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Synopsis

This thesis is based on investigations of a few structural and dynamical aspects in mate-

rials which undergo phase transitions of various types. Specifically we have considered

phase separations in solid and liquid binary mixtures, following changes in relevant ther-

modynamic parameters. We have studied phenomena linked to equilibrium as well as

nonequilibrium domains. In the nonequilibrium case our investigations focused on uni-

versality related to growth and/or aging during the above mentioned phase transitions.

Our results in the equilibrium limit are by concerning descriptions of interfacial prop-

erty with the variation of curvature and associated critical behavior. These are of much

fundamental importance.

In Chapter 1 we provide the theoretical background related to the works presented

in the subsequent chapters. It includes the descriptions of scaling laws in growth dy-

namics and associated aging phenomena in nonequilibrium systems, as well as details

of dependence of interfacial property on critical fluctuation, among other topics. The

chapter also introduces various simulation techniques, viz., Monte Carlo and molecu-

lar dynamics, and discusses methodologies to analyze the simulation results. A brief

overview of the subsequent chapters is provided in the following.

In Chapters 2 and 3 we have presented results on aging dynamics during demixing

transitions in symmetric solid (A+B) binary mixtures. We have followed a protocol

where quenches of systems were performed to the ordered regions with initial configura-

tions having long range spatial correlations, that were prepared at the demixing critical

points. These results on kinetics are obtained via the Kawasaki exchange Monte Carlo

simulations of the nearest neighbor Ising model, in space dimensions d = 2 and 3. The

method preserves the value of system integrated order parameter that is necessary for

the studies of phase separation kinetics. Using state-of-the-art technique we analyze

results on the decay of the order-parameter autocorrelation function which is seen to

exhibit power-law scaling with exponent λ. Via structural analysis we demonstrate that

our estimated values of the exponent satisfy well known bounds in the considered di-

mensions. It transpires that the values of λ for quenches from the correlated initial

configurations are significantly different from those for the quenches from uncorrelated

configurations. Discussion has been provided by comparing these results with those for

nonconserved order-parameter dynamics, that applies to magnetic systems.

In Chapter 4, via hydrodynamics preserving molecular dynamics simulations, we

study growth phenomena in a phase separating binary liquid mixture model with the



x

variation of composition, keeping the focus on off-critical compositions. We quench

homogeneous configurations, prepared at temperatures much higher than the critical

one, to state points inside the miscibility gap. For off-critical compositions, nucleated

droplets of the minority species, in the background of the majority phase, are shown

to grow via coalescence while pursuing Brownian motion. The value of the exponent,

for the power-law growth, has been estimated. This nicely matches with a theoretical

prediction. These results are compared with the growth that occurs via particle diffusion

mechanism, in a non-hydrodynamic environment.

In Chapters 5 and 6 we study the excess free energy contributions due to the pres-

ence of an interface between A-rich and B-rich phases in the coexistence scenario of

binary liquid mixtures. We employ a semi-grand canonical Monte Carlo method that

uses a successive umbrella sampling technique. With the variation of the composition,

that the method allows, the shapes of the minority phase clusters change from spherical

to cylindrical and finally, to slab-like structures, the latter having flat interfaces. We use

a thermodynamic method to analyze the results. The procedure is capable of picking up

information on shape and size of a nucleus or domain as well as corresponding interfacial

tension. In Chapter 5 we present and analyze results for spherical nucleus. Outcomes

of our analysis are consistent with a form for the universal critical behavior for curvature

dependent interfacial tension. Despite the form being universal, in terms of exponents,

we show that there is a model dependent nonuniversal constant. We demonstrate that

the latter strongly varies with the change of critical temperature in a monotonic fash-

ion. In Chapter 6 we analyze both spherical and cylindrical droplets. It is discussed

how in complex situations the interfacial tension can be expressed as a function of the

combination of the principal radii of curvature. Deviations from such descriptions are

pointed out and discussed.

Finally, we summarize the results presented in the thesis. There we have provided

discussions on future possibilities as well.
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Chapter 1

Introduction

1.1 Phase Transition

Phases are states of matter characterized by macroscopic quantities like temperature

(T ), pressure (P ), etc. Some common examples of such phases are solid, liquid, gas, etc.

Change of phase, from one to another, occurs, when the above mentioned thermody-

namic parameters are varied and is manifested by changes in the properties. Some other

common examples are the transition from a paramagnetic phase to ferromagnetic one,

demixing transition in a binary mixture, etc.

In Fig. 1.1 the phase behavior [1] corresponding to a normal chemical substance

has been shown in the P versus T plane. With the variation in T and P the system

can exist in solid, liquid or gas phases. Well-defined boundaries, which are known as

the coexistence curves, divide the whole region into different sub-regions within which

different phases are stable. Along the boundaries two phases can coexist with each other

in equilibrium. If these phase boundaries are crossed, there occur jumps in derivatives

of free energy at the first order, signalling transition of first order type [1–8]. The

point at which all the three coexistence lines meet is known as the triple point. At

this point three phases coexist. If one considers moving along the line of liquid-gas

coexistence, the difference in densities between liquid and vapor phases vanishes at a

point, referred to as the critical point (Tc, Pc). Beyond this it is possible to move

continuously from liquid to vapor state without crossing a phase boundary. In this case

the second derivatives exhibit interesting singularities [1–9]. The latter is referred to as

second order or continuous transition. Transitions of various types can be probed via

the change in appropriately defined order-parameter [1, 2, 8]. This quantity is non-zero

in the ordered phase and has vanishing value in the disordered situation. E.g., in the
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Fig. 1.1 Phase behavior of a typical chemical matter is shown in pressure (P ) versus
temperature (T ) plane. It can be found in any of the three phases – solid, liquid, or gas.
The solid curves denote lines of coexistence. Positions of the triple point and critical
point (Tc, Pc) have been marked.

Fig. 1.2 Phase coexistence curve of a symmetric binary mixture is drawn schematically
in the temperature (T ) versus species concentration (xi) plane. The continuous curve
represents the binodal line and the cross marks corresponds to the critical point. Above
the critical point the system is in homogeneous state, whereas, inside the coexistence
curve system exhibits phase separation.
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case of above mentioned magnetic transition system-integrated value of magnetization is

the order-parameter. For a vapor-liquid transition, difference in densities between liquid

and vapor phases, ∆ρ = ρl − ρv, is the order-parameter. Analogously, composition

or concentration difference, ∆x = xA − xB, is the relevant order-parameter for phase

separating binary (A+B) mixtures.

In Fig. 1.2 phase coexistence curve for a symmetric binary (A+B) mixture system has

been plotted in temperature (T ) versus concentration plane. Concentration of a species,

xi, is given by xi = Ni

N
, Ni being the number of i-type particles, i ∈ [A,B] and N the

total number of particles. Here the critical point is marked as (xc, Tc). Above Tc the

system is a uniform mixture of A and B particles and below Tc the equilibrium situation

is the coexistence of A-rich and B-rich phases, with the composition in different phases

being represented by two branches of the coexisting curve as a function of temperature.

1.2 Critical Phenomena

Given that in Chapter 5 we will address question concerning critical behavior of curvature

dependent interfacial tension, here we provide a brief discussion of critical phenomena.

When a system is at or in the close proximity to the critical point there occur certain

singularities [1, 4, 10–13], influenced by the order-parameter fluctuations [1, 4, 10]. This

is referred to as the critical phenomena [1, 4, 10]. One can express these singularities

as power-law functions of the reduced temperature ǫ (= |T − Tc|/Tc). Below we define

some of the critical exponents [1, 3, 8]:

Order-parameter: ψ ∼ ǫβ, (1.1)

Susceptibility: χ ∼ ǫ−γ, (1.2)

Heat capacity: C ∼ ǫ−α, (1.3)

Correlation length: ξ ∼ ǫ−ν . (1.4)

The exponents α, β, γ and ν follow certain scaling relations [1, 3, 8]:

Rushbrooke relation: α + 2β + γ = 2, (1.5)

Josephson relation: νd = 2 − α, (1.6)

Fisher relation: γ = ν(2 − η), (1.7)
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Widom relation: γ = β(δ − 1). (1.8)

In Eq. (1.6) d is the system dimension, in Eq. (1.7) η is an exponent associated with the

spatial structure, and in Eq. (1.8) δ is the exponent associated, e.g., with magnetization

(m) in a ferromagnetic system at T = Tc:

m ∼ H1/δ, (1.9)

where H is the externally applied magnetic field. These exponents are universal in

nature [1, 11]. This is in the sense that their values do not depend on the details

of the interaction among the constituent particles. This is nicely captured within the

Renormalization Group (RG) theory [3, 8]. Depending upon whether the interaction

among the particles is short- or long-ranged, the scalar order-parameter there exist two

universality classes [3, 8] for the above mentioned static properties, i.e., Ising universality

class and the classical universality class. For 3D Ising class, the exponent values are [3, 8]

α = 0.11, β = 0.325, γ = 1.239, ν = 0.63. (1.10)

This universality class includes systems with short range interactions. For the classical

universality class one has

α = 0, β = 1/2, γ = 1, ν = 1/2. (1.11)

Like the static quantities certain “equilibrium” dynamic properties also show universal

behavior, although not as robust [11]. E.g., due to critical fluctuations the relaxation

time diverges [11]. This phenomenon is known as critical slowing down, which gets

reflected in the very slow dynamics in the system near criticality.

1.3 Phase ordering dynamics

When thermodynamic parameters are varied, a homogeneous system becomes unstable

against the fluctuations and moves towards the new equilibrium which is inhomogeneous

in nature, if the change is related to quench inside a miscibility gap [4–7]. E.g., if a

homogeneous binary (A+B) mixture is suddenly cooled down from a high temperature

isotropic configuration to a temperature below the miscibility gap, it will move towards

the phase separated state via formation and growth of similar-particle-rich domains.

This evolution [4–7] is a complex nonlinear process. During this one observes growth of
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Fig. 1.3 Evolution snapshots following critical quench of a binary (A+B) mixture system.
The green and white colors represent A and B particles, respectively. These results were
obtained from the study of the well known Cahn-Hilliard equation [6, 7, 14, 15].

the characteristic lengths, ℓ(t), associated with domains, in a power-law manner, viz.,

ℓ(t) ∼ tα. (1.12)

Values of the growth exponent α depend on various parameters like order parameter sym-

metry, its conservation, dimensionality, effects of hydrodynamics, etc [4–7]. In systems

with conserved order-parameter dynamics, system integrated value remains constant

with time. Depending upon the region of quench inside coexistence curve, the coarsen-

ing occurs via spinodal decomposition or nucleation and growth, which we discuss below.

Note that Chapter 2, 3 and 4 deal with questions related to kinetics of phase separation.

1.3.1 Spinodal decomposition

Spinodal decomposition [4–7, 14, 15] is observed if a system is quenched with an overall

density or composition around the critical value. Typical evolution snapshots are shown

in Fig. 1.3, for a binary mixture model. In this case, the system becomes unstable

against small length scale fluctuations which leads to phase separation. Here the evolving

structures are essentially bicontinuous in nature. Note that the average domain length

can be calculated as the average of the distances between two successive interfaces, as

seen in Fig. 1.3, by scanning the systems in various directions. There exist other methods

also to calculate this characteristic length scale in an evolving system. Outcomes of

different methods are proportional to each other.
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Fig. 1.4 Frames representing evolution following an off-critical quench of a binary (A+B)
mixture system. The green and white colors correspond to A and B particles, respec-
tively.

1.3.2 Nucleation and growth

If the region of quench is close enough to any branch of the coexistence curve then the

phase-separation belongs to the so called nucleation and growth category [5, 6, 16, 17].

Fig. 1.4 demonstrates the representative evolution snapshots for offcritical binary fluid.

In this case, the system is stable against fluctuations of small wavelength. However,

long length scale rare fluctuations can produce instability in such systems, leading to

formation of disconnected cluster or nuclei.

The creation of a nucleus introduces an interface between the two phases. Crucial

facts related to this are of much interest in the equilibrium context. In Fig. 1.5(a) we

have shown a nucleus of phase B of radius R, which is separated from the background

phase A by an interface. The presence of the interfaces introduces a free energy barrier,

∆F , which can be expressed as [5, 6]

∆F (R) = −
4

3
πR3fv + 4πR2γ, (1.13)

fv and γ being the volume free energy density and surface tension, respectively. In Fig.

1.5(b) typical shape of ∆F is shown as a function of R. The stability of a nucleus is

decided by the competition between the volume and surface terms. A nucleus is going

to be stable only if its surface to volume ratio is low enough. At R = Rc = 2γ/fv, the

critical radius, ∆Fc, the excess free energy, has its peak and is known as the activation

energy. If the radius of a droplet is larger than Rc, it becomes a stable droplet as the

total free energy lowers with the addition of new particles into it. These droplets can

grow further with time, whereas nuclei smaller than the critical radius will shrink or
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Fig. 1.5 (a) Schematic picture of a droplet of B particles is shown in the background
consisting of A particles. The radius of the nucleus is R. The dashed circle highlights
the position of the interface. (b) Excess free energy ∆F has been plotted as a function
of R.

break. At a temperature T the rate of formation of stable nuclei is proportional to

e
− ∆Fc

kBT .

1.4 Growth in systems following conserved dynam-

ics

For conserved order-parameter [6, 7], as mentioned earlier, the system integrated value

of the order-parameter remains constant throughout the evolution. With the local order

parameter ψ(~r, t), one defines ψtot =
∫

ψ(~r, t)dV , as the global order parameter, dV

being a small volume element around ~r. The constraint of ψtot remaining constant with

time, makes the dynamics much slower. To achieve adequately large length scales, and,

thus, to comment on the growth and related behavior in the asymptotic limit, one re-

quires to run simulations over real time scales that are extremely long even with modern

computational facility. This is the reason why simulation studies remain challenging for

this case. This is more true at low temperature for which metastability poses further

serious problem. To avoid this we will stick to a reasonably high temperature, viz., 0.6Tc,

in both Chapter 2 and Chapter 3. We will discuss relevant growth laws for two cases

belonging to this category, viz., solid and fluid binary mixtures.

1.4.1 Solid binary mixture

In this class of systems the growth occurs due to the diffusion of material following the

gradient in chemical potential. The bigger domains or clusters grow larger at the cost of
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the smaller ones. This phenomenon is known as Ostwald ripening, as it was described

by German chemist Wilhelm Ostwald in 1896 [18, 19]. The corresponding growth can

be described via the Lifshitz–Slyozov–Wagner (LSW) theory [20–23].

In this case the relevant space and time dependent order-parameter is defined as

ψ(~r, t) = xA(~r, t) − xB(~r, t). For ψ, the evolution is expected to follow the continuity

equation [6, 7]:
∂ψ(~r, t)

∂t
= −~∇ · ~J(~r, t), (1.14)

where ~J(~r, t) is the diffusion current,

~J(~r, t) = −D~∇µ(~r, t), (1.15)

D and µ(~r, t) being the diffusion coefficient and chemical potential, respectively. This

leads to the construction of Cahn-Hilliard (CH) equation. Note that µ, the chemical

potential is defined through the first order derivative of the Ginzburg-Landau free energy

functional with respect to ψ. One also associates the interface velocity with the gradient

of chemical potential and writes [22]

dℓ(t)

dt
∼ |~∇µ| ∼

γ

ℓ2(t)
. (1.16)

From Eq. (1.16) one gets

ℓ(t) ∼ t1/3, (1.17)

the Lifshitz–Slyozov–Wagner (LSW) law [20–22], which is typically valid for phase sep-

aration in solid mixtures at various dimensions. The demixing transition in solid binary

mixtures can be studied numerically via the CH equation as well as via Kawasaki spin

exchange Monte Carlo (MC) [24] simulations of the Ising model. The Ising Hamiltonian

is

H = −J
∑

<ij>

SiSj; Si = ±1; J > 0. (1.18)

Here an up spin (+1) can be identified as one of the particle species (say A) and down

spin (−1) as the other one. In the MC simulations one selects a pair of nearest neighbor

spins randomly and interchanges their positions. This trial is accepted or rejected via

the Metropolis algorithm [24], which we will discuss later in the chapter.
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1.4.2 Fluid system

In kinetics of phase separation in fluids, hydrodynamics does play an important role,

which leads to faster growth. In this case the growth exponent depends upon morphol-

ogy as well as dimensionality [16, 17, 25–48]. The domain coarsening in fluids will be

discussed here in the context of liquid-liquid transition. For fluids, initially the growth

occurs via diffusive mechanism as in solids [6, 7]. But as the domain size becomes

considerably large, the system enters into the hydrodynamic regime.

For the quenches with compositions close to the critical value one observes forma-

tion of interconnected bicontinuous domains throughout the system. There advective

transport of material through these channel-like domains occurs because of the pressure

difference having connection with the interfacial tension [6, 7, 26–28, 42]. By balancing

the surface energy density (γ
ℓ
) with the viscous stress (6πηvℓ/ℓ), vℓ and η being the

interface velocity and the shear viscosity, respectively, one writes

vℓ =
dℓ(t)

dt
=

γ

6πη
. (1.19)

This provides the viscous hydrodynamic growth [6, 7, 17, 26, 39, 42, 43]:

ℓ(t) ∼ t. (1.20)

The crossover to this linear regime occurs when ℓ(t) >> ℓvis ∼ (Dη)1/2. At late time,

when kinetic energy dominates over viscous stress, as ℓ becomes even larger, ℓ(t) >>

ℓin(= η2

ργ
), the growth law can be found by relating surface energy density (γ

ℓ
) with

kinetic energy density (ρv2
ℓ ). Related dynamic equation is

dℓ(t)

dt
=

√

γ

ρℓ
, (1.21)

This provides

ℓ(t) ∼ t2/3, (1.22)

which is referred to as the inertial hydrodynamic growth [6, 7].

In the case of quenches close to the phase coexistence curve, disconnected droplets

of the minority phase form. These may grow via diffusive motion and sticky collisions.

This is known as diffusive coalescence mechanism [16, 17, 25, 26, 33–35, 37, 43, 48],

that was proposed by Binder and Stauffer [16, 25, 26]. The droplet density (n), in this
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mechanism, decays with time as

dn

dt
= −CDℓn2, (1.23)

D being the diffusion constant and C a proportionality constant. Since the droplets move

in Brownian fashion, the Stoke-Einstein-Sutherland relation provides a constant value

for Dℓ [49–51]. Incorporating this fact and using n ∼ 1/ℓd, that arises from conservation

of material, in Eq. (1.23), one obtains

dℓ(t)

dt
∼

1

ℓd−1
. (1.24)

Solving Eq. (1.24) one gets ℓ(t) ∼ t1/d. Therefore, in d = 3 the value of α is 1/3,

same as the LSW growth exponent, though the mechanisms are completely different.

One can distinguish between these two by studying the growth amplitudes. Amplitude

for BS growth will be higher than that of LS growth. The symbols η and α here, as

already clear, are different from the exponents that are defined in the critical phenomena

context.

1.5 Structural aspect of nonequilibrium dynamics

During the coarsening process there appear different patterns which are self-similar in

nature, i.e, the evolving structures at different times vary only by a change in the char-

acteristic length ℓ(t) [2, 4–7]. To investigate this self-similarity one looks at certain

functions that characterize the morphology of the system. Examples of such functions

are the two-point equal-time correlation function C(r, t), its Fourier transform, S(k, t),

the structure factor, etc. These functions exhibit scaling relations arising from the self-

similar property, which we discuss below.

1.5.1 Two point equal-time correlation function

This function, C(r, t), is calculated as [2, 7]

C(r, t) = 〈ψ(~r, t)ψ(~0, t)〉 − 〈ψ(~r, t)〉〈ψ(~0, t)〉, (1.25)

where the angular brackets indicate statistical averaging. On the issue of averaging,

we note that there are two sources of fluctuations, one arising from the differences
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Fig. 1.6 (a) Two-point equal-time correlation functions, C(r, t), are shown, from several
times, versus the distance between two particles, r. (b) Plots of C(r, t) with the variation
of the scaled distance r/ℓ(t). These results are from one of the model systems we have
used in the thesis, viz., the Ising model.
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Fig. 1.7 Plots of the scaled structure factors, S(k, t)ℓ−3 (k is the wave number), versus
kℓ, for three different times. The solid line represents power-law decay with exponent
−4 and is related to the Porod law. The dashed line corresponds to a power-law with
exponent σ. These results are for the same model as in Fig. 1.6.

in the initial configurations and the other is the thermal effect. In general during a

nonequilibrium process C(r, t) at different times follow the scaling behavior [2, 7]

C(r, t) ≡ C̃(r/ℓ(t)). (1.26)

Here C̃ is a time independent master function. The domain length can also be measured

from the decay of C(r, t) as C(r = ℓ(t), t) = h, h being a constant. This scaling

property of C(r, t) validates power-law time dependence of growth of ℓ(t) [2, 7]. Fig. 1.6

demonstrates this scaling property. It can be noted from Eq. (1.25) that the correlation

function depends only on the scalar separation between two space points. This arises

from the expectation that the structure is spatially isotropic.

1.5.2 Structure factor

In experiments, instead of C(r, t), the quantity which is commonly measured is the

structure factor S(k, t), where k = |~k| is wave number. This is related to C(r, t) as

S(k, t) =
∫

d~rei~k·~rC(~r, t). (1.27)
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Fig. 1.8 Autocorrelation functions Cag(t, tw) for various tw values are plotted with the
variation of ℓ/ℓw. The solid line denotes a power-law with the aging exponent λ. These
results are from the same model system as in Fig. 1.6.

For a self-similar process, S(k, t) exhibits the scaling property [2, 7]

S(k, t) ≡ ℓd(t)S̃[kℓ(t)], (1.28)

where S̃ is an analog of C̃. For large k, S(k, t) decays in a power-law manner as S(k, t) ∼

k−(d+nc), nc representing order-parameter symmetry. This is known as the Porod law [52–

54], which is nicely observed for sharp domain interfaces or defects. For k → 0, S(k, t)

obeys the power-law behavior S(k, t) ∼ kσ [55], in which the exponent σ depends upon

system dimensionality and the conservation of order-parameter. These are demonstrated

in Fig. 1.7.

1.6 Aging in coarsening dynamics

Aging related properties [6, 56–58] form an interesting domain of nonequilibrium physics.

This is related to the increase of relaxation time with the increase of age of the system.

This says that an older system relaxes slower than a younger system. This is manifested

in the behavior of two time quantities, e.g., the order-parameter autocorrelation function,
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Cag(t, tw). The latter is defined as (t > tw) [6]

Cag(t, tw) = 〈ψ(~r, tw)ψ(~r, t)〉 − 〈ψ(~r, tw)〉〈ψ(~r, t)〉. (1.29)

Here t and tw are, respectively, the observation and waiting times. The latter is also the

age of the system. Note that in the definition of Cag(t, tw) we have set r = 0. Despite the

fact that the decay rates depend on tw, in various evolving systems Cag(t, tw) displays

the scaling [6, 56] (see Fig. 1.8)

Cag(t, tw) ∼ (ℓ/ℓw)−λ , (1.30)

where ℓ and ℓw are the average domain lengths at t and tw, respectively, and λ is the

aging exponent, which satisfies certain bounds. These bounds were first proposed by

Fisher and Huse (FH) [56]:

λ ≥
d

2
. (1.31)

Yeung, Rao and Desai (YRD) [58] later formulated a more precise and generic bound:

λ ≥
d+ σ

2
. (1.32)

Chapters 2 and 3 in this thesis address questions concerning the influence of initial

correlation on aging dynamics in coarsening systems. We have considered two particular

cases, viz., we have quenched initial configurations with ξ = 0 and ξ = ∞ to tempera-

tures below the critical points for Ising systems obeying order parameter conservation

in d = 2 and 3. A more general study will, of course, consider initial configurations

with continuously varying ξ. Note that ξ = 0 and ξ = ∞, as discussed in Sec. 1.2,

correspond to preparations of initial equilibrium configurations at T = ∞ and T = Tc.

We will see that in these two cases the aging exponents differ from each other drasti-

cally, in each of the considered space dimensions. Here, it is worth recalling that the

renormalization group arguments suggest [59] that asymptotically the growth exponent

α should be independent of the choice of T or ξ for the initial configurations. In light

of the recent observation [60], however, of Mpemba effect in Ising model, it becomes

necessary to verify whether the growth amplitude will also be independent of initial ξ.

The theoretical expectation is similar for quenches to different temperatures below the

critical point, as far as the exponent is concerned. In the latter case, the fact is expected
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to hold for aging phenomena as well. The above expectations have connection with the

convergences to fixed points related to T = 0 and T = ∞ upon renormalization [59, 61].

For an idea of the current status of the literature, on the value of λ, we have added

a table here. We mention here that Cag(t, tw) in Eq. (1.29) can be decomposed into two

Table 1.1 List of numerically obtained values of λ for the nearest neighbor Ising model.
Here “Correlated" and “Uncorrelated" imply results for quenches from Ts = Tc and
Ts = ∞, respectively. The results for the correlated COP cases will be provided later.

Model
d = 2 d = 3

Correlated Uncorrelated Correlated Uncorrelated
COP – 3.6±0.2 [62] – 7.5±0.4 [62]

NCOP 0.14±0.02 [63] 1.32±0.04 [64] 0.57±0.07 [63] 1.69±0.04 [64]

parts, viz., a time translation invariant part and a time translation variant part. The

first one is related to domain magnetization that behaves, even during pre-asymptotic

period, like that in an equilibrium system. The second one is related to the global

evolution and the scaling laws for aging are by concerning this.

1.7 Surface tension and its curvature dependence:

An equilibrium property

From the perspective of thermodynamics, interfacial tension is an important quantity

to calculate as it determines the energy barrier to overcome to form a stable cluster

of a phase. This can be defined as the free energy per unit interfacial area. In the

classical nucleation theory (CNT) curvature dependence of interfacial tension is typically

ignored, even though related concepts exists since the time of Gibbs [65]. Tolman [66–68]

proposed the corrections of the form [68]

γ(R) =
γ(R = ∞)

1 + (p−1)δ
R

. (1.33)

Here γ(∞) is the surface tension of a flat interface. The parameter p equals 3 and 2,

for spherical and cylindrical interfaces, respectively, and δ, being separation between the

equimolar surface and surface of tension [65, 69–71], has the dimension of length. This

is referred to as the Tolman length.

For systems which are symmetric under the interchange of the two coexisting phases,

δ vanishes [72]. There the curvature dependence of γ can be written, to the leading
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order, as [72, 73]

γ(R) =
γ(∞)

1 + 2( ℓ̃
R

)2
, (1.34)

where ℓ̃ is the constant prefactor for the quadratic correction term. This is a function of

bending rigidity (κ) and the rigidity constant (κ′) related to Gaussian curvature of the

interface as [74, 75]

ℓ̃2 = −
κ + κ′/2

γ(∞)
. (1.35)

1.8 Methods

This thesis contains numerical studies of phase transitions in two different primary mod-

els of solid and liquid binary mixtures. For this purpose we have used Monte Carlo (MC)

and molecular dynamics (MD) simulation methods.

1.8.1 Monte Carlo Simulation

To study different properties of phase separating systems we have employed various types

of Monte Carlo simulations [24]. We have used Kawasaki spin-exchange MC simulations

to study the aging dynamics in the conserved Ising model, mimicking growth in solid bi-

nary mixtures, and a semi-grandcanonical Monte Carlo (SGMC) technique to investigate

the equilibrium interfacial properties in binary fluid mixtures. In solid binary mixtures,

growth occurs via diffusive transport of matter as hydrodynamics does not play any role

in the coarsening process. This process can be imitated nicely by MC simulation with

order-parameter conserving Kawasaki dynamics. In this case, one starts with a lattice

containing randomly located up and down spins. This corresponds to a homogeneous

solid binary mixture at high temperature where the A and B species are perfectly mixed.

Then the system is updated via trial moves. In this process exchange of spins between

randomly selected neighboring sites is tried. These are accepted by following the well-

known Metropolis algorithm. This algorithm [24] deals with the transition probability

which depends on the energy deviation in the final state from the initial one.

Pi(t), the probability to find a system in the i-th state at time t follows the master

equation
∂Pi(t)

∂t
= −

∑

i6=j

[Pi(t)Π(i → j) − Pj(t)Π(j → i)], (1.36)
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where Π(i → j) is the rate for transition from the i-th state to the j-th state. At

equilibrium, the left hand side of Eq. (1.36) should be zero, i.e., one has

Pi(t)Π(i → j) = Pj(t)Π(j → i). (1.37)

This is known as the detailed balance equation. In the Metropolis algorithm [24]

Π(i → j) = e
− ∆E

kBT , ∆E > 0 (1.38)

= 1, ∆E ≤ 0 (1.39)

where ∆E = Ej −Ei and kB is the Boltzmann constant. This algorithm is implemented

in numerical simulations by the following protocol [24].

(1) A particle or spin ‘s’ is randomly selected from a configuration.

(2) Particle ‘s’ undergoes a random displacement or exchanges its position with one of

its randomly chosen nearest neighbors.

(3) The energy difference between the initial and final states is calculated.

(4) A random number Γ is generated between 0 and 1.

(5) If Γ < e
− ∆E

kBT , then the trial move is accepted.

Wolff Algorithm

Near the critical point Tc, large spatial correlations develop inside the system and the

relaxation time (τ) diverges as [4, 10]

τ ∼ ξz, (1.40)

where z is a dynamic critical exponent. Note that the correlation length ξ diverges as

in Eq. (1.4). We thus encounter a phenomenon called ‘critical slowing down’ [11]. In

order to overcome this, Wolff algorithm [76] is useful. There, instead of attempting

single spin-flip trials, one performs flipping of correlated clusters of spins having same

sign. The algorithm is prescribed below [76].

(1) A particle or spin ‘i’ is randomly selected from a configuration.

(2) All nearest neighbors ‘j’ of this spin are added to a single cluster with a probability

1 − e
− 2J

kBT , provided ‘i’ and ‘j’ are of similar type and the bond between them has not

been considered before.

(3) Repeat the previous step for each connected spin and add it to the cluster accordingly,

until no more bonds are left.
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(4) Invert the whole cluster. This completes one Wolff step.

This is a rejection-free algorithm and thus, strongly suppresses dynamic slowing down

near a critical point.

Grand and Semi-grand Canonical Monte Carlo

The above discussion is for simulations in NVT or canonical ensemble. In case of grand

canonical ensemble (µVT) [24], one considers fluctuations in the energy and number of

particles at fixed volume and temperature. There, the acceptance probability will, in

addition to ∆E, depend also on the chemical potential µ of a particle.

The grandcanonical Monte Carlo is used for studying vapor-liquid transition. In

the case of phase transition in a binary mixture (A+B), where the fluctuation in the

concentration of a component (xA or xB) is allowed by keeping the overall particle density

constant, one can employ a semi-grandcanonical Monte Carlo (SGMC) technique [24].

In this technique other than the standard displacement moves one attempts to switch

the species identity of a randomly selected particle (A → B → A). This is equivalent to

placing one B particle at a vacant position which is being created by removing one A

particle from that site. This is analogous to the Glauber dynamics [24] that is used to

study kinetics of phase transition in magnetic systems.

With simple SGMC simulations [24], mainly at low temperatures (T << Tc), it is

not always possible to sample the whole composition space because of the presence of

high interfacial free energy barrier between the coexisting phases. There the system

gets trapped in one side of the coexistence curve. To overcome such shortcomings, one

can use more advanced simulation techniques such as the successive umbrella sampling

method [77], where it is possible to control the composition in such a way that the whole

range of the latter can be explored. Below we describe briefly the implementation of

this technique.

Here, the relevant range of macrostates, defined by the concentration of a species,

say A, i.e., xA, is subdivided into m number of overlapping windows of convenient width

∆xA. For each window, a separate SGMC simulation is done. In the k-th window, when,

say, N∆xA = 1, one has to start with xA : xB = k : (N − k) and allow the system to

change the value of xA only between k and k+N∆xA. If any SGMC move tries to bring

the system out of this window, it will be rejected. If H(k) counts how often k-th state

is being visited by the system, one can formulate the probability distribution as [77]

P (k)

P (0)
=
H(1)

H(0)
·
H(2)

H(1)
· · · ·

H(k)

H(k − 1)
. (1.41)
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Once such a probability distribution is estimated, interfacial properties can be calculated

via standard rules.

1.8.2 Molecular Dynamics Simulation

We have employed MD simulations [78] to study the nonequilibrium properties of liquid-

liquid phase transition, for which the preservation of hydrodynamics is important. In

these simulations, Newton’s equations of motion are numerically solved for a large num-

ber of particles, interacting among themselves via a smooth potential, by using various

algorithms. In this thesis we have used the Verlet velocity algorithm [78]. The position

and velocity updates for the x-components of the i-th particle in this algorithm are given

by

x(t+ ∆t) = x(t) + ẋ∆t+ ẍ
∆t2

2
, (1.42)

vx(t+ ∆t) = vx(t) +
1

2
∆t[ẍ(t) + ẍ(t+ ∆t)]. (1.43)

This is the procedure of MD simulation in microcanonical (NVE) ensemble where

the total energy remains constant. We have used MD simulations in canonical (NVT)

ensemble. There, to keep the temperature of the system fixed, one needs to use a thermo-

stat. In the literature there exists several thermostats that can control the temperature

well. Some examples are Andersen thermostat [79], Nosé-Hoover thermostat [80–82], etc.

In the Andersen thermostat [79] randomly selected particles are made to collide with

an external heat reservoir. After a collision the new velocity of the particle is drawn

from a Maxwell-Boltzmann distribution mimicking the desired temperature. Thus, this

prescription builds a stochastic coupling of the system with an external heat bath of

a constant temperature. The collision frequency or the strength of the coupling can

be controlled by a parameter Ω, which one has to choose wisely. As the value of Ω is

increased, more collision events are going to happen, hence, there will be more and more

deviation from the conservation of the local momentum, destroying the hydrodynamics.

Therefore, this thermostat can not be used for replicating the real dynamics of a fluid

system where preservation of hydrodynamics is important.

The Nosé-Hoover thermostat (NHT) [80–82], which is based on the efficient usage of

the extended-Lagrangian approach, can be a very good choice if one needs to do deter-

ministic MD simulation at a fixed temperature. Here the heat-bath is being considered

as an intrinsic part of the system, which will be described by a position-like co-ordinate

s, conjugate momentum ps and the “mass” Q = ps/ṡ. The quantity Q is considered as
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the coupling constant between the reservoir and the real system. With this prescription

one has the Hamiltonian of the system as

H =
N
∑

i=1

mi

2
s2ṙi

2 − U(~r) +
Q

2
ṡ2 − (3N + 1)kBT lns (1.44)

where (3N+1) is the total number of degrees of freedom of the system and the logarithmic

term is essential for proper time scaling. In the extended system time interval ∆t′ does

not equal the real time ∆t, they are related as ∆t = s∆t′. Another parameter ζ = ṡ/s,

known as the friction coefficient, is introduced. This quantity controls the particle

velocities and, hence, the temperature of the system. The dynamical equations for the

NHT are written as

mi~̇ri = ~pi, (1.45)

v̇i = −
1

mi

∂U(~r)

∂~r
− ζ~̇vi, (1.46)

ζ̇ =
1

Q

[

N
∑

i=1

p2
i /mi − 3NkBT

]

. (1.47)

As the difference between the desired temperature and the effective temperature

(which is proportional to the kinetic energy of the constituent particles) increases, ζ

fluctuates in such a way that the difference tends to decrease. The position and velocity

update equations with NHT are

xi(t+ ∆t) = xi(t) + ẋ(t)∆t+ [ẍ(t) − ζẋ(t)]
∆t2

2
, (1.48)

vx(t+ ∆t) =vx(t) +
∆t

2
[ẍ(t) + ẍ(t+ ∆t) − 2ζẋ(t)]

−
∆t2

2

[

ζ

2
(ẍ(t) + ẍ(t+ ∆t) − 2ζẋ(t))

+vx(t)(
N
∑

i=1

p2
i /mi − 3NkBT )/Q

]

. (1.49)

This thermostat can preserve hydrodynamics efficiently and, therefore, can be used for

studying the dynamics in fluids.
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1.9 Brief Overview of the thesis

In this thesis we have investigated various nonequilibrium and equilibrium aspects con-

cerning phase separation in binary mixtures. In chapters 2 and 3 results for aging

dynamics during demixing transitions in symmetric solid mixtures have been presented.

These were obtained via MC simulations of the nearest neighbor Ising model in space

dimensions d = 2 and 3. We have quantified the role of the long range correlation in

the initial configuration on the dynamics. We have prepared the initial configurations at

the demixing critical points and performed quenches to the ordered regions. The results

were obtained via Kawasaki exchange Monte Carlo [24] simulations.

In chapter 4, we have presented results on the kinetics of demixing transition in binary

fluids. This chapter deals with the identification of growth mechanism in the case of

off-critical quench, for dense liquid mixtures, via hydrodynamics preserving molecular

dynamics simulations [78].

In chapter 5 we study the excess free energy contribution due to the presence of the

interface between two coexistence phases in a symmetric liquid mixture via semi-grand

canonical Monte Carlo [24] simulations. By varying the composition, the shapes of

the minority phase clusters change from spherical to cylindrical and finally, to slab-like

structures with flat interfaces. Here we investigate the universality related to the critical

behavior of the curvature dependent interfacial tension.

In chapter 6 it is discussed how in complex geometrical situations the interfacial

tension can be expressed as a function of the combination of the principal radii of

curvature. Deviations from such descriptions are pointed out and discussed.
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Chapter 2

Initial Correlation Dependence of

Aging in Phase Separating 2D Solid

Binary Mixtures

2.1 Introduction

When a homogeneous mixture is quenched from a high starting temperature (Ts) to a

final temperature (Tf) inside the miscibility gap, the system falls unstable against the

fluctuations and moves towards a new equilibrium state via formation of domains rich

in particles of similar type [1–5]. Understanding of this nonequilibrium process is crucial

from scientific as well as technological point of views. The relaxation of such systems

are often investigated via the two-time auto-correlation function. This is defined as [6]

Cag(t, tw) = 〈ψ(~r, t)ψ(~r, tw)〉 − 〈ψ(~r, t)〉〈ψ(~r, tw)〉, (2.1)

where ψ is a space (~r) and time dependent scalar order parameter. Here t and tw (≤ t)

are the observation and waiting times, respectively. Note that tw is also known as the

age of the system.

In nonequilibrium systems the time-translation invariance is not obeyed. This implies

that if one starts from different tw values, the relaxation rates differ. Nevertheless

Cag(t, tw) exhibits certain scaling property [6–22]:

Cag(t, tw) ∼ (ℓ/ℓw)−λ, (2.2)
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ℓ and ℓw being the average domain sizes at times t and tw, respectively. The exponent

λ is referred to as the aging exponent. In phase ordering systems ℓ grows with time in

a power-law fashion [1–4, 6]

ℓ ∼ tα, (2.3)

where α is the growth exponent. For the complete understanding of nonequilibrium

universality classes [2, 19] quantification of these exponents is important.

For the quench from Ts = ∞, corresponding to random initial configurations, the

values of the above mentioned exponents are well studied [13, 14, 18–20, 23]. Another

relevant case can be the quench from the critical temperature Tc [19, 20, 24–26]. At

Tc for a thermodynamically large system size, the correlation length, ξ, diverges, i.e.,

ξ = ∞ [2, 3, 27]. This large correlation length in the initial structure influences the

evolution of a system, when quenched from Ts = Tc. So the corresponding universality

class differs from the case of Ts = ∞. This aspect of universality has been demonstrated

already in the case of ordering ferromagnets [19, 20]. The value of the growth exponent

is reported to be same whereas there are differences in the other structural and dynamic

quantities [19, 20, 24–26] for quenches from Ts = ∞ and Ts = Tc.

In contrast to the magnetic case, for which there is no constraint on the conservation

of system integrated order parameter during evolution [2], the task of understanding of

coarsening phenomena is known to be significantly more difficult, at least theoretically

and computationally, for conserved order parameter dynamics that applies to kinetics of

phase separation in multi-component mixtures [2]. Computational difficulty [23, 28, 29],

to a certain extent, arises from the significantly slower dynamics in the latter case.

Note that for the nonconserved case [2, 30] α = 1/2, whereas for the conserved case

[2, 31, 32] α = 1/3. Furthermore, irrespective of the type of dynamics, conserved or

nonconserved, quantitative understanding of aging behavior, even for simple models, still

remains difficult, convergence in the settlement of issues being rather slow [7–20, 33–37],

despite the availability of huge computational resources.

Nevertheless, there exists studies on systems that follow conserved order parameter

dynamics where methods like finite size scaling techniques [14, 38] have been adopted for

the analyses. One of such studies is on phase separating binary (A+B) mixture, where

the quantification of λ has been done via finite-size scaling method [14] for the quench

from Ts = ∞. Here and in a number of previous studies [14, 16, 17] it is shown that λ

obeys certain bound, given by Yeung, Rao and Desai (YRD) [9]:

λ ≥
d+ β

2
, (2.4)
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where d is the system dimensionality and β is the power-law exponent of structure factor

[39] in the limit k → 0, with k being the wave number. This can be written as

S(k → 0, tw) ∼ kβ. (2.5)

For nonconserved order-parameter dynamics the structural scaling for Ts = Tc is

reported to be different from that of Ts = ∞ [19, 20]. This points towards the fact that

the value of λ differs in the two cases leading to different universality classes. One can

expect this to be true for the case of conserved order-parameter dynamics as well.

In this chapter we focus on the conserved case, i.e., we take up the task of estimating

λ for solid binary (A+B) mixtures with Ts = Tc. Note that nonequilibrium universality

classes are also decided [2] by the space dimension, order-parameter symmetry and

presence of hydrodynamics. Here we focus on d = 2 and scalar order parameter, in

absence of hydrodynamics, i.e., in our model system coarsening occurs due to simple

diffusive transport, as expected in solid mixtures.

We have also shown that the estimated value of λ is consistent with the lower bound

given by YRD. These numbers are discussed with reference to the corresponding numbers

[14] for Ts = ∞. It transpires that for conserved order parameter also λ for Ts = Tc is

hugely different from that for Ts = ∞.

2.2 Models and Methods

We study nonequilibrium dynamics in solid binary mixtures via Kawasaki exchange [40]

Monte Carlo method [41–43], using the Ising model [27] in space dimension 2. The Ising

Hamiltonian is given by [27, 42]

H = −J
∑

<ij>

SiSj; Si = ±1; J > 0, (2.6)

where the values +1 and −1, of Si or Sj , correspond to particles of types A and B,

respectively. We considered a square lattice, with periodic boundary conditions [42] in

both the directions. The value of critical temperature for this model [27, 42] in d = 2

is ≃ 2.269J/kB. Here J and kB are the interaction strength and Boltzmann constant,

respectively.

A trial move in the Kawasaki exchange Ising model (KIM) is the interchange of par-

ticles between randomly selected nearest neighbor sites. The probability of acceptance
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of trial moves is given by [41–43]

P (i → j) = min(1, exp(−(Ej − Ei)/kBTf)), (2.7)

where Ei(j) is the energy of the state i(j). One Monte Carlo step (MCS) consists of

L2 trial moves, where L is the linear dimension of a square box, in units of the lattice

constant a. Time in our simulation is measured in units of MCS. Throughout the chapter,

we set the quantities J , kB and a to unity.

We present results mainly from the quenches of the systems from Ts = TL
c , where TL

c

is the system-size dependent critical temperature [38, 44]. The final temperature is kept

fixed at Tf = 0.6Tc. This choice of temperature is to avoid metastability as discussed in

the previous chapter. For the purpose of comparison we have performed quenches from

Ts = ∞ also. Here note that the asymptotic growth exponent α are said to be same [20]

for both Ts = ∞ and Ts = Tc for quenches to Tf < Tc.

In the vicinity of the critical point one encounters critical slowing down [45], making

the simulations time taking. In order to avoid this, for obtaining the equilibrium con-

figurations at TL
c , we have used the Wolff algorithm [46–48]. There a cluster of similar

particles is identified and flipped randomly. This, to a good extent, ease the simulation

at TL
c .

The average domain lengths within a system can be calculated from the domain size

distribution function, P (ℓd, t), as [23, 29]

ℓ(t) =
∫

P (ℓd, t)ℓddℓd, (2.8)

where ℓd corresponds to the separation between two successive interfaces along any Carte-

sian direction. In the calculation of the autocorrelation functions [see Eq. (2.1)], the

order parameter ψ is the spin value in Eq. (2.6) at a lattice site. All the results presented

here are averaged over a large number of independent initial realizations. Depending

upon the system size this number ranges between 100 and 500.

2.3 Results

In Fig. 2.1 snapshots during the evolutions for different Ts values are presented. The

upper frames are for Ts = ∞ and the lower ones are for Ts = TL
c . All the pictures are for

L = 128. In the early time there are differences in the evolving structures for the two

starting temperatures, which is visible from the presented snapshots. For the quench
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Fig. 2.1 Snapshots for the Kawasaki Ising model during evolutions following quenches
from Ts = ∞ (upper frames) and Ts = TL

c (lower frames), with L = 128. For both the
cases snapshots from three different times are shown. The dots represent A particles
and the rest of the space is occupied by B particles. Here and in other places all results
are from quenches to Tf = 0.6Tc. This figure is from reference [46].

from Ts = ∞ one encounters the standard finite-size effect [23, 29, 38, 42, 49] when ℓ

approaches L at late time. But in the case of Ts = TL
c in addition to this nonequilibrium

finite-size effect, finite-length correlations [38, 42] in the starting configurations lead to

equilibrium finite-size effect. In the close proximity of Tc, the correlation length behaves

as [27],

ξ ∼ ǫ−ν ; ǫ =
Ts − Tc

Tc

, (2.9)

where ν is a static critical exponent. For thermodynamically large systems, ξ = ∞

at the critical point. Since one can handle only finite systems, L < ∞, in computer

simulations ξ is always finite. The maximum value, that ξ can attain is the system size,

L. This fact, in one way, makes the evolution process different from that of Ts = ∞.

The systems quickly deviate from the desired [19, 20] scaling form than the quenches

from Ts = ∞ when the quench is being done from Ts = TL
c . This can be appreciated

from the snapshots corresponding to Ts = TL
c in Fig. 2.1, where the changing fractality

in structures during evolution is visible. This additional finite-size effect makes the

computation difficult. Nevertheless we have adopted appropriate extrapolation exercise

of the size-affected quantitative data, to overcome this issue. This needs knowledge of TL
c

for various values of L. Below we present the results of the latter before going to the main

discussion on aging. A plot of TL
c versus 1/L is shown in Fig. 2.2 (taken from [46, 47]).
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Fig. 2.2 Finite-size critical temperatures TL
c are plotted as a function of 1/L, obtained

for Glauber Ising Model. The continuous line corresponds to the scaling form in Eq.
(2.10), where Tc and ν are fixed to their 2D Ising values. This figure has been taken
from references [46, 47].

These results were obtained from Glauber Ising Model [50]. The protocol that we have

followed for this is the following [46, 47]. Via Monte Carlo simulations, which provide the

fluctuations in the magnetization, in equilibrium scenario, we obtained order-parameter

distributions for various temperatures as well as system sizes. As is well known, below

Tc the distributions, constructed from such fluctuations, are double-peaked, positions

of the peaks corresponding to the points on the coexistence curve. Whereas, above Tc

distributions are single-peaked. The temperature, at which the transition from double-to-

single peak occurs, has been identified as the system-size dependent critical temperature,

TL
c [46, 47].

Given that static critical universality is very robust, we will use the same data for

the study of nonequilibrium phenomena in Kawasaki dynamics. The TL
c exhibits the

scaling form [42, 44, 51, 52]

TL
c − Tc ∼ L−1/ν , (2.10)

which can be constructed from Eq. (2.9). For the 2D Ising universality class ν = 1.

The data set containing TL
c for various L obeys this scaling relation, represented by the

continuous line in Fig. 2.2 by fixing ν and Tc to the 2D Ising values. In the limit L → ∞

it tends towards the thermodynamic Tc (≃ 2.269).
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Fig. 2.3 Log-log plots of autocorrelation function, Cag(t, tw) versus ℓ/ℓw. Data for a
few different tw are shown. Results are for L = 256. The solid lines represent power
laws. The values of the exponents are mentioned next to the lines. This figure is from
reference [46].

Fig. 2.4 Same as Fig. 2.3 but here we have fixed tw to 5 and presented results for a few
values of L. This figure is from reference [46].
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Fig. 2.5 Log-log plots of autocorrelation function, Cag(t, tw) versus ℓ/ℓw for the quench
from Ts = ∞. Data for a few different tw are shown. Results are for L = 128. The solid
line represents power law. The value of the exponent is mentioned next to the line.

In Fig. 2.3 we present results for Cag(t, tw), versus ℓ/ℓw. We fix the system size and

include data from few different tw values. In Fig. 2.4 we show the similar plots. But

here tw is fixed and L is varied. In none of the cases collapse of data is observed. This

should be contrasted with the available literature [13, 14] for quenches from Ts = ∞.

A representative picture for this is shown in Fig. 2.5. Such non-scaling behavior for

quenches from the critical point is because of the fact that for L < ∞, the structure,

during evolution, quickly starts deviating from the desired scaling, as already mentioned.

To overcome this problem we will perform an appropriate extrapolation exercise to obtain

the value of λ in the L = ∞ limit.

Note that very early-time structural change brings artificial non-monotonicity in the

length. This is reflected in the plots of Fig. 2.3 for smaller values of tw. During this

period, we believe, the system is trying to arrive at the scaling structure, giving rise

to an unavoidable inconsistency in the measurement of domain length, but only for a

brief early time period. Thus, this non-monotonicity in the domain length should not

be taken seriously. On the other hand, with the increase of time departure from this

scaling structure occurs, earlier for smaller systems.

In both Fig. 2.3 and 2.4, a common feature is the following. Each of the data sets

tend to stabilize to a power-law decay over a certain range of ℓ/ℓw, but deviates from



2.3 Results 35

Fig. 2.6 Plots of instantaneous exponents λi versus ℓ/ℓw for two different values of L
on a semi-log scale for a fixed value of tw (= 5). We estimated the L-dependent value,
λL, from the flat regions of these plots. The data set of this figure is from reference
[46]. In the inset we have shown the behavior of λL, as a function of L, for tw = 5. The
dot-dashed line corresponds to a fit to a power-law form.

it when ℓ approaches L, i.e., ξ. These stabilized exponent values are, however, different

from each other in Fig. 2.3 as well as in Fig. 2.4. In Fig. 2.3, this is because of the

fact that the structure for each tw is different. Recall, we have already mentioned above

that this is a nonequilibrium feature related to finite system of any particular size. On

the other hand, even though in the case of Fig. 2.4 tw is fixed, here one has different

finite-size effects for different L to start with, owing to different initial ξ for different L.

Nevertheless, the exponents stay stable for longer ranges with the increase in system size

for a fixed tw. Moreover, the rate of change of the exponent keeps decreasing with the

increase of L. Therefore to obtain the value of λ in the thermodynamic limit (L = ∞),

one needs to consider larger and larger system sizes which is computationally expensive.

Instead of that we adopt an intelligent extrapolation method using relatively smaller

systems. An advantage of using smaller systems is that one can acquire better statistics

by simulating many independent initial configurations. This can be achieved by using

the same computational power that one needs to run single large system. Note that

reduction of error is not directly proportional to the system size [29, 49]. It is also worth

mentioning that the faster decay of Cag(t, tw) for large ℓ/ℓw, because of the finiteness

of the system, is unavoidable in a computer simulation. Only for L = ∞ it will decay
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Fig. 2.7 We have plotted λL as a function of 1/L. Results for a few values of tw are
included. The lines are power-law fits for extracting λ = λL=∞, value of which is marked
by an arrow-headed line. This figure is from reference [54].

indefinitely with a unique exponent. Next we will move to the extrapolation exercise to

estimate the thermodynamic aging exponent.

For the purpose of extrapolation, we need to gather the exponents corresponding to

the stabilized regions in Fig. 2.3. One can evaluate accurately the system-size dependent

aging exponents, λL, from the flat regions of the instantaneous exponent [32], λi, versus

ℓw/ℓ plots. Here λi is defined as [14, 28, 32]

λi = −
d lnCag(t, tw)

d lnx
; x =

ℓ

ℓw
. (2.11)

In Fig. 2.6, as illustration, we plot this quantity as a function of x for two values of L by

fixing tw to 5. One can justify this by taking a closer look at the behavior of Cag(t, tw)

in Fig. 2.3. In the inset of Fig. 2.6, we have shown a plot of λL, as a function of L,

for tw = 5. This data set is consistent with a power-law behavior. See the dot-dashed

line and further discussion below. A fit provides λ = 0.13. For all values of tw one can

expect that λL will have same convergence in the limit L = ∞. The reason for such

a statement is the following. In the limit L = ∞ the evolving structures obey certain

self-similarity throughout the evolution [19, 20]. This means that there the value of λ

should be independent of the choice of tw. For finite L, as being observed, situation
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Fig. 2.8 Plot of equal-time structure factor, S(k, tw), as a function of wave number k,
on a log-log scale for L = 1024 and tw = 104. The solid line in the small k limit is a
power-law with exponent β = −1.75 and the one in the large k regime corresponds to
the Porod law [2]. This figure is from reference [54].

is different. However, the extrapolation exercise for different tw values is expected to

provide us the thermodynamic limit λ. If the value of λ, estimated from this method, is

different from that for Ts = ∞, it should give indirect evidence that there exist different

structural scalings in the conserved case for Ts = ∞ and Ts = Tc, which is being already

reported in the nonconserved case in d = 2 [19, 20].

Finally, to obtain the thermodynamic limit value, in Fig. 2.7 we have plotted λL, as

a function of 1/L, for a few values of tw. The dashed lines there are fits to the form

λL = λ+ AL−b, (2.12)

where A and b are constants. These multiple plots provide a good sense of convergence.

From this exercise we quote

λ = λL=∞ = 0.13 ± 0.02. (2.13)

This number we compare with [14] λ when Ts = ∞ in d = 2, viz.,

λ ≃ 3.6. (2.14)
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There exists huge difference between the quoted values in Eqs. (2.13) and (2.14). Next

our objective is to check whether these numbers satisfy the YRD bound or not. For that

purpose, in Fig. 2.8 we have plotted S(k, tw) as a function of k, on a log-log scale, for large

enough values of L and tw, since scaling (overlap of data from different tw) is observed

starting from large tw. In this case β assumes a negative value, viz., β ≃ −1.75. Thus,

the corresponding lower bound is below the above quoted value, i.e., λ ≃ 0.13 ± 0.02.

It is worth mentioning here that the value of β for a thermodynamically large critical

system is same as the number quoted above. For L = ∞, at criticality β = −7/4 in

d = 2. This can be appreciated from the fact that the exponent for the power-law decay

of C(r) at criticality is p = d − 2 + η or 2β/ν, where η, β and ν are various critical

exponents [3] (β = 1/8, ν = 1, η = 1/4). Our system size is large enough to almost

realize this value.

2.4 Conclusion

In this chapter we have studied the aging phenomena in 2D nearest neighbor Ising model

via the Monte carlo simulations for quenches from Ts = Tc. Our focus was on kinetics of

phase separation in solid binary mixtures. For this we have used the Kawasaki exchange

kinetics [40]. We have probed aging via the order-parameter autocorrelation function

[7] Cag(t, tw) and estimated the aging exponent λ which corresponds to the power-law

decay of the same. For Ts = Tc the initial configurations have long-range correlations

[27]. This provides a different universality class than the case of Ts = ∞ [19, 20].

For quenches from the critical point, despite having multiple sources of finite-size

effects, we have appropriately analyzed the out-of-equilibrium data by devising an ex-

trapolation method. We believe that this method provides us quite accurate results,

valid for thermodynamically large systems.

It appears that for phase separating binary mixtures, the value of λ for Ts = Tc

is significantly smaller than that for the universality class corresponding [8, 13, 14] to

Ts = ∞. Nevertheless the obtained value for Ts = Tc satisfies the lower bounds predicted

by Yeung, Rao and Desai [9]. To the best of our knowledge, these are the first results

for solid mixtures, as far as quenches from Tc is concerned.

Other important exponent that can be calculated for the binary mixture with both

Ts = ∞ and Ts = Tc is the one related to the decay of persistence probability [34].

For this exponent, however, due to certain technical reasons [53] quenches to very low

temperature becomes necessary. In that case, for conserved dynamics, there exists se-
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vere problem with metastability. This makes the problem rather challenging, which,

nevertheless, we intend to pursue in future.
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Chapter 3

Initial Correlation Dependence of

Aging in Phase Separating 3D Solid

Binary Mixtures

3.1 Introduction

Inspired by the interesting observation in the previous chapter, our objective here is to

estimate the aging exponent λ for initial configurations with ξ = ∞ in the case of the

three-dimensional (d = 3) phase separating solid binary (A + B) mixtures [1, 2]. The

basic scaling picture is already described. Below we stress upon the difficulty associated

with the study.

Here also we consider the nearest neighbor ferromagnetic Ising model. Even for such

simple model and technically easier case of ξ = 0, estimation of λ remained difficult [3, 4].

In d = 3, it is, of course, significantly more challenging. For quenches from the critical

point, additional difficulty is expected in computer simulations. In computational studies

there will exist two sources of finite-size effects [5]. First one is due to non-accessibility

of ξ = ∞ in the initial correlation [5] and the second is related to the fact [6, 7] that the

domain length ℓ < ∞, always. Nevertheless, via appropriate method of analysis [8], we

estimate the value of λ quite accurately. It transpires, like in d = 2, that the obtained

value is drastically different from that [9] for ξ = 0. This is despite the fact that the

growth exponent α does not depend upon the choice of initial ξ.
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3.2 Model and Methods

As mentioned, for this study we have used the ferromagnetic Ising model [10, 11]. Monte

Carlo (MC) simulations [10–12] are performed by employing Kawasaki exchange kinetics

[13] on a simple cubic lattice of linear dimension L, with periodic boundary condition

in all directions. In our simulations, one Monte Carlo step (MCS), the chosen unit of

time, is equivalent to L3 trial moves.

For this system the value [11] of critical temperature is Tc ≃ 4.51J/kB, kB being the

Boltzmann constant. Given that in computer simulations the thermodynamic critical

point is not accessible, as stated in the previous chapter, we have quenched the systems

from Ts = TL
c , the finite-size critical temperature for a system of linear dimension L

[5, 8]. The final temperature was set to Tf = 0.6Tc and composition was fixed at 50%

up and 50% down spins.

For faster generation of the equilibrium configurations at TL
c , Wolff algorithm [14]

has been used, similar to the previous chapter.

Quantitative results are presented after averaging over a minimum of 100 indepen-

dent initial configurations. To facilitate extrapolation of the results for aging in the

thermodynamically large size limit, we have performed simulations with different sys-

tem sizes. In the present case the value of L varies between 24 and 128. We have

presented the structural data for L = 512. Details on the statistics and the system sizes

for the calculations of TL
c can be found in the next section.

3.3 Results

As already mentioned, in computer simulations finite-size effects lead to severe difficul-

ties in studies of phenomena associated with phase transitions. In kinetics of phase

transitions, ℓ never reaches ∞, due to the restriction in the system size [6, 7]. This is

analogous to the fact that in critical phenomena [5] one always has ξ < ∞. There, of

course, exist scaling methods to overcome the problems in both equilibrium and nonequi-

librium contexts [5–9, 11, 15, 16]. For studies of coarsening phenomena starting from

the critical point [8, 17–19], difficulties due to both types of effects are encountered.

Nevertheless, via construction of appropriate extrapolation method [8] we will arrive at

quite accurate conclusions. In critical phenomena the true value of Tc cannot be realized

for L < ∞. In such a situation, for reaching conclusions in the L = ∞ limit, one defines

TL
c , pseudo critical temperature for a finite system, and relies on appropriate scaling
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Fig. 3.1 Finite-size critical temperature, TL
c , for the 3D Ising model, is plotted as a

function of 1/L. The solid line is a fit to the expected critical behavior [see Eq. (3.1)],
by fixing ν and Tc to 0.63 and 4.51, respectively. The simulation results were obtained
via Glauber as well as Wolff algorithms. Inset: Order-parameter distributions, p, for two
system sizes at the same temperature (T = 4.54), are plotted versus the concentration
(nu) of up spins. These results are taken from Refs. [26, 27].

relations [20–23]. TL
c is expected to exhibit the behavior [20–24]

TL
c − Tc ∼ L−1/ν , (3.1)

where ν is the critical exponent corresponding to the divergence [24, 25] of ξ at Tc. In

Fig. 3.1 the results for TL
c are shown, as a function of 1/L [26, 27]. The solid line there

is a fit to the scaling form in Eq. (3.1) by fixing [11, 24, 25] ν and Tc to the 3D Ising

values (≃ 0.63 and ≃ 4.51, respectively). The quality of fit confirms the validity of Eq.

(3.1) as well as the accuracy of the estimations. The amplitude (≃ 4.4) is obtained from

the fit to extract TL
c for L larger than the presented ones.

The results in Fig. 3.1 were obtained by using the Glauber as well as the Wolff

algorithms [11, 14, 28], by using temperature dependent probability distributions for

the corresponding order parameter. These distribution functions are double-peaked in

the ordered region [8, 11]. On the other hand, above criticality one observes single peak

character. The temperature at which the crossover from double to single peak shape

occurs is taken as the TL
c for a particular choice of L. In the inset of Fig. 3.1 the distri-

butions, p(nu), from two different system sizes at same temperature have been shown. It
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Fig. 3.2 Two-dimensional sections of the evolution snapshots, recorded during the Monte
Carlo simulations of the conserved Ising model in d = 3, are presented for quenches to
Tf = 0.6Tc. At the top of each of the frames we have mentioned the corresponding time.
The upper panels correspond to the evolution for quench from Ts = ∞ and the lower
ones are for quenches from finite-size critical temperature TL

c with L = 128. For both
the cases the quench temperature is Tf = 0.6Tc. In all the frames the down spins (or B
particles) are left unmarked.

is seen that for the larger value of L there is only one peak while the distribution for the

smaller system has two peaks. This is expected in the present set up and is consistent

with Eq. (3.1). The probability distribution close to TL
c were shown, for each L, after

averaging over a minimum of 500 independent runs.

To facilitate appropriate analysis of the autocorrelation data we will perform quenches

from TL
c for different values of L. For each L, value of λ, to be referred to as λL, will be

estimated. Finally, the thermodynamic limit number will be obtained from the conver-

gence of λL in the L = ∞ limit. In addition to the L-dependence, there will be other

effects as well. These we will discuss in appropriate places. In Fig. 3.2 we present two-

dimensional cross-sections of the snapshots, taken during the evolutions, for quenches

from Ts = ∞ (upper panel) as well from Ts = TL
c (lower panel). For the sake of com-

pleteness we have compared the snapshots for the critical starting temperature with the

ones for quenches with ξ = 0, i.e., from Ts = ∞. The structure for quenches from the

critical point appears different from that for Ts = ∞. Note that all the presented pic-

tures are from simulations with L = 128 and the results for the critical point correspond

to quenches from TL
c , as mentioned above. The behavior of the equal time structure
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Fig. 3.3 Log-log plot of structure factor versus wave number. The solid lines are power-
laws with exponent values noted in the figure. The values of tw and L are also mentioned.

factor, for a thermodynamically large system, at criticality is expected to be [11, 24, 25]

S(k, 0) ∼ k−2, (3.2)

given that the critical exponent η (≃ 0.036 for d = 3), the Fisher exponent, that char-

acterizes the power-law factor of the critical correlation as r−(d−2+η), has a small value.

Typically in most of the coarsening systems scaling in the decay of autocorrelation func-

tion [cf. Eq. ( 2.2 )] starts from a reasonably large value of tw. By then the structure

is expected to have changed from that at the beginning. Thus, the exponent ‘−2’ in

Eq. (3.2) should be verified before being taken as the value of β in the YRD bound,

that is discussed in the previous chapter, for understanding of results following quenches

from Tc. Furthermore, for Ts = Tc, one may even ask about the validity of a stable β.

This is related to the question whether there exists a scaling regime or the structure

is continuously changing. Keeping this in mind, in Fig. 3.3 we present plot of S(k, tw)

versus k for large enough value of L and tw. It appears that β is stable at ‘−2’, noting

that tw is rather large, even though character of structure changes at large k, e.g., an

appearance of the Porod law [1] (S(k) ∼ k−4) is clearly visible that corresponds to the

existence of domain boundaries. This value of β, i.e., −2, will be used later for verifying

the YRD bound.
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Fig. 3.4 Log-log plots of the order-parameter autocorrelation function, Cag(t, tw), versus
ℓ/ℓw. Data for a few different values of tw are included. These results are from simula-
tions with L = 64. The solid lines represent power-laws, the exponents being mentioned
in appropriate places.

Note here that in Fig. 3.3 we have presented representative results with appropriate

understanding of finite-size effects and onset of scaling in the structure as well as in aging.

Even though the results in Fig. 3.3 are from L = 512, simulating this size for long enough

time, a necessity in studies of aging phenomena, in d = 3 is very time consuming. So,

for aging the presented data are from smaller values of L and the conclusions in the

thermodynamic limit is drawn via appropriate extrapolations.

First results for Cag(t, tw) are presented in Fig. 3.4, versus ℓ/ℓw, on a log-log scale by

fixing the system size, for a few different values of tw. The observations are the following.

There exist clear non-scaling behaviors of the data sets. In the small ℓ/ℓw region the

collapse of the data set for tw = 10 with those for the larger tw values is rather poor.

This, we believe, is due to the fact that in the scaling regime the structure is different

[29] from the initial configuration [8]. (Also note that the scaling structure for Ts = Tc

is different from that for Ts = ∞.) During this switch-over to the scaling behavior the

extraction of ℓ is also ambiguous, due to continuous change in the structure that, thus,

lacks the scaling of correlation function. Given the complexity of finite-size and other

effects, further analysis is required, to come to a conclusion about the value of the aging

exponent.
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Fig. 3.5 Log-log plots of Cag(t, tw) versus ℓ/ℓw, for tw = 20 and different values of the
linear dimension of the simulation box. The solid lines represent power-laws.

Here one gets an impression that the exponent has a tendency to increase with the

increase of tw. The phenomenon of convergence, however, is more complex and requires

systematic study involving both tw and L. This we will perform in the rest of the

chapter.

Next we examine the effects of system size on the “scaling” regime. We remind the

reader that in addition to the standard growth related one, there exists another type of

finite-size effect related to ξ < ∞. Due to this, with changing system size the exponent

will differ in “the scaling regime” as well. Related results are presented in Fig. 3.5.

In Fig. 3.5 we show Cag(t, tw), for different values of L, versus ℓ/ℓw, on a log-log

scale, by fixing tw to 20. In addition to the delayed appearance of late time finite-

size effects, with the increase of system size the decay exponent shows the tendency of

shifting towards smaller value [8]. To pick the stable power-law regime appropriately,

by discarding the finite-size affected and early transient regimes, in Fig. 3.6 we plot the

instantaneous exponent [7, 9, 15, 30, 31]

λi = −
d lnCag(t, tw)

d lnx
; x =

ℓ

ℓw

, (3.3)

as a function of ℓw/ℓ, for two values of L with tw = 20. From the flat parts we extract

L-dependent exponent λL. We have performed this exercise for multiple values of tw.
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Fig. 3.6 Plots of the instantaneous exponents, λi, versus ℓw/ℓ, for tw = 20 and two values
of L. The dashed horizontal lines represent the estimated values of λL, the L-dependent
aging exponent.

Fig. 3.7 Plots of λL versus 1/L, for the conserved Ising model. Data from a few different
values of tw are shown. The dashed lines are power-law fits to the simulation data sets.
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The above mentioned flat behavior in the intermediate regime confirms that there exists

power-law relationship between Cag(t, tw) and ℓ/ℓw.

Data for λL, when plotted versus 1/L, for multiple values of tw, should provide a

good sense of convergence [8]. Corresponding number should be the value of λ for a

thermodynamically large system. This exercise has been shown in Fig. 3.7. The dashed

lines there are fits to the form

λL = λ+ AL−b, (3.4)

where A and b are constants. The estimated values of λ, obtained after averaging over

the convergences of the fittings, by considering different numbers of data points for each

tw, along with those for uncorrelated initial configurations [9, 15, 32], are quoted in table

3.1.

All numbers in this table are from simulation studies. For the comparison of these

numbers with the YRD bound, in table 3.2 we have quoted the values of β for 50 :

50 composition of up and down spins (see caption for more details) [8, 29]. For the

uncorrelated case it is clear that the structures are different. Finally in the table 3.3

Table 3.1 List of values of λ for the nearest neighbor conserved Ising model. Here
“Correlated” and “Uncorrelated” imply results for quenches from Ts = Tc and Ts = ∞,
respectively. For the values of the lower bounds [3] please see Table 3.2.

d = 2 d = 3
Correlated Uncorrelated Correlated Uncorrelated
0.13±0.02 3.6±0.2 0.64±0.05 7.5±0.4

we have shown a comparison of λ values for the conserved case with those for the

nonconserved dynamics. Interestingly, even though the results for the Ts = ∞ case

differ significantly, the numbers for Ts = Tc are in striking agreement.

Table 3.2 List of β values for the conserved nearest neighbor Ising model. Validity of
YRD bound can be checked by putting these numbers in Eq. (2.4) and comparing the
outcome with the results quoted in table 3.1. While preparing this table, η in d = 3 has
been set to zero. For the sake of convenience, we have put the values of the bounds [3]
inside the parentheses.

d = 2 d = 3
Correlated Uncorrelated Correlated Uncorrelated

-1.75 (0.125) 4 (3) -2 (0.5) 4 (3.5)
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Table 3.3 List of values of λ from d = 2 and 3, by comparing the results for conserved
Ising model with those from the nonconserved case.

Model
d = 2 d = 3

Correlated Uncorrelated Correlated Uncorrelated
KIM 0.13±0.02 3.6±0.2 0.64±0.05 7.5±0.4
GIM 0.14±0.02 1.32±0.04 0.57±0.07 1.69±0.04

3.4 Conclusion

Universality in kinetics of phase transition [1] is less robust compared to that in equilib-

rium critical phenomena [11, 24, 25]. In kinetics, the classes are decided [1] by transport

mechanism, space dimension, order-parameter symmetry and its conservation, etc. In

each of these cases there can be further division into universality classes [8, 17–19, 33]

based on the range of spatial correlation in the initial configurations. In this chapter we

have examined the influence of long range correlation on the decay of order-parameter

autocorrelation function, a key quantity for the study of aging phenomena [34, 35] in out-

of-equilibrium systems, by quenching the three-dimensional conserved nearest neighbor

Ising model [24, 25] from the critical point to the ordered region.

The conserved dynamics here is related to the kinetics of phase separation in solid

binary mixtures. Despite difficulty due to multiple sources of finite-size effects, we have

estimated the exponent for the power-law fall of the autocorrelation function rather

accurately. We observe that the decay is significantly slower than that for the quench

from perfectly random initial configurations [9, 15, 32, 34, 35].

In the literature of aging phenomena there exist lower bounds [3, 35] for the values

of λ. Our obtained exponent value is consistent with one of these bounds. This we have

checked via the analysis of structure, a property that is embedded in the construction

of the bound. For quenches with ξ = 0 the values of λ differ significantly between the

conserved and nonconserved dynamics. This is an interesting fact.

This work, combined with a few others [8, 9, 15, 17–19, 33], provides a near-complete

information on the universality in coarsening dynamics in Ising model, involving “realis-

tic” space dimensions, conservation property of the order parameter and spatial correla-

tions in the initial configurations. Analogous studies in other systems should be carried

out, by employing the methods used here, to obtain more complete understanding, e.g.

of the influences of hydrodynamics on relaxation in out-of-equilibrium systems with long

range initial correlations.
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Chapter 4

Hydrodynamic Effects in Kinetics of

Phase Separation in Binary Fluids:

Critical versus off-critical

compositions

4.1 Introduction

In this chapter we discuss results on kinetics of phase separation in a binary (A+B) fluid

mixture. Here our focus is on growth of average domain size ℓ. For self-similar growth,

corresponding scaling picture is already discussed by defining structural quantities like

the two-point equal time order-parameter correlation function. Note that a time depen-

dent local order parameter can be defined as the concentration difference between the

two species.

Typically ℓ grows in a power-law fashion as [1–5]

ℓ ∼ tα. (4.1)

The growth exponent α depends upon several parameters [1, 5]. In non-hydrodynamic

environment, one expects α = 1/3. This is referred to as the Lifshitz-Slyozov (LS)

growth law [6–14] and is a result of diffusive transport of particles, via chemical potential

gradient. The LS picture applies to phase separating solid mixtures and remains valid

for critical as well as off-critical compositions [6, 7], for the entire growth period. In

fluids, however, hydrodynamics is important. There the mechanisms and exponents are
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different for the above two situations that give rise, respectively, to bicontinuous and

disconnected droplet morphologies [15–39]. This is true for vapor-liquid as well as liquid-

liquid transitions, in the former case density playing the role of composition. Below we

briefly describe these in the liquid-liquid context.

Fig. 4.1 Schematic diagram of the behavior ℓ, as a function of t, for 50 : 50 mixture.
Three different regimes of growth with exponents α = 1/3, 1 and 2/3 have been shown
here in hydrodynamic situation.

In the case of a composition close to the critical value, say, a 50 : 50 proportion of

A and B particles for a symmetric model of mixture, growth occurs via transport of

material through tube-like structure [4, 5, 17–19, 40]. Overall growth in this situation

is not described by a single exponent. At very early time LS picture remains valid [4, 5].

Following this hydrodynamics becomes important, leading to a crossover of the exponent

to α = 1, in space dimension d = 3, which is referred to as the viscous hydrodynamic

growth [4, 5, 17, 30, 33, 34, 40]. At an even later time a further crossover occurs to a

smaller value, viz., α = 2/3, known as the inertial hydrodynamic exponent [4, 5]. Please

see Fig. 4.1 for a schematic depiction. For a composition close to any of the branches

of the coexistence curve, on the other hand, the late time growth, in a hydrodynamic

environment, may occur via coalescence of disconnected droplets that consist primarily

of particles of the minority phase [15–17, 24–26, 28, 33, 34, 39]. This we discuss below.

For diffusive motion of the droplets, between collisions, expected for liquid mixtures,

because of high density background phase, a theory for growth was proposed by Binder
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and Stauffer (BS) [15–17]. In this case, solution of the dynamical equation [15]

dn

dt
= −Dℓn2, (4.2)

for droplet density n (∝ 1/ℓd), provides α = 1/d. In Eq. (4.2), D is a diffusion coefficient,

having dependence upon ℓ. It is expected that Dℓ will remain a constant, during the

growth period, in accordance with the generalized Stokes-Einstein-Sutherland [41–43]

relation. In d = 3, the BS value is same as the LS exponent. The difference in the

mechanisms is expected to be captured in the amplitudes of growth, this being larger for

the BS case. The ratio of the amplitudes for the two mechanisms is supposed to follow

the relation [28, 33]
ABS

ALS
= Kφ1/3, (4.3)

where K is a constant (≃ 6) and φ is the volume fraction of the minority species in the

mixture.

In this work, while presenting results for a wide range of compositions, we primar-

ily address the issue of growth via diffusive coalescence in a phase separating binary

fluid mixture. We have performed molecular dynamics [44, 45] (MD) simulations. In

our canonical ensemble simulations the temperature is controlled via the Nosé-Hoover

thermostat (NHT) [44, 46–48]. The latter is known to preserve hydrodynamics. The

obtained results were analyzed via various advanced methods to arrive at conclusions

on the growth and mechanism.

Even though the original theoretical picture is for binary fluids, confirmation of this,

via simulations of atomistic models, exists only for vapor-liquid transition [33, 34, 49].

To the best of our knowledge, this is the first such study for a liquid-liquid transition.

4.2 Model and Methods

In our model system, two particles, located at ~ri and ~rj , with r = |~ri − ~rj|, interact via

the potential [45]:

U(r) = V (r) − V (rc) − (r − rc)

[

dV (r)

dr

]

r=rc

, (4.4)
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for r < rc, the latter being a cut-off distance. In Eq. (4.4), V (r) is the standard

Lennard-Jones (LJ) potential [45]

V (r) = 4ǫαβ

[

(

σαβ

r

)12

−
(

σαβ

r

)6
]

. (4.5)

The cut and shift, implemented via the second term on the right hand side of Eq. (4.4),

for the sake of computational convenience, leaves the force at r = rc discontinuous.

This was corrected via the introduction of the last term [45] in the same equation. In

Eq. (4.5), ǫαβ and σαβ , α, β ∈ [A,B], represent the interaction strengths and diameters,

respectively, for various combinations of particles. In this work we have chosen [50, 51]

σAA = σBB = σAB = σ, (4.6)

and

ǫAA = ǫBB = 2ǫAB = ǫ. (4.7)

The factor 2 implies that the like particle interactions are twice as strong as the unlike

particle interactions. Thus, one expects a phase separation between A and B species.

We have set mass (m) of all the particles to be the same.

For this symmetric model, the phase diagram, in d = 3, is accurately known for

(number) density of particles ρ = 1. It is, of course, expected [50–52] that the critical

concentration, for any of the species, will be xc
α = 1/2, because of the symmetry. The

critical temperature, Tc, was estimated to be ≃ 1.421ǫ/kB, where kB is the Boltzmann

constant [50–52]. In the following we set σ, ǫ, m and kB to unity. In this work we study

the kinetics by quenching homogeneous configurations, prepared at a high temperature,

to the temperature T = 1. The compositions are chosen in such a way that the final

state points fall inside the miscibility gap [50–52].

We have performed MD simulations [44] in periodic cubic boxes of linear dimension

L, the latter being measured in units of σ. As already stated, the temperature was

controlled via the application of a NHT [44, 46–48] that is known to preserve hydrody-

namics well. For comparative purpose, towards the end, we have also presented results

that were obtained via the application of a stochastic thermostat, viz., the Andersen

thermostat (AT) [44, 53].

In our MD method we have used the Verlet velocity integration scheme [44, 45], with

time discretization step ∆t = 0.001τ . Here τ (=
√

mσ2/ǫ) is our LJ unit of time, which

is unity because of the above mentioned choices of ǫ, σ and m. All our quantitative
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results are obtained after averaging over runs with a minimum of 50 independent initial

configurations. Unless otherwise mentioned, all the simulations were performed with

L = 64 and NHT. We have used used LAMMPS package [54, 55] for this purpose.

There exist reports by stating deficiencies of NHT as a hydrodynamics preserving

thermostat [56, 57]. On the other hand, many works report results, by using NHT, that

produce key expectations for hydrodynamic behavior in kinetics of phase separation.

In this connection, we draw attention to Ref. [57]. In this work, in the equilibrium

context, results on various transport properties in fluids were compared from the calcu-

lations in canonical (with NHT) and microcanonical ensembles. Note that in the latter

ensemble hydrodynamics is perfectly satisfied. It was observed that other than bulk

viscosity, results on other transport coefficients were in good agreement from the two

ensembles. Given that we are dealing with a nearly incompressible fluid, bulk viscosity

is less relevant. Thus, application of NHT is rather safe here.

We have calculated lengths from the decay of the correlation function as

C(r = ℓ, t) = c, (4.8)

by fixing c to the first zero of the correlation function. It is worth mentioning here, for

conserved order-parameter dynamics, the class to which the present problem belongs,

C exhibits damped oscillation around zero. This we will see in the next section. For

the calculation of C(r, t) we have mapped the continuum configurations to the ones

on a simple cubic lattice [6]. The length was also obtained by direct identification of

the droplets [58] and counting numbers of particles within those [49]. The latter, of

course provides volume, from which average length can be trivially obtained following

calculation of the average volume via the first moment of a distribution. Results from

different methods are essentially proportional to each other, differing by constant factors.

For disconnected morphology, the droplet identification [58] is important for the

purpose of confirmation of the mechanism as well, e.g., via the calculation of mean-

squared-displacement (MSD) of the centres of mass (CM) of the droplets. Note that for

Np particles belonging to a particular droplet the centre of mass is calculated as [41]

~RCM (t) =
1

Np

Np
∑

i=1

~ri(t). (4.9)
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The MSD is then obtained from the formula [41]

MSD = 〈(~RCM(t′) − ~RCM (0))2〉. (4.10)

Here t′ is a time that is shifted with respect to the time at the beginning of an observation.

4.3 Results

Fig. 4.2 Snapshots, that were recorded during the molecular dynamics simulations, fol-
lowing quenches of high temperature homogeneous configurations to T = 1, are shown
for 50 : 50 (upper frames) and 90 : 10 (lower frames) compositions of A and B particles.
Only the locations of the B particles are marked. For each of the compositions, frames
from two different times are included.

In Fig. 4.2 we show snapshots taken during the evolutions of two typical homoge-

neously mixed configurations towards respective equilibriums, following quenches inside

the coexistence curve. For 50 : 50 composition, it is appreciable that the morphology

consists of interconnected tube-like domains. For the asymmetric composition, discon-

nected droplet morphology is clearly identifiable. In the latter case the growth seems

to be much slower. Our objective here is to provide a composition dependent quanti-



4.3 Results 63

Fig. 4.3 (a) Two-point equal time correlation functions, C(r, t), are shown, from a few
different times, versus the scaled distance r/ℓ(t), for 50 : 50 composition. In the inset
we show the analogous scaling plots for the structure factor, S(k, t), k being the wave
number. The solid lines represent power laws. (b) Same as (a) but here the composition
is 90 : 10.

tative picture and obtain an understanding on the pathway to the equilibrium for the

disconnected case.
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In Fig. 4.3 we show scaling exercise [4] for the correlation function. There C(r, t)

is plotted versus r/ℓ. Results from a few different times, for two compositions, have

been included. Part (a) contains results for the symmetric composition and the results

for 90 : 10 composition are included in part (b). Nice collapse of the data sets imply

self-similarity of growth in both the cases. For conserved order-parameter dynamics one

expects damped oscillation of C(r, t) around zero. This is clearly visible here. In the

asymmetric composition case the minimum is expectedly quite shallower compared to

the symmetric or critical (50 : 50) composition case [7, 59, 60].

In the insets of Fig. 4.3 we have shown the scaling plots of S(k, t), the structure factor,

a quantity that is of direct experimental relevance [4]. This is the Fourier transform of

C(r, t). The expected scaling form for this quantity is [4]

S(k, t) ≡ ℓdS̃(kℓ), (4.11)

where S̃(y) is another time independent master function. Clearly, good collapse of data

from different times is visible. The small k behavior is consistent with [40, 60] k4, for the

symmetric case, referred to as the Yeung’s law [61]. The result for the asymmetric case,

however, is at deviation [60] with the Yeung’s law. The large k behavior is consistent

with a power-law having an exponent −4, in both the cases. This is the expected Porod

law [62–64] in d = 3, for a scalar order-parameter, and is an outcome of scattering

from sharp interfaces. The deviations that are observed can be due to the interfacial

roughness that is appreciable from the noise that is noticed in the snapshots of Fig.

4.2. Such noise can be gotten rid of via choices of lower quench temperatures. This

will, however, lead to slower dynamics, preventing us from accessing the desired growth

regimes over appreciable periods of time. Even crystallization is a possibility. In our

study, for the purpose of analysis, this noise was largely eliminated via the application

of a majority rule [6]. Before moving to the discussion on growth, we mention that ℓ

can be estimated from the first moment of S(k, t) as well [4].

In Fig. 4.4 (a) we have shown ℓ versus t plots for several different compositions.

For compositions at or close to the symmetric value, intermediate time behavior, over

long periods, is linear, consistent with the expectation for viscous hydrodynamic growth.

The saturations at late times are due to finite size of the systems. Late time behavior,

for compositions far away from the critical value, is consistent with α = 1/3. This is

expected for the BS [15–17] mechanism, in d = 3. For a more convincing confirmation,

of the values of the exponent, we have calculated the instantaneous exponent [6, 11, 12],
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Fig. 4.4 (a) Average domain lengths, ℓ(t), are shown with the variation of time, for
quenched systems having different compositions of A and B particles. The solid lines
represent power-laws with mentioned exponents. (b) Instantaneous exponents are shown
as a function of 1/ℓ, for the compositions 50 : 50, 70 : 30 and 90 : 10. The arrow-headed
lines there are guides to the eyes.

αi = dlnℓ/dlnt. This quantity is shown in Fig. 4.4(b), as a function of 1/ℓ. The

convergences, in the ℓ → ∞ limit, to α = 1 and α = 1/3, can be appreciated. For
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Fig. 4.5 (a) Here we have plotted the number of droplets, consisting primarily of the
particles of the minority phase, as a function of time, on a semi-log scale, for 90 : 10
composition. (b) A plot of −dNd/dt versus Nd

2, on a log-log scale, corresponding to the
plot in (a). The solid line is a power-law with exponent 1.

ℓ < ∞, smaller values of αi, compared to the expected ones, can be attributed to the

presence of non-zero offsets at the beginning of a scaling regime. If such initial length
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Fig. 4.6 Numbers of particles, Np, in a few droplets, are shown as a function of the
translated time t′ = t − t0, t0 being the beginning of an observation. These results are
for the composition 90 : 10 and L = 48. During the presented periods the considered
droplets did not undergo collision with other droplets.

has a value ℓ0, αi is expected to exhibit the behavior [6, 12]

αi = α

[

1 −
ℓ0

ℓ

]

. (4.12)

Clearly, for all the compositions, data in Fig 4.4 (b) are consistent with Eq. (4.12). In

the rest of the paper we focus only on the discontinuous morphology unless otherwise

mentioned, for the representative case of 90 : 10 composition. Having identified the

exponent for the power-law growth, in the following we present results that will ascertain

that the growth indeed occurs via diffusive coalescence mechanism, when hydrodynamics

is preserved.

In Fig. 4.5 (a) we present a plot for the number of droplets as a function of time. The

early part is dominated by nucleation. The late time decay is due to growth. In part (b)

of this figure we have shown a plot of −dNd/dt versus Nd
2. There the focus is on the late

time growth part. Thus, we have shown data from t = 5000 onward. The linear behavior

on a double-log scale indicates a power-law. We expect [34] an exponent 1 for diffusive

coalescence — see Eq. (4.2) and related discussion. That indeed is observed. This

also indirectly validates the Stokes-Einstein-Sutherland [41–43] relation in this extended

context.
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Fig. 4.7 (a) Here we show the trajectory of the centre of mass of a typical droplet. (b)
Log–log plot of the mean-squared-displacement (MSD) of a droplet, as a function of the
shifted time t′. During this period the droplet did not encounter any collision with other
droplets. The solid line represents the diffusive displacement. These results are for the
composition 90 : 10.

In Fig. 4.6 we show numbers of particles in several droplets, with the variation of

time t′ that is calculated from the beginning of an observation. During the presented

periods these droplets did not collide with any other droplets. In each of the cases
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Fig. 4.8 Plots of ℓ versus time, on a log-log scale. Here we have compared the results
obtained via the applications of NHT with those gathered by using AT. These results
are for the composition 80 : 20. The solid line is a power-law with exponent 1/3.

the value of Np remains practically constant. This again suggests that LS-like particle

diffusion mechanism [8] is playing negligible role in the growth. The number of droplets

is decreasing, as seen in Fig. 4.5, due to coalescence.

In Fig. 4.7 we have shown results related to the motion of the centres of mass of

the droplets. In part (a) a trajectory of the CM of a typical droplet is seen. Random

motion of the droplet is visible. In part (b) we have shown MSD versus time plot for

such a droplet. Clearly diffusive displacement is visible, at late times.

The above results suggest that the growth is occurring via the diffusive coalescence

mechanism. In Fig. 4.8 we provide further information. There we have compared growth

plots obtained for NHT and AT. Hydrodynamic effect is not expected for AT. Thus, NHT

should provide faster evolution, even though the exponent in both the cases should be

the same. Plots of Fig. 4.8 are consistent with this picture. Certainly ABS/ALS is

> 1. However, a proper match with the theoretically expected number is not obtained

[33]. This is due to the fact that even though NHT provides hydrodynamics, a perfect

match of transport with natural system can not be expected, unless various thermostat

parameters are appropriately tuned.
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4.4 Conclusion

We have studied kinetics of phase separation in a high density symmetric binary (A+B)

fluid model [45, 50–52]. We have considered mixture compositions symmetric as well

as close to one of the branches of the coexistence curve. While around the symmetric

composition a bicontinuous nonequilibrium domain morphology is obtained, for com-

positions close to a coexistence curve the domain morphology consists of disconnected

droplets of the minority phase in the background of a sea consisting of particles of the

majority species. The symmetric case is much studied and in agreement with the pre-

vious studies [17–19, 40] we observe linear viscous hydrodynamic evolution within the

achievable simulation length and time scales.

We have performed molecular dynamics simulations for our study. To capture hy-

drodynamics, in our canonical ensemble simulations, we have used a thermostat that is

known for its capability of conservation [44] of local momentum, etc. Main focus is on

the disconnected morphology. These results were compared with those obtained via the

application of a stochastic thermostat [44].

We observe that the droplets are not static in hydrodynamic environment. Via the

calculation of mean-squared-displacements of the centres of mass, we show that these ex-

hibit diffusive motion. Due to sticky collisions among these droplets, the number density

of these objects in the system decreases, thereby the characteristic length scale increases.

For this diffusive coalescence mechanism we have accurately estimated the exponent for

the power-law growth. This in good agreement with a theoretical expectation [15–17].

The picture described above is different from that is provided by the results obtained

in a stochastic situation. In this case the droplets are practically static and growth

occurs via particle diffusion, as in solid mixtures [6–8, 11, 12]. However, the exponent

remains same in both the cases. We have estimated the ratio of the growth amplitudes

in the two cases. This suggests that the hydrodynamic growth is faster.

In future it will be interesting to study the aging properties [65] of such off-critical

binary mixtures. It will be important to compare the results obtained with and without

hydrodynamics. There exist crucial open question concerning the inertial hydrodynamic

growth [4, 30, 66] as well, for bicontinuous structure. Note that for the latter type

of morphology, to access the behavior at very late time, by avoiding finite-size effects,

one requires to simulate much larger systems over very long time. This was difficult to

achieve with the resources that are available to us.
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This material has been submitted to arXiv. The arXiv link is https://arxiv.org/abs/

2107.10698.

https://arxiv.org/abs/2107.10698
https://arxiv.org/abs/2107.10698
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Chapter 5

Critical Behavior of Curvature

Dependent Interfacial Tension

5.1 Introduction

Nucleation of a new phase and subsequent transition process, following variation in

different thermodynamic parameters, in a system remains one of the important topics

of research since long [1–16]. When a homogeneous binary (A+B) mixture, say, in a

cubic box, is suddenly quenched inside the coexistence region, based on the composition

the interface between the two coexisting phases can have different geometrical shapes

[13, 14]. Close to the critical composition and for extreme off-critical quenches one

observes the formations of flat and spherical interfaces, respectively. In a range between

these two cases cylindrical interface appears. Formations of such curved boundaries

can as well be observed when a phase-separating system is placed between walls [17–

20]. Understanding thermodynamics associated with such interfaces has fundamental as

well as technological importance, having strong bearing with structure and dynamics in

porous media [21, 22].

The excess free energy contribution for the interface creation is [1–3]

∆F = −
4

3
πR3fv + 4πR2γ, (5.1)

where fv and γ denote the bulk free energy density and surface tension, respectively.

Here the nucleating phase is considered to be a sphere of radius R. Typically in the

classical nucleation theory [1–8, 23–27] the interface is assumed to be flat which is not

true at small length scales.
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Corrections to flat interfacial tension have found mentions from the time of Gibbs

[28] and discussed in details by Tolman [29–31]. The latter wrote the form with the

leading order correction as

γ(R) =
γ(∞)

1 + 2( δ
R

)
, (5.2)

δ being the Tolman length. Interpretation of δ is still debated. Its dependence on

temperature is a matter of current research [32–34]. For systems which are symmetric

under interchange of the two coexisting phases, δ is expected to vanish [35] identically,

possibly because the interchange of particle identities alters the sign of the curvature

keeping the thermodynamics same. For a symmetric model [14, 36, 37] the curvature

dependence of γ(R) can be written, to the leading order, as

γ(R) =
γ(∞)

1 + 2( ℓ
R

)2
, (5.3)

where ℓ, another length, is discussed in the literature to be a function of bending rigidity

and rigidity constant related to the Gaussian curvature [38, 39].

At critical points, various quantities show power-law singularities [40–46]. The crit-

ical behaviors of correlation length (ξ), susceptibility (ξ) and flat interfacial tension

(γ(∞)) can be described as

ξ ≈ ξ±
0 τ

−ν , (5.4)

χ ≈ χ±
0 τ

−γ (5.5)

and

γ(∞) = γ ≈ γ0τ
(d−1)ν . (5.6)

Here τ = |T − Tc|/Tc, T and Tc being respectively the temperature and its critical value,

d is the spatial dimension and ν, γ are two critical exponents. These exponents are

universal in nature and for the three dimensional (3D) Ising class [45, 46] the values are

[40]

ν ≃ 0.63, γ ≃ 1.239. (5.7)

Although the critical amplitudes are not universal, there exist universality in certain

ratios containing these.

Recently it is observed that the critical character of ℓ is same as the correlation length

ξ [14, 37], namely,

ℓ ≈ ℓ0τ
−ν . (5.8)
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Given that previously it was reported [32] that δ ∼ τ−(ν−β), where β, the exponent re-

lated to the critical behavior of order-parameter, has value 0.326 for 3D Ising universality

[40], Eq. (5.8), with the aid of Eq. (5.3), practically makes critical scaling of curvature

dependent surface tension as [14, 37]

γ(R)ξ2 =
C1

1 + C2(
ξ
R

)2
. (5.9)

Here C1 = γ0(ξ
−
0 )2 is a universal constant with value ≃ 0.089 [47, 48]. Character of

the other constant C2 needs investigation. The form in Eq. (5.9) should be valid for

asymmetric model as well, at the critical proximity. This is because, as already evident

from the above discussion, δ has a milder critical divergence [32].

Here we study the critical property of surface tension for symmetric binary mixtures

and aim to quantify the behavior of C2. We consider different models for which critical

temperatures vary significantly.

5.2 Models and Methods

We have considered an A+B mixture of N (= NA +NB) particles, NA and NB being the

numbers for species A and B, each of mass m. Like in chapter 4, any two constituent

particles sitting at ~ri and ~rj interact following the Lennard-Jones (LJ) potential [49]

(r = |~ri − ~rj |),

V (r) = 4ǫαβ

[

(

σαβ

r

)12

−
(

σαβ

r

)6
]

, α, β ∈ [A,B]. (5.10)

The choices of ǫαβ and σαβ remain same as in the previous chapter. Therefore the

mixture parameters are perfectly symmetric which will lead to demixing transition with

critical concentration xA = NA/N = 0.5 [50, 51]. Appropriate order-parameter in this

case is

m = xA − 1/2. (5.11)

This will be negative and positive in the B-rich and A-rich phases, respectively.

For faster computation two different variants [52, 53] of the LJ potential have been

used, which are detailed below.
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(i) Truncated and shifted LJ (tsLJ) potential [52, 53]:

U(r) = V (r) − V (rc), r < rc

= 0, r > rc,
(5.12)

(ii) Truncated, shifted and force-corrected LJ (tsfLJ) potential [52]:

U(r) = V (r) − V (rc) − (r − rc)

[

dV

dr

]

r=rc

, r < rc

= 0, r > rc.

(5.13)

Here rc is a cut-off distance. The value of rc is chosen as 2.5σ. For each of the varieties

(i) and (ii) we have considered different overall densities that lead to the studies of a

total of five different models. The densities are chosen in such a way that an overlap of

a liquid-liquid transition with a vapor-liquid transition does not occur. In table 5.1 we

have described the details of different models.

Table 5.1 Details of different models. Results for model III is borrowed from Refs.
[14, 37].

Interaction potential Overall density (N/L3) Name of the model

tsLJ
1.0 Model I
0.7 Model II

tsfLJ
1.0 [14, 37] Model III

0.7 Model IV
0.65 Model V

All the presented results, except for those in Fig. 5.1, are averaged over 60 or more

independent initial realizations. For Fig. 5.1 this number is 10.

For the estimation of phase behavior Monte Carlo (MC) simulations have been per-

formed in a semi-grand canonical ensemble (SGMC) [49]. In this SGMC method, in

a cubic box of length L the total number of particles N is held fixed. However, the

compositions xA (= NA/N) and xB (= NB/N) are allowed to change.

The method [49] incorporates two different trial moves: displacements of particles

and switch (A → B → A) of their identities. These are accepted by following the

standard Metropolis criterion [49], where the Boltzmann factor contains the change in

energy ∆E as well as the difference in chemical potentials between the two species

∆µ = µA − µB. However ∆µ is zero for symmetric situation. This basic SGMC method
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Fig. 5.1 Plots of probability distributions, P (xA), versus concentration, xA, of A-type
particles, from various temperatures with system size L = 10. These results were ob-
tained via SGMC simulation of Model I.

has certain drawback. This will be discussed and an advanced method will be used later

– see discussion at the end of the next section.

5.3 Results from Basic Semi-grand Canonical Monte

Carlo Simulations

The SGMC technique allows one to note the fluctuating value, say, NA, of A particles,

thus, providing the probability distribution P (xA) for xA. Symmetry of the models

states

P (xA) = P (1 − xA). (5.14)

At temperatures lower than Tc, P (xA) has a double-peak structure with peaks located

at xcoex
A and = 1 − xcoex

A , corresponding to the A-rich and B-rich phases. Above TC ,

distribution has a single peak with the position of the peak located at 〈xA〉 = 〈xB〉 = 1
2
,

the critical composition. In Fig. 5.1 we show P (xA) from a few temperatures above

and below the critical point of Model I. From these one estimates the concentration

susceptibility as

kBTχ = N(〈x2
A〉 − 〈xA〉2), (5.15)
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Fig. 5.2 Plots of the Binder cumulant UL(T ) versus T , from several system sizes, for
Model I. The dashed lines are fits to y = a0 tanh(a1x − a2) − a3, where a0, a1, a2 and
a3 are constants. The dot-dashed horizontal line and the solid vertical line indicate the
values UL(Tc) = 0.6433 and Tc = 1.628, respectively. UL(Tc) appears consistent with the
3D Ising value 0.6236.

where 〈xA〉 = 1/2 and 〈x2
A〉 =

∫ 1
0 x

2
AP (xA)dxA above Tc. Below Tc, from the two-peak

structures one can obtain 〈xA〉 = 2
∫ 1

1/2 xAP (xA)dxA and 〈x2
A〉 = 2

∫ 1
1/2 x

2
AP (xA)dxA, the

factor ‘2’ at the beginning has connection with normalization due to consideration of

only half the overall distribution.

We have estimated the liquid-liquid thermodynamic limit critical temperatures for

different models by using the cumulant intersection method of Binder [46, 54]. The

fourth-order Binder cumulant, a dimensionless quantity, is defined as [46, 54]

UL(T ) =
〈(xA − 1

2
)2〉2

〈(xA − 1
2
)4〉

. (5.16)

The limiting values of this quantity are [46, 54] are UL(T → 0) = 1/3 and UL(T →

∞) = 1, that are decided by the types of distributions of the order parameter. For finite

systems there will be deviations from these values – approaches to 1/3 and 1 occur in

opposite directions with the increase of system size. Thus, when we plot UL(T ) versus T ,

for several L, different curves intersect at Tc, provided that L is big so that the finite-size

effects can be ignored. At T = Tc for 3D Ising universality class one has UL(Tc) = 0.6236

[55, 56]. Close to the criticality the cumulant has the behavior UL(T ) ≡ Ũ(τL1/ν).
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In Fig 5.2 we have shown the plots of the cumulant versus T for different L for Model

I. The plots for different system sizes cross at a reasonably unique intersection point,

from which we estimate the thermodynamic Tc quite accurately. From this exercise we

quote Tc = 1.628. The latter is in good agreement with a previous study [50].

At low temperatures, because of high free energy barrier between the coexisting

phases the systems may get stuck into one of the phases. This can be overcome by

employing a biased simulation technique. Here we have performed a successive umbrella

sampling [57] in the semi-grand canonical ensemble. In this method the whole range

of particle number is divided into small windows and simulations are performed by

appropriately forcing the system into successive windows. This enables us to sample the

whole composition space efficiently and estimate probability distributions P (xA) more

accurately as a function of xA.

5.4 Facts and Basic Results related to the Umbrella

Sampling Technique

The normalized distribution, obtained from the umbrella sampling simulations, is con-

nected to the free energy density as [14, 58–61]

fL(xA, T ) = −
kBT

L3
ln[P (xA)/P (xcoex

A )]. (5.17)

The latter we have shown in Fig 5.3(a) for different system sizes L. In this figure the

minimum on the left corresponds to a bulk B-rich phase. Gradually, as number of A-type

particles is increased, an A-rich spherical droplet will appear and in the background of it

there will be the B-rich phase. This is manifested as a sharp change in slope in the free

energy curve. The size of this droplet keeps increasing as xA increases until it takes the

shape of a cylinder which is energetically more stable at a higher xA, reflected as another

sharp change in the slope. Finally, as xA approaches the critical concentration 1/2, both

the coexisting phases achieve slab geometries. The structural changes in the nucleating

phase can be visualized more prominently from the sudden jumps in the behavior of

chemical potential difference with respect to the bulk coexistence,

∆µL(xA, T )

kBT
=





∂fL(xA, T )

∂xA





T

, (5.18)



5.4 Facts and Basic Results related to the Umbrella Sampling Technique 83

Fig. 5.3 (a) Plots of normalized free energy density, fL(xA, T )/kBT , versus the concen-
tration of A particles, xA, at temperature T = 1.2, for three different choices of system
size L. With the increase in xA the free energy curves show certain sudden changes in
the slope which are the consequences of the changes in the shape of the minority phase
(A-rich phase): from spherical to cylindrical to slab-like structures. One can obtain L-
dependent flat interfacial tension γ(L) (for L = ∞, this is same as γ(∞), as previously
introduced in the context of curved interface) from the height of the free energy curve.
(b) Plots of ∆µL(xA, T )/kBT vs xA for the same systems as in (a). Both the figures are
for Model I.
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Fig. 5.4 Various geometrical structures obtained for A-rich phase via the umbrella
sampling SGMC simulations. B particles are not shown. The values of xA are mentioned
at the top of the frames. These pictures are from temperature T = 1.2, with L = 16
and N = 4096, for Model I.

which we show in Fig. 5.3 (b). With increasing system size the structural changes from

sphere to cylinder to slab become more and more prominent.

In Fig 5.4 we have presented a series of snapshots of the nucleating phase obtained

during the simulations. The corresponding concentrations have been specified in the

figure. Although there are statistical fluctuations in the shapes, to a high degree of

accuracy they have spherical or cylindrical symmetry, before taking the slab geometry.

The height of the free energy plot, denoted by f flat
L in Fig. 5.3 (a), is the barrier

between the coexisting phases [13, 36, 58] for a system size L. One can calculate the

corresponding interfacial tension (γ(L)) as [58]

γ(L) =
L

2
f flat

L , (5.19)

the factor 1/2 arising due to two similar interfaces in systems having periodic boundaries.

The flat interfacial tension in the L = ∞ limit can be calculated from those in finite

systems via [58, 62]

γ(L) = γ +
a

L2
ln
b

L
. (5.20)

Here γ [= γ(∞)] is the thermodynamic limit interfacial tension. We have estimated the

finite-size flat interfacial tension for significantly different values of L. This allowed us

an accurate estimation of γ via the above equation. The exercise is demonstrated in Fig.

5.5.
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Fig. 5.5 Plot of γ(L) versus 1/L, for Model I and temperature T = 1.2. The dashed
line is an extrapolation to L → ∞ to estimate γ(∞), by using the form γ(L) = γ(∞) +
(a/L2)ln(b/L), where a and b are constants.

Fig. 5.6 Flat interfacial tensions are plotted against τ for Models I and II. The continuous
lines are fits to γ0τ

2ν . The values of γ0 for Models I and II are 4.2 and 2.8, respectively.
Here ν is fixed at 0.63, which is the 3D Ising value.
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Fig. 5.7 The procedure of estimation of ∆x and ∆f from the plots of fL and ∆µ has
been shown schematically. See text for details.

To study the critical divergence of thermodynamic limit flat interfacial tension we

have plotted γ(T ) against the reduced temperature τ in Fig. 5.6. There we have included

data from two different models. The behavior is consistent with the expected critical

singularity τ 2ν , with ν = 0.63.

To calculate curved interfacial tension (γ(R)) we have employed a recently proposed

thermodynamic method [13] which is based on the principle that the coexisting phases

in equilibrium will have equal chemical potential. The method has been illustrated in

Fig 5.7. Here we have to choose the regions of fL where the A-rich droplet is structurally

stable and it is coexisting with the B-rich background phase in thermal equilibrium. The

protocol is the following. We describe it for spherical droplet which is the focus in this

chapter.

(1) First we need to identity the range of xA within which an A-rich spherical droplet

exists inside the B-rich phase.

(2) The bulk contributions of the free energy can be estimated and difference of this from

the total free energy will provide the excess part due to the presence of the curvature in

interface:

V∆f = 4πR2γ(R). (5.21)
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See the schematic definition of ∆f in the figure.

(3) According to a lever rule, one has for the related concentration difference in xA:

∆x =
4

3
πR3 [1 − 2xcoex

A ]

V
. (5.22)

From the simulation the quantities ∆f , V , ∆x and xcoex
A can be obtained. Therefore

from Eqs. (5.21) and (5.22) one estimates R and γ(R). Below we describe structural

quantities, which are essential for the calculation of ξ and thus, for the quantification of

critical behavior of γ(R).

5.5 Estimation of Concentration Fluctuation

The standard pairwise radial distribution function is expressed as [63]

gαβ(r) =
N

ρNαNβ

〈Nα
∑

i=1

Nβ
∑

j=1

′δ(r − |~ri − ~rj|)
〉

, α, β ∈ [A,B], (5.23)

with the prime restricting i 6= j if α = β. The partial structure factor, corresponding

Fourier transform, has the form

Sαβ(q) = xαδαβ + xαxβρ
∫ ∞

0
gαβ

sin(qr)

qr
4πr2dr, (5.24)

q being the wave number. Our interest is in the concentration fluctuation near criticality.

The concentration-concentration structure factor Scc(q) is written as the combination

[64]:

Scc(q) = (1 − xA)2SAA(q) + xB
2SBB(q) − 2xA(1 − xA)SAB(q). (5.25)

Scc(q) obeys the Ornstein-Zernike form at small q limit [42]:

Scc(q) =
kBTχ

1 + ξ2q2
. (5.26)

Fig. 5.8 shows the the plots of Scc(q, T ) as a function of q for a few temperatures

for Model I. In the limit q → 0 more sudden rise in Scc(q), as T approaches Tc, reflects

the critical enhancement of the concentration fluctuation. The Ornstein-Zernike form is

fitted to the data sets in the small q regimes by treating ξ as an adjustable parameter,
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Fig. 5.8 Concentration-concentration structure factors, Scc(q), are shown versus the
wave number, q, for three different temperatures close to Tc for Model I. The continuous
lines are fits to Eq. (5.26) and the crosses denote the values of Scc(q = 0) (= kBTχ) as
obtained from Eq. (5.15) by using the concentration distribution.

while χ has already been estimated from the probability distribution via Eq. (5.15).

From the best fits ξ have been calculated for different temperatures close to Tc.

5.6 Results on Curvature Dependent Interfacial Ten-

sion and Quantification of Its Critical Behavior

As we are working with symmetric models, it is expected that the Tolman length δ will

be zero [35] and the relation between γ(∞) and γ(R) should follow Eq. (5.3).

Hence in Fig. 5.9 we plot γ(∞)
γ(R)

− 1 with the variation of 1/R2 for various different

system sizes as well as for different temperatures for Model I. As the size of the droplet

(R) is constrained by the system size (L), results from several L become useful to avail

the behavior of γ in a longer range of R [14]. The data sets for different system sizes and

different temperatures behave linearly and converge to zero in the R → ∞ limit. This

is consistent with the expectation: the leading correction is quadratic for symmetric

models [14, 36, 37].
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Fig. 5.9 Plots of γ(∞)
γ(R)

−1 versus 1
R2 for spherical droplets at three different temperatures

for Model I. For each of the temperatures data from multiple system sizes are included.
The broken lines are linear fits to the data sets. The values of ℓ have been calculated
from the corresponding slopes.

Fig. 5.10 Here we show ℓ(T ) against τ , on a log-log scale, for two models, viz., Model I
and Model II. The continuous lines are fits to the form ℓ0τ

−0.63.
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The broken lines of various styles are linear fits to the data sets. The quantity ℓ

[see Eq. (5.3)] for different temperatures can be estimated from the slopes of these lines.

Near Tc, we need large enough systems for the reliable estimation of surface tension for

flat as well as curved interfaces as the latter becomes more and more fuzzy as ξ increases.

In Fig. 5.10 we have shown the behavior of ℓ with the variation of τ for two different

models. The solid lines denote the power-law divergence of the form ℓ0τ
−ν , with ν

having the Ising value 0.63. Close to Tc the data points are following the solid lines

more consistently [14, 37], implying the fact that the singularity of ℓ is the same as ξ

[14, 37]. For direct comparison we need to calculate ξ.

Fig. 5.11 (a) shows the plots of ξ versus τ for two different models, on a log-log scale.

Again the data sets follow the 3D Ising critical divergence τ−ν with ν = 0.63, represented

by the continuous lines. For the sake of completeness, the concentration susceptibility

for representative models have also been plotted against τ on a log-log scale in Fig. 5.11

(b). The data sets are again consistent with the 3D Ising critical divergence τ−γ , with

γ = 1.239 that are represented by the solid lines.

In Fig. 5.12 the ratio ℓ/ξ, for different models, are plotted against temperature

(close to Tc). For a particular model the ratio is essentially constant for a wide range

of temperature. These results again confirm the fact that the critical divergence of ℓ is

similar to ξ [14, 37]. In table 5.2 we have listed the values of C1 and C2 for different

models. Recall that

C2 = 2

(

ℓ

ξ

)2

= 2

(

ℓ0

ξ−
0

)2

. (5.27)

There we have also provided the values of Tc for different models. Clearly C2, as already

Table 5.2 List of values of Tc, C1 and C2 for different models.

Model Tc C1 C2

Model I 1.628 0.0945 18.97
Model II 1.509 0.0699 24.5
Model III 1.423 0.072 [14, 37] 32.0 [14, 37]
Model IV 1.326 0.0717 44.37
Model V 1.258 0.0681 54.71

appreciated from Fig. 5.12, is nonuniverval. Interestingly, it has a monotonic behavior

with the variation of Tc. For the sake of convenient visualization we have plotted C2,

as a function of Tc, in Fig. 5.13. For C1 (= γ0(ξ
−
0 )2), on the other hand, we obtain an
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Fig. 5.11 (a) Log-log plots of the correlation length ξ versus the reduced temperature
τ , for two different models, with T < Tc. The solid lines correspond to the critical
divergence with exponent ν = 0.63. The amplitudes are ξ−

0 = 0.155 for Model I and
ξ−

0 = 0.18 for Model II. (b) Plots of concentration susceptibility χ versus the reduced
temperature τ for T < Tc, on a log-log scale. The solid lines correspond to the critical
behaviors with the exponent γ = 1.239.

average value 0.075, without a systematic dependence on Tc. The value is close to the

theoretically predicted universal number [47, 48] 0.089.
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Fig. 5.12 The ratio ℓ/ξ is plotted against temperature. Results from different models
are presented by choosing the temperatures close to the corresponding critical values.
The data set for Model III is taken from [14, 37].

Fig. 5.13 Plot of nonuniversal constant, C2, versus Tc, for different models. This is the
central result of this work.



5.7 Conclusion 93

5.7 Conclusion

We have studied the equilibrium properties of phase coexistence in multiple models, that

describe symmetric binary fluids, using successive umbrella sampling [57] Monte Carlo

simulations in a semi-grand canonical ensemble [49]. Taking help of a recently developed

thermodynamic method [13] surface tensions of curved interfaces have been calculated.

It is seen that the leading order curvature correction is quadratic in nature [35] for the

studied models.

A universal form, as described via Eq. (5.9) [14, 37], for critical behavior of curvature

dependent interfacial tension has been seen to be obeyed by the considered models. The

study strengthens the fact that the critical behavior of the quantity ℓ, as introduced in

Eq. (5.3), is similar to that of the correlation length [14, 37] which leads to the above

mentioned critical behavior. The form in Eq. (5.9) is argued [14, 37] to be valid for

asymmetric models also as the critical divergence of ℓ is much stronger than that of δ

[32].

The expression in Eq. (5.9) contains two constants, viz., C1 and C2. Between

these, C1 is universal, but a conclusion on the nature of the other constant C2 was not

previously drawn via studies of a spectrum of models. We have performed systematic

investigations with several different symmetric models and found that C2 is a model

dependent constant. Its value varies with the critical temperature of the model in a

strong and monotonic fashion. Identification of a mathematical form we leave out for

future.

For the above purpose we will perform similar studies for few other models by con-

sidering different values of the truncation radius. Also it will be interesting to study

asymmetric mixtures and check whether the corresponding critical behavior of curva-

ture dependent interfacial tension follows Eq. (5.9) and if so, then what is the nature of

C2. In the latter case it will be challenging to separate out δ and ℓ from the curvature

dependent data.

Note that δ and ℓ are related to different measures of interface width. It is already

interesting to have different critical singularities for these quantities. Observation of

same critical exponent for ℓ and ξ is important. However, the amplitude of ℓ having

quite different model dependence than ξ adds to the puzzle. This is interesting and

requires attention.
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Chapter 6

Dependence of Interfacial Tension

on Mean Radius of Curvature

6.1 Introduction

In nature the interface in a heterogeneous system can be of complex shape [1–7] where at

a given point on the surface one can imagine multiple curvatures. In such a situation how

the curvature dependence of thermodynamic quantities can be understood as a function

of a single variable? Let us first discuss the necessary mathematical background to

characterize an arbitrary surface.

At a point on a surface there are two principal radii of curvature R1 (= 1/κ1) and R2

(= 1/κ2) [8, 9]. At that point one can consider a unit normal vector ~N and a normal plane

containing the vector. This plane will contain a tangent to the surface and cut the latter

in the shape of a plane curve. The latter will possess varying curvatures with the change

of normal planes at a point on the surface. The principal radii of curvature correspond

to the largest and lowest values of these curvatures. This has been shown schematically

in Fig. 6.1. For convenient illustration of this we will consider two simple cases, i.e.,

spherical and cylindrical surfaces, as presented in Fig. 6.2 (a) and (b), respectively.

At a particular point P, on the spherical surface, both the radii (R1 and R2) are

positive and equal to the radius of the sphere. On the other hand, for the cylindrical

case, one of these radii is infinite, i.e., the corresponding curvature is zero. In this case

the other radius is equal to the radius of the curved surface. Another important case,

which is not shown here, is a saddle-like surface where the principal curvatures have

opposite signs. Below we discuss how these principal radii of curvature are typically

combined to obtain important measures.
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Fig. 6.1 The procedure of calculation of principal curvatures of an arbitrary surface
has been illustrated. See text for description. Source: K. Crane, F. De Goes, M.
Desbrun and P. Schröder, “Digital geometry processing with discrete exterior calcu-
lus” (ACM SIGGRAPH 2013 Courses) pp. 1-20 (2013). Reproduced with permission.
©incollectioncrane2013digital. https://www.cs.cmu.edu/~kmcrane/Projects/DDG/

First, we consider the Gaussian curvature. This is given by 1/RG = 1/R1R2, which

is the product of these two curvatures. For example, the Gaussian curvature of a sphere,

saddle and cylinder are positive, negative and zero, respectively. Next we discuss the

mean curvature. This is the addition of the curvatures of these two curves, i.e., 1/Rm =

1/R1 + 1/R2. Thus, Rm for a cylinder is finite despite one of the principal radii being

infinite. Combining the cases of sphere and cylinder we can write Rm = aR, where

a, a scale factor, depends on the geometry of the surface, e.g., as = 0.5 (the subscript

‘s’ corresponds to sphere) for spherical surface and ac = 1 (‘c’ stands for cylinder) for

cylindrical surface.

Let us write down the curvature dependence [10, 11], in the symmetric case [12–

15], as discussed in the previous chapter, in terms of mean radius of curvature (Rm).

We will consider the simple cases, viz., spherical and cylindrical interfaces. The reason

behind choosing Rm as the variable is that for both the geometries it has finite values,

as discussed above. We can then express the dependence as

γ(R) =
γ(∞)

1 + 2( ℓ
aR

)2
. (6.1)

In this chapter we will investigate whether Eq. (6.1) can describe the curvature depen-

dence of interfacial tension, for the values of a = as = 0.5 and a = ac = 1, in unique

https://www.cs.cmu.edu/~kmcrane/Projects/DDG/
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Fig. 6.2 (a) Schematic illustration of curvature related definitions for spherical surface.
The planes of principal curvature and the corresponding radii at a point P on the surface
are shown. (b) Same as (a) but here we illustrate the cylindrical case.
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manner such that Rm decides the value of curvature dependent interfacial tension. For

this purpose we will perform simple scaling analyses.

6.2 Models

Like in the previous chapter we have used the Lennard-Jones potential [16] for the study

in this chapter as well. We have considered both truncated-shifted and truncated-shifted-

force-corrected versions [17, 18], with different overall densities. These are listed in table

6.1.

Table 6.1 Details of different models.

Interaction potential Overall density (N/L3) Tc Name of the model

tsLJ
1.0 1.628 Model I
0.7 1.509 Model II

tsfLJ
0.7 1.326 Model III
0.65 1.258 Model IV

6.3 Methods

Similar to the previous chapter here also we have obtained the equilibrium configurations

by simulating the model efficiently via successive umbrella sampling [19] in the semi-

grand canonical ensemble [16].

The behavior of fL, as described in the previous chapter, has been shown in the upper

panel of Fig. 6.3, amending it in such a way that it appears more relevant for the present

chapter. There the presence of kinks are due to the structural changes of the interface

with the increase in xA [13–15, 20–23]. For very small value of xA the system is in bulk

B-rich phase (corresponding to the left hand side minimum). Gradually, as the number

of A-type particles is increased, an A-rich spherical droplet will appear in the B-rich

background phase, indicated by the first sharp change in slope. The size of this droplet

continues to increase as one moves further right until it takes the shape of a cylinder

which is energetically more stable at a higher xA, reflected as another sharp change.

Finally as xA reaches close to the critical concentration 1/2, both the coexisting phases

acquire slab geometries. The structural changes can be visualized more prominently

from the sudden jumps in the behavior of chemical potential difference relative to the

bulk coexistence that has been defined in the previous chapter.
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Fig. 6.3 The procedure of estimation of ∆x and ∆f from the plots of fL and ∆µ has
been shown schematically for the cylindrical interface. For details see text.

The calculation of γ(R) has been illustrated in Fig 6.3 for a cylindrical A-rich droplet.

Here first we have to identify the range of xA in fL plot where the A-rich cylindrical

droplet is structurally stable. The bulk contribution can be estimated and subtracted

from the total to obtain the excess free energy due to the presence of the curved interface:

V∆f = 2πRLγ(R). (6.2)

Note that by construction the cylinder has the length same as the linear dimension of

the system so that it has volume and surface area as πR2L and 2πRL, respectively.

According to a lever rule [23, 24] the related concentration difference can be written as

∆x = πR2L
[1 − 2xcoex

A ]

V
. (6.3)

From the set-up and simulations the quantities ∆f , V , ∆x and xcoex
A are known. There-

fore from Eqs. (6.2) and (6.3) one estimates R and γ(R).

6.4 Results and Discussion

In Fig. 6.4 we have plotted γ(∞)
γ(R)

− 1 versus 1/R2 for interfaces corresponding to two

different geometrical structures (sphere and cylinder), for various system sizes to explore
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Fig. 6.4 Plots of γ(∞)
γ(R)

− 1 versus 1/R2 for two different geometries of the interface at
temperature T = 1.2 for Model I.

a wide range of R, at temperature T = 1.2 for Model I. Data for different system sizes

superimpose on straight lines, represented by the broken lines. These converge to zero

and validate Eq. (5.3), for both the geometries. This is expected for symmetric systems

[12–14].

Despite this, there exists difference between the two cases in the slopes. The origin

of the difference may lie in ℓ. It is also possible that the discrepancy will get away if

the curvature dependence is described in terms of the mean radius. Below we take the

latter route first.

In order to check whether the curvature dependence can be expressed as a function

of mean radius (Rm), we have performed a simple scaling exercise, as hinted previously.

If one multiplies the abscissas of the plots in Fig. 6.4 by 1/a2, where the scale factor

a = ac = 1 for the cylindrical and a = as = 0.5 for the spherical interface, then both the

scaled plots may fall onto a single straight line. The outcome of this exercise for Model

I, at T = 1.2, is shown in Fig. 6.5. It is observed that the collapse of the data sets along

the same line did not occur.

Next we replace as by bs, the reason being described below, and treat it as an

adjustable parameter, by keeping ac fixed at 1. The best collapse has been obtained for
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Fig. 6.5 Same as Fig. 6.4. But here the abscissa for the results on spherical curvature
has been scaled with factor 1/a2 with a = as = 0.5.

Fig. 6.6 Same as Fig. 6.5 but here we have used bs = 0.585. See text for the definition
of bs.
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Fig. 6.7 (a) Similar exercises as in Fig. 6.6 have been performed for temperature T = 1.1
with bs = 0.584. (b) Same as (a) with T = 1.3 and bs = 0.588. Both results are for
Model I.
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bs = 0.588. This is shown in Fig. 6.6. The value 0.588 is at about 18% deviation from

the “expected” value 0.5. If this difference is real one needs to discuss its possible origin.

If the deviation remains same for different models and temperatures, it is likely that

it is real. This will also imply that critical exponents for ℓ in both the cases, i.e., for

spherical and cylindrical geometries, are same but there possibly exists difference in the

amplitudes. In that case, by writing bs = as/ℓ0, with as = 0.5, the value by mathematical

construction, bs = 0.59 would mean that ℓ0, the critical amplitude of ℓ, is different for the

spherical shape of droplets from the cylindrical case. Note that this exercise effectively

implies that we have fixed ℓ0 for the cylindrical case at 1.

To check for the above we have done the similar exercise for other temperatures,

as demonstrated in Fig. 6.7 (a) and (b), again for Model I. In each of these cases bs

remains same and different from the theoretical value of as. Inspired by this we have

performed similar exercise for different models. In table 6.2 we have listed the values of

bs obtained from the best collapse of the data sets, for different models as well as for

different temperatures. The deviation is about 20% in each of the cases. Note that, as

understood, throughout the study the value of ac is kept fixed at unity.

Table 6.2 List of the values of bs for different models.

Model I Model II Model III Model IV
T 1.1 1.2 1.3 1.0 1.1 1.2 1.0 1.05 1.1 0.9 0.95 1.0
bs 0.58 0.59 0.59 0.6 0.58 0.59 0.61 0.59 0.6 0.58 0.59 0.61

6.5 Conclusion

We have studied the coexistence pictures in different models of symmetric liquid mix-

tures at temperatures lower than the corresponding Tc values. For this purpose we have

performed Monte Carlo simulations in the semi-grand canonical ensemble [16]. To over-

come certain free energy barrier successive umbrella sampling [19] technique has been

used. We have brought in the gradual structural change of the interface, from spherical

to cylindrical to slab-like, between A-rich and B-rich coexisting phases, with the increase

in number of A-type particles in the system.

The curvature dependence of interfacial tension has been studied for two different

geometries, viz., sphere and cylinder. It is seen that for both the cases, with a difference

in the slopes, the leading order correction is quadratic in nature. This validates the
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applicability of Eq. (5.3). Now the question is whether one can construct a generic form

of γ(R) for an arbitrary surface by using mean radius of curvature Rm as a variable.

To check the validity of such a description we have performed simple scaling analyses

and found that there exist uniform mismatch of about 20% between the results obtained

from the simulation and the expectation. We believe that this is due to a difference in

the critical amplitudes between the two geometries.
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Chapter 7

Summary of the Thesis

This thesis deals with the investigation of various thermodynamic and dynamic aspects

of phase separations in binary (A+B) mixtures. The background related to the problems

are provided in Chapter 1.

In Chapter 2 we have studied the influence of long-range initial spatial correlation

on aging dynamics during phase separation in solid mixtures in space dimension d = 2.

For this purpose, we have used the Ising model, with nearest neighbor interaction, on a

square lattice and performed Kawasaki exchange Monte Carlo simulations. To achieve

the long rage correlation we have prepared systems at starting temperature Ts =“Tc”and

quenched them to the final temperature Tf = 0.6Tc. During the coarsening process we

have probed the order-parameter autocorrelation function, Cag(t, tw), which is a key

quantity for the study of aging phenomena in nonequilibrium systems. We have found

that the decay of Cag(t, tw), which is quantified by the power-law exponent λ, was

significantly slower than that for the quenches from the random initial configurations.

In Fig. 7.1(a) we have plotted Cag(t, tw) as a function of ℓ/ℓw, for quenches from two

different Ts values, viz., Ts = Tc and ∞. Here ℓ and ℓw correspond to average the

domain lengths at observation and waiting times t and tw, respectively. The values of λ

for both the cases have been mentioned inside the frame. We have studied the structure

to explain the appearance of such a small value of aging exponent [1] in the case of

quenches from Tc.

The above study has been extended in Chapter 3. There the same model has been

considered in dimension d = 3. In this case also λ is found to be much smaller than that

for the quench from random initial state. This is depicted in Fig. 7.1(b). These results

state that universality in coarsening dynamics can be classified based on the extent of

spatial correlation present in the initial configurations [2].
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Fig. 7.1 (a) Plots of Cag(t, tw) versus ℓ/ℓw, the ratio of domain lengths at observation
and waiting times t and tw, respectively, on a log-log scale, for quenches from Ts = TL

c

and Ts = ∞, for Ising system, with size L = 128 in dimension d = 2, to Tf = 0.6Tc.
Here TL

c is the finite-size critical temperature. (b) Same as (a) for system size L = 64
in dimension d = 3. (c) Average domain lengths, ℓ(t), are shown with the variation
of time, for quenched binary liquid systems having different compositions of A and
B particles, from random configurations. The solid lines represent power-laws with
mentioned exponents. These results were obtained via the application of hydrodynamics
preserving Nosé-Hoover thermostat (NHT). (d) Plots of ℓ versus time, on a log-log scale,
for binary liquids. Here we have compared the results obtained via the applications of
NHT with those obtained by using Andersen thermostat (AT). These results are for the
composition 80 : 20. The solid line is a power-law with exponent 1/3. The evolution
snapshots at late time for both the thermostats are shown in small frames. (e) Plots of
ℓ/ξ versus temperature, for different models of binary liquid mixture. Here ℓ is a length
corresponding to curvature correction to interfacial tension and ξ is the equilibrium
correlation length. In the inset we present the variation of a constant, C2, that appears
in the expression of critical behavior of curvature dependent interfacial tension γ(R),
against Tc. (f) Plots of γ(∞)/γ(R)−1 versus 1/R2 for different system sizes in the cases
of spherical and cylindrical droplets, γ(∞) being the flat interfacial tension. Inset shows
certain scaled plots for the same.
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In Chapter 4 we have studied kinetics of phase separation in a high density sym-

metric binary fluid model, by varying compositions from critical to extreme off-critical

values, via molecular dynamics simulations with hydrodynamics preserving Nose-Hoover

thermostat. While around the symmetric composition a bicontinuous domain morphol-

ogy is observed, with the linear viscous hydrodynamic growth, for compositions close to

the branches of the coexistence curve the domain morphology consists of disconnected

droplets of the minority phase with the the majority species in the background. In Fig.

7.1(c) we have shown ℓ versus t plots for several different compositions. Late time be-

havior, for compositions far away from the critical value, is consistent with the exponent

α = 1/3. Our objective was to understand the mechanism for the latter. Via the calcu-

lations of mean-squared-displacements of the centres of mass of the droplets, we show

that these droplets exhibit diffusive motion. Due to sticky collisions among themselves,

the number density of these objects decreases, thereby the characteristic length scale

increases [3]. We have found that the number of constituent particles in these droplets

remain practically fixed between collisions. Thus, the observed value α = 1/3 is due to

the diffusive coalescence mechanism. These results were compared with those obtained

via the application of a stochastic thermostat which mimics the coarsening in solid bi-

nary mixtures. In this case the droplets are practically static and growth occurs via

particle diffusion from smaller to larger droplets. Although the exponent remains same

in both the cases, as shown in Fig. 7.1(d), the ratio of the growth amplitudes in the two

cases suggests that the hydrodynamic growth is faster [3].

Till Chapter 4 we have studied the nonequilibrium aspects of phase separation. In

Chapters 5 and 6 we have undertaken the studies of equilibrium properties of liquid-

liquid phase coexistence in multiple models of symmetric binary fluids. For this we

use a successive umbrella sampling technique in Monte Carlo simulations in semi-grand

canonical ensembles.

Using an advanced thermodynamic method, surface tensions of curved interfaces

have been calculated from the simulation data. In Chapter 5 we deal with spherical

interface. It is seen that the leading order curvature correction is quadratic in nature.

The critical behavior of the quantity ℓ, a length associated with this correction term,

is similar to that of the correlation length. This is depicted in the main frame of Fig.

7.1(e). A universal form for critical behavior of curvature dependent interfacial tension

has been seen to be obeyed by the results from all considered models. This form contains

two constants, viz., C1 and C2. Between these, C1 is universal, but a conclusion on the

nature of the other constant C2 was not previously drawn via studies of different models.
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Via systematic investigations we conclude that C2 is model dependent. Its value varies

with the critical temperature of the model in a strong monotonic fashion [4], as shown

in the inset of Fig. 7.1(e).

In Chapter 6 we analyze the results from spherical as well as cylindrical geometries

and find that for both the cases curvature correction is quadratic in nature. This is shown

in the main frame of Fig. 7.1(f). However, the results for these two cases differ in the

slopes. This difference reduces if one expresses the curvature dependence in terms of the

mean radius. From such an exercise we observe that there exists about 20% difference

between the expectation and results obtained from the simulation. We speculate that

this discrepancy is due to the difference in the critical amplitude of the quantity ℓ for

these two cases [5]. If this fact is true adjusted results for spherical and cylindrical

geometries should fall on the same straight line for all models and temperatures for

the same value of the corresponding scaling factor – see the inset of Fig. 7.1(f) for a

representative example.

In future we would like to obtain a better quantitative understanding of dependence

of C2 on Tc. We will also investigate why the critical amplitude of ℓ in the spherical and

cylindrical cases should differ.
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