Dissecting the molecular genetic basis of juvenile myoclonic epilepsy

A thesis submitted for the degree of

Doctor of Philosophy

By

Pooja Barak

Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research (A Deemed University) Bengaluru 560 064, India

August 2021

Dedicated to

patients and their families

Declaration

I hereby declare that this thesis, entitled "*Dissecting the molecular genetic basis of juvenile myoclonic epilepsy*", is an authentic record of research work carried out by me under the guidance of Prof. Anuranjan Anand in the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India and that this work has not been submitted elsewhere for the award of any other degree.

In keeping the norm of reporting scientific observations, due acknowledgements have been made wherever the work described here has been based on the findings of other investigators. Any omission, which might have occurred by oversight or misjudgment, is regretted.

Ebarek

Pooja Barak Place: Bengaluru Date: August 23, 2021

Certificate

This is to certify that the work described in this thesis "*Dissecting the molecular genetic basis of juvenile myoclonic epilepsy*" is the result of the investigations carried out by Ms. Pooja Barak in the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, under my guidance. The results presented in this thesis have not previously formed the basis for the award of any other diploma, degree or fellowship.

Amijon

Anuranjan Anand Place: Bengaluru Date: August 23, 2021

Acknowledgements

First and foremost, I take this opportunity to express my appreciation and gratitude towards my advisor Professor Anuranjan Anand for his invaluable guidance, continuous support, and patience during the journey of my Ph.D. I would like to thank him for always encouraging me and helping me mature as a researcher.

I would like to thank the faculty members of MBGU, Prof. M.R.S. Rao, Prof. Namita Surolia, Prof. Hemalatha Balaram, Prof. Maneesha Inamdar, Prof. Tapas Kumar Kundu, Prof. Ranga Uday Kumar, Prof. Kaustav Sanyal, Prof. Ravi Manjithaya, Dr. Kushagra Bansal, Prof. James Chelliah, Prof. Sheeba Vasu and Dr. G. R. Ramesh for their course work during my master's training and their comments and suggestions throughout the course of my PhD.

I thank our clinical collaborators, Dr. KS Mani, Dr. P Satishchandra, Dr. Sanjib Sinha, Dr. S K Shankar, Dr. K Radhakrishnan, Dr. G Kuruttukulam, Dr. Girish Gadre and Dr. Dilip KS, for their contribution towards this study.

I wish to thank all the former and present members of the human molecular genetics' lab, Dr. Manpreet Kaur, Dr. Praveen Raju, Dr. Nishtha Pandey, Dr. Kalpita Karan, Dr. Shalini Roychoudhuri, Dr. Rammurthi, Sourav, Shveta, Mariyam, Shrilaxmi, Sambhavi, Girija, Sukanya, Meenu, Varsha, Moumita, Angshumi, Yashwini, Nazia, Soumya, Jigyasa, Anjali and Chandrasekhara for making my stay in the lab pleasant and for helping troubleshoot the problems that I encountered in my work. I am indebted to Dr. Manpreet Kaur for not only guiding me during my MS but also for helping me all through my Ph.D. She was always there for me, whether it was a professional challenge or a personal crunch.

A special thank goes to all the summer trainees, Bindu, Sukanya, Natasha, Vaibhavi, Akshitha, Nivetha and Lakshmi, who I had an opportunity to train. All of them contributed to my work. This experience taught me a lot about mentoring and beyond.

My stay at JNCASR became very comforting because of the presence of these special people in my life, Anubha, Mariyam, Kirthana, Sutanuka, Shrilaxmi and Sambhavi. Standing by my side through thick and thin, helped me stay positive and remain focused throughout my journey.

I acknowledge the support of Anitha and Greeshma from the sequencing facility; Suma ma'am, Sunil, Prajwal and Keerthana from the confocal facility; Ramya, Nandini, Vidhya and Raju from the MBGU office.

I would also like to thank other key personnel of JNCASR who helped me all along some or the other way, Jaychandra Sir, Joydeep Sir, Dr. Princy, Dr. Panneer, Prof. Subi George, Prof. Sheeba Vasu, Prof. Tapas Maji, Prof. Ranjani Viswanatha, Prof. Jayanta Haldar, Dr. Kavitha and staff at administration office, academic office, computer lab, animal house, library, dhanvantari, hostel office, mess/dining facility, chandraya canteen, housekeeping & gardening team and security office.

Above all, I would like to thank my family. Words cannot express how grateful I am to my parents, my husband Pratik, my siblings Neeraj and Priya, my parentsin-law and brother-in-law, Pratyush for all the love and support that they have always provided me.

Table of Contents	
Declaration	ii
Certificate	iii
Acknowledgments	iv
Abbreviations	х
Chapter 1: Introduction	
1.1 Epilepsy	1
1.2 Epilepsy classification	2
1.3 Genetic Generalized Epilepsies (GGE)	3
1.4 Juvenile myoclonic epilepsy (JME)	4
1.4.1 Epidemiolog	5
1.4.2 Clinical feature	5
1.4.3 JME genetics	6
1.5 Molecular genetics	9
1.5.1 Linkage studies and mutational analysis of candidate	
genes	9
1.5.2 Association studies	10
1.5.3 Massive parallel sequencing-based consortium studies	14
1.5.4 Copy number variations (CNV)	17
1.6 Modelling Epilepsy	20
1.7 iPSC as a model system for studying epilepsy	22
1.8 Objectives of my work	24
Chapter 2: Identification and characterization of CDC20B, a	
potential JME gene	
Summary	25
2.1 Materials and methods	26
2.1.1 Family ascertainment	26
2.1.2 Genotyping and linkage analysis	27
2.1.3 Whole-exome sequencing (WES)	29
2.1.3.1 Library preparation and sequencing	29
2.1.3.2 Sequence data quality check (QC), processing and	
alignment	30
2.1.4 Whole-genome sequencing (WGS)	30
2.1.4.1 Library preparation and sequencing	30
2.1.4.2 Sequence data quality check (QC), processing and	
alignment	32
2.1.4.3 Variant calling, annotation and filtering	32
2.1.5 Sanger-based sequence validation of WGS rare variants	33
2.1.0 Polymerase chain reaction (PCR)	33
2.1.7 Sanger-Dased sequencing	34
2.1.0 Milligene assay	35
2.1.9 Lucherase assay	30 27
2.1.10 CDC20B mutation analysis	31

2.1.11 Bioinformatics analysis	37
2.1.12 Plasmids and antibodies	38
2.1.13 Cell culture and transfection	39
2.1.14 RNA isolation	39
2.1.15 cDNA synthesis	40
2.1.16 Western analysis	40
2.1.17 Immunocytochemistry	41
2.1.18 Immuno-pulldown assay	41
2.1.19 In-utero electroporation	42
2.1.20 Cryosectioning	42
2.1.21 Immunohistochemistry	43
2.2 Results	43
2.2.1 Linkage analysis	43
2.2.2 Whole-exome sequencing	44
2.2.3 Whole-genome sequencing	46
2.2.4 Rare variant analysis and prioritization	47
2.2.5 Minigene splicing assay to analyse the intronic variant	50
2.2.5 Luciferase assay to study the effect of the 3'UTR variants	
on miRNA regulation	51
2.2.6 Identification of CDC20B rare and conserved missense	
variant	52
2.2.7 <i>CDC20B</i> rare variants among JME patients examined	54
2.2.8 <i>CDC20B</i> in Epi25	58
2.2.9 CDC20B brain expression	59
2.2.10 CDC20B cellular localization	61
2.2.11 CDC20B over-expression and cytokinesis defects	61
2.2.12 CDC20B- interacting partners	63
2.2.13 CDC20B in-utero electroporation in mouse embryo	67
2.3 Discussion	69

Chapter 3: Genome sequencing reveals a mutation in DES at the EJM9, 2q33-q36 locus

Summary	76
3.1 Materials and methods	77
3.1.1 Family ascertainment and linkage analysis	77
3.1.2 Whole-exome sequencing experiment	79
3.1.2.1 Library preparation	79
3.1.2.2 Sequence alignment, variant calling and annotation	80
3.1.3 Whole-genome sequencing (WGS)	80
3.1.3.1 Library preparation and sequencing	80
3.1.3.2 Sequence data quality check (QC), processing and alignment	82
3.1.3.3 Variant calling, annotation and filtering	82
3.1.4 Sanger-based sequence validation of WGS rare variants	83

3.1.5 DES mutation analysis	83
3.1.6 Bioinformatics analysis	84
3.1.7 Plasmids and antibodies	84
3.1.8 Cell culture and transfection	84
3.1.9 Minigene assay	85
3.1.10 RNA isolation	86
3.1.11 cDNA synthesis	87
3.1.12 Western analysis	87
3.1.13 Immunocytochemistry	88
3.2 Results	88
3.2.1 Whole exome sequencing	88
3.2.2 WES rare variant analysis and prioritization	90
3.2.3 Whole genome sequencing	90
3.2.4 WGS rare variant analysis and prioritization	91
3.2.5 Minigene splicing analysis of the intronic variant	94
3.2.6 Identification of DES rare and conserved missense variant	95
3.2.7 DES rare variants among JME patients examined	96
3.2.8 DES brain expression	98
3.2.9 DES over-expression and cellular localization	99
3.2.10 Desmin and vimentin co-localization analysis	100
3.3 Discussion	102

Chapter 4: Characterization of TMEM171, a novel JME gene identified at the EJM4, 5q12-q14 locus.

Summary	106
4.1 Materials and methods	107
4.1.1 Family ascertainment	107
4.1.2 Whole-genome sequencing (WGS)	108
4.1.2.1 Library preparation and sequencing	108
4.1.2.2 Sequence data quality check (QC), processing and alignment	109
4.1.2.3 Variant calling, annotation and filtering	110
4.1.3 Sanger-based sequence validation of the WGS rare variants	111
4.1.4 TMEM171 mutation analysis	111
4.1.5 Bioinformatics analysis	111
4.1.6 Plasmids and antibodies	111
4.1.7 Cell culture and transfection	112
4.1.8 Western analysis	112
4.1.9 Immunocytochemistry	113
4.1.10 Immuno-pulldown assay	113
4.2 Results	114
4.2.1 Whole genome sequencing	114
4.2.2 Rare variant analysis and prioritization	115
4.2.3 TMEM171 rare variants in JME patients	120

4.2.4 TMEM171 in Epi25	120
4.2.5 TMEM171 brain expression	124
4.2.6 TMEM171 cellular localization	125
4.2.7 TMEM171-interacting partners	126
4.2.8 Co-expression of TMEM171 wildtype and variant proteins with its interacting partners. SNAP25 and SNAPIN	129
4.3 Discussion	133
Conclusions	138
Appendix I	
A 2.1 Rare gene variants identified at the 5p15-q12 locus (GLH 35 family)	141
A 2.2 Primer pairs for the PCR and Sanger-based sequencing	
experiments	155
mutagenesis reactions (SDM)	157
A 2.4 <i>CDC20B</i> rare pathogenic variants identified in the Epi25 consortium study	160
A 2.5 CDC20B protein schematic with the position of the patient	160
A 2.6 CDC20B protein sequence (NCBI, FASTA format)	160 161
Appendix II	
A 3.1 Rare gene variants identified at the $2a33-a36$ locus	
(SCT135 family)	173
A 3.2 Primer pairs for the PCR- and Sanger-based sequencing	
experiments	187
A 2.3 Primer pairs used for cloning and site-directed	10/
A 3.4 DES protein sequence (NCBI, FASTA format)	194 194
Appendix III	
A 4.1 Rare gene variants identified at the 5q12-q14 locus (GLH-5	
family)	200

A 4.2 Primer pairs for the PCR and Sanger-based sequencing experiments	208
A 4.2 Drimon naine used for eleming and site directed	200
mutagenesis reactions (SDM)	209
A 4.4 <i>TMEM171</i> rare pathogenic variants identified in the Epi25	
consortium study	209
A 4.5 TMEM171 protein sequence (NCBI, FASTA format)	210

215

Abbreviations

°C	Degree Celsius
μg	Microgram
μl	Microliter
ABI	Applied Biosystems
ABS	Absence Seizures
bp	base pairs
BWA	Burrows-Wheeler Aligner
CADD	Combined Annotation Dependent Depletion
CBZ	carbamazepine
CDC20B	cell division cycle 20B
CEPH	Centre d'E´ tude du Polymorphisme Human
cm	centimeters
cM	Centimorgan
DAPI	4, 6-diamidino-2-phenylindole
dbSNP	Single Nucleotide Polymorphism database
DEPC	Diethyl pyrocarbonate
DES	Desmin
DNA	Deoxyribonucleic acid
dNTP	Doxynucleotide triphosphate
EDTA	Ethylenediaminetetraacetic acid
EEG	Electroencephalogram
EFHC1	EF hand domain (C-terminal)-containing 1
EJM	Epilepsy, Juvenile Myoclonic
EtBr	Ethidium bromide
EVS	Exome Variant Server
ExAC	Exome Aggregation Consortium
GABR1	Gamma-aminobutyric acid (GABA) A receptor, alpha-1
GABRD	Gamma-aminobutyric acid (GABA) A receptor, delta
GAIIx	illumina Genome Analyzer IIx platform
gnomAD	Genome Aggregation Database
GRch37	Genome Reference Consortium Human genome build 37
GTCS	Generalized Tonic-Clonic Seizures
HRP	Horseradish peroxidase
ILAE	International League Against Epilepsy
JME	Juvenile Myoclonic Epilepsy
kb	Kilobases
KC1	Potassium chloride

LOD	Logarithm of Odds
MAF	Minor Allele Frequency
Mb	Megabases
mg	Milligram
$MgCl_2$	Magnesium chloride
ml	Milliliter
mM	Millimolar
MS	Myoclonic Seizures
NaCl	Sodium chloride
NCBI	National Centre for Biotechnology Information
NEB	New England Biolabs
ng	Nanogram
NJ	New Jersey
OMIM	Online Mendelian Inheritance in Man
PB	phenobarbitone
PCR	Polymerase Chain Reaction
PFA	Paraformaldehyde
pmol	Picomole
PMSF	phenylmethylsulfonyl fluoride
RT-PCR	reverse transcriptase polymerase chain reaction
SDS	sodium dodecyl sulfate
TAE	Tris-Acetate-EDTA
Taq	Thermus aquaticus
TMEM171	Transmembrane protein 171
Tris HCl	Tris Hydrochloride
USA	United States of America
UTR	Untranslated region
V	Volt
VEP	Variant Effect Predictor
VPA	valproic acid
WES	Whole-Exome Sequencing
WGS	Whole-Genome Sequencing

Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is a common neurological disorder characterized by recurrent seizures usually unprovoked by any immediately identifiable cause. One of the first descriptions of epileptic seizures can be traced back to 2,000 B.C. in ancient Akkadian texts, a language widely used in the There are many writings that show that region of Mesopotamia. epilepsy was known in ancient times but was not understood until the mid-1950s. Modern advances in the understanding of epilepsy came during the 18th and 19th centuries (Gross, 1992). During this period, among others, John Hughlings Jackson studied epilepsy in detail and published his first paper on epilepsy in 1861. He had stated, "A convulsion is but a symptom, and implies only that there is an occasional, an excessive, and a disorderly discharge of nerve tissue on muscles". John Hughlings Jackson hypothesized that epilepsy was due to a paroxysmal, excessive discharge of neurons within a local area that could then affect more normal areas of the brain. He is considered the father of modern epileptology (Foyaca-Sibat, 2011).

According to the most recent clinical definition of epilepsy by International League Against Epilepsy (ILAE), a diagnosis of epilepsy is considered in the following circumstances: (i) at least two unprovoked or reflex seizures occurring twenty-four hours apart; (ii) one unprovoked or reflex seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years; (iii) diagnosis of an epilepsy syndrome (Fisher et al., 2014).

Seizures, a hallmark of epilepsy, are brief episodes of involuntary shaking which may involve a part of the body or the whole body and may be accompanied by loss of consciousness. An epileptic seizure is a clinical manifestation of an abnormal and excessive discharge of a set of neurons in the brain. Seizures may arise in a localized area of the brain or may involve the whole brain. The signs and symptoms depend on which area of the brain is affected. The hippocampal formation and cerebral cortex are considered the most epileptogenic regions of the brain (Bozzi et al., 2012).

1.2 Epilepsy classification

The classification of epilepsies is an evolving process for which the goal is to establish a clinically relevant, scientifically based classification. Classification of epilepsy was first published in 1960 with official updates made in 1981 for seizures (Commission on Classification and Terminology of the International League Against Epilepsy, 1981) and in 1989 for epilepsies (Commission on Classification and Terminology of the International League Against Epilepsy, 1989). In 2010, the first major modernization of the epilepsy classification was recommended. It was based on the new insights gained in the field of epilepsy due to scientific advances in modern neuroimaging, genomic technologies, and concepts in molecular biology (Berg et al 2010).

The International League Against Epilepsy (ILAE) revised the classification of epilepsies in 2017. The classification is now organized on three levels (Figure 1) (Scheffer et al., 2017). The first level defines the seizure types into focal seizures which originate within brain networks limited to one hemisphere; generalized seizures which affect the brain in both hemispheres; and seizures of unknown onset. The second level comprises the diagnosis of the epilepsy type, which consists of four main classes: focal epilepsy, generalized epilepsy, combined focal and generalized epilepsy, and unknown epilepsy. This level of classification also includes a new category of combined focal and generalized epilepsy. This signifies the existence of shared mechanisms between the well-established groups of focal epilepsy and generalized epilepsy. The third level of classification is the delineation of epilepsy syndrome when a precise syndromic diagnosis can be made. Due to the connotations of understanding the aetiology for clinical management, the revised classification emphasizes the importance of establishing the aetiology at each of the three levels. The etiological classes are structural, genetic, infectious, metabolic, immune, and unknown.

1.3 Genetic Generalized Epilepsies (GGE)

Genetic generalized epilepsies (GGE) constitute a heterogeneous group of epilepsies with generalized seizures. This syndrome is associated with bilaterally synchronous and symmetrical EEG discharges. GGE syndromes are common and account for 30-40% of all human epilepsies (Jallon and Latour, 2005a). They are usually not associated lesions, with any brain mental impairment, or neurological abnormalities other than seizures. GGE represents electro-clinical syndromes, in which a combination of clinical features such as seizure age of onset and electroencephalogram (EEG) types, features (generalized spike-wave discharges) are required for diagnosis.

GGEs are divided based on the age of onset and the type of seizure, into four common sub-syndromes: childhood absence epilepsy (CAE),

juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures (EGTCS). In addition, there are rare GGE sub-syndromes that include benign myoclonic epilepsy of infancy (BMEI), early-onset absence epilepsy, myoclonic atonic epilepsy (MAE), epilepsy with myoclonic absences, eyelid myoclonia with absences and absence status epilepsy. The frequent seizure types associated with GGE are, absence seizures that involve brief, sudden lapses of consciousness, myoclonic seizures which give rise to jerking spasms in muscles or group of muscles and generalized tonic-clonic seizures (GTCS) (Mattson, 2003). GTCS are manifested as bilateral, convulsive tonic and clonic muscle contractions. The tonic phase of the seizure causes muscle stiffening in the extremities and the clonic phase involves rapid contraction and relaxation of the muscles that lead to contractions. The EEG trait of generalized spike-waves is the defining factor in the diagnosis of GGE, indicating bilateral synchronous discharges in a normal background.

1.4 Juvenile myoclonic epilepsy (JME)

Juvenile myoclonic epilepsy was first described by Théodore Herpin in 1867 {The Epileptology of Théodore Herpin (1799–1865) - Eadie - 2002 -Epilepsia - Wiley Online Library} and then, several patients with JME were reported and described in an article by Janz and Christian in 1957 (Janz and Christian, 1957). Therefore, JME is also known as Janz syndrome. Later, the term juvenile myoclonic epilepsy was included in the International League Against Epilepsy classification of epileptic syndromes in 1989 (ILAE 1989).

JME is an age-dependent disorder with onset typically during adolescence (12-15 years). It is characterized by irregular myoclonic jerks (MJ) occurring early in the morning, although many patients experience generalized tonic-clonic seizures (GTCS) and absence seizures as well. Myoclonus manifests itself as sudden jerks in the muscles and, usually involves bilateral and proximal upper extremities. It can also afflict distal muscles, such as the hands or the lower limbs (Moschetta et al., 2011). Having interpreted as a manifestation of myoclonus nervousness or restlessness, it is the seizure that brings the patient to the doctor or hospital. Convulsive seizures usually come a few months after the onset of myoclonus, but in some, it may take several years (Asconapé et al 1984).

1.4.1 Epidemiology

The incidence of JME has been estimated to be 1 per 100,000 individuals. The prevalence of JME has been estimated to be 5-10% of all epilepsies and 18% of idiopathic generalized epilepsies (IGE) (Jallon and Latour, 2005b). JME typically appears in the second decade of life. However, the age of onset of JME spans a wide range from about 8-36 years, with peak onset between 12 and 18 years (Canevini et al., 1992; Vijai et al., 2003a). Those with the onset of JME outside the 8–36 years of age bracket are uncommon and should be carefully evaluated for other diagnoses.

1.4.2 Clinical features

JME is characterized by the occurrence of absence-, myoclonic-, and generalized tonic-clonic (GTC)- seizures. All patients with JME exhibit myoclonic seizures with 85%-90% of patients having GTC seizures, and about 20-40% of patients showing absence seizures (Vijai et al., 2003a; Jayalakshmi et al., 2010).

Myoclonic seizures, which are the hallmark of this condition, are essential for the diagnosis of JME. Very rarely do these manifest as the only seizure type in the patients. They are depicted as brief, typically bilateral, jerking movements of the arms and occasionally legs. The patients retain consciousness. Myoclonic seizures sometimes get misdiagnosed as twitches or anxiety/nervousness. Increasing intensity and frequency of myoclonic jerks in clusters can evolve into GTS. GTS seizures generally appear a few months after the onset of myoclonic seizures. The first seizures to manifest in JME are generally absence seizures that tend to appear 3 to 5 years before the onset of myoclonic or GTS seizures. Sometimes absence seizures can occur as early as 5 to 6 years of age. A diagnosis of childhood or juvenile absence epilepsy is made in cases with an early and isolated occurrence of absence In JME patients, seizures, especially myoclonic seizures, seizures. occur 30 minutes to an hour after waking in the morning. Typical EEG features of JME consist of generalized discharges of single or multiple spikes and slow waves of 3-5 Hz frequency. Rare incidences of complexes as slow as 2 Hz or as fast as 7 Hz may be evident in some cases. Precipitating factors of epileptic seizures are wide-ranging. The most common one, sleep deprivation, is reported in 58.3-89.5% of Other seizure triggering factors that have been ascertained cases. include fatigue (73.7%), photosensitivity (36.8%), menses (24.1%), mental concentration (22.8%), and stress, excitement, or frustration (12.3%). Another precipitating factor found in 51.2% of cases is alcohol ingestion (Alfradique and Vasconcelos, 2007). About 30% to 40% of JME patients exhibit photosensitivity. Flashing lights, sunlight, TV, and computer can trigger seizures in many patients with JME. Photosensitive patients have a propensity to have an earlier onset of seizures.

Physical examination of JME patients shows that there are no abnormalities, and cognition is well preserved. Studies suggest an increased prevalence of psychiatric disorders, including anxiety, mood disorder, and personality disorders in patients with JME (Moschetta et al., 2011).

1.4.3 JME genetics

JME is primarily genetic in origin and follows both Mendelian and complex modes of inheritance. In JME families, the clinical and EEG traits are largely inherited in an autosomal dominant inheritance pattern. However, the inherited mutant alleles often show incomplete penetrance and lead to phenotypic heterogeneity within families. Several studies indicate complex polygenic genetic architecture of JME suggesting the implicated genes may be modified by additional genes or possibly by environmental factors. To date, a few genes with diseasesegregating mutations or susceptibility-conferring alleles have been identified in a rather small number of JME patients, indicating that its genetic determinants are largely undiscovered (Table 1).

Loci/Gene	Type of study	Reference		
Loci				
2q34	Meta-analysis of genome-wide linkage studies	Leu et al., 2012 (EPICURE Consortium)		
2q33-q36	Linkage analysis	Ratnapriya et al., 2010		
3q26-3q27.1	Linkage analysis	Sander et al., 2000		
5q12-q14	Linkage analysis	Kapoor et al., 2007		
5q34	Meta-analysis of genome-wide linkage studies	Leu et al., 2012 (EPICURE Consortium)		
5q34	Linkage analysis	Hempelmann et al., 2006		
6p21.3	Linkage analysis	Durner et al., 2001		
6p12	Linkage analysis	Hempelmann et al., 2006		
8q24	Linkage analysis	Zara et al., 1995		
9q32-q33	Linkage analysis	Baykan et al., 2004		
10p11.22	Linkage analysis	Kinirons et al., 2008		
10q25-q26	Linkage analysis	Puranam et al., 2005		
14q23	Linkage analysis	Sander et al., 2000		
15q14	Linkage analysis	Elmslie et al., 1997		
18q21	Linkage analysis	Durner et al., 2001		
19q13	Linkage analysis	Hempelmann et al., 2006		
21q22.3	Meta-analysis of genome-wide linkage studies	Leu et al., 2012 (EPICURE Consortium)		
Genes				
BRD2 (RING3)	Linkage and association analysis	Greenberg et al., 2005, Pal et al., 2003		
EFHC1	Linkage and Mutational analysis	Liu et al., 1995, Liu et al., 1996, Bai et al., 2002, Suzuki et al., 2004, Raju et al., 2017		
GABRA1	Linkage and mutational analysis	Cossette et al., 2002; Lachance-Touchette et al., 2011		
CLCN2	Linkage and Mutational analysis	Stogmann et al., 2006		
CASR	Linkage and Mutational analysis	Kapoor et al., 2008		
ICK	Linkage and Mutational analysis	Bailey et al., 2018		
CACNB4	Mutational analysis	Escayg et al., 2000		

Table	1:	Genes	and	loci	associated	with	JME/	GGE
-------	----	-------	-----	------	------------	------	------	-----

GABRD	Mutational analysis	Dibbens et al., 2004
CACNA1H	Mutational analysis	Heron et al., 2004, Heron et al., 2007
SLC2A1	Mutational analysis	Striano et al., 2012
SLC12A5	Mutational analysis	Kahle et al., 2014, Duy et al., 2019
RORB	Mutational analysis	Rudolf et al., 2016
KCNMA1	Mutational analysis	Li et al., 2018
TAP1	Linkage and association analysis	Layouni et al., 2010
KCNQ3	Association study	Vijai et al., 2003b
CX36	Association study	Mas et al., 2004, Hempelmann et al., 2006
KCNJ10	Association study	Lenzen et al., 2005
KCNQ2	Association study and sequencing	Neubauer et al., 2008
CHRNA4	Association study	Rozycka et al., 2009
CHRNA7	case-control and familial segregation analysis, array CGH analysis	Helbig et al., 2009, Mefford et al., 2010, Szafranski et al., 2010
GRM4	Genome-wide association study	Muhle et al., 2010, Parihar et al., 2014
CHRM3	Genome-wide association study	Steffens et al., 2012 (EPICURE Consortium ar EMINet Consortium)
VRK2	Genome-wide association study	Steffens et al., 2012 (EPICURE Consortium ar EMINet Consortium)
ZEB2	Genome-wide association study	Steffens et al., 2012 (EPICURE Consortium ar EMINet Consortium), ILAE Consortium on Complex Epilepsies, 2018
SCN1A	Genome-wide association study	Steffens et al., 2012 (EPICURE Consortium ar EMINet Consortium), ILAE Consortium on Complex Epilepsies, 2018
PNPO	Genome-wide association study	Steffens et al., 2012 (EPICURE Consortium ar EMINet Consortium), ILAE Consortium on Complex Epilepsies, 2018
FANCL	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
BCL11A	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
SCN3A	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
SCN2A	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
TTC21B	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
STAT4	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
PCDH7	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
GABRA2	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
KCNN2	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
ATXN1	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
GRIK1	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
STX1B	Genome-wide association study	ILAE Consortium on Complex Epilepsies, 201
CACNA1G	Genome-wide association study	Feng et al., 2019 (Epi25 Collaborative)
EEF1A2	Genome-wide association study	Feng et al., 2019 (Epi25 Collaborative)
GABRG2	Genome-wide association study	Fenglet al 2019 (Eni25 Collaborative)

1.5 Molecular genetics

Over the past two decades, JME has been a subject of many genetic studies, which have led to identification of several loci and genes (Delgado-Escueta, 2007; Delgado-Escueta et al., 2013; Thakran et al., 2020). These studies further support and establish the view of JME as a complex trait that is associated with high genetic and phenotypic heterogeneity. Genetic linkage- and association- studies have unravelled genes, loci as well as several susceptibility alleles for JME, reflecting its monogenic, oligogenic and polygenic genetic architecture. There are many different genetic approaches employed to identify the loci or genes associated with JME. Some of the most common techniques employed are genome-wide linkage analysis, candidate gene sequencing, association studies and massively parallel exome/genome sequencing studies.

1.5.1 Linkage studies and mutational analysis of candidate genes

JME, an IGE sub-syndrome manifests a complex mode of inheritance and is inherited in a Mendelian or near-Mendelian manner in multigenerational families. Though, the underlying genetic factor can be a variant of a large effect responsible for the disease or a low-frequency allele with moderate effect - both, along with modifier alleles result in phenotypic and clinical heterogeneity among the affected relatives in families as well as in populations. So far, linkage studies on such relatively uncommon large multiplex JME families have identified a few loci and genes with disease-segregating mutations in affected family members. However, the mutations in these genes do not account for a majority of the JME patients from across different populations. This indicates a complex genetic and polygenic basis of JME, wherein only a small fraction of causative determinants has been deciphered and validated. The family-based linkage studies help by focusing the search to JME-linked specific chromosome loci and filtering the candidate genes to be screened, excluding major part of the exome or genome for involvement in JME.

Screening of candidate genes for mutations is based on a prior hypothesis and aims at identifying more rare variants in epilepsy patients as compared to control subjects. These genes are normally chosen due to their association with an epilepsy sub-syndrome or seizure phenotype in either humans or animal models or both (Escayg et al., 2001; Arsov et al., 2012). So far, both these approaches have led to the identification of genetic determinants for JME in a small number of families, and risk alleles remain undefined in about 90% of the patients. Linkage analysis has revealed various genes associated with JME: *EFHC1* at 6p12 (EJM1), *GABRA1* at 5q34 (EJM5), *CACNB4* at 2q23 (EJM6), *GABRD* at 1p36, *CASR* at 3q13.3-q21.1, *CLCN2* at 3q27 (EJM8), and *ICK* at 6p12 (EJM10). In addition, EJM loci, EJM2 at 15q14, EJM3 at 6p21, EJM4 at 5q12-q14, and EJM9 at 2q33-q36, have been identified by linkage analysis.

Variations in *EFHC1* are the most commonly observed in families with JME (Ma et al., 2006; Medina et al., 2008). *EFHC1* encodes a microtubule-associated protein that is involved in cell division and neuronal migration. In vitro studies have shown that EFHC1 variants cause impairment in radial migration by disruption of radial glial scaffolds which are progenitor cells for cortical development (Noctor et al., 2001; de Nijs et al., 2012). Therefore, these defects during corticogenesis may damage the normal brain circuitry during development which in turn can cause epilepsy (de Nijs et al., 2009).

1.5.2 Association studies

Like many other complex phenotypes, JME has been subjected to genetic association studies in various populations (Tan et al., 2004). Many candidate genes, chosen based on their physiological roles or their localization in and around JME-linked loci, have been analyzed for association with JME. A few genome-wide association studies (GWAS) for epilepsy patients have been performed and results from these studies suggest that common genetic variations make a modest contribution towards epilepsy susceptibility.

Since the first locus for JME was found to be in the proximity of the HLA region on chromosome 6, initial association studies in JME addressed whether JME-locus is inside or outside the HLA region. Preliminary evidence for an association between JME and alleles in the HLA region was reported in German (Durner et al., 1992) and Saudi Arabian (Obeid et al., 1994) populations. Greenberg and colleagues (1996) reported that the frequency of HLA-DR13 and HLA-DQB1 alleles were significantly higher in JME patients compared to non-JME patients, indicating that the JME locus probably lies within the HLA region and that JME is genetically different from certain other forms of IGEs. However, other groups found no significant evidence of association of HLA alleles with JME in various populations (Moen et al., 1995; Sander et al., 1997; Le Hellard et al., 1999).

Pal et al., 2003 identified highly significant linkage disequilibrium (LD) between JME and a core haplotype of five SNP and microsatellite markers with the LD peaking at *BRD2* at 6p21.3. Two JME-associated SNP variants in the promoter region of *BRD2* were detected; however, no other potentially causative variants were identified in 20 probands from families which had shown positive linkage to the locus. Subsequently, a multi-centre study examining the role of *BRD2* as a risk factor for JME replicated the result in the British cohort, found suggestive evidence for its role in Ireland, but showed a lack of replication in the German, Australian and Indian populations studied (Cavalleri et al., 2007). Similarly, association analysis in a Dutch population identified no significant difference between the allele frequencies of SNP markers located in *BRD2* in cases and controls (de Kovel et al., 2007).

In a group of 46 JME patients, including 29 individuals from families used to identify susceptibility locus at 15q14 (Elmslie et al., 1997), a significant association between JME and the c.588C>T variant, located in exon 2 of the CX36 gene was observed (Mas et al 2004). Bioinformatics analysis of the associated SNP suggested that it perturbed the expression of CX36 by affecting exonic splicing enhancers. For the IGE-linked locus at 18q21, case-control and familybased association methods identified *ME2* (malic enzyme 2) as a gene predisposing to IGE. An increased risk to IGE was found when the *ME2*-centered nine-SNP haplotype was present in the homozygous state (Greenberg et al 2005). However, a population-based association study involving 660 IGE patients and 666 controls of German descent did not exhibit the association of genetic variations in *ME2* to common IGE syndromes (Lenzen et al., 2005b).

A two-staged genome-wide association study, including 3020 patients with GGE (1434 GAE and 1134 JME patients) and 3914 controls of European ancestry was carried out by EPICURE Consortium and EMINET Consortium to identify susceptibility alleles for common generalized epilepsies (Steffens et al., 2012). Joint analysis for stage-1 and -2 of the study revealed a significant association at 2p16.1 (rs13026414) and 17q21.32 (rs72823592) for genetic generalized epilepsies. The search for syndrome-related susceptibility genes discovered a significant association at 2q22.3 (rs10496964) for GAE (absence epilepsies) and at 1q43 (rs12059546) for JME. The JMEassociated region at 1q43 encompasses the gene encoding the M3 muscarinic acetylcholine receptor (*CHRM3*) (rs12059546).

A meta-analysis of genome-wide association studies from 12 cohorts of epilepsy patients and controls was conducted to detect risk variants for common epilepsies (ILAE Consortium on Complex Epilepsies 2014). The data obtained from published and unpublished genetic cohort studies from EPICURE, EPIGEN, Philadelphia (PA, USA), the Imperial-Liverpool-Melbourne Collaboration, GenEpa, and Hong Kong (China) were used for the meta-analysis. This study included 8696 cases and 26157 controls, belonging to European, Asian or African ancestry. Analysis in the all-epilepsy category revealed significant association at 2q24.3 (*SCN1A*) and 4p15.1 (*PCDH7*). However, for meta-analysis of genetic generalized epilepsy (GGE), 2606 cases and 18990 controls from eight cohorts were used. The analysis detected the genome-wide significant signal at 2p16.1 (rs2947349), located near the genes encoding vaccinia-related kinase 2 (*VRK2*) and Fanconi anaemia, complementation group L (*FANCL*). The association of 2p16.1 region in the GGE cohort had been earlier reported by EPICURE Consortium (Steffens et al 2012, EPICURE Consortium and EMINet Consortium). Additionally, suggestive evidence for association with GGE was found at regions 4p15.1 (*PCDH7*), 5q22.3 (intergenic) and 11q22.2 (*MMP8*).

A systematic review of genetic association studies was done to evaluate the findings of existing genetic association studies that have examined the genetic variants underlying JME. Data from fifty studies, encompassing 229 polymorphisms on or near 55 genes were used for the analysis. Only three variants, rs2029461 SNP in *GRM4*, rs3743123 in *CX36* and rs3918149 in *BRD2*, showed a significant association with JME in at least two different background populations. The lack of replication of results has been attributed to various factors, such as limitations of experimental design, endophenotypes, channelopathy issues and genetic heterogeneity (dos Santos et al., 2017).

With an aim to fill the missing genetic heritability component of epilepsies, an expanded genome-wide association study was conducted on 15,212 cases and 29,677 controls (International League Against Epilepsy Consortium on Complex Epilepsies, 2018). Broadly, the cases were classified into focal epilepsies, genetic generalized epilepsies, and unclassified epilepsies. This study led to the identification of 11 novel genome-wide significant loci, 16q12.1, 2p24.1, 2q32.3, 4p12, 5q22.3, 6p22.3, 6q22.33, 21q22.11, 16p11.2, 3q25.31 and 6q22.31, and five previously reported loci, 2p16.1, 2q24.3, 4p15.1, 17q21.32 and 2q22.3,

were replicated. Eleven loci, 2p24.1, 2p16.1, 2q24.3, 2q32.3, 4p15.1, 4p12, 5q22.3, 6p22.3, 6q22.33, 17q21.32 and 21q22.11, were found to be associated with genetic generalized epilepsies, the group of epilepsies where despite having the highest heritability, least genetic progress have been made. A novel genome-wide significant association at 16p11.2 was found to be associated with JME. Gene mapping and biological prioritization implicate *STX1B* as a potential gene underlying the association of JME at the 16p11.2 locus (Table 1).

1.5.3 Massive parallel sequencing-based consortium studies

Given that linkage-based candidate gene analysis and association studies have not had much success in identifying large-effect variants in a majority of patients with common generalized epilepsies, comprehensive characterization of variants across the genome by nextgeneration sequencing (NGS) may help reveal common risk factors for epilepsies. The advancement in next-generation sequencing technologies and the reduced costs have made whole-exome sequencing (WES) or whole-genome sequencing (WGS) of individual epilepsy patients feasible.

The first reported NGS study for IGE had analyzed the exome sequences of 118 IGE patients [juvenile myoclonic epilepsy (n = 93) and absence epilepsy (n = 25)] and 242 controls of European ancestry (Heinzen et al., 2012). The study employed a two-stage approach involving exome sequencing of 118 IGE-affected individuals and a subsequent large-scale follow-up genotyping of identified candidate variants in a larger cohort of 878 IGE-affected subjects and 1830 controls. In total, 3897 candidate variants were subsequently genotyped in the larger follow-up cohort. No variant reached the statistical significance level of association in the study. However, several variants were enriched in patients than controls, notably, in genes *GREM1, OR10S1, PPEF2* and *CHD1.* A total of 1289 variants were reported exclusive to IGE patients and among these, a missense

mutation (c.620C>T, p.Ala207Val) in *PSME2* was observed in five unrelated cases. Findings from this study failed to reveal a single variant that could account for more than 1% of the cases, indicating high genetic heterogeneity in generalized epilepsies. This study pointed out that identification of disease-causing rare variants that are present at very low frequencies needs to be carried out through genome-/exome-based sequencing studies in very large sample sizes or cosegregation analyses in multiplex families (Heinzen et al., 2012).

Additionally, the massively parallel sequencing technology has provided diagnostic screening methods for genetically complex and heterogenous disorders such as epilepsies. One such study reported the use of targeted panels comprising 265 most relevant epilepsy genes or genes related to epilepsy phenotypes (37 IGE associated genes) to identify mutations for epilepsy. Disease-causing mutations were detected in 16 out of 33 patients with different epileptic syndromes, belonging to a cohort from Germany and Switzerland (Lemke et al., 2012).

The National Institute of Neurological Disorders and Stroke (NINDS) initiated a project in the year 2012 wherein the goal was to sequence 4000 epilepsy patients to uncover the genetics of human epilepsies (Epi4K: Gene discovery in 4,000 genomes, 2012). This Epi4K project focused on two areas of epilepsy. The first one aimed at addressing the genetics of epileptic encephalopathies, conditions defined by severe epilepsy that are generally refractory and accompanied by comorbid cognitive and behavioural dysfunctions. While epileptic encephalopathies are extremely diverse, the study focused on two of the more common types: Infantile Spasms (IS) and Lennox-Gastaut syndrome (LGS). They analysed 165 patients with IS and LGS collected by the Epilepsy Phenome/Genome Project (EPGP) for de novo mutations that were not present in the parents using exome sequencing. Using this approach, the Epi4K researchers identified possibly pathogenic de novo mutations in at least 15% of patients. Nine genes were found to have de novo mutations in two or more

probands, of which five genes had an already known association with epileptic encephalopathy. The known epileptic encephalopathy genes with mutations in multiple Epi4K subjects were: *SCN1A*, *STXBP1*, *SCN8A*, *SCN2A*, and *CDKL5*. Additional novel genes identified with mutations in multiple individuals included: *GABRB3*, *ALG13*, *CACNA1A*, *CHD2*, *FLNA*, *GABRA1*, *GRIN1*, *GRIN2B*, *HNRNPU*, *IQSEC2*, *MTOR*, and *NEDD4L* (Kearney, 2014).

The second category of epilepsy patients that the Epi4K initiative wanted to use in the whole genome sequencing (WGS) was from the common forms of epilepsy such as IGE and NFE found in families with two or more affected members. Sequence data from 640 individuals with familial genetic generalised epilepsy and 525 individuals with familial non-acquired focal epilepsy were compared to 3877 controls. Ultra-rare deleterious variants in genes established as causative for dominant epilepsy disorders (familial genetic generalised epilepsy: odd ratio [OR] 2·3, 95% CI 1·7–3·2, p=9·1 × 10–8; familial non-acquired focal epilepsy 3.6, 2.7-4.9, p= $1.1 \times 10-17$) were found at significantly higher rates. Five known epilepsy genes ranked as the top five genes enriched for ultra-rare deleterious variation in individuals with familial non-No individual gene was found to be acquired focal epilepsy. significantly associated with familial genetic generalised epilepsy (Allen et al., 2017).

As part of an ongoing Epi25 Collaboration, a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals has been performed. Compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and genes previously associated with epilepsy. Genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two less severe epilepsies, genetic generalized epilepsy, and non-acquired focal epilepsy (NAFE) were compared. A gene-based rare variant collapsing analysis found that variants in DEE affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Analysis of variants in genes without a prior disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variants, indicating additional epilepsy-risk genes yet Compared to controls, individuals with epilepsy to be discovered. carried an excess of ultra-rare, deleterious variants in constrained genes and genes previously associated with epilepsy. The strongest enrichment of ultra-rare, deleterious variants was seen in individuals with DEEs and the least strong in individuals with NAFE. Inhibitory GABAA receptor genes showed enrichment for missense variants across all three classes of epilepsy. No enrichment for variants was seen in excitatory receptor genes. Even though no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels, such as CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE, were among the top associations identified (Feng et al., 2019).

1.5.4 Copy number variations (CNV)

Apart from SNPs, CNVs have been demonstrated as risk or causal genetic markers in GGE. CNVs are a form of structural variation, which results in the alteration of the number of copies of one or more sections of DNA. They correspond to large segments of DNA being deleted (fewer than normal number) or duplicated (more than normal number), and may range from a kilobase to several mega-bases in size. CNVs are found on all chromosomes without any clinical significance; however, they can be enriched in certain genomic regions known as "hotspots". The development of chromosome microarray and SNP genotyping arrays facilitated genome-wide screening for de-novo CNVs in large cohorts (Sharp et al., 2008). CNVs are increasingly found in epilepsy patients when often associated with developmental delay, autism spectrum disorder (ASD), intellectual disability and dysmorphic features (Sharp et al., 2008; Shinawi et al., 2010; Moreira et al., 2014).

Besides these, CNVs have also been reported in epilepsy syndromes associated with normal intellect. Helbig and colleagues identified microdeletions at 15q13.3 in 12 out of 1,223 individuals with IGE from Europe and North America (Helbig et al., 2009). This region was earlier implicated in 15q13.3 microdeletion syndrome in individuals with mental retardation and epilepsy, schizophrenia, autism, and other neuropsychiatric features (Sharp et al., 2008; Stefansson et al., 2008; Miller et al., 2009). The deletions in this critical region encompass several genes such as the CHRNA7 (Cholinergic Receptor Nicotinic Alpha 7 Subunit), which is considered a candidate gene for epilepsy (Elmslie et al., 1997). In another independent cohort of 539 IGE familial and sporadic IGE cases (JME, n=183) from Australia and Europe, 15q13.3 microdeletions were observed in 7 cases (3 individuals with JME) (Dibbens et al., 2009). The 15q13.3 microdeletions were found de novo in three probands, two individuals had inherited from the unaffected parent and the transmission could not be determined in the other two probands. Though 15q13.3 microdeletions exhibit a strong association with IGE in case-control studies, it does not segregate as a dominant Mendelian trait in multiplex IGE families, indicating it as a susceptibility genetic factor for epilepsies. In a group of 246 cases with 15q13.3 microdeletion syndrome, 28% of the individuals were reported to have epilepsy/seizures (Lowther et al., 2015).

de Kovel et al., 2010 reported a study aimed to investigate the genomic hotspot regions, previously implicated in various neuropsychiatric disorders to identify the genetic factors conferring risk to IGE syndromes. A group of 1234 IGE patients from North-western Europe and 3022 controls from Germany were assessed using high-density SNP arrays, and recurrent microdeletions were found at 15q11.2 and 16p13.11. In an additional study, by using whole-genome oligonucleotide array CGH to a cohort of 517 patients with IGE or nonlesional epilepsies (JME, n=189), one or more rare CNVs were detected

18

in 8.9% of the affected individuals. Of these, 2.9% of the probands were found to harbour deletions in regions 15q11.2, 15q13.3, or 16p13.11 (Mefford et al., 2010).

Several studies report CNVs associated with epilepsies in the absence of dysmorphic features in the same hotspot regions which were previously identified in patients with the neurocognitive phenotypes, suggesting that these common etiological genetic factors have highly variable phenotypic expressivity (Mefford, 2014; Scheffer and Mefford, 2014). However, the microdeletions at three genomic hotspots 15q11.2, 15q13.3 and 16p13.11 are notably associated with IGE than any other epilepsy type, though with incomplete penetrance. It indicates that the microdeletion itself is not sufficient to cause epilepsy and may act as a risk factor in the complex genetic architecture known for IGE.

Locus	Size	CNVs	Gene Pher		References
2p16.3	~287 and ~79 kb	Exon-disrupting deletion	NRXN1	Severe early-onset epilepsy	Harrison et al., 2011
2q24.2- q24.3	11Mb	Duplication/ deletion	SCN1A, SCN2A, SLC4A10	Idiopathic epilepsy	Krepischi et al., 2010
6p12.1	99.9kb	Micro- duplication	BMP5	Epilepsy	Naseer et al., 2015
7q11.22	78.7kb	Deletion	AUTS2	JME	Mefford et al., 2010
7q32.3	63.9kb	Microdeletion	PODXL	Epilepsy	Naseer et al., 2015
7q35	785.8kb	Deletion/ hemizygous deletions	CNTNAP2	GTCS	Mefford et al., 2010
15q11.2		Microdeletion	NIPA2, CYFIP1	GGE	de Kovel et al., 2010
15q13.3	1.4Mb	Microdeletion	CHRNA7	GGE (JME)	Helbig et al., 2009; Mefford et al., 2010
16p13.11	800Kb	Deletion	NDE1	MTLE	Liu et al., 2012
16p13.2	47Kb	Microdeletion	GRIN2A	RE (childhood epilepsy)	Dimassi et al., 2014
22q11.2	3Mb	Microdeletion	DGCR6, DGCR6L	GGE (JME)	Strehlow et al., 2016

 Table 2: Copy number variations associated with epilepsies

JME: Juvenile myoclonic epilepsy, GTCS: Generalised tonic-clonic seizure, GGE: Genetic generalized epilepsy, MTLE: Mesial temporal lobe epilepsy, RE: Rolandic epilepsy

1.6 Modelling Epilepsy

Researchers require animal models that capture the relevant human pathology, in order to logically and efficiently design and test novel therapies for epilepsy. Animal models should recapitulate the aetiology of the human neurobiological disorder, must display the same or similar phenotypes as seen in patients. The animal models should eventually only act in response to treatments that are effective in patients with the modelled disorder (Garner, 2014). Such models provide an indirect opportunity to better understand human pathology, allowing us to find novel drug targets and to test the usefulness of therapies through preclinical trials.

Even though there are important differences between human and mouse neurobiology (Hodge et al., 2019), mice however represent strong candidate organisms for modelling human genetic disorders. Greater than 99% of human genes have mouse homologues (Chinwalla et al., 2002), and, within the brain, the three-dimensional pattern of gene expression is grossly conserved between humans and mice (Strand et al., 2007). In terms of epilepsy, mouse models of temporal lobe epilepsy mimic patients, with regard to the appearance of ictal seizures from the hippocampal formation and then circulating and spreading to the rest of the brain (Riban et al., 2002). Similarly, cortical and thalamic structures in both human and mouse models are responsible for generalized seizures (Cao et al., 2020) (Table 3).

Etiology	Rodent model	Epilepsy type			
Genetic or presumed genetic epilepsy models					
Tuberous	Cell-specific conditional Tsc1-knockout or Tsc2-	Tuberous			
sclerosis complex	knockout mice	sclerosis			

Table 3: Animal Models of epilepsy

		complex	
	Genetic absence epilepsy rat from Strasbourg Wistar Albino Glaxo Rijswijk rats High-voltage spike and wave spindles in rats	Rat absence epilepsy	
	Tottering mice Lethargic mice	-	
Spontaneous mutations	Stargazer mice	_	
	Mocha 2j mice	Absence	
	Slow-wave mice	epilepsy	
	Ent mice		
	Ducky mice Gabrg2 conditional knock-in mutation in mice		
Induced monogenic mutations	Knockout or knock-in mutations of voltage-gated ion channel subunits (sodium, potassium and calcium) in mice	_	
	Knockout or knock-in mutations of neurotransmitter receptor subunits (GABAA and nicotinic) and transporters	Multiple	
	Knockout or knock-in mutations of accessory synaptic proteins	-	
	Cstb-knockout mice		
	SCN1A or SCN1B knock-in of human mutations in mice or constitutive or conditional knockout mice	Dravet syndrome	
Developmental epileptic	ARX knock-in of human mutations in mice or constitutive or conditional knockout mice	Infantile spams	
encephalopathies	Apc conditional knockout mouse SCN8A knock-in of human mutations in mice Infantile spams		

Models are both mice and rats unless mentioned otherwise. (Devinsky et al., 2018)

1.7 iPSC as a model system for studying epilepsy

Human-induced pluripotent stem cells (iPSCs) were first generated from fibroblasts in the year 2007. They can now be made from patients with neurological disorders and healthy controls (Takahashi et al., 2007; Kogut et al., 2018). Patient-derived iPSC lines are valuable for modelling disorders with complex genetic architecture, which would be impossible to model in whole animals due to the differences in the genetic background. If patient-derived cells are not available, control iPSC lines can also be engineered using tools such as CRISPR/Cas9 to recapitulate mutations seen in patients with monogenic disorders (Eggenschwiler et al., 2016).

Table 4:	Examples	of iP	SC m	nodel	cell	lines	generated	for	certain
epilepsy	types								

Epilepsy	Gene	Mutation	Source	Reference
Autosomal dominant temporal lobe epilepsy (ADTLE)	LGI1	c.1418C>T (p.Ser473Leu)	Peripheral blood mononuclear cells	Tan et al., 2017
Benign familial infantile epilepsy (BFIE)	PRRT2	c.649dupC (p.Arg217Profs*8)	Fibroblast	Fruscione et al., 2018
Glucose transporter 1 (GLUT1) deficiency syndrome	SLC2A1	c.1454C>T (p.Pro485Leu)	Fibroblast	Meyer et al., 2018
Chromosome 15q13.3 microdeletion syndrome	15q11q13	Microduplication	Fibroblast	Turco et al., 2018
Focal cortical dysplasia type II	_	-	Fibroblast	Majolo et al. <i>,</i> 2019
Rett syndrome	MECP2	Microdeletion (exon3–4) ,c.763C>T (p.Arg255*)	Fibroblast	Hinz et al., 2019
Tuberous sclerosis complex	TSC2	c.1563dupA (p.His522Thrfs*67)	Fibroblast	Nadadhur et al., 2019
Angelman syndrome	Chromosome deletion	4.8 Mb 15q11-q13 deletion	Fibroblast	Pólvora- Brandão et al., 2018

CDKL5 encephalopathy	CDKL5	c.1039C>T (p.Gln347*), c.863C>T (p.Thr288lle)	Fibroblast	Amenduni et al., 2011
Dravet syndrome	SCN1A	c.4933C>T (p.Arg1645*)	Fibroblast	Higurashi et al., 2013
Type I Sialidosis (neuraminidase deficiency)	NEU1	c.544A>G (p.Ser182Gly), c.667_679del (p.Leu223Glufs*76)	Peripheral blood mononuclear cells	Liu et al., 2018
Myoclonic epilepsy with ragged red fibers (MERRF)	МТ-ТК	m.8344A>G	Fibroblast	Wu et al., 2018

Different types of neuronal and non-neuronal cell types can be differentiated from iPSCs (Hong and Do, 2019; Wiegand and Banerjee, 2019). This enables the opportunity to decipher different mechanistic aspects of the disorder as well testing different drug targets. Multielectrode array systems can be used to assess the effect of candidate drugs on spontaneous neural activity (Tidball and Parent, 2016). There are some shortcomings of using iPSCs such as variations in the differentiation potential of iPSCs from generated from different donors (Kyttälä et al., 2016), neurons derived from human iPSCs are slow to fully differentiate (Nicholas et al., 2013) and to develop mature electrophysiology (Prè et al., 2014). Human neuronal cultures can not be used for modelling network disturbances in epilepsy because they lack the ability to reliably develop synchronous network activity unless they are co-cultured with astrocytes (Kuijlaars et al., 2016).

Researchers are now able to generate cerebral organoids from single iPSC lines due to advances in three-dimensional culture techniques and differentiation methods. These organoids are comprised of varied neuronal and glial cell types. These cells have the ability to show some degree of self-organization and exhibit spontaneous, synchronized neural activity (Izsak et al., 2019; Trujillo et al., 2019; Zafeiriou et al., 2020). These enhanced features could make organoids a better model system with the possibility of modelling both network-level and cell-autonomous defects in epilepsy.

1.8 Objectives of my work

To date, only a few genes for juvenile myoclonic epilepsy have been mapped and identified in large families. In the present study, I aimed to identify potentially disease-causing genes at three genomic loci linked to juvenile myoclonic epilepsy in families from the southern parts of India. These loci were identified by genome-wide linkage studies and mapped to chromosomes 5p15-q12, 2q33-q36 (EJM9, Ratnapriya et al., 2010) and 5q12–q14 (EJM4, Kapoor et al., 2007) regions. The objectives of my study were: (i) identification of the potentially causative variants/genes in the disease-linked intervals mentioned above employing whole exome/genome sequencing experiments. (ii) To evaluate cell biological correlates of the variants in the genes proposed to be responsible for epilepsy.

Chapters 2, 3 and 4 of this thesis present the results of these studies.
Chapter 2

Identification and characterization of CDC20B, a potential JME gene

Summary

With an aim to identify a locus for JME, genome-wide linkage analysis was conducted in a 3-generation south Indian family, GLH 35, with several of its members affected by the disorder. In this analysis, a maximum two-point LOD score of 1.7 at θ =0 was obtained for the marker D5S426 on chromosome 5p13.2. Manual haplotyping helped define a 64-megabase critical region between markers D5S1981 and D5S407 at 5p15-q12. Whole-exome and whole-genome sequencing experiments revealed a rare missense variant, c.1525G>A (p.Ala509Thr) in the gene, CDC20B (cell division cycle 20B). Four additional rare, p.Gln94His, p.Arg200Gly, p.Ile212Lys missense variants, and p.Trp363Arg were identified among 552 JME patients examined. Interestingly, CDC20B is among the top 200 genes identified with the burden of ultra-rare variants in the Epi25 collaborative, with the GLH35 family variant, p.Ala509Thr, identified in six epilepsy patients. CDC20B encodes a 591-amino acid long, WD repeat domain-containing protein. During late telophase and cytokinesis, the protein localizes to the midbody, during other cell cycle stages, it is present in the We found that CDC20B co-immunoprecipitates with cytoplasm. TUBG1, EFHC1 and PLK1. Cytokinesis defects were observed on overexpression of the CDC20B variants, p.Arg200Gly, p.Trp363Arg and p.Ala509Thr, suggesting a cell cycle associated role for the protein. Further, two variants, p.Trp363Arg and p.Ala509Thr expressed in mouse embryos at E14.5 by in-utero electroporation, showed longer projections in the neuronal progenitors than the ones observed for the wildtype CDC20B allele. The projection lengths of the neuronal cells may influence micro-developmental aspects of neural circuits which in turn can predispose to epilepsy.

2.1 Materials and methods

2.1.1 Family ascertainment

A three-generation multi-affected family, GLH35 (Figure 1), was ascertained at Lourdes hospital, Cochin, through a 24-year-old proband affected with JME. The proband started to exhibit absence seizures (ABS) at the age of 11, followed by myoclonic seizures (MS) at 13, and generalized tonic-clonic seizures (GTCS) at 14. The major precipitating factors were sleep deprivation and emotional stress with the time of seizure occurrence within about two hours of waking up. EEG recordings showed frequent generalized epileptiform abnormalities, consistent with the diagnosis of JME. The proband was administered carbamazepine (CBZ), phenobarbitone (PB) and valproic acid (VPA) with VPA showing a good response. General physical and neurological examinations found no additional clinical manifestation in the proband.

All members of the family were followed up for their clinical histories and neurological examination. For the members who were deceased or could not participate in the study, the diagnoses were made based on the information given by the relatives. All members who participated in the study have provided written consent. The diagnosis of JME was established as per the International League Against Epilepsy guidelines (Scheffer et al., 2017b). Proband's father (II:3), aunt (II:8), first cousin (III:1) and grandfather's sister (I:2) had MJ, ABS and GTCS. Proband's brother (III:3) had febrile seizures. Proband's uncle (II:5), aunt (II:9), grandfather (I:4) and grandfather's sister (I:3) had GTCS. Three more first cousins of the proband had febrile seizures, but their samples were not available for analysis. For individuals from the first generation (I:2, I:3, I:4) only clinical information could be obtained from the family, as the members had deceased. Additional five hundred and fifty-two unrelated JME patients participated in this study. For controls, 480 healthy individuals, apparently not related to each other and without any history of neurological disorder, were examined.

Figure 1: GLH35 family pedigree: Pedigree of GLH35 depicting the diseaselinked haplotype (5p15-q12) shared among its six affected members (II:3, II:5, II:8, II:9) and three unaffected members (II:1, II:6 and II:7). Males are denoted by squares and females are denoted by circles. Filled symbols represent affected individuals and empty, unaffected ones. Haplotypes are shown below the symbols. Clinical features of affected subjects are indicated along with the symbols (AB: Absences, MS: Myoclonic seizures, GTCS: Generalized tonic-clonic seizures). The green boxes indicate the individuals, II:3 and III:4, whole exome or genome sequenced.

2.1.2 Genotyping and linkage analysis

Genomic DNA was isolated from the whole blood of the participating individuals using the phenol-chloroform method (Green and Sambrook, 2017). Thirteen participating individuals from the family were genotyped (Figure 1). Using 382 microsatellite markers, spaced over the genome with an average resolution of 10 centimorgans (cM), from the ABI Prism Linkage Mapping Set V_{2.5} (Applied Biosystems, MA, USA), genome-wide linkage analysis was performed. Twelve additional markers (D5S417, D5S635, D5S1953, D5S2004, D5S1991, D5S1997,

D5S2074, D5S502, D5S1993, D5S1964, D5S1969, D5S664) were used for fine mapping at an average resolution of about 2 cM for chromosome 5. Following the manufacturer's protocol (Applied Biosystems), the microsatellite markers were amplified for the family members by individual PCR under the following conditions: 50 ng of genomic DNA, 5 µM of each primer, 9 µl of True allele PCR premix (AmpliTaqGold DNA polymerase, buffer, magnesium chloride and dNTPs) in the reaction volume of 15 µl. The reactions were set up in a GeneAmp PCR System 9700 (Applied Biosystems) for 12 minutes at 95°C (to activate the AmpliTagGold DNA polymerase); then for 15 seconds at 94 °C, 15 seconds at 55°C, and 30 seconds at 72°C, for 10 cycles; and then, for 15 seconds at 89°C, 15 seconds at 55°C, and 30 seconds at 72°C, for 25 cycles; followed by a final extension for 10 minutes at 72°C. After amplification, PCR products from each mapping set were pooled with the GeneScan 500LIZ size standard (Thermo Fisher Scientific) and denatured along with formamide for 5 minutes at 95°C followed by electrophoresis on the DNA Analyzer 3730 (Applied Biosystems). DNA from Centre d'E´ tude du Polymorphisme Human (CEPH) individual, 1347-02 was used as an internal control for each The output data were analyzed for fragment sizing using marker. Genescan software 3.7 (Applied Biosystems) followed by allele calling using Genotyper software 3.7 (Applied Biosystems). The Genethon and deCODE human linkage maps (Dib et al., 1996; Kong et al., 2002) were used to obtain the marker order and inter-marker distances. Each marker was analyzed manually for segregation in the family. Genotypes were checked for Mendelian inconsistencies if any, and haplotypes were generated manually, allowing for a minimum number of recombination events.

Parametric two-point LOD scores were calculated using the MLINK program of LINKAGE package5.2 (Lathrop et al., 1984). LOD score was calculated at different recombination fractions, using model parameters of an autosomal dominant mode of inheritance, 90% penetrance value,

1% phenocopy, mutant allele frequency of 0.0001, equal marker allele frequencies, and no difference in male and female recombination rates. Haplotypes were assigned manually based on genotyping data. Haplotyping was done to identify the shared genomic regions among affected individuals in the family, define the recombination boundaries and search for genotyping errors.

2.1.3 Whole-exome sequencing (WES)

2.1.3.1 Library preparation and sequencing

Five micrograms of genomic DNA was fragmented (sonication at 55 pulses, 30s ON and 30s OFF) (Bioruptor-Diagenode, NJ, USA) and purified using Agencourt AMPure XP beads (Beckman Coulter, CA, USA). The target peak for base-pair size was 150-400 bp. The sheared DNA was analyzed for size distribution using Agilent DNA 1000 Bioanalyzer (Agilent Technologies, CA, USA). Successively, the sheared DNA fragments were used to construct DNA libraries using Agilent's SureSelectXT Target Enrichment System for illumina Paired-End Sequencing Library. The constructed library was modified by a series of steps using different enzymes to repair ends and make blunt-ended 5' phosphorylated fragments, add a single nucleotide A overhang and ligate 60bp sequence adaptors to fragment ends. Each step was followed by a purification step using Agencourt AMPure XP beads. After ligation, the adapter-ligated fragments were enriched by PCR and concentrated using a vacuum concentrator (Eppendorf, HB, Germany). The library was then hybridized to SureSelect biotinylated RNA baits at 65°C for 24-72 hours. Hybridized library fragments were isolated by magnetic capture using Dyna M-280 streptavidin-coated beads (Invitrogen, CA, USA) followed by purification of the capture librarybead solution using AMPure XP beads. PCR amplification was carried out to enrich the captured library and the amplified products were purified using AMPure XP beads. The Amplified Capture DNA was analyzed using the high sensitivity bioanalyzer chip which shows a

peak in the size range of 300-400 nucleotides (Figure 2). The SureSelect Human exome kit is designed to enrich 51Mb region in the genome. The sequencing was carried out for the captured libraries with illumine Genome Analyzer IIx platform (illumina, CA, USA) obtaining the 72 bp paired-end reads.

2.1.3.2 Sequence data quality check (QC), processing and alignment

The whole-exome FASTAQ sequencing reads were aligned to human genome reference (hg19/GRch37) using BWA v-0.6.0 (Li and Durbin, The reads showing at least 70% of bases with a minimum 2009a). of 20. obtained SeqQC Phred score by v-2.0 (http:// genotypic.co.in/Products/7/Seq-QC.aspx), were used for alignment. Using SAMtools v-0.1.7a (Li et al., 2009), duplicate reads arising possibly from PCR artefacts, were removed. The variant calling was done using SAMtools at a Phred-like SNP quality score of 20. The variants identified were annotated by SNPeff and filtered against the dbSNP131. Novel variants were further examined in updated databases (http:// www.ncbi.nlm.nih.gov/SNP/), such dbSNP139 1000 as Genomes (http://browser.1000genomes.org/index.html), Ensemble (http://asia.ensembl.org/index.html) and EVS datasets (http:// evs.gs.washington.edu/EVS/). To obtain potential variants, which may have been missed at high coverage, variants up to 3X read depth were manually examined. Those transcript regions which remained uncovered by the whole-exome sequencing were manually identified and examined by Sanger sequencing.

2.1.4 Whole-genome sequencing (WGS)

2.1.4.1 Library preparation and sequencing

Three micrograms of genomic DNA was fragmented using Covaris to generate 300-400 base pair fragments. 100 ng of fragmented DNA was used to generate a sequencing library using NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, MA, USA). In brief, the fragmented DNA was subjected to end repair followed by A - tailing and adapter ligation. Ampurebead-based size selection was performed to obtain the library of the desired size. The size selected DNA was enriched by PCR amplification using illumina index adapter primers (P7 adapter 5' - AGATCGGAAGAGCACACGTCTGAACTCCAGTCA - 3', P5 adapter 5' - AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT - 3'). The amplified product was purified using Ampure beads to remove unused The libraries were quantitated using Qubit DNA HS primers. (Thermo Fisher Scientific) which specifically quantitation assay quantitates dsDNA. The library quality was checked using Agilent Bioanalyzer DNA 1000 kit (Figure 2). The QC passed libraries were sequenced using Illumina HiseqX sequencer (illumina).

Figure 2 – DNA and library quality check: A. The genomic DNA was checked for its integrity and quality by electrophoresis on 0.8% TAE-agarose gel. This genomic DNA was used for library preparation. The libraries were checked for their quality and size distribution using Agilent Bioanalyzer DNA 1000 kit. **B.** Size distribution of the whole genome sequencing library made using the NEBNext Ultra II DNA Library Prep Kit for illumina. **C.** Size distribution of the whole-exome sequencing library made using Agilent's SureSelectXT Target Enrichment System for illumina Paired-End Sequencing Library.

2.1.4.2 Sequence data quality check (QC), processing and alignment

The data quality was checked using FastQC sequence (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC (Ewels et al., 2016). The data was checked for base call quality distribution,% bases above Q20, Q30,% GC, and sequencing adapter contamination. The sequence data was processed using Trimgalore (https://github.com/FelixKrueger/TrimGalore) to remove adapter sequences and low-quality reads. QC passed reads were mapped to human reference genome build GRCh38 that was provided in GATK Resource Bundle using BWA mem (Li and Durbin, 2009b) algorithm with default parameters. The alignments were sorted, indexed and PCR duplicates were marked and removed using sambamba (Tarasov et al., 2015).

2.1.4.3 Variant calling, annotation and filtering

GATK (McKenna et al., 2010) best practice workflow for germ line short variant discovery (SNPs + INDELs) using GATK v4 was followed for variant calling (https://software.broadinstitute.org/gatk/bestpractices/). The process, in brief, base qualities in the bam file were recalibrated and GVCF was generated using HaplotypeCaller. GVCF was genotyped to generate vcf. SNPs and INDELs were recalibrated separately by providing variants from dbSNP, 1000 Genome phase1, hapmap, omni SNPs and Mills gold standard INDELs as known and training sets. The filter threshold was set to retain 99% of true variants, which provides the highest sensitivity while still being acceptably specific.

Functional annotation for the variants identified in the genome sequencing experiment was done using Ensembl Variant Effect Predictor (VEP) build 94 (McLaren et al., 2016). The input was provided in the form of a tab-delimited vcf file (Variant Call Format). Transcript database from both GENCODE and NCBI was used. Allele frequencies were taken from dbSNP151, 1000 Genomes, Exome Aggregation Consortium (ExAC) and Genome Aggregation Database (gnomADv2, exomes and genomes; gnomADv3, genomes). dbSNFPv3.5 (Liu et al., 2011), a database developed for functional prediction and annotation of all potential non-synonymous single-nucleotide variants in the human genome, was also used for annotation. Samtools (Li et al., 2009) was used to view the whole genome sequence data aligned with the human reference sequence (Grch38) and each exon in the region of interest on chromosome 5 was manually checked for its coverage and read depth.

The identified variants were filtered for minor allele frequency in the databases, dbSNP151, 1000 Genomes project (Auton et al., 2015), Exome Aggregation Consortium (ExAC) (Lek et al., 2016) and the Genome Aggregation Database (gnomAD) (Karczewski et al., 2020) for their minor allele frequency (MAF) to be less than 0.005.

2.1.5 Sanger-based sequence validation of WGS rare variants

All novel/rare variants identified in the WGS dataset were validated by Sanger sequencing. Primers were designed spanning the variantcarrying exons/regions. The Sanger confirmed variants were further analysed in the family for their segregation with the disease phenotype. The segregating variants were examined in 488 ethnically matched control sets of normal individuals for their MAF.

2.1.6 Polymerase chain reaction (PCR)

Primers were designed for the exons/regions carrying the variants identified in the WGS analysis. The PCR conditions were standardized for each primer set and amplification was performed on a thermal cycler GeneAmpPCR System 9700 (Applied Biosystems). The PCR reaction mixture contained 10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl₂, 0.8 mM dNTPs, 0.25 μ M of each primer, 0.05 U/ μ l Taq Polymerase (New England Biolabs), deionized water and 10 ng/ μ l DNA in a 20 μ l volume. The standardized amplification conditions were:

Initial denaturation at 95°C for 5 minutes, followed by 40 cycles of denaturation at 95°C for 30 seconds, annealing for 30 seconds and elongation at 72°C for 30 seconds, and a final extension step for 10 minutes at 72°C. The amplified products were electrophoresed on 1% agarose gel containing 2 μ l Ethidium Bromide (2 μ g/ml) and purified using Multiscreen 96 well PCR purification plates (Merck Millipore, MA, USA). The purified products were eluted in 20 μ l of deionized water.

2.1.7 Sanger-based sequencing

PCR-amplified products were single strand amplified by cycle sequencing using 1 µl of BigDye Terminator v3.1 Cycle Sequencing reaction mix (Thermo Fisher Scientific), 1X sequencing buffer, 0.25 µM primer and 3 µl of purified PCR product in a 20 µl volume. The following cycling conditions were used: initial denaturation at 95°C for 1 minute, followed by 25 cycles of denaturation at 96°C for 10 seconds, annealing at 50°C for 5 seconds and extension at 60°C for 4 minutes, and a final hold at 4°C. It is followed by alcohol precipitation of the amplified product by adding 16 µl of chilled autoclaved deionized water and 64 µl of chilled 95% alcohol to each well of the sequencing plate. The sequencing plate contents were mixed and incubated at room temperature for 30 minutes, followed by centrifugation at 2500 g for 30 minutes. The precipitated DNA was washed with 150 µl of 70% alcohol followed by 10-minute centrifugation at 2000 g. The plate was air-dried to remove all residual alcohol and the DNA denatured at 95°C in 10 µl formamide per well. These denatured single-stranded amplified products were Sanger sequenced using an automated DNA sequencer, DNA Analyzer 3730 (Applied Biosystems). The sequences thus obtained were aligned to the respective reference gene sequences obtained from the Genbank database and the variants were identified using SeqMan 5.01 (DNASTAR, WI, USA).

2.1.8 Minigene assay

To study the effect of the intronic variant, c.538-30C>T in IL7R, on splicing, the exon close to the intronic variant along with 500 base pairs upstream and downstream of the exon-intron boundary was cloned in the exon trapping vector pSPL3 (Figure 4) (the vector was a gift from Stuart W. Tompson; Tompson and Young, 2017) using the primer 5' _ gtgtgaattcttaaagataatacactgtg 3' and 5' pairs tcagtcagggatcctagggaggagatgtctcag - 3'. PCR was done in a 50 µl reaction volume containing 200µM dNTP, 0.4 µM of each primer, 100 ng of genomic DNA and 1 Unit Phusion high-fidelity DNA polymerase (New England Biolabs). Amplification was performed using a GeneAmp 9700 at following conditions: initial denaturation at 94°C (5 minutes), followed by 25 cycles of denaturation at 94°C (30 seconds), annealing at 58°C (30 seconds) and extension at 72°C (1 minute) followed by a final extension at 72°C (10 minutes). The amplified products were electrophoresed and visualized on a 0.8% agarose/TAE/EtBr gel (Figure 4). The amplified minigene-insert was purified using Multiscreen 96 well PCR purification plates (Millipore). The 1080 bp minigeneinsert was cloned into a pSPL3 mammalian expression vector, using EcoRI and BamHI restriction enzyme sites. Site-directed mutagenesis was performed using QuikChange II XL site-directed mutagenesis reagents (Agilent Technologies) to generate the patient-specific variants. These wild-type and mutant constructs were used for transfection in Total RNA was isolated from the cells using TRIzol HEK293 cells. (Thermo Fisher Scientific). cDNA synthesis was performed using the superscript III first-strand synthesis system (Thermo Fisher Scientific, 18080051). Primers V1 (V1-F: 5'-TCTGAGTCACCTGGACAACC-3') and V2 (V2-R: 5'-ATCTCAGTGGTATTTGTGAGC-3') were used to amplify the minigene. The amplified products were electrophoresed and visualized on a 0.8% agarose/TAE/EtBr gel (Figure 4). The products were Sanger sequenced to confirm any splicing errors.

2.1.9 Luciferase assay

To investigate the effect of the rare 3' UTR variants, c.*1664A>G in PRLR, c.*1770A>G in LMBRD2, c.*620G>A in SNX18, c.*2812_*2813del in SNX18, c.*3364A>G in SNX18, on predicted miRNA binding sites and gene expression, 400 base pairs of the region harbouring each of the variants was cloned in the 3'UTR of the luciferase reporter gene in the pMIR-report luciferase vector (Figure 5). PCR amplification of the region of interest was done in a 50 µl reaction volume containing 200 µM dNTP, 0.4 µM of each primer, 100 ng of genomic DNA and 1 unit Phusion high-fidelity DNA polymerase (New England Biolabs). Amplification was done using a GeneAmp 9700 at following conditions: initial denaturation at 94°C (1 minute), followed by 25 cycles of denaturation at 94°C (30 seconds), annealing at 55°C (30 seconds) and extension at 68°C (3 minutes) followed by a final extension at 72°C (7 minutes). The amplified products were electrophoresed and visualized on a 0.8% agarose/TAE/EtBr gel (Figure 5). The 3' UTR insert was purified using Multiscreen 96 well PCR purification plates (Millipore, LSKMPCR50). These 3' UTR insert fragments were cloned into a pMIRreport luciferase vector, using SpeI and MluI restriction enzyme sites. Site-directed mutagenesis was done to generate the variants. These constructs, along with pMIR-report β -gal control plasmid, were used to transfect HEK293 cells grown in a 12-well dish.

48 hours post-transfection, luciferase activity was measured using the luciferase reporter assay system (Promega, WI, USA). The cells were washed with 1X PBS and lysed in 100ul 1X reporter lysis buffer. The cells were incubated on ice for 1 hour with intermittent vortexing. The lysed cells were centrifuged at 15,000 rpm, 4°C for 30 minutes. The supernatant is transferred to a fresh tube. 5 ul of lysate is added to 10 ul luciferase assay reagent, mixed by vortexing and readings taken using Sirius single tube illuminometer (Berthold Detection Systems GmbH, Germany).

 β -galactosidase enzyme activity was measured to normalize for transfection efficiency. 20 ul of 5 times diluted lysate was mixed with 20 ul of 2X β -galactosidase assay buffer (Promega) that contains the substrate ONPG (ortho-Nitrophenyl- β -galactoside) in a microplate reader. The plate was incubated at 37°C for 30-40 minutes. The reaction was stopped by adding 50 ul 1M sodium bicarbonate and readings were taken using an ELISA plate reader at 420 nm.

The luciferase readings and β -galactosidase readings for each sample were divided by the average of all samples to get normalized values. To normalize for transfection efficiency, the normalized luciferase readings were then divided by the respective normalized β -galactosidase readings. These values were plotted using GraphPad Prism5. The student's unpaired t-test was used to calculate significance for each set of wild type and respective variant constructs. For SNX18-3'UTR-b,c construct, one-way-ANOVA followed by Dunnett's multiple comparison test was used as we were comparing three groups.

2.1.10 CDC20B mutation analysis

The gene *CDC20B*, which carried the disease co-segregating rare variant, was further analysed in a set of 552 JME affected individuals, and 488 ethnically matched control individuals. The gene sequence comprising all exons, flanking intronic boundaries, and the 5'- and 3'- untranslated regions (Figure 7) were Sanger sequenced to identify additional rare variants.

2.1.11 Bioinformatics analysis

A list of all genes present at the 5p15-q12 locus was downloaded from Mapviewer-NCBI (now discontinued). For each gene in this locus, details of the genomic position of all exons and introns were also retrieved. These genomic positions were used to manually check the coverage of each exon in the locus, using SAMtools-tview. The complete gene sequence of *CDC20B* and sequences for genes harbouring patient variants were downloaded from NCBI (NC_000005.10:c55173177-55112971, Homo sapiens chromosome 5, GRCh38.p13 Primary Assembly). Primers were designed using the online tools Primer3 (Untergasser et al., 2012) and OligoCalc (Kibbe, 2007). Protein sequences for CDC20B across different species were downloaded from NCBI to perform multiple sequence alignments using the tool Clustal Omega (Madeira et al., 2019).

2.1.12 Plasmids and antibodies

The CDC20B cDNA (Genscript, NJ, USA, OHu14900) was sub-cloned into pEGFPN1 (enhanced GFP tag fused to C-term of the protein), p3X-FLAG-CMV10 (3X FLAG tag fused to the N-term of the protein) and pcDNA3.1+ (untagged) vectors. Site-directed mutagenesis was performed using QuikChange II XL Mutagenesis reagents (Agilent Technologies) generate patient-specific variants {c.282G>T to (p.Gln94His), c.598A>G (p.Arg200Gly), c.635T>A (p.Ile212Lys) and c.1087T>C (p.Trp363Arg)}. To study CDC20B domains, different regions were either sub-cloned or premature stop sites were introduced in the cDNA (Figure 12). pEYFP-Plk1 (39843) was obtained from Addgene (Watertown, USA). p3X-FLAG-CMV10-EFHC1 was available in the laboratory.

The antibodies used in this study were: anti-CDC20B (polyclonal, rabbit raised; Abcam, Cambridge, UK, ab185481 and Proteintech, IL, US, 13376-1-AP), anti-CDC20B (monoclonal, mouse raised; Sigma, MO, US, SAB1402036), anti-gamma tubulin (monoclonal, mouse raised; Sigma, T5326), anti-alpha tubulin (monoclonal, mouse raised; Sigma, T9026), anti-FLAG (monoclonal, mouse raised; Sigma, 1804) and anti-GFP (polyclonal, rabbit raised; Thermo Fisher Scientific, A-6455), anti-IgG from mouse (Sigma, I5381), anti-IgG from rabbit (Sigma, I5006), goat anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific, A11008), goat anti-mouse Alexa Fluor 568 (Thermo Fisher Scientific, A11001),

goat anti-rabbit IgG – HRP (Genei, KA, India, HPO3), goat anti-rabbit IgG – HRP (Genei, HPO5).

2.1.13 Cell culture and transfection

HeLa cells, HEK-293 cells, U-87 MG cells, SH-SY5Y cells and NIH/3T3 cells were maintained in DMEM (high glucose, Sigma) supplemented with 10% heat-inactivated fetal bovine serum (MP Biomedicals, CA, USA), 2 mM L-glutamine (Sigma) and antibiotics (100 U/ml Penicillin and 10 mg/ml streptomycin; Sigma) in a humidified atmosphere of 5% CO_2 at 37°C. Cells were grown to 60-70% confluence in 6-well culture dishes or on poly-L-lysine (Sigma) coated 18 mm glass coverslips and transiently transfected with 1 µg plasmid per well using Lipofectamine 2000 transfection reagent (Thermo Fischer Scientific). HeLa cells were transfected using jetPRIME transfection reagent (Polyplus-transfection, France). Protein expression was checked 24 to 48 hours post-transfection.

2.1.14 RNA isolation

Glassware to be used during RNA isolation and MilliQ water to be used for making solutions/reagents were Diethyl Pyrocarbonate (DEPC) treated and double autoclaved. TRIzol reagent was added to the cells and incubated for 5 minutes at room temperature for lysis and complete dissociation of the nucleoproteins complex. 0.2 mL of chloroform per 1 mL of TRIzol reagent was added to the lysed cells and incubated for 2-3 minutes at room temperature. The samples were centrifuged for 15 minutes at 12,000 g at 4°C. The mixture separated into a lower red phenol-chloroform, interphase, and a colourless upper The aqueous phase containing the RNA was aqueous phase. transferred to a new tube by angling the tube at 45° and pipetting the solution out. 0.5 mL of isopropanol per 1 mL of TRIzol reagent, was added to the aqueous phase. After incubation for 10 minutes, the sample was centrifuged for 10 minutes at 12,000 g at 4°C. Total RNA precipitate forms as a white gel-like pellet at the bottom of the tube.

The supernatant was discarded, and the pellet was resuspended in 1 mL of 75% ethanol per 1 mL of TRIzol reagent. The sample was briefly vortexed followed by centrifugation for 5 minutes at 7500 g at 4°C. The supernatant was discarded and the RNA pellet was air-dried for 5–10 minutes. The pellet was resuspended in 50 μ L of RNase-free water and incubated in a water bath set at 55–60°C for 10–15 minutes for dissolution.

2.1.15 cDNA synthesis

The SuperScript III First-Strand Synthesis System (Invitrogen, MA, USA) for RT-PCR (reverse transcriptase-polymerase chain reaction) was used to synthesize first-strand cDNA from total RNA. 1 µg total RNA, 5 µM oligo(dT)₂₀, 1 mM dNTP mix and DEPC treated water to makeup volume to 10 µl were combined in a 0.2 ml PCR tube and incubated at 65°C for 5 minutes followed by transferring to ice. The cDNA synthesis mix comprising, 2-X RT buffer, 10 mM MgCl₂, 0.02 M DTT, 40 units of RNase OUT enzyme and 200 units of SuperScript III RT enzyme, was prepared and 10 µl of this mix was added to each RNA-primer mixture. The reaction was incubated at 50°C for 5 minutes. The reaction was terminated by incubation at 85°C for 5 minutes, followed by chilling on ice. 1 µl RNase H was added to each tube and the reaction was incubated at 37°C for 20 minutes. The synthesized cDNA was stored at -20°C.

2.1.16 Western analysis

For isolating whole-cell protein, the cells/tissues were lysed using lysis buffer (150 mM NaCl, 10 mM Tris-pH 7.5, 0.1% SDS, 1% Triton X-100, 1% deoxycholate and 5 mM EDTA). The total protein content of the cells was collected by centrifuging the lysed cells at 13,000 rpm for 20 minutes at 4°C. Total protein content was quantified using the Pierce BCA protein assay kit (Thermo Fischer Scientific). 50 µg of total protein was separated on a 10% SDS-polyacrylamide gel (Laemmli, 1970) followed by transfer to nitrocellulose membrane (Pall, NY, USA) at 20 volts for 1 hour. The membrane was blocked with 5% skimmed milk for 4 hours at 4°C followed by incubation with primary antibodies, anti-CDC20B (1:500) or anti-gamma tubulin (1:5000) or anti-alpha tubulin (1:5000) or anti-FLAG (1:500) or anti-GFP (1:2500), at 4°C for 16 hours. HRP-conjugated secondary antibodies (1:5000) were used to probe the membrane at 4°C for 4 hours. The membrane was washed between each incubation step with 0.05% PBST (0.05% tween-20 in 1X PBS). Clarity western ECL chemiluminescence substrate (Biorad, CA, USA) was used to detect the protein bands on photographic films.

2.1.17 Immunocytochemistry

To perform immunocytochemistry analysis, cells were grown on 18mm poly-L-lysine coated glass coverslips. The cells were fixed with 2% paraformaldehyde (PFA) for 15 minutes at room temperature or with ice-cold methanol (for gamma-tubulin staining) at -20°C for 5 minutes. The fixed cells were permeabilized using 0.1% Triton X-100 for 10 minutes at room temperature and then blocked with 3% BSA (bovine serum albumin) for 1 hour at room temperature. Incubations with primary antibodies, anti-CDC20B (1:500) and anti-gamma tubulin (1:5000), and fluorescently labelled secondary antibodies (1:500), diluted in 1% BSA, were done for 1 hour each at room temperature. Nuclear staining was performed using 1µg/ml 4, 6-diamidino-2phenylindole (DAPI) for 15 minutes at room temperature. The coverslips were mounted on glass slides using Polyvinyl alcohol mounting medium (Sigma, 10981) and sealed with transparent nail polish. Imaging was done using Zeiss LSM 510-meta/-880 confocal microscope. Zeiss LSM 880 with airyscan mode was used for superresolution microscopy.

2.1.18 Immuno-pulldown assay

Total protein was isolated from cells at 4°C using mild lysis buffer (150 mM KCl, 25 mM tris-pH 7.4, 5 mM EDTA, 0.5% Np40, protease inhibitor cocktail (Roche, 05892791001), 1 mM PMSF). 20 µl

Dynabead protein G mix (Invitrogen) was allowed to bind with 2 μ g anti-FLAG antibody, 2 μ g anti-GFP anti-body or 2 μ g anti-CDC20B monoclonal antibody for 4 hours with rotation (10 rpm) at 4°C. The bead-antibody complex was then incubated with 2 mg protein lysate for 12 hours at 4°C. Post-incubation, the bead-antibody-antigen complex was washed 4 times for 1 minute each, on ice, with 200 μ l cold 1 X PBS. Elution was done by boiling the beads in 50 μ l 2X dye for 10 minutes. The eluted protein fraction was separated from the magnetic beads and stored in a fresh tube at -20°C or loaded on an SDS-PAGE gel for further analysis.

2.1.19 In-utero electroporation

C57BL/6 pregnant mice were anaesthetized using isoflurane. The abdominal area of the mice was sterilized with 70% alcohol and shaved using a blade. About a 1 cm long incision was made in the abdomen of the pregnant mice and the embryos were pulled out using ring forceps. The embryos were kept hydrated in warm 1X PBS. A solution containing 2 µg/µl of EGFPN1-CDC20B wildtype, Trp363Arg mutant, Ala509Thr mutant or EGFPN1-empty vector with 1ul of fastgreen (Sigma) was injected into the lateral ventricle of embryonic brains at E14.5 and electroporated with a 5mm forceps electrode, which transmitted five electric pulses at 50 V for 50 ms at 1-second interval through the uterine wall. The embryos were pushed back into the abdomen and the incision was stitched using a stainless-steel surgical suture curved needle and silk suture. The mice were kept in a recovery chamber for 1-2 hours before shifting to their cage. The embryos were harvested 24-48 hours post electroporation. The brains were removed and transferred to tubes containing ice-cold 4% PFA for tissue fixation. These brains were stored in PFA at 4°C for 24 hours.

2.1.20 Cryosectioning

The PFA fixed brains were transferred to 15% sucrose for 24 hours at 4°C followed by 30% sucrose for another 24 hours at 4°C. The brains

were mounted on the chuck of a cryosectioning machine (Leica Biosystems, IL, USA) in a freezing medium and allowed to freeze for 20 minutes at -20°C. 20-micron thick sections were collected on gelatin-coated glass slides and stored at -20°C until staining.

2.1.21 Immunohistochemistry

The slides were removed from the -20°C freezer and allowed to thaw at room temperature for 30 minutes. The freeze media was washed off by dipping the slides in 1X PBS for 15 minutes. The sections were permeabilized in 0.05% PBS-tween20 solution for 30 minutes at room temperature. Blocking was done with 10% NGS for 1 hour at room temperature. This was followed by staining with anti-GFP antibody (Thermo Fischer Scientific, 1:1000 made in 1% NGS) at 4°C for 16 hours and fluorescently tagged secondary antibody (1:400 in 1%NGS) at 4°C for 4 hours. The slides were then incubated with 1ug/ml DAPI solution for 30 minutes at room temperature. The slides were dipped in 1X PBS and allowed to dry completely. The dried slides were then dipped in water and allowed to dry before mounting in 70% glycerol. Imaging was done using Zeiss LSM 880 microscope.

2.2 Results

2.2.1 Linkage analysis

In the genome-wide linkage analysis, parametric two-point LOD scores were calculated at 60-90% penetrance values. The highest two-point LOD score of 1.7 was obtained at recombination fraction0, for D5S426 at 5p13.2, at 90% penetrance value and 1% phenocopy (Table 1). No suggestive evidence of linkage was found for any marker elsewhere in the genome on searching for regions where LOD score was more than 1.0 and the marker co-segregating among all affected individuals.

Haplotype analysis showed a set of 12- marker disease haplotype block shared among all affected members, except II:8 and asymptomatic carriers. The proximal and distal boundaries of the linked region were marked by D5S1981 and D5S407, respectively, spanning a 64Mb genomic region (Figure 1).

	Genetic	Physical	LOD at the theta value							
Marker	Position (cM)	Position (Mb)	0	0.1	0.2	0.3	0.4	0.5		
D5S416	27.9	16.7	0.00	0.00	0.00	0.00	0.00	0.00		
D5s1997	29.7	16.9	-1.55	-0.72	-0.36	-0.15	-0.04	0.00		
D5s2074	35.6	21	-0.02	-0.01	-0.01	0.00	0.00	0.00		
D5s502	38.9	25.5	0.01	0.13	0.13	0.08	0.03	0.00		
D5S419	39.5	26.5	0.88	0.70	0.50	0.29	0.09	0.00		
D5s1993	44.4	31.6	0.01	0.13	0.13	0.08	0.03	0.00		
D5S426	51.6	34.7	1.70	1.39	1.05	0.68	0.30	0.00		
D5s1964	54.4	37.8	-0.07	0.04	0.07	0.05	0.01	0.00		
D5S418	58.1	39.9	1.69	1.38	1.04	0.67	0.29	0.00		
D5s1969	61.1	50.2	0.89	0.70	0.50	0.28	0.08	0.00		
D5s664	63.8	51.9	0.95	0.76	0.55	0.32	0.10	0.00		
D5S407	65	52.9	0.88	0.70	0.50	0.28	0.09	0.00		

Table1: Two-point LOD analysis for the 5p15-q12 markers at different θ values in Family GLH35

Marker order is as per the human genome physical map (Human Genome Map Viewer Build 36.3 database, NCBI, NIH, USA)

2.2.2 Whole-exome sequencing

To examine the 5p15-q12 region in detail, whole-exome-based sequencing was undertaken in two affected members of the GLH35 family, II:3 and III:4. This region spans 64 Mb of the sequence length and encodes 177 protein-coding genes. In the whole-exome sequencing experiment, a total of 9.01 GB sequence, as 41.58 million paired-end reads of 72 bp, was generated from sequencing on the GAIIx machine, where more than 98% of bases were of high quality and total coverage of 99% was obtained. The average read depth was >60X. The region of our interest has 2255 coding exons and 570 non-coding exons out of which 136 coding exons and 415 non-coding exons were not covered by the whole-exome sequencing.

Table 2: Sequence coverage summary for the whole-exome sequencing experiment (WES)

Sample	11:3	3	III:e	4	
Target	Whole Exome Probes Targeted	chr5 – Exome Probes Targeted	Whole Exome Probes Targeted	chr5 – Exome Probes Targeted	
Total number of reads	83.15 N	ſillion	76.91 N	1illion	
Reads aligned to complete genome	82.95 N	1illion	on 76.75 Million		
%Reads aligned to complete genome	99.7	76	99.7	78	
Reads aligned to the target region	67.09 Mb	688 Kb	63.83 Mb	711 Kb	
%Reads aligned to target region	80.69	0.83	82.99	0.93	
Target Sequence Length	51.54 Mb	529 Kb	51.54 Mb	529 Kb	
Total target covered	50.68 Mb	521 Kb	50.60 Mb	521 Kb	
%Total Target covered	98.34	98.45	98.19	98.52	
%Total Target covered with at least 5X Read Depth	94.22	95.43	94.01	95.62	
%Total Target covered with at least 10X Read Depth	89.68	91.93	89.86	93.57	
%Total Target covered with at least 15X Read Depth	85.33	88.02	85.97	91.50	
%Total Target covered with at least 20X Read Depth	80.94	83.85	81.91	88.69	
Average Read Depth	67.94	66.42	65.41	69.27	

Percentage of region coverage after sequences aligned to Human genome reference sequence (hg19/Grch37)

2.2.3 Whole-genome sequencing

Whole-exome sequencing does not cover untranslated regions (UTR) and some of the protein-coding exons too. To exhaustively cover all important regions of the genome, whole-genome sequencing was carried out on DNA from one member of the family GLH35, III:4. In the whole-genome sequencing experiment, a total of 180 GB sequence, as 1.2 billion paired-end reads of 150 bp, was generated from sequencing on the illumine Hiseq X (illumina). More than 97% of bases were of high-quality (Phred score > 20) and an average read depth of 52X was obtained (Table 3). A total of 90,928 variants were identified out of which 1,497 variants were either absent or present at a MAF<0.005 across the databases dbSNP151, 1000 Genomes, ExAC and the gnomAD.

Table	3:	Sequence	coverage	summary	for	the	whole-genome
sequei	ncin	g experime	nt (WGS)				

Sample	I	11:4
Fields	Genome	5p15-q12 Region
Total number of reads	1.21	Billion
Reads aligned to complete genome	1.20	Billion
%Reads aligned to complete genome	98.77	98.84
Target Sequence Length	3.2 Gb	61 Mb
Total target covered	3.0 Gb	58 Mb
% Target Covered	94.19	95.78
% Target Covered with at least 5X read depth	93.62	95.45
% Target Covered with at least 10X read depth	92.82	95.1
% Target Covered with at least 15X read depth	91.75	94.63
% Target Covered with at least 20X read depth	90.05	93.75
% Target Covered with at least 30X read depth	83.72	88.96
Average read depth	52.53	52.77

Percentage of genome/ region coverage calculated after sequences were aligned to the human genome reference sequence (GRCh38).

2.2.4 Rare variant analysis and prioritization

Of the 1497 rare variants identified at the 5p15-q12 locus, 480 lie in protein-coding genes and 1423 in non-protein-coding regions such as micro-RNAs, promoters, enhancers and transcription factor binding A variation at the same genomic position can have multiple sites. annotations, which is the reason for the total number of rare variants being 1497 and not 1903 (480 + 1423). The variants in the nonprotein-coding regions were first checked for their conservation using the CADD score. Variants with CADD<20 were removed from our analysis. The variants lying in conserved regions were then analysed for their pathogenicity using the FATHMM-MKL prediction tool that combines sequence conservation scores with ENCODE-based functional annotations (Shihab et al., 2015). The variants were also manually checked in the UCSC genome browser to see if they lie in repeat regions that are prone to sequencing errors. None of the variants in the nonprotein-coding regions were found to have any pathogenic effects and were hence not taken forward for further analysis.

The variants in protein-coding transcripts (449) were further classified based on their consequences. There were 424 variants in intron regions, 19 in UTR regions, 27 in regions upstream or downstream of the genes, 4 variants gave rise to missense changes and 1 variant to a synonymous change in the protein sequence. Variants in low complexity regions, which are rich in polymorphisms, regions beyond 100 base pairs from the exon-intron boundary and variants in regions upstream or downstream of genes were excluded from further analysis (Figure 3). Some variants can lie in non-protein-coding regions, such as micro-RNAs, promoters, enhancers and transcription factor binding sites. These variants were checked for their conservation using the CADD score, with variants with CADD<20 removed from further analysis. The remaining variants were manually checked in the UCSC genome browser for their conservation, and we found that none of the

variants lie in evolutionarily conserved regions of the genome. Hence, these were not taken forward for further analysis.

Segregation status was checked for the rare variants identified in the protein-coding genes in the WES/WGS analysis. Ten variants, c.*2135G>A in C1QTNF3, c.*1664A>G in PRLR, c.538-30C>T in IL7R, c.*1770A>G in LMBRD2, c.8044G>C in CPLANE1, c.2413A>G in NUP155. c.*620G>A in SNX18, c.*2812_*2813del in SNX18, c.*3364A>G in SNX18, c.1513G>A in CDC20B, co-segregated with the JME phenotype in the family. The variant, c.*2135G>A in C1QTNF3, was present in ethnically matched normal control individuals and was therefore not taken forward for analysis. Conservation and in-silico predictions were performed for the remaining nine variants (Table 4). Minigene assay was performed for the intronic variant c.538-30C>T in IL7R. 3'UTR variants, c.*1664A>G in PRLR, c.*1770A>G in LMBRD2, c.*620G>A in SNX18, c.*2812_*2813del in SNX18, and c.*3364A>G in SNX18 were examined by performing luciferase assays.

Figure 3: Whole-exome/genome sequencing variants filtration and prioritization flow chart. The variants identified in the 5p15-q12 locus are first filtered based on their minor allele frequency across databases. Variants with frequency less than 0.005 are further filtered based on their annotation and their segregation with the disease phenotype in the family.

Geneª	Consequence ^b	HGVSc ^c	HGVSp ^d	rs ID ^e	In-house controls ^f	MAF gnomAD v2.1 ^g	SIFT ^h	Polyphen2 ⁱ	Mutation Taster ^j	HSF (splice site) ^k
PRLR	3' UTR variant	c.*1664A>G	-	Novel	0/192	_	-	-	Polymorphism (0.99)	-
IL7R	intron variant	c.538-30C>T	-	rs1165054639	0/192	0.000004	-	-	Polymorphism (0.99)	Potential alteration of splicing
LMBRD2	3' UTR variant	c.*1770A>G	-	Novel	0/192	_	-	-	Disease-causing (0.99)	-
CPLANE1	missense variant	c.8044G>C	p.Gly2682Arg	rs768671286	0/480	0.000003	Tolerated (0.148)	Benign (0.002)	Neutral (1)	-
NUP155	missense variant	c.2413A>G	p.lle805Val	rs376806446	0/480	0.00003	Tolerated (1)	Benign (0)	Neutral (0.99)	-
SNX18	3' UTR variant	c.*620G>A	-	Novel	0/192	_	-	-	Disease-causing (0.99)	-
SNX18	3' UTR variant	c.*2812_*2813del	-	Novel	0/192	_	-	-	Polymorphism (0.99)	-
SNX18	3' UTR variant	c.*3364A>G	-	rs186817959	0/192	_	-	-	Disease-causing (0.77)	-
CDC20B	missense variant	c.1513G>A	p.Ala509Thr	rs200898156	0/480	0.0002	Damaging (0.026)	Probably damaging (1)	Damaging (0.93)	-

Table 4: Rare variants identified by whole-genome sequencing in the 5p15-q12 region in GLH35 family

^aGene harbouring the variant, ^bConsequence of the variant, ^cNomenclature of the variants with respect to the first base of the corresponding cDNA. The position of the variant is given according to cDNA of the longest protein-coding transcript of the respective gene. ^dAmino acid position for the missense variants, ^fThese variants were checked in in-house, ethnically matched control individuals (192 or 480 individuals) by Sanger sequencing, ^gMinor allele frequency of these variants in gnomAD version 2.1, ^{h,i,j,k}predictions for pathogenicity of the variant.

2.2.5 Minigene splicing assay to analyse the intronic variant

Minigene assay was undertaken to study the effect of the intronic variant c.538-30C>T in *IL7R* on splicing. The exon close to the intronic variant along with 500 base pairs upstream and downstream of the exon-intron boundary was cloned in the exon trapping vector pSPL3 (Figure 4). The wild type and variant minigenes were transfected in HEK293 cells. Total RNA isolation was done 48 hours post-transfection and cDNA synthesis was done using a superscript III first-strand synthesis system. The primers V1 and V2, which lie in the vectorspecific exons V1 and V2, were used to amplify the minigene. If splicing takes place, the intron between the exons V1 and V2 gets spliced out. In the minigene that we have constructed, under wild-type conditions, the IL7R exon will also be present between the vectorspecific exons V1 and V2. We find that the variant minigene behaves the same as the wild type and there is no indication of a splicing error (Figure 4)

Figure 4: Schematic of IL7R mini-gene assay. A. Plasmid map of the pSPL3 vector. **B.** Schematic of the IL7R minigene. V1 and V2 are the exons present in the vector. IL7R exon 5 with the spanning intronic regions are cloned between V1 and V2. A product of 436 base pairs is expected when splicing takes place. **C.**

PCR amplification of the IL7R region of interest harbouring the intronic variant from genomic DNA. **D.** RT-PCR analysis of cDNA from wildtype (WT) and variant-harbouring minigene transfected cells.

2.2.5 Luciferase assay to study the effect of the 3'UTR variants on miRNA regulation

To investigate the effect of the rare 3'UTR variants, c.*1664A>G in *PRLR*, c.*1770A>G in *LMBRD2*, c.*620G>A in *SNX18*, c.*2812_*2813del in *SNX18*, and c.*3364A>G in *SNX18*, on predicted miRNA binding sites and gene expression, 400 base pairs of the region harbouring the variant was cloned into the 3'UTR of the luciferase reporter gene in the vector pMIR-report luciferase vector (Figure 5). The patient variants were generated by site-directed mutagenesis. The wild type and variant constructs were transfected in HEK293 cells and luciferase readings were taken 48 hours post-transfection. The luciferase readings normalized against β -galactosidase enzyme activity were plotted to compare the wildtype and variant readings. We found no significant difference in the luciferase readings between the wildtype and variant carrying luciferase constructs (Figure 5).

Figure 5: Luciferase assay for variants in miRNA binding sites. A. Plasmid map of the pMIR-luciferase vector. B. PCR amplification of the region of interest harbouring the 3'UTR variants in genes *SNX18, PRLR* and *LMBRD2* from genomic DNA. D. Normalized luciferase readings have been plotted for wildtype and variant harbouring constructs. No statistically significant difference in luciferase activities between the wildtype and variant constructs is observed. The experiment was done 4 times.

2.2.6 Identification of CDC20B rare and conserved missense variant

The intronic variant c.538-30C>T in *IL7R* and the 3'UTR variants, c.*1664A>G in *PRLR*, c.*1770A>G in *LMBRD2*, c.*620G>A in *SNX18*, c.*2812_*2813del in *SNX18*, and c.*3364A>G in *SNX18*, showed no effect on splicing and gene expression levels, respectively. The three variants identified in the coding exons, c.8044G>C in *CPLANE1*, c.2413A>G in *NUP155*, and c.1513G>A in *CDC20B* are missense variants: p.Gly2682Arg, p.Ile805Val and p.Ala509Thr, respectively. The variants in the genes *CPLANE1* and *NUP155* were found to be poorly conserved across species and the majority of in-silico tools predicted these variants to be benign or polymorphisms (Table 4).

The only variant which was conserved across species and showed deleterious effects on the proteins function employing in-silico predictions by different tools was c.1513G>A in *CDC20B* (Table4). This variant gives rise to a non-synonymous change, p.Ala509Thr, in the protein. Multiple sequence alignment for CDC20B across species shows that the residue alanine at the 509th position is highly conserved (Figure 6).

Figure 6: The c.1525G>A (p.Ala509Thr) variant in CDC20B: **A.** Alignment of the genome sequence reads against human genome reference sequence as viewed in tview of SAMtools v0.1.7a. The snapshot here shows that not all reads have the C>T variant, which indicates that this variant is heterozygous. The dot and comma represent the matched reference allele and the alphabet shows the variant allele. Note: *CDC20B* gene lies on the negative strand of the chromosome, hence the variant in the gene is G>A but is shown in the alignment as C>T. **B.** Electropherograms of sequence with wild-type (G/G) and variant allele (G/A) for the c.1525G>A variant. The arrow indicates the nucleotide showing heterozygous variant shown by the presence of two peaks. **C.** Multi-species protein sequence alignment of CDC20B by Clustal Omega. The alanine (A) 509 is highlighted in red.

Figure 7: Gene architecture of *CDC20B***.** The cytogenetic location of *CDC20B* and the schematics of exon-intron structure is depicted here. It is encoded on the reverse strand of chromosome 5. Other genes spanning the *CDC20B* locus have been represented. *CDC20B* gene is 60 kilobases in length and has 12 exons. The second intron of *CDC20B* harbours miRNA449 cluster (blue arrow).

2.2.7 CDC20B rare variants among JME patients examined

CDC20B gene encompasses 60 kilobases of the genomic region and harbours 12 exons. CDC20B encodes a 519 amino acid-long cell division cycle 20 homolog B protein. It belongs to the WD-repeat family and has 7 WD40 repeats at its C-terminus. The location of the *CDC20B* gene on chromosome 5, genetic architecture is represented in Figure 7.

The complete transcript of *CDC20B* was examined in 552 JME patients and 488 ethnically-matched control individuals. In this analysis, 25 rare variants, 13 of which are novel, were identified in 42 patients (Table 5). These variants were either absent or rare (MAF<0.005) in 1000 in-house control chromosomes and databases- dbSNP151, 1000 Genomes, ExAC and gnomAD. Out of these, c.282G>T (p.Gln94His), c.598A>G (p.Arg200Gly), c.635T>A (p.Ile212Lys) and c.1087T>C (p.Trp363Arg) give rise to non-synonymous changes in the CDC20B protein (Figure 6, Table 6) and c.990-5C>T and c.1460-4C>A lie in splice regions.

Table 5: Novel/rare CDC20BvariantsidentifiedbySangersequencing a cohort of 552 JME patients.

Genomic position (Grch38)	Region	cDNA position	Amino acid position	rs ID	MAF gnomAD v2	MAF in- house controls
55172851	Intron	c.63+87G>A	_	Novel	_	_
55146701	Exon	c.282G>T	p.Gln94His	Novel	_	_
55143818	Intron	c.356-175C>A	_	rs372181403	0.00006	0.001
55143701	Intron	c.356-58A>G	_	Novel	_	-
55140487	Intron	c.487-80A>G		Novel	_	_
55133584	Intron	c.581-56A>G	_	Novel	-	-
55133573	Intron	c.581-45A>G	_	Novel	_	_
55133511	Exon	c.598A>G	p.Arg200Gly	rs1238048521	_	-
55133474	Exon	c.635T>A	p.lle212Lys	rs550120464	0.0003	0.001
55133413	Exon	c.696C>T	p.Tyr232Tyr	Novel	_	_
55133290	Intron	c.697+122G>A	_	rs369502428	0.0002	_
55125033	Intron	c.990-5C>T	_	rs769802207	0.00001	_
55124931	Exon	c.1087T>C	p.Trp363Arg	rs759894199	0.00002	0.002
55124923	Exon	c.1095G>A	p.Pro365Pro	rs375917242	0.00005	_
55120578	Intron	c.1216-28G>A	_	rs1209715691	0.000008	_
55120524	Exon	c.1242T>C	p.Ser414Ser	rs532500094	0.0001	0.002
55119765	Intron	c.1459+36T>C	_	rs752577948	0.00006	0.001
55114322	Intron	c.1460-4C>A	_	rs1370902674	_	_
55114272	Exon	c.1506C>A	p.Thr502Thr	rs773815311	0.000008	_

55114253	Exon	c.1513G>A	p.Ala509Thr	rs200898156	0.0002	_
55113615	3'UTR	c.*603T>C	_	Novel	_	_
55113204	3'UTR	c.*1014A>G	_	Novel	_	_
55113080	3'UTR	c.*1138T>C	_	Novel	_	_
55113074	3'UTR	c.*1144G>A	_	rs531849250	_	_
55112919	Downstream	c.+52G>C	_	Novel	_	_

Of the total five non-synonymous variants identified in CDC20B, p.Ala509Thr and p.Trp363Arg, lie in the c-terminus of CDC20B, which harbours 7 WD40 repeat domains. Conservation analysis across species showed that the residues Trp363 and Ala509 are highly conserved across species, with Gln94, Arg200 and Ile212 also showing moderate conservation in mammals (Figure 8). The patients harbouring the CDC20B non-synonymous variants all manifest GTCS and myoclonic seizures, which are hallmarks of JME.

Genomic position (Grch38)	cDNA position	amino acid position	rs ID	MAF gnomAD 2.1	SIFT	Polyphen-2	CADD phred score	UMD predictor	Mutation Taster	PROVEAN 1.1	fathmm-MKL coding
55146701	c.282G>T	p.Gln94His	-	_	Tolerated (0.60)	Benign (0)	0.005	Polymorphism (32)	Neutral (1)	Neutral(- 0.27)	Neutral (0.00)
55133511	c.598A>G	p.Arg200Gly	rs1238048521	_	Damaging (0.05)	Benign (0.006)	22.6	Pathogenic (80)	Neutral (0.99)	Damaging (-2.59)	Neutral (0.13)
55133474	c.635T>A	p.lle212Lys	rs550120464	0.0003	Damaging (0.01)	Benign (0.091)	11.03	Polymorphism (36)	Neutral (1)	Neutral (-0.84)	Neutral (0.06)
55124931	c.1087T>C	p.Trp363Arg	rs759894199	0.00002	Damaging (0.00)	Probably damaging (1)	27.9	Pathogenic (84)	Damaging (0.99)	Damaging (-13.65)	Damaging (0.97)
55114253	c.1525G>A	p.Ala509Thr	rs200898156	0.0002	Damaging (0.001)	Probably damaging (1)	31	Probably pathogenic (66)	Damaging (0.93)	Damaging (-3.61)	Damaging (0.56)

Table 6: Novel/rare missense variants identified in CDC20B

gnomAD 2.1 was used to get MAF; SIFT, Polyphen-2 v2.2.2, CADD v1.4, UMD-Predictor, MutationTaster 2, PROVEAN 1.1 ensembl 66 and fathmm-MKL were used to make predictions on the pathogenicity of the variants.

Figure 8: Rare *CDC20B* variants in epilepsy patients: A. CDC20B protein architecture is represented with the location of the five missense variants, p.Q94H, p.R200G, p.I212K, p.W363R and p.A509T. The carboxy-terminal of CDC20B harbours seven WD repeat domains, shown in pink boxes. Two of the patient variants, p.W363R and p.A509T, lie in WD repeat domains. **B.** Electropherograms showing DNA sequence of the respective wild-type (upper panel) and the variant (lower panel) from the genomic DNA. The presence of two peaks at one nucleotide position indicates the heterozygous variant for each variant. The substitution of the reference (black) to variant allele (red) is marked by an arrow. Alignment of CDC20B protein sequence from a few species by Clustal Omega, showing only the region near the location of mutated amino acid residue. The wild-type amino acid residue for each variant is highlighted in red.

2.2.8 CDC20B in Epi25

Epi25 is a global collaboration under which more than 9,000 epilepsy patients have been sequenced(https://epi25.broadinstitute.org/). In this study, ninety-two ultra-rare variants have been identified in *CDC20B* out of which 13 are potentially pathogenic. Seven of these variants give rise to missense changes in the protein sequence, two are loss of function variants and four lie in the splice regions (Appendix A-

2.4, A-2.5). *CDC20B* has been listed among the top 200 genes with burden of ultra-rare variants in the Epi25 collaborative, with the family variant p.Ala509Thr being identified in six epilepsy patients, three of whom have genetic generalized epilepsy (GGE). These observations provide further support for *CDC20B*'s contribution to epilepsy.

2.2.9 CDC20B brain expression

We observed CDC20B expression in human and mouse brain samples. GTExRNAseq data and BioGPS microarray data both show that CDC20B is transcribed in the brain. Marathon-Ready full-length human brain cDNAs were used to amplify the CDC20B transcript. The amplified products were Sanger sequenced for confirmation (Figure 9-C) CDC20B expression analysis in human brain regions, cortex, hippocampus and cerebellum, and mouse whole brain was performed by Western analysis. We observed a band, immunoreactive to CDC20B antibody, at 54 kDa. Mouse testis sample, in which CDC20B is shown to be highly expressed by human protein atlas, was used as a positive control (Figure 9-D). CDC20B expression in mouse brain sections was checked by immunohistochemistry. CDC20B showed expression in mouse ependymal cells. We did not observe immunoreactivity of the CDC20B antibody anywhere else in the mouse brain (Figure 9-B).

В

D

Expected product size = 490 bp

С
Figure 9: CDC20B brain expression: A. Expression of CDC20B in various human tissues shown by the RNA expression data summarized in GeneCards. GTExRNAseq data and BioGPS microarray data have been shown here. Β. CDC20B brain expression in mouse brain sections checked bv immunohistochemistry. CDC20B shows expression in mouse ependymal cells in the choroid plexus marked by arrowheads. L=Ventricle, LV=Lateral ventricle. C. CDC20B transcript was PCR amplified from human brain cDNAs. Forward primer binds in exon 8 and reverse primer binds in exon 12 of CDC20B. A band at 490 base pairs is expected. **D.** Western blot analysis of CDC20B protein in different human brain regions and mouse brain. Mouse testis has been used as a positive control as CDC20B is known to be highly expressed in this tissue. CDC20B antibody shows immunoreactivity at 54 KDa, corresponding to CDC20B predicted molecular weight.

2.2.10 CDC20B cellular localization

To get an insight into the role of CDC20B, its endogenous localization was checked across mammalian cell lines such as HeLa (epithelial cell type, derived from the human cervix), SH-SY5Y (epithelial cell type, derived from human bone marrow), U87-MG (epithelial cell type, derived from the human brain), HEK293 (epithelial cell type, derived from the human embryonic kidney) and NIH3T3 (fibroblast cell type, derived from mouse embryo), by immunocytochemistry using three different CDC20B antibodies. It was observed that CDC20B endogenous protein is present majorly in the cytoplasm with some expression in the nucleus as well, all through interphase. At different stages of mitosis, prophase, metaphase and anaphase, CDC20B is distributed uniformly across the cell body. During telophase and cytokinesis, CDC20B localizes at the midbody, an organelle responsible for the separation of the two daughter cells at the end of mitosis, marked by the midbody marker, gamma-tubulin (Figure 10).

2.2.11 CDC20B over-expression and cytokinesis defects

To study the effect of the patient-specific variants, the wild type and variant CDC20B protein was overexpressed in HeLa cells. In addition, the N-terminal and C-terminal truncated CDC20B protein was also overexpressed in HeLa cells. Western blot analysis of the wild type and variant CDC20B showed no significant difference in overall protein

expression. The N-terminal CDC20B protein, as opposed to the fulllength protein, showed enhanced protein expression on Western analysis. Immunofluorescence analysis of the overexpressed CDC20B

Figure 10: CDC20B cellular localization. A. CDC20B localization in HeLa cells across different stages of the cell cycle. CDC20B endogenous protein is present majorly in the cytoplasm with some expression in the nucleus as well all through interphase. In telophase or during cytokinesis, CDC20B localizes to the midbody. B. CDC20B localization at the midbody in NIH3T3, SH-SY5Y and U87-MG cell lines. C. High/Super-resolution imaging of HeLa cells during cytokinesis showing CDC20B (green) localizing to the midbody along with gamma-tubulin (red). Arrows point to the midbody. Green: CDC20B, red: gamma-tubulin and blue: DAPI. D. Line profile made using Image J showing the presence of CDC20B and gamma-tubulin together at the midbody.

protein showed that it localises to the cytoplasm during interphase and to the midbody during cytokinesis both in the case of wildtype and mutant. Since the endogenous CDC20B protein localizes to the midbody during cytokinesis, we hypothesized that it may have a role in separating the two daughter cells at the end of mitosis. We decided to overexpress the variant proteins in HeLa and check their effect on the progression of the cell cycle. It was observed that three of the variants, p.Arg200Gly, p.Trp363Arg and p.Ala509Thr, and the N-terminal CDC20B show more number of cells undergoing cytokinesis as opposed to the wildtype. This suggests that patient variant harbouring CDC20B is hampering the progression of cytokinesis (Figure 11). Also, the C-terminus, which harbours the seven WD40 domains, is essential for the CDC20B protein's function during cytokinesis.

2.2.12 CDC20B- interacting partners

Immuno-pulldown (IP) studies were conducted to obtain an insight into the molecular pathways CDC20B might be involved in. The colocalization of CDC20B with gamma-tubulin at the midbody lead us to check the interaction of the two proteins. FLAG-tagged CDC20B was overexpressed in HeLa cells and IP was done both with anti-FLAG antibody and anti-gamma tubulin antibody. 5% input, supernatant

Figure 11: CDC20B overexpression in HeLa cells. GFP tagged CDC20B wildtype, mutants – Q94H, R200G, I212K, W363R and A509T, N-term and C-term truncations (green) were overexpressed in HeLa cells and co-stained with gamma-tubulin (red) **A.** Overexpressed CDC20B localizes to the cytoplasm and midbody.

B. Western blot analysis of over expressed CDC20B in HeLa cells. Lane1: untransfected, lane2: EGFPN1-empty vector, lane3: EGFPN1-CDC20B-wildtype, EGFPN1-CDC20B-Q94H, lane5: EGFPN1-CDC20B-R200G, lane4: lane6: EGFPN1-CDC20B-I212K, lane7: EGFPN1-CDC20B-W363R, lane8: EGFPN1-CDC20B-A509T, lane9: EGFPN1-CDC20B-N-term (1st amino acid to 222nd amino acid of CDC20B), lane10: EGFPN1-CDC20B-C-term (223rd amino acid to 519th amino acid of CDC20B). The blot has been probed with an anti-GFP antibody to detect the GFP tagged CDC20B protein. Alpha-tubulin has been used as a loading control. C. The number of cells undergoing cytokinesis was quantified across three independent experiments with approximately 650 cells counted for each construct. Dunnett's multiple comparison test was used to calculate the P values. R200G and A509T have a P-value < 0.05 (*), W363R and N-term have a Pvalue <0.01 (**).

and the undenatured elute fraction were electrophoresed on an 8% SDS-PAGE gel. The blots were probed with anti-FLAG antibody to visualize CDC20B bands and anti-gamma tubulin antibody to visualize gamma-tubulin bands. We observe that CDC20B and gamma-tubulin are present in the eluted fraction, showing that they interact. FLAG-tagged CDC20B was immuno-precipitated using mouse IgG antibody. 5% input, supernatant, wash fractions, undenatured and beta-mercaptoethanol denatured elutes were electrophoresed on an 8% SDS-PAGE gel. Untransfected HeLa lysate was used to do an IP using anti-FLAG antibody. 5% input, supernatant, wash fractions, undenatured and beta-mercaptoethanol denatured elutes were electrophoresed on an 8% SDS-PAGE gel. In both control experiments, it was observed that there was no gamma-tubulin in the elutes (Figure 12).

In order to check which domain in CDC20B is responsible for its interaction with gamma-tubulin, GFP-tagged CDC20B - full length, N-terminal, C-terminal, amino acids 1-100, amino acids 101-395, amino acids 396-519, amino acids 101-519 and amino acids 1-395 were overexpressed in HeLa cells and IP was performed using anti-GFP antibody. Gamma tubulin was found in the elute fraction along with CDC20B, showing that they are present in the same complex of proteins (Figure 13). Each of the truncated CDC20B protein constructs that we expressed in HeLa cells showed interaction with gamma-tubulin. This shows that CDC20B interacts with gamma-tubulin in a

complex, where regions across CDC20B are contributing to the interaction.

Further, we wanted to check if CDC20B interacts with other proteins that localize to the midbody. The candidates we chose were, EFHC1, a known JME gene that also localizes to the midbody (Raju et al., 2017) and PLK1, a protein that recruits other proteins to the central spindle and midbody for cytokinesis (Jang et al., 2009; Tian et al., 2015). We find that CDC20B interacts with EFHC1 and PLK1 (Figure 13). We costained EFHC1 and PLK1 with CDC20B in HeLa cells. We find that CDC20B colocalizes with EFHC1 throughout the cytoplasm and at the midbody. PLK1 and CDC20B show colocalization at the midbody. CDC20B localizes to basal bodies in multicilliated cells, along with another protein centrin2 (Revinski et al., 2018). We checked for their interaction by co-IP and find that, under the conditions that we have used, CDC20B does not immunoprecipitate with centrin2 (Figure 14).

Figure 12: CDC20B interacts with gamma-tubulin. A. Strategy followed to check if CDC20B interacts with gamma-tubulin. FLAG-tagged CDC20B was overexpressed in HeLa cells and IP was done both with anti-FLAG antibody and

anti-gamma tubulin antibody. **B.** Western blot to analyze the IP. 5% input, supernatant and undenatured elute fraction was electrophoresed on an 8% SDS-PAGE gel. The blots were probed with anti-FLAG antibody to visualize CDC20B bands and anti-gamma tubulin antibody to visualize gamma-tubulin bands. We observe that CDC20B and gamma-tubulin are present in the eluted fraction, showing that they interact. **C.** FLAG-tagged CDC20B was immuno-precipitated using mouse IgG antibody. 5% input, supernatant, wash fractions, undenatured and beta-mercaptoethanol denatured elutes were electrophoresed on an 8% SDS-PAGE gel. **D.** Untransfected HeLa lysate was used to do an IP using anti-FLAG antibody. 5% input, supernatant, wash fractions, undenatured and beta-mercaptoethanol denatured elutes were electrophoresed on an 8% SDS-PAGE gel. In both control experiments, it was observed that there was no gamma-tubulin in the elutes.

Figure 13: Studying CDC20B domains responsible for its interaction with gamma-tubulin. A. EGFPN1-CDC20B full length and truncated proteins used for the IP experiments. **B.** EGFPN1-CDC20B was immunoprecipitated using anti-GFP antibody. The inputs and elutes were probed with anti-GFP antibody to detect CDC20B and anti-gamma tubulin antibody. The elute fraction for the wildtype CDC20B as well as all the truncations showed the presence of gamma-tubulin. The blue arrow shows the antibody band in the elute fraction. Red stars mark the GFP-tagged CDC20B protein band in the elutes.

Figure 14: CDC20B interacts with EFHC1 and PLK1. A. GFP-tagged CDC20B and FLAG-tagged EFHC1 were co-expressed in HeLa cells. IP was performed with both anti-FLAG and anti-GFP antibodies. We find that in both Ips, CDC20B shows interaction with EFHC1. B. Untagged CDC20B was co-expressed with FLAG-tagged EFHC1 and IP was performed using anti-CDC20B monoclonal antibody (Sigma). A band corresponding to EFHC1 is found in the elute fraction. GFP-tagged EFHC1 and FLAG-tagged CDC20B and co-expressed in HeLa. **C**. Both these proteins co-localize in the cytoplasm and at the midbody during cvtokinesis. D. FLAG-tagged EFHC1 and EGFPN1-empty vector were coexpressed in HeLa and IP was done using anti-FLAG antibody. On probing the elute with anti-GFP antibody, there was no band corresponding to EGFP-CDC20B. E. GFP-tagged CDC20B and FLAG-tagged centrin-2 were co-expressed and IP was performed using anti-FLAG antibody. We observe that CDC20B does not interact with centrin-2 under the conditions we have used. F. GFP-tagged PLK1 and FLAG-tagged full length, N-term and C-term CDC20B were coexpressed in HeLa cells. Anti-GFP antibody was used to perform IPs. CDC20B full-length and truncated proteins interact with PLK1. E. PLK1 and CDC20B colocalize at the midbody during cytokinesis.

2.2.13 CDC20B in-utero electroporation in mouse embryo

The patient variants, p.Trp363Arg and p.Ala509Thr were ectopically expressed in mouse embryos by performing in-utero electroporation at E14.5. Cells expressing the GFP tagged CDC20B protein were examined for their spatial localization in the section, numbers, and the length of the projections. GFP-empty vector showed high transfection efficiency when compared to the wild type and mutant CDC20B-GFP. When we observed the spatial distribution of the transfected cells, we find that the empty vector shows distribution from the ventricular zone to the cortex. The CDC20B expressing cells are mostly concentrated in the ventricular and subventricular zones. The length of the projections of the neuronal cells was quantified using ImageJ. GFP-empty vector expressing cells show very long projections (average 480 µm). The projection lengths for CDC20B-GFP expressing cells were found to be smaller (average 190 µm). Both the mutants, p.Trp363Arg and p.Ala509Thr, showed projections significantly longer than the wildtype but shorter than the empty vector (Figure 14). Overexpression of CDC20B seems to negatively regulate the projection lengths and the variants do not show the same level of negative regulation. The change in the lengths of the neuronal progenitor projections can have an influence on neuronal migration, which in turn can be a cause for subtle brain developmental defects.

Figure 15: In-utero electroporation study of CDC20B wildtype and variant proteins. **A.** GFP-tagged empty vector and CDC20B have been imaged after staining with anti-GFP antibody. V: Ventricle, VZ: Ventricular zone, SVZ: Subventricular zone. **B, C.** The number of transfected cells and their lengths have

been quantified. The experiment is done three times (N=3). The number of transfected cells counted per construct is 50. The number of cells used to measure the lengths of the projections per construct is 20. Dunnett's multiple comparison test was used to calculate the P values.

2.3 Discussion

Here, I have presented the results of a genetic analysis of a JME family, GLH35 from south India. Out of 13 members who participated in the study, four members had ABS, GTCS and MYO, two had GTCS and one, FS. Genome-wide linkage analysis of the family led to the identification of a locus at 5p15-q12. The highest lod score that we obtained was 1.7, which is due to the low penetrance value and phenocopies in the family. It has been suggested that the group of less severe epilepsies may be due to causal variants/genes of low penetrance effects (Myers et al., 2019).

The 64 MB, 5p15-q12 locus was analysed by performing whole-genome sequencing, which led to the identification of a rare missense variant, p.Ala509Thr, in CDC20B. On sequencing additional JME patients for CDC20B, 25 rare variants were identified, out of which four produced non-synonymous changes in the protein. Of the total five nonsynonymous variants identified in CDC20B, two, p.Ala509Thr and p.Trp363Arg, lie in the c-terminus of CDC20B, which harbours 7 WD40 repeat domains. Conservation analysis across species showed that the residues Trp363 and Ala509 are highly conserved across species. The other three residues which lie in the N-terminus, Gln94, Arg200 and Ile212, showed moderate conservation in mammals. CDC20B has been listed among the top 200 genes with the burden of ultra-rare variants in the Epi25 collaborative (Epi25 Collaborative, 2019), with the family variant p.Ala509Thr identified in six epilepsy patients, three of whom had genetic generalized epilepsy (GGE), one each had developmental and epileptic encephalopathy (DEE) and non-acquired focal epilepsy (NAFE) with the type of epilepsy not given for the sixth patient. The Epi25 study reports seven missense variants, two loss of function variants and four splice region variants in *CDC20B* (Appendix A2.4, A2.5). Eight of these variants lie in the WD-repeat domain region of CDC20B which is a highly conserved region of the protein. These data add evidence for *CDC20B*'s contribution as a potential epilepsy gene.

CDC20B encodes a 519 amino acid cell division cycle 20 homolog B protein. CDC20B protein harbours at its C-terminus, 7 WD40 repeat domains, which help in the formation of beta-propeller tertiary structures. These beta-propeller domains form protein-protein interaction scaffolds (Schapira et al., 2017). WD40 domain-containing proteins comprise the largest protein families (Schapira et al., 2017). These proteins are involved in a large variety of cellular processes many of which have been implicated in various disease pathogenesis (Xu and Min, 2011)

Figure 16: CDC20B and its paralogs CDC20 and CDH1/FZR1: CDC20B pairwise alignment was performed using Clustal Omega.

CDC20B has two paralogs, *CDC20* and *FZR1* (Figure 16), both of which bind to anaphase-promoting complex (APC) and help in the progression of the cell cycle during mitosis and G1 phase, respectively (Weinstein et al., 1994; Fang et al., 1998; Pfleger and Kirschner, 2000; Yamamuro et al., 2008; Sigl et al., 2009). Curiously, CDC20 protein is also reported to play a role in dendrite morphogenesis and regulation of pre-synaptic

differentiation (Kim et al., 2009; Yang et al., 2009b); CDH1/FRZ1 regulates axonal growth and patterning in the mammalian brain and is essential for the survival of postmitotic neurons (Konishi et al., 2004; Almeida et al., 2005). Recent studies have also reported that FZR1 is mutated in patients with neurodevelopmental disorders (Rodríguez et al., 2019). De-novo mutations in FZR1 have been implicated in the causation of developmental and epileptic encephalopathies and Myoclonic Atonic Epilepsy. Drosophila fzr mutants have been reported to show abnormal neuronal patterning (Manivannan et al., 2021). These observations suggest that these WD40 domain-containing proteins have functions beyond cell cycle regulation. The molecular mechanisms by which CDC20 and FZR1 regulate these neurological functions are still not understood and need to be further deciphered.

CDC20B's cellular expression and localization experiments in various mammalian cell lines showed us that during interphase CDC20B is present in the cytoplasm. While CDC20B shows a diffused localization throughout the cell, from pro-metaphase to anaphase stages of mitosis, it exhibits co-localization with gamma-tubulin at the midbody/midbody ring during telophase and cytokinesis. When we overexpressed the patient-variant harbouring CDC20B protein in HeLa cells, we observed that the variants p.Arg200Gly, p.Trp363Arg and p.Ala509Thr and the truncated CDC20B protein lacking all the WD-40 domains showed a significantly greater number of cells undergoing cytokinesis as opposed to the wild type CDC20B. This increase in the number of cells undergoing cytokinesis suggests a delay in the time taken by the daughter cells to separate from each other in CDC20B variant expressing cells. Such defects in cytokinesis can have effects on the development of the brain as shown in the case, for example, of the CIT-K knockout mouse, a protein that localizes to the cleavage furrow/midbody and plays a role in cytokinesis (Madaule et al., 1998). CIT-K mutant mice display defective neurogenesis due to altered

cytokinesis and apoptosis. These mice have microcephaly, are ataxic and die due to severe epileptic seizures (Di Cunto et al., 2000).

The patient variants p.Trp363Arg and p.Ala509Thr were expressed in mouse embryos by performing in-utero electroporation at E14.5. Cells expressing GFP were quantified for their numbers, spatial localization in the section and the length of the projections. GFP-empty vector showed high transfection efficiency when compared to the wild type and mutant CDC20B-GFP. The length of the projections of the neuronal progenitors was also quantified using ImageJ. Both the mutants, p.Trp363Arg and p.Ala509Thr, showed cellular projections significantly longer than the wild-type controls. Overexpression of CDC20B could negatively regulate the projection lengths and the variants seem to partially abolish this regulation. The change in the neuronal progenitor projection lengths have effect neuronal can an on migration/connectivity, which in turn can be a cause for the development of seizure prone neuronal circuits (Qin et al., 2017).

In this study, we show that, in addition to gamma-tubulin (TUBG1), CDC20B interacts with EF-hand domain-containing protein 1 (EFHC1) and polo-like kinase (PLK1). EFHC1, another epilepsy-causing gene, localizes to the spindle poles and midbody (Suzuki et al., 2004; Bailey et al., 2017; Raju et al., 2017; Thounaojam et al., 2017). EFHC1 has been implicated in cell division, apoptosis, neuronal migration, regulation of ion channels, neurite architecture and neurotransmitter release (Suzuki et al., 2004; de Nijs et al., 2009, 2012; Rossetto et al., 2011; Nijs et al., 2013). EFHC1 null mice develop spontaneous myoclonus (Suzuki et al., 2009). PLK1, an essential mitotic kinase that regulates cytokinesis (Sunkel and Glover, 1988), has been shown to govern mitotic progression and spindle orientation in the developing mammalian cortex (Sakai et al., 2012). PLK1 regulates other cell cycle proteins such as KIF2A and ATXN-10, both of which have been shown to be important for brain development (Jang et al., 2009; Tian et al., 2015). Missense mutations in KIF2A cause microcephaly, early-onset epilepsy and various malformations of cortical development (Poirier et al., 2013). A pentanucleotide repeat (ATTCT) in intron 9 of the ATXN10 gene causes spinocerebellar ataxia type 10 (SCA10), whose symptoms include cerebellar ataxia and epilepsy (Matsuura et al., 2000). Both KIF2A and ATXN10, are probable interactors of CDC20B according to a mass spectrometry study available at ProteomeXchange, ID:PXD010629 (http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD 010629). It will be interesting to study CDC20B in light of the other proteins such as KIF2A, ATXN10, that it might associate with.

CDC20B is situated in a conserved locus that harbors several genes such as MCIDAS, CCNO and the microRNA cluster mir449, which are all known for their role in multi-ciliogenesis (Marcet et al., 2011; Lu et al., 2019; Terré et al., 2019). CDC20B expression is positively regulated by the multi-ciliogenesis proteins MCIDAS and GEMC1 (Terréet al., 2016; Lu et al., 2019). CDC20B and miR-449, a microRNA cluster present in the second intron of CDC20B, share a common promoter and are co-regulated during multi-ciliogenesis (Yang et al., 2009a). A recent report has shown that CDC20B is associated with deuterosomes during the phase of centriole amplification, and to basal bodies and cilia in fully differentiated mammalian MCCs. Mouse ependymal MCCs lacking CDC20B show no cilia formation, showing its importance in the formation of cilia in multi-ciliated cells (Revinski et al., 2018). Motile cilia of ependymal cells drive CSF flow and are required for migration of neuroblasts in the subventricular zones, and any abnormalities in these cells may cause abnormal neuroblast migration which can, in turn, lead to brain abnormalities (Sawamoto et Overexpressing CDC20B patient-variants harbouring al., 2006a). proteins in ependymal primary cultures and human airway epithelial cells can be employed as a tool to study the effect of these variants on cilia formation in MCCs.

EFHC1 localizes to the axoneme of primary cilia where it regulates neuronal activation and dopamine signalling (Loucks et al., 2019). The CDC20B paralog CDC20 localizes to the basal body of primary cilia and regulates its length and disassembly (Wang et al., 2014b). There have been no reports yet looking at CDC20B's localization at the primary cilia, hence it will be interesting to study this aspect of CDC20B, as primary cilia are present in neurons and are centres of diverse cell signalling pathways, such as Wnt, Notch, planar cell polarity (PCP), Platelet-Derived Growth Factor Subunit A (Pdgfa), and the Hedgehog (Hh) (Goetz and Anderson, 2010).

midbody during brain development

Figure 17: Hypothesis of CDC20B's functions based on its various known and predicted localizations in different types of cells. A. Primary cilia in neurons: Centres of diverse cell signalling pathways, such as Wnt, Notch, planar cell polarity (PCP), Platelet-Derived Growth Factor Subunit A (Pdgfq), and the Hedgehog (Hh) (Goetz and Anderson, 2010). B. Multi-ciliated ependymal cells: Motile cilia of ependymal cells drive CSF flow and are required for migration of neuroblasts in the subventricular zones (Sawamoto et al., 2006b). **C**. Cytokinesis and midbody during brain development: Cytokinesis and postabscission midbody remnants are regulated during mammalian brain development (McNeely and Dwyer, 2020).

Based on our genetic findings discussed in this chapter, we propose CDC20B as a candidate for the cause of epilepsy in the family 35. We report five missense variants in CDC20B in this study: p.Ala509Thr in the family and p.Gln94His, p.Arg200Gly, p.Ile212Lys, p.Trp363Arg in additional unrelated JME patients. The interaction of CDC20B with gamma-tubulin, EFHC1 and PLK1 gives us a clue towards pathways that it might be regulating or be a part of. Further studies employing a CDC20B mouse knockout model may give us insights into its role in brain development and function, and its role in epilepsy pathophysiology.

Chapter 3

Genome sequencing reveals a mutation in *DES* at the EJM9, 2q33q36 locus.

Summary

A genetic locus for JME, EJM9 (2q33-q36) was identified in a threegeneration south Indian family (SCT135) with several of its members affected with the disorder. I carried out whole-exome sequencing (WES) and whole-genome sequencing (WGS) to identify a potentially causative gene in the SCT135 family. Analysis of the gene variants in the 2q33q36 region led to the identification of two novel variants, c.966A>T (p.Glu323Asp) in DES and c.2466+89G>C in USP37, co-segregating with JME. These were absent or rare (MAF>0.005) in databases such as gnomAD, dbSNP and our set of control individuals. Bioinformatic analysis suggested p.Glu323Asp in DES to be a damaging variant and c.2466+89G>C in USP37 capable of disrupting normal splicing. А minigene-based splicing assay carried out for c.2466+89G>C in USP37 in cultured HEK293T cells, showed the absence of any alternate spliced product, indicating that this intronic variant is likely to be a benign polymorphism. These results suggest that mutation in DES is likely to be causative of JME in the family. Further, to identify additional epilepsy-associated variants in DES, I examined the gene sequence in additional JME patients. I identified two new variants: p.Gly65Ser, and p.Ala337Thr among the JME patients examined. DES codes for a 470 amino acid, muscle-specific, type III intermediate filament. RT-PCR analysis showed the expression of desmin in different human brain regions. Desmin is known to be expressed in pericytes in the brain. Though the epilepsy-associated mutations in DES do not seem to affect its expression levels and filament formation, our observations, make a prima facie suggestion that they may have a damaging effect on its cellular function/s in the brain by affecting the physiology of the pericytes.

3.1 Materials and methods

3.1.1 Family ascertainment and linkage analysis

Family 135 (Figure 1) was ascertained through a 38-year proband, II:7, who developed MJ and GTCS at the age of about 20 years (Ratnapriya et al., 2010). Photoparoxysmal response was also observed for II:7. This patient's seizures were precipitated by sleep deprivation, alcohol consumption and flashing lights. He also had an antecedent history of seizures. febrile A detailed clinical history and neurological examination of all the family members were done by the study All the affected members exhibited frequent myoclonic neurologist. seizures occurring on awakening or within about two hours of waking The diagnosis of JME was based on the established diagnostic up. criteria, which were: (1) characteristic repetitive myoclonic jerks involving upper extremities, occurring after awakening, without loss of consciousness, (2) age at onset of myoclonic seizures between 8 and 25 years, (3) normal background activity and paroxysmal generalized spike and wave discharges in the EEG and (4) otherwise normal neurological status and intelligence. Proband's father (I:2) had MJ and GTCS. Proband's two sisters (II:2, II:4) and one brother (II:5) had MJ and GTCS starting at the ages between 15-17 years. II:2 and II:4, in addition, had histories of ABS. III:5 had MJ and GTCS with a history of febrile III:7 manifested MJ and GTCS from the age of 12 years. seizures. Proband's offspring, III:8 and III:9 did not have a history of seizures, but III:8 showed generalized activation of spike and wave discharges in the EEG during sleep. All family members provided written consent to participate in the study. Of the 17 members in the family, six had JME, with histories of febrile seizures in two of them, and one had generalized EEG abnormalities alone (Figure 1).

Figure 1: SCT135 family: Pedigree of SCT135 depicting the disease-linked haplotype (2q33-q36) shared among its eight-affected members (II:2, II:4, II:5, II:7, III:2, III:5, III:7, III:8) and one unaffected member (III:3). Males are denoted by squares and females are denoted by circles. Filled symbols represent affected individuals and empty, unaffected ones. Haplotypes are shown below the The inferred alleles are in parentheses, I:2, I:3. Arrows mark the symbols. recombinant events in individuals II:2 and II:7. The recombination event in the individual III:2 is indicated by an asterisk. Arrow marks the proband, II:7, and the green boxes indicate the individuals, II:5 and III:7, whole exome or genome sequenced. Clinical features of affected subjects are indicated along with the symbols (AB: Absences, MS: Myoclonic seizures, GTCS: Generalized tonic-clonic seizures, FS: Febrile seizures, EEG: Electroencephalography; the patient showed Generalized spike and wave discharges in their EEG recording but was clinically normal).

Ratnapriya and colleagues had performed genotyping and linkage analysis on this family. Seventeen individuals from the family, who participated in the study were genotyped (Figure 1) using 382 microsatellite markers from the ABI Prism Linkage Mapping Set $V_{2.5}$ and two- and multi-point lod score analysis was carried out.

3.1.2 Whole-exome sequencing experiment

3.1.2.1 Library preparation

Five micrograms of genomic DNA (individuals II:5 and III:7) was fragmented (sonication at 55 pulses, 30s ON and 30s OFF) (Bioruptor-Diagenode, NJ, USA) and purified using Agencourt AMPure XP beads (Beckman Coulter, CA, USA). The target peak for base-pair size was 150-400 bp. The sheared DNA was analyzed for size distribution using Agilent DNA 1000 Bioanalyzer (Agilent Technologies, CA, USA). Successively, the sheared DNA fragments were used to construct DNA libraries using Agilent's SureSelectXT Target Enrichment System for illumina paired-end sequencing library. The constructed library was reformed by a series of steps using different enzymes to repair ends and make blunt-ended 5' phosphorylated fragments, add a single nucleotide A overhang and ligate 60 bp sequence adaptors to fragment ends. Each step was followed by a purification step using Agencourt AMPure XP beads. After ligation, the adapter-ligated fragments were enriched by PCR and concentrated using a vacuum concentrator (Eppendorf, Hamburg, Germany). The library was then hybridized to SureSelect[™] biotinylated RNA baits at 65°C for 24-72 hours. Hybridized library fragments were isolated by magnetic capture using Dynal M-280 streptavidin-coated beads (Invitrogen, CA, USA) followed by purification of the capture library-bead solution using AMPure XP beads. PCR amplification was carried out to enrich the captured library and the amplified products were purified using AMPure XP beads. The amplified DNA was analyzed using the high sensitivity bioanalyzer chip (Agilent) which shows a peak in the size range of 300-400 nucleotides. The SureSelect human exome kit is designed to enrich a total of 51 Mb region in the genome. The sequencing was carried out for the captured libraries with illumina Genome Analyzer IIx platform (GAIIx) obtaining the 72 bp paired-end reads.

3.1.2.2 Sequence alignment, variant calling and annotation

The raw sequence data (FASTQ) was processed through an in-house analysis pipeline. The quality check was done using SeqQC v2.1 (http:// genotypic.co.in/Products/7/Seq-QC.aspx) and the low-quality bases and 3' adapter sequences were removed. The whole-exome FASTAQ sequencing reads were aligned to human genome reference (hg19/GRch37) using BWA v-0.6.0 (Li and Durbin 2009). The reads showing at least 70% of bases with a minimum Phred score of 20, obtained by SeqQC v-2.0 (http:// genotypic.co.in/Products/7/Seq-QC.aspx), were used for alignment. Using SAMtools v-0.1.7a (Li et al 2009), duplicate reads arising possibly from PCR artefacts, were removed.

The variant calling was performed by SAMtools at a Phred-like SNP quality score of 20. The variants identified were annotated by SNPeff and filtered against the dbSNP131. Novel variants were further examined in updated databases such as dbSNP139 (http:// www.ncbi.nlm.nih.gov/SNP/), 1000 Genomes (http://browser.1000genomes.org/index.html), Ensemble (http://asia.ensembl.org/index.html) and EVS datasets (http:// evs.gs.washington.edu/EVS/). In order to obtain potential variants, which may have gotten missed at high coverage, variants up to 3x read depth were manually examined. Those transcript regions which remained uncovered by the whole-exome sequencing were manually identified and examined by Sanger sequencing.

3.1.3 Whole-genome sequencing (WGS)

3.1.3.1 Library preparation and sequencing

The genomic DNA was checked for its integrity by electrophoresis on a 0.8% agarose-TAE gel (Figure 2). Three micrograms of genomic DNA was fragmented using Covaris to generate 300-400 base pair fragments. 100ng of fragmented DNA was used to generate a sequencing library

using NEBNext Ultra II DNA Library Prep Kit for illumina (New England Biolabs, USA, E7103). In brief, the fragmented DNA was subjected to end repair followed by A - tailing and adapter ligation. Ampure beadbased size selection was performed to obtain the library of the desired size. The size-selected DNA was enriched by PCR amplification using (P7)5' illumina index adapter primers adapter AGATCGGAAGAGCACACGTCTGA ACTCCAGTCA - 3', P5 adapter 5' -AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT - 3'). The amplified product was purified using Ampure beads to remove unused primers. The libraries were quantitated using Qubit DNA HS quantitation assay (Thermo Scientific) which specifically quantitates dsDNA. The library quality was checked using Agilent Bioanalyzer DNA 1000 kit (Figure 2). The QC passed libraries were sequenced using illumine HiseqX (illumina).

Figure 2 – DNA and library quality check: A. The genomic DNA (Sample II:5 and III:7) was checked for its integrity and quality by electrophoresis on 0.8% TAE-agarose gel. This genomic DNA was used for library preparation. The libraries were checked for their quality and size distribution using Agilent Bioanalyzer DNA 1000 Kit. **B.** Size distribution of the whole genome sequencing library made using the NEBNext Ultra II DNA Library Prep Kit for illumina. **C.** Size distribution of the whole-exome sequencing library made using Agilent's

SureSelectXT Target Enrichment System for illumina Paired-End Sequencing Library.

3.1.3.2 Sequence data quality check (QC), processing and alignment

The sequence data quality was checked using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC (Ewels et al., 2016) software. The data was checked for base call quality distribution,% bases above Q20, Q30,%GC, and sequencing The sequence data was processed using adapter contamination. Trimgalore (https://github.com/FelixKrueger/TrimGalore) to remove adapter sequences and low-quality reads. QC passed reads were mapped to human reference genome build GRCh38 that was provided in GATK Resource Bundle using BWA mem (Li and Durbin, 2009b) algorithm with default parameters. The alignments were sorted, indexed and PCR duplicates were marked and removed using sambamba (Tarasov et al., 2015).

3.1.3.3 Variant calling, annotation and filtering

GATK (McKenna et al., 2010) best practice workflow for germline short variant discovery (SNPs + INDELs) using GATK v4 was followed for variant calling (https://software.broadinstitute.org/gatk/bestpractices/). The process, in brief, base qualities in the bam file were recalibrated and GVCF was generated using HaplotypeCaller. GVCF was genotyped to generate vcf. SNPs and INDELs were recalibrated separately by providing variants from dbSNP, 1000 Genome phase1, hapmap, omni SNPs and Mills gold standard INDELs as known and training sets. The filter threshold was set to retain 99% of true variants, which provides the highest sensitivity while still being acceptably specific. Functional annotation for the variants identified in the genome sequencing experiment was performed using Ensembl Variant Effect Predictor (VEP) build 94 (McLaren et al., 2016). The input was provided in the form of a tab-delimited vcf file (Variant Call Format). Transcript database from both GENCODE and NCBI was used. Allele frequencies were taken from dbSNP151, 1000 Genomes, Exome Aggregation Consortium (ExAC) and Genome Aggregation Database (gnomADv2, exomes and genomes; gnomADv3, genomes). dbSNFPv3.5 (Liu et al., 2011), a database developed for functional prediction and annotation of all potential non-synonymous single-nucleotide variants in the human genome, was also used for annotation. Samtools (Li et al., 2009) was used to view the whole genome sequence data aligned with the human reference sequence (Grch38) and each exon in the region of interest on chromosome 5 was manually checked for its coverage and read depth.

The identified variants were filtered for minor allele frequency in the databases, dbSNP151, 1000 Genomes project (Auton et al., 2015), Exome Aggregation Consortium (ExAC) (Lek et al., 2016) and the Genome Aggregation Database (gnomAD) (Karczewski et al., 2020) for their minor allele frequency (MAF) to be less than 0.005.

3.1.4 Sanger-based sequence validation of WGS rare variants

All novel/rare variants identified in the WGS dataset were validated by Sanger sequencing. Primers were designed spanning the variantcarrying exons/regions. The Sanger confirmed variants were further analysed in the family for their segregation with the disease phenotype. The segregating variants were examined in 488 ethnically matched control set of normal individuals for their MAF.

3.1.5 DES mutation analysis

The gene *DES*, which carried the disease co-segregating rare variant, was further analysed in a set of 192 JME affected individuals and ethnically matched control individuals. The entire gene sequence

comprising all exons, flanking intronic boundaries, and the 5'- and 3'untranslated regions were Sanger sequenced to identify additional rare variants.

3.1.6 Bioinformatics analysis

The complete gene sequence of *DES* was downloaded from NCBI (NC_000002.12:219418377-219426734, Homo sapiens chromosome 2, GRCh38.p13 Primary Assembly). Primers were designed using the online tools Primer3 (Untergasser et al., 2012) and OligoCalc (Kibbe, 2007). Protein sequences for DES across different species were downloaded from NCBI to perform multiple sequence alignments using the tool Clustal Omega (Madeira et al., 2019).

3.1.7 Plasmids and antibodies

DES cDNA was amplified from human brain cDNAs (Clontech) and cloned into pcDNA3.1(+) plasmid. Site-directed mutagenesis was performed using QuikChange II XL Mutagenesis reagents (Agilent Technologies) to generate patient-specific variants p.Gly65Ser, p.Glu323Asp and p.Ala337Thr.

The antibodies used in this study were: anti-desmin (polyclonal, rabbit raised; Abcam), anti-vimentin (monoclonal, mouse raised; Sigma), anti-vinculin (Polyclonal, rabbit raised; Abcam), anti-alpha tubulin (monoclonal, mouse raised; Sigma), goat anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific), goat anti-mouse Alexa Fluor 568 (Thermo Fisher Scientific), goat anti-rabbit IgG – HRP (Genei), goat anti-mouse IgG – HRP (Genei).

3.1.8 Cell culture and transfection

HEK-293 cells and SH-SY5Y cells were maintained in DMEM (high glucose, Sigma) supplemented with 10% heat-inactivated fetal bovine serum (MP Biomedicals), 2 mM L-glutamine (Sigma) and antibiotics (100 U/ml Penicillin and 10 mg/ml streptomycin; Sigma) in a

humidified atmosphere of 5% CO_2 at 37°C. Cells were grown to 60-70% confluence in 6-well culture dishes or on poly-L-lysine (Sigma) coated 18 mm glass coverslips and transiently transfected with 1 µg plasmid per well using Lipofectamine 2000 transfection reagent (Thermo Fischer Scientific). Protein expression was checked 24 to 48 hours post-transfection.

3.1.9 Minigene assay

To study the effect of the intronic variant, c.2466+89G>C in USP37, on splicing, the exon close to the intronic variant along with 500 base pairs upstream and downstream of the exon-intron boundary was cloned in the exon trapping vector pSPL3 (Figure 4) (Tompson and 5' 2017) the Young, using primer pairs 3' GTGTGAATTCACACTATGACCTATGGCTG and 5' _ TCAGTCAGGGATCCGAAACACTACCCACGTACC- 3'. PCR was done in a 50 µl reaction volume containing 200 µM dNTP, 0.4 µM of each primer, 100 ng of genomic DNA and 1 unit Phusion high-fidelity DNA polymerase (New England Biolabs, M0530S). Amplification was performed using a GeneAmp 9700 at following conditions: initial denaturation at 94°C (5 minutes), followed by 25 cycles of denaturation at 94°C (30 seconds), annealing at 58°C (30 seconds) and extension at 72°C (1 minute) followed by a final extension at 72°C (10 minutes). The amplified products were electrophoresed and visualized on a 0.8% agarose/TAE/EtBr gel (Figure 4). The amplified minigene-insert was purified using Multiscreen 96 well PCR purification plates (Millipore). The 1072 bp minigene-insert was cloned into a pSPL3 mammalian expression vector, using EcoRI and BamHI restriction enzyme sites. Site-directed mutagenesis was performed using QuikChange II XL sitedirected mutagenesis reagents (Agilent Technologies) to generate the patient-specific variants. These wild-type and mutant constructs were used for transfection in HEK293 cells. Total RNA was isolated from the cells using the TRIzol method (Thermo Fisher Scientific). cDNA synthesis was performed using the superscript III first-strand synthesis

system (Thermo Fisher Scientific). Primers V1 (V1-F: 5'-V2 TCTGAGTCACCTGGACAACC-3') and (V2-R: 5'-ATCTCAGTGGTATTTGTGAGC-3') were used to amplify the minigene. The amplified products were electrophoresed and visualized on a 0.8%agarose/TAE/EtBr gel (Figure 4). The products were Sanger-sequenced to confirm any splicing errors.

3.1.10 RNA isolation

Glassware to be used during RNA isolation and Milli-Q water to be used for making solutions/reagents were Diethyl Pyrocarbonate (DEPC) treated and double autoclaved. TRIzol reagent was added to the cells and incubated for 5 minutes at room temperature for lysis and complete dissociation of the nucleoproteins complex. 0.2 mL of chloroform per 1 mL of TRIzol reagent was added to the lysed cells and incubated for 2-3 minutes at room temperature. The samples were centrifuged for 15 minutes at 12,000 g at 4°C. The mixture separated into a lower red phenol-chloroform, interphase, and a colourless upper The aqueous phase containing the RNA was aqueous phase. transferred to a new tube by angling the tube at 45° and pipetting the solution out. 0.5 mL of isopropanol per 1 mL of TRIzol reagent, was added to the aqueous phase. After incubation for 10 minutes, the sample was centrifuged for 10 minutes at 12,000 g at 4°C. Total RNA precipitate forms as a white gel-like pellet at the bottom of the tube. The supernatant was discarded, and the pellet was resuspended in 1 mL of 75% ethanol per 1 mL of TRIzol reagent. The sample was briefly vortexed followed by centrifugation for 5 minutes at 7500 g at 4°C. The supernatant was discarded, and the RNA pellet was air-dried for 5-10 minutes. The pellet was resuspended in 50 µL of RNase-free water and incubated in a water bath set at 55-60°C for 10-15 minutes for dissolution.

3.1.11 cDNA synthesis

The SuperScript III First-Strand Synthesis System for RT-PCR was used to synthesize first-strand cDNA from total RNA. 1 μ g total RNA, 5 μ M oligo(dT)₂₀, 1 mM dNTP mix and DEPC treated water to makeup volume to 10 μ l were combined in a 0.2 ml PCR tube and incubated at 65°C for 5 minutes followed by transferring to ice. The cDNA synthesis mix comprising, 2 X RT buffer, 10 mM MgCl₂, 0.02 M DTT, 40 units of RNaseOUT enzyme and 200 units of SuperScript III RT enzyme, was prepared and 10 μ l of this mix was added to each RNA-primer mixture. The reaction was incubated at 50°C for 50 minutes. The reaction was terminated by incubation at 85°C for 5 minutes, followed by chilling on ice. 1 μ l RNase-H was added to each tube and the reaction was incubated at 37°C for 20 minutes. The synthesized cDNA was stored at -20°C.

3.1.12 Western analysis

For isolating whole-cell protein, the cells/tissues were lysed using lysis buffer (150 mM NaCl, 10 mM Tris-pH 7.5, 0.1% SDS, 1% Triton X-100, 1% deoxycholate and 5 mM EDTA). The total protein content of the cells was collected by centrifuging the lysed cells at 13,000 rpm for 20 minutes at 4°C. Total protein content was quantified using the Pierce BCA protein assay kit (Thermo Fischer Scientific). 50 µg of total protein was separated on a 10% SDS-polyacrylamide gel (Laemmli, 1970) followed by transfer to nitrocellulose membrane (Pall) at 20 volts for 1 hour. The membrane was blocked with 5% skimmed milk for 4 hours at 4°C followed by incubation with primary antibodies, anti-desmin (1:500) or anti-alpha tubulin (1:5000) or anti-vinculin (1:5000) at 4°C for 16 hours. HRP-conjugated secondary antibodies (1:5000) were used to probe the membrane at 4°C for 4 hours. The membrane was washed between each incubation step with 0.05% PBST (0.05% tween-20 in 1X PBS). Clarity western ECL chemiluminescence substrate (Biorad) was used to detect the protein bands on photographic films.

3.1.13 Immunocytochemistry

To perform immunocytochemistry analysis, cells were grown on 18 mm poly-L-lysine coated glass coverslips. The cells were fixed with 2% paraformaldehyde (PFA) for 15 minutes at room temperature (RT) or with ice-cold methanol (for gamma-tubulin staining) at -20°C for 5 minutes. The fixed cells were permeabilized using 0.1% Triton X-100 for 10 minutes at RT and then blocked with 3% BSA (bovine serum albumin) for 1 hour at RT. Incubations with primary antibodies, anti-desmin (1:500) and anti-vimentin (1:5000), and fluorescently labelled secondary antibodies (1:500), diluted in 1% BSA, were done for 1 hour each at room temperature. Nuclear staining was performed using 1 μ g/ml 4, 6-diamidino-2-phenylindole (DAPI) for 15 minutes at RT. The coverslips were mounted on glass slides using Polyvinyl alcohol mounting medium (Sigma) and sealed with transparent nail polish. Imaging was done using Zeiss LSM 510 meta/880 confocal microscope.

3.2 Results

3.2.1 Whole-exome sequencing

To examine the 2q33-q36 region, whole-exome-based sequencing was undertaken for individuals II:5 and III:7 of the family SCT135. This region spans 24 Mb of sequence length and harbours 158 wellannotated protein-coding genes. In the whole-exome sequencing experiment, a total of 9.59 GB sequence per sample, as 72 base pair long paired-end reads, was generated from sequencing on the GAIIx where more than 98% of bases were of high quality and total coverage of 98% was obtained (Table 1). The region of our interest has 2061 coding exons and 563 non-coding exons out of which 120 coding exons and 380 non-coding exons have not been covered by the whole-exome sequencing. The 120 coding exons, 5' UTRs and the first 500 base pairs of 3' UTR were targeted manually by Sanger sequencing.

Table1: Whole-exome sequencing statistics

Sample	11:5		III:7	
Target	Whole Exome Probes Targeted	chr2 – Whole Exome Probes Targeted	Whole Exome Probes Targeted	chr2 – Whole Exome Probes Targeted
Total number of reads	87.48 Million		76.00 Million	
Reads aligned to complete genome	87.34 Million		75.87 Million	
%Reads aligned to complete genome	99.84		99.82	
Reads aligned to the target region	70.84 Mb	1012 Kb	60.80 Mb	811 Kb
%Reads aligned to target region	80.97	1.16	79.99	1.07
Target Sequence Length	51.54 Mb	645 Kb	51.54 Mb	645 Kb
Target covered	49.71 Mb	630 Kb	50.00 Mb	632 Kb
% Target covered	96.45	97.63	97.01	98.03
% Target covered with at least 5X Read Depth	89.70	93.81	91.37	94.80
% Target covered with at least 10X Read Depth	83.66	89.83	86.18	91.52
% Target covered with at least 15X Read Depth	78.33	85.88	81.33	87.96
% Target covered with at least 20X Read Depth	73.51	82.27	76.50	84.06
Average Read Depth	69.33	76.74	59.61	61.63

Percentage of genome/ region coverage calculated after sequences were aligned to the human genome reference sequence (GRCh37).

3.2.2 WES rare variant analysis and prioritization

Upon variant analysis 969 variants were identified out of which 940 variants were reported in dbSNP135 or 1000 Genome project datasets with MAF>0.005 and hence, were not carried forward for our study. The 29 novel variants identified were Sanger validated and then checked for their segregation in the family. Three variants, namely, c.966A>T in *DES*, c.401G>C in *USP37* and c.2908C>T in *TNS1*, co-segregated with the JME phenotype in the family. Two of the co-segregating variants, c.401G>C in *USP37* and c.2908C>T in *TNS1*, were present in normal control individuals and were therefore, not taken forward for analysis (Table 3).

3.2.3 Whole genome sequencing

To cover all the UTR regions which were not covered by the wholeexome sequencing experiment, the linked region 2q33-q36 was examined by whole-genome based sequencing in the member III:7. In the whole-genome sequencing experiment, a total of 90 GB sequence data, as 583 million paired end reads of 150 bp, was generated from sequencing on the illuminaHiseq X sequencer (illumina). More than 97% of bases were of high quality (Phred score > 20) and an average read depth of 26 X was obtained (Table 2). A total of 54,030 variants were identified out of which 875 variants were either absent or present at a MAF<0.005 across the databases dbSNP151, 1000 Genomes, ExAC and gnomAD (Figure 3).

Sample	III:7	
Fields	Genome	2q33-q36 Region
Total number of reads	583.6 Million	
Reads aligned to complete genome	583.2 Million	
%Reads aligned to complete genome	99.93	
Target Sequence Length	3.2 Gb	24 Mb
Total target covered	3.0 Gb	22 Mb
% Target Covered	94.93	99.91
% Target Covered with at least 5X read depth	93.31	93.91
% Target Covered with at least 10X read depth	92.09	93.09
% Target Covered with at least 15X read depth	90.48	90.9
% Target Covered with at least 20X read depth	79.1	80.1
% Target Covered with at least 30X read depth	39.74	41.29
Average read depth	26.97	27.01

Table 2: Whole-genome sequencing statistics

Percentage of genome/ region coverage calculated after sequences were aligned to the human genome reference sequence (GRCh38).

3.2.4 WGS rare variant analysis and prioritization

Of the 875 rare variants identified at the 2q33-q36 locus, 440 lie in protein-coding genes. The variants in protein-coding transcripts (440) were further classified based on their consequences. There were 387 variants in intronic regions, 17 in UTR regions, 101 in regions upstream or downstream genes, one variant gave rise to a missense change and two variants to a synonymous change in the protein sequence. Variants in low complexity regions, which are rich in polymorphisms, regions beyond 100 base pairs from the exon-intron boundary and variants in regions upstream or downstream of genes were excluded from further analysis (Figure 3).

Figure 3: Whole-exome/genome sequencing variants filtration and prioritization flow chart. The variants identified in the 2q33-q36 locus are first filtered based on their minor allele frequency (MAF) across databases. Variants with frequency less than 0.005 are further filtered based on their annotation and their segregation with the disease phenotype in the family.

Segregation status was checked for the rare variants identified in the protein-coding genes in the WGS analysis. c.2466+89G>C in *USP37* was the additional rare segregating variant identified in the family. This variant was missed in our WES experiment (Table 3). In-silico predictions showed that the variant c.2466+89G>C in *USP37* could potentially alter splice sites and was hence taken forward for minigene assay.

Table 3: Rare variants identified by whole-exome/genomesequencing in the 2q33-q36 locus in the SCT135 family

Grch38	Gene	Sequence variant	Effect on protein	Family segregation	MAF in- house controls
195756076	DNAH7	c.11586+57G>A	_	Non-segregating	_
195857660	DNAH7	c.8131A>G	p.lle2711Val	Non-segregating	_
196307273	HECW2	c.2587-40T>C	_	Non-segregating	_
196834398	PGAP1	c.*6836C>G	_	Non-segregating	_
197552916	MOB4	c.*2271del	_	Non-segregating	_
200823713	BZW1	c.*1538dup	_	Non-segregating	_
201389524	TRAK2	c.1194-21G>A	_	Non-segregating	_
201725395	ALS2	c.3308A>G	p.His1103Arg	Non-segregating	_
201757845	ALS2	c.1114-86G>A	_	Non-segregating	_
201835573	CDK15	c.731-70C>T	_	Non-segregating	_
202561287	BMPR2	c.*1346del	_	Non-segregating	_
202788864	ICA1L	c.1209T>A	p.Phe403Leu	Non-segregating	_
203297084	CYP20A1	c.*176T>C	_	Non-segregating	_
203430502	ABI2	c.*3150G>A	_	Non-segregating	_
205121812	PARD3B	c.1028C>T	p.Ala343Val	Non-segregating	_
206175509	GPR1	c.*671T>G	_	Non-segregating	_
207078821	KLF7	c.*2392G>T	-	Non-segregating	-
207604477	CREB1	c.*7419T>C	-	Non-segregating	-
208240027	IDH1	c.851-24C>T	_	Non-segregating	_
209943322	UNC80	c.6718-58G>A	_	Non-segregating	_
210192812	ACADL	c.1191A>G	p.Pro397Pro	Non-segregating	_
216126043	XRCC5	c.798+12G>A	_	Non-segregating	_
217831545	TNS1	c.2908C>T	p.Arg970Trp	Segregating	3/96
217835109	TNS1	c.2887A>G	p.Ser963Gly	Non-segregating	_
217848829	TNS1	c.1313G>A	p.Arg438Gln	Non-segregating	_
218134891	CXCR2	c.90C>T	p.Pro30Pro	Non-segregating	_
218164579	CXCR1	c.633C>A	p.Phe211Leu	Non-segregating	_
218357698	C2ORF62	c.283T>A	p.Phe95lle	Non-segregating	_
218465921	USP37	c.2466+89G>C		Segregating	1/480
218549837	USP37	c.401G>C	p.Ser134Thr	Segregating	5/384
218699187	STK36	c.3643G>A	p.Ala1215Thr	Non-segregating	
218738556	TTLL4	c.880G>A	p.Asp294Asn	Non-segregating	-

218823691	PRKAG3	c.*71C>T	_	Non-segregating	_
219248496	STK16	c.855C>T	p.Leu330Leu	Non-segregating	_
219420899	DES	c.966A>T	p.Glu323Asp	Segregating	0/960
219567104	OBSL1	c.1860A>C	p.Ala620Ala	Non-segregating	_
219633995	SLC4A3	c.1642+16C>T	-	Non-segregating	_
222569954	FARSB	c.*1917G>C	-	Non-segregating	_
224511266	CUL3	c.883+88T>C	_	Non-segregating	_
224585358	CUL3	c349C>G	_	Non-segregating	_
224770741	DOCK10	c.6205-96G>A	-	Non-segregating	_
224823685	DOCK10	c.3037-38A>T	-	Non-segregating	_
227008368	COL4A4	c.4523-64G>T	-	Non-segregating	_
227088729	COL4A4	c.1547A>T	p.Asp516Val	Non-segregating	_
227357595	MFF	c.*478C>T	-	Non-segregating	_
227698936	SLC19A3	c.779A>T	p.Asp260Val	Non-segregating	_
227817435	CCL20	c.*352T>A	_	Non-segregating	_

3.2.5 Minigene splicing analysis of the intronic variant

Minigene assay was undertaken to study the effect of the intronic variant c.2466+89G>C in *USP37* on splicing. The exon close to the intronic variant along with 500 base pairs upstream and downstream of the exon-intron boundary was cloned in the exon trapping vector pSPL3 (Figure 4). The wild type and variant minigenes were transfected in HEK293 cells. Total RNA isolation was done 48 hours post-transfection and cDNA synthesis was done using a superscript III first-strand synthesis system. The primers V1 and V2, which lie in the vector-specific exons V1 and V2, were used to amplify the minigene. If splicing takes place, the intron between the exons V1 and V2 gets spliced out. In the minigene that we have constructed, under wild-type conditions, the *USP37* exon will also be present between the vector-specific exons V1 and V2. We find that the variant minigene behaves the same as the wildtype and there are no splicing errors (Figure 4).

Figure 4: Schematic of USP37 mini-gene assay. A. Plasmid map of the pSPL3 vector. B. Schematic of the USP37 minigene. V1 and V2 are the exons present in the vector. USP37 exon 18 with the spanning intronic regions are cloned between V1 and V2. A product of 434 base pairs is expected when splicing takes place. C. PCR amplification of the USP37 region of interest harbouring the intronic variant from genomic DNA. D. RT-PCR analysis of cDNA from wildtype (WT) and variant-harbouring minigene transfected cells.

3.2.6 Identification of DES rare and conserved missense variant

The intronic variant c.2466+89G>C in *USP37* showed no effect on splicing. The only variant identified in the coding exons, c.966A>T in *DES* gave rise to a missense variant, p.Glu323Asp. The amino acid Glu322 is an evolutionarily conserved residue (Figure 5) and the variant p.Glu323Asp showed deleterious effects on the protein's function on performing in-silico predictions using different tools.

Figure 5: DES mutations associated with epilepsy: A. Alignment of the genome sequence reads against human genome reference sequence as viewed in tview of SAMtools v0.1.7a. The snapshot here shows that not all reads have the A>T variant, which indicates that this variant is heterozygous. The dot and comma represent the matched reference allele and the alphabet shows the variant allele. **B.** Electropherograms of sequence with wild-type (A>A) and variant allele (A>T) for the c.966A>T variant. The arrow indicates the nucleotide showing heterozygous variant shown by the presence of two peaks. C. DES protein architecture with the N-terminal head domain, C-terminal tail domain and middle alpha-helical rod domain is represented with the location of the three missense variants, p.G65S, p.E323D, p.A337T. Multi-species protein sequence D. alignment of desmin by Clustal Omega. The amino acid residues glycine (G) 65, glutamine (E) 323 and alanine (A) 337 are highlighted in red, pink, and blue, respectively.

3.2.7 DES rare variants among JME patients examined

DES gene encompasses an 8-kilobase genomic region and harbours 9 exons. DES encodes a 470 amino acid type III intermediate filament protein. The complete transcript of *DES* was examined in 192 JME patients and ethnically matched control individuals. In this analysis, 10 rare variants, 7 of which are novel, were identified (Table 4).
Genomic Position (Grch38)	cDNA position	region	Amino acid position	Rs ID	Occurrence in JME cohort	MAF gnomAD v2
219418655	c.193G>A	Exon	p.Gly65Ser	rs397516692	1/192	0.00002
219420174	c.640+19C>T	Intron	-	Novel	1/192	_
219420193	c.640+37C/-	Intron	-	Novel	2/192	_
219420659	c.898+2GG/-	Intron	_	rs397516699	2/192	0.002
219420855	c.924C>T	Exon	p.Asp308=	Novel	4/192	_
219420939	c.1009G>C	Exon	p.Ala337Thr	rs59962885	1/192	0.00006
219423870	c.1288+50C>T	Intron	_	Novel	1/192	_
219423976	c.1288+156G>A	Intron	_	Novel	1/192	_
219426015	c.*25G>A	3'UTR	_	Novel	1/192	_
219426675	c.*685G>A	3'UTR	_	Novel	1/192	_

Table 4: DES rare variants

Table 5: DES missense variants- in-silico predictions

cDNA position	Amino acid position	MAF in- house controls	MAF gnomAD v2	SIFT	PolyPhen-2	Mutation Taster
c.193G>A	p.Gly65Ser	0/576	0.00002	tolerated (1)	benign (0.009)	Polymorphism (0.66)
c.969A>T	p.Glu323Asp	0/576	_	tolerated (0.32)	possibly damaging (0.458)	disease causing (0.87)
c.1009G>C	p.Ala337Thr	1/576	0.00006	deleterious (0.02)	probably damaging (0.947)	disease causing (0.99)

These variants were either absent or rare (MAF<0.005) in 1000 inhouse control chromosomes and databases dbSNP151, 1000 Genomes, ExAC and gnomAD. Out of these, c.193G>A (p.Gly65Ser), and c.1009G>C (p.Ala337Thr) give rise to non-synonymous changes in the DES protein (Figure 6, Table 5). Of the total three non-synonymous variants identified in DES, p.Gly65Ser lies in the head domain of DES, and p.Ala337Thr and p.Glu323Asp lie in the central alpha-helical rod domain. Conservation analysis across species showed that the residues Glu323 and Ala337 are highly conserved across species, with Gly65 also showing moderate conservation in mammals (Figure 6). The patients harbouring the DES non-synonymous variants all manifest GTCS and myoclonic seizures, which are hallmarks of JME (Table 6). The proband also shows tremors and absence seizures.

3.2.8 DES brain expression

We find DES expression in human brain samples. Marathon-Ready full-length human brain cDNAs were used to amplify DES transcripts. Primers binding in exons 1 (forward primer) and exon 5 (reverse primer) were used for amplification and an expected band of 498 base pairs was obtained, as seen in the agarose gel. The amplified products were Sanger sequenced for confirmation (Figure 6). The full-length DES transcript was amplified from human brain hippocampus and cloned into the pcDNA3.1 vector.

Figure 6: A. *DES* cDNA was amplified from total cDNA of various human brain regions. Primers binding in exons 1 (forward primer) and 5 (reverse primer) were

used for amplification and an expected band of 498 base pairs was obtained, as seen in the agarose gel image (arrow). **B. Full**-length *DES* cDNA amplification from human hippocampus total cDNA (Clontech). An expected band size of 1.4 Kb was obtained. The amplified cDNA is cloned into pcDNA3.1(+).

3.2.9 DES over-expression and cellular localization

On conducting an immunofluorescence study of wild-type and mutant desmin proteins in HEK293 cells, it was observed that desmin forms dense cytoplasmic filamentous structures. There is no significant difference between the wild-type and mutant desmin filament structures (Figure 7-a). On checking the levels of wild-type and mutant desmin protein, using western blot analysis, no significant difference was seen (Figure 7-b).

Figure 7: Over-expression of DES (desmin) in HEK293 cells. A. Immunofluorescence analysis of DES wild type and variant proteins (p.Gly65Ser, p.Glu323Asp, p.Ala337Thr) in HEK293 cells. DES (red) forms cytoplasmic filamentous structures. There is no significant difference between the wild type and variant DES filament structures. B. DES wild-type and variant protein expression analysis in HEK293 cells, showing no major protein expression level difference between wild type and mutant protein.

3.2.10 Desmin and vimentin co-localization analysis

Overexpressing DES in cells expressing endogenous vimentin gives rise to the integration of the DES filaments with the vimentin filaments. Mutant desmin that fails to make extensive filamentous structures leads to the vimentin filaments to re-organize in the nuclear perinuclear area and in some cases completely segregate from the vimentin network (Bär et al., 2006). To test the *DES* human variants identified in JME patients for their effect on vimentin filaments, the wildtype and mutant proteins were over-expressed in SH-SY5Y cells. These cells express endogenous vimentin.

We observe that the wildtype, as well as all three human variants (p.Gly65Ser, p.Glu323Asp and p.Ala337Thr), were able to form filaments that integrate with the vimentin network and there is no disruption in the vimentin network and localization. The amount of co-localization between desmin and vimentin was quantified by calculating the Pearsons's correlation coefficient, using image J plugin coloc-2, for each cell expressing both these proteins. When compared with wildtype desmin, the variant protein does not have any impact on the co-localization of vimentin with desmin (Figure 8).

Figure 8: Over-expression of desmin in SH-SY5Y cells. **A.** Desmin (green) wildtype and mutant proteins are able to form filamentous structures which integrate with vimentin (red) filaments. **B.** Desmin and Vimentin colocalization represented using a 2-D histogram made using Image J Coloc-2 plugin. C. Pearson's correlation coefficient (PCC) was calculated for desmin and vimentin coexpressing cells using ImageJ Coloc-2 plugin. PCC from three independent experiments and 20 cells per experiment, per construct, were calculated. Oneway ANOVA followed by Dunnet's multiple comparison test was used to calculate the statistical significance. No difference in desmin and vimentin colocalization was observed in cells expressing either wildtype or variant desmin protein.

3.3 Discussion

In this chapter, findings from the whole exome and genome sequencing experiment, to identify the potentially causative gene(s) at the 2q33-q36 locus and preliminary characterization of these variants have been presented. The analysis of NGS data from affected individuals of Family SCT135, revealed a rare, possibly pathogenic variant in *DES*, which appeared suitable for further studies.

The missense mutation identified in *DES* substitutes an evolutionarily conserved amino acid residue, glutamic acid at position 323 to aspartic acid; and was predicted to have a deleterious effect on the protein structure and function. This heterozygous variant was found in all the affected individuals of SCT135 and was absent in our control cohort and public databases such as dbSNP and GnomAD.

DES codes for a 470-amino acid, muscle-specific, type III intermediate There are three major domains to the desmin protein: a filament. conserved alpha-helix rod, a variable non-alpha helix head, and a carboxy-terminal tail. The rod domain, which consists of 308 amino acids with parallel alpha-helical coiled-coil dimers and three linkers to disrupt it, connects to the head domain. The head domain has many arginine, serine, and aromatic residues, is 84 amino acids long and is important in filament assembly and dimer-dimer interactions of desmin. The tail domain is responsible for the integration of filaments and interaction with proteins and organelles. Desmin is only expressed in vertebrates, however, homologous proteins are found in many organisms. Desmin is a subunit of intermediate filaments in cardiac muscle, skeletal muscle and smooth muscle tissue (Bär et al., 2004b). Mutations in the DES gene have been reported to cause human skeletal as well as cardiac myopathy, termed desmin-related myopathies (Clemen et al., 2013).

As a primary step in examining the role of *DES* in a brain disorder, its expression at transcript level was checked by qPCR in different human

brain sub-regions (Figure 6). Further, while exploring the role of *DES* as an epilepsy-linked gene, we identified two additional JME-associated novel/rare mutations, p.Gly65Ser and p.Ala337Thr in a set of JME patients. Taken together, three mutations identified in this study alter conserved amino acid residues in desmin and two of the three variants, p.Glu323Asp and p.Ala337Thr, were predicted to have a damaging effect on the protein function. These missense mutations do not seem to affect the filament formation, expression, or colocalization with vimentin of the desmin protein.

Apart from being a very well-studied skeletal and cardiac muscle protein, desmin is shown to be expressed in pericytes, which are endothelial cells that envelope the blood vessels of the brain (Hughes and Chan-Ling, 2004) (Figure 9).

Figure 9: Different types of cells surrounding the blood vessels in the brain. Pericytes (shown in green colour) are the cells in which desmin is known to be expressed. Functions of brain pericytes: 1. Blood-brain barrier (BBB) formation, 2. Immune regulation, 3. Regulating capillary diameter, 4. Neuronal protection, 5. Controlling angiogenesis and vessel formation. Pericytes control key neurovascular functions that are necessary for proper neuronal structure and function (Bell et al., 2010). Pericytes are an under-studied cell type located on capillaries. They are of crucial importance in regulating diverse microvascular functions, such as angiogenesis, the blood-brain barrier, capillary blood flow and the movement of immune cells into the brain (Figure 9). Recent studies have suggested that pericytes play a crucial role in neurological diseases (Cheng et al., 2018). It has been shown in animal models of epilepsy that focal capillary constrictions occur in close spatial association with pericytes. These constrictions are surrounded by regions of neuronal damage in the hippocampi of epileptic mice (Leal-Campanario et al., 2017). In status epilepticus mice brain, loss of pericytes is proportional to seizure severity and vascular pathology (Arango-Lievano et al., 2018). Pericytes have also been shown to regulate the health of neurons by secreting factors such as nerve growth factor (NGF), brain-derived nerve growth factor (BDNF), and pleiotrophin (Nikolakopoulou et al., 2019). These studies have shown that pericytes play a pivotal role in seizures and are potential targets for reducing pathophysiology. Cultured pericytes can be used as a model system to perform in-vitro studies to understand the effect of the DES patient variants on the pericyte's normal functioning (Tigges et al., 2012).

Desmin interacts with CMYA5, a gene reported to be associated with schizophrenia (Han et al., 2018). CMYA5 patient mutations have been shown to disrupt its interaction with desmin, which has been proposed by the authors as the probable mechanism by which neuritogenesis might be disrupted (Hsiung et al., 2019). Through myospryn, the protein encoded by CMYAS, desmin associates with the BLOCK-1 complex (Capetanaki et al., 2007). BLOCK-1 complex regulates endosomal trafficking that is involved in synaptic transmission and neurodevelopment as well as regulation of the cell-surface D2 dopamine receptor (DRD2), the biogenesis and fusion of synaptic vesicles, and

neurite outgrowth (Mullin et al., 2011). Even though desmin has been largely studied in the context of its role in muscle and cardiac cells, exploring desmin's functions in pericytes and other brain cells and understanding how desmin might be regulating any of the BLOCK-1 mediated processes may be considered to understand its role in epilepsy mechanism.

Chapter 4

Characterization of *TMEM171*, a novel JME gene identified at the EJM4, 5q12-q14 locus.

Summary

Previous work in the laboratory has identified a genetic locus, EJM4 (5q12-q14) in a three-generation south Indian family with several of its members affected with JME. I carried out whole-genome sequencing to find a potential causative factor underlying JME in the family. Analysis of the WGS variants at the 5q12-q14 region revealed a rare variant, p.Gly159Ala in the TMEM171gene. The c.476G>C variant converts a highly conserved residue, glycine to alanine (p.Gly159Ala) in the predicted TMEM171 protein sequence. Further, to identify additional epilepsy-associated variants in TMEM171, I examined the gene sequence in a set of 72 JME patients. Besides p.Gly159Ala, two new variants: p.Gln90Arg and p.Arg156Trp were found. TMEM171 encodes a proline-rich transmembrane protein with an unknown biological TMEM171 protein has four predicted transmembrane function. domains in the N-terminal region and a C-terminal tail in the cytoplasm. It localizes to the plasma membrane. RT-PCR and Western analysis suggests the expression of TMEM171 in different human brain regions. Though the epilepsy-associated TMEM171 variants do not seem to affect its membrane localization or expression levels, they may have damaging effects on the functional/cellular physiology of the To get an insight into TMEM171 protein's functions and brain. pathways that it may be a part of, I carried out immuno-pulldown experiments and identified SNAP25 and SNAPIN as TMEM171interacting partners. SNAP25 is a member of the SNARE complex. SNAPIN associates with the SNARE complex proteins and the BLOC-1 complex. Further delineation of TMEM171's role in these pathways requires further studies.

4.1 Materials and methods

4.1.1 Family ascertainment

The three-generation family, GLH5 discussed in this chapter was first reported by Kapoor and colleagues (Kapoor et al., 2007)(Figure 1). Of the 24 family members, 21 members had consented to participate in the study. They were clinically evaluated by a neurologist and diagnoses established according to the guidelines of the International League against Epilepsy (ILAE; Commission on Classification and Terminology of the International League Against Epilepsy 1989) (Scheffer et al., 2017b).

Figure 1: The EJM4 locus in Family GLH5: A. Ideogram of chromosome 5 representing the location of the JME locus, *EJM4* (5q12-q14). **B.** Pedigree of GLH5 depicting the disease-linked haplotype (*EJM4*) shared among its affected members and three unaffected members (III:2, III:10 and III:11). Males and females are denoted by squares and circles, respectively. Filled symbols represent affected individuals and empty, unaffected ones. Haplotypes are shown below the symbols. Upper and lower recombination boundaries denoting the critical region are indicated by arrows in individuals II:7 and III:7. DNA from Individual II:10, marked with a green box, was used for whole-genome sequencing. Clinical features of affected subjects are indicated along with the symbols (MJ: Myoclonic jerks, GTCS: Generalized tonic-clonic seizures). Adapted from Kapoor et al 2007.

Family GLH5 was ascertained through proband (II:10), who presented distinct characteristics of JME. She had a history of early morning, myoclonic jerks (MJ) and generalized tonic-clonic seizures (GTCS) beginning at the age of 14 and 20, respectively.

Additional affected members of the family had histories of myoclonic jerks, accompanied by GTCS, with an age of onset ranging from 12-18 years. The unaffected subjects reported no history of seizures. Diagnoses for the three deceased members were inferred based on the information provided by other family members. For genetic analysis, subjects, I:2, II:1, II:5, II:7, II:10, III:6, III:7, III:8 and III:9 were considered affected, and remaining members, unaffected.

In addition, a set of 552 (480 patients analysed earlier in the lab; Manpreet Kaur, PhD thesis, 2014) JME patients were ascertained from the NIMHANS and SCTIMST and were diagnosed according to the ILAE guidelines. The control cohort comprised 480 healthy individuals from southern parts of India, above 20 years of age and with no apparent family history of neurological disorders.

4.1.2 Whole-genome sequencing (WGS)

4.1.2.1 Library preparation and sequencing

Three micrograms of genomic DNA was fragmented using Covaris to generate 300-400 base pair fragments. 100 ng of fragmented DNA was used to generate a sequencing library using NEBNext Ultra II DNA Library Prep Kit for illumina (New England Biolabs). In brief, the fragmented DNA was subjected to end repair followed by A – tailing and adapter ligation. Ampure bead-based size selection was done to obtain the library of the desired size. The size selected DNA was enriched by PCR amplification using illumina index adapter primers (*P7 adapter 5'* – AGATCGGAAGAGCACACGTCTGAACTCCAGTCA – 3', *P5 adapter 5'* – AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT – 3'). The amplified product was purified using Ampure beads to remove unused primers.

The libraries were quantitated using Qubit DNA HS quantitation assay (Thermo Scientific) which specifically quantitates dsDNA. The library quality was checked using Agilent Bioanalyzer DNA 1000 kit (Figure 2). The QC passed libraries were sequenced using illumine HiseqX sequencer (illumina).

4.1.2.2 Sequence data quality check (QC), processing and alignment

The sequence data quality checked using FastQC was (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC (Ewels et al., 2016). The data was checked for base call quality distribution, % bases above Q20, Q30, % GC, and sequencing adapter contamination. The sequence data was processed using Trimgalore (https://github.com/FelixKrueger/TrimGalore) to remove adapter sequences and low-quality reads. QC passed reads were mapped to the human reference genome build GRCh38 that was provided in GATK (Genome Analysis Toolkit) resource bundle using the BWA-MEM algorithm (Li and Durbin, 2009b) with default parameters. The alignments were sorted, indexed and PCR duplicates were marked and removed using sambamba, a high-performance robust tool and library for SAM/BAM files (Tarasov et al., 2015).

Figure 2 – DNA and library quality check: A. The genomic DNA was checked for its integrity and quality by electrophoresis on 0.8% TAE-agarose gel. This genomic DNA was used for library preparation. The libraries were checked for their quality and size distribution using Agilent Bioanalyzer DNA 1000 kit. **B.**

Size distribution of the whole genome sequencing library made using the NEBNext Ultra II DNA Library Prep Kit for illumina.

4.1.2.3 Variant calling, annotation and filtering

GATK (McKenna et al., 2010) best practice workflow for germline short variant discovery (SNPs + INDELs) using GATK v4 was followed for variant calling (https://software.broadinstitute.org/gatk/bestpractices/). The process, in brief, base qualities in the bam file were recalibrated and genomic variant call format (GVCF) was generated using Haplotype-Caller. The GVCF was genotyped to generate variant call format (VCF). SNPs and INDELs were recalibrated separately by providing variants from dbSNP, 1000 Genome phase1, HapMap, Omni SNPs and Mills gold standard INDELs as known and training sets. The filter threshold was set to retain 99% of true variants, which provides the highest sensitivity while still being acceptably specific.

Functional annotation for the variants identified in the genome sequencing experiment was performed using Ensembl Variant Effect Predictor (VEP) build 94 (McLaren et al., 2016). The input was provided in the form of a tab-delimited vcf file. A transcript database from both GENCODE and NCBI was used. Allele frequencies were taken from dbSNP151, 1000-Genomes, Exome Aggregation Consortium (ExAC) and Genome Aggregation Database (gnomADv2, exomes and genomes; gnomADv3, genomes). dbSNFPv3.5 (Liu et al., 2011), a database developed for functional prediction and annotation of all potential non-synonymous single-nucleotide variants in the human genome, was also used for annotation. Samtools (Li et al., 2009) was used to view the whole genome sequence data aligned with the human reference sequence (Grch38) and each exon in the region of interest on chromosome 5 was manually checked for its coverage and read depth.

The identified variants were filtered for minor allele frequency in the databases, dbSNP151, 1000 Genomes project (Auton et al., 2015), Exome Aggregation Consortium (ExAC) (Lek et al., 2016) and the

Genome Aggregation Database (gnomAD) (Karczewski et al., 2020) for their minor allele frequency (MAF) to be less than 0.005.

4.1.3 Sanger-based sequence validation of the WGS rare variants

All novel and rare variants identified in the WGS dataset were validated by Sanger sequencing. Primers were designed spanning the variantcarrying regions. The Sanger confirmed variants were further analysed in the family for their segregation with the disease phenotype. The segregating variants were examined in 480 ethnically matched set of normal individuals to check their allele frequencies.

4.1.4 TMEM171 mutation analysis

TMEM171 which carried the disease co-segregating rare variant was further analysed in a set of 552 JME affected individuals (72 patients analyzed in this study) and ethnically matched control individuals. The entire gene sequence comprising all exons, flanking intronic boundaries, and the 5'- and 3'- untranslated regions were Sanger sequenced to identify additional rare variants.

4.1.5 Bioinformatics analysis

The complete gene sequence of *TMEM171* was downloaded from NCBI (NC_000005.10:73120575-73131814 Homo sapiens chromosome 5, GRCh38.p13 Primary Assembly). Primers were designed using the online tools Primer3 (Untergasser et al., 2012) and OligoCalc (Kibbe, 2007). Protein sequences for TMEM171 across different species were downloaded from NCBI to perform multiple sequence alignments using the tool Clustal Omega (Madeira et al., 2019).

4.1.6 Plasmids and antibodies

TMEM171 cDNA (Origene) was sub-cloned into p3X-FLAG-CMV10 (3X-FLAG tag fused to the N-term of the protein) and pcDNA3.1+ (untagged) vectors. Site-directed mutagenesis was performed using QuikChange II

XL Mutagenesisreagents (Agilent Technologies) to generate patientspecific variants p.Gln90Arg, p.Arg156Trp and p.Gly159Ala. To study TMEM171transmembrane domains, premature stop sites were introduced in the cDNA (Figure 5b). Syntaxin4-myc-His (Cat. No. 12377) and pEGFP-Snapin (Cat. No. 118742) plasmids were procured from Addgene.

The antibodies used in this study were: anti-TMEM171 (monoclonal, mouse raised; Sigma, US, SAB1401999), anti-alpha tubulin (monoclonal, mouse raised; Sigma, T9026), anti-FLAG (monoclonal, mouse raised; Sigma, 1804) and anti-GFP (polyclonal, rabbit raised; Thermo Fisher Scientific, A-6455), goat anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific, A11008), goat anti-mouse Alexa Fluor 568 (Thermo Fisher Scientific, A11001), goat anti-rabbit IgG – HRP (Genei, India, HPO3), goat anti-rabbit IgG – HRP (Genei, HPO5).

4.1.7 Cell culture and transfection

HEK-293 cells were maintained in DMEM (high glucose, Sigma) supplemented with 10% heat-inactivated fetal bovine serum (MP Biomedicals), 2 mM L-glutamine (Sigma) and antibiotics (100 U/ml Penicillin and 10 mg/ml streptomycin; Sigma) in a humidified atmosphere of 5% CO₂ at 37°C. Cells were grown to 60-70% confluence in 6-well culture dishes or on poly-L-lysine (Sigma) coated18-mm glass coverslips and transiently transfected with 1 μ g plasmid per well using Lipofectamine 2000 transfection reagent (Thermo Fischer Scientific). Protein expression was checked 24 to 48 hours post-transfection.

4.1.8 Western analysis

For isolating whole-cell protein, the cells/tissues were lysed using lysis buffer (150 mM NaCl, 10 mM Tris-pH 7.5, 0.1% SDS, 1% Triton X-100, 1% deoxycholate and 5 mM EDTA). The total protein content of the cells was collected by centrifuging the lysed cells at 13,000 rpm for 20 minutes at 4°C and was quantified using a Pierce BCA protein assay kit (Thermo Fischer Scientific). 50 ug of total protein was separated on a 10% SDS-polyacrylamide gel (Laemmli, 1970) followed by transfer to nitrocellulose membrane (Pall) at 20 volts for 1 hour. The membrane was blocked with 5% skimmed milk for 4 hours at 4°C followed by incubation with primary antibodies, anti-TMEM171 (1:500) or anti-gamma tubulin (1:5000) or anti-alpha tubulin (1:5000) or anti-actin (1:1000) or anti-FLAG (1:500) or anti-GFP (1:2500), at 4°C for 16 hours. HRP-conjugated secondary antibodies (1:5000) were used to probe the membrane at 4°C for 4 hours. The membrane was washed between each incubation step with 0.05% PBST (0.05% tween-20 in 1X PBS). The protein bands were detected using clarity western ECL Substrate (Biorad).

4.1.9 Immunocytochemistry

To perform immunocytochemistry analysis, cells were grown on 18 mm poly-L-lysine coated glass coverslips. The cells were fixed with ice-cold methanol at -20°C for 5 minutes. The fixed cells were blocked with 3% BSA (bovine serum albumin) for 1 hour at room temperature. Incubations with primary antibodies, anti-TMEM171 (1:500) or anti-FLAG antibody (1:500), and fluorescently labelled secondary antibodies (1:500), diluted in 1% BSA, were done for 1 hour each at room temperature. Nuclear staining was performed using 1 μ g/ml 4, 6-diamidino-2-phenylindole (DAPI) for 15 minutes at room temperature. The coverslips were mounted on glass slides using Polyvinyl alcohol mounting medium (Sigma) and sealed with transparent nail polish. Imaging was done using Zeiss LSM-510 meta or -880 confocal microscope.

4.1.10 Immuno-pulldown assay

Total protein was isolated from cells on ice, using mild lysis buffer (150 mM KCl, 25 mM tris-pH 7.4, 5 mM EDTA, 0.5% NP40, protease inhibitor cocktail (Roche) and 1 mM PMSF). 20 µl Dynabead protein G mix (Thermo Fisher Scientific) was allowed to bind with 2 µg anti-FLAG

antibody for 4 hours with rotation (10 rpm) at 4°C. The bead-antibody complex was then incubated with 2 mg protein lysate for 12 hours at 4°C. Post-incubation, the bead-antibody-antigen complex was washed 4 times for 1 minute each, on ice, with 200 µl cold 1X PBS. Elution was done by boiling the beads in 50 µl 2X dye for 10 minutes.

4.2 Results

4.2.1 Whole-genome sequencing

To examine the critical region, 5q12-q14, whole genome-based sequencing was undertaken. This experiment generated a total of 90 GB sequence, as 0.6 billion paired-end reads of 150 bp, from sequencing on an illumine Hiseq X machine (illumina). More than 97% of bases were of high quality (Phred score>20) and an average read depth of 30X was obtained (Table 1). A total of 33,429 variants were identified out of which 559 variants were either absent or present at a MAF<0.005 across the databases dbSNP151, 1000-Genomes, ExAC and the gnomAD.

Table 1: Sequence coverage summary for the whole-genomesequencing experiment (WGS)

Sample	III:6				
Target region	Genome	5q12-q14 Locus			
Total number of reads	678.8 million				
Reads aligned to complete genome	678.3 million				
% Reads aligned to complete genome	99.92	96.84			
Target Sequence Length	3.2 Gb	25 Mb			
Total target covered	3.0 Gb	24 Mb			
% Target Covered	94.19	95.78			
% Target Covered with at least 5X read depth	93.62	95.45			
% Target Covered with at least 10X read depth	90.81	95.1			
% Target Covered with at least 20X read depth	85.46	87.75			
% Target Covered with at least 30X read depth	58.81 60.96				
Average read depth	31.3	30.2			

Percentage of genome/ region coverage calculated after sequences were aligned to the human genome reference sequence (GRCh38).

4.2.2 Rare variant analysis and prioritization

Of the 559 rare variants identified at the 5q12-q14 locus, 308 lie in protein-coding genes and 468 in non-protein-coding regions such as micro-RNAs, promoters, enhancers and transcription-factor binding A variant at the same genomic position can have multiple sites. annotations, which is the reason for the total number of rare variants being 559 and not 776 (308 + 468). The variants in the non-proteincoding regions were first checked for their conservation using the CADD score. Variants with CADD<20 were removed from our analysis. The variants lying in conserved regions were then analysed for their potential pathogenicity using the FATHMM-MKL prediction tool that combines sequence conservation scores with ENCODE-based functional annotations (Shihab et al., 2015). The variants were also manually checked in the UCSC genome browser to see if they lie in repeat regions that are prone to sequencing errors. None of the variants in the nonprotein-coding regions were suggested to have any pathogenic effects and were hence not taken forward for further analysis.

The variants in protein-coding transcripts (308) were further classified based on their consequences. There were 270 variants in intronic regions, 12 in UTR regions, 23 in regions upstream or downstream of genes, 4 variants gave rise to missense changes and 1 variant to a synonymous change in the protein sequence. The variants in low complexity regions, which are rich in polymorphisms, regions beyond 100 base pairs from the exon-intron boundary and variants in regions upstream or downstream of genes were excluded from further analysis (Figure 3).

Fig 3: Whole-genome sequencing variants filtration and prioritization flow chart. The variants identified in the 5q12-q14 locus were first filtered based on their minor allele frequency across databases. Variants with frequency less than 0.005 are further filtered based on their annotation and their segregation with the disease phenotype in the family.

Segregation status was checked for the 17 rare variants identified in the protein-coding genes in the WGS analysis (Table 2). Two variants: c.476G>C in *TMEM171* and c.1411-22A>G in *COL4A3BP*, co-segregated with the JME phenotype in the family. Conservation and in-silico predictions were performed for these two segregating variants (Table 3). The intronic variant c.1411-22A>G in *COL4A3BP* was predicted to alter the splice site. *COL4A3BP* codes for a ceramide transporter and mutations in this gene have been associated with intellectual disability (Fitzgerald et al., 2015; Murakami et al., 2020). Hence, this variant was tested for its effect on splicing by doing a mini-gene assay. It was observed that the variant does not give rise to altered splicing events (Manpreet Kaur, PhD Thesis, 2014). The only rare variant that altered conserved amino acid was c.476G>C in *TMEM171* (Table 3). This variant gives rise to a non-synonymous change, p.Gly159Ala, in the protein. On performing multiple sequence alignment across species for TMEM171, the residue glycine at 159th position was found to be highly conserved (Figure 4). In-silico predictions showed that this variant could have deleterious effects on the protein's function.

Grch38ª	Gene ^b	Sequence variant ^c	Effect on protein ^d	MAF GnomAD v2.1 ^e	Segregation in family ^f
62483049	IPO11	c.829-52T>A	-	0.0006	Non-Segregating
65554836	СЕМРК	c.72T>A	p.Leu24Leu	-	Non-Segregating
65554836	СЕМРК	c19T>A	-	-	Non-Segregating
65666110	TRAPPC13	c.*1499A>G	-	-	Non-Segregating
65666110	SGTB	c.*4136T>C	-	-	Non-Segregating
67182182	CD180	c.*675G>A	-	-	Non-Segregating
72360798	PTCD2	c.*2371C>T	-	-	Non-Segregating
72362653	PTCD2	c.*4226A>G	-	0.0004	Non-Segregating
73123849	TMEM171	c.476G>C	p.Gly159Ala	-	Segregating
75154293	ANKRD31	c.1760A>G	p.Asp587Gly	-	Non-Segregating
75337269	HMGCR	c51del	-	-	Non-Segregating
75382099	COL4A3BP	c.1411-22A>G	-	0.0006	Segregating
76618250	F2RL2	c.457C>G	p.His153Asp	-	Non-Segregating
79375001	HOMER1	c.*1008G>A	-	0.0002	Non-Segregating
79730596	CMYA5	c.1831C>A	p.Gln611Lys	0.0006	Non-Segregating
80960476	RASGRF2	c263G>T	-	-	Non-Segregating
83056822	TMEM167A	c.*262C>T	_	0.0004	Non-Segregating

Table 2: Rare variants identified by whole-genome sequencing in the 5q12-q14 locus in the GLH5 family

^aGenomic position of the nucleotide base on chromosome 5 (Chr 5) (GRCh38, NCBI). ^bGene harbouring the variant, ^cNomenclature of variants with respect to

first base of the corresponding cDNA. The position of the variant is given according to cDNA of the longest protein-coding transcript of the respective gene. ^dAmino acid position for missense variants, ^eMinor allele frequency in GnomAD version 2.1, ^fsegregation status of the variant with the disease phenotype in the family GLH5.

Figure 4:The c.476G>C (p.Gly159Ala) variant in TMEM171: **A.** Alignment of the exome sequence reads against human genome reference sequence as viewed in tview of samtools v0.1.7a indicating the heterozygous G>C variant at g.72419676 in *TMEM171*. **B.** Electropherograms of sequence with wild-type (G) and variant allele (C) for the c.476G>C variant. The arrow indicates the nucleotide showing heterozygous variant shown by the presence of two peaks. **C.** Multi-species protein sequence alignment of TMEM171 by Clustal Omega. The glycine (G) 159 is highlighted in blue.

Potential alteration

of splicing

Grch38ª	Gene ^b	Sequence variant ^c	Effect on protein ^d	Allele frequency in controls ^e	MAF gnomAD v2 ^f	SIFT ^g	Polyphen2 ^h	Mutation Taster ⁱ	Human Splicing Finder (HSF3.1) ^j
73123849	TMEM171	c.476G>C	p.Gly159Ala	0/500	-	Deleterious (0.01)	Probably damaging (0.91)	Deleterious (0.99)	-

0/500

Table 3: Functional predictions for the rare segregating variants identified

75382099

COL4A3BP

c.1411-22A>G

^aGenomic position of the nucleotide base on chromosome 5 (chr 5) (GRCh38, NCBI). ^bGeneharbouring the variant, ^cNomenclature of variants with respect to first base of the corresponding cDNA. The position of the variant is given according to cDNA of the longest protein-coding transcript of the respective gene. ^dAmino acid position for missense variants, ^eMinor allele frequency of these variants in in-house, ethnically matched control individuals, ^fMinor allele frequency in GnomAD version 2.1, ^{g,h.i.j}predictions for pathogenicity of the variants.

0.0006

4.2.3 *TMEM171* rare variants in JME patients

TMEM171 gene encompasses 11.2 kilobases of the genomic region and harbours 4 exons. TMEM171 encodes а 324 amino acid transmembrane protein 171. The complete transcript of TMEM171 was examined in additional 72 JME patients (480 patients, earlier work in the lab, Manpreet Kaur, PhD, Thesis 2014) (Table 4). In this analysis, two variants, c.269A>G (p.Gln90Arg) and c.466C>T (p.Arg156Trp) were identified which give rise to non-synonymous changes in TMEM171 (Table 5). Of the total three non-synonymous variants identified in TMEM171, p.Gln90Arg lies in the cytoplasmic arm and p.Arg156Trp and p.Gly159Ala lie in the non-cytoplasmic arm (Figure 5). The patients harbouring the TMEM171 non-synonymous variants all manifest GTCS and myoclonic seizures, which are hallmarks of JME (Table 6).

4.2.4 TMEM171 in Epi25

Epi25 is a global collaboration under which more than 9,000 epilepsy patients have been sequenced (https://epi25.broadinstitute.org/). In this, ninety ultra-rare variants have been identified in *TMEM171* out of which twenty-three are pathogenic and identified only in the epileptic individuals examined. Sixteen of these variants give rise to missense changes in the protein sequence, four are loss of function variants and three lie in the splice regions (Appendix A 4.4). Figure 5 shows positions of four of the rare, pathogenic variants p.Ala62Glu, p.Leu125Pro, p.Asn139ThrfsTer7 and p.Glu299Ter.

Grch38	Nucleotide change	Het/Hom	rs ID	Amino acid Change	Allele count in patient cohort (72 samples)	Allele count in patient cohort (552 samples)	MAF in control cohort (240 samples)	MAF gnomAD v2
73123440	<u>c.67T>C</u>	het/hom	rs638333	p.Phe23Leu	8/144	122/1104	0.07	0.2
73123583	c.210G>A	hom	rs7731777	p.Gly70Gly	144/144	1086/1104	1	1
73123629	c.256C>G	het/hom	rs637450	p.Arg86Gly	51/144	452/1104	0.45	0.3
73123642	c.269A>G	het	rs543295611	p.Gln90Arg	1/144	3/1104	0	0.00005
73123790	c.417C>A	het/hom	rs636926	p.Asn139Lys	37/144	394/1104	0.43	0.3
73123839	c.466C>T	het	TMP_ESP_5_72419666	p.Arg156Trp	1/144	2/1104	0.004	0.0001
73128458	c.709G>A	het	rs186159238	p.Ala237Thr	1/144	1/1104	0.006	0.0008
73128490	c.741G>A	het	rs150115532	p.Pro247Pro	1/144	3/1104	0	0.4
73131577	c.819C>T	het/hom	rs61746311	p.Asp274Asp	5/144	30/1104	0.05	0.002
73131577	c.819C>G	het/hom	rs61746311	p.Asp274Glu	7/144	52/1104	0.02	0.06

Table 4: Novel and rare *TMEM171* variants identified by Sanger sequencing a cohort of 552 JME patients.

480 JME patients (Manpreet Kaur, PhD Thesis, 2014); 72 additional JME patients (this study)

Genomic position (Grch38)	cDNA position	amino acid position	rs ID	MAF GnomAD v2	SIFT	PolyPhen	CADD phred	Mutation Taster	PROVEAN	Condel	Reference
73123558*	c.185C>A	p.Ala62Glu	_	_	Deleterious (0.01)	possibly damaging (0.92)	23	Deleterious (0.99)	Deleterious (0.73)	Deleterious (0.83)	Epi25
73123642	c.269A>G	p.Gln90Arg	rs543295611	0.00005	Tolerated (0.39)	Benign (0)	0.89	Neutral (1)	Neutral (0.12)	Neutral (0.01)	This study
73123747*	c.374T>C	p.Leu125Pro	-	-	Deleterious (0.01)	probably damaging (0.89)	26	Deleterious (0.99)	Deleterious (0.89)	Deleterious (0.76)	Epi25
73123785*	c.414delC	p.Asn139ThrfsTer7	rs756390663	0.00001	Deleterious (0.01)	_	_	Deleterious (0.99)	Deleterious (0.90)	Deleterious (0.87)	Epi25
73123839	c.466C>T	p.Arg156Trp	TMP_ESP_5_72419666	0.0001	Deleterious (0.00)	Benign (0.43)	22.4	Neutral (1)	Deleterious (0.70)	Deleterious (0.58)	This study
73123849	c.476G>C	p.Gly159Ala	rs150702126	0.00009	Deleterious (0.01)	Probably damaging (0.91)	25.9	Deleterious (0.99)	Deleterious (0.81)	Deleterious (0.77)	This study
73131650*	c.895G>T	p.Glu299Ter	rs1261605666	0.00003	Deleterious (0.00)	_	42	Deleterious (0.99)	Deleterious (0.87)	Deleterious (0.99)	Epi25

Table 5: Novel and rare missense patient variants identified in TMEM171

Figure 5: TMEM171 protein architecture and mutations identified: Schematic of TMEM171 protein prepared using the in silico human surfaceome (http://wlab.ethz.ch/surfaceome/). The N-terminal region of the protein harbours four transmembrane domains. Amino acid 1 to 20: cytoplasmic, amino acid 21 to 45: transmembrane, amino acid 46 to 56: non-cytoplasmic, amino acid 57 to 77: transmembrane, amino acid 78 to 108: cytoplasmic, amino acid 109 to 133: transmembrane, amino acid 134 to 159: non-cytoplasmic, amino acid 160 to 181: transmembrane, amino acid 182 to 324: cytoplasmic. The locations of the patient variants have been highlighted. p.Gln90Arg lies in the cytoplasmic region, p.Arg156Trp and p.Gly159Ala lie in the non-cytoplasmic region. Stop codons were inserted by site-directed mutagenesis at 138th and 184th position (shown in red) to generate truncated protein. p.Ala62Glu, p.Leu125Pro, p.Asn139ThrfsTer7 and p.Glu299Ter are variants identified in epileptic patients in the Epi25K study.

4.2.5 TMEM171 brain expression

RT-PCR analysis was performed to detect the expression of TMEM171 in human brain sub-regions, using Marathon-Ready™ cDNAs (Clontech) from hippocampus, cerebral cortex, hypothalamus and cerebellum. The intron spanning primer pair (forward primer binds in the first exon and the reverse primer in the second exon) specific to TMEM171 yielded a 400 bp PCR product from the brain sub-regions analyzed and in the positive control [*TMEM171* pcDNA3.1 (+)] (Figure 6). Sanger sequencing of the amplified products validated the sequence (NM_173490.7, CCDS4017.1). The amplified product from cDNA of hippocampus, cerebral cortex, hypothalamus and cerebellum indicates the expression of TMEM171 at the transcript level in these human brain regions. TMEM171 protein expression analysis in human brain regions, cortex, hippocampus and cerebellum was performed by Western blot analysis. We observed a band, immunoreactive to anti-TMEM171 antibody, at 48 kDa (Figure 6).

Figure 6: Expression of TMEM171 in the human brain regions: A. RT-PCR analysis of cDNA from different brain regions (hippocampus, cerebral cortex, hypothalamus, and cerebellum). The arrow (lower panel) indicates the 400 bp product amplified by cDNA specific intron spanning primers located in exon 1 and exon 2 (marked by arrows in the upper panel) of *TMEM171*. Lane 6 shows the negative control (no DNA template) and lane 7 indicates the 400 bp product from the positive control [wild-type TMEM171 pcDNA3.1 (+) construct]. Lane 1 is the

100 bp ladder (Manpreet Kaur, PhD Thesis, 2014) **B.** Expression of *TMEM171* in various human brain regions (cerebellum, hippocampus, cortex) shown by Western analysis. Anti-TMEM171 antibody shows immunoreactivity at approximately 48KDa, which is the theoretical molecular weight of TMEM171 protein.

4.2.6 TMEM171 cellular localization

To examine the cellular localization of TMEM171 and to test whether the variants p.Gln90Arg, p.Arg156Trp and p.Gly159Ala, affect its localization, fluorescence-immunocytochemistry was carried out in cultured HEK293T cells transiently transfected with the wild-type and variant *TMEM171* constructs. Immunoreactivity was observed using mouse polyclonal anti-TMEM171 antibody (Sigma). TMEM171 protein expression was observed in the cytoplasm and on the plasma membrane of the cell (Figure 7). HEK293T transfected with *TMEM171* constructs harbouring the mutations p.Gln90Arg, p.Arg156Trp, p.Gly159Ala exhibited a similar expression profile as seen for the wildtype protein (Figure 7). This suggests that these missense mutations do not seem to alter the plasma membrane localization of TMEM171.

Figure 7: Cellular localization of wildtype (WT) and mutant TMEM171 proteins. Fluorescence immunocytochemistry performed on HEK293T transiently transfected with the wild-type and variant, p.Gln90Arg, p.Arg156Trp, p.Gly159Ala, cDNAs. Localization of TMEM171 was observed with anti-TMEM171 antibody. TMEM171 images shown here are obtained at 63x zoom with the Zeiss 880 microscope.

4.2.7 TMEM171-interacting partners

Immuno-pulldown (IP) experiments were conducted to get an initial insight into the molecular pathways, TMEM171 might be relevant to. The first protein checked for interaction with TMEM171 was SNAPIN. SNAPIN is predicted to be an interactor for TMEM171 (Biogrid, https://thebiogrid.org/126392/summary/homo-sapiens/tmem171.ht ml) and its deficiency in mice is associated with developmental defects of the central nervous system (Zhou et al., 2010). Another candidate chosen was SNAP25, which is an interactor of PRRT2 (Li et al., 2015), a proline-rich transmembrane domain-containing protein known to cause benign familial infantile epilepsy (Heron et al., 2012). SNAP25 has been associated with several human neurological syndromes, attention-deficit/hyperactivity including disorder (ADHD), schizophrenia and bipolar disorder (Etain et al., 2010; Hawi et al., 2013; Antonucci et al., 2016).

FLAG-tagged full-length, 138X and 184X TMEM171 was overexpressed in HEK293 and IP was performed using anti-FLAG antibody. SNAPIN and SNAP25 were found in the elute fraction along with TMEM171, showing that they are present in the same complex of proteins (Figure 8). Truncated TMEM171 showed disruption of interaction with both SNAP25 and SNAPIN. SNAPIN showed complete disruption of interaction with the truncated TMEM171. SNAP25 showed reduced interaction with the truncated TMEM171 protein, as shown in figure 8-C. For IP with the patient variant harbouring TMEM171 proteins, p.Gln90Arg, p.Arg156Trp and p.Gly159Ala, no significant disruption, either increase or reduction, in the amount of SNAP25 (Figure 9-B) and SNAPIN (Figure 9-C) was observed.

Figure 8: Immuno-pulldown of TMEM171 wildtype and truncated proteins: A, B. IP of FLAG-tagged TMEM171 (wildtype, 138X or 184X) or 3X-FLAG empty vector co-expressed with SNAP25. IP is performed with anti-FLAG antibody. **C.** Normalized values of GFP-SNAP25 present in the elute fractions have been plotted for wild-type, 138X and 184X TMEM171 protein IPs. The experiment was done three times and band intensities were measured using ImageJ. **D, E.** IP of FLAG-tagged TMEM171 (wildtype, 138X or 184X) or 3X-FLAG empty vector co-expressed with SNAPIN. IP is performed with anti-FLAGantibody. **F.** Normalized values of GFP-SNAPIN present in the elute fractions have been plotted for wild-type, 138X and 184X TMEM171 protein IPs. The experiment was done three times and band intensities were measured using latext the set of GFP-SNAPIN present in the elute fractions have been plotted for wild-type, 138X and 184X TMEM171 protein IPs. The experiment was done three times and band intensities were measured using ImageJ. Red arrow: band corresponding to TMEM171-138X truncated protein; Blue arrow: band corresponding to TMEM171-184X truncated protein.

Figure 9: Immunopulldown of TMEM171 wildtype and human variant harbouring proteins: A. IP of FLAG-tagged TMEM171 (wildtype, p.Gln90Arg, p.Arg156Trp or p.Gly159Ala) co-expressed with SNAP25. IP is performed with anti-FLAG antibody. B. Normalized values of GFP-SNAP25 present in the elute fractions have been plotted for wild-type, p.Gln90Arg, p.Arg156Trp and p.Gly159Ala TMEM171 protein IPs. The experiment was done three times and band intensities were measured using ImageJ. C. IP of FLAG-tagged TMEM171 (wildtype, p.Gln90Arg, p.Arg156Trp or p.Gly159Ala) or 3X-FLAG empty vector co-expressed with SNAPIN. IP is performed with anti-FLAG antibody. D. Normalized values of GFP-SNAPIN present in the elute fractions have been plotted for wild-type, p.Gln90Arg, p.Arg156Trp and p.Gly159Ala TMEM171 protein IPs. The experiment was been plotted for wild-type, p.Gln90Arg, p.Arg156Trp or p.Gly159Ala) or 3X-FLAG empty vector co-expressed with SNAPIN. IP is performed with anti-FLAG antibody. D. Normalized values of GFP-SNAPIN present in the elute fractions have been plotted for wild-type, p.Gln90Arg, p.Arg156Trp and p.Gly159Ala TMEM171 protein IPs. The experiment was done three times and the band intensities were measured using ImageJ.

4.2.8 Co-expression of TMEM171 wildtype and variant proteins with its interacting partners, SNAP25 and SNAPIN

FLAG-tagged wildtype, patient-variant harbouring and truncated TMEM171 proteins were co-expressed with GFP-tagged SNAP25 and SNAPIN. GFP-SNAP25 showed localization at the plasma membrane. FLAG-tagged TMEM171 wildtype protein, visualized by staining with anti-FLAG antibody, was observed to localize to the cytoplasm as well the plasma membrane. TMEM171 and SNAP25 showed a high degree of colocalization at the plasma membrane (Figure 10-A Pearson's correlation coefficient (PCC) of 0.80). Patient variants harbouring TMEM171 protein also showed co-localization with SNAP25 at the plasma membrane (Figure 11). TMEM171 truncated protein 138X, which has the first 3 transmembrane domains, showed a diffused localization throughout the nucleus and cytoplasm and reduction in its localization to the plasma membrane. The co-localization of SNAP25 is also reduced with the truncated TMEM171 protein 138X at the plasma membrane, as seen in figure 11 and quantified by measuring PCC. However, 184X, which has all four transmembrane domains of TEM171 but lacks the cytoplasmic C-terminal tail, shows localization almost similar to the wildtype protein and co-localizes with SNAP25 at the plasma membrane (Figure 11). GFP-SNAPIN localizes to both the nucleus and cytoplasm and does not show a distinct localization at the plasma membrane (Figure 10-B). Co-expression of TEME171 with SNAPIN shows that the two proteins are expressed in the cytoplasm and colocalize to an extent, as shown by the 2-D scatter plot and line profile generated using ImageJ (Figure 10-B; PCC of 0.59 suggests partial colocalization). TMEM171 truncated protein 138X, which localizes more to the cytoplasm showed slightly enhanced localization with SNAPIN, as seen in the PCC graph in figure 12.

Figure 10: Co-expression of TMEM171 with SNAP25 and SNAPIN in HEK293:

A. FLAG-tagged TMEM171 was co-expressed with GFP tagged SNAP25. Red – TMEM171, Green – SNAP25, Blue – DAPI. 2-D scatter plot and line profile have been shown for TMEM171 and SNAP25 **B.** FLAG-tagged TMEM171 co-expressed with GFP tagged SNAPIN. 2-D scatter plot and line profile have been shown for TMEM171 and SNAP25. Red – TMEM171, Green – SNAP25, Blue – DAPI. Imaging was done at 63X magnification. PCC: Pearson's correlation coefficient.

	3X-FLAG	EGFPN1		
	TMEM171	SNAP25	DAPI	Merge
TMEM171 Wildtype	<mark>особ</mark> 10 µт	10 µт	10 µm	<u>то ут</u>
TMEM171 Q90R	Ti Jum	F 10 µm		
TMEM171 R156W			600 00	
TMEM171 G159A	19µт		10 µm;	
TMEM171 138X	The second secon	The second secon	30,45	Note that the second se
TMEM171 184X	20 µm		20 ym	20 ym
			Jest constructs	

Figure 11: Co-expression of TMEM171 and SNAP25 proteins in HEK293: A. FLAG-tagged TMEM171 (wildtype, p.Gln90Arg, p.Arg156Trp, p.Gly159Ala, 138X

or 184X) co-expressed with GFP-tagged SNAP25. Red – TMEM171, Green – SNAP25, Blue – DAPI. Imaging was done at 63X magnification. PCC was calculated from three independent experiments and 30 cells. One-way ANOVA followed by Dunnet's multiple comparison test was used to calculate the statistical significance.

Figure 12: Co-expression of TMEM171 and SNAPIN proteins in HEK293: A. FLAG-tagged TMEM171 (wildtype, p.Gln90Arg, p.Arg156Trp, p.Gly159Ala, 138X or 184X) co-expressed with GFP-tagged SNAPIN. Red – TMEM171, Green – SNAP25, Blue – DAPI. Imaging was done at 63X magnification. PCC from three independent experiments and 30 cells were calculated. One-way ANOVA followed by Dunnet's multiple comparison test was used to calculate the statistical significance.

4.3 Discussion

In this chapter, findings of a whole-genome sequencing study, to identify potentially causative gene at EJM4 (Kapoor et al., 2007) and the first line of functional characterization of the gene, have been presented. The WGS analysis of data from an affected individual in the family, II:7, led to the identification of a rare, possibly pathogenic variant in *TMEM171*, which was considered suitable for further studies.

The missense variant in *TMEM171* substitutes an evolutionarily conserved amino acid residue, glycine at position 159 to alanine; and is predicted to have a deleterious effect on the protein structure/ function. This heterozygous variant was found in all the affected individuals of the family and was absent in our set of control individuals and public databases such as dbSNP and gnomADv2.

TMEM171 encodes a 324 amino acid proline-rich transmembrane protein, also known as PRP2 (Proline-rich protein 2). The structure and cellular functions of TMEM171 protein are not known so far. It is predicted to have four transmembrane domains in the N-terminal region and a long C-terminal tail in the cytoplasm (Figure 5). Immunofluorescence studies done in HEK293 show that TMEM171 localizes to the plasma membrane (Figure 7, 10, 11). As a primary step in examining the role of *TMEM171* in a brain disorder, we identified its expression at the transcript level and protein level from different human brain regions (Figure 6). So far, no study has either characterized the biological function of TMEM171 or reported its role in a brain-related disorder. Further, while exploring the role of TMEM171 as an epilepsy-linked gene, Manpreet, a former graduate student in the lab had identified two additional JME-associated novel/rare variants, p.Gln90Arg and p.Arg156Trp in a set of 480 JME patients. On sequencing the gene in additional 72 JME patients, I found the same missense variants, p.Gln90Arg and p.Arg156Trp in two patients. Taken together, the three mutations identified in this study alter conserved amino acid residues in TMEM171 and two of the three variants, p.Arg156Trp and p.Gly159Ala, are predicted to have a damaging effect on the protein's function. While these missense variants do not affect the membrane targeting or expression of the protein, these may affect its biological functions, which are yet to be characterized. In addition to the variants identified in our study, four rare, pathogenic variants p.Ala62Glu, p.Leu125Pro, p.Asn139ThrfsTer7 and p.Glu299Ter have been identified in the Epi25 consortium study. This finding supports our observations regarding the role of *TMEM171* as an epilepsy-causing gene.

Interestingly, mutations in the proteins belonging to the group of uncharacterized transmembrane proteins, such as PRRT2 which encodes a proline-rich transmembrane domain protein 2 of an unknown function, have been implicated in neurological disorders. Mutations in PRRT2 have been identified for disease phenotypes such as paroxysmal kinesigenic dyskinesia (PKD) (Chen et al., 2011), paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) (Lee et al., 2012), benign familial infantile epilepsy (BFIE) and infantile convulsions and choreoathetosis (ICCA) (Heron et al., 2012). Mutations in other TMEM proteins have also been found such as in TMEM216 (Valente et al., 2010) and TMEM237 (Huang et al., 2011) for the Joubert syndrome-related disorders; and in TMEM240 for spinocerebellar ataxia with mental retardation and severe cognitive impairment (Delplanque et al., 2014; Homa et al., 2020). Ultra-rare deleterious variants have been identified in epilepsy patients in TMEM171 as well as additional TMEM proteins such as TMEM62, TMEM59L, TMEM187, TMEM220, and

TMEM255A (Epi25 collaborative). Certain variants identified in TMEM171 lie in highly conserved transmembrane regions of the protein and are predicted to disrupt the protein's function. This goes to show that the transmembrane group of proteins may play an important role in normal brain functioning.

To get an insight into the molecular pathways TMEM171 might be involved in, immuno-pulldown (IP) studies were conducted which led to the identification of two potential interactors, SNARE-associated protein (SNAPIN) and synaptosomal-associated protein-25 (SNAP25). SNAPIN is predicted to be an interactor for TMEM171 (Biogrid) and its deficiency in mice is associated with developmental defects of the central nervous system (Zhou et al., 2010). Another candidate tested was SNAP25, which is an interactor of PRRT2 (Li et al., 2015), а proline-rich transmembrane domain-containing protein known to cause benign familial infantile epilepsy (Heron et al., 2012). SNAP25 has been associated with several human neurological syndromes, including attention-deficit/hyperactivity disorder (ADHD) (Hawi et al., 2013), schizophrenia and bipolar disorder (Etain et al., 2010). SNAP25 mutations in human patients with epilepsy and intellectual disability have also been identified (Rohena et al., 2013). Truncated TMEM171 showed disruption in its interaction with both SNAP25 and SNAPIN.

SNAP25, a component of the SNARE protein complex, regulates neurotransmitter release during synaptic transmission. Apart from exocytosis, it also regulates various voltage-gated calcium channels (VGCCs) (Catterall and Few, 2008) and negatively controls neuronal calcium responsiveness through voltage-gated calcium channel inhibition(Pozzi et al., 2008). SNAP25 not only functions at the presynapse to control exocytic and endocytic processes but also regulates postsynaptic receptor trafficking (Selak et al., 2009), spine morphogenesis (Fossati et al., 2015) and plasticity (Lau et al., 2010). SNAPIN is a coiled-coil-forming protein that associates with the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) complex of proteins and the BLOC-1 (biogenesis of lysosomerelated organelles) complex. As part of the SNARE complex, it is required for vesicle docking and fusion and regulates neurotransmitter release (Pan et al., 2009). The BLOC-1 complex is required for the biogenesis of specialized organelles such as melanosomes and platelet dense granules in non-neuronal cells. In the brain, BLOC-1 is capable of interacting with a subset of SNARE (soluble *N*-ethylmaleimidesensitive factor attachment protein receptor) proteins previously implicated in neurite outgrowth, and that primary hippocampal neurons deficient in BLOC-1 display neurite extension defects (Ghiani et al., 2010) (Figure 13).

Figure 13: TMEM171, its interactors and probable pathways: TMEM171 interacts with SNAPIN and SNAP25, and SNAPIN and SNAP25 have been shown to interact with each other (Ilardi et al., 1999). SNAP25 is an interactor of PRRT2, another epilepsy causing gene. SNAPIN is a member of the BLOC-1 complex and is associated with some SNARE complex proteins. SNAP25 is a member of the SNARE complex. TMEM171, through its association with these two complexes, may regulate normal neuronal functioning.

Based on the findings discussed in this chapter, a strong suggestion is made for *TMEM171* as the underlying genetic cause for epilepsy at the EJM4 (5q12-q14) locus. We report three missense variants in *TMEM171* in this study, p.Gly159Ala in the family; and p.Gln90Arg and

p.Arg156Trp in three additional unrelated JME patients. These novel/rare epilepsy-linked variants in *TMEM171* provide genetic evidence for its involvement in the causation of IGE/JME. The interaction of TMEM171 with SNAPIN and SNAP25 provides additional suggestions for its functions in neurons. Further studies using knockout cell lines or mouse models or both, shall help understand molecular and cellular roles of TMEM171 in greater depth.

Conclusions

Conclusions

Epilepsy is a common neurological disorder characterized by recurrent seizures usually unprovoked by any immediately identifiable cause. Genetic generalized epilepsies (GGE) constitute a heterogeneous group of epilepsies with generalized seizures. Juvenile myoclonic epilepsy (JME) is one of the most common GGE with a prevalence of 18% of all To date, only a few genes for JME have been mapped and GGEs. identified in large families. In the present study, I aimed to identify potentially disease-causing genes at the three genomic loci, 5p15-q12, 2q33-q36 (EJM9) and 5q12-q14 (EJM4), linked to juvenile myoclonic epilepsy in families from the southern parts of India. In this thesis, I have presented work done for (i) identification of potentially causative variants/genes in the disease-linked intervals by employing whole exome/genome sequencing experiments and (ii) to evaluate cell biological correlates of the variants in the genes proposed to be responsible for epilepsy.

In the initial search for genes causing epilepsies, ion channel genes emerged to be the leading cause. This led to an era of channelopathy for genetic epilepsies. In recent times, studies have led to the identification of other genes associated with genetic epilepsies. These genes are part of varied mechanisms which are involved in the pathophysiology of epilepsy. In our study too, we have identified non-channelopathy candidate causative genes, *CDC20B* at 5p15-q12, *DES* at 2q33-q36 and*TMEM171* at 5q12-q14, respectively.

The first gene that I have presented in this thesis is *CDC20B*, identified in a 3-generation south Indian family, GLH 35. Four additional rare, missense variants, p.Gln94His, p.Arg200Gly, p.Ile212Lys and p.Trp363Arg were identified among 552 JME patients examined for *CDC20B*. Interestingly, *CDC20B* is among the top 200 genes identified with the burden of ultra-rare variants in the Epi25 collaborative. CDC20B encodes a 591-amino acid long, WD repeat domain-containing protein. During late telophase and cytokinesis, the protein localizes to the midbody, during other cell cycle stages, it is present in the cytoplasm. We found that CDC20B co-immunoprecipitates with gamma-tubulin (TUBG1), EF-hand domain-containing protein 1 (EFHC1), and polo-like kinase (PLK1). Cytokinesis defects were observed on over-expression of the CDC20B variants, p.Arg200Gly, p.Trp363Arg and p.Ala509Thr, suggesting a cell cycle associated role for the protein. Interestingly, two variants p.Trp363Arg and p.Ala509Thr expressed in the mouse embryos at E14.5 by in-utero electroporation, showed longer projections in the neuronal progenitors than the ones observed for the wildtype CDC20B allele. The projection lengths of the neuronal cells may influence micro-developmental aspects of neural circuits which in turn can predispose to epilepsy.

The next candidate gene, *DES*, was identified at the EJM9, 2q33-q36, JME locus. This locus was identified in a three-generation south Indian family (SCT135) with several of its members affected by the disorder. *DES* codes for a 470 amino acid, muscle-specific, type III intermediate filament. RT-PCR analysis showed the expression of desmin in different human brain regions. Desmin is known to be expressed in pericytes in the brain. Though the epilepsy-associated mutations in *DES* do not seem to affect its expression levels and filament formation, our observations, make a prima facie case that they may have a damaging effect on its cellular function/s in the brain by affecting the physiology of the pericytes.

Lastly, *TMEM171* was identified at the locus EJM4 (5q12-q14). TMEM171 encodes a proline-rich transmembrane protein with an unknown biological function. TMEM171 protein has four predicted transmembrane domains in the N-terminal region and a C-terminal tail in the cytoplasm. It localizes to the plasma membrane. The patient variant, p.Gln90Arg lies in the second cytoplasmic loop, whereas the other two variants, p.Arg156Trp and p.Gly159Ala, lie in the second external loop of the protein. RT-PCR and Western analysis suggests the

Conclusions

expression of TMEM171 in different human brain regions. Though the epilepsy-associated TMEM171 variants do not seem to affect its membrane localization or expression levels, they may have damaging effects on the functional/cellular physiology of the brain. To get an insight into TMEM171 protein's functions and pathways that it may be a part of, I carried out immuno-pulldown experiments and identified SNAP25 and SNAPIN as two TMEM171-interacting partners. SNAP25 is a member of the SNARE complex. SNAPIN associates with the SNARE complex proteins and the BLOC-1 complex. Further delineation of TMEM171's role in these pathways would require additional studies.

In conclusion, the candidate genes identified in this thesis provide insights into the various pathways that may be important in the pathophysiology of JME. The three genes identified, *CDC20B*, *DES* and *TMEM171*, all seem to regulate very different pathways in the cell ranging from cell cycle, ciliogenesis, blood-brain barrier maintenance through pericytes to synaptic regulation. These discoveries will not only help in developing therapeutic interventions for epilepsy patients but will also be useful in developing diagnostic gene panels for genetic epilepsies.

Appendix I

Gene name	Genomic Position (Grch 38)	Allele	Consequence	cDNA change	Amino acid change	rs ID
C1QTNF3	34018448	C/T	3' UTR	c.*2135G>A	-	rs528976830
CDC20B	55114253	C/T	missense	c.1513G>A	p.Ala505Thr	rs200898156
C1QTNF3	34018448	C/T	3' UTR	c.*2135G>A	-	rs528976830
NUP155	37314221	T/C	missense	c.2236A>G	p.lle746Val	rs376806446
DNAH5	13931214	G/T	synonymous	c.88C>A	p.Arg30=	rs114220185
PDE4D	59586417	C/T	5' UTR	c328G>A	-	rs369106859
PDE4D	59586417	C/T	5' UTR	c334G>A	-	rs369106859
PDE4D	60004290	G/A	5' UTR	c5C>T	-	rs556348371
CCL28	43375949	C/T	downstream	-	-	rs777025587
SLC9A3	473251	C/T	3' UTR	c.*128G>A	-	-
TARS	33452960	A/-	intron	c.330-317del	-	rs79630452
TARS	33453598	G/A	intron	c.453+186G>A	-	rs553354497
CDC20B	55114253	C/T	missense	c.1525G>A	p.Ala509Thr	rs200898156
CDC20B	55114253	C/T	missense	c.1399G>A	p.Ala467Thr	rs200898156
SNX18	54543800	G/A	3' UTR	c.*620G>A	-	-
SNX18	54544033	-/T	3' UTR	c.*854dup	-	-
SNX18	54544468	TTTAC/-	3' UTR	c.*1286_*1290de l	-	-
SNX18	54545992	TG/-	3' UTR	c.*2812_*2813de I	-	-
SNX18	54546544	A/G	3' UTR	c.*3364A>G	-	rs186817959
11-Mar	16117375	T/C	intron	c.694-26294A>G	-	rs1417277884
11-Mar	16149490	CTA/-	intron	c.693+28236_693 +28238del	-	-
11-Mar	16156976	A/G	intron	c.693+20750T>C	-	rs116824407
ANKH	14769792	CC/-	upstream	-	-	rs1307759653
ANKH	14769796	AA/-	upstream	-	-	rs1217430727
ANKH	14769799	- /CGGC GAC	upstream	-	-	rs1255618085
ANKH	14769803	TT/-	upstream	-	-	rs1337495788
ANKH	14769806	Т/-	upstream	-	-	rs1214856162
SLC9A3	473251	C/T	missense	c.2383G>A	p.Ala795Thr	-
PLEKHG4B	109094	C/T	intron	c.46-4157C>T	-	-
ТТС33	40568560	C/T	3' UTR	c.*844G>A	-	rs1429871231
ТТС33	40568560	C/T	intron	c.326+35372G>A	-	rs1429871231
ТТС33	40600444	A/-	intron	c.326+3488del	-	rs137967063
ТТС33	40641632	C/A	intron	c.222-28251G>T	-	rs543273410
PRDM9	23455682	T/A	intron	c265-6990T>A	-	rs535859370
PRDM9	23463952	G/A	intron	c130+1145G>A	-	rs1450029786
PRDM9	23490052	T/A	intron	c129-3419T>A	-	rs562687617

A 2.1 Rare gene variants identified at the 5p15-q12 locus (GLH 35 family)

PRLR	35063425	T/C	3' UTR	c.*1664A>G	-	-
PRLR	35063425	T/C	3' UTR	c.*1664A>G	-	-
IL31RA	55858516	C/T	upstream	-	-	rs375213312
BASP1	17092052	G/A	intron	c73+2891G>A	-	rs959954745
BASP1	17105905	G/C	intron	c73+16744G>C	-	-
CPLANE1	37153907	C/G	missense	c.5242G>C	p.Gly1748Arg	rs768671286
SLC9A3	473251	C/T	downstream	-	-	-
TARS1	33453598	G/A	downstream	-	-	rs553354497
SELENOP	42825470	A/-	intron	c13-17104del	-	rs575053433
SELENOP	42828511	A/G	intron	c13-20145T>C	-	rs1357928065
SELENOP	42847360	AAAT/-	intron	c13-3899413- 38991del	-	-
MYO10	16936160	G/C	5' UTR	c352C>G	-	-
NUP155	37314221	T/C	missense	c.2413A>G	p.Ile805Val	rs376806446
TRIO	14290132	G/A	upstream	-	-	rs1296872989
TRIO	14522399	-/T	intron	c.7611-9332dup	-	rs397788787
CPLANE1	37153907	C/G	missense	c.1320G>C	p.Gly441Arg	rs768671286
DAB2	39445086	ATATAC AC/-	intron	c102+16992 102+16999del	-	rs1383148855
FYB1	39245451	G/T	intron	c28+28952C>A	-	rs531894684
ZDHHC11B	713271	A/G	intron	c.*8-989T>C	-	-
RPL37	40833567	A/G	downstream	-	-	rs551681386
CPLANE1	37153907	C/G	missense	c.8044G>C	p.Gly2682Arg	rs768671286
CDH18	20024603	A/G	intron	c517-32589T>C	-	-
CDH18	20172213	T/C	intron	c518+83231A>G	-	rs866935060
CDH18	20172228	A/G	intron	c518+83216T>C	-	rs1451244688
CDH18	20496061	A/G	intron	c580+79401T>C	-	rs545190198
CDH18	20563902	T/C	intron	c580+11560A>G	-	rs1561135176
ZNF131	43081493	CA/-	intron	c185+13277 185+13278del	-	rs1195955139
ZNF131	43122948	G/A	downstream	-	-	rs575153747
MYO10	16936160	G/C	5' UTR	c352C>G	-	-
TAS2R1	9710519	C/T	intron	c242+1653G>A	-	rs568740699
SELENOP	42825470	A/-	5' UTR	c43del	-	rs575053433
SUB1	32568731	G/A	intron	c1-19781G>A	-	rs555293599
SUB1	32578000	T/C	intron	c1-10512T>C	-	-
IRX4	1887353	C/T	upstream	-	-	rs1253069350
TTC23L	34894052	-/T	intron	c.1078-2717dup	-	-
PDE4D	59586417	C/T	upstream	-	-	rs369106859
SLC1A3	36630351	C/A	downstream	-	-	rs753010927
IL7R	35873450	C/T	upstream	-	-	rs1165054639
FBXL7	15503437	AAG/-	intron	c.37+2724_37+27 26del	-	-
FBXL7	15582013	TGCAG TGGCA TGATCT TAGCTC AT/-	intron	c.38-33989_38- 33966del	-	rs566181914

FBXL7	15595778	C/A	intron	c.38-20205C>A	-	rs561989652
FBXL7	15679558	-/T	intron	c.127+63505dup	-	rs34375125
FBXL7	15713599	C/A	intron	c.127+97527C>A	-	-
FBXL7	15760428	AA/-	intron	c.127+144367_12	-	rs74868826
	15703861	۸/-	intron	7+144368del		rc532552008
	15820770	G/A	intron	c 128-107120G\A	_	rs1447340017
	15875336	0/A	intron	c 128-10712007A	_	-
TBALY	13873330	/CAGG ACATA	introli	52554_128- 52553insCAGGAC ATA		
FBXL7	15884234	A/G	intron	c.128-43656A>G	-	rs547948490
FBXL7	15895635	TT/-	intron	c.128- 32232_128- 32231del	-	rs903652361
PRLR	35192501	G/C	intron	c293+37767C>G	-	rs906344590
PRLR	35098543	T/C	intron	c43-8880A>G	-	rs967185855
PRLR	35101986	C/T	intron	c43-12323G>A	-	-
PDE4D	59908631	G/A	intron	c.272+79857C>T	-	-
PDE4D	59928054	G/A	intron	c.272+60434C>T	-	rs575721152
PDE4D	59970096	C/T	intron	c.272+18392G>A	-	rs532020112
PDE4D	60004290	G/A	intron	c.43-15573C>T	-	rs556348371
PDE4D	60019798	C/T	intron	c.43-31081G>A	-	rs565170779
PDE4D	60034442	G/A	intron	c.43-45725C>T	-	rs534545515
PDE4D	60040335	G/C	intron	c.43-51618C>G	-	rs532796587
PDE4D	60056643	G/A	intron	c.43-67926C>T	-	rs569001317
PDE4D	60129629	C/A	intron	c.42+55928G>T	-	rs540763015
PDE4D	60132322	G/C	intron	c.42+53235C>G	-	rs571589405
PDE4D	60207817	G/T	intron	c89-22130C>A	-	-
PDE4D	60246375	C/T	intron	c89-60688G>A	-	rs574656004
PDE4D	60299119	-/T	intron	c89-113433dup	-	rs973044082
PDE4D	60340277	-/T	intron	c90+147664dup	-	-
PDE4D	60377171	T/C	intron	c90+110771A>G	-	rs553402147
MYO10	16936160	G/C	upstream	-	-	-
ARL15	53913286	G/A	intron	c75-26573C>T	-	rs147664991
ARL15	53964826	T/G	intron	c75-78113A>C	-	rs538305319
ARL15	54128095	C/T	intron	c284-14685G>A	-	-
ARL15	54180021	AAA/-	intron	c344-25382 344-25380del	-	rs11336058
BRD9	891308	A/-	5' UTR	c221del	-	-
BRD9	891308	A/-	intron	c.268-21del	-	-
MIER3	56970934	C/A	intron	c105+699G>T	-	rs546939194
C5orf67	56512242	AAAAA AAATAT ATAT/-	intron	c.370-506_370- 492del	-	-
C5orf67	56528976	ATATAT ATATAC AC/-	intron	c.205+4106_205+ 4119del	-	rs761310547

FU2U2	31677334	- /ATGTG ATGGA GTACTA TTTAGT GATAA AAAGA AATGA GCTATT GACAC ATGCA ACAAT	intron	c361+37897 361+37898insAT GTGATGGAGTAC TATTTAGTGATAA AAAGAAATGAGC TATTGACACATGC AACAAT	-	-
PDZD2	31792342	T/C	intron	c360-6547T>C	-	-
PDZD2	31913592	A/T	intron	c.477-69563A>T	-	-
PDZD2	31913915	T/G	intron	c.477-69240T>G	-	-
PDZD2	31916023	G/T	intron	c.477-67132G>T	-	-
PDZD2	31990518	G/A	intron	c.979-5058G>A	-	rs367734526
PDZD2	32024001	G/A	intron	c.1408-13230G>A	-	rs533028685
PDZD2	32094643	Т/-	intron	c.7845+1619del	-	rs539102907
ELOVL7	60797646	AGG/-	intron	c34-1021534- 10213del	-	-
CPLANE1	37132327	G/C	intron	c.8630+6393C>G	-	rs535402320
CPLANE1	37144634	G/A	intron	c.8300-2154C>T	-	rs1298991140
CPLANE1	37147973	AA/-	intron	c.8299+208_8299 +209del	-	rs11284644
CPLANE1	37153907	C/G	missense	c.8044G>C	p.Gly2682Arg	rs768671286
CPLANE1	37159097	TTT/-	intron	c.7691- 752_7691-750del	-	rs34035923
CPLANE1	37178230	T/C	intron	c.5821-530A>G	-	rs560006401
CPLANE1	37190180	C/G	intron	c.3812-2338G>C	-	-
GPBP1	57188674	AAACA CGTCA	intron	c58+12263 58+12275del	-	rs575100643
		GGC/-				
UBE2QL1	6466115	GGC/- G/A	intron	c.354+16868G>A	-	rs528545349
UBE2QL1 UBE2QL1	6466115 6478416	GGC/- G/A G/A	intron intron	c.354+16868G>A c.355-12802G>A	-	rs528545349 rs566577541
UBE2QL1 UBE2QL1 MROH2B	6466115 6478416 41033375	GGC/- G/A G/A C/T	intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A	-	rs528545349 rs566577541 rs528977438
UBE2QL1 UBE2QL1 MROH2B MAP3K1	6466115 6478416 41033375 56875527	GGC/- G/A G/A C/T ACTGTT TT/-	intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del	- - -	rs528545349 rs566577541 rs528977438 rs542544816
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A	6466115 6478416 41033375 56875527 9071874	GGC/- G/A G/A C/T ACTGTT TT/- G/T	intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A	- - - -	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A SEMA5A	6466115 6478416 41033375 56875527 9071874 9131659	GGC/- G/A G/A C/T ACTGTT TT/- G/T AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA C/-	intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A c.1599+4845_159 9+4870del	-	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501 rs1304510069
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A SEMA5A	6466115 6478416 41033375 56875527 9071874 9131659 9146360	GGC/- G/A G/A C/T ACTGTT TT/- G/T AAAAA AAAAA AAAAA AAAAA AAAAA C/- C/T	intron intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A c.1599+4845_159 9+4870del c.1481+8128G>A	- - - - -	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501 rs1304510069 rs980924251
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A SEMA5A SEMA5A SEMA5A	6466115 6478416 41033375 56875527 9071874 9131659 9146360 9323659	GGC/- G/A G/A C/T ACTGTT TT/- G/T AAAAA AAAAA AAAAA AAAAA C/- C/T TT/-	intron intron intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A c.1599+4845_159 9+4870del c.1481+8128G>A c.225-5242_225- 5241del	- - - - -	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501 rs1304510069 rs980924251 rs35243676
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A	6466115 6478416 41033375 56875527 9071874 9131659 9146360 9323659 9351399	GGC/- G/A G/A C/T ACTGTT TT/- G/T AAAAA AAAAA AAAAA AAAAA C/- C/T TT/- C/T TT/- C/A	intron intron intron intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A c.1599+4845_159 9+4870del c.1481+8128G>A c.225-5242_225- 5241del c.125-13587G>T	- - - - - - - -	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501 rs1304510069 rs1304510069 rs980924251 rs35243676 rs576042681
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A	6466115 6478416 41033375 56875527 9071874 9131659 9146360 9323659 9351399 9392870	GGC/- G/A G/A C/T ACTGTT TT/- G/T AAAAA AAAAA AAAAA AAAAA C/T C/T C/T C/T TT/- C/A A/G	intron intron intron intron intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A c.1599+4845_159 9+4870del c.1481+8128G>A c.225-5242_225- 5241del c.125-13587G>T c77-12847T>C	- - - - - - - -	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501 rs1304510069 rs980924251 rs35243676 rs576042681 rs1044264159
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A	6466115 6478416 41033375 56875527 9071874 9131659 9146360 9323659 9351399 9392870 9432179	GGC/- G/A G/A C/T ACTGTT TT/- G/T AAAAA AAAAA AAAAA AAAAA C/T TT/- C/T TT/- C/A A/G G/A	intron intron intron intron intron intron intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A c.1599+4845_159 9+4870del c.1599+4845_159 g+4870del c.125-5242_225- 5241del c.125-13587G>T c77-12847T>C c78+5577C>T	- - - - - - - - - - - -	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501 rs1304510069 rs1304510069 rs980924251 rs35243676 rs576042681 rs1044264159 rs183822633
UBE2QL1 UBE2QL1 MROH2B MAP3K1 SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A SEMA5A	6466115 6478416 41033375 56875527 9071874 9131659 9146360 9323659 9351399 9392870 9432179 9492674	GGC/- G/A G/A C/T ACTGTT TT/- G/T AAAAA G/A T/C	intron intron intron intron intron intron intron intron intron intron intron intron	c.354+16868G>A c.355-12802G>A c.2242-215G>A c.1965+213_1965 +220del c.2074-5228C>A c.1599+4845_159 9+4870del c.1599+4845_159 9+4870del c.125-5242_225- 5241del c.125-13587G>T c77-12847T>C c78+5577C>T c78+5577C>T	- - - - - - - - - - -	rs528545349 rs566577541 rs528977438 rs542544816 rs536703501 rs1304510069 rs980924251 rs35243676 rs576042681 rs1044264159 rs183822633 rs540206987

CDH18	19843530	A/G	intron	c256-4288T>C	-	rs563538642
CDH18	19848326	C/T	intron	c256-9084G>A	-	-
CDH18	19891206	G/A	intron	c256-51964C>T	-	rs532113616
CDH18	19905408	TTTAT/-	intron	c256-66166 256-66162del	-	-
CDH18	19917893	Т/-	intron	c257+63167del	-	rs534152701
CDH18	19984427	T/C	intron	c375-3249A>G	-	rs753841968
CDH12	22035384	TG/-	intron	c.231+43062_231 +43063del	-	rs146264911
CDH12	22093651	G/C	intron	c186-14789C>G	-	rs570478581
CDH12	22153889	- /TATAT GTAT	intron	c187+58608 187+58609insATA CATATA	-	-
CDH12	22226528	T/C	intron	c332-13885A>G	-	-
CDH12	22230133	T/C	intron	c332-17490A>G	-	-
CDH12	22260909	A/G	intron	c332-48266T>C	-	rs1038898494
CDH12	22277484	T/C	intron	c332-64841A>G	-	rs752655476
CDH12	22308933	AGAAA GAGAG GAGAG GAGAG AGGAG AGGAG GAGAG GAGAG AGAGA GAA/-	intron	c332-96290 332-96238del		
CDH12	22314954	ТТТТТТ ТТТТТТ Т/-	intron	c333+90303 333+90315del	-	rs759734847
CDH12	22327432	TGTG/" *	intron	-	-	-
CDH12	22332080	G/T	intron	c333+73177C>A	-	-
CDH12	22335580	A/G	intron	c333+69677T>C	-	-
CDH12	22350951	G/T	intron	c333+54306C>A	-	rs192043592
CDH12	22366769	G/C	intron	c333+38488C>G	-	-
CDH12	22425079	TAG/"*	intron	-	-	-
CDH12	22456903	T/A	intron	c428+48367A>T	-	rs1004330329
CDH12	22461473	A/T	intron	c428+43797T>A	-	rs547972371
CDH12	22653992	CCTT/-	intron	c522-148628 522-148625del	-	rs1023647653
CDH12	22661765	A/G	intron	c522- 156401T>C	-	rs568742391,CO SV66434584
CDH12	22696952	A/-	intron	c523+156106del	-	rs546877552
CDH12	22704576	C/T	intron	c 523+148482G>A	-	rs933948012
CDH12	22708319	A/G	intron	c 523+144739T>C	-	-
CDH12	22724541	A/C	intron	c 523+128517T>G	-	rs934347497
CDH12	22752574	TTTTTT TTTTTT TTTTTC /-	intron	c523+100484 523+100501del	-	rs1369642200

CDH12	22778114	-/T	intron	c523+74943dup	-	rs367585244
CDH12	22781706	C/G	intron	c523+71352G>C	-	rs1278758828
CDH12	22828612	T/A	intron	c523+24446A>T	-	rs566834004
C1QTNF3	34018448	C/T	downstream	-	-	rs528976830
NUP155	37314221	T/C	missense	c.2236A>G	p.lle746Val	rs376806446
SNX18	54543800	G/A	3' UTR	c.*368G>A	-	-
SNX18	54544033	-/T	3' UTR	c.*602dup	-	-
SNX18	54544468	TTTAC/-	3' UTR	c.*1034_*1038de I	-	-
SNX18	54545992	TG/-	3' UTR	c.*2560_*2561de I	-	-
SNX18	54546544	A/G	3' UTR	c.*3112A>G	-	rs186817959
SNX18	54547387	G/C	downstream	-	-	rs192548012
CDC20B	55114253	C/T	missense	c.1525G>A	p.Ala509Thr	rs200898156
IL6ST	55994097	Т/-	intron	c104+687del	-	rs770968541
PLCXD3	41312738	TCCTTC CTTCTG /-	3' UTR	c.*879_*890del	-	-
CCL28	43392828	A/G	intron	c.65-4352T>C	-	-
PDE4D	59586417	C/T	5' UTR	c42G>A	-	rs369106859
SPEF2	35724558	G/C	intron	c.2915-3117G>C	-	rs1162065975
SPEF2	35806386	C/A	intron	c.5011-321C>A	-	rs1193292484
DDX4	55749754	TTA/-	intron	c.127+3531_127+ 3533del	-	-
DDX4	55749767	GGATT TTTTGC C/-	intron	c.127+3535_127+ 3546del	-	-
DDX4	55749771	CC/-	intron	c.127+3551_127+ 3552del	-	-
DDX4	55783665	G/A	intron	c.524-1632G>A	-	rs1345403140
DDX4	55786494	C/T	intron	c.763-24C>T	-	rs199606403
ADAMTS12	33583973	A/G	intron	c.2610+4626T>C	-	rs540891822
ADAMTS12	33629755	T/G	intron	c.1888+7822A>C	-	rs545737603
ADAMTS12	33643814	T/C	intron	c.1480-344A>G	-	rs1034794433
ADAMTS12	33645268	G/C	intron	c.1480-1798C>G	-	rs1275581645
ADAMTS12	33714597	A/C	intron	c.635-30542T>G	-	rs548891171
ADAMTS12	33717968	G/A	intron	c.634+33436C>T	-	rs538396868
ADAMTS12	33751838	A/G	intron	c.490-290T>C	-	-
ADAMTS12	33789340	C/T	intron	c.490-37792G>A	-	rs567228341
FYB1	39122637	C/T	intron	c.1934-235G>A	-	rs1459733480,C OSV60944363
FYB1	39148380	- /TTTTT TTT	intron	c.1292+5067_129 2+5068insAAAAA AAA	-	-
DROSHA	31441968	A/C	intron	c.2883-4670T>G	-	-
TRIO	14272956	T/C	intron	c.232+2057T>C	-	rs535946536
TRIO	14290132	G/A	intron	c.541-584G>A	-	rs1296872989
TRIO	14293478	C/T	intron	c.1176+344C>T	-	-
TRIO	14338153	G/A	intron	c.2046+1426G>A	-	-
TRIO	14448346	C/T	intron	c.5204-12673C>T	-	rs1231237757

ANKRD55	56112511	-	intron	c.966-730_966-	-	-
		/AAAAA		729insGTTTTTTTT		
		AAAAA		ттттттт		
		AAAAA				
ANKRD55	56152633	AC A/G	intron	c.483+7200T>C	-	rs192608624
ANKRD55	56172754	T/C	intron	c.313-1951A>G	-	rs375272895
ANKRD55	56210564	AAAA/-	intron	c.58+22292_58+2 2295del	-	rs59566826
ANKRD55	56227676	A/G	intron	c.58+5180T>C	-	rs373142766
ANKRD55	56233926	T/C	upstream	-	-	rs371573990
PDE4D	59019870	-	intron	c.921+18981_921	-	rs70973175
		/CTATC		+18988dup		
PDF4D	59053664	TAT T/G	intron	c.809-14693A>C	-	rs866347206
	59077542	с/т	intron	c 809-385716>A		rs97/1596527
	55077542		intron	0.009-585710-A		13374330327
PDE4D	59105880	A/G		C.809-009151>C	-	-
PDE4D	59140163	I/A	intron	c.808+40432A>1	-	rs1035386339
PDE4D	59167215	C/T	intron	c.808+13380G>A	-	rs558439068
PDE4D	59170881	-/T	intron	c.808+9713dup	-	rs1260829199
PDE4D	59186404	T/C	intron	c.685-1142A>G	-	-
PDE4D	59226856	Т/-	intron	c.456-10888del	-	rs143154289
PDE4D	59233883	C/T	intron	c.456-17915G>A	-	rs1008502587
PDE4D	59243704	C/T	intron	c.456-27736G>A	-	rs914755044
PDE4D	59311504	AAAAA/	intron	c.456-	-	rs35020719
		-		95536_456-		
00540	50240296	т/с	intron	95532del		******
	59549260		intron	C.450-155518A>G	-	13000020302
PDE4D	59352845	G/C	Intron	C.456-1368//C>G	-	-
PDE4D	59359032	1/-	intron	c.456-143064del	-	rs543194281
PDE4D	59372748	T/G	intron	c.456-156780A>C	-	-
PDE4D	59553491	G/T	intron	c.456-337523C>A	-	-
PDE4D	59565672	C/T	intron	c.455+327496G> A	-	rs578151880
PDE4D	59574435	T/C	intron	c.455+318733A> G	-	-
PDE4D	59581899	A/G	intron	c.455+311269T>C	-	rs549436448
PDE4D	59586417	C/T	intron	c.455+306751G> A	-	rs369106859
PDE4D	59610748	C/T	intron	c.455+282420G>	-	rs548231317
PDE4D	59616945	A/C	intron	c.455+276223T> G	-	rs547471208
PDE4D	59621960	G/A	intron	c.455+271208C>T	-	rs376764926
PDE4D	59632723	T/A	intron	c.455+260445A>T	-	rs376420199
PDE4D	59728660	GAAG/-	intron	c.455+164508_45 5+164511del	-	-
PDE4D	59735830	A/C	intron	c.455+157338T> G	-	rs568577960
PDE4D	59746749	T/C	intron	c.455+146419A> G	-	-
PDE4D	59762376	TATATG TGTATA	intron	c.455+130792_45 5+130817del	-	-

		TGGGT ACACAT				
PDE4D	59773905	C/T	intron	c.455+119263G>	-	-
PDE4D	59781984	C/T	intron	c.455+111184G>	-	-
PDE4D	59867152	A/T	intron	c.455+26016T>A	-	rs567765673
PDE4D	59868224	T/C	intron	c.455+24944A>G	-	rs541446917
PDE4D	59885851	-/TA	intron	c.455+7315_455+ 7316dup	-	-
ADCY2	7474962	-/TCCC	intron	c.409- 45774_409- 45771dup	-	-
ADCY2	7522739	- /AAAAA AA	intron	c.570+1871_570+ 1877dup	-	-
ADCY2	7643032	T/A	intron	c.720+16716T>A	-	-
ADCY2	7718443	C/T	intron	c.1703+1206C>T	-	rs377371975
ADCY2	7775679	C/-	intron	c.2384+2579del	-	rs527504724
ADCY2	7779239	T/C	intron	c.2385-5126T>C	-	rs569591465
TTC33	40718602	T/C	intron	c.436-2104A>G	-	rs539001663
MIER3	56939875	T/G	intron	c.100-858A>C	-	rs567619032
MIER3	56945273	G/T	intron	c.99+1653C>A	-	rs575669813
IL6ST	55934732	T/C	downstream	-	-	-
MARCHF11	16117375	T/C	intron	c.694-26294A>G	-	rs1417277884
MARCHF11	16149490	CTA/-	intron	c.693+28236_693 +28238del	-	-
MARCHF11	16156976	A/G	intron	c.693+20750T>C	-	rs116824407
PLCXD3	41312738	TCCTTC CTTCTG /-	splice donor, 3' UTR	c.*879_*888+2de l	-	-
PLCXD3	41339258	G/C	intron	c.813-25488C>G	-	rs13175338
PLCXD3	41367092	A/G	intron	c.812+14734T>C	-	-
PLCXD3	41428374	-/TTTT	intron	c.104- 45844_104- 45841dup	-	rs373244601
PLCXD3	41440215	- /TTTTT TTTTTT TTTT	intron	c.104- 57696_104- 57682dup	-	-
SNX18	54530820	C/T	intron	c.1774+11094C>T	-	rs977446647
SNX18	54543800	G/A	downstream	-	-	-
SNX18	54544033	-/T	downstream	-	-	-
NIM1K	43210431	T/A	intron	c695+18020T>A	-	-
NIM1K	43269181	-/A	intron	c.293-7876_293- 7875insA	-	rs921212513
HMGCS1	43286838	C/T	downstream	-	-	-
BASP1	17244696	TT/-	intron	c10+26899 10+26900del	-	rs79126102
CDC20B	55114253	C/T	missense	c.1399G>A	p.Ala467Thr	rs200898156
EGFLAM	38260072	G/A	intron	c.97+1221G>A	-	-
EGFLAM	38270314	T/G	intron	c.97+11463T>G	-	rs116479992

EGFLAM	38289633	A/T	intron	c.97+30782A>T	-	rs540261377
EGFLAM	38433286	A/G	intron	c.2167-1851A>G	-	rs545019420
DAB2	39384951	A/G	intron	c.688-1680T>C	-	-
DAB2	39401528	T/G	intron	c101-7107A>C	-	-
SLC38A9	55687079	T/C	intron	c.113+10767A>G	-	-
SLC38A9	55696666	CCTCCC GGACG GGGCG GCTGG CCGGG CAGAG GGGCT CCTCAC TTCCCA GTAGG GGCGG CCGGG CAGAG GCGCC CCTCA/ -	intron	c.113+1180_113+ 1257del	-	rs1561434832
AHRR	380446	C/G	intron	c.363+3730C>G	-	rs1310675162
ANXA2R	43043110	G/A	5' UTR	c1360C>T	-	rs1310545162
С7	40952548	G/-	intron	c.1093+2535del	-	rs1355449459
С7	40982325	AG/-	3' UTR	c.*751_*752del	-	rs1348389884
ZNF131	43122948	G/A	intron	c.125-261G>A	-	rs575153747
ZNF131	43143920	TTTTTT TTTTTT TTTTTT TTTT/-	intron	c.371+4606_371+ 4627del	-	rs79246574
ZNF131	43147394	-/T	intron	c.371+8093dup	-	rs769222605
RETREG1	16485298	A/G	intron	c.459-1826T>C	-	-
RETREG1	16506426	G/A	intron	c.459-22954C>T	-	rs1012423896
RETREG1	16530862	A/-	intron	c.458+34901del	-	rs1218730697
CTNND2	11045019	T/G	intron	c.2789-22040A>C	-	rs550742264
CTNND2	11062974	G/A	intron	c.2788+19722C>T	-	-
CTNND2	11097710	T/C	intron	c.2637+865A>G	-	-
CTNND2	11116373	A/G	intron	c.2277+1077T>C	-	rs774015984
CTNND2	11250491	- /TCTCT CTCTCT CTATAT ATA	intron	c.1629- 13669_1629- 13668insTATATA TAGAGAGAGAGA GA	-	rs869141186
CTNND2	11297839	C/T	intron	c.1628+48533G> A	-	rs1351006057
CTNND2	11324142	G/C	intron	c.1628+22230C> G	-	rs866657412
CTNND2	11333738	C/T	intron	c.1628+12634G> A	-	rs559186586
CTNND2	11394301	C/G	intron	c.612+2730G>C	-	-
CTNND2	11398101	G/A	intron	c.440-898C>T	-	-
CTNND2	11477645	G/A	intron	c.288-65576C>T	-	-
CTNND2	11482102	A/G	intron	c.288-70033T>C	-	-

CTNND2	11546869	C/T	intron	c.287+18075G>A	-	rs533782301
CTNND2	11556643	T/C	intron	c.287+8301A>G	-	rs542804647
CTNND2	11559035	A/G	intron	c.287+5909T>C	-	-
CTNND2	11571585	G/A	intron	c.175-6529C>T	-	-
CTNND2	11578681	AATAA ATAAAT A/-	intron	c.175- 13625_175- 13614del	-	rs57654816
CTNND2	11596595	G/A	intron	c.175-31539C>T	-	rs186082986
CTNND2	11638652	C/A	intron	c.175-73596G>T	-	rs550098357
CTNND2	11651864	A/C	intron	c.174+80272T>G	-	-
CTNND2	11728609	A/G	intron	c.174+3527T>C	-	-
CTNND2	11743344	G/A	intron	c.38-11072C>T	-	-
SLC6A19	1216131	G/A	intron	c.888-427G>A	-	-
HCN1	45278940	G/A	intron	c.1619-11687C>T	-	-
HCN1	45281314	TC/-	intron	c.1619- 14061_1619- 14060del	-	rs368864355
HCN1	45326876	T/C	intron	c.1378-23037A>G	-	rs561738528
HCN1	45374948	C/G	intron	c.1230+21544G> C	-	rs1275825931
HCN1	45401657	-/TT	intron	c.1012- 4949_1012- 4948dup	-	rs77219002
HCN1	45416642	A/G	intron	c.1012-19932T>C	-	rs534688990
HCN1	45436929	A/G	intron	c.1011+24917T>C	-	rs531929024
HCN1	45454685	G/T	intron	c.1011+7161C>A	-	-
IL7R	35857185	T/C	intron	c.82+126T>C	-	-
IL7R	35873450	C/T	intron	c.538-30C>T	-	rs1165054639
IL31RA	55858516	C/T	intron	c.7-993C>T	-	rs375213312
IL31RA	55881724	TTTTTT TT/-	intron	c.398-1306_398- 1299del	-	rs34217814
IL31RA	55883700	A/G	intron	c.549+505A>G	-	rs368572634
IL31RA	55896985	- /AAAAA	intron	c.795+568_795+5 72dup	-	rs1317185291
RICTOR	38960737	T/A	intron	c.1716-204A>T	-	-
RICTOR	38966108	-/A	intron	c.1299+532dup	-	rs1009891875
RICTOR	38985128	C/T	intron	c.584-3092G>A	-	rs1192515020
RICTOR	38994277	T/G	intron	c.456+2542A>C	-	rs951656923
CDC20B	55114253	C/T	missense	c.1513G>A	p.Ala505Thr	rs200898156
CDC20B	55135614	G/A	intron	c.581-2086C>T	-	rs894501872
NDUFS4	53596962	C/A	intron	c.99-6490C>A	-	-
NDUFS4	53622362	C/T	intron	c.177+18832C>T	-	rs1445764128
NDUFS4	53643336	G/T	intron	c.178-2897G>T	-	-
NDUFS4	53668854	C/G	intron	c.424+10230C>G	-	rs553885656
ANKRD33B	10638989	GCGGA /-	intron	c.637+818_637+8 22del	-	rs1560984717
ANKRD33B	10641898	A/G	intron	c.637+3730A>G	-	-
ANKRD33B	10646596	тстт/-	intron	c.638-2671_638- 2668del	-	rs1047577203
RANBP3L	36266001	G/A	intron	c.269-481C>T	-	rs1275313660

RANBP3L	36294669	C/-	intron	c.91+6657del	-	-
LMBRD2	36102276	T/C	3' UTR	c.*1770A>G	-	-
NDUFAF2	60948948	C/G	intron	c.127+3566C>G	-	rs538879169
NDUFAF2	60968001	C/T	intron	c.127+22619C>T	-	-
NDUFAF2	60994051	C/T	intron	c.127+48669C>T	-	-
NDUFAF2	61005184	A/G	intron	c.127+59802A>G	-	rs1383724607
NDUFAF2	61005188	A/T	intron	c.127+59806A>T	-	-
NDUFAF2	61013195	A/T	intron	c.128-59930A>T	-	rs548290091
NDUFAF2	61040290	ACGCG/ "*	intron	-	-	-
NDUFAF2	61051919	C/T	intron	c.128-21206C>T	-	-
NDUFAF2	61065931	A/G	intron	c.128-7194A>G	-	rs561945293
NDUFAF2	61087822	A/G	intron	c.218-11170A>G	-	rs540821390
NDUFAF2	61125832	A/G	intron	c.258+26800A>G	-	-
NDUFAF2	61135141	A/-	intron	c.259-17552del	-	rs1427360387
NDUFAF2	61150678	A/G	intron	c.259-2026A>G	-	rs1017600370
SLC45A2	33978634	C/-	intron	c.562+3602del	-	rs1231793266
SLC45A2	33979453	T/C	intron	c.562+2783A>G	-	-
ITGA2	52997555	C/T	intron	c.64+8023C>T	-	rs573953177
ICE1	5435665	T/G	intron	c.85-753T>G	-	rs1171881305
ICE1	5458274	G/T	intron	c.1101+533G>T	-	rs539934672
ICE1	5478278	C/T	intron	c.6520+2199C>T	-	rs535623205
ΑΝΚΗ	14769792	CC/-	intron	c.97-601_97- 600del	-	rs1307759653
ΑΝΚΗ	14769796	AA/-	intron	c.97-605_97- 604del	-	rs1217430727
ANKH	14769799	- /CGGC GAC	intron	c.97-609_97- 608insGTCGCCG	-	rs1255618085
ΑΝΚΗ	14769803	TT/-	intron	c.97-612_97- 611del	-	rs1337495788
ANKH	14769806	T/-	intron	c.97-615del	-	rs1214856162
ANKH	14796453	-/A	intron	c.97-27263dup	-	rs56898794
ANKH	14797075	T/C	intron	c.97-27884A>G	-	-
ANKH	14808252	-/T	intron	c.97-39062dup	-	rs35952510
ANKH	14848221	G/A	intron	c.96+23131C>T	-	-
ANKH	14849534	A/T	intron	c.96+21818T>A	-	-
PLEKHG4B	142677	C/A	intron	c.410-370C>A	-	-
PLEKHG4B	148359	A/T	intron	c.838-3154A>T	-	rs538418751
RAB3C	58629688	A/G	intron	c.252+11818A>G	-	-
RAB3C	58643625	G/A	intron	c.252+25755G>A	-	rs549106770
RAB3C	58649469	C/T	intron	c.252+31599C>T	-	rs191854778
RAB3C	58725295	A/G	intron	c.253-707A>G	-	rs553148416
RAB3C	58755660	C/T	intron	c.371+29540C>T	-	-
RAB3C	58838667	A/C	intron	c.497-12497A>C	-	rs1291380619
ITGA1	52832783	-/TGTC	intron	c.62-16579_62- 16578insCTGT	-	-
ITGA1	52910977	T/C	intron	c.1857+558T>C	-	rs1218815089

CCNO	55233064	-/AGA	intron	c.381+78_381+79 insTCT	-	rs538223997
CCNO	55233067	CC/-	intron	c.381+76_381+77 del	-	rs1395605645
NIPBL	37004400	T/-	intron	c.3855+1064del	-	rs1209687707
NIPBL	37007662	C/T	intron	c.4239+188C>T	-	-
NIPBL	37046208	A/T	intron	c.6589+9A>T	-	rs370709104
NIPBL	37055390	AGAAA /-	intron	c.7264- 1790_7264- 1786del	-	rs1365490802
NIPBL	37055836	T/C	intron	c.7264-1350T>C	-	-
PARP8	50769421	A/G	intron	c.518+6179A>G	-	rs556271521
PARP8	50830137	C/T	intron	c.2233+176C>T	-	-
UGT3A1	35965154	G/A	intron	c.843+232C>T	-	rs571016143
UGT3A1	35986272	A/G	intron	c.196+2178T>C	-	-
OSMR	38852718	-/TTT	intron	c14+6359 14+6361dup	-	-
OSMR	38882303	G/A	intron	c.418+539G>A	-	rs573897797
RPL37	40833567	A/G	intron	c.224+614T>C	-	rs551681386
MYO10	16677417	Т/-	intron	c.4576-1263del	-	rs796474728
MYO10	16739628	G/A	intron	c.1929+15200C>T	-	rs1386999752
MYO10	16821924	A/"*	intron	-	-	-
MYO10	16828108	G/A	intron	c.121-9941C>T	-	rs923531194
MYO10	16848633	G/A	intron	c.120+28976C>T	-	rs1325685583
MYO10	16850136	G/A	intron	c.120+27473C>T	-	rs1197589668
MYO10	16857836	G/A	intron	c.120+19773C>T	-	rs534921840
MYO10	16859056	T/A	intron	c.120+18553A>T	-	rs574463541
MYO10	16893616	G/A	intron	c.22-15909C>T	-	rs1242492830
MYO10	16893654	- /AAATT ATT	intron	c.22-15955_22- 15948dup	-	rs1491144924
MYO10	16936160	G/C	5' UTR	c352C>G	-	-
CDH18	19494081	C/T	intron	c.1630+8911G>A	-	-
CDH18	19573881	T/A	intron	c.1000-2049A>T	-	-
CDH18	19576090	G/T	intron	c.1000-4258C>A	-	-
CDH18	19605489	-/T	intron	c.811+6944_811+ 6945insA	-	-
CDH18	19605490	A/T	intron	c.811+6944T>A	-	-
CDH18	19643242	A/G	intron	c.644-30641T>C	-	rs568565468
CDH18	19667509	AC/"*	intron	-	-	-
CDH18	19684818	A/G	intron	c.643+36529T>C	-	rs534445947
ROPN1L	10454986	G/A	intron	c.417+4873G>A	-	rs572607220
SLC1A3	36630351	C/A	intron	c.319+764C>A	-	rs753010927
TARS1	33452960	A/-	intron	c.330-317del	-	rs79630452
TARS1	33453598	G/A	intron	c.453+186G>A	-	rs553354497
TARS1	33470528	G/C	downstream	-	-	rs530680034
RAI14	34664416	AA/-	intron	c49+7954 49+7955del	-	rs11311801
RAI14	34757154	G/C	intron	c.37-314G>C	-	-

RAI14	34762933	TGTG/" *	intron	-	-	-
RAI14	34781992	G/A	intron	c.168-13947G>A	-	rs566862592
WDR70	37387998	C/T	intron	c.176-4002C>T	-	rs531453489
WDR70	37471351	A/C	intron	c.687-8483A>C	-	-
WDR70	37475060	A/G	intron	c.687-4774A>G	-	-
WDR70	37511834	A/G	intron	c.841-4680A>G	-	rs531683665
WDR70	37523755	C/T	intron	c.917+7165C>T	-	rs565133674
WDR70	37563093	CCTCCC GGACG GGGCG GCTGG CCGGG GGCTG ACCCCC CCCGCC TC/-	intron	c.918- 41998_918- 41949del	-	-
WDR70	37597187	A/G	intron	c.918-7877A>G	-	-
WDR70	37605881	A/G	intron	c.1092+643A>G	-	rs916993226
WDR70	37666973	A/G	intron	c.1093-30682A>G	-	-
WDR70	37667889	A/C	intron	c.1093-29766A>C	-	-
WDR70	37738949	A/G	intron	c.1877+11904A> G	-	rs924426680
WDR70	37744707	A/T	intron	c.1878-7779A>T	-	-
DNAH5	13736456	G/A	intron	c.11456-524C>T	-	rs551371231
DNAH5	13777404	G/C	intron	c.8952-49C>G	-	rs533347451
DNAH5	13852165	T/G	intron	c.4951-1350A>C	-	-
DNAH5	13931214	G/T	synonymous	c.88C>A	p.Arg30=	rs114220185
NPR3	32751993	G/A	intron	c.1059+12963G> A	-	rs532152369
NPR3	32760089	G/A	intron	c.1060-14619G>A	-	rs10461914
NPR3	32771050	-/T	intron	c.1060-3646dup	-	rs540902606
NPR3	32772651	G/T	intron	c.1060-2057G>T	-	-
CDH6	31300889	G/A	intron	c.812-1222G>A	-	-
GOLPH3	32149890	G/A	intron	c.226-6010C>T	-	rs1041348241
ZFR	32367018	C/G	intron	c.2836-2743G>C	-	-
ZFR	32408326	-/C	intron	c.785-1306_785- 1305insG	-	rs1554073133
ZFR	32415828	G/A	intron	c.566-641C>T	-	-
ERCC8	60873441	G/C	downstream	-	-	rs547479737
ERCC8	60919668	T/G	intron	c.276-1280A>C	-	rs4647083
ERCC8	60941218	C/T	intron	c.77+3714G>A	-	rs566583898
DEPDC1B	60618416	GAG/-	intron	c.899- 12560_899- 12558del	-	-
DEPDC1B	60625945	C/T	intron	c.898+12805G>A	-	-
DEPDC1B	60632237	C/T	intron	c.898+6513G>A	-	rs531078156
			1		1	1
DEPDCIB	60633945	C/T	intron	c.898+4805G>A	-	-

SLC9A3	473251	C/T	3' UTR	c.*128G>A	-	-
MTMR12	32307746	A/-	intron	c.81+5012del	-	rs1281665765
GPBP1	57229230	- /AAAAA AA	intron	c.85-1585_85- 1579dup	-	rs543005934
PLPP1	55443192	- /AAAAA AAAAA AAAAT ATATAT	intron	c.495-1285_495- 1284insATATATA TTTTTTTTTTTTTTT	-	rs1204621666
PLPP1	55532345	T/A	intron	c.58+2227A>T	-	rs547367114
MTRR	7880693	T/C	intron	c.861+2371T>C	-	-
MTRR	7882263	T/G	intron	c.862-892T>G	-	rs574484046
FGF10	44308614	T/C	intron	c.429+1813A>G	-	rs546765823
FGF10	44329080	C/T	intron	c.326-18550G>A	-	rs1443965218
FGF10	44337520	A/C	intron	c.326-26990T>G	-	-
NNT	43676998	A/C	intron	c.2795-727A>C	-	rs967327212
CDH10	24529417	AA/-	intron	c.814+5695_814+ 5696del	-	rs979727439
CDH10	24553344	G/A	intron	c.232-15670C>T	-	rs529464745
CDH10	24580216	G/A	intron	c.231+13044C>T	-	rs1217382005
CDH10	24586844	Т/-	intron	c.231+6416del	-	rs1001227038
CDH10	24595626	C/T	intron	c123-2013G>A	-	rs554020550
C6	41194012	C/T	intron	c.587+1780G>A	-	rs577937091
LIFR	38528982	Т/-	intron	c.143-142del	-	rs1246932957
С9	39289177	AAT/-	intron	c.1417- 226_1417-224del	-	-
С9	39333140	C/-	intron	c.477-1326del	-	rs753503600
NUP155	37314221	T/C	missense	c.2413A>G	p.lle805Val	rs376806446
NUP155	37317008	A/-	intron	c.2305+980del	-	rs1263259747
NUP155	37352277	G/A	intron	c.556+460C>T	-	-
PRLR	35063425	T/C	intron	c.1009+2524A>G	-	-
AGXT2	34997687	G/A	downstream	-	-	rs532629004
AGXT2	35013621	A/C	intron	c.1096+366T>G	-	rs550872430
AGXT2	35023177	AAG/-	intron	c.963+2586_963+ 2588del	-	rs1474371115
AGXT2	35036596	C/T	intron	c.486+346G>A	-	-
C1QTNF3	34028970	C/A	intron	c.352-87G>T	-	-
CDH9	26910223	-/TAT	intron	c.524-3386_524- 3385insATA	-	rs1166873308
CDH9	26916596	C/T	intron	c.229-672G>A	-	-
CDH9	26930921	C/A	intron	c.229-14997G>T	-	rs898718041
CDH9	26952652	-/AG	intron	c.228+35453_228 +35454insCT	-	rs1554000026
GHR	42428387	G/A	intron	c12+4432G>A	-	rs564009075
GHR	42608108	C/T	intron	c.71-20930C>T	-	-
ISL1	51386480	A/C	intron	c.219-1010A>C	-	rs187728145
MTREX	55349186	Т/-	intron	c.1241-371del	-	rs369214186
MTREX	55351842	-/T	intron	c.1431+829dup	-	rs754738083
OXCT1	41836374	A/G	intron	c.732+4077T>C	-	-

OXCT1	41837667	A/G	intron	c.732+2784T>C	-	-
TRIP13	901470	A/G	intron	c.535+39A>G	-	rs371178266

A 2.2 Primer pairs for the PCR- and Sanger-based sequencing experiments

GLH35 NG	iS variant primers	GLH35 NGS variant primers		
Name	Sequence (5'-3')	Name	Sequence (5'-3')	
PLEKHG4B-Ex11-F	caggaaacatccccagaag	NUP155-Ex22-R	ccctccaaagccaaaatactc	
PLEKHG4B-Ex11-R	actgctaggacgagaggag	PRKAA1-Ex4-F	cccccagaactcataatcctc	
ZDHHC11-5'UTR-F	agtgtggcctctttctgacg	PRKAA1-Ex4-R	aggggcttttgcataccac	
ZDHHC11-5'UTR-R	ccgttcactctggagatgc	HEATR7B2-Ex34-F	tagtccaggggtgggaaag	
SLC12A7-Ex18-F	ctggaagcaggaggacaacc	HEATR7B2-Ex34-R	tgaggtgagtggtgtgtgtg	
SLC12A7-Ex18-R	gcagaggggggacagtgag	GZMA-Ex5-F	gtcaaggttggtcttaactgc	
TERT-Ex13-F	ggcaggcagatgacacagag	GZMA-Ex5-R	acgcacaaatgactctggtg	
TERT-Ex13-R	caggagttccaaggtgaagc	CDC20B-Ex12-F	cactgagggagaaaactgtcc	
NDUFS6-Ex1-F	ctgggatgaaaacgggtgac	CDC20B-Ex12-R	tgggaagcagagcaagtaaag	
NDUFS6-Ex1-R	agcgacagcacaaccttacc	DDX4-Ex13-F	cttctgagtggaggcatgttac	
NSUN2-EX9-F	gaaggtggaaggatggtg	DDX4-Ex13-R	ccaccccaggaatagttcag	
NSUN2-EX9-R	agatggatggtggtggtg	SLC6A18-Ex5-F	cagccactctgaccacaagg	
DNAH5-Ex52-F	gaggctgatgctgaaacacc	SLC6A18-Ex5-R	ctcacccctgaccaccag	
DNAH5-Ex52-R	ctccgtggtgaaagcactg	EXOC3-Ex1-F	gagttcctcatcctagttcagc	
FAM134B-3'UTR-F	caagaccaggaagcagaagc	EXOC3-Ex1-R	ctgcctccttgcacattacc	
FAM134B-3'UTR-R	agagatggcagtcaatgg	SLC9A3-Ex16-F	gtgtggggtcatggatgtg	
MYO10-Ex27-F	aagctcaagggcaccgtag	SLC9A3-Ex16-R	ggtccagggaggagagagagac	
MYO10-Ex27-R	accaggcaacttccagatcc	SLC9A3-Ex12-F		
PRDM9-Ex3-F	agccactcgaccagctttc	SLC9A3-Ex12-R	atcaggcacggaggtcac	
PRDM9-Ex3-R	aggctgaggcaggagaatc	TRIP13-Ex5-F	gctccctcttctcatgtagg	
PDZD2-5'UTR-F	tgcttggtgcctggaaag	TRIP13-Ex5-R	gagctggatctgcttcacag	
PDZD2-5'UTR-R	gcattgtcctgggtgatg	SLC12A7-Ex9-F	gaattggagcctgcttgc	
C1QTNF3-Ex4-F	gggtttctcaggtccttg	SLC12A7-Ex9-R	ctgcttgggagactcaggtg	
C1QTNF3-Ex4-R		CLPTM1L-Ex14-F	gcatagacgtggcagctc	
NIPBL-Ex37-F	cctcagactggctgctaatcc	CLPTM1L-Ex14-R	gaagacgcccttgctcac	
NIPBL-Ex37-R	gctcaaggttacccaggaag	SLC6A3-Ex13-F	tgagggtgctggtaggtgag	
C50RF42-Ex20-F	tcccttccttcactgagtcc	SLC6A3-Ex13-R	gcacacgtctccactgtcac	
C5ORF42-Ex20-R	ggataggttcagcccaggag	MArCh6-Ex24-F	ggttggcagattcagttgtg	
GDNF-5'UTR-Trns-2-F	gtctccaagtccctgctaac	MArCh6-Ex24-R	gcatatggagtgagacatcc	
GDNF-5'UTR-Trns-2-R	ggtagttcccacccttcgtc	MArCh6-Ex25-F	ctgccccagtccattcttc	
RICTOR-Ex5-F	gagcagcagggctacgag	MArCh6-Ex25-R	ccttgctaatcccacctc	
RICTOR-Ex5-R	ggttgtgtgtgtgtgtgtgtgtg	ROPN1L-Ex3-F	cctgtcatgcatttggag	
DAB2-Ex1-F	gcctagcaagttttcgatcc	ROPN1L-Ex3-R	ataataggcctggagcag	
DAB2-Ex1-R	taacctcccacagacacctg	DROSHA-Ex5-F	cacggtgatttggcatgg	
TTC33-Ex3-F	ccgtccagcaaaatccac	DROSHA-Ex5-R	caggtagagcccagagatgc	
TTC33-Ex3-R	acaggaggctgagacaggag	PDZD2-Ex5-F	ccctggcctttgaggtaac	
MRPS30-Ex1-F	tacagcaagagggcaaggac	PDZD2-Ex5-R	gcactggtgtcttttcccatc	
MRPS30-Ex1-R	gcttctcgtctaccgactcc	RAI14-Ex2-F	cgggagcaggctttaatttg	
ISL1-Ex4-F	cctgctttgtgtgctgagg	RAI14-Ex2-R	tcaacatgggagtggagagg	
ISL1-Ex4-R	gtcttctccggctgcttg	SPEF2-Ex2-F	gctgtcatcataggttgtgtg	
DHX29-Ex14-F	aaaggtggtgtcccctgttc	SPEF2-Ex2-R	tgcactccagtctcagtaacag	
DHX29-Ex14-R	acttgccctatcctgagcac	IL7R-Ex8-F	tgtgtctctctggtgccatc	
SLC12A7-Ex3-F		IL7R-Ex8-R		

SLC12A7-Ex3-R	cagggcagctcttctgac	RICTOR-Ex35-F	atgctgagatgctgatcctc
LIFR-Ex19-F	ccgcagatgaagctggag	RICTOR-Ex35-R	gtcagtgggtgatataggtg
LIFR-Ex19-R	ggaccaccctcctccattag	DAB2-Ex13-F	atacactgccatctgcaagc
DHX29-Ex11-F	gcactgtccttggaatcagc	DAB2-Ex13-R	aaatccacatccccaagg
DHX29-Ex11-R	cttcggggttgggtacagac	DAB2-Ex8-F	cttcctgacctaaacagc
ANKRD55-Ex2-F	ctgaggaagttgacctgacc	DAB2-Ex8-R	acctccttcttaatcc
ANKRD55-Ex2-R	tagcctgctctttccgtacc	ITGA1-Ex12-F	ggagaaagcagttgtggtag
ANKRD55-Ex4-F	agggggagatggagagattc	ITGA1-Ex12-R	gccctgttcccagttgttac
ANKRD55-Ex4-R	gccacagagggatggattag	ITGA2-Ex13-F	aggaactgtgctctctgtcttc
ITGA2-Ex26-F	ttcccagacccctacaagtg	ITGA2-Ex13-R	ggggacatcctcaaaaatg
ITGA2-Ex26-R	ggagaaaagcagcgtcctg	PPAP2A-Ex3-F	gctgggattacaggcatgag
FYB-Ex2-F	gcttgaccaccagagacc	PPAP2A-Ex3-R	aacactcacctgccttcc
FYB-Ex2-R	cgcttttggacctgactcc	IL31RA-Ex7-F	gattccagttccttgaccac
BRD9-Ex3-F	gccagggtctctgtgaggag	IL31RA-Ex7-R	gaagggaaggaggatggaag
BRD9-Ex3-R	ctccacctccaccttcttcc	DNAH5-Ex5-F	gcaatttcacaacaatgagca
ITGA1-Ex14-F	ggcaagactataaggaaagag	DNAH5-Ex5-R	gagccctgtccacgttaaga
ITGA1-Ex14-R	tatgcacactacatatacac	MYO10-5'UTR-F	aggtcgctgggctgtagtc
ZDHHC11-3'UTR-F	agccacctgcttaactgtgc	MYO10-5'UTR-R	acggcagcctttgtctctt
ZDHHC11-3'UTR-R	tgggctaggctgaaaaactc	NPR3-3'UTR-F	ctaaaagtggcagaacaaatca
Med10-Ex4-F	tggagtgttgatgtgaagagc	NPR3-3'UTR-R	tttccaacaccaaaaagcatc
Med10-Ex4-R	gcactctgaaagccagttgac	C1QTNF3-3'UTR-F	tgacccttggacaacaaaga
DNAH5-Ex54-F	gttccaggttgacttttcag	C1QTNF3-3'UTR-R	cacttcaaacataccaaagcaa
DNAH5-Ex54-R	aatacccatccccaatagcac	PRLR-3'UTR-F	tgggaaactaggtatttgcttc
CDH18-Ex3-F	tgctaaatgccatcacacac	PRLR-3'UTR-R	tgccattctcaaaacattgg
CDH18-Ex3-R	gcaacttactgtagcaaacg	LIFR-3'UTR-F	ccaatcagagccatccctaa
CDH18-Ex4-F	tttggggcatgggataag	LIFR-3'UTR-R	tccaaaagtagggaaaggtg
CDH18-Ex4-R	tcagaagacaatagctggagtg	SNX18-3'UTRA-F	tggtggtacaaggacggttt
CDH12-Ex8-F	ccctggtatgatggctaagtc	SNX18-3'UTRA-R	atgcactggcctttcactct
CDH12-Ex8-R	tgcggtatcacctccacatac	SNX18-3'UTRb-F	aaacccaagagaaaagccatt
IL7R-Ex5-F	ttgctgttgactcctttacg	SNX18-3'UTRb-R	tcggcatttaagaatctgctg
IL7R-Ex5-R	acttgctcccacactttgac	SNX18-3'UTRC-F	ttgccatagccattttcca
C5orf42-Ex40-F	cccagaaatcaagaagctg	SNX18-3'UTRC-R	tcctgatgtcactaatggaagc
C5orf42-Ex40-R	ctgaggttgacaaaccctagc	IL6ST-3'UTR-F	tggagtcataaaatggcaagt
NUP155-Ex22-F	atgggggctaggaagaaaac	IL6ST-3'UTR-R	tcatcacacgacccatcaac

GLH35 coding region gaps coverage		
Name	Sequence (5'-3')	
SLC9A3-Ex1-F	ggggatcggactgtagcc	
SLC9A3-Ex1-R	gagtctcgctctgctggac	
TERT Ex1,2-F	agcccctcccttccttt	
TERT Ex1,2-R	gtgaaccagcacgtcgtc	
IRX4-Ex1-F	cgctgctcactttgttaccc	
IRX4-Ex1-R	cagtcgtaggtcggacactc	
IRX4-Ex2-F	cgagcatcctggtgtgga	
IRX4-Ex2-R	cctactggggcaaaagtgg	
IRX2-Ex3-F	gcccttctacggcaactaca	
IRX2-Ex3-R	cgccctcactctgctaattc	
IRX1-Ex1-F	gctcaaggggatgccaatc	
IRX1-Ex1-R	cgggtgagacagaggagaag	
KIAA0947-Ex1-F	gccgggtagcgtttcttt	
KIAA0947-Ex1-R	caagagctacggttgggaag	
ANKRD33B-Ex1A-F	tgcctggctctgaactctg	

GLH35 coding region gaps coverage		
Name	Sequence (5'-3')	
NADK2-Ex1-F	gcacgtcctggcacttaac	
NADK2-Ex1-R	gaagagtcgtcccgagaggt	
FYB-Ex1-Trns3-F	tggccagctatacaaatgctc	
FYB-Ex1-Trns3-R	tgactgtgaagcaccctcaa	
GHR-Ex1-Trns2-F	tgtacgtggaggggtttactc	
GHR-Ex1-Trns2-R	cagcctctggcagttctgt	
SEPP1-Ex1-Trns3-F	caactctctgccaatgggtta	
SEPP1-Ex1-Trns3-R	ccaccacgtcctgctaattt	
ITGA1-Ex1-F	agcgtggagcgcatttag	
ITGA1-Ex1-R	gggcgctctctcttcctatc	
SNX18-Ex1-F	tcggagaacccaggagagat	
SNX18-Ex1-R	gtcgtcccagtcatcatcg	
MCIDAS-Ex1-F	ggttgccaggttgggttt	
MCIDAS-Ex1-R	ggatcctcgtacaccgacac	
MCIDAS-Ex2,3-F	aagccggagaggaaggtg	

ANKRD33B-Ex1A-R	tcgtcctcgaaagggtagaa
ANKRD33B-Ex1b-F	gaccccgctgactacgaa
ANKRD33B-Ex1b-R	gctgacacctcgactgctc
TRIO-Ex1-F	cggagtcctcgtctatgtgg
TRIO-Ex1-R	cgcatggaagcagtggtc
MARCH11-Ex1A-F	aactccgtcccactgatcc
MARCH11-Ex1A-R	agctcgtccgctcccctg
MARCH11-Ex1b-F	gcacaaccatgagctttgag
MARCH11-Ex1b-R	gtggtgctgaaagcttgacc
BASP1-Ex1-F	gaccccgaaggagagtgag
BASP1-Ex1-R	gccttgggtgtggaactagg
GOLPH3-Ex1-F	gccctgacctgtttcctcat
GOLPH3-Ex1-R	acctacctggagctcacctg
ZFR-Ex2-F	gcgcctctcttttctctcc
ZFR-Ex2-R	tacacctccgccgtctctac
TARS-Ex4-Trns3-F	tgttgcctaccttcgttgag
TARS-Ex4-Trns3-F	tgacagacaatgctaacctcag
AMACR-Ex1-F	attgggagggcttcttgc
AMACR-Ex1-R	ggaggcaaaaatctggaagg

MCIDAS-Ex2,3-R	gacccgagaggagcttttg
MCIDAS-Ex4-F	tgcatagtgcctgccaga
MCIDAS-Ex4-R	tgctggagagtcgttgacag
MCIDAS-Ex5-F	cctacacccagagtggcatt
MCIDAS-Ex5-R	gacctcatcttctcccttgc
MCIDAS-Ex6-F	tccccagttcctgatgagac
MCIDAS-Ex6-R	gtcagtattcgcgggctct
MCIDAS-Ex7-F	aagtggacgccatcctga
MCIDAS-Ex7-R	ggtttctaaatccttccctgct
MCIDAS-3'UTR-F	gtatagcccctccccttgtc
MCIDAS-3'UTR-R	caccccagttttatctgtgc
SLC38A9-Ex1- Trns3-F	gggcaggaattcactcagac
SLC38A9-Ex1- Trns3-R	atgctgcctgtaccccact
DDX4-Ex1-Trns4-F	cctgcaagctgtttggtcac
DDX4-Ex1-Trns4-R	gattacaggcgtgagccact
SETD9-Ex6-Trns2-F	ctggaaggtctagctaatgcag
SETD9-Ex6-Trns2-R	gggtttgtgctaaatcggtag
DEPDC1B-Ex1-F	agggtgggcaacagatttc
DEPDC1B-Ex1-R	ggaagcgaagactgacaagc

CDC20B gene primers		
Name	Sequence (5'-3')	
CDC20B-Ex1-F	ccaataagaagccggcgag	
CDC20B-Ex1-R	gaccagggcttagagtttcg	
CDC20B-Ex2-F	gtgtaatctgacaagcacaag	
CDC20B-Ex2-R	tcagaccagctcaaacttcct	
CDC20B-Ex3-F	gggaatttttacttttgcatca	
CDC20B-Ex3-R	cctttcctttgtttttgtgtca	
CDC20B-Ex4-F	tgggctttttcactctgtcc	
CDC20B-Ex4-R	agcaactcttcccttacatttg	
CDC20B-Ex5-F	ttgtggtgttggctttgaca	
CDC20B-Ex5-R	agagaatgggacttggaggt	
CDC20B-Ex6-F	ccccggctctttgtactgta	
CDC20B-Ex6-R	atttcccacaccatgccaac	
CDC20B-Ex7-F	ttccattttccagctaacca	
CDC20B-Ex7-R	cccatacttcaagagccaca	

CDC20B gene primers		
Name	Sequence (5'-3')	
CDC20B-Ex8-F	cagcagtaattggctctcagg	
CDC20B-Ex8-R	cctgagagggtgggatcata	
CDC20B-Ex9-F	agaatcctccaggcagaaca	
CDC20B-Ex9-R	gggttgtctttcaggagagtg	
CDC20B-Ex10-F	tagatagcaggcccaggaga	
CDC20B-Ex10-R	agagcttgttgggggcatag	
CDC20B-Ex11-F	gaggttgggtcatggacagt	
CDC20B-Ex11-R	gctctctgaggtagggtgga	
CDC20B-3'UTRA-F	tgtcttctccatggggtttt	
CDC20B-3'UTRA-R	tgaggaagcacagagcagaa	
CDC20B-3'UTRb-F	aagcatgcatattgctctctc	
CDC20B-3'UTRb-R	caaaagacagaacagcgaactg	
CDC20B-3'UTRC-F	gcccaggacttgaagttagg	
CDC20B-3'UTRC-R	gggggcatagggaataggta	

CDC20B cDNA primers			
Name	Sequence (5'-3')		
CDC20B-CDNA-1-F	acggaagaggagatgctgtg		
CDC20B-CDNA-1-R	ctccatctttgcagcctttc		
CDC20B-CDNA-2-F	gcctcaaaagggcagaaatg		

CDC20B cDNA primers			
Name Seqquence (5'-3')			
CDC20B-CDNA-2-R	cttgcttgtggcgaagtgt		
CDC20B-CDNA-3-F	atcctcagcagtgggtcaag		
CDC20B-CDNA-3-R	aaaacccacctgacctgga		

A 2.3 Primer pairs used for cloning and site-directed mutagenesis reactions (SDM)

GLH35 luciferase primers		
Name	Sequence (5'-3')	
PRLR-3UTR-LuC-Spel-F	ctagactagttgggaaactaggtatttgc	
PRLR-3UTR-LuC-Mlul-R	ctgacgcgttgccattctcaaaacattg	
SNX18-3UTRA-LuC-Spel-F	ctagactagttggtggtacaaggacgg	

SNX18-3UTRA-LuC-Mlul-R	ctgacgcgtatgcactggcctttcactc
SNX18-3UTRb,C-LuC-Spel-F	ctagactagtaaacccaagagaaaagcc
SNX18-3UTRb,C-LuC-Mlul-R	ctgacgcgttcctgatgtcactaatg
LMBRD2-3UTR-LuC-Spel-F	ctagactagtgccaggagcagagataatttg
LMBRD2-3UTR-LuC-Mlul-R	ctgacgcgttccaaagtaaacccaaag

GLH135 minigene primers		
Name	Sequence (5'-3')	
IL7R-Ex5-MG-EcoRI-FP	gtgtgaattcttaaagataatacactgtg	

SDM primers			
Name	Sequence (5'-3')		
CDC20B patient variant SDM primers			
CDC20B-GIn94His-F	ttcctttggggaagagcattcaaccacctacctc		
CDC20B-GIn94His-R	gaggtaggtggttgaatgctcttccccaaaggaa		
CDC20B-Arg200Gly-F	gctgcaaagatggagtcggagatgaatccttccat		
CDC20B-Arg200Gly-R	atggaaggattcatctccgactccatctttgcagc		
CDC20B-Ile212Lys-F	tggagtatggaatcgtttttatcaccagaacttttaagatggaagg		
CDC20B-Ile212Lys-R	ccttccatcttaaaagttctggtgataaaaacgattccatactcca		
CDC20B-Trp363Arg-F	tgtgtgctctgaagcggtcaccggatggc		
CDC20B-Trp363Arg-R	gccatccggtgaccgcttcagagcacaca		
CDC20B-Ala509Thr-F	gtgttttctgctgcaactgatgggacggcct		
CDC20B-Ala509Thr-R	aggccgtcccatcagttgcagcagaaaacac		
SDM primers to generate certain truncation variants			
CDC20B-Phe486Ter-F	tgtccaggtcaggtgggttttaaggccacagggg		
CDC20B-Phe486Ter-R	cccctgtggccttaaaacccacctgacctggaca		
CDC20B-Tyr98Ter-F	aagagcagtcaaccacctaactcccagaagcttc		
CDC20B-Tyr98Ter-R	gaagcttctgggagttaggtggttgactgctctt		
CDC20B-Lys222Ter-F	catactccaaccagaggtgtagattcatattactggtct		
CDC20B-Lys222Ter-R	agaccagtaatatgaatctacacctctggttggagtatg		
Minigene assay SDM primers			
IL7R-Ex5-30var-SDM F	caacacctcttttcccatcttaagaatgtaactgcactc		
IL7R-Ex5-30var-SDM R	gagtgcagttacattcttaagatgggaaaagaggtgttg		
Luciferase assay SDM primers			
PRLR-3'UTR-SDM-F	tctagcagcccctctctgtttttcccttcacttga		
PRLR-3'UTR-SDM-R	tcaagtgaagggaaaaacagagaggggctgctaga		
SNX18-3'UTRa-SDM-F	tggctggatacaagcctgctatggatgccttttt		
SNX18-3'UTRa-SDM-R	aaaaaggcatccatagcaggcttgtatccagcca		
SNX18-3'UTRb-SDM-F	agttgtttatatgctgtaactaacgcagcgagactggt		
SNX18-3'UTRb-SDM-R	accagtctcgctgcgttagttacagcatataaacaact		
SNX18-3'UTRc-SDM-F	a atgtt atgatt agtg cag at cag ccg tgttt at cttttt aa aa aa taa ac agg		
SNX18-3'UTRc-SDM-R	cctgtttattttttaaaaagataaacacggctgatctgcactaatcataacatt		
LMBRD2-3'UTR-SDM-F	tacttgctatttacctgctggtctaccttacaaagccattg		
LMBRD2-3'UTR-SDM-R	caatggctttgtaaggtagaccagcaggtaaatagcaagta		

CDC20B cloning/sub-cloning primers					
Name	Sequence (5'-3')				
pcDNA3.1(+)-CDC20B					
CDC20B-Nhel-FP	gctggctagcgccaccatggagtggaaactggagcgcac				
CDC20B-XhoI-RP	tctagactcgagctagtagcaattccatacagagg				
pEGFP-N1-CDC20B					

CDC20B-Xhol-FP	gctgctcgagcgccaccatggagtggaaactggagcgcac
CDC20B-SacII-RP	tctagaccgcgggtagcaattccatacagagg
pCMV6-AC-GFP (Turbo)	
CDC20B-AsisI-FP	gctggcgatcgcgccaccatggagtggaaactggagcgcac
CDC20B-Mlul-RP	tctagaacgcgtgtagcaattccatacagagg
pEGFP-C2-CDC20B	
CDC20B-BgIII-FP	gctgagatctgccaccatggagtggaaactggagcgcac
CDC20B-Sall-RP	tctagagtcgacctagtagcaattccatacagagg
nEGEP-C2-CDC20B-2	
CDC20B-Xhol-EP-2	gctgctcgagcagccaccatggagtggaaactggagcgcac
CDC20B-Xbal-RP	ctagtctagactagtagcaattccatacagagg
p3X-FLAG-CDC20B	
CDC20B-NotI-FP	gctggcggccgccgccaccatggagtggaaactggagcgcac
CDC20B-EcoRI-RP	tctagagaattcctagtagcaattccatacagagg
pCAG-EGFP-C1-CDC20B	
CDC20B-KpnI-RP	cggggtaccctagtagcaattccatacagagg
Primers for subcloning C	DC20B domains in the p3X-FLAG vector
Reverse primers for cloning only the N-term. of p	rotein in p3X-FLAG
CDC20B-ECORI-RP-Nterm	
Forward primer for cloning only the C-term, of pr	rotein in p3X-FLAG
CDC20B-NotI-FP-Cterm	gctggcggccgccgccaccatgaagattcatattactggtct
3x-FLAG-CDC20B-C-term. SDM primer	!
3x-CDC20B-Cterm-ins-SDM-F	gcttgcggccgc c gccaccatgaag
3x-CDC20B-Cterm-ins-SDM-R	cttcatggtggcggcggccgcaagc
Primer to clone CDC20B WD domains 5,6,7 in p3X	(-FLAG
CDC20B-NotI-WD5,6,7-FP	gctggcggccgccgccaccatgaaagtcataacccagtctac
Primers for subcioning	LDC2UB domains in the EGFPN1 vector
Reverse primer for cioning first 100 amino acids o	tetageggggggggggggggggggggggggggggggggg
Reverse primer for cloning first 395 amino acids o	of protein in EGFPN1
CDC20B-SacII-395aa-RP	tctagaccgcggcagcggttggccctgtgcac
Forward primer for cloning WD-5,6,7 of protein in	n EGFPN1
CDC20B-XhoI-396aa-FP	gctgctcgagcgccaccatgaaagtcataacccagtctac
Forward primer for cloning 101 to 519 aa of prote	ein in EGFPN1
CDC20B-XhoI-101aa-FP	gctgctcgagcgccaccatggaagcttccggatcagtgc
Reverse primer for cloning only the N-term of pro	
	otein in EGFPN1
CDC20B-SacII-RP-Nterm	tctagaccgcggcacctctggttggagtatggaatcgt

Forward primer for cloning only the C-term of protein in EGFPN1		
CDC20B-Xhol-FP-Cterm	gctgctcgagcgccaccatgaagattcatattactggtct	

A 2.4 CDC20B rare pathogenic variants identified in the Epi25 consortium study

Chr position (Grch38)	cDNA position	Amino acid position	Consequence	Allele count Case	Allele number Case	MAF gnomAD v2
54468431	c.106_110delAGAAG	p.Arg36SerfsTer11	loss of function	2	18340	0.003
54442450	c.355+6G>A	_	splice region	1	18326	_
54423176	c.898T>C	p.Trp300Arg	missense	1	18338	0.00001
54423079	c.989+6A>C	_	splice region	4	18338	0.00001
54420825	c.1021G>A	p.Asp341Asn	missense	1	18340	0.00003
54420823	c.1022dupA	p.Asp341GlufsTer36	loss of function	2	18340	0.000003
54420728	c.1118G>A	p.Gly373Asp	missense	1	18340	_
54420693	c.1153G>A	p.Asp385Asn	missense	5	18340	0.00001
54420665	c.1181C>T	p.Pro394Leu	missense	1	18340	0.00004
54416383	c.1216-5T>C	_	splice region	1	18338	0.00001
54410152	c.1460-6C>T	_	splice region	1	18334	0.000004
54410115	c.1491G>T	p.Leu497Phe	missense	1	18336	0.000004
54410081	c.1525G>A	p.Ala509Thr	missense	6	18336	0.0002

A 2.5 CDC20B protein schematic with the position of the patient variants

CDC20B pathogenic variants in epilepsy cases: Variants identified in our study are represented on top in blue. Variants reported in the Epi25 consortium study have been represented in green (https://epi25.broadinstitute.org/).

A 2.6 CDC20B protein sequence (NCBI, FASTA format)

CDC20B protein [Homo sapiens] – Human GenBank: AAI36573.1

>gi|223459660|gb|AAI36573.1| CDC20B protein [Homo sapiens] MEWKLERTAPRRVRTEEEMLWESIMRVLSKDLKQKRSQDSANVLDSVNATYSDFKSNFAKRLSAEVPVAS SPITTRWQQSQTRALSSDSFGEEQSTTYLPEASGSVLKTPPEKETLTLGSCKEQLKTPSKGISETSNSAL HFCKAPHAMDRDWKESVASKGQKCLKQLFVTQNVVQQANGKMQLCEQSECVWKGCKDGVRDESFHLKSSG DINDSILQPEVKIHITGLRNDYYLNILDWSFQNLVAIALGSAVYIWNGENHNGIENIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHFILSSGSRLGRVYHHDVRVAQHHVG TLRHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAQGQPLKVITQSTAVKAMDWCPWQSGVLAIG GGMKDGRLHILDINAGKSIQTPSTNSQICSLIWLPKTKEIATGQGTPKNDVTVWTCPTVSRSGGFFGHRG RVLHLALSPDQTWVFSAAADGTASVWNCY

PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Macaca fascicularis] - Crabeating macaque

NCBI Reference Sequence: XP_005556954.1

>gi|544437150|ref|XP_005556954.1| PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Macaca fascicularis]

MEWKLERTAPRRVRTEEEMLWESIMRVLSKELKQKKSQSSTKVFDSVNATYSDFKSHFAKRLSAEVPVAS SPITTRWRQSQTRALSSDSFGEEQSTTYLPEASGSVLKTTPEKETWTPGSCKEPPKAPSKGISETSNSAL HFCKAPHTMDRDWKENVASKGQKCLKQLFVTQKVVQQANGKMQLCEQSQCVWKGCKDGVRDESFHLKRSS DINDSILQPEVKIHLTGLRNDYYLNILDWSFQNLVAIALGSAVYIWNGENCNGIETIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHFILSSGSRLGRVYHHDVRVAQHHVG TLRHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAQGQPLKVIPQSTAVKAMDWCPWQSGVLAIG GGMKDGCLHILDINAGKSIQTPSTNSQICSLIWLPKTKEIATGLGTPKNDVTVWTCPTVSRSGGFFGHRG RVLHLALSPDQTRVFSAAADGTASVWNCY

PREDICTED: cell division cycle protein 20 homolog B isoform 2 [Pan troglodytes] – Chimpanzee

NCBI Reference Sequence: XP_001147536.1

>gi|114600277|ref|XP_001147536.1| PREDICTED: cell division cycle protein 20 homolog B isoform 2 [Pan troglodytes]

MDWKLERTAPRRVRTEEEVLWESIMRVLSKDLKQKRSQDSANVLDSVNATYSDFKSNFAKRLSAEVPVAS SPITTRWQQSQTRALSSDSFGEEQSTTYLPEASGSVLKTPPEKETLTLESCKEQLKTPSKGISETSNSAL RFCKAPHAMDRDWKESVASKGQKCLKQLFVTQNVVQQANGKMQLCEQSQCVWKGCKDGVRDESFHLKRSG DINDSILQPEVKIHITGLRNDYYLNILDWSFQNLVAIALGSAVYIWNGENDNGIENIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHFILSSGSRLGRVYHHDVRVAQHHVG TLRHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAQGQPLKVIPQSTAVKAMDWCPWQSGVLAIG GGMKDGCLHILDINAGKSIQTPSTNSQICSLIWLPKTKEIATGQGTPKNDVTVWTCPTVSRSGHRGRVLH LALSPDQTRVFSAAADGTASVWNCY PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Gorilla gorilla gorilla] - Western lowland gorilla

NCBI Reference Sequence: XP_004058891.1

>gi|426384693|ref|XP_004058891.1| PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Gorilla gorilla gorilla]

MEWKLERTATRRVRTEEEMLWESIMRVLSKDLKQKRSQDSANVLDSVNATYSDFKSNFAKRLSAEVPVAS SPITTRWQQSQTRALSSDSFGEEQSTTYLPEASGSVLKTPPEKETLTLGSCKEQLKTPSKGISETSNSAP HFCKAPHAMDRDWKESVASKGQKCLKQLFVTQNVVQQANGKMQLCEQSQCVWKGCKDGVRDESFHLKRSG DINDSILQPEVKIHITGLRNDYYLNILDWSFQNLVAIALGSAVYIWNGENHNGIENIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKQLRNMLGHLSVVGALSWNHFILSSGSRLGRVYHHDVRVAQHHVG TLCHKQAVCALKWSPDGGLLSSGCSDGLLTIWPHDPGASAQGQPLKVIPQSTAVKAMDWCPWQSGVLAIG GGMKDGRLHILDINAGKSIQTPSTNSQICSLIWLPKTKEIATGQGTPKNDVTVWTCPTVSRSGHRGRVLH LALSPDQTRVFSAAADGTASVWNCY

PREDICTED: cell division cycle protein 20 homolog B isoform [Macaca mulatta] - Rhesus macaqueNCBI Reference Sequence: XP_001097843.2

>gi|297294276|ref|XP_001097843.2| PREDICTED: cell division cycle protein 20 homolog B isoform 2 [Macaca mulatta]

MEWKLERTAPRRVRTEEEMLWESIMRVLSKELKQKKSQSSTKVFDSVNATYSDFKSHFAKRLSAEVPVAS SPITTRWRQSQTRALSSDSFGEEQSTTYLPEASGSVLKTTPEKETWTPGSCKEPPKTPSKGISETSNSAL HFCKAPHTMDRDWKENVASKGQKCLKQLFVTQKVVQQANGKMQLCEQSQCVWKGCKDGVRDESFHLKRSS DIKESILQPEVKIHLTGLRNDYYLNILDWSFQNLVAIALGSAVYIWNGENCNGIETIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHFILSSGSRLGRVYHHDVRVAQHHVG TLRHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAQGQPLKVIPRSTAVKAMDWCPWQSGVLAIG GGMKDGCLHILDIDAGKSIQTPSTNSQICSLIWLPKTKEIATGLGTPKNDVTVWTCPTVSRSGHRGRVLH LALSPDQTRVFSAAADGTASVWNCY

PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Pan paniscus] - Bonobo NCBI Reference Sequence: XP_003827408.1

>gi|397514257|ref|XP_003827408.1| PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Pan paniscus]

MDWKLERTAPRRVRTEEEVLWESIMRVLSKDLKQKRSQDSANVLDSVNATYSDFKSNFAKRLSAEVPVAS SPITTRWQQSQTRALSSDSSGEEQSTTYLPEASGSVLKTPPEKETLTLESCKEQLKTPSKGISETSNSAL RFCKAPHAMDKDWKESVASKGQKCLKQLFVTQNVVQQANGKMQLCEQSQCVWKGCKDGVRDESFHLKRSG DINDSILQPEVKIHITGLRNDYYLNILDWSFQNLVAIALGSAVYIWNGENHNGIENIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHFILSSGSRLGRVYHHDVRVAQHHVG TLRHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAQGQPLKVIPQSTAVKAMDWCPWQSGVLAIG GGMKDGRLHILDINAGKSIQTPSTNSQICSLIWLPKTKEIATGQGTPKNDVTVWTCPTVSRSGHRGRVLH LALSPDQTQVFSAAADGTASVWNCY

PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Papioanubis] – Olive Baboon NCBI Reference Sequence: XP_003899721.1

>gi|402871548|ref|XP_003899721.1| PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Papioanubis]

MEWKLERTAPRRVHTEEEMLWESIMRVLSKELKQKKSQSSTKVFDSVNATYSDFKSHFAKRLSAEVPVAS SPITTRWRQSQTRALSSDSFGEEQSTTYLPEASGSVLKTTPEKETWTLGSCKEPPKTPSKGISETSNSAL HFCKAPHAMDRDWKENVASKGQKCLKQLFVTQKVVQQANGKMQLCEQSQCVWKGCKDGVRDESFHLKRSS DINDSILQPEVKIHLTGLRNDYYLNILDWSFQNLVAIALDSAVYIWNGENCNGIETIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHFILSSGSRLGRVYHHDVRVAQHHVG TLRHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAQGQPLKVIPQSTAVKAMDWCPWQSGVLAIG GGMKDGCLHILDINAGNSIQTPSTNSQICSLIWLPKTKEIATGLGTPKNDVTVWTCPTVSRSGHRGRVLH LALSPDQTRVFSAAADGTASVWNCY

PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Callithrix jacchus] – Common Marmoset – New Age Monkey

NCBI Reference Sequence: XP_002745017.1

>gi|296194591|ref|XP_002745017.1| PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Callithrix jacchus]

MEWKLERTAPRRVRTEEEVLWESIMRVLAKDLKQKRSQGSAKVFDSVSATYFDFKSNFAKRLSAEVPVAS SPITTRWRQSQTRALSADSFGEEESITYLPEASGSVLKTTPEKDTLTPGSGKEPPKTPIKGSSETNNSAL HFCKAPHAMDRHWKENVAPKGQKCLKQLFVTQKVVQQANGKMQLCEQSQCVWKGCKDGVRDESFHLKRSS DINYSILQPEVKIHLTGLRNDYYLNLLDWNYQNLVAIALGSAVYIWNGENRNVIENIDLSLTCNYISSVS WIKDGTCLAVGTSEGEVQLWDAVTKKQLRNMLGHLSVVGSLSWNHFILSSGSRLGHVYHHDVRVAQHHVG TLHHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAHGQPLKVITQSTAVKAMDWCPWQSGVLAIG GGMKDGRLHILDINAGKSIQTPSTNSQICSLIWLPKTKEITTGQGAPKNDVTVWTCPTLSRSGHRGRVLH LALSPDQTQVFSAAADGTASIWSCY

PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Saimiri boliviensisboliviensis] – Black Capped Monkey

NCBI Reference Sequence: XP_003925904.1

>gi|403267587|ref|XP_003925904.1| PREDICTED: cell division cycle protein 20 homolog B isoform 1 [Saimiri boliviensisboliviensis] MEWKLERTAPRRVLTEEEMLWESIMRVLAKDLKQKRSQGSAKVFDSVNATYFDFKTNFAKRLSAEVPAAS SPITTRWRQSQARALSADSFGEEESITYLPEASGSVLKTTPEKETLTLGSCKEPPKTPIKGSSETNNSAL HFCKAPHAMDRDWKENVASKGQKCLKQLFVTQKVVQQANGKMQLCEQSQCAWKGCKDGVRGESFHLKRSS DINYSILQPEVKIHLTGLRNDYYLNILDWNYQNLVAIALGSAVYIWNGKNHNGIENIDLSLTCNYISSVS WIKEGTCLAVGTSEGEVQLWDVVTKKRLRNVLGHLSVVGTLSWNHFILSSGSRLGHVYHHDIRVAQHHVG TLRHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGASAHGEPLKVITQSTAVKAMDWCPWQSGVLAIG GGMKDGRLHILDINTGKSIQTPSTNSQICSLIWLPKTKEITTGQGTPKNDVTVWTCPTLSRSGHRGRVLH LALSPDQTRVFSAAADGTASVWSCY

cell division cycle protein 20 homolog B [Mus musculus] NCBI Reference Sequence: NP_001268416.1 >gi|527498264|ref|NP_001268416.1| cell division cycle protein 20 homolog B [Mus musculus] MEWKLQRTARRKIRTEEEMLWENIMRVLANGMKQQRNQGSPKELDSVAVTYSSFKSNFVKRLSAEIPVAS SPITTRWQLSPARDPESSSSVEEGPPSHTPESLASGLKITPAADTLTLRSHNKNSPKTLSKGSSEVNNST LRFCKTPLAGDRGWKENLATKGQRCLNQPFSTQKGAQQIDGKMHLCEESRCVRTGCRFGARDEFYLRRFS GVYHSTCQPEVKIHLTGLRNDYYLNTLDWSSQNLVAVALGTSVYIWNGQNHSWIENIDLSVCCHYVSSVT WMREGSCLAVGTSEGEVQLWDAITKKQLRNLHGHLSVVGALSWNHCTLSSGSRLGRVHHHDVRVAQHRVG TLYHKEAVCSLKWSPDGRLLSSGCNDGLLTIWPHDPGAGVQGLPLKVIPQSTAVKAMEWCPWQSEVLAVG GGVKDGCLHVLDINTGKNIQTPSTQSQICSLIWLPKTKEIATGQGAPKNDVALWTCPTLFRSGGFFGHRD RVLHLSLSPDQTRLFSAAADGTACVWKCC

PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Chinchilla lanigera] – Chinchilla - Rodent

NCBI Reference Sequence: XP_005392765.1

>gi|533157617|ref|XP_005392765.1| PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Chinchilla lanigera]

MEWKLERTARRRIRTEEEMLWENVMRVLAQNMKQRRSPGSPKVLDSVTTPYSSFKSTIVKRLSAEVPVAS SPLTTRWQQSQIRDSETYSFGDEHSVSNISESVGTVLKITPEKASLTLGSYKEIPKTPVEGSSETNNSAL HFCTASHALDRDGKENVSKGQKCLNQVFSAQKVIQKINGKMQLCEESQCIWKGCRDGVRDESFHLQKVRD VNCPTWQPEVKIHLTGLRNDYYLNILDWSFQNLVAIALGSTVYIWNGENHSEVENIDLSLTCNYISSVSW IKKGTCLAVGTSEGEVQLWDVVTKKRLRNMQGHLSVVGALSWNHCILSSGSRLGRVYHHDVRAAQHQVGT LCHKQAVCALKWSPDGRLLSSGCSDGLLTIWPHDLGAHAQGQSVKVISQSTAVKAIDWCPWQSKVLAIGG GMKDGCLHVLDISSGKSIQTPSTNSQICSLLWLPKTQEIATGQGAPQNDVTLWTCPTLSRSSGFLGHKGR VLHLALSPDQTRVFSAAADGTACVWKYRRSPSAS

PREDICTED: cell division cycle protein 20 homolog B [Heterocephalusglaber] – Naked Mole Rat - Rodent

NCBI Reference Sequence: XP_004848735.1

>gi|512973274|ref|XP_004848735.1| PREDICTED: cell division cycle protein 20 homolog B [Heterocephalusglaber]

MEWKLERTARRRIRTEEEMLWENVMRVLAEDMKQQRSRGSPKLFDAGTTPYSNFKSNIVKRLSDEVPVAS SPLSTRWQQSQIRDLEAYSFDESDISESVRSVLKIMPEKGTLTLGSYKEPLKTPVKGSSQTSNSALHFCK ASRALERGGKENVASKAQNCLNELFSAQKVIQQINGKMQLCEESQCIWEGCRDGVRNESFHLKKFRDVNY PICQPEVKIHLTGLRNDYYLNVLDWSFQNLVAVALGSAVYIWNGENHRVEKIDLSLTCNYVSSVSWIKKG TCLAVGTSEGEVQLWDVVTEKRLRNMQGHLSVVGALSWNHYILSSGSRLGRVYHHDVRAAQHQVGTLCHK QAVCALKWSPDGRLLSSGCSDGLLTIWPHDPGAHAQGQSLKVISQSTAVKAIDWCPWKSEVLAIGGGMKD GCLHILDINSGKSIQTPSTNSQICSLIWLPKTKEIATGQGAPKNDVILWTCPTLSRPSGFLGHRGRVLHL ALSPDQTRVFSAAADGTACVWKCHQSPRPS

PREDICTED: cell division cycle protein 20 homolog B [Ictidomystridecemlineatus] – Thirteen Lined Ground Squirrel

NCBI Reference Sequence: XP_005319731.1

>gi|532067774|ref|XP_005319731.1| PREDICTED: cell division cycle protein 20 homolog B [Ictidomystridecemlineatus]

MEWKLERTARRRIRTEEEMLWENVMKVLSNDMKQKRSQVSPKVLDSVTTTYSNFKSNFLKRLSAELPVAS

SPIATRWQQRQTGDLACSFGAELSTTDIPESLQSVLGTPEKDTLTPGIYKEPLKFPTKEGYERNNSALCV CEAPHALDRAVKENVASKSQKCPNQLFSSQKVVQKTDGKMQLCDKSQCIWKGCQYGVGDELFHLKRFCDK NYPICQPEVKIHLTGLRNDYYLNILDWSFKNVVAVALGSAVYIWNGENHNRVENIDLGLTCNYVSSVSWI KEGTCLAVGTSDGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHYLLSSGSRLGHVYHHDVRIAQHHVGTL CHKQAVCALKWSLDGRLLSSGCSDGLLTIWPYDPGASARGQPLKVLPQSTAVKAMDWCPWQSAVLAVGGG MKDGCLHILDINTGKSIQTPSTNSQICSLIWLPKTKEIATGQGTPKNDVTLWTCPTLSRSGGFFGHRGRV LHLALSPDQTQVFSAAADGTATVWKCCQSPNPS

PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Mesocricetus auratus] – Golden Hamster

NCBI Reference Sequence: XP_005139343.1

>gi|524922544|ref|XP_005139343.1| PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Mesocricetus auratus]

MVVSSSLITTRWQYPATPSPPDGSVQQPHHHQMAVSSSPITTRWQPNQARDLEACSSAKEGYSSNIPESP SVLKITPAVDTQTLHESNFRLAVNLNILDWNSQNLVAITHRSSIHIIWNGQNHSRNENIDLSLFSIYASS VPWVREGSCLAVGISDGEAQVLGHLLTMFLSRLGVVHHYDVWMAQHYVETLHQKEAVCALKWSRDGRLLP GGCKDGLLAIWLHDPGASVXGPALKVIPQFTAVKVCSLIXVPKTKXIATGQGASKNDMALWTCSSLNCIS LCDPSLGTHPKGLALGEYCNGISWLSESAEDKANDSGASVVV

PREDICTED: cell division cycle protein 20 homolog B [Cavia porcellus] – Guinea Pig NCBI Reference Sequence: XP_003470297.1

>gi|348569022|ref|XP_003470297.1| PREDICTED: cell division cycle protein 20 homolog B [Cavia porcellus]

MEWKLERTARRRIRTEEEMLWENIMRVLAHNMKQQRSRSSPKVFDSVTTPYSNFKENIVKRLSAEVPIAS SPLTTRWQQSQSKDLETYSFGDEYSVTDISQSVGTVLKIIPEQGTLTLGSHKEPLKTPVKGSSESNNSSL QFCKASHALERGGKENVASKGQKCLNQLFSAQKVIQQINGKMQLCQESQCVWKGCRDGVRDKSFHLKKLR DVNYPIWQPEVKIHLTGLRNDYYLNILDWSFQNLVAVALGSAVYIWNGENHNGVEKIDLSLTCNYVSSVS WIKKGTCLAIGTSEGEVQLWDVVAKKRLRSMQGHLSVVGSLSWNHYILSSGSRLGRVYHHDVRAAQHQVG TLCHRKAVCALKWSPDGRLFSTGCSDGLLTLWPHDPGTHAQGQPLKVISHLTAIKAIDWCPWQSEVLAIG GGMKDGCLHILDISSGKSLQTPSINSQICSLIWLPKTKEIATGQGAPQNDVTLWSCPTLSRASVFLGHRG RVLHLALSPDQTRVFSAAADGTACVWKCHQSPSSS

PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Octodon degus] - Degu NCBI Reference Sequence: XP_004649047.1

>gi|507615600|ref|XP_004649047.1| PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Octodon degus]

MVEAQEPPVKALAMERNSHNLGIFYFCIVEATADLKSLCCPAGAGFRYQPALALGERRRPDAVPARRQGA ATSSRGLGSRLRRGPARRRQPLGACGDSADEDARDRSSAPGEPGCEAQRPTRPRRSSGGTLGVRSAASRL NVSLVGSYTELLKTPVKGSSEAHHSGLHFCKAYRALDRXGKESIAFKGQKCLKQLLAAQKVVQQXQGNMQ LCEDSQCAWEVLNILDWSFQNLVAIALGSTVCIWNGEDHSGVENVDLSLTCSYISSVSWIRQGTXLAVGT SEGEVRLWDVVTKKRLCNLRGHLSVVGALSWNYRVLRSGSGLGRVYHHEVRAAQHRVSPLPXQQAVCALK WSPDGRLLSSGCSGGLLQYVWPQDPGCSAQGADLSMLLSETLKALDWCPWKPEVLAVGGGMEDGCLHVLD ISSGKSMQTPSTNSQICSLIXLPKTMEIATGQGAPWNDVALWTCPTLCRSSGFLSRDVQEHGTDMRWGLC AVPSSAEGRSAGDTFELPHSRWSRPHPGRPASRVFHRILPWFTPCSLLPTHTCVYAGQCTVKALSILCL

PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Capra hircus] - Goat NCBI Reference Sequence: XP_005694763.1

>gi|548511825|ref|XP_005694763.1| PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Capra hircus]

MVVLGDKTPEVCRLRVKTGLFLGNKTKSGRGEATLEPVGQTPPEMEWKLERAARRRVRTEEEILWEDVMR VLDKDMKQRRGQVSPKVFNVVNTTYSNFTSHLAKRLSAEVPVASSPITARWRQSQAGDVAAPSFGEERST TDLPETVLKMTPEKETLTPGSCKEPLKTPNKESSGTNNSAFQFGKAPHAVDRGRKDKVASKDLKCLNQLF STQNVAQQVNGSMQFCEGSQCTWKGCSNGIRDGYFQRLSDINYPILQPEVKIHLTGLRNDYYLNILDWNF QSLVAIALGSSVYIWNGDNHHRTENMCFSLPCNYVSSVSWMTEGTCLAVGTSEGEIQLWDVVTKKRLRNM LGHLSVVGALSWNHYILSSGSRLGRVYHHDIRVAQHHVGTLQHKQAVCGLKWAPGGRLLSSGCSDGLLTI WPHDPGANAQSHPLKVIHQSTAVKAIDWCPWQTEVLAVGGGMKDGRLHILDINTGQSIQTPSTDSQICSL TWLPKTKEIATGQGSPKNDVTVWTCPGLARSRGFFDHRGRVLHLALSPDQTRVFSAAADGTACIWNCC

PREDICTED: cell division cycle protein 20 homolog B isoform X3 [Canis lupus familiaris] - Dog NCBI Reference Sequence: XP_535236.3

>gi|345793816|ref|XP_535236.3| PREDICTED: cell division cycle protein 20 homolog B isoform X3 [Canis lupus familiaris]

MEWKLERTARRRVRTEDEMLWENVMRVLAKDLRQKRSPGSPKIFDEMKITYSSFKSNFVKRLSAEVPVAS SPIATRWRQNQARDPAACSFGEEFSTTYLPEASGSVLEKTPEKETLVLGSYQEPLKTPIKGSFETNNSAL RFCKAPHALDRGWNENIASKGQKCLNQLFLTQKVVQWVSGQMQLCEPSQCVWKGCRNGVGDESFHLKRFG DIDYSILQPEVKIHLSGLRNDYYLNILDWNFRNLVAVALGSSVFIWTGENNVIENIDLSLNCSYISSVSW IKDGNCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHCILSSGSRLGRVYHHDVREAQHHVGS LHHKQAVCALKWSPDGRLLSSGCSDGLLAIWPHDPGVRTQTQPLKVISQPTAVKAMDWCPWQSAVLAVGG GMRDGHLRILDINTGRSIQTPSTNSQICSLLWLPKTKEIATGQGTPQNDVTTWACPGLARSGGFFGHRGR VLHLALSPDQTRVFSAAADGTACVWNCCRSALL

cell division cycle protein 20 homolog B [Bos taurus] - Cow

NCBI Reference Sequence: NP_001193911.1

>gi|332801029|ref|NP_001193911.1| cell division cycle protein 20 homolog B [Bos taurus]

MEWKLERAARRRVRTEEEILWEDVMRVLDKDMKQRRGQVSPKVFNVVNTTYSNFTSNLAKRLSAEVPVAS SPITTRWRQSQAGDVTALSFGEEHSTADLPETVLKMTPEKETLTPGSYKEPLKTPNKGSSGTNNSAFQFG KAPHALNRGWKDKVASKDPKCLNQLFSTQNVAQQVNGSMQFCERSQCTWKGCRDGVRDGYFQRFSDINYS ILQPEVKIHLTGLRNDYYLNILDWNFQNLIAIALGSSVYVWNGDNHNRIENMYFSLPCNYVSSVSWMTEG TCLAVGTSEGEIQLWDLVTKKRLRNMLGHLSVVGALSWNHYILSSGSRLGRVYHHDVRVAQHHVGTLQHT QAVCGLKWAPGGRLLSSGCSDGLLTIWPYDPGANAQGPPLKVIHQSTAVKAIDWCPWQTEVLAVGGGMKD GRLHILDISTGQSIQTPSTDSQICSLTWLPKTKEIATGQGSPKNDVTMWTCPGLARSRGFFDHRGRVLHL ALSPDQMRVFSAAADGTACIWNCC PREDICTED: cell division cycle protein 20 homolog B [Pantholopshodgsonii] – Tibetan Antelope

NCBI Reference Sequence: XP_005958424.1

>gi|556725277|ref|XP_005958424.1| PREDICTED: cell division cycle protein 20 homolog B [Pantholopshodgsonii]

MEWKLERAARRRVRTEEEILWEDVMRVLDKDMKQRRGQVSPKVFNVVNTTYSNFTSNLAKRLSAEVPVAS SPITTRWRQSQAGDVTAPSFGAERSTTDLPETVLKMTPEKETLTPGSCKEPLKTPNKESSGTNNSAFQFG KAPHAVDRGWKDKVASKDPKCLNQLFSTQNVAQQVNGSMQFCERSQCTWKGCSDGIRDGYFQRFSDINYP ILQPEVKIHLTGLRNDYYLNILDWNFQSLVAIALGSSVYIWNGDNHHRIENMCFTLPCNYVSSVSWMTEG TCLAVGTSEGEIQLWDVVTKKRLRNMLGHLSVIGALSWNHYILSSGSRLGRVYHHDVRVPQHHVGTLQHK QAVCGLKWAPGGRLLSSGCSDGLLTIWPHDPGANAQSHPLKVIHQSTAVKAIDWCPWQTEVLAVGGGMKD GRLHILDINTGQSIQTPSTDSQICSLTWLPKTKEIATGQGSPKNDVTVWTCPSLARSRGYFDHRGRVLHL ALSPDQTRVCSAAADGTACIWNCC

PREDICTED: cell division cycle protein 20 homolog B [Bos mutus] - Yak NCBI Reference Sequence: XP_005887437.1

>gi|555950469|ref|XP_005887437.1| PREDICTED: cell division cycle protein 20 homolog B [Bos mutus]

MEWKLERAARRRVRTEEEILWEDVMRVLDKDMKQRRGQVSPKVFNVVNTTYSNFTSNLAKRLSAEVPVVS SPITTRWRQSQAGDVTALSFGEEHSTADLPETVLKMTPEKETLTPGSYKEPLKTPNKGSSGTNNSAFQFG KAPHALNRGWKDKVASKDPKCLNQLFSTQNVAQQVNGSMQFCERSQCTWKGCRDGVRDGYFQRFSDINYS ILQPEVKIHLTGLRNDYYLNILDWNFQNLIAIALGSSVYIWNGDNHNRIENMYFSLPCNYVSSVSWMTEG TCLAVGTSEGEIQLWDVVTKKRLRNMLGHLSVVGALSWNHYILSSGSRLGRVYHHDVRVAQHHVGTLQHT QAVCGLKWAPGGRLLSSGCSDGLLTIWPYDPGANAQGPPLKVIHQSTAVKAIDWCPWQTEVLAVGGGMKD GRLHILDISTGQSIQTPSTDSQICSLTWLPKTKEIATGQGSPKNDVTMWTCPGLARSRGFFDHRGRVLHL ALSPDQMRVFSAAADGTACIWNCC

PREDICTED: cell division cycle protein 20 homolog B [Sus scrofa] - Pig NCBI Reference Sequence: XP_005674286.1

>gi|545889948|ref|XP_005674286.1| PREDICTED: cell division cycle protein 20 homolog B [Sus scrofa]

MRVLAKDMKQKRQQGSPKVFDVVNTTYSNFKSNFAKRLSAEVPVASSPITTRWRQSQTRDVAAHSFGEEH STTDLAETVLRMTPEKETLSPGSYKEPLKNPNKGSFETSNSAFHFCKASHALDRGWKENVASTGQKCLNQ LFSTQKVAQQVNGKMQLCEQPQCIWKGCNDGVKDGYFYIQSFSDTNYSILQPEVKIHLXXFRNGYYLNIL DWNFQNLVAIALGSSVHIWNGESHSGIENIDLSLTCNYVSSVSWIEKGNCLAVGTSEGEVQLWDVVTKKR LRNMLGHLSVVGALSWNHCILSSGSRLGRVYHHDVRVAQHRVGTLHHKQAVCALKWSPDGRLLSSGCSDG LLTIWPHDPGVTAQGHALKVIPQPTAVKAVDWCPWKSEVLAVGGGMKDGHLHILDINTGQSIQTPSTNSQ ICSLVWLPKTKEIATGQGSPKNDVTVWACPALARSRGFFGHRGRVLHLALSPDQTKVFSAAADGIACVWN CC

PREDICTED: cell division cycle protein 20 homolog B [Equus caballus] - Horse NCBI Reference Sequence: XP_001494074.2

>gi|338718862|ref|XP_001494074.2| PREDICTED: cell division cycle protein 20 homolog B [Equus caballus]

MEWKLERTAPRRVRTEEEMLWENVMRVLAKDMKQKRSQGSSKVFDAVNTTYSNFKSNFVKRLSAEVPVAS SPVTTRWRQSQTRDLAAYSFEEHSTTELPEASASVLKITPENQTLILGSYEEPRNTPIKGNFETNYSAL RFGKAPHALDRGWKENIASKGQKCLNQLFSTQKVAHQVNGKMQLCEQSQCVWKGCRDGVRDESFYLKRFS DINSSILQPEVKIHLTGLRNDYYLNILDWNFQNLVAIALGSSVCIWNGENHNRIENMDLNLTCNYVSSVS WIKEGSCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNHCILSSGSRLGRVYHHDVRVAQHHVG TLHHKQAVCALKWSFDGRLLSSGCSDGLLTIWPHDPGVSAQGQPLKVIPQPTAVKAMNWCPWQSAVLAVG GGMKDGHLHILDINTWRSIQTPSTNSQICSLIWLPKTKEIATGQGTPKNDVTVWACPALAKSGGFFGHRG RVLHLALSPDQTRVFSAAADGTACVWNCC

PREDICTED: cell division cycle protein 20 homolog B [Ceratotheriumsimumsimum] - White rhinoceros

NCBI Reference Sequence: XP_004422869.1

>gi|478497061|ref|XP_004422869.1| PREDICTED: cell division cycle protein 20 homolog B [Ceratotheriumsimum]

MEWKLERTAPRRVRTEEEMLWENVMRVLAKDMKQKRRQGSSKVFDEVNPTYSDFKSNFLKRLSAEVPVAS SPVTTRWRQSQTRDFAAYSFEEEPSTTDLPETSGSVLKITPEEETLILGSYKEPLKAPIKGSFETSNSTL LFCKASHALDRGWKENIALKGQKCLNQLFSTQKVAHQVNGKMQLCERSQCAWKCCKDGVGDESFHLKRFG DVNYSILQPEVKIHLTGLRNDYYLNILDWNFQNLVAIALGSSVYVWNGENHNGIEHIDLSLTCNYVSSVS WVKEGTCLAVGTSEGEVQLLDVATKKRLRNMLGHLSVVGALSWNHCILSSGSRLGRVYHHDVRVAQHHVG TLHHKQAVCALKWSLDGRLLSSGCSDGLLTIWPRDSGVSAQGQPLKVIPQPTAVKAMDWCPWQSAVLAVG GGMKDGRLHILDINTGQSIQTPSTNSQICSLIWLPKTREIATGQGTPENDVTVWACPALARSGGFFGHRG RVLHLALSPDQTRVFSAAADGTARVWNCC

PREDICTED: cell division cycle protein 20 homolog B [Felis catus] - Cat NCBI Reference Sequence: XP_003981039.1

>gi|410948641|ref|XP_003981039.1| PREDICTED: cell division cycle protein 20 homolog B [Felis catus]

MEWKLERTAPRRVRTEEEMLWENVMRVLAKDMKQKRSQGSPKIFDGVNTTYSNFKSNFVKRLSAEVPVAS SPITTRWRQSQTRDLEVDSFEEERSTTYLPEASGSVLKITPEKETLILGSYKEPLKTPIKGNFETNNSAL HFCKAPHALGRGWNENVASKGQKCLNQLFLTQKVAQWVSGKMQLCEKSQCVWKGCRDGVRDESFHLKRFN GINYSILQPEVKFHLTGLRNDYYLNILDWNFQNLVAIALGSSVYIWNGENHNKIENIDFTLNCNYVSSVS WIKEGNCLAVGTSEGEVQLWDVVTKKRLRNMLGHLSVVGALSWNQYILSSGSRLGRVYHHDVRVARHHVG TLHHQQAVCALKWSPDSRLLSSGCSDGLLTIWPGDPSAKAQVQPLKVIPQPTAVKAMDWCPWQSAVLAVG GGMKDGHLHILDINTGQTIQTPNMNSQICSLIWLPKTKEIASGQGTPKNDVTVWACPGLARSAGFFGHRG RVLHLALSPDQTRVFSAAADGTACVWNCCESSLSPSVSSSFLTLK

PREDICTED: cell division cycle protein 20 homolog B [Ovis aries] - Sheep NCBI Reference Sequence: XP_004017037.1

>gi|426246511|ref|XP_004017037.1| PREDICTED: cell division cycle protein 20 homolog B [Ovis aries]

MIVLGDKTPEVCRLRVKTGLFLGDKTKSGRGEATLEPVGQTPPEMEWKLERAARRRVRTEEEILWEDVMR
VLDKDLKQRRGQVSPKVFNVVNTTYSNFTSHLAKRLSAEVPVASSPITARWRQSQAGDVAAPSFGEERST TDLPETVLEMTPEKETLTPGSCKEPLKTPNKESSGTNNSAFQFGKAPHAVDRGQKDKVASKDPKSLNQLF STQNVAQQVNGSMQFCEGSQCTWKGCSNGIRDGYFQRFSDINYPILQPEVKIHLTGLRNDYYLNILDWNF QSLVAIALGSSVYIWNGDNHHRIENMCFSLPCNYVSSVSWMTEGTCLAVGTSEGEIQLWDVVTKKRLRNM LGHLSVVGALSWNHYILSSGSRLGRVYHHDIRVAQHHVGTLQHKQAVCGLKWAPGGRLLSSGCSDGLLTI WPHDPGANAQSHPLKVIHQSTAVKAIDWCPWQTEVLAVGGGMKDGRLHILDINTGKSIQTPSTDSQICSL TWLPKTKEIATGQGSPKNDVTVWTCPGLARSRGFFDHRGRVLHLALSPDQTRVFSAAADGTACIWNCC

PREDICTED: cell division cycle protein 20 homolog B isoform X6 [Gallus gallus] - Chicken NCBI Reference Sequence: XP_004937294.1

>gi|513229162|ref|XP_004937294.1| PREDICTED: cell division cycle protein 20 homolog B isoform X6 [Gallus gallus]

MSVLGKDPEWGREQNLQKVAEALDSDRTTYSGFKSSIKRKLKAGAPVASSPVVTRWQQRHAGGLAAVPRR ALSAELCALRSAPLVGARGRTPVTNQMLKKPSIMKSAVTLSSRHTAAGLEGRNDRKTEIRKKRKCTTQLL MIQETGYSMAESDMKICENTSCIWKGCREGMQNEFRTVTIMKPSVTLEPELRLHITGLRNDYYLNILDWN LENLIAVALGSAAYIWNGRTLQGIESIELNSSSKYISSLAWIKEGTCLAVGTSDGEVQLWDIERKRRLRS MFGHLSVVGALSWNHYILSSGSRLGSIHHHDVRVAQHHIGTLCQNKQSICSLKWSLTNQLLASGSSDGTV NIWHSDPGVNVKSQPLKTIPHSSAVKAMNWCPWQSNVLATGGGMKDGILRVWDINHEKLLQSAATDSQIC SLLWLPKTSELMTGQGLPENQIKIWQHPALISSSELYGHKGRVLHMALSPDQRRLFSVAADGIACLWKCH EYEESNEKK

PREDICTED: cell division cycle protein 20 homolog B [Columba livia] – Rock Dove NCBI Reference Sequence: XP_005500956.1

>gi|543719467|ref|XP_005500956.1| PREDICTED: cell division cycle protein 20 homolog B [Columba livia]

MECLQERRVPGSEGTTYSRFKRSIKRKLAARAAVVSSPIVTRWQQPHRRGGARERRRACCLTHLCPAGGP PLLSTAGKAPVTPQVPKKLSVTKTLVTLHSSHAAAGLEGRKNRRAEMKKRWKRPSQLPVVQEVRYSIAEY GDVKICENTNCIWKGCQEGTQNEFRAVTIMKPSIPLEPEVRLHITGLRNDYYLNILDWSLENLIAVAVGP AVHIWNGETLQAIESIGLNSSSKYISSLAWIKEGTCLAVGTSDGEVQLWDIETKKRLRNMFGHLSVVGAL SWNRYILSSGSRLGSIHHHDVRVAQHHVGTLCQNKQSICSLKWSLTNQLLASGSSDGILNIWPGDPGVKL QSQPLKTIPHSSAVKAVNWCPWQSKILATGGGMKDGVLRVWDINQEKIIQSAATDSQICSLLWLPKTSEV VTGQGLPGNQMKIWKYPMLISSSELYGHEGRVLHIALSPDQSRLFSVAADGIASLWKCHETGESKHNSKG FF

PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Pseudopodoces humilis] – Ground Tit

NCBI Reference Sequence: XP_005534726.1

>gi|543376025|ref|XP_005534726.1| PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Pseudopodoces humilis]

MLQQVWKEEITGELKQKCERRGCQEKTQNELRSVTTMKLSTALEQELRLHITGCCHDYXLNMLGWSLENL IAITVGPAAHIWNGXTLQAIESIDLNSSSKCFMSRLDKKXMCLATCTSDGEVQLWNIETKXRLRNMFGHL FVIGXWNHCILSSGSLLGSIHHYDVQHSVGILCPKTPSICCLKLSLANLLLAIWSRGGVLNIWPRKPGVK LQSQTVQTILPVIAVKSMTWCPWQTKVLATGGGMKNGILHVWHMNCEKITQSAIADSQKDFKLHWISSLP WLPSQLMTAQGLPENQMKIWKYPMLVNSLELYGHKGRVLHITLSPAQNSLIFVAVYGMSCL

PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Geospiza fortis] – Medium Ground Finch

NCBI Reference Sequence: XP_005431751.1

>gi|543263317|ref|XP_005431751.1| PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Geospiza fortis]

MVPEVGSSVAESGDVKFWENTSCIWKGCQEGTQNELRNVTTMKPSTPLEQEGFILLTGAIIKLIPPMLIF SSFLLELNMLGWSLAANVGPAAHMWNGQTPDLKAVEGIDLNPSSKHISCLAWIKKGICLAVWISDGELQL WNTETRKRLRNMFGHLSVIXGWNHCILSSGSLLGFAHHREVQVAQHYVGSLCQNKQIIXSLKFFLANLLL AIWSRGGTLNIWPRNPGVKLQSQTLKTNFCDGLAQAVMTWSPWQSKVLATXGGMKDGILCVWHMNCEKII QSAIADSQCFQRAILSASQFKGNKGRVLHITPSSDHSRFIFVAVEGMSCLWKQHGSGESMHSNKAF

PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Zonotrichiaalbicollis] – White Throated Sparrow

NCBI Reference Sequence: XP_005497997.1

>gi|542164204|ref|XP_005497997.1| PREDICTED: LOW QUALITY PROTEIN: cell division cycle 20B [Zonotrichiaalbicollis]

MVPEVGYSIAESDDVKVWENTSCVWKGCQEGTQNELRSVTTMKPSTLLEQEVRLHTTDWCNDXVINMLAW SLENLIPIPVGPAAHIWNGQTLDLKAVEGIDLNSCSKHIXCLAWMKXGISLAFWMSDXEVQLWNIETRKR LRNMFGHLSVIXGWNHCILSSGSLLGFALHSEVRSAQHHVGILCQNKQIICSLKFSLANMLLSVKLLKAG HVLAYVPRSASAEVLTYEVLVKM

PREDICTED: cell division cycle protein 20 homolog B [Falco cherrug] – Saker Falcon NCBI Reference Sequence: XP_005438741.1

>gi|541969095|ref|XP_005438741.1| PREDICTED: cell division cycle protein 20 homolog B [Falco cherrug]

MLGKDCDISVFVWVFPVNWGHVRLDLCMAVRPVPDSGRITYSGFKSSMKRRLAARAAVASSPIVTRWQQL HARGRSPARLGASAGPQRGRAPGETPVTPQVPKKLSVTKTVVTLPSSHAALGLEGSSNMRAGMEKKQICS SQLPVLQEVGYSIAENGDMKVCENTSCIWKGCQEGTHSDFRAVTTMKPSILWEPEARLHISGLRNDYYLN ILDWSLENLVAVAVGPAAHIWKGGALQTIERIYLNSNSKYISSLAWIKEGTCLAIGTSDGEVQLWDIETK KRLRNMFGHLSVVGALSWNHHILSSGSRLGSIHHHDVRVAQHHVGTLRHNKKSICSLKWSLTDQLLASGS SDGILNIWPGDPGVKLQLQPLKTIPHSSAVKAMNWCPWQSKVLATGGGMKDRILRVWDINCEKIIQSAAT DSQVCSLLWLPQTSELMTGQGLPGNQMKIWKYPMLINSSELYGHKGRVLHIALNPDQNRLFSVAADGIAC LWKCCEPGQSKHSSKAFSSDYLSSFL

PREDICTED: cell division cycle protein 20 homolog B [Melopsittacus undulatus] – Pet Parakeet NCBI Reference Sequence: XP_005152152.1

>gi|527268118|ref|XP_005152152.1| PREDICTED: cell division cycle protein 20 homolog B [Melopsittacus undulatus]

MYFFLVFSIEVTGCQHPFPWPVLCGDQSPSGADPVAEGTTYSGFKNAMRRKLAARAPVASSPLVTRWQQR HAGGTAEARGAIRLISAPGTTAVTSQVPKELSSIKTVVPLASRHAAAGLEGRNIRRAGMEKKQKCPSQLP VVQDVGYSIAERGDMKVCENTNCTWKGCQEGNQNEFRAVTKMKLSVPMELEVRLHITGLRNDYYLNILDW SLENLIAIAVGPAAHIWNGGTLQAIGSIDLNSSSKYISSLAWITEGTCLAIGTSDGEVQLWDIETKKRLR NMFGHLSVVGALSWNHYILSSGSRLGSIHHHDVRVAQHHVGTLCHKKQSICSLKWSLTNQLLASGSSDGI LNIWPSDPGVKLQSQPLKTIPHSSAVKAMNWCPWQSKVLATGGGMKDGILRVWDINREKIIQSAATDSQI CSLLWLPKTSELMTGHGLPGHQMKIWKYPILINSSELYGKYFIHKGRVLHTALSPDQSRLFSVAADGTSC LWKCHEPRESKHSSKAFSEDLPADDRDIYLPQGIRKHFSDDCVFPILLLCKLFLDWGSSEDFARYFEYGL AVFMFISHGAWAKVFVSLLREAGKERPQELPAAVAEAARESSPGNQMAVAEQQEEAGEERREAVAEQQDQ TAEEPSPVSKPNPAATERVGRARVVVSERAVCGLDFNHDTI

PREDICTED: cell division cycle protein 20 homolog B [Falco peregrinus] – Duck Hawk NCBI Reference Sequence: XP_005242064.1

>gi|529444705|ref|XP_005242064.1| PREDICTED: cell division cycle protein 20 homolog B [Falco peregrinus]

MLGKDCDISVFVWVFPVNWGLVRLDLCMAVRPVPDSERITYSGFKSSMKRRLAARAAVASSPIVTRWQQL HARGRSPARLGASAGPQRGRAPGETPVTPQVPKKLSVMKTVVTLPSSHAALGLEGSSNMRAGMEKKQICS SQLPVLQEVGYSIAENGDMKVCENTSCIWKGCQEGTHSDFRAVTTMKPSILWEPEVRLHISGLRNDYYLN ILDWSLENLVAVAVGPAAHIWKGGALQTIERIYLNSNSKYISSLAWIKEGTCLAIGTSDGEVQLWDIETK KRLRNMFGHLSVVGALSWNHHILSSGSRLGSIHHHDVRVAQHHVGTLRHNKKSICSLKWSLTDQLLASGS SDGILNIWPGDPGVKLQLQPLKTIPHSSAVKAMNWCPWQSKVLATGGGMKDRILRVWDINCEKIIQSAAT DSQVCSLLWLPQTSELMTGQGLPGNQMKIWKYPMLINSSELYGHKGRVLHIALNPDQNRLFSVAADGIAC LWKCCEPGQSKHSSKAFSNDYLSSFL

PREDICTED: cell division cycle protein 20 homolog B [Alligator sinensis] – Chinese Alligator NCBI Reference Sequence: XP_006017361.1

>gi|557263746|ref|XP_006017361.1| PREDICTED: cell division cycle protein 20 homolog B [Alligator sinensis]

MKLFFIQAYVPFHSAVGLRVIWQVKMSYHFVKTSKFVQSIGVERRSSVRLNLMRWLPGGKHSSQGSNNRS GVALPQGNDLCVTLSTLEIVPTPKTIRVEPGGRQQLIRVVPGITPVLRRGSPASRLTPDFGKTTYSRFKS SIVKKLTSSVPVASSPISTRWQQAHVKSEAEQTFTECWPINLTPSDGSELTRTPEEITKIPVTSPMLIKT SATEPVINMNARYHKAYREDSQGRNKRPAESTNEQKCLTQILMVQEYGVSFPENGRMKICENMECIWEGC QDGIQNEFTLHRVSLDTEPFLPLEPEVRFHITGFRNDYYLNTLDWNRENLIAVALGSCAYIWNGETHQSI ESIDLNSSAKYISSIAWIKEGTCLAVGTSDGEVQLWDIETKKRLRNMVGHLSVVGAMSWNHYILSSGSRL GFVHHHDVRVAQHHVGTLCQNKQSICSLKWSLNNKLLASGSSDGILNIWPSDPGATVHCKPVQTMPHPSA VKAMNWCPWQSEILATGGGLKDGLLRVWDISSGKTIKTTETKSQICSLFWLPNTNELVTGHGLPKNQIKI WKYPMLANSVELFGHKGRVLHVALSPDCSRFISLAADGVACVWKYFQSSETRHRRDDIQGDYSRTLW

PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Pelodiscus sinensis] – Chinese Soft Shelled Turtle

NCBI Reference Sequence: XP_006139607.1

>gi|558232057|ref|XP_006139607.1| PREDICTED: cell division cycle protein 20 homolog B isoform X1 [Pelodiscus sinensis]

MEWKLERSASRKVKTDEDMLWEKVMKTLGKELKQIRKQSLQKLTKTPDSAKPTYSRFKSCIVKKLTSNIP VASSPIITRWQQTHTRSQAEQTFTECQPINLFPADGSVQVRTPEKISTIPVFFHVPIKNSTKEPDIITNA PASCHETTYLQGKNKRRAEIAKEQKCLTQLVMLQENGYRISENDDIKICGNTECVWKGCQNGIHNEFTAH RISTNIKSLVPLEPEVRLHITGLRNDYYLNLLDWNQGNLIAIALGSAAHIWNGESHQSTQRVNLNSSSKY ISSVAWIKEGTCLAVGTSDGEVQLWDIETKKRLRNMFGHLSVVGAMSWNHYILSSGSRLGLIHHHDVRIA QHHVGTLCHSKQSICSLKWSPDSKLLASGSSDGLLNIWPNDPGLTVHCKPLKAIPQASAVKAMDWCPWQS EILATGGGMKDGFLRVWDISKGKIIRTTDTKSQICSLLWLPKTNELMTGQGIPKNQMKIWKYPTLTNSTE LHGHKGRVLHIALSPDHCRIFSLAADGLACVWKYG

PREDICTED: cell division cycle protein 20 homolog B isoform X2 [Xenopus (Silurana) tropicalis] – Western Clawed Frog

NCBI Reference Sequence: XP_004910413.1

>gi|512809821|ref|XP_004910413.1| PREDICTED: cell division cycle protein 20 homolog B isoform X2 [Xenopus (Silurana) tropicalis]

MDWKLEKISSRRVRAEEDMMWEGVMKTLGKDLRWSRKYSMQKMNKTPDGRSSYSRFKRSIMKRRACHVPF ASSPVSTKWCQNMDQIQGTGLSSSPSEELCQTPEPLVLLPYLTEIPITAIPDCAQKPPSLKDTSAPKRTQ KTSKKLLSQTRLKFLQEQNFLQTVEDFKRGSCIRHDSNIKICEKDTCMWKGCLQTKKNKSLGQKTQKVHI CSHTILQPDIRLHIIGLHNDYYLNLLDWNSENLVAIGLKSTAYIFSGENRTVTQKIHLSCPATYVSSVSW ISSGTCLAIGTSSGEVQLWDIETQKRLRNMLGHMSVVGALSWNNHILSSGSRLGHIHHHDVRIAEHHIGT LQHKQGICSLKWSPCGNKLASGSSDGDLKIWPCDPGETKLKSPLLNMPHPTAVKAMNWCPWLSDTLAVGG GMTDGLIRIWDTNSGKNIHSANTNSQICSLLWLPQTKELLTGHGPSRNQMTIWQYPSLLKMNDYYGHKGR VLHLALSPDQRRIFSAAANGTANIWKYGN

PREDICTED: cell division cycle protein 20 homolog B [Latimeria chalumnae] - West Indian Ocean coelacanth

NCBI Reference Sequence: XP_005998514.1

>gi|556985654|ref|XP_005998514.1| PREDICTED: cell division cycle protein 20 homolog B [Latimeria chalumnae]

MESSGYGHQGSSDESSFQCLFANRHAECSISSQPETRLDITGLKDDYYLNLLDWNSENLVAIAVDAAAHI LNGDTQVMHGKIDLQSDFKYISSVAWLKDRSCLAIGTSDGEVQLWDVETKKRLRNMLGHMSVVGALSWNS YILSSGSRLGLIHHHDVRIAQHHVGSLRHKQSICALKWSGNGKYLASGSNNGLLNIWPNDPGVTVQHQPL LAFAHTTAVKAMNWCPWQANILAVGGGIKDGRLRTWDLNSGKCVRIVETKSQICSLLWLPKTNELLTAHG HPRNQISLWKYPSLKKTANLYGHRGRILHLAMSPDQSRICSVAADGTACIWKCLY

Appendix II

Gene name	Genomic position (Grch38)	Allele	Consequence	cDNA change	Amino acid change	rs ID
RAPH1	203430502	G/A	downstream	_	_	rs993751252
RAPH1	203481759	т/-	intron	c.732+7825del	_	rs757903816
RAPH1	203522658	T/C	intron	c1+12453A>G	_	rs569076111
FN1	215405565	G/A	intron	c.2986+673C>T	_	rs1177012037
FN1	215419921	G/C	intron	c.1676-536C>G	_	rs548810098
PARD3B	204619869	T/C	intron	c.121-66312T>C	_	-
PARD3B	204637730	-/T	intron	c.121-48439dup	_	rs796534134
PARD3B	204674440	A/G	intron	c.121-11741A>G	_	rs185339992
PARD3B	204706035	A/-	intron	c.222+19755del	_	-
PARD3B	204740180	-/T	intron	c.222+53911dup	_	rs547815624
PARD3B	204803142	-/G	intron	c.222+116862dup	_	-
PARD3B	204811849	C/A	intron	c.222+125567C>A	_	rs553140066
PARD3B	204857324	C/A	intron	c.223-107828C>A	_	rs568295831
PARD3B	204874866	A/T	intron	c.223-90286A>T	_	rs532403294
PARD3B	204928791	T/A	intron	c.223-36361T>A	_	rs557483257
PARD3B	204997823	A/G	intron	c.394+32500A>G	_	-
PARD3B	205013743	G/A	intron	c.395-33838G>A	_	-
PARD3B	205036626	G/A	intron	c.395-10955G>A	_	rs981689283
PARD3B	205049541	G/A	intron	c.504+1851G>A	_	rs1339859281
PARD3B	205083990	C/T	intron	c.505-20436C>T	_	rs1331976154
PARD3B	205095341	C/T	intron	c.505-9085C>T	_	rs1309017480
PARD3B	205168320	- /GAGAG AGAGTG T	intron	c.1621-3890_1621- 3889insAGAGAGA GTGTG	-	rs371904121
PARD3B	205171677	G/A	intron	c.1621-534G>A	_	rs1221160245
PARD3B	205185326	G/A	intron	c.1925-438G>A	_	rs1185486899
PARD3B	205188791	AAAAAA AA/-	intron	c.2024+2933_2024 +2940del	_	rs68034154
PARD3B	205241354	AAGATC/ -	intron	c.2141-4425_2141- 4420del	_	rs1399724320
PARD3B	205242733	C/T	intron	c.2141-3045C>T	_	rs534150255
PARD3B	205291604	G/A	intron	c.2186-8926G>A	_	rs574128236
PARD3B	205403388	C/T	intron	c.2741+2265C>T	_	rs959585731
PARD3B	205423144	A/G	intron	c.2741+22021A>G	_	-
PARD3B	205426263	A/G	intron	c.2741+25140A>G	_	rs565448402
PARD3B	205489711	A/G	intron	c.2742-10185A>G		-
PARD3B	205496858	C/G	intron	c.2742-3038C>G	_	-
PARD3B	205507206	ΠΠΠΠ Π/-	intron	c.2877+7192_2877 +7201del	_	rs71410819
PARD3B	205509529	C/T	intron	c.2877+9498C>T		rs546012821

A 3.1 Rare gene variants identified at the 2q33-q36 locus (SCT135 family)

PARD3B	205557745	-/T	intron	c.2957+4349dup	_	rs535255748
ACSL3	222928665	-/AAAAC	intron	c.1466-194_1466- 193insACAAA	_	rs1320841235
SLC4A3	219627530	CGG/-	upstream	_	_	rs1184272855
NRP2	205734187	T/C	intron	c.1146+6141T>C	_	rs375677863
NRP2	205770813	T/A	intron	c.2425+4010T>A	_	-
NRP2	205772253	G/A	intron	c.2425+5450G>A	_	-
MOB4	197545689	T/C	intron	c.259-2647T>C	_	rs546609847
MOB4	197552917	C/-	3' UTR	c.*2271del	_	rs1459274442
ASIC4	219530229	G/-	intron	c.964-1524del	_	rs562663240
CTDSP1	218401413	G/A	intron	c.68-151G>A	_	rs1412406093
UNC80	209826987	-/ATCT	intron	c.2463+965_2463+ 968dup	_	rs567993337
UNC80	209887016	C/G	intron	c.4102-1079C>G	_	rs560422875
UNC80	209950605	C/G	intron	c.7074-3495C>G	_	-
РАХЗ	222209724	АААААА АААААА АААААА АААААА ААААА/-	intron	c.1174-8282_1174- 8255del	-	rs546468709
PAX3	222255297	T/C	intron	c.587-23014A>G	_	rs865854385
PAX3	222264004	C/T	intron	c.586+30163G>A	_	rs182522407
PAX3	222302941	GT/-	upstream		_	-
РАХЗ	222303511	G/A	upstream		_	-
DAW1	227882442	C/T	intron	c.41-2909C>T	_	rs542200987
DAW1	227917146	TCTG/"TC TGTCTG" ""	intron	-	_	-
CYP20A1	203297084	T/C	3' UTR	c.*176T>C	_	-
FBXO36	229927472	A/G	intron	c.96+4863A>G	_	rs536688627
FBXO36	229929700	T/C	intron	c.96+7091T>C	_	rs532069168
FBXO36	229980794	G/A	intron	c.205+4445G>A	_	-
FBXO36	229995901	Т/-	intron	c.206-839del	_	rs1212028671
FAM126B	201053181	G/A	intron	c128-7588C>T	_	rs533715460
FAM126B	201075182	AAA/-	upstream		_	rs752371143
FAM117B	202658562	A/G	intron	c.601+22774A>G	_	rs531701685
FAM117B	202665186	-/T	intron	c.601+29411dup	_	rs1052100943
FAM117B	202715553	C/G	intron	c.754-9364C>G	_	-
FAM117B	202724054	TTT/-	intron	c.754-844_754- 842del	_	-
ABCA12	215012302	G/A	intron	c.1957-167C>T	_	rs917286812
ABCA12		T/G	intron	c.1180+111A>C		rs987081478
	215026709	1/0				
ABCA12	215026709 215055746	T/C	intron	c.318-1082A>G	_	-
ABCA12 ABCA12	215026709 215055746 215103150	T/C T/G	intron intron	c.318-1082A>G c.163+8447A>C	_	-
ABCA12 ABCA12 ABCA12	215026709 215055746 215103150 215103782	T/C T/G GTTTA/-	intron intron intron	c.318-1082A>G c.163+8447A>C c.163+7815_163+7 819del		- - rs1006208950
ABCA12 ABCA12 ABCA12 ABCA12 ANKRD44	215026709 215055746 215103150 215103782 197098319	T/C T/G GTTTA/- C/T	intron intron intron downstream	c.318-1082A>G c.163+8447A>C c.163+7815_163+7 819del -	-	- - rs1006208950 -

ARPC2	218226922	TTCA/-	intron	c.109+966_109+96 9del	_	-
PIKFYVE	208292594	T/C	intron	c.620+3776T>C	_	rs768362084
PIKFYVE	208296014	т/-	intron	c.621-2616del	_	rs996291100
PIKFYVE	208306160	G/C	downstream	_	_	rs181223471
SLC16A14	230033225	C/T	downstream	_	_	rs577681437
SLC16A14	230058028	-/A	intron	c.259+1065dup	_	rs35641768
C2CD6	201552267	G/T	intron	c.978-4657C>A	_	rs550587835
C2CD6	201604015	T/G	intron	c.318+596A>C	_	rs527710406
SGO2	200549392	A/T	intron	c.473+6728A>T	_	rs540874338
SGO2	200589016	A/C	downstream	_	_	rs550101234
CCNYL1	207752035	-/A	intron	c.759+928dup	_	rs999012414
KANSL1L	210062044	T/C	intron	c.1755+13508A>G	_	rs576559715
KANSL1L	210109023	G/A	intron	c.1231-4722C>T	_	rs532648832
KANSL1L	210115533	C/T	intron	c.1231-11232G>A	_	-
KANSL1L	210118642	Т/-	intron	c.1230+10389del	_	-
KANSL1L	210130349	T/C	intron	c.1089-1177A>G	_	rs547296260
TMEM237	201626436	T/C	intron	c.1014-289A>G	_	rs533285967
KCTD18	200497641	T/C	intron	c.661+112A>G	_	rs548684633
KCTD18	200500513	A/G	intron	c.373-1429T>C	_	rs531743722
KCTD18	200501760	C/T	intron	c.373-2676G>A	_	-
KCTD18	200509966	T/C	5' UTR	c414A>G	_	-
KCTD18	200509973	C/G	5' UTR	c421G>C	_	-
KCTD18	200513132	G/C	upstream	_	_	-
KCTD18	200513133	G/C	upstream	_	_	-
KCTD18	200513134	G/C	upstream	_	_	-
SGPP2	222443411	C/T	intron	c.219+18590C>T	_	-
SGPP2	222482881	G/A	intron	c.378+8155G>A	_	rs867019125
SGPP2	222519762	T/G	intron	c.379-2005T>G	_	rs1281731079
SGPP2	222549841	G/A	intron	c.649-8506G>A	_	rs1163832157
METTL21A	207624749	A/C	intron	c30+93T>G	_	rs539918048
RFTN2	197588600	G/-	intron	c.1233+7391del	_	-
RFTN2	197620188	A/-	intron	c.929-2267del	_	rs1159201273
RFTN2	197622644	C/G	intron	c.929-4723G>C	_	-
RFTN2	197638863	T/C	intron	c.439-4866A>G	_	rs566193361
RFTN2	197679446	A/-	upstream	_	_	rs1171961772
CDK15	201848573	C/T	intron	c.792+1099C>T	_	rs533741825
CDK15	201881497	C/A	intron	c.1045+1330C>A	_	rs538745850
CDK15	201885224	G/A	intron	c.1045+5057G>A	_	rs1264600139
DNER	229468823	G/C	intron	c.1261+8317C>G	_	-
DNER	229544777	G/A	intron	c.993+2170C>T		rs1009673106
DNER	229544778	C/A	intron	c.993+2169G>T	_	-
DNER	229576148	T/C	intron	c.847+9710A>G	_	rs746745413
DNER	229649476	т/с	intron	c.277-57588A>G		rs562909102
DNER	229652796	G/A	intron	c.277-60908C>T		-

DNER	229709066	G/A	intron	c.276+5082C>T	_	rs564475129
ICA1L	202806646	-/A	intron	c.910+5099dup	_	rs796219614
CREB1	207587468	C/T	intron	c.882-9446C>T	_	-
PPIL3	200873195	-/T	intron	c.360-1675dup	_	rs533187117
PPIL3	200875561	C/T	intron	c.359+1358G>A	_	rs545932195
MYL1	210305968	G/A	upstream	_	_	rs571094159
MYL1	210305968	G/A	intron	c.133-3453C>T	_	rs571094159
MYL1	210310809	C/T	intron	c.132+4102G>A	_	rs559871087
MOGAT1	222670969	C/T	upstream	_	_	rs563785930
CASP8	201232360	C/G	upstream	_	_	rs570559698
MPP4	201665067	ππ/-	intron	c.1052-966_1052- 963del	_	-
CASP10	201189785	C/A	intron	c.441+1986C>A	_	rs559545059
CASP10	201232360	C/G	downstream		_	rs570559698
RHBDD1	226883510	G/A	intron	c.566+16192G>A	_	rs571084977
RHBDD1	226902323	A/G	intron	c.567-4470A>G	_	rs991870599
RHBDD1	226942243	ττ/-	intron	c.856+27904_856+ 27905del	_	rs11449035
RHBDD1	226950718	G/A	intron	c.856+36367G>A	_	rs530279674
RHBDD1	226981435	-/A	intron	c.857-13982dup	_	rs201620422
ЅҎҤҜѦҎ	227975202	T/C	downstream		_	rs546399230
ЅРНКАР	228005459	G/T	intron	c.4449-9765C>A	_	rs570041801
ЅҎНКАР	228043912	G/A	intron	c.247-16369C>T	_	rs536127499
ЅҎНКАР	228090287	C/T	intron	c.246+18545G>A	_	rs539288434
ЅҎНКАР	228174303	-/T	intron	c.32+7263dup	_	rs76289406
ЅҎҤҜѦҎ	228181663	G/C	upstream	-	_	rs547462934
SLC19A3	227679225	G/T	downstream	-	_	rs184431804
SLC19A3	227708874	C/T	intron	c2-6554G>A	_	rs563376551
SLC19A3	227713316	C/T	intron	c3+4627G>A	_	rs531711796
WNT10A	218876530	T/G	upstream		_	rs1043802370
PGAP1	196834398	G/C	3' UTR	c.*6836C>G	_	rs567059943
TM4SF20	227357595	C/T	downstream		_	-
NHEJ1	219102710	-/A	intron	c.589-24505dup	_	rs879703835
NHEJ1	219103038	A/C	intron	c.589-24832T>G	_	-
NHEJ1	219150787	C/G	intron	c.391-2992G>C	_	rs538334205
CARF	202953692	G/A	intron	c.428-313G>A	_	-
SPAG16	213342378	TA/-	intron	c.644+2119_644+2 120del	_	rs562141851
SPAG16	213346065	G/A	intron	c.645-4463G>A	_	-
SPAG16	213442715	G/A	intron	c.943-47248G>A	_	rs72939102
SPAG16	213492949	TC/-	intron	c.1070+2870_1070 +2871del	_	rs372933104
SPAG16	213520088	AG/-	intron	c.1070+30018_107 0+30019del	_	rs35798649
SPAG16	213579512	A/G	intron	c.1070+89422A>G	_	-
SPAG16	213584809	T/C	intron	c.1070+94719T>C	_	rs902766004

SPAG16	213588524	C/T	intron	c.1070+98434C>T	_	-
SPAG16	213605268	-/T	intron	c.1070+115194dup	_	rs34856658
SPAG16	213619694	C/T	intron	c.1070+129604C>T	_	-
SPAG16	213688048	A/G	intron	c.1071-174437A>G	_	-
SPAG16	213696990	GGAG/-	intron	c.1071- 165497_1071- 165494del	_	-
SPAG16	213839809	C/T	intron	c.1071-22676C>T	_	rs1032461064
SPAG16	213841883	C/A	intron	c.1071-20602C>A	_	-
SPAG16	213843600	C/T	intron	c.1071-18885C>T	_	rs576334834
SPAG16	213874861	G/C	intron	c.1214+12233G>C	_	rs1033740987
SPAG16	213916622	C/G	intron	c.1215-13338C>G	_	-
SPAG16	213936481	G/-	intron	c.1400+6336del	_	-
SPAG16	213962753	A/C	intron	c.1400+32608A>C	_	-
SPAG16	213966000	T/A	intron	c.1400+35855T>A	_	rs963945712
SPAG16	214059260	-/TGTA	intron	c.1527+45184_152 7+45185insGTAT	_	rs1553706252
SPAG16	214065561	-/T	intron	c.1528-42633dup	_	rs528752885
SPAG16	214076920	A/C	intron	c.1528-31276A>C	_	rs1434566396
SPAG16	214176810	TG/-	intron	c.1720+27558_172 0+27559del	_	rs141462328
SPAG16	214189081	T/C	intron	c.1720+39815T>C	_	rs369511287
SPAG16	214194228	G/C	intron	c.1720+44962G>C	_	rs376546548
SPAG16	214298175	ATACACA CACACAC ACAC/"A CACACAC ACACAC" ""	intron	-	_	-
SPAG16	214321663	C/A	intron	c.1721-88477C>A	_	rs868085594
SPAG16	214355292	A/C	intron	c.1721-54848A>C	_	-
SPAG16	214380529	A/G	intron	c.1721-29611A>G	_	-
SPAG16	214390754	G/A	intron	c.1721-19386G>A	_	rs533549464
SPAG16	214394274	G/A	intron	c.1721-15866G>A	_	rs898822006
TNS1	217855558	TC/-	intron	c.1055-6471_1055- 6470del	_	rs3838562
TNS1	217870346	A/C	intron	c.1054+10552T>G	_	rs570160788
TNS1	217890215	A/G	intron	c.491+747T>C	_	-
TNS1	217893400	- /CGCGCA	intron	c.342+38_342+39in sTGCGCG	_	rs58297965
PNKD	218347215	-/A	downstream		_	rs954482127
RNF25	218671266	-/T	intron	c.41+663dup		rs35556340
TMBIM1	218295333	A/T	upstream		_	rs541151171
XRCC5	216136357	A/-	intron	c.1114-717del	-	rs767749732
EEF1B2	206157963	-/TTCT	upstream		-	rs539046435
USP37	218458275	-/AC	intron	c.2644-1116_2644- 1115dup	_	-
USP37	218505608	G/T	intron	c.1025+4371C>A	_	-

ALS2	201747462	-/T	intron	c.1816-715dup	_	rs35304479
NYAP2	225446216	- /TCTGTC TCTCTC	intron	c.221+37118_221+ 37119insGTCTCTCT CTCT	_	rs1422980177
NYAP2	225655937	ACATACA CACAT/-	downstream	_	-	rs1245298448
4-Mar	216348069	C/T	intron	c.516+21676G>A	_	rs796100931
4-Mar	216371874	-/G	5' UTR	c1615dup	_	-
HECW2	196226395	A/G	intron	c.3918-525T>C	_	rs574670136
HECW2	196381227	T/C	intron	c.293-37463A>G	_	rs1186968513
HECW2	196401901	G/A	intron	c.292+31231C>T	_	rs577326564
HECW2	196439030	C/T	intron	c35-5572G>A	_	rs948169563
HECW2	196573870	-/A	intron	c36+18593dup	_	rs1052835076
MFF	227324771	T/C	upstream		_	rs375972413
MFF	227328321	AAAAAC/ -	intron	c252-362252- 357del	_	rs1182644669
MFF	227357595	C/T	3' UTR	c.*478C>T	_	-
C2orf83	227610047	- /AAAAAA AAAAAA AAAAAA AAAAAA AAA	downstream	_	_	-
DNAH7	195756076	C/T	intron	c.11586+57G>A	_	rs747717290
DNAH7	195768464	G/A	intron	c.11433+3196C>T	_	-
DNAH7	195889961	T/C	intron	c.5047-980A>G	_	rs531106848
DNAH7	195915714	T/C	intron	c.3936-5519A>G	_	-
DNAH7	196031306	C/T	intron	c.399-3259G>A	_	rs533983080
PECR	216051281	-/A	intron	c.603+167dup	_	rs147574036
PECR	216056519	G/A	intron	c.506+2376C>T	_	rs1018250395
PECR	216056524	C/T	intron	c.506+2371G>A	_	-
MREG	215944002	C/A	3' UTR	c.*861G>T	_	-
PID1	229089964	T/C	intron	c.271-63856A>G	_	-
PID1	229115835	C/G	intron	c.270+39983G>C	_	rs558364146
PID1	229124677	-/A	intron	c.270+31140dup	_	rs938961830
PID1	229148050	C/T	intron	c.270+7768G>A	_	rs532416011
PID1	229153991	A/G	intron	c.270+1827T>C	_	-
PID1	229203168	C/T	intron	c.124-47204G>A	_	-
PID1	229209754	A/T	intron	c.123+52929T>A	_	-
PID1	229217258	A/C	intron	c.123+45425T>G	_	-
PID1	229228062	T/C	intron	c.123+34621A>G	_	rs781045636
PID1	229254165	C/G	intron	c.123+8518G>C	_	COSV6742684 1
PID1	229267929	A/-	intron	c89+3085del	_	rs965881707
PID1	229269576	C/T	intron	c89+1438G>A	_	-
INO80D	205989595	C/T	downstream		_	rs562399034
INO80D	206010064	AC/-	intron	c.1543-270_1543- 269del	_	rs144790541

INO80D	206046771	A/-	intron	c.965-159del	_	-
INO80D	206046775	A/G	intron	c.965-163T>C	_	-
IKZF2	213107335	G/A	intron	c.139+40373C>T	_	-
IKZF2	213119875	T/C	intron	c.139+27833A>G	_	rs900728913
NOP58	202277122	C/T	intron	c.123-828C>T	_	rs1434511508
NOP58	202285102	C/T	intron	c.434+621C>T	_	rs867305301
STK36	218671266	-/T	upstream	_	_	rs35556340
SPATS2L	200301105	G/A	upstream	_	_	-
SPATS2L	200308628	ACAC/-	intron	c73+2480 73+2483del	_	-
SPATS2L	200344384	C/T	intron	c23+14904C>T	_	rs530409983
SPATS2L	200344520	C/T	intron	c23+15040C>T	_	rs367817593
SPATS2L	200390868	A/C	intron	c.39+1585A>C	_	rs578231219
SPATS2L	200407046	C/A	intron	c.40-5265C>A	_	-
SPATS2L	200474104	Т/-	intron	c.1281+1063del	_	rs559587714
PNKD	218295333	A/T	intron	c.236+23784A>T	_	rs541151171
PNKD	218303577	ттт/-	intron	c.236+32044_236+ 32046del	_	rs59067154
PNKD	218315038	- /TCTTTCT TTCTTTC TTTCTTT CTTTCTT TC	intron	c.237-24744_237- 24743insCTTTCTTT CTTTCTTTCTTTCTTT CTTTCT	_	-
OBSL1	219551155	G/A	intron	c.5684-313C>T	_	rs1165309466
SATB2	199338398	т/с	intron	c.1174-9488A>G	_	rs550820581
SATB2	199366062	C/T	intron	c.700+2543G>A	_	rs562615265
SATB2	199395088	-/T	intron	c.347-13269dup	_	rs548201582
SATB2	199403409	G/A	intron	c.347-21589C>T	_	rs1559033419
SATB2	199437675	T/C	intron	c.170-4161A>G	_	rs1013512106
SATB2	199446469	G/A	intron	c.169+9400C>T	_	-
SATB2	199461522	-/A	intron	c140-991dup	_	rs751358455
SATB2	199466944	T/C	intron	c141+4070A>G	_	rs539141538
TRAK2	201403793	T/C	intron	c.287-2699A>G	_	-
TRAK2	201404547	T/C	intron	c.286+2856A>G	_	rs556781523
PIKFYVE	208306160	G/C	intron	c.1636+1147G>C	_	rs181223471
PIKFYVE	208314367	C/T	synonymous	c.1770C>T	p.Asn590%3D	rs61752185
PIKFYVE	208322158	T/C	intron	c.2190+1799T>C	_	-
PIKFYVE	208336395	T/C	intron	c.4520+195T>C	_	rs140875159
PIKFYVE	208353406	C/T	intron	c.5845-492C>T	_	rs190726596
FASTKD2	206766380	G/A	intron	c50-264G>A	_	-
FASTKD2	206770731	AA/-	intron	c.882-436_882- 435del	_	rs549037266
DOCK10	224770741	C/T	intron	c.6205-96G>A	_	-
DOCK10	225001197	T/C	intron	c.123+41055A>G	_	rs547264930
DOCK10	225012881	A/T	intron	c.123+29371T>A	_	rs1398096086
DOCK10	225014090	T/A	intron	c.123+28162A>T	_	rs796399862

DOCK10	225019623	G/A	intron	c.123+22629C>T	_	rs1357877146
DOCK10	225023040	-/T	intron	c.123+19211dup	_	rs879839691
BZW1	200807620	G/C	upstream		_	-
BZW1	200823713	-/A	3' UTR	c.*1538dup	_	rs1199092908
SMARCAL1	216437785	-/TATA	intron	c.1645-623_1645- 620dup	_	rs3836032
SMARCAL1	216473366	т/-	intron	c.2245-1890del	_	rs74269760
SF3B1	197395632	T/G	intron	c.3539+424A>C	_	rs756320802
SF3B1	197431451	A/C	intron	c.28+3521T>G	_	-
DNPEP	219382864	G/A	intron	c.936+267C>T	_	rs1015924721
ICOS	203965940	G/A	downstream	_	_	rs537126499
ICOS	203965957	C/G	downstream	_	_	rs932105844
ICOS	203965961	A/G	downstream	_	_	rs1200900961
ICOS	203965962	G/A	downstream	_	_	-
ICOS	203965968	C/T	downstream	-	_	-
ICOS	203965969	C/G	downstream	-	_	-
ICOS	203965989	A/G	downstream	_	_	rs950737459
VIL1	218458275	-/AC	downstream	_	_	-
WNT6	218876530	T/G	downstream	_	_	rs1043802370
PLCL1	197868706	т/-	intron	c.240+63377del	_	rs959622220
PLCL1	197958156	A/G	intron	c.241-125602A>G	_	rs568219403
PLCL1	197973461	C/T	intron	c.241-110297C>T	_	-
PLCL1	197985209	A/T	intron	c.241-98549A>T	_	-
PLCL1	198041026	G/A	intron	c.241-42732G>A	_	rs561236256
PLCL1	198043568	A/G	intron	c.241-40190A>G	_	rs1331849303
PLCL1	198113766	C/A	intron	c.3105+9830C>A	_	rs527854471
CD28	203743063	-/T	downstream		_	rs761945786
LANCL1	210465855	G/C	intron	c.199+6104C>G	_	rs778234896
TUBA4A	219257649	AAAAAA AA/-	upstream	_	_	rs1158116997
SPEG	219446378	C/T	intron	c.815+1217C>T	_	-
ABI2	203392292	A/C	intron	c.560+1149A>C	_	-
ABI2	203392295	A/C	intron	c.560+1152A>C	-	-
ABI2	203392298	A/C	intron	c.560+1155A>C	_	-
ABI2	203392326	CAACAAC AACAA/-	intron	c.560+1190_560+1 201del	_	rs150870167
ABI2	203430502	G/A	3' UTR	c.*3150G>A	_	rs993751252
FARSB	222569954	C/G	3' UTR	c.*1917G>C	_	-
FARSB	222610976	A/C	intron	c.1462+2835T>G	_	-
FARSB	222632840	-/A	intron	c.715+358dup	_	rs780438070
CNOT9	218600828	AA/-	downstream		_	-
GPR1	206175509	A/C	3' UTR	c.*671T>G	_	rs536364692
GPR1	206179377	ттт/-	intron	c28-210228- 2100del	-	-
GPR1	206220145	A/T	upstream		_	-
GPR1	206220158	G/T	upstream	_	_	-

		-		c.3135+7135_3135		
ERBB4	211413305	/AAAAAA AAAAA	intron	+7136insTTTTTTTT TTT	_	rs768289370
ERBB4	211415146	T/C	intron	c.3135+5295A>G	_	rs546521707
ERBB4	211510447	G/A	intron	c.2487+51456C>T	_	rs1385389801
ERBB4	211511993	T/G	intron	c.2487+49910A>C	_	-
ERBB4	211512957	T/C	intron	c.2487+48946A>G	_	rs1011933747
ERBB4	211514852	G/C	intron	c.2487+47051C>G	_	-
ERBB4	211538319	C/T	intron	c.2487+23584G>A	_	rs537421077
ERBB4	211632631	TTG/-	intron	c.1947-2037_1947- 2035del	_	rs911282360
ERBB4	211635752	G/T	intron	c.1947-5158C>A	_	-
ERBB4	211698322	A/T	intron	c.1489+3645T>A	_	rs879628859
ERBB4	211957031	T/C	intron	c.235-9415A>G	_	rs538643805
ERBB4	212065032	GTGTGTT GTG/-	intron	c.234+59720_234+ 59729del	_	rs1350369666
ERBB4	212116272	TATATTA GATTGAT AAATACT AGTCTAT T/-	intron	c.234+8480_234+8 508del	-	rs1219355699
ERBB4	212192047	- /GTTATA TGTTATA TATGTTA TATGTTA TATGTTA TATGTTA TATGTTA TATATGT TATATGT TATATGT TATATGT TATAA	intron	c.83-67145_83- 67144insTTATAACA TATAATATATAACA TATATAACATATAA CATATAACATATAA CATATAACATATAA CATATAAACATATAA CATATATAACATAT AAC	_	-
ERBB4	212211629	-/AAACC	intron	c.83-86727_83- 86726insGGTTT	-	rs148929858
ERBB4	212264710	T/G	intron	c.83-139807A>C	-	rs373721395
ERBB4	212265829	C/G	intron	c.83-140926G>C	_	rs547430478
ERBB4	212327728	тттттс/ -	intron	c.83-202825_83- 202819del	_	rs1376674292
ERBB4	212329240	-/A	intron	c.83-204338dup	_	rs963480896
ERBB4	212394394	C/T	intron	c.82+144055G>A	_	-
PTH2R	208419957	A/-	intron	c.76-8239del	_	rs1418612034
PTH2R	208447365	G/A	intron	c.853+2478G>A	_	-
NDUFS1	206110067	T/C	downstream		_	-
NDUFS1	206125472	AC/-	intron	c.2092+1067_2092 +1068del	_	rs373368439
NDUFS1	206157963	-/ТТСТ	intron	c5+1377 5+1378insAGAA	_	rs539046435
AGFG1	227502182	A/G	intron	c.261+10542A>G	-	-

AGFG1	227507602	- /AAAAAA AA	intron	c.262-12329_262- 12322dup	-	-
EPHA4	221545467	-/C	intron	c.823+18263_823+ 18264insG		rs1440429863
EPHA4	221545468	T/A	intron	c.823+18263A>T		rs2680855
EPHA4	221566951	-/AGAG	intron	c.159+1766_159+1 767insCTCT		-
TRIP12	229767930	C/T	intron	c.5783-180G>A		rs543800792
TRIP12	229857877	G/A	intron	c.901+895C>T	_	rs550103015
TRIP12	229878297	G/A	intron	c.98+1685C>T	_	-
TRIP12	229878307	A/G	intron	c.98+1675T>C	_	-
TRIP12	229878314	A/G	intron	c.98+1668T>C	_	-
TRIP12	229878320	-/GG	intron	c.98+1661_98+166 2insCC	_	-
TRIP12	229878328	A/T	intron	c.98+1654T>A	_	-
TRIP12	229878330	A/G	intron	c.98+1652T>C	_	-
STK17B	196157793	G/A	intron	c.123-1142C>T	_	rs545812634
STK17B	196161144	G/C	intron	c.122+2118C>G	_	rs554913101
STK17B	196164877	A/T	intron	c44-1450T>A	_	rs563427446
CLK1	200852191	Т/-	downstream		_	rs34007574
ATIC	215336737	A/G	intron	c.1098+613A>G	_	rs1186194306
ATIC	215338653	A/-	intron	c.1099-123del	_	rs532282971
ADAM23	206457427	A/T	intron	c.432+11903A>T	_	-
ADAM23	206466589	C/T	intron	c.433-14643C>T	_	rs910071009
ADAM23	206523233	G/C	intron	c.510-7652G>C	_	rs1043631215
ADAM23	206556043	C/T	intron	c.934-1384C>T	_	-
ADAM23	206608566	ATT/-	intron	c.2360-1328_2360- 1326del	_	rs545632632
KLF7	207078821	C/A	3' UTR	c.*2392G>T	_	rs540095240
KLF7	207081984	C/T	intron	c.858-720G>A	_	rs564244373
KLF7	207126811	AA/-	intron	c.103-2407_103- 2406del	_	rs35099385
CUL3	224476437	G/A	intron	c.2175+1763C>T	_	rs567463315
CUL3	224479626	G/A	intron	c.2030-1281C>T	_	-
CUL3	224511266	A/G	intron	c.883+88T>C	_	rs188803950
CUL3	224526808	C/T	intron	c.378+8720G>A	_	-
CUL3	224585358	G/C	5' UTR	c349C>G	_	rs1020886904
SUMO1	202211967	-/A	intron	c.166-1162dup	_	rs1157149339
NDUFB3	201075182	AAA/-	intron	c3+3134 3+3136del	_	rs752371143
NDUFB3	201085924	-/T	downstream		_	rs879723391
DES	219420899	A/T	missense	c.969A>T	p.Glu323Asp	-
CPS1	210575641	A/G	intron	c.237-705A>G	_	rs957479748
CPS1	210645644	G/A	intron	c.3142-2219G>A		rs887005019
ACADL	210192812	т/с	synonymous	c.1191A>G	p.Pro397%3D	rs544440334
MREG	216030730	т/-	intron	c68+2953del		rs71047960

SLC19A3	227708874	C/T	upstream	_	_	rs563376551
NYAP2	225655937	ACATACA CACAT/-	intron	c.1932+4394_1932 +4405del	_	rs1245298448
NYAP2	225681946	G/A	intron	c.1933-16371G>A	_	rs954124071
KIAA2012	202114952	G/A	intron	c.1759+1506G>A	_	-
KIAA2012	202120549	C/T	intron	c.1760-4665C>T	_	rs563098661
KIAA2012	202141117	T/A	intron	c.1905+2609T>A	_	rs569758981
KIAA2012	202185846	C/T	intron	c.2207+1003C>T	_	-
KIAA2012	202199922	Π/-	intron	c.3405-2481_3405- 2480del	_	rs71025287
ANKRD44	196995812	A/G	intron	c.2749-351T>C	_	rs528804910
ANKRD44	197028379	C/T	intron	c.1651-3112G>A	_	rs1290966101
ANKRD44	197098319	C/T	intron	c.1100+1497G>A	_	-
MAP2	209570865	G/A	intron	c171-9171G>A	_	rs1267688410
FTCDNL1	199824664	G/A	intron	c.212-4907C>T	_	rs558259520
TUBA4B	219257649	AAAAAA AA/-	intron	c.12+4240_12+424 7del	_	rs1158116997
TUBA4B	219259106	C/G	intron	c.12+5687C>G	_	rs553998533
TUBA4B	219259124	- /AATAAA TA	intron	c.12+5745_12+575 2dup	_	rs58291199
TUBA4B	219262685	-/T	intron	c.13-3825dup	_	rs993144498
CCDC150	196737344	C/A	downstream		_	-
CCDC150	196693586	G/A	intron	c.514-1460G>A	_	rs553964936
FTCDNL1	199780630	C/T	intron	c.212-19795G>A	_	rs1336697362
TRIP12	229927472	A/G	upstream		_	rs536688627
VWC2L	214505634	T/C	intron	c.391-70038T>C	_	rs529240222
VWC2L	214543140	A/T	intron	c.391-32532A>T	_	rs114741519
MDH1B	206758380	A/G	intron	c159-1009T>C	_	rs776766328
MDH1B	206766380	G/A	upstream		_	-
PID1	229228062	T/C	splice region, 5' UTR	c118A>G	_	rs781045636
METTL21A	207587468	C/T	intron	c.260-5522G>A	_	-
KCTD18	200509966	T/C	intron	c681+45A>G	_	-
KCTD18	200509973	C/G	intron	c681+38G>C	_	-
DNPEP	219404068	C/T	upstream	_	_	rs528794126
EPHA4	221578799	C/T	upstream	-	_	-
TMEM198	219551155	G/A	downstream	-	_	rs1165309466
SPATS2L	200308628	ACAC/-	upstream	_	_	-
BARD1	214801901	C/T	intron	c.159-4784G>A	_	rs941133188
TUBA4A	219259106	C/G	upstream		_	rs553998533
TUBA4A	219259124	- /AATAAA TA	upstream	-	-	rs58291199
MFF	227328321	AAAAAC/ -	upstream	-	_	rs1182644669
BMPR2	202410897	A/G	intron	c.76+33347A>G	-	rs528082988
BMPR2	202424376	-/A	intron	c.77-40420dup	_	rs55785585

BMPR2	202430953	-/T	intron	c.77-33855dup	_	rs1248490113
BMPR2	202470773	AAA/-	intron	c.418+3098_418+3 100del	_	-
BMPR2	202502383	AGAC/-	intron	c.419-11336_419- 11333del	_	rs895918851
BMPR2	202561288	т/-	3' UTR	c.*1346del	_	rs1267490196
HSPE1- MOB4	197545689	T/C	intron	c.463-2647T>C	-	rs546609847
HSPE1- MOB4	197552917	C/-	3' UTR	c.*2271del	-	rs1459274442
OBSL1	219551155	G/A	downstream	_	_	rs1165309466
SATB2	199466944	T/C	upstream	-	_	rs539141538
SATB2	199461522	-/A	upstream	-	_	rs751358455
AOX1	200589016	A/C	intron	c.45+2863A>C	_	rs550101234
AOX1	200623149	GAGA/-	intron	c.2002-711_2002- 708del	_	rs1371086457
AOX1	200675003	C/T	downstream		_	-
SPHKAP	228181663	G/C	5' UTR	c65C>G	_	rs547462934
NBEAL1	203034161	TT/-	intron	c.52-7590_52- 7589del	_	rs1166429847
NBEAL1	203063286	-/A	intron	c.516-5095dup	_	rs1014461622
NBEAL1	203188894	C/T	intron	c.6736+305C>T	_	rs376059753
NBEAL1	203191320	A/-	intron	c.6834+946del	_	rs200659518
C2orf80	208176926	C/T	intron	c.366+3819G>A	_	rs1369897624
C2orf80	208176928	T/C	intron	c.366+3817A>G	_	rs112610733
C2orf80	208186788	A/G	intron	c.41+158T>C	_	rs548221565
DYTN	206672262	C/A	intron	c.981-6233G>T	_	rs544480461
DYTN	206714944	-/T	intron	c.19+3316dup	_	rs373615386
PLEKHM3	207858013	TATTT/-	intron	c.2108+3092_2108 +3096del	_	rs577314868
PLEKHM3	207861771	-/A	intron	c.1951-510dup	_	rs548566889
PLEKHM3	207865650	TGT/-	intron	c.1951-4388_1951- 4386del	_	-
PLEKHM3	207866360	T/C	intron	c.1951-5098A>G	_	rs762602890
PLEKHM3	207906305	C/T	intron	c.1950+2209G>A	_	rs76792136
PLEKHM3	207918797	G/T	intron	c.1887-10220C>A	_	rs79954436
PLEKHM3	207921035	C/T	intron	c.1886+9891G>A	_	rs115965627
PLEKHM3	207929452	T/C	intron	c.1886+1474A>G	_	rs75773720
PLEKHM3	207945669	G/C	intron	c.1692+698C>G	_	-
PLEKHM3	208029591	C/T	upstream		_	rs116698317
TYW5	199941268	T/C	intron	c.304-1135A>G	_	-
TYW5	199943135	C/T	intron	c.303+630G>A	_	rs543434169
CYP27A1	218807149	С/Т	intron	c.256-2428C>T		rs976474940
CXCR1	218158726	T/C	downstream	-		rs552515431
SLC11A1	218401413	G/A	downstream	_		rs1412406093
COL4A4	227013564	A/T	intron	c.4217-1267T>A	_	rs566858863
COL4A4	227051629	т/с	intron	c.2969-471A>G		rs561425659
COL4A4	227110718	T/C	intron	c.594+960A>G	-	rs1008510680

COL4A4	227156483	G/A	intron	c102+7524C>T	_	rs552648978
COL4A3	227190998	тст/-	intron	c.87+26189_87+26 191del	-	-
COL4A3	227223565	C/G	intron	c.88-14403C>G	_	-
TNS1	217957826	G/T	intron	c.111+20939C>A	_	-
TNS1	217957831	G/T	intron	c.111+20934C>A	_	-
TNS1	217966321	-/CA	intron	c.111+12443_111+ 12444insTG	-	rs1163661293
TNS1	218009624	C/T	intron	c.157-18568G>A	_	rs531800696
TNS1	218021124	C/T	intron	c.156+12696G>A	_	rs561786150
SCYGR3	227610047	- /AAAAAA AAAAAA AAAAAA AAAAAA AAA	downstream	-	-	-
BMPR2	202561288	т/-	downstream		_	rs1267490196
CCDC195	224709233	C/A	intron	c.482+740G>T	_	-
MREG	215944002	C/A	intron	c.*752+109G>T	_	-
STK17B	196157793	G/A	upstream	_	_	rs545812634
STK17B	196161144	G/C	upstream	_	_	rs554913101
HSPE1- MOB4	197552917	C/-	downstream	-	-	rs1459274442
DOCK10	224770741	C/T	downstream	_	_	-
MFF	227357595	C/T	downstream	-	-	-
DNPEP	219382864	G/A	downstream	-	_	rs1015924721
GPR1	206175509	A/C	downstream	_	_	rs536364692
KLF7	207078821	C/A	downstream	_	_	rs540095240
STRADB	201403793	T/C	intron	c.28+15718T>C	_	-
STRADB	201404547	T/C	intron	c.28+16472T>C	_	rs556781523
RAPH1	203392292	A/C	downstream	_	_	-
RAPH1	203392295	A/C	downstream	_	_	-
RAPH1	203392298	A/C	downstream	_	_	-
RAPH1	203392326	CAACAAC AACAA/-	downstream	_	-	rs150870167
RAPH1	203430502	G/A	intron	c.1776+14366C>T	_	rs993751252
AGFG1	227507602	- /AAAAAA AA	upstream	_	-	-
RFTN2	197620188	A/-	upstream	_	_	rs1159201273
RFTN2	197622644	C/G	upstream	_	_	-
ABI2	203430502	G/A	downstream	_	_	rs993751252
TNS1	217890215	A/G	upstream	_	_	-
BZW1	200823713	-/A	downstream		_	rs1199092908
PIKFYVE	208314367	C/T	synonymous	c.1602C>T	p.Asn534%3D	rs61752185
PIKFYVE	208336395	T/C	downstream	_	_	rs140875159
TNS1	217893400	- /CGCGCA	downstream	-	-	rs58297965
STK17B	196161144	G/C	downstream			rs554913101

METTL21A	207624749	A/C	upstream	_	_	rs539918048
MOB4	197552917	C/-	downstream	_	_	rs1459274442
RPL37A	216536326	T/A	intron	c.215+36295T>A	_	rs531431590
PPIL3	200873195	-/T	downstream	_	_	rs533187117
PPIL3	200875561	C/T	downstream	_	_	rs545932195
MREG	215944002	C/A	downstream	_	_	-
AOX1	200675003	C/T	intron	c.487-1875C>T	_	-
TNS1	217890215	A/G	downstream	_	_	-
SPATS2L	200390868	A/C	upstream	_	_	rs578231219
SLC16A14	230058028	-/A	downstream	_	_	rs35641768
CUL3	224511266	A/G	downstream	_	_	rs188803950
MAIP1	199976156	T/C	intron	c.627+16276T>C	_	rs555192058
TRIP12	229857877	G/A	downstream	_	_	rs550103015
CARF	202953692	G/A	downstream	_	_	-
SPATS2L	200390868	A/C	downstream	_	_	rs578231219
C2orf80	208186788	A/G	upstream	_	_	rs548221565
TUBA4A	219257649	AAAAAA AA/-	intron	c42-541942- 5412del	_	rs1158116997
TUBA4A	219259106	C/G	intron	c42-6876G>C	_	rs553998533
TUBA4A	219259124	- /AATAAA TA	intron	c42-690242- 6895dup	-	rs58291199
TUBA4A	219262685	-/T	intron	c42-10456dup	_	rs993144498
PGAP1	196834398	G/C	downstream	_	_	rs567059943
FASTKD2	206770731	AA/-	downstream	_	_	rs549037266
TRIP12	229767930	C/T	downstream	_	_	rs543800792
SGO2	200509966	T/C	upstream	_	_	-
SGO2	200509973	C/G	upstream	_	_	-
SGO2	200513132	G/C	intron	c120+2866G>C	_	-
SGO2	200513133	G/C	intron	c120+2867G>C	_	-
SGO2	200513134	G/C	intron	c120+2868G>C	_	-
CDK15	201792180	T/A	intron	c150+1520T>A	_	-
SPATS2L	200474104	Т/-	downstream	_	_	rs559587714
RHBDD1	226902323	A/G	upstream	_	_	rs991870599
SLC4A3	219627530	CGG/-	intron	c94+66 94+68del	_	rs1184272855
TNS1	217855558	TC/-	downstream	_	_	rs3838562
CCDC140	222302941	GT/-	intron	c157-803157- 802del	_	-
CCDC140	222303511	G/A	intron	c157-235G>A		-
MARCHF4	216348069	C/T	intron	c.516+21676G>A	_	rs796100931
MARCHF4	216371874	-/G	5' UTR	c1615dup	_	-

A 3.2 Primer pairs for the PCR- and Sanger-based sequencing experiments

SCT135 NGS variant primers		SCT135 NGS variant primers		
Name	Sequence (5'-3')	Name	Sequence (5'-3')	
ACADL-Ex10-F	ctggttttgaagcacctc	WDR69-3'UTR-R	gcactgggattacaggtgtg	
ACADL-Ex10-R	agattgcacacctcctttcc	MOB4-Ex6-F	gacacacacttgatggtgctg	
SLC19A3-Ex2-F	catgcaaaacccagcagag	MOB4-Ex6-R	agactgaactggccttgagc	
SLC19A3-Ex2-R	tgcttacctccaaaggttgc	ORC2-3'UTR-a-F	aaggaagaagaggaggcttg	
DNAH7-Ex44-F	ggtgggactgaggagaaaag	ORC2-3'UTR-a-R	aggagaaagctggatcactcac	
DNAH7-Ex44-R	acccatttgcacagaccttc	ORC2-3'UTR-b-F	ttttaacactccccgagctg	
STK16-Ex7-F	tgcagaaccaactcagcatc	ORC2-3'UTR-b-R	caacagtagccaaggtgagc	
STK16-Ex7-R	gatggaatgggtggtgattc	ORC2-3'UTR-c-F	ttgtctgtgccatgaccttc	
OBSL1-Ex5-F	tggtgttccacggttctg	ORC2-3'UTR-c-R	ggcctcccaaagtgttgtg	
OBSL1-Ex5-R	gcaggatgagtctgtgctg	WDR12-5'UTR-F	agtctactcaacctcgtcttgg	
COL4A4-Ex21-F	tctgccattgatcctctgtc	WDR12-5'UTR-R	cagaccacaaacatcgactacc	
COL4A4-Ex21-R	tgtcacctgctgtcgtgtaag	CYP20A1-5'UTR-a-F	gccatctcggctcactgtag	
CXCR2-Ex1-F	cctatcccagtttcttgagtgg	CYP20A1-5'UTR-a-R	gccagaggaaagagcaatgg	
CXCR2-Ex1-R	aggttcagcaggtagacatcag	CYP20A1-5'UTR-b-F	agtcgcgggcatattctg	
HECW2-Ex9-F	cgttatgggtgagggatgag	CYP20A1-5'UTR-b-R	cgctcaccggatagaggtag	
HECW2-Ex9-R	ggaatgggtctgcctgtc	FASTKD2-Ex7-F	gttccccagacagttcgtg	
SPATS2L-Ex4-F	ctccccagtggcaggataac	FASTKD2-Ex7-R	cctttccacagcaacacctg	
SPATS2L-Ex4-R	aacagcagccccaatgag	RPE-5'UTR-F	agtcaagagccgaggagagg	
CCNYL1-5'UTR-F	gggaactctgaccatgattg	RPE-5'UTR-R	ggagttacccgtccattacg	
CCNYL1-5'UTR-R	ccctctccgaaatccaactc	C2orf67-Ex8-F	gagtgaaacagcattaggtagg	
GPBAR1-5'UTR-I-F	ccgagctggagtagggaaac	C2orf67-Ex8-R	agggaacataggagggaaatac	
GPBAR1-5'UTR-I-R	ggctgtaccacctgcacac	CPS1-Ex31-F	ggccaggttatctctcatgc	
GPBAR1-5'UTR-IIa-F	tcctcttccctctcgg	CPS1-Ex31-R	tctccaggtgtctgtgatgc	
GPBAR1-5'UTR-IIa-R	ccacccagccagctttatc	SPAG16-Ex15-F	gaaaatgcttgtctgaaacg	
GPBAR1-5'UTR-IIb-F	gctggctggaagaccactac	SPAG16-Ex15-R	aaattcacctcattgccaggac	
GPBAR1-5'UTR-IIb-R	gcagtaggctcaggaagaagc	TNS1-Ex3-F	ggcttctgccctcttctcac	
GPBAR1-Ex1-F	ccctgctctttgccagtc	TNS1-Ex3-R	gctgatgtcccctacacttc	
GPBAR1-Ex1-R	gacactgctttggctgcttg	ARPC2-5'UTR-Ex1-F	gcatcacacatacgcaagc	
AAMP-Ex4-F	gggccagataccagaatcac	ARPC2-5'UTR-Ex1-R	gacaacattggggattagctg	
AAMP-Ex4-R	ggggactttccaggtagcag	CTDSP1-Ex7-F	ctgggcaacagagcaagac	
PAX3-5'UTR-Ex1-F	ccaatcagcgcgtgtctc	CTDSP1-Ex7-R	cgaagaaggggaggaggtc	
PAX3-5'UTR-Ex1-R	cctggaagcaccaaaggag	PRKAG3-Ex4-F	actacctggggcgactctc	
PAX3-Ex2-F	tgaaaggaggtctgggtctg	PRKAG3-Ex4-R	cctctgtggctgggaactc	
PAX3-Ex2-R	cagatgtcagccgttaccc	ABCB6-Ex17-F	ccttcctgccttgtgtatgc	
DNAH7-Ex62-F	ggcagctatgtgaatgacttcc	ABCB6-Ex17-R	tctcttaccgtcccctctcc	
DNAH7-Ex62-R	agttctgggcaatgaagc	ATG9A-5'UTR-I-F	agcagcgaagaggacaacc	
HECW2-Ex11-F	gttccccaaacaatggacag	ATG9A-5'UTR-I-R	ctcccaacagcggacaac	
HECW2-Ex11-R	ccagtatcccacagatcaag	ATG9A-Ex1-F	caaggaggctggtagtggac	
TRAK2-Ex11-F	gctgagattgaggggactatg	ATG9A-Ex1-R	aggtgctgtgggataggaac	
TRAK2-Ex11-R	gctggaatgtgcgtatgtg	STK16-5'UTR-I-F	acccgtccacccctacac	
ALS2-Ex4-F	ctccctccctttttactgtg	STK16-5'UTR-I-R	ggtgagtgggctcttccag	
ALS2-Ex4-R	gtttagggctgaggtgcttg	SPEG-Ex20-F	agaggcgtggttaggaggag	
CDK15-Ex8-F	ctgccaagaaggccacatc	SPEG-Ex20-R	accagggagcactcattctc	
CDK15-Ex8-R	aagcaaccctcgtgagtagg	SPEG-Ex21-F	tctgtccacctgtcccagtc	
IDH1-Ex6-F	taggcagttggaccctgaac	SPEG-Ex21-R	ccgcaagtaggagaaagcac	
IDH1-Ex6-R	actgagcagccaagggaac	ACCN4-Ex5-F	gaccacccttctccaactcc	
UNC80-Ex44-F	tagccagtcttgcagcag	ACCN4-Ex5-R	cacactcacacacccacaag	
UNC80-Ex44-R	gatggtagccaactcccttg	OBSL1-Ex8-F	cagttccacccttcataccg	

XRCC5-Ex7-F	gccatctcctgctgtttctc
XRCC5-Ex7-R	tctcctagcctgccttttacac
PRKAG3-UTR3'-I-F	agacgctctctccctcagtc
PRKAG3-UTR3'-I-R	cagttttcacagggctgctc
CUL3-Ex6-F	aggtggttgaaagggaactc
CUL3-Ex6-R	ctcactgggctcaccaatac
DOCK10-Ex54-F	tcatgccactgcactctagc
DOCK10-Ex54-R	attcttgggggattgaggac
DOCK10-Ex28-F	atgagaggccacagagaagg
DOCK10-Ex28-R	cttgcatccaccaacatgg
COL4A4-Ex46-F	cagggaggtgtcagaaatgg
COL4A4-Ex46-R	gtgaatgagccagggttttc
WDR69-3'UTR-F	gcgttgactgaaggaagctg

OBSL1-Ex8-R	cctcctccatccttggtc
PAX3-3'UTR-a-F	aaggcaatggtttcacatgg
PAX3-3'UTR-a-R	ctggaaaaacgtcacacacc
CUL3-3'UTR-a-F	gcctttactccctttgagag
CUL3-3'UTR-a-R	caccaccctatacaatccac
CUL3-Ex2-F	tctgctccaggtaagattgg
CUL3-Ex2-R	gtccagtgtagagcttttctcc
COL4A4-Ex26-F	aatcgggataggcaacatcc
COL4A4-Ex26-R	gctttccttctctggcaaac
AGFG1-Ex10-F	cctgtgtccatgtgttgttc
AGFG1-Ex10-R	gatgaagcaggctgtgtctg
PID1-3'UTR-a-F	attggtcacggagttcaagg
PID1-3'UTR-a-R	ggctgtgctgatttgcatac

SCT135 coding region gaps coverage		SCT135 coding region gaps coverage		
Name	Sequence (5'-3')	Name	Sequence (5'-3')	
BZW1-Trns1,2-Ex1-F	ttctggctctttcctcttcg	CCDC108-Ex6-F	tgcccagcatccctgact	
BZW1-Trns1,2-Ex1-R	cggtaacgtgtctcccaatc	CCDC108-Ex6-R	gaacagcccctcgaagaag	
PPIL3-Ex3-F	ctgtgagaggacacccaaaac	CCDC108-Ex15-F	cccgtggggatataggattg	
PPIL3-Ex3-R	aaaaggccaggtgcagtg	CCDC108-Ex15-R	aagggcaagtttggggtatc	
TMEM237-Trns1-Ex1-F	gactcgttggtcctggagag	CCDC108-Ex32-F	gtagtggatgaggggagtcg	
TMEM237-Trns1-Ex1-R	cccttagtgattcccagctc	CCDC108-Ex32-R	ggtggagtacctctgcttgc	
ALS2-Ex15-F	ggcacctacatgggcttaac	CCDC108-Ex33-F	tctgcgtgcccaggtaag	
ALS2-Ex15-R	tctctgctctgtgctgaacg	CCDC108-Ex33-R	tgctccctgccatccttc	
SUMO1-Ex1-F	gaaggagctgacaaaactgc	IHH-Ex1-F	gggccggcctatttattg	
SUMO1-Ex1-R	agaagtgggacgacatgagg	IHH-Ex1-R	gtaattgggggtgagctcct	
FAM117B-Ex1a-F	cttcgtcaccccgtcttg	C2orf24-Ex1-F	acgcttgacacctcccttc	
FAM117B-Ex1a-R	gctggggctcctcttctc	C2orf24-Ex1-R	ccctacgcccattcctatac	
FAM117B-Ex1b-F	acaacggtggctgctgtg	FAM134A-Ex1-F	ctgtgtaggcgcagtgtcag	
FAM117B-Ex1b-R	ctcatcagctcaagcccaag	FAM134A-Ex1-R	gaaaggggaatggtgctctc	
ABI2-Ex1-F	taggagacgccggaagtg	ZFAND2B-Ex1-F	gtcttccgactcagccttct	
ABI2-Ex1-R	attcccacccattcaccag	ZFAND2B-Ex1-R	cttcccaagcccattacctc	
RAPH1-Ex13-F	caccaccaacttctgcatcc	ABCB6-Ex5-F	cctttcacatcctggtgctg	
RAPH1-Ex13-R	ggcactgaactgtggaagg	ABCB6-Ex5-R	cggggtctgttctcttcctc	
PARD3B-Ex1-F	ggcagtttcgctttggtg	TUBA4A-Ex1-F	ccagcgtgtctgctcaaaac	
PARD3B-Ex1-R	ttctgcatcccctgagtgtc	TUBA4A-Ex1-R	aaaaccctcgcacctcctg	
PARD3B-Ex4-F	ctggggaaagatgagagttg	PTPRN-Ex1-F	gaagagggctacagggatgg	
PARD3B-Ex4-R	ccttcctctgcctcaatttc	PTPRN-Ex1-R	ctcccccaacccatattctc	
NDUFS1-5'UTR-F	cgggtccaagttgtccttc	PTPRN-Ex19-F	gtggttggagagaccgagaa	
NDUFS1-5'UTR-R	cctaagtcatcggacactgg	PTPRN-Ex19-R	gtggaggagaaggagccagt	
ADAM23-Ex1-F	acccctggactcctctgc	PTPRN-Ex22-F	gttttctgggtcctgtcctc	
ADAM23-Ex1-R	cgagaagggtggaaagacag	PTPRN-Ex22-R	acctgtgctctgccctcaag	
FZD5-Ex-1a-F	ctggaatccgagccctaac	RESP18-Ex1-F	tagaggtcgagcggaggtt	
FZD5-Ex-1a-R	cggttgtaatccatgcagag	RESP18-Ex1-R	cgcctgtactcccagtccta	
FZD5-Ex-1b-F	ctgcgcttcttcctatgctc	RESP18-Ex2-F	gagtacaggcggtggttctt	
FZD5-Ex-1b-R	acaggtagcaggctgacagg	RESP18-Ex2-R	ctctttccgctagacgctgt	
FZD5-Ex-1c-F	atccgcagcgtcatcaag	RESP18-Ex7-F	actggttgccctggtgct	
FZD5-Ex-1c-R	ccctcttccctctcccaag	RESP18-Ex7-R	agttgtgctcccctcatcc	
UNC80-Ex1-F	acagtgggaggtgctgaaag	DNPEP-Ex1-F	acgaggaagcttgacgagg	
UNC80-Ex1-R	gtgcagagggcttgttttcc	DNPEP-Ex1-R	ggtttcgctttgggtcagg	
UNC80-Ex60-F	gacaaacccagcacaaggtg	DES-Ex1a-F	caggacagcgggatcttg	
UNC80-Ex60-R	taagacggggcgagaagag	DES-Ex1a-R	gcgcaccttctcgatgtagt	

ACADL-Ex1-F	gtatttgggggctccatagc	DES-Ex1b-F	gctgctggacttctcactgg
ACADL-Ex1-R	gctgacacccctttttcctc	DES-Ex1b-R	acaggtggaggaccctttct
SPAG16-Ex1-F	tatcttgtccgctcccagag	SPEG-Ex1-F	cccccagacttgtctccta
SPAG16-Ex1-R	tggctctcaggaagactgtg	SPEG-Ex1-R	ggcggaaccagtatccagta
BARD1-Ex1-F	ccctgcgagtccctattttg	SPEG-Ex3-F	ctggggtgtacaaagagcag
BARD1-Ex1-R	gggaacggaaggaggaaac	SPEG-Ex3-R	atgggtggaggctgactg
ATIC-Ex1-F	gtggagtggcctcactttg	SPEG-Ex4a-F	acccaattcctgtcacaagc
ATIC-Ex1-R	ggacgctggctttcaatc	SPEG-Ex4a-R	acttgggctgctccagaga
FN1-Ex1-F	accttcttggaggcgacaac	SPEG-Ex4b-F	gacaagctgcagttcttcgag
FN1-Ex1-R	cacaaaacttcagccccaac	SPEG-Ex4b-R	attggtcccgacgcctaac
FN1-Ex42-F	tatgtggtgtttgcgctgtg	SPEG-Ex4c-F	cctccacccccaagacat
FN1-Ex42-R	agcagttgtatgccaacagg	SPEG-Ex4c-R	gcagtcttgctctccacaaa
MREG-Ex1-F	gtgccctgggattttgag	SPEG-Ex6-F	aggtttggtctcctgtgtgg
MREG-Ex1-R	acctccccaactcacacaag	SPEG-Ex6-R	tcaaggctgagagtgggaag
March4-Ex1-F	cccacaacacagatccactg	SPEG-Ex8-F	tgctcccattcaaaccctct
March4-Ex1-R	taccactgtccaagctgctg	SPEG-Ex8-R	gaagcccaccaagattccat
SMARCAL1-Ex14-F	gaaatggggtggagaggaac	SPEG-Ex30a-F	gttccctgaccctctgcat
SMARCAL1-Ex14-R	ctgcaagccaccagtgaac	SPEG-Ex30a-R	catactcgccctcacccag
IGFBP2-Ex1-F	ggggaagggagtggtctc	SPEG-Ex30b-F	ctccctctcaggaccagga
IGFBP2-Ex1-R	cccctaaaaccgtccgtaag	SPEG-Ex30b-R	taggtgtggtggcagaaggt
IGFBP2-Ex2-F	tcatcattacggtccaggtg	SPEG-Ex30c-F	gagtctccttccctgtctgc
IGFBP2-Ex2-R	tactgactgccccaaaggtc	SPEG-Ex30c-R	gtatatgccatcctcctcctc
IGFBP5-Ex1-F	cctcttggcccctttatcc	SPEG-Ex30d-F	tcgaggccaagttcaagc
IGFBP5-Ex1-R	aaggaccctccccgactac	SPEG-Ex30d-R	ctcctcccacagcctctctc
TNS1-Ex15-F	ctcactaagcgtgccctcac	SPEG-Ex41-F	agactcactgtccccattcc
TNS1-Ex15-R	cacaaagctggctgctgac	SPEG-Ex41-R	gtaagagcccagccagatgt
TNS1-Ex18-F	tccaggaagctgtgttccag	GMPPA-Ex10-F	gtggtcggatggatggag
TNS1-Ex18-R	gccataggcaacagatccag	GMPPA-Ex10-R	gcgttcacccttctctgttc
TNS1-Ex19-F	caccagatgatgggtccac	ASIC4-Ex1-F	agaatgagctgaggaccctg
TNS1-Ex19-R	cgggaaccacagatccag	ASIC4-Ex1-R	ttgcacacaatctcgatcgg
RUFY4-Ex8-F	tctcgggaatgttgttcagg	ASIC4-Ex7-F	tgctgggtgagactggtgt
RUFY4-Ex8-R	tgggaggttctcacaagacc	ASIC4-Ex7-R	ccctgaacctgactttccag
AAMP-Ex9-F	gatggggaaaggggtttg	CHPF-Ex1-F	tgctggaggggaatcgag
AAMP-Ex9-R	tctggggtagatgctcctg	CHPF-Ex1-R	cttccttccggagcctgac
PNKD-Ex1-Trns1-F	gcggagagaacccaaactc	CHPF-Ex2-F	ctaggacccgctacatcagc
PNKD-Ex1-Trns1-R	cctgacctcctgctatcgtc	CHPF-Ex2-R	ccaacatccctttgcctctc
PNKD-Ex1-Trns2-F	ctgtggaccccgatcagc	CHPF-Ex4-F	gctaccgacgctttgatcc
PNKD-Ex1-Trns2-R	gtctcctcgatccctcttcc	CHPF-Ex4-R	acgtgggccttgacaggt
PNKD-Ex6-Trns1-F	cctggagatgctgtggtaaag	CHPF-3'UTRa-F	gctgttcctccacttctcca
PNKD-Ex6-Trns1-R	agatccacctgctgataccc	CHPF-3'UTRa-R	cctccttccccaacaactct
TMBIM1-Ex1-F	ctggacaaggctggaagtg	TMEM198-Ex2-F	agcgggtgctagagacacag
TMBIM1-Ex1-R	cccattctcctgtggtgtg	TMEM198-Ex2-R	agtcacttggcccccaac
C2ORF62-Ex10-F	taggggctagaaggctccag	OBSL1-5'UTR-F	cagtctgggctcttgtcctc
C2ORF62-Ex10-R	aggtacgacggtaacggttc	OBSL1-5'UTR-R	aggaccacgcacttgagc
CTDSP1-Ex1-Trns1-F	gggaaggaaactccatgttg	OBSL1-Ex1a-F	ctgtgcgggtggtaagtg
CTDSP1-Ex1-Trns1-R	ttcaaactctctccctgctc	OBSL1-Ex1a-R	acacgtagacgccggaatc
CTDSP1-Ex1-Trns3-F	ggtagacccgaagcacgtc	OBSL1-Ex1b-F	acgaagtgtgggacagcag
CTDSP1-Ex1-Trns3-R	aacacccctcggcacttc	OBSL1-Ex1b-R	ccacctctcctccagtcttg
CYP27A1-Ex1-F	gcccagagttcagaccaagc	OBSL1-Ex2-F	gcatgaagagcacacagca
CYP27A1-Ex1-R	gctgtcctagacgtggaatctc	OBSL1-Ex2-R	ctgagatgcggacaggaatc
PRKAG3-Ex6-F	tctcagcacaaggacactgg	OBSL1-Ex12-F	tctcagtaccttccccgtca
PRKAG3-Ex6-R	cccaccatcaccaacagc	OBSL1-Ex12-R	ggagccagaagcagcaaag

WNT 6-Ex1-F	ccggctctgatttcttctcc	OBSL1-Ex17-F	gggaacacgagacacgcata
WNT 6-Ex1-R	gaacaccccagtctgtcctg	OBSL1-Ex17-R	cggagagtaccgccacagta
WNT6-Ex3-F	ttgcctgagccccacttc	OBSL1-Ex18-F	atgtggaggctgggcact
WNT6-Ex3-R	actcctgccaacacttcctc	OBSL1-Ex18-R	gggaaagaacagggacgag
WNT6-Ex4a-F	cacctcccattcccaatc	OBSL1-Ex19-F	agcctcgtccctgttctttc
WNT6-Ex4a-R	aggcagttctcttcgagctg	OBSL1-Ex19-R	ttagccctctatgccaccag
WNT6-Ex4b-F	gattcgcccgacttctgc	OBSL1-Ex20-F	tggtggcatagagggctaag
WNT6-Ex4b-R	gggagcccagtatccagag	OBSL1-Ex20-R	cagttccagggctttccag
WNT6-3'UTR-F	aggggcttgagaggaacg	INHA-Ex1-F	gactggggaagactggatga
WNT6-3'UTR-R	gaatgccaaggggagatagc	INHA-Ex1-R	cctgcaaacccatgctgt
WNT10A-Ex1-F	gagtcggagctgtgtgtcg	STK11IP-Ex1,2-F	gttttccggtcgtcccttg
WNT10A-Ex1-R	tcttccagggtcctctaccc	STK11IP-Ex1,2-R	atgactctcagggcgtgtct
WNT10A-Ex4a-F	ggagtgggtttcagaagcag	STK11IP-Ex14-F	gcttgctcagttctgggttc
WNT10A-Ex4a-R	gtctggcgcaggatgttg	STK11IP-Ex14-R	ccactcacaaacatcccaag
WNT10A-Ex4b-F	tctcccgacttctgcgag	SGPP2-Ex1-F	gcaaggtggaggcagaca
WNT10A-Ex4b-R	tccattcattccccacctcc	SGPP2-Ex1-R	gcatcctggttactggaagg
CDK5R2-Ex1a-F	agctgcccatcaggagtg	FARSB-Ex1-F	cgggacttcagggtcagta
CDK5R2-Ex1a-R	gaaggttctcgcggttgc	FARSB-Ex1-R	cggagccaaaaccttcag
CDK5R2-Ex1b-F	gtccgccaagaagaagaaag	MOGAT1-Ex1-F	agcctctgccttttcctctc
CDK5R2-Ex1b-R	gtttgcaggcgtaatgaagg	MOGAT1-Ex1-R	ctctttgacctgcctgctct
CDK5R2-Ex1c-F	ggcaacgagatctcctaccc	AP1S3-Ex1-F	agggaggagaaaggggaaag
CDK5R2-Ex1c-R	ggaatgggctgaagggaagg	AP1S3-Ex1-R	ccggcacagactaagcactc
FEV-Ex1-F	gatgggacgataagaggggc	WDFY1-Ex1-F	tctcccagccacagactttc
FEV-Ex1-R	cactctcttcccatgcctga	WDFY1-Ex1-R	agctaaggggcgcagagt
FEV-Ex2-F	cggggcccttttgtcaag	MRPL44-Ex1-F	cgcaagcgtagcctcaag
FEV-Ex2-R	cacactgctcccacctact	MRPL44-Ex1-R	atcagccgcagacacgac
FEV-Ex3a-F	tttcccgccagcactctt	SERPINE2-Trns4-Ex1-F	ccctgaccctgaacctga
FEV-Ex3a-R	aagctgggactggggtaga	SERPINE2-Trns4-Ex1-R	cctgaaggtggagtgctgtc
FEV-Ex3b-F	gcctctccaaactcaacctc	FAM124B-Trns2-Ex2-F	ttgggctcaggaatgtcac
FEV-Ex3b-R	tgaatggggcttctaggagc	FAM124B-Trns2-Ex2-R	agctcggccaacatagtgag
CRYBA2-Ex1-F	gctgtgtgtggctcgaaac	CUL3-Trns1-Ex1-F	tcactctccggctctcct
CRYBA2-Ex1-R	atgttggcaggtctctccag	CUL3-Trns1-Ex1-R	ctgttgggggacttcagc
CRYBA2-Ex2-F	gtgtcaggggaagggtttg	CUL3-Trns3-Ex1-F	actgccattcctcagatgct
CRYBA2-Ex2-R	atgcagggcttgaacagc	CUL3-Trns3-Ex1-R	tccttacctccctccaatcc
CCDC108-Ex4-F	cctcgtttcctgcctcttc	DOCK10-Ex1-F	cgggtggatagagaaggttg
CCDC108-Ex4-R	ctcctggttgctctgtcctg	DOCK10-Ex1-R	cattaaagcccctgcacatc

SCT135 non-coding region gaps coverage		
Name	Sequence (5'-3')	
BZW1-Trns1-5'UTR-I-F	gattccttccccaaaccacg	
BZW1-Trns1-5'UTR-I-R	ctttcaggccctagatccgg	
BZW1-Trns1-3'UTRa-F	cctacctccctgtatcaagca	
BZW1-Trns1-3'UTRa-R	tctgttctccatggcttctc	
BZW1-Trns1-3'UTRb-F	ttgagtacgtggaccattgc	
BZW1-Trns1-3'UTRb-R	aagagaacgaagccagtcca	
BZW1-Trns1-3'UTRc-F	ttcctactcggtcatactgga	
BZW1-Trns1-3'UTRc-R	caccccattcacaacaatcagt	
BZW1-Trns1-3'UTRd-F	gaaatcgccccttttgaag	
BZW1-Trns1-3'UTRd-R	ggtggtttacagtttgggagtc	
CLK1-5'UTR-F	agtgagtggggacaacacg	
CLK1-5'UTR-R	agccgccatcttacagctc	
CLK1-3'UTR-F	ttggacagctctctcgaaga	

SCT135 non-coding region gaps coverage		
Name	Sequence (5'-3')	
C2ORF67-5'UTR-I-F	tgccacttccagaacactcc	
C2ORF67-5'UTR-I-R	aagtccacccggcagtct	
LANCL1-5'UTR-I-F	tctccgcgtgattctaggtc	
LANCL1-5'UTR-I-R	actgcggcccaactgcta	
CPS1-5'UTR-I-Trns3-F	ttcccttttgctctctctcg	
CPS1-5'UTR-I-Trns3-R	tgagtttcatcatgggttgg	
IKZF2-5'UTR-I-Trns 2-F	acgcgctctcatacacacac	
IKZF2-5'UTR-I-Trns 2-R	cacagtgcaaaacgagatgc	
SPAG16-3'UTR-Trns2-F	tgtgagaggcttcattagcaa	
SPAG16-3'UTR-Trns2-R	gttggtgagaacgtgcagaa	
VWC2L-5'UTR-I-F	tgggaggtagagagaatgga	
VWC2L-5'UTR-I-R	ccctccccatattgctacag	
FN1-5'UTR-F	ggccatcagcatctcttttg	

CLK1-3'UTR-R	accgcaataccaagtttgagt	FN1-5'UTR-R	agcctgcctcttgctcttc
PPIL3-3'UTR-F	ttgcatcatccttctgcttg	TMEM169-5'UTR-I-II-F	tctgggtctcagggacattc
PPIL3-3'UTR-R	ttcagatttggggatacttgc	TMEM169-5'UTR-I-II-R	ccgaaggatgaaaggatctg
NIF3L1-5'UTR-I-F	aactacctgggcaacctcaa	MARCH4-5'UTRa-F	agacaacacctggcagcag
NIF3L1-5'UTR-I-R	cccgtcctagagtaagcactg	MARCH4-5'UTRa-R	catgatcctcctcctc
ORC2-5'UTR-I-F	ggcccaagaatccgtttt	MARCH4-5'UTRb-F	agcactcttgcctgagaacc
ORC2-5'UTR-I-R	cgagggaaagtcctgagatg	MARCH4-5'UTRb-R	gggcagtggagcagagaata
ORC2-5'UTR-II-F	tctcttcccactccatccag	MARCH4-5'UTRc-F	agggacctttgatggaacc
ORC2-5'UTR-II-R	gccaccaccacagtcattta	MARCH4-5'UTRc-R	gtggattgagctgggcttag
FAM126B-5'UTR-I-F	tccttagacaccgcacacag	MARCH4-5'UTRd-F	caacccctaccacctgagaa
FAM126B-5'UTR-I-R	ggccgaaggagaagaaaac	MARCH4-5'UTRd-R	atgtgccccgtggaagtag
FAM126B-5'UTR-II-F	atgcaagtgaggctccagat	SMARCAL1-5'UTR-I-F	gttgcagctcccgtttctc
FAM126B-5'UTR-II-R	gatgtagccggataatgcaa	SMARCAL1-5'UTR-I-R	taagacccactgatcagccc
NDUFB3-5'UTR-I-F	caactgcagcgcaacaac	SMARCAL1-5'UTR-II-F	ccgtgtgttgtgttggaagt
NDUFB3-5'UTR-I-R	cctcccatccttctccattt	SMARCAL1-5'UTR-II-R	gataactcacatggcccagc
NDUFB3-5'UTR-II-F	ggaagaggtggttggaggat	IGFBP2-3'UTR-F	aagatgtctctgaacgggca
NDUFB3-5'UTR-II-R	gtgctggtatcctttccctaag	IGFBP2-3'UTR-R	aggggcaaagctggatgat
CFLAR-5'UTR-I-Trns1-F	gaactaggaaggcggaggtt	IGFBP5-5'UTRa-F	tgggaagctcaaattgcagc
CFLAR-5'UTR-I-Trns1-R	cctgctgcaatgctgactc	IGFBP5-5'UTRa-R	gagatcggatgcagtggaga
CFLAR-5'UTR-I-Trns2-F	ctgaagcggaaattgccta	IGFBP5-5'UTRb-F	tggcagctgagggttagaaa
CFLAR-5'UTR-I-Trns2-R	aatccttttctgccagtatcg	IGFBP5-5'UTRb-R	gcacatggagagggctttct
CASP10-5"UTR-I-Trns1-F	ggttaacatggccgacaact	TNS1-5'UTR-I-F	gagcactgcaggggttaaag
CASP10-5"UTR-I-Trns1-R	gaagccatgaagcaaaggaa	TNS1-5'UTR-I-R	tcagtatcaacagcccagca
CASP10-3'UTR-Trns2-F	agagaacagtgtggggtgct	TNS1-5'UTR-II-F	tgaggaatgaagcagggg
CASP10-3'UTR-Trns2-R	caaggtgcaaaacagtctgc	TNS1-5'UTR-II-R	cgacaccccagttaccaaca
CASP8-5'UTR-I-TrnsE-F	cacagtgccaggaagtgaga	TNS1-5'UTR-III-F	gcctcatcatccctgtctca
CASP8-5'UTR-I-TrnsE-R	cgtggaaaagaactgcttgg	TNS1-5'UTR-III-R	gaagcatttccccaaccaca
CASP8-5'UTR-II-TrnsE-F	tgcgggtcaagacatcagta	TNS1-5'UTR-V-F	ttttgcaggggttagggtgg
CASP8-5'UTR-II-TrnsE-R	aactggcatctgctccactc	TNS1-5'UTR-V-R	ctttcacgtttgcccacact
CASP8-5'UTR-I-TrnsC-F	gaaggcactctgctcactca	RUFY4-5'UTR-I-F	agagacgagacaaccacagg
CASP8-5'UTR-I-TrnsC-R	ccacccgatctcactctcag	RUFY4-5'UTR-I-R	atgtgtctcctctctcct
CASP8-3'UTR-II-TrnsE-F	gggagggatagagaggggat	RUFY4-5'UTR-II-F	aaggagtgtgatgccaggag
CASP8-3'UTR-II-TrnsE-R	ctctgcgagaaacacccaag	RUFY4-5'UTR-II-R	taaatgagggaggtgggtgg
ALS2CR12-5'UTR-I-F	ggctgtttctcccaaccttc	RUFY4-3'UTR-F	tgcccatcccactcaatc
ALS2CR12-5'UTR-I-R	gccctaacaatagtcaccagtg	RUFY4-3'UTR-R	aagggagggagaccacaaag
TRAK2-5'UTR-I-F	ggcttggaactctgcacca	CXCR2-Trns2-5'UTR-I-F	ggagggggggggggggggggggggggggggggggggggg
TRAK2-5'UTR-I-R	tagcgcccattactttgcac	CXCR2-Trns2-5'UTR-I-R	ggaactgaacaggaaagctg
STRADB-5'UTR-I-F	gaagccaaaggagagccact	CXCR2-Trns1-5'UTR-I-F	ggacgcttctcactctgacc
STRADB-5'UTR-I-R	caaggctcactccctcacac	CXCR2-Trns1-5'UTR-I-R	tcatcaccccagttctcagg
STRADB-3'UTR-F	caccagtttgtagtccctctg	CXCR2-Trns1-5'UTR-II-F	agctccaccctgaattg
STRADB-3'UTR-R	gggcttttcttggcaaaac	CXCR2-Trns1-5'UTR-II-R	gtggggagagatgcttagga
TMEM237-5'UTR-Trns2-F	atgaagtttgcggggacct	CXCR1-5'UTR-I-F	tcagataatggaccctcaacc
TMEM237-5'UTR-Trns2-	ละการการสุดสุดรากเลือก		gtragcetetteccacaaaa
R	acceaceagaceeaac	CXCR1-5'UTR-I-R	greageererreeadada
MPP4-3'UTR-F	cccttgatacagcgatccat	ARPC2-3'UTR-F	ccctcacttcccttttctcc
MPP4-3'UTR-R	tttccttgtaggccgatttg	ARPC2-3'UTR-R	ggtttgcaggttcaagggta
ALS2-5'UTR-I-F	ctgctcccaaccactttcac	AAMP-3'UTR-F	ctttccagcctcttcaactg
ALS2-5'UTR-I-R	cagagctgggaaaatgcgg	AAMP-3'UTR-R	ctcaacatccagccgattct
FZD7-5'UTR-F	aacccaggctgacgagtttt	TMBIM1-5'UTR-I-F	tcttccctgcatttctgtgtc
FZD7-5'UTR-R	atgcccttctctccgtggta	TMBIM1-5'UTR-I-R	cgcgctccgaaaagttta
BMPR2-5'UTRa-F	tgcaccacaggctagagaca	VIL1-5'UTR-I-F	tctcattgtcaggctgtgga
BMPR2-5'UTRa-R	gaaggctgaggagaggtagga	VIL1-5'UTR-I-R	cccagcacttctcacgctat

BMPR2-5'UTRb-F	gagccgcaggaataaaaagc	USP37-5'UTR-I-F	aaagtgcgcgtgcctactac
BMPR2-5'UTRb-R	catgtctgtggggaaagcag	USP37-5'UTR-I-R	ggtagggaaaacggctcaat
BMPR2-5'UTRc-F	ctccgcaccctggatatgt	USP37-5'UTR-II-F	cctccacctctcaaagtgct
BMPR2-5'UTRc-R	gtcttctctcccgtggactg	USP37-5'UTR-II-R	tcaccatgaatgctcaaagc
ICA1L-5'UTR-I-Trns1-F	acacctccacgcactggt	USP37-5'UTR-III-F	tggctcaagtttctgtagctct
ICA1L-5'UTR-I-Trns1-R	aacccgggatttggtctc	USP37-5'UTR-III-R	agcattgccagaccatctaa
ICA1L-5'UTR-I-Trns2-F	aggcccggagaccaaatc	PLCD4-5'UTR-I-F	gcactgcaactgaggacac
ICA1L-5'UTR-I-Trns2-R	gcctaaggagcaggatctgt	PLCD4-5'UTR-I-R	ctagagggcagaggtaggga
ICA1L-5'UTR-II-Trns1-F	agtccatcctggcagctcac	PLCD4-3'UTR-F	aacaagcaatctgggacctg
ICA1L-5'UTR-II-Trns1-R	cactgccttccacatagctg	PLCD4-3'UTR-R	ggtctcctgggaacctcttt
ICA1L-5'UTR-III-Trns2-F	tgccattattgactcacttgca	ZNF142-5'UTR-I-F	agaagcccacgccactctac
ICA1L-5'UTR-III-Trns2-R	aaacacaagtgcaggctatatg	ZNF142-5'UTR-I-R	tgctcccttcagtacctcct
ICA1L-3'UTR-Trns1-F	tgttatgcttttggggtgct	ZNF142-5'UTR-II-F	acaaaccgcctttccagttc
ICA1L-3'UTR-Trns1-R	aatcccagctacttggtaggc	ZNF142-5'UTR-II-R	agcgaaactccgtctcaaaa
WDR12-3'UTR-F	ctgagtggaggagcagacaa	ZNF142-3'UTR-F	actggacctgagggctga
WDR12-3'UTR-R	ttgggaggttgagacaggag	ZNF142-3'UTR-R	gacaaaagggaggcagaggt
CARF-5'UTR-I-Trns001-F	gcctctaactgcggctttt	BCS1L-5'UTR-I-F	gtttttcccgccctccac
CARF-5'UTR-I-Trns001-R	agcaaccctcctgaagacac	BCS1L-5'UTR-I-R	ctctcctccaaccccgaac
CARF-5'UTR-I-Trns02-F	cttttcggggtcccacat	BCS1L-5'UTR-II-F	cagctcacctccctgcat
CARF-5'UTR-I-Trns02-R	gcctaatgtttaaatgaacgcc	BCS1L-5'UTR-II-R	ggtcttcacctcctgcttca
CARF-5'UTR-II-Trns02-F	gttttaccacaccaggctga	STK36-5'UTR-I-F	cccccaaagttaccagtcct
CARF-5'UTR-II-Trns02-R	cctggccctgtcaaagtaaa	STK36-5'UTR-I-R	tttagccccatctcttctgg
CARF-5'UTR-III-Trns02-F	ctttgtcagctacatgttttgc	TTLL4-5'UTR-I-F	accgcactgaagggactg
CARF-5'UTR-III-Trns02-R	ctggacagattcgagatggag	TTLL4-5'UTR-I-R	cgcgaaaggactcaggtaga
NBEAL1-5'UTR-I-F	caacggctgggtaaatcct	TTLL4-5'UTR-II-F	agccacccctgtagcttgt
NBEAL1-5'UTR-I-R	ctcccatttcttgccatgc	TTLL4-5'UTR-II-R	ggcctcccaaacaaaatagc
NBEAL1-3'UTR-F	gcaaggcttttatccctgaa	CYP27A1-5'UTR-F	atttctttgttcagcggccc
NBEAL1-3'UTR-R	ggcccaactgtcaaaatcac	CYP27A1-5'UTR-R	ctttgggtcgagtgctgagt
RAPH-5'UTR-F	cgccggaagtgagtggtt	CYP27A1-3'UTR-F	agacggggggggggggggggggggggggggggggggggg
RAPH-5'UTR-R	gatccccaacctggcaac	CYP27A1-3'UTR-R	gaaaccaaggcctctctgtg
RAPH-3'UTR-Trns3-F	gaagccctcctaaacccagt	WNT10A-5'UTR-F	gtggggtagagccctgaga
RAPH-3'UTR-Trns3-R	agggccgattcatagactcc	WNT10A-5'UTR-R	agccagcagcagtaggaaga
NRP2-5'UTR-F	gcggctctgacatccacat	WNT10A-3'UTR-F	cgaagcccagacagttcagt
NRP2-5'UTR-R	tcagcaaagagggaacaagc	WNT10A-3'UTR-R	ctggaatgcccttacccata
NRP2-3'UTR-Trns5-F	caatcccaaccatcctcct	FEV-5'UTR-F	agggagggaagcggaaattt
NRP2-3'UTR-Trns5-R	tcaaagacaccagaagacaagg	FEV-5'UTR-R	gggtcctggagaaacgctt
INO80D-5'UTR-I-F	gctctgcctccaagatggta	FEV-3'UTR-F	gtgcgccctctttcacttt
INO80D-5'UTR-I-R	cccactcaccctttcattct	FEV-3'UTR-R	ttccttggcagttctctgct
EEF1B2-5'UTR-F	aagcccggagggactagaat	CRYBA2-5'UTR-F	ggctcaggctggaaagaaag
EEF1B2-5'UTR-R	ttttgcattcccacttctcc	CRYBA2-5'UTR-R	aagtcctcctcgtcccagag
GPR1-5'UTR-I-Trns1-F	cacagcagccctttctctta	NHEJ1-5'UTR-F	acgcgccactacccttctac
GPR1-5'UTR-I-Trns1-R	gaaatgtggggaacagcttc	NHEJ1-5'UTR-R	ttcactcgagccctaccatc
GPR1-5'UTR-II-Trns3-F	tcagagaggtgagtgcttgc	ABCB6-5'UTR-F	tcgttgcctgcaccattc
GPR1-5'UTR-II-Trns3-R	ttcttagggctggctcttca	ABCB6-5'UTR-R	agaagaagcagggactcagg
GPR1-5'UTR-II-Trns1-F	agcaaaagcctacccagaca	ANKZF1-5'UTR-I-F	ggagacacaacggccaat
GPR1-5'UTR-II-Trns1-R	gcattttgtaaacgatcaggag	ANKZF1-5'UTR-I-R	tctcaaacccccagtctcag
ZDBF2-5'UTR-I-F	gacgtcaaacctccatcagg	GLB1L-5'UTR-F	gcgtagtttcagaggacgtg
ZDBF2-5'UTR-I-R	gacacctctcacgcagcag	GLB1L-5'UTR-R	ggttgtacgggatcaggaga
ZDBF2-5'UTR-II-F	ttggaaacatgtcaccgttc	GLB1L-3'UTR-F	gtacctctccagccccaagt
ZDBF2-5'UTR-II-R	ggatcatttctttagggtctgg	GLB1L-3'UTR-R	gcactgtggcctttagttcc
FASTKD2-5'UTR-I-F	ccatggtcgagagagactcag	DNAJB2-5'UTR-I-F	gcttctcgcttggatgga
FASTKD2-5'UTR-I-R	atacaaccagccagcctcac	DNAJB2-5'UTR-I-R	agttggaagcggagcacac

KLF7-5'UTR-I-Trns2-F	ttaacgcacagtcgagcaac	PTPRN-5'UTR-I-Trns3-F	catgcgagatgaggaaggtg
KLF7-5'UTR-I-Trns2-R	agcgggaaggaaggacagt	PTPRN-5'UTR-I-Trns3-R	gcttccactgcccagagat
KLF7-5'UTR-Trns1-F	agcaggaggaggagaaaagg	PTPRN-3'UTR-F	ctgtccctctttgcctgtgt
KLF7-5'UTR-Trns1-R	ggggctgtttgtttgtcagt	PTPRN-3'UTR-R	gctctcctgctgtgctctct
CREB1-5'UTR-I-F	aaggtcttcggcaagttcc	GMPPA-5'UTR-I-F	tcagcacctctttcctctcc
CREB1-5'UTR-I-R	cgccgccattattctttg	GMPPA-5'UTR-I-R	tcctgaacgtaatccccaag
METTL21A-5'UTR-I-	cacaacatcactecteca		atgagaccaggggcacagat
Trns2-F		GMPPA-3'UTR-F	
METTL21A-5'UTR-I-	ctgggtgttagcggtttgat		ccagggctccagattcatta
MFTTI 214-5'LITR-I-		GIVIPPA-S UTK-K	
Trns1-F	gatcctaagaggccctgtgac	CHPF-5'UTR-I-Trns2-F	ccaaaaaggccgtcaggtag
METTL21A-5'UTR-I-			at an ant an an att at a sec
Trns1-R	actacacaagcggcggaag	CHPF-5'UTR-I-Trns2-R	Cigaggiggcccligiaacc
FZD5-5'UTR-I-F	gctccgtctggatcatgc	TMEM198-5'UTR-I-F	taccggagaggggggggagaag
FZD5-5'UTR-I-R	caccctctctttccaagctg	TMEM198-5'UTR-I-R	tagtggaggctgggatgaag
PLEKHM3-5'UTR-I-F	cctcgggcaggaaagact	OBSL1-3'UTR-Trns3-F	ggagttatgcgtcctcttgaa
PLEKHM3-5'UTR-I-R	atctcccctcacccattagc	OBSL1-3'UTR-Trns3-R	tgtgtggaagggtgactttct
CRYGD-5'UTR-F	cgtggtctagcacagcaaag	STK11Ip-3'UTR-F	ccaaggtggagacagtgagg
CRYGD-5'UTR-R	gacaaggcgaggtctcacag	STK11Ip-3'UTR-R	aaggtgatgggtgggatagc
C2ORF80-3'UTR-F	ccacagctcttgccagtaca	CCDC140-5'UTR-I-F	tcttcaagtggacggaaagg
C2ORF80-3'UTR-R	aagccatgtgcctaatcagc	CCDC140-5'UTR-I-R	caggctcctttggtgcttc
IDH1-5'UTR-I-F	aattggcgtgtggcgatt	CCDC140-5'UTR-II-F	cgccggtacataaagagctg
IDH1-5'UTR-I-R	ttaccccattcctgccttct	CCDC140-5'UTR-II-R	agcctcttgcctctggttc
IDH1-5'UTR-II-F	gggctgtctggcaggtacta	FARSB-3'UTR-F	gaccatcctttccctgcata
IDH1-5'UTR-II-R	ctgcccccaagaccagtta	FARSB-3'UTR-R	gcaccctcacatattttgaatc
PIKFYVE-5'UTR-I-Trns2-F	ctggactccttctgcctgag	ACSL3-5'UTR-I-F	ggcccgaattcgataggc
PIKFYVE-5'UTR-I-Trns2-R	gccctggttctcactttcac	ACSL3-5'UTR-I-R	catcctccctgcctggtc
PIKFYVE-3'UTR-Trns4-F	cacctcctccccataccttt	ACSL3-5'UTR-II-F	ccaggaaaaagttggcattc
PIKFYVE-3'UTR-Trns4-R	ggcatttcttatgtgctgct	ACSL3-5'UTR-II-R	ctgagttcaaatcccttgcag
PTH2R-5'UTR-F	agcagcgacatgagatcctt	ACSL3-5'UTR-III-F	ttctaccaaccatgcaacca
PTH2R-5'UTR-R	ctggctcttacctgggctct	ACSL3-5'UTR-III-R	ttgaactgttgtgccctttg
MAP2-5'UTR-I-Trns5-F	cactggcctcactttgtcg	SCG2-5'UTR-I-F	ttgccacaaaaagacaggtg
MAP2-5'UTR-I-Trns5-R	ctcagagaccgaggcaaaag	SCG2-5'UTR-I-R	gcaggttgctattcagttatcc
MAP2-5'UTR-II-Trns5-F	cagtgcattttatggagtgagg	SCG2-3'UTR-F	aggcagatgaaaccaggtca
MAP2-5'UTR-II-Trns5-R	gcaagcatatttctgacacagc	SCG2-3'UTR-R	cctgaattgtctggtgaagatg
MAP2-5'UTR-I-Trns1-F	ccactcgccttattttcctg	SERPINE2-5'UTR-I-Trns1-F	agaagtcgcaggcggaga
MAP2-5'UTR-I-Trns1-R	atgcctggaggtctgtagca	SERPINE2-5'UTR-I-Trns1-R	gcgggaggctgagaaagt
MAP2-5'UTR-II-Trns1-F	tgctacagacctccaggcata	FAM124B-5'UTR-Trns1-F	ctataagagccgcccatttg
MAP2-5'UTR-II-Trns1-R	tgcaacataggcaaaagaca	FAM124B-5'UTR-Trns1-R	atgcaatccaggagctggt
MAP2-5'UTR-III-Trns1-F	gccagaagagaaagccacaa	DOCK10-5'UTR-F	tctcccagcaacctccaaat
MAP2-5'UTR-III-Trns1-R	attgtcaaccaaggcaggag	DOCK10-5'UTR-R	gccgagcttttggggaag

DES gene sequencing primers				
Name	Sequence (5'-3')			
DES-Ex2,3-F	ccctgtctctcctgcctcta			
DES-Ex2,3-R	agcaccctcacacccctatt			
DES-Ex4-F	tataccttggcccctcttcc			
DES-Ex4-R	ggctctcctcccatggat			
DES-Ex6-F	acctgaccatctggagttgc			
DES-Ex6-R	gtttccaggtcttgttgagg			
DES-Ex7-F	ggatggtctcgatctcctga			
DES-Ex7-R	ttcttccccagactccaggt			

DES gene sequencing primers				
Name	Sequence (5'-3')			
DES-Ex6-F-n	ccagccccaaagctttctt			
DES-Ex6-R-n	tttccaggtcttgttgaggt			
DES-Ex7-F-n	gagacggggtttcactgtgt			
DES-Ex7-R-n	aacagaggctgcttcctgag			
DES-Ex8-F-n	ctagggctctgcccaatgt			
DES-Ex8-R-n	atgggctatgtcgctgttg			
DES-Ex9a-F-n	cttccatcccaggacacc			
DES-Ex9a-R-n	cagtctccacaggggctagt			

DES-Ex8-F	atgtggccccagatggac	DES-Ex9b-F-n	agcagggtgttgggatactg
DES-Ex8-R	ggtgtcctgggatggaaga	DES-Ex9b-R-n	ccatctcagggtgacaggtt
DES-Ex9a-F	ggctagcacatggttggact	DES-Ex7-F-nn	ccgatgggagggttcttaac
DES-Ex9a-R	gtaagagaccacggggacaa	DES-Ex8-F-nn	actcccagcccctggtatag
DES-Ex9b-F	atactgcagggccaggact	DES-Ex8-R-nn	acagctgggtggaagacagt
DES-Ex9b-R	ctggctgggtagaaggtcag	DES-Ex9-F-nn	tagtggggcaagagagatcc

A 3.3 Primer pairs used for cloning and site-directed mutagenesis reactions (SDM)

	DES cDNA primers	DES cDNA primers		
Name Sequence (5'-3')		Name	Sequence (5'-3')	
DES-CCDS-1-F	ctgagttcgcccgtgttc	DES-CCDS- 2-R	taggactggatctggtgtcg	
DES-CCDS-1-R	ctcggaaggcagccaaat	DES-CCDS- 3-F	catcgcggctaagaacattt	
DES-CCDS-2-F	ggtggaggtgctcactaacc	DES-CCDS- 3-R	gatcatcaccgtcttcttgg	

DES cloning primers			SCT135 minigene primers		
Name Sequence (5'-3')			Name	Sequence (5'-3')	
DES-pcDNA3.1(+) NHEI-F	gctggctagcgccaccatgagccaggcctactcg		USP37-		
			Ex18-MG-	gtgtgaattcacactatgacctatggctg	
			EcoRI-FP		
DES-pcDNA3.1(+) XHOI-R	tctagactcgagttagagcacttcatgctgctg		USP37-	tragtraggatergaaacactacceacgt	
			Ex18-MG-		
			BamHI-RP		

	DES SDM primers	DES SDM primers		
Name	Sequence (5'-3')		Name	Sequence (5'-3')
DES-Gly65Ser-F	cggggccgggagcctggggtc	DES Ala: F	5- 337Thr-	cctgcgagattgacaccctgaagggcact
DES-Gly65Ser-R	gaccccaggctcccggccccg	DES Ala: R	5- 337Thr-	agtgcccttcagggtgtcaatctcgcagg
DES-Glu322Asp-F	agcaggagatgatggattaccgacaccagatcc	DES Leu F	5- 345Pro-	gcactaacgattccccgatgaggcagatgc g
DES-Glu322Asp-R ggatctggtgtcggtaatccatcatctcctgct		DES Leu R	5- 345Pro-	cgcatctgcctcatcggggaatcgttagtgc

A 3.4 DES protein sequence (NCBI, FASTA format)

desmin [Homo sapiens]

NCBI Reference Sequence: NP_001918.3

>gi|55749932|ref|NP_001918.3| desmin [Homo sapiens] MSQAYSSSQRVSSYRRTFGGAPGFPLGSPLSSPVFPRAGFGSKGSSSSVTSRVYQVSRTSGGAGGLGSLR ASRLGTTRTPSSYGAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEV NRLKGREPTRVAELYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLKEEAENNLAA FRADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQ YETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMR ELEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPI QTYSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

desmin [Mus musculus]

NCBI Reference Sequence: NP_034173.1

>gi|33563250|ref|NP_034173.1| desmin [Mus musculus] MSQAYSSSQRVSSYRRTFGGAPGFSLGSPLSSPVFPRAGFGTKGSSSSMTSRVYQVSRTSGGAGGLGSLR SSRLGTTRAPSYGAGELLDFSLADAVNQEFLATRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEVN RLKGREPTRVAELYEEEMRELRRQVEVLTNQRARVDVERDNLIDDLQRLKAKLQEEIQLREEAENNLAAF RADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQY ETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMRE LEDRFASEANGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPIQ TFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATOQOHEVL

desmin [Rattus norvegicus]

NCBI Reference Sequence: NP_071976.1

>gi|11968118|ref|NP_071976.1| desmin [Rattus norvegicus] MSQAYSSSQRVSSYRRTFGGAPGFSLGSPLSSPVFPRAGFGTKGSSSSVTSRVYQVSRTSGGAGGLGSLR ASRLGTTRAPSYGAGELLDFSLADAVNQEFLATRTNEKVELQELNDRFANYFEKVRFLEQQNAALAAEVN RLKGREPTRVAELYEEEMRELRRQVEVLTNQRARVDVERDNLIDDLQRLKAKLQEEIQLREEAENNLAAF RADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQY ETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMRE LEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPIQ TFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

desmin [Bos taurus] - cow

NCBI Reference Sequence: NP_001075044.1

>gi|126158909|ref|NP_001075044.1| desmin [Bos taurus] MSQAYSSSQRVSSYRRTFGGAPSFPLGSPLSSPVFPRAGFGTKGSSSSVTSRVYQVSRTSGGAGGLGALR ASRLGSTRVPSSYGAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEV NRLKGREPTRVAEIYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLKEEAENNLAA FRADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQ YETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMR ELEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPI QTFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

desmin [Sus scrofa] - pig
NCBI Reference Sequence: NP_001001535.1
>gi|48374063|ref|NP_001001535.1| desmin [Sus scrofa]
MSQAYSSSQRVSSYRRTFGGAPSFPLGSPLSSPVFPRAGFGTKGSSSSVTSRVYQVSRTSGGAGGLGPLR
ASRLGATRVPSSSYGAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAE

VNRLKGREPTRVAEIYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLKEEAENNLA AFRADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRA QYETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQM RELEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLP IQTFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

PREDICTED: desmin isoform 5 [Pan troglodytes] - chimp NCBI Reference Sequence: XP 526039.2

>gi|114583482|ref|XP_526039.2| PREDICTED: desmin isoform 5 [Pan troglodytes] MSQAYSSSQRVSSYRRTFGGAPGFPLGSPLSSPVFPRAGFGSKGSSSSVTSRVYQVSRTSGGAGGLGSLR ASRLGTTRTPSSYGAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEV NRLKGREPTRVAELYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLKEEAENNLAA FRADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQ YETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMR ELEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPI QTYSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

PREDICTED: LOW QUALITY PROTEIN: desmin [Gallus gallus] - chicken NCBI Reference Sequence: XP_004942895.1

>gi|513194584|ref|XP_004942895.1| PREDICTED: LOW QUALITY PROTEIN: desmin
[Gallus gallus]

MSQSYSSSQRVSSYRRTFGGGTSPVFPRASFGSRGSGSSVTSRVYQVSRTSAVPTLSTFRTTRVTPLRTY QSAYQGAGELLDFSLADAMNQEFLQTRTNEKVELQELNDRFANYIEKVRFLEQQNALMVAEVNRLRGKEP TRVAEMYEEELRELRRQVDALTGQRARVEVERDNLLDDLQKLKQRLQEEIQLKEEAENNLAAFRADVDAA TLARIDLERRIESLQEEIAFLKKVHEEEIRELQAQLQEQHIQVEMDISKPDLTAALRDIRAQYESIAAKN IAEAEEWYKSKVSDLTQAANKNNDALRQAKQEMLEYRHQIQSYTCEIDALKGTNDSLMRQMREMEERFAX EAGGYQDTIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEENRISIPMHQTFASAL NFRETCHDQRGTRCPPWALSQAIGQPWPHPWPPRPAHGARLSEPARPAQLLPRQVTASR

desmin [Danio rerio] – zebra fish

NCBI Reference Sequence: NP_001070920.1

>gi|116875779|ref|NP_001070920.1| desmin [Danio rerio] MSHSYASSSSSSYRRMFGGPGYMTPPMSRGVFGRASTGGSGSSRVSSRVYEVSKSSTSSPGFSGYRASS YSMPNLSAGYTRSYGGMGETLDFSLADALNQEFLHTRTNEKAELQHLNDRFANYIEKVRMLEQQNQVLGV EVERLRGREPTRIADLYEDEMRELRREVEVVTNHRSRVEVERDNLADDLQKLKLRLQEEIALREEAENNL SAFRADVDAATLARLDLERRIETLQEEIAFLKKIHEEEIRELQAQMQETQVQIQMDMSKPDLTAALRDIR AQYEGIAAKNIAEAEDWYKSKVSDLNQAVSKNNEALKQSKLETMEYRHQIQSYTCEIDSLKGSNESLMRQ MRDMEDRHGREAGALQDTIARLEAEIANMKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRIVM PMQSYSTISFRETSPEHQQRASEMHSKKTVLIKTIETRDGEVVSESTQHQQDLM

desmin [Xenopus laevis] – African clawed frog GenPept Graphics >gi|148224383|ref|NP_001080177.1| desmin [Xenopus laevis] MSQSYSSNQRASSYRRTFGGGSPSFSTRSSFGSKGASSSSVSSRVYQVSRSTAAPSLSSFRATRVAPVRS SYGADVLDFSLADAMNQEFLQTRTNEKVELQDLNDRFANYIEKVRYLEQQNQILVAEVNRLKGKEPTRVN ELYEEEMRELRRQVDLVTNQRARVEVERDNLVDDLQKLKQRLQEEIQLKEDAENNLAAFRGDVDAATLAR IDLERRIESLQEEIAFLKKIHEEEIRELQAQFQEQQLQVEIDVSKPDLTAALRDIRAQYENIAAKNVAEA EEWYKSKVSDLNQAAKKNNDAMRQSKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMRDLEEKFSGEAAG YQDTIGRLEEEIRNMKDEMARHLREYQDLLNVKMALDMEIATYRKLLEGEESRITLPIQTFSALSFRETS PEQRASEVHTKKTVMIKTIETRDGEVLSEASQQHQEIL

desmin [Xenopus (Silurana) tropicalis] – western clawed frog GenBank: CAJ82686.1

>gi|89272455|emb|CAJ82686.1| desmin [Xenopus (Silurana) tropicalis] MSQSYSSNQRVSSYRRTFGGGSPSFNTRTSFGSKGASSSSVSSRVYQVSRSSAAPSLSSFRATRVAPVRS SYGADVLDFSLADAMNQEFLQTRTNEKVELQELNDRFVNYIEKVRYLEQQNQILVAEVNKLKGKEPTRVN ELYEEEMRELRRQVDLATNQRSRVEVERDNLVDDLQKLKLRLQEEIQLKEDAENNLAAFRADVDAATLAR IDLERRIESLQEEIAFLKKIHEEEIRELQAQMQEQQLQVEIDVSKPDLTAALRDIRAQYENIAAKNVSEA EEWYKSKVSDLNQAAQKNNDSLRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMRDLEERFSGEAAG YQDSIGRLEEEIRNMKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRITLPIQTYSALSFRETS PEQRASEVHTKKTVMIKTIETRDGEVVSEASQQHQEIL

desmin [Canis lupus familiaris]

NCBI Reference Sequence: NP_001012394.1

>gi|59958381|ref|NP_001012394.1| desmin [Canis lupus familiaris] MSQAYSSSQRVSSYRRTFGGAGGFPLGSPLGSPVFPRAGFGTKGSSSSVTSRVYQVSRTSGGAGGLGALR AGRLGTGRAPSYSAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEVN RLKGREPTRVAEIYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLKEEAENNLAAF RADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQY ETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMRE MEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPIQ TYSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

desmin [Mesocricetus auratus] - Golden hamster

NCBI Reference Sequence: NP_001268541.1

>gi|528078510|ref|NP_001268541.1| desmin [Mesocricetus auratus] MSQAYSSSQRVSSYRRTFGGAPSFSLGSPLSSPVFPRAGFGTKGSSSSVTSRVYQVSRTSGGAGGLGSLR ASRLGSTRAPSYGAGELLDFSLADAVNQEFLATRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEVN RLKGREPTRVAELYEEEMRELRRQVEVLTNQRARVDVERDNLIDDLQRLKAKLQEEIQLREEAENNLAAF RADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQY ETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMRE LEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPIQ TFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL desmin [Papioanubis] – Olive Baboon

NCBI Reference Sequence: NP_001162488.1

>gi|281182830|ref|NP_001162488.1| desmin [Papioanubis] MSQAYSSSQRVSSYRRTFGGAPSFPLGSPLSSPVFPRAGFGSKGSSSSVTSRVYQVSRTSGGAGGLGSLR ASRLGTTRAPSSYGAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEV NRLKGREPTRVAELYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLKEEAENNLAA FRADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQ YETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMR ELEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPI QTFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

PREDICTED: desmin [Ovis aries] - Sheep

NCBI Reference Sequence: XP_004005001.1

>gi|426221609|ref|XP_004005001.1| PREDICTED: desmin [Ovis aries] MSQAYSSSQRVSSYRRTFGGAPSFPLGSPLSSPVFPRAGFGTKGSSSSVTSRVYQVSRTSGGAGGLGALR ASRLGSTRVPSSYGAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEV NRLKGREPTRVAEIYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLKEEAENNLAA FRADVDAATLARIDLERRIESLNEEIAFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQ YETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMR ELEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPI QTFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

PREDICTED: desmin [Mustela putorius furo] - Ferret

NCBI Reference Sequence: XP_004762908.1

>gi|511886224|ref|XP_004762908.1| PREDICTED: desmin [Mustela putorius furo] MSQAYSSSQRVSSYRRTFGGAGGFPLVSPLGSPVFPRAGFGTKGSSSSMMSRVYQVSRTSGGAGGLGALR ASRLGSARAPSSYGAGELLDFSLADAVNQEFLTTRTNEKVELQELNDRFANYIEKVRFLEQQNAALAAEV NRLKGREPTRVAEIYEEELRELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLQEEIQLREEAENNLAA FRADVDAATLARIDLERRIESLNEEIVFLKKVHEEEIRELQAQLQEQQVQVEMDMSKPDLTAALRDIRAQ YETIAAKNISEAEEWYKSKVSDLTQAANKNNDALRQAKQEMMEYRHQIQSYTCEIDALKGTNDSLMRQMR EMEDRFASEASGYQDNIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPI QTFSALNFRETSPEQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

desmin [Scyliorhinus stellaris] - Dog fish

GenBank: CAC83054.1

>gi|17221342|emb|CAC83054.1| desmin [Scyliorhinus stellaris] MSFATSASSSSYRRTFGGNLMGSPQMSRASYSGGRFGGGGGSNLSSRLLISKSSALPSYSSYRSKVPSRGY EVVDFNIADALNQEFVQTRTNEKAEMQHLNDRFASYIEKVRFLEQQNKVLVAEVNRLKGQEPGRVNDLYE QEMRDLRRQVDALTNEKVRVEVERDNLADDLLKLKQRLQDEIQLKEEAENTLAAFRHDVDAATLARLDLE RRIEALQEEIAFLKKVHEEELRELQAQLQEQHVQVEMDLSKPDLTAALRDIRAQYECISAKNVQEAEEWY KSKVSDLNQNATKNNDALRQAKQEVMEYRHQVQSYTCEIDALKGSNESLMRQMREMEERFAGEAAGYTDS IARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRIVVPVQSFSTLSFRETSPEQG HAAEVHTKKTVTIKTYETRDGEVISESSQHQQEIS PREDICTED: desmin [Columba livia] - Pigeon

NCBI Reference Sequence: XP_005498663.1

>gi|543714756|ref|XP_005498663.1| PREDICTED: desmin [Columba livia] MSQSYSSSQRVSSYRRTFGGSPVFGGSPVFPRASFGTKGSSGSSVTSRVYQVSRPSAVPSLSSFRTTRVT PLRSYQSAYQGAGELLDFSLADAMNQEFLQTRTNEKVELQELNDRFANYIEKVRFLEQQNALMVAEVNRL RGKEPTRVAEMYEEELRELRRQVDALTGQRARVEVERDNLLDDLQKLKQRLQEEIQLKEEAENNLAAFRA DVDAATLARIDLERRIESLQEEIAFLKKVHEEEIRELQAQLQEQHIQVEMDISKPDLTAALRDIRAQYES IAAKNIAEAEEWYKSKVSDLTQAANKNNDALRQAKQEMLEYRHQIQSYTCEIDALKGTNDSLMRQMREME ERFAGEAGGYQDTIARLEEEIRHLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEENRISIPMHQT FASALNFRETSPDQRGSEVHTKKTVMIKTIETRDGEVVSEATQQQHEVL

Appendix III

IPO11

62483049

T/A

intron

c.829-52T>A

_

Genomic Amino Gene position Allele Consequence cDNA change acid rs ID name (Grch38) change PDE4D 60414870 C/T intron c.-90+73072G>A rs1417982737 C/T PDE4D 60514741 intron c.-90+7310G>A _ rs551579921 DEPDC1B 60620943 G/A intron c.899-15087C>T rs1219158005 c.315-4435 315-/TTCCTCGT 4434insGACTAATATC DEPDC1B 60651967 ACATTGTG intron rs1301922761 CACAATGTACGAGGA GATATTAG A тс DEPDC1B т/-60698029 c.48+2017del _ rs200688717 intron rs560441905 ELOVL7 60763645 C/T c.499+582G>A intron ELOVL7 60763645 C/T downstream _ rs560441905 ELOVL7 60781147 T/A intron c.64+6187A>T rs780962916 ELOVL7 A/G 60817854 intron c.-35+26306T>C _ rs769320359 60819479 ELOVL7 T/G intron c.-35+24681A>C _ rs1020084770 c.127+5274 127+527 NDUFAF2 60950641 -/TT intron rs1309492733 5dup c.128-2497 128-NDUFAF2 61070627 -/CACT intron rs1244534996 2496insACTC NDUFAF2 T/C 61081266 c.217+8052T>C intron NDUFAF2 61105555 -/A intron c.258+6533dup rs903009606 NDUFAF2 G/A 61106478 intron c.258+7446G>A rs550373310 NDUFAF2 61111106 G/T intron c.258+12074G>T _ rs567494900 NDUFAF2 61122949 C/A intron c.258+23917C>A _ rs549354711 TTGTGTGT NDUFAF2 61143970 intron GTG/"TTG ZSWIM6 61358636 A/G intron c.676+25688A>G rs532353624 _ ZSWIM6 61364932 A/G _ intron c.676+31984A>G ZSWIM6 61405681 G/A intron c.677-67000G>A rs370544488 _ ZSWIM6 61429842 T/C intron c.677-42839T>C _ rs191357319 ZSWIM6 61431328 G/C intron c.677-41353G>C rs542792589 -ZSWIM6 61450372 A/G intron c.677-22309A>G rs370909643 ZSWIM6 T/G _ 61493707 intron c.1183-553T>G _ KIF2A 62330690 A/G intron c.-17-16440A>G _ _ rs1029470528 KIF2A 62362031 -/A intron c.947-405dup _ KIF2A 62376126 C/A intron c.1717-1535C>A _ _ c.447-1533 447-/TTTTTTTTT DIMT1 62396139 1532insAAAAAAAAA intron TTTTTTTTT ΑΑΑΑΑΑΑΑΑΑΑ TTT IPO11 62435857 c.-6-1417C>T _ rs546680169 C/T intron IPO11 62467980 C/G intron c.649+717C>G rs566722617 _

A 4.1 Rare gene variants identified at the 5q12-q14 locus (GLH5 family)

rs566434659

IPO11	62484873	с/т	intron	c 1175-546C>T	_	rs534167278
IPO11	62559598	-/T	intron	c.2461-1529dup	-	rs893248438
RNF180	64166125	, С/Т	intron	c1+172C>T	-	-
RNF180	64166125	C/T	upstream	-	-	-
RNF180	64174961	тт/-	intron	c1+9031 1+9032del	-	-
RNF180	64192939	- /TATATATA TATATAT	intron	c.1-7869_1- 7868insTATATATATA TATAT	-	rs1554028955
RNF180	64201324	T/C	intron	c.135+382T>C	-	rs138388925
RNF180	64224074	GTGTGTGT GTGT/-	intron	c.1227+6697_1227+6 708del	-	rs10694125
RNF180	64228915	-/TTTT	intron	c.1227+11540_1227+ 11543dup	-	rs373212886
RNF180	64239690	G/A	intron	c.1227+22294G>A	-	-
RNF180	64255025	A/G	intron	c.1227+37629A>G	-	rs559505101
RNF180	64260113	A/G	intron	c.1227+42717A>G	-	rs754572276
RNF180	64282635	A/C	intron	c.1228-42551A>C	-	-
SHISAL2B	64713513	G/A	intron	c.350-4376G>A	-	rs796225858
SREK1IP1	64743207	A/G	intron	c.62-2007T>C	-	-
SREK1IP1	64752144	-/TTTTTTT	intron	c.61+2170_61+2171i nsAAAAAAA	-	-
CWC27	64786878	A/T	intron	c.599+251A>T	-	rs147048868
CWC27	64834827	G/A	intron	c.938+30441G>A	-	rs145213940
CWC27	64839938	G/C	intron	c.938+35552G>C	-	rs191914678
CWC27	64840211	C/A	intron	c.938+35825C>A	-	-
CWC27	64850225	- /AAAAAAA AAAA	intron	c.939-35209_939- 35208insAAAAAAA AAA	-	rs61174118
CWC27	64891767	A/G	intron	c.1042+6221A>G	-	rs1214406432
CWC27	64991454	G/A	intron	c.1256+14216G>A	-	-
ADAMTS6	65179448	C/A	intron	c.2911-6440G>T	-	rs10940017
ADAMTS6	65217862	A/G	intron	c.2273-2375T>C	-	rs372153259
ADAMTS6	65230880	-/AT	intron	c.1934-4663_1934- 4662dup	-	-
ADAMTS6	65236145	T/C	intron	c.1933+5959A>G	-	rs373248800
ADAMTS6	65280708	TTTTA/-	intron	c.1513-7261_1513- 7257del	-	rs373879665
ADAMTS6	65284955	T/C	intron	c.1512+6374A>G	-	rs375128376
ADAMTS6	65318753	G/A	intron	c.1223+10625C>T	-	-
ADAMTS6	65337050	G/C	intron	c.1074-2965C>G	-	rs369308235
ADAMTS6	65361479	C/T	intron	c.1074-27394G>A	-	rs369842353
ADAMTS6	65442633	-/A	intron	c.1073+8841dup	-	rs942019307
CENPK	65524680	-/A	intron	c.598-3153dup	-	rs753826622
CENPK	65547222	G/A	intron	c.241+4342C>T	-	rs371367880
CENPK	65554836	A/T	synonymous	c.72T>A	p.Leu24% 3D	-
CENPK	65554836	A/T	5' UTR	c19T>A	-	-
CENPK		1	l			
	65554836	A/T	intron	c.49+6627T>A	-	-

TRIM23	65603314	G/A	intron	c.1179+1597C>T	-	rs373915607
TRAPPC13	65634016	T/C	intron	c.47-1285T>C	-	rs1449725778
TRAPPC13	65635742	T/C	intron	c.116-202T>C	-	rs548523343
TRAPPC13	65641125	G/T	intron	c.300+3345G>T	-	rs536727768
TRAPPC13	65646860	G/A	intron	c.301-195G>A	-	rs536535119
TRAPPC13	65650274	G/A	intron	c.429-536G>A	-	-
TRAPPC13	65666110	A/G	downstream	-	-	-
SGTB	65666110	A/G	3' UTR	c.*4136T>C	-	-
TRAPPC13	65666110	A/G	3' UTR	c.*1499A>G	-	-
SGTB	65678213	C/T	intron	c.681+2281G>A	-	rs375985377
SGTB	65698614	G/T	intron	c.374+5665C>A	-	rs368877824
NLN	65739432	G/A	intron	c.41+17018G>A	-	rs373309140
NLN	65775621	C/T	intron	c.451-1806C>T	-	rs557865360
NLN	65802436	G/A	intron	c.1528-7079G>A	-	rs375302124
NLN	65806639	A/G	intron	c.1528-2876A>G	-	rs375958689
NLN	65832015	AA/-	intron	c.777+19640_777+19 641del	-	rs35924843
NLN	65832026	A/T	intron	c.777+19635A>T	-	rs986153678
NLN	65835124	T/C	intron	c.777+22733T>C	-	-
ERBIN	65959188	-/T	intron	c57-29437dup	-	rs929688196
ERBIN	65966715	C/A	intron	c57-21920C>A	-	rs1345572844
ERBIN	65972431	C/T	intron	c57-16204C>T	-	rs553806449
ERBIN	66007548	AA/-	intron	c.308-4490_308- 4489del	-	rs34972803
ERBIN	66010830	G/T	intron	c.308-1219G>T	-	rs549522123
ERBIN	66022212	T/C	intron	c.597+827T>C	-	rs371091766
ERBIN	66031860	G/T	intron	c.1206+3517G>T	-	rs189365089
ERBIN	66040147	C/T	intron	c.1306+1665C>T	-	rs557018075
ERBIN	66041936	A/T	intron	c.1307-1141A>T	-	-
ERBIN	66052089	C/G	intron	c.2087+1123C>G	-	rs370332842
ERBIN	66063562	G/A	intron	c.3634-8607G>A	-	rs1008481856
SREK1	66140881	C/T	intron	c312+870C>T	-	-
SREK1	66148494	T/C	intron	c.161+3957T>C	-	rs376686015
SREK1	66164240	G/A	intron	c.886+318G>A	-	rs372614474
SREK1	66184040	-/A	downstream	-	-	rs559216238
MAST4	66643693	-/T	intron	c.363+46684dup	-	rs1330225216
MAST4	66671861	C/T	intron	c.363+74843C>T	-	rs527420482
MAST4	66724523	C/T	intron	c.364-35186C>T	-	-
MAST4	66729129	T/C	intron	c.364-30580T>C	-	-
MAST4	66789992	тттт/-	intron	c.642+1221_642+122 4del	-	rs57743987
MAST4	66793437	T/G	intron	c.642+4643T>G	-	-
MAST4	66907159	AGCG/-	intron	c.674+7176_674+717 9del	-	-
MAST4	66991743	C/T	intron	c.675-62661C>T	-	-
MAST4	67026246	C/G	intron	c.92+21161C>G	-	rs767507219
MAST4	67085731	G/A	intron	c.182-4431G>A	-	rs183409029

CD180	67182182	C/T	3' UTR	c.*675G>A	-	-
CD180	67182182	C/T	downstream	-	-	-
PIK3R1	68214949	AA/-	upstream	-	-	rs1316900119
PIK3R1	68217667	СТ/-	intron	c387+1717 387+1718del	-	-
PIK3R1	68217669	- /GCGCGCG G	intron	c387+1721 387+1722insCGCGCG GG	-	-
PIK3R1	68227325	TTATAGG/-	intron	c.334+310_334+316d el	-	-
PIK3R1	68227327	G/-	intron	c.334+319del	-	-
PIK3R1	68227328	G/C	intron	c.334+319G>C	-	-
PIK3R1	68227617	A/G	intron	c.334+608A>G	-	rs530731247
PIK3R1	68237893	G/A	intron	c.334+10884G>A	-	-
PIK3R1	68246463	C/T	intron	c.40+6526C>T	-	rs1383695692
PIK3R1	68260815	A/G	intron	c.41-12575A>G	-	rs546497626
PIK3R1	68294742	A/T	intron	c.668+64A>T	-	rs535033913
PIK3R1	68294742	A/T	downstream	-	-	rs535033913
PIK3R1	68297199	T/C	intron	c.1086-213T>C	-	rs1166065523
SLC30A5	69111446	A/C	intron	c.448-1694A>C	-	rs560440158
SLC30A5	69120664	T/C	intron	c.1570-1030T>C	-	rs371242858
SLC30A5	69131122	G/C	downstream	-	-	rs749487065
CENPH	69190662	-/TTAA	intron	c.134+895_134+898d up	-	-
MRPS27	72242429	A/-	intron	c.282-4301del	-	rs750987632
MRPS27	72264541	A/G	intron	c.282-26413T>C	-	-
MRPS27	72287042	A/C	intron	c.281+8489T>G	-	rs1055365435
PTCD2	72360798	C/T	3' UTR	c.*2371C>T	-	-
PTCD2	72362653	A/G	3' UTR	c.*4226A>G	-	rs531904274
ZNF366	72450872	G/A	intron	c.1525-3455C>T	-	-
TNPO1	72876255	G/A	intron	c.801+518G>A	-	rs542656367
FCHO2	72983922	T/C	intron	c.126-5505T>C	-	rs555520675
FCHO2	73032615	GAT/-	intron	c.797-2037_797- 2035del	-	rs546964572
TMEM171	73123849	G/C	missense	c.476G>C	p.Gly159A la	COSV55129751
UTP15	73580757	-/T	3' UTR	c.*675dup	-	rs1034231085
UTP15	73580757	-/T	downstream	-	-	rs1034231085
ARHGEF2 8	73676239	TG/-	intron	c11-860211- 8601del	-	rs202060147
ARHGEF2 8	73805673	T/C	intron	c.1024+10282T>C	-	-
ARHGEF2 8	73810450	T/C	intron	c.1024+15059T>C	-	-
ARHGEF2 8	73822480	A/T	intron	c.1025-9858A>T	-	-
ARHGEF2 8	73841946	TTATC/-	intron	c.1427+1186_1427+1 190del	-	-
ARHGEF2 8	73891339	С/Т	intron	c.3388-713C>T	-	rs1561489660
ENC1	74634415	AAT/-	intron	c.*32+269_*32+271d el	-	rs552080426

НЕХВ	74661013	GA/-	intron	c377+20472	-	rs141154481
HEXB	74661234	A/G	intron	377+20473del		rs79151517
TIEXD	74001234			c376-6952 -376-		137 3434347
НЕХВ	74682361	-/AAAAC	intron	6948dup	-	-
HEXB	74700105	C/T	intron	c.669+2999C>T	-	rs559089327
НЕХВ	74708621	AAAA/-	intron	c.771+3301_771+330 4del	-	-
NSA2	74766304	A/T	upstream	-	-	rs567010282
GFM2	74766304	A/T	intron	c25+634T>A	-	rs567010282
NSA2	74773802	C/T	intron	c.523-2802C>T	-	rs554698672
FAM169A	74838580	A/C	intron	c.318+385T>G	-	-
FAM169A	74838580	A/C	downstream	-	-	-
GCNT4	75034971	C/A	intron	c1-4933G>T	-	rs1255318909
GCNT4	75048995	C/T	intron	c142-958G>A	-	rs552931788
ANKRD31	75093209	G/A	intron	c.5161-1808C>T	-	rs139159707
ANKRD31	75097085	G/C	intron	c.5161-5684C>G	-	rs1043701326
ANKRD31	75154293	T/C	missense	c.1760A>G	p.Asp587 Gly	rs768240858
ANKRD31	75160751	C/T	intron	c.1708-6406G>A	-	rs1018560474
ANKRD31	75210515	A/G	intron	c.326+313T>C	-	rs575769762
ANKRD31	75217332	C/A	intron	c.288+4917G>T	-	rs186514757
HMGCR	75337270	G/-	5' UTR	c51del	-	rs1412704333
HMGCR	75337270	G/-	upstream	-	-	rs1412704333
HMGCR	75337270	G/-	intron	c24+656del	-	rs1412704333
CERT1	75382099	T/C	intron	c.1489-22A>G	-	rs554480700
COL4A3BP	75382099	T/C	intron	c.1873-22A>G	-	rs554480700
CERT1	75400704	TTATATATA A/-	intron	c.1018-407_1018- 398del	-	-
CERT1	75400704	TTATATATA A/-	upstream	-	-	-
COL4A3BP	75400704	TTATATATA A/-	intron	c.1402-407_1402- 398del	-	-
CERT1	75415766	-/T	intron	c.837+1109dup	-	rs1235931030
COL4A3BP	75415766	-/T	intron	c.1221+1109dup	-	rs1235931030
POLK	75532458	-/T	intron	c13-14540dup	-	rs745417117
POLK	75576972	-/A	intron	c.694+50dup	-	rs748170450
POLK	75588764	A/G	intron	c.1260-1580A>G	-	rs920822377
POLK	75591417	A/G	intron	c.1356+977A>G	-	-
POLK	75591417	A/G	downstream	-	-	-
POLK	75606432	T/C	downstream	-	-	-
ANKDD1B	75642787	TG/-	intron	c.798+6904_798+690 5del	-	-
ANKDD1B	75643440	T/C	intron	c.798+7558T>C	-	rs1282424
POC5	75693241	T/C	intron	c.691-741A>G	-	rs1458542557
POC5	75706569	-/T	intron	c.224-783dup	-	rs796946990
POC5	75717964	A/C	upstream	-	-	rs190691992
SV2C	75876130	T/C	intron	c102+27642T>C	-	rs1413582775
SV2C	75881815	C/T	intron	c102+33327C>T	-	rs1246271886
SV2C	75882089	C/-	intron	c102+33601del	-	rs1284048891
----------------	----------	------	----------	------------------------------	-----------------	--------------
SV2C	75882176	G/T	intron	c102+33688G>T	-	rs937118128
SV2C	75882177	A/T	intron	c102+33689A>T	-	rs1243043186
SV2C	75882202	G/A	intron	c102+33714G>A	-	rs1457993182
SV2C	75947436	C/T	intron	c102+98948C>T	-	rs1306944684
SV2C	76035226	-/T	intron	c101-96413dup	-	rs1181946600
SV2C	76077198	T/C	intron	c101-54452T>C	-	-
SV2C	76113889	C/T	intron	c101-17761C>T	-	rs149527206
SV2C	76170148	T/G	intron	c.581-24771T>G	-	rs546317209
SV2C	76257320	-/GT	intron	c.914-27832_914- 27831dup	-	-
SV2C	76312266	G/T	intron	c.2000+10721G>T	-	rs370142721
IQGAP2	76484806	TC/-	intron	c.146+23151_146+23 152del	-	rs1297304528
IQGAP2	76568833	A/G	intron	c.304-1747A>G	-	rs553611224
IQGAP2	76572836	A/G	intron	c.381+2179A>G	-	rs1038855554
IQGAP2	76610041	G/T	intron	c.1358-979G>T	-	rs1001249761
IQGAP2	76618250	G/C	intron	c.1521+7067G>C	-	rs762944161
F2RL2	76618250	G/C	missense	c.457C>G	p.His153A sp	rs762944161
IQGAP2	76650847	C/T	intron	c.2095-1903C>T	-	rs531481245
ZBED3	77083842	G/A	intron	c153+3269C>T	-	rs768652733
AC022414 .1	77147136	T/G	intron	c34+28615T>G	-	-
PDE8B	77315048	A/G	intron	c.399+2995A>G	-	rs764026369
AC022414 .1	77315048	A/G	intron	c.27+2995A>G	-	rs764026369
PDE8B	77392057	A/G	intron	c.1168-8191A>G	-	-
AC022414 .1	77392057	A/G	intron	c.796-8191A>G	-	-
WDR41	77478444	G/A	intron	c.167+11013C>T	-	rs779081277
WDR41	77493075	A/G	upstream	-	-	-
WDR41	77493075	A/G	intron	c.43-3503T>C	-	-
WDR41	77549083	G/A	intron	c.43-59511C>T	-	rs549986895
WDR41	77570601	T/A	intron	c.42+49878A>T	-	rs1180719903
WDR41	77602243	G/A	intron	c.42+18236C>T	-	rs371634531
WDR41	77611284	C/A	intron	c.42+9195G>T	-	rs1334574621
ОТР	77635398	A/C	intron	c.447+1423T>G	-	-
ТВСА	77790697	A/G	intron	c20+77937T>C	-	rs76581280
ТВСА	77799832	G/-	intron	c20+68802del	-	rs543181854
ТВСА	77841824	T/A	intron	c20+26810A>T	-	-
ТВСА	77845100	T/G	intron	c20+23534A>C	-	-
ТВСА	77850916	G/A	intron	c20+17718C>T	-	-
AP3B1	78122835	G/T	intron	c.1968+5195C>A	-	-
AP3B1	78122842	A/C	intron	c.1968+5188T>G	-	-
AP3B1	78164789	A/G	intron	c.1230+821T>C	-	rs576629360
AP3B1	78275483	-/T	intron	c.129-7889dup	-	rs935681124
LHFPL2	78533227	T/C	intron	c185-22829A>G	-	rs573970161

LHFPL2	78563401	G/C	intron	c186+1412C>G	-	rs539227969
LHFPL2	78600652	C/T	intron	c245+31612G>A	-	rs1382660712
LHFPL2	78647829	-/A	intron	c350+669dup	-	rs1009848200
LHFPL2	78647829	-/A	upstream	-	-	rs1009848200
LHFPL2	78704961	TGTGATAG ATGTG/-	intron	c350+13123 350+13135del	-	rs1221883063
LHFPL2	78713154	G/A	intron	c350+4930C>T	-	rs1410113712
LHFPL2	78713313	G/T	intron	c350+4771C>A	-	rs1174823208
LHFPL2	78713314	A/T	intron	c350+4770T>A	-	rs1376656994
LHFPL2	78713340	T/C	intron	c350+4744A>G	-	rs1351828225
LHFPL2	78713347	C/T	intron	c350+4737G>A	-	rs1300181766
ARSB	78847235	тсс/-	intron	c.1143-7809_1143- 7807del	-	-
ARSB	78860954	C/A	intron	c.1143-21528G>T	-	rs535028539
ARSB	78871220	C/T	intron	c.1142+14364G>A	-	rs1296152883
ARSB	78930777	A/G	intron	c.898+24518T>C	-	-
ARSB	78965599	C/G	intron	c.500-993G>C	-	-
DMGDH	79054023	C/T	intron	c.540+161G>A	-	-
JMY	79258917	C/T	intron	c.1033-18993C>T	-	-
JMY	79275174	T/C	intron	c.1033-2736T>C	-	rs79342964
JMY	79282501	A/C	intron	c.1206+4418A>C		
JMY	79293624	A/G	intron	c.1527+2325A>G	-	rs181427991
HOMER1	79375001	C/T	downstream	1		rs533348338
HOMER1	79375001	C/T	3' UTR	c.*1008G>A)8G>A - rs53	
HOMER1	79427370	-/T	intron	c.294+23619dup - rs		rs550570484
HOMER1	79441898	C/T	intron	c.294+9092G>A	-	-
HOMER1	79483392	т/С	intron	c.6-26374A>G	-	-
TENT2	79658765	T/C	intron	c.1071+1764T>C	-	-
PAPD4	79658765	т/с	intron	c.1071+1764T>C	-	-
TENT2	79670386	G/A	intron	c.1208+1358G>A	-	rs532297293
PAPD4	79670386	G/A	intron	c.1208+1358G>A	-	rs532297293
CMYA5	79713292	GCTGCA/-	intron	c.150-15628_150- 15623del	-	-
CMYA5	79713296	C/G	intron	c.150-15619C>G	-	-
CMYA5	79718398	AT/-	intron	c.150-10514_150- 10513del	-	rs541182855
CMYA5	79730596	C/A	missense	c.1831C>A	p.Gln611L ys	rs373188852
CMYA5	79748528	CCTATCTAT /"CCTAT	intron	-	-	-
THBS4	79997406	TA/-	intron	c229-922229- 921del	-	rs1028195063
THBS4	80005791	G/T	intron	c186+7416G>T	-	rs539947461
THBS4	80064971	A/-	intron	c.1126-438del	-	-
THBS4	80083825	G/A	downstream	-	-	-
SERINC5	80169971	G/T	intron	c.552-425C>A	-	rs924450804
SERINC5	80183313	G/A	intron	c.196-5249C>T	-	rs1025938379
SERINC5	80191480	A/-	intron	c.195+11406del	-	rs1167390197

SERINC5	80195362	T/G	intron	c 195+75244>C	-	_
SERINC5	80232321	A/G	intron	c 27+23575T>C	-	rs550944856
SERINC5	80232322	A/T	intron	c.27+23574T>A	-	rs576955815
SERINC5	80244068	G/T	intron	c 27+11828C>A	-	rs556483749
ZFYVE16	80448413	G/T	intron	c.3103+9G>T	-	rs543112994
75/0/510	00475400		intern	c.4461+652_4461+65		
ZFYVE16	80475488	TCAGTTC/-	Intron	8del	-	-
FAM151B	80534677	G/A	intron	c.672-6996G>A	-	rs1212217745
ANKRD34 B	80570376	С/Т	upstream	-	-	rs554996227
DHFR	80626857	TTT/-	3' UTR	c.*2230_*2232del	-	-
DHFR	80628209	-/A	3' UTR	c.*877dup	-	rs547127745
DHFR	80628209	-/A	downstream	-	-	rs547127745
DHFR	80646634	T/C	intron	c.242+2755A>G	-	rs547440317
MSH3	80708055	A/G	intron	c.1341-17398A>G	-	rs530827133
MSH3	80709237	G/A	intron	c.1341-16216G>A	-	rs553843898
МЅНЗ	80725217	AAA/-	intron	c.1341-222_1341- 220del	-	rs33919693
MSH3	80812211	C/T	intron	c.2656-1373C>T	-	rs547059748
MSH3	80814143	AAAAAAC/-	intron	c.2813+401_2813+40 7del	.813+401_2813+40 - rs13	
RASGRF2	80960476	G/T	5' UTR	c263G>T -		-
RASGRF2	80960476	G/T	upstream	-	-	-
RASGRF2	80992266	A/G	intron	c.288+31240A>G -		rs1433070682
RASGRF2	80994355	C/G	intron	c.288+33329C>G	9C>G - rs537	
RASGRF2	80994360	T/C	intron	c.288+33334T>C	288+33334T>C -	
RASGRF2	81049206	G/-	intron	c.395+6223del	-	rs1336139340
ZCCHC9	81310161	TAAAA/"T	intron	-	-	-
ACOT12	81310161	TAAAA/"T	3' UTR	-	-	-
ACOT12	81339256	G/A	intron	c.1129-3355C>T	-	rs530539279
ACOT12	81354764	T/C	intron	c.496+5139A>G	-	rs555172952
SSBP2	81592876	C/A	intron	c.282+22597G>T	-	rs570146211
SSBP2	81643999	G/T	intron	c.135+6268C>A	-	-
SSBP2	81677829	G/T	intron	c.63-27490C>A	-	-
SSBP2	81712362	- /GATTTCTG GCTAAGGA TGGTAGGT TGAACTTA CATTTAC	intron	c.62+38618_62+3861 9insGTAAATGTAAGT TCAACCTACCATCCTT AGCCAGAAATC		rs141328482
ATG10	82005316	A/C	intron	c.108+17638A>C	-	rs528284827
ATG10	82071052	C/T	intron	c.216+12450C>T	-	rs538130951
ATG10	82077025	C/T	intron	c.216+18423C>T	-	rs557106821
ATG10	82106067	C/A	intron	c.216+47465C>A	-	-
ATG10	82127813	C/T	intron	c.217-36586C>T	-	rs192417385
ATG10	82141850	-/A	intron	c.217-22537dup	-	rs949240420
ATG10	82220411	C/T	intron	c.454-32151C>T	-	rs568446204
RPS23	82273305	-/A	downstream			-

ATP6AP1L	82312089	C/T	intron	c.132-522C>T	-	rs562662347
ATP6AP1L	82312089	C/T	3' UTR	c.*225C>T	-	rs562662347
TMEM167 A	83056822	G/A	3' UTR	c.*262C>T	-	rs569130199
TMEM167 A	83068259	A/C	intron	c.4-3142T>G	-	rs559264486
XRCC4	83209091	GTGTGTGT /-	intron	c.745+4194_745+420 1del	-	rs35019637
XRCC4	83267480	A/T	intron	c.893+8803A>T	-	-
XRCC4	83300270	G/A	intron	c.893+41593G>A	-	rs558960212
VCAN	83479244	A/C	intron	c6-4269A>C	-	-
VCAN	83479245	A/C	intron	c6-4268A>C	-	-
VCAN	83479246	A/C	intron	c6-4267A>C	-	-
VCAN	83509942	A/G	intron	c.749-2161A>G	-	rs544245229
VCAN	83553242	A/G	intron	c.9494-122A>G	-	rs544957308
VCAN	83572389	A/G	intron	c.9736-27A>G	-	rs541600152
HAPLN1	83651679	G/C	intron	c.472+774C>G	-	rs113959569
HAPLN1	83651679	G/C	downstream	-	-	rs113959569
HAPLN1	83661579	G/T	intron	c.101-8755C>A	-	rs570810208
HAPLN1	83719505	C/A	intron	c27+1284G>T	-	-
EDIL3	83947867	G/A	intron	c.1294-4299C>T	-	rs184311438
EDIL3	83965484	T/C	intron	c.1138-2124A>G	-	rs560824443
EDIL3	84013300	T/G	intron	c.1137+47000A>C	-	rs571134136
EDIL3	84047772	C/G	intron	c.1137+12528G>C	-	rs1044847411
EDIL3	84149607	A/T	intron	c.356-12253T>A	-	rs1159018142
EDIL3	84238693	T/C	intron	c.197-8809A>G	-	-
EDIL3	84293780	Т/-	intron	c.68-39568del	-	rs1044967360
EDIL3	84341836	C/A	intron	c.67+42472G>T	-	-

A 4.2 Primer pairs for the PCR- and Sanger-based sequencing experiments

GLH5-WGS variant primers			
Name	Sequence (5'-3')		
TRAPPC13-3'UTR-F	gctattctattttggtaagttg		
TRAPPC13-3'UTR-R	agatcctttctaagatggcatt		
CD180-3'UTR-F	cactacccaccccactaca		
CD180-3'UTR-R	cctgagaaccaaaccacgat		
PTDC2-3'UTRa-F	tgataggcatttcattcttt		
PTDC2-3'UTRa-R	aaaaacaatctacaaaagcaca		
PTDC2-3'UTRb-F	ttcccagccttcagaactgt		

TMEM171 gene sequencing primers				
Name	Sequence (5'-3')			
TMEM171-Exon-2a-F	gcctcattgtggtgtgatttc			
TMEM171-Exon-2a-R	cagttggagccacatccag			
TMEM171-Exon-2b-F	tttgcccagtgccttatc			
TMEM171-Exon-2b-R	ccagacgagaaccaagagc			
TMEM171-Exon-3-F	gcttccatttattacccacctg			

GLH5-WGS variant primers			
Name	Sequence (5'-3')		
PTDC2-3'UTRb-R	tttcacaaccaagtccattctt		
HOMER1-3'UTR-F	caactaacgaaggcagctgag		
HOMER1-3'UTR-R	ttcactgagaagagcctattga		
RASGRF2-5'UTR-F	ttgccctttaaatcggtctc		
RASGRF2-5'UTR-R	gttgtagcgcacgctcttct		
TMEM167A-3'UTR-F	ctcttttatctccgaacattga		
TMEM167A-3'UTR-R	ccagaggaaaagcaagcact		

TMEM171 cDNA primers			
Name	Sequence (5'-3')		
TMEM171-Insert-1F	ggacagacacgtcagcaaac		
TMEM171-Insert-1R	cggctctctccacagatgaa		
TMEM171-Insert-2F	gcccagtgccttatctttgg		
TMEM171-Insert-2R	tagttccaggactctcagcg		
TMEM171-Insert-3F	cccctccaccaccttacttt		

TMEM171-Exon-3-R	tcacacttgaatgcctcctg
TMEM171-Exon-4-F	gttttcatcccctcccttc
TMEM171-Exon-4-R	gaagcactaatggctggaatc

TMEM171-Insert-3R gtgggaaggctcagaagat

A 4.3 Primer pairs used for cloning and site-directed mutagenesis reactions (SDM)

TMEM171 cloning primers				
Name	Sequence (5'-3')			
pcDNA3.1-T	MEM171			
TMEM171- clone-F	gctggctagcgccaccatgtctcctgcagctgctgct			
TMEM171- clone-R	tagactcgagttacggtggggaaggctcaga			
3X-FIAG-TMEM171				
Tmem171- 3x-flag- NotI-FP	gctggcggccgccatgtctcctgcagctgc			

TMEM171 interactor cloning primers				
Name	Sequence (5'-3')			
EGFPN1 – SM	IAP25			
SNAP25-				
EGFPN1-	gctgctcgaggccaccatggccgaagacgcagac			
Xhol-FP				
SNAP25-				
EGFPN1-	tctagaccgcggaccacttcccagcatc			
SacII-RP				
3X-FIAG-TMEM171				
Tmem171-				
3x-flag-	tctagaggatccttacggtggggaaggctcag			
BamHI-RP				

	TMEM171 SDM primers		TMEM171 SDM primers		
Name	Sequence (5'-3')	Name	Sequence (5'-3')		
TMEM171- Q90R-F	gctccgtgcagggctgcggagaggtcagcagatgg	TMEM171- 46X-SDM- F	atctttgggttccaggcataacaatataagcccctcccag		
TMEM171- Q90R-R	ccatctgctgacctctccgcagccctgcacggagc	TMEM171- 46X-SDM- R	ctgggaggggcttatattgttatgcctggaacccaaagat		
TMEM171- R156W-F	ctggcgactcagagccctggatgtgtgggttcctt	TMEM171- 81X-SDM- F	cgctcccgggcgtaacttcagctcc		
TMEM171- R156W-R	aaggaacccacacatccagggctctgagtcgccag	TMEM171- 81X-SDM- R	ggagctgaagttacgcccgggagcg		
TMEM171- G159A-F	agagccccggatgtgtgcgttcctttctctgcaga	TMEM171- 138X- SDM-F	ctggatgtggctcctaatgggcgcaggaacc		
TMEM171- G159A-R	tctgcagagaaaggaacgcacacatccggggctct	TMEM171- 138X- SDM-R	ggttcctgcgcccattaggagccacatccag		
TMEM171- C67T- SDM-F	cacgtcagcaaactcatcttctgcttctttgtcttcg	TMEM171- 184X- SDM-F	cgtggttgcccatgttaagtaaagaaacacgctgaatgctg		
TMEM171- C67T- SDM-R	cgaagacaaagaagcagaagatgagtttgctgacgtg	TMEM171- 184X- SDM-R	cagcattcagcgtgtttctttacttaacatgggcaaccacg		

A 4.4 TMEM171 rare pathogenic variants identified in the Epi25 consortium study

Chr position	cDNA position	Amino acid position	Consequence	Allele count Case	Allele number Case	MAF gnomAD v2
72419280	c.80T>C	p.Val27Ala	missense	1	18340	0.0004
72419319	c.119C>T	p.Ser40Phe	missense	2	18340	0.00005

72419379	c.179A>G	p.Lys60Arg	missense	3	18340	0.00007
72419385	c.185C>A	p.Ala62Glu	missense	1	18340	_
72419433	c.233G>A	p.Arg78His	missense	1	18340	0.00006
72419474	c.274G>A	p.Gly92Ser	missense	1	18340	0.000007
72419523	c.323A>G	p.Gln108Arg	missense	1	18340	_
72419528	c.328G>T	p.Ala110Ser	missense	1	18340	_
72419567	c.367G>A	p.Gly123Ser	missense	1	18340	0.0001
72419574	c.374T>C	p.Leu125Pro	missense	1	18340	_
72419612	c.414delC	p.Asn139ThrfsTer7	loss of function	1	18340	0.00001
72419660	c.460G>C	p.Glu154Gln	missense	1	18340	_
72419709	c.509T>C	p.lle170Thr	missense	2	18340	0.00005
72419744	c.544C>T	p.His182Tyr	missense	1	18338	0.000003
72419763	c.563C>T	p.Thr188Met	missense	2	18338	0.00004
72424209	c.641-8T>C	_	splice region	1	18338	_
72424210	c.641- 5dupC	-	splice region	1	18336	0.00002
72424211	c.641-6C>T	_	splice region	1	18338	0.000007
72424239	c.668delC	p.Pro223LeufsTer123	loss of function	4	18338	0.0001
72424243	c.667C>T	p.Pro223Ser	missense	2	18340	0.000003
72424325	c.755delC	p.Pro252LeufsTer94	loss of function	1	18336	0.0005
72427421	c.839C>A	p.Thr280Asn	missense	1	18320	0.00005
72427477	c.895G>T	p.Glu299Ter	loss of function	2	18332	0.00003

A 4.5 TMEM171protein sequence (NCBI, FASTA format)

transmembrane protein 171 isoform 1 [Homo sapiens]

NCBI Reference Sequence: NP_775761.4

>gi|239735596|ref|NP_775761.4| transmembrane protein 171 isoform 1 [Homo sapiens]

MSPAAAAEPDGDQQDRHVSKLIFCFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCPMVLKVAGPACAVVG LGAVILARSRAQLQLRAGLQRGQQMDPDRAFICGESRQFAQCLIFGFLFLTSGMLISVLGIWVPGCGSNW AQEPLNETDTGDSEPRMCGFLSLQIMGPLIVLVGLCFFVVAHVKKRNTLNAGQDASEREEGQIQIMEPVQ VTVGDSVIIFPPPPPYFPESSASAVAESPGTNSLLPNENPPSYYSIFNYGRTPTSEGAASERDCESIYT ISGTNSSSEASHTPHLPSELPPRYEEKENAAATFLPLSSEPSPP

transmembrane protein 171 [Mus musculus]

NCBI Reference Sequence: NP_001020777.1

>gi|71037373|ref|NP_001020777.1| transmembrane protein 171 [Mus musculus] MSSVGTAEPDGDQRDRHVSKLIFFLFVFGAALLCVGVLLSIFGYQACQYKPLSHCSIVLKIAGPSCAVVG LGAVILARSRARLHLRERQRQGLQDPDQSFFCGESRQFAQCLIFGFLFLTSGMLISILGIWVPGCDSDWA QEPLNETNTGEGEPQICGFLSLQIMGPLVVLVGLCFFVVAHVKKKNNLSSSRDTSEVEGGHAHSTEPVHI TVGDSVIIFPPPPPPYFPESSAAAPSPGANSLHQIENPPSYSSLFNYGTPTPENQGAASEREQELIYTIS GQGSSSERSYTGHLPLDLPPRYEEKETAPATPLGAPSDASPP

transmembrane protein 171 [Rattus norvegicus]
NCBI Reference Sequence: NP_001013925.1
>gi|62079273|ref|NP_001013925.1| transmembrane protein 171 [Rattus
norvegicus]
MSSVGTAEPDGDQRDRQVSKLIFFLFVFGAVLLCVGVLISIFGYQACQYKPLSHCSMVLKIAGPSCAVMG

LGTVILARSRARLQLRERQRQGHQDPDQSFFCGESRQFAQCLIFGFLFLTSGMLISILGIWVPGCGSDWA QEPLNETNSGEGEPQICSFLSLQIMGPLIVLVGLCFFVVAHVKKKSNLSSSRDTSEIEGGHTHSTEPVHI TVGDSVIIFPPPPPPYFAESSAAAPSPGANSLHRIENPPSYSSLFNLSRTPTPENQGAASERDREVIYTI SGPGSSSESSHTGHLPLDLPPRYEEKETAPATPLGAPSESSPP

transmembrane protein 171 [Bos taurus]

NCBI Reference Sequence: NP_001014951.2

>gi|75832108|ref|NP_001014951.2| transmembrane protein 171 [Bos taurus] MSPAAAAEPDGVRGDRHVSKLIFFLFVIGAILLCVGVLLSIFGFQACQYKTFPDCSMMLKIAGPACAVVG LGAVILARSRARLQQTEERLRGNNQADSDRPFLCGESRQFVQCLIFGFLFLTSGMLISVLGIWVPGCGSD WMQESLNETDTADSEPQICGFLSLQILGPLIVLVGLCFFVVAHVKKRSNLNGDQDASESEERQTQSLEPI QVTVGDAVIIFPPPPPYFPESSASAAARSPGTDGLLPDESPPSYYSIFQSGSPTPEGQGAASERDCELI YTISGTASSSETSHTLHLLSELPPRYEEKETATTTSLSPSSEPSLP

PREDICTED: transmembrane protein 171 [Pan troglodytes]

NCBI Reference Sequence: XP_001152753.1

>gi|114599719|ref|XP_001152753.1| PREDICTED: transmembrane protein 171 [Pan troglodytes]

MSPAAAAEPDGDQQDRHVSKLIFCFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCPMVLKVAGPACAVVG LGAVILARSRAQLQLRAGLQRGQQMDPDRAFICGESRQFAQCLIFGFLFLTSGMLISVLGIWVPGCGSNW AQEPLNETDTGDSEPRMCGFLSLQIMGPLIVLVGLCFFVVAHVKKRNTLNAGQDASEREEGQIQIMEPVQ VTVGDSVIIFPPPPPYFPESSASAVAESPGTNSLLPNENPPSYYSIFNYGTPTSEGAASERDCESIYTI SGMNSSSEASHTPHLPSELPPRYEEKENAAATFLPLSSEPSPP

PREDICTED: transmembrane protein 171 [Macaca mulatta] NCBI Reference Sequence: XP_001099752.2

>gi|297294522|ref|XP_001099752.2| PREDICTED: transmembrane protein 171 [Macaca mulatta]

MRRRTPRPASAHSRAVSGDAGPSLRAAEILEGRKHIPHCLQEGALLDMSPAAAAEPDGDQQDRHVSKLIF CFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCPIVLKVAGPACAVVGLGAVILARSRAQLQLRAGLQRGR QMDPDRAFICGESRQFAQCLIFGFLFLTSGMLISVLGIWVPGCGSDWAREPLNETDTGDSKPRMCGFLSL QIMGPLIVLVGLCFFVIAHIKKRNTLNIGQDASEREEGQIQSMEAVQVTVGDSVMIFPPPPPPYFPESSA SAVTESPGTNSLLPNESPPSYYSIFNHGTPASEGVASERDCESIYTISRTNSSSEVSHTPHLPSELPPRY EEKENAAATFLPLSSEPSPL

transmembrane protein 171 [Sus scrofa]
NCBI Reference Sequence: NP_001231252.1
>gi|346716214|ref|NP_001231252.1| transmembrane protein 171 [Sus scrofa]

MSPVAAAESDGVHRDRHVSKLIFFLFVMGAILLCVGVLLSIFGFQACQYETLPDCSMVLKIAGPACAVVG LGAVILARSRARLQQSEGRLRGNQGDSDRAFLCGESRQFVQCLIFGFLFLTSGMLISVLGIWVPGCGSDW AQEPLNETDTADSESQICGFLSLQILGPLIVLVGLCFFVVAHVKKRNNLNGGQDASESEERQPQHMEPVQ VTVGDAVIIFPPPPPPYFPETSAAAASQGPGADDLLPNESPPSYYSIFHYGTPPPEGQGVTSERDCDSIY TISGTAPTFETSHTPSLSSELPPRYEEKETAATTSLSPSFEPSPP

PREDICTED: transmembrane protein 171 [Gorilla gorilla] NCBI Reference Sequence: XP_004058731.1

>gi|426384348|ref|XP_004058731.1| PREDICTED: transmembrane protein 171
[Gorilla gorilla]

MSPAAAAEPDGDQQDGHVSKLIFCFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCPMVLKVAGPACAVVG LGAVILARSRAQLQLRAGLQRGQQMDPDQAFICGESRQFAQCLIFGFLFLTSGMLISVLGIWVPGCGSNW VQEPLNETDTGDSEPRMCGFLSLQIMGPLIVLVGLCFFVVAHVKKRNTLNAGQDASEREEGQIQIMEPVQ VTVGDSVIIFPPPPPPYFPESSASVVAESPGTNSLLPNENPPSYYSIFNYGRTPTSEGAASERDCESIYT ISGTNSSSEASHTPHLPSELPPRYEEKENAAATFLPLSSEPSPP

PREDICTED: transmembrane protein 171 [Ovis aries] NCBI Reference Sequence: XP_004016942.1

>gi|426246319|ref|XP_004016942.1| PREDICTED: transmembrane protein 171 [Ovis aries]

MSPAAAAEPDGVQGDRHVSKLIFFLFVIGAILLCVGVLLSIFGFQACQYETFPDCSMVLKIAGPACAVVG LGAVILARSRARLQQTEERLRGNNQRDSDRPFLCGESRQFVQCLIFGFLFLTSGMLISVLGIWVPGCSSN WMQEPLNETDTADSEPQICGFLSLQILGPLIVLVGLCFFVVAHVKKRNDLNGAQDASESEERQTQSLEPI QVTVGDAVIIFPPPPPYFPESSASAAARSPGTDGLLPDESPPSYYSIFHSGSQTPEGQGAASERDCESI YTISGTASSSEPSHTLHLLSELPPRYEEKETAATTSLSPSSEPSPP

PREDICTED: transmembrane protein 171 [Felis catus] NCBI Reference Sequence: XP_003981120.1

>gi|410948804|ref|XP_003981120.1| PREDICTED: transmembrane protein 171
[Felis catus]

MSPVAAAEPDGVQPDRSVSKVIFFLFVFGAILLCVGVLLSIFGFQTCQYKTFPDCSMVLKVAGPACAAVG LGAVILARSRARLQLREGHLRGSQADPDRAFLCGESRQFAQCLIFGFLFLTSGMLISILGIWVPGCGSDW AQEPLNETDTADVEPQICGFLSLQIMGPLIVLMGLCFFVVAHVKKRNNLNVGQEASEAEDRQIQNTEPVQ VTVGDAVIIFPPPPPYFPESSASAVTRSPGAHGLLPNENPPSYYSIFNYGRTPTPGGQGVGSERDCESI YTISGSPSSAGISYTPHLSSELPPRYEEKEIAATTSLSPSSEPSRP

PREDICTED: transmembrane protein 171 [Saimiri boliviensisboliviensis] NCBI Reference Sequence: XP_003925806.1

>gi|403267366|ref|XP_003925806.1| PREDICTED: transmembrane protein 171
[Saimiri boliviensisboliviensis]

MSPAAAAEPDGDQQDRHVSKLIFCFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCSMVLKVAGPACAVIG LGAVILARSRAQLQLHTGLQRGHQMDPDRAFMCGESRQFAQCLIFGFLFLTSGMLISVLGIWVPGCGSDW AQESLNETDTADTEPRICGFLSLQIMGPLIVLVGLCFFVVAHIKKRNTNAGQDASESEEGQIQSTEPVRV TVGDSVIIFPPPPPPYFPESSASAVTESPGTNSQLPNENPPSYYSVFNYGTPTSESQGAASERDCASIYT ISGTNSSEVSRTPHLPSELPPRYEEKENAAATFLPPSSEPFPP PREDICTED: transmembrane protein 171 [Otolemurgarnettii] NCBI Reference Sequence: XP_003785951.1

>gi|395825464|ref|XP_003785951.1| PREDICTED: transmembrane protein 171
[Otolemurgarnettii]

MSPTAAAEPDGEQQDRLVSKLIFFFFVFGAILLCVGVLLSIFGFQACQYESLPHCSMVLKVAGPACAMVG LGAVILARSRARLRFHQGRRQGHQADPDQAFICGESRQFAQCLVFGFLFLTSGMLISVLGVWVPGCGSGW EQEPLNDTDSADEEPQICGFLSLQIMGPLIVLVGLCFFVVAHVKKRNELNADQDAPDREERQTQSTEPVQ VTVGDSVIVFPPPPPPYFSESSAAAVTRSPGANGLLPNENPPPYYSIFNYGTPTPESQGTVSERNRESVY TISGTSPSFEISHTPHLSSESPPRYEEKDNTAGTPLSPSSVPSPP

PREDICTED: transmembrane protein 171 [Papioanubis] NCBI Reference Sequence: XP_003899842.1

>gi|402871812|ref|XP_003899842.1| PREDICTED: transmembrane protein 171
[Papioanubis]

MRRRTPRPASAHSSAVSGDAGPSLRAAEILEGRKHIPHCLQEGALLDMSPEAAAEPDGDQQDRHVSKLIF CFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCPMVLKVAGPACAVVGLGAVILARSRAQLQLRAGLQRGR QMDPDRAFICGESRQFAQCLIFGFLFLTSGMLISVLGIWVPGCGSDWAREPLNETDTGDSKPRMCGFLSL QIMGPLIVLVGLCFFVIAHIKKRNPLNAGQDASEREEGQIQSMEAVQVTVGDSVIIFPPPPPPYFPESSA SAVTESPGTNSLLPNESPPSYYSIFNYGTPASEGVASERDCESIYTISRTNSSSEVSHTPHLPSELPPRY EEKENAAATFLPLSSEPSPL

PREDICTED: transmembrane protein 171 [Pan paniscus] NCBI Reference Sequence: XP_003810530.1

>gi|397478388|ref|XP_003810530.1| PREDICTED: transmembrane protein 171 [Pan paniscus]

MSPAAAAEPDGDQQDRHVSKLIFCFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCPMVLKVAGPACAVVG LGAVILARSRAQLQLRAGLQRGQQMDPDRAFICGESRQFAQCLIFGFLFLTSGMLISVLGIWVPGCGSNW AQEPLNETDTGDSEPRMCGFLSLQIMGPLIVLVGLCFFVVAHVKKRNTLNAGQDASEREEGQIQIMEPVQ VTVGDSVIIFPPPPPYFPESSASAVTESPGTNSLLPNENPPSYYSIFNYGTPTSEGAASERDCESIYTI SGMNSSSEASHTPHLPSELPPRYEEKENAAATFLPLSSEPSPP

PREDICTED: transmembrane protein 171 [Sarcophilus harrisii] NCBI Reference Sequence: XP_003759514.1

>gi|395510503|ref|XP_003759514.1| PREDICTED: transmembrane protein 171
[Sarcophilus harrisii]

MSPATAPEPGGDVSGRRISKIIFFLFVFGVILLCAGILLSIFGFQTCHYETFLDCSAVLKIVGPSCAVIG LGAIILARSRAKLQLRERQLQGNQIDPDSFFLCGESRQFAQFLIFGFLFLTSGMLISVLGIWVPGCNSGW PQPPFNDTDSSSAEPQACGFLSLQIMGPLIVLIGLCFFVAAHIKKRHNLNSSQDSSENEERRSQLNEPVQ VTVGDAVIIFPPPPPYFSDVSTPTVVTRNSSSNSLPLSENPPSYYSIFNYGTQIPEVQGAAFYRDTESI YTISGNNLSSETSPASHISSELPPRYEEKETVNVDHPTSSTSSSSSQPSPP

PREDICTED: transmembrane protein 171 [Nomascusleucogenys]
NCBI Reference Sequence: XP_003266102.1
>gi|332233819|ref|XP_003266102.1| PREDICTED: transmembrane protein 171
[Nomascusleucogenys]

MSPAAAAEPDGDQQDRHVGKLIFCFFVFGAVLLCVGVLLSIFGFQACQYKPLPDCPLVLKVAGPACAVVG LGAVILARSRAQLQLRAGLQRGQQMDPDRAFICGESRQFAQCLIFGFLFLTSGMLISILGIWVPGCGSNW AQEPLNETDTGDSEPRMCGFLSLQIMGPLIVLVGLCFFVVAHVKKRNTLNAGQDASEREEGQIQIMEPVQ VTVGDSVIIFPPPPPYFPESSASAVAESPGTNSLLPNENPPSYYSIFNYGTPTSEGAASERDCESIYTI SRMNSSSEVSHTPHLPSELPPRYEEKENAAATFLPLSSEPSPP

PREDICTED: transmembrane protein 171 [Callithrix jacchus] NCBI Reference Sequence: XP_002744920.1

>gi|296194364|ref|XP_002744920.1| PREDICTED: transmembrane protein 171
[Callithrix jacchus]

MSPAAAADPDGDQQDRHISKLIFCFFVFGAVLLCLGLLLSIFGFQACQYKSLPDCSMVLKVPPRLQHVLK CGAACAVIGLGAVILARSRAQLQLRTGLQRGHQMDSDRAFICGESRQFAQCLIFGFLFLTSGMFISVLGI WVPGCGSDWAQEPLNETDTADMEPRICGFLSLQIMGPLIVLVGLCFFVVAHIKKRNTLNAGQNASESEEG QIQSTEPVQITVGDSVIIFPPPPPYFPDSSASAVTESPGTNSQLPNENPPSYYSIFNYGTPTSENQGAA SERDCESIYTISRTNSSSEVSHIPHLPSELPPRYEEKENAAATFLPPSSEPFPP

References

Alfradique I, Vasconcelos MM. 2007. Juvenile myoclonic epilepsy. Arq Neuropsiquiatr 65:1266–1271.

Allen AS, Bellows ST, Berkovic SF, Bridgers J, Burgess R, Cavalleri G, Chung S-K, Cossette P, Delanty N, Dlugos D, Epstein MP, Freyer C, et al. 2017. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. The Lancet Neurology 16:135–143.

Almeida A, Bolaños JP, Moreno S. 2005. Cdh1/Hct1-APC Is Essential for the Survival of Postmitotic Neurons. J Neurosci 25:8115–8121.

Amenduni M, De Filippis R, Cheung AYL, Disciglio V, Epistolato MC, Ariani F, Mari F, Mencarelli MA, Hayek Y, Renieri A, Ellis J, Meloni I. 2011. iPS cells to model CDKL5-related disorders. Eur J Hum Genet 19:1246–1255.

Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M. 2016. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Front Synaptic Neurosci 8:.

Arango-Lievano M, Boussadia B, De Terdonck LDT, Gault C, Fontanaud P, Lafont C, Mollard P, Marchi N, Jeanneteau F. 2018. Topographic Reorganization of Cerebrovascular Mural Cells under Seizure Conditions. Cell Rep 23:1045–1059.

Arsov T, Mullen SA, Damiano JA, Lawrence KM, Huh LL, Nolan M, Young H, Thouin A, Dahl H-HM, Berkovic SF, Crompton DE, Sadleir LG, et al. 2012. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia 53:e204-207.

Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler EE, Flicek P, Gabriel SB, et al. 2015. A global reference for human genetic variation. Nature 526:68–74.

Bai D, Alonso ME, Medina MT, Bailey JN, Morita R, Cordova S, Rasmussen A, Ramos-Peek J, Ochoa A, Jara A, Donnadieu FR, Cadena G, et al. 2002. Juvenile myoclonic epilepsy: linkage to chromosome 6p12 in Mexico families. Am J Med Genet 113:268–274.

Bailey JN, Nijs L de, Bai D, Suzuki T, Miyamoto H, Tanaka M, Patterson C, Lin Y-C, Medina MT, Alonso ME, Serratosa JM, Durón RM, et al. 2018. Variant Intestinal-Cell Kinase in Juvenile Myoclonic Epilepsy. N Engl J Med 378:1018–1028.

Bailey JN, Patterson C, Nijs L de, Durón RM, Nguyen V-H, Tanaka M, Medina MT, Jara-Prado A, Martínez-Juárez IE, Ochoa A, Molina Y, Suzuki T, et al. 2017. EFHC1 variants in juvenile myoclonic epilepsy: reanalysis according to NHGRI and ACMG guidelines for assigning disease causality. Genet Med 19:144–156.

Bär H, Kostareva A, Sjöberg G, Sejersen T, Katus HA, Herrmann H. 2006. Forced expression of desmin and desmin mutants in cultured cells: impact of myopathic missense mutations in the central coiled-coil domain on network formation. Exp Cell Res 312:1554–1565.

Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H. 2004a. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol 148:137–152.

Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H. 2004b. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? Journal of Structural Biology 148:137–152.

Baykan B, Madia F, Bebek N, Gianotti S, Güney AI, Cine N, Bianchi A, Gökyiğit A, Zara F. 2004. Autosomal recessive idiopathic epilepsy in an inbred family from Turkey: identification of a putative locus on chromosome 9q32-33. Epilepsia 45:479–487.

Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV. 2010. Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging. Neuron 68:409–427.

Bozzi Y, Casarosa S, Caleo M. 2012. Epilepsy as a Neurodevelopmental Disorder. Front Psychiatry 3:.

Canevini MP, Mai R, Di Marco C, Bertin C, Minotti L, Pontrelli V, Saltarelli A, Canger R. 1992. Juvenile myoclonic epilepsy of Janz: clinical observations in 60 patients. Seizure 1:291–298.

Cao F, Liu JJ, Zhou S, Cortez MA, Snead OC, Han J, Jia Z. 2020. Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry. Nat Commun 11:3744.

Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. 2007. Muscle intermediate filaments and their links to membranes and membranous organelles. Experimental Cell Research 313:2063–2076.

Catterall WA, Few AP. 2008. Calcium Channel Regulation and Presynaptic Plasticity. Neuron 59:882–901.

Cavalleri GL, Walley NM, Soranzo N, Mulley J, Doherty CP, Kapoor A, Depondt C, Lynch JM, Scheffer IE, Heils A, Gehrmann A, Kinirons P, et al. 2007. A multicenter study of BRD2 as a risk factor for juvenile myoclonic epilepsy. Epilepsia 48:706–712.

Chen W-J, Lin Y, Xiong Z-Q, Wei W, Ni W, Tan G-H, Guo S-L, He J, Chen Y-F, Zhang Q-J, Li H-F, Lin Y, et al. 2011. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43:1252–1255.

Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. 2018. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136:507–523.

Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, Fulton RS, Graves TA, Hillier LW, Mardis ER, McPherson JD, Miner TL, Nash WE, et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562.

Clemen CS, Herrmann H, Strelkov SV, Schröder R. 2013. Desminopathies: pathology and mechanisms. Acta Neuropathol 125:47–75.

Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, Saint-Hilaire J-M, Carmant L, Verner A, Lu W-Y, Wang YT, Rouleau GA. 2002. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31:184–189.

Delgado-Escueta AV. 2007. Advances in Genetics of Juvenile Myoclonic Epilepsies. Epilepsy Curr 7:61–67.

Delgado-Escueta AV, Koeleman BPC, Bailey JN, Medina MT, Durón RM. 2013. The quest for juvenile myoclonic epilepsy genes. Epilepsy Behav 28 Suppl 1:S52-57.

Delplanque J, Devos D, Huin V, Genet A, Sand O, Moreau C, Goizet C, Charles P, Anheim M, Monin ML, Buée L, Destée A, et al. 2014. TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain 137:2657–2663.

Devinsky O, Vezzani A, O'Brien TJ, Jette N, Scheffer IE, Curtis M de, Perucca P. 2018. Epilepsy. Nat Rev Dis Primers 4:1–24.

Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A, Migheli A, Atzori C, Turco E, Triolo R, Dotto GP, Silengo L, Altruda F. 2000. Defective Neurogenesis in Citron Kinase Knockout Mice by Altered Cytokinesis and Massive Apoptosis. Neuron 28:115–127.

Dib C, Fauré S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, et al. 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152–154.

Dibbens LM, Feng H-J, Richards MC, Harkin LA, Hodgson BL, Scott D, Jenkins M, Petrou S, Sutherland GR, Scheffer IE, Berkovic SF, Macdonald RL, et al. 2004. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 13:1315–1319.

Dibbens LM, Mullen S, Helbig I, Mefford HC, Bayly MA, Bellows S, Leu C, Trucks H, Obermeier T, Wittig M, Franke A, Caglayan H, et al. 2009. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet 18:3626–3631.

Dimassi S, Labalme A, Lesca G, Rudolf G, Bruneau N, Hirsch E, Arzimanoglou A, Motte J, Martin A de S, Boutry-Kryza N, Cloarec R, Benitto A, et al. 2014. A subset of genomic alterations detected in rolandic epilepsies contains candidate or known epilepsy genes including GRIN2A and PRRT2. Epilepsia 55:370–378.

Durner M, Janz D, Zingsem J, Greenberg DA. 1992. Possible association of juvenile myoclonic epilepsy with HLA-DRw6. Epilepsia 33:814–816.

Durner M, Keddache MA, Tomasini L, Shinnar S, Resor SR, Cohen J, Harden C, Moshe SL, Rosenbaum D, Kang H, Ballaban-Gil K, Hertz S, et al. 2001. Genome scan of idiopathic generalized epilepsy: evidence for major susceptibility gene and modifying genes influencing the seizure type. Ann Neurol 49:328–335.

Duy PQ, David WB, Kahle KT. 2019. Identification of KCC2 Mutations in Human Epilepsy Suggests Strategies for Therapeutic Transporter Modulation. Frontiers in Cellular Neuroscience 13:515.

Eggenschwiler R, Moslem M, Fráguas MS, Galla M, Papp O, Naujock M, Fonfara I, Gensch I, Wähner A, Beh-Pajooh A, Mussolino C, Tauscher M, et al. 2016. Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase. Sci Rep 6:38198.

Elmslie FV, Rees M, Williamson MP, Kerr M, Kjeldsen MJ, Pang KA, Sundqvist A, Friis ML, Chadwick D, Richens A, Covanis A, Santos M, et al. 1997. Genetic mapping of a major

susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet 6:1329–1334.

Epi4K: Gene discovery in 4,000 genomes. 2012. Epilepsia 53:1457–1467.

Epi25 Collaborative. Electronic address: s.berkovic@unimelb.edu.au, Epi25 Collaborative. 2019. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. Am J Hum Genet 105:267–282.

Escayg A, De Waard M, Lee DD, Bichet D, Wolf P, Mayer T, Johnston J, Baloh R, Sander T, Meisler MH. 2000. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 66:1531–1539.

Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH. 2001. A Novel SCN1A Mutation Associated with Generalized Epilepsy with Febrile Seizures Plus—and Prevalence of Variants in Patients with Epilepsy. The American Journal of Human Genetics 68:866–873.

Etain B, Dumaine A, Mathieu F, Chevalier F, Henry C, Kahn J-P, Deshommes J, Bellivier F, Leboyer M, Jamain S. 2010. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 15:748–755.

Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048.

Fang G, Yu H, Kirschner MW. 1998. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol Cell 2:163–171.

Feng Y-CA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Singh T, Heyne H, Byrnes A, Churchhouse C, Watts N, Solomonson M, Lal D, et al. 2019. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. The American Journal of Human Genetics 105:267–282.

Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, Engel J, Forsgren L, French JA, Glynn M, Hesdorffer DC, Lee BI, et al. 2014. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–482.

Fitzgerald TW, Gerety SS, Jones WD, Kogelenberg M van, King DA, McRae J, Morley KI, Parthiban V, Al-Turki S, Ambridge K, Barrett DM, Bayzetinova T, et al. 2015. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519:223–228.

Fossati G, Morini R, Corradini I, Antonucci F, Trepte P, Edry E, Sharma V, Papale A, Pozzi D, Defilippi P, Meier JC, Brambilla R, et al. 2015. Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death Differ 22:1425–1436.

Foyaca-Sibat H. 2011. Novel Aspects on Epilepsy.

Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M, Prestigio C, Giansante G, Sartorelli J, Rossi P, Rubio A, Gambardella A, et al. 2018. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 141:1000–1016.

Garner JP. 2014. The Significance of Meaning: Why Do Over 90% of Behavioral Neuroscience Results Fail to Translate to Humans, and What Can We Do to Fix It? ILAR Journal 55:438–456.

Ghiani CA, Starcevic M, Rodriguez-Fernandez IA, Nazarian R, Cheli VT, Chan LN, Malvar JS, Vellis J de, Sabatti C, Dell'Angelica EC. 2010. The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Molecular Psychiatry 15:204–215.

Goetz SC, Anderson KV. 2010. The Primary Cilium: A Signaling Center During Vertebrate Development. Nat Rev Genet 11:331–344.

Green MR, Sambrook J. 2017. Isolation of High-Molecular-Weight DNA Using Organic Solvents. Cold Spring Harb Protoc 2017:pdb.prot093450.

Greenberg DA, Cayanis E, Strug L, Marathe S, Durner M, Pal DK, Alvin GB, Klotz I, Dicker E, Shinnar S, Bromfield EB, Resor S, et al. 2005. Malic enzyme 2 may underlie susceptibility to adolescent-onset idiopathic generalized epilepsy. Am J Hum Genet 76:139–146.

Gross RA. 1992. A brief history of epilepsy and its therapy in the western hemisphere. Epilepsy Research 12:65–74.

Han S, An Z, Luo X, Zhang L, Zhong X, Du W, Yi Q, Shi Y. 2018. Association between CMYA5 gene polymorphisms and risk of schizophrenia in Uygur population and a meta-analysis. Early Interv Psychiatry 12:15–21.

Harrison V, Connell L, Hayesmoore J, McParland J, Pike MG, Blair E. 2011. Compound heterozygous deletion of NRXN1 causing severe developmental delay with early onset epilepsy in two sisters. Am J Med Genet A 155A:2826–2831.

Hawi Z, Matthews N, Wagner J, Wallace RH, Butler TJ, Vance A, Kent L, Gill M, Bellgrove MA. 2013. DNA Variation in the SNAP25 Gene Confers Risk to ADHD and Is Associated with Reduced Expression in Prefrontal Cortex. PLoS One 8:.

Heinzen EL, Depondt C, Cavalleri GL, Ruzzo EK, Walley NM, Need AC, Ge D, He M, Cirulli ET, Zhao Q, Cronin KD, Gumbs CE, et al. 2012. Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am J Hum Genet 91:293–302.

Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, Muhle H, Kovel C de, Baker C, Spiczak S von, Kron KL, Steinich I, et al. 2009. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162.

Hempelmann A, Taylor KP, Heils A, Lorenz S, Prud'homme J-F, Nabbout R, Dulac O, Rudolf G, Zara F, Bianchi A, Robinson R, Gardiner RM, et al. 2006. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia 47:1682–1690.

Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN, Pridmore C, Hodgson BL, Iona X, Sadleir LG, Pelekanos J, Herlenius E, et al. 2012. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 90:152–160.

Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW. 2007. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62:560–568.

Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE. 2004. Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 55:595–596.

Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, Imaizumi Y, Zhang B, Nabeshima K, Mori MX, Katsurabayashi S, Shirasaka Y, et al. 2013. A human Dravet syndrome model from patient induced pluripotent stem cells. Molecular Brain 6:19.

Hinz L, Hoekstra SD, Watanabe K, Posthuma D, Heine VM. 2019. Generation of Isogenic Controls for In Vitro Disease Modelling of X-Chromosomal Disorders. Stem Cell Rev and Rep 15:276–285.

Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JL, Long B, Johansen N, Penn O, Yao Z, Eggermont J, et al. 2019. Conserved cell types with divergent features in human versus mouse cortex. Nature 573:61–68.

Homa M, Loyens A, Eddarkaoui S, Faivre E, Deramecourt V, Maurage C-A, Buée L, Huin V, Sablonnière B. 2020. The TMEM240 Protein, Mutated in SCA21, Is Expressed in Purkinje Cells and Synaptic Terminals. Cerebellum 19:358–369.

Hong YJ, Do JT. 2019. Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Frontiers in Bioengineering and Biotechnology 7:400.

Hsiung A, Naya FJ, Chen X, Shiang R. 2019. A schizophrenia associated CMYA5 allele displays differential binding with desmin. J Psychiatr Res 111:8–15.

Huang L, Szymanska K, Jensen VL, Janecke AR, Innes AM, Davis EE, Frosk P, Li C, Willer JR, Chodirker BN, Greenberg CR, McLeod DR, et al. 2011. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 89:713–730.

Hughes S, Chan-Ling T. 2004. Characterization of Smooth Muscle Cell and Pericyte Differentiation in the Rat Retina In Vivo. Invest Ophthalmol Vis Sci 45:2795–2806.

Ilardi JM, Mochida S, Sheng ZH. 1999. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci 2:119–124.

International League Against Epilepsy Consortium on Complex Epilepsies. 2018. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun 9:5269.

Izsak J, Seth H, Andersson M, Vizlin-Hodzic D, Theiss S, Hanse E, Ågren H, Funa K, Illes S. 2019. Robust Generation of Person-Specific, Synchronously Active Neuronal Networks Using Purely Isogenic Human iPSC-3D Neural Aggregate Cultures. Front Neurosci 0:

Jallon P, Latour P. 2005a. Epidemiology of Idiopathic Generalized Epilepsies. Epilepsia 46:10–14.

Jallon P, Latour P. 2005b. Epidemiology of idiopathic generalized epilepsies. Epilepsia 46 Suppl 9:10–14.

Jang C-Y, Coppinger JA, Seki A, Yates JR, Fang G. 2009. Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a. J Cell Sci 122:1334–1341.

Janz D, Christian W. 1957. Impulsiv-Petit mal. Deutsche Zeitschrift f Nervenheilkunde 176:346–386.

Jayalakshmi SS, Srinivasa Rao B, Sailaja S. 2010. Focal clinical and electroencephalographic features in patients with juvenile myoclonic epilepsy. Acta Neurol Scand 122:115–123.

Kahle KT, Merner ND, Friedel P, Silayeva L, Liang B, Khanna A, Shang Y, Lachance-Touchette P, Bourassa C, Levert A, Dion PA, Walcott B, et al. 2014. Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy. EMBO Rep 15:766–774.

Kapoor A, Ratnapriya R, Kuruttukulam G, Anand A. 2007. A novel genetic locus for juvenile myoclonic epilepsy at chromosome 5q12-q14. Hum Genet 121:655–662.

Kapoor A, Satishchandra P, Ratnapriya R, Reddy R, Kadandale J, Shankar SK, Anand A. 2008. An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene. Ann Neurol 64:158–167.

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, et al. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. bioRxiv 531210.

Kearney JA. 2014. Epi4K Phase I: Gene Discovery in Epileptic Encephalopathies by Exome Sequencing: Epileptic Encephalopathies Exome Sequencing. Epilepsy Curr 14:208–210.

Kibbe WA. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43-46.

Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y, Keough S, Wong M, Rowitch D, Bonni A. 2009. A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136:322–336.

Kinirons P, Verlaan DJ, Dubé M-P, Poirier J, Deacon C, Lortie A, Clément J-F, Desbiens R, Carmant L, Cieuta-Walti C, Shevell M, Rouleau GA, et al. 2008. A novel locus for idiopathic generalized epilepsy in French-Canadian families maps to 10p11. Am J Med Genet A 146A:578–584.

Kogut I, McCarthy SM, Pavlova M, Astling DP, Chen X, Jakimenko A, Jones KL, Getahun A, Cambier JC, Pasmooij AMG, Jonkman MF, Roop DR, et al. 2018. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 9:745.

Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, et al. 2002. A high-resolution recombination map of the human genome. Nat Genet 31:241–247.

Konishi Y, Stegmüller J, Matsuda T, Bonni S, Bonni A. 2004. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303:1026–1030.

Kovel CGF de, Pinto D, Haan GJ de, Kasteleijn-Nolst Trenité DG, Lindhout D, Koeleman BPC. 2007. Association analysis of BRD2 (RING3) and epilepsy in a Dutch population. Epilepsia 48:2191–2192.

Kovel CGF de, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, Kluck C, Muhle H, Spiczak S von, Ostertag P, Obermeier T, Kleefuss-Lie AA, et al. 2010. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133:23–32.

Krepischi ACV, Knijnenburg J, Bertola DR, Kim CA, Pearson PL, Bijlsma E, Szuhai K, Kok F, Vianna-Morgante AM, Rosenberg C. 2010. Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia 51:2457–2460.

Kuijlaars J, Oyelami T, Diels A, Rohrbacher J, Versweyveld S, Meneghello G, Tuefferd M, Verstraelen P, Detrez JR, Verschuuren M, De Vos WH, Meert T, et al. 2016. Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci Rep 6:36529.

Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy KK, Nakanishi M, Nishimura K, Ohtaka M, Weltner J, Van Handel B, Parkkonen O, et al. 2016. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports 6:200–212.

Lachance-Touchette P, Brown P, Meloche C, Kinirons P, Lapointe L, Lacasse H, Lortie A, Carmant L, Bedford F, Bowie D, Cossette P. 2011. Novel α 1 and γ 2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur J Neurosci 34:237–249.

Laemmli UK. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227:680–685.

Lathrop GM, Lalouel JM, Julier C, Ott J. 1984. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 81:3443–3446.

Lau CG, Takayasu Y, Rodenas-Ruano A, Paternain AV, Lerma J, Bennett MVL, Zukin RS. 2010. SNAP-25 Is a Target of Protein Kinase C Phosphorylation Critical to NMDA Receptor Trafficking. J Neurosci 30:242–254.

Layouni S, Buresi C, Thomas P, Malafosse A, Dogui M. 2010. BRD2 and TAP-1 genes and juvenile myoclonic epilepsy. Neurol Sci 31:53–56.

Le Hellard S, Neidhart E, Thomas P, Feingold J, Malafosse A, Tafti M. 1999. Lack of association between juvenile myoclonic epilepsy and HLA-DR13. Epilepsia 40:117–119.

Leal-Campanario R, Alarcon-Martinez L, Rieiro H, Martinez-Conde S, Alarcon-Martinez T, Zhao X, LaMee J, Popp PJO, Calhoun ME, Arribas JI, Schlegel AA, Stasi LLD, et al. 2017. Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy. Sci Rep 7:43276.

Lee H-Y, Huang Y, Bruneau N, Roll P, Roberson EDO, Hermann M, Quinn E, Maas J, Edwards R, Ashizawa T, Baykan B, Bhatia K, et al. 2012a. Mutations in the novel protein PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 1:2–12.

Lee Y-C, Lee M-J, Yu H-Y, Chen C, Hsu C-H, Lin K-P, Liao K-K, Chang M-H, Liao Y-C, Soong B-W. 2012b. PRRT2 mutations in paroxysmal kinesigenic dyskinesia with infantile convulsions in a Taiwanese cohort. PLoS One 7:e38543.

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291.

Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, Hansen J, Courage C, Gallati S, Bürki S, Strozzi S, Simonetti BG, et al. 2012. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53:1387–1398.

Lenzen KP, Heils A, Lorenz S, Hempelmann A, Höfels S, Lohoff FW, Schmitz B, Sander T. 2005a. Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Res 63:113–118.

Lenzen KP, Heils A, Lorenz S, Hempelmann A, Sander T. 2005b. Association analysis of malic enzyme 2 gene polymorphisms with idiopathic generalized epilepsy. Epilepsia 46:1637–1641.

Leu C, Kovel CGF de, Zara F, Striano P, Pezzella M, Robbiano A, Bianchi A, Bisulli F, Coppola A, Giallonardo AT, Beccaria F, Trenité DK-N, et al. 2012. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies. Epilepsia 53:308–318.

Li H, Durbin R. 2009a. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760.

Li H, Durbin R. 2009b. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079.

Li M, Niu F, Zhu X, Wu X, Shen N, Peng X, Liu Y. 2015. PRRT2 Mutant Leads to Dysfunction of Glutamate Signaling. International Journal of Molecular Sciences 16:9134–9151.

Li X, Poschmann S, Chen Q, Fazeli W, Oundjian NJ, Snoeijen-Schouwenaars FM, Fricke O, Kamsteeg E-J, Willemsen M, Wang QK. 2018. De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca2+ sensitivity. Eur J Hum Genet 26:220–229.

Liu AW, Delgado-Escueta AV, Gee MN, Serratosa JM, Zhang QW, Alonso ME, Medina MT, Cordova S, Zhao HZ, Spellman JM, Donnadieu FR, Peek JR, et al. 1996. Juvenile myoclonic epilepsy in chromosome 6p12-p11: locus heterogeneity and recombinations. Am J Med Genet 63:438–446.

Liu AW, Delgado-Escueta AV, Serratosa JM, Alonso ME, Medina MT, Gee MN, Cordova S, Zhao HZ, Spellman JM, Peek JR. 1995. Juvenile myoclonic epilepsy locus in chromosome 6p21.2-p11: linkage to convulsions and electroencephalography trait. Am J Hum Genet 57:368–381.

Liu S-P, Hsu Y-H, Huang C-Y, Ho M-C, Cheng Y-C, Wen C-H, Lu H-E, Tsai C-H, Shyu W-C, Hsieh PCH. 2018. Generation of novel induced pluripotent stem cell (iPSC) line from a 16-year-old sialidosis patient with NEU-1 gene mutation. Stem Cell Research 28:39–43.

Liu X, Jian X, Boerwinkle E. 2011. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat 32:894–899.

Loucks CM, Park K, Walker DS, McEwan AH, Timbers TA, Ardiel EL, Grundy LJ, Li C, Johnson J-L, Kennedy J, Blacque OE, Schafer W, et al. 2019. EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling. eLife 8:e37271.

Lowther C, Costain G, Stavropoulos DJ, Melvin R, Silversides CK, Andrade DM, So J, Faghfoury H, Lionel AC, Marshall CR, Scherer SW, Bassett AS. 2015. Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature. Genet Med 17:149–157.

Lu H, Anujan P, Zhou F, Zhang Y, Chong YL, Bingle CD, Roy S. 2019. *Mcidas* mutant mice reveal a two-step process for the specification and differentiation of multiciliated cells in mammals. Development 146:dev172643.

Ma S, Blair MA, Abou-Khalil B, Lagrange AH, Gurnett CA, Hedera P. 2006. Mutations in the GABRA1 and EFHC1 genes are rare in familial juvenile myoclonic epilepsy. Epilepsy Res 71:129–134.

Madaule P, Eda M, Watanabe N, Fujisawa K, Matsuoka T, Bito H, Ishizaki T, Narumiya S. 1998. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394:491–494.

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641.

Majolo F, Marinowic DR, Palmini ALF, DaCosta JC, Machado DC. 2019. Migration and Synaptic Aspects of Neurons Derived from Human Induced Pluripotent Stem Cells from Patients with Focal Cortical Dysplasia II. Neuroscience 408:81–90.

Manivannan SN, Roovers J, Smal N, Myers CT, Turkdogan D, Roelens F, Kanca O, Chung H-L, Scholz T, Hermann K, Bierhals T, Caglayan SH, et al. 2021. De novo FZR1 loss-of-function variants cause developmental and epileptic encephalopathies including Myoclonic Atonic Epilepsy. medRxiv 2021.06.12.21256778.

Marcet B, Chevalier B, Coraux C, Kodjabachian L, Barbry P. 2011. MicroRNA-based silencing of Delta/Notch signaling promotes multiple cilia formation. Cell Cycle 10:2858–2864.

Mas C, Taske N, Deutsch S, Guipponi M, Thomas P, Covanis A, Friis M, Kjeldsen MJ, Pizzolato GP, Villemure J-G, Buresi C, Rees M, et al. 2004. Association of the connexin36 gene with juvenile myoclonic epilepsy. Journal of Medical Genetics 41:e93–e93.

Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, et al. 2000. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genetics 26:191–194.

Mattson RH. 2003. Overview: Idiopathic Generalized Epilepsies. Epilepsia 44:2–6.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. 2016. The Ensembl Variant Effect Predictor. Genome Biol 17:.

McNeely KC, Dwyer ND. 2020. Cytokinesis and postabscission midbody remnants are regulated during mammalian brain development. PNAS 117:9584–9593.

Medina MT, Suzuki T, Alonso ME, Durón RM, Martínez-Juárez IE, Bailey JN, Bai D, Inoue Y, Yoshimura I, Kaneko S, Montoya MC, Ochoa A, et al. 2008. Novel mutations in Myoclonin1/EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology 70:2137–2144.

Mefford HC. 2014. CNVs in Epilepsy. Curr Genet Med Rep 2:162–167.

Mefford HC, Muhle H, Ostertag P, Spiczak S von, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, et al. 2010. Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies. PLOS Genetics 6:e1000962.

Meyer K, Kirchner M, Uyar B, Cheng J-Y, Russo G, Hernandez-Miranda LR, Szymborska A, Zauber H, Rudolph I-M, Willnow TE, Akalin A, Haucke V, et al. 2018. Mutations in Disordered Regions Can Cause Disease by Creating Dileucine Motifs. Cell 175:239-253.e17.

Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C, Cox GF, Dickinson H, Gentile J, Harris DJ, Hegde V, Hundley R, et al. 2009. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 46:242–248.

Moen T, Brodtkorb E, Michler RP, Holst A. 1995. Juvenile myoclonic epilepsy and human leukocyte antigens. Seizure 4:119–122.

Moreira DP, Griesi-Oliveira K, Bossolani-Martins AL, Lourenço NCV, Takahashi VNO, Rocha KM da, Moreira ES, Vadasz E, Meira JGC, Bertola D, O'Halloran E, Magalhães TR, et al. 2014. Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in autism spectrum disorder Brazilian individuals with and without epilepsy. PLoS One 9:e107705.

Moschetta S, Fiore LA, Fuentes D, Gois J, Valente KD. 2011. Personality traits in patients with juvenile myoclonic epilepsy. Epilepsy Behav 21:473–477.

Muhle H, Spiczak S von, Gaus V, Kara S, Helbig I, Hampe J, Franke A, Weber Y, Lerche H, Kleefuss-Lie AA, Elger CE, Schreiber S, et al. 2010. Role of GRM4 in idiopathic generalized epilepsies analysed by genetic association and sequence analysis. Epilepsy Res 89:319–326.

Murakami H, Tamura N, Enomoto Y, Shimasaki K, Kurosawa K, Hanada K. 2020. Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLOS ONE 15:e0243980.

Myers KA, Johnstone DL, Dyment DA. 2019. Epilepsy genetics: Current knowledge, applications, and future directions. Clinical Genetics 95:95–111.

Nadadhur AG, Alsaqati M, Gasparotto L, Cornelissen-Steijger P, Hugte E van, Dooves S, Harwood AJ, Heine VM. 2019. Neuron-Glia Interactions Increase Neuronal Phenotypes in Tuberous Sclerosis Complex Patient iPSC-Derived Models. Stem Cell Reports 12:42–56.

Naseer MI, Faheem M, Chaudhary AG, Kumosani TA, Al-Quaiti MM, Jan MM, Saleh Jamal H, Al-Qahtani MH. 2015. Genome wide analysis of novel copy number variations duplications/deletions of different epileptic patients in Saudi Arabia. BMC Genomics 16 Suppl 1:S10.

Neubauer BA, Waldegger S, Heinzinger J, Hahn A, Kurlemann G, Fiedler B, Eberhard F, Muhle H, Stephani U, Garkisch S, Eeg-Olofsson O, Müller U, et al. 2008. KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 71:177–183.

Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D, Arnold CM, Chen Y-JJ, Stanley EG, Elefanty AG, Sasai Y, Alvarez-Buylla A, et al. 2013. Functional Maturation of hPSC-Derived Forebrain Interneurons Requires an Extended Timeline and Mimics Human Neural Development. Cell Stem Cell 12:573–586.

Nijs L de, Léon C, Nguyen L, LoTurco JJ, Delgado-Escueta AV, Grisar T, Lakaye B. 2009. EFHC1 interacts with microtubules to regulate cell division and cortical development. Nature Neuroscience 12:1266–1274.

Nijs L de, Wolkoff N, Coumans B, Delgado-Escueta AV, Grisar T, Lakaye B. 2012. Mutations of EFHC1, linked to juvenile myoclonic epilepsy, disrupt radial and tangential migrations during brain development. Hum Mol Genet 21:5106–5117.

Nijs L de, Wolkoff N, Grisar T, Lakaye B. 2013. Juvenile myoclonic epilepsy as a possible neurodevelopmental disease: Role of EFHC1 or Myoclonin1. Epilepsy Behav 28:S58–S60.

Nikolakopoulou AM, Montagne A, Kisler K, Dai Z, Wang Y, Huuskonen MT, Sagare AP, Lazic D, Sweeney MD, Kong P, Wang M, Owens NC, et al. 2019. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci 22:1089–1098.

Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. 2001. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720.

Obeid T, Rab MO el, Daif AK, Panayiotopoulos CP, Halim K, Bahakim H, Bamgboye E. 1994. Is HLA-DRW13 (W6) associated with juvenile myoclonic epilepsy in Arab patients? Epilepsia 35:319–321.

Pal DK, Evgrafov OV, Tabares P, Zhang F, Durner M, Greenberg DA. 2003. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet 73:261–270.

Pan P-Y, Tian J-H, Sheng Z-H. 2009. Snapin facilitates the synchronization of synaptic vesicle fusion. Neuron 61:412–424.

Parihar R, Mishra R, Singh SK, Jayalakshmi S, Mehndiratta MM, Ganesh S. 2014. Association of the GRM4 gene variants with juvenile myoclonic epilepsy in an Indian population. J Genet 93:193–197.

Pfleger CM, Kirschner MW. 2000. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14:655–665.

Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S, Pierre BS, Oger M, Lacombe D, Geneviève D, et al. 2013. Mutations in TUBG1 , DYNC1H1 , KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nature Genetics 45:639–647.

Pólvora-Brandão D, Joaquim M, Godinho I, Aprile D, Álvaro AR, Onofre I, Raposo AC, Pereira de Almeida L, Duarte ST, Rocha ST da. 2018. Loss of hierarchical imprinting regulation at the Prader-Willi/Angelman syndrome locus in human iPSCs. Hum Mol Genet 27:3999–4011.

Pozzi D, Condliffe S, Bozzi Y, Chikhladze M, Grumelli C, Proux-Gillardeaux V, Takahashi M, Franceschetti S, Verderio C, Matteoli M. 2008. Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. PNAS 105:323–328.

Prè D, Nestor MW, Sproul AA, Jacob S, Koppensteiner P, Chinchalongporn V, Zimmer M, Yamamoto A, Noggle SA, Arancio O. 2014. A Time Course Analysis of the Electrophysiological Properties of Neurons Differentiated from Human Induced Pluripotent Stem Cells (iPSCs). PLOS ONE 9:e103418.

Puranam RS, Jain S, Kleindienst AM, Saxena S, Kim M-K, Kelly Changizi B, Padma MV, Andrews I, Elston RC, Tiwari HK, McNamara JO. 2005. A locus for generalized tonic-clonic seizure susceptibility maps to chromosome 10q25-q26. Ann Neurol 58:449–458.

Qin R, Cao S, Lyu T, Qi C, Zhang W, Wang Y. 2017. CDYL Deficiency Disrupts Neuronal Migration and Increases Susceptibility to Epilepsy. Cell Reports 18:380–390.

Raju PK, Satishchandra P, Nayak S, Iyer V, Sinha S, Anand A. 2017. Microtubule-associated defects caused by EFHC1 mutations in juvenile myoclonic epilepsy. Hum Mutat 38:816–826.

Ratnapriya R, Vijai J, Kadandale JS, Iyer RS, Radhakrishnan K, Anand A. 2010. A locus for juvenile myoclonic epilepsy maps to 2q33-q36. Hum Genet 128:123–130.

Revinski DR, Zaragosi L-E, Boutin C, Ruiz-Garcia S, Deprez M, Thomé V, Rosnet O, Gay A-S, Mercey O, Paquet A, Pons N, Ponzio G, et al. 2018. CDC20B is required for deuterosomemediated centriole production in multiciliated cells. Nat Commun 9:4668.

Riban V, Bouilleret V, Pham-Lê BT, Fritschy J-M, Marescaux C, Depaulis A. 2002. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112:101–111.

Rodríguez C, Sánchez-Morán I, Álvarez S, Tirado P, Fernández-Mayoralas DM, Calleja-Pérez B, Almeida Á, Fernández-Jaén A. 2019. A novel human Cdh1 mutation impairs anaphase promoting complex/cyclosome activity resulting in microcephaly, psychomotor retardation, and epilepsy. Journal of Neurochemistry 151:103–115.

Rohena L, Neidich J, Truitt Cho M, Gonzalez KD, Tang S, Devinsky O, Chung WK. 2013. Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability. Rare Dis 1:e26314.

Rossetto MG, Zanarella E, Orso G, Scorzeto M, Megighian A, Kumar V, Delgado-Escueta AV, Daga A. 2011. Defhc1.1, a homologue of the juvenile myoclonic gene EFHC1, modulates architecture and basal activity of the neuromuscular junction in Drosophila. Hum Mol Genet 20:4248–4257.

Rozycka A, Steinborn B, Trzeciak WH. 2009. The 1674+11C>T polymorphism of CHRNA4 is associated with juvenile myoclonic epilepsy. Seizure 18:601–603.

Rudolf G, Lesca G, Mehrjouy MM, Labalme A, Salmi M, Bache I, Bruneau N, Pendziwiat M, Fluss J, Bellescize J de, Scholly J, Møller RS, et al. 2016. Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy. Eur J Hum Genet 24:1761–1770.

Sakai D, Dixon J, Dixon MJ, Trainor PA. 2012. Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells. PLOS Genetics 8:e1002566.

Sander T, Bockenkamp B, Hildmann T, Blasczyk R, Kretz R, Wienker TF, Volz A, Schmitz B, Beck-Mannagetta G, Riess O, Epplen JT, Janz D, et al. 1997. Refined mapping of the epilepsy susceptibility locus EJM1 on chromosome 6. Neurology 49:842–847.

Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, Ville D, Cieuta C, et al. 2000. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9:1465–1472.

Santos BP dos, Marinho CRM, Marques TEBS, Angelo LKG, Malta MV da S, Duzzioni M, Castro OW de, Leite JP, Barbosa FT, Gitaí DLG. 2017. Genetic susceptibility in Juvenile Myoclonic Epilepsy: Systematic review of genetic association studies. PLoS One 12:e0179629.

Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JLR, Tessier-Lavigne M, Okano H, et al. 2006a. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632.

Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JLR, Tessier-Lavigne M, Okano H, et al. 2006b. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632.

Schapira M, Tyers M, Torrent M, Arrowsmith CH. 2017. WD40 repeat domain proteins: a novel target class? Nature Reviews Drug Discovery 16:773–786.

Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshé SL, Nordli DR, Perucca E, et al. 2017a. ILAE Classification of the Epilepsies Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521.

Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshé SL, Nordli DR, Perucca E, et al. 2017b. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521.

Scheffer IE, Mefford HC. 2014. Epilepsy: Beyond the single nucleotide variant in epilepsy genetics. Nat Rev Neurol 10:490–491.

Selak S, Paternain AV, Aller IM, Picó E, Rivera R, Lerma J. 2009. A Role for SNAP25 in Internalization of Kainate Receptors and Synaptic Plasticity. Neuron 63:357–371.

Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, Schroer RJ, Novara F, De Gregori M, Ciccone R, Broomer A, Casuga I, et al. 2008. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 40:322–328.

Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day INM, Gaunt TR, Campbell C. 2015. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31:1536–1543.

Shinawi M, Liu P, Kang S-HL, Shen J, Belmont JW, Scott DA, Probst FJ, Craigen WJ, Graham BH, Pursley A, Clark G, Lee J, et al. 2010. Recurrent reciprocal 16p11.2 rearrangements associated

with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet 47:332–341.

Sigl R, Wandke C, Rauch V, Kirk J, Hunt T, Geley S. 2009. Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. Journal of Cell Science 122:4208–4217.

Stefansson H, Rujescu D, Cichon S, Pietiläinen OPH, Ingason A, Steinberg S, Fossdal R, Sigurdsson E, Sigmundsson T, Buizer-Voskamp JE, Hansen T, Jakobsen KD, et al. 2008. Large recurrent microdeletions associated with schizophrenia. Nature 455:232–236.

Steffens M, Leu C, Ruppert A-K, Zara F, Striano P, Robbiano A, Capovilla G, Tinuper P, Gambardella A, Bianchi A, La Neve A, Crichiutti G, et al. 2012. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet 21:5359–5372.

Stogmann E, Lichtner P, Baumgartner C, Bonelli S, Assem-Hilger E, Leutmezer F, Schmied M, Hotzy C, Strom TM, Meitinger T, Zimprich F, Zimprich A. 2006. Idiopathic generalized epilepsy phenotypes associated with different EFHC1 mutations. Neurology 67:2029–2031.

Strand AD, Aragaki AK, Baquet ZC, Hodges A, Cunningham P, Holmans P, Jones KR, Jones L, Kooperberg C, Olson JM. 2007. Conservation of Regional Gene Expression in Mouse and Human Brain. PLOS Genetics 3:e59.

Strehlow V, Swinkels MEM, Thomas RH, Rapps N, Syrbe S, Dorn T, Lemke JR. 2016. Generalized Epilepsy and Myoclonic Seizures in 22q11.2 Deletion Syndrome. Mol Syndromol 7:239–246.

Striano P, Weber YG, Toliat MR, Schubert J, Leu C, Chaimana R, Baulac S, Guerrero R, LeGuern E, Lehesjoki A-E, Polvi A, Robbiano A, et al. 2012. GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology 78:557–562.

Sunkel CE, Glover DM. 1988. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. Journal of Cell Science 89:25–38.

Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, Nishida M, Numata T, Medina MT, Takeuchi T, Morita R, Bai D, et al. 2004. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 36:842–849.

Suzuki T, Miyamoto H, Nakahari T, Inoue I, Suemoto T, Jiang B, Hirota Y, Itohara S, Saido TC, Tsumoto T, Sawamoto K, Hensch TK, et al. 2009. Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Hum Mol Genet 18:1099–1109.

Szafranski P, Schaaf CP, Person RE, Gibson IB, Xia Z, Mahadevan S, Wiszniewska J, Bacino CA, Lalani S, Potocki L, Kang S-H, Patel A, et al. 2010. Structures and Molecular Mechanisms for Common 15q13.3 Microduplications Involving CHRNA7: Benign or Pathological? Hum Mutat 31:840–850.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131:861–872.

Tan GW, Kondo T, Murakami N, Imamura K, Enami T, Tsukita K, Shibukawa R, Funayama M, Matsumoto R, Ikeda A, Takahashi R, Inoue H. 2017. Induced pluripotent stem cells derived

from an autosomal dominant lateral temporal epilepsy (ADLTE) patient carrying S473L mutation in leucine-rich glioma inactivated 1 (LGI1). Stem Cell Research 24:12–15.

Tan NCK, Mulley JC, Berkovic SF. 2004. Genetic Association Studies in Epilepsy: "The Truth Is Out There." Epilepsia 45:1429–1442.

Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. 2015. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034.

Terré B, Lewis M, Gil-Gómez G, Han Z, Lu H, Aguilera M, Prats N, Roy S, Zhao H, Stracker TH. 2019. Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1-, MCIDASor CCNO-deficient mice. Development 146:.

Terré B, Piergiovanni G, Segura-Bayona S, Gil-Gómez G, Youssef SA, Attolini CS-O, Wilsch-Bräuninger M, Jung C, Rojas AM, Marjanović M, Knobel PA, Palenzuela L, et al. 2016. GEMC1 is a critical regulator of multiciliated cell differentiation. The EMBO Journal 35:942–960.

Thakran S, Guin D, Singh P, Singh P, Kukal S, Rawat C, Yadav S, Kushwaha SS, Srivastava AK, Hasija Y, Saso L, Ramachandran S, et al. 2020. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int J Mol Sci 21:.

The Epileptology of Théodore Herpin (1799–1865) - Eadie - 2002 - Epilepsia - Wiley Online Library.

Thounaojam R, Langbang L, Itisham K, Sobhani R, Srivastava S, Ramanujam B, Verma R, Tripathi M, Aguan K. 2017. EFHC1 mutation in Indian juvenile myoclonic epilepsy patient. Epilepsia Open 2:84–89.

Tian J, Tian C, Ding Y, Li Z, Geng Q, Xiahou Z, Wang J, Hou W, Liao J, Dong M-Q, Xu X, Li J. 2015. Aurora B-dependent phosphorylation of Ataxin-10 promotes the interaction between Ataxin-10 and Plk1 in cytokinesis. Sci Rep 5:.

Tidball AM, Parent JM. 2016. Concise Review: Exciting Cells: Modeling Genetic Epilepsies with Patient-Derived Induced Pluripotent Stem Cells. STEM CELLS 34:27–33.

Tigges U, Welser-Alves JV, Boroujerdi A, Milner R. 2012. A novel and simple method for culturing pericytes from mouse brain. Microvasc Res 84:74–80.

Tompson S, Young T. 2017. Assaying the Effects of Splice Site Variants by Exon Trapping in a Mammalian Cell Line. BIO-PROTOCOL 7:.

Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, Wang A, Wu W, Haddad GG, Chaim IA, Domissy A, Vandenberghe M, et al. 2019. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell 25:558-569.e7.

Turco EM, Vinci E, Altieri F, Ferrari D, Torres B, Goldoni M, Lamorte G, Tata AM, Mazzoccoli G, Postorivo D, Della Monica M, Bernardini L, et al. 2018. Copy number variations in healthy subjects. Case study: iPSC line CSSi005-A (3544) production from an individual with variation in 15q13.3 chromosome duplicating gene CHRNA7. Stem Cell Research 32:73–77.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3--new capabilities and interfaces. Nucleic Acids Res 40:e115.

Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, et al. 2010. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet 42:619–625.

Vijai J, Cherian PJ, Stlaja PN, Anand A, Radhakrishnan K. 2003a. Clinical characteristics of a South Indian cohort of juvenile myoclonic epilepsy probands. Seizure 12:490–496.

Vijai J, Kapoor A, Ravishankar HM, Cherian PJ, Girija AS, Rajendran B, Rangan G, Jayalakshmi S, Mohandas S, Radhakrishnan K, Anand A. 2003b. Genetic association analysis of KCNQ3 and juvenile myoclonic epilepsy in a South Indian population. Hum Genet 113:461–463.

Wang Q, He K, Li Z, Chen J, Li W, Wen Z, Shen J, Qiang Y, Ji J, Wang Y, Shi Y. 2014a. The CMYA5 gene confers risk for both schizophrenia and major depressive disorder in the Han Chinese population. The World Journal of Biological Psychiatry 15:553–560.

Wang W, Wu T, Kirschner MW. 2014b. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. Elife 3:e03083.

Weinstein J, Jacobsen FW, Hsu-Chen J, Wu T, Baum LG. 1994. A novel mammalian protein, p55CDC, present in dividing cells is associated with protein kinase activity and has homology to the Saccharomyces cerevisiae cell division cycle proteins Cdc20 and Cdc4. Mol Cell Biol 14:3350–3363.

Wiegand C, Banerjee I. 2019. Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology 60:250–258.

Wu Y-T, Hsu Y-H, Huang C-Y, Ho M-C, Cheng Y-C, Wen C-H, Ko H-W, Lu H-E, Chen Y-C, Tsai C-L, Hsu Y-C, Wei Y-H, et al. 2018. Generation of an induced pluripotent stem cell (iPSC) line from a 40-year-old patient with the A8344G mutation of mitochondrial DNA and MERRF (myoclonic epilepsy with ragged red fibers) syndrome. Stem Cell Research 27:10–14.

Xu C, Min J. 2011. Structure and function of WD40 domain proteins. Protein Cell 2:202–214.

Yamamuro T, Kano K, Naito K. 2008. Functions of FZR1 and CDC20, Activators of the Anaphase-Promoting Complex, During Meiotic Maturation of Swine Oocytes. Biol Reprod 79:1202–1209.

Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, Yu Q. 2009a. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb–E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23:2388–2393.

Yang Y, Kim AH, Yamada T, Wu B, Bilimoria PM, Ikeuchi Y, Iglesia N de la, Shen J, Bonni A. 2009b. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science 326:575–578.

Zafeiriou M-P, Bao G, Hudson J, Halder R, Blenkle A, Schreiber M-K, Fischer A, Schild D, Zimmermann W-H. 2020. Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nat Commun 11:3791.

Zara F, Bianchi A, Avanzini G, Di Donato S, Castellotti B, Patel PI, Pandolfo M. 1995. Mapping of genes predisposing to idiopathic generalized epilepsy. Hum Mol Genet 4:1201–1207.

Zhou B, Zhu Y-B, Lin L, Cai Q, Sheng Z-H. 2010. Snapin deficiency is associated with developmental defects of the central nervous system. Bioscience Reports 31:151–158.