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Abstract

We present a particle-continuum coupling for simulations in the laminar and turbulent flow
regimes. The two-way coupling in the hybrid model is achieved via a direct Simulation Monte
Carlo layer near walls and a Lattice-Boltzmann RD3Q41 model in the bulk. The lifting of
macroscopic to microscopic dynamics is done via a novel projection scheme based on the idea
of quasi-equilibrium manifold incorporating stress and heat flux as fields. The coupled solver
is validated by performing simulations on the canonical plane Poiseuille and Couette flows.
Turbulent flow simulation performed using minimal compute resources shows the ability of the
solver to predict the regeneration cycles of coherent structures. This hybrid coupling represents
a novel method for accurate description of flow physics in various hydrodynamic regimes, where
stand-alone solvers fall short due to high computational expense like in DSMC or due to lack of
high Knudsen flow physics in LB.
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Chapter 1

Introduction

At the continuum scale, fluid dynamics is well described by the Navier-Stokes-Fourier (NSF)
equations(Batchelor, 2000). For dilute gases, which can be safely assumed to be composed
of structureless point particles, this description is valid only when the system size is much
larger than the mean free path(Batchelor, 2000; Chapman & Cowling, 1990). This is typically
characterized in terms of the Knudsen number, defined as Kn = λ/L, where λ is the mean
free path and L is the characteristic length of the system. The NSF description, where one
assumes locally thermodynamic equilibrium, is valid only in the limit of Kn → 0. A more
general description of dilute gas dynamics is provided by the Boltzmann equation which describes
the dynamics even far away from the thermodynamic equilibrium and is valid at all Knudsen
numbers(Chapman & Cowling, 1990). Thus, the Boltzmann equation provides a statistical
description of the time evolution of the point particle system in terms of the single-particle
distribution function, with its evolution represented as a sequence of free flight and binary
collision described by an integro-differential term.

In the last two decades, interest in the numerical solution of the Boltzmann equation has
been revived. This is partially driven by MEMS/NEMS applications (Nie et al., 2002), where
characteristic flow scales are no longer much larger than the molecular mean free path, requiring
modeling beyond the Navier–Stokes level of description. In this regard, an important tool is the
direct simulation Monte Carlo (DSMC) method (Bird, 1963; Bird & Brady, 1994), a particle-
based, numerical scheme for solving the nonlinear Boltzmann equation. In this method, unlike
force-based (Alder & Wainwright, 1959) or event-driven Molecular Dynamics (MD) (Rapaport,
2004; Lubachevsky, 1991) for the Hard-Sphere (HS) gas, one does not track individual collisions.
Instead, DSMC models particle motion as a sequence of free flight and random collisions. In
this method, one generates collisions stochastically with scattering rates and post-collisional
velocity distributions determined from the kinetic theory of a dilute HS gas. Because of this
simplification made in DSMC for elevating particles to a state further upstream in time and by
not representing physical collisions like in hard-sphere MD, the computational cost required for
DSMC is typically an order of magnitude lower than that of an MD simulation.

As the spatial domain is discretized into computational cells which contains particles that
can collide with any other particle within the cell, the size of a cell is maintained to be atmost
∆x ∼ λ. For low Knudsen number simulations, the number of cells and thence the number
of particles increases, and therefore the computational cost scales as Kn−3. Additionally, with
restrictions on the time stepping of the simulation scaling as the Mean free time (τ), there is
a restriction on the ∆t of the simulation. Thus, DSMC simulations in the continuum regime
(where Kn � 1) are computationally expensive. In the hydrodynamic regime, one is often
interested in probing high Reynolds number flows, so traditionally the role of DSMC was limited
for high Knudsen simulations. At this point, it should be reminded that in the continuum limit,
two relevant parameters are the Reynolds number Re and the Mach number Ma and they are
related to the Knudsen number as Kn ∼ Ma/Re. Thus, out of the three only two are independent
parameters. It is also evident that as Ma is raised at a fixed Re, Knudsen number increases, and
thus the computational need for DSMC decreases. Furthermore, the importance of the statistical
scatter in the method (∼ O(1/

√
N) with N being the number of particles in a computational

cell) decreases as the mean flow is much more dominant at higher Mach. With λ � lk for
incompressible flows, the gap between the Kolmogorov length scale (lk), the relevant length
scale for turbulence, and the mean free path shrinks as the Mach number is raised. To study
the effect of this, recently DSMC simulations were used for high Mach number turbulent flows

1



2 Chapter 1. Introduction

(Pradhan & Kumaran, 2016; Gallis et al., 2021).
Along similar lines, it was argued recently that due to increased computing power and

with better softwares, DSMC simulations of turbulence at finite Mach number is a distinct
possibility. However, large-scale computing resources were required for decay to turbulence and
minimal turbulent Couette flow (MCF) simulations(Gallis et al., 2018, 2017) at high Reynolds
number and finite Mach number. These simulations were performed at a moderate Reynolds
number of 400 and a Mach number of 0.3, with billions of particles in the domain and have given
good initial results after using millions of CPU hours on a multi peta-scale HPC cluster.

These works essentially show that DSMC simulations are becoming more powerful due
to an increase in computing power. However, still a substantial speed-up (a few orders of
magnitude) is required for these to become practical for low Mach number flows. As a DSMC
code is often compute bound, assuming that Moore’s law(Moore et al., 1965) will hold for the
next few years one may expect that in the next decade an order of magnitude improvement
might come from an increase in computing power itself. However, one may need to consider
other routes to increase the performance of the method further. In this regard, one may ask are
DSMC codes optimally written so far? In recent years, a lot of progress has been made with
respect to memory optimization of scientific codes(Shet et al., 2013). One may ask whether
community software frameworks for DSMC such as SPARTA®(Klothakis et al., 2016) can be
optimized further?

One simple and popular method is through parallelization, with each processor owning a
portion of the domain. Such methods are typically termed to be domain decomposed. With a
2D decomposition known as pencil or block decomposition, one is able to allocate a much larger
number of cores than a 1D or slab decomposition. And through this procedure one can gain
significantly by using an MPI parallelized pencil decomposed particle code. Such codes need
to be efficiently parallelized for optimal performance and to avoid redundant communications
between processors.

Another way of improving performance of particle simulations is by decreasing the resolu-
tion by increasing cell sizes and correct for the changes in transport parameters that arise because
of an increase in the effective mean free path (Alexander et al., 1998). In open-source DSMC
solvers like SPARTA®, such viscous and thermal corrections are not implemented. A similar
approach in reparametrization is by increasing the time stepping (∆t) of the simulation and
using similar corrections arising thereof (Garcia & Wagner, 2000). The latter approach allows
one to reach steady states much faster and with an increase in the effective time of averaging,
one can achieve a higher level of noise reduction for the same number of ensembles averaged. For
example, using our inhouse DSMC code, we obtained an order of magnitude decrease in the total
time of the simulation by increasing the time stepping by a factor 40 for a domain containing 50
Million particles. Since most particle codes are written using a parallel architecture, larger time
steps could result in a decreased overall efficiency due to much higher particle crossings across
processor boundaries, thereby increasing the communication load on parallelization. Significant
gains can still be made in such scenarios by analyzing the time split by subroutines and through
efficient algorithms. Other than such possible intrinsic improvements in DSMC itself, one may
think of coupling it with other mesoscopic schemes that are computationally more efficient.

For example, in recent years Lattice-Boltzmann (LB) (Succi, 2001; Chen & Doolen, 1998)
has emerged as an efficient alternative to conventional fluid dynamics solvers. Even though
initially, the method was limited to low Mach number and low Knudsen number flows, in recent
years the method has matured to handle high Mach and high Knudsen flows(Ansumali et al.,
2007; Frapolli et al., 2015; Namburi et al., 2016; Atif et al., 2018). It is therefore natural to ask,
whether one can gain from such a coupling. Any such coupling would require a communication
strategy between the two solvers at the interface of the coupling. There are several initial
attempts to couple LB with a particle-based method. However, all of them have worked with
lower-order LB models. Furthermore, they have done only a one-way communication between
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the solvers (Montessori et al., 2020; Di Staso et al., 2016) and their coarser solvers run throughout
the domain rather than restricting them to a particular region of interest. Such methods could
get away with particle fluctuations at the interface of the coupling arising because of a free surface
boundary for the particle solver. Additionally, such coupling have restricted their mesoscopic
solvers also to have a resolution of ∆x ≈ λ (Montessori et al., 2020; Di Staso et al., 2016). This
does not utilise the efficient features provided by mesoscopic solvers.

In this thesis, we investigate two questions: How to improve the intrinsic performance of
DSMC codes through inherent physics and data-structure based changes? And how to introduce
a two-way coupling for LB and DSMC and what is the performance gain in doing so. This report
highlights the progress made in this direction so far.

Finally, we describe the progress in coupling the DSMC-LB code. In this coupling, DSMC
is implemented in a region near the walls and the LB solver is implemented in the bulk. This
domain-restriction is computationally less expensive than a full-domain DSMC simulation and
also provides the accuracy of a higher-order LB Model. These coupled fluid solvers are also
used for Turbulent and High Knudsen flow simulations where the computational efficiency of
LB and the ability of DSMC to capture wall layer phenomena is utilized. We shall discuss the
communication routine that makes this coupling possible and benchmark this solver against
standard cases.

1.1 DSMC - Lattice Boltzmann Coupling

The idea behind a particle-continuum coupling is to be able to delve in regimes which are
typically hard to numerically adapt either a particle or a continuum solver individually. A
stand-alone DSMC solver is computationally expensive for simulations in the turbulent flow
regime and requires excessive compute resources (Gallis et al., 2018, 2017). With modest re-
source availability, particle methods are extremely under-resolved for such simulations. Similarly,
mesoscopic methods like standard LBM suffer from drawbacks in the high Mach or Knudsen
number regimes leading to numerical instabilities. One resorts to a compromise by using double
distribution function models with an unfaithful representation of the particle nature of kinetic
theory (Shan, 1997; He et al., 1998). Although, higher-order models (Ansumali et al., 2007; Atif
et al., 2018; Namburi et al., 2016; Yudistiawan et al., 2010) have shown good results in such
regimes.

Recent studies performed on such a micro-meso coupling using DSMC-LB (Di Staso et al.,
2016) and MPCD-LB (Montessori et al., 2020) have shown good initial results for laminar and
rarefied regimes. But these studies do not impose any restrictions on the domain of control
for individual solvers and have not shown the capability of such a coupling in the turbulent
regime and have also shown small deviations at the centerline from DSMC simulations in the
transitional regime. Another drawback of such methods has been a grid ratio (defined as the
ratio of number of LB nodes to DSMC cells) of 1 along all directions. Here, we show that for
distances varying upto O(10λ), one can work with using a grid ratio less than 1.

Therefore, one can view this coupling as an alternative, yet more realistic implementation
of a microscopic boundary condition necessary for an accurate description of hydrodynamics for
mesoscopic solvers. In our simulations discussed in this thesis, we will be benchmarking our
solvers on the standard plane channel flow geometry for canonical Poiseuille and Couette flows.
Such a coupling can easily be extended to other geometries through the interface communication
method reviewed in this thesis. Fig.(1.1) shows a sketch of the Knudsen layer formed near the
wall in a plane Couette flow geometry with the DSMC region exerting control of this layer. The
domain restriction of the two solvers with an interface for communication can be seen.
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NSF description

Actual Velocity

uWall

uWall

Bulk velocity

Knudsen Layer

DSMC

LBM

DSMC

Figure 1.1: A schematic showing the near wall Knudsen layer in a plane Couette flow and the
region of control for the two solvers.

To emphasize the importance of providing a wall layer microscopic solver, we look at the
approximate velocity profile (Yudistiawan et al., 2010) for a plane Couette flow at moderate
Knudsen numbers,

uy =
U1 + U2

2
+
y

Θ

U2 − U1

L
+

1

K1
(U2 − U1) sinh

(
y

K2 KnL

)
. (1.1)

Here, U1, U2 are the wall velocities, L is the channel width and K1, K2 & Θ are constants
dependent on the choice of the discrete velocity model used to obtain the profile. With the
Knudsen layer dominated by non-equilibrium effects, the Navier-Stokes description consequently
fails in this layer. As a result, the velocity profile has an additional Knudsen dependent sine
hyperbolic term quantifying this deviation. This term arises because of the anti-symmetry of
the system around the centreline (y = 0) and thence the “sinh” term. Therefore, a microscopic
picture should be able to capture this effect. With increasing Knudsen numbers, the width of
this region increases and with it the contribution of the deviation to the velocity profile.

Therefore, we see that to have a molecular solver in the Knudsen layer that can capture
this deviation can help us couple a micro and mesoscopic solver efficiently for flows beyond the
continuum regime.

To summarize, we talk about the following points in our coupling scheme:

• How to communicate at the interface of a particle-continuum coupling?

• How does one control the instability arising in noise-free LBM due to the inherent thermal
noise of DSMC?

• How can one extend the coupling to the various hydrodynamic regimes?

1.2 Outline of the thesis

In this thesis, we describe about a micro-meso coupling between DSMC and a Lattice Boltzmann
model. In order to simulate flows in the turbulent regime, we try to understand how one can
accelerate particle codes through parallelization and through appropriate transport coefficient
reparametrization. We perform simulations on canonical test cases to benchmark our DSMC
solver before moving on to a hydrodynamic coupling. Finally, we describe how such a coupling
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can be achieved through a communication scheme based on projection of macroscopic fields into
a quasi-equilibrium manifold.

This thesis is organized into the following chapters:
In Chapter 2, we provide a brief introduction to the kinetic theory of gases and discuss the

properties of the Boltzmann equation. We also discuss on the molecular and turbulent scales of
motion and the relationship between them.

In Chapter 3, we introduce the particle-based method used in our coupling. We briefly
describe the connection between DSMC and the Boltzmann equation by means of the collision
frequency. The methodology involved in performing a DSMC simulation is then described. We
also introduce how one can improve the performance of the algorithm through existing modifi-
cations to transport parameters and through a parallelization scheme based on domain decom-
position. Finally, we present benchmark results for our DSMC solver in various hydrodynamic
regimes.

In Chapter 4, we discuss the particle-continuum coupling. We introduce why such a
coupling is needed and the improvements one can achieve against either a particle or a standard
mesoscopic solver. We discuss about how a coupling is performed and introduce the projection
scheme used in ours. The steps involved in coupling and how one deals with the coupling
interface is discussed. We present results in the laminar no-slip, rarefied and the turbulent
regimes as a bechmark for our coupled solver.

In Chapter 5, we present the summary and conclusions of our study.





Chapter 2

Kinetic theory of gases

A typical system of molecules in random motion in the thermodynamic limit exhibit collective
behavior in terms of measurable macroscopic quantities varying on much larger time scales than
that of the molecular scale of motion. Macroscopic quantities such as temperature, pressure,
etc., are well described at equilibrium via classical thermodynamics. Since the collective motion
of these particles cause the dynamics of the macroscopic properties, one could find a link be-
tween macroscopic and microscopic dynamics. The kinetic theory therefore provides a statistical
description of macroscopic dynamics from the molecular picture (Callen, 1998) for equilibrium
and non-equilibrium systems.

One approach to understand this macroscopic description is through describing the motion
of the 6N-dimensional phase space point, signifying the positions and velocities of theN particles.
Such a description is governed by the Liouville equation. Alternatively, for dilute gases, one
could define the motion of a single particle through its probability density using a single particle
distribution function in its 6 dimensional phase space. The evolution of this single particle
distribution function is governed by what is known as the Boltzmann equation (Grad, 1949).

The Boltzmann equation has been used as a route to understand macroscopic thermohy-
drodynamics even for systems far away from equilibrium. Equations governing fluid flow like
the Euler and Navier-Stokes system of equations are obtained at the zeroth and first order in
the smallness parameter Kn−1 through the Chapman-Enskog Expansion (Chapman & Cowling,
1990). Here Kn = λ/L is the Knudsen number defined as the ratio of the molecular mean free
path and the macroscopic length scale. The Navier-Stokes description of fluid flow is valid in
the continuum limit where Kn → 0. For flows in the rarefied regime, one resorts to the kinetic
description for accurate prediction.

In this chapter, we briefly discuss the basic elements of kinetic theory and of molecular
parameters important in understanding particle simulations. We start with a desciption of the
length and time scales at the molecular level in Section 2.1. In Section 2.2, we introduce the
single particle distribution function and its moments, used in describing macroscopic dynamics.
In Section 2.3, we discuss the Boltzmann Equation, its properties and the Maxwell-Boltzmann
distribution. Finally, we discuss the relationship between the microscopic scales with the scales
in the turbulent regime in Section 2.4.

2.1 Mean Free Path and Mean Free Time

In this section, we briefly review the notion of the mean free path and mean free time for a
hard-sphere system. From the kinetic theory description of elastic hard-spheres, one assumes a
system composed of point particles to interact with each other only through collisions. The path
taken by the hard sphere molecule between successive collisions is termed as the free path. For
such a system, as shown in Figure 2.1 when two molecules of diameter d collide, their centers
are separated by a distance equal to d. In other words, if there is any other molecule within a
distance d from the center of the target molecule we say that a collision occurs. The effective
area πd2 of this circle of radius d is termed as the collisional cross-section.

The mean free path can be estimated by considering a simplified system where a single
particle is moving with a speed, v̄ in a sea of stationary point particles with number density as
n. As shown in Figure 2.2, in time t, this particle will sweep a volume of πd2v̄t. Thus, nπd2v̄t
gives the number of gas molecules inside this volume and is, therefore, the estimated number

7
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r1 r2

d = r1 + r2

Figure 2.1: A representation of the collisional cross-section. r1 and r2 represent the radiuses of
the individual molecules and d represents the collisonal cross-section.

of collisions in time t for the moving particle. Therefore, the Mean free path (λ) defined as
the average distance that the particle travels between successive collisions can be found as the
ratio of the length of the cylinder and the average number of collisions when particle sweeps the
cylinder. In particular

λ =
v̄t

n πd2v̄t
=

1

nπd2
. (2.1)

We arrive at the above expression with the assumption that the target molecules are stationary.
A more elaborate calculation, taking into account the average relative speeds of the particles,
v̄rel =

√
2v̄, leads to a more accurate estimate as follows,

λ =
1√

2nπd2
. (2.2)

As an example, for Air at STP conditions, using the ideal gas assumption for dilute gases,
we have the number density,

n =
p

kT
=

105N/m2

1.38× 10−23J/K × 300K
= 2.5× 1025molecules/m3. (2.3)

Using this, and the diameter of Air as the diameter of Nitrogen, d = 3.6Ao, we get the mean
free path from Equation 2.1 as follows,

λ =
1

3.1415× 2.5× 1025 × 21.6× 10−20
≈ 60nm. (2.4)

v̄t

V = πd2v̄t

A = πd2

Figure 2.2: Classical picture of the collisional tube in a hard-sphere system. In time t, the
average distance traveled by any particle is v̄ t, where v̄ is the average speed
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The time scale of interest for the dynamics of the distribution function is the Mean free time,
(τ), which is the average time spent by the particle between successive collisions and is defined
as,

τ =
λ

v̄
=

1

nπd2

√
m

2kB T
, (2.5)

where m is the mass of the particle, kB is the Boltzmann’s constant, T is the temperature of
the gas and we have used the most probable speed, v̄ =

√
2kBT/m. Thus, the mean free time

for air can be found from Equation 2.5 as follows,

τ =
60nm

300m/s
≈ 0.2ns. (2.6)

Fluid d (in pm) λ (in nm) τ (in ns)

Air 400 60 0.2
Helium 260 115 0.38
Argon 340 67 0.22
Xenon 396 50 0.16

Table 2.1: Typical values of the mean free path and mean free time for various gases

Table 2.1 gives the values of the mean free path and time for various gases. We now define
how these scales relate to the corresponding macroscopic ones. This will allow us to estimate
the computational cost for molecular simulations.

As stated in the introduction, the non-dimensional parameter that compares the microscopic
and the macroscopic length scales is the Knudsen number, defined as the ratio of the mean free
path and the macroscopic length scale, L, i.e.,

Kn =
λ

L
. (2.7)

It helps in validating the continuum hypothesis and the fluid description of the Navier-Stokes-
Fourier Equations. A high Knudsen number, (Kn > 0.01) would mean that the molecular mean
free path is comparable to the macroscopic length scale and would break down the assumption
of treating fluids as a continuum. MEMS/NEMS typically fall in this category where the mean
free path and the macroscopic length scale are comparable. Numerical modeling of such systems
therefore requires schemes able to model beyond the Navier-Stokes equations.

The macroscopic transport quantities such as the viscosity (ν) and thermal conductivity (κ)
arise as a consequence of molecular collisions exchanging momentum. The relation (Chapman
& Cowling, 1990) between viscosity and the mean free path for a gas with elastic hard-sphere
molecules is defined as,

λ =
16

5
ν

(
m

2πkBT

) 1
2

. (2.8)

The relationship between the Reynolds (Re), Mach (Ma) and Knudsen numbers found from
the above relation is therefore

Kn =
16

5

√
γ

2π

Ma

Re
, (2.9)

where, Ma = Uc/cs is the ratio of the macroscopic velocity scale Uc and the sound speed
cs =

√
γkBT/m, Re = UcL/ν is the ratio of the inertial to the viscous time scales and γ is the

adiabatic gas constant.
In the incompressible limit, i.e, Ma < 0.3, and for a high Reynolds number, (Re = O(103)),
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we would have a Knudsen number of Kn ≈ 5× 10−4. This indicates that the mean free path is
orders of magnitude smaller than the macroscopic length scale and as the number of computa-
tional cells scales as Kn−3, therefore the representation of such scales on molecular simulations
is a computationally expensive task.

2.2 Distribution function and its moments

In this section, we introduce the concept of the probability distribution function in the con-
text of kinetic theory. For an N -particle system with number density n, one could sample
all possible velocities of particles n dx within the differential volume dx creating a distribu-
tion of velocities. Such a distribution would depend on the position x, time t and the loca-
tion in the velocity space v. Therefore, we could describe a distribution function of the form
f (N)(x1,x2,x3, · · ·xN ,v1,v2,v3, · · ·vN , t), which is known as the N-particle distribution func-
tion. For dilute gases, a much coarser description in terms of only the phase space coordinates of
a single particle is sufficient. This single-particle distribution fucntion, f is the central quantity
of interest in Boltzmann kinetic theory of dilute gases. Figure 2.3 shows the differential position
and velocity elements in phase space of the single particle. It describes the probability of finding
a molecule in the velocity range v to v + dv and in the position range x to x + dx. With a
prefactor to denote the presence of N particles, f satifies the normalization condition∫

dx

∫
dvf (x,v, t) = N, (2.10)

X

Z

Y

dx

dx

dy

r

vx

vz

vy

dvx

dvy

dvz

v

Figure 2.3: Left: A configuration space volume element dr = dxdydz at spatial position r. Right:
The equivalent velocity space element. Together they constitute a volume element dΩ = drdv
at position (r,v) in phase space

The evolution of the distribution function could be related to the macroscopic fields
through its moments. In D dimensions, hydrodynamic variables, the mass density ρ, the fluid
velocity u and temperature T , are related to the distribution function as (Chapman & Cowling,
1990)

ρ =

∫
fmdvvv, ρuα =

∫
mvα f dvvv,

ρ

2
u2 +

DρkBT

2m
=

∫
mv2

2
f dvvv, (2.11)

where kB is the Boltzmann constant and m is the mass of the particle and is scaled with unity
henceforth.. The thermodynamic pressure p is related to the scaled temperature θ = kBT/m
through the ideal gas equation of state p = ρθ.

Similar to Equation 2.11, we could define the average of any quantity φ(v) as,

〈φ(v)〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dvφ(v)f(x,v, t). (2.12)

Often, it is convenient to express the macroscopic moments in the co-moving reference frame
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defined in terms of the peculiar velocity ξ = v − u. In this coordinate system, the internal
energy ρe therefore takes the form

ρe ≡ DρkBT

2m
=

〈
ξ2

2
, f

〉
. (2.13)

Other quantities of interest in hydrodynamics is the stress tensor σαβ. It is defined as the
traceless part of the momentum flux tensor in the co-moving frame. Similarly, the heat flux qα
is the energy flux in the comoving system. Thus

σαβ =
〈
ξαξβ, f

〉
, qα =

〈
ξ2

2
ξα, f

〉
, (2.14)

where the traceless form of any symmetrized second order tensor Aαβ in terms of the kronecker
delta δαβ is defined as,

Aαβ =
1

2
(Aαβ +Aβα)− 1

D
Aγγδαβ. (2.15)

Similarly, the traceless symmetrized third order tensor Qαβγ (= 〈ξαξβξγ , f〉) is defined as,

Qαβγ = Qαβγ −
2

D + 2
(qαδβγ + qβδαγ + qγδαβ), (2.16)

which appears in the evolution equation for the stress tensor σαβ.

2.3 Boltzmann Equation

The time evolution of the single particle distribution function f(x,v, t) under the action of ex-
ternal forces and internal collisions is governed by the Boltzmann equation. The Boltzmann
equation provides a statistical description of dilute gases in the hydrodynamic and rarefied
regimes even far away from equilibrium. This integro-differential equation is of the form (Cer-
cignani, 1975)

∂tf + cα∂xαf + gα∂cαf = ΩB(f, f), (2.17)

where gα is the acceleration due to external forces and ΩB(f, f) represents the collision kernel
describing internal collisions. The left hand side describes the change in the distribution function
resulting from the free flight of the molecules across the phase space differential volumes dx and
dc. The collision kernel represents binary collisions between particles and assumes that their
velocities to be uncorrelated prior to the collision. This assumption is termed “Stosszahlansatz”
or the Molecular chaos assumption (Cercignani, 1975).

f12(x1, c1,x2, c2, t) = f(x1, c1, t)f(x2, c2, t). (2.18)

One can define the Boltzmann collision operator ΩB, a bi-linear function of f using,

ΩB(f, f) =

∫
dc′
∫
dc1

∫
dc2

{
w(c, c′|c1, c2)f(c1)f(c2)− w(c1, c2|c, c′)f(c)f(c′)

}
, (2.19)

with w(c, c′|c1, c2) ≡ w ≥ 0 as the probability that as a result of collision between molecules
with velocities c1 and c2 acquires velocities c′ and c according to the laws of elastic collisions:

c+ c′ = c1 + c2,

c2 + c′2 = c1
2 + c2

2.
(2.20)
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A few basic properties of the Boltzmann equation are as follows:

1. Collisional invariants: Binary elastic collisions between point particles conserves mass,
momentum and energy. This is reflected by the condition:

〈ΩB, {1, c, c2}〉 = 0. (2.21)

This property of the collision operator holds true for any form of the kernel function. Thus,
changes in mass, momentum and energy is a result of particle redistribution in the position
space. The Boltzmann collision term is therefore said to be local in position space.

2. Conservation laws: Taking the moments of Equation 2.17, one can arrive at the macro-
scopic equations governing the evolution of mass, momentum and energy.

∂tρ+ ∂αjα = 0,

∂t (ρuα) + ∂β

(
ρuαuβ + ρ

kBT0

m
δαβ + σαβ

)
= 0,

∂t

(
1

2
ρu2 +

DkBT

2m

)
+ ∂β

(
1

2
ρu2uβ + ρ(D + 2)

kBT0

2m
uβ + σαβuβ + qβ

)
= 0.

(2.22)

One can see that these equations are obtained irrespective of the form of the collision
operator as long as it conserves mass, momentum and energy. Thus, different collision
forms of the collision term can be used to obtain the same set of conservation laws.

3. Zero Point of the collision: It would be important to understand the solution of the
equation

ΩB(f, f) = 0. (2.23)

Such a region arises when the following condition (from Equation 2.19) is satisfied,

f(c1)f(c2) = f(c)f(c
′
). (2.24)

This is known as the detailed balance condition. It implies that for every pair of particles
with pre-collisional velocities as c1 and c2 and post-collisional velocities as c and c

′
, there

exists an inverse partner. Taking logarithms on both sides of Equation 2.24, one can show
that ln f is an additive invariant. As a consequence, at thermodynamic equilibrium ln f
must be a function of the collision invariants (Grad, 1949). This gives rise to the form:

ln f = λ+ βαcα + γc2, (2.25)

where λ, βα and γ are the lagrange multipliers for the mass, momentum and energy
constraints repectively. The solution of Equation 2.25 represents the Maxwell-Boltzmann
distribution given by,

fMB(c) = ρ

(
m

2πkBT

)3/2

exp

(
− m

2kBT
(c− u)2

)
. (2.26)

4. Entropy Production: Boltzmann defined a non-equilibrium generalization of the en-
tropy, termed as the H function (Cercignani, 1975)

H =

∫
dc f ln f, (2.27)



2.4 Length scales in Isotropic 3D Turbulence 13

where SB = −kBH[f ] is the thermodynamic entropy at equilibrium. During the time
evolution, the entropy increases locally and it is evident from the evolution equation for
the H function

∂tH+ ∂αJ
H
α = −σ(B) ≤ 0, (2.28)

where entropy flux term and positive definite entropy production terms are

JHα =

∫
dc cα(f ln f), σ(B) = −〈ΩB, ln f〉 ≥ 0. (2.29)

Equation 2.29 shows that the production term results in an increase in the entropy with
time. And zeros of the collision term satisfy this inequality, particularly the Maxwellian
with the entropy production (σ(B)) being zero at equilibrium. This is considered as a
generalization of the second law of thermodynamics.

2.4 Length scales in Isotropic 3D Turbulence

In this section, we focus on comparing the scales at the molecular level (λ) and the turbulence
scale. We focus on an idealized set of 3D homogenous turbulence problem. In this set-up all
boundary influences are ignored and it is assumed that there is no mean flow and the statistics
are spatially isotropic and homogeneous. The absense of mean flow and the fact that rotation
and buoyancy are not important leads to a statistically isotropic flow. The flow is said to be
homogeneous if there are no spatial gradients in any averaged quantity. Such idealization is
simulated on computers via a periodic boundary conditions which mimics an infinite domain.

ǫ

Dissipation ∼ Inertia

Figure 2.4: A schematic of the energy cascade process as hypothesized by Lewis Richardson

Lewis Richardson (Richardson, 1922) provided a first picture of the energy cascade that
is observed in developing turbulent motions of fluid flow. His idea of the cascade involved the
transfer of Kinetic energy at the macroscopically observable flow scales down to smaller scales
through an inviscid mechanism. These smaller scales were later quantified by Kolmogorov in
1941 (AN, 1941).

The kinetic energy of large eddies of the size of the macroscopic length scale cascade into
smaller eddies until they are dissipated by viscosity. Denoting the large scale velocity by a =√
〈uiui〉, we define the rate of energy transport (ε) as,

ε =
a2

t0
=
a3

L
, (2.30)
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where t0 = L/a represents the time scale at the top of the hierarchy and L represents the macro-
scopic length scale. With the Kolmogorov theory (Pope, 2001) being valid for large Reynolds
numbers, the viscous time scales are very large compared to the inertial and hence we obtain
the kolmogorov scales when the two time scales are comparable. Mathematically,

Reη =
uηlη
ν
∼ 1, (2.31)

where, lη, uη and Reη are the length, velocity and the Reynolds number respectively defined
in the Kolmogorov scale. At this scale, viscous dissipation is balanced by energy transfer from
larger scale. Thus,

ε ≈
νu2

η

l2η
. (2.32)

Using this in Equation 2.31, we have the Kolomogorov length, velocity and time scales as

lη =

(
ν3

ε

)1/4

, uη = (εν)1/4 , τη ≡
lη
uη

=
(ν
ε

)1/2
. (2.33)

2.4.1 Relation to microscopic length scale

We now estimate the relationship between the mean free path and the kolmogorov length scale.
Their relation would give us an idea about the computational expense in performing a direct
numerical simulation (DNS) of turbulence using DSMC. In using particle methods like DSMC
for turbulent flow simulations, where computational expense scales as Kn−3, an estimate of the
lη/λ can tell how well resolved a simulation is.

From the relation between the mean free path and the viscosity for a dilute Hard-Sphere
gas (Equation 2.8), we can now relate the microscopic and the Kolmogorov length scales. In
particular, we have

lη
λ

=
1

λ

(
ν3

ε

)1/4

=
k1 cs
ν

(
ν3

ε

)1/4

=
k1

Maλ
, (2.34)

where k1(= 5
16

√
2π/γ) is the prefactor in the relation in Equation 2.8. Maλ is the Mach

number based on the Kolmogorov velocity scale (uη from Equation 2.33). Similarly, the large
and small scale Mach number can therefore be related in terms of large scale Reynolds number
Rea = La/ν as

Maa =
a

cs
=

(εL)1/3

cs
=

(εν)1/3 (L/ν)1/3

cs
= (Maλ)4/3 (Rea)

1/3

(
1

Maa

)1/3

, (2.35)

which allows us to write:

Maλ =
Maa

(Rea)
1/4

. (2.36)

Therefore, we finally have

lη
λ

=
k1 (Rea)

1/4

Maa
. (2.37)

Rewriting this equation in terms of the Knudsen number,

lη
λ

=
k1k2

Ma
3/4
a Kn

, (2.38)

where k2 is the prefactor obtained from Equation 2.9. We see, as the macro scale Mach
number (Maa) increases, for turbulent flows, the mean free path and the Kolmogorov length
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scale become comparable, therefore increasing the cost for a molecular simulation as it requires
a higher cell resolution. Beyond a certain threshold, this linear increase saturates at a finite
value with increasing Mach number (Pradhan & Kumaran, 2016).





Chapter 3

Direct Simulation Monte Carlo

In this chapter, we briefly discuss the microscopic method used in our coupled solver. Unlike
Molecular Dynamics (MD) (Alder & Wainwright, 1959), where particle collisions are determin-
istic and provides an exact representation of particle trajectories. Particle based methods like
Direct Simulation Monte Carlo (DSMC) provides a statistical description of fluid flow. In force-
based Molecular dynamics, one only needs to specify the forces of interaction Fij(ri, rj , vi, vj)
between any two particles apart from their phase space coordinates. The time-intensive nature
of this force calculation in MD restricts its applicability to short time microscale simulations.

A less time consuming method is Event-driven MD (EDMD) (Alder & Wainwright, 1959;
Lubachevsky, 1991) where the time consuming force-field calculations of force-based MD were
replaced by elastic or inelastic collision rules for particles. Here, since the collisions take an
infinitesimal duration, the need for computing the interactions and therefore the particle tra-
jectories is done away by using a collision law characterized by the coefficients of restitution.
Therefore, these simulations are much more efficient than force-based MD. But, the applicabil-
ity of such methods is restricted to systems where particle streaming takes a much larger time
against particle collisions.

For dilute gases, molecular description is provided by the Boltzmann equation. In this
regard, Direct simulation Monte carlo has emerged as the most important tool for the direct
simulation of the Boltzmann equation (Bird, 1970; Bird & Brady, 1994). Just like EDMD, one
is not interested in computing the real particle trajectories and therefore provides a decoupled
advection-collision representation in DSMC. This method divides the physical domain into a
number of computational cells with the real gas represented by an Nc particle system (see
Fig(3.1)) in each of these cells. As it is expensive to represent a physical scenario with trillions
of particles, each particle in the domain represents an effective number of particles, Ne. The
time evolution consists of local collision in the cell followed by free flight in which particles might
cross over to neighboring cells. The differences between DSMC and MD methods are primarily
associated with the procedures for handling collisions. Unlike MD, in DSMC the collisions are
localized in the cell and statistical in nature. The requirement of a large number of particles in
the domain for an effective transport of hydrodynamic quantities is replaced by the presence of
effective number of particles, Ne in the collision sub-routine.

As an illustration, if we consider air for which λ = 60nm at T0 = 20◦C, the sound speed
cs ≈ 343 m/s. For Re = 2000 and Ma = 0.2 (giving us the macroscopic velocity scale to be
≈ 69 m/s) setup, in the relation for the Knudsen number (Eqn.(2.7)), we get the macroscopic
length scale as L1 ≈ 0.1868mm. Therefore, the simulation for the given parameters with the
working fluid being Air corresponds to a length scale in the millimetre scale. The number density
of air at STP was found via Eqn(2.3). This when used to find the number of particles in a cube
of size 2λ, we have,

N0 = n× (∆x)3 = 2.5× 1025 × (120× 10−9)3 = 43200. (3.1)

Therefore, the number of molecules at various cell sizes at STP for air can be calculated and
is shown in Table(3.1). This gives us an estimate for Ne to be used through the ratio of the
number of physical particles to the number of simulated particles.

For convenience, here onwards all length-scales are scaled with respect to the molecular
diameter (d).

L̃ =
L

d
, λ̃ =

λ

d
, ñ = nd3, (3.2)

17
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Figure 3.1: A 2D projection of a typical DSMC set-up. Dashed lines represent the cell boundaries

∆x = 0.5λ N0 (number of molecules)

2λ 43200
1λ 5400
0.5λ 675

Table 3.1: Typical values of the number molecules in a cubical volume of varying sizes at
atmospheric pressures

which implies

λ̃ =
1√

2π ñ
. (3.3)

Here L̃, λ̃ and ñ are the nondimensional length, mean free path and number density respec-
tively. For air, with d = 3.6Ao and p = 231.48Pa, we have λ̃ ≈ 16.67. For a cell size of ∆x = 2λ̃
and one which has 100 particles in it, we have the nondimensional number density as,

ñ =
100

(2λ̃)3
= 2.7× 10−3. (3.4)

Typically, time scales are of the order of a few mean free time. Therefore, time steps in
DSMC are taken to be a fraction of the mean free time ∆t = cτ , with c ≤ 1.

Representing a full-domain molecular simulation for length scales of most modern applica-
tions is computationally very expensive and therefore such solvers usually find extensive use in
microscale devices(Piekos & Breuer, 1995). We hence rely on DSMC simulations to represent
physical systems of the order of the mean free path (λ) or a few orders of magnitude higher.

3.1 DSMC Methodology

In this section, we describe the implementation of the DSMC solver. As shown in Fig(3.1),
the DSMC domain is discretized into a set of spatial cells in all three dimensions. Each cell is
uniformly initialized with a certain number of particles, N0. Collisions are computed in these
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cells that range in length of the order of the mean free path. A flowchart representing the DSMC
Algorithm is as shown in Fig(3.2). The details of individual steps are as follows:

Initialize System

Advection

Collision

Post processing

t < tc

Figure 3.2: A flowchart showing the DSMC algorithm. Here, tc represents the total time of the
simulation.

• Initialization: The initial particle velocities are sampled from the Maxwell-Boltzmann
distribution with the standard deviation of the sampled distribution being the temperature
T0 of the system and a required mean velocity u.

• Advection: Particles are advected as ghosts (see Fig(3.3)) with their motion in space
described by the equations of motion for position and velocity updates. The positions (x )
and the velocities (v) of the particles at time t are evolved as follows,

x (t + ∆t) = x (t) + v∆t +
1

2
g∆t2, (3.5)

v(t + ∆t) = v(t) + g∆t, (3.6)

where g is the applied acceleration on the system.

v1

v2

Figure 3.3: A schematic showing particles treated as ghosts during advection

Ocassionally, particles near walls collide with them. For particle collisions with the walls,
we calculate the time for collision with the wall (twall) for any particle whose location and
velocity are given by x and v as follows,

twall =
(xwall − x).n̂

v.n̂
, (3.7)

where xwall and n̂ are the position and normal vector of the wall plane respectively.
Particles crossing cell boundaries are responsible for the transport of wall effects and other
hydrodynamic quantities across the domain.
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• Boundary Conditions: For our problem of interest and for an introduction to the
method, we talk about a flow in a domain that is constricted by straight thermal walls
with a fluid accelerating between them. The other two directions are periodic.

Figure 3.4: A schematic showing the diffusive nature of the wall

As an illustration, we consider particle collisions with a straight wall. We use diffuse
boundaries for the top and bottom walls of a channel which assumes that the particle
collides and equilibriates with the wall temperature and velocity and therefore has a wall
equilibrium distribution. The boundary condition is implemented as follows,

vx =

√
kBTw
m

rG, vy =

√
kBTw
m

r
′
G, vz =

√
−2kBTw

m
loge r, (3.8)

where Tw is the wall temperature, rG and r
′
G are gaussian distributed random numbers

and r is a uniform random number between (0,1] generated from the Molecular Dice
Algorithm(Agrawal et al., 2018). For an isothermal simulation, we take the temperature
of the bulk and the walls to be the same. The generated velocities represents the Maxwell-
Boltzmann distributions with the mean as the wall velocity (zero for a stationary wall)
and the standard deviation as the wall temperature (Tw) and is given as,

P⊥(v⊥) =
m

kBTw
v⊥e

−mv2⊥/2kBTw , P‖(v‖) =

√
m

2πkBTw
e
−mv2‖/2kBTw , (3.9)

where, v‖ and v⊥ represent the velocity components parallel and perpendicular to the wall
respectively.

3.1.1 Collision process in DSMC

All collisions in DSMC are stochastic and are within a spatial cell of dimensions of the order of a
mean free path. In order to calculate the number of particle collisions within a cell, one needs to
determine the probability of a pair of particles to collide. For a pair of Hard-Sphere molecules,
the probability that they would collide depends on their relative velocities, and therefore the
collective probability of the set of particles is,

Pcoll(i, j) =
|vi − vj |∑Nc

m=1

∑m−1
n=1 |vm − vn|

. (3.10)

Calculating this distribution every time step is expensive because of the summation spanning
over all NC2 collision pairs in a cell. Therefore, we use a criteria for the selection of a pair of
particles for collision as (Alexander & Garcia, 1997)

|vi − vj |
vr,max

> r, (3.11)

where vr,max is the expected maximum relative speed for the set of particles and r is a
uniform random number generated between (0,1]. The maximum relative speed depends on the
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temperature, T0 of the gas. We let vr,max to be a moderately high value (≈ 30
√
kBT0/M) in

comparison to the particle mean velocities. This overestimation of vr,max would lead to a higher
number of rejections for every few pairs of particles selected for sampling. A smaller guess value
would result in a higher acceptance and could lead to an ineffective representation of the collision
process. To decide on the number of collisions within a cell, we take the number of collisions
that could take place within a collision tube around a particle, i.e., a cylindrical volume of length
λ and diameter of the order of the particle diameter. The number of candidates for collisions
in this tube (of volume πd2vr,max∆t) of the total NC2 possibilities (in total volume Vc) would
therefore be the fraction of total collisions in the collision tube. This is given as follows,

Mcoll =
N2

0πd
2vr,maxNe∆t

2Vc
, (3.12)

where Vc is the volume of the cell. If a pair of particles passes our selection criteria, we can com-
pute post-collisional velocities in terms of post collisional centre of mass and relative velocities
as

v
′
i = vcm +

1

2
v

′
r, v

′
j = vcm −

1

2
v

′
r. (3.13)

The centre of mass velocity and the relative speeds of the pair of particles remains unchanged be-
cause of momentum and energy conservation respectively. Only the directions that the particles
traverse post-collision is altered. So, we may write

vcm =
1

2
(vi + vj), v

′
r = vr[(sin θ cosφ)ê1 + (sin θ sinφ)ê1 + cos θê3]. (3.14)

The direction is decided based on the distribution of the particle velocities on a sphere of radius
vr and centred on vcm. Here, one assumes that the azimuthal angle φ is uniformly distributed
on a spherical surface

P (φ)dφ =
1

2π
dφ, (3.15)

and therefore, φ = 2πr2, where r2 is a uniform random number between (0,1).

vv
′

Figure 3.5: A schematic representing the collision process wherein the radius representing the
relative velocity magnitude remains unchanged and the velocities randomly flip to another di-
rection

However, there is a uniform probability that a particle is on a patch of area dS = v2
r sin θdθdφ

on the spherical surface. This gives on integrating out the dependence on the azimuthal angle,

P (θ)dθ =
sin θ

2
dθ. (3.16)

Therefore,

P (cos θ)d(cos θ) =
1

2
d(cos θ). (3.17)

Hence, cos θ is uniformly distributed on the sphere. Giving us,

cos θ = r1, sin θ =
√

1− r2
1, (3.18)

where r1 is a uniform random number between [-1,1].
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This process gives us the directions of the new relative velocity vectors using which one
can obtain the post-collisional velocities of the particles through Equation 3.13. This stochastic
procedure represents the collision process in DSMC and is repeated Mcoll number of times for
every time step.

3.2 Direct Simulation of the Boltzmann equation *

In this section, we describe how the simulation of real gas flows using DSMC also provides a
solution to the equations governing the flow. We show how the particle advection and local
collision provide a discrete description of the Boltzmann equation (Bird, 1970). In order to do
so, we recognize how a multiple ensemble average of the DSMC particle density represents the
single particle probability distribution function f(x,v, t) and therefore the idea of the method
is to determine the time-dependent distribution through a quasi-particle simulation (Pöschel &
Schwager, 2005). Unlike, mesoscopic methods like Lattice-Boltzmann which deal directly with
the distribution function and their evolution through a discretized Boltzmann equation, one
derives the Boltzmann equation through the dynamics of the particles in DSMC.

To quantify the effects of the free-streaming and collision in DSMC, it is essential to
understand how they translate to the change in the single particle distribution function, i.e.
∆f . The change in the number of particles f(x,v, t)dxdv in the phase space volume dxdv in
the absence of external forces would occur due to the following factors:

1. Particles with pre-collisional velocities v ± dv leave their velocity space volume acquiring
a post-collisional velocity v′ 6= v, thus reducing the number of particles in this velocity
space volume. Particle collisions with velocities within dv does not result in a flux through
dv.

2. Particles with pre-collisional velocities v′′ enter the velocity space v ± dv post collision.
This process increases the number of particles in dv.

3. Free-streaming of particles through the faces of dx changes the number of particles in the
position space volume around x.

vx

vy

vz

v

v
′

v
′′

P2

P1

X

Y

Z

x

Figure 3.6: A schematic showing the various factors causing a change in the number of particles
f(x,v, t)dxdv in the 6-dimensional phase space. (a) Particles leaving the velocity space volume
dv around v is shown as P1 (point 1 above) and particles entering this volume as P2 (point 2).
(b) Particles leaving the position space volume dx around x through advection.

*This section is an adapted version from Pöschel & Schwager (2005)
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To calculate the number of such changes through the phase space volume dxdv, we define
the collision frequency ν−(v1,v2, e) for point 1 which describe the number of collisions per
time step ∆t between particles with velocities v1 and v2( 6= v1) along the unit vector e =
(x2−x1)/|x2−x1|. Similarly ν+(v′′1 ,v

′′
2 , e) is the collision frequency for point 2 between particles

with velocities v′′1 and v′′2 that result in one of the particles having a post-collisional velocity of
v1.

The changes in the probability distribution arising due to the negative flux (Point 1) can
then be written as an integral over all possibilities of the colliding particle v2 and along all
possible orientations in the position space e.

∆f−(v1)dv1 = −dv1

∫
ν−(v1,v2, e)dv2de∆t, (3.19)

where the negative sign indicates the decrease in the number of particles. Similarly, the
positive flux into the velocity space volume dv is given by integrating over all possibilities of v′′1 ,
v′′2 and orientation e.

∆f+(v1)dv1 =

∫
ν+(v1,v2, e)dv′′1dv

′′
2de∆t. (3.20)

Therefore. the total change in the distribution function is given by,

∆f(v1)dv1 = −dv1

∫
ν−(v1,v2, e)dv2de∆t+

∫
ν+(v′′1 ,v

′′
2 , e)dv′′1dv

′′
2de∆t. (3.21)

We can now derive a relation for the collision frequencies from a geometrical picture of the
collision between particles with velocities v1 and v2.

3.2.1 Collision frequency

Here, we revisit the relation between the collision frequencies and the single particle distribution
function. We would obtain a bilinear form of the collision operator, similar in form to Equation
2.19.

e

v12

2R

R

|v12| dt

Figure 3.7: A 2D projection of the collision cross-section of radius 2R and the corresponding
collision tube of height |v12|dt oriented along v12 = v1 − v2 and with base area (2R)2de. The
dotted circle represents the projection of the colliding particle with velocity v1.

Figure 3.7 shows the collision tube from the frame of reference of particle 2. A collisional
cross-section with radius 2R (equal to the distance between two particle centres) and a collision
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tube of height |v12|dt with the base area oriented along e. The volume of this tube is given by

dV = (2R)2de|v12 · e|dt. (3.22)

The number of particles with velocity v2 is f(v2)dv2. The number of particles with velocity
v1 in the collision tube is H(v12 · e)f(v1)dv1dV . Here, H(v12 · e) is the Heaviside function that
makes the distinction betweem approaching (v12 · e < 0) and departing (v12 · e > 0) particles.
We can find the number of collisions between v1 and v2 as,

ν−(v1,v2, e)dv1dv2dedt = dVH(v12 · e)f(v1)f(v2)dv1dv2. (3.23)

Simplifying the expression further, we arrive at,

ν−(v1,v2, e)dv1dv2de = f(v1)f(v2)(2R)2|v12 · e|H(v12 · e)dv1dv2de. (3.24)

Similarly, the expression for the collision frequency contributing to the positive flux of the
distribution function is as follows,

ν+(v′′1 ,v
′′
2 , e)dv′′1dv

′′
2de = f(v′′1)f(v′′2)(2R)2|v′′12 · e|H(v′′12 · e)dv′′1dv

′′
2de. (3.25)

The coefficient of restitution can be defined as follows,

|v′′12 · e|
|v12 · e|

=
1

ε
. (3.26)

For perfectly elastic collisions, the coefficient of restitution, ε = 1. Using the property of the
Heaviside function, H(v′′12 ·e) = H(−v12 ·e) and with the change of variable e→ −e in Equation
3.25, we have,

ν+(v′′1 ,v
′′
2 , e)dv′′1dv

′′
2de = −f(v′′1)f(v′′2)(2R)2|v12 · e|H(v12 · e)dv1dv2de. (3.27)

Using Equations 3.24 and 3.27 in Equation 3.21, we get the collision integral of the form,

I = (2R)2

∫
dv2

∫
deH(v12 · e)|v12 · e|

[
f(v′′1)f(v′′2)− f(v1)f(v2)

]
. (3.28)

This integral is similar in form to the one shown in Equation 2.19. In the limit ∆t→ 0, we
get the Boltzmann equation of the form,

∂

∂t
f(v1, t) = I. (3.29)

We had neglected the free-streaming of particles in our derivation so far (Point 3). This
corresponds to the change in the distribution arising due to its flux across the position space
volume dx. Accounting for this contribution as the convective term in the Boltzmann equation,
we have, (

∂

∂t
+ v1 · ∇

)
f(v1, t) = I. (3.30)

This shows how the local collision and free-streaming process of the DSMC algorithm
leads to a direct simulation of the Boltzmann equation and would therefore recover appropriate
macroscopic conservation equations as in Equation 2.22.



3.3 Modified Transport Parameters 25

3.3 Modified Transport Parameters

As the collision process is stochastic in nature, the cell width ∆x is maintained of the order of
the Mean free path (λ) to ensure the correctness of transport parameters. Ideally, a well resolved
DSMC simulation should work with ∆x � λ and ∆t � τ . Indeed, it is observed that DSMC
requires that the cell sizes be below 0.5λ for an effective transport of hydrodynamic quantities
(Bird & Brady, 1994). However, for engineering set-ups it is often not feasible to perform
such resolved simulations. Thus, one would like to work with coarser cells and larger time-
steps. However, using larger cells is equivalent to reducing the number of collisions that would
happen in a smaller sized cell, and slowing the moment diffusion process. This is equivalent to
a system having a reduced viscosity. Similarly, taking larger time steps results in lesser number
of collisions and results in modified transport coefficients. Thus, one would expect that using a
larger ∆t and ∆x should change the transport parameters to account for these reduced number
of collisions.

Investigations (Alexander et al., 1998; Garcia & Wagner, 2000) on the issue of working
with larger ∆x and ∆t both as direct simulation based experiments and theoretically, they have
found that the net effective correction added for a simulation running at a higher cell spacing
and one that uses a larger time step jump is

ν̃ = ν0

(
1 +

32

135π

∆x2

λ2

)(
1 +

32

150π

∆t2

τ2

)
,

κ̃ = κ0

(
1 +

32

225π

∆x2

λ2

)(
1 +

64

675π

∆t2

τ2

)
.

(3.31)

A simulation that was run with the above set of modified parameters in viscosity is as shown in
Fig. 3.8. It is evident from this plot that once transport coefficient are properly re-parameterized
the coarse simulations show as good result as that obtained from a finely resolved DSMC simu-
lations.
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Figure 3.8: A channel flow simulation steady state velocity profile obtained using the modified
parameters compared against (Yudistiawan et al., 2010)

Similarly, we compare the steady state shear stress (σxy) profiles in Fig.(3.9) using a ∆t
of 0.1, 0.8 and 1 τ respectively. Once again, we observe that the higher order moments are also
in good quantitative agreement after proper re-parametrization.
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Figure 3.9: Steady state shear stress profile for an Re = 13, Ma = 0.2 simulation compared
using various ∆t after applying the viscous correction from Equation 3.31

We can understand the significance of increasing the time stepping by analyzing the change
in the total time requirement per simulation. We can then estimate if such a maneuver could
result in gains in simulation time. For example, high Reynolds number simulations requiring
finer cell sizes for particle simulations (due to low Kn) would need a large number of particles
in the domain. With limited computing resources, such simulations can become extremely time
consuming. It is hence useful to be able to use larger time steps, to be able to attain a steady
state sooner. Larger time steps causes a rise in the number of collisions to be processed per cell
(as the number of collisions ∝ ∆t).

For our purposes, the time step maneuver could still be considered useful if the cost
increase due to collisions and communications is not linearly dependent on ∆tnew/∆told. That
is, a factor 10 increase in ∆t results only in a < 10 increase in the total time taken for processing
all the routines per DSMC time step. This is possible as the time taken for the advection routine
remains the same irrespective of ∆t and the additional cost of collisions and communication rises
slower than the ratio of time steps.

As a test case, we performed acceleration-driven channel flow simulations at Re ≈ 13 and
Ma = 0.2. The domain consisted of 80 cells in each direction consisting of 100 particles in a cell,
making a total of 51.2 Million particles in the domain. All simulations were performed using 200
processors with pencil decomposition of the channel geometry. Fig.(3.10) shows the split of the
time taken for the above simulation by different subroutines for various values of the time step,
∆t. We see that for a 40-fold increase in ∆t, there is an 8-fold time saving for the simulation
to reach one diffusion time. Although the time taken per step for collision and communication
increases with ∆t, the number of calls to these functions until 1 diffusion time has reduced.
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Figure 3.10: Time taken by the different sub-routines for the same simulation until 1 diffusion
time using various values of ∆t

We can now make huge savings in computational time by using a large ∆t and through
an appropriate viscosity correction.

3.4 MPI Parallelization

The performance of any particle code is expected to be compute bound. In other words, if CPU
speed is doubled code speed also increases roughly by same factor. However, as the CPU speed
has considerably gone up over years, now simulations are done with much higher number of
particles. As the number of particle increases, at some point communication between CPU and
RAM becomes a bottleneck. The performance of such codes are termed as memory bound. In
other words, the code performance increases significantly if the memory bandwidth is increased
via an increase in RAM speed or number of memory channels. Indeed, this is being increasingly
observed that many scientific codes are becoming memory bound (Shet et al., 2013).

As for an example, let us consider a flow simulation of Re = 10 and Ma = 0.1 simulation
in a cubical domain. As, this setup correspond to Kn ∼ 10−2, with a cell width of ∆x = λ we
would need 100 cells in every direction. Thus, for a three dimensional simulation with number of
particle in a cell N0 = 100, we require 100 million particles. This would require a total memory
of 4.8 GB with 6 phase space coordinates per particle. Table 3.2 shows the memory requirement
as one moves to higher Reynolds numbers. In the advection step, we have around ∼ 10 memory
reads per particle and in the collision step, we have around ∼ 6N0 memory read operations per
particle. Thus, approximately using an order of magnitude analysis, we can say that the number
of memory operations in a single step of DSMC is 10N0 per particle. Similarly, a single collision
event has approximately ∼ 100 compute operations and there are ∼ N2

0 such collision events
per cell. So, for approximately an order of magnitude analysis, we can say that the number of
compute operations in a single step of DSMC is 100N2

0 . Thus, for the present case, the total
amount of memory transfer is 8× 106 × 10× 100× 100 which is ∼ 1000GB of data transfer per
time step. Similarly, we would require 106 × 100× 100× 100 which is ∼ 1000 GFLOP per time
step.

If we consider, AMD ROME (Sankhyasutra Labs cluster) or Intel XEON 8268 (PARAM
Yukti cluster at JNCASR) (see Tables 3.3 and 3.4 for details), it has a per node memory
bandwidth of ∼ 350GB/s and ∼ 175GB/s respectively (with ∼ 80% efficiency). Both have a
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Re Number of particles (in Billions) Memory requirement (in TBs)

10 0.1 0.0048
100 100 4.8
1000 100000 4800

Table 3.2: Number of particles and memory requirement for a full-domain DSMC simulation
with 100 particles per cell and ∆x = λ

peak teraflop rating of around 4.5TFLOP per node. Thus, ideally compute should take ∼ 1s on
both AMD ROME and intel XEON 8268. Similarly, ∼ 3s to ∼ 6s should take to perform the
memory operations.

CPU Intel AMD

n
(RAM)
freq 2.933 GHz 3.2 GHz

w 8 bytes 8 bytes
nchannels 6 8
npeak 281.25 GB/s 409.6 GB/s

Table 3.3: RAM specifications of the Intel (PARAM Yukti) and AMD (Sankhyasutra labs)
clusters

CPU Intel AMD

processors/node 48 128

n
(CPU)
freq 2.9 GHz 2.25 GHz

FLOPS/cycle 32 16
rpeak 4.454 TFLOPS/s 4.608 TFLOPS/s

Table 3.4: CPU specifications of the Intel (PARAM Yukti) and AMD (Sankhyasutra labs)
clusters

For simulations at higher Reynolds numbers or lower Knudsen numbers, the memory
and compute requirement are huge and serial jobs would not be possible in realistic times.
Parallelization allows us to distribute the work load among multiple processors and allows for
particle simulations in such regimes to be done in reasonable times.

Parallelization can be either done by dividing the total number of particles in the domain
among the different processors or via splitting the domain. With particles advecting over large
distances, and with collisions being processed per cell, over time the simulation is bound to
become slower with the memory addresses of colliding particles far from each other resulting
in cache misses. Such an algorithm would require an efficient sorting algorithm. But, the time
requirement would still be larger than an algorithm implemented based on domain decomposi-
tion.

Domain decomposition is the method by which the simulation geometry is divided into
smaller domains, each of a similar shape. Each subdomain is then allocated to every processor.
Fig.(3.11) illustrates one such technique known as slab decomposition where in the geometry is
split along one dimension. Here, slabs are created along the wall normal direction with Np such
slabs, where Np is the number of processors allocated.
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Slab1

SlabNp

Figure 3.11: Slab decomposed channel flow geometry. Np is the number of allocated processors

3.4.1 Pencil Decomposition

For our case of interest, we have divided a channel flow geometry into pencil shaped cuboids
along the channel height. Fig.(3.12) shows a description of this domain decomposition technique.
Each of these pencils represents the territory marked by a processor. Unlike the slab, pencil
decomposition splits the domain along two-dimensions. Each pencil is then further divided
into cells where particle collisions are processed. All the DSMC subroutines are performed
independent of other pencils. In order to stitch back the domain, a communication routine
among the neighboring regions is performed every time step. With the pencil decomposed
domain having 4 neighbors per pencil (corresponding to each face) against only 2 neighbors in a
slab decomped domain, the total number of communication calls between processors is increased
in pencil as compared to slab while reducing the amount of data transfer per communication
(as the individual volume per pencil is smaller than that of a slab).

Pencil1

PencilNp

Figure 3.12: Pencil decomposed channel flow geometry. Np is the number of allocated processors

We now describe how the parallelization is done. Fig.(3.13) shows the immediate neighbors
of region P0 as viewed from along the wall normal direction. Those bordered by dashed lines
are the diagonal neighbors with a common edge, while the others have a common face with P0.
With every particle advection, particles cross over to its immediate neighbors and one needs to
send the data corresponding to those particles to its neighbors. Every pencil requires a total of
4 communications, with its solid bordered neighbors (P1, P2, P3 and P4). Any communication
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with the diagonal neighbors is accounted for due to dimensional independence.
Particles whose x coordinate has crossed over to the next processor after advection is sent

over to P1 (for particles traveling in the positive direction), irrespective of its new y position.
Then the new y position is checked to know if a transfer to P5 or P8 is required, else the particle
stays within P1. The same rule applies to particles traveling in the negative direction. The
particles that do not cross over along the x direction, are checked for transfer to either P2 or
P4. In this way, communication to all neighbors is achieved. As the number of particles crossing
over a face is usually larger than through an edge, this method would be much more efficient
than communicating to all 8 neighbors.

P0 P1

P4

P3

P2

y

x

P5P6

P7 P8

Figure 3.13: A cross-sectional view showing the processor layout in a plane of the Pencil decom-
posed geometry.

With this, the updated DSMC routine is shown in Algorithm 1.

Algorithm 1 Parallel DSMC Methodology

1: for i,j ε DSMC region do
2: Initialize particles in domain
3: while steps <n do
4: Particle Advection
5: Particle Collisions
6: MPI Communication with neighbors
7: end while
8: end for

3.4.2 Comparison to SPARTA

SPARTA (Gallis et al., 2014) is an open-source DSMC code for rarefied particle simulations.
With all the modifications to improve the performance of our DSMC solver, we performed sim-
ilar simulations using the standard DSMC solver, SPARTA. We have done numerical studies
to compare the scaling behavior of both solvers. With our limitations on the available compu-
tational resources, simulations were done using upto 800 processors to observe parallel scaling.



3.4 MPI Parallelization 31

The total time taken to compute 1000 iterations was compared for every instance.
As shown in Fig.(3.14), our in-house DSMC solver has performed much faster and has

shown a good scaling behavior upto 800 cores on an Intel Xeon Platinum 8268 cluster. Similar
studies performed on an AMD EPYC 7742 cluster (Sankhyasutra labs) with 4096 processors has
shown a linear scaling behavior of our solver.
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Figure 3.14: Comparison of our in-house DSMC solver against SPARTA for various number of
processors on the Intel XEON 8268 (PARAM Yukti cluster at JNCASR)

Fig.(3.15) shows a comparison of the time taken for channel flow simulations using our
DSMC solver at various Reynolds numbers. We see that with increasing Reynolds numbers,
the time requirement for particle simulations makes it infeasible to perform moderate Re fluid
simulations on moderate computing resources.
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Figure 3.15: Time taken (in hours) by a Pure DSMC simulation for various Reynolds number
and a system dimension of 6L×L×3L. With increasing Re, DSMC simulations take unrealistic
times.

3.5 DSMC Benchmark

In this section, we present a few benchmark cases for validating our DSMC solver. The DSMC
solver was initially tested on canonical cases such as the plane Couette and Poiseuille flow. It is
shown in the literature that for moderate Knudsen number, the flow profile for a plane Poiseuille
flow (see Fig(3.16)), where the fluid is accelerated by a pressure/force F between two parallel
plates kept apart at a distance L is given by(Yudistiawan et al., 2010).

uy = F
y2

2τ
+A2 +A3 cosh

(
y

c1Kn1L

)
, (3.32)

where A2, A3 and c1 are appropriate constants dependent on the discrete velocity model
used. Here, Knudsen number is defined to be

Kn1 =
τ

L

√
2kBT0

M
. (3.33)

LX

Y

g

Figure 3.16: A sketch of the 2D plane poiseuille flow geometry with the fluid driven by a constant
body force g along the streamwise direction

The cosh term in the velocity profile arises from symmetry of the flow around the centerline
(y = 0). The moments from the simulations were averaged over a time scale of 100τ to reduce



3.5 DSMC Benchmark 33

statistical scatter. Fig.(3.17) shows the instantaneous and time-averaged profile for a transient
plane Couette flow.
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Figure 3.17: Steady State Re = 50, Ma = 0.1 fluctuations of the DSMC plane Couette flow
streamwise velocity profile compared against a time-averaged profile

Poiseuille flow simulations were performed at Re ≈ 20 and Ma = 0.1 and the steady state
flow profile(see Fig(3.18)) was compared against the profile from Equation 3.32.
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Figure 3.18: Steady State Re ≈ 20, Ma = 0.1 streamwise velocity profile compared against the
approximate profile from ref. (Yudistiawan et al., 2010)

Similarly, the flow profile for a plane Couette flow (see Fig(3.19)), where two plates are
kept at a distance L and move with the velocities U1 and U2 is of the form (Yudistiawan et al.,
2010)
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uy =
U1 + U2

2
+
y

Θ

U2 − U1

L
+

1

K1
(U2 − U1) sinh

(
y

K2 Kn1 L

)
, (3.34)

where Θ, K1 and K2 are constants whose details depends on the discrete velocity model used
to obtain this profile.

LX

Y

U2

U1

Figure 3.19: A sketch of the 2D plane couette flow geometry with the fluid driven by the anti-
parallel movement of the walls with velocities U1 and U2 along the streamwise direction

Fig(3.20) shows the DSMC simulation results at a moderate Reynolds number of Re = 50
and at Ma = 0.2 for plane Couette flow compared against the analytical solution from Eqn(3.34).
The slight difference in the velocity profiles as compared to Analytical and LB solutions are due
to the ineffective representation of viscosity when using a cell size > 0.5λ. This mismatch can
be resolved by using smaller cell widths.
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Figure 3.20: Nondimensional planar Couette developing flow profile compared with the Analyt-
ical solution at various diffusion times

DSMC simulations performed in the transitional regime at Kn = 0.1, Ma = 0.1 and the
obtained streamwise velocity profile compared with Equation 3.32 is shown in Fig.(3.21).
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Figure 3.21: Steady State Kn = 0.1, Ma = 0.1 streamwise velocity profile compared with the
profile from ref. (Yudistiawan et al., 2010)

3.6 Outlook

In this chapter, we tried to demonstrate the capability and the methods used in improving the
performance of traditional DSMC solvers. We have shown through numerous test cases that our
model correctly captures hydrodynamic behaviour in various flow regimes. Simulations done in
the laminar no-slip and in the rarefied regimes illustrate this point. Simulations were performed
in a channel flow geometry for plane Poiseuille and plane Couette flows and have shown excellent
agreement with their corresponding analytical and numerical profiles. We also discussed briefly
about slab and pencil methods of domain decomposition. We also emphasized on the methods
used in making computational gains through the use of modified transport parameters allowing
for larger cell sizes (∆x) and time steps (∆t). Using a few test cases, we have demonstrated the
huge time savings made in using this viscosity correction.





Chapter 4

DSMC - Lattice Boltzmann Coupling

In this chapter, we discuss the hybrid Direct Simulation Monte Carlo - Lattice Boltzmann (LB)
scheme for fluid simulations in various hydrodynamic regimes. As the LB model we have used
the recently proposed RD3Q41 model (Kolluru et al., 2020). This model was chosen due to its
ability to describe low Mach number flows and acoustics in a realistic fashion. We start with a
brief discussion on the validity, usefulness and applicability of the proposed approach. We then
describe the coupling strategy employed through the use of a domain-decomposition technique.
The implemetation of a communication methodology through the use of a truncated Hermite
polynomial expansion of the single particle distribution function is reviewed. Finally, we validate
our approach by simulating flows in the laminar continuum, transitional and turbulent regimes.

4.1 Coupling necessity

In this section, we describe the purpose of such a method and the strategy used in devising the
current coupling scheme. We review two basic questions in this section: Why does one need a
Micro-Meso coupling? And how can one implement the same? We answer the former by showing
the advantage of the solver from a physics and a computational point of view.

One generally quantifies the non-equilibrium nature of the flow through the use of the
Knudsen number, Kn. Flows are classified into the continuum (Kn < 0.01), Slip flow (0.01 <
Kn < 0.1), transitional (0.1 < Kn < 10) and free-molecular (Kn > 10) regimes based on this.
Rarefied flows typically have large non-equilibrium contribution to the flow. Interest in such flows
are due to its applicability in micro and nano scale flows such as in MEMS based devices (Nie
et al., 2002). One is interested in being able to predict such flows with a good amount of accuracy.
Classical fluid solvers such as Finite Volume and others which employ a discretization of the
Navier-Stokes equations are not capable of in providing an accurate description of hydrodynamics
beyond the continuum regime. With corrections to the governing equations arising due to
significant non-equilibrium effects, one requires a higher-order description of the flow to capture
such deviations. Although, modifications to continuum solvers that reproduce a velocity slip
and temperature jump at the wall are used, they do not faithfully reproduce the kinetic nature
of such flows (Zhang et al., 2012). Therefore, one often solves the Boltzmann equation that
provides a solution from the rarefied to the continuum regimes.

Kinetic schemes such as the Lattice Boltzmann model (Chen & Doolen, 1998; Succi, 2001)
have been successful in simulating flows in a wide variety of regimes, even though the method
works at finite Knudsen numbers. But in the high Knudsen number range, it too suffers from
the discrete nature of the model and its restricted isotropy. Obvious modifications through
the use of higher-order models (Ansumali et al., 2007; Atif et al., 2018; Namburi et al., 2016;
Yudistiawan et al., 2010) have shown good success. But particle-based methods such as DSMC
(Bird & Brady, 1994) have remained the preferred choice in this regime. DSMC also provides
a kinetic description through its approximation of the Boltzmann Equation (see Section 3.2).
But due to its huge computational cost, its use has been restricted to small scale flows. As
the computational cost of a DSMC simulation scales as Kn−3, one requires multi-peta scale
computing systems to perform a modest turbulent flow simulation (Gallis et al., 2017, 2018)
that is otherwise easily done using methods like LBM.

We can therefore look to strike a balance and extend the applicability of such kinetic
solvers by using a hybrid solver where one can use DSMC in regions of the domain where

37
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non-equilibrium effects persist and a LB model in the rest of the domain. Such a domain-
decomposition technique employs the versatality of DSMC while also keeping the numerical
expense low in contrast to particle methods. In our study, we use a class of LBM models known
as crystallographic LBM. Such models are suited for optimal discretization of the spatial domain
using a body-centered cubic (BCC) ordering of the grid points (Namburi et al., 2016). We have
used a 41-velocity crystallographic model, hereby referred to as the RD3Q41 model (Kolluru
et al., 2020). This model is well suited for weakly compressible aeroacoustic and thermoacoustic
flow simulations. It was shown that this model ensures a higher order isotropy against the D3Q27
model and is therefore suitable for simulations in the moderate Knudsen number regime with
appropriate boundary conditions. One can now delve into rarefied regimes with DSMC in control
of the Knudsen layer. Alternate hybrid methods of coupling where the solution of a transient
Boltzmann equation evolution is mapped to determine the evolution of the macroscopic velocity
field (Al-Mohssen et al., 2007) are used. Higher-order contributions from the stress tensor and
heat flux are excluded in such methods. These schemes use a time-decomposed approach rather
than a domain-decomposed method described in our coupling. In this two-way coupling, we have
modeled a plane channel flow geometry with the DSMC solver near the wall and the relatively
coarser LB solver in the bulk of the fluid.

As opposed to similar works using a DSMC-Lattice Boltzmann (Di Staso et al., 2016) and
MPCD-Lattice Boltzmann (Montessori et al., 2020) coupling in literature which represented a
hybrid particle-continuum coupling and where one of the solvers extends completely through the
domain, we intend to restrict our solvers exclusively in our regions of interest. Such solvers which
occupy the full domain have a relaxed stability criteria and are less affected by the thermal noise
from the particle layer. In our case, restricting the region of control of the solvers allows the
different solvers to be allocated in regions where they are most efficient in capturing the physics
of the flow. Here, we restrict our DSMC solver only near the wall and the LB solver within
the bulk with a buffer zone for communication between them. This gives us the flexibility of
moving towards high Knudsen and turbulent flow regimes where the molecular wall layer plays
an important role in capturing the boundary layer effects. This also plays to our advantage in
being able to use lattice models with finite number of discrete velocities in moving towards such
regimes. The schematic in Figure 4.1 gives a picture of the implemented coupling scheme. The
buffer zone represents the region where a two-way DSMC-LB and LB-DSMC communication is
executed.

Whenever thermal noise is desired, one works with a fluctuating LBM model (Adhikari
et al., 2005) or is artificially induced with thermal noise through the use of geometric modifica-
tions like a bump (Roy et al., 2017) or through specific initial fluctuationg velocity conditions
(Gallis et al., 2018). With the noise for turbulent flow simulations provided by DSMC, we would
like to know its influence on the transition process. With a DSMC layer near the wall, we now
have a realistic depiction of the influence of micro-roughness on the flow. With important re-
gions governing the flow dynamics covered by a particle-based method one could argue that it
provides an accurate description of the flow from a kinetic point of view.
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Figure 4.1: DSMC-LB Coupling Geometry. DSMC region is present only near the wall and
the LB domain extends through the rest of the bulk. The buffer zone represents the region of
communication between the two solvers.

In the following sections, we describe the communication routine at the interface of the
two solvers, the time gain against a pure DSMC solver and validate the results obtained in
various hydrodynamic regimes.

4.2 Coupling communication

In this section, we describe the communication routine employed in the buffer layer between the
two solvers in order to transport wall effects into the bulk of the fluid and vice-versa. The basic
idea is to use a projection scheme where in the macroscopic quantities are used as the basis
of communication. The exchange is through the creation of a 13 moment Grad distribution
function (Grad, 1949) expansion using the density (ρ), momentum density (ρuα), stress tensor
(σαβ) and the heat flux (qα) as macroscopic field variables.

f(x, c, t)

Ensemble Averaging

Single particle distribution function

Figure 4.2: The conversion from a particle representation to a mesoscopic one. An ensemble
average over particle systems generates the single particle probability distribution function.

In order to understand the mapping between a microscopic and a mesoscopic representa-
tion, we look at how the two are related. Fig.(4.2) shows the conversion between a particle and
the single particle distribution function representations. At every point x0 in space and at time
t0, we can get the single particle distribution f(x = x0, c, t = t0) by ensemble averaging the
probability of finding particles with different velocities c. One can now relate the macroscopic
properties to the micro and mesoscopic description as shown in Table 4.1.
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Macroscopic Mesoscopic Microscopic

ρ
∫
f(x, c, t)dc mN/V

jα = ρuα
∫
f(x, c, t)cαdc m

∑N
i=1 ciα/V

Pαβ
∫
f(x, c, t)cαcβdc m

∑N
i=1 ciαciβ/V

Table 4.1: Representation of macroscopic quantities (density (ρ), momentum density (jα) and
pressure tensor (Pαβ)) in terms of the single particle distribution function f(x, c, t) and the
particle velocities ci. Here m is the mass of every particle (taken to be unity) and V is the
volume of a small positional space volume.

We can see that one can use the macroscopic variables as the basis for conversion be-
tween the microscopic and mesoscopic representations of the fluid. For such a task, it would be
convenient to have a representation of the single particle distribution function in terms of the
macroscopic moments it represents. Harold Grad (Grad, 1949) showed that using a combina-
tion of Hermite polynomials as orthonormal basis functions that span the space of the single
particle distribution function, one obtains these macroscopic moments in the coefficients of this
expansion.

4.2.1 Grad Hermite Expansion

The Hermite orthonormal polynomial expansion of the single particle distribution function
f(x, ξ, t) is as shown below,

f(x, ξ, t) = w(ξ)
N∑
n=0

a(n)(x, t)H(n)(ξ), (4.1)

where ξ = c − u is the peculiar velocity, H(n)(ξ) are the hermite polynomials at nth order,
a(n)(x, t) are their corresponding coefficients and w(ξ) is the weight/generating function for the
various hermite polynomials (Grad, 1949). At various orders, the hermite polynomials obtained
through Gram-Schmidt orthonormalization are as follows,

H(0)(ξ) = 1,

H(1)
α (ξ) =

ξα√
θ0
,

H(2)
αβ(ξ) =

(ξαξβ − θ0δαβ)√
2θ2

0

,

H(3)
κ (ξ) =

(ξ2ξκ − 5θ0ξκ)√
10θ3

0

.

(4.2)

The coefficients corresponding to these are determined using the property of orthonormal-
ity of these hermite polynomials.

a(n)(x, t) =

∫
f(x, ξ, t)H(n)(ξ). (4.3)

Therefore, one obtains the following coefficients following Equation 4.3.
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a(0) = ρ,

a(1)
α = 0,

a
(2)
αβ =

σαβ√
2θ2

0

,

a(3)
κ = 2

qκ√
10θ3

0

,

(4.4)

where σαβ and qκ are the stress and heat flux tensors respectively. Substituting the hermite
polynomials and their coeffcients into Equation 4.1, we obtain the representation of the single
particle distribution function as a truncated series in terms of the macroscopic moments.

f(x, ξ, t) = F grad(x, ξ, t) = w(ξ)

[
ρ+

σβγ
2θ2

0

(ξβξγ − θ0δβγ) +
qκ
5θ3

0

(ξ2ξκ − 5θ0ξκ)

]
. (4.5)

Equation 4.5 represents the single particle distribution function as a combination of its
macroscopic moments. Here, we have used F grad(x, ξ, t) to distinguish the continuous from the
discrete grad function introduced in the next subsection.

4.2.2 Discrete Grad Expansion

In the LBM framework, one is interested in the discrete form of the hermite expansion (Shan
& He, 1998). The weight for generating the polynomials is the discrete version of the Maxwell-
Boltzmann distribution in the fixed reference frame, i.e., u = 0. This would make this discrete
representation suitable for low Mach number flows. The weights (wi) corresponding to the
discrete velocity set is therefore the discrete equilibrium function. Through a similar process of
Gram-Schmidt orthonormalization, we obtain the discrete hermite polynomials as shown below,

Ĥ(0) = 1,

Ĥ(1)
α =

ciα√
θ0
,

Ĥ(2)
αβ =

(ciαciβ − θ0δαβ)√
2θ2

0

,

Ĥ(3)
κ =

(c2
i ciκ − 5θ0ciκ)√

10θ3
0

,

(4.6)

where Ĥ denotes the discrete hermite polynomial. The inner product of two discrete hermite
polynomials φ(ci) and ψ(ci) is of the form,

〈φ(ci), ψ(ci)〉 =
n∑
i=1

wiφ(ci)ψ(ci), (4.7)

where n stands for the number of discrete velocities. The coefficients of the discrete expansion
are again determined through the property of orthogonality of the polynomials defined as,

â(n)(x, t) =
∑
i

fiĤ(n)(ci). (4.8)

Using Equations 4.7 and 4.8, the coefficients obtained are as follows,
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â(0) = ρ,

â(1)
α =

jα
θ0
,

â
(2)
αβ =

(Pαβ − ρθ0δαβ)√
2θ2

0

,

â(3)
κ =

(Qκ − 5θ0jκ)√
10θ3

0

.

(4.9)

Higher order polynomials are functions of the discrete velocity model used (Chikatamarla
et al., 2006). Using these coefficients to write the discrete grad distribution function as a weighted
combination of the discrete hermite polynomials, the expansion looks as follows,

fi = wi

[
ρ+

jαciα
θ0

+
(Pβγ − ρθ0δβγ)

2θ2
0

(ciβciγ − θ0δβγ) +
(Qκ − 5jκθ0)

10θ3
0

(c2
i ciκ − 5θ0ciκ)

]
, (4.10)

where fi and wi are the discrete distibution function and the weights associated with them
corresponding to our RD3Q41 lattice (Kolluru et al., 2020). We have expressed our distribution
function as a projection of its macroscopic moments. This hermite polynomial expansion would
serve as the basis of communication for our coupled solver.

4.2.3 DSMC to LB exchange

Here we describe the procedure followed in communicating from the DSMC solver to the LB
solver in the bulk. As discussed in the previous subsection, we have devised a mechanism
through the discrete Hermite polynomial expansion for communicating between the two solvers.
Fig.(4.3) shows a schematic of this communication process between the two descriptions.

(x,t)

{ ρ , jα, Pβγ, qκ}
DSMC Moments via fgrad

Equation 4.10

f1f2f3

fN

Figure 4.3: A schematic of the DSMC to LB exchange procedure. Particle velocities and their
moments are averaged to obtain macroscopic quantities (as shown in column 3 of Table 4.1).
These are then used to obtain the discrete grad distribution function (Equation 4.10) passed
over to the LB node at the same (x, t) in the buffer layer.

Macroscopic quantities such as the density, momentum density, Pressure tensor, etc. are
obtained through averaging the particle velocities and their moments as described in Table 4.1.
These give a spatial data of the macroscopic moments from the DSMC region in the buffer layer.
When these are plugged into the discrete version of the grad distribution function (Equation
4.10) we obtain the discrete populations of our 41-velocity model. We perform this procedure
over a spatial region as shown in Fig.(4.8). This helps in adequate averaging of the moments
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and improves the stability of the method by reducing the fluctuations in the moments obtained
from the DSMC region in the buffer layer.

O(λ)

O(kλ)

LB Node

DSMC Cell

Figure 4.4: A schematic of the spatial averaging of the DSMC moments corresponding to every
LB node in the domain. The blue dashed lines demarcate the boundaries of the LB nodes.
The black dotted lines represent the DSMC cell boundaries. Here k represents the ratio of the
number of DSMC cells corresponding to every LB node

k =
∆xDSMC

∆xLB
< 1. (4.11)

The ratio of the number of DSMC cells to LB nodes in our domain is maintained to be
larger than 1 (Equation 4.11). Therefore multiple DSMC cells correspond to a single LB node
along all directions. The moments from these cells are then averaged over a region corresponding
to the spatial extent of the node. Fig.(4.8) shows a schematic of this structure. All DSMC cells
within the boundaries of the LB node (blue dashed lines) are averaged and are passed over to the
corresponding node. This also ensures that the moments are sufficiently averaged to ensure the
positivity of the equilibrium distribution in the LB domain. Once averaged these moments are
projected onto the distribution function through Equation 4.10. The stochastic noise inherent
to particle-based methods would make the coupling numerically unstable if communication is
done without adequate averaging. We also temporally average over n steps (corresponding tot
a physical time of around 100τ) before passing over to the LB nodes in the buffer layer. This
ensures the smoothness of the moments and prevents any large gradients in the moments received
by LB. This is physically justified because the timescales of the DSMC simulation are typically
smaller than that of the mesoscopic solver.

4.2.4 LB to DSMC exchange

The domain separation into spatial cells as shown in Fig.(4.8) is used also for the reverse coupling.
Similar to the DSMC to LB moment exchange procedure, we obtain moments from the LB
nodes and are then used to generate particles within the spatial cells using a particle generation
algorithm similar to the production of the Chapman-Enskog distribution (Garcia & Alder, 1998).
The idea behind this particle generation being to sample particles randomly from a uniform
distribution and filtering particles on the basis of an acceptance-rejection criteria. This criteria
represents the distribution function obtained via the projection of the macroscopic moments
obtained from the LB nodes as in Equation 4.5. Fig.(4.5) shows a schematic of the LB to
DSMC exchange procedure. Algorithm 2 illustrates this particle generation procedure.



44 Chapter 4. DSMC - Lattice Boltzmann Coupling

f1f2f3

fN

{ ρ , jα, Pβγ, qκ}

LBM Moments

via F
grad

Equation 4.5

F
grad(x,ξ,t)

ξ

via Monte Carlo sampling

(x,t)

Figure 4.5: LB to DSMC moment exchange procedure showing the conversion of the discrete
populations to the corresponding macroscopic moments. These moments are then used to obtain
the continuous grad distribution function (Equation 4.5) which is subjected to a Monte Carlo
sampling process to obtain the individual particle velocities that represent this set of macroscopic
moments.

Algorithm 2 Particle Regeneration

1: while Ni ≤ NbufferCells do
2: npoisson = poissonDist(ρLBVc)
3: while n0 ≤ npoisson do
4: Compute maxima of the coefficients of the Hermite polynomials

C = max(|a(0)
LB|, |a

(1)
LB,α|, |a

(2)
LB,βγ |, |a

(3)
LB,κ|)

5: Generate random particle velocities ξ from the Maxwell-Boltzmann distribution with
temperature θLB

6: Select ξ if CR ≤ F grad(x, ξ, t), where R ε (0,1); else goto step 5
7: Compute particle velocity using cα = ξα + uLB,α

8: end while
9: end while

10: rescale all cα within cell to match uLB,α and θLB

The use of spatial cells for particle regeneration is advantageous as the number of parti-
cles for generation are increased, in turn increasing the accuracy of the resulting distribution
represented by them.

4.2.5 Coupling Algorithm

In this subsection, we combine both the exchange procedures necessary for coupling. As men-
tioned earlier, we restrict our DSMC solver only near the walls. For this purpose, we use upto
4 DSMC cells from either walls, representing a distance of O(4λ) from the wall. The first LB
node therefore starts after the first two DSMC cells. The steps followed for a single iteration of
the coupling algorithm is as follows,

1. DSMC advection and collision for n = ∆tLB/∆tDSMC steps.

2. DSMC to LB moment exchange in the buffer layer through the Grad distribution function
(Equation 4.10) followed by LB streaming and collision.

3. LB to DSMC moment exchange in the buffer layer with particle velocity regeneration using
a Monte-Carlo sampling procedure of the generated Grad distribution function (Equation
4.5).
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Algorithm 3 provides a pseudo code for clarity purpose.

Algorithm 3 Coupling methodology

1: for i,j ε DSMC region do
2: while steps <n do
3: Particle Advection
4: Particle Collisions
5: Calculate Moments in Buffer layer
6: end while
7: end for
8: Calculate LB populations through Equation (4.10) in the buffer layer
9: for i,j ε LB region do

10: Advect
11: Collide
12: Calculate Moments in Buffer layer
13: end for
14: Interpolate LB moments and regenerate particles using Algorithm 2
15: goto top

4.3 Code Performance

In this section we demonstrate the performance of our solver for parallel processing. In Fig.(4.6)
the strong scaling behavior of the solver is illustrated at Re ≈ 65 and Ma = 0.1. The time taken
to perform a single coupling step, which includes n DSMC and m LB steps is plotted against
the number of processors. The solver has shown excellent scaling behavior upto 400 processors.
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Figure 4.6: Strong scaling of our in-house coupled solver. The time taken for a single coupling
step (encompassing multiple DSMC and LB substeps within) plotted against the number of
processors

Similarly, we compare the time taken by our in-house DSMC solver and the coupled
DSMC-LB solver at two different Reynolds numbers. Fig.(4.7) shows this comparison in log
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scale. One can see that there is a significant saving in using a coupled solver against a full-
domain DSMC, yet still being able to reproduce correct hydrodynamics. As mentioned earlier,
this drastic reduction is a result of the rate-determining steps governed by the DSMC region in
the coupled solver scaling as O(Kn−2) (due to the fixed number of cells along the DSMC wall
layer irrespective of the Knudsen number) against O(Kn−3) for a pure DSMC solver.
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Figure 4.7: A log scale plot of the time taken by our pure DSMC and the coupled DSMC-LB
solver to simulate flows at different Re. Simulations performed using 400 processors

4.4 Results

In this section, we present the results obtained from our coupled solver in the continuum,
transitional and turbulent regimes. We have chosen the flow between two parallel plates as our
simulation setup.

As mentioned earlier, we have restricted our DSMC layer to a distance of ≈ 4λ from either
walls, beyond which our LB solver covers the rest of the domain. As a consequence of this,
the LB nodes closest to the walls receive no information directly from the wall and rely on the
information passed on from the DSMC cells farthest from the wall.

With the use of a thermal equilibrium LB model, our temperature is allowed to fluctuate
about θ0 = 0.294896, the lattice temperature obtained from the RD3Q41 lattice model (Kolluru
et al., 2020). And our DSMC region is therefore initialized with this temperature. Fluctuations
arising from the DSMC region are smoothened out using spatial averaging over a region of 5λ×5λ
in the streamwise and spanwise directions and are also temporally averaged over a timescale,
tavg ≈ 100τ .

All simulations were performed in the incompressible regime with a maximum Mach num-
ber of 0.2. The Reynolds number in all cases shown being defined as Re = UcL/ν, where Uc, L
and ν are the centerline velocity, full channel height and the kinematic viscosity respectively.

4.4.1 Continuum regime

Here, we discuss our numerical results for the canonical poiseuille (see Fig.(3.16)) and couette
(see Fig.(3.19)) flow cases with moderate Reynolds numbers of Re ≈ 100. The Knudsen number
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corresponding to this limit being Kn ≈ 10−3 for a Mach number of 0.2.

LB to DSMC exchange

DSMC to LB exchange

DSMC Wall Layer

LB Bulk Region

Figure 4.8: A schematic showing the layout of the LB nodes (shown as cross marks) and the
DSMC region (particles shown as red dots). Two separate regions for LB to DSMC and DSMC
to LB exchange are shown. The LB region does not directly receive any information from the
wall. A DSMC layer a few mean free path away from the wall communicates information to the
LB nodes.

The simulation was performed using 400×8×40 (Streamwise ×Wall-normal × Spanwise)
cells in the top and bottom DSMC regions combined, with n0 = 100 particles in each cell. The
LB region consisted of 40× 40× 4 points in the bulk. With ∆yLB/∆yDSMC = 2, we interpolate
the moments from the first two LB nodes along this direction and use it for particle generation in
the LB to DSMC exchange step. Moments are also averaged over 100 DSMC cells before being
passed on to the corresponding LB node in the buffer layer. Similarly, the moments received
from LB are regenerated in a region consisting of 100 DSMC cells using Algorithm 2. With
DSMC being the rate determining process with 128 Million particles in the wall layer, each
simulation took approximately 800 CPU hours on an Intel XEON 8268 (PARAM Yukti cluster
at JNCASR) to reach a steady state.

The transient analytical (Papanastasiou et al., 2021) velocity profile for an acceleration
driven plane channel flow in the continuum regime at any arbitrary time t is,

ux(y, t) = −gxL
2

8ν

[
1−

(
2y

L

)2

− 32

π3

∞∑
k=1

(−1)k+1

(2k − 1)3
cos(

(2k − 1)πy

L
) exp{−(2k − 1)2π2νt

L2
}
]
,

(4.12)
where gx is the streamwise component of the acceleration.

Figure 4.9 shows the developing velocity profile from our numerical simulation for Re ≈
132, Ma = 0.2 and compares with the analytical profile from Equation (4.12). Here t = tν/L2

represents the nondimensional time. The steady state velocity profile also shows an excellent
agreement with ref. (Yudistiawan et al., 2010).
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Figure 4.9: Developing Re ≈ 132, Ma = 0.2 result compared with Equation (4.12) and Steady
state profile against (Yudistiawan et al., 2010)

Similarly, Figure 4.10 compares the transient shear stress against the analytical derived
from Equation (4.12). The numerical value of the wall shear stress, σ0

xy is of O(10−6). This has
made the fluctuations in the higher order moments near the wall to be significant. This is the
result of the Mach number near the wall being low due to the small magnitude of the velocity
near the wall. Therefore, to achieve a higher level of accuracy in the shear stress profile, one
needs to use more particles in the near wall region.
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Figure 4.10: Nondimensionalized transient Shear stress profile obtained from the coupled
solver at various diffusion times compared against the analytical

We now benchmark the coupled solver on the plane Couette flow geometry in the laminar
regime for the same set of nondimensional and geometrical parameters as used in the plane
Poiseuille flow setup. A sketch of the geometry is shown in Fig.(3.19).

The analytical (Leal, 2007) velocity profile for plane Couette flow in the laminar no-slip
regime at any arbitrary time t is as follows,
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ux(y, t) =
(

1− y

L

)
−
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k=1

2

kπ
exp

(−k2π2tν

L2

)
sin

(
kπy

L

)
. (4.13)

In Figure 4.11, we see that the transient velocity profiles in a Couette flow are in very good
agreement to the analytical solution from Equation (4.13).
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Figure 4.11: Transient velocity profile at various diffusion times compared against
analytical(Equation (4.13)) for a planar Couette flow at Re ≈ 132, Ma = 0.2

4.4.2 Transitional flow regime

Finite Knudsen number flow dynamics display a dependence on higher order moments and any
LB scheme would require a high symmetry of the lattice to satisfy the isotropy conditions. With
the increase in the number of discrete velocities, one needs to ensure that the dynamics of the
higher order moments is correct at least at the leading order, with the most critical higher
order moments bring the stress (σαβ), the heat flux (qα) and the flux of heat flux (Rαβ). The
dynamics of these moments lead to prnounced effects in the Knudsen boundary layer. Therefore,
one would hope that with a DSMC layer characterizing the boundary layer, the dynamics of
these moments will be captured accurately. As a consequence, particle methods are still the
preferred choice in the rarefied regime.

As methods like DSMC and MD do not suffer from this lack of isotropy, wall effects can be
efficiently transported in such schemes. Hence, having a wall layer DSMC in our solver accounts
for efficient thermalization with the wall, while also transporting these effects into the bulk via a
moment exchange mechanism. A coupled solver could therefore be used in tandem with lattice
models with lower-order isotropy while also avoiding the need to use different boundary schemes
for flows in the slip regime.

Limitations arising at such regimes in the Lattice Boltzmann method can be seen in
Figure 4.12, wherein at progressively higher Mach and Knudsen numbers, the deviations from
the approximate solution (Yudistiawan et al., 2010) increases.
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Figure 4.12: Steady state velocity (ux) profiles for a poiseuille flow at various Knudsen and
Mach numbers using an LBM RD3Q41 model (Kolluru et al., 2020)

Although, the computational cost associated with the coupled solver is higher, our simu-
lations at Kn = 0.1 for plane Poiseuille and Couette flows took approximately 200 CPU hours
with the same grid size as used for the cases in the continuum regime.

Plane Couette flow simulation at Kn = 0.1 was performed and the steady state velocity
profile is in good agreement with (Yudistiawan et al., 2010). Figure 4.13 illustrates the same.
The red and blue indicators mark the DSMC and LB regions of the domain respectively. One
can observe that the overlap regions between them connects seamlessly.
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Figure 4.13: Steady state velocity (ux) profile for a couette flow at Kn = 0.1

Figure 4.14 compares the steady state velocity and shear stress profiles against their analyti-
cal solutions for an acceleration driven channel flow at Kn = 0.1 and Ma = 0.2. Here the higher
order moment, σxy shows a good match with the theoretical value.
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Figure 4.14: Steady state velocity (ux) and Shear stress (σxy) profiles for a poiseuille flow at
Kn = 0.1

Higher order moments (σxx, σyy, σzz) as shown in Figure 4.15 show a smooth transition in
the coupling region, with deviations in the DSMC region against the bulk arising at O(10−6).
Meanwhile the temperature profile shows the continuous profile of the coupling and the relative
cooling of the bulk as compared to the walls.
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Figure 4.15: Steady state Stress Tensor components (σxx, σyy, σzz) and temperature (θ)
profiles for a poiseuille flow at Kn = 0.1

4.4.3 Turbulent plane Couette flow

At the fully developed state, the velocity profile in plane Couette flow is monotonic in the Lam-
inar and Turbulent regimes. Linear Stability theory predicts that two-dimensional disturbances
are damped for plane couette and pipe flows (Wasow, 1953; Gallagher & Mercer, 1962). Conse-
quently their critical* Reynolds number is ∞. Although experiments have shown that for large
enough initial disturbances, the flow transitions to turbulence subcritically (Davies & White,
1928; Kao & Park, 1970; Patel & Head, 1969).

The first known experiments on this setup were conducted by Reichardt(Reichardt, 1956).
His further investigations (Reichardt, 1959) on turbulent plane Couette flow demonstrated the
charateristic S-shape of the mean velocity profile. He also tried to determine the transition
Reynolds number and arrived at Re = 750 (based on half the channel height and the average
relative velocity of the walls). Later experiments and simulations have tried to obtain this
threshold and the transitional Reynolds number was established to be around 360.

*The critical Reynolds number is defined to be the threshold beyond which infinitesimal perturbations to the
flow grow exponentially, whereas the transition Reynolds number is the lowest Re for which transition is observed
when a strong enough disturbance is applied
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Experimental (Tillmark & Alfredsson, 1992) and numerical (Lundbladh & Johansson,
1991) studies performed to determine the transitional Re have shown excellent agreement, with
the former predicting at 360±10, while the latter at 375. Both studies have shown the transfor-
mation of an initial elliptical turbulent spot into a circular form. Also, the experimental studies
have observed the turbulent state to be spatially intermittent, atleast for such low Reynolds
numbers. Based on these, one can say that plane Couette flow transitions at Re ≈ 375 when
the initial flow field is disturbed using a finite-amplitude perturbation.

Orszag & Kells (Orszag & Kells, 1978) performed simulations to determine the nature of
two and three-dimensional finite amplitude disturbances that lead to transition at subcritical
reynolds numbers in plane Poiseuille and Couette flows. They found that three-dimensional
disturbances with an amplitude 5-10% of the mean velocity drives transition at reynolds numbers
of 1000 in plane Couette flow. They also reported that two-dimensional perturbations do not
seem strong even at Reynolds numbers an order of magnitude larger.

Figure 4.16: Perturbation lifetime as a function of Re and Amplitude (Schmiegel & Eckhardt,
1997)

Further investigations into the perturbation amplitude required for subcritical transition
in plane Couette flow have shown that the distribution of the time taken for an initial amplitude
to decay in the Amplitude vs Re plane has a fractal structure (Schmiegel & Eckhardt, 1997)
(Fig.(4.16)). They shows that the lifetime of an initial perturbation in the Re vs Amplitude plane
does not have a functional dependence. They have also shown that successive magnifications of
the Re and Amplitude intervals (keeping either one constant) shows a self-similar distribution
of lifetimes (Fig.(4.17)). This shows the sensitive dependence on the initial disturbance that can
cause transition in such flows.
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Figure 4.17: Successive magnification of the Re and Amplitude axis against the lifetime of
disturbances (Schmiegel & Eckhardt, 1997). The sensitive dependence on the Amplitude and
Reynolds number is exemplified here.

Over 5000 experimental and 2000 numerical studies performed on a pipe flow has shown
that the turbulent state in such linearly stable shear flows belongs to a transient turbulent chaotic
saddle (Hof et al., 2006). The implication of this being that rather than a critical Re beyond
which turbulence is believed to sustain indefinitely, there exists a time scale τ(Re) defining the
lifetime of a turbulent state. This was also what was pointed by (Schmiegel & Eckhardt, 1997)
for plane Couette flows.

Based on these observations for turbulent plane Couette flows, a few questions still need
answers. The influence of the wall micro-roughness on the transition process is still unclear.
Using a coupled solver with the DSMC layer providing a suitable and alternative boundary
condition to the micro-roughness of the wall, one can attempt to probe such a problem. Similarly,
the transition Reynolds number for highly compressible flows is something that can be looked
into. Our attempt at benchmarking a case of the turbulent Couette flow is an initial step in this
direction.

Lx = 1.75πh

Ly = 2h

Lz = 1.2πh

Figure 4.18: Minimal Couette flow geometry

We performed turbulent flow simulation of the minimal Couette flow setup (see Figure
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4.18) at a Reynolds number of Re ≈ 1318 (based on channel full-width) and Ma = 0.2. The
DSMC region consisted of 720× 8× 1200 cells with n0 = 200 particles per cell with a total of ≈
1.4 Billion particles in the top and bottom DSMC layers combined. The memory requirement
of the DSMC region is therefore ≈ 100 GB. The LB region consisted of 720× 200× 400 nodes
in the bulk. The solver took 120 hours using 2400 cores to reach 30 convection times (L/Uc).
Beyond which averaging was done over another 10 convection times. Similar simulations using
the coupled and a pure LB solver were performed, with the pure LB solver relaminarizing after
a few convection times. The coupled solver in this case helps is capturing the slow regeneration
cycles in turbulent MCF.

The domain was initially disturbed using a finite-amplitude perturbation generated using
a curl-based Perlin noise (Bridson et al., 2007). Perlin noise (Perlin, 1985) is a method for
procedural noise generation that calculates the required noise which takes the gradient of a
scalar/vector field as input.
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Figure 4.19: Turbulent steady state velocity profile from the coupled compared against the
numerical profile from (Komminaho et al., 1996) and experimental profile from (Aydin &
Leutheusser, 1979)

Figure 4.19 compares the mean velocity obtained after spatial averaging along the span-wise
and stream-wise directions as well as time averaged over 10 convection times. The numerical
profile from (Komminaho et al., 1996) have performed an averaging over 620 convection times.
As there is constant decay and regeneration in the near wall region in turbulent Couette flow,
an averaging over a timescale larger than the regeneration time scale would be required. We
still observe a good agreement in the mean streamwise velocity profile between the DSMC-LB
coupled solver and the profiles from (Komminaho et al., 1996) and (Aydin & Leutheusser, 1979)
near the channel mid-plane. The deviations near the wall result due to the noise from the DSMC
solver in the region. We performed similar simulations using n0 = 30 to 100 and observed the
averaged velocity profile to deviate further as we lower the number of particles per cell.
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Figure 4.20: Streamwise velocity (ux) field for a DSMC-LB coupled Minimal Turbulent
Couette flow (taken after 20 convection times) compared against an LB simulation with the

same parameters

Figure 4.20 presents a visualization of the streamwise velocity (ux) field taken after 20
convection times and compared against a corresponding LB simulation at the same parameters.
One can see the presence of coherent structures in both simulations. The LB velocity profile is
much smoother as compared to its DSMC-LB counterpart and has resulted in the LB simulation
to relaminarize after ∼ 50 convection times. For linearly stable flows, finite lifetimes have been
observed in similar studies on pipe flows (Hof et al., 2006). A further perturbation to the
relaminarized state leads to the cycles of regeneration and decay. As the DSMC layer injects
thermal noise into the bulk LB, such a relaminarization could take longer to achieve.

Figure 4.21: Cycle of Regeneration and decay of coherent structures in Minimal Couette flow
at the channel mid-plane. Snapshots taken at 14, 20, 22 and 25 convection times respectively

Figure 4.21 shows the streamwise velocity profiles at the channel mid-plane taken at various
convection times. We see long coherent structures that undergo cycles of regeneration and decay
indicating the sustenance of turbulence using the coupled solver. As observed in similar studies
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(Gallis et al., 2018), we observe two vortices which occupy half the spanwise width with anti-
parallel orientation along the streamwise direction. Where ref. (Gallis et al., 2018) performed
full-domain DSMC simulations using almost 600 Million CPU hours, our coupled solver has
achieved a similar feat, yet on a smaller scale, using 300000 CPU hours. Although Pure LB
simulations take much lower time, to study the effect of sustained turbulence, relaminarization
in LB simulations are a hurdle. One needs to provide frequent disturbances to the LB simulation
for sustaining turbulence. In such aspects, one can look to a coupled DSMC-LB solver to study
the effects of turbulence in linearly stable shear flows, while also providing accuracy on par with
fully microscopic simulations (Gallis et al., 2018).

4.5 Outlook

In this chapter, we have shown how one could couple particle and mesoscopic solvers. We have
demonstrated how the grad hermite expansion is used as a projection scheme in communicating
between the two solvers and how the spatial and temporal averaging is used to reduce ther-
mal noise from DSMC. The coupled solver was tested in various hydrodynamic regimes. The
efficiency of the solver in the moderate Knudsen number regime against standard LBM solvers
was shown. In a first of its kind, turbulent flow simulations were performed using a micro-meso
solver using extremely low computational resources. Therefore, the coupled solver could serve as
an alternative to conventional solvers that require a faithful reproduction of the kinetic equation
through its particle wall layer.



Chapter 5

Summary and Conclusions

A hybrid DSMC - Lattice Boltzmann model was developed as an alternative to conventional
Navier-Stokes solvers such as Finite volume, etc. and other mesoscopic solvers based on the
discretized Boltzmann equation. Due to the large computational expense of particle simulations
for fluid flows (with the cost scaling as Kn−3), a full representation of the physical domain
using such solvers is infeasible with modest computing resources. Similarly, mesoscopic solvers
such as Lattice Boltzmann (LBM) known for their parallel efficiency and for their accurate
representation of flows in the low to moderate Knudsen number regime are a preferred choice
for such flows. Standard LBM models with their restricted velocity sets fail to provide a faithful
representation of hydrodynamics in the rarefied regime. Meanwhile, particle methods due to
their high order of isotropy provide a good description of rarefied flows. In this sense, one can
therefore look to couple the two methods to mask the shortcomings of either methods while also
to be able to use the positives to our advantage.

Our coupled DSMC - LBM solver uses a wall layer DSMC region extendable to accomodate
the growing Knudsen layer for flows in the rarefied regime. This hybrid scheme utilizes the ability
of the particle nature near the wall to accurately capture non-equilibrium effects near the wall
while also retaining the parallel efficiency of the LBM solver occupying the bulk of the fluid
domain. We have shown the communication routine between the two solvers which is based on
the projection of the the macroscopic field variables into a Grad hermite polynomial expansion.
The hybrid solver was then benchmarked on canonical plane Poiseuille and Couette flows in the
continuum, rarefied and in the turbulent flow regimes. The solver has also demonstrated good
scaling behavior and the computational gain in using a full-domain DSMC was drastic against
using the coupled scheme.

In the future, we would like to probe the influence of the wall layer on the transition process
for small disturbances. This would address the effect of wall micro-roughness on the transition
of plane Channel flows. One can then determine the transition Reynolds number in such flows
from a kinetic description. Similarly in the rarefied regime, the effect of a growing Knudsen
layer can be probed through the use of a coupled solver. Weak compressibility effects, both in
the laminar and turbulent regimes can be addressed with the presence of a DSMC layer. The
Mach number dependence on the transitional Reynolds number could be characterized through
such simulations.

57





References

Adhikari, R., Stratford, K., Cates, M. & Wagner, A. 2005 Fluctuating lattice boltz-

mann. EPL (Europhysics Letters) 71 (3), 473.

Agrawal, S., Bhattacharya, S. & Ansumali, S. 2018 Molecular dice: Random number
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