficial mutant with

constant selection coefficient s0 is given by hs0 (Haldane, 1927), the above expressions

show that, for slowly changing environments, the fixation probability is determined by

the selection coefficient of the mutant at the instant it arose, while for rapidly changing

environments, it depends on the time-averaged selection coefficient s̄ [7, 9].

For σ < s̄, the mutant is beneficial at all times; in this case, the effect of a slowly

changing environment is captured by the deviation from hs(ta) in (2.6a) which changes

linearly with the cycling frequency and is independent of the dominance parameter. In

contrast, for rapidly changing environments, the fixation probability (2.6c) is sensitive

to dominance as the deviation from the asymptotic result hs̄ depends on h (also, see

Fig. A.2). The inset of Fig. A.2 as also (2.6a) and (2.6c) show that the dominant

mutant has higher fixation probability than the recessive one at all cycling frequencies.

In other words, Haldane’s sieve [15] that favors the establishment of beneficial dominant

mutations in static environments continues to operate in changing environments in which

the mutant is beneficial at all times. Equations (2.6a) and (2.6c) also emphasize the

important role of the time of appearance of the mutant. If the beneficial mutant arises

while the selection coefficient is increasing (decreasing) with time, the fixation probability

at small cycling frequencies increases (decreases) with ω and approaches the asymptotic

value hs̄ from above (below) at high cycling frequencies.

As explained in Appendix B.1, on equating the expressions (2.6a) and (2.6c), the

fixation probability is found to have an extremum at a resonance frequency,

ωr ≈ hs̄





√

4 + tan2(θa) − tan(θa)

2



 . (2.7)

The above expression shows that a minimum or a maximum in the fixation probability

occurs when the environment changes at a rate proportional to the average growth rate

(Malthusian fitness), hs̄ of the population. As already mentioned above, this extremum

is a minimum if the mutant appears while selection is decreasing (π/2 < θa < 3π/2)
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and a maximum otherwise. For the two special values, θa = π
2

and 3π
2

, the fixation

probability decreases and increases monotonically, respectively, with ω.

For 0 < s̄ < σ the mutant is not beneficial at all times; in this case, the expression

(2.6a) for small cycling frequencies holds if s(ta) > 0 (see Appendix B.1). Otherwise as

the mutant is initially deleterious and arises in an infinitely large population, the fixation

probability is essentially zero. As shown in Fig. 2.1, the dominant mutant has a higher

fixation probability than the recessive one at large cycling frequencies, irrespective of the

time at which the mutant appeared (see also (2.6c)). But at small cycling frequencies,

the effect of dominance depends on whether the mutant is beneficial or deleterious when

it originated: for positive (negative) s(ta), the dominant (recessive) mutant is favored.

For an initially beneficial mutant, as discussed above, the fixation probability changes

nonmonotonically with cycling frequency, and the resonance frequency is given by (2.7).

But it can exhibit an extremum for initially deleterious mutant also (see Fig. 2.1 for

θa = 7π/4). Note that the fixation probability curves intersect for different dominance

curves which can be estimated for large cycling frequencies as discussed in Appendix B.1.

To summarize, in an environment that is beneficial on average, the impact of domi-

nance on fixation probability is different in slowly and rapidly varying environments if

the mutant is deleterious when it appears in the population.

2.3.3 On average neutral mutant in a finite population

We now calculate the fixation probability of an on average neutral mutant using the

backward diffusion equation (2.3).

Small population

We first consider a small population of size N ≪ σ−1 and analyze the ω ≪ σ and ω ≫ σ

regimes in Appendix B.2 and Appendix B.3, respectively. On using (B.2.8) and (B.3.2),

we find that the fixation probability of allele a present in a single copy at time ta = θa/ω

is given by

2NPfix =































(

1 +
(1 + h)Nσ sin(θa)

3

)

+

(

4 + h

9

)

N2σ cos(θa)ω , ω ≪ σ (2.8a)

1 +
σ

2ω





cos
(

θa − tan−1 ℓ
)

√
1 + ℓ2

+
(2h− 1) cos

(

θa − tan−1 3ℓ
)

√
1 + 9ℓ2



, ω ≫ σ (2.8b)
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Fig. 2.2 Fixation probability as a function of cycling frequency for a mutation that is
neutral on average and arises in a large population of size N ≫ σ−1 for h = 0.1(▽) and
0.9(△), and θa = π/4, 3π/4, 5π/4, 7π/4 (clockwise from top left). The other parameters
are N = 100 and σ = 0.1. The simulation data are obtained by averaging over 107

independent runs. A dominant (recessive) mutant that is beneficial (deleterious) when
it appears in the population can be disfavored at large cycling frequencies.
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where ℓ = (Nω)−1. The expression (2.8b) holds for any ω ≫ σ but for ω ≫ N−1, it

simplifies to

2NPfix ≈ 1 +
hσ cos(θa)

ω
, ω ≫ N−1 (2.9)

which monotonically approaches the fixation probability of a neutral mutant in a static

environment. The above results show that the change in the fixation probability de-

pends weakly on the dominance parameter when the environment changes slowly, but

has a strong dependence on h in rapidly changing environments. The top panel of

Fig. 2.5 shows that the expressions (2.8a) and (2.8b) are in very good agreement with

the simulation results, and suggests that the resonance frequency where the fixation

probability has an extremum does not depend on the dominance coefficient. As detailed

in Appendix B.3, we find that

ωr ∝ N−1 (2.10)

and depends weakly on the dominance coefficient.

Large population

We now consider large populations with size N ≫ σ−1. For ω ≪ N−1 ≪ σ, as discussed

in Appendix B.2, we find that in slowly varying environments,

2NPfix =



























1 +
(4 + h)N2σ cos(θa)ω

9
,θa = 0, π (2.11a)

2Nhσ sin(θa) + 2N cot(θa)ω ,0 < θa < π (2.11b)

2(1 − h)|Nσ sin(θa)|e−|Nσ sin(θa)|(1 − N cot(θa) ln(2h|Nσ sin(θa)|)ω
h

),π < θa < 2π(2.11c)

The above equations show that the fixation probability increases linearly with cycling

frequency if the mutant arises while selection is increasing but decreases otherwise. For

positive s(ta), the magnitude of the slope is independent of h and σ but varies with

these parameters for s(ta) ≤ 0. For large cycling frequencies (ω ≫ N−1, σ), the fixation

probability is given by (2.9) for any s(ta), and approaches the asymptotic neutral behav-

ior from above (below) when ṡ(ta) = ds/dt|t=ta
is positive (negative) with the fixation

probability increasing (decreasing) with increasing h. Thus, as shown in Fig. 2.2, in an,

on average neutral environment, the impact of dominance depends on both s(ta) and

ṡ(ta). Figure 2.5 shows a comparison between our analytical and numerical results when

the mutant appears at θa = 0 (for other values of θa, see Fig. A.3), and we find a good

agreement.
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Fig. 2.3 Fixation probability of a mutant which is deleterious on average for s̄ =
−0.04, σ = 0.06, and θa = π/8 (left panel) and 3π/4 (right panel). The simulation
data are averaged over 107 runs. The other parameters are N = 50, h = 0.1(▽), 0.9(△).
In the left panel, the data for h = 0.1, N = 100 (H) is shown to support the claim that
the resonance frequency scales as N−1. Note that the recessive mutant that is beneficial
when it appears in the population is favored at large cycling frequencies.

Our perturbation expansions in Appendix B.2 and Appendix B.3 are not valid for

intermediate cycling frequencies (N−1 ≪ ω ≪ σ). However, our numerical simulations

suggest that as for small populations, the resonance frequency scales as N−1 here also.

2.3.4 On average deleterious mutant in a finite population

When a mutant is deleterious at all times (s̄ < 0, |s̄| > σ) , its fixation probability is

lower than that of a neutral mutant in both static and time-dependent environments, and

the dominant mutant has a lower chance of fixation than the recessive one. But, when

s̄ < 0 and |s̄| < σ, the mutant can be beneficial for some time in a periodically changing

environment and its fixation probability can exceed the neutral value depending on the

time of appearance. In the left panel of Fig. 2.3, the selection coefficient s(ta) < 0

and therefore the recessive mutant is favored at small cycling frequencies, while in the

right panel of Fig. 2.3, since s(ta) > 0, the dominant mutant has a higher chance of

fixation in slowly changing environments. In either case, at high cycling frequencies, the

fixation probability of a recessive mutant is higher than that for a dominant mutant

since the time-averaged selection coefficient is negative. Thus, when s̄ < 0, the effect

of dominance is different in slowly and rapidly changing environments when s(ta) > 0.

We also note that in Fig. 2.3a, there is a regime where the dominant mutant’s fixation

probability exceeds that of the recessive one; however, the difference is quite small and

a more detailed investigation is needed to evaluate the importance of this effect.
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Fig. 2.4 Stochastic trajectories of allele frequency for an on average neutral mutant,
starting with a single mutant for N = 200, s̄ = 0, σ = 0.1, h = 0.5, θa = π/4 for
ω = 0.005 (top) and 0.1 (bottom). The successful mutant passes through several cycles
of selection before fixing in a rapidly changing environment.
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Fig. 2.5 Effect of a changing environment on the fixation probability of a mutant that is
neutral on average and arises in a small population (N ≪ σ−1, top) and large population
(N ≫ σ−1, bottom). The points show the simulation data obtained by averaging over 107

independent runs. The analytical results obtained using the diffusion theory are shown
by lines; the solid lines show the expression (2.8a) for small cycling frequencies and the
dashed lines represent (2.8b) for large cycling frequencies. Here N = 100, σ = 0.005
(top) and N = 1000, σ = 0.01 (bottom), θa = 0, and h = 0.1(▽), 0.5(◦), 0.9(△). The
value Pfix(ω = 0) subtracted on the y-axis was obtained numerically.
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Fig. 2.6 Main: Average log fitness (2.16) in a periodically changing environment as a
function of scaled mutation rate U = 4Nµ for scaled selection S = 4Nσ = 20, scaled
cycling frequency Ω = 2Nω = 0.1 (dashed lines), 10 (solid lines) and dominance param-
eter h = 0.1 (blue), 0.5 (red). The effect of dominance is apparent only for small cycling
frequency in the weak mutation regime. Inset: Dynamics of population-averaged allele
frequency (2.14) for U = 6 (dashed), 40 (solid). The mutations decrease the phase lag
between the average allele frequency and selection (dotted). Note that 〈x(t)〉 is indepen-
dent of dominance coefficient. In the inset plots, N = 100, σ = 0.01, and ω = 0.05.
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2.4 Average allele frequency and population fitness

We now turn to the strong mutation regime where 2Nµ ≫ 1 and briefly study the

dynamics of the allele frequency in changing environments. For s̄ = 0, the frequency

distribution Φ(x, t) of allele a under changing selection, mutation, and random genetic

drift obeys the following forward Kolmogorov equation [20],

Φ̇(x, t) = − ∂

∂x

[

(

s(t)g(x) +m(x)
)

Φ(x, t)
]

+
1

2N

∂2

∂x2

[

x(1 − x)Φ(x, t)
]

, (2.12)

where the mutation term m(x) = µ(1 − 2x) and, as before, s(t) = σ sin(ωt), g(x) =

x(1 − x)(x + h(1 − 2x)). The above equation is analyzed in Appendix B.4 for small

selection amplitude σ, and at large times, the allele frequency distribution Φ(x, t) is

given by (B.4.5).

To get an insight into how the allele frequency changes in changing environments,

we find the population-averaged allele frequency,

〈x(t)〉 =
∫ 1

0
dxxΦ(x, t) (2.13)

=
1

2
+
S

16

U sin(ωt− φ)

(U + 1)
√
U2 + Ω2

, S ≪ U , (2.14)

where U = 4Nµ, S = 4Nσ,Ω = 2Nω, φ = tan−1
(

Ω
U

)

. The above equation shows that

〈x(t)〉 oscillates around one half with the same cycling frequency as s(t) but a different

phase. As depicted in Fig. 2.6, the phase difference φ decreases with increasing mutation

rate so that the allele frequency changes almost in-phase with the environment for U ≫ Ω

but lags behind by a phase π/2 for U ≪ Ω. The latter behavior for rare mutations is

already illustrated in Fig. 2.4 where the mutant’s allele frequency keeps increasing as

long as the selection is positive and decreases when s(t) becomes negative. In contrast,

for U ≫ Ω, the population keeps up with the environment as mutations occur faster

than the time scale of environmental change.

Equation (2.14) also shows that the allele frequency amplitude remains close to the

time-averaged amplitude when the environment changes rapidly. But it is significantly

different from one half in slowly changing environments and varies nonmonotonically

with the mutation rate with a maximum at the scaled mutation rate Û = Ω2/3. We also

find that although the distribution Φ(x, t) depends on the dominance coefficient (see

Appendix B.4), the average allele frequency (for small σ) is independent of h.
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The above described behavior of allele frequency has implications for the average

fitness of the population. When the mutant allele is present in frequency x at time t, the

population fitness w(x, t) = (1 + s)x2 + 2x(1 − x)(1 + hs) + (1 − x)2 = 1 + σ sin(ωt)f(x)

where f(x) = (1 − 2h)x2 + 2hx (see MODEL section). The population-averaged log

fitness 〈lnw〉 oscillates around a constant which is obtained on averaging over a period

of the oscillation and is given by

4N〈lnw〉 =
4N

T

∫ T

0
dt〈lnw(x, t)〉 (2.15)

=
S2

16

U

1 + U

[

U

2(U2 + Ω2)
+

(1 − 2h)2(1 + U)

(3 + U)(4(1 + U)2 + Ω2)

]

. (2.16)

We thus find that although the selection is zero on average, the population fitness is

nonzero.

Equation (2.16) shows that, for a given mutation rate, the average log fitness de-

creases towards zero with increasing cycling frequency; this behavior is expected as the

time-averaged environment governs the dynamics in a rapidly changing environment.

However, it is a nonmonotonic function of the scaled mutation rate U : for 1 ≪ U ≪ Ω,

the average log fitness is close to zero because the phase difference φ between the allele

frequency and selection is large (see (2.14)). But for high mutation rate (U ≫ Ω), al-

though the phase lag is small, the allele frequency does not deviate substantially from

one half, resulting in low fitness. From (2.16), we find that the average fitness has a

peak at an optimal mutation rate,

U∗ =















(

12

6 − (1 − 2h)2

)1/3

Ω2/3 , Ω ≪ 1 (2.17a)

Ω , Ω ≫ 1 (2.17b)

which increases with the rate of environmental change. Finally, equation (2.16) also

shows that the fitness is a symmetric function of dominance coefficient but the h-

dependence is quite weak (see Fig. 2.6), and is apparent only at small mutation rates

and for fast environmental changes; we thus conclude that dominance does not have an

appreciable effect when recurrent mutations occur.
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2.5 Discussion

In this Chapter, we studied the evolutionary dynamics of a finite, diploid population in a

varying environment for both weak and strong mutations. The fixation probability of a

mutant has been studied in infinitely large populations when selection changes gradually

in both magnitude and direction [10, 12] and in finite populations that are subjected to

abrupt changes in the direction of selection [6, 9, 13, 14]. Here we modeled a situation in

which the mutant allele is beneficial during a part of the seasonal cycle and deleterious in

another, and hence its selection coefficient s(t) varies periodically with time. In contrast

to previous work, here we focused on the impact of dominance on evolutionary dynamics

in changing environments, and obtained simple analytical expressions for the fixation

probability in both infinite and finite populations.

Rate of environmental change and time of appearance: In a slowly changing

environment, the fixation probability of a mutant is expected to depend on the time

it appears in the population. But it is perhaps not obvious if the dependence on the

initial condition remains in fast changing environments as the fixation probability in

an infinitely fast changing environment is given by the corresponding result in a static

environment with the time-averaged selection coefficient s̄. However, as shown in Fig. 2.4,

a mutant must escape the stochastic loss at short times in order to fix in the population,

and therefore, the eventual fate of the rare mutant depends on its time of appearance

at any finite rate of environmental change.

Using branching process and diffusion theory [10, 11], here we have obtained simple

expressions for the fixation probability when the frequency of the environmental change is

smaller or larger than the resonance frequency ωr of the population which is given by the

average growth rate of the population when the time-averaged selection strength s̄ > 0

and inverse population size for s̄ ≤ 0. The fixation probability exhibits an extremum

when the environment changes at a rate equal to the resonance frequency; whether this

extremum is a minimum or a maximum also depends on the time of appearance, ta, of

the mutant.

As an illustration of the above discussion, for arbitrary s̄, consider a beneficial mutant

that arises when its selection strength is decreasing with time. In a slowly changing

environment, as ṡ(ta) < 0, its fixation probability is expected to be smaller than that in

the static environment; for the same reason, it approaches the corresponding result in the

time-averaged environment from below thus resulting in a minimum at the resonance

frequency. It then follows that, in a periodically varying environment with zero or
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negative time-averaged selection coefficient, if the environment changes at a rate faster

than the resonance frequency, a mutant that is beneficial in a static environment will

have a fixation probability lower than (2N)−1. Similarly, a deleterious mutant that arises

while selection strength is increasing can have enhanced chance of fixation compared to

(2N)−1 in changing environments that are neutral or beneficial on average.

The above discussion assumes that the mutations are rare. When recurrent mutations

occur, we find that, in the on average neutral environment, the population can gain

fitness which is, however, appreciable when the mutation rate is as high as the rate of

environmental change.

Role of dominance in slowly changing environments: In a static environment,

a dominant beneficial mutant enjoys a higher chance of fixation than a recessive one

because the (marginal) fitness of the mutant allele (relative to the wild type allele) is

higher in the former case [15]. This behavior is reversed for deleterious mutants where

the fixation of recessives is favored [16]. In a slowly changing environment (ω ≪ ωr), if

the mutant starts out as a beneficial mutant (that is, its selection coefficient at time of

appearance s(ta) > 0), Haldane’s sieve operates. Similarly, if the mutant is deleterious

to begin with, its chances of fixation are reduced if it is dominant. This result is attested

by Figs. 2.1 and A.2 for s̄ > 0, Fig. 2.2 for s̄ = 0 and Fig. 2.3 for s̄ < 0.

Equations (2.6a) and (2.11b) for the fixation probability of a mutant in an environ-

ment that is, respectively, beneficial and neutral on average suggest that the change in

fixation probability due to a slow change in the environment is simply equal to the change

in the mutant’s initial fitness relative to its initial fitness, that is, ṡ(ta)/s(ta) which is

independent of the dominance coefficient. This can be argued as follows: when the selec-

tion coefficient changes very slowly (ω → 0), it is reasonable to assume that the fixation

probability has the same functional form as that in the static environment. Then, for

an initially beneficial mutant, Pfix ≈ hs(ta + t̂) ≈ hs(ta)+ht̂ṡ(ta) where t̂ ∝ (hs(ta))−1 is

the time at which the mutant escapes stochastic loss, as estimated from a deterministic

argument.

Role of dominance in fast changing environments: As already mentioned above,

an initially beneficial mutant arising when the selection is declining can behave effectively

as a deleterious mutant in a rapidly changing environment that is neutral or deleterious

on average. This has the immediate consequence that the dominant mutant is less likely

to fix than the recessive one, as supported by Fig. 2.2 for s̄ = 0 and Fig. 2.3 for s̄ < 0.

This result can be relevant to understanding adaptation in environments that change

fast and for a short period of time. In Sec. A.4, we construct such examples and find
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that the fixation probability of an initially beneficial mutant in transiently changing

environments exhibits the same dependence on dominance coefficient as discussed above

for periodically changing environments.

Equations (2.6c) and (2.9) show that in fast changing environments, the fixation

probability is proportional to hs̄ and (2N)−1, respectively, which are the results for

the fixation probability of a single mutant in an infinitely fast changing environment.

If genetic drift is ignored, the dynamics of the mutant frequency are described by ẋ ≈
hσ sin(ωt)x, so that, at large times, the average number of mutants, n = 1+hσ cos(θa)/ω

for large ω, and therefore, the fixation probability in rapidly changing environments can

be interpreted as simply that of n mutants in infinitely fast changing environments (also,

see Sec. A.4).

Limitations and open questions: Our analytical results that provide an understand-

ing of conditions under which the effect of dominance on the fixation probability is

different in static and changing environments, are applicable to cycling frequencies that

are much smaller or larger than the resonance frequency. As our analysis is not valid for

intermediate cycling frequencies, we can not rule out if such differences occur at cycling

frequencies around resonance frequency (see, Fig. 2.1 for θa = 7π/8 and Fig. 2.3a).

Here we have mainly focused on the fixation probability and did not discuss how

substitution rate and adaptation rate behave in changing environments. However, our

preliminary simulations show that the substitution rate varies nonmonotonically with cy-

cling frequency (also see [23]). A detailed understanding of these quantities requires the

knowledge of fixation time which shows interesting dependence on dominance coefficient

in static environments [24]; extending such results to temporally varying environments

is desirable and will be discussed elsewhere.

When adaptation occurs due to standing genetic variation, the fixation probability

of a beneficial mutant is known to be independent of dominance in static environments

[25]; here, we have studied the fixation probability of a de novo mutation and a detailed

understanding of how standing variation affects the results obtained here is a problem

for the future.

Many empirical and theoretical studies show faster evolution of X-linked genes than

autosomal ones, and it has been argued that the fixations of recessive beneficial alleles

can cause the faster X effect [26]. This hypothesis is based on the evolution in a static

environment where the ratio of the substitution rate of the X chromosomal genes to that

of autosomal genes is greater than one for recessive beneficial alleles if the mutations are

unbiased or male-biased. On the other hand, if the allele is deleterious, the ratio is less
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than one for recessive alleles. The empirical evidence of the faster X effect strengthens

the hypothesis of the fixations of recessive beneficial alleles. However, our study shows

that an initially beneficial allele can behave as a deleterious allele when the environment

changes and can have a lower fixation probability than a neutral mutant depending upon

its time of appearance and rate of environmental change. Therefore, slower evolution

of X-linked gene is expected when the recessive allele behaves as deleterious in chang-

ing environment, which suggests that the faster X effect may not be seen in changing

environment even though the allele appears as a recessive beneficial allele. However, if

the faster X effect is a common phenomenon irrespective of the environmental change,

we expect the cause of faster X evolution may be something else than due to the reces-

sive beneficial alleles. Our work, therefore, suggests to consider the effect of changing

environments on the adaptation rate of X-chromosome.
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Chapter 3

Polygenic adaptation in changing

environments

3.1 Introduction

In the previous Chapter, we investigated the evolution of a monogenic trait in a finite

population due to a continually changing environment. Although many phenotypic traits

are determined by a large number of genetic variants, how a polygenic trait adapts in

response to the changes in the environment is still poorly understood. In the present

Chapter, we study the adaptation dynamics of a polygenic trait that is determined by

a finite number of genetic loci in an infinitely large population which is evolving under

stabilizing selection and recurrent mutations.

Understanding phenotypic variation in terms of the underlying genetic variation is

one of the central problems in biological evolution [1]. During the last decade, genome-

wide association studies (GWAS) [2] have provided valuable insights into the genetic

architecture of phenotypic traits, and the information about the number of genetic vari-

ants that affect a phenotype, the size of their effects and their relative frequency is be-

coming increasingly available [3]. In some cases such as industrial melanism in peppered

moth [4], a phenotypic trait is determined by one or few genes. But many phenotypic

traits ranging from crop yield and human height to complex diseases are polygenic as

they are influenced by a large number of genetic variants. It has been suggested that

such quantitative traits may even be omnigenic, determined by all the genes due to the

interconnectedness of gene networks [5, 6]. The effect sizes of these genetic variants may

be large or small, and the proportions in which they occur in a trait is governed by

evolutionary forces such as selection [3].
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For several decades, the infinitesimal model [7, 8] has served as workhorse for de-

scribing polygenic adaptation [9]. In this model, an infinite number of genetic loci each

with an infinitesimal effect underlie a phenotypic trait. More precisely, the effect size is

assumed to decrease with increasing number of loci which results in a genetic variance

that remains constant in time in accordance with some phenotypic data [10] and renders

the problem analytically tractable. However, the effect sizes can be finite, and genetic

variance can change, at least, over some time scales.

Recently a model of polygenic adaptation was introduced [11] in which the phenotypic

trait evolves under the action of stabilizing selection and mutations. A large but finite

number of loci contribute to the trait, and the effect sizes which may be large or small

are different at different loci. It is important to note that in [11], an effect size is large

or small relative to a scaled mutation rate (defined later) and, unlike in the infinitesimal

model, does not depend on the number of loci under selection.

In this Chapter, we study the adaptation dynamics within the framework of the

model in [11] when the phenotypic optimum moves due to a change in the environment.

The scenario in which the phenotypic optimum shifts suddenly because of, say, a nat-

ural disaster was recently studied and an analytical method was developed to take the

changes in the genetic variance into account [12, 13]; here we consider the case when

the phenotypic optimum moves gradually as a result of, for example, climate or societal

change [14]. Adaptation in the face of moving phenotypic optimum has been previously

investigated within infinitesimal model ignoring mutations and changes in the genetic

variance [15, 16]. Here we find that the adaptation dynamics are strongly affected by

mutations and the number of loci under selection when the effect sizes are small, and

mediated by large transient changes in the genetic variance when the effect sizes are

large.

3.2 Models

We study the evolution of a single quantitative trait in an infinitely large population of

diploids. The phenotypic trait value z is determined by ℓ diallelic genetic loci, each of

which contributes to the phenotype in an additive fashion. If the ± allele at the ith locus

has an effect ±γi/2 on the trait, the mean phenotypic trait averaged over the population

can be written as

c1 = 2
ℓ
∑

i=1

(

γi

2

)

pi +
(−γi

2

)

qi , (3.1)
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where pi and qi = 1 − pi, respectively, denote the frequency of + and − allele at the ith

locus in the population. In the following, the effect sizes are chosen independently from

an exponential distribution with mean γ̄, as suggested by quantitative-genetic studies

[17].

We consider the situation when the allele frequencies and phenotypic properties

evolve due to stabilizing selection and recurrent mutations. The fitness of a pheno-

typic trait under stabilizing selection is maximum at an optimum phenotypic value zf

which, in general, may vary with time (see below); away from the optimum, the fitness

decreases quadratically, w(z) = 1 − (s/2)(z − zf)2 where 0 < s < 1 is the strength of

selection. Mutations generate variation and here, the + and − alleles mutate to each

other at rate µ. We also assume that recombination occurs faster than selection and

therefore the inter-loci correlations can be ignored (linkage equilibrium) [18]. Then it

can be shown that the allele frequency pi evolves according to [11]

ṗi = −sγi(c1 − zf )piqi − sγ2
i

2
piqi(qi − pi) + µ(qi − pi) , (3.2)

where dot denotes the derivative with respect to time. In the above equation, the first

term on the right-hand side (RHS) that depends on the frequency of all the loci acts to

decrease the deviation between the mean trait and the phenotypic optimum, the second

term tends to fix one of the alleles thus depleting the genetic variation while the third

term compensates for the loss in diversity through mutations.

In the stationary state where ṗi = 0, if the deviation between the mean trait and

phenotypic optimum is zero, the stable solutions for the equilibrium allele frequencies

are given by [11]

p∗
i =











1
2

, γi < γ̂

1
2

± 1
2

√

1 − γ̂2

γ2
i

, γi > γ̂ ,
(3.3)

where γ̂ =
√

8µ/s. Thus when the effect size is smaller than the threshold effect γ̂, both

the alleles are present in the population whereas for larger effect sizes, one of the alleles

is close to fixation. The steady state deviation in the mean trait from its optimum need

not be zero and can be estimated by approximating the effect size of all the loci by the

average effect γ̄. From (3.2) in the steady state, we then find the mean equilibrium trait

to be c∗
1/zf ≈ [1 + 4µ(sℓγ̄2)−1]

−1
.

In this Chapter, we are interested in the dynamics of the mean trait when the phe-

notypic optimum moves to a new value. From (3.2) for the allele frequency, it can be
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shown that the time evolution equation for the mean trait depends on the variance and

skewness of the phenotypic trait and, in general, the dynamics of a trait cumulant de-

pend on two higher cumulants [19]. This cumulant hierarchy makes it difficult to obtain

analytical results for the dynamics. However, recent work [20, 12] has established that

the bulk of the adaptation process is driven by the deviation between the mean trait

and the phenotypic optimum. Thus, at short times, it is a good approximation to retain

only the first term on the RHS of (3.2); this yields the directional selection model in

which [12]

ṗi ≈ −sγi(c1 − zf)piqi , i = 1, ..., ℓ . (3.4)

The above equation shows that the mean trait evolves as

ċ1 = −sc2(c1 − zf) , (3.5)

where the genetic variance c2 = 2
∑ℓ

i=1 γ
2
i piqi. If the genetic variance in (3.5) remains

constant in time, we arrive at the Lande’s equation for the evolution of the mean trait [21]

which is obviously solvable. But even for time-dependent c2 and other trait cumulants,

the directional selection model is analytically tractable as briefly described below [12].

We first note that for any two loci k and j,

dpj

γjpjqj

=
dpk

γkpkqk

= −s(c1 − zf )dt . (3.6)

From the first equality, we find that the allele frequency at the jth locus can be expressed

in terms of its initial frequency and that at the kth locus,

pj(t) = 1 − 1

1 +
pj(0)

qj(0)

(

pk(t)qk(0)
pk(0)qk(t)

)γj/γk
. (3.7)

Using this in (3.1), one can write the mean phenotypic trait as

c1 =
ℓ
∑

i=1

γi −
ℓ
∑

i=1

2γi

1 + pi(0)
qi(0)

eβγi/γ̄
, (3.8)

where

β(t) =
γ̄

γk

ln

(

pk(t)qk(0)

pk(0)qk(t)

)

(3.9)
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is locus-independent and, due to (3.4), evolves as

β̇ = −sγ̄(c1 − zf ) . (3.10)

Equations (3.8) and (3.10) together yield a closed equation for the mean trait.

3.3 Results

We start with a population equilibrated to the phenotypic optimum at z0. The pheno-

typic optimum moves linearly until a time τ when it reaches zτ > z0 where it stays for

later times. Thus the new phenotypic optimum zf(t) = z0 + vt, t < τ where the velocity

v = (zτ − z0)/τ . Here, |z0|, |zτ | < ℓγ̄ as the mean trait is bounded for finite ℓ. Our goal

is to understand how the population adapts while the environment is changing. In the

following, all the numerical data are obtained for a single realisation of effects as the

quantities of interest are expected to be self-averaging [12].

3.3.1 When most effects are small (γ̄ ≪ γ̂)

Figure 3.1 shows that for linearly moving phenotypic optimum, the mean trait also

increases linearly with time at a speed that decreases as the number of loci determining

a trait decrease. However, the genetic variance c2 (shown in the inset) remains close

to its stationary value c∗
2 ≈ ℓγ̄2 [11] until time τ and then decreases to the stationary

genetic variance corresponding to the equilibrium mean trait c∗
1 [12]. For the parameters

in Fig. 3.1, we expect c∗
1/zτ to be 0.24, 0.39, 0.56 (see the discussion following (3.3))

which is close to c1(τ)/zτ = 0.33, 0.47, 0.62 for ℓ = 50, 100 and 200, respectively. For

this reason, the mean trait does not change substantially when the phenotypic optimum

stops moving.

For t ≪ τ where the genetic variance is approximately constant, (3.5) for the evolu-

tion of mean trait simplifies to ċ1(t) ≈ sc∗
2(zf(t) − c1(t)) which can be readily integrated

to yield

c1(t) = z0 + vt− v

sc∗
2

(1 − e−sc∗

2t) , t < τ , (3.11)

and shows that the mean trait always lags behind the moving phenotypic optimum. At

short times (≪ (sc∗
2)

−1), the mean trait increases quadratically. But at longer times,

c1 increases linearly with speed v and the lag zf(t) − c1(v, t) reaches a constant value

v/(sc∗
2). This result has also been obtained in infinitesimal model [15, 16] in which
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Fig. 3.1 Evolution of mean trait (main) in the full model when most effects are small
(γ̄ = 0.05 ≪ γ̂ ≈ 0.89) and the phenotypic optimum moves with a constant speed
v = 10−4 for various ℓ. Here s = 10−2, µ = 10−3, z0 = 0 and zτ = 0.8ℓγ̄. The phenotypic
optimum zf (t)/zτ is also shown for comparison. The inset shows the evolution of genetic
variance for ℓ = 200.

an infinite number of loci, each with an infinitesimal effect (∼ ℓ−1/2), contribute to a

phenotypic trait and the mean trait keeps increasing in an unbounded fashion; here, as

a finite number of loci contribute to the trait, the linear behaviour of the mean trait sets

in at a time ∼ ℓ−1 and continues until the time τ .

Figure 3.2 shows that for (sc∗
2)

−1 ≪ t ≪ τ , the lag is constant in the directional

selection model and matches the prediction (3.11) but it keeps increasing linearly with

time in the full model. To understand this behavior, we note that at short times, by

virtue of (3.3), the allele frequencies are close to one half, and therefore, the last two

terms on the RHS of (3.2) can be ignored [12]. Indeed, as Fig. 3.2 shows, the full model

and the directional model are in good agreement at short times. But at longer times,

the allele frequencies are not in equilibrium and for zτ > z0, as is assumed here, the

frequency of the + allele increases towards one. Moreover, when the effects are small,

the mutation rate is large (µ > sγ2
i /8). These considerations suggest to modify the

directional selection model (3.4) by adding the mutation term to it when the phenotypic

optimum is moving. The mean trait then evolves according to

ċ1(t) ≈ sc∗
2(zf (t) − c1(t)) − 2µc1(t) , (3.12)
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Fig. 3.2 Lag in mean when most effects are small (main). While the lag is constant in
the directional selection model, it increases in the full model. This is because the mean
trait moves slower than the phenotypic optimum (inset). Here ℓ = 200 and rest of the
parameters are the same as in Fig. 3.1.

which shows that at large times, the mean trait increases linearly as c1(t) = ut +

λ , (sc∗
2 + 2µ)−1 < t < τ , where

u =
v

1 + 2µ(sc∗
2)

−1
=

v

1 + 1
ℓ

(

γ̂
2γ̄

)2 (3.13)

λ =
z0 − u(sc∗

2)
−1

1 + 2µ(sc∗
2)

−1
. (3.14)

The inset of Fig. 3.2 shows that the rate of change of mean trait is in agreement with

the speed u.

Equation (3.13) above makes two important points. First, the mean trait in the

full model (3.2) increases slower than the phenotypic optimum with increasing mutation

rates. At short times where the allele frequencies are close to their equilibrium value

given by one half, mutations occurring at equal rate between the + and − allele do not

affect the dynamics. But at larger times, as the + alleles become more abundant than

the − alleles owing to selection, the net effect of the mutations is deleterious leading to

an increased lag in the mean trait. Second, the speed of the mean trait increases with

the number of loci under selection. When γ̂, γ̄ are of order one (as is the case here), the

genetic variance is much larger than the mutations; this holds in the infinitesimal model



46 Polygenic adaptation in changing environments

FULL

DIR SEL

OPTIMUM

100101102103104105

10-3

10-2

10-1

100

Time t

V
a
r
ia
n
c
e
c
2
(t
)

100 101 102 103 104 105

10-4

10-2

100

102

Time t

M
e
a
n
c
1
(t
)

Fig. 3.3 Evolution of mean (main) and genetic variance (inset) when most effects are
large (γ̄ = 0.1 ≫ γ̂ ≈ 0.0028) and the phenotypic optimum moves with a constant speed
v = 10−4. Here ℓ = 200, s = 10−2, µ = 10−8, z0 = 0 and zτ = 18.

also where the mean effect decreases with ℓ keeping µℓ finite. In either case, mutation

is weaker than selection and may be neglected when ℓ → ∞. But for a finite number

of loci, mutations also enter the picture and, as argued above, decrease the speed of the

mean trait.

3.3.2 When most effects are large (γ̄ ≫ γ̂)

Since the mutations are unimportant when effect sizes are large, the directional selection

model (3.4) describes the full model well (see Figs. 3.3 and 3.4). The inset of Fig. 3.3

shows that the genetic variance remains close to its equilibrium value c∗
2 = ℓγ̂2 [11] for

some time, rises quickly to c̃2 ∼ 100c∗
2 where it stays before finally dropping to c∗

2. As c∗
2

is very small for the parameters in Fig. 3.3, due to (3.5), the mean trait remains close to

z0 initially and then increases before saturating to c∗
1 ≈ zτ . Since the genetic variance

changes during the time intervals of interest, (3.5) for the mean trait evolution does not

close, and therefore, we now work with (3.8) and (3.10).

As the equilibria are bistable for large effects (see (3.3)), a fraction f of the initial

population carries + allele which is related to the initial phenotypic mean through z0 ≈
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Fig. 3.4 Lag in mean (main) and allele frequency dynamics (inset) when most effects are
large. All the parameters are the same as in Fig. 3.3.

(2f − 1)ℓγ̄. We may therefore write the mean trait (3.8) as

c1 =
ℓ
∑

i=1





γi − 2γif

1 +
p∗

i,+

q∗

i,+
eβγi/γ̄

− 2γi(1 − f)

1 +
p∗

i,−

q∗

i,−

eβγi/γ̄





 , (3.15)

which, for large ℓ, simplifies to

c1(t)

ℓγ̄
≈ 1 −

(

1 +
z0

ℓγ̄

)

I+(β) −
(

1 − z0

ℓγ̄

)

I−(β) , (3.16)

where

I±(β) =
∫ ∞

2/α
dx

xe−x

1 + (αx)±2eβx
(3.17)

and α = 2γ̄/γ̂ ≫ 1. Equation (3.16) generalises equation 24 of [12] where the initial

phenotypic optimum is taken to be zero.

We first note that β̇, β ≥ 0 - the first assertion follows from the intuitive expectation

that the lag must always be nonnegative and (3.10), and the second one on using β(0) = 0

(see (3.9)). Then it is easy to see that for large α, the integral I+ → 0, I− → 1. Neglecting

I+ in (3.16) and writing I− =
∫∞

2/α dx xe
−x − J− ≈ 1 − J−, we find that the parameter

β evolves according to

β̇ ≈ sγ̄(ℓγ̄ − z0) [ρ(t) − J−(β)] , (3.18)
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where

J− =
∫ ∞

2/α
dx

xe−x

1 + (αx)2e−βx
(3.19)

and ρ(t) = vt/(ℓγ̄ − z0). For β ≪ 1, the integral J− ≈ 0 as it is heavily suppressed by

the factor α2 in the denominator of the integrand [12]. For β ≫ 1, the integral J− may

be estimated by approximating the factor (1 + (αx)2e−βx)−1 in the integrand of J− by

a Heaviside theta function Θ(x− x−) where x−(β) is a solution of α2x2
−e

−βx− = 1. We

thus obtain J− ≈ (1 + x−)e−x− , β ≫ 1 [12].

We are now in a position to understand the behaviour of the mean trait given by

c1(t) − z0 = (ℓγ̄ − z0)J−(β) = vt− β̇

sγ̄
, (3.20)

where we have used (3.18) to express J− in terms of β̇. At short times (t < τ0), as the

mean stays close to its initial value z0, the integral J− ≈ 0 and therefore β(t) = (t/τ0)2

where τ0 =
√

2/(svγ̄). After time τ0, there is a large increase in the genetic variance

and the mean trait starts evolving. Note that if the genetic variance was held constant

at its initial value, as in the infinitesimal model, the mean trait will stay at z0 and the

population can not adapt.

When we consider the sudden shift with the same phenotypic optimum value as the

maximum value zτ in linearly moving optimum, the steady-state allele frequencies are

same in both cases since the phenotypic distribution stabilizes to the same optimum.

However, the dynamics of allele frequencies differ in these two models since the selection

pressure changes differently with time. The initial selection pressure is high in a sudden

shift in optimum, and therefore, the dynamics are faster in this case as compared to

the slowly moving optimum. When the trait consists of mostly large effects loci, the

adaptation mainly occurs through the sweeps, but many polymorphic loci contribute

when the trait consists of mostly small effects loci irrespective of the sudden or moving

optimum models. A criterion for short-time sweeps in the sudden shift model has been

obtained by Jain and Stephen (2017) [12], whereas, loci with effect sizes larger than the

average effect of loci sweep faster to reduce the lag between the mean and the optimum

in moving optimum model. In the time interval (sc̃2)
−1 < t < τ where the mean trait

increases linearly, the genetic variance c̃2 ≫ c∗
2 remains roughly constant. To estimate

c̃2, we note from the inset of Fig. 3.4 that the allele frequencies at loci with effect size

larger than γ̄ sweep to fixation much earlier than at loci with smaller effect sizes. For the

set of effects used in Fig. 3.4, the allele frequencies at 3 loci with effect size ≈ 0.4 swept
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to fixation while nearly 30 selective sweeps occurred when the optimum was shifted

suddenly to zτ (data not shown). Large changes in allele frequency at many loci in the

latter case are consistent with the fact that the population adapts exponentially fast

over a short time scale (that decreases with ℓ) when the optimum shifts suddenly [12];

here the mean deviation changes slowly over a time of order ℓ and besides a few sweeps,

many small frequency shifts (∼ 0.1) also occur. While the selective sweep is in progress

at loci with very large effects, the genetic variance rises to c̃2 ∼ ℓ
∫∞

γ̄ dγγ2p(γ) ∼ ℓγ̄2.

Then replacing c∗
2 by c̃2 in (3.13) and using that γ̂ ≪ γ̄ when effects are large, it follows

that, as in the infinitesimal model, the mean trait increases with speed v and lag v/(sc̃2).

We now perform a more careful analysis of the lag in the mean. The above discussion

shows that the lag β̇/sγ̄ (second equality in (3.20)) is small for ℓ ≫ 1. Therefore, to a

first approximation, we may write ρ(t) ≈ J−(β) in (3.18) which yields

x−(t) = −1 −W−1

(

−ρ(t)

e

)

, (3.21)

whereW−1(x) is the lower branch of the Lambert W function [22]. Using β = (2/x−) ln(αx−),

we find that

β̇ =
2

t

W−1(−ρ/e)
[1 +W−1(−ρ/e)]3

ln

(

1 +W−1(−ρ/e)
−e/α

)

. (3.22)

For t ≪ τ where ρ/e ≪ 1, the function W−1(−ρ/e) ≈ ln(ρ/e) ∼ ln t [22] so that

β̇ ∼ t−1. Thus when most effects are large, the mean trait moves with speed v but

the lag between the mean trait and phenotypic optimum is not a constant. Although

the lag ∼ (sγ̄t)−1 decays rapidly with time, it is larger than that obtained within the

infinitesimal model for a polymorphic population since the above discussion is valid

for t < τ , see Fig. 3.4. Furthermore, (3.5) and (3.10) show that the genetic variance

c2(t) = (svγ̄− β̈)/(s2γ̄z0 + sβ̇) which on using the above results for β yields c2(t) ∼ vγ̄t.

Thus, on time scales of order τ , we obtain the genetic variance to be c̃2 in agreement

with the argument above. Since the genetic variance increases from c∗
2 to c̃2, for fixed

γ̂, γ̄, a large change in variance occurs with increasing ℓ. But the change in variance

is smaller if the mean effect and the threshold effect are not substantially different (see

Fig. 3.5).
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Fig. 3.5 Evolution of mean (main), lag in mean (top left inset) and genetic variance
(bottom right inset) when equal number of effects are small and large (γ̄ = 0.05, γ̂ ≈
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minimum lag v(sℓγ̄2)−1.

3.4 Summary and open questions

While stabilizing selection has the tendency to pull the population towards the pheno-

typic optimum, recurrent mutations create variants that push the population away from

it. The behaviour of the mean trait in the large-effects case where selection is the dom-

inant process resembles that in the infinitesimal model as the mean trait moves with

the speed of the phenotypic optimum, while in the small-effects case where mutation

rates are large, the mean trait moves slower than the phenotypic optimum. However, in

the latter case, as the number of genetic loci affecting a trait increases, selection domi-

nates over mutations and the speed of the mean trait approaches that of the phenotypic

optimum (also, see the discussion after (3.14)).

In the large-effects case as the initial variance is small, the mean trait stays close

to its initial value resulting in large deviation from the moving phenotypic optimum.

But this causes the allele frequencies to change in a manner that increases the genetic

variance thus paving the way for adaptation. On the other hand, when most effects

are small, there is sufficient initial genetic variance for adaptation to proceed keeping

genetic variance constant.
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Equation (3.13) gives the formula of the speed of the mean trait and how the speed

depends upon various genetic parameters. We believe that if experiments can be con-

ducted to observe the lag between the mean trait and the phenotypic optimum, one can

get an idea of the underlying genetics of the trait using our results.

In the last section, we studied two limiting cases of the genetic architecture, viz.,

when γ̄/γ̂ is much smaller or larger than unity. Figure 3.5 shows that when both small

and large effect sizes constitute a phenotypic trait, the behaviour of the mean trait

is closer to the mostly large-effects case, possibly because the contribution of the small

effect sizes to the mean trait increases slower than that of the large-effects loci. Thus, we

conclude that, in general, the lag between mean trait and phenotypic optimum exceeds

that predicted by the infinitesimal model for a polymorphic population [15, 16].

Although the study presented here goes beyond the standard quantitative-genetic

theory [15, 16] by accounting for mutations and temporal changes in genetic variance,

this work also has some limitations - we have neglected the effect of epistasis in the

genotype-phenotype map, pleiotropic effects of other phenotypic traits and, perhaps most

importantly, the finiteness of the population size. The effect of stochastic fluctuations on

the speed of adaptation and extinction risk has been addressed in recent work [23, 24]

when the genetic variance remains constant. Extending the results presented here to

finite populations is desirable and we plan to address this in a future work.
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Chapter 4

Evolutionary dynamics and

eigenspectrum of confluent Heun

equation

4.1 Introduction

In the last two Chapters, we studied the dynamics of adaptation of a trait in changing

environments. Since the stochastic dynamics, even in a single sudden change in envi-

ronment, are not well-studied, we focus on understanding the evolutionary process of a

monogenic trait in a finite population under constant selection in the present Chapter.

Biological evolution has shaped the genetic diversity that we see today on earth

[1, 2]. The basic processes that drive evolution include selection, mutation and random

genetic drift. While selection decreases the genetic diversity, random mutations increase

it. Besides these deterministic processes, stochasticity arising, for example, due to finite

carrying capacity plays an important role in determining the evolutionary fate of a

population. With growing interest in analyzing the time series data obtained from

experiments or field studies [3, 4], and addressing fundamental questions about evolution

in changing environments [5], it is important to understand the evolutionary dynamics

of a population under the joint action of mutation, selection and genetic drift.

In the absence of selection, the dynamics are completely understood [6], as the Fokker-

Planck equation for the distribution of allele frequency obeys the Gauss hypergeometric

equation which has the nice property that its Frobenius series expansions lead to two-

term recurrence relations for the expansion coefficients and for which the connection
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formulae that connect its two local solutions are known [7]. But even in the simplest

setting where only a single locus in a genome is under selection, the complete evolutionary

dynamics are not explicitly known.

In this Chapter, we study the allele frequency distribution in a finite population in

which a single, diallelic locus is under time-independent selection and mutations between

the two alleles occur at equal rates. We find that the eigenfunctions of the Fokker-Planck

equation for the frequency distribution obey the confluent Heun equation [8–10]. This

equation has appeared in diverse physical contexts to describe the eigenspectrum of hy-

drogen molecule ion [11] and quantum Rabi model [12], quasi-normal modes of black

holes [13, 14], relaxation dynamics of a polymer [15], etc. Heun equation and its con-

fluent forms are an area of active interest in mathematics community also as the Heun

functions generalize the well studied hypergeometric functions. The progress in under-

standing Heun functions has, however, been slow as Frobenius series or other orthogonal

polynomial expansions of this class of equations lead to three-term recurrence relations

for the expansion coefficients, and the connection formulae for the local solutions are

not explicitly known [16].

For these reasons, here we study the eigenspectrum of the confluent Heun operator

of interest, mainly, numerically. As the stationary state corresponding to the zero eigen-

value is exactly known [6], we will focus on the excited states and study them using an

orthogonal polynomial expansion of the eigenfunctions. Such an expansion has previ-

ously been carried out in [17]; however, these authors obtained a five-term recurrence

relation for the expansion coefficients and did not provide any insights into the solution.

Here, we obtain a three-term recurrence equation and find that for strong selection,

there is a dynamic transition as the relaxation time - which is inversely proportional

to the eigenvalue for the first excited state - initially decreases with mutation rate and

then becomes a constant at a finite mutation rate. We also show that the expansion

coefficients have a scaling form which allows us to estimate the number of terms that

contribute significantly to the orthogonal series for the eigenfunctions.

4.2 Model

We consider a haploid population of N individuals that evolves in time according to the

standard Moran process [18]. In generation t, an individual is chosen to give birth with

a probability equal to its fitness relative to that of the population while any individual

(including the parent) can die with an equal probability. Thus, if the wild type individual
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has a fitness 1 and the mutant’s fitness is 1+s, the mutant produces a copy of itself with

a probability (1 + s)i/w̄ when i mutants are present in the population at time t, where

w̄(t) = (1 + s)i+ (N − i) is the average fitness of the population; similarly, the wild type

individual replicates with a probability (N − i)/w̄. After selection and reproduction, an

offspring mutates to the other type with a probability u. Thus, the population evolves

under the joint action of selection, mutation and random genetic drift.

We are interested in understanding the dynamics of the probability distribution of the

mutant allele frequency, p = i/N in the scaling limit of weak selection, weak mutation

(s, u → 0) and large population size (N → ∞) with finite Ns,Nu. Using the mean and

the variance of the change in the mutant frequency in the above scaling limits, one can

show that the frequency distribution ψ(p, τ) obeys the following forward Fokker-Planck

equation [6, 19],

∂ψ

∂τ
= −∂J

∂p
= − ∂

∂p

[

σpqψ + µ(q − p)ψ − ∂

∂p
(pqψ)

]

, (4.1)

where q = 1 − p is the wild type frequency, J(p, τ) is the probability current, and τ =

t/N, µ = Nu, σ = Ns are the scaled time, mutation rate and selection rate, respectively.

Below we will study the dynamics of the allele frequency distribution subject to the

reflecting boundary conditions,

J(0, τ) = J(1, τ) = 0, (4.2)

at all times.

Some comments are in order: in the following, we will assume that s ≥ 0 since for

s < 0, equation (4.1) is obeyed by the allele frequency q. While the Moran process

described above assumes overlapping generations, the Wright-Fisher process for non-

overlapping generation also obeys (4.1) when N is replaced by 2N . Instead of the forward

equation (4.1), one may study the corresponding backward equation [17]; however, the

eigenspectrum of both equations is same [19]. For these reasons, it is sufficient to focus

on the above forward equation (4.1).

We first write ψ(p, τ) =
∑∞

ℓ=0 Aℓe
−λℓτφℓ(p) where the coefficient Aℓ is determined by

the initial condition ψ(p, 0). From (4.1), we find that the time-independent eigenfunction

φℓ(p) obeys the following eigenvalue equation,

− (σpqφℓ + µ(q − p)φℓ)
′ + (pqφℓ)

′′ = −λℓφℓ, (4.3)
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where a prime denotes a derivative with respect to p. As the differential operator in

(4.3) is of Sturm-Liouville form [20], we are guaranteed to have real eigenvalues and a

complete set of orthonormal eigenfunctions for which

∫ 1

0
dpρ(p)φℓ(p)φℓ′(p) ∝ δℓ,ℓ′, (4.4)

where the weight function, ρ(p) ∝ φ−1
0 (see below).

In equilibrium where the probability current J vanishes for all p, the probability

distribution is given by [21, 6]

φ0(p) ∝ (pq)µ−1eσp, (4.5)

where the proportionality constant determined by (4.4) reduces to the normalization

condition
∫ 1

0 dpφ0(p) = 1. For σ = 0, the above equilibrium distribution is U-shaped for

µ < 1 and bell-shaped for µ > 1; however, for large σ, the stationary distribution φ0(p)

for the favored allele peaks close to p = 1.

4.3 Confluent Heun equation for the eigenfunctions

We will now focus on (4.3) which can be rewritten in the standard form as

φ′′
ℓ (p) +

(

2 − µ

p− 1
+

2 − µ

p
− σ

)

φ′
ℓ(p) +

(

νℓ

p
+

−2σ − νℓ

p− 1

)

φℓ(p) = 0, (4.6)

where νℓ = 2µ− σ − 2 + λℓ. Equation (4.6) is a (singly) confluent Heun equation which

has regular singular points at p = 0, 1 and an irregular singularity of rank 1 at infinite

p [8, 22, 10]. The following special cases of (4.6) are known [6]: for σ = 0 (no selection),

(4.6) reduces to the Gauss hypergeometric equation which has regular singular points

at zero, one and infinity, and for σ = µ = 0 (only genetic drift), the eigenfunction φℓ

obeys the Gegenbauer equation. For nonzero selection but zero mutation rate, Vℓ(z) =

e−σp/2φℓ(p) with p = (1−z)/2 obeys the oblate spheroidal equation [23]. However, except

for the stationary state (4.5) corresponding to eigenvalue zero, neither the eigenvalue

spectrum nor the eigenfunctions are known for the above confluent Heun differential

operator.

The general solution of (4.6) can be expanded as a Frobenius series about p = 0

[24] which, on imposing the reflecting boundary condition (4.2) at p = 0 gives φℓ(p) =
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pµ−1Fℓ(p) for |p| < 1, µ > 0 where Fℓ is an analytic function (see Appendix C.1). Due

to the self-adjoint nature of the Heun operator, we can expand Fℓ as a linear combi-

nation of suitable orthogonal functions [20]; a power series expansion of Fℓ is given in

Appendix C.1.

An orthogonal expansion of (4.6) with boundary conditions (4.2) has been carried

out in [17] by writing the distribution function, φℓ(p) =
∑

n â
(ℓ)
n Ĝn(p) where Ĝn =

(pq)µ−1eσp/2P (µ−1,µ−1)
n (1 − 2p) and P (α,β)

n (x) denotes Jacobi polynomial of order n that

obey the following orthogonality relation [25],

∫ 1

−1
dx(1 − x)α(1 + x)βP (α,β)

n (x)P
(α,β)
n′ (x) = hnδn,n′. (4.7)

where hn are given by 22.2.1 of [25]. The above Ĝn has the property that they are

orthogonal with respect to the same weight function as that for φℓ, namely, ρ. But

this choice leads to a five-term recursion relation for the coefficients â(ℓ)
n that are not

amenable to analytical calculations.

Here, we write φℓ(p) =
∑

n a
(ℓ)
n Gn with Gn = (pq)µ−1P (µ−1,µ−1)

n (1 − 2p) that, as can

be verified using (4.7), are orthogonal with respect to the weight function (pq)1−µ. As

detailed in Appendix C.2, our choice of the orthogonal basis leads to three-term recursion

relations for a(ℓ)
n (see also [15]), and we can write

φℓ(p) = (pq)µ−1
∞
∑

n=1

c(ℓ)
n

Γ(n)

Γ(n+ µ− 1)
P

(µ−1,µ−1)
n−1 (1 − 2p), (4.8)

which satisfies the boundary condition (4.2) at p = 1 also. The expansion coefficients

c(ℓ)
n ’s are determined recursively through the following equations,

λℓc
(ℓ)
1 = 0, (4.9)

T−(n)c
(ℓ)
n−1 + T0(n)c(ℓ)

n + T+(n)c
(ℓ)
n+1 = −λℓc

(ℓ)
n , n ≥ 2, (4.10)

where

T−(n) =
σ(2µ+ n− 2)(2µ+ n− 3)

10 − 4µ− 4n
< 0, (4.11)

T+(n) =
σn(1 − n)

2 − 4µ− 4n
> 0, (4.12)

T0(n) = (1 − n)(2µ+ n − 2) < 0. (4.13)
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As already stated, the stationary state corresponding to λ0 = 0 is given by (4.5) and

it can be used to find the expansion coefficients c(0)
n , as described in Appendix C.3. In

the following, we are interested in excited states with nonzero eigenvalues; due to (4.9),

this means that c
(ℓ)
1 = 0 for ℓ = 1, 2, .... Furthermore, for large n, the ratio rn = cn+1/cn

has following linearly independent solutions,

r+
n ∼ 4n

σ
, r−

n ∼ − σ

4n
(4.14)

for any ℓ. As the (minimal) solution r−
n ensures the convergence of the continued fraction

method for evaluating eigenvalues [26] (see also Sec. 4.4), we have the boundary condition

that the expansion coefficients vanish at large n.

In summary, (4.10) along with boundary conditions c
(ℓ)
1 , c

(ℓ)
K+2→∞ = 0 defines an

eigenvalue problem, T~c(ℓ) = −λℓ~c
(ℓ), ℓ ≥ 1 for eigenvector ~c(ℓ) and eigenvalue −λℓ where

T is K-dimensional square matrix.

4.4 Eigenvalue problem: numerical analysis

For the ratio r(ℓ)
n , the recursion equation (4.10) can be written as

r
(ℓ)
n−1 =

jn

kn + r
(ℓ)
n

=
jn

kn + jn+1

kn+1+r
(ℓ)
n+1

, (4.15)

where jn = −T−(n)/T+(n) and k(ℓ)
n = (T0(n) + λℓ)/T+(n). Continuing in this manner,

we have

r
(ℓ)
2 =

j3

k
(ℓ)
3 +

j4

k
(ℓ)
4 +

j5

k
(ℓ)
5 + ...

= −k(ℓ)
2 , (4.16)

where we have used the boundary condition c
(ℓ)
1 = 0, ℓ > 0. Starting from r−

n in (4.14),

the above continued fraction was used to calculate λℓ and r(ℓ)
n numerically [26], and we

found the ratio r(ℓ)
n to be negative for all n. From these ratios of expansion coefficients,

the eigenfunction φℓ(p) was obtained by carrying out the sum over K + 1 terms in (4.8).

One can also diagonalize matrix T to find eigenvalues and eigenfunctions. To obtain

numerical results, both these methods were applied to finite-dimensional matrix T of

large size K.
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Fig. 4.1 Variation of eigenvalue λ1 with mutation rate µ for various values of selection
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expression (4.19) for weak selection, respectively.
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Fig. 4.2 Eigenvalue spectrum for strong selection obtained numerically using (4.10) for
σ = 50 and K = 1000.
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4.4.1 Eigenvalues

Figure 4.1 shows the numerical results for the eigenvalue λ1 as a function of the mutation

rate µ and large selection strengths. For µ ≫ σ where selection is weak relative to

mutation, the eigenvalue varies with µ essentially the same way as that in the absence of

selection since, as discussed in Sec. 4.5, the correction to λ1 due to selection is quadratic

in σ/µ. But for µ ≪ σ, the eigenvalue increases linearly with σ (see Sec. 4.6), and our

numerical results in Fig. 4.1 suggest that

λ1

σ
σ→∞−→











µ, µ ≤ 1

1, µ > 1
. (4.17)

We have also studied the corrections to the above conjectured eigenvalue, and find that

they approach the asymptotic values as 1/σ (data not shown). The higher eigenvalues

shown in Fig. 4.2 exhibit a more complex behavior. The eigenvalue λ2 remains a constant

for µ < 1, increases linearly for 1 < µ < 2 and is a constant for µ ≥ 2; a similar pattern

is seen for λ3 and λ4.

4.4.2 Eigenfunctions

Figure 4.3 shows the numerical results for the eigenfunctions φ1(p) and φ2(p) for various

values of σ and large K. As expected, the ℓth excited state has ℓ nodes whose location

depends on µ and σ. Other than this feature, the distribution is qualitatively similar to

that in the stationary state given by (4.5). When selection is absent, the eigenfunctions

are symmetric about p = 1/2 [6]; for this reason, the first excited state for small σ . 1 has

a node close to one half. But for stronger selection, the eigenstate is highly asymmetric

and as in the stationary state, the excited states also peak close to the allele frequency

equal to one.

4.5 Weak selection limit

As the eigenvalues are known exactly for σ = 0 [6], we can use a perturbation theory

to determine λℓ’s for σ ≪ µ. On expanding the coefficient c(ℓ)
n and eigenvalue λℓ in a

power series to quadratic orders in σ and substituting them in (4.10), we find that the

zeroth order term in σ yields λℓ(σ = 0) = ℓ(2µ + ℓ − 1), ℓ = 0, 1, ... [6]. The first order
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Fig. 4.3 First two excited states, φ1(p) (main) and φ2(p) (inset) obtained numerically
using (4.8) and (4.10) for µ = 1/2 (top panel) and 3/2 (bottom panel), and K = 1000
for various selection strengths.
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correction to the eigenvalue is found to be zero and the quadratic term in σ leads to

λℓ(σ) ≈ λℓ(σ = 0) +
T+(ℓ + 1)T−(ℓ+ 2)

T0(ℓ+ 2) − T0(ℓ+ 1)
+

T+(ℓ)T−(ℓ+ 1)

T0(ℓ) − T0(ℓ+ 1)
. (4.18)

From the above expression, we obtain the eigenvalue for the first excited state to be

λ1 ≈ 2µ+
σ2µ

(2µ+ 2)(2µ+ 3)
, (4.19)

which is in good agreement with the numerical data in Fig. 4.1. Equation (4.18) also

shows that as for σ = 0, the gap between the consecutive eigenvalues increases with

index ℓ.

4.6 Strong selection limit

We now turn to the strong selection regime where σ ≫ µ. The coefficient (T0(n) +

λℓ)/σ of c(ℓ)
n in (4.10) shows that for σ → ∞, a nontrivial eigenvalue for the excited

states is obtained if λℓ scales linearly with σ, in accordance with the numerical results

shown in Fig. 4.1. One is then tempted to ignore the T0 term altogether; however, as

explained in Appendix C.4, this results in imaginary eigenvalues for any K. The correct

limit procedure for strong selection is therefore to take K → ∞ followed by σ → ∞.

In Sec. 4.6.1 and Sec. 4.6.2, we find the expansion coefficients for large and small n,

respectively, for large, finite σ when K → ∞. Our analysis, however, does not yield

eigenvalues that were studied in Sec. 4.4 numerically.

4.6.1 Scaling form for the expansion coefficients

Although we have not been able to obtain the eigenvalues analytically, a simple but

accurate approximation for the coefficients c(ℓ)
n , n ≫ 1 for large σ can be obtained as

follows. We again consider the coefficient T0(n) + λℓ of c(ℓ)
n : for large σ, T0 ∼ n2 can be

neglected in comparison to λℓ ∼ σ when n ≪ √
σ, and as a consequence, the expansion

coefficient c(ℓ)
n is independent of σ for small n. But the eigenvalue can be ignored for

n ≫ √
σ and we may expect a σ-dependence for c(ℓ)

n when n is large. These observations

suggest that for σ ≫ 1, the coefficient |c(ℓ)
n | is of a scaling form,

|c(ℓ)
n |

|c(ℓ)
2 |

= Cσ,µfℓ

(

n√
σ

)

, (4.20)
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with (4.26).
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Fig. 4.5 First two excited states, φ1(p) (main) and φ2(p) (inset) obtained numerically
when the orthogonal expansion series (4.8) is terminated at n = K+1 for strong selection
(σ = 100) and mutation rate, µ = 1/2 (top panel) and 3/2 (bottom panel).
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where the σ-dependence of C is fixed using that the |c(ℓ)
n | must be independent of σ for

small n.

Since the c(ℓ)
n ’s have alternating signs, (4.10) gives

T−(n)|c(ℓ)
n−1| + T+(n)|c(ℓ)

n+1| = (T0(n) + λℓ)|c(ℓ)
n | , n ≥ 2. (4.21)

Using the scaling form (4.20) in the above equation and collecting terms to order σ, we

arrive at a first order linear differential equation for the scaling function fℓ(u) given by

(see also Appendix C.4)

u

2
f ′

ℓ(u) +
(

u2 − µ− κℓ +
1

2

)

fℓ(u) = 0, (4.22)

where κℓ = limσ→∞ λℓ/σ. On solving the above differential equation, we find that

|c(ℓ)
n | ≈ Cµn

2µ+2κℓ−1e−n2/σ. (4.23)

In Fig. 4.4, the numerically obtained expansion coefficients |c(1)
n | and the above expression

along with the conjectured eigenvalue (4.17) for the first excited state are compared

and we find a very good agreement, except for small n where the scaling limit is not

valid. Equation (4.22) also shows that the scaling function fℓ(u) has a turning point at

u∗
ℓ =

√

µ+ κℓ − 1
2
; for the first excited state, using the conjecture (4.17), we find that

|c(1)
n | is a nonmonotonic function for µ > 1/4 and decreases monotonically otherwise.

We have numerically verified that (4.23) works well for higher excited states also (data

not shown).

Equation (4.23) suggests that as the expansion coefficients decay fast for large n, it

may be sufficient to keep terms up to n .
√
σ for the evaluation of sum (4.8) for the

eigenfunction. This expectation is tested in Fig. 4.5 for two eigenfunctions, and we find

that when the sum is terminated at small K ∼ √
σ, the result matches well with those

obtained with K ≫ σ. We remark that at small K, the eigenfunction is seen to have

several nodes. But, as already shown in Fig. 4.3, the eigenfunction φℓ(p) has ℓ nodes for

large enough K.

4.6.2 Expansion coefficients for infinite selection

As shown in Fig. 4.4, the expansion coefficients in (4.23) do not match with the numerical

results for small n. Here, we show that these can be found exactly for special values of
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µ. For this purpose, it is useful to define

d(ℓ)
n =

∣

∣

∣

∣

∣

c(ℓ)
n

6 − 4µ− 4n

∣

∣

∣

∣

∣

, n ≥ 2. (4.24)

As shown in Appendix C.4, the generating function Dℓ(z) =
∑∞

n=2 d
(ℓ)
n zn obeys a third

order differential equation given by (C.4.2); however, for σ → ∞, we obtain

Dℓ(z) =











z
4κℓ

(

(

1+z
1−z

)2κℓ − 1
)

(µ = 1/2)
(

z
1−z2

)2 (
1+z
1−z

)2κℓ

(µ = 3/2)
(4.25)

on choosing d
(ℓ)
2 = 1. Using the conjecture (4.17), we get

|c(1)
n |

|c(1)
2 |

σ→∞−→











n− 1 (µ = 1/2)

n2(n2−1)
12

(µ = 3/2)
, (4.26)

which are consistent with the power law scaling in (4.23) and the numerical data in the

inset of Fig. 4.4 for small n.

4.7 Discussion

For a quite general class of stochastic processes, the eigenvalue problem for the corre-

sponding Fokker-Planck equation can be described by Heun equation [30]. Here, we have

elucidated a connection between the confluent Heun equation and the Fokker-Planck

equation for the allele frequency distribution in a standard population-genetics model.

This relationship is useful, especially for biologists [27, 28, 3], as one can simply use

the standard packages (such as Maple and latest version of Mathematica) to solve the

partial differential equation (4.1) numerically. However, in [17] and here, an orthogonal

series expansion is used to recast the problem as an eigenvalue problem (4.10) which can

also be easily implemented numerically and is, perhaps, more amenable to analysis (see,

for e.g., [13]).

Here we have studied the eigenvalues and eigenfunctions of the confluent Heun op-

erator in some detail. Our main result for the first eigenvalue λ1 which is inversely

proportional to the relaxation time is summarized in Fig. 4.1. For strong selection

(σ ≫ µ), we find that there is a transition at mutation rate µ = 1 and the eigenvalue λ1
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is independent of mutation rate for 1 < µ ≪ σ. In contrast, in the absence of selection,

the relaxation time decreases monotonically as 1/µ [6].

Although we have produced strong numerical evidence for the behavior of the eigen-

values with model parameters, for the reasons described in Sec. 4.1, it seems very diffi-

cult to make analytical progress. However, in the limit of strong selection, an analytical

understanding of (4.17), perhaps using a WKB approximation [29], may be possible.

Factorization methods [30, 31], such as supersymmetric quantum mechanics [32], may

also be a fruitful approach to tackle 4.6, and although our preliminary investigation in

this direction is encouraging, more work is required to fully understand the eigenvalue

problem studied here.
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Chapter 5

Conclusions and open questions

In this Chapter, we summarise the important results obtained in the thesis and discuss

some open problems that can be addressed by extending our work. Although natural

environments are never truly static, the effect of the time-varying environment on the

adaptation process is not well-studied. The primary focus of this thesis is to understand

the evolution of a population under continually changing environments in the presence

of evolutionary forces of natural selection, mutation, recombination, and random genetic

drift. Since the stochastic dynamics of adaptation, even under constant selection, are

not well-studied, we also investigated the evolutionary dynamics of a monogenic trait in

a constant environment.

In Chapter 2, we studied the evolution of a monogenic trait in a periodically changing

environment where the selection pressure changes its sign with time, and the mutant,

which is favorable for certain times, can become unfavorable at other times. We consid-

ered a finite, diploid population with intermediate dominance and found that:

(i) In a slowly changing environment, the fixation probability of a mutant is determined

by the selection coefficient of the mutant at the instant it arose.

(ii) The fixation probability depends on both the time-averaged selection and the time

of appearance in a rapidly changing environment.

(iii) An initially beneficial (deleterious) mutant can have a fixation probability lower

(higher) than that for a neutral mutant depending on its time of appearance and rate of

environmental change.

(iv) Haldane’s sieve does not always hold in a time-varying environment.
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(v) Depending upon the rate of environmental change, there is an optimal mutation rate

at which the average fitness of the population is maximum.

In Chapter 3, we analyzed the adaptation of a polygenic trait where selection acts on

a large number of genes to maintain an optimum phenotype. Evolution of an infinitely

large, diploid population in a linearly changing environment is considered in this Chap-

ter. The important findings are:

(i) Stabilizing selection pulls the population towards the new phenotypic optimum, and

recurrent mutations push the population away from it.

(ii) The mean trait evolves with the speed of the phenotypic optimum and there is a

constant lag between them when the mutation rate is low as compared to the selection

pressure.

(iii) When the mutation rate is high, the mean trait evolves with a speed lower than that

of the optimum, which increases the lag between the mean trait and the optimum.

Although the bulk of the thesis describes the evolution of a trait in a changing en-

vironment, we also studied the evolution of a single, biallelic locus in a finite, haploid

population in a constant environment in Chapter 4, using an eigenfunction expansion

method. We found that:

(i) The eigenfunctions obey a confluent Heun equation which is a generalization of the

hypergeometric equation.

(ii) The first eigenvalue that determines the dynamics exhibits a sharp transition: for

mutation rate below one, the eigenvalue increases linearly with increasing mutation rate

and then remains a constant.

We conclude this Chapter with a brief discussion of some open questions.

(i) In Chapter 3, that is devoted to the evolution of a polygenic trait, we have neglected

the effect of random genetic drift. As the natural population is finite, it is crucial to

understand the stochastic dynamics of the trait. The stochastic dynamics are not well-

understood even under a single sudden change in environment. Therefore, it would be

interesting to investigate the stochastic evolution of the trait under both sudden and

continual changes in the environment.

(ii) We have ignored the linkage disequilibrium in the evolutionary process in this thesis,
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which is important to be considered when the loci are close to each other since the

recombination rate depends on the physical distance between the loci. An extension of

the analyses in this thesis is desirable.

Our thesis mainly focuses on the evolution of a trait in changing environments and

suggests that the results in the time-varying environment can be very different than

in a static environment. Since natural environments are seldom static, our studies put

forward the importance of consideration of fluctuations in the environment to get any

inference from the empirical studies.





Appendix A

A.1 Discrete and continuous time models for diploids

Consider a randomly mating population of N diploids with discrete generations in which

the selection acts on the viability of an individual. Then the life cycle consists of a juve-

nile phase during which mutation, selection and random genetic drift act, and determine

the chance of survival of an individual to the adult phase in which reproduction occurs.

For a large population, immediately after random mating, the frequency of the geno-

types can be approximated by the corresponding Hardy-Weinberg proportions as the

deviations from it are of order 1/N [1]. The dynamics in the juvenile phase can be

modeled by a discrete time Wright-Fisher process [2].

In contrast to the discrete time model described above, we work with a continuous

time model when the environment changes gradually. In overlapping generations, a

model that incorporates details of the life cycle is necessarily complex as the age-structure

of the population must be carefully taken into account. Moreover, besides large N ,

additional assumptions, viz., small selection coefficient, s and mutation probability, µ

are required for Hardy-Weinberg equilibrium to hold in such continuous time models [1].

However, in the diffusion approximation where s → 0, µ → 0, N → ∞ with finite

2Ns, 2Nµ in the continuous time model and 4Ns, 4Nµ in the discrete time model, we

obtain essentially the same Kolmogorov equations for both models [2]. In Chapter 2,

we studied the dynamics of adaptation in the framework of diffusion theory when the

mutant is on average neutral as the s̄ 6= 0 case does not seem to be analytically tractable.

However, for positive s̄, it is possible to make analytical progress by modeling the

fixation process as a branching process [3, 4]. The branching approximation applies

as long as the mutants are rare, that is, a finite number of mutants are present in an

infinitely large population. In this approximation, the transition rate matrix for the

discrete time model discussed above is not a continuant matrix [2]. However, as the
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number of mutants is small, it is reasonable to assume that the transition rates are

significantly different from zero only when the number of mutant allele changes by one

in a generation; in other words, we arrive at a birth-death model. The above discussion

thus provides a justification for the birth-death model for diploids and in the main text,

we have used it for all parameter regimes.

A.2 Fixation probability of a mutant that is benefi-

cial at all times
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Fig. A.2 The inset shows the fixation probability Pfix(ω) given by (2.5) for a mutant
that is beneficial on average for dominance coefficient h = 0.4, 0.5, 0.6 (bottom to top).
In the main figure, the effect of a changing environment is shown by subtracting the
fixation probability Pfix(ω = 0) = hs(ta)/[1 + hs(ta)] with s(ta) = s̄ + σ sin(θa) for
h = 0.1, 0.5, 0.9 (bottom to top). In both plots, s̄ = 0.05, σ = 0.2s̄, θa = 0.
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Fig. A.3 Fixation probability of a mutant that is neutral on average for Nσ ≫ 1 when
the mutant appeared at θa = π/4 (left panel) and 5π/4 (right panel). The solid line
shows the expression (2.11b) (left panel) and (2.11c) (right panel) for small cycling
frequencies and the dashed lines represent (2.8b) for large cycling frequencies. Here
N = 100, σ = 0.1 and h = 0.3(▽), 0.5(◦), 0.7(△). The numerically obtained value
Pfix(ω = 0) = 2.53 × 10−2, 3.40 × 10−2, 4.38 × 10−2 for h = 0.3, 0.5, 0.7, respectively, for
the left panel. For the right panel, Pfix(ω = 0) = 3.55 × 10−5, 2.58 × 10−5, 1.98 × 10−5

for h = 0.3, 0.5, 0.7, respectively. The simulation results are averaged over 107 runs.

A.4 Fixation probability of a mutant in transiently

varying selection

Here we consider a situation in which the time-averaged selection coefficient is nonzero

and changes over a finite time Te,

s(t) =

{

σ sin(ωt) , t < Te (A.4.1)

0 , t > Te . (A.4.2)

Waxman (2011) [5] has shown that in such a case, the fixation probability is simply

given by the mean allele frequency at the end of selection. Here we estimate this allele

frequency using the deterministic evolution equation,

ẋ = s(t)x(1 − x)(x+ h(1 − 2x))
x→0≈ hs(t)x . (A.4.3)
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Fig. A.4 Fixation probability of a mutant in transiently varying environments defined by
(A.4.1) and (A.4.2) and illustrated in the inset. The lines show the expression (A.4.4)
and the points show the simulation data obtained by averaging over 107 independent
runs for θa = 3π/4, Te = 2π/ω (left panel) and θa = π/2, Te = π/ω (right panel). In all
the plots, N = 100, σ = 0.1 and h = 0.1(▽), 0.9(△).

For large ω, starting from a single mutant, the number of mutants at time Te is then

given by

2Nx(Te) = n(Te) = 1 +
hσ

ω
(cos(θa) − cos(ωTe)) . (A.4.4)

For large cycling frequencies, this prediction matches qualitatively with the numerical

results in Fig. A.4, and therefore captures the effect of dominance when the environment

changes fast over a short interval of time.
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Appendix B

B.1 Branching process approximation

The fixation probability of a mutant that arises in a large wild type population and is

beneficial on average, is given by (2.5). For ω → ∞, the fixation probability is given by

hs̄/(1 + hs̄) while for ω = 0, it is equal to hs(ta)/(1 + hs(ta)) for s(ta) > 0, and zero

otherwise.

Away from these extreme limits, the integral appearing in (2.5) can be analyzed for

small hs̄, hσ as follows. For small cycling frequencies ω ≪ hs̄, hσ, by first expanding the

integrand in powers of ω and then carrying out the resulting integrals, we obtain

Pfix

hs(ta)
= 1 +

hσ cos(θa)ω

(hs(ta))2
−
(

σ2(1 + cos2(θa))

s2(ta)
+
s̄σ sin(θa)

s2(ta)

)(

ω

hs(ta)

)2

, (B.1.1)

provided s(ta) > 0, and zero otherwise. Similarly, for large cycling frequencies, the

fixation probability can be found by first expanding the integrand in powers of hσ/ω;

for ω ≫ hs̄, hσ, this finally results in

Pfix

hs̄
= 1 +

hσ

ω
cos(θa) +

hs̄hσ

ω2
sin(θa) − 1

4

(

hσ

ω

)2

cos(2θa) . (B.1.2)

Note that the first order corrections in (B.1.1) and (B.1.2) vanish for θa = π/2 and 3π/2.

As discussed in the main text, an extremum in the fixation probability occurs at the

resonance frequency ωr. Ignoring terms of order ω2 and 1/ω2 in (B.1.1) and (B.1.2),

respectively, and equating the resulting expressions, we arrive at a quadratic equation

for ωr whose positive root is given by (2.7). Furthermore, in Fig. 2.1, for π/2 < θa <

3π/2, the fixation probability curves for dominance coefficient h and h′ coincide at a
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cycling frequency higher than ωr, which can be estimated using (B.1.2), and found to

be −(h + h′)σ cos(θa).

B.2 Diffusion approximation for small cycling fre-

quencies

Here we study (2.3) for s̄ = 0 and small cycling frequencies within a perturbation theory

by writing Pfix = P0 +NωP1. It is useful to rewrite (2.3) as

− ∂Pfix(x, τ)

∂τ
=
σ sin(τ)g(x)

ω

∂Pfix(x, τ)

∂x
+
x(1 − x)

2Nω

∂2Pfix(x, τ)

∂x2
, (B.2.1)

where τ = ωt+ θa, t ≥ 0.

In a static environment, if the mutant arises at time ta = θa/ω and has fraction x in

the population, its fixation probability is given by P0(x, θa) =
∫ x

0 dyI(y, θa)/
∫ 1

0 dyI(y, θa),

where

I(y, θa) = e−Ns(ta)y(y+2h(1−y)) (B.2.2)

and s(ta) = σ sin(θa) [1]. For a strongly beneficial mutation (Ns(ta) ≫ 1), the fixation

probability P0 increases with dominance coefficient and given by hs(ta), while, for a

deleterious mutation, it decreases with h. The chance of fixation also decreases with

population size for h ≤ 1/2, but the variation with N is non-monotonic for h > 1/2.

The effect of a slowly changing environment on the fixation probability is captured

by P1 that, by virtue of (B.2.1), obeys the following ordinary differential equation,

− ∂P0(x, τ)

∂τ
= Nσ sin(τ)g(x)

∂P1(x, τ)

∂x
+
x(1 − x)

2

∂2P1(x, τ)

∂x2
. (B.2.3)

Equation (B.2.3) subject to boundary conditions P1(0, τ) = P1(1, τ) = 0 has the solution

P1(x, τ) =

∫ x
0 dx

′I(x′)
∫ 1

0 dx
′I(x′)

∫ 1

0
dx′′I(x′′)

∫ x′′

0
dx′ 2

x′(1 − x′)I(x′)

∂P0

∂τ

−
∫ x

0
dx′′I(x′′)

∫ x′′

0
dx′ 2

x′(1 − x′)I(x′)

∂P0

∂τ
, (B.2.4)

which, for small initial frequency (τ = θa, x → 0) can be approximated by

P1(x, θa) ≈ x

∫ 1
0 dx

′′I(x′′)
∫ x′′

0 dx′ 2
x′(1−x′)I(x′)

∂P0(x′,τ)
∂τ

∣

∣

∣

∣

τ=θa
∫ 1

0 dx
′I(x′)

. (B.2.5)
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The following cases need to be considered separately:

(i) −1 ≪ Ns(ta) ≪ 1: For small Nσ and arbitrary θa, we first expand I(x, τ) to linear

order in Nσ and carry out the integrals in the expression for P0 given above to obtain

P0(x, τ) = x

[

1 +Nσ sin(τ)(1 − x)

(

(1 − 2h)(1 + x) + 3h

3

)]

, (B.2.6)

∂P0

∂τ

∣

∣

∣

∣

τ=θa

=
Nσ cos(θa)x(1 − x)(1 + x+ h(1 − 2x))

3
. (B.2.7)

Using these approximations in (B.2.5), to leading order in Nσ, we get

Pfix(x, θa) = P0(x, θa) +

(

4 + h

9

)

N2ωσ cos(θa)x . (B.2.8)

For Ns(ta) = 0 (that is, θa = 0 or π, arbitrary Nσ), it can be easily seen that the

function I(x, θa) = 1 and the derivative ∂P0

∂τ
is given by (B.2.7) thus leading to (B.2.8).

(ii) Ns(ta) ≫ 1: For large |Ns(ta)|, using the asymptotic expansion of the error function

erf(x) [2], the fixation probability P0(x, τ) can be approximated as

P0(x, τ) =
1 − he−Nσ sin(τ)x(x+2h(1−x))

h+(1−2h)x

1 − he−Nσ sin(τ)

h+(1−2h)

(B.2.9)

(more precisely, the above expression holds for |h2Nσ sin(τ)
1−2h

| ≫ 1). For large, positive

Ns(ta), the denominator in (B.2.9) can be approximated by one leading to

∂P0

∂τ

∣

∣

∣

∣

τ=θa

=
Nhσ cos(θa)x(x+ 2h(1 − x))

h+ x(1 − 2h)
I(x, θa) . (B.2.10)

Using the above expression in (B.2.5), and performing the integrals for Ns(ta) ≫ 1, we

finally obtain the following simple result,

Pfix(x, θa) = P0(x, θa) + 2Nω cot(θa)x . (B.2.11)

(iii) Ns(ta) ≪ −1: Taking the derivative of P0 in (B.2.9) with respect to τ and keeping

factors proportional to e−Nσ sin(τ) only, we obtain

∂P0

∂τ

∣

∣

∣

∣

τ=θa

=

(

h− 1

h

)

Nσ cos(θa)eNσ sin(θa)

[

1 +
h(1 − x)(1 + x− 2hx)

(2h− 1)x− h
I(x, θa)

]

.

(B.2.12)
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Noting that the dominant contribution to the inner integral in the numerator of (B.2.5)

comes from x′ → 0, we finally get

P1(x, θa) ≈ 2(1 − h)Nσ cos(θa)xeNσ sin(θa)

h
∫ 1

0 dx
′I(x′)

∫ 1

0
dx′′I(x′′)

∫ x′′

0
dx′ e

2hNσ sin(θa)x′ − 1

x′
(B.2.13)

≈ 2(1 − h)Nσ cos(θa)x ln(2h|Nσ sin(θa)|)
h

e−|Nσ sin(θa)| . (B.2.14)

B.3 Diffusion approximation for large cycling fre-

quencies

Here we calculate the fixation probability of a neutral mutant (s̄ = 0) when the cycling

frequency is larger than the amplitude of selection (ω > σ). On writing Pfix = P0 + σ
ω
P1

in (B.2.1) and collecting terms to zeroth and first order in σ/ω, we find that P0 = x, as

expected. The correction P1 obeys an inhomogeneous partial differential equation,

∂P1(x, τ)

∂τ
+
x(1 − x)

2Nω

∂2P1(x, τ)

∂x2
= − sin(τ)g(x). (B.3.1)

with boundary conditions P1(0, τ) = P1(1, τ) = 0.

The homogeneous equation can be solved using standard eigenfunction expansion

method [3, 4], and we find that P homo
1 (x, τ) =

∑∞
n=0 cne

−λnτXn(x) with the eigenvalue

λn = − (n+1)(n+2)
2Nω

and eigenfunction Xn(x) ∝ x(1 − x)P(1,1)
n (1 − 2x) where P(α,β)

n (x) is

the Jacobi polynomial [2]. However, as this homogeneous solution is not periodic in τ ,

it does not contribute to the full solution. But since the eigenfunctions Xn(x) form a

complete set of basis, we can write P1(x, τ) =
∑

n=0 anXn(x) and g(x) =
∑

n=0 bnXn(x)

where bn are obtained using the orthogonality property of Xn(x). Using these in (B.3.1),

we obtain

P1(x, τ) =
x(1 − x)

2

[cos
(

τ + tan−1 λ0

)

√

1 + λ2
0

+
(2h− 1)(1 − 2x) cos

(

τ + tan−1 λ1

)

√

1 + λ2
1

]

.

(B.3.2)

When a single mutant with frequency x = (2N)−1 appears at time ta, the above expres-

sion reduces to (2.8b) and can be used to find the resonance frequency at which the

probability of fixation has an extremum. For h = 1/2, we find that

Nωr =
1

tan(θa) + sgn(cos(θa)) sec(θa)
. (B.3.3)
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For arbitrary h, we are unable to find a simple closed expression for ωr as it is a solution

of a 6th order algebraic equation. But a numerical study of this equation shows that

ωr depends weakly on dominance coefficient. For θa = 0, we find Nωr ≈ 0.88, 1.0, 1.14

for h = 0.1, 0.5, 0.9, respectively; the corresponding values for θa = 3π/4 are given by

1.73, 2.41, 3.84.

B.4 Allele frequency distribution for strong muta-

tion

The forward time dynamics of the population under mutation and selection are de-

scribed by (2.12) for the allele frequency distribution Φ(x, t). The distribution Φ0 for

the population subject to mutation and random genetic drift is given by Φ0(x, t) =
∑

n=0 ane
−λntXn(x) with eigenvalues λn = n

(

n−1
2N

+ 2µ
)

and eigenfunctions Xn(x) ∝
(

x(1 − x)
)2Nµ−1P(2Nµ−1,2Nµ−1)

n (1 − 2x) where, P(α,β)
n (z) is the Jacobi polynomial [5].

These eigenfunctions are orthogonal with respect to the weight function ρ(x) = [x(1 − x)]1−2Nµ.

For weak selection (σ < µ), we can expand Φ(x, t) as a power series in σ/µ to write

Φ = Φ0 + (σ/µ)Φ1. Using this in (2.12), we find that Φ1 obeys the following differential

equation,

Φ̇1(x, t) +
∂

∂x
[m(x)Φ1(x, t)] − 1

2N

∂2

∂x2

[

x(1 − x)Φ1(x, t)
]

= −µ sin(ωt)
∂

∂x
[g(x)Φ0(x, t)] . (B.4.1)

To find the distribution Φ1(x, t), we expand it and the RHS of above equation as a linear

combination of Xn(x). Writing Φ1(x, t) =
∑∞

n=1 bn(t)Xn(x) in (B.4.1), we find that at

large times,

bn(t)
t≫1−→

∫ ∞

0
dt′e−λnt′

cn(t− t′) (B.4.2)

where

cn(t) =
−µ sin(ωt)

∫ 1
0 dxρ(x)X2

n(x)

∫ 1

0
dxρ(x)Xn(x)

∂

∂x
[g(x)Φ0(x, t)] . (B.4.3)

As Φ0(x, t)
t→∞−→ X0(x), from (B.4.2), we obtain

bn(t) =
µ sin(θn − ωt)
√

λ2
n + ω2

(

δn,1

2
+

(2h− 1)δn,2

1 + 2Nµ

)

Γ(4Nµ)

[Γ(2Nµ)]2
(B.4.4)
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where θn = tan−1(ω/λn). We thus have

Φ(x, t) = Φ0(x) + b1(t)X1(x) + b2(t)X2(x). (B.4.5)



Bibliography

[1] M. Kimura. Some problems of stochastic processes in genetics. Ann. Math. Stat.,

28: 882-901, 1957.

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions With For-

mulas, Graphs, and Mathematical Tables, Dover, 1964.

[3] M. Kimura. Solution of a process of random genetic drift with a continuous model.

Proc. Natl. Acad. Sci. USA, 41: 144-150, 1955.

[4] W. J. Ewens. Mathematical Population Genetics. Springer, Berlin, 2004.

[5] J. F. Crow and M. Kimura. Some genetic problems in natural populations. In:

Neyman J (ed) Proceedings of the Third Berkeley Symposium on Mathematical

Statistics and Probability, Vol. 4. University of California Press, Berkeley, pp. 1-22,

1956.





Appendix C

C.1 Frobenius series expansion

Since p = 0 is a regular singular point of the confluent Heun equation, we can expand

the eigenfunction in a Frobenius series by writing φℓ(p) = pa∑∞
n=0 f

(ℓ)
n pn, |p| < 1 [1].

Substituting it in (4.6) and setting the coefficient of pa−1 to zero, we find the indicial

exponents to be a = 0 and µ− 1. For µ 6= 1, the eigenfunction can be written as

φℓ(p) = ã1HC(−σ, 1 − µ, 1 − µ,−µσ, ηℓ, p) + ã2p
µ−1HC(−σ, µ− 1, 1 − µ,−µσ, ηℓ, p),

(C.1.1)

where ηℓ = (1 − 2λℓ +µ(σ−µ))/2 and HC(α, β, γ, δ, η, p) is the confluent Heun function

[2]. For µ = 1, the first solution has a logarithmic singularity at p = 0. In either case,

the vanishing current boundary condition (4.2) at p = 0 yields ã1 = 0.

The coefficients of terms of O(pa) or higher in the Frobenius series lead to a three-

term recursion relation for f (ℓ)
n ’s given by

(n+µ)(n+ 1)f
(ℓ)
n+1 + [(n+µ− 1)(µ−σ−n− 2) + νℓ]f

(ℓ)
n +σ(n+µ)f

(ℓ)
n−1 = 0 , n = 0, 1, ...

(C.1.2)

with f
(ℓ)
−1 = 0. The reflecting boundary condition at p = 1 imposes the condition

∑∞
n=0 f

(ℓ)
n = 0. Note that unlike in the expansion (4.10), here the parameter σ appears

in the coefficient of f (ℓ)
n and f

(ℓ)
n−1.
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C.2 Orthogonal polynomial expansion

We begin with the observation that in the absence of selection, the eigenfunctions are

exactly given by [3]

φℓ(p, σ = 0) ∝ (pq)µ−1P
(µ−1,µ−1)
ℓ (1 − 2p), (C.2.1)

with eigenvalue λℓ(σ = 0) = ℓ(2µ+ ℓ−1), ℓ = 0, 1, ... For nonzero selection, we therefore

write

φℓ(p, σ) = (pq)µ−1
∞
∑

n=0

a(ℓ)
n P (µ−1,µ−1)

n (1 − 2p). (C.2.2)

As this expansion is valid for |p| < 1, in order to impose the boundary condition (4.2) at

p = 1, we used the relationship between Jacobi polynomials and Gauss hypergeometric

function and the connection formulae for the latter [4], and verified that (4.2) is indeed

satisfied.

Substituting the expansion (C.2.2) in the confluent Heun equation (4.6) and using

the expression for the second derivative of Jacobi polynomial (see 22.6.2 of [4]), we obtain

− σ(pqφ′
ℓ(p) − 2pφℓ) =

∞
∑

n=0

a(ℓ)
n [n(2µ− 1 +n) − λℓ + σ](1 −x2)µ−1P (µ−1,µ−1)

n (x), (C.2.3)

where x = 1−2p. It can be verified that the above equation reproduces the eigenspectrum

in the absence of selection.

To proceed further, we need the following identities:

1. From 22.8.1 of [4], we get

(1 − x2)
dP (µ−1,µ−1)

n (x)

dx
= −nxP (µ−1,µ−1)

n (x) + (n+ µ− 1)P
(µ−1,µ−1)
n−1 (x). (C.2.4)

2. Furthermore, 22.7.15 and 22.7.18 of [4], gives

(1 − x)P (µ−1,µ−1)
n (x) = P (µ−1,µ−1)

n (x) − n+ µ− 1

2µ+ 2n− 1
P

(µ−1,µ−1)
n−1 (x)

− (n + 1)(2µ+ n− 1)

(µ+ n)(2µ+ 2n − 1)
P

(µ−1,µ−1)
n+1 (x). (C.2.5)
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Using (C.2.4) and (C.2.5) in (C.2.3), we find that

pqφ′
ℓ(p) − 2pφℓ(p)

(1 − x2)µ−1
+

∞
∑

n=0

a(ℓ)
n P (µ−1,µ−1)

n (x)

=
∞
∑

n=1

[

n(2µ+ n− 2)(2µ+ n − 1)

2(µ+ n− 1)(2µ+ 2n− 3)
a

(ℓ)
n−1 − (µ+ n)n

2(1 + 2µ+ 2n)
a

(ℓ)
n+1

]

P (µ−1,µ−1)
n (x). (C.2.6)

On matching the coefficient of P (µ−1,µ−1)
n (x) on both sides of the equation, we finally

obtain (4.8)-(4.10).

C.3 Stationary state

For λ0 = 0, we can find the coefficient c(0)
n using the known steady state distribution

(4.5) and orthonormality property of Jacobi polynomials. From (4.8), we have

eσp

Z
=

∞
∑

m=0

c
(0)
m+1

Γ(m+ 1)

Γ(m+ µ)
P (µ−1,µ−1)

m (1 − 2p), (C.3.1)

where Z is the normalization constant. Using the orthonormality property (4.7) of Jacobi

polynomials, we arrive at

c
(0)
m+1

Γ(m+ 1)

Γ(m+ µ)
hmZ =

∫ 1

−1
dx(1 − x2)µ−1P (µ−1,µ−1)

m (x)e
σ(1−x)

2 (C.3.2)

=

√
πΓ(m+ µ)e

σ
2

m!Γ(m+ µ+ 1
2
)

(−σ
4

)m

1F1(1, m+ µ+
1

2
,
σ2

16
) (C.3.3)

where 1F1(1; b; x) is confluent hypergeometric function [4]. It is straightforward to check

that the expansion choice of [5] leads to essentially the same result as above.

C.4 Generating function for strong selection

The expansion coefficient dn defined in (4.24) obeys the following recursion equation,

(2µ+n−2)(2µ+n−3)d
(ℓ)
n−1+n(1−n)d

(ℓ)
n+1 =

[

κℓ +
(1 − n)(2µ+ n− 2)

σ

]

(6−4µ−4n)d(ℓ)
n .

(C.4.1)
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The above form allows one to write a differential equation for the generating function

D(z) =
∑∞

n=2 dnz
n that obeys the following third order ordinary differential equation,

z(z2 − 1)D′′ + 2(1 + (2µ− 1)z2)D′ + 2(z(1 − µ)(2µ− 1) − z−1)D − κ[(6 − 4µ)D − 4zD′]

=
1

σ

[

4z3D′′′ + 6z2(2µ− 1)D′′ + 4z(µ− 1)(2µ− 3)D′ + 4(1 − µ)(2µ− 3)D
]

, (C.4.2)

where we have dropped the eigenvalue label for brevity. The above equation does not

appear to be solvable; however, in the scaling limit, z → 1, σ → ∞ such that x =

(1 − z)
√
σ is finite, we obtain

d3D
dx3

− x

2

d2D
dx2

− (η + µ)
dD
dx

= 0, (C.4.3)

that yields

D(x) = c̃1

H1−2η−2µ(x
2
)

1 − 2η − 2µ
+ c̃2x1F1

(

η + µ,
3

2
,
x2

4

)

+ c̃3, (C.4.4)

where Hn(x) is the Hermite function and 1F1(a, b, z) is the Kummer confluent hyperge-

ometric function [4]. As n ≥ 2, the constant c̃3 = 0; furthermore, we numerically found

that the inverse Laplace transform of the second term on the RHS grows exponentially

with n and therefore c̃2 = 0. The asymptotic expansion of the Hermite function then

yields (4.23).

For µ = 1/2 and 3/2, the recursion equation (C.4.1) for dn, n ≥ 2 simplifies and leads

to following second order differential equation for D:

(1 − z2)D′ + (z − z−1)D − d2z = 4[κD − 1

σ
(z2D′′ − zD′ + D)] (µ = 1/2). (C.4.5)

(1 − z2)D′ − 2(z + z−1)D = 4[κD − 1

σ
(z2D′′ + zD′ − D)] (µ = 3/2). (C.4.6)

Both of these equations have an irregular singularity at z = 0 and infinity, each of rank

1 which is the same as doubly-confluent Heun equation [6, 7]. Thus the generating

function can not be reduced to simpler functions. However, for σ → ∞, we obtain (4.25)

in Chapter 4.

We note that the matrix T in (4.10) is not normal (that is, it does not commute

with its transpose), and therefore there is no guarantee that its eigenvalues would be

real [1]. For finite σ, we found numerically that the first few eigenvalues are real and

the rest are complex for finite K but the imaginary part of the eigenvalue decreases

towards zero with increasing K. For infinite σ and finite K, the generating function
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D(z) =
∑K

n=2 z
ndn for µ = 1/2 obeys the inhomogeneous equation,

(1 − z2)D′ + (z − z−1)D − d2z = 4κD − (K − 1)zK+1dK . (C.4.7)

On demanding that the solution of the above equation does not have terms of order

zK+1 and higher, we find that one of the eigenvalues is zero (if K is odd) and the rest

are complex for any K. This discussion thus reiterates the point that the eigenvalues of

interest are obtained if the strong selection limit is taken after K → ∞.
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