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Synopsis

This thesis contains reports from the studies of certain nonequilibrium properties of

some systems undergoing different kinds of phase transitions, viz., para-to-ferromagnetic

transition and vapor-solid transition. It also contains a scaling picture of disease spread,

in line with that in the literature of phase transitions.

In chapter 1 an introduction to phase transitions and discussions of related scaling

properties are provided. All the techniques that are used for the undertaken studies in

different chapters are also discussed in detail in this chapter, alongside introductions to

the considered models.

In chapter 2 we study ordering dynamics during the evolution of a ferromagnetic

system, when quenched to zero temperature (Tf = 0), in space dimensions d = 2 and

3, from high temperature disordered phase. We perform this study via Monte Carlo

simulations of the Glauber Ising model, using two different algorithms, viz., Metropolis

and Glauber. We show that the structures formed during the evolution in d = 3 are

different from a well-known theoretical expectation that describes results obtained fol-

lowing quenches to temperatures reasonably close to the critical value. We also extract

the power-law exponent for domain growth. Unlike for the higher temperature quenches,

it is shown that the theoretical value of the growth exponent agrees with the simulation

results only in the long time limit. Furthermore, we present results for the aging phe-

nomena at Tf = 0. We have used the two-time autocorrelation function, Cag(t, tw), for

probing this phenomena. This quantity decays in a power-law fashion. We have used a

recently devised finite-size scaling technique to estimate λ, the corresponding exponent.

Interestingly, the obtained value of λ violates a well-known bound. This we understand

via the analysis of structure.

Chapter 3 deals with the investigation of the temperature dependence of aging

exponent (λ) for quenches below the roughening transition temperature (TR), in d = 3,

starting from random initial configurations, i.e., from starting temperatures Ts = ∞.

The model is same as the one considered in chapter 2. Here we show that the anomalies

associated with the structure, growth and aging are not unique to the case of zero

temperature quench in d = 3. These are present over a range of low temperature.

Starting from Tf = 0, the unexpected or anomalous features in all the nonequilibrium

properties disappear when Tf approaches TR. We show that below TR, the deviations of

λ from the theoretical value have close connection with the departures of structures from
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the corresponding theoretical expectation. This points to a strong structure-dynamics

connection in phase transition dynamics.

In chapter 4 we study the effects of long range correlations in the initial configura-

tions on the dynamics of the ordering ferromagnets in d = 2 and 3. We quench the Ising

systems from the critical temperatures, Tc, where the equilibrium correlation length, ξ,

diverges. We probe the aging, following quenches of these configurations to a Tf , via

the autocorrelation function, Cag(t, tw). Our study shows that the decay of Cag(t, tw) is

slower here, providing significantly smaller values of λ than the case of quenches from

random initial configurations. Different values of the exponent lead to the division of

universality into different classes based on the presence or absence of long range spatial

correlations in the system. Through appropriate structural analysis, we show that the

obtained values of λ agree with the well-known Yeung-Rao-Desai bound.

In chapter 5 we carry out a more general study on the dependence of the coarsening

dynamics on initial correlations by quenching the Ising systems from different initial

temperatures, Ts, lying above Tc. It is observed that for higher values of Ts equilibration

happens faster, following quenches to a fixed ferromagnetic state point. This observation

has close connection with a counter-intuitive effect, referred to as the Mpemba effect

(ME). By definition, ME is related to faster freezing of a hotter body of water than a

colder one. Recently there are efforts to generalize it. So far, it is believed that glass-like

complex energy landscape is essential for the observation of ME. Our study shows that

the effect is rather universal. Note that our model Hamiltonian does not contain any

glassy ingredient.

In chapter 6 we undertake the study of the kinetics of vapor-solid phase separation

in a single component Lennard-Jones system via Molecular Dynamics simulations. We

present results on the dynamics of cluster growth in the system. The overall density

and temperatures of the systems are set to very low values. Such choices give rise

to fractality in the disconnected clusters, of which the nonequilibrium morphologies

consist. Growth in such systems occurs due to collision mechanisms of various types,

viz., diffusive coalescence and ballistic aggregation. We quantity the dimensionality for

the above mentioned fractal structure and growth law with the variation of temperature.

These results we discuss in the background of appropriate theoretical pictures.

Chapter 7 contains a study on disease spread. The context is COVID-19, a novel

coronavirus disease. We analyze the infection data from different geographical regions

with the help of a scaling method and comment on universality, like in phase transitions.

Even though there are differences in the population density, economic background, cli-
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mate, preventive measures, etc., many countries are found to exhibit a unique pattern

of spread.

Finally, the last chapter summarizes all the works.
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Chapter 1

Introduction

1.1 Phase Transition

Phase transition is commonly observed in nature during which a phase of matter changes

to another with the variation in various thermodynamic parameters like pressure (P ),

temperature (T ), density (ρ), etc. [1–5]. In more than one phases, out of the three,

viz., vapor, liquid, and solid, we encounter water in everyday life. Another commonly

discussed example is the transition between para and ferro phases in magnetic materials

[1–5]. This thesis, in large, deals with the latter type of phase transition.

Phase transitions are classified in different ways [6]. A well-accepted classification

is due to Ehernfest [6]. This is based on the discontinuity in the order of derivative in

the relevant free energy. A modern classification uses the terminologies first-order and

continuous phase transitions, which was put forward by Fisher [7]. The discontinuity in

the first derivative marks a first-order phase transition. For a second-order or continuous

transition, the first derivative is continuous, and the second-order derivative can either

be divergent or discontinuous at the transition point [2, 6, 7]. This point is referred to

as the critical point [7].

When an external magnetic field (H) is absent, the critical point, marking a second-

order phase transition, for a para-to-ferromagnetic transition is the Curie temperature [1–

5]. At this point, during the phase change, the magnetization (m) changes continuously.

The phase diagram for such a transition is depicted in the H −T plane in Fig. 1.1. The

critical temperature, Tc, is marked in the figure. Above Tc, one has the paramagnetic

phase. There, for H = 0, the spins in the system are randomly oriented, providing m = 0.

When the temperature is decreased below Tc, the system changes to the ordered phase,

with m 6= 0, referred to as the ferromagnetic phase. Such a quantity, which varies during
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Figure 1.1: The phase diagram of a magnetic material, showing para-to-ferromagnetic
transition, is schematically shown in the H − T plane. The critical point is marked as
Tc.

Figure 1.2: A schematic phase diagram of a magnetic material showing para-to-ferrom-
agnetic transition in the T − m plane, for H = 0. Above Tc, the system is in the
paramagnetic phase, and m has a value zero. Below Tc, m has a non-zero value, and the
system is in the ferromagnetic phase. There it lives in a state with majority of the spins
aligned either up or down. These are depicted in the figure.
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Figure 1.3: Schematic of a vapor-liquid phase transition in T − ρ plane. The critical
point is marked as (ρc, Tc). Above Tc, the system is found in a homogeneous phase.
Depending on the region of quench, in the interior of the coexistence curve, it moves to
a phase-separated state via different coarsening mechanisms.

a phase change, from zero to non-zero values, is referred to as the ‘order parameter’ [1–5].

The phase diagram for the magnetic system under discussion, for H = 0, in T −m plane,

is shown in Fig. 1.2. To represent the order parameter we will use a general symbol ψ

in the following text.

In the case of vapor-liquid transition, the order parameter can well be defined as

[1–5] ψ = ρℓ − ρv, where ρℓ is the density in the liquid phase and ρv is that in the vapor

phase. A phase diagram for vapor-liquid transition, in T − ρ plane, is drawn in Fig. 1.3.

The critical point is marked as (ρc, Tc), where ρc is the critical density. Above Tc, the

system is in a “uniform” density state and below that one has a phase-separated state.

The line which separates the two states is the coexistence curve [1–5]. Upon quenching

of a homogeneous configuration inside this curve, the system moves to the coexisting

equilibrium state. The word “quenching” here has the meaning of sudden change of

temperature from an initial value to a final value. The evolution of the system to new

equilibrium state occurs via formation and growth of regions that are rich or poor in

particles of one or the other type. The evolution or coarsening mechanism [1, 5, 8]
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may depend on the region of quench. A quench with, or close to, the critical density

leads to the formation of interconnected domains. The corresponding growth process is

referred to as the spinodal decomposition [9, 10]. For significantly off-critical quench,

the coarsening progresses via nucleation and growth of disconnected clusters [10–12]. In

the above phase diagram, our region of interest in the thesis will be a low density and

low temperature region, below the triple point [2–4], where the disconnected solid cluster

formation occurs in the vapor background [13].

Apart from these, phase transitions or analogous phenomena are common in systems

of granular matter [14, 15], active matter [16, 17], etc. In each of these cases, interesting

pattern of particle-rich and particle-poor clusters form. The same scenario is true in the

case of disease spread in a population [18, 19] that drew significant attention recently.

Here the infected individuals can form clusters. The phenomena associated with the

disease spread are studied by using different mathematical models [18–20]. In one of the

chapters in this thesis, we undertake a study on spread of COVID-19, that is caused by

a novel coronavirus, using a recently proposed scaling method [20].

1.2 Coarsening Dynamics

As stated above, during the evolution or relaxation of a system to a new equilibrium

state point inside the coexistence curve, domain formation occurs. These domains grow

or ‘coarsen’ via the reduction of interface areas [1, 8]. The average size of domains at a

time t, which will be denoted by ℓ(t), can, in general, be described as a power-law [1, 8]

in time:

ℓ(t) ∼ tα. (1.1)

The exponent α, in the above quoted power-law, depends on the type of dynamics,

the number of components of the order parameter, the dimension of the system, etc.

[1]. Based on the relation of the total value of the order parameter with time, the

dynamics can be broadly classified into two categories, viz., the nonconserved and the

conserved order-parameter dynamics. We discuss the typical growth mechanisms in

systems belonging to each of these categories in the following subsections.

1.2.1 Growth in systems with nonconserved dynamics

In systems with the nonconserved order-parameter (NCOP) dynamics, the total value

of the order parameter can change during a phase transition [1]. This class of systems
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Figure 1.4: The evolution snapshots, from different times (t), of a system exhibiting
nonconserved order-parameter dynamics. The quenching is done from a disordered state
to a temperature below Tc (= 0.6Tc). The colored regions represent the locations of
the up-spins. The results are obtained from the Monte Carlo simulations of 2D Ising
ferromagnet using the Glauber spin-flip method for a system of size 128 × 128.

belongs to Model A. This is according to the classification procedure of Hohenberg

and Halperin [21]. A well-known example from this class is a magnetic material that

undergoes para-to-ferromagnetic transition. As already mentioned, the order parameter

here is the magnetization, m. These systems can be studied via the kinetic Ising model

[1, 5]. The Hamiltonian of the latter is written as

H = −J
∑

〈ij〉

SiSj ; Si = ±1. (1.2)

Here J represents the interaction strength and is positive for ferromagnetic ordering.

The angular bracket, 〈ij〉, implies that the summation is only over the nearest neighbor

spins (Si). The values of Si, +1 and −1, correspond to up and down spins, respectively.

Typical evolution morphology for this case is presented in Fig. 1.4, obtained via the

Monte Carlo simulation [22, 23] using Glauber spin-flip mechanism [24], for a quench

below the critical point, starting from a random initial configuration. The colored regions

mark the locations of the up spins. On the other hand, the down spins are located in

the unmarked regions.

The coarse-grained counterpart of the above model is the time dependent Ginzburg-

Landau (TDGL) equation [1, 5]. The latter is written as

∂ψ(~r, t)

∂t
= aψ(~r, t) − bψ3(~r, t) + c∇2ψ(~r, t). (1.3)

Here ψ(~r, t) is a continuous coarse-grained order parameter, that depends upon space

and time. This quantity can be obtained by averaging the spin values over spatial
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Figure 1.5: The plots of correlation function, C(r, t), for a nonconserved system, are
shown in the left panel and corresponding scaling is depicted inside the right frame.
Note that ℓ(t) represents the domain length at time t.

Figure 1.6: Plots of S(k, t)ℓ−d as a function of kℓ in a log-log scale, for the NCOP
dynamics, for quenches from random initial configurations with zero magnetization to
0.6Tc. The solid lines are the power-laws with exponents mentioned near them. In the
small-k limit, the exponent, β, has the value 0. The exponent corresponding to the
Porod law is also mentioned in the figure.
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blocks of different sizes. The coefficients a, b and c are temperature dependent positive

constants below Tc. By solving the above equation, one can study the pattern formation

and coarsening in systems having the NCOP dynamics.

The domain growth in these systems is curvature-driven [1]. The velocity, v, of the

domain walls is related to the local curvature K as [1, 25]

v = −K. (1.4)

This is known as the Allen-Cahn equation [1, 25]. In terms of the characteristic length

scale, ℓ, Eq. (1.4) can be written as

v ∼ dℓ

dt
∼ 1

ℓ
, (1.5)

which gives

ℓ(t) ∼ t1/2. (1.6)

This is the well-known Allen-Cahn growth law [25]. The exponent here does not depend

on the space dimension, d.

The domain length can be calculated by using the scaling property of various struc-

tural quantities, i.e., the two-point equal-time correlation function, C(r, t), defined as

[1]

C(r, t) = 〈ψ(~r, t)ψ(~0, t)〉 − 〈ψ(~r, t)〉〈ψ(~0, t)〉; r = |~r|. (1.7)

During the evolution of a system if the domain morphology at different times are sta-

tistically similar, other than a change in length scale, these structures are said to be

self-similar. In that case, C(r, t) attains a scaling form [1]

C(r, t) ≡ C̃(r/ℓ(t)). (1.8)

The scaling of C(r, t), for the nonconserved order-parameter dynamics, is depicted in

Fig. 1.5. The data sets are obtained via the Monte Carlo simulations for a ferromagnetic

system following a quench from very high temperature to a temperature below Tc in

d = 2. The left panel shows C(r, t) from different times during the evolution. The data

collapse is obtained by scaling the abscissa variable by the characteristic length scales

at given times. The length scale here corresponds to the average domain length of the

system. This scaling picture is shown in the right frame of Fig. 1.5.
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The Fourier transform of C(r, t), which is known as the structure factor, S(k, t), can

also be probed for studying the morphology of the system [1]. The scaling form of S(k, t)

can be written as [1, 5]

S(k, t) ≡ ℓdS̃(kℓ). (1.9)

S(k, t) in the large k limit shows a power-law behavior, referred to as the Porod law [1],

viz., one observes

S(k, t) ∼ k−(d+n), (1.10)

where n stands for the number of order-parameter components. For a scalar order

parameter, which is the only case considered in this thesis, the above relation reduces

to S(k, t) ∼ k−(d+1).

The small-k behavior of S(k, t) can also be written as a power-law [26] with an

exponent β, i.e.,

S(k → 0, t) ∼ kβ. (1.11)

The value of β for the considered NCOP dynamics is in general known to be zero [26, 27].

A plot of scaled structure factor for the NCOP dynamics is shown in Fig. 1.6. Again,

the data are obtained from the Monte Carlo simulations of the kinetic Ising model, in

d = 2, for a quench below Tc. The power-laws corresponding to small-k behavior and

the Porod law are shown there.

1.2.2 Growth in systems with conserved dynamics

In the conserved order-parameter (COP) dynamics, the system integrated order-

parameter remains unchanged during a phase transition [1]. One well-known example is

the phase separation in binary alloys which can be studied via the Ising model with the

Kawasaki exchange kinetics [28]. This belongs to Model B category [21]. In the Kawasaki

dynamics, the neighboring particles exchange positions during the Monte Carlo simula-

tion runs. The snapshots of a system of binary (A+B) mixture, taken during the course

of a Monte Carlo simulation run of the stated model, are shown in Fig. 1.7, for a quench

to a temperature below Tc. The colored and empty regions are related to the locations

of A and B particles, respectively.

At the coarse-grained level, the above phenomenon can be studied via the Cahn-

Hilliard equation which can be written as [1, 5]

∂ψ(~r, t)

∂t
= −∇2

[

aψ(~r, t) − bψ3(~r, t) + c∇2ψ(~r, t)
]

, (1.12)
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Figure 1.7: The evolution snapshots of a two-dimensional system of binary (A+B)
mixture which undergoes phase separation. This system follows the conserved order-
parameter dynamics. The results are from the Monte Carlo simulation of the Ising
model with Kawasaki dynamics. The colored regions contain the A particles and the
empty regions, B particles.

where the parameters a, b, and c are temperature dependent constants, same as in the

case of TDGL equation.

The Lifshitz-Slyozov-Wagner (LSW) theory describes the domain growth in these

systems [29, 30]. The domains grow via the evaporation of small droplets and conden-

sation of corresponding mass onto the larger droplets. In this particle diffusion process,

the interface velocity scales as |∇µ|, where µ is the chemical potential. At the interface

µ ∼ γ/ℓ, γ being the surface tension. So the interface velocity can be written as

dℓ

dt
∼ 1

ℓ2
. (1.13)

An integration provides the power-law growth

ℓ(t) ∼ t1/3. (1.14)

This is the LSW growth law [29, 30].

In fluids, the growth dynamics is rather complex [9–13]. Because of the influence

of hydrodynamics, the late time growth will be faster [9, 12, 31, 32]. This type of

systems belong to the class of Model H [21]. The growth in such systems is diffusive

in the early time regime, and the power-law exponent obeys the LSW value [29, 30],

viz., α = 1/3. Beyond a certain time, when ℓ crosses a critical number, hydrodynamics

becomes important, and the growth exponent attains a value [9] α = 1. This regime is

referred to as the viscous hydrodynamic regime. At much later time, inertia dominates

and the growth exponent crosses over to a value [12] α = 2/3. This is known as the
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inertial hydrodynamic regime. This overall picture we summarize as follows [1]:

ℓ(t) ∼



















t1/3, diffusive regime,

t, viscous hydrodynamic regime,

t2/3, inertial hydrodynamic regime.

(1.15)

This picture applies to interconnected domain morphology. For much off-critical

quenches, for which disconnected cluster morphologies emerge, manifestation of hydro-

dynamics occurs in a different way. This we will discuss later.

1.2.3 Aging Phenomena

Further information on relaxation of a system during a nonequilibrium process can be

obtained via two-time quantities. An example of such a quantity is the autocorrelation

function, defined as [5, 27, 33–36]

Cag(t, tw) = 〈ψi(t)ψi(tw)〉 − 〈ψi(t)〉〈ψi(tw)〉. (1.16)

Here tw is the time at which an observation starts. This is referred to as the waiting

time or age of the system. Note that t (> tw) here is the observation time. For a system

at equilibrium, Cag(t, tw) from different tw values overlap with each other when plotted

versus the translated time, i.e., t−tw. This property is referred to as the time translation

invariance [5]. For aging in considered nonequilibrium systems, the relaxation of an older

system is slower than the younger ones, giving rise to the violation of time translation

invariance. Schematic plots depicting this fact are shown in Fig. 1.8. It can be seen

there that the decay of Cag(t, tw) slows down with the increase in the tw values. However,

for large tw values and when t ≫ tw, Cag(t, tw) from different tw scale with t/tw or ℓ/ℓw

as [33, 34]

Cag(t, tw) ∼ (ℓ/ℓw)−λ ∼ (t/tw)−λα, (1.17)

where ℓ and ℓw represent the domain lengths at t and tw, respectively. The exponent λ

is the aging exponent.

The values of λ, for the systems with NCOP dynamics, typically follow the bounds

predicted by Fisher and Huse (FH) [34]:

d

2
6 λ 6 d. (1.18)
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Figure 1.8: Schematic plots of Cag(t, tw), versus t− tw, for different tw values. For larger
tw values relaxation is slower than the ones with the smaller tw values. This violates the
time translation invariance.

Later, a more general lower bound was introduced by Yeung, Rao and Desai (YRD) in

the context of COP dynamics [27], that reads

λ >
d+ β

2
. (1.19)

In the case of typical NCOP dynamics, the value of β is 0, as shown in Fig. 1.6. So, in

this case both FH and YRD lower bounds turn out to be the same. But for the COP

dynamics the value of β can differ significantly from the above mentioned value [26, 27].

In this case β is 2 in d = 1, and β = 4 in d = 2 and 3, for typical Ising-like systems.

Detailed discussions about the values of β in different situations during NCOP dynamics

can be found in later chapters.

Another important nonequilibrium aspect of phase transition is persistence of order-

parameter. A probability, P (t), referred to as the persistence probability, in this context

is defined as the fraction of unperturbed particles or spins till time t [37, 38]. This
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quantity also exhibits interesting power-law behavior:

P (t) ∼ t−θ, (1.20)

where θ is referred to as the persistence exponent. In the literature there have been

much interest in the estimation of this exponent [37–40].

In most studies of kinetics of phase transition the focus has been on late time behavior.

In critical phenomena, understanding of the corrections to the critical exponents, when

a system is far away from the critical point, has been obtained via advanced methods.

Early time behavior in kinetics can contain analogous corrections. These have received

only limited attention [41].

1.3 Computational Techniques

Main computational tools that we have used for carrying out various studies are the

Monte Carlo [22, 23, 42] and Molecular Dynamics [42, 43] simulation techniques. Brief

descriptions of these methods are given below.

1.3.1 Monte Carlo Simulation

In the Monte Carlo (MC) method, the sampling of the states is done in a stochastic

manner, with the help of the random number generation [22, 23, 42]. Different properties

of a system can be calculated by sampling the relevant regions of phase space and taking

the averages over many such samples. The accuracy of the MC method lies in the number

of such samples.

In this thesis, we have used the MC method to study the para-to-ferromagnetic

transition with the help of the nearest neighbor Ising model [1] with Glauber dynamics

[24]. Two different algorithms we have used for various studies. These are Metropolis [44]

and Glauber algorithms [24]. These algorithms differ from each other by the definition

of the transition probability [22]. Using the transition probabilities, in MC methods, the

state of a system at a given time can be obtained from that at the previous time step.

The process is Markovian, i.e., the system’s current state doesn’t depend on its history

[22, 23]. In these processes the detailed balance condition implies that the system is in

equilibrium. This condition is expressed as [22, 23]

Pnπn→m = Pmπm→n. (1.21)
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Here, Pn is the probability of the system to be at the nth state and πn→m is the transition

probability of the system for going from the state n to m [22, 23]. The transition

probability may be separated into two parts [22, 23]:

πn→m = gn→m ×Wn→m, (1.22)

where gn→m is the probability of the generation of a state m given that the present state

is n, and Wn→m is the probability with which the state m gets accepted from a state n.

The latter is called the acceptance probability. We can consider g to be symmetric and

rewrite the expression for detailed balance condition as [22, 23]

PnWn→m = PmWm→n. (1.23)

The probability, Pn, for a system, with the partition function Z, having energy En at

the nth state, can be written as [22, 23]

Pn =
exp(−En/kBT )

Z
, (1.24)

where kB is the Boltzmann constant. Here the ratio of the probabilities of the system

being at two states n and m will depend on the energy difference between them, i.e.,

exp(−∆E/kBT ). By satisfying the detailed balance condition, the acceptance probabil-

ity for the Metropolis algorithm is given by [44]

W (n → m) = min(1, exp(−∆E/kBT )). (1.25)

The acceptance probability for the Glauber algorithm is given by [24]

W (n → m) = 1 + Si tanh(Ei/kBT ), (1.26)

where Ei is the energy of the spin at the ith site in a state n.

The steps followed for the implementation of the MC method in the Glauber Ising model

are given below [22, 23]:

1. Generate an initial spin configuration.

2. Choose a site randomly and flip the spin at that site. This is a trial move. Calculate

the energy before and after this trial move.
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3. Generate a random number, say, r, lying between 0 and 1. If r ≤ acceptance

probability, accept the move in step (2). If not, flip the spin back to the previous

state.

4. Repeat steps (2) and (3) for Ld times, where L is the length and d is the dimen-

sionality of the system. The Ld trial moves make one Monte Carlo step (MCS), a

typical unit of time.

Wolff Algorithm

Near the critical point, the systems encounter severe slowing down [21]. In this region of

the phase diagram, relaxation becomes very slow due to the diverging correlation length,

ξ (∼ |T − Tc|−ν). The corresponding time scale, τ , diverges as [3, 45]

τ ∼ ξz, (1.27)

where z is a dynamic critical exponent. In computers, one works with finite systems,

and so, the correlation length is bounded by the linear dimension of the system, say, L.

Thus, at the critical point one writes Eq. (1.27) as [45]

τ ∼ Lz. (1.28)

For the Glauber Ising model the value of z is ≃ 2.18 in [46, 47] d = 2 and ≃ 2.03 in

[46] d = 3. It is evident that as the linear dimension of the system increases, the system

relaxes slower and slower. To avoid this, one can use cluster algorithms instead [48], if

dynamics is not of concern. In this thesis, we used the Wolff cluster algorithm [49] for

obtaining equilibrium configurations near the critical point. The algorithm is described

below [49]:

1. Pick a site i randomly from the lattice.

2. Identify the nearest neighbors with a similar spin value and form the bonds between

them with a probability 1−exp(−2βJ). All the spins connected with bonds belong

to a single cluster.

3. Repeat step (2) for each connected spin and add it to the cluster until all such

spins are placed inside it.

4. Flip the whole cluster. This is one Wolff step.
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An important feature of the Wolff algorithm is that this is a rejection-free method. Due

to this, the relaxation time decreases, making the simulation more efficient near Tc.

1.3.2 Molecular Dynamics Simulation

We use molecular dynamics (MD) simulations for studying kinetics of phase transition

in a system described by the Lennard-Jones (LJ) potential of the form [42, 43]

U(r) = 4ε

[

(

σ

r

)12

−
(

σ

r

)6
]

. (1.29)

Here ε is the interaction strength, σ is the diameter of the particles, and r is the inter-

particle distance. In our simulations we have used a truncated, shifted and force cor-

rected LJ potential [50]:

Ũ(r) = U(r) − U(rc) − (r − rc)

(

dU

dr

)

r=rc

, (1.30)

with the cut-off distance, rc, chosen to be 2.5σ.

MD simulation is typically a deterministic method [42, 43], where the positions and

velocities of the particles in a many-body system are determined by solving the Newton’s

equations of motion. Different algorithms exist to solve these equations. We have used

the well-known velocity Verlet algorithm [42, 43]. In this scheme, the position and the

velocity of the ith particle are effectively updated via the equations [42, 43]

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
~fi(t)

2mi

∆t2, (1.31)

and

~vi(t+ ∆t) = ~vi(t) +
~fi(t+ ∆t) + ~fi(t)

2mi

∆t. (1.32)

In the above equations ~ri, ~vi, mi, and ~fi represent the position, velocity, mass and force

of or on the ith particle in the system. The force ~fi can be determined from the gradient

of the potential of the ith particle due to the others, i.e., ~fi = −~∇Ui.

Computing the force for each pair of particles in the MD simulations is much time

consuming task. To reduce this computational time, we have used the Verlet list and cell

list algorithms [42, 43]. For the Verlet list, we tabulate the neighbors within a cut-off

radius rv (rv > rc) for each particle in the system. This makes the simulation less time-
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consuming since the number of pairs to be considered for the force calculation reduces

considerably. In the case of cell list, the lattice, say simple cubic, of linear dimension L,

is divided into smaller lattices of dimension ℓcell × ℓcell × ℓcell such that L/ℓcell > rc. A

list can be made for each of the cells, again making the force calculation faster.

The MD simulations are also performed in the canonical ensemble, where the tem-

perature control can be done by using different thermostats. A widely used temperature

controller is the Nosé-Hoover thermostat [51, 52], which is considered good for preserving

hydrodynamics in the system. We have used the same for our simulations.

Nosé-Hoover Thermostat

This is based on an extended Lagrangian formalism [51, 52], where an additional coor-

dinate (a virtual variable), s, with an effective mass, Q, is introduced in the Lagrangian

of an N-body system. The modified equations of motion in this formalism are [51, 52]

~̇ri = ~pi/mi, (1.33)

~̇pi = −∂U(~rN )

∂ri
− ζ~pi, (1.34)

and

ζ̇ =
1

Q

(

∑

i

~p2
i

mi
− 3NkBT

)

. (1.35)

The parameter ζ is a friction coefficient and is defined as ζ = ṡ/s. Modified position and

velocity update equations within the Verlet algorithm with the Nosé-Hoover formalism

can then be written as [51, 52]

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+





~fi(t)

mi

− ζ(t)~vi(t)





∆t2

2
, (1.36)

~vi(t+ ∆t) =~vi(t) +
∆t

2





~fi(t)

mi
+
~fi(t+ ∆t)

mi
− 2ζ(t)~vi(t)





− ∆t2

2





ζ(t)

2





~fi(t)

mi
+
~fi(t+ ∆t)

mi
− 2ζ(t)~vi(t)





+ ~vi(t)





∑

j

~vj(t)
2 − 3NkBT



 /Q



 . (1.37)
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To carry out “some” of the MD simulations, we have used the Large-scale Atomic/

Molecular Massively Parallel Simulator (LAMMPS) [53, 54] package.

1.4 Finite-size Scaling Analysis

In computer simulations, the finiteness of a system does not allow quantities to grow

indefinitely. To overcome such finite-size effects, one can use finite-size scaling (FSS)

analysis in the studies of both equilibrium and non-equilibrium properties of a system

[55]. Let us consider the equilibrium critical phenomena. The critical singularity of any

thermodynamic quantity, X, can be written as [7]

X = X0ǫ
−x, (1.38)

where X0 is the critical amplitude, ǫ is the reduced temperature [= (T − Tc)/Tc] and x

is the critical exponent. E.g., the blowing up of the correlation length, ξ, in terms of ǫ,

is written as [7],

ξ ∼ ǫ−ν . (1.39)

Combining Eqs. (1.38) and (1.39) one obtains

X ∼ ξx/ν. (1.40)

Since we always deal with finite systems in computers, ξ will be limited by the system

size at Tc. So, Eq. (1.40) reduces to

X ∼ Lx/ν . (1.41)

One can then introduce a scaling function Y (y) in the above equation [55]:

X = Y (y)Lx/ν , (1.42)

with y being the scaling variable, which is a dimensionless quantity [say, = (L/ξ)1/ν ].

Y (y) can be appropriately derived or constructed such that, in the limit y → 0, Y (y) →
constant, and when y → ∞, Y (y) ∼ y−x, satisfying the thermodynamic limit singularity

when ξ << L. By exploring different system sizes and obtaining the best collapse of

data for Y (y), one can acquire knowledge about the behavior of a quantity in the large

system size limit.
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In an analogous manner FSS can be formulated for nonequilibrium growth problems

[56]. Note that FSS analysis can also be used for extracting crucial finite-size properties

of various systems. One such example is concerning the utility of FSS in the study of

disease spread in a population [20]. A brief description of this is given below.

Finite-size scaling in the context of disease spread

For an epidemic, the natural early time pattern of infection is of the exponential form

[57]

N = N0 exp(mt), (1.43)

where N is the infected population at time t, and N0 and m are constants. Suppose

Ns is the population that gets infected when the infection spreading pattern deviates

from its exponential behavior. This is similar to the appearance of finite-size effects and

connected to the limiting number of infections when the spread has stopped. By using

this fact and following steps similar to the equilibrium case above, a scaling ansatz can

be formulated as [20]

lnn = Y (y) lnns, (1.44)

where n = N/N0, ns = Ns/N0, and y = ln ns/mt. Here Y (y) → constant as y → 0, and

Y (y) ∼ y−1 as y → ∞.

1.5 Overview of the Thesis

In this thesis, we study various nonequilibrium properties of a few systems exhibiting dif-

ferent kinds of phase transitions. Even though the Synopsis contains similar information

below we repeat the overview of the thesis very briefly.

In chapters 2, 3, 4, and 5, our study is focused on various properties of the ordering

Ising ferromagnet. The main objective of chapters 2 and 3 is to identify and understand

the anomalous behavior of aging during zero and other low-temperature quenches.

The aging properties in these systems also get influenced by the spatial correlations

present in the initial structures. In this regard, in chapter 4, we study aging in the

specific cases of quenches from critical temperatures, Tc, and compare the results for

quenches from infinite temperature.

In chapter 5, a more systematic study on the dependence of coarsening dynamics on

the initial correlation is carried out. This study has connection with a counter-intuitive

effect referred to as the Mpemba effect [58, 59]. The latter is related to faster freezing of a
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hotter body of water than a colder one [58]. We investigate the presence of similar effect

in ferromagnetic ordering. For all the studies mentioned above, we have used Monte

Carlo simulations [22]. In each of the cases there was no constraint on the conservation

of the order parameter over time.

Chapter 6 contains the study of the kinetics of vapor-solid phase transition, for

which the order parameter is a conserved quantity. Here we consider a single compo-

nent Lennard-Jones system to study the formation and growth of fractal clusters in this

system. For this we perform molecular dynamics simulations in hydrodynamic environ-

ment.

The last chapter contains results on disease spread in a population. Here we un-

dertake a scaling analysis of COVID-19 data by using a recently developed finite-size

scaling method in this context [20]. One of the objectives here is to identify universal

features of the spread.
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Chapter 2

Finite-Size Scaling Study of Aging

during Coarsening in Nonconserved

Ising Model: The case of zero

temperature quench

2.1 Introduction

When a homogeneous system is quenched inside the coexistence curve, the system falls

out-of-equilibrium. Here we provide a discussion of the related aspects and define the

problem following Ref. [1]. During the evolution of this system towards a new equilib-

rium, various structural quantities exhibit interesting scaling properties [2–14]. In this

context, a space-dependent order-parameter can be defined as [2, 3]

C(~r1, ~r2; t) = 〈ψ(~r1, t)ψ(~r2, t)〉 − 〈ψ(~r1, t)〉〈ψ(~r2, t)〉, (2.1)

with ψ being a space- and time-dependent order-parameter field. The quantity in Eq.

(2.1) is known as the two-point equal-time correlation function [2, 3]. We will denote

this as C(r, t) with r being the scalar distance between ~r1 and ~r2 (r = |~r1 −~r2|). On the

other hand, a two-time correlation function, represented by Cag(t, tw), can be defined

with ~r1 = ~r2 [3]. This quantity is referred to as the two-time autocorrelation function

and is written as [3, 4],

Cag(t, tw) = 〈ψ(t, ~r1)ψ(tw, ~r1)〉 − 〈ψ(t, ~r1)〉〈ψ(tw, ~r1)〉. (2.2)
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Here tw (≤ t) is referred to as the waiting time or the age of the system. It is worth

mentioning that Cag(t, tw) is used for the study of aging in the nonequilibrium systems

[3, 4] and may contain information on relaxation related to equilibration inside individual

domains as well.

For self-similar structures, C(r, t) typically exhibits the scaling behavior [2, 3, 10]

C(r, t) ≡ C̃(r/ℓ(t)), (2.3)

where ℓ(t) is a characteristic length scale of the system which grows in a power-law

manner [2], with exponent α, as

ℓ ∼ tα. (2.4)

The Fourier transform of C(r, t) is the structure factor, S(k, t), scaling form of which

can be written as,

S(k, t) ≡ ℓdS̃(kℓ), (2.5)

where S̃(kℓ) is a scaling function independent of time and d is the dimension of the

system.

In many of the systems, Cag(t, tw) is also found to exhibit a scaling form [3–5, 7–

9, 12, 15, 16]

Cag(t, tw) ≡ C̃ag(x); x =
ℓ

ℓw
. (2.6)

Here ℓw is the average size of the domains in the system at time tw.

For the nonconserved order-parameter, a quantitative theory for scaling behavior was

given by Ohta, Jasnow and Kawasaki [10]. This was based on a Gaussian approximation

of the auxiliary field concerning the time dependent Ginzburg-Landau (TDGL) equation.

From this model a general expression for the correlation function was obtained as [17]

COJK(r; t, tw) =
2

π
sin−1

(

2
√
ttw

t+ tw

)d/2

exp

[

−r2

4D(t+ tw)

]

, (2.7)

where D is a diffusion constant. For t = tw, this reduces to

C(r, t) =
2

π
sin−1

[

exp

(

−r2

8Dt

)]

, (2.8)
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which is known as the Ohta-Jasnow-Kawasaki (OJK) function. For r = 0 and t >> tw,

from Eq. (2.7), one can obtain

Cag(t, tw) ∼
(

t

tw

)−d/4

, (2.9)

or

Cag(t, tw) ∼
(

ℓ

ℓw

)−λ

; λ =
d

2
. (2.10)

Here we have used the fact that α = 1/2, say, for the nonconserved Ising model [2, 3, 18].

Liu and Mazenko (LM) [5], using a similar but more general approach, obtained different

dimension dependence for λ. The outcome of the dynamical equation for the correlation

function, that LM constructed, matches with the OJK theory in the limit d → ∞.

Approximate solutions of the above mentioned equation provide [5] λ ≃ 1.29 and ≃ 1.67

in d = 2 and 3, respectively.

Two well-known bounds for the exponent λ are due to Fisher and Huse (FH) [4], and

Yeung, Rao and Desai (YRD) [7]. FH bound is applicable in the case of nonconserved

order-parameter dynamics. This is written as

d

2
≤ λ ≤ d. (2.11)

Notice here that the lower bound of Eq. (2.11) coincides with the value quoted in Eq.

(2.10), outcome of the OJK theory. A more general lower bound, given by YRD [7], in-

corporates the structural differences between the conserved and nonconserved dynamics,

and is defined as

λ >
d+ β

2
. (2.12)

Here β is the exponent related to the power-law behavior of small wave-number (k) for

structure factor [19, 20], i.e.,

S(k, t) ∼ kβ. (2.13)

For nonconserved Ising dynamics the value of β is zero [19, 20]. This leads to the

agreement of YRD bound with the FH lower bound in this case.

For the values of λ, the predictions of both OJK and LM agree with the FH bounds.

We mention here that there exists an argument, related to percolation, by FH [4], that

suggests λ = d− a, where a is the inverse of the exponent for the power-law singularity

of the percolation correlation length. This, e.g., provides λ = 5/4 in d = 2. However,

FH [4] cautioned about using this argument, as well as their upper bound.
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The results from Monte Carlo (MC) simulations of the nonconserved Ising model in

d = 2 seem to be consistent [15, 21] with the OJK function of Eq. (2.8), the growth

exponent α = 1/2 and the FH bounds for λ. The consistency with theory in the λ value

appeared true [15, 21] in d = 3 as well, for quenches to certain nonzero temperatures

(Tf), that lie above the roughening transition [22], from random initial configurations,

corresponding to an initial temperature, Ts = ∞. But for Tf = 0, the d = 3 Ising model

provided surprises [21, 23–30]. In this case, simulation reports on the time dependence of

ℓ differ from the theoretical expectation [18]. While some works reported α = 1/3, a few

reported even slower growth. In recent works [27, 30], with the simulation of very large

systems, it has been shown that the theoretical prediction of α = 1/2 can be obtained

only at very late time. Furthermore, studies with smaller systems, for Tf = 0, revealed

interesting freezing behavior with respect to reaching the expected ground state [28, 29].

Unusual structural aspects were reported for d = 3 [28, 29, 31, 32]. The scaling form of

correlation function was also shown to be different from the case of higher temperatures

[21, 33].

Recently, in Refs. [1, 33] the authors had reported that in space dimension d = 3,

for quenches to Tf = 0, the value of λ is ≃ 1.1. This is a significant observation in

the sense that, unlike for quenches to high temperature, the exponent is much smaller

than the FH lower bound. Thus, we have undertaken the task of substantiating this

observation by more authentic studies. This is, thus, clearly an extension of a study

initiated in Ref. [1]. In this connection, a natural question is: Is this special feature

related to the above mentioned freezing phenomena? If yes, does there exist a scaling

limit where Cag(t, tw) decays to zero? In other words, if one chooses larger and larger

system size, will Cag(t, tw) vanish when ℓ/ℓw increases indefinitely? If not, the overall

problem cannot be placed in the category of standard ever-growing systems, and scaling

concepts of nonequilibrium statistical mechanics will lose meaning. Thus, it is essential

to know the nature of freezing. For the validity of our analysis and conclusion, existence

of a linear relationship between the frozen length scale and system size is essential. If

such a relation appears to be true, other question is what affects the value of λ? Is there

any interesting structure-dynamics connection? This question was touched upon in Ref.

[33]. But more elaborate study of this we find necessary. For this purpose, similar study

in d = 2 can provide more insight into this.

Here note that freezing has also been reported [28, 29, 31] in d = 2. However, in

this dimension the character of the growing pattern, unlike in d = 3, remains unchanged

with the variation of temperature. It is worth examining then, to understand the role
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of structure in aging, whether or not there is a “special” value of λ for Tf = 0 in d = 2.

However, one of the latest results [34] for Tf = 0, in this dimension also, differs from

recent study [15] at high temperature, despite no structural difference. Thus, we revisit

the d = 2 case, by performing advanced analysis, with high quality data, to check if there

really exists a temperature dependence in λ. As mentioned above, outcome of such a

study will provide crucial insight. This work addresses this broad issue of structure-

dynamics connection and checks for the validity of the decay of autocorrelation to zero

in thermodynamic limit by examining the nature of freezing, via state-of-the-art methods

of analysis including a novel finite-size scaling (FSS) technique [15, 16, 35–39], the latter

itself containing an important feature that is to be discussed later.

Furthermore, even though all the above mentioned studies of kinetic Ising model use

(Glauber) spin-flip [35, 40] as trial move during the MC simulations [35], that does not

preserve the global order parameter, these moves were accepted with different proba-

bilities in different studies. For example, in Ref. [33], Metropolis algorithm [35] was

used, whereas Refs. [28] and [29] used the Glauber algorithm [35, 40]. Thus, it is also

important to establish that the results obtained via different algorithms do agree with

each other, particularly when unexpected observations have been reported on various

coarsening aspects for Tf = 0. Here we state that at Tf = 0 the trial moves that bring

no change in the energy are customarily accepted with the probabilities p = 0, 1/2 or 1,

the latter two correspond, respectively, to the Glauber and Metropolis methods. Such

an exercise we feel necessary particularly because of the fact that for p = 0 coarsening is

not observed. This was reported [28, 29] previously and was also independently verified

by us. In addition, to address the controversy on the growth exponent in d = 3, we

performed simulations with very large systems.

For the decay of Cag(t, tw), our conclusions are the following. Our results strongly

suggest that there exists no temperature dependence in pattern, growth and aging in

the case of d = 2. On the other hand, for d = 3, the value of the aging exponent appears

smaller than the FH lower bound. Outcomes from d = 2 and 3 suggest that the low

value of λ in d = 3 is due to the formation of different structure at Tf = 0 than high

temperatures which nicely comply with the construction of the YRD bound.

On the issue of freezing, the frozen length scale as well as the onset of finite-size effects

are system-size dependent with a linear relationship. This fact validates our scaling

analysis, implying that the obtained results are meaningful in the thermodynamically

large system size limit. Furthermore, for the domain growth, unambiguous confirmation

of the t1/2 behavior has been provided. Overall coarsening picture obtained by using
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Metropolis and Glauber algorithms are found to be consistent with each other, as far as

t → ∞ limit is concerned. Nevertheless, we caution the reader on choosing low value of

p. For such choices the amplitude of growth can be smaller and transient can be longer.

Thus, to observe the expected asymptotic behavior one requires much longer simulation

runs.

The rest of the chapter is organized as follows. Section 2.2 contains the discussion

on the model and methods, followed by the results in Section 2.3. The conclusions are

given in Section 2.4. Appendix contains a discussion on the finite-size scaling method.

2.2 Model and Methods

Nonconserved coarsening dynamics in the nearest neighbor Ising model, for Tf = 0, is

studied via MC simulations [35] on a square or simple cubic lattice. The Hamiltonian

of the model is given by

H = −J
∑

〈ij〉

SiSj, Si = ±1, J > 0, (2.14)

where 〈ij〉 stands for the nearest neighbors. The values of Tc for this model [35] are

= 2.269185...J/kB and ≃ 4.51J/kB, in d = 2 and 3, respectively, kB being the Boltzmann

constant. As opposed to the d = 2 case, in d = 3 the value is only approximate.

The simulations are performed by using Glauber spin-flip dynamics [40] where a trial

move is equivalent to selecting a spin randomly and changing the sign of it. During this

trial move, if the energy change, ∆E < 0, the move is always accepted and if ∆E > 0,

the move is rejected. For the case ∆E = 0, different probabilities p (> 0) can be

used for accepting the moves [28, 29]. In this work, we have used p = 0.5 and 1, that

correspond to Glauber [35, 40] and Metropolis [35] acceptance probabilities, respectively.

Such Ld trial moves correspond to one MC step (MCS), which is the unit of time in our

simulations. Here L is the linear dimension of a system, in units of a, the lattice constant.

In all our simulations, we set kB, J and a to unity.

The average domain length, ℓ(t), was obtained from the first moment of the distri-

bution function, P (ℓd, t), i.e. [21],

ℓ(t) =
∫

dℓdℓdP (ℓd, t). (2.15)
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Figure 2.1: Evolution snapshots from the Monte Carlo simulations of the 2D noncon-
served Ising model at Tf = 0, after quenching from Ts = ∞. These pictures correspond
to p = 1/2. The marked regions represent “up” spins and the locations of the “down”
spins are left unmarked. The linear dimension of the system is L = 512.

Here ℓd is obtained by scanning a system along different Cartesian directions; it is the

distance between two successive interfaces. The length scale can be calculated from

other methods also [41], e.g., from the decay of C(r, t). Results from various methods

should differ only by a proportionality constant.

All our presented results are averaged over multiple independent initial configurations.

This number, for growth and aging, falls in the range between five and 60, depending

upon the value of L. Other than the finite-size effects and freezing phenomena related

analyses, all data for the correlation functions are for L = 512, presented after averaging

over 100 and 20 independent initial configurations, in d = 2 and d = 3, respectively.

For the freezing phenomena, given that the studied systems are rather small, we have

obtained the quantitative results after averaging over several hundred initial configura-

tions.

In the related work of Ref. [1] all results were obtained for p = 1. If any resemblance

appears in figures with those in Ref. [1], differences are there either in the value of p or

in statistics (with new runs) or lengths of simulation runs or in space dimension or in

system size. For the sake of completeness and better understanding we have presented

an elaborate story.

2.3 Results

We start our discussion by presenting results for the pattern and growth. In Fig. 2.1 we

show snapshots taken during the evolution of the nonconserved Ising model at Tf = 0.
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Figure 2.2: (a) Scaling plots of the two-point equal-time correlation function. We have
shown C(r, t) as a function of r/ℓ, for both d = 2 and 3. In each dimension data from
three different times are included. The used values of ℓ in this figure were obtained
from C(ℓ, t) = 0.5. For all the other purposes we have used ℓ obtained from the first
moment of the domain size distribution function P (ℓd, t). The continuous curve there is
the Ohta-Jasnow-Kawasaki function. All results are for p = 1/2. (b) Same as (a) but
here we show comparison between outcomes from p = 1 and 1/2.
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These snapshots are from MC simulations in d = 2, with p = 1/2. Growth in the system

is clearly visible. To check for the self-similarity, in Fig. 2.2(a) we show scaling plots of

the two-point equal-time correlation function. In this figure, we present data from both

d = 2 and 3, with p = 1/2. Here the data from different times collapse on top of each

other implying the self-similar character [2, 3] of the growth. Interestingly, the master

curves from d = 2 and d = 3 do not match with each other [21]. It can also be seen that

the d = 2 data are in agreement with the OJK function [10, 21]. We note here, C(r, t)

at high temperatures, for both the dimensions, agree well with the OJK form [21]. This

states the fact that the pattern at Tf = 0, in d = 3, is special. This is in line with

previous reports by other authors [21, 23–30, 33] and will be useful in explaining new

observation with respect to aging property. Fig. 2.2(b) contains C(r, t) data from both

the dimensions, for p = 1/2 as well as for p = 1. It appears that the results for p = 1/2

nicely overlap with those for p = 1 when the distance axis is appropriately scaled by

the corresponding average domain sizes. These results confirm that both the algorithms

provide similar structure.

In Fig. 2.3(a) we present data for domain growth, viz., we show ℓ(t) versus t for

p = 1, on a log-log scale. Results from both the dimensions are included. The 2D data

exhibit a unique power-law behavior, with α ≃ 1/2, over an extended period of time.

The departure from the above scaling in the long time limit, clearly seen for L = 512

(shown with symbols), is due to the finite-size effects. While this behavior in d = 2 is

same as the results from nonzero temperature, the case of d = 3 is very different from our

observation for coarsening at Tf higher than the roughening transition [22] (here note

that in d = 2 there does not exist a nonzero roughening transition). The 3D data in Fig.

2.3(a), after a brief initial period (with higher exponent corresponding to annihilation

of local defects), display [8, 21, 23–26] growth with α ≃ 1/3 over more than two decades

in time. At very late time the data exhibit a crossover [21, 27, 30] to α ≃ 1/2. Towards

the end of the presented time window, we see signature of finite-size effects for L = 512

(see the data set with symbols).

With respect to the appearance of finite-size effects, however, there is similarity

between the 2D and 3D cases. See the deviation of data with symbols, corresponding to

L = 512 for both the dimensions, at ℓ ≃ 205 (= 0.4L), marked by the dashed horizontal

line. For larger system size (see the dashed line for d = 3 with L = 750 and the

dashed-dotted line for d = 2 with L = 2048), of course, the growth with α = 1/2 is

more prominent due to lesser effects of finite system size over the presented time range.

Note that such a clear confirmation of t1/2 behavior for extended period of time in
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Figure 2.3: (a) Log-log plots of average domain size versus time, for p = 1. We have
shown data from both the dimensions. The continuous lines represent various power laws,
exponents for which are mentioned in the figure. The dashed horizontal line, at ℓ = 0.4L,
marks the appearance of finite-size effects for data sets corresponding to L = 512. This
figure partially resembles Fig. 5.1 of Ref. [1]. (b) Instantaneous exponent αi

(

= d ln ℓ
d ln t

)

is plotted versus ℓ for d = 3.
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Figure 2.4: Log-log plot of average domain length versus time. We have shown data from
d = 2 and 3. The continuous lines represent power-laws, exponents being mentioned
next to them. The dashed horizontal line marks the appearance of finite-size effects, at
ℓ = 0.4L, for L = 512. The presented data are with p = 1/2.

d = 3 could not have been previously possible because of consideration of much smaller

system sizes. This point is further justified by presenting the instantaneous exponent

[42] αi

(

= d ln ℓ
d ln t

)

as a function of ℓ in Fig. 2.3(b). For L = 750, the length scale “range”

that follows t1/2 behavior is a factor of 2 larger than that for L = 512, the size that

was previously considered. If the brief “αi ≃ 1/2” period in the L = 512 case is argued

to be a statistical fluctuation, the stable data set for L = 750 certainly removes this

confusion that actually is an artefact of finite-size effects in the smaller system size data.

Since we are now confident that growth remains unaffected even for quench to very

low temperature, in both the dimensions, any temperature related anomaly in the aging

property may safely be attributed to the structural aspect. The appearance of finite-size

effects at ℓ ≃ 0.4L at Tf = 0 is very similar to that for non-zero values of Tf . We mention

here, in the 3D case the very late time finite-size behavior for Tf = 0 is rather complex

[28, 29]. The systems almost never reach the ground state (this problem is perhaps less

severe in d = 2) even at the end of extremely long simulation runs [28, 29, 43, 44]. One

may anticipate this fact to be somewhat more severe for p < 1.
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Fig. 2.4 shows log-log plots of ℓ versus t, for both the dimensions, for the p = 1/2 case.

Like in the p = 1 case, the 2D data appear consistent with the theoretical expectation all

the way till the finite-size effects appear [21] at ℓ ≃ 0.4L. For L = 512, see the departure

of the data set from that of L = 2048. Plot for the d = 3 case also exhibits a trend

similar to the p = 1 case – there exists a consistency of the data set with an exponent

α ≃ 1/3 for nearly three decades in time, after which a crossover appears. This is very

clearly visible in the L = 750 case. By examining the L = 512 data one may conclude

that the finite-size effects appear a little earlier than when ℓ reaches 0.4L. This could

well be due to statistical reasons. Here note that, as already mentioned above, runs for

many initial configurations get trapped in metastable states very early, without allowing

us to appropriately probe the post-crossover region.

Data presented in Fig. 2.4 [as well as in Fig. 2.3(a)] are averaged by including such

runs as well. In Fig. 2.5(a) we show ℓ versus t data for two typical runs, on linear scale,

for L = 512. It is clear that some runs can encounter freezing around the time (or even

before) when a crossover is expected. This necessitates either extremely good statistics

or very large system size. In part (b) of this figure, we show the plot for the data set

that did not show a signature of freezing, on a log-log scale. Clearly, a t1/2 behavior is

very prominent towards the end. This overall picture is true for both values of p. We

will provide further discussion on freezing phenomena towards the end.

From the growth data for d = 2 and 3, obtained by setting p to 1/2 and 1, we

make the following further observations. In both the dimensions growth amplitude is

smaller for lower value of p. In fact, if carefully examined, data in Fig. 2.3(a) and Fig.

2.4 suggest that for d = 3 the preasymptotic growth occurs with a smaller exponent for

lower value of p. On the other hand, the length scale at the onset of t1/2 behavior remains

unchanged. This implies that, to observe the theoretically expected value of α in the

higher dimension one needs to run a large system for a longer period of time, which is

a computationally difficult task. Here one may ask, can the overall slower growth for

smaller p affect the value of λ? Answer to that question is not obvious to us.

From the demonstration in Fig. 2.5 one may ask: why not analyze the data sets

that do not freeze? For large enough systems, simulation of which is a necessity here,

it is difficult to choose which systems will finally exhibit freezing and which ones not.

Furthermore, as we will discuss in detail later, in connection with studies via smaller

systems, practically no system reaches the ground state in d = 3. Thus we prefer to

work with averaging over all initial realizations and rely on certain scaling rules that will
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Figure 2.5: (a) Plot of domain length versus time in d = 3, for two different initial
configurations, from systems with L = 512. (b) Log-log plot of average domain size
versus time for the data sets that did not undergo freezing. These results are obtained
with p = 1/2.
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be discussed later. Now we move to the aging property of the system. We will present

the aging results for p = 1/2. For FSS analysis we will include data for p = 1 as well.

In Figs. 2.6(a) and (b) we have plotted the autocorrelation function, Cag(t, tw), versus

ℓ/ℓw, in d = 2 and d = 3, respectively. A nice collapse of data from different tw values

are obtained in both the dimensions. For large x values deviations are present in all the

data sets, which perhaps are related to finite-size effects [15, 16]. For higher tw values the

deviations occur earlier. Note here that for a higher value of tw smaller fraction of the

system size is available for further growth. For d = 3, the presented data did not suffer as

much from the finite-size effects. In this dimension running simulations for large systems

over very long period, to observe such effects, is computationally very demanding. Note

that the appearance of finite-size effects, if deviations from the scaling really imply the

fact, in the autocorrelation function, in both the dimensions, again complies with our

above quoted limit ℓ ≃ 0.4L that we observe for the domain growth. The solid lines in

these figures correspond to the power-laws with the exponents given by LM predictions of

λ. In the case of d = 2, the data are consistent with this, but for d = 3, the discrepancy

between the data and LM value is clearly visible [see Fig. 2.6(b)]. Furthermore, the

scaling functions obtained from the simulation shows continuous bending [15]. This, of

course, is possible when there exist corrections to the power-law scaling [15]. In such

a situation, calculation of the instantaneous exponent [5, 15, 16, 42, 45] gives useful

information. This can be defined as,

λi = −d lnCag

d ln x
. (2.16)

We plot λi versus 1/x (recall, x = ℓ/ℓw), for the d = 2 case, in Fig. 2.7(a), from two

different system sizes. The value tw is fixed here. Data for the smaller value of L deviate

from a linear behavior, as x increases, when the value of x is approximately 2. This is

due to the finite-size effects and can be confirmed from the continued linear trend for

the data set from the larger value of L. Results for different values of tw, for fixed L,

provide similar information. This is, as stated above, because of lesser effective system

size available for larger tw.

A linear extrapolation to x = ∞, using data unaffected by finite-size effects, provides

a value of λ close to 1.3. Invoking the linear behavior,

λi = λ− B/x, (2.17)
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Figure 2.6: (a) The plots of the autocorrelation function, Cag(t, tw), versus ℓ/ℓw, from
three different tw values for d = 2, in log-log scale. The solid line represents a power-law
decay with exponent given by LM (= 1.29) [5]. (b) Same as (a), but here the results are
from d = 3. The solid line here has the power-law exponent λ = 1.67. All the results
correspond to p = 1/2.
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Figure 2.7: (a) Plots of instantaneous exponent, λi, versus 1/x (= ℓw/ℓ), from two
different system sizes for the case d = 2. We have fixed the value of tw at 100. The solid
line is a guide to the eye. (b) Same as (a), but the results here are from d = 3, and tw is
fixed at 1000. In both the figures the FH lower bounds have been marked by d/2. All
the results were obtained by fixing p to 1/2.
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in the definition in Eq. (2.16), one obtains the full form of the scaling function [15, 16],

i.e.,

Cag(t, tw) = Ae−B/xx−λ, (2.18)

where A and B are constants.

This implies, a power law can be realized only in the t >> tw limit. Like in the critical

phenomena here also it is natural to expect that the corrections should be described by

power-laws. However, separately estimating exponents for corrections of different orders

is a difficult task. Given the trend of the data sets, the exponential factor appears to

describe the corrections reasonably well. We will make further comment on the accuracy

of this full form later.

In Fig. 2.7(b), we present the results for d = 3. A linear extrapolation provides a

value of λ close to 1.2 here. Recall that the LM prediction for λ in d = 3 was ≃ 1.67. So,

in this case there exists discrepancy between the simulation results and LM prediction.

Furthermore, λ ≃ 1.2 violates the FH lower bound as well. Note that for d = 2 in

all temperatures [15, 33], including the one discussed here, and for d = 3, for higher

temperatures, above the roughening transition [15], the value of λ obtained from the

simulation studies are in good agreement with the LM prediction, and are well within

the FH bound.

A finite-size scaling analysis can provide more accurate exponents [15, 16], given that

the data for λi, at large x, may suffer from finite-size effects, preventing unambiguous

choice of regions for performing a (linear) fit. Further, this will bring confidence in

the empirical form of Cag(t, tw), given in Eq. (2.18). In addition, this will confirm our

speculation on finite-size effects.

In a finite-size scaling method, one introduces a scaling function, Y , which is inde-

pendent of the system size [15, 16, 35–37, 46]. To make Y independent of system size,

one needs to appropriately choose a dimensionless scaling variable y. For the present

problem

Y = Cag(t, tw)eBy/ywyλ
w, (2.19)

with

y =
L

ℓ
. (2.20)

See Appendix for details.

In Fig. 2.8, we present the results from the finite-size scaling analysis for d = 2 in

(a) and for d = 3 in (b). These results are for p = 1/2. In the case of d = 2, very good

collapse of data, along with consistency with the limiting behavior [see Eq. (A.2) in
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Figure 2.8: (a) The plot for the finite-size scaling analysis of Cag(t, tw) in d = 2. The
vertical arrow marks the departure of the scaling function from the yλ behavior. (b)
Same as (a), but here it is for d = 3. The solid lines represent power-laws with the
values of exponent mentioned next to them. All results are for p = 1/2.
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Figure 2.9: Same as Fig. 2.8 but here it is for p = 1.
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Appendix], is obtained for λ = 1.32 and B = 0.80. This value, within statistical error, is

consistent with the LM prediction, and also with a previous study [15] for Tf = 0.6Tc. In

the large y limit the data are consistent with the power-law amplitude A ≃ 2. This can

be appreciated by considering Cag(t, tw) = 1 at x = 1 and B = 0.8. The departure from

the power-law behavior is marked by a vertical arrow in Fig. 2.8(a). This corresponds to

ℓ = 0.4L where finite-size effects occur. A robust power law behavior for Y till the finite-

size effects appear, irrespective of the system size, provide confidence in the exponential

correction factor. In this connection, also note that for L = 512 and tw = 100, the

power-law behavior extends over t− tw ranging between 0 and approximately 6000. One

may think of improving accuracy in the estimation of λ by allowing for an adjustable

exponent in Eq. (2.17), by replacing x by xγ . This exponent will, of course, appear in

the argument of the exponential correction factor. We have checked that best collapse

appears for γ ≃ 1 and λ ≃ 1.32. Nevertheless, we caution here that the scaling analysis

may be less reliable when there are large number of adjustable parameters.

In the case of d = 3 the value of exponent λ, from such analysis with γ = 1, turns

out to be 1.2, which is very different from that at 0.6Tc [15], and also far below the FH

lower bound. This is consistent with the results from instantaneous exponent analysis.

Now our aim is to check whether the true violation of lower bound is occurring or not.

This can perhaps be understood from the derivation of YRD which we will discuss

shortly. In Fig. 2.8, before exhibiting a nearly flat behavior the 2D data fall rather

sharply, compared to the 3D case. This may be related to the more prominent freezing

phenomena in the latter dimension. This fact, as promised, we will discuss later.

The FSS results for p = 1 are shown in Fig. 2.9. Here also we obtain excellent

collapse of data in both the dimensions. The presented results correspond to λ = 1.32 in

d = 2 and 1.15 in d = 3. These numbers are consistent with those for p = 1/2. In both

the figures, viz., Fig. 2.8 and Fig. 2.9, we have shown that data collapse can be obtained

by considering different values of tw. This is an important feature and is explained in

the Appendix.

Using the structure factors at tw and t, YRD arrived at

Cag ≤ ℓd/2
∫ 2π/ℓ

0
dkkd−1[S(k, tw)S̃(kℓ)]1/2, (2.21)

in which they substituted the small k behavior of S(k, tw) [cf. Eq. (2.13)], to obtain

the lower bound. A plot of S(k, tw) versus k on a log-log scale is shown in Fig. 2.10

for tw = 0 and 2000 from d = 3, the latter belonging to the scaling regime of Cag(t, tw),
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Figure 2.10: Plots of structure factor, S(k, tw), versus k, in d = 3, for two different tw
values. The solid line is a power-law for which exponent is mentioned in the figure. The
results are for p = 1/2.

Figure 2.11: Log-log plot of the autocorrelation function, Cag(t, tw), versus ℓ/ℓw, for
tw = 0 in d = 3. The solid line represents the power-law decay with an exponent which
is mentioned in the figure. The data are for p = 1/2.
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Figure 2.12: Typical representative final snapshots from (a) d = 2 and (b) d = 3. These
snapshots were obtained by using p = 1/2.

for p = 1/2. The data from later waiting time are consistent with β ≃ −0.5 and thus,

within numerical error, our quoted value of λ is in reasonable agreement with the YRD

number. On the other hand, for tw = 0 we expect a flat curve for S(k, tw), implying

β = 0, which indeed is the case. Thus, for tw = 0 the exponent λ should satisfy the

FH lower bound. Furthermore, since the S(k, tw = 0) plot is completely flat, by taking

lesson from Eq. (2.21) one may expect a “pure” power-law behavior of Cag(t, tw) for

tw = 0. In Fig. 2.11 we present a log-log plot of Cag(t, tw) versus x for tw = 0 that

matches this expectation, confirming the structure-dynamics-connection further. Here

we mention that a β = 0 behavior in S(k, t) may be realized in the scaling regime of

Cag(t, tw) also. But to realize that, as well as if λ, in that case, crosses over to a higher
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value, one needs to simulate systems 10 times larger than considered here, for extremely

long time.

Nice collapse of data in the FSS analysis of Cag, along with the growth data, is

suggestive of the fact that the length scales at the onset of finite-size effects vary linearly

with L, which is one of the requirements for the validity of the analysis. Nevertheless, in

view of the reported freezing phenomena it is important to directly check the relationship

of the corresponding length scale with L. In case of a deviation, conclusions drawn so

far will become invalid in the thermodynamic limit.

Typically, in many real physical situations, the final (frozen) length scale, ℓf , does

not depend upon the system size [47–50]. In many systems the value of ℓf is set by

a distance related to the repulsive barrier in the interacting potential [47–49]. Such a

picture related to barrier, however, is not expected in the current situation. Nevertheless,

to rule out that none of the presented results are affected by this freezing phenomena,

we need to know if there exists any system-size dependence of ℓf .

In Fig. 2.12(a) we show final configurations from two different initial random com-

positions in d = 2. The one on the left corresponds to the ground state and the other

represents a frozen state. In Fig. 2.12(b) we show a frozen configuration from d = 3.

For both d = 2 and 3, the presented configurations are obtained by using p = 1/2.

As opposed to the right frame in d = 2, where it is easily identifiable that no further

growth can occur, the d = 3 structure is more complex. The 3D snapshot contains the

step-like structures with spins that do not change the energy during the flips in the MC

simulations. These are referred to as ‘blinker spins’, which are responsible for the frozen

states in the system. Details on this can be found in Refs. [28, 29, 33, 51].

We observe that for a particular system size, for different initial configurations, ℓf

varies significantly in d = 3, almost never reaching L [28, 29]. Whereas in d = 2, the

frozen states are related to the stripe structure [32] seen in Fig. 2.12(a). Distributions

of ℓf , P (ℓf), for both p = 1/2 and 1, obtained from such variation, are shown in Fig.

2.13(a), for d = 2, L = 200; and in Fig. 2.13(b), for d = 3, L = 70. The average values,

〈ℓf〉, that can be extracted from these distributions turn out to be approximately same

for p = 1 and p = 1/2. The observation is similar for other values of L. In the case of

d = 3 we observe a single peak, with reasonably large width, whereas there exist two

spikes in d = 2. These spikes are related to the ground and stripe states (we have ignored

the diagonal stripes). From the height of the two peaks, it can be appreciated that the

ground state is reached approximately twice as often as the stripe states [51]. This fact
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Figure 2.13: Plots of the distribution of final length, ℓf , versus the scaled length ℓf/L,
for (a) d = 2, L = 200; (b) d = 3 and L = 70.
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Figure 2.14: Average value of the final length is plotted versus system size, for p = 1/2
in (a) d = 2 and (b) d = 3. The solid lines represent linear fits to the simulation data
sets.
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also states that freezing is a more severe problem in d = 3 than in d = 2. [Analogous

results were discussed in Refs. [28, 29] obtained from special initial configurations.]

In Fig. 2.14(a) and 2.14(b) we plot 〈ℓf〉 as a function of L, for p = 1/2, in d = 2 and

3, respectively. The dependence in both the dimensions turns out to be linear. Here

it is worth mentioning that occasionally artificial freezing in computer simulations can

be observed, for slow dynamics, due to periodicity in random numbers, when system

sizes are very large. To us, this also does not appear to be true in the present case.

Here the phenomena can be attributed to the structure. How the system size at this

temperature is affecting the structure and dynamics, to provide a linear relation between

frozen length and system size, is an intriguing question. The observation, nevertheless,

provides confidence, by looking at the numbers in the plots [Figs. 2.14(a) and 2.14(b)],

that our presented results on growth and aging did not suffer from this effect. Here we

recall that finite-size effects start appearing when ℓ ≃ 0.4L, whereas 〈ℓf〉 in both the

dimensions are much larger than this limit. Furthermore, linear dependence of 〈ℓf〉 on

L, does not call for reanalysis of data via finite-size scaling method by replacing L by

〈ℓf〉. Note that in Figs. 2.14(a) and 2.14(b) we presented results only up to L = 300 and

100, respectively, by considering the fact that achieving freezing for very large systems

is computationally very difficult, particularly when our observation suggests a linear

relationship.

2.4 Conclusion

We have studied pattern, growth and aging properties of the nearest neighbor Ising model

via Monte Carlo simulations [35] in d = 2 and 3, using Glauber spin-flip mechanism

[35, 40]. We quench our system to zero temperature in both the cases. Flips which did

not change energy were accepted with two probabilities, viz., p = 1 and 1/2, referred to

as the Metropolis and Glauber algorithms, respectively, to check for their relative effects

on the behavior of various quantities. We quantify the value of aging exponent λ via

finite-size scaling [15, 16] and other methods of analysis. The results were compared

with the corresponding results for quenches to nonzero temperatures [15].

The reason behind considering different values for the acceptance probability p is the

following. Unusually slow growth was reported for Tf = 0 in d = 3. Furthermore, for

p = 0 it was observed that coarsening practically does not occur. Thus, it is important

to check the dependence of the choice of p on dynamics. Our observation with respect

to this is important which we summarize below.
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For p = 1/2, compared to p = 1, growth amplitude is lower. This fact is true for both

d = 2 and 3. Thus, to observe the asymptotic scaling regime, e.g., α = 1/2 behavior in

the growth law in d = 3, one will require to simulate systems for longer period of time

as p decreases. This is because of the fact that the crossover occurs at same length scale,

irrespective of the value of p, implying delay (in time) of the onset as one lowers the value

of p. This explains the fact why in the limiting case p = 0 coarsening gets completely

arrested. For any nonzero p, however, if adequately large systems are simulated for long

enough time, asymptotic scaling laws can be observed. In d = 3, nevertheless, the aging

exponent for Tf = 0 did not appear to be the same as that for high temperature, even

in the post crossover regime for growth. This and other features we summarize below.

The autocorrelations, in both the dimensions, exhibit good scaling with respect to

ℓ/ℓw, and the late time decay can be described by a power-law with an exponent λ. In

d = 2, the value of λ matches with the LM prediction. But for d = 3, the result is not

consistent with the LM prediction and also differs from the high temperature results [15].

This also seems to be much below the FH lower-bound. We show that this is not a true

violation of the bound, if the small k behavior of S(k, tw) is appropriately taken care of

in the structure factor analysis. Here note that the zero temperature structure in d = 3,

in the scaling regime, is incompatible with the well known Ohta-Jasnow-Kawasaki form.

The role of structure on aging has been further demonstrated via the study of aging in

d = 2 and pre-scaling regime in d = 3.

Since finite-size scaling analysis was performed for the estimation of the aging expo-

nent, justification of this in the present situation is needed because the systems undergo

freezing. This is to eliminate the possibility that freezing does not occur at a fixed length

scale. In that case a finite-size or similar scaling arguments of statistical mechanics can-

not be applied to obtain information on the behavior of a quantity in the thermodynamic

limit. For this reason we have shown that the frozen length as well as the onset of size

effects appear at fixed fractions of the system size.

Close to the frozen length, the dynamics is very slow for d = 3. If an analysis

is performed, to arrive at the domain growth law, via scaling of the corresponding

relaxation time with the system size, a different, misleading conclusion can be arrived

at. We intend to address this issue of very late time dynamics in a future communication.

From simulations of very large systems we confirmed that in d = 3 also the growth at

zero temperature follows the Lifshitz-Allen-Cahn law. Previously various authors have

pointed out that the slow growth with α = 1/3 could be due to lattice anisotropy. But

such fact should be applicable in d = 2 as well. The observed differences between the 2D
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and 3D cases can perhaps be explained via the difference with respect to the roughening

transition. Nevertheless, questions remain. Observation of α = 1/2 at very late time in

d = 3 may imply that the anisotropy is unimportant for large structure. On the other

hand, in the equilibrium context certain properties carry the information of anisotropy

even in the thermodynamic limit [52].

Appendix

Finite-size scaling

Here we provide some details on the finite-size scaling analysis, results for which have

been presented in section 2.3. Since x (= ℓ/ℓw), in Eq. (2.18), is already dimensionless,

we choose y = x′/x, where x′ = L/ℓw, given the requirement that y must be dimension-

less. This provides the form of y in Eq. (2.20). For the sake of convenience, we intend

to write Cag(t, tw) as a function of y. Then,

Cag(t, tw) = Ae−By/yw

(

yw

y

)−λ

, (A.1)

where yw = L/ℓw, i.e., the value of y at t = tw. Realization of the form of Y in Eq.

(2.19) is then straight-forward. Note that in Eq. (2.19) we have absorbed yλ inside Y .

Given that we start our measurement from tw, x′ = L/ℓw provides the fraction of

the total system size available to explore during the simulation. Coming back to the

above comment “fraction of the total system size available to explore”, we mention that

this quoted fact allows a finite-size scaling analysis only via the variation of tw, without

exploring different system sizes. This is because, we state again, with the variation of

tw, the above mentioned fraction varies, providing different effective system sizes. This

fact is demonstrated by achieving collapse of data from different values of L and tw.

The limiting behavior of Y can be described as follows. In the thermodynamic limit,

i.e., for ℓ << L (y → ∞), we can write

Y = Ayλ, (A.2)

so that Eq. (A.1) is recovered. In the other limit, in finite systems, particularly due

to frozen dynamics, we do not expect Cag(t, tw) to vanish. This may lead to a rather

flat appearance of Y for small y. Such characteristic features, along with a collapse
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of data from various different L and tw values, can be realized by choosing λ and B

appropriately.

At nonzero temperatures, there exists coupling between equilibration of domain mag-

netization and that of the whole system [3], till large value of x. Given that the former

is related to the critical fluctuation [53], for very low value of Tf , the relaxation related

to the domain magnetization occurs very fast, to a value almost unity. Nevertheless, a

minor jump in the autocorrelation function very close to x = 1, providing a higher effec-

tive exponent for very small x, exists. Thus, we avoided the data point corresponding

to x = 1 in all cases, for the finite-size scaling analysis. Furthermore, for very small Tf

values, the scaling of Cag, with respect to ℓ/ℓw, is expected to appear from smaller tw

values. Nevertheless, deviations at early time is observed, particularly in d = 3. This

may be due to slow crossover to t1/2 growth behavior extending up to very late time.

Thus, for this scaling analysis, we have chosen rather large values of tw in this dimension.

In one of the earlier studies for high temperature [15], a good data collapse was

reported for finite-size scaling analysis, with the finite-size ℓ in the scaling variable y.

But an ideal choice is the thermodynamic limit values. There can be two possible ways:

(i) to adopt ℓ ∼ t1/2 behavior, (ii) to use length from a much larger system size that

does not exhibit finite-size effects over the time-scale of analysis. We followed the latter

method here – for d = 2, ℓ was taken from L = 2048 and for d = 3, we used ℓ from

L = 750. We believe that there is scope for the improvement of the 3D results via

consideration of larger systems and by treating γ as an adjustable parameter in the

finite-size scaling analysis.
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Chapter 3

Influence of Roughening Transition

on Nonequilibrium Dynamics of the

Three-Dimensional Ising model

3.1 Introduction

Over past several decades there has been significant interest [1–25] in the understanding

of ordering dynamics following quenches of paramagnetic configurations to the ferromag-

netic region by crossing the critical temperature Tc. A large fraction of the literature,

in this direction, is related to the studies of Ising model. Metastability in this model,

following quenches to the final temperature Tf = 0, due to interesting structure forma-

tion, drew attention recently [6–8, 10, 11, 13–17]. Evolution to such frozen states, in

space dimension d = 3, is thought to be much slower [7, 12–14] than that for quenches

to nonzero values of Tf (< Tc). Some works speculated [9, 15–17], as mentioned in

the previous chapter, that such glass-like slow dynamics may not be specific to Tf = 0.

Rather, this may have the origin at the roughening transition [26], that occurs at a much

higher temperature TR (< Tc). Note that the roughening transition [26] is related to

the change of interface from rough to smooth. The corresponding temperature, TR, is

the roughening transition temperature. Above this temperature, the interface thickness

grows with the system size. Given that below TR interfaces are sharp, a thought for

slow dynamics and freezing has justification. Nevertheless, validity of this should be

established via thorough investigations.
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The rest of the discussion in this section, except for the last paragraph, is similar

to that in the Introductory section of Chapter 2. Only for the sake of completeness we

repeat it here.

Some of the key aspects of ordering dynamics [23–25, 27–37] are: i) self-similarity

and scaling property of structure, ii) growth of the latter, and iii) related aging. The

structure is typically probed via the two-point equal time (t) correlation function [27],

which, for a spin system, reads,

C(r, t) = 〈Si(t)Sj(t)〉 − 〈Si(t)〉〈Sj(t)〉, (3.1)

Si and Sj representing orientations of spins or atomic magnets at sites i and j, located

r distance apart. It is also customary to study the Fourier transform of C(r, t), the

structure factor, S(k, t), k being the wave number [27]. The latter has direct experi-

mental relevance. These quantities obey certain scaling properties when the growth is

self-similar. E.g., in simple situations, when structures are non-fractal, C(r, t) satisfies

a scaling form [27],

C(r, t) ≡ C̃(r/ℓ), (3.2)

ℓ being the average domain size or the characteristic length scale of the growing system

at time t and C̃(x) a time-independent master function. In such a situation ℓ is expected

[27] to grow as ∼ tα. A power-law behavior is expected for aging phenomena also. In

the latter case the autocorrelation function [28, 29], defined as,

Cag(t, tw) = 〈Si(t)Si(tw)〉 − 〈Si(t)〉〈Si(tw)〉, (3.3)

should scale as ∼ (ℓ/ℓw)−λ, in the asymptotic limit when ℓ >> ℓw. Here, tw (≤ t) is the

waiting time or age of the system and ℓw is the value of ℓ at t = tw.

For uniaxial ferromagnets one expects [27, 36] α = 1/2. The structure in this case is

supposed to be described by the Ohta-Jasnow-Kawasaki (OJK) function [24, 27]:

C(r, t) =
2

π
sin−1[exp(−r2/Dt)], (3.4)

D being a constant. Note that while the form of C(r, t) and the value of α are indepen-

dent of space dimension, λ changes with d. The values of λ for this ordering, as obtained

by Liu and Mazenko (LM) [23], are expected to be ≃ 1.67 = λ3
LM in d = 3, whereas in

d = 2, it is λ2
LM ≃ 1.29. Unless otherwise mentioned, in the rest of the chapter all our

discussions are for d = 3.
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While these theoretical predictions were observed to be valid for moderately high

values of Tf , striking deviations were reported for Tf = 0. In the latter case, several

works concluded that α = 1/3 or the growth is even slower. A few studies [9, 15–17],

however, hinted that α remains 1/2 even for Tf = 0, only arrival at such a scaling gets

extraordinarily delayed. Most recently it was reported that the OJK function does not

[17] describe the pattern at Tf = 0. Furthermore, λ was also estimated [17] to be much

weaker than λ3
LM. We repeat, these observations were thought to be specific to Tf = 0.

However, thorough investigations, we believe, are necessary, in order to arrive at the

correct and complete picture. It needs to be understood if such anomalies bear any

connection with any other special point. If such a special point turns out to be that

of the roughening transition, important relation concerning structure and dynamics [38]

can be established in the nonequilibrium context.

As evident from the discussion above, in this work we present results from the Monte

Carlo (MC) simulations [37] of the Ising model [37] in d = 2 and 3, emphasis being

on the latter dimension, for nonconserved order-parameter dynamics, by using Glauber

spin-flip dynamics [37, 39] that mimics ordering in a uniaxial ferromagnet. We consider

a wide range of final temperature, starting configurations always being perfectly random

mix of up and down spins in 50:50 proportion. Our observations are the following. The

above mentioned anomalous features in d = 3 are not specific to Tf = 0. In fact the onset

of the anomalies occurs at the roughening transition. This was hitherto unconfirmed.

This observation promises us to establish important structure-dynamics connection for

ferromagnetic ordering. Structure can affect dynamics [38]. Our observation reconfirms

this in an interesting context. The roughening transition here leads to the mismatch

of the correlation function with the OJK function on the lower side of TR. This has

the origin in the departure of the distribution of an order-parameter related auxiliary

field from the Gaussian character at low temperature. Phenomena observed in Ising

model have been instrumental in understanding plethora of experimental observations on

phase transitions [37, 40]. We believe that these results will inspire novel investigations,

thereby explaining intriguing dynamical phenomena in the nonequilibrium domain. Our

key results have been verified by sophisticated finite-size scaling analysis [33, 41, 42].

3.2 Model and Methods

The model and methods are similar to those of chapter 2. Readers, thus, may like to

move to the next section.
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We choose J > 0 in the Ising Hamiltonian [37, 40]

H = −J
∑

<ij>

SiSj , (3.5)

where Si and Sj can take values +1 and −1, corresponding to up and down orientations

of the atomic magnets. We study this model on a simple cubic lattice, having Tc ≃
4.51J/kB [37], where kB is the Boltzmann constant. For the limited set of results in

d = 2, we considered square lattice. Note that in this case Tc = 2.269185...J/kB [37]. In

d = 3, the value of TR for this model is ≃ 2.57J/kB [26], whereas a non-zero roughening

transition temperature does not exist in d = 2.

Moves in our MC simulations were tried by randomly choosing a spin and changing

its sign. These were accepted by following standard Metropolis criterion [37]. Unit of

time in our simulations is a MC step (MCS) that consists of Ld trial moves, L being the

linear dimension of a cubic or a square box, in units of the lattice constant.

All our results are presented after averaging over runs with 50 independent random

initial configurations, with L = 512. Periodic boundary conditions were applied in

all possible directions. Average domain lengths were measured, from the simulation

snapshots, as the first moments [35] of the domain size distribution function, in which

length of a domain was estimated as the distance between two successive interfaces

along any Cartesian direction. Results on the structure and growth were obtained after

appropriately eliminating the thermal noise in the snapshots via a majority spin rule

[35]. We repeat, unless otherwise stated, the results are from d = 3.

3.3 Results

In Fig. 3.1 we show ℓ versus t plots for several values of Tf . For Tf = 0 few early

works were suggestive of [7, 12–14] an exponent α = 1/3 or even slower growth. Similar

quantitative behavior is seen here as well, after a rapid initial growth. However, at very

late time a crossover [15, 17] of the exponent to a higher value, viz., α = 1/2, can be

appreciated. The very early works could not capture this, either due to consideration

of small systems or simulations over short periods, owing, perhaps, to inadequate com-

putational resources. As can be seen, such a slow looking early growth is not unique

to Tf = 0. The data sets for nonzero Tf values also exhibit similar trend. However,

with the increase of Tf departure from this slow behavior occurs earlier, finally the 1/3

regime ceasing to exist for Tf = TR = 2.57. At this stage, it is worth warning that the
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Figure 3.1: Average domain lengths, ℓ(t), are plotted versus time, on a log-log scale.
Results from several different final temperatures are presented. The solid lines are power-
laws. The values of the exponents are mentioned in appropriate places.

early evolution should not be taken seriously, at the quantitative level. This is because,

during this period satisfaction of the scaling property of the correlation function is not

observed, as demonstrated below.

In Fig. 3.2(a) we show plots of C(r, t), from different times, by scaling the distance

axis by ℓ, for Tf = 0.5. It appears that the collapse starts from t & 1000, approximately

the time since when departure to α = 1/2 behavior starts. This general picture is true

for other low temperatures also. In Fig. 3.2(b) we have shown C(r, t), again versus

r/ℓ, from the scaling regimes of different Tf values. Interestingly, C̃(r/ℓ) at different Tf

values do not agree with each other. However, with the increase of Tf the agreement

with the OJK function [C̃OJK(r/ℓ)] [24] keeps getting better. This observation suggests

that perhaps there exists a special temperature Tsp (< Tc), beyond which the coarsening

dynamics is more unique than below it. In fact for Tf = TR the agreement between

simulation data and the OJK function is quite well. We will return to this central theme

after discussion of the basic results on aging.
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Figure 3.2: (a) Two-point equal time correlation functions, C(r, t), are plotted versus
the scaled distance r/ℓ, for Tf = 0.5. Data from few different times are shown. (b) Same
as (a) but here we have shown C(r, t) from different final temperatures. In each of the
cases we have chosen t = 5000 that fall in the scaling regimes. In both (a) and (b) the
continuous lines represent the Ohta-Jasnow-Kawasaki (OJK) function. The correlation
functions have been plotted in such a way that there exists good collapse in the early
abscissa range. Thus, the values of ℓ, when extracted from the collapse, will not have
quantitative agreement with those in Fig. 3.1.
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Figure 3.3: (a) Cag(t, tw), the autocorrelation function, is plotted versus ℓ/ℓw, on a log-
log scale. Data from different tw, for Tf = 1.5, are included. The solid line is a power-law
with λ = λ3

LM = 1.67. (b) The instantaneous exponent λi is shown as a function of ℓw/ℓ,
for the same final temperature. The arrow-headed line is a linear extrapolation to the
ℓ/ℓw = ∞ limit, done by excluding the late time finite-size affected as well as early time
domain magnetization relaxation parts.
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Figure 3.4: (a) Here we have shown λi, as a function of ℓw/ℓ, for a few different values
of Tf . In each of the cases tw belongs to the scaling regime. The arrow-headed lines are
linear guides to the eyes. (b) Finite-size scaling plot of Cag(t, tw) for Tf = 0.75. The
solid line there corresponds to a power-law with the value of the exponent mentioned
near the line.
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Figure 3.5: Plots are shown by comparing ∆λ and ∆I with the variation of Tf . The
value of TR is marked in the figure.

Fig. 3.3(a) shows plots of Cag(t, tw), with the variation of ℓ/ℓw. The value of Tf

for this representative case is set at 1.5. Data sets from a few different waiting times

are shown. Good collapse of data is visible for the considered values of tw. There exist

deviations from the master curve, for ℓ/ℓw >> 1. These are related to finite-size effects

[33]. Decay in the finite-size unaffected regime does not appear consistent with the

LM value [23] – see the disagreement with the solid line. In Fig. 3.3(b) we show the

instantaneous exponent [29, 33] λi [= −d lnCag(t, tw)/d ln(ℓ/ℓw)] as a function of ℓw/ℓ,

for multiple choices of tw lying in the scaling regime. The data sets appear linear in

the finite-size unaffected regimes. Note that the early deviation is related to relaxation

of domain magnetization and should be discarded from the process of estimation of λ.

A linear extrapolation to ℓ/ℓw = ∞ provides λ ≃ 1.5. Given that the above quoted

number lies between λ3
LM and λ (Tf = 0), being significantly different from each of these,

one gets a strong hint on the presence of a special point.

In Fig. 3.4(a) we show plots of λi, as a function of ℓw/ℓ, for few different values of

Tf . Here we discarded the parts corresponding to finite-size effects and equilibration of
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domain magnetization. Furthermore, in each of the cases the results are from well inside

the scaling regimes of tw. The arrow-headed lines are related to the estimations of the

values of λ, from linear extrapolations to the ℓw/ℓ = ∞ limit. Clearly, λ depends strongly

on Tf . The accuracy of these estimates is validated by the independent quantifications

of λ via a finite-size scaling method [33, 42]. A representative exercise related to this is

shown in Fig. 3.4(b), for Tf = 0.75. In this figure Y is a tw-independent scaling function

and y is a dimensionless scaling variable. Note that here we have avoided studying

systems of different sizes, contrary to the standard practice in the literature of such

analysis. Instead, we have obtained collapse of data from different tw values. Note that

when tw is varied a system has different effective sizes to grow further. Details of the

scaling construction is provided below.

The behavior of λi in Fig. 3.3(b) and Fig. 3.4(a) suggests λi = λ − B/x, with

x = ℓ/ℓw and B being a constant, in the finite-size unaffected late time regime. This

leads to a form [33, 42],

Cag(t, tw) = Ae−B/xx−λ. (3.6)

By taking y = L/ℓ as a scaling variable and yw = L/ℓw, a finite-size scaling function can

be written as [17]

Y = Cag(t, tw)eBy/ywyλ
w, (3.7)

where Y contains a factor yλ. When results from different tw are plotted, for appropriate

choices of the unknown parameters, including λ, there will be collapse of data sets that

will satisfy the expected yλ behavior at large y. This is demonstrated in Fig. 3.4(b) for

Tf = 0.75. Here the collapse is obtained for λ = 1.26, the number being consistent with

the value that was suggested by the exercise in Fig. 3.4(a).

Next we quantify the special temperature from a more systematic study. In Fig. 3.5

we show ∆λ = λ3
LM − λ(Tf ), as a function of Tf . Given that the general expectation

is λ3
LM, it is meaningful to look at the stated difference. There appears to be a nice

convergence of the data set to zero as Tf → TR ≃ 2.57. With respect to the deviation

of C̃(r/ℓ) from the OJK form [24], that we observed above, there may also be a similar

trend. In this case an appropriate quantity to consider is,

∆I =
∫

dr[C̃(r/ℓ) − C̃OJK(r/ℓ)]. (3.8)

Here note that there exists an LM form for C(r, t) as well [23]. However, this practically

overlaps with the OJK function. It will be interesting to see if ∆I approaches zero at

the same Tf as in the case of ∆λ. Thus, in Fig. 3.5 we have included the Tf -dependence
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Figure 3.6: (a) Plots of scaled two-point equal time correlation functions, C(r, t), from
d = 2, for different Tf values. The time has been chosen from the scaling regime. The
continuous line represents the OJK function. (b) The instantaneous exponent λi is
plotted as a function of ℓw/ℓ, for different Tf values. The solid line is a common linear
extrapolation of the data sets. The arrow-headed horizontal line points to the LM value
of λ in d = 2.



3.4 Conclusions 67

of ∆I as well. Trend-wise, the presented data sets are in nice agreement with each other,

over a wide range of temperature, within a factor. For the calculation of ∆I we have, for

each Tf , superimposed small r values of C(r, t) with the OJK form as best as possible.

In Fig. 3.6 we show analogous results from d = 2. Fig. 3.6(a) contains results for the

scaled C(r, t) and in Fig. 3.6(b) we have shown data for λi, as a function of ℓw/ℓ. For

each of the cases results from a wide range of Tf are included. The anomalies present

in d = 3 are clearly absent in this case. No detectable Tf -dependence can be observed.

The theoretical expectations are satisfied over the whole range of Tf . Recall that in this

dimension, a nonzero roughening transition temperature does not exist for this model.

3.4 Conclusions

From extensive Monte Carlo simulations [37], we have presented results on nonequilib-

rium dynamics in the Glauber [37, 39] Ising model. This mimics ordering in uniaxial

ferromagnets. Our quantitative analysis of data from space dimension d = 3 on structure,

growth and aging, over a wide range of temperatures below the critical point, suggests

that the low temperature behavior is anomalous.

We show that the anomalies are not unique to the case of zero temperature quench,

as was previously thought. Various quantities exhibit zero-temperature-like trend till

a certain nonzero value of Tf . Above this temperature, behavior of all the aspects

becomes consistent with various theoretical expectations [23, 24, 27, 36]. This transition

or special temperature coincides with that of the roughening transition [26]. Such a

conclusion appears more meaningful from the fact that these anomalies are absent in

d = 2 and for this dimension roughening transition temperature is zero.

This is the first quantitative report on this matter. We believe, this will inspire further

theoretical and experimental studies, being beneficial in understanding nonequilibrium

dynamics of various types.

This article has been submitted to arXiv and is in communication with an American

Physical Society Journal. See the arXiv link below:

https://arxiv.org/abs/2106.16232

https://arxiv.org/abs/2106.16232
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Chapter 4

Initial Correlation Dependence of

Aging in Ordering Ferromagnets in

Two and Three Space Dimensions

4.1 Introduction

Having been prepared at a high starting temperature (Ts), when a homogeneous mixture

is quenched to a final temperature (Tf), that falls inside the miscibility gap, it renders

unstable to fluctuation and separates into regions or domains rich in particles of similar

type [1–5]. Kinetics of such phase separation is of immense interest from both scientific

and technological viewpoints.

The discussion in the rest of the section has similarity with that in the Introductory

part of Chapter 2.

The structure of a system during the evolution is usually characterized by the two-

point equal time correlation function, C(r, t), which is defined as,

C(r, t) = 〈ψ(~r, t)ψ(~0, t)〉 − 〈ψ(~r, t)〉〈ψ(~0, t)〉. (4.1)

Here ψ, chosen to be a scalar, is a space (~r) and time (t) dependent order parameter. In

many growth processes C(r, t) exhibits a scaling behavior,

C(r, t) ≡ C̃(r/ℓ(t)), (4.2)
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where ℓ(t) is a characteristic length scale, measured as the average size of the domains

formed during this nonequilibrium evolution. To probe the aging during such evolution,

often one studies the decay of the two-time auto-correlation function [6],

Cag(t, tw) = 〈ψ(~r, t)ψ(~r, tw)〉 − 〈ψ(~r, t)〉〈ψ(~r, tw)〉, (4.3)

where t and tw (≤ t) are referred, respectively, to as the observation and waiting times.

Due to the violation of time-translation invariance in nonequilibrium systems,

Cag(t, tw) for different tw are not equivalent to each other. In other words, if this cor-

relation function is plotted versus t − tw, there will be no collapse of data for different

values of tw. However, it is found that in many systems Cag(t, tw) exhibits the scaling

behavior [6–23]

Cag(t, tw) ∼ (ℓ/ℓw)−λ, (4.4)

where ℓ and ℓw are the average sizes of domains at times t and tw, respectively. Note

that ℓ typically has a power-law time dependence [1–4, 6]

ℓ ∼ tα, (4.5)

in phase ordering systems. Here λ and α are referred to as the aging and growth

exponents, respectively. Values of these exponents, along with few other properties

[2, 24], define the nonequilibrium universality classes [2, 20].

It has been argued that, depending upon the spatial correlation in the initial con-

figurations there can be different universality classes [20–22] – one for Ts = ∞ and the

other for Ts = Tc, the latter being the critical temperature. Note here that at Ts = ∞
a system, in standard picture, has a correlation length ξ = 0 and at Ts = Tc, ξ = ∞,

when the system is of thermodynamically large size [2, 3, 25]. For ordering in uniaxial

ferromagnets [2, 25], this fact of universality has been studied in space dimension d = 2

[20, 21]. There the understanding is that even though α remains the same [20], λ and

other dynamic and structural quantities are different in the two classes [20, 21, 26–28].

Note that the value of α here [2, 29] is 1/2.

For quenches from Tc, the estimation of λ remained difficult, because of the com-

plexity associated with it in the computer simulations. There exist two sources of finite

size effects [30] in this case. First one is due to non-accessibility of ξ = ∞ in the initial

correlation [30] and the second is related to the fact [31, 32] that ℓ < ∞, always. Despite

having these difficulties in understanding the aging behavior quantitatively, significant
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progress has recently been made, following adoption of methods of analysis that are

analogous to the popular techniques used for extracting information about equilibrium

systems.

There has been studies on quantification of λ in phase separating binary mixtures

in different space dimensions, d, [14, 15], via formulation and application of finite-size

scaling technique [14, 30] to Monte Carlo (MC) simulation results, for quenches with

initial ξ = 0. For this and a number of other situations, including the ferromagnetic

case, there are studies which demonstrated [14–18] that λ satisfies certain bounds. Here

note that Fisher and Huse (FH) argued [7]:

λ ≥ d

2
. (4.6)

Later, Yeung, Rao and Desai (YRD) [9] provided a more accurate and generic bound:

λ ≥ d+ β

2
, (4.7)

where β is an exponent related to the short wave number (k) behavior of structure factor

[33], viz.,

S(k → 0, tw) ∼ kβ. (4.8)

For random initial configurations (ξ = 0), β = 0 and so, the YRD bound coincides

with that of FH. For nonconserved order parameter, when Ts = ∞, β = 0 even in the

long time limit. The latter, however, is not true for the conserved order parameter case

[33–35]. This is one of the reasons why the values of λ in these two cases differ vastly,

irrespective of space dimension, for quenches with ξ = 0.

When started from Ts = Tc, it is expected that one will have different structural

scaling [20, 21]. If so, the bounds on λ will also be different from that when quenched

from Ts = ∞. This provides an intuitive understanding that λ will be different for

Ts = ∞ and Ts = Tc, giving rise to different universalities. This is demonstrated, as

already stated, theoretically and computationally, for the nonconserved case [20, 21] in

d = 2.

Here our objective is to estimate λ for ξ = ∞ in the three-dimensional Ising model via

Monte Carlo simulations and also to revisit the case of d = 2, in the case of nonconserved

order parameter dynamics. The results are discussed in the background of available

analytical information [7, 9, 21], and we also show that the obtained values of λ are
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consistent with the YRD bound. We will compare our results with the case of conserved

order parameter dynamics [2] for the quenches from Ts = ∞ as well as Ts = Tc.

4.2 Model and Methods

In view of the fact that the model and methods for this contribution are already described

in Chapters 2 and 3, readers may move to the next section.

We study nonequilibrium dynamics in uniaxial ferromagnets, via Glauber spin flip

[36] Monte Carlo methods [37–39], using the Ising model [25] on a 2D square lattice in

d = 2 and on a simple cubic lattice in d = 3, with periodic boundary conditions [38]

applied in all the directions. The Hamiltonian of the model is given by [25, 38]

H = −J
∑

<ij>

SiSj; Si = ±1; J > 0, (4.9)

where the values +1 and −1 correspond to up and down spins. The value of critical

temperatures of this model [25, 38] in d = 2 and 3 are = 2.269185...J/kB and ≃ 4.51J/kB,

respectively, where J is the interaction strength and kB is the Boltzmann constant.

A trial move in the Glauber Ising model (GIM) is performed by flipping a randomly

selected spin. The probability of acceptance of trial moves is given by [37–39]

P (i → j) = min(1, exp(−(Ej − Ei)/kBTf)), (4.10)

where Ei(j) is the energy of the state i(j). Time in our simulation is estimated in units

of MC steps (MCS), where one MCS is equivalent to L2 and L3 trial moves in d = 2

and 3 respectively, L being the linear dimension of a square/cubical box, in units of the

lattice constant a. In the rest of the chapter, we set J , kB and a to unity.

We mostly quench the systems from Ts = TL
c , TL

c being the system-size dependent

critical temperature [30, 40], except for a few cases for which we performed quenches

from Ts = ∞, only for the purpose of comparison. For both the starting temperatures

the final temperature was Tf = 0.6Tc. Here note that for quenches to Tf < Tc the

asymptotic values of α are said to be same [21] for both Ts = ∞ and Ts = Tc. On the

other hand, following a quench to Tc from other temperatures relaxation of a system is

dictated by different value of the exponent.

In order to obtain the equilibrium configurations at TL
c , we have performed simu-

lations using Wolff algorithm [41], that, to a good degree, helps avoiding the critical
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Figure 4.1: The evolution snapshots, recorded during the Monte Carlo simulations of
the nonconserved Ising model in d = 2, are presented for quenches to Tf = 0.6Tc. In
each of the cases pictures from three different times are shown. At the top of each of
the frames we have mentioned the corresponding time. We have included snapshots for
quenches from finite-size critical temperature as well as from Ts = ∞, with L = 128. In
all the frames the down spins are left unmarked.

slowing down [42]. Here, instead of a single spin, a randomly selected cluster of similar

spins is flipped.

The average domain lengths of a system during evolution have been calculated via

[32, 43]

ℓ(t) =
∫

P (ℓd, t)ℓddℓd, (4.11)

where P (ℓd, t) is a domain-size distribution function, and ℓd is the distance between

two successive interfaces in a specific direction. In the calculation of the autocorrelation

functions [see Eq. (4.3)], the order parameter ψ at a space point corresponds to the value

of spin in Eq. (4.9) at a lattice site. All the presented results are averaged over a large

number of independent initial configurations, ranging between 100 and 500, depending

upon the system size. The value of L in d = 3 varies from 10 to 300, and in d = 2, it

varies from 64 to 1024.
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Figure 4.2: (a) Plot of finite-size critical temperatures TL
c as a function of the inverse

system size 1/L. The continuous line is a fit of the data set to the scaling form in Eq.
(4.13), by fixing Tc and ν to their 2D Ising values, i.e., Tc = 2.269 and ν = 1. This figure
is reproduced from Ref. [46] (Fig. 2). (b) Same as (a) but for d = 3. Here the value
of ν is 0.63 and Tc = 4.51. This figure is reproduced from Ref. [49] (Fig. 1). Unless
otherwise mentioned, all the results below will correspond to Ts = TL

c .



4.3 Results 77

4.3 Results

We start by presenting the evolution snapshots for different Ts values, Ts = ∞ and

Ts = TL
c , from d = 2. The upper frame corresponds to the case with Ts = ∞ and the

lower frame corresponds to the case of Ts = TL
c . All the pictures are from simulations

with L = 128. The difference in structure in the two cases is recognizable, even though

there exist strong finite-size effects in the initial configurations [30, 38] for Ts = TL
c . The

latter is in addition to the standard finite-size effects [31, 32, 43] that is observed for

Ts = ∞, when ℓ approaches L. As is well known [25],

ξ ∼ ǫ−ν ; ǫ =
Ts − Tc

Tc
, (4.12)

ν being a static critical exponent. For a true phase transition, achievable in thermody-

namically large systems, of course, ξ = ∞ at the critical point. However for L < ∞,

which is always the case for computer simulations, ξ is finite, the maximum attainable

value being ξ = L. Because of that, for finite L, when Ts = TL
c , following quenches the

systems quickly deviate from the desired [20, 21] scaling form, different from that for

quenches with Ts = ∞, of the nonequilibrium structure. This can be realized by taking

a closer look at the snapshots for Ts = TL
c in Fig. 4.1 – the fractality is changing with

time. This additional finite-size effect must be taken care of via appropriate extrapola-

tion of the size-affected quantitative data in the L = ∞ limit. This requires knowledge

of TL
c for various values of L. Related results we present next before showing data for

the autocorrelation functions.

Phase behavior for a model can be obtained via computer simulations by calcu-

lating the temperature dependent, appropriately defined, order-parameter distribution

functions [38, 40]. Such a phase diagram or coexistence curve will always suffer from

finite-size effects due to the fact that, as mentioned above, in simulations we always have

L < ∞. Nevertheless, via the applications of well-established scaling principles phase

behavior, including the critical point, in the thermodynamic limit, can be satisfactorily

obtained [40, 44, 45].

In the two-phase or coexistence region the order-parameter distribution will have a

double peak structure, locations of the peaks representing points along the coexistence

curve. On the other hand, in the homogeneous (one-phase) region these distributions

will have single peak shape (with temperature dependent width). The temperature at

which the crossover from double peak to single peak structure occurs is identified as

the value of TL
c . Plots of TL

c versus 1/L in d = 2 and 3 are shown in Fig. 4.2 (a) and
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Figure 4.3: Log-log plots of the order-parameter autocorrelation function, Cag(t, tw),
versus ℓ/ℓw, in d = 3. Data for a few different values of tw are included. These results
are for L = 128. The figure is reproduced from Ref. [49] [Fig. 4(a)].

(b), respectively. These results were obtained by discarding snapshots from early time

non-equilibrium regime. Note that the results for TL
c are expected to satisfy the scaling

form [38, 40, 44, 45]

TL
c − Tc ∼ L−1/ν , (4.13)

validity of which can be checked from its consistency with Eq. (4.12). For the Ising

model (universality class) ν = 1 in d = 2, and ν = 0.63 in d = 3. The data sets in Fig.

4.2, thus, are in agreement with this expected critical point behavior. Note that the

continuous lines in Fig. 4.2 are fits of the simulation data sets to the scaling form in Eq.

(4.13), by fixing ν and Tc to the 2D and 3D Ising values. We use the amplitude (≃ 3.9

in d = 2 and ≃ 4.4 in d = 3) obtained from the fits to extract TL
c for L larger than the

presented ones.

Following the discussion and presentation of results relevant for the scaling analysis

of the aging data for the critical starting point, we now focus on the primary objective.

In Fig. 4.3 we present results for Cag(t, tw), versus ℓ/ℓw, for d = 3, by fixing the system

size, for few different values of tw. The observations are the following.
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Figure 4.4: Plots of Cag(t, tw) versus ℓ/ℓw, on a log-log scale, from three different system
sizes, L, in d = 3. The value of tw is fixed to 20 here. The solid line corresponds to a
power-law decay with an exponent mentioned near it.

There exist sharp departures of the data sets from each other at large ℓ/ℓw. Higher

the value of tw the departure occurs earlier from the plot for a smaller tw. This is

related to ‘standard’ nonequilibrium finite-size effects [14, 15]. With the increase of tw

a system has less effective size available to grow or age for. Furthermore, even in the

small ℓ/ℓw region the collapse of the data set for tw = 10 with those for the larger tw

values is rather poor. This, we believe, is due to the fact that in the scaling regime the

structure is different [33] from the initial configuration [46]. (Also note that the scaling

structure for Ts = Tc is different from that for Ts = ∞.) During this switch-over to the

scaling behavior the extraction of ℓ is also ambiguous, due to continuous change in the

structure that, thus, lacks the property of Eq. (4.2). If we believe that by tw = 50 the

scaling regime has arrived (see the reasonably good collapse of data sets for tw = 50

and 100 in the small ℓ/ℓw regime), the corresponding decay is consistent with λ = 0.5, a

value that was predicted theoretically [21]. Nevertheless, given the complexity of finite-

size and other effects, further analysis is required, before arriving at a conclusion with

confidence.
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Figure 4.5: Instantaneous exponents λi are plotted versus ℓw/ℓ, for three values of L, in
d = 3. In each of the cases we have tw = 20. We extract L-dependent value, λL, from
the extrapolation of linear region to the y-axis.

Here one may also get an impression that the exponent λ has a tendency to increase

with the increase in tw values. To check for the convergence to the scaling regime, we

require more systematic study involving both tw and L. We will perform this in the rest

of the chapter.

In Fig. 4.4, we present the data for Cag(t, tw), as a function of ℓ/ℓw, from three

different system sizes, in d = 3. The results are for tw = 20. From this figure, it can be

seen that for a fixed tw, with the increase of system size the exponents keep staying stable

for longer ranges. Also, the rate of change of the exponent with the increase of L keeps

decreasing. That way one may like to consider a very large system to obtain λ value that

will be very close to that for L = ∞. We, however, would like to rely on an extrapolation

method using relatively smaller systems. Note that faster decay of the autocorrelation

for large ℓ/ℓw is unavoidable, because of the finite value of ξ when L < ∞. Only in the

L = ∞ limit, Cag(t, tw) will decay indefinitely with unique exponent. We mention here:

an advantage of using smaller systems is that one can get better statistics by running

simulations with many independent initial configurations, using the same computational
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Figure 4.6: Plots of λL as a function of 1/L. Data from a few different values of tw
are shown. The dashed lines are power-law fits to the simulation data sets. The arrow-
headed horizontal line marks the estimated value of λ. All results are from d = 3. This
plot is taken from Ref. [49] [Fig. 6(b)].

power that is needed to run single large system. Here note that reduction of error is not

directly proportional to the size of a system [31, 43].

For the purpose of extrapolation, we need to obtain the exponent values in the

stabilized regions accurately. For this we take help of the instantaneous exponent [15,

47, 48]

λi = −d lnCag(t, tw)

d lnx
; x =

ℓ

ℓw
. (4.14)

In Fig. 4.5, as illustration, we plot this quantity as a function of 1/x, in d = 3, for

three values of L, by fixing tw to 20. The L dependent exponent, λL, we obtain from

the extrapolation of the linear region to ℓw/ℓ → 0 (i.e., ℓ → ∞) limit, from the plots.

We expect that λL in the limit L = ∞ will have same convergence for all values of tw,

because of the following reasons. For the meaningful scaling evolution, in the L = ∞
limit the structure should obey certain self-similarity all along [20, 21]. If so, the value of

λ should not be affected by the choice of tw. Note that in such a situation the bound of
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Figure 4.7: Same as Fig. 4.6 but here it is for d = 2. This figure is taken from Ref. [49]
[Fig. 7(b)].

Eq. (4.7) does not change. For finite L, of course, the situation is different, as discussed

and being observed. However, the intended extrapolation is expected to lead us to the

thermodynamic λ, same for all tw. If this is the case and the corresponding λ is different

from that of Ts = ∞ it gives an indirect evidence that there exist different structural

scalings for Ts = ∞ and Ts = Tc. We followed the similar procedure for d = 2 as well.

In both the cases, we have performed this exercise for multiple values of tw.

Data for λL, when plotted versus 1/L, for multiple values of tw, should provide a

good sense of convergence [46, 49]. Corresponding number should be the value of λ for

a thermodynamically large system. This exercise has been shown in Fig. 4.6 for d = 3,

and in Fig. 4.7 for d = 2. The dashed lines there are fits to the form

λL = λ+ AL−b, (4.15)

where A and b are constants. For both the dimensions, fits to each of the data sets

provide λ value quite consistent with each other. The obtained values of λ, along with

those for uncorrelated initial configurations [8, 14, 15], are quoted in Table 4.1. Here
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the corresponding values of λ for Ts = ∞ and Ts = Tc in the case of conserved order

parameter dynamics are also included. These values are taken from references [46] and

[49] for the comparison, which were obtained from the Kawasaki exchange Ising model

(KIM) [50].

Table 4.1: List of values of λ for the nearest neighbor Ising model. This is reproduced
from Ref. [49] (Table I).

Model
d = 2 d = 3

Correlated Uncorrelated Correlated Uncorrelated
GIM 0.14 ± 0.02 1.32 ± 0.04 0.57 ± 0.07 1.69 ± 0.04
KIM 0.13 ± 0.02 3.6 ± 0.2 0.64 ± 0.05 7.5 ± 0.4

From the table it is clearly seen that the values of λ for Ts = ∞ and Ts = Tc

universality classes are vastly different. The results for the nonconserved model are

certainly in extremely good agreement with the theoretical prediction [20, 21], viz.,

λ = 0.125 in d = 2 and λ = 0.5 in d = 3. Also, for Ts = Tc, GIM and KIM results are

close to each other. We mention here that in the previous simulation studies [19–21] no

such attempts have been made to estimate λ for Ts = Tc. Only checks for the consistency

with the analytical theory were performed.

Table 4.2: List of β values for the nearest neighbor Ising model. Validity of YRD bound
can be checked by putting these numbers in Eq. (4.7) and comparing with the results
quoted in Table 4.1. While preparing this table η in d = 3 has been set to zero (see
discussion in the context of Fig. 4.8). We have put the values of the bounds [9] inside
the parentheses. This table is taken from Ref. [49] (Table II).

Model
d = 2 d = 3

Correlated Uncorrelated Correlated Uncorrelated
GIM −1.75 (0.125) 0 (1) −2 (0.5) 0 (1.5)
KIM −1.75 (0.125) 4 (3) −2 (0.5) 4 (3.5)

Next we aim at checking whether these numbers satisfy the YRD bound. The behav-

ior of the equal time structure factor in d = 3, for a thermodynamically large system, at

criticality is expected to be [25, 38, 51]

S(k, 0) ∼ k−2, (4.16)

given that in d = 3 the critical exponent η (≃ 0.036, as opposed to 0.25 in d = 2),

the Fisher exponent that characterizes the power-law factor of the critical correlation as
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Figure 4.8: (a) Log-log plots of structure factor versus wave vector, from d = 3. (b)
Same as (a) but here we show the results for d = 2. The solid lines are power-laws with
exponent values noted in the figure. The values of tw and L are also mentioned. These
figures are reproduced from Ref. [49] (Fig. 3).
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rd−2+η, has a small value. Typically, in most of the coarsening systems scaling in the

decay of autocorrelation function [cf. Eq. (4.4)] starts from a reasonably large value of tw.

By then the structure is expected to have changed from that at the beginning. Thus, the

exponent ‘−2’ in Eq. (4.16) should be verified before being taken as the value of β in the

YRD bound for the understanding of results following quenches from Tc. Furthermore,

for Ts = Tc, one may even ask about the validity of a stable β. This is related to the

question whether there exists a scaling regime or the structure is continuously changing.

Keeping this in mind, in Fig. 4.8 we present plots of S(k, tw) versus k for large enough

values of L and tw, from d = 3 in part (a). In fact β appears to be stable at ‘−2’

even though the character of structure changes at large k, e.g., an appearance of the

Porod law [2] (S(k) ∼ k−4) is clearly visible that corresponds to the existence of domain

boundaries. Results from d = 2 is presented in part (b). Here also the small k behavior

remains unaltered from that in the initial configuration, i.e., we have [25] β = −7/4. In

this dimension the Porod law [2] demands S(k) ∼ k−3.

For the comparison of λ values obtained and the YRD bound, we have quoted the

values of β in Table 4.2. Here also the values of β corresponding to the conserved order

parameter dynamics [46, 49] are included.

It appears that the bounds are satisfied for Ts = TL
c also. From the values of β, it

is clear that the corresponding YRD bound for λ is below the values obtained from the

simulation, i.e., λ ≃ 0.14 and λ ≃ 0.57, in d = 2 and 3, respectively.

4.4 Conclusion

We have presented results for aging phenomena in the nearest neighbor Ising model [25]

in d = 2 and 3. The results were obtained from Monte Carlo simulations [37–39] with the

implementation of Glauber dynamics. Our objective was to estimate the aging exponent

λ, related to the power-law decay of the order-parameter autocorrelation function [7]

Cag(t, tw), corresponding to the universality class [20, 21] decided by quenches from

Ts = Tc, for which one has infinitely correlated configurations [25].

For quenches from the critical point, simulation results suffer significantly from

finite-size effects. This problem was appropriately taken care of by implementing finite-

size scaling technique of equilibrium critical phenomena and devising an extrapolation

method for analysis of the out-of-equilibrium data. We believe that our results are quite

accurate for thermodynamically large systems.
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It appears that the values of λ for Ts = Tc are drastically smaller than those for

the universality class corresponding [8, 14, 15] to Ts = ∞ in both the dimensions. Our

simulation results are also in reasonable agreement with an analytical prediction [21].

The source of deviations that exist may have its origin in the estimation error for TL
c as

well as in the statistical error in nonequilibrium simulations. Nevertheless, the obtained

values for Ts = Tc satisfy the lower bounds predicted by Yeung, Rao and Desai [9].

This we have checked via the analysis of structure, a property that is embedded in the

construction of the bound.

Overall it also appears that there exists strong qualitative similarity between cases

with conserved and nonconserved dynamics, as far as the universalities with respect to

quenches from correlated and decorrelated initial configurations are concerned. Even

though for quenches with ξ = 0 the values of λ differ significantly in the two cases, for

quenches from the critical point, i.e., for ξ = ∞, the exponents are practically same in

both the dimensions.

This work, combined with a few others [14, 15, 21, 26–28, 46], provides near-complete

information on the universality in coarsening dynamics in the Ising model, involving

“realistic” space dimensions, conservation property of the order parameter, and spatial

correlations in the initial configurations. Analogous studies in other systems should be

done, by employing the methods used here, to obtain a complete understanding, e.g.,

the influences of hydrodynamics on relaxation in out-of-equilibrium systems with long

range initial correlations.
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Chapter 5

Should a Hotter Paramagnet

Transform Quicker to a

Ferromagnet? Monte Carlo

Simulation Results for Ising Model

5.1 Introduction

When quenched to the same lower temperature Tf , should a hotter system equilibrate

faster than a colder one? An answer in affirmative is counter-intuitive and relates to

the Mpemba effect (ME) [1, 2]. ME can have important applications in memory devices

[3] and elsewhere. In spite of such practical importance and the knowledge since the

time of Aristotle [2, 4–8], explanation of ME remains elusive. Following the work [1] by

Mpemba and Osborne, there has been a surge of interest in understanding it [2, 3, 9–

20], particularly during the last decade [3, 10–20]. Nevertheless, the progress remains

limited. Interestingly, there still exists hot debate on the very existence of the effect.

Experimental reports are available in favor of [9, 10, 18, 19, 21] as well as against [20, 21]

it.

Historically the effect has been attached with cooling or solidification of liquids [4–

7, 22, 23], like water and milk. Recently there exist efforts to extend the domain by

asking the same question for other systems [3, 12–19]. These include cooling granular

gases [14], coarsening spin glasses [3], etc. In the case of spin glasses [3, 24–26], ME

is observed due to the variation of the correlation length (ξ) with the shifting of the
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starting temperature Ts. Likewise, in each type of systems [3, 12–19] certain anomaly

decides on the existence of ME. Some of the studies [3, 14] provide the impression that

the effect has connection with aging systems [27–29]. However, it is not clear whether

the connection is only with the aging systems having glass-like slow dynamics [3, 24–26]

or simpler aging systems, undergoing standard clustering or phase transitions [30, 31],

are also good candidates for the exhibition of the effect.

With the variation of Ts it is expected that certain structural quantities will undergo

change. In the context of critical phenomena [31, 32], ξ exhibits the divergence [32]:

ξ ∼ |Ts − Tc|−ν, (5.1)

as Ts approaches Tc, the critical temperature. If variation in quantities associated with

structure is responsible for the observation of ME, choice of a thermodynamic region

close to Tc is then ideal [3, 33, 34] for preparing the systems before quenching to a Tf .

Furthermore, to establish the reasons behind the effect, in addition to studies of systems

having glass-like ingredients, materials of other varieties should also be considered. It

is important to study simpler prototype systems. If the effect is observed, such systems

can provide easier path to understanding, thereby putting the criticisms on the existence

of ME to rest.

In this work we consider the standard nearest neighbor ferromagnetic Ising model

[30–32]. We explore a wide range of Ts, lying above Tc. It is convincingly shown that

following quenches to a Tf , below Tc, decay of energy for systems with higher Ts occurs

faster. This, indeed, is the expectation [3] when ME is present. Our finding, which we

confirmed via various means, is striking, given that, unlike the spin glasses, there is no

in-built frustrated interaction in this model. Observation of ME in such a simple system

hints that the effect is rather common. Furthermore, we provide a quantitative critical

scaling picture to elucidate the outcome of the study.

5.2 Model and Methods

Model and methods are similar to those described in the previous chapters. Nevertheless,

for the sake of completeness we briefly restate here.

The Hamiltonian of the model is [30–32]

H = −J
∑

〈ij〉

SiSj , Si = ±1, (5.2)
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where J (> 0) is the interaction strength between nearest neighbors. The spin values ±1

correspond to up and down orientations of the atomic magnets. We study this model

via Monte Carlo (MC) simulations [35–37], in space dimension d = 2, on a square lattice.

The value of Tc for this system [35] is = 2.269185...J/kB, where kB is the Boltzmann

constant.

Following quenches to a Tf , the MC simulations were performed by employing the

Glauber dynamics [35, 38]. In this method a trial move is performed by flipping a

randomly chosen spin. This does not conserve [30] the system-integrated order parameter

and the dynamics corresponds to ordering in a uniaxial ferromagnet. L2 such moves, L

being the linear dimension of a square simulation box, in units of the lattice constant a,

make a single MC step (MCS). This is the unit of our time (t).

In the vicinity of Tc, the divergence in the relaxation time makes the preparation of

initial configurations time taking. To avoid this, we used the Wolff algorithm [39], where,

instead of a single spin flip, a randomly selected cluster is flipped. Initial configurations

prepared at different values of Ts, via this method, are quenched to several values of Tf .

We have applied periodic boundary conditions in both directions. Unless otherwise

mentioned, presented results are averaged over 100000 independent initial configurations.

All results are for L = 256a. In the following we set, for the sake of convenience, J , kB

and a to unity.

5.3 Results

In Figs. 5.1(a) and (b) we show typical equilibrium snapshots from two values of Ts,

each having critical, i.e., 50:50 proportion of up and down spins. The difference in the

extent of spatial correlations between the two temperatures is easily identifiable from

these pictures. Such critical enhancements [32] are demonstrated quantitatively in Fig.

5.2 and Fig. 5.3. In Fig. 5.2 we show the probability distributions for order-parameter

(m) fluctuation [36, 40]. The width is much higher for the temperature that is closer to

Tc, implying enhanced susceptibility [32, 36, 40].

In Fig. 5.3(a) we have presented the structure function [32], S(k), versus k, the

latter being the wave number, for the same two temperatures. This structure function is

related to the spatial fluctuation in the concentration field when the overall composition

is fixed at the critical value [40–42]. In the k → 0 limit, stronger enhancement in S(k),

for Ts closer to Tc, is again related to higher susceptibility. In part (b) of Fig. 5.3 we

show 1/S(k) as a function of k2, in a small k regime. Linear appearances are consistent
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Figure 5.1: (a)-(b) Typical equilibrium configurations are shown from two starting tem-
peratures, Ts. Each of the configurations has 50:50 proportion of up and down spins.
The locations of the up spins are marked.

Figure 5.2: Plots of equilibrium probability distributions for magnetisation are shown
from the Ts values for which the snapshots are presented in Fig. 5.1. These results were
obtained by exploiting the composition fluctuations in the simulations via the Wolff
algorithm. The continuous lines are Gaussian fits.
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Figure 5.3: (a) S(k), the structure factor, is plotted versus the wave number k, for 50:50
equilibrium configurations. These results are also presented from the same two Ts values
mentioned in Fig. 5.1. (b) Plots of 1/S(k) versus k2. Here the continuous lines represent
linear behavior.
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Figure 5.4: Average domain lengths, following quenches to Tf = 0, from different values
of Ts, are plotted versus time.

with the Ornstein-Zernike [32, 41] behavior. Steeper slope for smaller Ts signifies an

enhancement [32, 42] in ξ with the approach to Tc. With such temperature dependent

initial configurations, we study the equilibration dynamics following quenches to various

Tf below Tc.

In Fig. 5.4 we present plots for the growth of average domain length (ℓ), following

quenches of initial configurations prepared at different values of Ts. In each of these cases

the value of Tf was set at zero. These lengths were calculated from the first moment of the

domain size distribution function [43], size of a domain being estimated as the distance

between two successive interfaces, while scanning along different Cartesian directions. It

is clearly seen in Fig. 5.4 that there exist crossings among curves and for a lower value

of Ts the late time average domain lengths are smaller than those for a higher Ts. This

suggests that the systems starting from higher Ts are relaxing faster.

A requirement for the validity of the above discussed picture, on the growths of

lengths, is the existence of the self-similar property among the evolving domains [30],

for different Ts, at any given instant of time within the relevant period. This feature
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Figure 5.5: Same as Fig. 5.4. Here we have enlarged plots for three of the considered Ts

values. The broken frame is adopted to bring clarity on the differences among early as
well as late time data sets.

should get reflected in the simple scaling property [30],

C(r, Ts) ≡ C̃(r/ℓ), (5.3)

of the two-point equal time correlation function,

C(r, Ts) = 〈SiSj〉 − 〈Si〉〈Sj〉. (5.4)

Here r is the scalar distance between the points i and j, while C̃(x) is a master function

that should be independent of Ts. We intend to demonstrate the validity of the above

mentioned scaling property for times below, equal to, and greater than the crossing

times. For this purpose in Fig. 5.5 we have shown enlarged plots for a subset of Ts

values considered in Fig. 5.4 [broken frames are used to bring clarity in both early

and late time data sets]. From this figure it appears that the crossings among these

length data sets occur around t = 1300. Thus, we have shown the scaling plots for the

correlation functions, in Fig. 5.6 (a), (b) and (c), for t = 1100, 1300 and 1500. In each

of the cases good collapse of data can be observed. This fact states that comparisons
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Figure 5.6: (a)-(c) Two-point equal time correlation functions, from different Ts, as used
in Fig. 5.5, for three different times, are plotted versus r/ℓ, for quenches to Tf = 0. See
text for details.
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Figure 5.7: Energy per spin, E, is plotted as a function of time. Results from several
different choices of Ts are shown. In each of these cases the systems were quenched to
Tf = 0. The frame has been broken to bring clarity in both early time and late time
trends in the data sets.

among length data from different Ts are meaningful. Here it is worth mentioning that

the initial configurations with large enough spatial correlation is fractal in nature [32].

In that case the scaling at early enough times should follow the form [32, 44–46]

C(r, Ts) ≡ rd−df C̃(r/ℓ), (5.5)

where df is the fractal dimension. This is consistent with the Ornstein-Zernike form [32,

41] r−pe−r/ξ. However, the observation of good data collapse for df = d implies that the

fractal features practically disappeared well before the crossing times. In the following

we present results on energy decay. This is an alternative route for the confirmation of

ME [3].

In Fig. 5.7 we show the time dependence of E, energy per spin, during evolutions

for different Ts values, again by fixing Tf to zero. Like in Fig. 5.4, there exist crossings

here as well. Systems with higher Ts, i.e., larger starting energy, are approaching new

equilibrium faster. This, indeed, is the basic essence of ME. The crossings are very
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Figure 5.8: Plots of crossing times, tc,f , versus Ts, of energy curves for different Ts values
with that of a lower reference starting temperature, viz., T r

s = 2.35. We have shown
data for two values of Tf , viz., Tf = 0 and Tf = 0.6Tc.

systematic. This is owing to extremely good statistics. A better quantitative information

on the trend of crossings is demonstrated in Fig. 5.8. Here we have plotted the crossing

times, tc,f , of energy curves for different values of Ts, following quenches to a Tf , with

that for a reference value T r
s = 2.35. We have shown results for Tf = 0 and 0.6Tc.

Each of these data sets conveys the message that energy plots for higher values of Ts

are crossing the reference plot earlier. This indirectly implies that there exists crossing

between any chosen pair of curves. This required feature is present in the plots for both

the values of Tf .

A comparison between the two plots in Fig. 5.8 suggests that with the increase

of Tf crossing between curves for two different Ts values has become delayed. This

may imply that the crossing time will diverge with the approach of Tf towards Tc. A

comprehensive exercise related to that is shown in Fig. 5.9. Here tc,f represent the

crossing times between the energy curves for Ts = 2.5 and 2.6, following quenches to

different Tf . The trend is consistent with the above anticipated singularity and points

to a possibility that a phase transition is necessary to observe the ME, i.e., Ts and Tf



5.3 Results 101

Figure 5.9: Plot of tc,f , as a function of Tc −Tf , for crossings between energy curves from
two Ts values, viz., 2.5 and 2.6. The data set is presented after averaging over 200000
independent initial realizations.

should lie on two sides of the critical point. However, for a concrete statement on the

latter independent studies are needed by fixing Ts and Tf on the same sides of Tc.

To further ascertain the effects of critical fluctuations at Tf , on the magnitude of

ME, we present additional results in Fig. 5.10. Given the debates on the topic, while

good statistics is a necessity, it is also essential to demonstrate that there exists no bias

in the presented results due to the averaging over a specific set of initial configurations.

Keeping that in mind we have calculated the Pearson correlation coefficient [47],

rtc,f Tf
=

n
∑

f=1

xfyf

/

√

√

√

√

n
∑

f=1

x2
f

√

√

√

√

n
∑

f=1

y2
f . (5.6)

Here xf and yf are, respectively, tc,f − tc and Tf − T , with tc and T being averages of

crossing times and quench temperatures for a sample of size n (= 6 here). We have

calculated this coefficient by using tc,f versus Tf data that were obtained by averaging

over increasing number (N) of initial configurations. The rtc,f Tf
versus N plot in Fig.

5.10 clearly conveys the message that the correlation between tc,f and Tf is positive,

thereby discarding the possibility of aforementioned biasness unambiguously.
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Figure 5.10: Pearson correlation coefficient, rtc,f Tf
, is shown with the variation of N , the

number of initial configurations used in the averaging.

5.4 Conclusion

We have studied the kinetics of phase transitions [30] in the two-dimensional nearest

neighbor Ising model [32], via Monte Carlo simulations [35], using Glauber spin-flip dy-

namics [38]. This mimics the ordering dynamics in uniaxial ferromagnets. The objective

has been to investigate the presence of the Mpemba effect [1]. For this purpose we have

prepared initial configurations at various starting temperatures Ts, lying between Tc and

∞. These configurations, with 50:50 compositions of up and down spins, were quenched

to various final temperatures Tf (< Tc). We observe that systems with higher Ts tend

to approach the equilibrium at a Tf faster than the ones with lower Ts. This is the basic

fact of the Mpemba effect [1].

While Mpemba effect itself is a counter-intuitive phenomena, observation of it in a

simple system that is considered here is even more surprizing. Note that the model has

no glassy ingredient. We have presented results for multiple values of Tf . In each of the

cases, the effect is clearly identifiable. We have also shown that as Tf increases towards

Tc, the crossing time between energy curves for a pair of starting temperatures increases.
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This may imply that a phase transition is necessary for the observation of ME. However,

further studies are necessary to arrive at such a conclusion.

Despite no in-built glassy feature, the model has been recognized [28, 48, 49] to

exhibit unusual structure and slow dynamics at Tf = 0, particularly in d = 3. Such

behavior may be considered to be a reason behind our striking observation. Nevertheless,

interestingly, the effect is also observed for much higher values of Tf and in d = 2. Our

results suggest that it persists at least till Tf is less than Tc. This work, thus, we expect

to inspire further novel investigations, experimental as well as theoretical, with simple

systems, providing path towards better understanding of the Mpemba effect.

In this work we have considered initial configurations with 50:50 compositions of up

and down spins. It is equally important to study the case of asymmetric starting compo-

sitions. In this case also variation of the correlation length in the starting configurations

can be realized with the change in temperature. Thus, the effect may be observed for

non-zero initial magnetization as well. Our preliminary studies support this expectation.

Nevertheless, more thorough studies are needed. Here we have considered the Glauber

dynamics [38] for which the order parameter does not remain conserved over time. It

will be interesting to extend the investigation to the conserved order-parameter dynam-

ics via the implementation of Kawasaki exchange kinetics [36]. A systematic study of

this, however, can be time taking. Note that in the case of Kawasaki kinetics, due to

significantly slower growth [43] the crossings may occur at much later times.
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Chapter 6

Dynamics of Cluster Growth during

Phase Transitions in a

Three-dimensional Single

Component Lennard-Jones System

6.1 Introduction

When a homogeneous system is suddenly quenched inside the coexistence region, the

system becomes unstable. It evolves towards the new equilibrium state via clustering or

domain coarsening, till a complete phase change occurs [1–29]. Based on the conservation

of relevant order parameter, these transition kinetics are typically divided into categories

of nonconserved or conserved dynamics [1]. In the case of conserved order parameter

dynamics, the relevant system integrated order-parameter does not change during a

phase change. Examples of this category include phase separation processes in various

passive [6–26] and active [27–30] matter systems. In both the passive and active cases,

types of phase transitions can be vapor-liquid, solid-liquid or vapor-solid, depending on

the values of thermodynamic parameters involved. In this chapter we will be focusing on

the latter type of phase transition in the context of a single component Lennard-Jones

system, representing a passive scenario.

Coarsening mechanism in systems, where one or more phases are fluid, hydrody-

namics plays important role. Manifestation of the latter depends on the composition

or overall densities [1–5]. For quenches of fluids with critical compositions or densities,
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domain morphology is bicontinuous in nature [1–10], as often observed during spinodal

decomposition. The growth occurs due to pressure gradient across the tube-like domains,

as discussed by Siggia [11]. On the other hand, for an off-critical fluid, i.e., for quenches

with density or composition close to one of the branches of the coexistence curve, coars-

ening progresses following nucleation of disconnected droplets of the minority phase

[6, 11, 12]. There, the growth proceeds via the inelastic collisions among droplets that

undergo thermal motion of various types [12, 13]. This picture may apply to vapor-solid

transitions as well. For diffusive motion of the droplets a quantitative picture was pro-

vided by Binder and Stauffer (BS) [12]. Here, note that, in the case of off-critical solid

binary mixtures, as discussed by Lifshitz, Slyozov and Wagner [15, 16], the big droplets

get bigger by concentration diffusion in the absence of hydrodynamics. In fluids, the

coupling between velocity and concentration (or density) fields makes the process more

complicated [1, 11, 12, 17–19]. Furthermore, when density and temperature are very low,

following nucleation, fractal structures may appear in a single component system under-

going vapor-solid transition [22]. The growth mechanism in this case was shown to be

rather different from the standard ones typically discussed in the literature. The latter

study was for spatial dimension d = 2. In this chapter, we investigate the mechanism

of formation and growth of fractal structures in a single-component system in d = 3, by

exploring a broad region of the temperature-density phase diagram.

In general, the domain growth during a phase separation process obeys a power-law

[1, 2]:

ℓ(t) ∼ tα, (6.1)

where ℓ(t) is the average domain length in the system and α is the growth exponent.

Usually the evolution proceeds in a self-similar manner where the domain morphologies

at different times differ only in the values of ℓ(t). The growing structure is typically

probed via the two-point equal time correlation function [1, 2],

C(r, t) = 〈ψ(~r, t)ψ(~0, t)〉 − 〈ψ(~r, t)〉〈ψ(~0, t)〉; r = |~r|. (6.2)

Here ψ is the order parameter. For the standard self-similar structures, this follows the

scaling form [1, 2],

C(r, t) ≡ C̃(r/ℓ(t)), (6.3)

where C̃(x) is a time independent master function.

To determine the value of the growth exponent, α, in the case of BS mechanism, one

can write the rate of decrease in droplet density, n, that occurs due to merger following
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collisions, as [6, 11, 12]
dn

dt
= −Bn2, (6.4)

where B is a positive constant. In terms of the average domain length, noting that

n ∝ 1/ℓd, the above equation modifies to

dℓ

dt
= B′ 1

ℓd−1
, (6.5)

providing α = 1/d, B′ being another positive constant. This give a value 1/3 in the

present case (d = 3). If we consider the fractal structure formation and break down

of the BS mechanism at very low densities and temperatures, it is important to check

for the possibility of ballistic aggregation [31] in the system. For ballistic aggregation

of fractal or non-fractal objects, the rate of change of droplet density can be written as

[22, 31]
dn

dt
= −‘Collision cross section’ × 〈vrel〉 × n2, (6.6)

where 〈vrel〉 is the average relative velocity of the clusters. This will be equal to the root

mean square velocity, vrms, in the case of uncorrelated motion of the clusters [31]. The

collision cross section is the area which can be written as R2
g in d = 3. Here, Rg is the

radius of gyration, which is an appropriate length scale in the case of fractal objects. By

incorporating these facts in Eq. (6.6), one arrives at

dn

dt
= −R2

g × vrms × n2. (6.7)

The growth in the system can be examined by calculating the average mass of the

clusters, M(t), which has typically a power-law behavior in time as [22]

M(t) ∼ tβ. (6.8)

Here M(t) can be related to the droplet density as

n ∝ 1/M. (6.9)

Also M(t) in terms of Rg can be written as [22]

M(t) ∼ Rdf
g , (6.10)
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where df is the fractal dimensionality of the system. Following the incorporation of the

above facts and the assumption that vrms has a power-law behavior [22]

vrms ∼ M−vr , (6.11)

Eq. (6.7) gets modified to

M(t) ∼ t1/(vr+1−2/df ), (6.12)

implying [22, 28, 29]

β =
1

vr + 1 − 2
df

. (6.13)

Our objective here is to investigate the above discussed ballistic aggregation mech-

anism in the considered model for fractal clusters over a reasonably wide region inside

the coexistence curve. In the next section, a brief discussion on the model and methods

is given, followed by the results and conclusion in the subsequent sections.

6.2 Model and Methods

Our model system consists of unit diameter (σ = 1) particles, with an overall (particle)

density ρ = 0.04, interacting with each other via a truncated, shifted, and force-corrected

Lennard-Jones (LJ) potential of the form [10, 18]

U(r) = u(r) − u(rc) − (r − rc)

(

du

dr

)

r=rc

, (6.14)

where

u(r) = 4ε

[

(

σ

r

)12

−
(

σ

r

)6
]

, (6.15)

with rc (= 2.5σ) being the cut-off distance. The critical density, ρc, and the critical

temperature, Tc, for the vapor-liquid transition within this model are estimated to be

0.316 and 0.939ε/kB, respectively [26], kB being the Boltzmann constant. Along with

σ, we set ε (interaction strength) and kB also to unity. The system is kept inside a

cubic simulation box of linear dimension L = 128, measured in units of σ. We use

molecular dynamics (MD) simulations in canonical (NVT) ensemble by implementing

the velocity Verlet algorithm [32, 33], with periodic boundary conditions imposed along

all directions. The temperature was controlled via the implementation of a Nosé-Hoover

(NHT) thermostat [34, 35] which is considered to be good for preserving hydrodynam-
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ics. Homogeneous systems of low overall density (0.04, as mentioned above), which is

prepared at very high temperature, is quenched to different final temperatures (Tf ) that

fall inside the coexistence region. The time in our simulation is measured in units of

(mσ2/ε)1/2. The integration time step, ∆t, was varied between 0.005 and 0.01, for the

solution of the dynamical equations.

The average domain length, ℓ(t), is calculated via the equation [18, 21],

ℓ(t) =
∫

P (ℓd, t)ℓddℓd, (6.16)

P (ℓd, t) being a distribution function and ℓd, the size of a domain, is the distance between

two successive interfaces in a specific direction. In order to obtain C(r, t) and ℓ(t), we

mapped the systems to a simple cubic lattice by assigning particles on the lattice points

according to the local density [18, 20, 21]. If the local density of a site is greater than

the critical density, we assign a particle to the particular site, otherwise, we let the site

be empty. This makes the system resemble a two-component Ising system having spin

values +1 or −1 at each of the sites. Following this, a noise removal has also been

performed by applying the majority spin rule, where a site gets occupied by a particle

if the majority of the nearest neighboring sites are occupied. For the calculation of M ,

we have appropriately identified the domain boundaries [18, 20].

All the presented results below are averaged over a minimum of 20 initial configura-

tions.

6.3 Results

We start by presenting the evolution snapshots of a system, following a quench to Tf =

0.2, in Fig. 6.1. The formation of disconnected clusters is clearly visible. The early

time snapshot contains spherical droplets. At later time, filament-like fractal structures

appear. Below we try to understand the reason behind the formation and growth of

such clusters.

In the low density regime, a natural expectation for cluster growth is via the diffusive

transport of droplets [12]. The average domain length of the system, as explained above,

in this case, should have a power-law behavior with the exponent α = 1/3 in d = 3.

In Fig. 6.2, we present a plot of the average droplet size ℓ(t), versus t, on a double

logarithmic scale. From the figure, it appears that the power-law exponent is smaller.
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Figure 6.1: Evolution snapshots of a system, following a quench to Tf = 0.2, with
L = 128, are shown from different times. The late time snapshots contain fractal
clusters.

It is ≃ 0.24, deviating by about 30% from the expectation. To investigate for this, we

look for the mechanism other than diffusive coalescence in these systems.

To understand the cluster motion in our system of interest, we calculate the mean

squared displacement (MSD) of the clusters [36] at late times. A plot of MSD, versus

the translated time, t′ = t − t0, for two different clusters are shown in a log-log scale

in Fig. 6.3(a). Here t0 is the time from when the calculation started. The MSD has

been calculated for the clusters over periods before they undergo any collisions with the

others. To ascertain that no collision occurred in between, we calculated the number of

particles (Np) in each of the considered clusters. The corresponding plots are shown in

Fig. 6.3(b), from where it is evident that the particle number in each of the clusters is

almost constant for the presented time range [only one sided fluctuation in the data sets

is a low temperature feature – because of very low density of the vapor phase only the

same set of particles get occasionally detached and attached to the parent droplet]. This

also confirms that the contribution due to Lifshitz-slyozov particle diffusion mechanism

is weak. The data in Fig. 6.3(a) are consistent with a power-law exponent 2, which

points to the fact that the clusters undergo ballistic motion. This is in agreement with

a study on 2D Lennard-Jones fluid at low temperature and low density where also the

cluster motion was reported to be ballistic [22]. There the system was shown to coarsen

via sticky collisions among the clusters, i.e., via the ballistic aggregation mechanism [31].

When a sticky collision occurs between two clusters, the newly formed structure

minimizes the surface free energy by trying to attain a spherical shape. The time scale

of this process competes with that of collisions via the ballistic motion of droplets. After
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Figure 6.2: Log-log plot of the average domain size, ℓ(t), as a function of time, corre-
sponding to the quench picture depicted in Fig. 6.1. The solid line denotes a power-law
with the exponent mentioned next to it.

a collision, before the structure can attain a spherical shape, it is possible that the

cluster encounter a new collision. This leads to the formation of fractal structures with

branches. The corresponding dimensionality, df , of these structures can be quantified

via Eq. (6.10). A plot of M(t) versus Rg, in a log-log scale, is shown in Fig. 6.4 for

a quench to Tf = 0.2. The power-law exponent for the late time data comes out to be

≃ 2.75 (< d = 3). This confirms the presence of fractal structure. Note that Rg was

calculated as

Rg =





1

Np

Np
∑

i=1

(~ri − ~rcm)2





1/2

, (6.17)

where ~ri is the position of the ith particle, ~rcm is the location of the centre of mass of

the cluster, and Np is the total number of particles inside the cluster.

The value of df , we observe, depends strongly on the quench temperature. In Fig.

6.5, we plot df as a function of quench temperature. From this plot, we see that df

decreases with the increase in Tf . This is contrary to the natural expectation that df

should increase with Tf . This expectation is because: as the temperature increases, the

motion of particles inside each droplet increases that should help minimization of surface

free energy faster. However, with the decrease in Tf , a newly formed droplet gets longer
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Figure 6.3: (a) Mean squared displacements (MSD) are plotted as a function of trans-
lated time t′ for two different clusters. The dashed line represents a power-law with
exponent 2, which signifies the ballistic motion of the clusters. (b) The number of parti-
cles in each of the clusters, Np, for which the MSD are presented in part (a). All results
are for quenches to Tf = 0.2.
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Figure 6.4: Plot of the average mass of the clusters, M(t), as a function of Rg, for a
quench to Tf = 0.2. The solid line denotes a power-law with an exponent df ≃ 2.75.

Figure 6.5: Plot of df as a function of quench temperature.
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Figure 6.6: Plot of C(r, t), versus r/ℓ, from different times, for Tf = 0.2. The non-scaling
behavior implies that the structures at different times are not self-similar, in standard
sense.

time for minimizing the surface free energy, because of the slower ballistic motion of the

clusters, thereby, attaining a shape more close to a sphere. This, perhaps, leads to a

higher value of df .

Evidently, the structures during this evolution will not be self-similar in nature, in

standard sense, due to the presence of fractality. This fact can be captured via the usual

scaling plots of the two-point equal-time correlation function, C(r, t). Plot of C(r, t),

versus r/ℓ, from different times, following a quench to Tf = 0.2, are provided in Fig. 6.6.

There is no collapse of data from different times which confirms the non-self-similarity

of the structures at later times. To obtain data collapse in this case one needs to modify

the scaling form by incorporating the difference d − df . However, in the present case,

the value of df changes as the system evolves, for a significant period of time. If in

the scaling exercise this fact is taken into account data collapse can be obtained. In

systems for which df is time independent, the procedure is relatively trivial. Thus, for

this problem this is a complex exercise which suggests that cluster mass, rather than

the length, is a better quantity to probe.

Given that the motion of the clusters at late time is ballistic, cluster growth can be

explained via the theory of ballistic aggregation. According to the theory, the average
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Figure 6.7: (a) Plot of vrms versus M(t) in a double-log scale. The solid line is a power-
law, the exponent for which is mentioned in the figure. (b) Plot of M(t) versus t in a
double-log scale. The solid line is a power-law with an exponent that is obtained by
using Eq. (6.13). All the results are for a quench to Tf = 0.2.
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Figure 6.8: A comparative picture of the values of β obtained from Eq. (6.13) and from
simulations.

mass of the clusters, M(t), grows in a power-law fashion with an exponent β that is

quoted in Eq. (6.13) in Sec. 6.1. The value of the exponent vr can be quantified from

the root-mean-squared velocity – see Eq. (6.11). A plot of vrms as a function of M(t) in

a log-log scale is shown in Fig. 6.7(a) for quenches to Tf = 0.2. From this we quantify

vr ≃ 0.8. The deviation from the value 0.5 may imply correlation in cluster motions. By

incorporating this value of vr and df (≃ 2.75) in Eq. (6.13), we obtain

β ≃ 0.93. (6.18)

A plot of M(t), as a function of t, in a log-log scale, is displayed in Fig. 6.7(b). A

power-law with this value of β is also shown here. The simulation data are consistent

with this.

We have calculated β for a wide range of temperature within which the ballistic

aggregation picture applies. A comparison of the values of β obtained directly from the

simulation data for growth and the ones that emerge from Eq. (6.13) is provided in Fig.

6.8. The agreement between the trends obtained from the theory and the simulation

is satisfactory in this low temperature regime, the numbers being consistent with each
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Figure 6.9: (a) A 2D slice of a cluster at t = 4 × 104, for Tf = 0.2. (b) Plot of the
structure factor, S(k), as a function of k, for a cluster, for which the snapshot of a 2D
slice is given in part (a).
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other within about 10%. The discrepancy can be attributed to lack of statistics as well as

the assumption that vrms ∼ M−vr even when there exists correlation in cluster velocities.

In Fig. 6.9, we demonstrate structural aspects inside a typical cluster formed during

evolution at Tf = 0.2. In part (a) of this figure we show a 2D slice (from t = 4 × 104).

Regular arrangement of atoms can be appreciated. We calculate the structure factor,

S(k), defined as [36]

S(k) =
1

Np

〈 Np
∑

i=1

exp(i~k.~r)
〉

, (6.19)

where ~r = ri − rj and ~k is the wave vector. Fig. 6.9(b) shows the plot of S(k) versus k,

in which there are peaks confirming the presence of crystalline ordering. This ordering

inside the cluster reduces the movement of the particles inside the cluster, and, in turn,

leads to the formation of fractal clusters in the system. This exercise implies that a

vapor-solid phase transition is occurring in the considered temperature-density regime.

6.4 Conclusion

We have studied the evolution of a single component system, with particles interacting

via the Lennard-Jones potential, at low density and temperature regime inside the co-

existence curve for vapor-solid phase transitions that the model exhibits. Because of

low density the solid clusters are disconnected. These are fractal in nature. Here the

growth dynamics is different from the usually expected BS mechanism. Rather than

diffusive motions, the clusters undergo ballistic motion. The fractal dimension, df , of

the clusters strongly depends on the final temperature. At very low temperature regime,

df decreases with an increase in Tf . This is due to the interesting interplay between two

time scales present in the system.

The average mass of clusters grow with time in a power-law fashion. The corre-

sponding exponent, β, also appears to be temperature dependent. This we have tried

to understand via a ballistic aggregation theory by incorporating the information on

temperature dependent df . The theory produces correct trend and reasonable accuracy.
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Chapter 7

Study of Disease Spread via a

Scaling Approach

7.1 Introduction

The outbreak of COVID-19, a disease caused by a novel coronavirus, has led to renewed

interest in the understanding of disease spread [1–9]. Efforts to recognize the patterns

in disease spread have started long back [10–12]. In the literature of epidemiology, there

are several mathematical models. The list includes SI (Susceptible-Infected) model, SIR

(Susceptible-Infected-Recovered) model, etc. [11–16]. Modelling of disease spread using

the concepts of percolation theory has also been of recent interest where the percolation

probability is connected with the probability of infection through direct contact with

an already infected individual [8, 17]. Outcomes of studies via these models suggest

an exponential growth in the number of infections in the early days of the spread [14–

16]. This can be understood by considering the fact that a single infected individual can

infect another within certain period, and these two infected individuals can further infect

two within the same interval, and so on. After this rapid initial spread, there occurs a

crossover to a slower growth regime. The spread in this regime depends on various factors

[1–8, 10–16]. Some of these are related to the efficiency of identification and isolation of

the patients, recoveries and deaths of the infected individuals, the incubation period, the

social restrictions imposed by the governments, etc. Thus, mathematical description of

the overall spread of disease, and understanding of it, during an epidemic is a challenging

task.

When an epidemic ends, the total number of infections can at the most equal the

total population in the given geographical region, with the assumption that a person
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cannot get infected multiple times [6]. Such finite-size effects [18–23] start much earlier

than the saturation is reached. Even if there exists no preventive measures, recovery

and death can lead to a deviation from the exponential behavior. This is analogous to

the onset of finite-size effects in systems exhibiting phase transitions, though of different

origin [18–23]. In reality, the saturation number is much less than the total population.

This is, as mentioned above, due to early detections of the disease, preventive measures

taken to reduce the spread, etc. These make the finite-size effects more severe, which,

of course, is beneficial.

By considering the similarity of this problem with that of domain growth during

“phase transitions” in condensed matter systems, having finite sizes, a finite-size scaling

(FSS) [19] method was proposed recently [6], to understand the mathematical pattern

in disease spread. The number of infected individuals at the end of an epidemic or of a

wave within it, Ns, can be considered as the system size here. Application of the scaling

method [6] provides information on universal as well as non-universal features of spreads

in different geographical regions. Below we discuss the scaling picture. For the sake of

convenience we first discuss the FSS picture in the phase transition context.

7.2 Scaling Technique

When a homogeneous system is quenched inside the miscibility gap, evolution towards

the new equilibrium starts via the formation of particle rich and particle poor domains.

The average size, ℓ, of these domains grows in a power-law fashion with time (t) as

[24, 25]

ℓ ∼ tα, (7.1)

where α is the growth exponent. Given that there may be an onset time (t0) for a system

to fall unstable to fluctuations, following the quench, or to reach the scaling regime of

growth, a more general way of writing this is [21, 22, 26, 27]

(ℓ− ℓ0) ∼ (t− t0)α, (7.2)

where ℓ0 is the domain length at time t0. Note that ℓ0 is like the background contribution

in equilibrium critical phenomena [20]. Considering that there always exists inadequacy

in system size in computer simulations, the growth will eventually encounter finite-size

effects. I.e., at some point, depending upon the size of the system, there will be deviation

from the behavior in Eq. (7.2). Let us consider the maximum domain length that can
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be attained for a system of size L be ℓmax. Using this fact and Eq. (7.2), one can write

[21–23]

ℓ− ℓ0 = Y (y)(ℓmax − ℓ0), (7.3)

with Y (y) being a finite-size scaling function and y a dimensionless scaling variable,

defined as [21–23]

y =
(ℓmax − ℓ0)

1

α

t− t0
. (7.4)

The construction of Eq. (7.3) is motivated by the following fact in equilibrium critical

phenomena. A quantity X, having singularity [28–30]

X ∼ ǫ−x, (7.5)

ǫ being the deviation of a considered state point from the critical point, has a behavior

[19]

X ∼ Lx/ν , (7.6)

when measured at the “critical” points for systems of varying size L, ν being the crit-

ical exponent for the correlation length ξ. This finite-size behavior is bridged with

the thermodynamic limit behavior via the introduction of a finite-size scaling function.

Analogous to the fact that at the criticality ξ = L, in the considered nonequilibrium

problem the finite-size limit is ℓ = ℓmax. The difference of ℓmax from actual system size L

arises from the chosen method of measurement, composition or density in the coarsening

system, etc.

When plotted versus y, data for Y from different system sizes will overlap on top

of each other, for the correct choices of t0 and α. Thus, Y is independent of system

size, for a specific problem. This should not, however, be associated with universality.

Universality in finite-size behavior will be established if the functional form for Y is

unique irrespective of transitions or materials of different types [23, 31, 32]. In the case

of disease spread the statement applies when the functional form is same for different

geographical regions, i.e., if data from multiple countries overlap to provide a unique Y

[6], despite the fact that there exist disparity in economy, population density, ethnicity,

etc., among the considered group of countries.

In the limit y → 0, i.e., t → ∞, the scaling function Y (y) will approach a constant

value. When y → ∞, Y (y) should have a power-law behavior [23]

Y (y) ∼ y−α. (7.7)
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Eq. (7.7) is compatible with the thermodynamic limit form, as quoted in Eq. (7.2), of

domain growth.

Next we consider the case of an epidemic. Here, during early days of spread, the

total number of infections at time t, N(t), can be written as [6, 15]

N = N0 exp(mt), (7.8)

with N0 and m being positive constants. Let Nd be the population that gets infected at

the time when the deviation from the exponential behavior occurs. This is the time when

the finite-size effects start. Studies of phase transition suggests that this is proportional

to the system size. I.e., in this case Nd ∝ Ns. Given that for an ongoing wave of an

epidemic Ns is not known, it is instructive to use Nd for the scaling analysis [6], if studies

are designed with the objective to influence strategies to control the spread or to advice

the governments on improvement of health infrastructures. In any case, a new wave may

come even before an ongoing wave ends. That way it is difficult to have a good estimate

of Ns.

A scaling ansatz in this case can be written as [6]

lnn = Y (y) lnnd, (7.9)

where

n =
N

N0
, (7.10)

nd =
Nd

N0

, (7.11)

and

y =
ln nd

mt
. (7.12)

Here Y (y) → constant as y → 0, and as y → ∞, Y (y) should have the power-law

behavior [6]

Y (y) ∼ y−1. (7.13)

For the construction of a full analytical form for Y (y), definition of an instantaneous

exponent [6, 26],

ψi =
d lnY

d ln y
, (7.14)
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can be useful. This will have a plateau at −1 for large y. By considering this as −p,
rather than fixing the value at −1, a general form can be written as [6]

− 1

ψi
=

1

p
+ by−θ. (7.15)

Eq. (7.15) satisfies the empirical fact that in the y → 0 limit Y approaches a constant,

i.e., ψi is zero. Of course, the last term could have been of logarithmic or exponential

character. The choice of a power-law form has practical reason [6]. By using Eqs. (7.14)

and (7.15), one obtains [6]

Y (y) = Y0

(

b+
yθ

p

)−p/θ

. (7.16)

Here Y0, b, and θ are positive constants. The same function may describe the finite-size

scaling data for domain growth as well.

From Eq. (7.9), the total number of infections, N(t), can be written as [6]

N(t) = N0

(

Nd

N0

)Y

. (7.17)

This provides, by using Eqs. (7.16), (7.12), and (7.11),

N(t) = N0 exp
[

N1t
p(1 +N2t

θ)−p/θ
]

, (7.18)

where

N1 = Y0 ln nd
1

p−p/θ
(m/ lnnd)p, (7.19)

and

N2 = bp(m/ ln nd)θ (7.20)

are constants.

The reason behind taking the finite-size scaling route to arrive at Eq. (7.18) is to

exploit the similarity and familiarity with kinetics of phase transition. A broad objective

is, of course, to establish universality in a larger nonequilibrium domain [6]. Now that we

have Eq. (7.18), without taking the route of direct and formal FSS analysis the ground

data can be fit to the latter equation, for different geographical regions. Assembling

the country specific values of p and θ, thus obtained, conclusion on the existence or

nonexistence of universality can be drawn, in an indirect way.
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7.3 A Few Other Details

We have collected the COVID-19 data, that are made available online [33, 34], for

different countries. Note here that we are not adopting any mathematical models such

as SI or SIR. The study is performed by applying the method mentioned in the previous

section to the collected data sets [6, 33, 34]. For comparing this finite-size scaling picture

with that of growth in the phase transition dynamics, we present results for the kinetics

in Ising model with conserved order-parameter (COP) dynamics [24, 25]. For the COP

dynamics, the total value of the order parameter, i.e., sum of the spins over the whole

system, does not change during a phase change [24, 25].

The Hamiltonian of the nearest-neighbor Ising model is written as [25, 35]

H = −J
∑

〈ij〉

SiSj; J > 0, (7.21)

with Si = +1 and −1 denoting two different kinds of particles, say, A and B, and J is

the interaction strength. Here 〈ij〉 represents summation over nearest neighbors. We

perform Monte Carlo [35] simulations of this binary mixture model using Kawasaki ex-

change dynamics [36]. Under this scheme the particles sitting on the randomly chosen

neighboring sites exchange positions in accordance with the standard Metropolis crite-

rion [35]. We performed the simulations on 2-dimensional square lattice. L is the linear

dimension of square boxes that we have considered, in units of the lattice constant a.

The time is measured in units of Monte Carlo steps (MCS) with one MCS consisting of

L2 trial moves. Note that for the disease dynamics the unit of time is a day. The quench

temperature, Tf , is set at 0.5Tc, Tc being the critical temperature, having a value [35]

2.269J/kB, where kB is the Boltzmann constant. We fix the values of J , kB, and a to

unity, for the sake of convenience of presentation.

The average domain lengths are calculated from the domain-size distribution function,

P (ℓd, t), as [21, 22]

ℓ(t) =
∫

P (ℓd, t)ℓddℓd. (7.22)

Here ℓd is the distance between two successive interfaces in a specific direction. For each

of the system sizes, the values of ℓ(t) have been obtained after averaging over simulation

runs with 1000 independent initial configurations. For this purpose noise clusters in the

system were appropriately removed via the application of a majority sum rule [21]. At

early time noise is much less. This was appropriately taken care of.
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Figure 7.1: Plots of the daily reported cases (DRC) of COVID-19, for three different
countries, viz., (a) Germany (DE), (b) Belgium (BE), and (c) Czech Republic (CZ).
The arrows mark the (approximate) ends of the first waves of the disease spread in the
respective countries.

7.4 Results

Table 7.1: List of values of t0, N0, and θ, along with the dates of detection of the first
infections and the ends of the first waves, for a large set of countries.

Countries
Dates of detection
of first infections

t0 N0
Dates of end of
first waves

θ

Germany (DE) 27 January 2020 32 46 4 June 2020 3.31
Czech Republic (CZ) 1 March 2020 2 3 19 May 2020 2.92
Belgium (BE) 4 February 2020 32 109 17 June 2020 2.96
New Zealand (NZ) 28 February 2020 18 8 23 May 2020 3.51
Monaco (MC) 29 February 2020 12 1 28 April 2020 3.43
Luxembourg (LU) 29 February 2020 6 1 2 June 2020 3.06
Tunisia (TN) 4 March 2020 5 2 25 May 2020 3.04
Spain (ES) 1 February 2020 26 13 7 June 2020 3.53
United Kingdom (UK) 31 January 2020 26 34 4 July 2020 2.78
Switzerland (CH) 25 February 2020 3 8 6 June 2020 3.69
Italy (IT) 31 January 2020 24 155 27 June 2020 2.69
Finland (FI) 29 January 2020 31 2 12 July 2020 2.66
Norway (NO) 26 February 2020 4 15 4 June 2020 2.55
Papua New Guinea (PG) 20 March 2020 119 11 2 October 2020 3.4
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In Fig. 7.1 we present the number of daily reported cases (DRC) of COVID-19

for three different example countries, viz., Germany (DE), Belgium (BE), and Czech

Republic (CZ) [33]. The dates of detections of the first infections [33] are listed in Table

7.1, along with information on several other parameters. In addition to these three

countries, information for many other countries are also included in this table. From

Fig. 7.1, it is clear that each of the countries suffered from multiple waves of the spread.

The downward arrows mark the positions of the ends of the first waves that we have

roughly estimated, based purely on approximate visual judgement. From here onwards,

we will focus on these first waves.

The total number of reported cases, i.e., N(t), as a function of t, for the same three

countries are presented in Fig. 7.2. Here we have presented data sets only up to the

ends of the first waves. The same data sets in a semi-log scale are presented in Fig.

7.3(a). Given that the early time disease transmission is expected to be exponential

in nature [6, 15], the data at the beginning should have a linear appearance in certain

semi-log scale. This can be appreciated from this figure. The dashed lines represent

the form exp(mt), the values of m being mentioned near the corresponding lines. The

onset time of exponential behavior, denoted as t0, is different for each of the countries

[6]. We quantified these and subtracted from the data sets for further analysis. Data

before this is usually less reliable. Also it is perhaps safe to say that the instability

leading to the exponential growth did not appear till this time. N0 is the total number

of cases at t0. The values of t0 and N0 are listed in Table 7.1. In Fig. 7.3(b), we

have plotted N(t)/N0, denoted by n, versus mτ (τ = t − t0), in a semi-log scale. Now

the expected linear behavior can be seen from the beginning [6]. The dashed line here

corresponds to the function exp(mτ). As we have already mentioned, the deviation from

the exponential behavior of the disease spread is connected to various factors, such as

the detection and isolation of the infected individuals, recovery or death of the patients,

the social restrictions imposed by the authorities, etc. These measures and values of m

being different for each country, the deviation from the early exponential behavior and

the saturation in the total number of cases (assuming that there exists a perfect end)

are also different for different countries. This can be appreciated from Fig. 7.3.

This picture is very similar to the growth dynamics in the kinetics of phase transitions

[6, 24, 25]. In the latter case, the average domain length, ℓ(t), of a system follows a

power-law behavior with an exponent α [24, 25], as already mentioned. In Fig. 7.4 we

present the results from the Ising model with the conserved order-parameter dynamics

[21, 24, 25], for quench to 0.5Tc, from random initial configurations. In Fig. 7.4(a), ℓ(t)
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Figure 7.2: Plots of the total number of reported cases, N(t), of COVID-19, till time t
(in units of day) for the same three countries as in Fig. 7.1. Here the data are presented
only up to the ends of the first waves.

Figure 7.3: (a) Same as in Fig. 7.2, but here the data are presented on a semi-log scale
such that the early exponential behavior is appreciated. The dashed lines correspond to
exp(mt) with the values of m mentioned near the lines. (b) Plots of the “normalized”
values of the total numbers of cases, n (= N/N0), versus mτ , with τ = t − t0, for the
same set of countries as in part (a). The dashed line corresponds to the exponential
behavior.
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Figure 7.4: (a) The plots of domain length, ℓ(t), versus time, t, for different system sizes,
for the Ising model with conserved order-parameter dynamics. (b) Same as (a) but here
the data are presented on a log-log scale. The solid line represents a power-law with the
mentioned value of the exponent. Inset: Plots of ℓ′ (= ℓ(t) − ℓ0) versus t′ (= t− t0) on
a log-log scale. The power-law with an exponent 1/3 is shown here as well. The value
of t0 (and thus, ℓ0) was obtained from finite-size scaling exercise.

are plotted versus t from different system sizes, in a linear scale. One can observe that

the data from smaller system sizes saturates to a constant value faster than the larger

ones [18–21]. This is related to the fact that the system with a smaller size equilibrates

and, thus, encounters the finite-size effects earlier. Despite similarity there exists an

important difference between the cases in Fig. 7.3(b) and Fig. 7.4(a). In the case of the

latter, the system is same for all the values of L. For Fig. 7.3(b), the countries, i.e., the

systems are different. Thus, if scaling collapses of data are observed, the corresponding

Y will imply system-size independence in the Ising case, whereas for the COVID-19 case

this will provide a sense of universality.

The same data of Fig. 7.4(a) are plotted on a log-log scale in Fig. 7.4(b). The

solid-line here denotes a power-law with the exponent α = 1/3, which is the growth

exponent emerging from Lifshitz-Slyozov-Wagner theory [37, 38]. We can see that the

finite-size unaffected late time data are consistent with this expected power-law behavior.

At early time this is not obeyed because of the presence of an initial domain length, ℓ0,

in the system, at time t0, when the system becomes unstable to the fluctuations [21, 22].

Thus, to obtain a more appropriate information, one should subtract this onset value

from the whole data set. We present these results, after subtraction of the latter, in the
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Figure 7.5: (a) The plot of Y (y), versus y, on a log-log scale, obtained by using data from
a few different system sizes for the Ising model. The dashed line represents the scaling
function given in Eq. (7.16) and the solid line represents a power-law with an exponent
−0.33. (b) The scaling plot for the disease case using data from different countries. The
dashed line again represents Eq. (7.16). The solid line is a power-law with the value of
exponent mentioned near it.

inset of Fig. 7.4(b), again on a log-log scale. The transformed data set is consistent

with the same power-law from the beginning [21, 22]. This implies that there exists no

strong curvature dependent correction to the growth law [21]. Note that ℓ′ = ℓ− ℓ0 and

t′ = t− t0. The values of ℓ0 and t0 are estimated from the best collapse criterion in the

FSS analysis, results from which are presented in the following figure [21].

In Fig. 7.5 (a) we present results from the finite-size scaling analysis of the domain

lengths for the Ising model [21, 22]. We show Y (y) [cf. Eq. (7.3)] versus y plots, for

different system sizes. The best collapse is obtained for the values [21, 22] α = 0.33 and

t0 = 20 (ℓ0 = 3.6). In the large y limit, Y (y) is consistent with a power-law behavior

with the exponent −1/3, shown in the plot by a solid line. The deviation from this

behavior in the data sets at the y → 0 limit is due to the presence of finite-size effects.

The dashed line is a fit to the data sets using the scaling function given in Eq. (7.16)

by keeping Y0, b, p, and θ as adjustable parameters. The value of p is 0.334, which is

consistent with the power-law behavior of direct data with the exponent α = 1/3. The

value of θ emerged to be 3.74.
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Figure 7.6: Plots of n versus τ , on a semi-log scale, for (a) DE (b) BE, and (c) CZ. We
have included real data as well as Eq. (7.18), the latter being represented by dashed
lines. The value of θ in each of the cases is mentioned inside the respective frame. The
value of p is fixed to 1 in Eq. (7.18) for each of the fittings.

In Fig. 7.5 (b), results from the FSS analysis of the disease-spread data are shown.

Here again we have considered the same three countries (DE, BE, and CZ) as in the

previous plots. The collapse, concerning Y (y), of the disease data from different countries

can be appreciated. Note that these are not simulation data as averages over many

independent initial runs. The solid line here denotes a power-law with the exponent −1,

which describes the early exponential growth [6]. The dashed line is again a fit of the

combined data sets to the same scaling function quoted in Eq. (7.16). Here the value of

p appears to be ≃ 0.95 which is consistent with 1. The value of θ is 3.29. Surprisingly

this value of θ differs from the case of the Ising model only by about 12%.

Furthermore, we used the functional form of N(t), given in Eq. (7.18), to estimate

the value of θ for different countries separately. The FSS value of p being only about 5%

different from 1, we fix p to 1 for these fittings. In Fig. 7.6, we show n versus τ plots in

semi-log scales for DE, BE, and CZ, along with the full analytical form, represented by

the dashed lines. This functional form very nicely describes the disease data set in each

of the cases. The obtained values of θ are mentioned in the respective frames. We have

performed the analysis for many other countries that are mentioned in Table 7.1. The

values of θ for each country can be seen in the latter table. Interestingly, these values

are not very wide spread for this large set of countries. A better idea on this can be
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Figure 7.7: The values of θ for different countries. These values are obtained by using
Eq. (7.18) after fixing p at 1 in the fitting exercise.

Figure 7.8: The number of daily cases (DRC), versus t, for different countries: (a) DE,
(b) BE, (c) CZ, (d) LU, (e) ES, and (f) TN. The dashed lines represent time derivatives
of Eq. (7.18). The value of θ is mentioned in each of the frames. The value of p is fixed
to 1 for all the cases in the fitting exercise.
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obtained from Fig. 7.7. This set of θ has a mean of 3.11 with a standard deviation of

≃ 0.37. Thus, there exists a picture of universality that deserves further attention [6].

In Fig. 7.8, we plot the daily cases, DRC, for six different countries. The dashed lines

there represent dN(t)/dt, with N(t) having the functional form given in Eq. (7.18). It

can be seen that these lines nicely describe the DRC data for all the presented countries.

A universal feature in the spreading pattern, as mentioned in Ref. [6], seem to be true

for a large set of countries.

7.5 Conclusion

We have analysed the COVID-19 data from different countries that are available online

[33, 34]. The spread of the disease initially follows an exponential behavior. Deviations

from this early trend occur at different points for different countries. Nevertheless, a

universal pattern exists in the spread [6]. To understand the picture, we used a recently

proposed scaling method [6]. The outcome was compared with that of domain growth in

the phase transition kinetics [6, 24, 25], for which the system integrated order parameter

remains constant, in the Ising model framework [24, 25].

We have quantified the key parameters in the scaling function, viz., θ and p. The

value of p obtained from the scaling analysis was ≃ 0.95, close to unity. This is because

of the initial exponential growth in the spread. By fixing p = 1, we obtained the value

of θ separately for a large set of countries, with the help of the analytical form obtained

for the total number of cases, N(t). For the presented countries, the mean value of θ

came out to be 3.11 with a standard deviation ≃ 0.37. This indicates the presence of

universal features in the spread.

The method can potentially be used for the purpose of prediction. For this one may

obtain θ by fitting Eq. (7.18) to data till the current time for an ongoing wave. Once θ

is extracted, predictions can be made with reasonable accuracy. Of course, the accuracy

will improve as longer set of data become available. There, of course, exists other

functional forms in the literature, to describe a full wave [3]. However, this approach is

convenient and the mathematical form is reasonably simple. Even though there exists

four parameters, some of these can be fixed via standard observation.
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Chapter 8

Summary of the Thesis

In Chapter 2, we have studied structural, growth, and aging properties of the ferromag-

netic (nonconserved) Ising model in space dimensions d = 2 and 3 via Monte Carlo

simulations. We have quenched the systems from a starting temperature Ts = ∞, which

corresponds to a disordered phase, to a final temperature Tf = 0. Domain growth and

aging in the Ising model are well studied. Nevertheless, there are controversies in the

case of the 3D Ising model for quenches to zero temperature. Some of the earlier studies

of domain growth in the latter case reported a value of the growth exponent, α, that

is much smaller than the theoretical prediction. We observe, however, that the value

of α crosses over to the theoretical value, 1/2, in the asymptotic limit. In addition, we

have identified anomaly in the aging dynamics, via the studies of the autocorrelation

function, Cag(t, tw), where t and tw are the observation and the waiting times, respec-

tively. Cag(t, tw) decays in a power-law manner with an exponent λ, referred to as the

aging exponent. We have quantified the value of λ via the finite-size scaling analysis

of Cag(t, tw) [see Fig. 8.1(a)]. The obtained value is much smaller than the theoretical

prediction, and it also violates a well-known lower bound. We justify the observation of

this lower value by considering the structural features at this temperature [1].

We have extended the above study in Chapter 3 by considering a set of other low

quench temperatures, to check whether the anomalies mentioned above are unique to

zero temperature quench or not. We have quantified the aging exponent, λ, and showed

that this has small values at other low temperatures as well, and it approaches the

theoretical value, λ3
LM , as Tf → TR, the roughening transition temperature. This is

demonstrated in Fig. 8.1(b) where we have plotted ∆λ, the difference between λ and

λ3
LM , as a function of 1/Tf . The structural anomaly can be quantified by using the

two-point equal-time correlation function, C(r, t). In Fig. 8.1(b), we have also plotted
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∆I, the difference between C(r, t) and the analytical form of it, referred to as the Ohta-

Jasnow-Kawasaki function. We have shown that ∆I and ∆λ exhibit similar trend – both

converge to zero for Tf → TR. This indicates a strong structure-dynamics connection in

phase-ordering dynamics [2].

Next, in Chapter 4, we have investigated the dependence of the aging dynamics on

initial correlations for transition to ferromagnetic state in d = 2 and 3. For this we have

quenched the systems from the starting temperatures Ts = Tc, the critical temperatures,

to the final temperatures Tf = 0.6Tc. Note that at Tc, the correlation length, ξ, diverges.

We observe that the decay of Cag(t, tw) is rather slow, giving rise to a significantly smaller

λ than that for the quenches from random initial configurations, i.e., Ts = ∞. This is

depicted in Fig. 8.1(c) for both d = 2 (upper frame) and 3 (lower frame). Thus, in

kinetics of phase transitions, universality can be divided into two classes, based on the

presence or absence of spatial correlations in the system – one corresponding to Ts = ∞
(ξ = 0), and the other with Ts = Tc (ξ = ∞) [3, 4].

The influence of initial correlations on the nonequilibrium dynamics also has connec-

tion with a counter-intuitive phenomenon known as the Mpemba effect (ME). According

to the ME, a hotter body of water freezes faster than a colder one. In Chapter 5, we

have investigated the presence of it in the 2D Ising ferromagnet. We have quenched the

system to a fixed final temperature from different starting temperatures, Ts. We observe

that the system with a higher Ts value approaches the new equilibrium faster than the

ones with the smaller Ts values – a corresponding energy (E) plot is given in Fig. 8.1(d).

This shows the presence of ME in our simple system of interest [5]. The observation is

even more counter-intuitive because the model we considered does not have any in-built

frustration-like features in the Hamiltonian, which is typically thought to provide this

effect.

Till chapter 5, we have studied the evolutions in systems exhibiting nonconserved

order-parameter dynamics. In chapter 6, we have considered a system with conserved

order-parameter dynamics, where the total value of the order parameter remains the

same during the phase transition. Here we have studied the kinetics of phase separation

in a single component Lennard-Jones system, via molecular dynamics simulations, in

space dimension d = 3 for low density and low temperatures. At very low temperatures,

disconnected fractal clusters form at late times. We quantified the fractal dimensions

of these late time structures and studied the dynamics of their growth by calculating

the average cluster mass, M(t) – a corresponding plot is given in Fig. 8.1(e). The

exponent of the power-law growth of M(t) depends strongly on temperature [see the
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Figure 8.1: (a) Plot of finite-size scaling function, Y (y), for the autocorrelation function
Cag(t, tw), related to the aging phenomena, versus scaling variable, y, on a log-log scale,
for zero temperature quench of 3D Ising ferromagnet. The solid line is a power-law with
the exponent mentioned near it. The latter is the value of the aging exponent λ. (b) Plots
of ∆I and ∆λ, deviations of the structures and aging exponents from the theoretical
expectations, versus 1/Tf , for the 3D Ising model. The point corresponding to the
roughening transition temperature, TR, is marked with an arrow. (c) Plots of Cag(t, tw)
versus ℓ/ℓw (ℓ and ℓw are the average domain lengths at t and tw, the observation
and waiting times, respectively) for Ising ferromagnets in d = 2 (in the upper frame)
and 3 (in the lower frame) for quenches below the critical point from Ts = ∞ and
TL

c , the latter being the finite-size critical point. The solid lines are the power-laws
with exponents mentioned near the lines. These exponents are the values of λ from
certain theoretical calculations. (d) The plots of energy, E, versus time, t, for different
starting temperatures Ts, in the case of 2D Ising ferromagnets for quenches to Tf = 0.
Initial structures corresponding to all the Ts values are given in the boxes inside the
main frame. (e) The plot of average mass, M , versus t, for a phase-separating single-
component Lennard-Jones system. The evolution snapshots are given in smaller frames.
Inset at the top contains a plot of the exponent, β, corresponding to the power-law
growth of M(t), versus quench temperature, Tf . (f) A scaling plot for COVID-19 data
from different countries, viz., Germany (DE), Belgium (BE), and Czech Republic (CZ).
The solid line corresponds to a power-law with exponent −1. The dashed line is the
mathematical form of scaling function Y (y) for the combined data set. Inset: The plot
of the daily number of cases for CZ. The dashed line represents an analytical form.
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inset of Fig. 8.1(e)]. In this regime of very low temperature and density, the clusters

move ballistically. We aim to explain this via the ballistic theory of aggregation [6].

In chapter 7, we have studied the spread of COVID-19, with an objective of identify-

ing the underlying pattern. We have analyzed the disease data from different countries

using a recently formulated scaling method. From the analysis, we observe that the

scaling functions corresponding to the disease data from a large set of countries overlap

with each other. This indicates the presence of universal features in the spread [see the

main frame of Fig. 8.1(f)]. The scaling function allows to obtain an analytical form for

the total number of reported cases. By using this functional form, an entire wave of the

disease can be described with reasonable accuracy [7]. One such representative plot is

shown in the inset of Fig. 8.1(f).
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using links to the material accessible through institutional subscriptions.
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