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Synopsis

This is a summary of the work done under the title “The role of dimensionality
in glass transition and memory behaviour of amorphous solids” The focus of
these investigations has been in trying to understand the glass transition, the trans-
formation of a liquid to an amorphous solid when cooled in such a way as to avoid
crystallization. A related phenomenon in these solids is that of memory formation; a
characterization of this phenomenon and possible connections to the properties of the
glassy state are also studied in this thesis.
In order to motivate the discussion contained in this thesis, we begin by describing
observed phenomenology, speci�cally, a change in behaviour of the relaxation time,
whose increase with decreasing temperature changes from Arrhenius-like to super-
Arrhenius. Concurrently, the microscopic dynamics becomes heterogeneous in that
faster (or slower) particles cluster together showing spatially correlated dynamics.The
role of such heterogeneities in the complex relaxation dynamics in glass-forming liq-
uids and, as well, the growing length scales governing these relaxation processes have
both been widely investigated. Theoretical investigations in the preceding decades
have largely focussed on extending the framework of random �rst order transition
theory (RFOT). A lot of e�ort has been devoted is in the formulation of a mean �eld
description in the in�nite dimensional limit. In this limit, the glass transition and the
jamming transition (which occurs for athermal systems) is uni�ed in the context of
an idealized hard sphere. These developments naturally led to investigations of how
results obtained at in�nite dimension relate to behaviour at �nite dimensions.
In the �rst part of the thesis, we study glass-forming liquids in spatial dimension 3−8

using computer simulations and compare our results with the theoretical prediction.
Glasses also display interesting behaviour in the non-equilibrium or driven state. Un-
derstanding the mechanical response of glasses to applied deformation is of great in-
terest as it helps to determine material properties such as strength and ductility. Under
cyclic shear deformation, glasses show a non-equilibrium phase transition. When the
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deformation amplitude is large, con�guration of the system keeps changing with in-
creasing number of cycles whereas repeated cycles of low amplitude shear deformation
drive the system to so-called absorbing states that encode the amplitude of shear de-
formation applied – the glass remembers! The mechanical properties of glasses, with
a speci�c focus on memory-formation and the yielding behaviour of amorphous solids
under cyclic shear deformation is the focus of the second part of this thesis. The out-
line of the thesis is the following:
In chapter 1, a brief introduction about the complex phenomenology of glass-forming
liquids is presented. The state-of-the-art for problems relevant to this thesis and the-
oretical attempts to understand this behaviour are then discussed.
In chapter 2, the de�nitions of di�erent quantities computed in this thesis are pre-
sented, along with the details of the models studied and the di�erent methods used.
In chapter 3, the dynamics of a model glass-forming liquid is studied. This liquid
consists of soft sphere assemblies interacting with a harmonic potential for spatial di-
mensions 3−8. At low temperatures, this model shows crossover from a sub-Arrhenius
relaxation process at low density to super-Arrhenius behaviour at higher densities in
three spatial dimensions. Employing a scaling theory of density-temperature depen-
dent relaxation times, the cross over density, φ0, is identi�ed. This crossover density
marks the ideal glass transition density in the hard-sphere limit and is found to be
close to the athermal jamming point, φJ in three and four dimensions. We �nd that
φ0 di�ers from the athermal jamming density, φJ and the di�erence systematically in-
creases with the increasing dimensions. We compare our results with the theoretical
predictions and �nd a near quantitative agreement between these two.
In chapter 4, the heterogeneity in the dynamics is investigated, with a focus on the
breakdown of the Stokes-Einstein relation and on fragility in a model glass-forming
liquid. Here too, a binary mixture of soft spheres with a harmonic interaction potential
serves as our model glass-former, which we study for spatial dimensions from 3 to 8.
Dynamical heterogeneity is quanti�ed through the dynamical susceptibility χ4, and
the non-Gaussian parameter α2. We �nd that the fragility, the degree of breakdown
of the Stokes-Einstein relation, as well as heterogeneity of dynamics, decrease with
increasing spatial dimensionality. We brie�y describe the dependence of fragility on
density, and use it to resolve an apparent inconsistency with previous results.
In chapter 5, we investigate the relation of di�usivity or relaxation time between
di�erent components. We have observed at 3d the di�usivities can be related by a
single power law. However, at 4d or higher spatial dimensions, two di�erent power-
law regimes are observed with di�erent exponents. For all the dimensions, the ex-
ponents in the higher temperature regime are always smaller than the exponents
in the lower temperature regime. Both the exponents (high temperature and low-
temperature regime) increase with increasing dimensions.We have also investigated



the Adam-Gibbs (AG) relation for spatial dimensions 3 − 8 and found that the AG
relation holds for both di�usivity and relaxation time in 3 dimensions for the tem-
perature range considered. However, our initial results suggest that at 4d or beyond,
this relation does not hold for either di�usivity or relaxation time. One caveat is that
the vibrational entropy has been computed using the harmonic approximation, which
needs to be justi�ed to reach any de�nite conclusions regarding the validity of the AG
relation.
In chapter 6, we study memory-formation in a model of amorphous solids. It has
previously been demonstrated that the memory of the amplitudes of shear deforma-
tion that the system is subjected to are encoded and can be retrieved by subsequent
deformation cycles that serve as read operations.Here we consider di�erent read pro-
tocols and measurements and show that single and multiple memories can be robustly
retrieved through these di�erent protocols. We also show that shear deformation by a
larger amplitude always erases the stored memories.Here, we also study low-density
sphere assemblies, which serve as models for non-Brownian colloidal suspensions,
under athermal deformation. We identify a regime where the signatures of memory
encoding are similar to the model glass, even when transitions between local energy
minima are absent.
In chapter 7, we study the yielding behaviour of a model glass using an asymmet-
ric cyclic shear deformation protocol, wherein the applied strain is cyclically varied
between 0 and a maximum value γmax, and investigate the role of annealing in the
yielding transition. Two strikingly di�erent regimes of behaviour similar to symmet-
ric shear deformation emerge depending upon the degree of annealing. However, we
�nd that the yielding behaviour of well-annealed glasses displays striking di�erences
from the case of symmetric shear. In the intermediate strain regime, substantial plas-
ticity emerges before yielding. Though the nature of the deformation is asymmetric,
no structural anisotropies are observed.
In chapter 8, we present the conclusions and future outlook of this thesis.
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3.7 For each φ0, we obtain the value of δ for which χ2
τ is minimum. The

minimum χ2
τ so obtained is plotted as a function of φ0 (left) and al-

ternately, the corresponding δ (right). The vertical lines indicate the
range of φ0 within which we estimate the best �t value, as described
in Sec. S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 χ2
τ as a function of φ0, with δ = 2.0. . . . . . . . . . . . . . . . . . . . . 67

3.9 Energy as a function of density φ during the compression and decom-
pression cycles. Di�erent lines correspond to di�erent initial condi-
tions (We show here 50 samples). . . . . . . . . . . . . . . . . . . . . . 68

3.10 Histogram of the jamming densities φJ obtained from 1000 samples
are shown for 3− 8d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 Left Panel: The jamming density, φJ and the glass transition density,
φ0, plotted as a function of spatial dimension. Inset: Ratio of φ0 and
φJ , plotted as a function of spatial dimension. Right Panel: Compar-
ison of φ0 and φJ values from the present work (AKS) with previous
simulation [178] (MC) and theoretical calculations [94] (MZ) using the
Percus-Yevick closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 Left: Fraction of rattlers as a function of densities (scaled with the jam-
ming density, φJ ) in 3 − 8 spatial dimensions. Right: φnr along with
φJ and φ0 is plotted against dimension. Inset: Same data with Y axis
is scaled as 2dφ/d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.13 All the data points simulated in 3− 8d along with φJ and φ0 for that
dimension is plotted in a single plot for di�erent dimensions. The red
dots correspond to the TVFT at that density. . . . . . . . . . . . . . . . 72

4.1 Relaxation time as a function of temperature for various dimensions.
Left: Points (dot) represent simulation data along with �ts (lines) to
the VFT form. Right: Angell plot, of logarithm of the relaxation times,
plotted against T /Tg where the glass transition temperature Tg is cho-
sen to be the temperature at which the relaxation time reaches the
value 106. The fragility is highest for 3d, with the fragility decreasing
with increasing spatial dimensionality. . . . . . . . . . . . . . . . . . . 78

4.2 Left: Kinetic fragility is plotted as a function of spatial dimensional-
ity at �xed density φ = 1.3φJ , which decreases with increasing di-
mensionality. Right: The divergence temperature TVFT is plotted as
a function of spatial dimensionality at �xed density φ = 1.3φJ which
also decreases with increasing dimensionality. . . . . . . . . . . . . . . 79

4.3 The dynamical susceptibility χ4(t) is plotted as a function of time for
di�erent temperatures for spatial dimensions 3− 8. . . . . . . . . . . . 80

xx



4.4 Left: The peak value of χ4(t), χpeak4 , is shown as a function of relax-
ation time, τα . Inset: By scaling χpeak4 values, the data for di�erent
dimensions are collapsed onto a master curve. A power law �t (red
line) provides a reasonable description for most of the temperature
(τα) range, with exponent 0.47. Right: The time at whichχ4(t) is max-
imum, tmaxχ4

is plotted as a function of τα for di�erent dimensions. The
data for di�erent dimensions overlap, and demonstrate that tmaxχ4

∼ τα . 80
4.5 The non-Gaussian parameter α2 is plotted against time for di�erent

temperatures and spatial dimensions 3− 8. . . . . . . . . . . . . . . . . 82
4.6 Left: The peak value of α2(t), αpeak2 , is shown as a function of relax-

ation time, τα for di�erent dimensions. Inset: By scaling αpeak2 values,
the data for di�erent dimensions are collapsed onto a master curve.
A power law �t (red line) provides a reasonable description for most
of the temperature (τα) range, with exponent 0.43. Right: The time
at which α2(t) is maximum, t∗ is plotted as a function of (D/T )−1 for
di�erent dimensions. The data for di�erent dimensions overlap, and
demonstrate that t∗ ∼ (D/T )−1, albeit with small deviations apparent
at low temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Dτα is plotted against τα in a log-log plot. The low temperature data
is �tted with the form: Dτα ∼ τωα . From the �t, we obtain ω for each
spatial dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Dτα is plotted against temperature for 3 − 8 spatial dimensions. We
de�ne TSEB as the temperature below which Dτα exceeds the high
temperature value by 7.5%. The green dotted line represents TSEB. . . 86

4.9 Left panel: The exponent ω is plotted against the spatial dimensions.
The exponentω decreases with increasing spatial dimensionality. Right
panel: TSEB, the temperature where SER breaks down is plotted against
spatial dimension. TSEB also decreases with increasing spatial dimen-
sionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 Left panel: The kinetic fragility KVFT is shown as a function of scaled
density φ/φJ for spatial dimensions 3−8. Right panel: TVFT is shown
as a function of scaled density φ/φJ for spatial dimensions 3− 8. . . . 87

4.11 Left panel: Relaxation times are shown in an Angell plot for (a) 3d at
two di�erent densities, 1.14φJ , 1.3φJ and (b) for 4d at density 1.3φJ .
The kinetic fragility at 1.14φJ (3d) is lower than the 3d and 4d systems
at density 1.3φJ . Right panel: χpeak4 is plotted against τα for 3d at two
di�erent densities, 1.14φJ and 1.3φJ and for 4d at 1.3φJ . χ

peak
4 values

for 4d at 1.3φJ are lower than for the 3d systems at both 1.14φJ and
1.3φJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xxi



4.12 Left: Relaxation time is plotted as a function of temperature for 3− 8
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6.1 The mean squared displacement (MSD) for di�erent training cycles
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6.6 The MSD for the system which is retrained at a larger amplitude than
the training amplitude during parallel reading. Top: The system is �rst
trained at γtrained = 0.03 fully (30 cycles) and then cycles of shear de-
formation with amplitude γretrained = 0.04 are applied to that trained
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cles (40 cycles) with γretrained = 0.04 the system shows the usual sig-
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γtrained = 0.02 fully (15 cycles) and then cycles of shear deformation
with amplitude γretrained = 0.03 are applied to that trained system.
The plot does not show a vanishing of the MSD at γread = 0.02 even
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displays a vanishing MSD at γ = 0.03. . . . . . . . . . . . . . . . . . . 121

6.7 The MSD for the system which is retrained at a smaller amplitude
than the training amplitude during parallel reading. The system is
�rst trained at γtrained = 0.03 fully (30 cycles) and then cycles of
shear deformation with amplitude γretrained = 0.02 are applied to that
trained system. The MSD, even after a single cycle, is close to zero at
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0.03 indicating persistence of memory of that amplitude. . . . . . . . . 122
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ferent lines correspond to di�erent number of training cycles. The
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as γtrained , there is a change in slope of the MSD vs. γread curve. . . . . 122
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6.11 The MSD for the system which is trained at the amplitude larger than
γc. The system is trained at γtrained = 0.09 (top) γtrained = 0.11 (bot-
tom) for a di�erent numbers of the training cycles. The MSD increases
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γ1 = 0.02 and γ2 = 0.01, bottom: γ1 = 0.06 and γ2 = 0.04). Two
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6.18 The MSD for the system which is retrained at an amplitude which is
smaller than one training amplitude but larger than other. A single
cycle shear deformation with amplitude γ3 = 0.05 is applied to the
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The system is trained at γ = 0.03. At this amplitude, the system is
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6.24 The MSD for the multiple trained system during parallel reading. Dif-
ferent lines correspond to di�erent numbers of training cycles. Top
panel: The system is trained γ1 = 0.05 and γ2 = 0.03. At these am-
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cycles, the MSD becomes zero for all γread < γ1 = 0.05. Thus, only the
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is trained γ1 = 0.12 and γ2 = 0.03. At the amplitude γ = 0.12, the
system is in loop reversible at γ = 0.03, the system is point reversible.
The MSD remains zero belowγread = γ2 and exhibits a minimum value
approaching zero at γread = γ1, each being a clear signature of mem-
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clear signature of memory is present near γread = γ1. The presence of
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Chapter 1
Introduction

Glasses are ubiquitous in nature. Window glasses, which are made of silica, are the
most common example. However, there exist many di�erent examples, chalcogenide
glasses and metallic glasses to name a few, whose properties come to the fore in dif-
ferent contexts. Glasses are one of the oldest arti�cial materials used by humankind;
the oldest glasses known so far were found in the deserts of Egypt [1]. People have
been making and using glass for thousands of years and attempts to improve on this
process and to produce glasses with desired properties are some of the earliest at-
tempts to better understand this material. The empirical knowledge that glasses are
made by cooling liquids quickly begs far more questions than it gives answers. Fore-
most among these, in the scope of statistical physics, is the question of whether the
transformation of liquids to glasses upon cooling is a thermodynamic transition. A
considerable amount of e�ort has been devoted to answering this question – and this
question is also the focus of this thesis. Glasses are similar to crystalline solids, in
the sense that they are mechanically rigid and capable of supporting load. On the
other hand, the microscopic structure of glasses is disordered, similar to that of liq-
uids. This mixed character of glasses makes it di�cult to distinguish it from liquids,
purely based on structure, and from crystalline solids, based on mechanical response
to external forces. Whether the glass is a di�erent state of matter and if so is there any
thermodynamic transition involved like other states of matter is a big topic of research
till date.
In recent years, this research �eld has received growing attention from scientists for
a variety of reasons. On the one hand, understanding the glass transition has quite
broad implications for other systems as well. A hallmark property of glasses is that
the relaxation time (the time to reach equilibrium) of the system is much larger than
the typical duration of experiments or of numerical simulations. This property is com-
mon to a variety of systems, for example, type-II superconductors in the presence of
disorder such as high-Tc superconducting materials [2], spin glasses [3, 4], complex
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�uids such as colloidal assemblies [5], granular materials [6], emulsions, foams [7],
proteins [8], etc. On the other hand, glasses also have applications in developing var-
ious technologies [9, 10]. Metallic glasses, alloys of two or more components, enable
modern power transmission and are �nding increasing use in applications calling for
high strength or low shrinkage upon solidi�cation [11]. Chalcogenide glasses have
essential applications in optical disc technology and may play a critical role in non-
volatile electronic memory [12]. Amorphous silicates for optical �bers are widely used
in modern communication technology. Organic glasses are the basis for organic light-
emitting diodes and other developments in organic electronics [13].

Glasses can be obtained by cooling a liquid. Typically, a liquid crystallises when
cooled below its melting temperature. However, if one can avoid crystallisation some-
how (su�ciently rapid cooling or "quenching" is one of the common ways), the liquid
will reach a metastable or supercooled state below its melting temperature [14]. If one
decreases the temperature further, viscosity increases rapidly in a small temperature
interval. As a result, the dynamics of the liquid becomes too sluggish to explore all
possible particle arrangements over an accessible timescale. At this point, the system
is said to have fallen out of equilibrium and reached a glassy state. This is a key feature,
which will be discussed in detail in subsequent sections. The temperature at which the
transition occurs is termed as Tg . As the liquid becomes glass without any signi�cant
structural change, it is hard to understand the nature of the transition. Understand-
ing the correlation between structure and dynamics has also proved to be challenging.
These issues are keenly investigated to this day.

In the following sections, I will describe the basic phenomenology associated with
the glass transition, followed by a discussion on the theoretical developments to un-
derstand them. At the end of this chapter, I will describe the goal of this thesis.

1.1 Experimental glass transition:

Generally, if we cool a liquid, it will crystallize as the temperature goes below the
freezing point. Now, if we can avoid the crystallization somehow, instead of crystal,
we will end up with a state called glass. The question therefore becomes about how
one might avoid crystallisation. When a liquid is cooled, crystallisation occurs through
small �uctuations in the local order of particles, with a small number of them falling
into an ordered con�guration and forming a nucleus. The growth of these nucleii
occurs through the deposition of more particles on the surface. A �nite amount of time
is needed for the growth of these crystal nucleii which is called the nucleation time
(τnucleation). Similarly, the liquid takes a �nite amount of time to reach equilibrium
(no memory of the initial state) at each temperature, which is called relaxation time
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(τα). Now, if the liquid is cooled with a cooling rate such that it relaxes but does
not nucleate, it can remain in the liquid phase even below its freezing temperature.
This is possible if the amount of time spent at a given temperature is more than τα
but less than τnucleation. This is indeed possible for a vast majority of the liquids,
starting from molecular liquids to polymer melts [15]. In order to give an idea about
the time scales, it is good to mention some typical numbers. Typical values of cooling
rate in laboratory experiments are 1 − 100 Kelvin/min. The typical time scale for
τα is of the order of 1 pico-second for water near the melting temperature, Tm. The
glass transition temperature, Tg , is often de�ned in experiments as the temperature at
which τα is of the order of 100s. The increase of τα is associated with the increase
in shear viscosity η. These two quantities are related to each other by the Maxwell
relation: η = G∞τ (τ :stress relaxation time). The viscosity attains values of the order
of 1013 poise or 1012 Pa-s at Tg . To get a sense of how huge this number is, let us
calculate the time it will take to empty a cup containing a liquid just above its glass
transition. Here, we use the general de�nition of viscosity which is F = ηvA/d, where
F,η,v,A and d are the force, the viscosity, the velocity, the area and the diameter
respectively. Now, using v = l/t, we �nd, t = ηlA

dF . We will be substituting the typical
values corresponding to the above problem, F ∼ 10 Newton, A/d ∼ l ∼ 0.1m, v =

l/t, η = 1012 we obtain, t = 109s (∼ 30 years!!) [16]. When a liquid is cooled to
a temperature approaching Tg their ability to �ow reduces so much so that on the
timescale of an experiment, they behave like a solid. In such a state, the substance can
support a mechanical load and mechanically behaves like a solid, but the microscopic
structure is similar to that of a liquid. This state is known as structural glass and this
phenomenon of a liquid transforming into an amorphous solid is known as the glass
transition. In the laboratory, Tg is de�ned by: i) Where viscosity become 1013 poise
(the corresponding relaxation time is 100s), (Fig. 1.1(a)). ii) The speci�c heat shows a
sharp but continuous drop at a temperature, which is the calorimetric measure of Tg
(Fig. 1.1(b)). Note that glasses can also be obtained by controlling the density; however,
I will describe all the phenomenology using temperature as the control parameter. The
relation between glasses obtained by two di�erent control parameters can be found
in [17, 18]. Although the value of Tg is dependent upon a variety of things such as
protocol, cooling rate etc, Tg is a meaningful concept to characterize the dynamics.
The increase in relaxation time is so steep that Tg does not vary signi�cantly even for
large changes in the cooling rate. Let us assume that the viscosity or the relaxation
time follows Arrhenius behaviour (τα = τ0 exp ∆

T ) with temperature. So, at T = Tg ,
the experimental time, texp will be,

texp = τ0 exp
(
∆

Tg

)
(1.1)
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Figure 1.1: Two di�erent metrics are used to de�ne the glass transition temperature,
Tg . Left panel: The temperature at which the log of the viscosity divided by P becomes
13 marks the laboratory glass transition, The data is taken from [19]. Right panel: The
temperature at which the speci�c heat of the liquid shows a sharp but continuous drop
is the calorimetric measure of Tg .
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Here, it deserves to be mentioned that texp is determined as a multiple of the inverse
cooling rate. Di�erentiating with respect to Tg , we obtain,

dTg = −
τ0∆

T 2
g

exp
(
− ∆
Tg

)
dtexp (1.2)

This shows that a huge change in texp causes small shifts in Tg . During supercooling,
texp increases faster with decrease in temperature than predicted by the Arrhenius re-
lation so the change in Tg will be even smaller. Thus we can de�ne Tg meaningfully
from an experimental point of view [20].
Our inability to access low enough temperatures to observe an imminent divergence
in the relaxation time, while maintaining equilibrium in experiments as well as in sim-
ulations, is the main hindrance to understanding the glass transition. In recent times,
a lot of emphasis has been given to devising di�erent methods which would enable
us to study supercooled liquids at progressively lower temperatures. In the recent
past, [21, 22] it has been shown that the vapor deposition method can synthesize or-
ganic molecular glasses having a much lower Tg than of any previously synthesized.
These glasses are termed as ultrastable glasses. In this method, glasses are formed by
depositing molecules layer by layer from a vapor onto a substrate. It has been found
that the mobility of the molecules at the surface is very large (∼ 108) compared to
the bulk [23, 24]. As a result, at an optimum deposition rate, molecules can sample
di�erent con�gurations and reach equilibrium at the substrate temperature which is
kept below the Tg of the bulk material. Glasses synthesized within a few hours with
this method are more stable than 20 million year old naturally occurring glasses. The
physical properties of these glasses are qualitatively di�erent from ordinary glasses []
and improving our understanding of these properties is an area of intense theoretical
investigation [25, 26]. In computer simulations, one cannot access time scales as long
as those achievable in experiments. Tg is de�ned as 10−6s in simulations as opposed
to 100s in experiments. Recently, in the context of simulations as well, di�erent meth-
ods have been introduced to obtain stable glasses, the swap Monte Carlo method and
oscillatory shear deformation to name a few. Swap Monte Carlo method in the con-
text of glass-forming liquids was �rst introduced in [27]. However, its utility towards
producing lower energy glasses has been shown in recent times. In this method, in
addition to standard Monte Carlo moves, particle diameters are swapped with a �nite
probability which enhances thermalization in mixtures and is very e�cient when ap-
plied to polydisperse systems. These methods enable us to study glass-forming liquids
beyond the conventionally de�ned Tg . Although it was shown that this method works
very well in di�erent spatial dimensions [28], its applicability in di�erent systems are
limited. How one can use this method in a simple model system is an area of current
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research [29].
The glass transition, as described so far, points to a dramatic slow down in the dy-
namics as being key. In the section to follow, the dynamical properties of glasses are
elaborated on.

1.2 Dynamical properties

In this section, we will discuss how the dynamical properties change during the glass
transition.

1.2.1 Non-exponential decay of dynamic correlation functions

Dynamic correlation functions describe how any �uctuations in the system relax with
time. The real-space, and real-time correlation functions can be directly measured in
simulations, whereas Fourier transforms of the real space-time correlation functions
are typically computed in experiments. Here, we discuss the nature of the density
correlation function where local density is the �uctuating variable for a dense liquid.
At high temperatures, the relaxation function, C(t) is relatively featureless; it decays
exponentially. At low temperatures, the decay is no longer purely exponential, the
decay of C(t) shows a two-step character [14, 16, 30]. This is understood as being a
result of two timescales, the �rst short timescale termed the “ballistic" regime, and the
second, longer timescale, the “di�usive" regime. At intermediate time scales between
the ballistic and the di�usive region a plateau appears that eventually decays to zero at
large times. The length of the plateau increases as T decreases. In Fig. 1.2(a) a typical
correlation function is shown schematically. This two-step decay is one of the most
prominent features of glass-forming liquids. Conventionally, the time window around
the plateau is known as the β relaxation regime and the decay at the longer time scale
is known as the α relaxation regime. These two regimes are well separated in time at
lower temperatures. In the α regime, the relaxation process can no longer be �tted to
an exponential; it is empirically described by a stretched exponential function [31](also
known as Kohlrausch-Williams-Watts function) [32]: C(t) = fc exp

(
−t
τ

)β
. β, which lies

between 0 and 1, is a measure of the deviation from the exponential behaviour and is
termed as the stretching exponent (also sometimes refereed to as the KWW exponent).

In experiments, the dielectric susceptibility is often used to measure the relaxation
dynamics. Dynamic susceptibility, related to the time correlation of polarization �uc-
tuations, can capture the dynamics for a larger range of timescales. In Fig. 1.2(b)
the imaginary part of the dielectric susceptibility, ε′′(ω) is shown for various tem-
peratures. We can see that the peak shifts to low frequencies with the lowering of
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Figure 1.2: Schematic representation of the decay of the density correlation function
at high and at low temperatures. Left: At low temperatures the correlation function
decays non-exponentially in contrast to high temperatures where the decay is expo-
nential. Right: The imaginary part of the dielectric susceptibility, ε′′(ω) is plotted for
di�erent temperatures. The data is taken from [33].
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temperature signifying that relaxation time increases with decreasing temperature.
At high temperatures, the data follows the Debye law: ε(ω) = ε(∞) + ∆ε

1+iωτα
(where

the real part is ε′ = ε(∞) + ∆ε
1+ω2τα

and the imaginary part is ε′′ = ∆ωταε
1+ω2τα

) which cor-
responds to exponential relaxation. When the dielectric function follows the Debye
law, peaks in ε′′ are symmetric as observed in Fig. 1.2. However, at low tempera-
tures, the relaxation spectra become broader with a long tail at higher frequencyies,
i.e., non-Debye, which is the frequency analogue to stretched exponential behaviour
of the time correlation function [33]. In the time domain, the correlation function can
be �tted with a stretched exponential, exp(−(t/τ)β) function. Similarly, in the fre-
quency domain ε′′ is well-�tted to the Havriliak-Negami form (which generalizes the
Debye law): ε′′ = ( ∆ωταε

1+(ω2τα)α )γ . α, γ are the temperature dependent exponents. This
form implies that the relaxation becomes increasingly non-exponential with decreas-
ing temperature.
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Figure 1.3: MSD is plotted as a function of time for di�erent temperatures for Kob-
Anderson model.

The Mean Squared Displacement (MSD), another dynamic observable, also shows
a signi�cant change in the supercooled regime. At high temperature, in the early
ballistic regime,MSD ∝ t2 whereas at long times, i.e., in the di�usive regimeMSD ∝
t (see Fig. 1.3). However, for supercooled liquids, these two regimes are separated by
a plateau, the length of which increases with the decreasing temperatures. Although
particles are colliding, MSD does not change much in the plateau regime. On the
timescale of the plateau regime, particles are caged by their neighbours. After a long
time, the particles break the cage and the di�usive regime sets in in the system. The
typical MSD behaviour is shown in Fig. 1.3.
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1.2.2 Non-Arrhenius temperature dependence of relaxation times

In general, the relaxation time measures the time taken by a system to forget its initial
state. Generally, the temperature dependence of relaxation time for a liquid at a high
temperature and a low density is Arrhenius. However, the temperature dependence
of the α-relaxation time, i.e., τα , shows non-Arrhenius behaviour in the supercooled
temperature regime. In general, when the dynamics are dominated by overcoming
energy barriers by thermal �uctuations, τα follows Arrhenius behaviour:

τα ∝ exp
(
∆E
kBT

)
(1.3)

where ∆E represents the activation energy which is temperature independent and
kB is Boltzmann’s constant. The Arrhenius law also holds for other transport coe�-
cients such as di�usivity and viscosity. A large number of glass-forming liquids show
a stronger than Arrhenius increase in viscosity, τα and di�usivity upon supercooling
towards the glass transition. At high temperatures, the dynamics is Arrhenius and at
low temperatures, it becomes super-Arrhenius, and this change of behaviour happens
gradually over a range of temperatures around a onset temperature. This is a charac-
teristic feature of such liquids [19]. Liquids are categorized into two types on the basis
of this change in behaviour: i) Liquids which show this Arrhenius to super-Arrhenius
cross-over are called fragile glass-formers. Ortho-terphenyl (OTP) is a typical exam-
ple. ii) Liquids which do not show such a crossover, obeying the Arrhenius law at all
temperatures, for example supercooled liquid silica, are termed strong glass-formers.
We have seen that during supercooling, the relaxation time not only increases by a
huge amount but also the rate of increase is remarkably di�erent from what one sees
for high temperature low-density liquids. Understanding the super-Arrhenius nature
of the dynamics is one of the enduring questions of this �eld. A universally accepted
theory of this crossover in the behaviour of glass-forming liquids has proven elusive.
However, several attempts have been made to explain this behaviour. Many di�erent
empirical �tting functions with varying degrees of theoretical basis are used to un-
derstand the observed behaviour. One of the widely accepted functions which �ts the
data very well is the Vogel-Fulcher-Tammann-Hesse (VFTH or VFT) �t [34, 35]. The
VFT �t is a three parameter �t de�ned in the following way:

τ = τ0 exp
(
DT0

T − T0

)
(1.4)

where D is material property. This implies that at a �nite temperature, T0, the re-
laxation time becomes in�nite. Subsequently, this is rationalised by introducing the
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concept of the glass transition as a �nite temperature thermodynamic transition. How-
ever, many other �tting functions have been proposed, implying a zero temperature
divergence of the relaxation time/viscosity, one of which is the Zwanzig-Bessler law:
τ = Aexp

(
E
RT 2

)
. Between these two disparate scenraios, it is hard to verify which

form correctly represents the temperature dependence of the relaxation time, because
the system falls out of equilibrium before Tg is reached, making it impossible to mea-
sure any equilibrium properties over experimental timescales. Extensive comparisons
between di�erent �tting functions have been discussed in the literature [36, 37]. The
question of whether there exists a �nite temperature divergence of the relaxation time
or whether the relaxation time diverges only at zero temperature remains an open
question. There are many experimental and simulation studies which indicate that the
drastic increase of the relaxation time originates from an underlying thermodynamic
transition at �nite temperatures. Theoretical analyses predicting a thermodynamic
transition are expected to be exact in the in�nite dimensional limit. Their validation is
possible with studies performed in higher dimensions – a feat only possible with com-
puter simulations. Hence, in this thesis, we too attempt to verify whether there exists
an underlying thermodynamic glass transition by studying glass-forming liquids in
higher spatial dimensions.

Figure 1.4: Angell plot of the logarithm of viscosity vs the scaled inverse temperature
T
Tg

. Inset: The Angel plot can be generated using the VFT �t. The data is taken from
[19].

1.2.2.1 Kinetic fragility

We have discussed the complex behaviour displayed by the relaxation times of super-
cooled liquids. By plotting the logarithm of the relaxation time or the viscosity as a



1.2 Dynamical properties 11

function of TgT , one can distinguish between di�erent supercooled liquids. This kind
of plot is called the Angell plot by convention [19, 38]. In Fig. 1.4, we show the origi-
nal Angell plot where we observe that the temperature dependence of the relaxation
time for some systems falls on a straight line. These liquids are categorised as strong
glass-formers. Other systems, for which the temperature dependence of the relaxation
time deviates from the straight line are categorised as fragile glass-formers. Using this
plot, one can quantify how rapidly the relaxation time or the viscosity increases with
temperature. This is done by introducing a parameter called fragility whose value is
system-speci�c. The fragility, when calculated from the relaxation time or from trans-
port coe�cients, is called kinetic fragility. There are many di�erent ways to calculate
the fragility of the system. The original de�nition given by Angell is as follows

m =

dlogταd
(
Tg
T

)
 (1.5)

The kinetic fragility can also be calculated from the VFT formula [39]:

τ(T ) = τ0 exp

 1

KVFT
(

T
TVFT

)
− 1

 (1.6)

KVFT and m are related to each other in the following way: m =
Tg[

KVFT

(
Tg

TV FT
−1

)
ln10

] .

Due to the simplicity of the second equation, we have used it in the present thesis. The
idea of fragility plays an important role in understanding glass-forming liquids as it
has been observed that fragility can be related to other thermodynamic and dynamical
properties of the system such as con�gurational entropy [39], speci�c heat [40] and
the elastic constants [41].

1.2.3 Dynamical heterogeneity

One of the most exciting developments in understanding the glass transition is Dy-
namical Heterogeneity (DH) [42,43]. Dynamical heterogeneity refers to spatio-temporal
�uctuations in the dynamics: some clusters of particles move faster than average while
some other clusters move slower. As discussed already, relaxation in the supercooled
regime follows a stretched exponential with β ≤ 1 being the stretched exponent. It
has been observed that β decreases with decreasing temperature. The idea of hetero-
geneity originated from the search for an explanation for the origin of the stretched
exponential decay of the time correlation function. The nature of the decay deviates
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further from exponential behaviour with decreasing temperature. Two natural hy-
potheses are put forward to understand this behaviour. (i) Di�erent regions of the
system have di�erent relaxation times, i.e., the dynamics is heterogeneous. The relax-
ation is exponential for all the di�erent regions. However, the relaxation of the entire
system becomes non-exponential upon spatial averaging over the spatial distribution
of relaxation times. (ii) The relaxation is non-exponential in all the di�erent regions.
The stretched exponential nature of the relaxation is intrinsic to the system and has
nothing to do with the heterogeneous spatial averaging. Separate investigations in
this regard have suggested one or the other mechanism to be valid but have all come
to the conclusion that relaxation is spatially heterogeneous, and have pointed to the
coexistence of spatially correlated mobile and immobile particles. If we look at the
time evolution of the system, we will �nd that not only do some particles move faster,
while others move slower than the average but also the slower or faster particles are
spatially correlated (see Fig. 1.5(left)). The mobility of the particles changes with time,
so that a cluster of particles that are slow at some point in time may become faster at
some later point in time. Thus, dynamical heterogeneity suggests that there exists a
dynamical length scale related to the cluster sizes associated to the growing time scale
in the system. There have been many studies [44–47] aimed at understanding how
the dynamical length scale grows with temperature and how it is related to the in-
crease in the timescale. A number of de�nitions have been used to distinguish mobile
and immobile particles, nevertheless, the most appropriate de�nition remains debated.
Heterogeneity can be quanti�ed in many di�erent ways such as the van Hove func-
tion or the dynamic susceptibility (χ4(t)). For a homogeneous liquid, the van Hove
function is Gaussian. When the dynamics is heterogeneous, it will no longer be Gaus-
sian [48]; it will have a long tail [49]. Correspondingly, the non-Gaussian parameter,
α2(t) will be non-zero for heterogeneous dynamics.
As discussed earlier, the onset of heterogeneity plays a key role in glass-formation;
e�orts have been made to �nd a relation between dynamical heterogeneity and other
complex dynamical behaviours. In particular the relation between fragility and het-
erogeneity has been extensively studied. Bohmer et al. [50] showed that the fragility
index, m (de�ned earlier) and the stretched exponent, β, are related to each other
by compiling the data of around 70 glass-formers. However, in a subsequent study,
ref. [51] found that when the data is grouped in a certain way (e.g. simple glass-former,
complex glass-former) the correlation between β and m appears weaker. Studies in
ref. [52] also claim that no clear relation exists from their experimental study. One
important point to remember here is that the stretching exponent does not prove that
dynamics are heterogeneous as there is a possibility that the relaxation is intrinsically
non-exponential and some current results hint in this dierction. Wang et al. [53], stud-
ied di�erent glass-formers and showed that heterogeneous liquids are more fragile in
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nature: systems having large m have large α2(t) by implication. Similar observations
are also found in a polymer glass when chain sti�ness is varied [54]. With the increas-
ing sti�ness, fragility increases and the dynamics becomes more heterogeneous.

All these studies involve either observing changes across models or a change of
parameter which can a�ect the structure or other properties of the system. The object
of our interest is whether heterogeneity is fundamental to the system as opposed to
being incidental to �uctuations in a system of �nite size.
Studying glass-forming liquids in di�erent spatial dimensions could be useful in this
aspect. The heterogeneity of the dynamics is related to the �uctuation of the relax-
ation times in the system. If this �uctuation is critical-like, one would expect that
the dynamics will become homogeneous with increasing dimension as the number of
neighbors increases with increasing dimension and �uctuation in the system become
smaller. Now, the pertinent question would be how fragility changes with increasing
dimension? In an attempt to understand the relationship between these two, in this
thesis, we study glasses in higher spatial dimensions and investigate the behaviour of
heterogeneity and fragility.

Figure 1.5: Left: Dynamical heterogeneity seen in a three dimensional supercooled
colloid using confocal microscopy. The fast particles are represented as large spheres
(red and blue) and slow particles as small spheres (violet). The data is taken from
[55] Right: Spatial map of single-particle displacements in the simulation of a binary
mixture of Lennard-Jones mixture in two dimensions. Arrows show the displacement
of each particle in a trajectory of length comparable to the structural relaxation time.
The map reveals the existence of particles with di�erent mobilities during relaxation.
The data is taken from [56]

1.2.4 Violation of the Stokes-Einstein relation(SER):

Another important feature of glass-forming liquids is a violation of the Stokes-Einstein
relation (SER). According to SER, the translational di�usion coe�cient (D) of the par-
ticles in a liquid is related to η, the shear viscosity of the liquid, in the following way:
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D ∝ η/T . According to Einstein, the di�usion coe�cient (D) of the Brownian particle
and the friction coe�cient (ζ) of the liquid at a given temperature, T, are related to
each other with the equation D = kBT

ζ known as the Einstein relation. Further, the
friction coe�cient ζ and the viscosity η are related to each other through the Stokes’
formula [57], ζ = 6πηR/m (The factor 6 is boundary-condition dependent). Combin-
ing both the relations we obtainD = mkBT

6πRη , which is called the Stokes-Einstein relation.
This relationship holds at high temperatures for various liquids [58]. As we approach
the glass transition by lowering the temperature, the di�usivity, D and the viscosity,
η, get decoupled. As discussed earlier, η and τα are related to each other, and one
can also observe a similar decoupling between D and τα . In the supercooled regime,
the temperature dependence of D becomes weaker than that predicted for D from
the SER [59, 60]: D and η or τα are related to each other by fractional SE relations,
D ∝ τ−1+ω

α , where ω ≥ 0. Various studies [61–64] have shown that SER violations
are connected with heterogeneous dynamics. When the dynamics is heterogeneous,
di�usion will be dominated by the fast particles as it measures the average displace-
ment of the system at a given time whereas relaxation will be dominated by slower
particles as it measures how many particles have moved a certain distance in a given
time interval. As a result, relaxation and di�usion will be decoupled, and SER will be
violated. In ref [65] the distribution of displacements of particles is calculated for dif-
ferent densities for the hard sphere system. At high densities, the distribution shows
bimodality.

Mobile particles and immobile particles are de�ned using a suitable cut-o� and it
is shown that the SER is violated for the mobile particles, whereas SER holds for the
immobile particles. Similar observations are made when the distribution of di�usivity
is considered [66, 67].

At low temperatures, the distribution becomes bimodal which is used to de�ne
fast and slow moving particles and SER is violated for fast moving particle however, it
holds for slow moving particles. However, other studies [68, 69] show SER is violated
for both slow moving and fast moving particles.

These studies fail to clarify whether SER is a direct consequence of dynamical het-
erogeneity as most of the studies either used an ad-hoc threshold to de�ne mobile or
immobile particles or did not explicitly consider the implications of clustering. In. [70],
it has been argued that violation of SER is a result of combination of local hopping,
facilitation and dynamical heterogeneity.
Studying glasses in higher dimensions will help us to understand the role of hetero-
geneity directly in the violation of SER. As already discussed, one would expect het-
erogeneity to be less at higher dimension. In this thesis, we attempt to understand this
question by investigating the change in the exponent, ω and its possible connection
with the degree of heterogeneity.
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1.2.5 Timescales and characteristic temperatures of signi�cance

There are many di�erent timescales involved in describing the dynamics of glass-
forming liquids. Two di�erent timescales: the α relaxation and the β relaxation time
are associated with a two-step relaxation. Whether the two time scales are related is
not clearly understood till date. Besides these two time scales, other time scales are
those associated with di�usion and shear viscosity.
When a glass-forming liquid is cooled from a high temperature to low temperatures,
many distinct changes in dynamics are observed at di�erent temperatures, each of
which carries special signi�cance. The melting temp, Tm separates the equilibrium
liquid from the supercooled liquid. Below Tm, the change from an Arrhenius to a
non-Arrhenius temperature dependence of the relaxation time occurs at a cross-over
temperature Tonset . At this temperature, a qualitative change occurs in the way the
system samples its con�guration space which is re�ected in many properties of the
system, marking the onset of slow dynamics. At even lower temperatures, there ex-
ist two characteristic temperatures which come as a consequence of �tting functions,
where the relaxation time is found to diverge. The �rst one is Tc, which is the temper-
ature where Mode Coupling theory (described in detail later) predicts the divergence
of relaxation time. In ref [71] it has been shown that Tc is very similar to Tx, the
Goldstein temperature. According to Goldstein, Tx acts like a precursor to the glass
transition. At Tx, the dynamics of the system can be separated into two regimes: short
time vibrations around potential energy minima and long time transitions between
these minima. The second one is TVFT , which is below Tc, where VFT predicts a di-
vergence of the relaxation time. The temperature TVFT is physically unattainable in
the liquid state as the laboratory glass transition temperature Tg is higher than TVFT
for all known systems. For many of glass-formers, TVFT is very similar to TK , the
Kauzmann temperature (described later). Considering all the temperatures one can
write the following relations between them: TVFT ≈ TK < Tg < Tc ≈ Tx < Tonset < Tm.

1.3 Static properties

Till now, we have looked at the dynamical properties, i.e., how the system evolves
with time. Now we would like to understand how structural, static properties change
during the glass transition.

1.3.1 No signi�cant change in structure

There is no obvious structural change when a liquid becomes glass, unlike in the case
of other known critical phenomenon. Structural measures like the radial distribu-
tion function or the static structure factor show an increase in magnitude in other
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well-known critical phenomena. Three phases of matter (gas, liquid, crystal) can be
distinguished by looking at the radial distribution function, g(r). While g(r) is always
zero at small r due to short range repulsion, at comparatively larger r , g(r) shows a
peak corresponding to the �rst layer (or shell) of particles around the focal one. For
liquids, peaks at larger r are lower because correlations are weaker, signifying the lack
of long range order in liquids. In contrast, crystals have long range order, the peaks
are very sharp, and do not decay with r for ideal crystals, showing slight broadening
at �nite temperatures. Gasses, which do not have any structure, show no features in
g(r), implying that it is equally likely to �nd a particle at any distance r from a given
particle, beyond a short distance where the short range repulsion prevents overlaps.
Another measure of structure which is computed in experiments is the static structure
factor, S(q), which is the Fourier transform of g(r). These structural quantities, while
showing a clear change for the liquid-gas and liquid-crystal transition do not show
any signi�cant change near the glass transition. The static structure factor or radial
distribution function of the glass is almost indistinguishable from that of a high tem-
perature liquid. In the temperature range for which one observes a signi�cant change
in dynamics, one observes an almost insigni�cant change in structure: a slight mod-
i�cation of the peaks is observed. There have been recent studies which attempt to
understand if one can infer a large change in dynamical properties from subtle changes
in structural properties [72].
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Figure 1.6: Static structure factor of the LJ liquid at three di�erent temperatures does
not show any signi�cant change though the dynamics changes considerably over the
same range of temperatures.
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1.3.2 Kauzmann paradox: Entropy crisis

The entropy of any system at a temperature T can be calculated from the speci�c heat
using the following relation,

S(T ) = S(Tref ) +
∫ T

Tref

dT ′
Cp
T ′

(1.7)

where Tref is the reference temperature. ∆S(T ) = SLiquid(T )−SCrystal(T ) is termed as
the excess entropy of the liquid over the crystal. Let us use melting temperature, Tm, as
the reference temperature. Correspondingly, ∆Cp(T ) = CP ,Liquid(T ) −CP ,Crystal(T ),
∆S(T ) = ∆S(Tm)−

∫ Tm
T
dT ′

∆Cp
T ′ . The speci�c heat for a liquid is higher than that of a

crystal. From the above equation, we can see that the excess entropy of a supercooled
liquid decreases with temperature. In Fig. 1.7, ∆S(T )

∆S(Tm) is plotted against T /Tm for many
di�erent systems for a range of temperature. We can see from this plot that the ex-
trapolated excess entropy will vanish at a �nite temperature, conventionally termed
the Kauzmann temperature, TK . For some systems, the liquid entropy is lower than
the crystal entropy below TK . The entropy is zero at zero temperature, which would
imply that liquid entropy is negative, violating the third law of thermodynamics. This
phenomenon was �rst pointed out by Kauzmann and is known as the entropy crisis
or Kauzmann’s paradox [73] As it is impossible to equilibrate a liquid beyond Tg by

Figure 1.7: Excess entropy as a function of temperatures which becomes zero at TK .
The �gure is taken from [73]

conventional methods, whether excess entropy (or the con�gurational entropy) goes
to zero at �nite temperature is as yet unknown. However, attempts have been to made
to bypass this di�culty by studying a system where a �nite fraction of particles are
pinned; their positions do not evolve with time. This system is called the random-
pinning glass-former. Using theoretical arguments [74] and subsequently in numeri-
cal works [75, 76] it has been shown that by increasing the pinning fraction, TK can
be enhanced, and con�gurational entropy goes to zero at TK . In a subsequent work,
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Ozawa et. al. have shown that the entropy in ideal glass may not be purely vibrational;
particles can explore more than one inherent structure [77]. However, Chakrabarty et.
al. [78] have claimed that pinning does not change TK , rather it changes the fragility
of the system. Further study in this direction or the development of new methods to
equilibrate the system below Tg may help us to resolve this paradox.

1.4 Theories of glass transition

We see that glass forming liquids show rich phenomenology. However, concrete and
complete description which can explain all the phenomenology is still missing. In
the following section, I will summaries a few theoretical approaches which can partly
capture those phenomenology. Before I do so, it may be important to keep in mind
the kind of questions a theoretician seeks to address while constructing a theoretical
framework.

• How do we explain the rapid increase of relaxation time as Tg is approached
from a higher temperature ?

• What is the origin of super Arrhenius behaviour of relaxation time?

• Is there any relation between the dynamics and thermodynamics and how are
they related ?

• Does there exist a �nite temperature divergence of the time scale?

• What could be the length scale which can explain the growth of time scale ?

1.4.1 Adam-Gibbs theory

In 1965, G. Adam and H. Gibbs introduced a theory called Adam-Gibbs theory which
explains the temperature dependence of the relaxation time in terms of the con�gu-
rational entropy [79, 80]. The con�gurational entropy measures the number of inde-
pendent con�gurations in con�guration space that a system can reside in at a given
temperature and density. The con�gurational entropy, Sc is computed as the di�erence
between the total entropy (Stot) and the vibrational entropy (Svib) of the system [81].
This de�nition of the con�gurational entropy is based on the energy landscape pic-
ture [71,82,83] where the system vibrates around a potential energy minimum and oc-
casionally jumps from one minimum to another. The Adam-Gibbs theory was the �rst
successful attempt to connect the dynamics and the thermodynamics of glass-forming
liquids. According to this theory, the motion of particles in the liquid becomes corre-
lated as the temperature is lowered and the relaxation of the system occurs through
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the collective rearrangement of larger and larger regions of correlated particles which
are called Cooperatively Rearranging Regions (CRR). CRRs de�ne subsystems consist-
ing of a group of particles which can rearrange as a group from one con�guration to
another independently of their environment. However, individual particles or subsets
of CRRs are incapable of rearranging independently. As a result, there are a small
number of locally stable states, Ω, that are available for a typical CRR to be found in.
This theory assumes Ω is constant, independent of temperature or the size of the CRR.
There is a lower limit on Ω which is two since it must have at least two con�gura-
tions available to it, one of which the region resides in before the transition and the
other one to which it may move [79,80]. Another assumption of this theory is that the
CRRs are independent, and that they interact weakly with their surroundings. Thus,
the number of states that the system can access globally is Σ = Ω(N/n). Here, N is
the total number of particles, n is the typical number of particles in each CRR. The
con�gurational entropy, Sc, which is the logarithmic density of the number of stable
states,

Sc =
1
N

log(Σ) =
log(Ω)
n

(1.8)

n(T ) =
log(Ω)
Sc(T )

(1.9)

where n(T ) is the number of particle in a CRR at temperature T. As Sc decreases

Figure 1.8: Experimental veri�cation of the Adam-Gibbs relation. This �gure is taken
from [84]

with the lowering of temperature, the size of the CRR, which gives a length scale of
the system, increases at lower temperature. Thus, the above relation explains how



20 Chapter 1.

the length scale increases with the decrease of con�gurational entropy. The further
assumption of this theory is that energy barrier for a rearrangement is proportional
to the size of the CRR, n(T ). If we use this assumption in the Arrhenius formula, we
obtain the Adam-Gibbs relation:

τ(T ) = τ0 exp
(
n(T )
T

)
(1.10)

τ(T ) = τ0 exp
(

C
T Sc(T )

)
(1.11)

C is a constant. Adam-Gibbs theory has been tested for a wide variety of model sys-
tems in simulations as well as in experiments, and it has been shown that this relation
is valid for an accessible range of temperatures. In Fig. 1.8 we showed one such exam-
ple from experiments. Using the linear temperature dependence of T Sc (which comes
from �tting experimental data), T Sc(T ) = K/TK (T − TK ), the AG relation becomes

τ(T ) = τ0 exp
(

D
T − TK

)
(1.12)

The above equation is the same as the VFT relation for TK = T0, the Kauzmann tem-
perature where Sc goes to zero. It has been observed that TK ∼ T0 [84] for a large
number of systems with a few exceptions.
Even though the AG relation holds for di�erent systems, this theory has many limita-
tions [85]. i) The main ingredient of the AG relation is the presence of CRRs. However,
the method to determine the size and shape of CRRs is not clearly de�ned. ii) The as-
sumption that Ω is constant has no theoretical or experimental basis. Despite these
limitations, the AG relation is used extensively to explain the relaxation dynamics of
glass-forming liquids. In this thesis, we investigate the AG relation at higher spatial
dimensions and check whether it holds for higher spatial dimensions as well.

1.4.2 Mode Coupling Theory

One of the most successful theories which can explain this complex phenomenology is
Mode Coupling Theory (MCT). This theory, based on the exact microscopic description
of a correlated liquid, was �rst introduced by Gotze and coworkers in the 1980s. It takes
the static property of a liquid such as structure factor as input and aims to predict
the dynamical properties of that liquid. It distinguishes di�erent liquids via structure
factor only. In the Zwanzig-Mori formalism of MCT, the whole universe is divided into
two mutually orthogonal sub spaces: One consisting of the variables of interest, and
other one containing “everything else". Now, the aim is to describe the dynamics of
the variable of interest in the presence of other “non interesting variable". Our variable
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of interest is the density function ρ(r, t).

Using the projection operator formalism, time evolution of any correlation func-
tion C cab written as:

dC(t)
dt

= iΩ.C(t)−
∫ t

0
dsK(s).A(t − s) + f(t) (1.13)

where, Ω is the frequency matrix, f (t) is the fast �uctuating force, de�ned by, ft =

ei(1−PA)Lti(1 − PA)LA(0) and K(s) is the time dependent memory function given by
the auto correlation function of the �uctuating force. The above equation, eq. 1.13 is
called generalized Langevin equation which is an exact equation. However, there is no
rigorous solution to the equation and approximation is used to solve this. Two such
approximation is made: (i) Approximate the memory function as a four point density
correlation function,

K(t) ∼
∑

k1,k2,k3,k4

〈ρ∗(k1,0)ρ∗(k2,0)ei(1−PA)Ltρ(k3,0)ρ(k4,0)〉 (1.14)

and (ii) Four point correlation function can be factorized into two two point correlation
functions. Note that sometimes MCT is considered a mean �eld theory because of this
approximation. Now, using these approximations full MCT equation can be obtained,

d2F(k, t)
dt2

+
KBTK

2

mS(k)
F(k, t) +

∫ t

0
dsKMCT (k,s)

dF(k, t − s)
st

= 0 (1.15)

with the memory function given by

KMCT (k, t) =
ρkBT

16π3m

∫
dq|Vq,k−q|2F(q, t)F(|k−q, t) (1.16)

,where kB is the Boltzmann constant, m is the particle mass, ρ is the bulk density and
the factors

Vq,k−q = k−1[k.qc(q) +k.(k−q)c(|k−q|) (1.17)

are referred to as vertices with c(k) = ρ−1[1 − 1
S(k) ] denoting the direct correlation

function. For any glass forming liquid, at any given ρ and T if S(k) is known then
using the above equation one can predict the full microscopic dynamics. The transition
from liquid to glass can be described by solving separate MCT equations for the range
of temperature and density.

Although MCT uses many approximations and it only takes S(k) as an input which
does not change much with temperature, it can make some remarkable predictions. Of
course, MCT can correctly predict scaling properties in the β relaxation regime. MCT
predicts the cage formation is the key mechanism for the vitri�cation. MCT predicts
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a glass transition at Tc, the relaxation time diverges at Tc which implies F(k, t) does
not decay to zero. The corresponding non-ergodicity parameter is also often in good
agreement with experiments. However, the MCT predicted Tc is much larger than ac-
tual Tg . The power law divergence also holds for the small range of relaxation time
about 2− 3 decades, which implies that it fails to explain the dynamics in the deeply
supercooled regime. Also, MCT fails to describe the heterogeneity of the dynamics.
Subsequently, there have many attempts to improve the prediction of standard MCT.
Extended MCT, generalized MCT and inhomogeneous MCT, to name a few. However,
all these are approximate theory and unable to predict all the aspects of the glass tran-
sition.

Although MCT has been described as a mean �eld theory because of the factori-
sation of the four point correlation function it has been discussed in [86, 87] and sub-
sequent works that MCT in the standard form is not the correct mean �eld theory in
the sense that it is not the right description in the limit of large dimensions (it has
pathological behavior for large d as discussed in [86]). Subsequently, attempts have
been made to construct a mean �eld theory that could be exact at in�nite dimensions.
Below, I will describe one of the recent developments.

1.4.3 Mean �eld phase diagram of amorphous systems

In the previous sections, we have observed that systems undergo a phase transition
from liquid to glass at a �nite temperature (or �nite density for hard sphere systems). It
is possible to cool or compress glasses within the glass phase, motivating the question
of how the property of glasses change as they are compressed/cooled further. This
question has been investigated in the framework of a mean �eld theory of glasses [88–
92]. We introduce this theory, beginning with a brief discussion of some techniques
relevant to the discussion.

1.4.3.1 Quenched disorder

Let us consider a disordered system which can be characterized by the following
generic Hamiltonian H({aT}, {aD}). Here, {aT } denotes the thermal variable and {aD}
denotes the disorder variable. The thermal variables obey Hamilton’s equations of mo-
tion. The disorder variables {aD} are random which are drawn from a given probability
distribution. If these variables do not change during the course of an experiment, the
disorder is said to be quenched.
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1.4.3.2 Replica Method

The free energy of such a system is given by

[F]D = −kBT [lnZ({aD})]D = −kBT
∫
D{aD}P({aD}) lnZ({aD}) (1.18)

P {aD} is the probability distribution from which {aD} is drawn. Solving the partition
function for a Hamiltonian without disorder is in itself di�cult. In the presence of
the disorder, it is even more di�cult. The averaging over disorder can be computed
using a method called replica method. This method involves the use of the following
identity

〈lnz〉 = 〈lim
n→0

zn − 1
n
〉 (1.19)

[lnZ]D = lim
n→0

[Zn]D − [1]D
n

= lim
n→0

[Zn]
n
− 1
n

(1.20)

Where n is the index of replicas which are di�erent copies of the system, with the same
disorder. For a system of n replicas the partition function can be written as,

Zn({aD}) = T r{aαT } exp[−β
n∑
α=1

H[({aD}, {aαT })] (1.21)

We observe that it is easier to take the disorder average of the above function.
We next discuss the mean �eld theory of glasses for a hard sphere glass-former.
In the in�nite dimensional limit, the glass forming liquid is con�ned to a single free
energy minimum at the dynamical transition density, φd (Mode Coupling transition
density). Correspondingly, the di�usion constant strictly vanishes beyond φd . The
system remains con�ned to a restricted region of phase space for an in�nite time. Be-
low, we will discuss the behaviour of the system at a density, φ̂ > φ̂d . Let us consider
an equilibrium con�guration, Y = {yi} at a density φ̂g which is larger than φd and an-
other con�guration, X(t) = {xi(t)} which evolves according to the Langevin equation
of motion with the initial condition X(0) = Y . As the di�usion constant is zero in this
regime, the MSD, ∆ between X(t) and Y remains �nite even in the long-time limit.

lim
t→∞

∆[X(t),Y ] = ∆r (1.22)

The dynamics of X(t) will be stationary as X(0) = Y and Y is sampled from the equi-
librium distribution. Thus, we can write,

∆[X(t + τ),X(t)] = X(τ)→ lim
τ→∞

X(τ) = ∆r (1.23)
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X(0) is compressed to another density φ̂ , φ̂g and the system is allowed to evolve at
this new density φ̂g . If the di�usion constant remains zero at the new density, it is
expected that the equation 1.22 will also hold. Correspondingly X(0),X(t),X(t + τ)

will all be close to each other and at log time limit it will follow:

∆[X(t + τ),X(t)] = X(τ)→ lim
τ→∞

X(τ) = ∆1 (1.24)

∆r is the relative long time distance between X(t) and Y , whereas ∆1 is the displace-
ment between di�erent con�gurations which are separated by time τ . In general, ∆1

and ∆r are di�erent except when both X and Y are at the same density.
One can next consider the thermodynamics of the system. We assume that X follows
Boltzmann distribution, however, a constraint on the distance between Y and X is
maintained. With this assumption, we can write the partition function as,

Z[∆r , φ̂|Y ,φ̂g] =
∫
dX exp(−βH(X; φ̂))δ[∆r −∆(X,Y )] (1.25)

where H(X) is the energy of the con�guration X, and the restricted average is ac-
counted for with the delta function. The free energy of the glass can be obtained by
taking an average over the initial con�guration Y . Y plays the role of quenched dis-
order in the system and free energy can be computed by using replica method. The
free energy obtain in this method is called Franz-Parisi constrained free energy or
potential,

VFP [∆r , φ̂|φ̂g] = f (∆r , φ̂|Y ,φ̂g)
Y

(1.26)

where
f (∆r , φ̂|Y ,φ̂g) = − 1

Nβ
ln(Z[∆r , φ̂|Y ,φ̂g]) (1.27)

VFP [∆r , φ̂|φ̂g] = − 1
Nβ

∫
dY

Z[φ̂g]
exp(−βH(Y ; φ̂g)) ln(Z[∆r , φ̂|φ̂g]) (1.28)

where Z[φ̂g] =
∫

exp(−βH(Y ; φ̂g)) is the equilibrium partition function at φ̂g .
At the in�nite dimensional limit, the equation. 1.28 could be solved using the replica
method [88] and VFP is expressed as a function of the order parameters, ∆r and ∆1.
Using the above formalism, the mean �eld phase diagram (Fig. 1.9) of the amorphous

system can be obtained. The reduced pressure is obtained from the equation of state
which can be derived from the equation. 1.28 using virial expansion [90]. Now starting
from the equilibrated con�guration at φ̂g if the system is decompressed, the glass
undergoes a melting transition; it melts into a liquid. However, upon compression the
glass explores lower energy, stabler glassy states and remains dynamically arrested.
Upon further compression, the glas undergoes the Gardner transition at φG. Beyond
φG, the relation between ∆r and ∆1 breaks down and a complex free energy landscape
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Figure 1.9: The mean �eld phase diagram of the hard sphere �uid. The inverse reduced
pressure is plotted against the scaled volume fraction. The black line corresponds
to the equilibrium equation of state. The blue squares correspond to the dynamical
transition point. Blue dots represent the Gardner transition point. Red dots denote
the jamming point. The �gure is taken from [92].

emerges [93]. Compressing further within this phase, the pressure eventually diverges
and the system reaches the jamming density φJ .
Subsequently, these developments have led to investigations of how the in�nite spatial
dimensional results relate to behaviour in �nite dimensions. Mangeat and Zamponi
[94] have proposed an approximate scheme that not only provides the same qualitative
phase diagram of in�nite dimension and critical exponents are same but also o�ers
concrete numbers for various quantities such as transition density. This scheme takes
the equation of state and correlation function as inputs and provides the replicated free
energy as an output from which physical observables can be derived. By construction,
this scheme becomes exact at in�nite dimensions. For the hard sphere interaction
potential, di�erent transition densities such as the dynamical transition density,φd , the
Kauzmann densityφK is measured in�nite dimensions (upto dimension=60) following
this scheme. It has been found that the scaled φk (2dφK ) asymptotically goes to logd,
whereas the scaledφd(2dφd) becomes constant (∼ 4.8067..) at a limit large dimension
(shown in Fig. 1.10). Following the same scheme the largest jamming density, φth
is also computed; in the in�nite dimensional limit, the scaled φth (2dφth) becomes
constant 6.25818 (shown in Fig. 1.10 ).

In this thesis, using computer simulations, we have computed φJ and φK and we
compare our results to theoretical predictions.

1.5 Jamming transition

In the above sections, we have discussed how a liquid becomes a glass by lowering
the temperature. In these systems, thermal �uctuations are very important for the
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Figure 1.10: Left: φd and φK is shown against dimension using di�erent approximate
scheme. Right: The largest glass density φGCP and φth is shown as a function of
dimension using di�erent approximate scheme. The data is taken from [94].

stability of the system. However, a class of materials such as foams, where the con-
stituent particles’ sizes are large. As a result, thermal �uctuation plays a negligible
role in that system. When we compress these athermal systems, after some point
they lose their ability to �ow; this non-equilibrium transition from the �owing state
to jammed system is called the jamming transition, with the jamming transition point
φJ [95, 96]. This point is not a unique point [97]. Depending on the initial conditions
and on the protocol, it may vary from 0.639− 0.642 for mono-disperse systems and
is between 0.648−0.662 for bidisperse systems. Even though the microscopic origin
of the glass transition and the jamming transition are very di�erent, they share some
interesting similar phenomenology in particular when assemblies of soft particles are
considered. Below the critical density/temperature, both the systems �ows. Above the
critical density/temperature the system behaves like a solid; it yields on application of
a critical stress [98]. The dynamics near the transition is heterogeneous in both the
systems [43]. The natural questions that arises naturally is whether there is any re-
lation between the two transitions. Using a theoretical model it has been shown that
the jamming transition occurs well inside the glassy phase [99, 100]. The �ow curves
of thermal and athermal systems reveal jamming and glass transitions share universal
exponents [101]. Considering an in�nite dimensional model system of hard spheres,
Charbonneau et al. [91] showed that although the jamming occurs well inside the
glassy phase, the two transitions are di�erent. On the other hand, rheological experi-
ments [102,103] and recent simulations [104] in a 3d system support the idea that these
two transitions are di�erent. It has been claimed that the glass transition density will
be above the jamming transition density [104]. Theoretical studies which consider
varying spatial dimension [105–108] show that the relationship between these two
transitions depends on the dimensionality.
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In this thesis, we study the glass and jamming transition in di�erent spatial dimensions
and try to understand the relation between them.

1.6 Aging

In the above sections, we have discussed the interesting phenomena of super cooled
liquids when in equilibrium below Tg . However, we can ask what happens when the
temperature is lowered below the glass transition temperature, Tg . As we discussed
earlier, the relaxation time becomes astronomically large below Tg , as a result the
physical properties of the system evolve slowly with time. This phenomenon is called
’aging’.

The simplest way one can understand aging is the following: after equilibrating a
liquid at a high temperature, it is subsequently quenched to a lower temperature be-
low Tg . At this lower temperature, the system evolves for a time tw. Liquids that are
evolved for di�erent periods, tw, have di�erent properties; those evolved for longer tw
are found to be “aged" in comparison to those evolved for shorter tw.
Aging implies that the system will remember the waiting time, tw, its ’age’; the proper-
ties of the system depend on the tw. On the time scale of observation, quantities such
as the volume or the potential energy, which are calculated from instantaneous snap-
shots of the liquid, do not show good evidence of aging, while, the two-time quantities
(as density-density correlation function) depend explicitly on both times, rather than
on their di�erence. In Fig. 1.11, a typical behavior of the self-intermediate scattering
function is shown for the Lennard-Jones molecular liquid quenched below Tg . In an
aging system, the relaxation time increases with waiting time, tw. This implies that tw
is the relevant timescale in an aging system as the equilibration timescale is diverging.
One could ask whether it is possible to �nd a way to erase the history of the system. In-

vestigations into whether imparting energy to the system through deformations such
as shear would “reverse" the apparent aging led to interesting �ndings. On the one
hand, shear of su�ciently high amplitude did in fact erase the e�ects of aging, in fact
leading to a transition to the �owing state – yielding. On the other hand, repeated cy-
cles of low amplitude shear deformation drive the system to so-called absorbing states
that encode the amplitude of shear deformation applied – the glass remembers! In the
second part of thesis, we have investigated memory behaviour and the response, under
cyclic shear deformation, of amorphous solids. Below, we will give a brief introduction
to memory e�ects.
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Figure 1.11: Time correlation function is plotted against time for di�erent waiting
times for the BMLJ system. The image is taken from [109]

1.7 Memory e�ects:

The term memory most often refers to the ability to recall a speci�c piece of informa-
tion. If we consider the human mind as a device then we can think that it can encode
some information, then the stored information will be read out at some later time
and sometimes the information can be erased from that device also. In our daily life,
we commonly see such a device in the form of computer memory. In fact, memory,
the ability to remember something, arises in di�erent forms in a large variety of sys-
tems [110]. Systems which are not in equilibrium are capable of retaining a memory
of their past history. Examples include a broad range of systems, magnetic memory,
super �uid helium in capillaries [111], shape memory [112], arti�cial spin ice [113],
many particle vortex assemblies, [114] crumpled thin sheets and elastic foams [115]
etc. In these systems, when a �eld is applied to the system, it gets stuck to one of its
local energy minimum states and as a result, ergodicity is broken. Simple systems, like
magnetic system, have a �nite number of local energy minimum structures. In these
systems, there is a one-to-one correspondence between the state that the system is
trapped in and the �eld with which it was driven. As a result, it is easy to read out
the stored information. However, complex systems have a large number of minima.
The existence of such multiple minima opens up a path for the system to be trapped
into one of these when driven by an external �eld. As a result, it is di�cult to �nd a
simple relation between the state where the system will be trapped and the applied
�eld. Correspondingly reading out the stored information is not trivial.
In the following section, we will brie�y discuss di�erent kinds of memory with in-
creasing complexity and discuss the di�erent protocols of reading.
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1.7.1 Memory of a direction and magnitude

One of the simplest forms of memory is the memory of direction; a material can re-
member the latest direction in which it was driven. A common example of such mem-
ory is magnetic storage. The magnetic system has two well-de�ned states. When it
is driven by an external �eld, individual magnetic ions are all aligned in the same di-
rection, whereas the ions will be aligned in the opposite direction if we reverse the
direction of the external �eld. This one-to-one correspondence between the driven
�eld and the �nal state is used in digital storage. The memory of direction is also ob-
served in the materials displaying ’pulse sign memory’ [116, 117]. When an electric
pulse is applied to the system, the response of the system, the voltage pulse, becomes
slow or fast depending on the direction of the preceding pulse. This simple form of
memory of direction can occur in vastly di�erent systems: from simple systems like
coupled gears to more disordered systems such as a suspension of non-Brownian par-
ticles and dry granular matter. Thus, understanding the memory behaviour in these
systems may help us to identify the underlying connections between these largely dif-
ferent systems.
Another example of memory where a single input is stored is Kovacs e�ect [118, 119].
This e�ect is observed when a glass former is cooled from a high temperature, T0 to
a low temperature, T1, and allowed to relax for some time but not fully, following
which, the temperature of the system raised again, T2(T1 < T2). When the evolu-
tion of the system is monitored by investigating volume, a non-monotonic behavior
of the volume is observed. It shows a peak at a time which depends on the duration of
time spent at T2, the lower temperature. The system has memory of the time duration.

1.7.2 Hysteresis and return point memory

In the previous sections, we describe memory of a direction. Depending on the recent
direction the system can be trapped in either of the two states. Now, we can think of
a slightly complex system where the system will be in state "+1" or "−1" when it is
driven by an external �eldH . The system will be in the +1 state when the applied �eld
H ≥H+ or it will be in −1 state whenH ≤H− (H+ ,H−). However, when the �eld is
in betweenH+ andH−, the state will depend on the history of the driving �eld. Thus,
this simple system can give rise to hysteresis and is often called as hysteron. There are
many real systems which can be modelled as a system consisting of a large number of
hysterons. These systems show important memory e�ects called return point mem-
ory (RPM). Below, we will discuss the hysteresis and return point memory e�ects in a
magnetic system.
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When a ferromagnetic material is driven by a magnetic �eld, and one varies the mag-
netic �eld adiabatically between a large positive (Hsat) and negative �eld (−Hsat), the
magnetization forms a closed loop; termed as hysteresis loop. This hysteretic system
shows Return Point Memory(RPM) [120]. If we apply the �eld in the following way,
we will see RPM (Fig. 1.12).

• Step 1: The applied �eld is lowered from Hsat to some magnetic �eld (Hmin).

• Step 2: Field is increased to some another �eld Hmax, which is also lower than
Hsat .

• Step 3: It is lowered again to Hmin.

The �nal state of the system is the same as the initial state when it �rst reaches toHmin,
which implies the system can remember the initial state. This same memory behaviour
can be extended to sub-cycles within cycles and so on. One important thing to notice
here, while increasing H , if we continue past Hmax, we will erase the memory. Under
some speci�c conditions, an anti-ferromagnetic system also shows RPM [121].

minH

maxH

M

H

A

B

C(1)

(2)

Figure 1.12: Schematic of hysteresis loop for a ferromagnet, showing RPM

RPM makes a read protocol possible, but it depends on a special property called
the "No Passing rule" [122] which is described below.
A state S = (s1, s2, s3..sn) ≥ R = (r1, r2, r3..rn) if and only if for all i, si ≥ ri . This order-
ing of states is called partial ordering. However, it is not easy to di�erentiate between
any arbitrary pairs of state using this relation, as most of them will not have any rela-
tion. Now let us consider a system, where such an ordering exists and the state S(t) is
evolving under the �eldHS(t) and R(t) is evolving under the �eldHR(t). If we assume
that initially S(0) ≥ R(0), and the �eldsHS(t) ≥HR(t), then according to "No-passing"
theorem the system will remain S(t) ≥ R(t).
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1.7.3 Memory in sheared suspensions

So far, we have discussed memory e�ects where memory can be encoded just by a
single cycle of driving. However, in many cases, one needs multiple cycles of driving
to encode a memory. Memory e�ects in sheared suspension is one such case where
we need multiple cycles of shear deformation to encode a memory.
When this system is deformed periodically for a large number of cycles, it shows a
non-equilibrium phase transition from a di�using to non-di�using state as we change
the amplitude of shear deformation. Depending on the amplitude of shear deforma-
tion, the system reaches either to a di�using state or to a non-di�using, absorbing state.
These two states are marked by a critical value (depends on the volume fraction) called
γc. In absorbing states, particles cease to move when it is viewed stroboscopically, i.e.,
zero strain after each cycle. After n number of cycles with a �xed amplitude γ1, the
system reaches to an absorbing state. This behaviour can be reproduced successfully
in the random organization model [123]. It has been observed that when the training
process of repeatedly shearing by γ1 is complete, a shear deformation with all γ < γ1

results in no rearrangements of particles since a larger amplitude shear encloses a
smaller value en route. As a result, this procedure encodes a memory, which can be
read by performing a single cycle of shear deformation with variable amplitude and
measuring the fraction of particles that are moved. As soon as γi crosses γ1, the irre-
versibility occurs. As a result, there occurs a sharp change of slope in the plot of the
fraction of particles that are moved vs the deformation amplitude γ . This kink charac-
terises the memory (Fig. 1.13) (results are shown here for random organization model).
The system has remembered the amplitude of shear deformation. Interestingly, when
each shear cycle contains more than one amplitude, the system can encode multiple
memories transiently. However, when the system reaches a steady state for the highest
γ , the system loses all but the highest amplitude memory [124–126].

1.7.4 Memory behavior of amorphous solids

Amorphous solids are another example where one needs multiple cycles of driving to
encode a memory. However, unlike the sheared suspension, this system can remember
multiple memories persistently. Below we will discuss the memory e�ects of amor-
phous solids.
Upon application of small strains, glasses or amorphous materials respond elastically.
However, they display plastic deformation when the strain is larger than a speci�c
yield strain, which is a material dependent property. Although this broad mechanical
behaviour is similar to that of crystalline solids, a lack of translational order and con-
sequently not having well-de�ned defects makes amorphous material distinct from its
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Figure 1.13: (a): Fraction of particles moved (fmov) is plotted as a function of reading
amplitude for the system, trained at γ1 = 3. Di�erent lines correspond to di�erent
numbers of training cycles. fmov shows a kink when the reading amplitude is the
same as the training amplitude. (b): The system can remember multiple memories
transiently. After a large number of cycles only the largest amplitude is remembered.
The �gure is taken from [124]

crystalline counterpart. Various studies on amorphous materials have focused on un-
derstanding the yielding behaviour of this system [98, 127, 128]. Recently, it has been
observed that the yielding transition is associated with a non-equilibrium absorbing
to di�using transition [129, 130]. Upon application of shear deformation periodically,
after a transient, the amorphous material either reaches an absorbing state or a dif-
fusing state. When the amplitude of shear deformation is smaller than a threshold,
the system reaches the absorbing state where the con�guration remained unchanged
after the end of the cycles, whereas if the amplitude of the deformation is larger than
the threshold, the system reaches a di�using state where con�gurations change from
cycle to cycle. The threshold amplitude of strain corresponds to the yielding point.
This transition is very similar to what was observed in sheared suspensions, discussed
earlier. Now the question is, does the absorbing state of a glass-forming liquid also
show memory behaviour similar to that of a sheared suspension. Fiocco et al. [131]
have studied the memory behaviour of amorphous solids, and the answer to the above
question is in the a�rmative. Fiocco et al. [131] have shown that this system can re-
member not only a single amplitude of shear deformation, but also multiple memories
persisitently when driven with multiple amplitudes.
The protocols of reading used by Fiocco et al. [131] can not be used in experiment
easily. In this thesis, we have employed di�erent protocols of training or reading. We
also focus on understanding the nature of this memory by studying di�erent systems.

Subsequently, the memory e�ects in amorphous solids are also observed in exper-
iments [132, 133]. Recently a lot of e�orts have been made to understand the nature
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of the memory in amorphous solids. Keim et al. [133] has claimed that the memory
in amorphous solids is RPM in nature. When the system is driven by alternating cy-
cles of two di�erent amplitudes, the system can remember both the amplitudes. Keim
et al. [133] showed that the system could encode multiple memories only when the
smallest amplitude is applied last. This similar behaviour is also observed in the sys-
tem where RPM is observed. Speci�cally, they show Presiach model which is a classic
model for RPM behavior [134], can similarly encode multiple memory. Using this
analogy, it has been shown that memory in amorphous solids is RPM in nature. Sub-
sequently, Mungan et al. [135], using a novel method called the transition network
method [136], showed that the memory e�ects in a two dimensional model glass are
nearly RPM. In a system with RPM, for example, the magnetic system, a memory is
read by comparing the state at the maximum amplitude of the driving �eld between
cycles [137]. However, the memory in an amorphous system is studied using the stro-
boscopic con�gurations (shear deformation, γ = 0). Following the analogy of the
magnetic system, we should be studying states at maximum deformation. In a practi-
cal sense, the states at maximum deformation can also not be used to study memory
behavior. However, one can think of a modi�ed protocol where the strain is applied
in one-sided manner (0→ γmax → 0) and ask is this a better protocol for encoding
and reading out the memory? As mentioned earlier, memory behaviour is observed
when the system is deformed with amplitudes which are below yielding. However,
so far yielding behavior is studied either by uniform shear deformation or symmetric
cyclic shear deformation. In this thesis, we explore an asymmetric shear deformation
protocol to understand the yielding behavior of amorphous solids.

1.8 Scope of the thesis

A consensus theory of the glass transition is still lacking. Computer simulations play
a crucial role in understanding the phenomenology and in verifying theoretical pre-
dictions, since one can probe the microscopic behaviour directly. In this thesis, we
study di�erent model glasses using computer simulations. In the �rst part, we study
glass-forming liquids in higher spatial dimensions. In the second part of the thesis,
we have studied the mechanical properties, speci�cally yielding and memory e�ects
of amorphous solids. The outline of the thesis is the following:

In chapter 2, the de�nition of the di�erent quantities computed in this thesis, the
details of the models and of the methods are presented.

In chapter 3, we study the dynamics of the glass-forming liquids for soft sphere
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assemblies interacting with a harmonic potential in higher spatial dimensions. This
question we ask how the jamming point and glass transition point are related to each
other in this system.

In chapter 4, we study di�erent measures of dynamical heterogeneity and fragility
by varying spatial dimensions. Our aim is to understand the possible relation between
heterogeneity and fragility.

In chapter 5, we study Adam-Gibbs relation in higher spatial dimensions and at-
tempt to understand the power law relation of di�usivity and relaxation time between
the two di�erent type of particles. We ask does Adam -Gibbs relation is valid in spatial
dimensions larger than three.

In chapter 6, we study memory e�ects in cyclically deformed amorphous solids
and sphere assemblies. We ask what could be experimentally relevant protocols of
reading, how memory can be erased, criteria to have persistent multiple memories.

In chapter 7, we study yielding and memory behavior using an asymmetric shear
deformation protocol. We attempt to understand the role of plastic deformation for
di�erently annealed systems and how does the protocol of shear deformation change
the yielding amplitude

In chapter 8, we present the conclusions and future outlook of this thesis.



Chapter 2
De�nitions, models and methods

In this chapter, I will describe the relevant de�nitions and formulae used to compute
the di�erent quantities of interest. I will also discuss the details of the model and the
methods that I will be using in the subsequent chapters.

2.1 De�nitions:

2.1.1 Two point correlation functions

For a system of N point particles, local density is de�ned as

ρ(r, t) =
N∑
i=1

δ(r− ri(t)) (2.1)

The simplest possible correlation function is the two point correlation; the van-Hove
function is one of them:

G(r, t) =
1
ρ
〈ρ(r, t)ρ(0,0)〉 (2.2)

=
〈

1
N

∫
dr′ρ(r′ + r, t)(ρ(r′,0)

〉
=

〈∑
i

∑
j

1
N

∫
dr′δ(r′ + r− rj(t), t)δ(r′ − ri(0),0)

〉

=
1
N

〈∑
j

∑
i

δ(r− rj(t) + ri(0))
〉

(2.3)

where ρ is the average number density, the angular bracket corresponds to the ensem-
ble average. It gives the probability density of �nding a particle j in the vicinity of r
at time t given that the particle i was in the vicinity of the origin at time t = 0. G(r, t)
can be divided into two parts:

35
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(i) The self part Gs(r, t), which gives the probability density of �nding a particle i in
the vicinity of r at time t given that this particle was at origin at time t = 0, and
(ii) The distinct part Gd(r, t), which gives the probability density of �nding a particle
j , i, given particle i was at the origin at time t = 0.
This gives:

G(r, t) = Gs(r, t) +Gd(r, t) (2.4)

Gs(r, t) =
1
N

〈∑
i

δ(r− ri(t) + ri(0))
〉

Gd(r, t) =
1
N

〈∑
i

∑
j,i

δ(r− rj(t) + ri(0))
〉

The Fourier transform of G(r, t) from real to k space gives the intermediate scat-
tering function F(k, t)

F(k, t) =
∫
drG(r, t)exp(−ik.r) (2.5)

=
1
N
〈ρ(k, t)ρ(−k,0)〉,

where
ρ(k, t) =

∫
drρ(r, t)exp(−ik.r) (2.6)

This implies that F(k, t) measures the correlation of the local density in the Fourier
space. Again, F(k, t) can be divided into the self and distinct parts:

F(k, t) = Fs(k, t) +Fd(k, t)

Fs(k, t) =
∫
drGs(r, t)exp(−ik.r) (2.7)

Fd(k, t) =
∫
drGd(r, t)exp(−ik.r)

Fs(k, t) can be directly compared to experimental measure of intermediate inelastic
neutron scattering function, Iinc(k, t). In this thesis, we compute Fs(k, t) at k = kmax
which corresponds to the �rst peak of the structure factor which we shall de�ne later.
Fourier transforming F(k, t) further into the frequency domain, we obtain the dynamic
structure factor,

S(k,ω) =
∫
F(k, t)exp(−iωt)dt (2.8)

The dynamics is also studied by another two-point time correlation function of local
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density, the overlap function (q(t)), which is de�ned by,

q(t) =
∫
drρ(r, t0)ρ(r, t + t0) (2.9)

=
∑
i

∑
j

δ(rj(t0)− ri(t + t0))

Here, t0 is the time origin over which averaging is performed. Again, q(t) can be
divided into the self part and distinct part:

q(t) =
∑
i

δ(ri(t0)− ri(t + t0)) +
∑
i

∑
i,j

δ(ri(t0)− rj(t + t0)) (2.10)

Further, in numerical computation, the δ function is approximated by a window func-
tionw(x) which de�nes the condition of “overlap” between two particle positions sep-
arated by a time interval t, and self part of the q(t) can be written as:

q(t) =
1
N

N∑
i=1

w(|ri(t0)− ri(t + t0)|) where w(x) =

1.0 if x ≤ a

0 otherwise.

We introduce 1/N factor here so that it normalizes to 1 when all the particles are
correlated and goes to zero when there is no correlation between them.

2.1.1.1 Choice of the cuto� a for the overlap function:

Equation. 2.11 implies that in simulations, the value of the overlap function depends
on the choice of the cuto� parameter a. The parameter a is chosen so that particles
separated due to vibrational motion are considered overlapping. This implies that a2

lies in the plateau region of the mean squared displacement (MSD) curve as shown in
Fig. 2.1

2.1.1.2 Estimation of relaxation time

The structural relaxation time can be computed from the self intermediate scatter-
ing function or overlap function. At high temperatures, correlation function decays
exponentially: C(t) = C(0,T )exp

(
− tτ

)
. As discussed in the introduction, with the

lowering of temperature, C(t) develops a plateau and relaxation occurs in two-steps.
Then, the relaxation time can be estimated by �tting C(t) to the stretched exponential
form:

C(t) = C(0,T )exp
(
−
( t
τ

)β)
(2.11)
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Figure 2.1: Left Panel: The MSD (3d soft sphere system) is plotted against time and
the value of “a" is chosen such that it is above the plateau of the MSD curve. Right
Panel: χ4(t) is plotted as a function of time for di�erent values of a. The value of "a"
for which χ4 is maximum is chosen as the parameter for overlap function.

Alternatively, the relaxation time can be estimated by measuring the time at which
C(t) decays to 1/e. Below, we discuss whether this de�nition is meaningful or not.
When a system is in the di�usive region, the Gs(r, t) becomes Gaussian,

Gs(r, t) =
1

√
2πσ2

exp
(
− r2

2σ2(t)

)
(in 3d) (2.12)

Then, Fs(k, t) becomes

Fs(k, t) =
∫
drGs(r, t)exp(−ik.r)

Fs(k, t) = exp
(
−k

2σ2(t)
2

)
(2.13)

In the di�usive region, σ2(t) = 2Dt, then,

Fs(k, t) = exp
(
−k2Dt

)
(2.14)

Thus, we can write Fs(k, t) = exp(− tτ ) which implies that the time at which Fs(k, t)
or any time correlation function becomes 1/e, gives a measure of structural relaxation
time.
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2.1.2 Four point correlation function

We have also studied the variance, χ4(t) of the �uctuation of the overlap function
(χ4(t) is also called the dynamic susceptibility) which is de�ned as follows

χ4(t) =N
(
〈q(t)2〉 − 〈q(t)〉2

)
(2.15)

The quantity, χ4(t) can be written as an integral to a higher order four point corre-
lation function g4(r, t) [62, 138] commonly used in the context of dynamical hetero-
geneity.

g4(r, t) =
1
N
〈ρ(0,0)ρ(0, t)ρ(r,0)ρ(r, t)〉 − 〈ρ(0,0)ρ(0, t)〉〈ρ(r,0)ρ(r, t)〉

χ4(t) =
∫
drg4(r, t) (2.16)

In Fig. 2.2, we show q(t) and χ4(t) and relevant timescales for 3d soft sphere system.
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Figure 2.2: q(t) and χ4(t) (3d soft sphere system) is plotted as a function of time in
the semi-log scale. The dashed magenta line represents τα , which is the time at which
χ4(t) is maximum.

2.1.3 Mean squared displacement and di�usivity

The mean squared displacement (MSD) characterizes the particle-averaged transla-
tional motion in the system. The translational di�usion coe�cient (D) is a transport
coe�cient which can be computed from the MSD. The MSD is also a useful quantity
to check if the runs are su�ciently long – for a su�ciently long run the MSD is well
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into the di�usive (linear t dependence) regime. The MSD is de�ned as

MSD(t) =
1
N

∑
i

〈(ri(t)− ri(0))2〉 (2.17)

D is computed by �tting the asymptotic behaviour of MSD to the form limt→∞MSD(t) =

2dDt, where d is the spatial dimension. In Fig. 2.3, we show an example of how we
compute di�usivity.
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Figure 2.3: Left panel: MSD (3d soft sphere system) is plotted as a function time. By
�tting the MSD at large times, we can obtain D . Right Panel: MSDt is plotted against
time. At large t, we see MSD

t is constant which indicates that the system is in di�usive
regime (MSD ∼ 2dDt). The plateau value gives a measure of D .

2.1.4 Non-Gaussian parameter

The non-Gaussian parameter α2(t) is de�ned as:

α2(t) = CD
〈r4(t)〉
〈r2(t)〉2

, (2.18)

〈r2n〉 =
1
N

〈
(ri(t)− ri(0))2n

〉
n=1,2; CD is a spatial dimension dependent coe�cient to ensure that α2(t) = 0 when
the distribution of displacements is a Gaussian, CD = d

d+2 . The time, t∗ at which the
non-Gaussian parameter α2(t) is maximum, is a measure of the time scale of hetero-
geneity in the system.
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2.2 Computational Methods

2.2.1 The Brown and Clarke algorithm

We have performed constant number, constant volume and constant temperature (NVT)
molecular dynamics simulations. We kept the temperature constant using the Brown
and Clarke algorithm, which we describe below.

Hoover’s equation of motion

In MD simulations, particles evolve following Newton’s equation of motion. The tem-
perature is kept constant by adding a velocity dependent damping force to the inter-
acting forces. Each particle i follows the so called Hoover’s equations of motion [139].

ṙi = vi(t) =
pi
m

(2.19)

v̇i =
Fi(t)−αvi(t)

m

The constant α is chosen in such way that the kinetic temperature is a constant of
motion. The kinetic temperature is related to velocity by:

f T

2
=
m
2

N∑
i

vi .vi (2.20)

where f is the number of degrees of freedom, equal to N ×d − (d + 1), where N is the
total number of particles and d is the spatial dimension. Now, to keep the temperature
constant, we set

dT
dt

= 0 =⇒ α =
∑
i Fi .vi∑
i vi .vi

= − U̇
2K

(2.21)

U is the total potential energy and K is the total kinetic energy of the system. Accord-
ing to the Brown and Clarke algorithm [140], if the equations of motion are integrated
using the Leap-frog scheme [141], we do not need to solve Eqn. 2.21. Rather, the ve-
locity would be simply rescaled.
In the Leap-frog scheme, the equations of motion can be written as,

vi(t +
∆t
2

) = vi(t −
∆t
2

) +
Fi(t)
m

∆t +O(∆t2) (2.22)

ri(t +∆t) = ri(t) + vi(t +
∆t
2

)∆t +O(∆t2)
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Note that in this scheme, the initial position and velocity are not in the same instant
of time, there is an o�set of ∆t/2. The velocity at the same time step can written as

vi ≈
1
2

[
vi(t −

∆t
2

) + vi(t +
∆t
2

)
]

(2.23)

Now, using Hoover’s equations of motion, Eqn. 2.19, Eqn. 2.22 will become,

vi(t +
∆t
2

) = vi(t −
∆t
2

) +αi(t)∆t −
αvi(t)
m

∆t (2.24)

ri(t +∆t) = ri + vi(t +
∆t
2

)∆t

We can de�ne an intermediate velocity update,

v′i(t) = vi(t −
∆t
2

) +αi(t)
∆t
2

(2.25)

Using Eqn. 2.24 and Eqn. 2.25, we obtain

vi(t) = vi(t −
∆t
2

) +αi(t)
∆t
2
− αvi(t)

2m
∆t (2.26)

vi(t)
[
1 +

α∆t
2m

]
= vi(t −

∆t
2

) +αi(t)
∆t
2

(2.27)

vi(t) = βv′i(t) (2.28)

where,
β =

1

1 + α∆t
2m

(2.29)

Now, we replace α in Eqn. 2.24 by β,

vi(t +
∆t
2

) = (2β − 1)vi(t −
∆t
2

) + βαi(t)∆t (2.30)

β can be obtained from

T (t) =
m
f

N∑
i=1

v2
i (t) (2.31)

=
m
f

 N∑
i=1

v2
i (t)

β2 (2.32)

T (t) is the instantaneous kinetic temperature. T (t) will be the same as the simulation
temperature T (r) when

β2 =
f Tr

m
∑N
i=1 v

2
i (t)

(2.33)
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Finally, using the Brown and Clarke algorithm, Hoover’s equations become,

vi(t +
∆t
2

) = (2β − 1)vi(t −
∆t
2

) + βαi(t)∆t (2.34)

ri(t)(t +
∆t
2

) = ri(t) + vi(t +
∆t
2

)∆t (2.35)

2.2.2 Calculation of free energy and entropy

2.2.2.1 Total free energy and entropy

Calculation of entropy in general is not a trivial task in a simulation or experiment.
Entropy is related to the free energy in the following way:

S = −∂A
∂T

(2.36)

Where A is the Helmotz free energy. Thus, we �rst need to compute the free energy.
the Helmholtz free energy is de�ned as

A = −kBT lnZ (2.37)

Z =
1
N !

∫
exp(−βH(R,P)dRdP (2.38)

We see that the free energy is not a direct function of phase space coordinates; rather,
it is a function of phase space volume. So, absolute free energy can not be calculated
directly from the simulation. Di�erent methods are employed to obtain free energy in
simulations. One such method is thermodynamic integration [142]. In this method,
�rst we need to �nd a reference state where the free energy is known exactly either
analytically or numerically. Then we need to �nd a reversible path from this refer-
ence state to the state of our interest, the target state. By integrating thermodynamic
variables like pressure, energy or some perturbed Hamiltonian along this path, one
obtains the free energy of the target state with respect to the reference state. Below,
we will describe how we calculate the free energy for our system [81].

• The reference state for our system is the ideal gas, which is the high temperature
and low density limit of the liquid. The Hamiltonian of our system can be written
as H = K(P) +U (R), where K is the kinetic part and U is the interacting part.
Kinetic part of the Hamiltonian will give the ideal gas part of the free energy.
So the total free energy can be written as Atotal = Aid +Aex. As our system is a
binary mixture, we also need to add the contribution due to the mixing entropy.
So at the reference state, at zero density and and high temperature (Tref ), the
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partition function will be:

Z(0,Tref ) =
N !

NA!NB!
Zid(0,Tref ) (2.39)

correspondingly the free energy will become,

A(0,Tref ) = Aid +Aex (2.40)

Aex = −Tref ln
N !

NA!NB!
(2.41)

• Now, we will compute the excess free energy at the reference temperature, Tr
and at density, ρ by integrating the excess pressure along the isotherm at Tr .
The integration is performed using 10-point Gauss-quadrature method.

Pex = ρ2
(
∂(Aex/N )

∂ρ

)
N,T

= P − Pid (2.42)

Aex(ρ,Tref )−Aex(0,Tref ) =NTref

∫ ρ

0
∂ρ

(
βref P

ρ2 − 1
ρ

)
(2.43)

• Next, we obtain the excess free energy at the target temperature T by integrat-
ing the potential energy along the isochore at ρ from Tr to T . The tempera-
ture dependence of potential energy is obtained by �tting to an empirical from,
U (ρ,T ) = a+ bT c [143].

U (N ) =
(
∂(βAex)
∂β

)
N,ρ

(2.44)

•

βAex(ρ,T )− βref Aex(ρ,Tref ) =
∫ β

βref

(U (ρ,β′)∂β′) (2.45)

• Next, we obtain the total free energy by adding the ideal gas free energy at the
target free energy to the excess part obtained by thermodynamic integration.

A(ρ,T ) = Aex(ρ,T ) +Aid(ρ,T ) (2.46)

Aid(ρ,T ) = NT (d ln(Λ) + ln(ρ)− 1) (2.47)

Where Λ is the de-Broglie wavelength, Λ = h√
(2πT )
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• Finally, we obtain total entropy S = −∂A∂t .

S = A(ρ,T )/T −E/T −Nd/2 (2.48)

2.2.2.2 Vibrational entropy

Vibrational entropy or basin entropy is de�ned as the entropy due to vibration around
the energy minimum of the system. This entropy can be calculated by assuming the
energy basins to be harmonic wells. This approximation works well in the low temper-
ature regime. At high temperatures, one needs to incorporate an-harmonic contribu-
tions of the basin. First, we will discuss the method to estimate harmonic vibrational
entropy [81,144,145]. We consider the state of the system that weakly vibrates around
an energy minimum structure, inherent structure (IS). If δri is the displacement of the
ith particle from its position in the IS, the potential energy can be approximated as

U =UIS +
1
2

∑
ij

d2U
dridrj

δriδrj (2.49)

The second term of the equation is called the Hessian matrix, which is of dimensions
3N ×3N . We can write, using harmonic approximation, the canonical partition func-
tion of a single basin (Zbasin) as the product of the partition functions ( Zh.o ) of 3N

one dimensional harmonic oscillators (h.o.) with frequencies (ωi) (The Hamiltonian of
the harmonic oscillators can be written as 1

2mp
2+ 1

2mω
2q2, p and q are the generalized

coordinates, andm is the mass which is set to unity). These ωis are the square root of
the of the eigenvalues (ω2

i ) of the Hessian matrix. We obtain 3N independent eigen-
values, out of which 3N − 3 are non-zero, by diagonializing the Hessian matrix. The
canonical partition functions of a one dimensional harmonic oscillator with a non-zero
frequency ω is

Zh.o.(ω) =
∫
dqdp

h
exp

[
−
βp2

2
−
βω2q2

2

]
(2.50)

=
2π
βhω

and with zero frequency,

Zh.o(0) =
1
h

√
(
2π
β

)V
1
3 (2.51)

= z0
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Thus, the basin partition function can be written as :

Zbasin = exp(−βUIS)

3N−3∏
i=1

2π
βhωi

z3
0 (2.52)

= exp(−βUIS)exp(−βfbasin)

where fbasin =

3N−3∏
i=1

2π
βhω

z3
0. Finally,

βUIS + βfbasin = − lnZbasin (2.53)

βfbasin = ln
3N−3∑
i=1

βhωi
2π
− lnz3

0

Sbasin = −
δfbasin
δT

(2.54)

2.2.3 Con�gurational entropy

The con�gurational entropy is de�ned as following: Sc = 1
N logΩ, (where Ω is the

number of amorphous minima visited by the system) which is a measure of the number
of uncorrelated con�gurations that a system can sample in the con�guration space at
a given density and temperature. Goldstein [82] proposed a description of the dynam-
ics of glass forming liquids in terms of high dimensional con�guration space, called as
potential energy landscape (PEL). The PEL is a hyper-surface representing the interac-
tion potential as a function of coordinates of all particles in aNd+1 dimensional space
for an N particle liquid in d dimensions. A con�guration as a whole is represented
by a single point on this hyper-surface. The evolution of the system can be described
as the movement of the point in the hyper-surface. The PEL has a large number of
local minimum structures which is known as inherent structures. These minima are
separated by energy barriers. At high temperatures, the system can sample all pos-
sible energy con�gurations without needing to overcome the barriers as the thermal
energy, kBT is much larger than the energy barriers. However, at low temperatures,
as the thermal energy is less, the system spends most of the time at some local minima
and occasionally jumps to other minima. From the above discussion, we can see that
the con�guration space can be divided into basins such that each basin has exactly
one local minimum or inherent structure and each con�guration in that basin can be
mapped to that inherent structure. In this picture, the partition function of the whole
system can be written as the integral of the partition function of single basin over
inherent structure energies, eIS :

Z =
∫
eIS

Zbasin(eIS ,N )Ω(eIS ,N )deIS , (2.55)
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where Z is the canonical partition function of the whole system and Zbasin(eIS ,N ) is
the partition function of the basin and Ω(eIS ,N )deIS denotes the number of inherent
structure in the energy range, eIS and eIS + deIS . The above equation can further be
written as

Z =
∫
eIS

exp[−β(eIS + fvib)]exp[Sc(eIS ,N )/kB]deIS (2.56)

Where Sc(eIS ,N ) is the con�gurational entropy density, which is independent of tem-
perature. The con�gurational entropy, Sc(eIS ,N ,T ) can be obtained by averaging con-
�gurational entropy density sampled at a given temperature:

Sc(eIS ,N ,T ) =
∫
deISSc(eIS ,N )P (Sc,N ,T ) (2.57)

Where P (Sc,N ,T ) is the probability density of sampling inherent structures of energy
between eIS and eIS + deIS . Using Equation. 2.56, the Sc can be written as SLiquid =

Svib+Sc. The total entropy SLiquid , which measures the total number of con�gurations
participating in the liquid state, has been decomposed into a sum of the vibrational
entropy Svib, which counts how many con�gurations there are within each minimum,
plus the con�gurational entropy Sc, counting the number of minima. As we already
discussed the method to calculate total entropy, SLiquid and vibrational entropy, we
can obtain Sc, subtracting these two.

Sc = Stot − Svib (2.58)

2.3 Jamming protocol

Here, we describe the protocol to obtain the jamming point φJ . We follow the proce-
dure described in Ref. [97]. In this work, the initial con�gurations were chosen from
the equilibrium �uid at low density. It was shown that the jamming point depends
on the density at which the con�guration was equilibrated; the jamming point moves
to higher densities with increase in the initial density. However, if we use random
initial con�gurations as was done in Ref. [146], we could obtain the lowest jamming
point. As we are interested in �nding the lowest jamming point, we use random initial
con�gurations. The protocol is illustrated in Fig. 2.4, which we describe below.

• We compress the system by uniformly in�ating all the particle diameters.

• After each step of compression the potential energy of the system is minimized
using the conjugate gradient method.

• We continue this process until the system reaches an energy of the order of 10−5.
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• To locate the jamming density, we slowly (10 times lower than the compres-
sion) decompress the system and at each step of decompression, the energy is
minimized.

• We continue decompression until the energy of the system becomes less than
10−16. The density at which the energy reaches 10−16 is the estimate of the
jamming density.

• The above procedure is repeated for 1000 independent con�gurations, to obtain
the average jamming density and the corresponding distribution.
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Figure 2.4: The jamming protocol is described here for 3d soft sphere system. The en-
ergy of the minimized con�guration is plotted as function of φ during a compression-
decompression cycle.

2.4 Athermal quasi static (AQS) shear

In this thesis, we have studied the yielding and memory behaviour of amorphous solids
using athermal quasi static (AQS) shear protocol. Before, we discuss the AQS proto-
col, we will discuss a�ne transformations and the Lees-Edwards boundary condition
which are used to implement the AQS.

2.4.1 A�ne transformation

Any transformation which has the following property is called an a�ne transforma-
tion:

• Collinearity of points: three or more points which lie on the same line (called
collinear points) continue to be collinear after the transformation.

• Parallelism: two or more lines which are parallel, continue to be parallel after
the transformation.
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• The ratios of lengths along a line is preserved.

• The distance between points, angles between points and the origin is not pre-
served.

Examples in 3D

• Scale

A =


a 0 0

0 b 0

0 0 c


• Shear

A =


1 b c

d 1 e

f g 1


• Rotation along z

A =


cosθz −sinθz 0

sinθz cosθz 0

0 0 1


2.4.2 Lees-Edwards periodic boundary conditions

When the simulation box is tilted, instead of periodic boundary conditions, Lees-
Edward boundary conditions are used. In Fig. 2.5, we have schematically shown the
concept of this boundary condition. The images of the simulation box are shifted in the
direction perpendicular to the displacement gradient. When the particles pass through
the simulation box from the surface normal to the x-axis, they re-enter through the
opposite surface using normal periodic boundary conditions (PBC). If the particles
are passing through the surface normal to the z-axis, x-coordinate of those particles
will be modi�ed to x −∆x and then the standard PBC will be applied to the modi�ed
x-coordinate. We now describe the AQS protocol. The AQS shear protocol has two
steps:

• Particles are displaced by applying an a�ne transformation x′ = x+dγ z, where
dγ is the strain increment in the xz plane, with y and z coordinates unaltered.
Shear strain γ is incremented by small strain steps.

• The energy of the deformed con�guration is minimized using the conjugate gra-
dient method, subject to Lees- Edwards periodic boundary conditions.
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Figure 2.5: Two-dimensional representation of the Lees-Edwards boundary condition.
When the principal simulation box (center) is sheared, its periodic image cells are also
sheared and displaced simultaneously to provide homogeneous shear conditions. The
spatial arrangement of the particles can be interpreted as particles in square boxes
displaced by dγL

Two dimensional pair correlation function: In order to assess the structural
change resulting from cyclic deformation, we compute a two dimensional directional
pair correlation function g(x,z) in the shear plane xz, which is de�ned as:

g(x,z) =
1

2Nρa
×〈N−1∑

i=1

N∑
j,i

δ(x − (xi − xj))δ(z − (zi − zj))θ(a− |yi − yj |)
〉 (2.59)

where 〈..〉 implies averaging over independent samples. xi , yi , zi are the particle co-
ordinates. Since we compute a two dimensional correlation function in a three di-
mensional system, we consider pairs of particles with are in the same (shear) plane,
by demanding that their vertical (y) separations do not exceed a speci�ed value, a =

0.04σAA. This is enforced by the Heaviside function θ(a−|yi −yj |). In practice, we di-
vide the simulation box into slabs of �xed width a along the y direction and compute
g(x,z) for pairs of particles within each slab, averaging over all the slabs. The data
shown are averaged over 30 independent samples.

2.5 Details of the models studied

We describe below the two model systems that we have studied in this thesis.

2.5.1 The Kob-Andersen model

The Kob-Andersen Binary mixture (A80B20) with Lennard-Jones interactions between
particles (BMLJ) [147] is a model glass former that has been extensively investigated.
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The interaction potential, with a quadratic cut-o�, is given by

Vαβ(r) = 4εαβ

((σαβ
r

)12
−
(σαβ
r

)6
)

−4εαβ

c0 + c2

(
r
σαβ

)2 , rαβ ≤ rc,αβ
= 0, rαβ > rc,αβ (2.60)

where α,β ∈ (A,B), εAB/εAA = εBA/εAA = 1.5, εBB/ εAA = 0.5, and σAB/σAA =

σBA/σAA = 0.8, σBB/σAA = 0.88. The interaction potential has cut o�, rc,αβ = 2.5σαβ .
We report results in reduced units, with units of length, energy and time scales being

σAA, εAA and
√
σ2
AAmAA
εAA

respectively.

2.5.2 Soft sphere binary mixture

This model is also used as a model glass former and in studies of jamming [148]. The
interaction potential is given by:

Vαβ(r) = εαβ

(
1− r

σαβ

)2

, rαβ ≤ σαβ

= 0, rαβ > σαβ (2.61)

where α, β ∈ (A,B), indicates the type of particle. The two types of particle di�er
in their sizes, with σBB = 1.4σAA, but with the interaction strengths being the same
for all pairs. In reporting results for this system, we use reduced units, with units of

length, energy and time scales being σAA, εAA and
√
σ2
AAmAA
εAA

respectively.
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Chapter 3
Relationship between glass point and
jamming point of sphere assemblies in
higher spatial dimensions

3.1 Introduction

Fluid states of matter can transform to rigid, amorphous solids through the glass tran-
sition or the jamming transition. The glass transition describes the transition to dis-
ordered solid states typically in molecular systems upon a decrease in temperature,
whose nature has been intensely investigated over several decades [30,47,56,149,150].
The jamming transition has likewise been been widely investigated in athermal sys-
tems, typi�ed by granular matter [96, 151, 152]. Their relationship has also been the
subject of considerable research [92]. Whereas molecular glass formers and granular
matter represent cases which exhibit one or the other of these phenomena, several
systems, such as colloidal suspensions, in principle exhibit both phenomena, and their
interplay is important, e.g. in their rheology [102]. An idealised system in which both
phenomena have been investigated in detail is the hard sphere system. Theoretical
investigations over the last decade, extending the framework of the random �rst or-
der transition (RFOT) theory [61, 153, 154], have focused on the hard sphere system,
and a uni�ed mean �eld description of both these phenomena have been developed
in the limit of in�nite dimensions [92, 94, 155]. These developments have naturally
led to investigations of how the in�nite dimensional results relate to behaviour in �-
nite dimensions. An appealing and systematic approach to addressing questions in
this regard is to study the e�ect of spatial dimensionality on the glass transition and
jamming phenomenology, which have been pursued for hard particle systems exten-
sively [70, 92, 94, 156–159]. In particular, the relationship between the glass transition
and jamming transition has been investigated [94,156]. In addition to systems of hard

53
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spheres, a small number of other studies have investigated the role of dimensionality in
determining aspects of glassy dynamics [64,160–163], such as dynamical heterogene-
ity in a binary mixture of the Lennard-Jones particles as a function of temperature.
A more extensive investigation of the dependence on spatial dimensionality in sys-
tems where both thermal and density e�ects play a role are thus of great interest. In
the present work, we would like to understand the relationship between ideal glass
transition density and jamming point by varying spatial dimensions for a model sys-
tem where temperature and density both are controlled parameters. We study soft
sphere assemblies interacting with a harmonic potential by investigating the dynam-
ics at di�erent densities and temperatures. In the zero-temperature limit, the behavior
of this system approaches the density-controlled hard sphere model, while it is similar
to thermally driven �uids at high density and �nite temperature. In the hard sphere
limit, the system jams, losing the ability to �ow, at a critical density, φJ , via the non-
equilibrium jamming transition [97, 146]. Several works [97, 99, 105, 164–168] have
considered and demonstrated the scenario that the jamming density is not unique, but
can occur over a range of densities. The jammed state can be obtained by compress-
ing an equilibrated liquid. The system jams at larger and larger densities as the initial
density of equilibrated liquid increases. In turn, the range of jamming densities is asso-
ciated with a line of glass transition densities (kinetically determined or otherwise, as
in mean-�eld results [92,155]). This line of kinetically de�ned glass transition density
ends with a Kauzmann density φ0, which may be expected to be the relevant density
for the divergence of relaxation times. The relationship between the jamming and
Kauzmann densities have been investigated, with varying conclusions regarding the
relative values of φJ and φ0 [104, 108, 156, 169, 170]. Several studies [92, 94, 105–108]
also indicate that the relationship between these two transition densities depends on
dimensionality. In [169, 170], the relaxation times were studied for the same model
we consider, in three dimensions. With increasing density, relaxation times exhibit a
cross over from sub-Arrhenius to super-Arrhenius temperature dependence. Relax-
ation times were analysed through a scaling function that assumes a divergence for
the hard sphere systems at a density φ0, and by de�ning an e�ective hard sphere di-
ameter at �nite temperatures [171], to obtain two distinct scaling collapses across φ0.
The estimate of φ0 thus obtained if found to be very close to φJ , the jamming point,
although the meaning of the two densities was clearly distinguished. In the present
work, we perform extensive molecular dynamics simulations for a wide range of φ,T
values in di�erent spatial dimensions ranging from d = 3 to 8. We perform a scaling
analysis similar to [169,170] but with a newly proposed scaling function, to obtain φ0

as a function of d. We obtain jamming densities following the analysis in [97, 146].
Our results clearly demonstrate that φ0 > φJ for d > 4, with φ0/φJ increasing with d,
as may be expected from mean �eld results [92, 94, 155].
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3.2 Simulations details

We use sphere assemblies interacting with harmonic potential as a model glass former
[172] (de�ned in the chapter 2). We study glasses in the spatial dimension from 3−8.
We have worked with the system size varying from 1000 − 5000 which is a binary
mixture (50:50). We have investigated the dynamics at 10 − 14 densities around the
jamming density. The number density, ρ, is related to the volume fraction,φ: φ = ρVd ,
where Vd is the volume element in d dimension.

φ = ρVd = ρ2−d
πd/2

Γ (1 + d
2 )

((0.5σdAA + 0.5σdBB) (3.1)

, where ρ = N/V , with V expressed in units of the small particle diameter. We use

εAA as the energy unit, and
√
σ2
AAmAA
εAA

as time unit, wheremAA is the mass which is set
to unity. Molecular dynamics (MD) simulations are performed in a cubic box with the
periodic boundary conditions in the constant number, volume, and temperature (NVT)
ensemble. The integration time step is dt = 0.01. Temperatures were kept constant
using an algorithm due to Brown and Clarke [140]. The data, presented here, have run
length more than 100τα (τα = relaxation time).

3.3 Results

3.3.1 Sub-Arrhenius to super-Arrhenius transition

We study the dynamics by measuring a two point correlation function, the overlap
function, q(t) (for the B particles):

q(t) =
1
NB

NB∑
i

w(|ri(t0)− ri(t + t0)|) where w(x) =

1.0 if x ≤ a

0 otherwise.

We choose the parameter values a = 0.48,0.50,0.55,0.60,0.75 ,and 0.80 for 3d, 4d,
5d, 6d, 7d, and 8d, respectively. (Details are given in chapter 2). Relaxation time, τα
is estimated as the time where q(t) = 1/e. In Fig. 3.1, the relaxation time is plotted
as a function of temperature for various densities for 3 − 8 spatial dimensions. The
relaxation behaviour is Arrhenius at high temperature for all the densities in each di-
mension. However, at low temperature, the dynamics changes from sub-Arrhenius to
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Figure 3.1: Relaxation time as a function of inverse temperature is plotted in a semi-
log scale for several densities in di�erent dimensions. The data with �lled symbol
represents the density beyond which one expects the cross over from sub-Arrhenius
to super-Arrhenius behaviour.
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super-Arrhenius with the increasing density. In Fig. 3.1, we have highlighted the den-
sity at which the cross over occurs. In order to locate the cross-over density between
sub-Arrhenius to super-Arrhenius temperature dependence, we consider a subset of
densities in the vicinity of that density in each dimension. We �t the τα at high tem-
peratures to an Arrhenius form

τα = τ0 exp
(
A
kBT

)
(3.2)

In Fig. 3.2, we show the Arrhenius �ts in each dimension, which demonstrates that the
change from sub-Arrhenius to super-Arrhenius temperature dependence of the relax-
ation times. Previous studies have shown that the dynamics shows scaling behaviour
around the cross over density of sub Arrhenius to super Arrhenius.

3.3.2 Berthier and Witten (BW) scaling

Considering an expression for relaxation times for hard sphere �uids of the form
√
T τhsα ∼ exp

[
A

(φ0−φ)δ

]
, Berthier and Witten [169] analysed relaxation times for soft

spheres by de�ning a temperature dependent e�ective volume fraction of the form
φef f = φ− aT µ/2, which leads to the scaling form

√
T τα(φ,T ) ∼ exp

( A

|φ0 −φ|δ

)
F±

 |φ0 −φ|
2
µ

T


 , (3.3)

whereF±(x) refers to the scaling function for the super-Arrhenius and the sub-Arrhenius
branch and µ, δ and φ0 are adjustable parameters. Plotting |φ0 −φ|δ log(τα) against
|φ0−φ|

2
µ /T , with suitable choices of the parameters, a data collapse on to two branches

above and below φ0 is obtained. The values of φ0 = 0.635 and δ = 2.2 were deter-
mined from such a procedure, with the δ value being in close agreement with ex-
perimental and simulation results for colloidal hard spheres and theoretical results
[173–175]. The estimated φ0 is close to but distinct from the jamming density of
φJ = 0.648 estimated for the binary mixture studied in [97, 146, 169] and here. We
have used the same scaling formula for spatial dimension, 3 − 8. The continuity of
τα at �nite temperature and φ = φ0 demands for some unknown exponent y, the
following equation must be satis�ed,

ln(
√
T τα) =

A

|φ−φ0|δ

[
|φ−φ0|µ/2

T

]y
(3.4)
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Figure 3.2: Relaxation time is plotted as a function of inverse temperature and �tted
with the Arrhenius form at high temperatures. The points correspond to simulation
data. Lines are �ts to Arrhenius form.
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Figure 3.3: Data collapse of relaxation times using the Berthier-Witten scaling func-
tion. The estimated φ0 values are shown in the legends.
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and y has to be,

µy

2
= δ (3.5)

y =
δµ

2
(3.6)

ln(
√
T τα) =

A

T µδ/2
(3.7)

This implies that
F+(x→ 0) ∼ F−(x→ 0) ∼ xµδ/2 (3.8)

This should correspond to purely Arrhenius behaviour at φ0 for all temperatures
which means µ,δ will be such that τα ∼ exp(A/T ). In Fig. 3.3, we show the scaling
plots of relaxation times (BW scaling) for 3− 8 spatial dimensions. In performing the
data collapse, we consider the densities within the bounding ranges identi�ed above
and we impose the condition µδ/2 = 1 so that the scaling form in Eq. 3.3 leads to an
Arrhenius form at φ0. We compute a quanti�cation of the error, χ2

τ , as detailed below
for a range ofφ0 and δ values, and identify theφ0 and δ values that minimize χ2

τ . The
values of χ2

τ vs. φ0 and δ are not smooth, for reasons we describe below. Thus, after
we identify theφ0 and δ values that minimize χ2

τ , we consider small variations around
such values in order to improve the quality of the data collapse of τα into two branches
acrossφ0. The best estimates ofφ0 are shown in the legends in Fig. 3.3, and error bars,
obtained by considering an increase in χ2

τ by 20% of the lowest value, are shown in
the Table below. Recently, in [176] the same scaling analysis has been revisited with
the conclusion that if one considers φ0, δ and µ as free parameters, a good scaling
collapse of comparable quality to [169] could be obtained for signi�cantly di�erent
sets of parameter values. It is thus desirable to explore alternate scaling functions,
which we do in this work based on the evaluation of an e�ective diameter following
the prescription in [177].

3.3.3 New scaling formula

The observations in [176] raise serious concerns about the reliability of the estimates
ofφ0 obtained. We address this issue by proposing an alternate scaling function based
on the evaluation of an e�ective diameter following the prescription in [177]. We do
not consider other improvements to the Barker-Henderson expression commonly used
in liquid-state theory, as we wish to analyse the dynamical data with a minimal set of
parameters, which nevertheless will be accurate in capturing low temperature behav-
ior. Following [177], the expression for the e�ective diameter with only temperature
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dependent corrections can be written as

σef f =
∫ r0

0
[1− exp(−βu(r))]dr (3.9)

where β = 1/T , and u(r) is the pair potential, r0 is the cuto� of the potential. For the
harmonic pair potential, Equation. 3.9 will become,

σef f =
∫ σ

0

[
1− exp

(
−β

(
1− r

σ

)2
)]
dr. (3.10)

Integrating the above equation, one can obtain,

σef f = σ
[
1− 1

2

√
π
β
erf (

√
β)

]
(3.11)

Now, we know,

erf (β) ≈ 1− 1
(1 + a1β + a2β2 + a3β3 + a4β4)4 β ≥ 0 (3.12)

Where, a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108. The leading
order term of the error function will be T 5/2. Also, the temperature range in our case
is around 10−2 to 10−5. In this range, erf (

√
β) ≈ 1. The equation 3.11 becomes,

σef f = σ
[
1− 1

2

√
π
β

]
(3.13)

For any general dimension, d, one can write

σdef f = σd
[
1− d

√
π

2

√
T +

d(d − 1)π
8

T −O
(
T 3/2

)]
. (3.14)

Thus, we can approximate the expansion with the following form in general di-
mensions,

σdef f = σd(1− a
√
T + bT β), (3.15)

where a, b and β are constant. β has to be larger than 0.5. The e�ective volume
fraction for general dimension will then be

φef f ∼ φ
(
1− a
√
T + bT β

)
. (3.16)

Assuming that relaxation times for the hard sphere �uid follow
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√
T τhsα ∼ exp

[
A

(φ0 −φ)δ

]
, (3.17)

and employing Eq. 3.16 for the e�ective diameter, we have

√
T τα(φ,T ) ∼ exp


A

(φ0 −φ)δ
(
1− φ(a

√
T−bT β)
φ0−φ

)δ


(3.18)

based on which, we write a scaling form

√
T τα(φ,T ) ∼ exp


(

A

|φ0 −φ|δ

)
F±

 |
φ0
φ − 1|

a
√
T − bT β


 (3.19)

where F±(x) refer to the scaling functions for the super-Arrhenius and the sub-
Arrhenius branches.

An Arrhenius form of the relaxation times at �nite T and φ = φ0 requires δ to be
2, which we employ. a is kept �xed in the following to expressions in Eq. 3.14, and
we allow b and β to be �tting parameters, with β > 0.5. This introduces an additional
parameter as compared to BW scaling. However, rather than estimating b, β and φ0

through a scaling analysis of τα , we �rst require that P /ρT where P is the pressure is
a unique function of φef f and estimate b and β from the data collapse of P /ρT .

The pressure P is evaluated at each state point, in each dimension, as a function
of φ and T, i.e. P = f (T ,φ). For a suitable choice of the e�ective volume fraction
φef f (φ,T ), we may expect P to be a unique function of φef f .

we require that Z ≡ P /ρT , plotted as a function of φef f should exhibit a data
collapse for the full set of densities and temperatures in each dimension, and use this
to obtain the best �t values of b and β, keeping the choice of a �xed to values given
in Eq. 3.14. We compute the error of the pressure collapse as follows. The range of x
(or φef f ) values is divided into bins of width δx (we choose δx = 0.05), and each bin
is indexed by i, with ni data points, from di�erent density, temperature data sets. For
each bin, we compute a mean y value 〈yi〉 = 1

ni

∑ni
j=1 yj . We then de�ne

χ2 =
1

totbin(ni > 1)

∑
i(ni>1)

1
ni

ni∑
j=1

[yi(j)− 〈yi〉]2 (3.20)

where totbin(ni > 1) is the total number of bins with more than one data point. We
observe that in each dimension the best estimate of β is close to 0.7. Thus, we employ
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β = 0.7 for all dimensions, and estimate b values that minimize χ2. Scaling collapse
of τα through Eq. 3.19 is used to estimate the remaining parameter φ0. In Fig. 3.4 and
3.5, we show pressure collapse and corresponding collapse of dynamics.
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Figure 3.4: Left: Reduced pressure is plotted as a function of φef f . Di�erent colour
points represent di�erent initial volume fraction. We choose c and α in such a way
that pressure collapses into each other (Top: 3d, Middle: 4d, bottom: 5d). Right: The
same parameters obtained from pressure collapse are used for the dynamical scaling.
(Top:3d, Middle: 4d, bottom: 5d)
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Figure 3.5: Left: Reduced pressure is plotted as a function of φef f . Di�erent colour
points represent di�erent initial volume fraction. We choose c and α in such a way
that pressure collapses into each other (Top: 6d, Middle: 7d, bottom: 8d). Right: The
same parameters obtained from pressure collapse are used for the dynamical scaling.
(Top:6d, Middle: 7d, bottom: 8d)
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3.4 Error analysis for the scaling of relaxation times

We describe here the estimation of parameters that lead to scaling collapse of the re-
laxation times into two scaling functions above and below the densityφ0, with explicit
reference to the new scaling form shown in Eq. 3.19 wherein the parameters describ-
ing the e�ective packing fraction φef f have been determined through the equation
of state. In this case, only the parameters φ0 and δ need to be determined. We fol-
low a similar procedure for the case of the Berthier-Witten scaling form in Eq. 3.3.
For each choice of the �tting parameters, we de�ne an error χ2

τ as follows: For each
choice of φ0, the range of densities is divided into a subset with φ > φ0 and φ < φ0,
for each of which we de�ne χ±τ

2, and de�ne χ2
τ = χ+

τ
2 +χ−τ

2 where + corresponds to
the set φ > φ0 and − corresponds to the set with φ < φ0. For each subset of data,

for each data point, we de�ne an x value and a y value, with x = log
(
|φ0
φ −1|

a
√
T−bT β

)
and

y = log
[
|φ0 −φ|δ log

(√
T τα(φ,T )

)]
. The range of x values is divided into bins of

width δx (we choose δx = 0.05), and each bin is indexed by i, with n±i data points
for the two subsets. For each bin, and for each subset, we compute a mean y value
〈y±i 〉 = 1

n±i

∑n±i
j=1 y

±
j (for bins with n±i , 0, 〈y±i 〉 = 0 otherwise). We then de�ne

χ±τ
2 =

1
totbin(ni > 1)

∑
i(n±i >1)

1
n±i

n±i∑
j=1

[
y±i (j)− 〈y±i 〉

]2
(3.21)

from which the total error χ2
τ is computed, and minimized with respect to the param-

eters sought to be estimated (φ0 and δ). We note that the quantity χ2
τ is not a smooth

function of the parameters φ0 and δ, since the number of points ni in each bin can
change discontinuously with a variation of φ0 and δ. Further, for some choices of φ0

and δ, low values of χ2
τ can be obtained for relatively poor scaling collapse, arising

from the fact that several bins of x values contain a single data set and hence does not
contribute to the error. Thus, (only in the case of BW scaling) after we obtain estimates
of φ0 and δ that minimize χ2

τ , we consider small variations around these values that
improve upon the scaling collapse. Finally, for the scaling function Eq. 3.19, we �x the
value of δ to be δ = 2, which we justify below.

3.4.1 Justi�cation of the choice δ = 2

Based on the scaling function Eq. 3.19 we propose, a natural choice for the value of
δ is 2, which leads to an Arrhenius form at low temperatures at the crossover density
φ0. The value δ = 2 is also what has been argued to be valid in 3 dimensions [174],
and close to the value found in [169, 170]. Nevertheless, the value of δ in higher di-
mensional hard sphere �uids is not available, and therefore, we consider initially the
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variation of δ, along with φ0, in Eq. 3.19, after �xing b and β using equation of state
data. We compute the error as described above for a range of choices of φ0 and δ,
which is shown in Fig. 3.6 for d = 3. We note that a range of φ0 values and corre-
sponding δ values exhibit comparable errors. In Fig. 3.7 we show the minimum of χ2

τ

for each φ0 and plot it as a function of φ0 (left) and equivalently, the corresponding
δ. Though the errors are comparable for the range of φ0 and δ we consider, mini-
mum errors are obtained for δ values close to δ = 2. Similar results are also obtained
for all other dimensions. On this basis, we conclude that the choice δ = 2 is reason-
able, which we �x in subsequent analysis, and estimate φ0 based on minimizing χ2

τ ,
as shown in Fig. 3.8.
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Figure 3.6: Heat map of error χ2
τ as a function of φ0 and δ for a big range of δ and φ0.

The green dot indicates the values of φ0 and δ for which χ2
τ is minimum.
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minimum χ2
τ so obtained is plotted as a function of φ0 (left) and alternately, the cor-

responding δ (right). The vertical lines indicate the range of φ0 within which we
estimate the best �t value, as described in Sec. S1.

Thus we obtain φ0, the ideal glass transition density of hard sphere using di�erent
scaling formulas; the di�erent estimates of φ0, are reported on Table 3.1
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Figure 3.8: χ2
τ as a function of φ0, with δ = 2.0.

Dimension BW AKS MZ [94]
3 0.632± 0.001 0.644± 0.003 0.624414
4 0.459± 0.001 0.462± 0.004 0.480302
5 0.328± 0.001 0.325± 0.003 0.325298
6 0.214± 0.0005 0.214± 0.002 0.203008
7 0.138± 0.0005 0.140± 0.002 0.126974
8 0.0868± 0.0002 0.0870± 0.001 0.0777626

Table 3.1: Densities φ0 obtained from di�erent scaling procedures, and from theoret-
ical estimates in [94], shown for 3− 8 spatial dimensions.
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3.4.2 Jamming density of soft sphere

We next estimate the jamming densities following the protocol employed in [97]. How-
ever, initial con�gurations are random, as was done in Ref. [146]. Use of initial con�gu-
rations as random con�gurations makes sure, the jamming densities we show here are
the low density limit over which jamming can occurs. We choose 1000 con�gurations
from the range of densities in each dimension (as jamming point has no dependency
of initial densities). These initial con�gurations are compressed till the energy reaches
10−5 with the compression step 0.0001 for d = 3 and 4; 0.00005 for d = 5,6; 0.00001

for d = 7 and 8×10−5 for d = 8), and decompressed (10 times lower than the compres-
sion step) till the energy decreases below 10−16, at the jamming density (details of the
procedure is given in chapter 2). Fig. 3.9 illustrates the protocol for d = 3− 8. Based
on the initial densities used, the φJ we estimate corresponds to the low density limit
of the range over which jamming can take place. The procedure is applied to 1000

independent initial con�gurations, and the histogram of jamming densities obtained
is shown in Fig. 3.10.
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Figure 3.9: Energy as a function of density φ during the compression and decompres-
sion cycles. Di�erent lines correspond to di�erent initial conditions (We show here 50
samples).
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Figure 3.10: Histogram of the jamming densities φJ obtained from 1000 samples are
shown for 3− 8d

Comparison of densities The average jamming densityφJ is shown in Fig. 3.11(also
tabulated in Table 3.2), along with estimates of φ0 obtained above. The ratio φ0/φJ ,
shown in the inset, increases with d, with φ0 > φJ for d > 4, whereas for d = 3 and
4, φ0, φJ with the two values being very close. The jamming densities φJ we obtain
are very similar to, but slightly larger than, those obtained for monodisperse spheres
in [159, 178]. In Fig. 3.11, we compare the scaled jamming densities we obtain, with
those in [178]. We also show the recent theoretical calculations in [94] for the corre-
sponding quantityφth, which shows the same trend as ourφJ data, but are smaller. We
further show the φ0 values we obtain, along with the corresponding calculated values
in [94]. As discussed in [94, 155], 2dφ0/d is expected in increase as logd, whereas
2dφJ /d → 6.2581 as d → ∞. We are not able to quantitatively comment on either
prediction, but we note that the values ofφ0 calculated in [94] are in near quantitative
agreement with our results, whereas the φJ values in [94] underestimate our results
as well as those in [159, 178].

3.4.3 Fraction of rattlers as a function of density

In order to understand the physical meaning of φ0, we have calculated another den-
sity where the fraction of rattler becomes zero. We have computed the fraction of
rattlers as a function of density in 3− 8 spatial dimensions. First, the system is equi-
librated at some �xed temperatures (where τα ∼ 10). Then, the equilibrated liquid is
quenched at zero temperature following the conjugate gradient minimization method.
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d φJ φ0
3 0.648± 0.0014 0.644± 0.003
4 0.467± 0.0015 0.462± 0.004
5 0.320± 0.0008 0.325± 0.003
6 0.209± 0.0006 0.214± 0.002
7 0.1345± 0.0004 0.140± 0.002
8 0.0824± 0.0003 0.0870± 0.001

Table 3.2: Jamming and glass transition densities φJ and φ0 for dimensions d from 3
to 8. Error bars forφ0 are obtained by considering an increase in the error χ2

τ (de�ned
in SM) by 20% of the lowest value. The error bars of φJ is computed from half width
at half maximum of the distribution of φJ (shown Fig. 3(b) and the SM).

.

The structure obtained after the minimization is called the inherent structure (IS). We
have computed the Hessian matrix at this IS and computed the eigenvalues of the
Hessian matrix. The Hessian matrix is de�ned as

Hαβij =
∂2U

∂rαi ∂r
β
j

, (3.22)

where, i and j refer to particle i and j . α and β correspond to di�erent spatial directions
and α, β varies from 1 to d. U is the total potential energy of the system and rαi is
the αth component of the position vector of particle i. For a system of N particle, the
Hessian matrix will be of size Nd ×Nd. In the “d" dimension, there will be at least
“d" eigenvalues which are zero (for translational symmetry). If there are more than “d"
eigenvalues which are zero, we have termed them as rattlers. The fraction of ratters,
fR is the total number of rattlers divided by the total number of eigenvalues. In Fig.
3.12, we have shown the fraction of rattlers, fR, as a function of density (scaled with
jamming density, φJ ) for 3−8 spatial dimension. The density at which fR goes to zero
(as, at large density, fR decays almost exponentially, we have used a tolerance of 10−5)
is termed as φnr . We see that this density is neither corresponds to φJ nor φ0. This
density turns out to be always larger than φ0 at each dimension.

3.4.4 Density-temperature diagram

Finally, we compute the temperature at which the relaxation times show an apparent
divergence by �tting the data at each density above φ0, for each dimension, to the

Vogel-Fulcher-Tammann (VFT) form, τα = τ0 exp
[

1
KVFT

(
T

TV FT
−1

)]. In Fig. 3.13, we

show the density-temperature diagram for 3d and 5d (results for other dimensions is
shown in the SM) which showsφ0 (red diamond) andφJ (navy blue square), along with
the density dependent TVFT (orange circles), and the state points at which simulations
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have been performed (blue cirles). The results shown illustrate the manner in which
the relationship between φ0 and φJ changes with spatial dimension. The TVFT values
shown clearly extrapolate to zero at φ → φ0, illustrating clearly that the φ0 is the
relevant limit density for the density dependent glass transition.
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Figure 3.13: All the data points simulated in 3 − 8d along with φJ and φ0 for that
dimension is plotted in a single plot for di�erent dimensions. The red dots correspond
to the TVFT at that density.
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3.5 Conclusion

To summarize, we have studied the dynamics of model glass forming liquids consisting
of soft (harmonic) spheres by measuring relaxation times as a function of temperature
for several densities for spatial dimensions 3−8. The temperature dependence exhibits
a crossover from sub-Arrhenius to super-Arrhenius behavior as density increases. We
perform a new scaling analysis of the relaxation times to identify a density φ0 which
corresponds to the ideal glass transition density for the hard sphere (or zero temper-
ature) limit. We also estimate the (lowest) jamming density φJ , and show that for
d > 4, φ0 > φJ and thus con�rms that the glass transition and the jamming transi-
tion are fundamentally independent. Theoretical calculations of jamming density and
glass transition density in �nite dimensions have not been veri�ed before in numeri-
cal simulations. We �nd near quantitative agreement of our estimated φ0 values with
the theoretical results [94] (albeit with a steeper d dependence for the φ0 we obtain),
whereas theφJ values we obtain are underestimated in [94]. However subsequent the-
oretical analysis [179] shows that φJ values computed in [94] can not produce correct
values and our numerical results con�rm that observation. Our results thus provide
a useful benchmark for future e�orts in developing quantitative theories of the glass
and jamming transitions.
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Chapter 4
Heterogeneity and fragility of glass
forming liquids in Higher Dimensions

4.1 Introduction

When a glass-forming liquid is cooled to low temperatures, its dynamics becomes
heterogeneous; spatially correlated clusters of particles move faster or slower than
the average. The growth of dynamic heterogeneity (DH) and its associated dynamic
length scales with the lowering of temperature have been considered a hallmark of
relaxation dynamics in glass forming liquids [42, 43, 48, 138, 180–183]. The role of
such heterogeneities in the complex relaxation dynamics in glass forming liquids, and
growing length scales governing these relaxation processes have been widely investi-
gated [47, 184]. An extensively studied phenomenon, which has been analysed in the
context of dynamical heterogeneity is the breakdown of the Stokes-Einstein relation
(SER) DηT = constant (or equivalently,Dτα = constant) whereD is the di�usion coef-
�cient, η is the shear viscosity, T is the temperature, and τα is the structural relaxation
time [59, 64, 66, 68, 70, 185–198]. Although the origin of such a breakdown in hopping
dynamics have also been investigated [195, 197, 198], signi�cant evidence links the
breakdown of the Stokes-Einstein relation with length scales over which dynamics is
heterogeneous [195,198,199]. It has also been suggested that fragility, which quanti�es
the degree of non-Arrhenius increase of relaxation times upon lowering temperature,
is also related to heterogeneous dynamics. Böhmer et al. [50] investigated the corre-
lation between the fragility and heterogeneity of dynamics, by compiling data for a
large number of glass formers. Fragility was quanti�ed by the fragility indexmwhich
measures the steepness of rise of relaxation times at the glass transition, in an An-
gell plot [200], wherein the logarithm of the relaxation time is plotted against inverse
temperature scaled to the glass transition temperature (Tg /T ). The KWW exponent,
β, which characterises stretched exponential relaxation of density �uctuations, was

75
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considered as a measure of the heterogeneity of dynamics. Large values of fragility
index were found to correspond to small values of β. Such a correlation between het-
erogeneity and fragility have been probed in several works (and also contested [201]),
typically through consideration of the relationship between con�gurational entropy,
fragility and cooperative length scales of dynamics [202–205]. Some of the issues in-
volved have been addressed within the framework of the random �rst order transition
(RFOT) theory [61, 153, 154], extensions of mode coupling theory [206], recent exact
results in the limit of in�nite spatial dimensions [92] and corresponding investigations
of dynamics in variable dimensions [207]. In particular, analyses of static and dynamic
behaviour that may be expected in �nite dimensions have led to identi�cation of an
upper critical dimension of du = 8 above which mean-�eld theories provide the cor-
rect description [208, 209]. Within the framework of the generalised entropy theory
as well [162], d = 8 arises as a special dimension, above which an entropy vanish-
ing transition does not exist at �nite temperature. In this context, it is of interest to
understand how aspects of heterogeneous dynamics, the breakdown of the SER, and
fragility depend on spatial dimensionality. Indeed, some studies have addressed such
dependence [64,70,160]. In particular, Charbonneau et al. [70] considered hard sphere
�uids up to 10 dimensions and showed evidence that the exponent ω in the relation
D ∼ τ−1+ω

α that quanti�es the break down of the SER vanishes within numerical un-
certainty above spatial dimension d = 8. However, this remains the only study that
has explored the dimension dependence above d = 4. A similar study, for a model
system with an interaction potential other than hard core interaction, which permits
the study of both temperature and density dependent behaviour, is therefore desirable.
We undertake such a study in the present work.
We investigate a model glass forming liquid consisting of a binary mixture of spheres
interacting with a harmonic potential, in 3−8 spatial dimensions. In the zero-temperature
limit, this model has the limiting behaviour of the hard sphere model whose behaviour
is controlled by density alone, while it exhibits behaviour of dense glass formers at high
densities, at �nite temperature. We perform computer simulations and investigate var-
ious measures of dynamical heterogeneity (DH) such as the non-Gaussian parameter,
α2(t), the dynamical susceptibility, χ4 as a function of time for a wide range of temper-
atures. We compute the fragilities from the temperature dependence of the relaxation
times, and further investigate the breakdown of the SER from a comparison of dif-
fusion coe�cients and relaxation times. We �nd a consistent variation of behaviour
as the spatial dimension increases, wherein the fragility, extent of heterogeneity, and
the degree of breakdown of the SER decrease with increasing spatial dimensionality,
consistent with the approach to mean-�eld behaviour at d = 8. We brie�y discuss
the dependence on density of fragility and resolve an apparent inconsistency with
previously published results which suggested an increase of fragility with increasing
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dimension while the degree of heterogeneity decreased.

4.2 Simulations details

We investigate a 50 : 50 binary mixture of particles that interact with a harmonic
potential given by [169, 172]. The details of the model are given in chapter 2.

We present results for 3d - 8d �xing the density at 1.3φJ , whereφJ is the jamming
density. We have used φJ=0.645(3d), 0.467(4d), 0.319(5d), 0.209(6d), 0.133(7d),
0.0821(8d), using estimates by Charbonneau et al. [156]. Our estimates ofφJ are close
to the values used here to a high degree of accuracy. Thus, the volume fraction we
use in our simulations are as follows: 0.8384 (3d), 0.6071 (4d), 0.4147 (5d), 0.2717

(6d),0.1729 (7d), 0.1067 (8d). The number density, ρ is related to the volume fraction
φ for the binary mixture in the following way

φ = ρ2−d
πd/2

Γ (1 + d
2 )

((cAσ
d
AA + cBσ

d
BB) (4.1)

where ρ = N/V , with N being the number of particles, and V the volume, and the
fractions cA = cB = 1/2. The corresponding number densities are following: 0.8556

(3d),0.8132 (4d), 0.7904 (5d), 0.7891 (6d), 0.8114 (7d), 0.8554 (8d). The system size
is �xed at 5000 particles, which is large enough that the linear dimension L is > 2σBB
in all dimensions. Molecular dynamics (MD) simulations are performed in a cubic box
with periodic boundary conditions in the constant number, volume, and temperature
(NVT) ensemble. The integration time step was �xed at dt = 0.01. Temperatures are
kept constant using the Brown and Clarke [140] algorithm. The data, presented here,
have run lengths of around 100τ (where τ is the relaxation time, de�ned below). We
present results that are averaged over �ve independent samples. For results over a
range of densities which we discuss in section IV, results are from 1-2 independent
samples at densities other than those mentioned above.

4.3 Results

4.3.1 Fragility in di�erent dimensions

We quantify the microscopic dynamics by computing the overlap function (for the B
particles) We quantify the microscopic dynamics by computing the overlap function,
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which is de�ned (for the B particles) by:

q(t) =
1
NB

NB∑
i

w(|ri(t0)− ri(t + t0)|) where w(x) =

1.0 if x ≤ a

0 otherwise.

We choose the parameter values a = 0.48,0.50,0.55,0.60,0.75 ,and 0.80 for 3d, 4d,
5d, 6d, 7d, and 8d, respectively. (details are given in chapter 2 ) We calculate the relax-
ation times by considering the overlap function for theB particles. The relaxation time,
τα is computed as the time at which 〈q(t)〉 = 1/e, where 〈· · · 〉 refers to an ensemble
average (we average over initial times and over samples). We compute the relaxation
times for a wide range of temperatures in each dimension. The relaxation times exhibit
super-Arrhenius temperature dependence, the strength of which is quanti�ed by the
kinetic fragility. Here, we estimate the kinetic fragility from Vogel-Fulcher-Tammann
(VFT) �ts to the temperature dependence of the α relaxation times:

τα = τ0 exp

 1

KVFT
(

T
TVFT
− 1

) , (4.2)

whereKVFT is the kinetic fragility of the system and TVFT is the temperature at which
the relaxation time diverges by extrapolation. In Fig. 4.1, we show relaxation time as a
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Figure 4.1: Relaxation time as a function of temperature for various dimensions. Left:
Points (dot) represent simulation data along with �ts (lines) to the VFT form. Right:
Angell plot, of logarithm of the relaxation times, plotted against T /Tg where the glass
transition temperature Tg is chosen to be the temperature at which the relaxation time
reaches the value 106. The fragility is highest for 3d, with the fragility decreasing with
increasing spatial dimensionality.

function of temperature in a semi-log plot for each dimension, against temperature, as
well as against scaled inverse temperature Tg /T , in an Angell plot. The glass transition
temperature Tg is de�ned as the temperature where relaxation time becomes 106. The
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pre-factor in Eq. 4.2, τ0 ≈ 10 in all dimensions, and thus its inclusion or otherwise in
de�ning Tg does not alter the observed behavior. From the Angell plot, it is apparent
that the liquid becomes more fragile as the spatial dimension increases. The kinetic
fragility KVFT and the divergence temperature TVFT are plotted as a function of di-
mension in Fig. 4.2, which shows that both KVFT and TVFT are decreasing functions
of spatial dimensionality.
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Figure 4.2: Left: Kinetic fragility is plotted as a function of spatial dimensionality at
�xed density φ = 1.3φJ , which decreases with increasing dimensionality. Right: The
divergence temperature TVFT is plotted as a function of spatial dimensionality at �xed
density φ = 1.3φJ which also decreases with increasing dimensionality.

4.3.2 Heterogeneity in dynamics

We next investigate the heterogeneity in dynamics by two di�erent measures of het-
erogeneity: 1. The dynamical susceptibility, χ4, and 2. The non-Gaussian parameter,
α2.

4.3.2.1 Dynamical susceptibility, χ4

Dynamical susceptibility, χ4, which measures the �uctuations in the overlap function
q(t), is de�ned by:

χ4(t) =NB
[
〈q(t)2〉 − 〈q(t)〉2

]
(4.3)

where the average is over initial con�gurations and the independent samples.
As it has been demonstrated extensively, the time dependence of χ4(t) is non-

monotonic, and exhibits a peak value, (χpeak4 ), at a time that is proportional to the alpha
relaxation time. In Fig. 4.3, we show χ4(t) against time for di�erent temperatures in
each dimension. The peak value of χpeak4 as well as the time at which it occurs, tmaxχ4

,
increase strongly upon a decrease in temperature, indicating that the heterogeneity of
dynamics increases with a decrease in temperature, and is maximum at a time scale
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Figure 4.3: The dynamical susceptibility χ4(t) is plotted as a function of time for dif-
ferent temperatures for spatial dimensions 3− 8.
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that increases in proportion to τα . To compare the degree of heterogeneity for di�erent
spatial dimensions, we show, in Fig. 4.4 (Left panel), χpeak4 as a function of τα for each
dimension. For a given τα , χpeak4 decreases with increasing spatial dimension implying
that heterogeneity decreases with increasing spatial dimensionality. We also observe
that χpeak4 shows a power law dependence on τα at higher temperatures as χpeak4 ∼
τzα , with z being the power-law exponent. Deviations from power law behaviour is
mostly observed at lower temperatures. This behaviour is consistent with previous
observations in three dimensions [46,183,210,211], including polymeric glass formers
[212] and exponent z is found to be close to 0.62 for binary hard sphere �uids [183,
210] whereas z = 0.51 has recently been found for a model liquid that aims to tune
the degree of mean �eld character [213]. Our estimate is on the lower side of these
values, but close to that reported in [213]. Since the power law regime is limited in
extent, there is room for error in the exact determination of the exponent. Remarkably,
however, we �nd that the exponent of the power law, z, is the same in all dimensions
for our studied model, as evidenced by the data collapse, regardless of the precise value.
The expectation of a power law dependence arises, for example, from inhomogeneous
mode coupling theory [206], and the deviations from the power law are understood to
be a consequence of the role played by activated processes at low temperatures. Thus,
the observation of a common exponent describing the power law dependence of χpeak4

on τα should perhaps be seen as mean-�eld behaviour that does not depend on spatial
dimensions and thus not surprising. Nevertheless, to our knowledge, such a universal
behaviour has not previously been reported across the range of spatial dimensions that
we investigate.

4.3.2.2 Non-Gaussian parameter, α2(t)

Next, we investigate another measure of heterogeneity, the non-Gaussian parame-
ter, α2(t), for di�erent dimensions. As previously discussed in detail [204, 212, 214],
α2(t) and χ4 correspond to distinct aspects of heterogeneity, associated with corre-
lated clusters of mobile, and immobile, particles respectively. The non-Gaussian pa-
rameter, α2(t) measures the deviation of the van Hove distribution of displacements
of the particle in time t from Gaussian form, expected for spatially homogeneous dy-
namics, and is given by

α2(t) = Cd
〈r4(t)〉
〈r2(t)〉2

− 1 (4.4)

〈r2n〉 =
1
N
〈(~ri(t)−~ri(0))2n〉 (4.5)
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Figure 4.5: The non-Gaussian parameter α2 is plotted against time for di�erent tem-
peratures and spatial dimensions 3− 8.
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where Cd is a spatial dimension dependent coe�cient to ensure that α2(t) = 0 when
the distribution of displacements is a Gaussian. Similar to χ4, α2 also shows non-
monotonic behaviour with respect to time. However, the characteristic time t∗ at
which α2(t) is maximum is smaller than τα , and has been demonstrated to be pro-
portional to a time scale determined by the di�usion coe�cient, (D/T )−1 [204]. In
Fig. 4.5, we show α2(t) against time for di�erent temperatures and spatial dimensions
3 − 8. We see that αpeak2 increases with a decrease in temperature for all spatial di-
mensions. Similarly to χ4, we report αpeak2 against τα for spatial dimension 3 − 8 in
Fig. 4.6 (Left panel). We see that for a given τα , αpeak2 also decreases with increasing
dimensionality. This again implies that heterogeneity decreases with increasing spa-
tial dimensionality. Similar to χpeak4 , αpeak2 also displays a power law dependence on
τα at higher dimensions, with deviations at lower temperatures. The inset of Fig. 4.6
(Left panel) demonstrates that for αpeak2 , the exponent of the power law is 0.43 and is
a good description of the data for all dimensions. In [53] the behaviour of αpeak2 vs. τα
was �tted to two power laws, with exponents 0.8 (high temperatures) and 0.3 (low
temperatures). While we �nd the exponent to be 0.43 convincingly over two decades
of (high to moderate temperature) relaxation times, we do �nd that an exponent of 0.3

is a good description of low temperature data. In Fig. 4.6 (Right panel), we show the
time t∗ against (D/T )−1, where D is di�usivity, for di�erent spatial dimensions, con-
�rming the validity of the relation t∗ ∼ (D/T )−1 beyond three dimensions [204].The
observed relationship between t∗ and D/T has been found to be valid in many di�er-
ent glass formers as well as other materials [64,204,215,216], and our results show that
it is valid in di�erent dimensions as well. We note, however, that an exponent other
than −1 has been reported recently for a metallic glass former [217].

4.3.3 The Breakdown of the Stokes-Einstein Relation

A much studied phenomenon associated with glassy behavoiur is the violation or
breakdown of the Stokes-Einstein relation (SER), which relates the translational di�u-
sion coe�cient (D) of a Brownian particle to the shear viscosity η of the surrounding
liquid at a temperature T: D = mkBT /cπRη, where m is the mass and R is the ra-
dius of the particle, T is the temperature of the liquid, and the factor c is a constant
which depends on the boundary condition at the surface of the Brownian particle. It
is been observed in several investigations that the SER is also satis�ed when one con-
siders the self-di�usion of particles in a liquid at relatively high temperatures (The
caveats and the extent to which such a statement is valid have also been discussed,
e. g. [70]). However, as temperature is decreased towards the glass transition, the
SER is observed to break down. As mentioned in the introduction, violations of the
SER, which can be expressed as Dη

T = constant, have been investigated considering
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τα in place of η
T , expressing the SER as Dτα = constant [64, 70, 198]. This equiva-

lence has been validated by computing the viscosity η and comparing with τα , at the
wave vector corresponding to the peak of the structure factor. Further, several works
have considered relaxation behavior as a function of the wave vector k [64,70,193,198],
either through the k dependent viscosity [193] or relaxation times computed as a func-
tion of k. In [198], it was shown that for a given k, violation of the SER arise when
k−1 falls below a length scale characterising dynamical heterogeneity. In the preent
work, we do not investigate the k dependence of the violation of SER, but consider
only the τα de�ned above. The breakdown of SER is characterized by an exponent ω
that describes a scalingD ∼ τ−1+ω

α . As mentioned above, a limited number of previous
studies [64, 70, 160] have considered SER and the breakdown thereof as a function of
spatial dimension. Charbonneau et al. [70] have performed a hydrodynamic analysis
of SER for varying spatial dimension, as well as numerical investigations up to d = 10

for hard sphere liquids. Here, we examine validity or breakdown of the SER employ-
ing the self di�usion coe�cientsD and the τα described above, as a function of spatial
dimensionality.
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Figure 4.7: Dτα is plotted against τα in a log-log plot. The low temperature data is
�tted with the form: Dτα ∼ τωα . From the �t, we obtain ω for each spatial dimension.

In Fig. 4.7, we show the di�usivity,D multiplied by the relaxation time, τα , against
τα in log-log plot. We observe thatDτα is roughly constant for small τα (high temper-
ature), at least for 3d,4d and 5d, but display power law behaviour with a �nite ω for
large τα . We obtain the exponent ω by power-law �ts of the form Dτα ∼ τωα for the
data in the low temperature regime. In Fig. 4.9 (Left panel), we show ω as a function
of spatial dimension. We �nd that ω is large for 3d, and decreases with increasing
spatial dimensionality following a relation, ω ∼ (d − dc). We see ω becomes zero by
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extrapolation of the linear form at d= 8, consistently with the idea that the upper crit-
ical dimension du = 8, and consistently with results for the hard sphere �uid [157].
The numerical values of ω show a deviation from the linear �t for d = 7,8 and do not
vanish for d = 8, as also seen in [157]. With the results available, we cannot further
probe this issue. Improved numerical results and performing simulations at higher di-
mensions than 8 will permit more precise statements in this regard. Next, we compute
the break down temperature for SER relation. Considering Dτα as a function of tem-
perature, one �nds a near constant value at high temperature, and an increase upon
lowering temperature, which indicates the breakdown of SER. Since such a deviation
is continuous, one needs to use a threshold, as has routinely been done in previous
work. We use a threshold of 7.5% of the high temperature value to determine TSEB,
as shown in Fig. 4.8 below. In determining the exponentω, we consider values ofDτα
(plotted against τα) below TSEB.

In Fig. 4.9 (Right panel), we show the breakdown temperature for SER relation,
TSEB, as a function of spatial dimension.

4.3.4 Density Dependence and Comparison with Previous Re-
sults

We next brie�y consider the dependence of the fragility on the density at which the
liquids are studied, and address an apparent inconsistency with previous results. In Fig.
4.10, we show the kinetic fragilityKVFT and the divergence temperature TVFT against
density, scaled with φJ . We note that the kinetic agility KVFT decreases and nearly
vanishes as the density is decreased towardsφJ (Indeed, for higher spatial dimensions,
such vanishing appears to occur for densities higher than φJ , whose signi�cance is
discussed elsewhere), while at any �xed density, the fragility is a decreasing function
of spatial dimensionality, consistently with the results discussed already forφ = 1.3φJ .
Similarly to KVFT , TVFT also decreases as the density is lowered, while being smaller
for higher dimensions at �xed density. Thus, in comparing behaviour as a function of
dimensionality, care must be exercised to compare results at the same scaled densities.

The observed dependence on density and spatial dimensionality helps explain an
apparent inconsistency with results discussed by Sengupta et al. [64]. In [64], simu-
lation results were shown for the Kob-Andersen (KA) binary Lennard-Jones mixture,
and it was observed that liquids in 4d were less heterogeneous than in 3d (consis-
tently with results here), but had larger fragility than in 3d, which is not consistent
with the present observations that the fragility too decreases with increasing spatial
dimensionality.

As noted above, the fragility as well as the heterogeneity depends upon the density
for a given spatial dimension, and thus, to compare results in di�erent dimensions, one
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must consider appropriate densities. For the KA system, we do not have a jamming
density to provide an appropriate scale, and instead, we use the zero temperature limit
of the spinodal density for reference [218]. The spinodal density for the KA system
is ∼ 1.1 for 3d whereas it is ∼ 1.4 for 4d. The simulations in [64] were performed at
higher densities, 1.2 for 3d which is 1.09 times the spinodal density whereas for 4d
the density of 1.6 was employed, which is 1.14 times the spinodal density. Thus, the
scaled density in 4d is higher than the scaled density in 3d, which leads to a higher
fragility in the higher dimension. To illustrate this possibility, we consider for the soft
sphere system a lower density of 1.14φJ in 3d, in addition to 1.3φJ , and compare with
results in 4d at 1.3φJ .

In Fig. 4.11 (Left panel), we show an Angell plot for three di�erent cases: 1.14φJ
and 1.30φJ at 3d and 1.30φJ at 4d. We note that the 3d system at 1.14φJ has a lower
fragility (as con�rmed by calculating KVFT ) than the 4d system at 1.3φJ . Plotting
χ
peak
4 against τα for the same three cases (Right panel, Fig. 4.11), we see that the 4d

system has the lowest heterogeneity. Thus, comparing the 3d system at 1.14φJ with
the 4d system at 1.3φJ would lead to the conclusion that the heterogeneity in 3d is
higher than in 4d while the fragility is higher in 4d, whereas comparison at the same
scaled density would lead to the conclusion that both the fragility and heterogeneity
would decrease with increasing spatial dimensionality. We therefore conclude that the
results in [64] can be understood consistently with our present results by noting the
choice of densities in [64].
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4.3.5 MCT exponent and temperature at higher dimensions

In Figure. 4.12(Left panel), we show the MCT �t of the relaxation time against temper-
ature. The results show that indeed a regime exists in each dimension where relaxation
times obey a power law as would be expected by MCT, but with these results, we can-
not comment on the range of validity vs. dimensionality. We also show the exponent
γc and the transition temperature, Tc as a function of the spatial dimension in Fig.
4.12(Right panel).
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4.4 Summary and Conclusions

In conclusion, we have investigated the relationship between fragility, heterogene-
ity and the breakdown of the Stokes-Einstein relation in di�erent spatial dimensions.
Our results show that at �xed density, the fragility, the degree of heterogeneity and
the degree of violation of the Stokes-Einstein relation decrease with increasing spatial
dimensionality. The heterogeneity measures χpeak4 and αpeak2 depend on the relaxation
time τα at high and moderate temperatures in a power law fashion, with power law
exponents that do not depend on spatial dimensionality. The exponent ω that char-
acterises the breakdown of the Stokes-Einstein relationship displays a nearly linear
relationship with spatial dimensions that corresponds to a vanishing of ω at d = 8,
consistently with the idea that d = 8 represents the upper critical dimension. The ω
values in d = 7,8 display small deviations from such linear behaviour with d, which
requires further investigation including studies in dimensions above 8. We show that
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fragilities decrease with density at all spatial dimensions, approaching Arrhenius be-
haviour close to the jamming density. The observed density dependence helps ra-
tionalise earlier results that suggested that fragility and heterogeneity may vary in
opposite ways as a function of spatial dimensionality.



Chapter 5
Power law relationship between
di�usivities and Adam-Gibbs relation in
higher dimensions

5.1 Introduction

Understanding the rapid increase of relaxation time of the glass-forming liquids when
it is cooled below the melting temperature is one of the important themes in the study
of glasses [42, 43]. Di�erent theories have attempted to �nd a possible connection be-
tween thermodynamics and dynamics to understand the underlying reason for this
dynamical behaviour. The celebrated Adam-Gibbs relation [79, 80] hypothesizes such
a connection between a dynamic and a thermodynamics quantity of the system. It
suggests that the increase in relaxation time is associated with the decrease in con-
�gurational entropy, a measure of the number of independent con�gurations that a
system can sample in the con�guration space at a given density and temperature. Ac-
cording to this theory:

X = X0 exp
(
AX
T Sc

)
(5.1)

Where X is a characteristic relaxation time scale such as α relaxation time, τα or in-
verse di�usivity, D−1, X0 is a pre-factor, AX is a constant and Sc is the con�gurational
entropy. Even though AG relation is purely phenomenological, it is mostly obeyed
in numerical simulations as well as in various experiments [39, 84, 219–224] except
some violations at very low temperatures reported recently [225, 226]. Further, this
phenomenological theory has been rationalized by the random �rst order transition
(RFOT) theory [61,153,154] considering activated relaxation dynamics due to growing
length scales [45–47, 227–229] associated with the glass transition. Di�erent dynam-
ical quantities like relaxation time (τα) or di�usivity (D) or viscosity (η) are related

91



92 Chapter 5.

by the Stokes-Einstein Relation (SER) that states Dη/T = constant, or equivalently
Dτ = constant. Even though Adam-Gibbs relation describes a generalized form of the
dynamic quantities like structural relation or di�usivity, we have shown in the previ-
ous chapter that a hallmark property of glass-forming liquids is the breakdown of the
Stokes-Einstein relation (SER). It is shown that SER holds at a higher temperature, but
as the temperature is decreased below a characteristic temperature, the SER breaks
down. [59, 64, 66, 68, 70, 185–192, 194–198]. Thus, the di�usivity, D and the relaxation
time, τα is no longer inversely proportional as the glass transition is approached; it
obeys a fractional power law: D τ−1+ω

α . Naturally, the question arises if AG relation
holds equally well for all such dynamic quantities. In a recent work, this question has
been addressed, and it has been shown that the di�usivity obeys AG relation for a
more extensive range of temperature [198] in comparison to the structural relaxation
time. Again, as most of the glass formers are binary or multi-component, it has been
argued in previous work that the AG relation to be valid, the di�usivity of di�erent
components has to follow power law dependence [230]. Though Parmer et al. [230]
have shown that the power law behaviour between di�usivity of di�erent components
holds for a large number of numerical simulations as well as experiments, whether it
also holds at higher spatial dimensions or not are yet to be explored. Parmar et. al.
have shown a single power law relation between di�usivity of di�erent components
is necessary for the AG relation to be valid or violated consistently for the individual
components. The same argument holds for the structural relaxation time also. In this
study, we have investigated the power law relationship between di�usivity and the
structural relaxation time of di�erent components in 3 to 8 spatial dimensions. Hav-
ing checked that, we have examined further the validity of the AG relation across the
spatial dimensions.

5.2 Simulation details

We use sphere assemblies interacting with harmonic potential as a model glass for-
mer [172]. Details of the model have been discussed in chapter 2. We study glasses
in the spatial dimension from 3− 8 at a packing fraction 1.3φJ .(To check density de-
pendence we show results at 1.14φJ also). We have performed MD simulation in an
NVT ensemble of a binary mixture (50:50) of 5000 particles. The integration time step
is dt = 0.01. Temperature is kept constant using Brown and Clarke [140] algorithm.
All the MD trajectories are of length of 100τα where τα is the relaxation time. Results
shown here averaged over 5 independent samples.
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5.3 Results

We quantify the microscopic dynamics by computing the overlap function, which is
de�ned (for the B particles) by:

q(t) =
1
NB

NB∑
i

w(|ri(t0)− ri(t + t0)|) where w(x) =

1.0 if x ≤ a

0 otherwise.

Here a is the cut-o� within which particle positions are treated as indistinguish-
able [211]. We choose a = 0.48,0.50,0.55,0.60,0.75,0.80 for 3d, 4d, 5d, 6d, 7d, 8d
respectively. The details of this choice are discussed in chapter 2. The relaxation time
is estimated as the time at which q(t) = 1/e. The dynamics is also examined by mea-
suring another quantity MSD as follows.

MSD(t) =
1
N

∑
i

〈(ri(t)− ri(0))2〉 (5.2)

limt→∞MSD(t) = 2dDt (d= spatial dimension)
The di�usivity, D is obtained by �tting the MSD at a long time limit. We have com-
puted di�usivity and relaxation time for a wide range of temperatures in each dimen-
sion. As our system is a binary mixture, we compute di�usivity and relaxation time
for both species. We denote di�usivity and relaxation time for small particle, A asDA,
τAα . Similarly,DB, τBα represent the di�usivity and relaxation time of the large particle,
B.

5.3.1 Power law relationship of di�usivity and relaxation time
for di�erent components

In Fig. 5.1 we show MSD for B particle for di�erent dimensions. We can clearly see
the system reaches a di�usive state for all the temperature range we considered. The
di�usivity, D is obtained by �tting the MSD at a long time limit. We have computed
di�usivity for a wide range of temperatures in each dimension. As our system is the
binary mixture, we compute di�usivity for both species.

In Fig. 5.2, we show DB against DA for 3 − 8 spatial dimensions. The vertical
line indicates the temperature at which SER breaks down. The temperature is denoted
as TSEB for each dimension. We have found that at 3d, the di�usivity of di�erent
components shows a fractional power law dependence across the temperature, both
below and above the TSEB temperature. However, starting from 4d, at higher spatial
dimensions, DA and DB does not follow any single power law behaviour; rather, two
di�erent power law behaviour exists at two di�erent temperature regime. At the lower
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Figure 5.1: MSD computed for considering B particle again is plotted against time for
spatial dimension 3− 8
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temperature regime, exponents are larger compared to the exponents of the higher
temperature regime.
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Figure 5.2: DB is plotted against DA for 3 − 8 spatial dimensions at a �xed density,
1.3φJ . At 3d, it shows a single power law. However, for all other dimensions, we
observe two di�erent power law regime between DB and DA. The exponents are dif-
ferent in di�erent dimensions. The SER break down temperature is also shown as a
blue dotted vertical line in each dimension.
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We have already discussed, SER does not hold for glass-forming liquids. As a re-
sult, di�usivity and relaxation time is no longer inversely proportional at low tempera-
ture. Hence we investigated the power law relationship for relaxation time of di�erent
components as well. In Fig. 5.3, we show τBα as a function of τAα for a wide range of
temperatures (at a �xed density, 1.3φJ ) for 3−8 spatial dimension. This observation is
similar to what we have found for di�usivity. At 3d, τBα and τAα shows a single power
law. However, for dimensions higher than three, the relationship between τAα and τBα
can not be explained with a single power law For the whole temperature regime. Two
di�erent power law regimes are found. The exponents in two di�erent regimes are
di�erent. In, Fig. 5.4, we show the exponents for di�erent dimensions. The exponents
for power law of τα are denoted as αhighTτ and αlowTτ for high temperature and low
temperature respectively. Similarly αhighTD and αlowTD represent the exponents of dif-
fusivity for high temperatures and low temperature respectively. We found that the
exponents αhighTτ and αhighTD both increases with increasing dimensions. However
their values at a �xed dimension are very similar. Similar observations are found for
αlowTτ and αlowTD . In each dimension, αlowTτ or αlowTD is always higher than the αhighTτ

or αhighTD . Next, we attempted to understand the e�ect of density in the existence
of di�erent power law relations at di�erent temperature regimes among the di�usiv-
ity or the relaxation time of the di�erent components. Hence we have investigated
the power law behaviour of di�usivity and relaxation time of di�erent components
at a comparatively lower density, 1.14φJ . In Fig. 5.5 we show DB against DA and in
Fig.5.6, we show τBα as a function of τAα for a wide range of temperatures at 1.14φJ .
At this density, we have similar observation as in higher density. At 3d, we observe
single power law for both di�usivity and relaxation time and at 4 − 8 dimensions, it
shows existence of two di�erent power law. In Fig. 5.7, we summarize the di�erent
exponents at density 1.14φJ .
At this stage, we are not able to give any explanations for why there exists a single
power law for di�usivity/relaxation time of di�erent components at dimensions three,
and it violates with dimensions larger than three. However, we focus on the conse-
quences of this violation and investigate the AG relation for di�erent dimensions.
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Figure 5.3: τBα is plotted against τAα for 3−8 spatial dimensions at a �xed density, 1.3φJ .
At 3d, it shows a single power law. However, for all other dimensions, we observe
two di�erent power law regime between τBα and τAα . The exponents are di�erent in
di�erent dimensions. The SER break down temperature is shown as a blue dotted
vertical line in each dimension.
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Figure 5.4: The exponents of power law at high temperatures are termed as αhighTτ

and αhighTD for τα and di�usivity respectively. Similarly The exponents of power law
at low temperatures are termed as αlowTtau and αlowTD for τα and di�usivity respectively.
All the exponents at di�erent dimensions are plotted here. We see exponents of both
kinds are increasing as we increase the dimension. Exponents at low temperatures are
always higher compared to the exponents at high temperatures in each dimension.

5.3.2 AG relation in di�erent dimensions

The previous result suggests that the di�usivity of di�erent components shows a sin-
gle power law for the system where AG relation holds. In this study, we �nd that the
di�usivity of di�erent components does not follow a single power law for the whole
range of temperature under investigation for four and the dimensions above. Does
this mean that at higher spatial dimension, AG relation does not hold? To answer this
question, we have investigated the AG relation for 3− 8 spatial dimensions.

We have computed the con�gurational entropy, Sc for di�erent temperatures for
3 − 8 spatial dimensions. Sc is estimated as the di�erence between the total entropy
and the vibrational entropy, Sc = Stot−Svib. We have discussed in detail the procedure
to compute the total entropy, Stot in chapter 2. Total entropy is calculated using ther-
modynamic integration [81] by constructing a reversible path from a reference state,
the ideal gas state, to the target state. The vibrational entropy is calculated using the
harmonic approximation of a basin [81, 144, 145] discussed in detail in chapter 2. We
note here harmonic approximation to compute basin entropy is extensively used for
3d glass formers. As a �rst step, we have followed the same procedure to compute
vibrational entropy at higher dimensions. However, we did not validate how well this
approximation can be extended for the higher dimensions. In Fig. 5.8 -5.13, we have
shown the Stot , Svib and Sc as a function of temperature for the spatial dimensions,
3 − 8d. We have observed that Stot , Svib and Sc decreases with decreasing tempera-
ture. Extrapolation of the simulated data points shows that Sc goes to zero at a �nite
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Figure 5.5: DB is plotted against DAα for 3 − 8 spatial dimensions at �xed density,
1.14φJ . At 3d. It shows a single power law. However, for all other dimensions, we
observe two di�erent power law regime between DB and DA. The exponents are dif-
ferent in di�erent dimensions. The SER break down temperature is also shown as a
blue dotted vertical line in each dimension.
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Figure 5.6: τBα is plotted against τAα for 3 − 8 spatial dimensions at a �xed density,
1.14φJ . At 3d, it shows a single power law. However, for all other dimensions, we
observe two di�erent power law regime between τBα and τAα . The exponents are dif-
ferent in di�erent dimensions. The SER break down temperature is shown as a blue
dotted vertical line in each dimension.
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1.14φJ ). We see both kinds of exponents are increasing as we increase the dimen-
sion. Exponents at low temperatures are always higher compared to the exponents at
high temperatures in each dimension.

temperature. This suggests a �nite temperature divergence of relaxation time.
In Fig. 5.14-5.19, we have shown the AG relation for spatial dimensions 3− 8. We

show (DB)−1 and τBα against the inverse of the T Sc in the semi-log scale. In 3d, we
have seen that AG relation hold for both di�usivity and relaxation time. As a result of
which we see a straight line when (DB)−1 or τBα is plotted against 1/T Sc. This result
is consistent with the previous studies. However, our initial results suggest that at
dimension 4 or larger, the AG relation is not valid either for relaxation time or for
di�usivity. Thus, our observations are consistent with the previous result of Parmer
et al. [230] which shows AG relation to be valid; there should be a power law between
di�usivity of di�erent components. We also observed that when there exists a power
law between the di�usivity of di�erent components (which is the case at 3d), the AG
relation also holds for the whole temperature range; otherwise, the AG relation does
not hold (which is the case for dimensions larger than 3). However, based on this
initial result, we can not make any decisive comments on whether this will always be
the case or there will be a di�erent explanation to understand these results.
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Figure 5.14: Left: (DB)−1 is plotted as function of inverse of T Sc in a semi-log plot.
Right: τBα is plotted as function of inverse of T Sc in a semi-log plot. AG relation is
valid at 3d both for di�usivity as well as for relaxation times.
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Figure 5.15: Left: (DB)−1 is plotted as function of inverse of T Sc in a semi-log plot.
Right: τBα is plotted as function of inverse of T Sc in a semi-log plot. We see that AG
relation is not valid at 4d for this system.
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Figure 5.16: Left: (DB)−1 is plotted as function of inverse of T Sc in a semi-log plot.
Right: τBα is plotted as function of inverse of T Sc in a semi-log plot. We see that AG
relation is not valid at 5d for this system.
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Figure 5.17: Left: (DB)−1 is plotted as function of inverse of T Sc in a semi-log plot.
Right: τBα is plotted as function of inverse of T Sc in a semi-log plot. We see that AG
relation is not valid at 6d for this system.
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Figure 5.18: Left: (DB)−1 is plotted as function of inverse of T Sc in a semi-log plot.
Right: τBα is plotted as function of inverse of T Sc in a semi-log plot. We see that AG
relation is not valid at 7d for this system.
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Figure 5.19: Left: (DB)−1 is plotted as function of inverse of T Sc in a semi-log plot.
Right: τBα is plotted as function of inverse of T Sc in a semi-log plot. We see that AG
relation is not valid at 8d for this system.
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5.4 Discussion

In this study, we have investigated the relation of di�usivity or relaxation time be-
tween di�erent components. We have observed that at 3d it shows a single power
law relation. However, at 4d or higher spatial dimensions, two di�erent power law
regimes are observed with di�erent exponents for di�erent temperature regions. The
exponents at a higher temperature regime are always smaller than the exponents at
a lower temperature regime for all the dimensions. Both the exponents (high tem-
perature and low-temperature regime) increases with increasing dimensions. Similar
observations are found at a lower density, suggesting the density does not play any
role in the emergence of the di�erent power law regimes. We have also investigated
the Adam-Gibbs relation for spatial dimension 3− 8. We found AG relation holds for
both di�usivity and relaxation time at 3 dimension for the whole temperature range
we have studied. However, our initial results suggest that at 4d or above, AG relation
does not hold for either di�usivity or relaxation time. Though this observation con-
�rms the previous result of Parmar et. al. [230] that di�usivity of di�erent components
should be related by a single power-law for the AG relation to be valid, there are other
checks that must be done before reaching any de�nite conclusion.
We have computed vibrational entropy using harmonic approximation, which needs
to be justi�ed to reach any de�nite conclusions regarding the validity of AG relation.
As the recent results by Das et. al. [231] show AG relation at very low temperature
does not hold when vibrational entropy is calculated considering only the harmonic
part. However, after adding the anharmonic contribution, they can show AG relation
is valid for the entire range of temperature. In the future, we would like to compute
vibrational entropy employing di�erent methods and check whether this initial obser-
vation of AG relation not being valid at dimensions larger than three is correct or not.



Chapter 6
Memory formation in cyclically
deformed amorphous solids and sphere
assemblies

1

6.1 Introduction

Retention of memory of past history arises ubiquitously in describing the properties
of condensed matter, ranging from near equilibrium conditions to far from equilib-
rium conditions, including in the presence of external driving. Simple examples may
merely involve a dependence on history that breaks a symmetry or leads a system to
reside in a metastable state. Indeed such history dependence forms the basis of con-
ventional memory devices, such as magnetic or phase change memory devices. Other
popular memory devices, such as shape memory materials, rely on the presence of
phase transformations, but also on the ability of a material to reside in one among a
large number of possible structures, in order to accommodate externally applied de-
formation. The presence of multiple distinct internal structures or states in which a
material can exist for long times is a generic condition for the presence of memory
e�ects, seen particularly in systems that exhibit some form of disorder. The range of
examples is vast, and includes structural glasses and spin glasses , magnetic systems
with disorder that exhibit return point memory, and charge density waves systems
that exhibit return point memory and pulse duration memory, crumpled thin sheets
and elastic foams , systems exhibiting echoes, sheared colloidal suspensions, glasses
and related model systems, and shaken granular systems, to name a few examples.

1chapter is based on publication in Eur. Phys. J. E (2018) 41: 105
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This list of largely condensed matter examples does not include the large array of bi-
ological contexts in which memory formation is important and interesting, such as
neuronal, genetic, epigenetic, immunological etc. memories, but some approaches to
modeling such memories have been developed with input from theories of disordered
spin models, and in turn, such approaches inform some recent work on self assembly
and design of functional materials.

In this chapter, we address memory e�ects in two broadly related systems, namely
athermally sheared glasses and non-Brownian colloidal suspensions. Non-Brownian
suspensions, when subjected to large amplitude oscillatory shear show a transition
from an absorbing state at low amplitudes of shear (wherein, particles cease to move
when observed stroboscopically, i. e. at the end of each cycle, after a transient) to a
di�using state at large amplitudes. The threshold or critical amplitude γc displays fea-
tures akin to a continuous phase transition, with diverging time scales to reach steady
states, and a continuous rise of the fraction of active particles (de�ned as particles that
move during a cycle, which serves as an order parameter). These features are realised
through a simple model in which pairs of particles that overlap when subjected to
shear deformation are given random displacements or kicks after they are returned to
their undeformed positions, and the process is repeated for each cycle. Memory e�ects
were studied in this model by Keim et al. After a number of cycles of shear deforma-
tion with a �xed amplitude γ1 < γc, the system reaches an absorbing state. When this
training process of repeatedly shearing by γ1 is complete (i. e. when particles cease to
move), a shear cycle with any γ < γ1 results in no rearrangements of particles since a
larger amplitude shear includes smaller amplitudes within its cycle. On the other hand,
a deformation by an amplitude bigger than γ1 will result in particle rearrangements.
As a result, this procedure encodes a memory, which can be read by performing shear
deformation cycles with increasing amplitude and measuring the fraction of particles
which are displaced as a function of amplitude. The fraction of particles that move
is zero below the training amplitude, and becomes �nite for amplitudes beyond γ1.
When the training phase involves cycles of more than one amplitude, the system can
encode multiple memories transiently, but when the number of cycles increases and
the system reaches a steady state, memory of all but the highest amplitude are lost.
Interestingly, addition of noise during the training cycles induces the memories of mul-
tiple training amplitudes to be retained. Subjecting the system to deformation by an
amplitude larger than the largest training erases the memories, but gradually. These
features of memory have also been realised experimentally in sheared non-Brownian
suspensions.

Cyclically sheared amorphous solids (glasses) under athermal conditions reveal a
transition, associated with yielding behaviour, that bears resemblance to the absorb-
ing to di�usive transition in athermal suspensions. At amplitudes of shearing below
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a threshold value, the model amorphous solids studied computationally reach strobo-
scopically invariant states, whereas they reach di�usive states above the threshold.
The threshold strain amplitude is characterised by diverging times to reach the steady
state. Despite such similarity with athermal suspensions, there are signi�cant di�er-
ences, since a sheared amorphous solid never reaches a state where the particles do
not interact with each other. It is thus interesting to consider the nature of memory ef-
fects in amorphous solids, which was addressed in before. It was found that cyclically
deformed amorphous solids also show memory similar to athermal suspensions, but
with key di�erences. In deformed glasses, a read cycle leaves the system unperturbed
only at the training amplitude in the case of single memory, and the lowest amplitude
of shear in the case of multiple memories. The origin of this behaviour was analysed
in the case of single memories. It was shown that in the steady state reached after
training, the system reaches the same con�guration at the end of each cycle, but it
does so at the end of a sequence of transitions between local energy minima, or inher-
ent structures. A read cycle of any amplitude other than the training amplitude will
disrupt this cycle of transitions, and will lead to a measurable signature. In the work
described, the mean squared displacement with respect to the trained con�guration
was used as the measurement.

6.2 Our goal

The work of Fiocco et. al. raises a number of obvious questions which we address in
this chapter. Fiocco et. al. studied memory e�ects in the absorbing state at a single
training amplitude (or a single pair of amplitudes). We study memory e�ects in ab-
sorbing state with many di�erent amplitudes and address how the memory e�ects (e.
g. their strength) depend upon the amplitude of deformation below γc, and we study
whether memory e�ects are possible above γc. Fiocco et. al. used the simplest possible
way to read o� the memory – since the investigation was in silico, copies of the trained
system were made, and each copy was independently subjected to a di�erent, single,
read cycle with a di�erent strain amplitude. We refer to this protocol as a parallel read.
Such a procedure is, of course, not available for experimental investigation, wherein
the read cycles must be applied sequentially. We thus address whether the memory
e�ects seen earlier are reproduced also with a sequential read protocol. We consider
di�erent measurements, namely, measuring mean squared displacements with respect
to the �nal con�guration from the previous read cycle instead of the trained con�gura-
tion, and also the computation of the fraction of active particles. We consider whether
the previous results concerning multiple memories can be extended beyond two mem-
ories, and investigate further whether such memories are persistent or transient. We
also consider the conditions under which memories are erased. Finally, we consider
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structural signatures of training by considering x, z dependent pair correlations, fol-
lowing previous work on athermal suspensions.

As mentioned before, the di�erences in the memory signatures in athermal suspen-
sions and glasses has been rationalised by the presence in the latter case of a non-trivial
energy landscape, and transitions of the trained system between energy minima dur-
ing a cycle of shear, even after reaching a stroboscopically invariant state. In the case
of athermal suspensions and models thereof, in the steady state after full training, the
system undergoes cyclic shear without any of the particles colliding (or interacting)
with the other particles, whereas in a glass, particles always have �nite interactions
among them, leading to a non-trivial energy landscape that is traversed by the system.
In probing this distinction further, we consider a di�erent model of sheared athermal
assemblies of particles, namely, soft sphere assemblies at densities below the jamming
density, that are subjected to cyclic deformation under athermal conditions. In such
systems, in addition to the absorbing state wherein spheres do not interact with each
other any longer and the di�usive or active regime wherein they do, a third, inter-
mediate state has been identi�ed, where the sphere coordinates are stroboscopically
invariant, but spheres undergo collisions during the strain cycling. This state has been
termed loop reversible. We investigate how the memory e�ects may be di�erent in the
loop reversible state as compared to the absorbing state (also referred to as point re-
versible) and the di�usive states. We show that in the loop reversible state, memory
e�ects very similar to those in glasses are observed, thereby indicating that the distinc-
tion between the earlier studied cases of suspensions and glasses lies in the presence or
absence of non-trivial displacements during cyclic deformation, rather than the pres-
ence or absence of a non-trivial landscape.

6.3 Models and de�nitions

We simulate KA-BMLJ samples consisting of N = 4000 particles in three dimensions.
The system, at �xed number density (N/V ,V being the volume) ρ = 1.2 is equilibrated
at reduced temperature T = 0.466 via a constant temperature molecular dynamics
simulation. All the simulations reported here are performed in LAMMPS. We simulate
50 : 50 soft sphere mixtures consisting of 2000 particles, at packing fractionφ = 0.61

(where φ for the binary mixture considered is related to the number density, ρ by φ =
π
6 (xAσ

3
AA+xBσ

3
BB)ρ where xA,xB are the fractions of A,B type of particles, each equal

to 0.5 in this case) in three dimensions. The initial con�gurations are obtained from
Monte Carlo simulations of hard sphere mixtures of the same size ratio, equilibrated at
packing fraction φ = 0.363. The higher density con�gurations are obtained starting
from these initial con�gurations by performing a fast initial compression of the hard
sphere system using a Monte Carlo simulation till the desired density is reached.
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TrainingProtocols: Con�gurations taken from the equilibrated liquid are subjected
to energy minimization using the conjugate-gradient algorithm to obtain sets of local
energy minimum structures which are termed as inherent structures. The inherent
structures are then subjected to cyclic shear deformation using the Athermal Quasi-
Static (AQS) procedure as described in chapter 2. Shear strain γ is incremented by
small strain steps (dγ = 2× 10−4 for the BMLJ system and dγ = 10−3 for soft sphere
system). Samples are subjected to oscillatory shear deformation following the se-
quence: 0→ γ1 → 0→ −γ1 → 0 where γ1 is the amplitude of deformation. This se-
quence is referred as a single "cycle". We apply this sequence repeatedly till they reach
a steady state. This procedure is referred to as training the samples. The BMLJ sys-
tem is trained at di�erent amplitudes, γtrain = 0.02,0.03,0.04,0.05, 0.06, 0.07 (which
are below γc, the yielding strain γc ) and γtrained = 0.09,0.11 (which are above γc).
When a single training amplitude is applied, the results shown are averaged over 30

independent samples. When multiple training strain amplitudes are applied, the data
shown are averaged over 50 independent samples. The soft sphere system is trained
at two di�erent amplitudes γ1 = 0.03, 0.12 (below yielding) and 0.1 and 0.12 above
yielding. For both single memory and multiple memory cases, the data shown here
are averaged over 10 independent samples.

Reading Protocols: After training, in the read procedure we refer to as “Parallel
read", identical copies of the samples are subjected to a single cycle of shear (0 →
γread → 0 → −γread → 0, where γread is the amplitude of deformation of reading)
deformation each, with such amplitudes covering the range of strain amplitudes from 0

to 0.13. We also consider a second read protocol which we refer to as “Sequential read".
In this case, after training, we apply single cycles of shear for an increasing sequence of
amplitudes, using the �nal con�guration after a cycle at one amplitude as the starting
con�guration for the cycle at the next (higher) amplitude. As the measurement that
is used to reveal the presence or absence of memory of the training, we use the mean
squared displacement (MSD) of particles in con�gurations at the end of a full cycle of
deformation, with respect to the reference con�guration. We compute the MSD either
with respect to the �nal con�guration of the training phase (or the initial con�guration
for the read protocol), which we denote by MSD0, or compute the MSD with respect
to the �nal con�guration of the previous read cycle, in which case (for the ith cycle)
we denote it as MSDi−1. MSD0 is de�ned as

MSD0 =
1
N

∑
k

(rk(read)− rk(trained))2 (6.1)
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where rk(trained) is the position of particle k in the trained con�guration, and rk(read)

is the position of particle k after the relevant read cycle. MSDi−1 is de�ned as

MSDi−1 =
1
N

∑
k

(rk(i)− rk(i − 1))2〉 (6.2)

where i and i − 1 are cycle indices.
We also compute the fraction of active particles (factive) to characterize the mem-

ory. We de�ne factive as the fraction of particles that move larger than 0.1σAA during
a read cycle. We use the notation Ncycles for the number of training cycles.

6.4 Results: The BMLJ system

6.4.1 Single Memory

First, we study memory e�ects in the absorbing states (γ < γc = 0.08) prepared with
di�erent amplitudes of cyclic shear deformation. The samples are trained at γ1 = 0.02,
0.03 and 0.06. After training, parallel reading is performed on the trained samples.

6.4.1.1 Parallel read
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Figure 6.1: The mean squared displacement (MSD) for di�erent training cycles dur-
ing parallel reading. The system is trained at γtrained = 0.02 (top) and 0.03 (middle)
and 0.06 (bottom). In each case, the MSD at γtrained is either lower than other γ val-
ues (partially trained) or zero (fully trained), constituting a memory of the training
amplitude.
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In Fig.6.1, the MSD is plotted against γread for di�erent numbers of training cycles.
In the untrained system (Ncycles = 0), with the application of shear deformation in the
read cycles, particles move by larger amounts for larger strain values. As a result, the
MSD increases with γread monotonically for the untrained system. However, as the
number of the training cycles is increased, the system evolves towards the absorbing
state. Correspondingly, the MSD for γread close to γtrained is seen to decrease. After
a signi�cant number of training cycles, when the system has reached the absorbing
state, the MSD becomes zero at γread = γtrained since one more cycle of shear deforma-
tion with amplitude γtrained leaves the system unchanged. The MSD vs. γread curve
thus displays a clear signature or memory of the training deformation amplitude. If we
increase the number of training cycles further, the nature of the MSD vs. γread curve
does not change, which is expected as the system already is in the absorbing state.
As previously noted, the MSD is �nite not only for read amplitudes bigger than the
training amplitude, but also for smaller read amplitudes, which is signi�cantly di�er-
ent from the case of sheared suspensions. This can be rationalised by the di�erences
in the nature of reversibility in the two cases.

To illustrate the reasons for the memory signatures observed, we consider the
changes in the energy and particle positions during a read cycle.

6.4.1.1.1 Energy changes during a read cycle: The evolution of the system is
investigated by measuring energy during the read cycles as a function of strain. When
the system is subjected to oscillatory shear deformations, the energy will be propor-
tional to γ2 if the system deforms elastically. The observed energies vs. strain for
each read amplitude are �tted to a quadratic function and the di�erence ∆E of the
data from the quadratic �ts, which highlight relevant details, are studied. The ∆E

curves are shown for three di�erent read amplitudes in Fig. 6.2. It is observed that
the ∆E curves display discontinuous jumps which correspond to plastic rearrange-
ments of particles and correspondingly, transitions between energy minima. When
γread = γtrained , such jumps in energy are nevertheless organized such that the en-
ergy (and ∆E) returns to the initial value at the end of a cycle. When γread , γtrained ,
however, the sequence of transitions that take place do not lead to the �nal state being
the same as the initial state, which leads to �nite signatures in the energy (and the
MSD) during the read cycles.

6.4.1.1.2 Position changes during a read cycle: Next, we consider how the po-
sition of a particle evolves during the reading cycle, for γtrained = 0.03 and Ncycles =

30. The Y coordinate of a single particle is plotted as a function of strain γ for dif-
ferent read amplitudes γread in Fig. 6.3. Although the particle position changes dis-
continuously in all cases (corresponding to jumps between local energy minima), for
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Figure 6.2: Potential energy is plotted as a function of strain γ during the reading
cycle. The potential energy curve is �tted to a quadratic function (top panel), and the
di�erence ∆E obtained by subtracting the quadratic �t from the data is shown (bottom
three panels) to clearly display relevant details. The system is trained at γtrained =
0.06. ∆E are shown for read cycles for di�erent amplitudes, which are indicated in
the legends. While the energy values return to the initial value when γread = γtrained ,
they do not do so for other read amplitudes.

γread = γtrained = 0.03, the particle position during the read cycle clearly retraces the
same cycle as the last training cycle. In contrast, for γread = 0.02,0.04 the trajectory
of the particle as indicated by its Y coordinate departs strongly from that during the
�nal reading cycle, and the particle does not return to the initial position at the end of
the read cycle.

6.4.1.1.3 Strength of the memory: We have studied memory e�ects with vari-
ous amplitudes below the yielding strain amplitude to understand the dependence of
memory behaviour on the amplitudes of training. We de�ne and measure the strength
of the memory as a function of the training amplitude as follows. We have observed
earlier that there is a non-monotonic increase in the MSD as we increase the amplitude
of γread for all γread which is less than or equal to γtrained . In this regime, the MSD
increases initially, but goes through a maximum and becomes zero at γread = γtrained .
If the system is partially trained, the MSD at γtrained may be lower than neighbouring
strain values but �nite. We thus subtract the MSD at γread = γtrained from the maxi-
mum of the MSD below γtrained , and use it as a measure of the strength of the memory.
The result is presented in Fig. 6.4.
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Figure 6.3: The Y coordinate of a single particle is plotted as a function of strain γ
for γtrained = 0.03, Ncycles = 30. Top: The particle follows the same path during
the last training cycle (Cycle = 30), and the read cycle at the same amplitude, γread =
γtrained = 0.03. Middle and bottom panel: When the trained sample is read at di�erent
amplitudes γread = 0.02 and 0.04 the particle does not retrace the same path.

6.4.1.1.4 Structural signatures of memory: In order to assess if the encoding
of memory involves clear structural signatures, we compute the two dimensional pair
correlation function g(x,z) de�ned earlier. In Fig:6.5, we show the result for a system
trained at γtrained = 0.06, along with the g(x,z) for an inherent structure quenched
from the liquid (i. e. not subjected to any shear deformation). We do not see any
signi�cant di�erence between the liquid inherent structure and the trained system,
surprisingly, and the correlation function of the trained system does not show any
signi�cant anisotropy. Although we cannot exclude e�ects too weak for our numerical
estimation to detect, or other subtle e�ects that require alternate measures, the lack of
a clearer structural signature in the case of a model glass is puzzling.

6.4.1.1.5 Application of cyclic shear deformation with a di�erent amplitude
to a trained system: In the preceding sections, cyclic shear deformation with an
amplitude γtrained(< γc) is applied to an equilibrated samples repeatedly. After a large
number of training cycles, the system remembers the amplitude of deformation by
which it is trained. We now ask what the e�ect of applying shear deformation at
a second "retraining" amplitude. We ask if such retraining will lead to the system
"forgetting" the earlier training, or, in other words, whether the memory will be erased.
We consider two cases: (1) The retraining amplitude γretrained is greater than γtrained .
(2) The retraining amplitude γretrained is smaller than γtrained .
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Figure 6.4: The strength of memory is plotted as a function of γtrained . The strength of
memory increases with the increase in amplitude of training below yielding amplitude.
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Figure 6.5: Two dimensional pair correlation function, gAA(x,z) for an inherent struc-
ture quenched from the liquid (top) and a trained sample with γtrained = 0.06 (bottom)
of the BMLJ system. The data shown here is averaged over 30 di�erent samples.
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Figure 6.6: The MSD for the system which is retrained at a larger amplitude than
the training amplitude during parallel reading. Top: The system is �rst trained at
γtrained = 0.03 fully (30 cycles) and then cycles of shear deformation with amplitude
γretrained = 0.04 are applied to that trained system. The MSD, even after a single cy-
cle, does not show a memory of the training at γtrained = 0.03. Instead, a change of
slope in the MSD is visible at γ = 0.04 (black curve). After a large number of retrain-
ing cycles (40 cycles) with γretrained = 0.04 the system shows the usual signature of
memory at γ = 0.04, namely a depression/vanishing of the MSD at the retrained am-
plitude. Bottom: The system is �rst trained at γtrained = 0.02 fully (15 cycles) and
then cycles of shear deformation with amplitude γretrained = 0.03 are applied to that
trained system. The plot does not show a vanishing of the MSD at γread = 0.02 even
after one cycle at the new amplitude (black curve). After a large number of retrain-
ing cycles (30 cycles) with γretrained = 0.03, the system displays a vanishing MSD at
γ = 0.03.

(1). Retraining amplitude is larger than the training amplitude. Erasure of mem-
ory: We consider a sample which is trained at γtrained over a large number of cy-
cles. The trained sample is then deformed cyclically for varying numbers of cycles at
γretrained > γtrained . We show two such cases in Fig. 6.6, in which we consider a con-
�guration trained at γtrained = 0.03 trained for 30 cycles, and γtrained = 0.02 trained
for 15 cycles. In the �rst case (Fig. 6.6, top panel), we see that even after a single cycle
at γretrained = .04, the memory at γtrained = 0.03 is erased, in that no signature of
trained at that amplitude is present. Further, after a single cycle, a depression of the
MSD at γretrained = .04 is visible, which evolves with further cycles to a vanishing
MSD at γretrained = .04. Thus we conclude that retraining a system at a higher am-
plitude erases the memory, which is consistent with previous observations for models
of colloidal suspensions. A second example with γtrained = .02 and γretrained = .03

displays the same features.
(2). Retraining amplitude is smaller than the training amplitude: Here we consider
once again a con�guration trained at γtrained = 0.03 trained for 30 cycles, but apply
retraining deformations at γretrained = 0.02. The results shown in Fig. 6.7, indicate
that the memory of the new (retraining) amplitude forms even after one cycle, with
a vanishing of the MSD at that amplitude but the memory of γtrained = 0.03 is not
erased. If there is no information of training at all (at γ = 0.03), the MSD should be
increasing rapidly as soon as it crosses 0.02 similar to Fig. 6.1 (Top panel). However,
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we observe MSD increases slowly until 0.03. Thus the MSD at γtrained = 0.03 is not
any longer zero, but is depressed and it shows a change in slope at γread = γtrained in
a manner that is similar to the signature of multiple memories which we discuss later.

0 0.01 0.02 0.03 0.04
γ

read

0

0.0005

0.001

0.0015

M
S

D
O

N
cycles

 = 1

N
cycles

 = 40

γ
retrained

 = 0.02

Parallel read

γ
trained

   = 0.03

Figure 6.7: The MSD for the system which is retrained at a smaller amplitude
than the training amplitude during parallel reading. The system is �rst trained at
γtrained = 0.03 fully (30 cycles) and then cycles of shear deformation with amplitude
γretrained = 0.02 are applied to that trained system. The MSD, even after a single cycle,
is close to zero at γread = γretrained . However, instead of increasing monotonically for
larger γread , a depression of the MSD is apparent around γtrained = 0.03 indicating
persistence of memory of that amplitude.
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Figure 6.8: The MSD for the single trained system during sequential reading. Di�erent
lines correspond to di�erent number of training cycles. The MSD is measured with
respect to the original con�guration. The system is trained at γ = 0.03 (top) γ = 0.06
(bottom). When γread is same as γtrained , there is a change in slope of the MSD vs.
γread curve.

6.4.1.2 Sequential read

So far, we have shown results using the parallel read protocol wherein multiple copies
of the trained system are subjected to read cycles at di�erent amplitudes. Such a proce-
dure is not available if a measurement is made experimentally, where the same trained
system has to be subjected sequentially to read cycles of deformation. We thus con-
sider the analogous sequential read protocol next, wherein after training, the trained
con�guration is subjected sequentially to a set of read deformations with increasing
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amplitude. The MSD data, with respect to the starting, trained, con�guration are
shown in Fig. 6.8, for di�erent numbers of training cycles. It is observed that the
non-monotonicity of the MSD is greatly diminished and the MSD values at the train-
ing amplitude are not strictly zero. Nevertheless, the MSD data reveal a clear memory
of the training amplitude, in that the MSD remain small up to the training amplitude
and increase rapidly thereafter. In Fig. 6.9, we show the corresponding results for
MSD computed at each amplitude with respect to the con�guration at the end of the
previous read cycle, for a fully trained system. In this case too, the MSD data reveal a
clear memory of the training amplitude, once again with a signi�cantly reduced non-
monotonicity of the MSD data.
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Figure 6.9: The MSD, measured with respect to the con�guration after the previous
read cycle, is plotted for fully trained system during sequential reading. The system is
trained at γ = 0.03 (top) and γ = 0.06 (bottom).

6.4.1.3 The fraction of active particles:

In previous related studies, instead of MSD, the fraction of active particles, factive, has
been considered as the measurement. Here, we perform the analogous measurement,
by de�ning an active particle as one that has moved by a distance greater than 0.1σAA
during a read cycle. In Fig. 6.10 (top panel), we show the fraction of active particles
(with distances measured with respect to the original trained sample), for di�erent
numbers of training cycles. After su�cient training, the factive data show a clear sig-
nature of memory of the training amplitude, and a non-monotonicity similar to the
MSD data. In Fig. 6.10 (bottom panel), we show the corresponding data wherein dis-
placements are measured with respect to the con�guration at the end of the previous
read cycle, for the fully trained system. Here too, the memory of the training amplitude
is clearly revealed.

6.4.1.4 Memory e�ects in the di�using state

We have so far analysed memory e�ects for the trained system prepared with dif-
ferent amplitudes in the absorbing state, γtrained < γc. As already discussed, for
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Figure 6.10: The fraction of active particles (factive) is plotted as a function of γread
for a system trained at γtrained = 0.03. Di�erent lines in the top panel correspond
to di�erent numbers of training cycles. Top: (Parallel reading) After a large number
of training cycles, when the system reaches the steady state, factive becomes zero at
γread = γtrained . Bottom: (Sequential reading) factive increases rapidly as γread crosses
γtrained for the completely trained system.

γtrained > γc, the system reaches a di�using state and does not return to the same
con�guration at the end of successive cycles. Thus, we do not expect that the system
will retain any memory of the training amplitude. We test this expectation by per-
forming measurements for two training amplitudes above γc, namely γtrained = 0.09,
and γtrained = 0.11. Results of MSD0 shown in Fig. 6.11 reveal indeed that there are
no signatures of memory of the training amplitude in these cases.
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Figure 6.11: The MSD for the system which is trained at the amplitude larger than γc.
The system is trained at γtrained = 0.09 (top) γtrained = 0.11 (bottom) for a di�erent
numbers of the training cycles. The MSD increases with increasing γread , and shows
no memory of the training amplitude.

As shown in a recent study, however, one may expect shear banding in the di�using
regime. The system size we have used here is too small (4000 particles) for shear
banding to be clearly present. Hence, we consider next a larger system ofN = 64000,
and perform the same study. The results are presented in Fig. 6.12 for γtrained = 0.09,
and γtrained = 0.12, which do not show any signatures of memory of the training
amplitude, con�rming the results for the smaller system studied earlier.
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Figure 6.12: The MSD for the system which is trained at the amplitude larger than γc
forN = 64000. The system is trained at γtrained = 0.09 (top panel) andγtrained = 0.12
(bottom panel). The di�erent lines correspond to the di�erent numbers of training
cycles. No memory e�ects are observed for these amplitudes, which are larger than
the yielding strain.

6.4.2 Multiple memories

We next consider the case of multiple memories. Here, we train the system by sub-
jecting it to repeated cycles of deformation at two di�erent amplitudes γ1 and γ2

(0→ γ1 → 0 → −γ1 → 0→ γ2 → 0 → −γ2 → 0) and perform reading as in the
case of single memories. We consider training amplitudes γ1 = 0.02 and γ2 = 0.01.
Note that we have only considered γ1 > γ2. We �nd that a reversal of the order does
a�ect the memory e�ects, but we do not elaborate on this feature further. To assess
the dependence of multiple memories on the deformation training amplitudes, we also
consider γ1 = 0.06 and γ2 = 0.04. We then consider also the case of encoding three
memories as described below.

6.4.2.1 Parallel read

In Fig. 6.13, we show results using parallel read for the two sets of training amplitudes,
for two di�erent numbers of training cycles. As seen clearly, the data reveal signatures
of memory of both amplitudes, although they are di�erent for the two amplitudes. For
the smaller amplitude, the MSD goes to zero, whereas it remains �nite at the larger
amplitude. At the larger amplitude, however, a sharp change in the MSD values is seen,
which serves as a clear signature of memory of that training amplitude. As previously
discussed, both these memories are persistent, and do not diminish in strength with
increased number of training cycles. We note that this training protocol with repeated
cycles of alternating strain amplitudes and the protocol we discussed earlier, where we
train a system completely and then apply a retraining cycle with a smaller amplitude
than the training amplitude, produce very similar results. This result is in agreement
with the work of Keim et al. [133] where they show that the system could encode both
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the memories only when the smallest amplitude is applied last.
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Figure 6.13: The MSD for the system which is trained at multiple amplitudes (top:
γ1 = 0.02 and γ2 = 0.01, bottom: γ1 = 0.06 and γ2 = 0.04). Two kinks are observed
atγ1 = 0.06 andγ2 = 0.04 (for other set it is atγ1 = 0.02 andγ2 = 0.01). The di�erent
lines correspond to the di�erent numbers of training cycles. Both the memories are
present after a large number of training cycles persistently.

0 0.02 0.04 0.06
γ

read

0

0.002

0.004

0.006

M
S

D
O

N
cycles

  = 30

Parallel read

           Multiple training   
γ

1
 = 0.06 , γ

2
 = 0.04 & γ

3
 = 0.02

Figure 6.14: The MSD for the system trained with three di�erent amplitudes. The system is
trained at γ1 = 0.06, γ2 = 0.04, γ3 = 0.02. The memory is observed at γ = 0.06 and γ = 0.02

We next consider whether a larger number of memories can be encoded. To this
end, we train con�gurations with three di�erent amplitudes (0→ γ1→ 0 →−γ1→ 0

→ γ2 → 0 → −γ2 → 0 → γ3 → 0 → −γ3 → 0.), with γ1 = 0.06, γ2 = 0.04 and
γ3 = 0.02. When subjected to read cycles, we �nd (as shown in Fig. 6.14) signatures
of memory only at the smallest and largest of the amplitudes, namely γ3 = 0.02 and
γ1 = 0.06. In order to assess the role of training protocol, we consider a di�erent
sequence of training deformations, with a repetition of the pattern γ1γ2γ2γ2γ3. In
this case, as shown in Fig. 6.15, all three training amplitudes have corresponding dips
in the MSD revealing that all these memories are encoded in the trained system.

6.4.2.2 Sequential reading

We next employ sequential reading as done before for single memories for the case
of multiple memories, with two di�erent training amplitudes with γ1 = 0.06, γ2 =
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Figure 6.15: The MSD for the system which is trained at three di�erent amplitudes
during parallel reading. The system is trained for training cycles where a single cycle
has three di�erent shear deformation amplitude (sub)cycle repeated according to the
pattern: γ1γ2γ2γ2γ3. Here γ1 = 0.06 γ2 = 0.04 and γ3 = 0.02. After a large number
of training cycles, signatures of all three memories are clearly seen and these memories
are persistent.

0.04. As shown in Fig.6.16, when the MSD is measured with respect to the trained
con�guration, sequential read generates data which capture the encoding of multiple
memories as clearly as the parallel read, but when the MSD is measured with respect
to the �nal con�guration of the previous read cycle, a less distinct signature is seen
at the smaller of the training amplitudes, γ2 = 0.04. While there may be variations
of the procedure used here that will generate a clear signature of multiple memories
even in this case, we do not pursue this investigation further in that direction.

0 0.02 0.04 0.06
γ

read

0

0.001

0.002

0.003

0.004

0.005

M
S

D
O

N
cycles

 =30 Sequential read

    Multiple training 
γ

1
 = 0.06 &  γ

2
 = 0.04

0 0.02 0.04 0.06
γ

read

0

0.001

0.002

0.003

M
S

D
i-

1

N
cycles

  =  30 Sequential read

γ
1
 = 0.06, γ

2
  = 0.04 

Multiple training

Figure 6.16: The MSD for the system, trained at multiple amplitudes during sequen-
tial reading. Top: The MSD is measured with respect to the original con�gurations.
Bottom: The MSD is measured with respect to the �nal con�guration of the previous
read cycle.

6.4.2.3 Application of cyclic shear deformation with di�erent amplitudes to
a trained (at multiple amplitudes) system

Similar to the case of single memory, we wish to investigate the e�ect of applying
cyclic deformation at a new amplitude in a multiply trained system. The system is
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trained at two di�erent amplitudes γ1 = 0.06 and γ2 = 0.04, and is then subjected to
a single cycle of shear deformation with γ3 repeatedly. We have three cases (1). γ3 is
smaller than both γ1 and γ2. (2). γ3 is less than γ1 but greater than γ2 and (3). γ3 is
larger than both γ2 and γ1. We consider these cases in turn.

6.4.2.3.1 Retraining amplitude is smaller than both the training amplitudes:
We consider con�gurations trained at γ1 = 0.06 and γ2 = 0.04. We then apply cyclic
shear deformation with γ3 = 0.02. The results are shown in Fig.6.17. Kinks in the
MSD curves at γ1 = 0.06 (largest γ) and γ3 = 0.02 indicate that the memory of these
amplitudes is encoded, and remain even after a large number of cycles at γ3 = 0.02.
No clear signature is visible at γ2 = 0.04. As in the case of triple memories, it may be
possible that this signature will remain if a di�erent training protocol is used, but we
do not investigate it further.
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Figure 6.17: The MSD for the system which is retrained at an amplitude which is
smaller than both the training amplitudes. Di�erent lines correspond to numbers of
retraining cycles. A single cycle of shear deformation with amplitude γ3 = 0.02 is
applied to the system trained at γ1 = 0.06 and γ2 = 0.04. The new con�guration has
memory at γ3 = 0.02 and γ1 = 0.06 but no distinct memory of γ2 = 0.04. Memory
signatures at γ1 = 0.06 remains robustly even after a large number of retraining cycles
at γ3 = 0.02.

6.4.2.3.2 Retraining amplitude is smaller than one of the training amplitudes
but larger than the other: We consider con�gurations trained at γ1 = 0.06 and
γ2 = 0.04. We then apply cyclic shear deformation with γ3 = 0.05. The results are
shown in Fig.6.18. Even after a single deformation at γ3 = 0.05, the memory at γ2 =

0.04 is erased, while the memory at γ1 = 0.06 is weak but present. In addition, a
strong signature of memory at γ3 = 0.05 appears after a single cycle.

6.4.2.3.3 Retraining amplitude is larger than both the training amplitudes:
We consider con�gurations trained at γ1 = 0.06 and γ2 = 0.04. We then apply cyclic
shear deformation with γ3 = 0.07. As shown in Fig. 6.19, a single cycle of shear
deformation with γ3 = 0.07 erases both the memories. This is consistent with the
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Figure 6.18: The MSD for the system which is retrained at an amplitude which is
smaller than one training amplitude but larger than other. A single cycle shear de-
formation with amplitude γ3 = 0.05 is applied to the system which is trained at two
di�erent amplitudes, γ1 = 0.06 and γ2 = 0.04. The new system does not have a clear
signature of memory at γ2 = 0.04 but has features revealing memory at γ1 = 0.06
and at γ3 = 0.05, which remain after a large number of retraining cycles at γ3 = 0.05.

observation for the case of single memory that deformation by a larger amplitude
erases stored memories.
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Figure 6.19: The MSD for the system which is retrained at an amplitude larger than
both the training amplitudes. A single cycle of shear deformation with amplitude γ =
0.07 is applied to the system which is trained at multiple γ , γ1 = 0.06 and γ2 = 0.04,
which erases memories of both these amplitudes.

6.5 Results: Soft Sphere binary mixture system

The di�erences in memory e�ects in the BMLJ glass former described above and the
model considered in have previously been rationalised in terms of the observation that
trained con�gurations of BMLJ that reach an absorbing state nevertheless traverse a
non-trivial energy landscape during a read cycle, which involve multiple transitions
between energy minima. Thus, even though the con�gurations reach the same con-
�guration at the end of a cycle, their trajectories during the cycle are non-trivial. This
is in contrast with the model of a sheared colloidal suspension studied wherein, upon
reaching an absorbing state, sheared con�gurations return to the same con�guration
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at the end of each shear cycle. More importantly, the particles merely undergo a�ne
deformations during the cycle and do not interact with other particles. They thus ex-
perience a trival, �at, landscape during the read cycles. It is thus interesting to ask if
there are cases that deviate from both these scenarios. Such a case is presented in the
study of sheared soft spheres. The soft sphere system at densities below the jamming
point, under AQS deformation, traverses a trivial landscape, in the sense that the en-
ergies of the inherent structures always remain zero. However, this system displays
di�erent regimes in applied strain, for which the nature of the absorbing states are dif-
ferent. For small applied strain, the system reaches absorbing states which are similar
to those of the model studied in wherein during a shear cycle, particles do not interact
with other particles and show smooth a�ne displacements. These are termed point
reversible states. At higher amplitudes, a new regime is encountered wherein parti-
cles return to their original positions at the end of a shear cycle, but during the cycle,
they may collide or interact with other particles that they come into contact with.
These states are referred to as loop reversible states. It is thus interesting to consider
the nature of memory in point reversible and loop reversible states. For the volume
fraction φ = 0.61, the transition from point to loop reversible states occurs around
γ
pl
c = 0.07. Accordingly, we consider γtrained = 0.03 (which belongs to the point re-

versible regime) and γtrained = 0.12 (which belongs to the loop reversible range) to
study the nature of memory e�ects in the case of training at a single amplitude. We
will subsequently consider multiple memories, which are described later.

6.5.1 Single memory

6.5.1.1 Parallel reading

We start with an equilibrated system and then train it for a su�cient number of cycles
with a single amplitude. The number of training cycles needed for the soft sphere
system to reach the absorbing state is much larger than for the BMLJ con�gurations.
The trained system is subjected to read cycles using parallel reading. We have a system
which is trained at γ = 0.03, (where the system is point reversible) and another system
which is trained at γ = 0.12 (where the system is loop reversible). The results are
shown in Fig. 6.20. We observe that when the training amplitude belongs to the point
reversible regime, the MSD is zero for all the amplitudes below the training amplitude,
similarly to the model discussed before. When the amplitude is in the loop reversible
range, the memory behaviour is similar to the BMLJ system discussed earlier, in that
the MSD is �nite both above and below the training amplitude.
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Figure 6.20: The MSD for the single trained system during parallel read. Top: The
system is trained at γtrained = 0.03. At this amplitude, system is point reversible. We
�nd that the MSD is zero for all γread ≤ γtrained . Then there is a change of slope.
Bottom: The system is trained at γtrained = 0.12. At this amplitude, the system is loop
reversible. We �nd that the MSD is zero only when γread = γtrained

6.5.1.2 Sequential reading

We also perform sequential reading for the cases considered above, and present the
results in Fig. 6.21. We observe that when the amplitude is in the point reversible
range, the memory behaviour is the same as for parallel reading. The MSD is zero at
all γread below γtrained and it increases with increasing read amplitude above. This
behaviour is expected since the application of γread (< γtrained) does not change the
system in any way. When the training amplitude is in the loop reversible range, the
system is not reversible at γread = γtrained (MSD is not zero, although very small) but
a sharp change in MSD occurs across γtrained and the resulting MSD behaves very
similarly to the parallel read case.
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Figure 6.21: The MSD for the single trained system during sequential reading. Top: The
system is trained at γ = 0.03. At this amplitude, the system is point reversible. We �nd
that the MSD is zero for all γread ≤ γtrained , and increases rapidly thereafter. Bottom:
The system is trained at γ = 0.12. At this amplitude, the system is loop reversible. We
observe that the MSD decreases sharply around and is very small at γread = γtrained
This memory behaviour is di�erent from parallel reading, since the system is not fully
reversible at γread = γtrained , although it displays a very clear memory signature.

6.5.1.2.1 Structural signature of memory: We study the nature of structural
change due to training by computing the two dimensional pair correlation function
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g(x,z) for a training amplitude in the point reversible regime. We choose φ = 0.54 (in
order to have better clarity) at which density the system is point reversible at γ = 0.23.
The results are presented in Fig. 6.22 indicating that g(x,z) for the trained system
shows signi�cant anisotropy and signi�cantly di�erent from g(x,z) that of the �uid
(not shown) which is isotropic. This behaviour is analogous to the observations in
non Brownian suspension although the observed anisotropy is di�erent owing to the
di�erences in the shearing protocol. Other partial pair correlation functions display
similar behaviour (not shown).
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Figure 6.22: Two dimensional pair correlation function, gAA(x,z) for an inherent struc-
ture quenched from the liquid (top) and for the trained system (bottom) in the shear
plane xz. The system is trained at γtrained = 0.23. The data are averaged over 40
di�erent samples.
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6.5.2 Memory e�ects in the di�using states

At very large amplitude of shearing the soft sphere system shows di�usive behaviour,
like the BMLJ. The MSD increases with increasing accumulated strain linearly. We
consider whether any memory e�ects are present in this regime, by analysing con�g-
urations trained at γtrained = 1.0 and γtrained = 0.8, at packing fraction φ = 0.61. The
results are presented in Fig. 6.23. As before, the system is trained over a large number
of training cycles and after training, the system is read using parallel reading. It is ob-
served that the MSD increases smoothly as γread increases and there are no signatures
of memory of the training amplitudes.
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Figure 6.23: The MSD for the con�gurations trained at γ = 1.0 (top) γ = 0.8 (bottom).
Both these amplitudes belong to di�usive regime. The di�erent lines correspond to
di�erent numbers of training cycles. We do not observe any memory signatures in
these cases.

6.5.3 Multiple memories

We consider three cases in studying multiple memories in the soft sphere system: (i)
Both the training amplitudes are below γc, (ii) Both the training amplitudes are above
γc, and (iii) One training amplitude is below γc, and the other is above γc. Here,
γc refers to the strain at which a transition is observed from the point reversible to
loop reversible states. We consider each of these cases employing both parallel and
sequential read protocols.

6.5.3.1 Parallel reading

We perform parallel reading to the trained samples. The results are shown in Fig.
6.24. We �rst consider con�gurations trained at amplitudes γ1 = 0.05 and γ2 = 0.03.
The system is point reversible at both the amplitudes. We train the system for 3000

cycles. After training, the system is read using the parallel reading protocol. Below
the higher training amplitude, the MSD is zero for all amplitudes. This implies that the
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Figure 6.24: The MSD for the multiple trained system during parallel reading. Di�erent
lines correspond to di�erent numbers of training cycles. Top panel: The system is
trained γ1 = 0.05 and γ2 = 0.03. At these amplitudes, the system is point reversible.
After one training cycle, the MSD is zero below γ2 = 0.03 and �nite above, but with
more training cycles, the MSD becomes zero for all γread < γ1 = 0.05. Thus, only
the memory of the largest amplitude remains. Middle panel: The system is trained
γ1 = 0.12 and γ2 = 0.03. At the amplitude γ = 0.12, the system is in loop reversible
at γ = 0.03, the system is point reversible. The MSD remains zero below γread = γ2
and exhibits a minimum value approaching zero at γread = γ1, each being a clear
signature of memory in the respective regimes. Bottom panel: The system is trained
γ1 = 0.12 and γ2 = 0.09. At both these amplitudes, the system is loop reversible.
While the MSD is close to zero below γread = γ2, no clear signature of memory is
present near γread = γ1. The presence of multiple memories in this case cannot be
concluded from these observations. The results may be compared with those in Fig.
6.20 for single memories.

multiple memories are transient when both the amplitudes are in the point reversible
range, consistently with previous observations. We next consider training amplitudes
γ1 = 0.12 (at which the system is loop reversible) and γ2 = 0.03 (at which the system
is point reversible). After training for 9000 cycles the system is read using the parallel
reading protocol. We observe that below γread = γ2, the MSD remains zero, and at
γread = γ1 the MSD exhibits a minimum, approaching zero for large enough training
cycles. Thus, both these memories are retained with expected signatures. Finally we
consider training amplitudes γ1 = 0.12 and γ2 = 0.09. The system is loop reversible
at both the amplitudes. We train the system for 5000 cycles. After training, the system
is read using the parallel reading protocol. We observe that the MSD approaches zero
for all amplitudes below γread = γ1 but no distinct signature of memory is found at
γread = γ1. These observations are both surprising, since neither conforms to the
expected memory behaviour in analogy with the BMLJ glass. The case of multiple
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Figure 6.25: The MSD for the multiple trained system during sequential reading. Dif-
ferent lines correspond to di�erent numbers of training cycles. Top panel: The system
is trained γ1 = 0.05 and γ2 = 0.03. At these amplitudes, the system is point reversible.
After one training cycle, the MSD is zero below γ2 = 0.03 and �nite above, but with
more training cycles, the MSD becomes zero for all γread < γ1 = 0.05. Thus, only
the memory of the largest amplitude remains. Middle panel: The system is trained
γ1 = 0.12 and γ2 = 0.03. At the amplitude γ = 0.12, the system is in loop reversible
at γ = 0.03, the system is point reversible. The MSD remains zero below γread = γ2
and exhibits a minimum value at γread = γ1, each being a clear signature of memory in
the respective regimes. Bottom panel: The system is trained γ1 = 0.12 and γ2 = 0.09.
At both these amplitudes, the system is loop reversible. While the MSD is close to zero
below γread = γ2, no clear signature of memory is present near γread = γ1. The pres-
ence of multiple memories in this case cannot be concluded from these observations.
The results may be compared with those in Fig. 6.21 for single memories
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memories in the loop reversible regime thus require further investigation.

6.5.3.2 Sequential reading

We perform sequential reading for each of the cases considered above, and show the
results in Fig. 6.25. We observe that the memory behaviour is the same as in the case
of the parallel reading protocol.

6.6 Summary and Conclusions

We have performed numerical investigations of memory e�ects in two model systems,
the Kob-Andersen binary mixture (BMLJ) and a soft sphere mixture. In the former case,
our results extend and elaborate on the results and observations from earlier work,
in particular in the form of considering di�erent protocols for reading the encoded
memories. The latter case o�ers an interesting extension of previous studies, in that it
o�ers an example displaying features that are distinct from the earlier studied cases of
a model glass and a model of colloidal suspensions, exhibiting features found in both
these earlier examples. In the loop reversible regime of this model, the memory e�ects
seen are, to a large extent, similar to the case of the model glass, even while the system
samples a trivial energy landscape. In considering structural signatures of memory, we
�nd that the model glass studied does not reveal the features seen previously for the
model of colloidal suspensions, and thus prompting further investigations on the man-
ner in which the memory is encoded in this system. On the other hand, the soft sphere
system in the point reversible regime does exhibit the expected structural signatures.
These results taken together o�er a detailed characterisation of memory e�ects in the
studied model systems.
While reading multiple memories, the MSD becomes zero at the smaller amplitude,
and it shows a change of slope at the larger amplitude, but MSD is no longer zero at
that amplitude. Thus, in the future study, it would be interesting to �nd a protocol
where MSD becomes zero at all the amplitudes so that reading becomes cleaner. The
robustness of this memory at �nite temperature and �nite shear rate needs to be in-
vestigated in future. It would also be interesting to develop a mesoscopic model for
memory behaviour to better understand how the system �nds a limit cycle and under
what condition this limit cycle can be destroyed.



Chapter 7
Yielding behavior of glasses with one
sided shear

7.1 Introduction

The response to applied mechanical stresses is a fundamental characteristic of solids
that is relevant in the context of material science. For large applied stresses or defor-
mations, plastic deformations contribute signi�cantly to such response, leading even-
tually to yielding and �ow. In the case of amorphous solids, ranging from hard glasses
such as oxide glasses to soft solids, these plastic deformations are relevant for under-
standing their yielding behaviour and rheology [98,232]. Recent years have witnessed
signi�cant activity in developing a statistical mechanical description of these phenom-
ena [127, 128, 233]. Yielding behaviour in model amorphous solids has been investi-
gated experimentally [234–236], through computer simulations [129, 130, 237–246],
and theoretical investigations including the study of elastoplastic models [233, 239,
247,248]. These investigations have largely focused on the response to uniform shear,
but several investigations have explored yielding behaviour under cyclic deforma-
tion [26,130,245,249]. A speci�c issue that has received considerable attention recently
is the role of annealing of the glasses that are subjected to deformation, in determining
the nature of yielding. Indeed, under both uniform shear and cyclic shear, it has been
demonstrated that a qualitative change occurs in the yielding behaviour when the de-
gree of annealing of the glasses considered increases. Under cyclic deformation, poorly
annealed glasses display signi�cant mechanically induced annealing, and converge to
a common threshold energy, before yielding takes place. In contrast, well annealed
glasses (with energies below the threshold energy), do not display any change in prop-
erties with increasing amplitude of shear until the yielding amplitude is reached, where
yielding is accompanied by a discontinuous change in energy and stress, the amount

137
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of which depends on the degree of annealing [26]. Under uniform shear a similar re-
sponse is observed [250]. Apart from the context of yielding, response to cyclic shear
has been investigated in order to understand the reversible to irreversible transition,
i.e. the transition from absorbing to di�usive states, as observed in non-Brownian col-
loidal suspensions, glasses, related systems and models thereof [123,251–255] Memory
formation in models of suspensions and glasses have also been a subject of consider-
able interest [135,256,257]. In many of these works, particularly when related to yield-
ing the cyclic deformations considered have been symmetric, i.e. the applied strain of
the system is varied through a cycle as 0→ γmax → 0→ −γmax → 0, where γmax

is the amplitude of shear. Given that signi�cant structural change is observed below
yielding for poorly annealed cases but not for well annealed cases, one may expect that
the choice of range from γmin to γmax over which the strain is varied cyclically may
signi�cantly in�uence the plasticity and yielding behaviour. Indeed, such dependence
is of practical importance in determining the characteristics of fatigue and fatigue fail-
ure [258], which in turn dictate the scope and limits of operability of such materials
in real-life applications. With the aim of investigating the dependence of the nature
of plasticity and yielding on particular cyclic deformation protocols, here we consider
the response totally asymmetric cycles of shear, 0→ γ1

max→ 0→ γ1
max . . . . We sim-

ulate a model glass employing the athermal quasistatic (AQS) shear procedure for a
wide range of annealing and amplitudes of strain, in order to investigate the nature
of plasticity and yielding. The observed behaviour is found to be markedly di�erent
from the case of symmetric cyclic shear, as we describe below.

For the well-annealed samples, for the smaller system sizes considered, we �nd
an intermediate range of γ1

max values over which the stress decreases from the maxi-
mum value attained, i.e. beyond the stress peak, but no di�usive behavior is present.
The onset of di�usive behavior, at a larger γ1

max value, is identi�ed with yielding
[26, 129, 130, 245] We investigate the dependence on system size N , and �nd that the
intermediate window of γ1

max narrows with system size for well annealed case. Our
results suggest, but cannot conclusively demonstrate, that the intermediate strain win-
dow will vanish asN →∞, but the narrowing itself leads to a remarkable conclusion:
Under asymmetric shear, well annealed glasses will yield at smaller strain amplitudes
than poorly annealed glasses, reversing the trend observed in the case of symmetric
shear protocols.

In order to better understand our results, we analyse the possibility of shear in-
duced anisotropy of the structures obtained through the AQS simulations. Remark-
ably, despite of the asymmetric shear protocol employed, we �nd that the structures
are highly isotropic, resembling those obtained under symmetric cyclic shear [256].
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7.2 Simulations details

We perform AQS simulations of a model glass former, the 80 : 20 Kob-Andersen bi-
nary Lennard-Jones mixture (KA-BMLJ), in which particles interact with a Lennard-
Jones potential, employing a quadratic cuto� that ensures that the energy and force go
smoothly to zero at the cuto� distance. Further details of the model are given in chap-
ter 2. The results presented here were obtained from the simulations of 3d samples
with N = 4000 particles. In order to to investigate �nite size e�ects, we also consider
systems with N = 200, 400, 800, 4000, 8000, 32000 and 64000 particles. With V
being the sample volume, we equilibrate the system at �xed density ρ = N/V = 1.2

in the liquid state at reduced temperatures T = 1.0,0.60,0.466,0.40,0.37 via a con-
stant temperature molecular dynamics simulation. Subsequently, equilibrated con-
�gurations are subjected to energy minimization to obtain local energy minimum
(inherent structure) con�gurations that have average energies per particle Einit =

−6.89,−6.92,−6.98,−7.03,−7.05 respectively for the temperatures stated above. The
results shown are averaged over 15 independent samples. Energy minimization is
performed using the conjugate gradient algorithm. The molecular dynamics and AQS
simulations are performed using LAMMPS [259].

Shear deformation Protocol.

The inherent structures, or glasses, are then subjected to cyclic shear deformation
in the xz plane using the Athermal Quasi-Static (AQS) procedure which involves the
application of strain by small increments (dγ = 2 × 10−4) following by energy mini-
mization. We apply asymmetric shear cycles that follow the sequence: 0→ γ1

max→ 0,
where γ1

max is the amplitude of deformation. We apply cycles of shear until a steady
state is reached, wherein the system either reaches an absorbing state such that the
same sequences of con�gurations are visited in a cycle for repeated cycles, or a di�u-
sive state is attained in which the properties exhibited from cycle to cycle are statisti-
cally similar [129,130]. For symmetric cyclic shear [129,130], the yield strain amplitude
γ

sym
y has been identi�ed as the strain value marking the onset of the di�usive state,

which also coincides with a discontinuous stress drop from the largest stress value
attained just prior yielding [129, 130]. As described below, for asymmetric shear, the
location of the stress peak and the onset of di�usion di�er in general, and we will
therefore distinguish these strain values as γpeak and γdiff, respectively. Note that
both for symmetric and asymmetric shear, signi�cant plastic rearrangements occur
before an absorbing steady state is established.
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7.3 Results

7.3.1 Poorly annealed glass:

We �rst consider the steady states attained under asymmetric shear for a poorly an-
nealed glass with Einit = −6.89. In Fig. 7.1 we show the energy and stress through
a cycle as a function of γ in the steady state for a single sample. The energy vs.
strain curves display a minimum at �nite strain that increases as ≈ γ1

max/2 for γ1
max ≤

0.15, and for larger γ1
max, the energy curves display two well-separated minima. The

sample-averaged strain γEmin
at which the minimum Emin of the energy in the limit-

cycle is obtained, is observed to vary as γ1
max/2.

As we have observed that the minimum energy occurs at �nite γ , γEmin , it is im-
portant to focus on the minimum energy (Emin) as well as γEmin to characterize the
yielding point in asymmetric shear deformation. In Fig. 7.2, we show the evolution of
Emin against the number of cycles. We observe that the energy reaches a steady state
after a transient. The �nal state of the energy depends upon the amplitude by which
it is deformed; �nal energy decreases until strain amplitude, γ1

max = 0.150; beyond
γ = 0.150 it starts increasing, suggesting the yielding point, γy ∼ 0.160. In Fig. 7.2
(Top: Middle panel) we have shown the evolution of γEmin as a function of number
of cycles for di�erent γ1

max. We have observed that the application of shear defor-
mation moves γEmin from zero to a �nite value as we increase the number of cycles
of deformation, and it saturates to a �nite value in the steady state, below yielding,
and �uctuates around a mean value above the yielding amplitude. We have computed
MSD at the steady state and show as a function of number of cycles (Fig. 7.2, Top right).
For all strain amplitudes below 0.15 MSD is almost zero, suggesting these states are
absorbing state, whereas the system becomes di�usive starting from the strain ampli-
tude, 0.160. This behavior of MSD clearly demonstrates that the yielding amplitude
is around γy ∼ 0.160.

These observations can be simply rationalised by a shift in what we term the refer-
ence strain, i.e. the strain at which the stress is zero, to the mid-point of the strain cycle
as a result of plastic rearrangements during the initial cycles (transient), as shown in
the right panel of Fig. 7.1. As we see from results shown below (Fig. 7.2 (bottom panel),
the yielding behaviour for poorly annealed glasses can be quantitatively, mapped to
the results for the symmetric case with strain amplitude γsym

max , by the equivalence
γ

sym
max = γ1

max/2. In particular, the observation of yielding for γ1
max > 0.15 is consis-

tent with the the observed γsym
y ≈ 0.08 [26].



7.3 Results 141

0 0.05 0.1 0.15 0.2
γ

-1.00

-0.50

0.00

0.50

1.00

σ

0.060

0.095

0.150

0.170

0.200

-6.98

-6.96

-6.94

-6.92

E

E
init

 = -6.89

-6.98

-6.96

-6.94

-6.92

-6.9

E

0.060

0.095

0.150

0.170

0.200

0 0.05 0.1 0.15 0.2
γ

-1.00

-0.50

0.00

0.50

1.00

σ

E
init

=-6.89

Figure 7.1: Variation of the energy and shear stress through one cycle of strain in
the steady state for a glass with initial energy Einit is −6.89. Left: Single sample is
considered. Bottom: Sample avearged data is shown here. Di�erent curves in each
panel correspond to di�erent strain amplitude.
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Figure 7.2: The initial energy of this system is Einit = −6.89. Top left: Evolution of
Emin is shown as a function of number of shear cycles (Ncycles) for di�erent strain
amplitude. Top middle: Evolution of γEmin is shown as a function of number Ncycles
for di�erent strain amplitudes. Top right: MSD is plotted as a function of number of
cycles for di�erent strain amplitudes. Bottom left: minimum energy (Emin) is plotted
as a function of γ1

max. Bottom middle: γEmin is plotted as a function γ1
max. The red line

corresponds to γEmin= 1/2γ1
max. Bottom: σmax is plotted as a function of γ1

max.
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7.3.2 Well annealed glass

The picture changes dramatically when we consider well annealed glasses. To show
this, we �rst consider the well annealed case with Einit = −7.05. For this case, under
symmetric shear [26], no change in energy is observed with γsym

max whatsoever, until the
yield point is reached. In contrast, we see in Fig. 7.3 (a), which shows Emin as a func-
tion of cycle numberNcycles for selected γ1

max, that the energy indeed does not change
with Ncycles for small γ1

max, but for γ1
max ≥ 0.13, Emin increases with Ncycles and sat-

urates at values that grow with γ1
max. Interestingly, the strain at which the energy is

minimum, γEmin , re�ects the same pattern: γEmin remains �xed at 0 for γ1
max < 0.13,

but grows with Ncycles as well as γ1
max for larger γ1

max values. Moreover, the asymp-
totic γEmin ≈ γ

1
max/2 is attained only when γ1

max > 0.15, while for γ1
max = 0.13,0.15

intermediate values interpolating between 0 and γ1
max/2 are observed. Nevertheless,

for γ1
max > 0.095, substantial plastic deformations appear to lead to �nite γEmin values,

even though, as shown in Fig. 7.3 (c), a di�usive, or yielded, state is reached only for
γ1

max > 0.15.
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Figure 7.3: The initial energy of this system is Einit = −7.05. Top left: Evolution of
Emin is shown as a function of number of cycles for di�erent strain amplitudes. Top
middle: Evolution of γEmin is shown as a function of number of cycles for di�erent
strain amplitudes. Top right: MSD is plotted as a function of number of cycles for
di�erent strain amplitudes. Bottom left: The minimum energy (Emin) is plotted against
γ1
max. Bottom middle: γEmin is plotted as a function γ1
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max. Bottom: σmax is plotted as a function of γ1
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Figure 7.4: Left: γEmin as a function of γ1
max for di�erently annealed samples. Middle:

Emin as a function of γ1
max for di�erent annealed samples. Right: σmax is plotted as a

function of γ1
max for di�erently annealed samples (N = 4000).

7.3.3 Role of annealing

We summaries the results for the full range of annealing of the glasses we consider
(with Einit = −6.89,−6.92,−6.98,−7.03 and −7.05) in Fig. 7.4. Fig. 7.4 (Left) shows
the steady state energies as a function of Einit and the strain amplitude γ1

max. For
Einit = −6.89,−6.92, the variation of the energies is similar to the symmetric case,
displaying a non-monotonic change in energy across the yielding amplitude. In sharp
contrast, for Einit = −7.03,−7.05, the energies remain constant up to values of γ1

max

close to the yield amplitudes in the symmetric case (γysym = 0.098,0.105 for Einit =

−7.03,−7.05 respectively [26]), but rise for larger γ1
max, until they reach a value of

≈ −6.985 is reached, which was identi�ed as the threshold energy in [26] across which
the character of yielding changes in the symmetric case. The intermediate case of
Einit = −6.98 displays an interesting non-monotonic behaviour. For γ1

max > 0.15 the
energies for all cases increase along a common curve, and we identify γ1

y > 0.155 −
0.16 as the yield value. A rationalisation of these results can be found in the behaviour
of the reference strain γEmin shown in Fig. 7.3 (Middle). The extent to which γEmin ≈
γ1

max/2 can be seen as indicative of the plastic deformations that that take place before
a steady state is reached. Clearly, for Einit = −7.03,−7.05, such deformations occur
very little until γ1

max ≈ 0.1, whereas for higher γ1
max the reference strain shifts, along

with the energies, until con�gurations that are stable under the imposed cyclic strain
are reached. For higher Einit, such reorganizations occur for all γ1

max, to a greater
degree for larger Einit. Finally, we consider the variation of shear stress σmax evaluated
at γ1

max. In Fig. 7.3 (Right) we present the data for σmax. Once again, for Einit =

−6.89,−6.92, we observe a monotonic increase of σmax before yielding, but for lower
Einit, we observe a highly unusual non-monotonic change of σmax, well before the
yield point. The maximum stress values obtained, for γ1

max ≈ 0.1 are comparable to
the yield stress values in the symmetric cyclic shear case [26]. Unlike the symmetric
shear case, the location of the stress maximum and the onset of di�usive behaviour do
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not coincide for asymmetric shearing of well annealed glasses, as seen in Fig. 7.3(f), (c),
with γpeak (location of the stress maximum) < γdiff (onset of the di�usive steady state).
These results are surprising in the context of cyclic shear, since previous observations
of plasticity before yielding have invariably been associated with annealing (decrease
of energy). The new non-trivial ingredient that is brought forth by the asymmetric
shear results is dynamics induced by deformation along the plastic strain axis.

7.3.4 System size analysis.
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Figure 7.5: System size dependence of Emin, γEmin , σmax for the well annealed system.
The red line corresponds to γEmin= 1/2γ1

max.

In order to interrogate better the intermediate regime γpeak < γ
1
max < γdiff, that

emerges for the well-annealed samples, we consider next the e�ect of system size.
In Fig. 7.7 (a) and (b) we plot the behavior of the minimum energy Emin and the
plastic strain γEmin at steady state against γ1

max, for di�erent system sizes, Einit =

−7.05. A strong system size dependence is apparent: the smaller the system size, the
larger the strain γ1

max value beyond which γEmin= γ1
max/2. In Fig. 7.7 (c) we show

the corresponding evolution for σmax. For system sizes larger than 4000, the stress
maximum appears around a common value γpeak = 0.1, but the subsequent drop of
stress becomes sharper with increasing system size. In Fig. 7.6 we show again the
stress at the maximum strain, as a function of the maximum strain γ1max (Left panel)
and the MSD as a function of the number of cycles for di�erent systems sizes of
a well-annealed glass with Einit = −7.05. The left triangle marks the value of the
amplitude of asymmetric strain γdiff from which di�usive behavior sets in. The values
of γdiff extracted from the MSD vs. Ncycles plots are: 0.160, 0.150 0.130 and 0.120

for the system sizes 4000, 8000, 32000 and 64000 respectively. These plots clearly
demonstrate that with increasing system sizes the di�erence between γpeak = 0.095

and γdiff decreases. We expect that γdiff → γpeak as N → ∞. Now we investigate
the system size e�ect of poorly annealed glass. In Fig. 7.7, we show the system
size dependence of γEmin , Emin, and σmax, the stress at maximum strain γ1

max for a
poorly-annealed glass, Einit = −6.89, and di�erent system sizes N , indicated in the
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the steady state) is plotted against the number of cycles for di�erent γ1
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annealed system with initial energy Einit = −6.89. The systems sizes N are indicated
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legend of (b). (a) For system sizes larger than 4000, Emin reaches its lowest value
around γ1

max = 0.15, which we interpret as the yielding amplitude. Note that this is
twice the corresponding value for symmetric shear. (b), The behavior of the plastic
strain γEmin with γ1

max has almost no dependence on system size and closely follows
the line γEmin

= γmin/2. This is in stark contrasting with the response of the well
annealed glasses to asymmetric shear shown above. (c) System size dependence of the
stress σmax at strain γ1

max. With increasing system size N the strain γ1
max at which

σmax reaches its maximum moves to γ1
max ≈ 0.15. At the same time, the subsequent

stress-drop becomes sharper with increasing N . With increasing system sizes, the
yielding amplitude does not change for poorly annealed glass. Whereas there is a
signi�cant change for well annealed glass and this leads to the remarkable conclusion
that for asymmetric shear, the yield value γdiff will be smaller for well annealed glasses
compared to poorly annealed glasses, reversing the trend seen for symmetric shear.

7.3.5 Structure of sheared con�gurations

We next investigate whether the asymmetric nature of the shear protocol has con-
sequences for the anisotropy of structures we generate. A corresponding investiga-
tion for symmetric cyclic shear revealed no anisotropies [256]. We compute two di-
mensional pair correlations functions g(x,z), which are shown in Fig. 7.8 for Einit =

−6.89,−7.05 for γ1
max = 0.13,0.15, below the yielding point and for γ1

max = 0.17

above yielding (shown in Fig. 7.9) . In all cases g(x,z) are found to be symmetric,
although the strain protocol is asymmetric.
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Figure 7.8: The two-dimensional pair correlations (for A particles) g(x,z) for Einit =
−6.89 (Top panels) and Einit = −7.05 (Bottom panels) for di�erent strain amplitudes
γ1

max = 0.13(left) and 0.15(right).
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Figure 7.9: The two-dimensional pair correlations (for A particles) g(x,z) for Einit =
−6.89 (left panel) and −7.05 (right panel), for γ1

max = 0.17.



148 Chapter 7.

7.4 Discussion

In summary, we have investigated the yielding behaviour of a model amorphous solid
under asymmetric cyclic shear deformation. We show that the response of poorly
annealed glasses under asymmetric shear deformation is very similar to symmetric
shear deformation with yielding amplitude of asymmetric shear deformation is twice
of symmetric deformation. However, yielding behaviour for well annealed glasses
displays striking new features not observed for symmetric cyclic shear, including the
emergence of an intermediate window of strain amplitudes dominated by signi�cant
plastic rearrangements and accompanied by a decrease of stress. Such a window is
expected to vanish for N →∞, as our system size results indicate. Nevertheless, our
results reveal the central role played by the non-trivial evolution of plastic strain in the
case of asymmetric cyclic shear, in addition to the evolution of energy, in determin-
ing plastic response, which provides insight into the behaviour of deformed glasses
in general. Investigating �nite size e�ects leads to the remarkable conclusion that
for asymmetric shear, the yield strain amplitude is smaller for well annealed glasses,
in a reversal of observations for symmetric shear. Interestingly, the structure of the
shear-deformed con�gurations is isotropic though the nature of the deformation is
asymmetric.



Chapter 8
Conclusions

This chapter summarises the main results of this thesis and discusses the questions
the work in this thesis raises, which merit further investigations.
The �rst part of the thesis has been devoted to studying glass formation in spatial di-
mension 3 − 8. In the second part, the mechanical behaviour of glasses, particularly
yielding and memory formation, is investigated under cyclic shear deformation.
In chapter 3, we have investigated the dimensional dependence of the glass transi-
tion density and the jamming density by studying sphere assemblies as model glass
formers in spatial dimensions 3 − 8. At low temperatures, the dynamics undergo a
crossover from a sub-Arrhenius relaxation process at low density to super-Arrhenius
behaviour at higher densities in all the dimensions we considered. Relaxation times
are analysed through a scaling function developed by Berthier and Witten to obtain
two distinct scaling collapse across φ0, the crossover density. This cross over density,
φ0 corresponds to the ideal glass transition density of the hard-sphere. Though this
scaling function produces a nice data collapse, it fails to capture the behaviour at φ0

which should be purely Arrhenius. We introduce a new scaling function which makes
sure the dynamics is Arrhenius around φ0 and, using the scaling function φ0 is es-
timated in spatial dimensions 3 − 8. Next, the jamming density is estimated with an
independent method for spatial dimension 3 − 8. φ0 and φJ are close to each other
in 3 and 4 dimensions; however, their di�erence systematically increases for d > 4.
Remarkably, our estimated φ0 qualitatively matches with the theoretical prediction
where �nite dimensions were considered [94]. However, φJ underestimates the theo-
retical predictions of [94]. But recent improved theoretical calculations show that φJ
values computed in [94] can not produce the correct value, and our result also con-
�rms that observation. Thus, our results provide a crucial benchmark for the future
development of quantitative theories of the glass and jamming transitions.
In an attempt to understand what the density φ0 corresponds to, we have computed
φnr , the density at which the fraction of rattler goes to zero. However, we �nd thatφnr
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is much larger than φ0. In the future, it will be interesting to �nd out any structural
measures to distinguish the sub-Arrhenius regime from the super Arrhenius regime,
which will help to clarify the special nature of the density, φ0. It could also be inter-
esting to check whether this crossover of dynamics can be captured in Mode coupling
theory.
In chapter 4, we have investigated the relationship between the heterogeneity in the
dynamics, the breakdown of the Stokes-Einstein relation and fragility in higher spatial
dimensions. So far, glasses are studied in higher spatial dimensions using hard par-
ticles as a model glass where density is the control parameter. However, for a large
number of liquids, the temperature is the control parameter to obtain glass. Thus, we
study soft sphere assemblies as a model glass former which permits both density and
temperature as a control parameter. Our main �nding is that at a �xed scaled density,
the degree of heterogeneity, fragility and the degree of breakdown of Stokes-Einstein
relation decreases with increasing dimension. We show that fragilities decrease with
density at all spatial dimensions, approaching Arrhenius behaviour close to the jam-
ming density. This result helps us to resolve the apparent contradiction with previous
results where it was found that fragility increases with heterogeneity [64]. In chapter
5, we have investigated the relationship, between di�erent components, of the di�usiv-
ity and the relaxation time for the same model glass former. Our results show that for
3d the di�usivity or the relaxation time of di�erent components shows a single power
law relation. However, for 4d or higher spatial dimensions, two di�erent power law
regimes are observed with di�erent exponents for di�erent temperature ranges. For
all the dimensions, the exponents in the higher temperature regime are always smaller
than the exponents in the lower temperature regime. Both the exponents (for the high
temperature and the low temperature ranges) increase with increasing dimensions.
We have also investigated the Adam-Gibbs relation for spatial dimension 3 − 8, and
our initial results show that the Adam-Gibbs relation is not valid at 4d or higher spatial
dimensions. However, one caveat is that the vibrational entropy has been computed
using the harmonic approximation, which needs to be justi�ed to reach any de�nite
conclusions regarding the validity of the AG relation.
Investigating the cause of the observed violation of the single power law relation be-
tween the component di�usivities, and its implication to the Adam-Gibbs relation,
could be an interesting direction of future study. In particular, a theoretical under-
standing of the violation of the single power law will be useful.
In chapter 6, we have performed numerical investigations of memory behaviour in
two model systems, the Kob-Andersen binary mixture (BMLJ) and a soft sphere mix-
ture. In the former case, our results extend the earlier observations of encoding and
retrieving the memory of an amplitude of deformation by considering di�erent read
protocols and measurements. Our results show that single and multiple memories can
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be robustly retrieved through these di�erent protocols. We also show that shear defor-
mation by a larger amplitude always erases the stored memories. For the soft sphere
model, we identify a regime where the signatures of memory encoding are similar
to the model glass, even when transitions between local energy minima are absent.
Thus, our results o�er a detailed characterisation of memory e�ects observed in dif-
ferent model systems.
We have studied memory behaviour using Athermal Quasi-Static (AQS) shear. Thus
it would be interesting to check the robustness of this memory at �nite temperature
and �nite shear rate. Understanding the observed memory behaviour through repre-
sentations as mesoscopic models will be an exciting question to answer in the future.
In chapter 7, we have investigated the yielding behaviour of the Kob-Andersen binary
mixture (BMLJ) under the asymmetric shear deformation protocol wherein the applied
strain is cyclically varied between 0 and a maximum value γmax. Recent studies have
shown that yielding behaviour is very di�erent for well annealed glasses compared
to poorly annealed glass. For well annealed glass, the energy of the system does not
change with deformation amplitude under symmetric cyclic shear until the yielding
amplitude is reached and thus, there is no change of structure, whereas poorly an-
nealed glasses display signi�cant mechanically induced annealing below the yielding
amplitude and thus show a signi�cant change of structure. Therefore, one could ask
that the choice of γmin and γmax over which cyclic shear deformation is applied can
change the plasticity and, consequently, the yielding behaviour? With this question
in mind, we study yielding behaviour under asymmetric cyclic shear and investigate
what role annealing plays in this kind of protocol. We have observed that depend-
ing on the degree of annealing of the initial glass, two strikingly di�erent regimes of
behaviour similar to that in the case of symmetric shear deformation emerge. How-
ever, in an intermediate strain window, substantial plasticity emerges before yielding
for well annealed glasses. These results thus reveal the central role of the reference
strain that evolves with applied strain amplitudes in a non-trivial way in the regime
below yielding. However, �nite-size analysis shows that this intermediate window
decreases with increasing system size and thus leads to a remarkable conclusion that
for asymmetric shear, the yield strain amplitude is smaller for well annealed glasses,
in a reversal of observations for symmetric shear.
We have studied here fragile glass former; however other studies on strong glass for-
mer also show similar behavior of yielding when symmetric cyclic shear deformation
is applied. But does fragility play any role for yielding behavior that is not very clear?
Thus, the role of fragility in yielding behavior is an interesting question which could
be investigated carefully in future.
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