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Synopsis

This is a summary of the work done under the title “Disordered systems under
cyclic shear deformation and relaxation of supercooled liquids at low tem-
peratures" by Pallabi Das.

The central theme of the thesis is the study of disordered systems under oscillatory
shear deformation. Two kinds of systems, namely, athermal systems and thermal
glassy systems, are studied. In the study of athermal systems, the amplitude of defor-
mation and the density of the system are the control parameters. The exploration of a
wide range of deformation amplitude and density leads to a rich phase diagram that re-
veals interesting similarities between various transitions observed at di�erent density
regimes. In the case of thermal glassy systems, the periodic mechanical perturbation
in the presence of thermal �uctuation leads the system to access low energy states
when driven with optimal amplitude and rate. At the very low temperature regime,
where the system falls out of equilibrium, it ages faster in the presence of a mechani-
cal drive. The last part of the thesis focuses on the study of a dynamical crossover in
a supercooled liquid at substantially low temperatures and associated phenomena of
dynamical heterogeneity and thermodynamics.

The response of disordered systems under externally imposed drive is of interest in
various contexts. For a wide range of systems like low-density colloidal suspensions,
dense glassy systems, or athermal granular systems, the applied deformation causes
diverse phenomena like self-organization, transitions from reversible to irreversible
behaviour, or macroscopic changes like yielding or failure of the system. But what
speci�c phenomenon will occur depends on the extent of the deformation applied.
The study of an athermal system under oscillatory shear deformation is performed
for a range of densities, where the system at limiting densities shows very di�erent
behaviours (such as the behaviour of low-density colloids or high-density glasses). An
attempt is made to establish a uni�ed picture by constructing a phase diagram in the

v



amplitude-density plane by identifying the key underlying similarities of the di�erent
transitions in these di�erent density regimes.
Cyclic deformation is of importance, speci�cally in the context of glass-forming liq-
uids in terms of relaxation, as one �nds that an optimal choice of the amplitude of
deformation leads the glassy systems to access lower energy states. At substantially
low temperatures where the glassy system enters an aging regime, the incorporation
of periodic mechanical deformation is found to enhance the aging process. However,
at a temperature regime where the system can still be equilibrated by thermal �uc-
tuations alone, the inclusion of mechanical deformation does not lead to faster sam-
pling. The study of glassy systems at such supercooled regimes but at substantially
low temperatures concurrently reveals a crossover in dynamics that indicates a faster
relaxation. The dynamical crossover in that glass-forming liquid and associated as-
pects of dynamical heterogeneity is studied. The study of the thermodynamics across
the crossover temperature shows no indication of the change that can accompany the
dynamic crossover. Furthermore, a careful estimate of the entropy is carried out to
investigate whether the well-known Adam-Gibbs relation, which relates thermody-
namics to dynamics, remains valid at low temperatures. Our results show that the
Adam-Gibbs relation continues to hold across the crossover temperature when the vi-
brational entropy is calculated with anharmonic corrections.
The work in the thesis is organised in the following chapters:
Chapter 1
In this chapter, the relevance of the problems addressed in the thesis is discussed. It
contains an overview of important transitions like the glass transition and the jamming
transition in disordered systems. A discussion of di�erent non-equilibrium transitions
that occur under the application of external mechanical drive, emphasizing the e�ect
of periodic driving, is provided. With this background, the importance of cyclic shear
deformation in the context of exploring low energy minima in the glassy landscape is
discussed. Recently it has been found that a range of well known fragile glass-forming
liquids at such very low temperatures shows a change in the nature of relaxation. In
this regard, the study of the low-temperature glassy dynamics and its resemblance to
well known fragile to strong transition is discussed.
Chapter 2:
This chapter describes the model systems that are used to simulate granular and glassy
systems. Further, it describes the simulation methods and the corresponding descrip-
tion of the analysis of the problems addressed in the thesis.
Chapter 3:
This chapter discusses the reversible-irreversible transition below, close to, and above



the jamming densityφJ . Di�erent phases across the isotropic jamming density is char-
acterized by studying di�erent microscopic quantities like the mean squared displace-
ment, percentage of new collisions, non-a�ne path length, stress, potential energy,
and contact numbers. It is found that the reversible-irreversible transition corresponds
to the yielding transition for high density jammed packings. The presence of an un-
jamming region close to but above the isotropic jamming density (φJ ) is found. A cyclic
shear jamming density (φcycJ ) is identi�ed, above which the soft sphere packings be-
have like an amorphous solid. Below φJ , two di�erent forms of reversible phases are
present, namely, point and loop reversible. Quantities like non-a�ne path length and
the percentage of new collisions clearly distinguish reversible and irreversible phases
for the whole range of densities. The transition to irreversibility is always charac-
terised by the onset of di�usive behaviour of the particles at all densities. All transi-
tions are characterised by discontinuous changes in relevant quantities.
Chapter 4:
The study of yielding transition in glassy systems under oscillatory deformation has
shown previously that the system shows maximum annealing when the driving am-
plitude is close to the yielding amplitude. This chapter discusses our �ndings from
exploring the possibility of generating low energy con�gurations by employing cyclic
shear deformation with the optimal combination of temperature, amplitude of defor-
mation, and strain rate. The generated low energy structures are found to be free
from anisotropy, and their other properties guarantee that generated structures are
equilibrium-like. However, within the temperature regime where the system can be
equilibrated by thermal �uctuations alone, the incorporation of a mechanical drive
does not o�er a faster sampling.
Chapter 5:
This chapter discusses the phenomena of ‘overaging’ in glassy systems under the ap-
plication of oscillatory deformation. At comparatively higher temperatures where the
system can be equilibrated by equilibrium thermal �uctuations, mechanical perturba-
tion in the form of oscillatory deformation does not lead to accelerated sampling. But
at signi�cantly lower temperatures, where the system enters the aging regime, an-
nealing arising from mechanical perturbation becomes more signi�cant than thermal
�uctuation. The mechanical drive helps the system access lower energies faster; in
other words, it helps the system to overage or age faster.

Chapter 6:
This chapter involves the study of supercooled liquid at low temperatures. Glass-
forming liquids are broadly classi�ed as fragile and strong glass-forming liquids, which
show non-Arrhenius and Arrhenius temperature dependence of dynamics, respec-
tively, as the glass transition temperature is approached. In anomalous liquids like



water or silica, a fragile to strong crossover is observed at lower temperatures. Though
most metallic glass-formers show fragile behaviour for a wide range of temperatures,
it has recently been found that even metallic glass-forming liquids show a crossover
in dynamics when really low temperatures are accessed. This chapter describes the
study of the Kob-Andersen model for a wide range of temperatures extending up to
really low temperatures below the mode coupling temperature (TMCT ). Signatures of
a possible dynamical crossover below TMCT are found that are consistent with recent
�ndings in di�erent metallic glass formers. Unlike the conventional fragile to strong
transition in anomalous liquids, no accompanying thermodynamic changes are found
across the crossover temperature. Interestingly the Adam-Gibbs relation describing
the relation between relaxation times and con�gurational entropy holds well below
the dynamical crossover temperature when anharmonic corrections to the vibrational
entropy are included.
Chapter 7:
The key �ndings of the work of the thesis are summarized in this chapter. The impli-
cations of the results and possible future directions are brie�y discussed.



Contents

Acknowledgements iii

1 Introduction 1
1.1 Glass transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Non-exponential decay of time correlation functions . . . . . . 5
1.1.3 Non-Arrhenius relaxation behaviour . . . . . . . . . . . . . . . 6
1.1.4 Crossover of relaxation in glass forming liquids at low temper-

ature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Dynamical Heterogeneity . . . . . . . . . . . . . . . . . . . . . 8
1.1.6 Violation of the Stokes-Einstein relation(SER) . . . . . . . . . . 10
1.1.7 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.8 Adam-Gibbs Relation . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.9 Preparation of stable glasses . . . . . . . . . . . . . . . . . . . . 13
1.1.10 Well annealed glasses and equilibrium . . . . . . . . . . . . . . 17

1.2 Jamming transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Driven amorphous systems . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Shear jamming transition . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Yielding transition . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Reversible-irreversible transition . . . . . . . . . . . . . . . . . 24
1.3.4 Periodic drive and its e�ects . . . . . . . . . . . . . . . . . . . . 25

1.4 Aging and mechanical aging . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Models and methods 31
2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Kob-Andersen model . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Soft-sphere model . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



2.2 Simulation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Athermal quasistatic cyclic shear deformation . . . . . . . . . . 32
2.2.2 Equilibrium molecular dynamics in a canonical ensemble . . . 35
2.2.3 Cyclic shear deformation at a �nite rate and a �nite temperature 38

2.3 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Mean squared displacement and cycle to cycle displacement . . 42
2.3.3 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Structural quantities . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.5 Con�gurational entropy . . . . . . . . . . . . . . . . . . . . . . 46

3 Uni�ed phase diagramof reversible-irreversible, jamming and yielding
transitions in cyclically sheared soft sphere packings 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Reversible-irreversible and yielding transition well above the
isotropic jamming density . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Unjamming and shear jamming just above the isotropic jam-
ming density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Reversible-irreversible transitions below the isotropic jamming
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Annealing glasses by cyclic shear deformation 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Characterization of the optimal strain amplitude . . . . . . . . 84
4.3.2 Dependence on shear amplitude and rate . . . . . . . . . . . . . 86
4.3.3 Cyclic shear and equilibrium relaxation . . . . . . . . . . . . . 90
4.3.4 Properties of sheared con�gurations . . . . . . . . . . . . . . . 92

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Overaging by cyclic shear deformation 101
5.1 Overaging by cyclic shear deformation . . . . . . . . . . . . . . . . . . 101
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Faster equilibrium relaxation at low temperatures . . . . . . . . 102

x



5.3.2 Comparison between normal molecular dynamics and cyclic
shear deformation lower temperatures . . . . . . . . . . . . . . 103

5.3.3 Dependence on deformation amplitude and rate . . . . . . . . . 107
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Crossover in dynamics in theKob-Andersen binarymixture glass-forming
liquid 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Structural Relaxation . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.2 Dynamical heterogeneity . . . . . . . . . . . . . . . . . . . . . 117
6.3.3 Mobile particle clusters and strings . . . . . . . . . . . . . . . . 121
6.3.4 Summary of various timescales . . . . . . . . . . . . . . . . . . 123
6.3.5 Morphology of correlated rearrangements . . . . . . . . . . . . 125
6.3.6 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusions 135

A Appendix 139
A.1 Minimization methods and contact numbers . . . . . . . . . . . . . . . 139

A.1.1 Dependence of geometric contacts on the minimization protocol 139
A.1.2 Mechanical contacts . . . . . . . . . . . . . . . . . . . . . . . . 139
A.1.3 Fraction of non-rattlers at di�erent phases . . . . . . . . . . . . 142
A.1.4 Contacts below isotropic jamming density φJ . . . . . . . . . . 142

A.2 Equilibrium properties of binary mixture of Kob-Andersen 80:20 mixture 145
A.3 Stress in cyclically sheared glassy con�gurations . . . . . . . . . . . . . 145
A.4 wavelength dependence of correlation functions . . . . . . . . . . . . . 146

Bibliography 151

xi



xii



List of Figures

1.1 (a) The schematic representation showing the competition between
nucleation time and relaxation time in glass forming liquids. (b) The
schematic representation of the formation of glass by cooling a liquid
below its melting temperature. . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Schematic representation of the decay of the density correlation func-
tion at high and at low temperatures. . . . . . . . . . . . . . . . . . . . 5

1.3 Angell plot of the logarithm of viscosity vs the scaled inverse temper-
ature T /Tg [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The schematic representation of potential energy landscape (PEL) and
concept of annealing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Di�erent methods of preparing glasses [6] . . . . . . . . . . . . . . . . 15

1.6 Exploration of potential energy landscape in an amorphous solid under
periodic drive [149] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Sliding-brick and deformed cube representation of system with �ow. . 35

2.2 A crystallizing sample at T = 0.37 is hown . . . . . . . . . . . . . . . . 37

2.3 ZM , calculated at a given packing fraction for a range of deformation
amplitudes, has been compared with ZNR estimated iteratively or us-
ing the ‘bootstrap’ procedure for one sample density. They show com-
plete agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 The cumulative distribution of contact numbers has been shown for a
low density packing where two di�erent kinds of minimization namely
CG and SD have been used. For SD, the plateau of Z(r) entends to
much higher precision. A decrease in strain step shows a gradual in-
crease of plateau to lower values in the case of CG. the vertical line
shows the tolerance value used to de�ne contact at low density. . . . . 42

xiii



2.5 (a) Potential energy (at ρ = 1.2 for Kob-Andersen (KA) 80:20 binary
mixture) as a function of temperature, and (b) pressure as a function
of density ρ at reference temperature (Tr = 3.0 Kob-Andersen (KA)
80:20 binary mixture). The potential energies are well described by
the Rosenfeld-Tarazona scaling of E = a+ bT 3/5, but we use a best �t
exponent of 0.6088 in performing the thermodynamic integration. . . 47

3.1 Mean square displacement (MSD) as a function of γaccum, shown for
di�erent strain amplitudes. MSD shows a di�usive behavior above
γmax = 0.075. Blue and red vertical lines in the inset indicate the
lower and upper transition strain amplitudes when the transition is ap-
proached from the two di�erent phases. (Inset): Above γmax = 0.075,
the di�usion coe�cient (D) jumps from zero to a �nite value. . . . . . . 54

3.2 (a) The potential energy PE attains a minimum value at the yielding
transition amplitude which is identi�ed as γy = 0.075 in our system.
PE shows a discontinuous jump (red arrow) as the yielding point is
crossed. (b) The steady state potential energy (PE) value as a function
of γmax is shown. The potential energy attains a minimum value at
the yielding strain amplitude, indicated as γy = 0.075. At the yielding
strain, the potential energy shows a discontinuity. . . . . . . . . . . . . 55

3.3 The γy , identi�ed from the potential energy minimum, is almost con-
stant over a range of packing fractions at the high density limit. . . . . 55

3.4 (a) The shear stress (σxz) within a cycle is shown for a range of am-
plitudes after the system reaches a steady state. As the yielding strain
amplitude (γy = 0.075 here) is crossed, a �nite area under stress-strain
curve emerges signifying dissipation in the system in the post yield-
ing regime. (b) The steady state value of the shear stress σxz at the
strain γ = γmax is shown as a function of γmax. The shear stress passes
through a maximum as the yielding strain amplitude (γy = 0.075 for
φ = 0.72) is crossed and drops to a smaller value for higher strain
amplitudes (starting from the point at γmax = 0.078). . . . . . . . . . . 56

3.5 The scaling behaviour of the energy (PE) and the excess contact num-
ber (Z−Zc) of the initial jammed packings above the isotropic jamming
point obeys the scaling behaviour. . . . . . . . . . . . . . . . . . . . . . 56

3.6 (a)-(c)The evolution of pressure,shear stress (σxz) and potential en-
ergy(PE) for an unjamming con�guration with φ = 0.653, γmax =

0.03. (d) Potential energy as a function of cycle, for a �xed amplitude
across a range of densities. The number of cycles required to unjam
the system increases with the increase of density. . . . . . . . . . . . . 57

xiv



3.7 The �rst column for all the rows shows the stress vs strain value for the
�rst half cycle of the deformation. The second column shows the stress
vs strain value for the next half cycle of the deformation for the �rst
row and the negative of stress vs strain value for the next half cycle
of the deformation for the next two rows. The last column shows the
evolution of average contact number versus strain within a cycle. The
stress and contact number evolution within a cycle of an unjammed
phase (φJ = 0.653,γmax = 0.05)has been shown as the system gradu-
ally unjams. Figures in the �rst row show that the shear stress initially
stays �nite, and the average contact number stays above 2D though it
decreases gradually as more cycles are applied. For intermediate cycles
(second row), the stroboscopic con�gurations stay unjammed but get
jammed within a cycle when the strain is increased from zero to γmax
( or decreased to −γmax. During the reversal of shear direction (from
γmax or −γmax), stress and contact number decrease and show a jump
to zero and less than 2D value, respectively. Finally, (third row) stress
remains zero for all values of strain within a cycle, and the average
contact number always stays below 2D in the unjammed phase. . . . . 58

3.8 (a) The average mechanical contact number in the steady state, com-
puted with only force bearing contacts, jumps to 0 in the unjamming
regime, as does (b) the steady state shear stress (σxz)ss.The vertical
green solid line indicates the absorbing and unjammed phase bound-
ary. The vertical dotted lines indicate the strain amplitude beyond
which the system enters the yielded phase from an unjammed phase
(blue and green) or an absorbing phase (red). . . . . . . . . . . . . . . . 59

3.9 (a),(b) The steady state average contact number Z and contact num-
ber calculated without rattlers ZNR are shown as a function of strain
amplitude, for φJ ≤ φ < φ

cyc
J = 0.661. Z and ZNR drop to values

below the isostatic contact value of 6. The vertical green solid line
indicates the absorbing and unjammed phase boundary. The vertical
dotted lines indicate the strain amplitude beyond which the system
enters the yielded phase from an unjammed phase (blue and green) or
an absorbing phase (red). (c) The evolution of ZNR with γaccum for
φ = 0.653 is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 (a) Shear stress (σxy) vs the average contact number (ZNR), for stro-
boscopic con�gurations, shown for di�erent densities and strain am-
plitudes. Packings in the range φJ ≤ φ < φ

cyc
J exhibit two distinct

branches of �nite or zero stress. The shear stress jumps to a �nite
value at ZNR = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xv



3.11 (a) The MSD for the jammed (absorbing) and unjammed regimes ex-
hibit non-di�usive behaviour whereas the shear jamming regime ex-
hibits di�usive behaviour. The di�usion coe�cients (inset) show a
discontinuity at the re-entrant shear jamming transition.(b) The dif-
fusivity changes discontinuously from unjammed to yielded phase, in
a similar fashion to the change of the contact numbers. The �lled sym-
bols represent di�usivity and the open symbols represent average me-
chanical contact numbers. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.12 Uniform shear has been applied to the initial con�gurations, con�g-
urations obtained by training them with the mentioned amplitudes,
corresponding to jammed phase, unjammed phase, and yielded phase.
Uniform shear stress vs strain plot has been shown for φ = 0.653. . . . 62

3.13 The unjammed con�gurations attained through cyclic shearing by a
particular strain amplitude (γmax = 0.07 shown here) have been sub-
jected to uniform shear. The shear stress jumps beyond a particular
threshold value. The jump occurs at a lower value of strain as we move
further away from the isotropic jamming density. Di�erent colours
correspond to di�erent samples. Five samples for each packing frac-
tion have been shown. (Forφ = 0.658, it requires an excessive number
of cycles to attain unjamming at γ = γmax, Only one such con�gura-
tion could be shown here.) . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Partial radial distribution functions (g(r)) of the unjammed(U) phase
are shown in comparison with the absorbing phase (A), the yielded
phase (Y) and the initial isotropic jammed phase. The unjammed phase
does not show any signature of long range order or any signi�cant
di�erences from other cases. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.15 The global orientational order parameter Q6 of the di�erent initial
isotropically jammed structures has been shown as red dots at cycle
number zero. The horizontal red line indicates the average of Q6 of
the initial isotropically jammed structures. The scatter plot shows the
evolution of the Q6 in the steady state unjammed phase. Di�erent
symbols correspond to independent runs from di�erent initial con�g-
urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.16 Evolution of g(r) near contact as a function of cycle number, as the
system unjams, for type 1 pairs (a), type 2 pairs (b), and type 1 and 2
pairs (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.17 Overlap distribution for the initial jammed con�guration and overlap
distribution for the unjammed con�gurations have been shown . . . . 65

xvi



3.18 (a) MSD as a function of accumulated strain, shown at φ = 0.627 for
di�erent amplitudes. We show a discontinuous jump in di�usivity as
a function of strain amplitude. (b) Plot of the non-a�ne path length L
and the percentage of new collisions Cnew, which clearly di�erentiate
all the di�erent phases at all densities. PR: Point reversible; LR: Loop
reversible; IR: Irreversible; Y: Yielded phase; U: Unjammed phase; A:
Absorbing phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.19 (a) Steady states are achieved as the non-a�ne path length reaches
a steady state. (b) The non-a�ne path length captures the transition
from point reversible phase to loop reversible and irreversible states.
(c) Cnew as a function of γaccum, shown for φ = 0.627 for all three
phases. For PR and LR, Cnew = 0 in the steady state and �nite only for
the IR state. (d) Percentage of new collisions di�erentiates point and
loop reversible states from the irreversible state. (e) Total number of
collisions, within a cycle, have been shown as a function strain am-
plitude, exhibiting a discontinuous jump across PR-LR boundary and
shows a strain amplitude dependent increase across LR and IR phase.
(f) Fraction of active particles captures PR-LR transition through a dis-
continuous jump from 0 (in the PR phase) to almost 1 (in the LR phase). 69

3.20 Cycle to cycle displacement ∆r has been shown as a function of γaccum
in point reversible(PR), loop reversible (LR), and irreversible (IR) states.
Here displacement has been measured at an interval of �ve cycles. . . . 70

3.21 The time scale extracted from the relaxation ofL shows a non-monotonic
change across the PR-LR and LR-IR boundaries. . . . . . . . . . . . . . 71

3.22 (a) We show the evolution of the Y coordinate of a particle in the
loop reversible phase (LR), at φ = 0.54,γmax = 0.4. The black dashed
line shows the trajectory of the particle (a). The particle comes back
to the same position after one cycle of deformation. The initial and
the �nal coordinates are highlighted by black and red symbols. We
show the Y coordinate of a particle in the unjammed phase (b), at
φ = 0.648,γmax = 0.01. We show the Y coordinate of a particle (c) and
We show the energy (d) of the system after subtracting a harmonic �t
curve (to highlight the basin changes, see [151]), ∆E, in the absorbing
phase, at φ = 0.72,γmax = 0.05. . . . . . . . . . . . . . . . . . . . . . . 72

3.23 The di�usivity as a function of strain amplitude is shown with a denser
set (than the previous version of the MS) of data points near the transi-
tion in the three regimes, φ < φJ , φJ < φ < φ

cyc
J and φ > φcycJ in both

log and linear scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xvii



3.24 Log-log plot (upper panel) and linear-log plot (lower panel ) of the
di�usivity as a function γmax − γusedc for φ = 0.627, φ = 0.653, and
φ = 0.72. We use di�erent values for γc to illustrate the dependence
of di�usivity curves on the value of critical strain amplitude. For φ =

0.627, when using γc values above 0.39, we do not show points which
lie below the chosen γc values. . . . . . . . . . . . . . . . . . . . . . . 74

3.25 (a) Evolution of Z as a function of strain under uniform shear defor-
mation, shown for di�erent densities. (b) Shear stress shows a jump at
a strain value where Z reaches 4(D +1). The strain value correspond-
ing to discontinuity is the shear jamming strain is shown. Forces are
obtained for sheared packings in the presence of tangential forces (or
friction) and in the limit of in�nite friction. (c) Evolution of Zss as
a function of cyclic shear amplitude, shown for di�erent densities. (d)
Shear stress shows a jump at a strain value whereZ reaches 4(D+1) in
the cyclic shearing case. (e) The jamming phase diagram is obtained.
We observe that under cyclic shear deformation, the shear jamming
line shifts to higher strain values. Also, an irreversible phase emerges
as the system produces a jammed like structure. (f) The Zasymptotic
value of Z as a function of packing fraction . . . . . . . . . . . . . . . . 76

3.26 Average stroboscopic steady state value of the potential energies shown
as a function of φ, for four di�erent γmax (a). At these γmax values,
potential energy shows a discontinuous change to �nite values, but at
di�erent densities depending on γmax. For small γmax, the jump occurs
at the transition from the unjamming to absorbing or shear jamming
states, whereas at larger γmax, it occurs at φJ . (b)The horizontal lines
in (b) indicate the strain amplitude at which PE energy shown in (a)
are monitored across the density axis. . . . . . . . . . . . . . . . . . . 77

3.27 contact number Z (a) and shear stress (b) σxz has been shown across
the irreversible transition line. . . . . . . . . . . . . . . . . . . . . . . . 78

3.28 The phase diagrams showing di�erent transitions for di�erent range
of packing fractions ((a)-(c)) and the global phase diagram (d). Symbols
in the legends indicate the following phases: PR: Point reversible; LR:
Loop reversible; IR: Irreversible; Y: Yielded phase; U: Unjammed phase;
A: Absorbing phase. (a) Below φJ . (b) φJ ≥ φ < φ

cyc
J . (c) φ > φcycJ .

(d) Complete phase diagram showing di�erent phases and transitions
across the isotropic jamming density. . . . . . . . . . . . . . . . . . . . 79

xviii



4.1 (a) Inherent structure energy variation within a cycle for di�erent am-
plitudes at a �xed rate and a �xed temperature. The energy minimum
at zero strain shifts to �nite strain values above a certain strain am-
plitude. (b) Variation of stress σxy of inherent structures over a cycle.
After a certain amplitude of strain, the stress-strain curves begin to
enclose a �nite area. (c) The optimal strain identi�ed is the location of
the minimum in the energy at zero strain is consistent with criteria for
the yield strain in earlier work. . . . . . . . . . . . . . . . . . . . . . . 85

4.2 (a)-(d) The evolution of IS energy for di�erent shear rates has been
shown for T = 0.25. The amplitude at which the long time energy
value reaches a minimum is identi�ed as the optimal amplitude γy .
(e) The long time values of IS energies vs. strain amplitude, obtained
as an average for t = 8× 106 to t = 107. . . . . . . . . . . . . . . . . . . 86

4.3 (a)-(d) The evolution of IS energy for di�erent shear rates has been
shown for T = 0.3. The amplitude at which the long time energy
value reaches a minimum is identi�ed as the optimal amplitude γy . (e)
The long time values of IS energies vs. strain amplitude, obtained as
an average for t = 8× 106 to t = 107. . . . . . . . . . . . . . . . . . . . 87

4.4 (a)-(d) The evolution of IS energy for di�erent shear rates has been
shown for T = 0.35. The amplitude at which the long time energy
value reaches a minimum is identi�ed as the optimal amplitude γy . (e)
The long time values of IS energies vs. strain amplitude, obtained as
an average for t = 8× 106 to t = 107. . . . . . . . . . . . . . . . . . . . 87

4.5 (a)-(c) The evolution of IS energy for di�erent shear rates has been
shown for T = 0.4. The amplitude at which the long time energy
value reaches a minimum is identi�ed as the optimal amplitude γy .
(d) The long time values of IS energies vs. strain amplitude, obtained
as an average within a time window from t = 2× 105 to 6× 105. . . . 88

4.6 (c) The strain amplitude for minimum IS energy is a decreasing func-
tion of temperature. (d) The minimum inherent structure energy at-
tained vs. temperature, shown for di�erent shear rates. The results
indicate that the optimum temperature for annealing is T ≈ 0.35. . . . 89

xix



4.7 (a) Temperature dependence of the inherent structure (IS) energy for
a liquid equilibrated in a molecular dynamics simulation. The equilib-
rium molecular dynamics simulation data has been �tted below tem-
perature T = 0.7 to obtain a mapping between the IS energy and tem-
perature, which is used to map the IS energy vs. time data in panel
(b) to the temperature values in panel (c). Panel (c) also shows the
VFT relationship between temperature T and relaxation times τ when
�tted to two di�erent temperature regime. . . . . . . . . . . . . . . . . 91

4.8 (a) Inherent structure energies eIS vs. time for di�erent shear rates
and di�erent damping parameters (Q), at the simulation temperature
T = 0.3. (b) The energies eIS is transformed to temperatures corre-
sponding to those energies for equilibrated samples. Two extrapolated
VFT curves are shown as they are �tted to two di�erent temperature
regimes (up to TMCT and up to substantially low temperatures below
TMCT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 The eIS energies obtained from the equilibrium MD is compared to
the eIS energy obtained from sheared con�gurations at amplitudes of
γmax = 0.003,0.005. The energies show good quantitative agreement.
The temperature varies in the range [0.4−0.45], where the system can
be equilibrated easily by normal molecular dynamics. The shear rate
has been kept �xed at γ̇ = 10−5. The inset shows the inherent struc-
ture energies against inverse temperature, indicating that the energy
obeys a 1/T dependence on T . . . . . . . . . . . . . . . . . . . . . . . 93

4.10 The inherent structure energy distribution is shown for the MD and
sheared con�gurations at T = 0.4 after the system reaches equilibrium
or steady state respectively. The distribution of IS energies from the
sheared simulations and MD simulations are indistinguishable. . . . . . 94

4.11 The partial radial distribution functions of the IS con�gurations ob-
tained through equilibrium MD and cyclic shear at a high enough tem-
perature, (T = 0.4) where the system can be equilibrated easily through
conventional MD. The data show that there is no signi�cant struc-
tural di�erence between the con�gurations generated from the two
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xx



4.12 (a) Vibrational density of states (DOS) for cyclically sheared con�g-
urations at T = 0.4, and con�gurations generated by molecular dy-
namics at T = 0.4,0.6,1.0. The DOS at T = 0.4 are indistinguishable
for molecular dynamics and cyclic shear, whereas they are clearly dif-
ferent from those at T = 0.6,1.0 obtained from MD simulations. (b)
The di�erence of the DOS at di�erent temperatures from the cyclically
sheared con�gurations at T = 0.4, indicating that MD and cyclic shear
results at T = 0.4 are indistinguishable. . . . . . . . . . . . . . . . . . . 95

4.13 The distribution of the strain intervals (∆γiso) at which the �rst plas-
tic deformation event occurs for inherent structures obtained through
cyclic shear and from NVT molecular dynamics. The strain interval
values are a measure of the energy barriers surrounding the unde-
formed inherent structures. For T = 0.4, the distributions from MD
and cyclic shear are quantitatively the same, whereas they are easily
distinguishable from higher temperature MD results. . . . . . . . . . . 95

4.14 (a) Inherent structure (IS) energies (when shear is applied in alternat-
ing planes) vary in the same way with time as when only xy shear is
applied. (b) For strain amplitudes lower than or close to the yielding
amplitude, stress anisotropies for strain rate 10−5 compare with those
of isotropic inherent structures (indicated by the horizontal line). (c)
The same observation holds for di�erent strain rates indicated, and
also when shear in applied in alternating shear planes. (d) Variation
of density in the shear direction indicating that the system is homoge-
neous in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.15 The partial pair correlation functions of the liquid con�gurations at
the end of di�erent cycles compared with the initial con�guration. . . . 97

4.16 Two dimensional, partial pair correlation functions in the shear plane
for (left panel) the initial con�gurations at T = 0.466, and (right panel)
after 2000 shear cycles (t 4x107). No indications of anisotropy is ob-
served. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.17 The energy relaxation of MD and sheared simulation is very similar at
T = 0.37.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 The energy relaxation of MD and sheared simulation is very similar at
T = 0.37.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 (a)-(c)The evolution of IS energy for the three lowest temperatures
(T = 0.1,0.15,0.2) has been shown. The amplitude at which the long
time energy value reaches a minimum is identi�ed as the optimal am-
plitude γy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xxi



5.3 Beyond temperature T = 0.3 the system starts showing overaging
behaviour under mechanical deformation. Inherent structure energy
evolution has been looked at for a range of temeperatures. . . . . . . . 106

5.4 MD run from T = 0.3 − 0.1 has been compared to the sheared runs
for a �xed shear rate and γmax ≤ γy . Signi�cant overaging (energy
di�erence between sheared and unsheared con�gurations at t ∼ 107)
at the pre-yield regime. The e�ect of overaging increases as the driving
amplitude is increased up to the yielding amplitude. . . . . . . . . . . . 107

5.5 MD run at T = 0.3,0.25 has been compared to the sheared runs for
di�erent shear rate and γmax ∼ γy . we see a signi�cant overaging ef-
fect (energy di�erence between sheared and unsheared con�gurations
at t ∼ 107) at the high shear rate end. . . . . . . . . . . . . . . . . . . . 108

5.6 The ratio of the di�erence between the energy reached at (t ∼ 107) and
the initial value, for cyclic shear and MD(∆ecsIS and ∆emdIS respectively),
as a function of the simulation temperature. The ratio increases above
1 with decreasing temperature, signifying the amount of overaging
increases as the temperature is decreased. . . . . . . . . . . . . . . . . . 109

5.7 The evolution of the inherent structure energies as the system is de-
formed at T = 0.3, for sets of shear rates and strain amplitudes that ap-
proach the limit of vanishing shear rate and strain amplitude together.
Comparison with normal molecular dynamics shows that energies in
the aging regime deviate from the normal dynamics as amplitude and
shear rate are increased together. The arrows indicate the direction of
increasing strain amplitude and increasing shear rate. . . . . . . . . . 110

6.1 The self part of the overlap function is shown for A of particles. The
dotted lines are �ts to the data. . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 The self part of the intermediate scattering function Fs(k, t) is shown
for a range of k values. The dotted lines are �ts to the data. . . . . . . . 115

6.3 Relaxation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 (a) The stretching exponent βkww is shown here as a function of the
temperature, obtained from stretched exponential �ts of the overlap
function q(t) and Fs(k, t), as well as by transforming the q(t) to obtain
βkww from the resulting linearisation of the data. (b) The transfor-
mation of q(t) used to estimate βkww from the linearised data. The
smallest q(t) value used is q(t) = 3× 10−3. . . . . . . . . . . . . . . . . 118

xxii



6.5 (a) The non-Gaussian parameter α2(t) as a function of time. The tem-
peratures are indicated in the legends. (b) The peak value of the non-
Gaussian parameterαpeak2 , increases monotonically upon lowering tem-
perature, but displays a change in the manner of increase around TMCT .
(c) The same behaviour of αpeak2 is re�ected in when plotted with the
charactersitic time t∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 (a) The dynamical susceptibility χ4 as a function of time. The temper-
atures are indicated in the legends. (b) The peak value of χ4 shows a
saturation at the lower temperatures. (c)The χ4 vs characteristic time
τ4 behaviour shows the change in behaviour of the peak value across
mode coupling temperature. . . . . . . . . . . . . . . . . . . . . . . . . 120

6.7 Di�erent mobile clusters (left,in di�erent colours) and strings of mo-
bile particles (strings with more than four particles)has been shown in
the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.8 The average size of mobile clusters and strings, shown in (a) and (b), ex-
hibit maxima at characteristic time scales tpeaknM and tpeakL respectively.
(b) The time scales tpeaknM and tpeakL plotted as functions of time t∗. . . . 122

6.9 Di�erent time scales, τα (from q(t) and Fs(k, t)), τ4, t∗, (D/T )−1, tpeaknM ,
t
peak
L , plotted against 1/T in an Arrhenius plot. All time scales show

a crossover to Arrhenius behavior at low temperatures. They fall in
to two groups: τα and τ4 are larger and have stronger T dependence,
whereas t∗, (D/T )−1, tpeaknM , and tpeakL , are smaller, and show weaker T
dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.10 (a) the vertical blue line in the Dτα vs T plot represents the TSEB
at which the Stokes-Einstein relation breaks down. The temperature
TSEB is identi�ed as the temperature (T ∼ 0.55) at which Dτα sig-
ni�cantly increases from the Dτα = const. value at high tempera-
ture, shown by the horizontal red line. (b)The di�usion coe�cient D
is shown against τα exhibiting the breakdown of the Stokes-Einstein
relation. A �t to high temperature data with exponent −1 is shown
for reference. Results below T = 0.8 exhibit a best �t exponent of
−0.81 and the behavior in this regime does not show any indication of
a crossover around TMCT . The Dτα vs τωα plot show fractional posi-
tive value of ω = 0.19. The relation between ξAG and ω satis�es with
the relation 1 + ξAG =ω. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.11 t∗ vs (D/T )−1 shows an exponent of ∼ 0.95 for the entire temperature
regime. The orange line is of exponent of 1. . . . . . . . . . . . . . . . . 125

xxiii



6.12 The fractal dimension of mobile clusters: (a) The dependence of the
size of the clusters on the radius of gyration, for di�erent temperatures.
(b) The fractal dimensions df shown as a function of τα or temperature
(inset) reveal a marked change as TMCT is traversed. The horizontal
lines mark df = 2.0 and df = 2.5 respectively, for reference. . . . . . . 126

6.13 (a) The speci�c heat Cv , plotted against temperature, shows a mono-
tonic increase as the temperature is lowered. (b) The inherent structure
energy eIS plotted against inverse temperature, shows a 1/T depen-
dence at all temperatures below T ∼ 0.7. . . . . . . . . . . . . . . . . . 128

6.14 (a) The vibrational entropy along with the total entropy is shown as
a function of the temperature. The vibrational entropy computed ac-
cording to the harmonic approximation (Shvib) as well as by including
the anharmonic correction (Sanhvib ), are shown. (b) The con�gurational
entropy is shown as a function of the temperature, obtained by sub-
tracting from the total entropy the vibrational entropy without (Shc )
and with (Sac ) the anharmonic correction. . . . . . . . . . . . . . . . . 129

6.15 Adam-Gibbs plots of di�usion time (D/T )−1 and ταA employing con-
�gurational entropies Shc obtained with the harmonic approximation
to the vibrational entropies. A change in slope is observed around
TMCT , indicated by the vertical line. The �tted Adam-Gibbs coe�-
cientA for di�usion times isAD = 1.30,0.95 (D0 = 2.69,4.96) at tem-
peratures above and below TMCT . Similarly, for τα , Aτ = 1.73,1.24

(τ0 = −1.53,1.62) at temperatures above and below TMCT . The blue
lines are �t lines for the data in the range of T > TMCT which are ex-
trapolated to T < TMCT and the magenta lines are �t lines for the data
in the range of T < TMCT which are extrapolated to T > TMCT . . . . . 130

6.16 Adam-Gibbs plots of di�usion time (D/T )−1 and τα employing con-
�gurational entropies Sac obtained with the anharmonic corrections
included in evaluating the vibrational entropies. The Adam-Gibbs re-
lation is valid across TMCT , indicated by the vertical line. The �tted
Adam-Gibbs coe�cient A for di�usion times is AD = 1.67 (D0 = 2.2)„
and similarly, for τα ,Aτ = 2.19 (τ0 = −2.1 ). The blue lines are �t lines
for the whole temperature range. . . . . . . . . . . . . . . . . . . . . . 130

6.17 Anharmonic corrections to the energy, along with polynomial �ts ac-
cording to Eq. 2.40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xxiv



A.1 The distribution of contact numbers shows with the increase of cycles
numbers, the peak of the distribution moves slowly to a lower value
than 6 with SD and CG minimization. In the case of CG, along with
the shift of the peak, the zero contact number increases slowly. In the
FIRE method, the average contact number goes to zero pretty fast as
the system unjams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 (a)The average contact number Z as a function of γaccum, shown for
φ = 0.653, for the CG method, with di�erent tolerances, and the FIRE
method. Compared to the conjugate gradient method, the Fire algo-
rithm performs better minimization and removes all the contacts. (b)
Once the system unjams the hard sphere MC simulation also brings
down the contact number of the system to zero. . . . . . . . . . . . . . 141

A.3 Cumulative distribution of overlaps for a jammed and an unjammed
packing at φ = 0.653, for two precision values. The vertical dashed
line shows the tolerance value we use to identify ZM . . . . . . . . . . . 141

A.4 The full cumulative distribution of contacts (interparticle separation r
both above and below σ ) for an unjammed and a jammed con�guration
shows plateau below and above 2D respectively. The vertical lines
indicate r = σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.5 Fraction of non-rattlers (fNR) vs ZNR is shown for a �xed density (φ =

0.653). In the jammed phase (absorbing (A) and yielded phase (Y)),
fNR value at ZNR = 6 is close to 0.95. The maroon horizontal line
represents the fraction of non-rattlers for the initial unsheared jammed
con�gurations. The black line represents the fraction of non-rattlers
for the isotropically jammed con�gurations at φJ . The vertical dashed
line corresponds to ZNR = 6(= 2D). . . . . . . . . . . . . . . . . . . . . 143

A.6 Cumulative distribution of contact numbers for steady state con�gura-
tions at φ = 0.627 and 0.638 has been shown. When minimized with
SD ,Z(r) shows a plateau extended up to 10−12, for smaller amplitudes
in contrast to con�gurations minimized with CG . . . . . . . . . . . . 144

A.7 (a) Relaxation times from molecular dynamics simulations vs. temper-
ature, and the corresponding �t to the VFT form. (b) The con�gura-
tional entropy density as a function of the inherent structure energy,
and a quadratic �t. The extrapolated value of IS energy at which con-
�gurational entropy vanishes is (≈ −7.15). . . . . . . . . . . . . . . . . 145

xxv



A.8 (a) Distributions of the global shear stress of stroboscopic con�gura-
tions (at the end of each cycle) are shown for di�erent strain ampli-
tudes across the yielding (γmax = 0.035 in this case) in comparison to
the initial undeformed con�gurations. As long as the strain amplitude
is less than or close to the yielding amplitude the shear stress �uctuates
around zero in stroboscopic con�gurations. Beyond yielding, strobo-
scopic con�gurations retain a �nite mean value of shear stress. (b)
Distribution of xy components of the stress tensor evaluated for indi-
vidual particles, in a con�guration obtained by shearing close to yield-
ing amplitude (γmax = 0.035), which is seen to be symmetric around
zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.9 The self part of the intermediate scattering function Fs(k, t) is shown
for a range of k values. The dotted lines are �ts to the data. . . . . . . . 147

A.10 The variation of relaxation time τα(k), stretching exponent βkww and
the non-ergodicity parameter (fc), obtained from Fs(k, t), are shown
for several k values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xxvi





Chapter 1
Introduction

It would hardly be an overstatement to claim that disordered materials are present
everywhere. Commonplace, mundane objects like toothpaste, hair gel, mayonnaise, a
bowl full of grains or a heap of sand are all disordered materials. Engineered materials
like silicon panels in solar cells, the tempered glass on our phone screens, tyres of cars,
amorphous solid dispersions in drug delivery technology are also disordered materi-
als. Even exotic natural examples such as volcanic glass, the granular fault gouge in
geological faults, embryonic tissue - all belong to the fascinating world of disordered
systems. As the name suggests, disordered materials lack any long-range order. These
disordered systems are structurally liquid-like, but they can display both solid-like or
liquid-like mechanical behaviour. We encounter such examples in our daily lives as
well. Tra�c jams are a common occurrence in our daily life. This cessation of vehicu-
lar movement can be perceived as a �owing liquid system undergoing a transition to a
solid-like state. Another prominent example is the beautiful work of glassblowers sub-
jecting glass-forming materials to heating and cooling cycles. The system alternates
between a �owing and an arrested state until the �nal rigid shape of the material has
been acquired. Such prominent changes in mechanical behaviour are generally not ac-
companied by an easily discernible change in the structure. A key question that arises
in both the examples of a tra�c jam or glassy material is the nature of the onset of
rigidity or dynamical arrest. Such puzzles are central themes in the study of disordered
materials. The glass transition and the jamming transition have been investigated ex-
tensively in the context of the emergence of solid-like behaviour in disordered systems.
Conversely, glassy systems and jammed systems can be perturbed to bring them to a
liquid-like state. Melting the glass or shaking the container of rice to pour it into the
bowl are such instances. In the case of glasses, whether the glassy material will melt
or stay rigid depends on the ambient temperature. Whether there will be a complete
halt on the highway will depend on the number of vehicles traveling on that high-
way. Grains will often get stuck at the neck of the jar as we try to pour it out. One
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2 Chapter 1.

often needs to give it a shake for it to come unstuck. All these transitions in di�er-
ent disordered systems depend on the control parameters like temperature, density,
or amplitude of applied force and so on. In this chapter, we will introduce the basic
concepts of these systems and the transitions observed in them. Along with that, we
will give an overview of the problems that we set out to study in the thesis.

1.1 Glass transition

Glasses are everywhere around us. They are of di�erent kinds, and they have a wide
range of applications ranging from everyday mundane objects to exotic and precise in-
struments. The use of glasses in human civilization dates back to as old as the Roman
times when they were heavily used for architectural purposes. Till today, the most
commonplace example of glass is the window glasses of our house, made of silica
(SiO2). Glasses have solid-like mechanical properties, but interestingly, their structure
is liquid-like. They do not su�er from scattering from grain boundaries. Therefore
glasses are preferred over crystalline materials to be used as optical �bers [1] for high
capacity, cost-e�ective long-distance communication. All the touch-sensitive screens
of our smartphones are made of glasses. Thus, various application of glasses has revo-
lutionized our modern world of communication. Metallic glasses have long been used
as transformer cores because they exhibit low-loss power transmission [2]. Organic
glasses are used in making organic light-emitting diodes [3]. Glass sheets are used
in solar panels, and glass �bers are used in wind turbines [4]. Nonallergenic biocom-
patible glasses are used in healthcare systems. Bioactive glasses [5] are a group of
reactive materials that bond to bone tissue and are hence extensively used in the pro-
cess of tissue regeneration in the �eld of biomedical area. Glasses are heavily used in
space applications (i.e., lenses of space telescopes) for their extraordinary thermal sta-
bility and resistance, which guarantees the precision and reliability of the instruments
in extreme atmospheric conditions. Finally, in recent times, when conservation of the
environment is one of the most concerning issues, glassy materials are highly relevant
as they are one of the most recyclable materials. In this way, extensive applications of
glasses have made them an important topic of research. In the next sections we will
discuss some of the most important concepts that are fundamental to the understand-
ing of glassy systems.

1.1.1 Preliminaries

The hallmark of the glass transition is the slowdown in the dynamics of the material
without pronounced structural changes. In the words of pioneering scientist Austin
Angell [6]“Glass, in the popular and basically correct conception, is a liquid that has
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lost its ability to �ow". Even though there are many ways through which the glassy
state can be reached, glasses are typically prepared by cooling a liquid below its melt-
ing temperature (supercooling) at a fast enough rate as to avoid crystallization. When
a liquid is cooled below its melting temperature, crystallization occurs through a �rst-
order phase transition. Crystallization initiates through the formation of nucleii of
the bulk crystalline phase through rare thermal �uctuations. The system crystallizes
when the nucleus attains a critical size, crossing the relevant free energy barrier over
an associated timescale, τnucleation. This nucleation time shows a non-monotonic tem-
perature dependence arising from the competition between the mobility of particles
in the supercooled liquid phase and the height of the free energy barrier. All physical
systems have their characteristic relaxation time (τrelax), which is the time taken for
the system to reach equilibrium (no memory of initial state). Liquids have a character-
istic relaxation time at each temperature that increases monotonically with decreasing
temperature. The nucleation time, τnucleation, is in�nite at the melting temperature and
decreases as temperature decreases. The non-monotonic temperature dependence of
the nucleation time, (see Fig.1.1(a)) as well as the dependence of τnucleation on the dy-
namics in the liquid, has been understood to result in a situation where the nucleation
time is always larger than the relaxation time. Thus, at lower temperatures, when
these timescales are comparable, avoiding nucleation becomes a challenge, and a fast
cooling rate becomes essential in preparing a glass. To give an idea of how fast a system
should be cooled to avoid crystallization, we can mention that the standard laboratory
cooling rate is 1 K/min [7]. As the system is cooled down further, satisfying the afore-
mentioned criteria, at some temperature, the dynamics of the system in a practical
sense stops, or it becomes impossible to relax the system within a physical time scale.
The system falling out of equilibrium is called the laboratory glass transition, and the
temperature at which it occurs is called the experimental glass transition temperature
Tg . To get an idea of what is meant by the arrest of dynamics, one can compare the
relaxation times in three regimes, namely liquid, supercooled liquid, and glass. The
τrelax in the three regimes are 10−13s, 10−9s, and 102s or higher respectively. The
feature of the massive increase of relaxation time in the glass phase is also re�ected
in the transport coe�cients, like viscosity or di�usivity. Often such glasses are re-
ferred to as structural glasses, to distinguish them from spin glass and other glassy
systems. As the glass transition occurs, thermodynamic quantities such as the volume
and the enthalpy show a deviation from the respective extrapolated equilibrium liquid
lines (see Fig. 1.1.(b)). In calorimetric experiments, the speci�c heat shows a sharp yet
continuous drop as the glass transition occurs. The absence of a discontinuity in the
second derivative of the thermodynamic potential, i.e., the speci�c heat would usually
be evidence for the absence of a second order phase transition. However, the fact that
the liquid cannot be equilibrated at these conditions prevents one from drawing such
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a conclusion on the basis of the behaviour of the speci�c heat.
The glass transition temperature mentioned here is not unique. It depends on the

Figure 1.1: (a) The schematic representation showing the competition between nucle-
ation time and relaxation time in glass forming liquids. (b) The schematic representa-
tion of the formation of glass by cooling a liquid below its melting temperature.

preparation history, which in this context is the cooling rate. Depending upon the
cooling rate, di�erent glasses can be obtained ( see Fig.1.1 (b)). In the latter part of this
chapter, we will discuss the relevance and the subsequent e�orts to make di�erent
glasses.
Before proceeding further, we clarify a speci�c interchange of terminology used of-
ten in the literature and in this thesis. In studies of the glass transition, what one
investigates are the changes that occur in the supercooled glass-forming liquid as the
glass transition is approached. Supercooled liquids are, of course, metastable with
respect to crystal. Given that the liquid is always in a supercooled state, we simply
refer to it as the liquid for brevity. Further, the experimental/observation timescale,
τobs, is usually greater than the relaxation time of the supercooled liquid, τrelax, on
the one hand, and smaller than the lifetime of the liquid in the metastable supercooled
state, τlif e, on the other hand (the lifetime is the typical time before the transition
to the globally stable crystalline state). Given this relationship between timescales,
τrelax << τobs << τlif e, we drop the distinction between ‘metastable’ liquids and ‘equi-
librium’ liquids (which are the globally stable state under the corresponding conditions
and for which τlif e → ∞).
Unlike �rst-order transitions like freezing, where the change in the structure of the
system is drastic, the glass transition is not accompanied by signi�cant changes in
structure. Subtle, gradual changes are observed as the temperature of the supercooled
liquid is decreased. For instance, the slight modi�cation in the peak of the pair correla-
tion function (the probability of �nding a particle at a distance from a central particle)
occurs as the temperature is lowered. But this modest change is nowhere close to the
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stark di�erence that the other phases of matter, like gas or liquid or crystal, have with
respect to each other. Many interesting recent works have attempted to establish the
role of structure in the dynamics of glass-forming liquids. Understanding the dynam-
ics from the estimation of the entropy, where the information of two-body correlation
is used, certainly connects the structural aspect to the dynamics in the system [8]. The
structural ordering in the experiments of colloidal systems [9] also establishes a paral-
lel connection. However, these structural signatures are not comparable to the degree
of the dynamical changes that occur as the system approaches glass transition. We
will start with the discussion of the prominent dynamical signatures of the transition,
followed by the relevant thermodynamic aspects.

1.1.2 Non-exponential decay of time correlation functions

Figure 1.2: Schematic representation of the decay of the density correlation function
at high and at low temperatures.

The dynamics of glassy systems show several non-trivial changes as the glass transi-
tion temperature is approached. The most prominent manifestation of these changes
is the signi�cant slowdown of relaxation of �uctuations or transport properties of the
system. In experiments and theoretical studies of glasses, relaxation is measured us-
ing a number of methods. In experiments of supercooled liquids, relaxation is often
measured from the dielectric susceptibility [10]. In simulations, these methods gen-
erally involve the measurement of dynamic correlation of relevant quantities. In the
case of liquids, typically, density-density correlation is such a quantity of interest. The
relaxation in the system can be measured by observing the time evolution of the cor-
relation of the density �uctuation. At higher temperatures, the relaxation (the decay
of the correlation function) of the system is exponential in nature. As lower temper-
atures are accessed, the nature of the decay of the correlation function changes. At
very short times, the correlation rapidly decays. This fast decay occurs in the ballistic
regime (common to both high and low temperature regimes), where the e�ect of the
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velocity or the acceleration can be neglected. The ballistic regime is followed by an
intermediate time window when the correlation function shows a plateau. This inter-
mediate regime is the ‘β’ regime. The plateauing of the correlation function indicates
the particles get caged by their neighbours. Beyond the β regime, when the particles
break the cage, the correlation function �nally decays to zero, that regime is termed
the α relaxation regime. At lower temperatures, the α relaxation in the glass-forming
liquids shows slower than exponential decay. This slower relaxation can be described
by the stretched exponential function of the form (Kohlrausch-Williams-Watts func-
tion)

C(t) = C0 exp[−(t/τ)β] (1.1)

where C(t), is the relevant correlation function, C0 is the prefactor, τ is the relax-
ation time and β is the stretching exponent. The value of β lies between 0 and 1, en-
suring the slower than exponential decay. The existence of these two-step relaxation
regimes (see Fig. 1.2) is an important feature of the dynamics of glass-forming liq-
uids [6,11,12]. Numerical [13–17] and experimental [18,19]evidence shows that close
to the glass transition, the dynamics of the supercooled liquid is heterogeneous, with
domains of di�erent mobility and relaxation. The slower than exponential relaxation
can thus be understood as the spatially averaged e�ect of separately relaxing regions
where individual regions relax exponentially with characteristic relaxation time. If one
calculates the variance of these di�erent relaxation times, it can be shown that the rel-
ative variance of the relaxation times depends only on βkww. The variance is inversely
proportional to the βkww, implying that as the relaxation of the system becomes more
heterogeneous, βkww decreases more, and the overall relaxation of the system becomes
slower and slower. In this thesis, we have studied the behaviour of βkww at very low
temperatures in supercooled liquid in the context of dynamical heterogeneity, which
we discuss in more detail later in this chapter.

1.1.3 Non-Arrhenius relaxation behaviour

We mentioned in the previous section that as the low temperatures are accessed,
the time correlation functions measured in the supercooled liquids show prominent
changes like two-step relaxation. Generally, by relaxation of the system, it is meant
that the system has forgotten its initial state. In glass-forming liquids, the relaxation
time is often measured as the time at which the time correlation function decays to 1/e

of its initial value. The relaxation time also shows a prominent change in nature as the
temperature decreases. At high temperature and low density, the relaxation behaviour
of the liquid is described by the Arrhenius temperature dependence described as the
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following
τ = τ0 exp[

E
kBT

] (1.2)

where τ is the structural relaxation time, E is the activation energy (constant), and
T is the temperature. The same behaviour is re�ected in the transport properties like
viscosity or inverse di�usivity. For a large number of liquids, with the decreasing tem-
perature, relaxation time increases faster than the exponential increase described by
the Arrhenius relation. Such supercooled liquids with the super-Arrhenius increase
of relaxation time are classi�ed as fragile glass formers [20]. Metallic glass-forming
liquids, many molecular liquids (a prominent example Ortho-terphenyl) fall under this
category. Here the excess increase of relaxation time is ascribed to the emergence of
temperature dependent activation energy barrier [20]. The crossover temperature at
which transition from Arrhenius to super-Arrhenius dependence occurs is termed as
the onset temperature Tonset . This temperature signi�es the onset of activated dy-
namics in the system. The other category of glass formers called strong glass formers,
where Arrhenius temperature dependence of relaxation times is followed till the glass
transition temperature. Silica, the most commonplace example of glass, is a strong
glass-forming liquid.
Understanding the super-Arrhenius increase of the relaxation time is a question of
prime importance in glass physics. Despite extraordinary and extensive e�orts, any
universal consensus on this matter is still absent. Di�erent empirical �tting forms have
been used to describe such relaxation to various degrees of success. Among those, the
most widely accepted and applicable �tting form is Vogel-Fulcher-Tammann or VFT
�t.

τ = τ0 exp
[

1
(KVFT (T /TVFT − 1))

]
, (1.3)

In this �t form, TVFT is the temperature at which the relaxation time for the system
diverges. The other type of �t forms, such as parabolic �t [21] form (τ = τ0exp[A( 1

T −
1
T ′ )]), indicate a zero temperature divergence of the relaxation times. However, as the
systems fall out of equilibrium much before the temperature predicted for relaxation
time divergence, it is almost impossible to empirically verify one form over the others
though comparative studies have been done to compare di�erent �tting forms [22,23].
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Figure 1.3: Angell plot of the logarithm of viscosity vs the scaled inverse temperature
T /Tg [20]

1.1.4 Crossover of relaxation in glass forming liquids at low tem-
perature

In the last section, we discussed about two broad categories of glass-forming liquids.
The concept of fragility was introduced by Austen Angell (see Fig. 1.3) to categorize
the diverse range of glass-forming liquids depending on their nature of Arrhenius or
super-Arrhenius relaxation as the glass transition temperature is approached. As the
glass transition temperature is approached, a fragile to strong crossover in supercooled
water was observed [24–28]. A similar transition was observed in silica [29–32] and
silicon [33–36]. In anomalous liquids like these, the fragile to strong transition is ac-
companied by a change in the liquid structure, like a change towards more tetrahedral
geometry [37]. The dynamical transition is also accompanied by a change in thermo-
dynamics like a heat capacity maximum. The existence of the fragile to strong tran-
sition in anomalous liquids has been investigated extensively. In recent times, there
have been several �ndings of faster than expected relaxation at low temperatures in
systems that are well known fragile glass formers. These systems include diverse sys-
tems like phase-change alloys [38, 39], metallic glass formers [40–43] etc. Some of
these systems show a change in thermodynamic behaviour [42], and some do not.
The nature of fragile to strong transition in such systems is not like the conventional
fragile to strong transition observed in anomalous liquids. In Chapter 6, we have stud-
ied a dynamic crossover in a well studied fragile model glass former (Kob-Andersen
80:20 binary Lennard-Jones mixture) and the relevant thermodynamical aspects.

1.1.5 Dynamical Heterogeneity

Dynamical heterogeneity (DH) is at the heart of glassy dynamics, and it underlies sig-
ni�cant dynamical behaviours such as slower than exponential decay of correlation
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functions of glassy systems. The earliest evidence of dynamical heterogeneity was
found in the NMR experiment of poly(vinyl acetate) [44]. The system is comprised
of faster (mobile) and slower (immobile) particles. In a homogeneous liquid, the dis-
tribution of the displacement of the particles (quanti�ed by the Van Hove function,
see Chapter 2) is typically Gaussian [45]. The mobile particles can be those that move
more than this estimated displacement in a homogeneous scenario [14]. Sometimes a
certain percentage of the fastest moving particles are also considered to be the mobile
particles [16]. Identifying immobile particles is a more nontrivial task. Apart from
the consideration of the mobility, local packing is also considered to identify immo-
bile particles [46–48]. Experimental and numerical �ndings have shown that these
mobile or immobile particles are spatially correlated and form clusters [16, 49]. These
clusters have typical lifetimes. Beyond this lifetime faster particles becomes slower
and vice versa. The cluster size of such dynamically heterogeneous particles gives an
estimate of the dynamical length scale associated with DH. The study of DH involves
the study of this timescale of heterogeneity and the dynamical lengthscale emerging
from such heterogeneity. We will elaborate on this in terms of quantities, such as the
non-Gaussian parameter that is used to study DH in supercooled liquids.
One can think of DH simply in terms of the measure of the displacement of the par-
ticles [14]. The non-Gaussian distribution of displacement implies heterogeneous dy-
namics. The extent of the deviation of the distribution from the Gaussian beahviour
(non-Gaussian parameter α2, see Chapter 2) quanti�es the heterogeneity present in
the system. At very short time and at very long time the displacement distribution
of the system stays Gaussian and non-Gaussian parameter α2 stays zero. Therefore,
the time evolution of α2 shows nonmonotonicity and attains a maximum at a charac-
teristic time [14]. This characteristic time t∗ de�nes a timescale of the associated het-
erogeneity. This timescale increases with the decrease of the temperature. The size of
the clusters formed by these particles also grows with the decreasing temperature [16].
This growing length scale has been of interest to study for its connection with dynam-
ics. There are other quantities that are used to quantify dynamical heterogeneity. DH
is studied from the �uctuation (χ4, see Chapter 2) of the two-point correlation func-
tion that describes the relaxation of the system [50]. The time evolution of χ4(t) also
shows the existence of a characteristic time τ4 at which it becomes maximum. The
peak value of χ4(t) also increases with decreasing temperature. The de�nitions used
to identify mobile and immobile particles are not universal. The compactness of the
clusters and geometry (fractal nature) also make the absolute estimation of lengthscale
di�cult. Therefore the lengthscale obtained from such cluster size does not necessar-
ily guarantee very accurate quanti�cation of lengthscales. As the measure of χ4 is free
from such ambiguity, this quantity has motivated the study of the associated dynamic
length scale [51, 52].
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The other quantity that gives the measure of DH present in the system is the stretch-
ing exponent βkww as mentioned in the earlier sections. The relative variance of the
di�erent relaxations of the di�erent regimes within the system depends only on βkww.
βkww quanti�es the extent of heterogeneous dynamics in the system. The decrease of
βkww indicates the increase of heterogeneity in the system [53].
Numerical and experimental studies have shown that DH increases as the glass transi-
tion temperature is approached. Some recent studies show non-trivial changes in DH
in fragile glass-forming systems, when very low temperatures are accessed [41–43].
Some studies show the increase of DH becomes moderate at much lower temperature
[43]. Some studies show the DH decrease at very low temperatures [42]. Some studies
show a possible saturation of DH at such a substantial low-temperature regime [41].
We have investigated di�erent aspects of dynamical heterogeneity, the morphology of
heterogeneity of a model glass-former at very low temperatures to �nd a connection
between the crossover in relaxation and the dynamical heterogeneity.
We discussed previously that the distribution of the relaxation times in a dynamically
heterogeneous system gives rise to the stretched exponential decay of the correlation
function. The other consequence of the DH is the decoupling of di�usivity and struc-
tural relaxation timescale, which we will discuss in the following section.

1.1.6 Violation of the Stokes-Einstein relation(SER)

The relaxation in the glassy systems is measured through time correlation of �uctua-
tions such as structural relaxation (τα), or transport coe�cients such as shear viscosity
(η), and inverse di�usivity (D−1). Stokes-Einstein relation (SER) describes the relation
between viscosity and di�usivity at a given temperature. The Einstein relation ex-
plains the relation between the di�usion coe�cientD , temperature T , and friction co-
e�cient ξ through the relationD = kBT /ξ . Stokes relation establishes the connection
between friction coe�cient and the viscosity through the relation ξ = 6πηR/m. Com-
bining these two relations, we obtain the Stokes-Einstein relation as Dη/T =constant
or equivalently Dτα =constant. SER has been found to be valid for many liquids at
high temperatures. But as the low temperatures are approached, the violation of this
relation has been observed in many systems [54–58]. The di�usivity and the structural
relaxation timescale decouple. As the temperature is decreased, inverse di�usivity
shows slower divergence compared to the structural relaxation time. The di�usivity
and the structural relaxation becomes fractionally related by D ∝ τ−1+ω

α where ω > 0.
Various studies of supercooled liquids have shown that violation of SER occurs because
of the dynamical heterogeneity in the system [50, 53, 59, 60]. When the dynamics in
the system become heterogeneous, the contribution to the di�usivity in the systems
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comes from the faster moving particles. Conversely, the contribution to structural re-
laxation comes from the slower particles, as this relaxation time is measured by the
displacement of the particles beyond a certain cuto� distance. Hence the decoupling
of D and τα occurs as they represent di�erent moments of the wide-ranged distribu-
tion of the local relaxation times in supercooled systems. In chapter 6, we have studied
SER relation for an extensive range of temperatures.

1.1.7 Thermodynamics

So far, we have discussed the signi�cant features of glassy dynamics. Next, we discuss
the thermodynamic aspects of the supercooled liquids approaching the glass transi-
tion. As the temperature decreases, various thermodynamic quantities like volume
and enthalpy show a continuous but sharp change in slope as a consequence of the
glass transition. The quantitative change depends on the preparation history, like the
cooling rate. The entropy also shows similar behaviour, and there are a couple of cru-
cial views regarding the entropy of these supercooled liquids, which we will brie�y
discuss.

1.1.7.1 Kauzmann’s paradox

The relation between the entropy and the speci�c heat is described as follows

(
∂S
∂T

)V =
CV (T )
T

(1.4)

The speci�c heat of the liquid is more than the crystal. Hence, the entropy of the
liquid decreases faster than that of the crystal. The di�erence between the liquid en-
tropy and the crystal entropy is called the excess entropy of the liquid, de�ned as
∆S(T ) = Sliq(T ) − Scrys(T ). The extrapolation of the liquid and crystal entropy pre-
dicts that the excess (con�gurational) entropy vanishes at some �nite temperature.
This temperature is called the Kauzmann temperature(TK ). It implies that at some
temperature range (T < Tk), the entropy of a disordered solid becomes less than the
entropy of the crystal at that temperature. It is quite counterintuitive. The crystal
entropy becomes zero at the absolute zero temperature. Therefore the extrapolated
liquid entropy at zero temperature should be negative at zero temperature. This is
in direct violation of the third law of thermodynamics. This possibility is famously
known as the Kauzmann’s paradox [61]. In an attempt to resolve the paradox, it has
been hypothesized that a thermodynamic transition at Tk occurs that produces “ideal
glass," and beyond that temperature, the excess entropy vanishes. Kauzmann tem-
perature lies well below the glass transition temperature Tg for all the known glass-
forming liquids. Therefore the system cannot be equilibrated at around TK . Therefore,
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verifying if the excess entropy goes to zero at a �nite temperature is almost impossi-
ble. In this context, we will describe various attempts that have been made to resolve
such a situation. Systems have been studied where a �nite fraction of particles are
pinned; in other words, their positions do not evolve with time. Such a system is
called the random-pinning glass-former. Using theoretical arguments [62] and simu-
lations [63, 64], it has been shown that by increasing the fraction of pinned particles,
excess entropy can be brought to zero at an accessible temperature range. In other
words, by random pinning, the Kauzmann temperature of the system can be shifted to
a much higher temperature. However, subsequent work [65] argued that such proto-
col changes the fragility of the system instead of shifting the Kauzmann temperature.
Hence, to resolve the paradox, one needs to be able to equilibrate the system at as
low temperatures as possible. In this context, in the latter part of the chapter, we will
discuss recent developments in preparing well annealed (low temperature) glasses.

1.1.8 Adam-Gibbs Relation

Con�gurational entropy measures the number of distinct con�gurations a system can
sample at a given temperature (or density) in the con�guration space. The potential
energy surface of the supercooled liquid has a number of local minima. These local
minima are known as inherent structures. The system samples possible con�gura-
tions within a basin, and it also jumps from one basin to the other. With that picture
in mind, the total entropy of the system can be divided into two parts, namely, vi-
brational entropy and con�gurational entropy. The vibration of the system within a
local minimum contributes to the vibrational entropy or basin entropy. The measure of
the di�erent independent minima contributes to the con�gurational entropy. Entropic
theories like the Adam-Gibbs relation [66], Random �rst-order transition (RFOT) the-
ory [67, 68] attempt to connect the dynamics and the thermodynamics of the glassy
systems. Estimation of con�gurational entropy is of vital importance in these theories.
In our discussion of dynamical heterogeneity, we mentioned that the dynamics of the
system is heterogeneous, and the heterogeneous regions are spatially and temporally
correlated. These spatially correlated regions show cooperative rearrangement [69]
that simply implies a group of particles move in a cooperative fashion. Adam-Gibbs
relation attempts to establish a connection between cooperativity and the relaxation
of the system [66]. The particles involved in such cooperative motions are identi�ed
as the cooperatively rearranging region or the CRR. CRR is de�ned as a group of rear-
ranging particles (atoms, molecules, etc., depending on the nature of the glass former)
such that smaller groups of particles are incapable of rearrangement independently of
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their surroundings. In experiments and numerical simulations, the signature of coop-
erative motion has been observed [16, 43, 69]. The probability of the arrangement of
CRRs is considered dependent on the size of the CRR (z(T )) [66]. The con�gurational
entropy per CRR is considered to be constant (S∗). So the con�gurational entropy per
(Sc(T )) particle at a given temperature can be related to Z and S∗ as, Sc(T ) = S∗

z(T ) .
The free energy of these CRR for rearrangements is the Gibbs free energy G = z4µ,
where 4µ is the chemical potential barrier per particle. Using the expression of z and
separating the temperature dependent and independent terms, the relaxation time for
the system can be written as the following [66].

τ = τ0 exp[
S∗k−1

B 4µ
T Sc

]

= τ0 exp[
K

T Sc(T )
] (1.5)

where K is the temperature independent term. This is known as the Adam-Gibbs re-
lation that predicts the dynamics of the system from the measure of the entropy of
the system. It states that the relaxation of the system diverges as the con�gurational
entropy goes to zero. Adam-Gibbs (AG) relation has been shown to hold for various
glass-forming systems and a range of temperatures [70–74]. We have discussed that
the relaxation time in glass-forming liquids can be represented by various timescale
from correlation functions, transport coe�cients, and so on. We have also discussed
how these di�erent timescales decouple from each other. Di�erent works attempted
to verify AG relation with respect to di�erent timescales of the system [58,75]. A few
recent �ndings show that the Adam-Gibbs relation is violated at very low tempera-
tures [43, 76]. In order to verify if the AG relation holds, the most important point is
the accurate estimation of the con�gurational entropy. In this thesis, we have shown
that in a model glass-forming liquid, the AG relation holds for an extensive range of
temperatures when the basin entropy is calculated with caution, taking the anhar-
monic contribution into consideration.

1.1.9 Preparation of stable glasses

Up to this point, the discussion about signi�cant dynamic and thermodynamic aspects
of glass transition proves the study of glasses has been extensive. Earlier in this chap-
ter, we have mentioned that the state of the glass depends on its preparation history.
Such as, when we prepare a glass by cooling supercooled liquids, the slower we cool
the system, the lower the energy of the glasses is. Therefore, one would always at-
tempt to slow the cooling rate further down to obtain better glasses. But the limit of
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Figure 1.4: The schematic representation of potential energy landscape (PEL) and con-
cept of annealing.

the lowest cooling rate is bounded by the issue of crystallization and the experimen-
tal or computational capacity. Hence one of the most enduring e�orts in this �eld has
always been to prepare glasses with lower energies to have a more re�ned understand-
ing of the glass problem (see Fig.1.5).
In this context, a concept that we invoke is the potential energy landscape picture.
Generally a well annealed glass is understood to be one where the system resides in
a deeper local energy minimum. The potential energy is determined from the posi-
tions of the particles. In a DN + 1 dimensional space, the potential energy landscape
can be represented by a hypersurface including the interactions of all the particles of
a system of size N and at a dimension D . Each di�erent glassy con�guration can be
thought of as a point on this surface. This energy landscape picture was �rst discussed
by Goldstein [77] as an approach to comprehending the behavior of glass forming liq-
uids. In this potential energy landscape (PEL) picture, the minimum corresponding to
the crystalline state will be the global minimum. However, for amorphous systems,
there will be many local minima corresponding to all the possible stable con�gura-
tions. As described in the schematic one dimensional projection of the PEL (Fig. 1.4),
the preparation history dictates the depth of the minimum in the PEL that the glassy
system occupies. Glasses stuck at higher and lower energy minima are called poorly
annealed glasses and well annealed glasses, respectively. As Fig. 1.1 illustrates, there
exists multiple Tg depending on the protocol used [78]. Naturally, there have been
numerous attempts to prepare glasses of progressively greater stability, or even the
ideal glass [79]. The structural and dynamical nature of this putative ideal glass, and
the question of whether the corresponding energy minimum is lower or higher than
that of the crystalline state are all puzzles that remain to be solved. So far, we have
discussed various aspects of the laboratory glass transition. Numerical simulations
have been a very e�ective tool in expanding our understanding of glasses. Through
such investigations, researchers have been able to directly probe microscopic changes
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in the structure and in the dynamics of glassy systems as the glass transition is ap-
proached. One drawback of the computational study of glasses is that glasses prepared
on computers get stuck in very high energy minima compared to their experimental
counterparts. The slowest possible cooling rate on computers is still orders of magni-
tude faster than the typical laboratory cooling rates. Di�erent sampling techniques are
being pursued to address this drawback with a substantial degree of success. We will

Figure 1.5: Di�erent methods of preparing glasses [6]

discuss two well-known methods that have achieved considerable success in prepar-
ing well-annealed glasses.
The �rst is one that can produce glasses with extraordinarily low energy is the physical
vapor deposition (PVD) method [80]. The preparation of glasses by the vapor deposi-
tion method has been in place for a long time [6]. But the fact that the method’s ability
to make extraordinarily stable glass lies in optimizing the control parameters has been
found recently [80]. As the name suggests, such glasses are prepared by depositing the
vapor of the material to a substrate maintained at a very low temperature. The �rst
successful preparation of stable organic (indomethacin) vapor deposited glasses were
carried out by Swallen et al [80]. The crucial control parameters to prepare such glasses
are the deposition rate of vapor and the substrate temperature. In this method, glasses
are prepared by depositing new layers on a substrate. This deposition of particles is
repeated at a certain rate. A freshly deposited layer of particles will have more mobil-
ity [81] because of the presence of the interface. If the time between subsequent layers
of particles being deposited is very long, there exists a possibility of crystallization.
Also, a much faster rate of deposition will not provide su�cient time for the freshly
deposited particles to sample suitable con�gurations. Therefore in the preparation of
PVD glasses, deposition rate plays a very important role. For some organic glasses
close to the glass transition temperature, the surface di�usivity has been found to be
orders of magnitude(∼ 108) higher compared to the bulk di�usivity [82]. The tem-
perature of the substrate is also a crucial parameter in producing ultrastable glasses.
Indomethacin glasses accessed a highly stable structure when the substrate temper-
ature was maintained at 0.85Tg . The glasses prepared using this method are ‘stable’
in many aspects. Apart from having lower energy, the vapor deposited glasses have
a higher density. For comparison, it can be mentioned that glasses that are prepared
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by isothermal annealing for six months have equivalent kinetic stability compared to
glasses prepared by the PVD method within a few hours [80]. A variety of organic
and polymeric stable glasses can be prepared using this method [7]. Vapor deposited
glasses make better glasses with a range of properties such as high density, low en-
thalpy, high thermal stability, high modulus. These glasses show enhanced chemical
stability. To destroy a vapor deposited glass structure, �fty times more intense photon
�ux is required compared to its liquid-cooled counterpart [83]. They show exceptional
dynamical behaviour also. In ultrastable glasses, a substantial suppression of β relax-
ation has been observed [84]. Apart from organic or polymeric glasses, stable metallic
glasses have also been prepared that show higher glass transition temperature and
high elastic modulus. [85]. Vapor deposited glasses have also been prepared through
numerical simulation of a standard model of metallic glass formers [86]. For glasses
prepared by standard cooling, a two to three orders of magnitude slower colling rate
than the available typical cooling rate is required to prepare as stable glasses as one
can obtain using the PVD method [86]. However, the simulation shows the di�culty
in preparing isotropic bulk glasses as substantial compositional heterogeneity is ob-
served along the axis of deposition. In fact, vapor deposited glasses show a consid-
erable degree of orientational anisotropy [87]. Hence this method is not useful for
making isotropic bulk glasses. However, stable organic glasses have been found to
be a very promising candidate for modern day technologies. Organic light emitting
diode (OLED) in smartphones, organic semiconductors are products that require very
stable glasses because the generic aging nature of glass can substantially reduce the
e�ectiveness of a material [7]. Therefore the quest for making better annealed glasses
is continuing actively.
In recent times an extensively used fast sampling method to prepare stable glasses on
computers is the swap Monte Carlo method. Swap Monte Carlo method has been pre-
viously implemented in hard sphere [88], soft sphere [89] systems where they showed
evidence of faster sampling. The applicability of this method has been extensively
studied in many works till date [90–93]. We will brie�y mention the general princi-
ple of the algorithm. Both in standard Monte Carlo simulation and swap Monte Carlo
simulation, a randomly selected particle is given a displacement, where the displace-
ment is accepted or rejected based on Metropolis acceptance rule. In the swap Monte
Carlo method, in addition to that, diameters of two randomly chosen particles are
exchanged. The exchange of diameters is again performed following the Metropo-
lis acceptance rule. At every Monte Carlo step, this swap move is attempted with a
�nite probability. The two extrema of the swap probability represent two di�erent
scenarios. For p = 0, no swap moves occur, and swap Monte Carlo reduces to the
standard Monte Carlo algorithm. For p = 1, the particles are always swapped. It has
been shown that the maximum acceleration of the sampling occurs at an intermediate
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value of the probability [90]. This optimum value of the probability shows robustness
with the variation of temperatures and systems. The swap of diameters of the particles
instead of the swap of particles is a modi�ed concept used in the recent application of
the algorithm so that the measurements of position dependent quantities that require
particle index information stay meaningful. These probabilistic nonlocal moves help
the system sampling con�gurations that are otherwise unattainable or associated with
a much longer relaxation time. However, the e�ciency of this method depends mainly
on the polydispersity of the system. The swap acceptance probability determines the
e�ciency of the swap MC algorithm. This probability decreases logarithmically with
the increase of the di�erence of radii of particles in the system [90]. Systems with
continuous polydispersity show orders of magnitude faster relaxation compared to
the standard methods. The method does not appear to be very useful for bidisperse
systems like the binary Lennard-Jones system. But ternary or other discretely poly-
disperse systems of a higher degree of polydispersity can also achieve faster sampling
using this technique [90]. In this method, Monte Carlo moves are equated to molecular
dynamics timesteps to provide a mapping from MC steps to real time. This correspon-
dence has been determined from the rescaling factor of the structural relaxation time
in terms of MC steps to match with the corresponding MD steps. The signi�cant re-
duction in the relaxation time for such systems has enabled a better understanding of
glasses, in fact approaching laboratory conditions and allowing for more direct com-
parisons [92].
In Chapters 4 and 5, we explain how we explored the possibility of generating low
energy glass by the application of mechanical deformation.

1.1.10 Well annealed glasses and equilibrium

A key issue that one needs to address is whether these energetically stabler and more
rapidly relaxing states are sampling phase space in equilibrium corresponding to a
thermodynamic ensemble. Thus, one needs to verify if the methods described in the
previous section guarantee that the prepared glasses are equivalent to their equi-
librium counterparts. For example, the non-local moves used in the swap Monte
Carlo [89] scheme obey the detailed balance condition and thus generate con�gura-
tions from an equilibrium ensemble. The ultrastable �lms generated using PVD show
structural anisotropy [94] compared to their equilibrium bulk counterparts that are
prepared using standard cooling techniques. In this thesis, we will discuss our e�orts
towards making well annealed glasses. In subsequent parts of this chapter, we will
show that cyclic deformation anneals the system when the deformation amplitude is
in the vicinity of the yielding transition amplitude [95]. The con�gurations generated
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by oscillatory shear are not guaranteed to sample an equilibrium ensemble. This vali-
dation is beyond the scope of this thesis but has been discussed in Ref. [96]. In the spirit
of the hybrid Monte Carlo scheme described in [97], cyclic deformation has been con-
sidered as a generation step for the trial move. The sheared con�guration is accepted
or rejected using a Metropolis acceptance rule with an appropriate modi�cation to ac-
count for the non-equilibrium conditions [96]. In order to better understand whether
these low energy con�gurations are comparable to those generated by straightfor-
ward molecular dynamics, one needs to thoroughly characterise the states generated
in a molecular dynamics scheme at the corresponding conditions. In Chapter 4, we
describe how we have investigated the possibility of generating low energy glasses by
the application of cyclic shear and have con�rmed that glasses prepared in this way
under optimal conditions are, in fact, equivalent to glasses prepared by normal equi-
librium dynamics.
In this thesis, we have studied various aspects of glassy systems discussed so far. We
outline the problems that have been addressed in the following chapters in the context
of glass physics.

• We have discussed how preparing stable glass, especially on computers, has been
one of the most prominent directions of research in the area of glass physics. In
this thesis (chapters 3 and 4), we have investigated the possibility of generat-
ing low-energy glassy states via periodic deformation of the systems(we discuss
periodic drive in the later part of this chapter).

• We have discussed the broad classi�cation of glass-forming liquids, namely strong
and fragile liquids, in terms of their dependence of relaxation time on temper-
ature. We have also demonstrated how recent studies of glassy systems at low
temperatures that have not been accessed before have given evidence of fragile
to strong transition in well-known fragile glass-forming liquids. In this thesis
(chapter 6), we present a detailed study of a model fragile glass-forming liquid
at signi�cantly low temperatures that gives evidence of dynamical crossover at
such a temperature regime.

• We have presented an elaborate account of various dynamical (such as non-
exponential decay of relevant correlation functions, dynamical heterogeneity)
and thermodynamic aspects (concept of excess entropy, entropy crisis) that are
crucial to the study of glass physics. We have studied extensively all such dy-
namic and thermodynamic signatures of the above mention model glass-forming
system (in chapter6) to understand the nature of the relaxation crossover at such
low temperatures.
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1.2 Jamming transition

So far, in the discussion of glass transition, we have primarily talked about the role
of temperature being the control parameter (though the glassy state can be arrived
upon by controlling density). Similarly, the non-equilibrium jamming transition can
occur when the density of the system is varied in an athermal system [98]. Jamming
transition is also a transition from a �uid state to a rigid state. One can think that the
particles can move freely when the system is at a low enough density. This is a �uid-
like state. If the density of the system is increased, it becomes harder for the particles
to move freely. In fact, beyond a certain density, the particles can no longer move.
This solid-like state is the jammed state. The transition from such a �uid-like state
to a solid-like state is called jamming transition. Jamming transition is a transition to
rigidity at zero temperature, unlike glass transition, where thermal �uctuation plays
a crucial role. Therefore we can think of the systems to jam where temperature plays
a negligible role. The grains, emulsions, colloids, and biological tissues with bigger
constituent particles have interaction energy much higher than their kinetic energy
and therefore undergo jamming transition [99, 100]. Jamming is a regular occurrence
in our life. Starting from tra�c jams to jammed grains in kitchen containers, interest-
ingly have similar features to jamming.
Jammed packings are mechanically stable packings. The important aspect of study-
ing the jammed system is the study of the packing and its structure. The study of the
packing problem is extended across the �eld of physics, mathematics, information the-
ory. Along with its broader range of applications, the history of the study of packing
is also spread over a long period. In the year 1616, the Kepler Conjecture stated the
densest packing in same sized spherical particles in three dimension is 74% and was
proved afterwards [101]. The study of packing of disordered systems by Bernal [99]
shows that the densest sphere packing beyond which the system stays jammed is 64%.
Identi�cation of such a jammed state can be viewed very simply by putting particles
randomly in a big box and then isotropically compressing it in steps. At each step
after compression, the system is allowed to relax and settle down. Continuing this
compression procedure, we can arrive at a certain high packing fraction which is 64%
Beyond this packing fraction, the system stays jammed. This density limit is identi�ed
as the random close packing limit (RCP). When the lower density con�guration (that
is compressed to obtain jammed structure) is generated randomly, the systems jams
around 64% and indicates the existence of a unique jamming density [102]. But when
the initial densities of the equilibrated con�gurations are di�erent, that can give rise
to a range of jamming densities [103, 104] with RCP being the lowest jamming point.
Unlike glass transition, jamming transition is accompanied by easily observable struc-
tural changes. The role of structure is an important aspect in the study of packing. In
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the study of structure, estimation of contacts of particles is signi�cant as it determines
the stability of the packings. The onset of rigidity signi�es the system being able to
support stress. From the argument of stability, it can be shown quite simply the stabil-
ity is accompanied by a certain number of coordination 2D whereD is the dimension.
The system has to be in force balanced condition to generate a mechanically stable
packing. We can say the number of constraints in the system Nc = NZ

2 where N and
Z are the total number of particles and average contact number, respectively. For the
packing to be stable, the number of constraints should equal the system’s degrees of
freedom (DF). Degrees of freedom in the D dimension should be ND . This equal-
ity condition states the average contact number Z = 2D [105]. This is the isostatic
condition for the frictionless jammed packing. The jammed systems having densities
within the RCP range satisfy this condition. This condition changes to be D + 1 in
case of the presence of frictional force in the system as both force and torque is taken
under consideration.
In chapter 3 of the thesis, we demonstrate the study of a system of sphere assemblies
that interact via repulsive harmonic potential. Such a system has been studied in a vast
range of densities, where di�erent densities represent characteristically di�erent sys-
tems. Very low-density limit shows response similar to low-density colloidal systems.
High-density systems (much further away from isotropic jamming density) show re-
sponses similar to glassy systems. Interestingly it shows some unique behaviour when
the system is close to the isotropically jammed systems. The concept of jamming tran-
sition and isotropic jamming has been crucial in understanding the range of responses
observed in such a system.

1.3 Driven amorphous systems

The study of driven amorphous materials is of interest as their utility depends on their
response to the applied external force or deformation. We discussed so far how the
variation of thermodynamic variables like temperature and density brings out di�erent
non-equilibrium transitions in amorphous systems. In amorphous systems, external
drives like the application of stress or the application of deformation or strain play a
crucial role in exploring the phase space. Driven amorphous systems show various
transitions ranging from complete failure of the system to self-organized interesting
new phases. We will discuss some of these exciting transitions relevant to the works
done in this thesis.
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1.3.1 Shear jamming transition

Earlier, we have discussed that jamming transition occurs as the density of the sys-
tem is increased. We have discussed the existence of an isotropic jamming density φJ .
The system can also be jammed by the application of shear. Among di�erent forms of
shear, we can consider simple shear (relevant for the discussion of the thesis), where
the deformation keeps the parallel planes parallel to each other while translating them
relative to each other. Such deformation can also rigidify the system, and the jamming
under such deformation is called shear jamming transition. In the discussion of shear
jamming phenomena, it is important to categorize the discussion about both frictional
and frictionless systems.
A system where frictional force is present can be jammed by the application of shear
deformation at lower densities than isotropic jamming [106]. Experiments of two-
dimensional photoelastic disks and numerical simulations of frictional grains show
such a jamming transition [107, 108] in the system. An exciting feature of shear jam-
ming is that as the system is sheared, an intriguing intermediate transient state called
the fragile state emerges between the initial unjammed and the �nal shear jammed
state. The fragile state emerges for small applied stress in the system [106, 107]. In
this state, the particles bearing strong forces (forces higher than the average force of
the system) form networks. These networks percolate along the compressive direc-
tion only. Such states are unable to support stress in perpendicular directions. Now,
as the deformation is further increased, the force network formed in the compressive
direction buckles, and they percolate in all directions [109]. At that point, the system
gets shear jammed.
Friction stabilizes structures [110] and is necessary to produce jammed states below
φJ . Recent studies of frictionless spheres when subjected to shear [109,110] show that
shear deformation generates structures that have �ngerprints of jamming at lower
densities thanφJ , but are not jammed. Addition of friction to the contacts can only sta-
bilize them. However, some investigations have reported shear jamming for densities
below φJ for small systems of frictionless particles [111], raising questions about pos-
sible �nite-size e�ects. Recently, a study of frictionless sphere assemblies has shown
that cyclic shear deformation can generate packings with isotropic jamming densities
φj above the minimal jamming density φJ [112]. This study is important as it investi-
gates the emergence of shear-induced states in frictionless systems. In Chapter 3, we
will discuss how in a frictionless sphere assembly, the unjammed states can be gen-
erated above isotropic jamming density φJ by applying cyclic shear deformation. As
those frictionless unjammed states can be shear jammed, we posit that our work has
facilitated the study of shear jamming in frictionless systems.
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1.3.2 Yielding transition

The shear jamming transition describes a transition from �uid-like states to solid
states. The converse transition from a solid-like to a �owing state is called the yield-
ing transition and is the subject of this section. The most obvious change that a solid
undergoes, when subjected to a large deforming force, is that it breaks or yields. The
yielding behaviour of a substance is an important material property with deep impli-
cations. From the study of landslides to the construction of a bridge or in the making
of protective screen covers for our smartphones - understanding the yielding prop-
erty of a material is vital. This understanding is pretty comprehensive for crystalline
solids, compared to the understanding of the collapse of a simple sandcastle. The rea-
son for this is the structural di�erence between crystalline material and disordered
systems. Failure in crystalline solids is explained in terms of dislocations or defects,
which is the irregularity in the crystal structure arising from an abrupt change in the
arrangement of the atoms. Hence, in crystalline solids, identifying failure is relatively
straightforward, with defects breaking its translational symmetry. Disordered materi-
als lack translational symmetry and therefore the identi�cation of failure in disordered
materials requires a di�erent framework.
As we have discussed earlier, there exists a variety of amorphous materials, and they
show di�erent behaviour in their yielding transition. But there exist some fundamen-
tal similarities transcending the speci�city of the systems. Under small applied stress,
all these materials show solid-like elastic responses where stress is proportional to
applied strain. At large stress, the system shows plasticity. Plasticity in disordered
systems is understood in terms of localized rearrangements of particles termed as plas-
tic events. The onset of plasticity marks the yielding transition in amorphous solids.
Hence characterisation of this plasticity is the most important aspect of the study of
yielding.
As the study of yielding in disordered systems has been the study to understand plas-
ticity, there have been various approaches to comprehend plasticity, the local rear-
rangements. One way of understanding local rearrangements has been devoted to
study the phenomena by identifying the basic unit of plasticity, termed as shear trans-
formation zone (STZ) [113–116]. The other way has been to understand plasticity in
terms of the nature of the perturbation in the surrounding medium where the e�ect of
shear strain applied at a point in the system is measured in terms of shear at a di�er-
ent point propagated through an elastic medium [117, 118]. Apart from the study of
plasticity, the nature of the transition itself is a question of interest. Extensive exper-
imental and simulational studies [95, 119–127] have been carried out in recent years.
Simulational studies of yielding have provided the important understanding of yield-
ing transition in the aspect of its dependence on shear rate, temperature [128, 129].
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Yielding has also been extensively studied following athermal quasistatic protocol in
which shear deformation is applied at zero temperature and a zero rate limit (see chap-
ter 2). The system evolves successively through di�erent energy minima in the poten-
tial energy landscape at each strain step. The zero-temperature limit of this deforma-
tion protocol is a good approximation for the granular systems and foams. Also, the
approximation that the system remains in a mechanically stable state unless other-
wise perturbed covers the range of atomic or metallic glasses at low temperatures. We
brie�y describe here some of the important works performed (following AQS protocol)
that have contributed to the understanding of yielding signi�cantly and constitute a
relevant background for the yielding phenomena that we have studied in our thesis.
Uniformly and periodically applied deformation has uncovered signi�cant features of
the transition. The nature of transition, whether brittle or ductile, has been found
to be largely dependent on the material’s preparation history [130, 131] such as the
degree of annealing. Under uniform shear deformation, the poorly annealed glasses
show a gradual, continuous transition. Whereas for the cyclically shear deformation,
the stress shows a small but discontinuous drop at the yielding amplitude [95, 130].
In this regard, the system shows progressively annealing toward low energy states as
the amplitude of deformation is increased until the yielding transition amplitude. A
threshold energy that coincides with the inherent structure energy at the mode cou-
pling temperature exists, dictating the limit of the annealing below which the yielding
transition becomes brittle [130]. Recently, these interesting features of yielding under
cyclic deformation have been well captured in the mesoscopic modelings [132, 133].
The yielding under cyclic shear deformation shows other notable features of shear
banding [134], structural changes [135], which we refrain from further discussion con-
sidering the scope of this thesis.
One of the prominent features of yielding among the mentioned is that amorphous
solids show an annealing e�ect or, in other words, access progressively low energy
states when driven cyclically under optimal conditions [95]. In the thesis, we have
described how we have explored the possibility of exploring such low energy states
in glasses by oscillatory shear in the pre-yield regime. We have also studied (Chapter
3) how the microscopic picture of the yielding transition is similar to very di�erent
transitions observed in di�erent systems. In the following section, we will discuss the
connection of the yielding transition to the microscopic reversible-irreversible transi-
tion.
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1.3.3 Reversible-irreversible transition

The non-equilibrium transition, like the yielding transition, is identi�ed from the sys-
tems’ response quanti�ed by macroscopic quantities like stress or energy. In the yield-
ing transition under oscillatory shear, the system keeps returning to the same state (ab-
sorbing) at the end of each cycle in the pre-yield regime. The particles of the system
trace the same trajectory over and over again. But after the system yields, the system
keeps moving on to new states. The displacement of the particles shows di�usive mo-
tion as a function of cycles. Yielding transition at a particle-scale level coincides with
absorbing to di�usive transition [95, 136]. In the context of such microscopic transi-
tion, we will discuss the Absorbing phase transition (APT) in this section.
APT is a non-equilibrium transition observed in diverse systems. Such transition takes
a system from a dynamically �uctuating state to an absorbing state. In the dynamically
�uctuating state, the system �uctuates between di�erent con�gurations. As we men-
tioned in the context of yielding, absorbing states are states that a system can reach
by its dynamics but cannot come out of it. For example, a model that describes an
epidemic spread of an infectious disease shows such transition [137]. The epidemic is
modeled on a lattice site where a site can be infected or healthy. The infected sites heal
by themselves or infect neighbouring sites and spread. Depending upon the infection
rate, the infection either survives or goes to a state where the infection is eradicated,
reaching a unique absorbing state. Absorbing states can also be degenerate in some
other transitions. Similar transitions are also observed for other diverse phenomena
like forest �res, turbulence, chemical catalytic reactions, etc.
Absorbing phase transitions are also observed in soft matter systems such as non-
Brownian suspensions, granular materials, and soft glasses when the systems are sub-
jected to periodic drive. The microscopic dynamics of such systems show these transi-
tions are reversible-irreversible transitions in nature. It has been shown in the study of
sheared suspensions [138] when the amplitude of the deformation is small, the particle
trajectories are reversible, and they repeat the same path over the cycles. When the
amplitude crosses a certain threshold value that depends on the density of the system,
the trajectories of the particles become irreversible; they do not come back to the same
position after one or many cycles. This reversible-irreversible transition is a form of
absorbing phase transition (APT).
Such transitions have been captured in a simple yet elegant simulational model named
random organization model [139]. The basic idea of this model is to give the particles
a random displacement when the particles come in contact with their neighbouring
particles in the course of deformation. This model shows below a density-dependent
critical value of strain amplitude the system organizes so that no further collision be-
tween particles occurs and the system enters a reversible regime. But beyond the
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critical value of strain, there always remains a fraction of particles, identi�ed as active
particles, that collide, and the system becomes irreversible and di�usive. The particles
that collide as the shear deformation is applied are identi�ed as the active particles,
whereas the particles that do not collide are termed passive particles. The fraction of
active particles that survive after repeated application of deformation cycles de�nes
the activity of the system. When the system organizes to avoid a further collision,
the system remains reversible with zero activity. The emergence of a �nite number of
active particles indicates the onset of irreversibility, hence �nite activity.
This picture gives us an idea of how activity can be thought of as a relevant order
parameter to study such transitions. These transitions have been studied in di�erent
models [140, 141] in the context of percolation. These models show that such transi-
tions belong to a speci�c universality class called the conserved directed percolation
(CDP) class. Such universality class describes the nature of the transition being con-
tinuous. But a recent study of a minimal particle model and a continuum theory by
Mari et al. [142] shows when the mediated interaction from the active regions to the
passive regions is considered, they show a deviation from the CDP universality class.
It describes the discontinuous nature of the transitions observed in semi-dilute [143]
and dense systems [124, 130, 134].
In Chapter 3, We have studied di�erent transitions in sphere assemblies under oscilla-
tory shear deformation. We have found similar discontinuous microscopic transitions
interestingly coinciding with di�erent macroscopic transitions like yielding transition,
shear jamming transition, and unjamming transition.

1.3.4 Periodic drive and its e�ects

Subjecting systems to periodic drive is one of the most commonplace occurrences,
whether we pack more rice by shaking the container or pour them from the container
to the cookware. Application of periodic drive to disordered systems has shown in-
triguing responses [95,121,130,130,138]. Here we will discuss some of the phenomena
that are relevant to this thesis.
The compaction of granular materials is one of the most visible e�ects of the periodic
drive. We have mentioned earlier that the granular systems are athermal systems. We
elaborate this by an example. The gravitational energy associated with moving a sand
particle with a diameter of millimeter order by a height equal to its diameter is or-
ders of magnitude (∼ 12) more than its thermal energy at the room temperature (kBT ).
Hence mechanical drive plays a signi�cant role for such athermal systems to sample
di�erent con�gurations. Many experiments have been carried out to understand the
evolution of the granular system under mechanical drive apart from the theoretical
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approach to understand the statistical mechanics of the granular matter [144]. Tap-
ping experiments [145, 146] have been carried out to study the evolution of packing
in thermal systems. Experiments on the assembly of soda-lime glass beads show the
system densi�es as a series of tapping (vertical vibration) is applied. The steady state
density depends upon the intensity of the taps applied. Recently it has been shown that
assembly of hard cubic particles evolves to a densest ordered packing under periodic
shear [147]. Numerical study of an assembly of spherical and non-spherical particles
have shown similar compaction behaviour upon the intensity and the frequency of
vibration [148]. There are many more experimental and numerical evidence of com-
paction of athermal systems under periodic drive.
Glasses under periodic drive also show interesting phenomena. Glassy systems have

Figure 1.6: Exploration of potential energy landscape in an amorphous solid under
periodic drive [149]

a rugged potential energy landscape (PEL). In the presence of thermal �uctuation, the
system visits the energy basins accessible at that temperature. In glassy systems un-
derstanding the e�ect of the mechanical drive, decoupled from the thermal �uctuation
is of importance, and many numerical studies have been carried out to investigate the
role of mechanical deformation at zero temperature limit (following AQS protocol).
Interestingly the study of glassy systems under periodic drive has shown that depend-
ing upon the initial state of the system and the extent of mechanical drive, di�erent
parts of the PEL (see Fig. 1.6) are accessed by the system. [149]. Glasses yield when
deformed uniformly or cyclically beyond a certain threshold strain. Application of
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cyclic deformation shows the nature of yielding changes depending upon the initial
temperature at which the liquid has been equilibrated [95,130]. It has been shown that
up to the yielding amplitude, the system descends to lower energy states or stays at the
same energy state depending upon the initial temperature of equilibration. The an-
nealing feature of the yielding transition becomes relevant in the context of the prepa-
ration of better glasses with lower and lower energy in the deeper energy minima of
the PEL. The system rejuvenates or goes high up PEL when it is driven with ampli-
tudes higher than the yielding amplitude. Interestingly, the system shows reversible-
irreversible transition at the yielding transition amplitude [95, 136]. The absorbing
states below yield show the ability to retain the memory of the deformation amplitude
where the applied repeated cycles of deformation act as training cycles. [150,151]. Not
only athermal oscillatory shearing of glasses but �nite temperature �nite rate shearing
or thermomechanical processing of glasses is also useful for practical purposes. The
experiments and simulations of metallic glasses show strain hardening under cyclic
loading [152, 153], which implies yield stress value increases as repeated cycles of de-
formation are applied. This is of particular interest for the industrial application of
glasses.
Thus we have discussed how periodic drive in disordered systems brings out a rich
phenomenology that not only sheds light on the aspect of understanding the basic
nature of the systems but also paves the way to make them useful in the application
purpose.
So far, we have discussed various transitions such as yielding transition, shear jam-
ming transition, reversible-irreversible transition occurring in a variety of driven dis-
ordered systems ranging from low-density colloids to granular material or high-density
glassy systems. Further, we have discussed when the drive is of periodic nature, how
these various transitions show further intriguing features. However, these diverse
transitions occurring in characteristically di�erent systems show intriguing similari-
ties in their microscopic nature. One important theme of this thesis has been to have
a uni�ed understanding of these transitions under oscillatory shear deformation that
we detail in chapter 3. Chapters 4 and 5 are also devoted to the study of the e�ect of
the oscillatory shear but speci�c to the glassy system.

1.4 Aging and mechanical aging

In the discussion regarding glass transition, we have discussed the phenomenology of
glassiness in terms of equilibrium properties in supercooled liquids approaching the
glass transition. Such formalism cannot describe the system at temperatures below the
glass transition temperature as the system falls out of equilibrium. Out-of-equilibrium
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systems evolve over time and any properties measured at a given time become depen-
dent on the time spent in the out-of-equilibrium state. This time is called the waiting
time (tw) and the dependence of measured system properties on the elapsed waiting
time is a hallmark of aging. The dependence of measured properties on tw poses an ad-
ditional challenge in the study of glassy systems, however, the numerous implications
of aging make such studies very important. The ubiquity of glasses in various appli-
cations make it imperative to have control of and an understanding of such changes
over waiting time.
Usually, in the study of aging, the equilibrated system is quenched at t = 0 and driven
out of equilibrium. The two-point time correlation functions (say density-density cor-
relation function) clearly show the e�ect of aging through a dependence on the waiting
time (the time elapsed since the quench at t = 0). Just after the quench, the relaxation
in the system is faster compared to the relaxation at any later point. The study of aging
systems is extensive, both in terms of experiments and simulations. Within the scope
of this thesis, we can mention a couple of e�ects observed in an aging system. An ag-
ing system is often subjected to thermal cycling [154,155] to probe its non-equilibrium
behavior. Thermal cycling implies that the system is subjected to two di�erent extreme
temperatures at a very fast rate. Depending on the temperatures through which the
system is cycled, the system shows memory and rejuvenation e�ect [154]. Depending
on the stages of cycling, either the system remembers the memory of the temperature,
or it forgets its age and rejuvenates to higher energy states.
The response of out-of-equilibrium systems to external driving is an area of focus
in this thesis. In particular, we will talk about mechanical aging resulting from me-
chanical driving. The study of this kind of aging is of importance in the context of
aging in soil or in the manufacture of more ductile polymer glasses and so on. The
application of drive enforces a new relaxation timescale in the system. In addition to
rejuvenation, driven out-of-equilibrium systems sometimes display faster relaxation
and a phenomenon termed overaging [156–159]. In Chapter 5, we study overaging in
model glass-forming liquid under the application of cyclic deformation.

1.5 Scope of the thesis

Chapter 2 will summarise the model, methods and important de�nitions that have
been used in this work.
Chapter 3 will describe a phase diagram in the amplitude-density plane, summarising
various transitions observed in frictionless sphere assemblies under the application of
cyclic shear deformation. It summarises key underlying similarities of the di�erent
transitions observed in di�erent density regimes.
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Chapter 4 will describe the study of exploring low energy con�gurations under opti-
mal conditions in a model glass-forming system when driven cyclically at a �nite rate
and �nite temperature.
Chapter 5 will describe the mechanical aging in a model glass-former when subjected
to periodic deformation. We discuss here how mechanical drive overages or acceler-
ates aging process.
Chapter 6 will contain the study of dynamical crossover in a model glass-former at
substantially low temperatures. It will also describe the thermodynamics aspects ac-
companying the crossover.
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Chapter 2
Models and methods

In this chapter, we brie�y describe the models along with the di�erent simulation
methods employed in the subsequent chapters. Several important quantities critical for
the interpretation of the results are also addressed. This chapter is arranged as follows.
The �rst section outlines the model potentials accompanied by a short review of the
simulation techniques. Next, we de�ne various quantities and discuss the context in
which they have been used to analyse the results.

2.1 Models

2.1.1 Kob-Andersen model

In the computational study of glass formers, Kob-Andersen (KA) 80:20 binary mix-
ture [160] has been used extensively to improve the understanding of glass physics
signi�cantly. We have used this model in the study of annealing of glasses as well
as in the low temperature study of supercooled liquids. In this model the interaction
between particles is de�ned in the following manner:

Uαβ(r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6
]

+4εαβ

c0 + c2

(
r
σαβ

)2 , rαβ ≤ rcαβ
= 0, rαβ > rcαβ . (2.1)

c0 and c2 are chosen such that the potential and force between particles go to zero
continuously at the cuto� distance. Here, indices (α,β) represent particle type (A or
B) in the binary mixture. We report results in reduced units, with units of length,

31
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energy and time scales being σAA, εAA and
√
σ2
AAmAA/εAA, respectively. The model

parameters are εAB/εAA = εBA/εAA = 1.5, εBB/ εAA = 0.5, and σAB/σAA = σBA/σAA =

0.8, σBB/σAA = 0.88. Energy values reported are energies per particle.

2.1.2 Soft-sphere model

Assembly of soft spheres interacting via repulsive harmonic potential is a well studied
model for a range of systems from foams [161] to dense glassy systems [162]. In our
study of a wide range of athermal systems under mechanical deformation, we have
used a binary mixture (50:50) of such particles whose interaction potential is de�ned
in the following manner:

Uαβ =
1
2
εαβ(1−

rαβ
σαβ

)2, rαβ ≤ σαβ

= 0 (2.2)

We report results in reduced units, with units of length, energy and time scales be-
ing σAA, εAA and

√
σ2
AAmAA/εAA, respectively. Here, indices (α,β) represent particle

type (A or B) in the binary mixture.The model parameters are εAA = εAB = εBB and
σAB/σAA = σBA/σAA = 1.2, σBB/σAA = 1.4. Energy values reported are energies per
particle.

2.2 Simulation methods

2.2.1 Athermal quasistatic cyclic shear deformation

The soft sphere assemblies have been subjected to an athermal quasistatic (AQS) shear
deformation for a range of densities and a range of deformation amplitudes. We �rst
describe the simulation protocol followed by relevant simulation details.

2.2.1.1 AQS protocol

AQS protocol consists of two steps.

• In the �rst step, the particle coordinates are given a�ne transformation. A�ne
transformation is a linear mapping that preserves points, straight lines, and
planes. We apply the transformation with the following transformation matrix
(in xz shear plane), which preserves volume.
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x′

y′

z′

 =


1 0 dγ

0 1 0

0 0 1



x

y

z


• In the next step the potential energy function is minimized using standard mini-

mization methods like conjugate gradient (CG) or FIRE [163] or Steepest descent
(SD) algorithm.

In our work, dγ is the small shear strain step which is the ratio of the change in length
along the shear direction to the original length in the perpendicular direction on the
shear plane (dx/Lz, dx is the change in length, Lz is the undeformed length of the box
along the z direction, in our case).
Athermal quasistatic deformation is a limit where the system is probed when the tem-
perature T → 0 and the rate of deformation γ̇ → 0. The system can be studied under
the sole e�ect of mechanical deformation as there is no thermal �uctuation involved.
The timescale of the relaxation of the system stays well within the time scale imposed
by the rate of applied deformation.

2.2.1.2 Cyclic shear deformation protocol

The system is deformed with an amplitude γmax in small dγ strain steps followed by
minimization. The strain within a cycle varies as 0→ γmax→ 0→ −γmax→ 0. The
strain step used in our work is 10−3 for packing fractions (φ) below 0.661 and 10−4

for higher packing fractions. The cycles are applied repeatedly till the system reaches
a steady state. The terminology “steady state" repeatedly used in our work refers to
the state of the system when the characterising properties (such as contact number or
potential energy) do not change statistically with the number of deformation cycles.
To reach the steady state, we perform ∼ 102 cycles in the irreversible regime and up to
103 ∼ 104 cycles in the reversible regime. All the measurements are done for strobo-
scopic or the strain zero con�gurations. γaccum which is measured as 4×Ncycle×γmax
can be considered as an equivalent time as there is no real time involved in this method.

2.2.1.3 Simulation details

Initial con�gurations in the density range 0.54−0.627 are obtained from hard sphere
�uid con�gurations at φ = 0.363, subjected to fast compression using Monte Carlo
simulations.The isotropic jamming density is estimated to be φJ = 0.648, follow-
ing the method in [103]. Con�gurations close to φJ (φ = 0.638 − 0.647 and φ =
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0.650 − 0.661) are obtained by a single step decompression or compression of con-
�gurations at φJ , and con�gurations well above φJ are obtained by multiple step
compression of con�gurations at φJ . Each compression or decompression step is fol-
lowed by the energy minimization (CG).The range of packing fraction for our study is
[0.54− 0.72]. The strain amplitude range is [0.001− 0.2] and [0.01− 1.0] for above
and below φJ respectively. For φ = 0.56,0.54, γmax ranges from [0.1 − 8.0]. Ap-
proximately 2000 independent simulations are used to construct the complete phase
diagram. The number of independent samples used in di�erent density ranges are -
10 for 0.661 − 0.72, 10 − 20 for 0.650 − 0.661, 4 − 10 for 0.638 − 0.648, 6 − 10 for
0.54− 0.627, and 1− 2 samples at the lowest densities at high amplitudes.

In this context, we will have a brief discussion about a few more important things
as follows:

• Minimizationmethods: We have mostly used conjugate gradient(CG) method
to minimize the potential energy function. CG is an optimization method for
both linear and non-linear systems. An iterative algorithm (the Polak-Ribiere
version used in package LAMMPS) has been used to minimize the energy. In
this iterative approach the new search direction is made perpendicular or con-
jugate to all previous search directions. CG is a more e�cient optimization
method compared to the steepest descent (SD) where search direction is just
set as the negative gradient of the energy function at every iteration. Another
minimization method that has been used in our work is the fast intertial relax-
ation engine or the FIRE [163] algorithm. This is a molecular dynamics (MD)
scheme with an adaptive timestep. The principle followed in this minimization
method can be thought of as a blind skier searching the fastest route to reach
the bottom of the valley. The skier can steer his way through the valley, the
potential energy landscape governed by an equation of motion. The skier can
choose acceleration to a steeper direction or can stop when the direction is up-
hill, tracking the power at a time P (t) = F(t).v(t), where F(t) and v(t) are force
an acceleration at a given time. In the right direction, the timestep is increased,
and minima can be reached in a faster way. We have found in our work this
algorithm �nds lower energy minima than minima obtained through the con-
jugate gradient method (see Chapter 3). We will further discuss the e�ect of
di�erent minimization methods in the next chapter. The stopping criterion for
minimization is that the energy change between successive line minimizations,
normalized to the energy value or the magnitude of the maximum component
of force, falls below 10−16, whichever is satis�ed earlier.
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Figure 2.1: Sliding-brick and deformed cube representation of system with �ow.

• Lees-Edwards boundary conditions: Lees-Edwards (LE) boundary condition
is a periodic boundary condition (PBC) [164] employed in a system with a shear
�ow. We represent the LE PBC in a sliding brick representation (shown in
coloured boxes in Fig.2.1) along with the deformed cube representation (shown
in black outline). When a box is deformed we can assume the particles of an up-
per layer will move more along the sheared direction (right in this case). Hence
when a particle crosses the boundary it is important to take into account from
which layer it escaped and accordingly with an adjusting term along with nor-
mal periodic boundary conditions the extra or less displacement, caused be the
deformation of the box itself, should be taken care of when the particle is put
back in the original simulation box. In our sheared simulation to determine the
position of particles or to calculate quantities like force or energy where posi-
tions of two particles are required, LE PBC is used. Needless to say, LE PBC
reduces to normal PBC at undeformed condition.

2.2.2 Equilibriummolecular dynamics in a canonical ensemble

Equilibrium molecular dynamics simulation has been performed in a constant tem-
perature (T ) constant volume (V ) and a constant number of particles (N ) ensemble
or a canonical (NVT) ensemble of KA 80:20 binary mixture. Simulation of an NVT
ensemble involves the system being in contact with a heat bath. The coupling of the
system to the heat bath can be of stochastic nature as well as of deterministic nature.
In our simulation, we have used Nosé-Hoover thermostat [165] which couples to the
system in a deterministic way. The application of the Nosé-Hoover thermostat is an ap-
plication of extended Lagrangian where arti�cial coordinates and velocities are used.
Along with the degree of freedom of the particles in the system the dynamical equa-
tion involves the bath variables. Further in works of Maryna et al [166] it has been
shown that the Nosé-Hoover chain removes the shortcomings of a single Nosé-Hoover



36 Chapter 2.

thermostat.

2.2.2.1 Nosé-Hoover thermostat

The dynamical equation of motion in terms of real varaibles can be written as follows:

ṙ =
pi
m

ṗi = Fi −
pξ1

Q1
pi

ξ̇k =
pξk
Qk

ṗξ1
= (

∑
i

p2
i

mi
−LKBT )−

pξ2

Q2
pξ1

ṗξk = (
p2
ξk−1

Qk−1
−KBT )−

pξk+1

Qk+1
pξk

ṗξM = (
p2
ξM−1

QM−1
−KBT ) (2.3)

The equations together describe the evolution of the canonical ensemble where ri and
pi is the position and momenta of the ith particle in the system. L is the number of
degrees of freedom. M number of chains are coupled together where k = 1, ...M . pξk
and Qk are the momenta and mass like variables of the thermostat. ξ is the friction
coe�cient that can assume a positive or negative value.
For such non-Hamiltonian dynamics, it has been shown that the conserved quantity
is an extended Hamiltonian-like quantity that involves thermostat variables, stated as
follows.

H ′(p,q,ξ,pxi) =H(p,q) +
M∑
k=1

p2
ξk

2Qk
+LKBT ξ1 +

M∑
k=2

kBT ξk (2.4)

The dynamical equations are solved through the construction of a Liouville operator
where along with particles’ position and momenta, thermostat variables are consid-
ered as phase space variable. The operator is implemented using the Trotter identity.
Liouville equation combined with Trotter formula is a powerful tool to solve time-
reversible dynamical equations.

2.2.2.2 Simulation details:

The simulations has been performed in a KA 80:20 binary mixture of 4000 system
size. The initial con�gurations for the simulations below T = 0.466 are prepared by
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quenching equilibrated con�gurations from T = 0.466 and for the simulations above
T = 0.466 con�gurations are obtained by quenching equilibrated con�gurations from
T = 1.0 to respective target temperatures. We have performed equilibrium simula-
tions for a range of T = 0.9 ∼ T = 0.365. The density (ρ) has been kept constant at
1.2. 16-25 independent trajectories have been studied (unless otherwise crystallized).
The equilibration run varies from 20-100 times of the structural relation time depend-
ing upon the simulation temperature. The system at low temperatures shows crystal-
lization [167]. The crystallizing samples have been discarded to study the equilibrium
properties. We will describe how the crystallization in the system has been identi�ed
and taken care of in the following discussion. The timestep below and above TMCT
are respectively 0.01 and 0.005.
In this context we will brie�y discuss the crystalization in the system at low temper-
atures.

Crystallization: We analyse the crystallization kinetics employing standard meth-
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Figure 2.2: A crystallizing sample at T = 0.37 is hown

ods [167,168] that are based on de�ning bond orientational order parameters for each
particle i, qlm(i) = 1

nb(i)
∑nb(i)
j=1 Ylm(θij ,φij), where θij and φij are angles formed by

separation vectors rij between particles i and neighbors j . The l value used is 6. We
employ cuto�s for de�ning neighbors from the location of the �rst minimum of the
pair correlation functions gαβ(r), which are, rcutAA = 1.4, rcutAB = 1.25 and rcutBB = 1.1.
Following [167], we de�ne two neighbors to be bonded if the normalised dot product
q6(i).q6(j)/ |q6(i)||q6(j)| is bigger than 0.7, and a particle is labeled as crystalline if it
has at least 7 such bonds. Crystalline particles are then connected if they are within
a cuto� distance, for which we use slightly larger values rclustAA = 1.5, rclustAB = 1.4 and
rclustBB = 1.2. We then perform a cluster �nding procedure to identify all clusters of con-
nected crystalline particles and report the largest cluster size of crystalline particles.
Because the largest cluster size may not fully re�ect the degree of crystallinity in cases
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where the cluster sizes are small, and the clustering de�nition may not capture physi-
cal proximity, we also report the total number of crystalline particles. These are shown
in Fig. 2.2. In our analysis, when a trajectory exhibits persistently a largest crystalline
cluster size of 30 or above, or the total number of crystalline particles is above 60 in
a persistent fashion, or even otherwise, when the growth of crystallinity suggests the
onset of crystallization, we exclude the corresponding trajectory segments (i. e. parts
of the trajectory thereafter) from the computation of averages and statistics.

2.2.3 Cyclic shear deformation at a �nite rate and a �nite tem-
perature

We have employed cyclic shear deformation in a KA 80:20 binary mixture using the
SLLOD equation of motion. We give a brief description of the SLLOD equations and
the cyclic shear protocol in the following sections.

2.2.3.1 SLLOD: dynamical equations for non-equilibriummolecular dynam-
ics simulation

In the work by Hoover et al [169] the bulk viscosity in soft sphere dense �uids has been
measured via a non-equilibrium molecular dynamics study. The dynamical equations
used in this work to study the evolution of the system under shear �ow were derived
from a Hamiltonian named DOLLS Hamiltonian. Amusingly the name originated from
the qp term in the Hamiltonian in resemblance to the “Kewpie" dolls. Later it was
found the mentioned dynamical equations do not provide a correct description of nor-
mal stress di�erence. Evans and Morriss in 1984 [170] proposed a set of dynamical
equations to simulate shear �ow. These equations are named SLLOD equations of
motions. Because of its close connection to the equations derived from DOLLS Hamil-
tonian, the equations were named this way. SLLOD equations are non-Hamiltonian
equations. The general form of the SLLOD equation of motions are described as the
following:

ṙi =
pi
mi

+ ri .∇v

ṗ = Fi −pi .∇v (2.5)

Where mi , ri and pi are mass, position vector and momentum vector of the ith parti-
cle. Fi is the force on the ith particle due to all the other particles in the system.∇u is
the velocity gradient tensor. In a simple planar shear with �ow in the x direction and
gradient in the y direction, the tensor takes the following form.
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∇v =


0 0 0

γ̇ 0 0

0 0 0


SLLOD equations are �rst order linear equations of laboratory position and thermal
velocity or peculiar velocity. It represents an equivalent of Newton’s equation for a
system with a homogeneous �ow [171]. A thermostatting mechanism is required to
achieve a steady state. The form of SLLOD equations when coupled to a thermostat
(Nose Hoover here) is the following [172].

ṙi =
pi
mi

+ iγ̇ryi

ṗ = Fi − iγ̇pyi −pi
pξ
Q

ξ̇ =
pξ
Q

ṗξ =
N∑
i=1

p2
i

mi
−Nf kBT (2.6)

Where Q is the e�ective mass of the thermostat, ξ is the friction coe�cient, pξ is mo-
mentum like variable of the thermostat,Nf = 3N or the number of degrees of freedom
of the system. These are the equations for a system under simple shear along the x-
axis with a strain rate γ̇ in the xy plane.

2.2.3.2 Cyclic shear protocol (at a �nite temperature, at a �nite rate)

The system has been subjected to an oscillatory shear where the strain γ(t) and the
strain rate γ̇(t) at time t varies as:

γ(t) = γmaxsin(ωt)

γ̇(t) = γmaxωcos(ωt)

where ω is the frequency, time period of Tp is Tp = 2π/ω, γmax is the amplitude
of the shear. In our simulation when we talk about a �xed rate we mean the shear
rate at t = 0. The simulation time is calculated as t = Ncycle × tp. All the quantities
are calculated for the stroboscopic or the strain zero con�gurations unless otherwise
mentioned.
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2.2.3.3 Simulation details:

We consider N = 4000 particles at the reduced density ρ = 1.2 and perform simula-
tions for a range of temperatures (T ∈ [0.25,0.4]) across the Kauzmann temperature
estimated in previous work to be (TK ≈ 0.3), shear rates (γ̇(0) ∈ [10−6,10−3]), and
strain amplitudes (γmax) up to 0.06. We perform conjugate gradient minimization on
the simulated (stroboscopic) con�gurations to obtain energy minimum con�gurations
(inherent structures). The initial con�gurations are generated by quenching high tem-
perature (T = 0.466) equilibrated liquid to the desired simulation temperature at one
step. 8 independent samples (a few cases 4) have been simulated. As all the studied
temperatures were pretty low, we have used 0.01 timestep throughout. The crystal-
lizing samples have been discarded following the same protocol mentioned earlier in
this chapter.

2.3 De�nitions

2.3.1 Contacts

In Chapter 3, we describe the study of jammed and unjammed soft sphere assemblies.
In the study of such sphere packings, the geometry of the packings is of primary in-
terest, and it is described by the contacts the particles have. We present a detailed
description of such contacts enumerated in di�erent ways.
Average contact number (Z): Z is de�ned as

Z =
C
N

(2.7)

whereC is the number of where C is the sum of the number of contacts of all particles,
and contact implies rij ≤ σij after energy minimization.
Average non-rattler contact number (ZNR): ZNR is de�ned as

ZNR =
CNR
NNR

(2.8)

whereNNR is the number of non-rattlers in the system (rattlers are particles with less
than D + 1 contacts, D being the dimension), and CNR is the sum of the number of
contacts of the non-rattler particles.
Average mechanical contact number (ZM ): ZM is de�ned as:

ZM =
CM
NM

(2.9)
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where CM is the sum of the number of mechanical contacts of NM particles, each of
which experiences �nite force or stress. A mechanical contact is identi�ed when the
overlap of a pair is greater than (10−10). NM is the number of particles that have �-
nite force or stress. ZM can take values as 6 (2D where D is the dimension) or zero,
depending on a jammed or unjammed phase respectively.
We have performed a geometric bootstrap method to count rattlers where we keep re-
moving rattlers and rede�ne the rattler count. This is required because once a rattler
is identi�ed and removed from the count, its neighbouring particles also experience
a reduction in contact counts. This way after an iterative process, only particles with
contact greater than D + 1 survives or we end up with 0 contacts. We have checked
an iterative count of ZNR matches well with ZM (see Fig. 2.3).

We have mentioned earlier the time to attain convergence and the quality of the
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Figure 2.3: ZM , calculated at a given packing fraction for a range of deformation am-
plitudes, has been compared with ZNR estimated iteratively or using the ‘bootstrap’
procedure for one sample density. They show complete agreement.

minima depends on the minimization method used. Though most of our simulations
have been done using the CG method, a few cases where the FIRE or the SD method
becomes more relevant to use. We will discuss a few things in this regard.
In the study of packings, an important measure is the cumulative distribution of con-
tacts Z(r). This is the cumulative probability distribution of contact numbers as a
function of distance(r) between particles. A plot of Z(r) vs r −σ , depicts the nature of
the packing beyond the overlap, ranging from proximity to very far away.
ust above isotropic jamming density (φJ ), we will show in Chapter 3 that the FIRE

minimization method �nds lower energy minima than CG.. At very high density CG
and FIRE work reasonably similar ways. But below φJ we can see a signi�cant dif-
ference in the generation of packings as we vary the minimization method.(see Fig.
2.4). In this low density regime CG (as well as FIRE) generally pushes the particles
much further away compared to SD. Ideally, in the soft sphere potential model, the
minimization should stop just as the distance (r) becomes equal to the diameter (σ )
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Figure 2.4: The cumulative distribution of contact numbers has been shown for a low
density packing where two di�erent kinds of minimization namely CG and SD have
been used. For SD, the plateau of Z(r) entends to much higher precision. A decrease
in strain step shows a gradual increase of plateau to lower values in the case of CG.
the vertical line shows the tolerance value used to de�ne contact at low density.

value. SD performs in a better way in this scenario as we can see the plateau value of
Z(r) vs r − σ extends to much higher precision compared to CG. For structural char-
acterization of low density packing, we have used the SD minimization method. we
discuss further details in this regard in the next chapter.

2.3.2 Mean squared displacement and cycle to cycle displace-
ment

We have measured di�usivity in various contexts in our work. Di�usivity D de�ned
as ∆r2(t) = 6Dt (for a three dimensional system) where ∆r2(t) is the mean squared
displacement. Mean squared displacement (MSD) is de�ned as:

4r2(t) =
1
N

N∑
i=1

|ri(t + to)− ri(to)|2 (2.10)

where ri(t) is the position of the ith particle at time t. In the case of study of cyclically
sheared con�gurations ri(t) can be replaced with ri(k) where ri(k) is the position at
zero strain of ith particle in cycle number k. MSD is averaged over time origin t0 or
equivalently reference cycles ko.
In this regard displacement between cycles of deformation is also an important quan-
tity and average displacement between cycles(∆r) is de�ned as the following:

4r(k,N ) =
1
N

N∑
i=1

ri(k +N )− ri(k) (2.11)
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N is the number of the interval of cycles. N is kept �xed (preferably 1) and the cycle
index k is varied. It gives an idea of how the average movement of particles within a
�xed time window evolves with time.
All these quantities have been calculated for strain zero or stroboscopic con�gurations
in the case of shear simulations.

2.3.3 Correlation functions

We have measured di�erent relevant correlation functions in the study of the glassy
system (Chapter 6). Here we describe the relevant details of the di�erent correlation
functions.
We introduce correlation functions that describe time, space, or frequency dependent
response in the system. A time correlation function between two quantities A and B
is generally de�ned as follows:

CAB(t′, t′′) =< A(t)B(t) >

< ... > implies equilibrium average. A and B being the same quantity it is called auto-
correlation function.
In the study of glassy dynamics, density correlation is widely studied. Local density is
de�ned as the following for a system comprising of N particles.

ρ(r, t) =
N∑
i=1

δ(r− ri(t)) (2.12)

• Overlap function: The dynamics in the glassy system is widely studied by the
time correlation function of the local density function, the overlap function(q(t)).

q(t) =
∫
drρ(r, t)ρ(r, t + t0) (2.13)

=
∑
i

∑
j

δ(rj(t0)− ri(t + t0))

q(t) can be divided into self part and distinct part:

q(t)s =
∑
i

δ(ri(t0)− ri(t + t0)) (2.14)

q(t)d =
∑
i

∑
i,j

δ(ri(t0)− rj(t + t0))

In simulation δ function is approximated by a window function w(x) described
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as below

q(t) =
∑
j

∑
i

w(|rj(t0)−ri(t+ t0)|) where w(x) =

1.0 if x ≤ a

0 otherwise.
(2.15)

The value of the overlap function depends on the choice of the cuto� parameter
a. This parameter is chosen in such a way that the particle positions separated
due to vibrational motion are treated as the same as a. It is chosen from the
plateau region on the MSD curve as shown in [173].

• Van Hove function: It is de�ned as the probability density of �nding a particle
i in the vicinity of r at time t given that the particle j was in the vicinity of origin
at time t = 0.

G(r, t) =
1
N
〈ρ(r, t)ρ(0,0)〉

=
1
N

〈∑
j

∑
i

δ(r− rj(t) + ri(0))
〉

using Eq. 2.12 (2.16)

G(r, t) has two parts as described below.

G(r, t) = Gs(r, t) +Gd(r, t) (2.17)

Gs(r, t) =
1
N

〈∑
i

δ(r− ri(t) + ri(0))
〉

Gd(r, t) =
1
N

〈∑
i

∑
j,i

δ(r− rj(t) + ri(0))
〉

• Intermediate scattering function: The Fourier transform of G(r, t) is called
the intermediate scattering function F(k, t) de�ned as the following.

F(k, t) =
∫
drG(r, t)exp(−ik.r) (2.18)

=
1
N
〈ρ(k, t)ρ(−k,0)〉

Where
ρ(k, t) =

∫
drρ(r, t)exp(−ik.r) (2.19)

F(k, t) can be also be divided into self part and distinct part :

F(k, t) = Fs(k, t) +Fd(k, t)
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Fs(k, t) =
∫
drGs(r, t)exp(−ik.r)

Fd(k, t) =
∫
drGd(r, t)exp(−ik.r) (2.20)

• Dynamical heterogeneity: Dynamical heterogeneity has been studied calcu-
lating the four point correlation function χ4, the standard deviation of the over-
lap function.

χ4(t) =
1
N

(
〈q(t)2〉 − 〈q(t)〉2

)
(2.21)

The quantity, χ4(t) can be written as an integral to a higher order, four point
correlation function g4(r, t) commonly used in the context of dynamical hetero-
geneity.

g4(r, t) =
1
N
〈ρ(0,0)ρ(0, t)ρ(r,0)ρ(r, t)〉 − 〈ρ(0,0)〉〈ρ(0, t)〉〈ρ(r,0)〉〈ρ(r, t)〉

χ4(t) =
∫
drg4(r, t) (2.22)

2.3.4 Structural quantities

Though in the study of glass transition, structural properties do not show signi�cant
changes a few quantities mentioned below are widely used in various structural stud-
ies.

• radial distribution function: The radial distribution function in a simple liq-
uid is de�ned as:

g(r) =
1
Nρ
〈
N∑
i

N∑
i,j

δ(r− ri + rj)〉 (2.23)

The de�nition of g(r) implies that on average the number of particles lying
within the range r to r + dr from a reference particle is 4πr2ρg(r)dr and the
peaks in g(r) represent shells of neighbours around the reference particle.

• Static structure factor: The static structure factor S(k) is de�ned as the fol-
lowing:

S(k) = 〈 1
N
ρkρ−k〉 (2.24)

The static structure factor and the radial distribution function is related by the
following relation:

S(k) = 1 + ρ
∫
g(r)exp(−ik.r)dr (2.25)
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In experiments the structure factor is determined from measurements of the
cross-section for scattering of neutrons or x-rays.

2.3.5 Con�gurational entropy

The con�gurational entropy (Sc) is calculated by subtracting the vibrational entropy
(Svib) associated with individual glasses (or basins of free/potential energy minima or
inherent structures) from the total entropy (S) of the liquid.

Sc = S − Svib (2.26)

2.3.5.1 Total entropy

The total entropy is computed from the Helmholtz free energy A, and subtracting
the internal energy from it. The Helmholtz free energy is obtained by performing
thermodynamic integration numerically from the ideal gas reference state at a high
temperature Tr , to the desired density, and and a thermodynamic integration at �xed
density to the desired low temperature, using the thermodynamic identities:

(
∂A
∂V

)
N,T

= −P (2.27)(
∂(A/T )
∂(1/T )

)
N,V

= U (2.28)

where U is the internal energy and P is the pressure. We choose a thermodynamic
path from zero density to the simulation density (ρ = 1.2, at Tr = 3.0 for Kob-Andersen
(KA) 80:20 binary mixture). Writing the total free energy A as a sum of the ideal and
excess parts, we have A(ρ,T ) = Aid(ρ,T ) +Aex(ρ,T ), with Aid(ρ,T ) = NT (3ln Λ+

ln ρ − 1), Λ = h√
2πT

. Though not strictly necessary, we use the numerical value of
the Planck’s constant h = 0.1858 using Argon units, in computing the numbers we
report. Thermodynamic integration is performed for the excess free energy, �rst with
respect to density:

Aex(ρ,Tr)−Aex(0,Tr) = NTr

∫ ρ

0
dρ

(
βrP

ρ2 −
1
ρ

)
(2.29)

where the reference excess free energy is

Aex(0,Tr) = −Tr ln
(

N !
NA!NB!

)
, (2.30)
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Figure 2.5: (a) Potential energy (at ρ = 1.2 for Kob-Andersen (KA) 80:20 binary mix-
ture) as a function of temperature, and (b) pressure as a function of density ρ at refer-
ence temperature (Tr = 3.0 Kob-Andersen (KA) 80:20 binary mixture). The potential
energies are well described by the Rosenfeld-Tarazona scaling of E = a + bT 3/5, but
we use a best �t exponent of 0.6088 in performing the thermodynamic integration.

and β = (kBT )−1. The pressures employed for the above numerical integration are
shown in Fig. 2.5. The thermodynamic integration to the desired temperature is then
performed by integrating the potential energy E.

Aex,T = T (βrAex(ρ,Tr) +
∫ β

βr

dβ
′
E(ρ,β

′
)) (2.31)

The potential energy, shown in Fig. 2.5, follows the Rozenfeld-Tarazona scaling (E =

a + bT 3/5) quite well, as noted before [174], but we use the best �t to the numerical
data with an exponent of 0.6088 for the numerical integration. The entropy is then
obtained from

S = −
[
A(ρ,T )
T

−
E(ρ,T )
T

− 3N
2

]
. (2.32)

2.3.5.2 Vibrational entropy (harmonic approximation)

The vibrational entropy is computed, in the harmonic approximation, by expanding
the energy around a local energy minimum of energy eIS as

E = eIS +
1
2

∑
ijαβ

∂2U
∂riα∂rjβ

δriαδrjβ , (2.33)

truncated at the second order. Diagonalizing the Hessian H , with

Hiαjβ =
∂2E

∂riα∂rjβ
(2.34)
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one obtains 3N − 3 non-zero eigen values λi (and 3 zero eigen values corresponding
to global translations), and the corresponding frequencies ωi =

√
λi . The vibrational

free energy (with energies measured with respect to the minumum values eIS ) can be
written as

βfvib =<
3N−3∑
i=1

ln(β~ωi)− lnz3
0 > (2.35)

where
z0 =

[
1
h

√
2π
β
V 1/3

]
(2.36)

corresponds to the 3 zero frequency modes. The vibrational entropy is obtained as

Svib = −
∂fvib
∂T

. (2.37)

2.3.5.3 Vibrational entropy (anharmonic correction)

In the harmonic approximation, the (vibrational) potential energy as a function of
temperature can be written as

Evib(T ) =< eIS > +
3N
2
kBT . (2.38)

Thus, if one considers the instantaneous potential energy and subtracts eIS where
eIS is the local energy minimum to which the instantaneous con�guration maps, the
di�erence should equal 3N

2 kBT . While this is found to be nearly the case for the KA-
BMLJ [175], there is a non-negligible anharmonic component. Thus, if one considers
the system to be thermalised within the basin of an inherent structure, one can write
the anharmonic component as

Eanh(T ) =< Evib(T )− eIS > −
3N
2
kBT . (2.39)

In order to compute the contribution of this anharmonicity, for inherent structures ob-
tained at a temperature Tp, one considers that Eanh(T ) has a temperature dependence
that can be expressed as [176]

Eanh(T ) =
nmax∑
n=2

cnT
n. (2.40)

The derivative of Eanh(T ) is the anharmonic component of the vibrational speci�c
heat, and therefore one has, with

Sanh(Tp) =
∫ Tp

T=0
dT

1
T

∂Eanh(T )
∂T

, (2.41)
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Sanh(Tp) =
nmax∑
n=2

n cn
(n− 1)

T n−1
p . (2.42)
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Chapter 3
Uni�ed phase diagram of
reversible-irreversible, jamming and
yielding transitions in cyclically sheared
soft sphere packings

3.1 Introduction

The response of disordered assemblies of particles to externally imposed stresses or
deformation is of importance in wide ranging investigations addressing transitions
between rigid and �owing states of soft matter systems, and characterizing the rigid
and �owing states. Questions in this regard pertain to the rheology of complex �u-
ids, in particular, dense particulate suspensions [177–181], jamming in granular mat-
ter [107, 109, 182–187] [108] and the mechanical behaviour, yielding and shear band-
ing in amorphous solids (from metallic glasses to yield stress soft materials) [95, 116,
119,124,125,127,188–192]. Investigations on these questions inform geophysical phe-
nomena such as earthquakes and landslides [193–195], material properties of metallic
glasses [196, 197], the control of rheological response of suspensions [198], origins
of irreversible behaviour [138, 139, 199, 200], and memory formation in a variety of
condensed matter systems [150, 151, 201–205], to name a few examples. A number of
experimental and computational investigations addressing such questions have em-
ployed the protocol of oscillatory or cyclic shear deformation, often in the athermal
limit, when thermal �uctuations do not play a signi�cant role.

At low densities, cyclically sheared colloidal suspensions (and models thereof) ex-
hibit a continuous transition from reversible behaviour (wherein particles return to the
same position at the end of each cycle) to irreversible behaviour [138, 139], with time
scales to reach steady states apparently diverging at the transition. At high densities,

51
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dense glasses exhibit a sharp, discontinuous yielding transition [95, 122, 124, 136, 200,
206], nevertheless with apparent divergence of times to reach the steady state. These
two regimes also display memory e�ects with signi�cant di�erences in behaviour
[150, 151, 204, 205]. At intermediate densities, where jamming behaviour has been

explored [102–104], mechanical measurements reveal interesting phenomena such as
softening and yielding [184, 207], which are not fully or well characterized. Thus, de-
pending on the density regime, one �nds transitions from reversible to irreversible
behaviour with varying characteristics.

Given the diversity of observed behaviours, it is of interest to comprehend the
relationship between these seemingly di�erent but related phenomena. Such a com-
prehensive understanding is hampered by the fact that these di�erent regimes have
been probed on physically very di�erent experimental systems (colloidal suspensions,
granular matter, molecular or atomic glasses), or di�erent computational models and
methods. It is thus desirable to interrogate all these phenomena in a single system
to establish the relationship between di�erent regimes of behaviour. In the present
work, we address this goal by studying the model system of athermal soft sphere as-
semblies, which have been used to model, depending on the density of the packings,
the behaviour of colloidal suspensions, granular matter and dense glasses. We study
the behaviour of a binary (50:50) mixture of soft spheres interacting through a har-
monic potential, subjected to athermal cyclic deformation of varying amplitudes over
a density range that encompasses all these regimes. By doing so, we observe reversible
to irreversible transitions at the high and low density regimes, analogous to previous
studies, but our results illuminate several new aspects not previously addressed. At
intermediate densities, we further observe a window in which cyclic shear deforma-
tion unjams initially jammed con�gurations. This window is sandwiched between a
reversible regime at low amplitudes and an irreversible regime at high amplitudes.
Interestingly, this unjamming window allows us to probe a phenomenon that hith-
erto has largely been addressed in the context of frictional granular packings, namely
shear jamming. Owing to the unjamming we obtain by cyclic shear deformation, we
can study shear jamming in a frictionless system. We present our �ndings below by
considering three distinct density regimes, and �nally, construct a uni�ed phase di-
agram that integrates all the observed regimes and transitions among them. Related
results in two dimensions are presented in [208].

3.2 Methods

We have subjected a binary (50:50) mixture of soft spheres interacting through a har-
monic potential to athermal quasistatic shear (see Chapter 2 for further details). Initial
con�gurations in the density range 0.54− 0.627 are obtained from hard sphere �uid
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con�gurations at φ = 0.363, subjected to fast compression using Monte Carlo sim-
ulations.The isotropic jamming density is estimated to be φJ = 0.648, following the
method in [103]. Con�gurations close to φJ (0.638 − 0.647 and 0.650 − 0.661) are
obtained by a single step decompression or compression of con�gurations at φJ , and
con�gurations well above φJ are obtained by multiple step compression of con�gura-
tions at φJ . Each compression or decompression step is followed by the energy mini-
mization (CG).The range of packing fraction for our study is [0.54−0.72]. The strain
amplitude range is [0.001−0.2] and [0.01−1.0] for above and below φJ respectively.
For φ = 0.56,0.54, γmax ranges from [0.1 − 8.0]. Approximately 1950 independent
simulations are used to construct the complete phase diagram. The number of inde-
pendent samples used in di�erent density ranges are - 10 for 0.661−0.72, 10−20 for
0.650−0.661, 4−10 for 0.638−0.648, 6−10 for 0.54−0.627, and 1−2 samples at
the lowest densities at high amplitudes.

3.3 Results

3.3.1 Reversible-irreversible and yielding transition well above
the isotropic jamming density

The soft sphere model system well above φJ has been studied and observed to behave
as a good glass former [162,209]. It has been shown previously that amorphous solids
under cyclic shear deformation yield at a well de�ned strain at which they undergo
(in the steady states reached after repeated cycles of strain, which we always focus
on unless otherwise stated) a transition from a reversible state (where particles return
to the same position after each cycle) to an irreversible, di�usive, state [95, 136, 200].
Therefore we identify the yield strain at which the slope of the mean squared dis-
placement (MSD) of particle positions measured stroboscopically changes from zero
(reversible or absorbing phase, A) to �nite values (irreversible or di�usive or yield-
ing phase Y) in a discontinuous fashion. The yield strain can also be identi�ed by
the non-monotonic, and discontinuous change in the steady state value of the poten-
tial energy (PE) [95, 134, 200]. In Fig. 3.1, we show the mean squared displacement
(MSD) for di�erent shear amplitudes at one high packing fraction, φ = 0.72, above
the jamming density φJ (the minimum value of φJ in this system is estimated to be
0.648). For small amplitudes, the MSD is negligible and non-increasing with cycles,
whereas above a strain amplitude of γmax = 0.075, it exhibits a linear increase with
accumulated strain γaccum = 4×γmax×Ncycles (Fig. 3.1). The di�usion coe�cients ob-
tained (treating γaccum as time variable), from MSD = 6Dγaccum, shown in the inset
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of Fig.3.1, display a discontinuous jump at γmax = 0.076, as observed in previous stud-
ies [124,134]. In Fig. 3.2(b), we show the steady state per particle potential energy (PE)
as a function of the strain amplitude, which shows a discontinuity at γmax = 0.075,
as seen previously for a binary Lennard-Jones glass [95, 134]. We identify the steady
state by monitoring PE as a function of γaccum. From these two characterizations,
we identify γy = 0.075 as the yield strain value. These results illustrate yielding be-
haviour observed over a range of densities at roughly a constant γmax ≈ 0.075, which
is consistent with the characterization of the yielding transition in previous work.
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Figure 3.1: Mean square displacement (MSD) as a function of γaccum, shown for dif-
ferent strain amplitudes. MSD shows a di�usive behavior above γmax = 0.075. Blue
and red vertical lines in the inset indicate the lower and upper transition strain ampli-
tudes when the transition is approached from the two di�erent phases. (Inset): Above
γmax = 0.075, the di�usion coe�cient (D) jumps from zero to a �nite value.

We identify the yield strain by two properties in this work. Firstly, the system achieves
the lowest potential energy when driven cyclically at γy . Secondly, the system be-
comes di�usive when driven with higher amplitude than γy . We show in Fig. 3.3 that
for a range of packing fractions (at the higher density limit), the system attains the
lowest energy at around γmax = 0.07. Attaining the steady state close to the transi-
tion to obtain reliable MSD is time consuming because of an apparent divergence of the
number of cycles required to reach steady states (as discussed at length in [95, 136]),
and we do not show those results here, but note that in all cases, we have ensured
that the states are di�usive above γmax = 0.07. We would mention one thing here:
we have shown most of the results of the dense regime using φ = 0.72 as a repre-
sentative packing fraction. A �ner grid of scanning of deformation amplitudes at this
packing fraction shows that the potential energy minimum occurs at γmax = 0.075

for φ = 0.72. For other packing fractions, as we have shown in Fig. 3.3, the potential
energy minimum occurs at around γmax = 0.07

We show next, the shear stress-strain plots within a cycle for a range of amplitudes for
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Figure 3.2: (a) The potential energy PE attains a minimum value at the yielding transi-
tion amplitude which is identi�ed as γy = 0.075 in our system. PE shows a discontin-
uous jump (red arrow) as the yielding point is crossed. (b) The steady state potential
energy (PE) value as a function of γmax is shown. The potential energy attains a min-
imum value at the yielding strain amplitude, indicated as γy = 0.075. At the yielding
strain, the potential energy shows a discontinuity.
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Figure 3.3: The γy , identi�ed from the potential energy minimum, is almost constant
over a range of packing fractions at the high density limit.

a given packing fraction (φ = 0.72) after the system has reached a steady state (see Fig.
3.4 (a)). We can see for amplitudes greater than 0.075 (γy a �nite area under the stress-
strain curve emerges, which signi�es the onset of dissipation, in other words, yielding
in the system. Yielding is identi�ed by a stress drop in the system under uniform shear.
In the cyclic shear scenario, we consider the stress at the maximum deformation (γmax)
which clearly shows a drop as the strain amplitude is increased beyond 0.07 (see Fig.
3.4 (b)). Therefore, the identi�cation of the yielding strain amplitude from the mechan-
ical response of the system matches with earlier characterisation described in the here.
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Figure 3.4: (a) The shear stress (σxz) within a cycle is shown for a range of amplitudes
after the system reaches a steady state. As the yielding strain amplitude (γy = 0.075
here) is crossed, a �nite area under stress-strain curve emerges signifying dissipation
in the system in the post yielding regime. (b) The steady state value of the shear stress
σxz at the strain γ = γmax is shown as a function of γmax. The shear stress passes
through a maximum as the yielding strain amplitude (γy = 0.075 for φ = 0.72) is
crossed and drops to a smaller value for higher strain amplitudes (starting from the
point at γmax = 0.078).

3.3.2 Unjamming and shear jamming just above the isotropic
jamming density

3.3.2.1 Unjamming
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Figure 3.5: The scaling behaviour of the energy (PE) and the excess contact number
(Z −Zc) of the initial jammed packings above the isotropic jamming point obeys the
scaling behaviour.

We next consider the density range just above the isotropic jamming density, φJ ,
estimated to be 0.648 using previously employed methods [102, 103] of compressing
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low density con�gurations. First, we show the scaling behaviour of the potential en-
ergy (PE) and excess contact number (Z−Zc,Zc is 6, the average contact numbers at the
isostatic condition) in Fig.3.5 of the con�gurations generated close to the isotropic jam-
ming density. The scaling exponents match the previously known results [102,103]. As
noted before, the jamming density is not unique [103, 104, 111, 189, 210], and jammed
packings just above φJ exhibit peculiar mechanical properties [102, 211]. We thus ex-
pect interesting responses to cyclic deformation in this regime. We observe that for a
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Figure 3.6: (a)-(c)The evolution of pressure,shear stress (σxz) and potential energy(PE)
for an unjamming con�guration with φ = 0.653, γmax = 0.03. (d) Potential energy as
a function of cycle, for a �xed amplitude across a range of densities. The number of
cycles required to unjam the system increases with the increase of density.

range of packing fractions close to φJ the system unjams for an intermediate range of
amplitudes, i.e., pressure and shear stress go to zero. It takes more cycles to unjam the
system as we move to higher densities(see Fig.3.6). In Fig. 3.7, we show how the stress
varies at di�erent strain steps within cycles. The cycle numbers are chosen to demon-
strate di�erent stages of the unjamming, ranging from transient to steady state. In the
further analysis of the unjamming region, we do not focus on transients or variations
through the cycle, (discussed in detail in [111, 210]) and analyse stroboscopic steady
state con�gurations unless otherwise indicated. In Fig. 3.8, we show the steady state
value of the stroboscopic average mechanical contact number ZM (de�ned in Chapter
2), and the shear stress in Fig. 3.8, for di�erent densities, as a function of strain am-
plitude. In Fig. 3.9, we show the steady state value of the average contact numbers
Z and ZNR, for di�erent densities. Details of the dependence of the contact numbers
on the minimization protocol are described in the Appendix. In Fig. 3.9, we show the
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Figure 3.7: The �rst column for all the rows shows the stress vs strain value for the
�rst half cycle of the deformation. The second column shows the stress vs strain value
for the next half cycle of the deformation for the �rst row and the negative of stress
vs strain value for the next half cycle of the deformation for the next two rows. The
last column shows the evolution of average contact number versus strain within a
cycle. The stress and contact number evolution within a cycle of an unjammed phase
(φJ = 0.653,γmax = 0.05)has been shown as the system gradually unjams. Figures in
the �rst row show that the shear stress initially stays �nite, and the average contact
number stays above 2D though it decreases gradually as more cycles are applied. For
intermediate cycles (second row), the stroboscopic con�gurations stay unjammed but
get jammed within a cycle when the strain is increased from zero to γmax ( or decreased
to −γmax. During the reversal of shear direction (from γmax or −γmax), stress and
contact number decrease and show a jump to zero and less than 2D value, respectively.
Finally, (third row) stress remains zero for all values of strain within a cycle, and the
average contact number always stays below 2D in the unjammed phase.

evolution of stroboscopic ZNR for φ = 0.653 and di�erent strain amplitudes, which
belongs to the unjamming region. We use this to identify steady state con�gurations.
We observe that for γmax = 0.001 and γmax > 0.12, the system in the jammed (�nite
stress) state and in the intermediate range of γmax the system is in the unjammed state.
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beyond which the system enters the yielded phase from an unjammed phase (blue and
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Figure 3.9: (a),(b) The steady state average contact number Z and contact number
calculated without rattlers ZNR are shown as a function of strain amplitude, for φJ ≤
φ < φ

cyc
J = 0.661. Z and ZNR drop to values below the isostatic contact value of 6.

The vertical green solid line indicates the absorbing and unjammed phase boundary.
The vertical dotted lines indicate the strain amplitude beyond which the system enters
the yielded phase from an unjammed phase (blue and green) or an absorbing phase
(red). (c) The evolution of ZNR with γaccum for φ = 0.653 is shown.

The shear stress jumps to zero when ZM (also Z , ZNR) goes below 2D(= 6), the iso-
static value for jamming in frictionless packings(see Appendix for further details). The
unjamming range of shear amplitudes is largest at φJ , and decreases with increas-
ing density, till it vanishes at φ = 0.661. At φ ≥ φJ , both for high amplitudes and
very low amplitudes, the system has a �nite value of stress. We identify the �nite
stress packings at low amplitudes as the absorbing phase, and at high amplitudes as
the yielded phase. We interpret the presence of an unjamming regime as a re�ection
of the jamming density moving to higher values upon cyclic deformation. Thus, we
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identify φ = 0.661 as the φcycJ or the cyclic jamming point, the highest jamming den-
sity obtained under athermal cyclic shear. The meaning of this limit jamming density,
the range in density and character of jammed con�gurations obtained from di�erent
protocols [103, 104, 111, 189], merits further comparative investigation. Our results
concerning unjamming are consistent with the observation of softening behaviour of
jammed solids close to φJ , for an intermediate range of strain amplitudes [207]. All
the di�erent measures of the average contact number also represent the potential en-
ergy behavior. This non-monotonicity of the contact numbers is comparable to the
variation of the potential energy shown earlier (Fig. 3.2(b)). However, in the density
regime of φJ < φ < φ

cyc
J , the strain amplitude at which the contact number starts in-

creasing after a minimum value, that amplitude depends on the packing fraction. This
is unlike the density-independent behaviour of the potential energy observed in the
high density regime (Fig. 3.3). This behaviour of the intermediate density regime is
described in the later part of the chapter where the phase diagram is described. The
system enters a yielded regime at a higher value of deformation as the density is de-
creased from φ

cyc
J to φJ .

In Fig. 3.10, we show the shear stress as a function of ZNR, for one sample per den-
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Figure 3.10: (a) Shear stress (σxy) vs the average contact number (ZNR), for strobo-
scopic con�gurations, shown for di�erent densities and strain amplitudes. Packings
in the range φJ ≤ φ < φ

cyc
J exhibit two distinct branches of �nite or zero stress. The

shear stress jumps to a �nite value at ZNR = 6.

sity and strain amplitude (in the same range as Fig. 3.9). Each point in the scatter plot
corresponds to all the stroboscopic con�gurations, from the initial con�guration up
to cycle numbers when the steady state is reached. For φ < φcycJ , Fig. 3.10 exhibits
two branches, one with close to zero stress and one with �nite stress when ZNR ≥ 6,
above the isostatic contact number. The re-entrant �nite stress regime with ZNR ≥ 6

at high strain amplitudes corresponds to shear jamming, explored in great detail for
frictional granular packings [107, 109, 187, 212–215], but also as a possibility in recent
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times for frictionless packings [111,185,189]. Our results open a novel route to gener-
ating unjammed packings above the isotropic jamming point φJ , which can shear jam
upon the application of shear. We note that a related approach to unjamming by cyclic
deformation was explored in [111] employing volume cycling (see [216]) for related
experimental results for frictional grains), leading to a range of jamming densities, fol-
lowed by shear deformation leading to shear jamming.
Since the shear jamming is analogous to and contiguous with the yielding transition at
higher densities, it is interesting to analyse their comparison further. To this end, we
show in Fig 3.11 the MSD in the steady state for a range of shear amplitudes spanning
the absorbing, unjamming and shear jamming regimes. The MSD shown correspond to
zero di�usivity for the absorbing (jammed) and the unjamming regimes (and therefore
does not distinguish these phases), but a �nite di�usivity in the shear jamming phase.
As shown in the inset of Fig 3.11(a) and Fig 3.11(b), the di�usivities display a discon-
tinuous jump upon entering the shear jamming regime, analogous to the irreversible,
yielded regime at higher densities (see Fig. 3.1), above φcycJ . Although di�usivity does
not distinguish the absorbing and unjammed regimes, they are distinguished by the
presence of zero vs. �nite stresses.
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Figure 3.11: (a) The MSD for the jammed (absorbing) and unjammed regimes ex-
hibit non-di�usive behaviour whereas the shear jamming regime exhibits di�usive
behaviour. The di�usion coe�cients (inset) show a discontinuity at the re-entrant
shear jamming transition.(b) The di�usivity changes discontinuously from unjammed
to yielded phase, in a similar fashion to the change of the contact numbers. The �lled
symbols represent di�usivity and the open symbols represent average mechanical con-
tact numbers.

3.3.2.2 shear jamming of the unjammed phase

Here we show the response of all the three phases subjected to uniform shear (see
Fig.3.12). The unjammed phase facilitates the study of frictionless shear jamming
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above φj , achieved by cyclic shear deformation. We now take these unjammed con-
�gurations and then subject them to uniform shear. We see that the system jams again
when subjected to uniform shear. We see a jump in stress for unjammed con�gura-
tions, trained at amplitude 0.07 at di�erent densities. As expected, the stress jump
occurs above a certain threshold value of strain (Fig. 3.13) greater than the training
amplitude strain value. As one moves further away from the isotropic jamming den-
sity, the distance between the training amplitude and the strain value at which the
system jams decreases. Detailed analysis of shear jamming for this unjammed phase
has been carried out by Babu et al. [112].
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Figure 3.12: Uniform shear has been applied to the initial con�gurations, con�gu-
rations obtained by training them with the mentioned amplitudes, corresponding to
jammed phase, unjammed phase, and yielded phase. Uniform shear stress vs strain
plot has been shown for φ = 0.653.
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Figure 3.13: The unjammed con�gurations attained through cyclic shearing by a par-
ticular strain amplitude (γmax = 0.07 shown here) have been subjected to uniform
shear. The shear stress jumps beyond a particular threshold value. The jump occurs
at a lower value of strain as we move further away from the isotropic jamming den-
sity. Di�erent colours correspond to di�erent samples. Five samples for each packing
fraction have been shown. (For φ = 0.658, it requires an excessive number of cycles
to attain unjamming at γ = γmax, Only one such con�guration could be shown here.)
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3.3.2.3 Structural analysis of the unjammed phase

We have analysed the partial radial distribution functions g(r)ij (where i, j are particle
type indices) of the system in the unjammed (U) phase and compared them with the
absorbing phase (A), the yielded phase (Y), and the jammed structures (see Fig. 3.14)
we obtain by compression, before shear is applied. The radial distribution does not
show any signature of a long range order or signi�cant di�erences from the other
two cases (A and Y) observed above isotropic jamming density or the initial isotropic
jammed structures. We have also computed and analysed the evolution of the global
orientational order parameter Q6 to detect any global order present. The global Q6

value of the unjammed phase does not change with γaccum (apart from the scatter), and
the average steady state value remains close to the value of the initial isotropic jammed
structures (see Fig. 3.15). From these analyses, we can conclude that the unjammed
phase (or the A and Y cases) does not show any indication of crystallization. We have

1 2 3 4
r

10
-1

10
0

10
1

10
2

g
(r

) 1
1

U
A
Y
intial (iso) jammed structure

φ = 0.653

1 2 3 4
r

10
-1

10
0

10
1

10
2

g
(r

) 2
2

 U
A
Y
intial (iso)  jammed stucture

φ = 0.653

1 2 3 4
r

10
-1

10
0

10
1

10
2

g
(r

) 1
2

U
A
Y
intial (iso) jammed structure

φ = 0.653

Figure 3.14: Partial radial distribution functions (g(r)) of the unjammed(U) phase are
shown in comparison with the absorbing phase (A), the yielded phase (Y) and the initial
isotropic jammed phase. The unjammed phase does not show any signature of long
range order or any signi�cant di�erences from other cases.
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Figure 3.15: The global orientational order parameterQ6 of the di�erent initial isotrop-
ically jammed structures has been shown as red dots at cycle number zero. The hor-
izontal red line indicates the average of Q6 of the initial isotropically jammed struc-
tures. The scatter plot shows the evolution of the Q6 in the steady state unjammed
phase. Di�erent symbols correspond to independent runs from di�erent initial con-
�gurations.

also shown the partial radial distribution function near the contacts (see Fig. 3.16).
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The overlap distribution (see Fig. 3.17) for the initial jammed and �nal unjammed
con�gurations. The distribution signi�cantly changes once the system unjams from
the initial jammed con�guration and, after that, does not show signi�cant changes
over the cycles of deformation.
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Figure 3.16: Evolution of g(r) near contact as a function of cycle number, as the system
unjams, for type 1 pairs (a), type 2 pairs (b), and type 1 and 2 pairs (c).
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Figure 3.17: Overlap distribution for the initial jammed con�guration and overlap dis-
tribution for the unjammed con�gurations have been shown

3.3.3 Reversible-irreversible transitions below the isotropic jam-
ming density

We next study cyclically sheared sphere assemblies below φJ , which show more com-
plex behaviour in the reversible regime [199] than initially analysed for colloidal sus-
pensions [138, 139]. Schreck et al. [199] showed that for such packings, two kinds of
reversible states are present, referred to as point reversible states (PR) and loop re-
versible states (LR). In PR states, particles self organize during the initial cycles of
strain so that they do not collide with each other. In the LR state, particle continue to
collide in the steady state, but return to their original positions at the end of each cycle.
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Figure 3.18: (a) MSD as a function of accumulated strain, shown at φ = 0.627 for
di�erent amplitudes. We show a discontinuous jump in di�usivity as a function of
strain amplitude. (b) Plot of the non-a�ne path length L and the percentage of new
collisions Cnew, which clearly di�erentiate all the di�erent phases at all densities. PR:
Point reversible; LR: Loop reversible; IR: Irreversible; Y: Yielded phase; U: Unjammed
phase; A: Absorbing phase.

For packings belowφJ , potential energies and stresses are always zero. Thus, we char-
acterise the trajectories of particles in the steady state in various ways to distinguish
di�erent phases and transitions. In addition to the MSD, we compute the non-a�ne
path length (L) (the length of the path traversed by particles in excess of a�ne dis-
placements due to global shear strain), and the percentage of new collisions (Cnew) in
a given cycle, compared to a reference cycle in the steady state. We will mention here
the precise de�nitions of these two quatities.
Non-a�ne path length (L): The non-a�ne path length is the average of the magnitude
of non-a�ne displacement per particle within a cycle [199].

L2(k) =N−1
∑
i

{
∑
n

[(Xik,n+1 −X
i
k,n)2 + (Y ik,n+1 −Y

i
k,n)2

+ (Z ik,n+1 −Z
i
k,n)2]

1
2 }2 (3.1)

where k is cycle, n is strain step, Xik,n = xik,n − γnzk,n, Y ik,n = yik,n and Z ik,n = zik,n.The
Non-a�ne pathlength is an indicator of collisions happening in the system. After the
coordinates of particles are a�nely transformed if overlaps are created, the minimiza-
tion method displaces the particles to attain an energy minimized con�guration. This
gives rise to non-a�ne displacement in the system. L(k) is an average measure of such
displacement at kth cycle.
Percentage of new collisions (Cnew): We compute the number of collisions that take
place during a given cycle by number of pairs of particles that overlap (rij < σij when a
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stain step is applied, and before energy minimization.). Considering a reference cycle
m in the steady state, we compute the number of collisions C(m + k) at a later cycle
m+ k. The number of such collisions which also occurred in the m cycle is de�ned as
Cm(m+k). The percentage of new collisions for the kth cycle (we typically use k ≥ 10)
after the reference cycle m is thus:

Cnew(k) = (1− Cm(m+ k)
C(m+ k)

)× 100 (3.2)

As we will see when particles collide they can self organize to a reversible state or can
reach an irreversible di�usive state. This quantity is used to distinguish the nature of
collisions that leads to this two di�erent behaviour.
Here we will mention that because of the �nite precision of the minimization, we �nd
overlaps close to the machine precision even in the PR phase, where particles are not
supposed to have overlaps. To compute the collisions that take place, we, therefore,
impose a cut-o� of 10−10 for the overlaps (rij ≤ σij) arising between particles after
the a�ne strain step but before minimization resulting in the �nal con�guration.
First, we characterize the phases in terms of mean squared displacement. As shown
in Fig. 3.18, the MSD saturates for small amplitudes and shows di�usive behaviour
at higher amplitudes, identi�ed as the irreversible phase (IR). The di�usion coe�cient
shows a discontinuity (inset of Fig. 3.18) in a manner analogous to the shear jamming
and yielding transitions. Although the discontinuity is weaker, analysis supports the
conclusion that the transition is discontinuous. MSD fails to identify the transition
from the point reversible to the loop reversible state. However, the non-a�ne path
length L does. L is negligible for point reversible states whereas it is �nite for loop
reversible states (see Figure. 3.19). The number of new collisions Cnew further dis-
tinguishes the reversible states from the irreversible states, being zero for reversible
states and �nite for irreversible states (see Fig. 3.19). As shown in Fig. 3.18, the com-
bination of L and Cnew helps organize all the regimes we observe across densities
into three groups: (i) vanishing L, Cnew (point reversible), (ii) �nite L, vanishing Cnew
(loop reversible, unjamming and absorbing states), and (iii) �nite L and �nite Cnew
(irreversible, shear jammed and yielded states).
We compute the non-a�ne path length, collisions, percentage of new collisions (Cnew)
and fraction of active particles to characterise di�erent phases and to identify the tran-
sitions. For the point reversible states (PR), particles trace the same path in a cycle (as
there are no collisions ) and hence L and Cnew is zero. For the loop reversible states
(LR), collisions occur in a cycle, and hence the non-a�ne path length is �nite. Also, in
the loop reversible states, even though collisions occur, they occur between the same
pairs and hence Cnew = 0, see Fig. 3.19. Only in the di�usive region, irreversible states
(IR), Cnew is �nite. In Fig. 3.19, we show L and Cnew as a function of γaccum, which we
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have used to identify the steady state con�gurations. When a particle at least collides
once within a cycle during the a�ne transformation, in its steady state, we identify
such a particle as an active particle. Even though the number of collisions shows a
strain dependent increase (see Fig. 3.19) beyond PR phase, almost all the particles seem
to collide at least once in a cycle in LR or IR phase (Fig. 3.19). We compute the colli-
sion number within one cycle, in the steady state, for di�erent γmax and we count an
overlapping pair only once in a cycle. As mentioned in the previous work [199] cycle
to cycle displacement ∆r (see Chapter 2) has also been measured. They show char-
acteristic features in di�erent reversible-irreversible regimes as shown in Fig.3.20. To
summarise the behaviour of all the quantities mentioned, the PR to LR transition is
identi�ed by the discontinuous jump in L, number of collisions and fraction of active
particles whereas the LR to IR transition is captured through the discontinuous in-
crease of Cnew. Surprisingly, the number of collisions, and the fraction of particles un-
dergoing collisions, change discontinuously at the PR-LR transition, at variance with
expectations based on previous work [138, 139, 217], where continuous changes with
respect to deformation amplitude have been reported.



3.3 Results 69

10
2

10
3

10
4

Cycle

10
-12

10
-8

10
-4

L

PR (γ
max

 = 0.02)

10
2

10
3

10
4

0.27

0.3

0.33
L

LR (γ
max

 = 0.17)

10
1

10
2

10
3

1.0

2.0

3.0

L

IR (γ
max

 = 0.4)
φ = 0.627

(a)

0 0.1 0.2 0.3 0.4 0.5
γ

max

10
-8

10
0

L

LR

IR

φ = 0.627

PR

(b)

10
0

10
1

10
2

Cycle

0

20

40

60

80

100

C
n
e
w

PR (γ
max

 = 0.02)

LR (γ
max

 = 0.17)

IR (γ
max

 = 0.4)

φ = 0.627

(c)

0 0.1 0.2 0.3 0.4 0.5
γ

max

0

20

40

60

80

100

C
n

e
w
(k

)

 k
∞

k = 25 
k = 10
k = 5
k= 1

LR IRPR

φ = 0.627

(d)

0 0.1 0.2 0.3 0.4 0.5
γ

max

0

5000

10000

15000

C
o

ll
is

io
n

s

PR

LR

IR

φ = 0.627

(e)

0 0.1 0.2 0.3 0.4 0.5
γ

max

0

0.2

0.4

0.6

0.8

1

f a
c
ti

v
e

PR

LR
IR

φ = 0.627
(f)

Figure 3.19: (a) Steady states are achieved as the non-a�ne path length reaches a
steady state. (b) The non-a�ne path length captures the transition from point re-
versible phase to loop reversible and irreversible states. (c) Cnew as a function of
γaccum, shown for φ = 0.627 for all three phases. For PR and LR, Cnew = 0 in the
steady state and �nite only for the IR state. (d) Percentage of new collisions di�eren-
tiates point and loop reversible states from the irreversible state. (e) Total number of
collisions, within a cycle, have been shown as a function strain amplitude, exhibiting a
discontinuous jump across PR-LR boundary and shows a strain amplitude dependent
increase across LR and IR phase. (f) Fraction of active particles captures PR-LR tran-
sition through a discontinuous jump from 0 (in the PR phase) to almost 1 (in the LR
phase).
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Figure 3.20: Cycle to cycle displacement ∆r has been shown as a function of γaccum in
point reversible(PR), loop reversible (LR), and irreversible (IR) states. Here displace-
ment has been measured at an interval of �ve cycles.

The time taken to reach steady state (measured through the decay of L, shows non-
monotonic change across both the PR-LR and LR-IR transitions (see Fig. 3.21), consis-
tently with previous results near reversible-irreversible transitions [95, 136, 138, 139].
L captures the slow down of relaxation to the steady state near the PR - LR and LR
- IR transitions. Keeping in mind that the accumulated strain γaccum would translate
to a time at a constant rate of strain, we characterise the rate of relaxation by a time
scale τ (more appropriately a strain scale.) The time scale (τ ) has been extracted from
the relaxation of L as the system approaches a steady state with increasing γaccum.
The point reversible phase exhibits exponential decay of (L(γaccum) which we use
to evaluate a relaxation time scale, whereas the loop reversible phase shows more
complex behavior and in the irreversible phase L reaches the statistically stationary
regime very rapidly. Since our purpose is only to illustrate the non-monotonic de-
pendence (on γmax) of the relaxation to the steady state, we employ (for LR and IR)
a simple procedure of evaluating the value of γaccum at which the di�erence between
the initial and �nal values of L(t) decreases to 1/e of its initial value. i. e. writing
L(γaccum) = (L(0)−L(∞))f (γaccum/τ)+L(∞), where f (x) is a function that decreases
from 1 to 0, we �nd the time at which (L(γaccum) − L(∞)) = (1/e) × (L(0) − L(∞)).
We see an initial increase of τ as we approach PR-LR boundary (see Fig 3.21) and we
see a similar increase in time scale across the LR-IR boundary after an intermediate
decrease of τ in the middle region of the LR phase. This behaviour indicates the ex-
istence of two di�erent transitions at the upper and lower limit of the loop reversible
phase. The results shown do not permit us to conclude that the time scales diverge at
the transitions, and a more careful analysis close to the transitions is required to make
any de�nite statements in this regard.
Among the phases we identify, the low density phase that we identify as loop reversible
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(LR), the unjammed phase (U), and the absorbing phase (A), all share the property of
undergoing non-a�ne displacements due to collisions (or more generally interactions)
with other particles, but in such a fashion that they return to the same position at the
end of each cycle. We illustrate this feature for the LR, U and A phases Fig. 3.22, in
which the Y component of the position of a sample particle is shown after the system
has reached the steady state. The displacements along the Y direction are purely non-
a�ne as our shear plane is the XZ plane. In the steady state, particles converge to
trajectories which, despite collisions/interactions during the cycle, form closed loops.
AboveφJ , loop reversibility is accompanied by transitions of the system between local
energy minima, the sequence of which remain the same cycle after cycle, and which
bring all particles in the system to the same positions at the end of the cycle [151], as
illustrated in Fig. 3.22. This picture has been studied using a formulation in terms of
directed graphs, to understand memory e�ects in cyclically sheared glasses [218].

We have looked at the general behaviour of the di�usivity across the packing fraction
and amplitude axis. We have performed additional simulations close to the transition
points. We show below the di�usivity(D) vs γmax plots for three di�erent regimes of
packing fraction respectively below φJ , above φJ but below φ

cyc
J and above φcycJ , see

Fig. 3.23. We also show D vs (γmax −γc) plots where γC is the irreversible transition
amplitude. We have shown a range of transition amplitudes as the possible location of
the transition, chosen to lie between two adjacent simulated γmax values across which
the transition occurs. All three regimes show a similar nature of the di�usivity close
to the transition. In a log-log plot of D vs. (γmax−γc), a power law will appear to be a
straight line, whereas a �nite value of D on one side of the transition will correspond
to a plateauing in a log-log plot, see Fig. 3.24. The plateauing nature of the di�usivity
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Figure 3.22: (a) We show the evolution of the Y coordinate of a particle in the loop
reversible phase (LR), at φ = 0.54,γmax = 0.4. The black dashed line shows the tra-
jectory of the particle (a). The particle comes back to the same position after one
cycle of deformation. The initial and the �nal coordinates are highlighted by black
and red symbols. We show the Y coordinate of a particle in the unjammed phase (b),
at φ = 0.648,γmax = 0.01. We show the Y coordinate of a particle (c) and We show
the energy (d) of the system after subtracting a harmonic �t curve (to highlight the
basin changes, see [151]), ∆E, in the absorbing phase, at φ = 0.72,γmax = 0.05.

close to the transition indicates the discontinuous nature of the transition, and we see
that in all three density regimes, this is indeed the case.

Of the three regimes we show, data for the density φ = 0.627 appear the least clear.
We can indeed �t the data to a power law form with a γc ∼ 0.384, but with an expo-
nent β ∼ 0.41 which is smaller than those reported in literature, of β = 0.67 (barring
the ROM model results reported by Corte et al (which report a value of β = 0.45).
However, our simulations at γmax = 0.39 show that the system reaches a loop re-
versible absorbing state, and therefore the transition amplitude γc needs to be equal
to or greater than γc = 0.39. Data shown for assumed γc values above 0.39 show the
same kind of deviations in a log-log plot of D vs. γmax − γc, albeit weaker. Thus, we
conclude that, to the best of our ability to judge, the transition is discontinuous inD at
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φ = 0.627 as at higher densities. Close to the transition, the systems show interesting
bi-stable behaviour which further support the idea of a discontinuous transition, but
a discussion of it will both require additional work.
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Figure 3.23: The di�usivity as a function of strain amplitude is shown with a denser
set (than the previous version of the MS) of data points near the transition in the three
regimes, φ < φJ , φJ < φ < φ

cyc
J and φ > φcycJ in both log and linear scale.
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Figure 3.24: Log-log plot (upper panel) and linear-log plot (lower panel ) of the di�u-
sivity as a function γmax − γusedc for φ = 0.627, φ = 0.653, and φ = 0.72. We use
di�erent values for γc to illustrate the dependence of di�usivity curves on the value
of critical strain amplitude. For φ = 0.627, when using γc values above 0.39, we do
not show points which lie below the chosen γc values.

The reversible-irreversible transition line for packings above φJ corresponds to the
yielding (aboveφcycJ = 0.661) and shear jamming transitions (φJ (0.648) < φ < φcycJ (0.661)).
BelowφJ no such obvious correspondence can be drawn. There are recent studies sug-
gesting the possibility of connecting the reversible-irreversible transition line to the
shear jamming transition in frictional packings [109, 110, 212, 213]. We have shown
that packings below φj also show a reversible-irreversible transition under cyclic de-
formation and this transition amplitude increases rapidly with a decrease in density.
We have studied shear jamming in cyclically sheared frictionless packings below φj
adding friction to the system. We present some initial �ndings of the possible corre-
spondence of the cyclic shear jamming and LR-LR transition line. The details of the
enumeration of the contact numbers in this regime are described in the Appendix.
Experiments performed on photoelastic discs showed that the application of shear de-
formation could lead to jamming for a range of densities even below RCP or φj [107].
Previous studies of monodisperse frictionless spheres under shear deformation below
RCP [110, 187, 219] have been shown that shear alone can generate structures that
resemble jammed packings even below RCP and that these structures can support
jamming in the presence of friction [110, 187]. The geometric criterion on the con-
tact number Z for shear jamming is Z =D + 1, where D is the spatial dimensionality.
This condition is independent of friction coe�cient, spatial dimensions, and jamming
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protocols [219]. Here, we subject the low density packings to uniform shear defor-
mation and then generate contact networks or structures that support jamming in the
presence of friction, see Fig. 3.25. In Fig. 3.25, we show Z as a function of strain, for
di�erent densities, under uniform shear deformation. We take these sheared packings
at di�erent strain values and obtain contact forces in the presence of friction by solv-
ing for the force, and the torque balance conditions [219]. We compute force balance
solutions for these contact networks in the limit of in�nite friction. The strain value
at which stress shows a discontinuous jump is identi�ed as the shear jamming strain,
see Fig. 3.25(b). When the Z = D + 1 condition is reached, stress shows a discontin-
uous jump for all densities. Therefore, Z = D + 1 is the geometric criterion for shear
jamming. Note that the Z value reachesD+1(= 4) in steady state for φ = 0.56. So we
identify φ = 0.56 as the lower limit for shear jamming in the case of uniform shear.
Next we attempt to identify the shear jamming strain amplitude for cyclically sheared
con�gurations belowφj . In Fig. 3.25, we show the steady stateZ as a function of defor-
mation amplitude for di�erent densities. We de�ne contacts using a tolerance value
from the plateau of Z(r) curves for di�erent amplitudes and densities. We take the
steady state con�gurations and then obtain force solutions using the protocol men-
tioned in [219]. We further show that for the amplitudes, where stroboscopically
Z = D + 1, the system can support stress. Unlike uniform shear, we could did not
observe shear jamming at and below φ = 0.58. In Fig. 3.25, we show the shear jam-
ming curve and Z = D + 1 for both uniform and cyclically shear deformed packings.
Interestingly we notice that similar to shifting of the isotropic jamming point under
cyclic shear, we can also shift the shear jamming line to higher strain values under
cyclic shear compared to uniform shear cases. We observe a correspondence between
LR-IR line and shear jamming line below φJ . Though any �rm statement requires
further investigation.



76 Chapter 3.

0 0.1 0.2 0.3 0.4 0.5
γ

0

1

2

3

4

5

6

Z

0.54
0.56
0.58
0.61
0.627

φ

Uniform shear(a)

0 0.1 0.2 0.3 0.4 0.5
γ

10
-8

10
-6

10
-4

10
-2

10
0

σ
x
z

0.56
0.58
0.61
0.627

φ

BCM

(b)

0 1 2
γ

max

0

1

2

3

4

5

6

Z
ss

0.56
0.58
0.61
0.627
0.638
0.647

φ

Cyclic shear

(c)

0 0.5 1 1.5
γ

max

10
-12

10
-9

10
-6

10
-3

σ
x
z 0.58

0.61
0.627
0.638
0.647

φ

BCM

(d)

0.56 0.58 0.6 0.62 0.64

φ

0

0.5

1

1.5

γ c

Z = 4 (uniform)

SJ (uniform)

Z > = 4 (cyclic)

Irreversible (cyclic)

SJ (cyclic)

φ
J
 = 0.648(e)

0.58 0.6 0.62 0.64
φ

4

4.5

5

5.5

6

Z
as

y
m

p
to

ti
c

φ< φ
J = 0.648 (f)

Figure 3.25: (a) Evolution ofZ as a function of strain under uniform shear deformation,
shown for di�erent densities. (b) Shear stress shows a jump at a strain value where Z
reaches 4(D+1). The strain value corresponding to discontinuity is the shear jamming
strain is shown. Forces are obtained for sheared packings in the presence of tangential
forces (or friction) and in the limit of in�nite friction. (c) Evolution of Zss as a function
of cyclic shear amplitude, shown for di�erent densities. (d) Shear stress shows a jump
at a strain value where Z reaches 4(D+1) in the cyclic shearing case. (e) The jamming
phase diagram is obtained. We observe that under cyclic shear deformation, the shear
jamming line shifts to higher strain values. Also, an irreversible phase emerges as the
system produces a jammed like structure. (f) The Zasymptotic value of Z as a function
of packing fraction
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Figure 3.26: Average stroboscopic steady state value of the potential energies shown
as a function of φ, for four di�erent γmax (a). At these γmax values, potential energy
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on γmax. For small γmax, the jump occurs at the transition from the unjamming to
absorbing or shear jamming states, whereas at larger γmax, it occurs at φJ . (b)The
horizontal lines in (b) indicate the strain amplitude at which PE energy shown in (a)
are monitored across the density axis.

3.3.4 Phase diagram

Although all the analysis apparently o�ers a tidy grouping of all observed regimes
into three types, one may ask if no further boundaries and transitions separate them
further. There is indeed such a separation, in the form of zero or �nite energies and
stresses. These quantities separate states belowφJ and those above, but with a curious
exception, illustrated in Fig. 3.26. Moving from low to high densities at intermediate
strain amplitudes at which the unjamming phase exists, energies do not become �nite
at φJ but at higher densities (φ > φ

cyc
J ) that correspond to the transition from the

unjamming phase to the absorbing phase, or the shear jamming phase. For strain
amplitudes larger than the shear jamming value at φJ , the jump to �nite energies
occurs at φJ . Thus, the unjamming phase forms a curious zero energy and stress
pocket in a �nite energy regime for densities φ ≥ φJ .We show the contact number
variation across the density (see Fig.3.27) along the irreversible transition line and
correspondingly the shear stress.

The global phase diagram that emerges, shown in di�erent density regimes in Fig.
3.28 (a) - (c) and in its entirety in 3.28 (d), has the point reversible phase at low densities
and strain amplitudes, that terminates at the isotropic jamming density φJ . Starting
with the loop reversible states belowφJ that lie at larger strains, moving to larger den-
sities, one has a sequence of loop reversible states in the form of the unjammed phase,
and the absorbing phase. At all densities, at still higher strain amplitudes, one sees a



78 Chapter 3.

0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72

φ

3

4

5

6

7

8

9

Z
φ 

J

(a)

0.64 0.66 0.68 0.7 0.72
φ

10
-16

10
-12

10
-8

10
-4

10
0

σ
x
z

φ
J

(b)

Figure 3.27: contact number Z (a) and shear stress (b) σxz has been shown across the
irreversible transition line.

transition to the irreversible states. Interestingly, at all densities, the transition to the
irreversible phase is characterized by a discontinuous jump in di�usion coe�cients,
which has in the past been shown to characterize the yielding transition in glasses un-
der cyclic shear [124, 134]. The new remarkable observation is that all the transitions
we analyse are associated with discontinuous changes in characterisations of trajec-
tories (except the absorbing to unjammed states, characterised instead by a jump in
contact number). The presence of loop reversible states at all densities is another gen-
eral feature that is revealed by our results. Whether these special states are robust in
the presence of thermal and other forms of noise remains to be investigated, but they
are a common feature of athermally driven systems. Following recent work [151,218],
analyzing memory e�ects in the the di�erent reversible regimes in light of the be-
haviour outlined in this work is of great interest. Although the unjamming phase is
closely associated with the presence of a line of jamming points along the density axis,
the isotropic jamming density (or minimum jamming density) φJ emerges as a non-
trivial threshold density. Point reversible states are con�ned to densities below this
value, and energies and stresses become �nite in the irreversible phase beyond this
density. As noted however, energies and stresses remain zero above this density in the
unjamming pocket, the origins of which merit further investigation.

3.4 Summary and conclusions

In summary, we have studied the reversible-irreversible transition below, close to and
above the jamming density φJ . We have characterised di�erent phases across the
isotropic jamming density in detail by studying di�erent microscopic quantities like
the mean squared displacement, percentage of new collisions, non-a�ne path length,
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stress, potential energy, and contact numbers. For high density jammed packings,
the reversible-irreversible transition corresponds to the yielding transition. We have
con�rmed the presence of an unjamming region close to but above φJ . We identi-
�ed φcycJ = 0.661 as the cyclic shear jamming density, above which the soft sphere
packings behave like an elastic amorphous solid. Below φJ , two di�erent forms of
reversible phases are present, namely, point and loop reversible. We showed that the
non-a�ne path length and percentage of new collisions clearly distinguish reversible
phases and irreversible phases for the whole range of densities. The transition to ir-
reversible behavior is always characterised by the onset of di�usive behaviour of the
particles at all densities. All transitions are characterised by discontinuous changes in
relevant quantities.

Our work o�ers a comprehensive view of the response of particle assemblies to
cyclic deformation, and is of relevance to a wide range of problems concerning the
behaviour of driven amorphous particle assemblies. There are many other obvious
directions in which our work can be extended, and we close by a brief discussion of
some such directions. Despite much work, the origin of irreversible behaviour, in par-
ticular as a transition from periodic to chaotic states [203, 220] remains incompletely
elucidated. Our work has focused exclusively on frictionless sphere packings, but the
role of friction in shear jamming is well appreciated and therefore understanding the
implications of results for frictionless packings to the frictional case and extending
the analysis here to the frictional case is of obvious importance. Some progress in that
direction has been recently made [109,110,213]. The other direction for further inves-
tigation is the role of thermal and other forms of noise on the behaviour revealed by
our study. The observation of unjamming opens the exciting possibility of systemati-
cally studying shear jamming and the related phenomenon of dilatancy in frictionless
systems, and the possibility of a uni�ed understanding of frictionless and frictional
shear jamming.



Chapter 4
Annealing glasses by cyclic shear
deformation

4.1 Introduction

The hallmark of glassy behaviour is the enormous slow down of dynamics upon de-
creasing temperature as the glass transition is approached. In studies of glass forming
liquids through experiments and in computer simulations, such a slow down means
that the observed glass transition is always a kinetic phenomenon whereby the liquid
falls out of equilibrium in a protocol dependent fashion. Importantly, because glass
formers fall out of equilibrium too far away from a putative ideal glass transition,
de�nitive validation or refutation of proposed explanations for glassy behaviour be-
comes di�cult [51,67,68,79,221]. A telling example is the growth of length scales that
are considered to be associated with the approach to the glass transition. Whereas
such length scales are expected to diverge at the glass transition, their growth in the
observed range of temperatures is modest, varying by less than an order of magni-
tude [51]. Thus, extending the range of states that can be analysed is of great impor-
tance in developing a better understanding of the behaviour of glass forming systems.
The reasons for the di�culty in accessing low temperature states is often expressed
in terms of the complex energy landscape possessed by glassy systems [12, 77], and
going beyond glass formers, the “rugged energy landscape” problem is of relevance to
a wide variety of physical systems and contexts.

Recent years have witnessed encouraging progress in addressing the problem of
preparing and simulating glass formers and glasses in well annealed, low tempera-
ture (or high density) states. Seminal work by Ediger et al. opened new directions in
experiments and simulations in generating deeper energy states in an e�cient man-
ner [80, 221]. It has been shown experimentally that through physical vapour depo-
sition (PVD) of particles on a substrate, maintained at an optimal temperature (15 %

81
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below Tg ), glasses that correspond to much lower temperatures compared to conven-
tional methods can be prepared [80, 221]. Enthalpic measurements suggest that the
PVD technique results in much lower enthalpy and higher density glasses, termed ul-
trastable glasses, compared to conventional approaches [80,221]. In computer simula-
tions, time scales accessible to conventional molecular dynamics and Monte Carlo sim-
ulations are many orders of magnitude shorter than in experiments. Some approaches
using non-local moves and other methods have been attempted [88,89, 222–226] with
varying degrees of success. The experimental PVD method has motivated the corre-
sponding method in silico to generate extremely well annealed glass �lms [81,86,227],
by optimizing deposition rates and substrate temperature. A limitation of this ap-
proach, however, is that it is restricted to the speci�c geometry required, namely that
of a �lm, and the glasses prepared via PVD are inhomogeneous, i.e., the bulk density
di�ers from that of the surface [86]. In simulations of polymeric glasses, the stability is
correlated with the high degree of anisotropy, appearing from the layering of polymer
along the normal direction to the substrate [94]. More recently, the swap Monte Carlo
method [88–91,224,228], in which non-local swaps of distinguishable particles are em-
ployed to achieve accelerated sampling of con�guration space, have been employed
with great success in simulating glass forming liquids [90,91,228], and also promises to
lead to other new simulation approaches [229]. A shortcoming currently of the swap
Monte Carlo approach is that it relies on the presence of polydispersity in the simu-
lated systems, although ways of circumventing this limitation are being explored [93].
Even without doing so, the approach allows regimes previously unexplored in simula-
tions to be explored [92,130,131,230]. These developments have greatly advanced the
ability to simulate glass formers at low temperatures, and prompted the exploration
of other approaches.

Here, we set out to attempt an exploration of the energy landscape of a model glass-
former by applying mechanical deformation. The behaviour of glasses (or inherent
structures (IS), local energy minima generated by energy minimization of liquid con-
�gurations) under (typically, but not restricted to) athermal quasistatic (AQS) shear de-
formation have recently been investigated in order to study the mechanical behaviour
of glasses [95, 122, 124, 126, 130, 131, 136, 230–234]. Under cyclic, or oscillatory, shear
deformation, the energies of the glasses are found both to decrease from cycle to cycle,
or increase, depending on relevant parameters [95, 136, 149]. A detailed analysis of a
model glass by Leishangthem et al. [95], with the amplitude of shear deformation as
the relevant variable, showed that below the yielding strain amplitude, progressively
deeper energy minima are sampled, whereas above the yielding amplitude, energies
become larger, accompanied by the formation of shear bands [134]. The lowest energy,
homogeneous, structures are attained at (but below) the yielding point. This observa-
tion (consistent with various theoretical investigations describing the yielding point
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as a limit of vanishing or low barriers to rearrangements [119, 189, 235, 236]) suggests
cyclic deformation at suitably chosen shear amplitudes as an approach to generate low
energy con�gurations.
We set out to investigate this possibility. In order to incorporate thermal relaxation and
explore the role of additional parameters, we study oscillatory shear deformation of
liquids at �nite temperature and shear rates. We found that the incorporation of �nite
rate and �nite temperature allowed the system to access lower energies compared to
the energies accessed by athermal shearing. We compared the energies obtained from
cyclic driving with the energies accessed when the system has evolved by equilibrium
thermal �uctuation. We make two important observations in this regard. First, in a
regime where the temperature is substantially low, but the system can still be equi-
librated by equilibrium thermal �uctuations alone, the incorporation of mechanical
perturbation does not o�er a faster sampling (see conclusion and Chapter 5). In this
temperature regime, when the system is driven with the deformation amplitude in the
vicinity of the yielding amplitude, it accesses energies similar to the energies accessed
by equilibrium dynamics within an equal time. We, in fact, found that the well known
fragile glass-forming systems show much faster relaxation (in the absence of any me-
chanical drive) than expected at low temperatures, which leads to the work described
in Chapter 6 of the thesis. However, we made a second important observation that
the mechanical perturbation becomes signi�cant at much lower temperatures when
the system enters the aging regime. Here, mechanical deformation in the presence of
thermal �uctuation drives the system to access lower energies faster(overage) than the
energies accessed by aging. We discuss this aspect in the next chapter. In the present
chapter, we describe how cyclic deformation generates con�gurations that have prop-
erties of equilibrated liquids and therefore provide a useful benchmark.

4.2 Methods

We perform non-equilibrium molecular dynamics simulations (NEMD) to shear de-
form a model glass former at �nite temperatures and strain rates. The trajectories are
generated via the SLLOD algorithm [170], employing LAMMPS [237] with a Nosé-
Hoover thermostat (or for simulations of equilibrium sampling). We study the Kob-
Andersen 80:20 mixture [160] with a quadratic cuto� at rcαβ = 2.5σαβ , applying Lees-
Edwards periodic boundary conditions [164]. The model parameters are εAB/εAA =

εBA/εAA = 1.5, εBB/ εAA = 0.5, and σAB/σAA = σBA/σAA = 0.8, σBB/σAA = 0.88.
Energy values reported are energies per particle, in units of εAA. Unit of timescale is√
σ2
AAmAA/εAA.
The initial liquid con�gurations are generated via equilibrium molecular dynamics

(MD) simulation (typically, at temperature T = 0.466). Then, these con�gurations are
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subjected to oscillatory shear deformations for a range of temperatures, strain rates
and amplitudes, solving the SLLOD equations:

ṙi =
pi
m

+ ri .∇v (4.1)

ṗi =
Fi
m
−pi .∇v−α(t) pi (4.2)

where the strain rate tensor has only the xy component being non-zero, and given by
γxy(t) = γmax sin(ωt), where ω is the frequency, and γmax is the amplitude of strain.
The strain rates γ̇ reported are the strain rate values at the initial time of each cy-
cle, i.e. γ̇ = γmaxω. The friction coe�cient α depends on the thermostat used (see
Chapter 2 for further details). The relaxation time from the equilibrium MD simula-
tion is denoted as τ , whereas the time in the NEMD simulation is denoted by t. We
consider N = 4000 particles at the reduced density ρ = 1.2 and perform simulations
for a range of temperatures (T ∈ [0.25,0.4]) across the Kauzmann temperature esti-
mated in previous work to be (TK ≈ 0.3), shear rates (γ̇(0) ∈ [10−6,10−3]), and strain
amplitudes (γmax) up to 0.06. We perform conjugate gradient minimization on the
simulated (stroboscopic) con�gurations to obtain energy minimum con�gurations (in-
herent structures). We evaluate the potential energy of sheared liquid con�gurations
and inherent structures (IS), stress anisotropy and two dimensional pair correlation
functions to characterize their anisotropy, if present. The error bars on γmax indicate
the grid spacing with which we sample γmax. The error bars on energies are the stan-
dard error of the mean of block averaged energies, with 20 block considered within
the measurement window.

We carry out a series of simulations for di�erent shear amplitudes, for each of a
set of shear rates and temperatures. The grid of values is limited by the signi�cant
computational e�ort for each data set. To �nd out the amplitude dependence of the
IS energy (which we report stroboscopically, i. e., at the end of each cycle, unless
otherwise noted).

4.3 Results

4.3.1 Characterization of the optimal strain amplitude

Onset of yielding in athermally sheared glasses has been studied by considering the
energy and stress within a strain cycle and as function of cycles. At the yield strain am-
plitude (γy), the system accesses the minimum energy states based on past work [95].
Beyond the yielding point, the location of the minimum of energy shifts from zero
strain to �nite strain values, and the area enclosed by the stress-strain curve becomes
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�nite, indicating the onset of plasticity in the system (see Fig. 4.1). We show here that
the optimal strain amplitude, which we identify as the strain at which the inherent
structure energy is minimum (stroboscopically), compared to the inherent structure
energies obtained when driven with bigger or smaller amplitudes, also displays the
characteristic features mentioned above. Within the temperature regime of our inter-
est, the system does not necessarily reach a steady state for all the shear amplitudes.
So for such cases (typically for amplitudes up to yielding amplitude), we have chosen a
suitable time window within which the energies are averaged and compared. Here, we
show the variation of energy at some intermediate time at which a steady state has not
necessarily been reached. The average eIS we report as at time t ≈ 107 corresponds to
the average energy calculated within a time window of t ≈ 8×106−t ≈ 107. The Error
bars shown are the standard error of the mean of block averaged energies obtained for
20 blocks within this time window. At the highest temperature, (T=0.4) as the system
equilibrates faster, we have chosen the time window to be t ≈ 2 × 105 − t ≈ 6 × 105

and indicate the average within this block to be the long time average.
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Figure 4.1: (a) Inherent structure energy variation within a cycle for di�erent am-
plitudes at a �xed rate and a �xed temperature. The energy minimum at zero strain
shifts to �nite strain values above a certain strain amplitude. (b) Variation of stress σxy
of inherent structures over a cycle. After a certain amplitude of strain, the stress-strain
curves begin to enclose a �nite area. (c) The optimal strain identi�ed is the location of
the minimum in the energy at zero strain is consistent with criteria for the yield strain
in earlier work.
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4.3.2 Dependence on shear amplitude and rate

In this section, we show results of the inherent structure energy variation with time
for a range of temperatures and strain rates (see Fig. 4.2-4.5). The deformation am-
plitude corresponding to the minimum eIS in a long time window is identi�ed as the
optimal amplitude. As noted earlier, such an optimal strain amplitude shares charac-
teristics with the yielding strain amplitude previously studied in athermally sheared
glasses. The optimal point shifts to higher values of strain amplitude as the strain
rate is increased and it shifts to a lower value as the temperature is increased. At the
highest temperature, even though we have analysed amplitudes below γmax = 0.005,
the behavior for such amplitudes are not signi�cantly distinguishable from that of
γmax = 0.005 (see Fig. 4.5) and no clear minimum in the evaluated energies is present.
However, above γmax = 0.005 the energies increase to higher than the equilibrium
energy at T=0.4, and hence we identify for this temperature γmax = 0.005 as the opti-
mal amplitude.
We note that the decrease of energies is generally logarithmic, a feature observed in
aging systems, granular compaction, etc. [145,216,238,239]. We leave for future work
an investigation of how such behaviour may arise in the present context.
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Figure 4.2: (a)-(d) The evolution of IS energy for di�erent shear rates has been shown
for T = 0.25. The amplitude at which the long time energy value reaches a minimum
is identi�ed as the optimal amplitude γy . (e) The long time values of IS energies vs.
strain amplitude, obtained as an average for t = 8× 106 to t = 107.
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Figure 4.3: (a)-(d) The evolution of IS energy for di�erent shear rates has been shown
for T = 0.3. The amplitude at which the long time energy value reaches a minimum
is identi�ed as the optimal amplitude γy . (e) The long time values of IS energies vs.
strain amplitude, obtained as an average for t = 8× 106 to t = 107.
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Figure 4.4: (a)-(d) The evolution of IS energy for di�erent shear rates has been shown
for T = 0.35. The amplitude at which the long time energy value reaches a minimum
is identi�ed as the optimal amplitude γy . (e) The long time values of IS energies vs.
strain amplitude, obtained as an average for t = 8× 106 to t = 107.
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Figure 4.5: (a)-(c) The evolution of IS energy for di�erent shear rates has been shown
for T = 0.4. The amplitude at which the long time energy value reaches a minimum
is identi�ed as the optimal amplitude γy . (d) The long time values of IS energies vs.
strain amplitude, obtained as an average within a time window from t = 2 × 105 to
6× 105.
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We next consider the strain rate and temperature dependence of the optimal strain
amplitude considering a range of strain rates (γ̇ ∈ [10−3,10−6]) and temperatures (T ∈
[0.25,0.4]). Although with limited data, we see that with increasing strain rates, the
yield strain shifts towards higher values , consistently with previous results [128,129].
Likewise, as the temperature is lowered the yield strain shifts towards higher strain
amplitudes, as shown in Fig. 4.6 (a). For each strain rate, we consider the IS energies
obtained at the optimal strain amplitude γmax and plot it as a function of temperature
in Fig. 4.6 (b). Similar to observations for PVD [86], we �nd the maximum extent of
annealing for T = 0.35, near the estimated Kauzmann temperature (TK ≈ 0.3), and
we perform further analysis at Kauzmann temperature.
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Figure 4.6: (c) The strain amplitude for minimum IS energy is a decreasing function
of temperature. (d) The minimum inherent structure energy attained vs. temperature,
shown for di�erent shear rates. The results indicate that the optimum temperature for
annealing is T ≈ 0.35.
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4.3.3 Cyclic shear and equilibrium relaxation

As the optimal strain amplitude depends on the temperature and rate, we focus below
on the amplitude γmax = 0.035, the optimal value for strain rate 10−5 at Kauzmann
temperature T = 0.3. So far, we have shown that for an optimal combination of shear
rate and temperature, the system accesses the lowest possible energy when driven
close to the yielding transition amplitude. But in order to estimate the e�ciency of
the approach, we need a mapping of the inherent structure energies and tempera-
tures. For this, we use the observation [74] that the inherent structure energies at low
temperatures display the behaviour

eIS(T ) = E∞ −A/T , (4.3)

where E∞ is the extrapolated in�nite temperature IS energy and A represent the
slope of eIS vs. 1/T . Fitting the energies to the above mentioned form we are able
to map IS energies and temperatures, as illustrated in Fig. 4.7. The �t parameters
are E∞ = −6.7264 and A = 0.12065. We have checked that this relation holds well
enough to the lower temperature regime. We estimate the equilibrium temperature
corresponding to a given inherent structure energy using this relationship. As an ex-
trapolation, however, the meaning of the temperature so estimated should be treated
with due caution (see Appendix for further details). Next, we compute relaxation times
corresponding to a given temperature using the Vogel Fulcher Tamman relation (VFT)
expression τ = τ0 exp

[
(KVFT (T /TVFT − 1))−1

]
where parameters τ0, KVFT and TVFT

are obtained from �ts to MD simulations [240] (see Appendix/chapter 6). A compari-
son of the estimated temperature reached for a given simulation time with the relax-
ation time at that temperature provides a way of judging the extent to which cyclic
shear may accelerate the accessing of low energy con�gurations. Fig. 4.8 (b) shows
the estimated temperatures vs. simulation time, along with reference curves that indi-
cates the dependence of the relaxation times on temperature. A long run of duration
t ∼ 6 × 108 at γ̇ = 10−5 shows the lowest temperature accessed is approximately
T = 0.34 (eIS ≈ −7.08, to be compared with the lowest estimated value of −7.15; see
Appendix).
We show extrapolated VFT curves for two cases in Fig.4.8 (b). The �rst curve (black) is
the VFT �t to relaxation times for temperatures above TMCT = 0.435, which is extrap-
olated for lower temperatures. A comparison with this VFT �t leads to the conclusion
that the relaxation to low energy con�gurations is signi�cantly accelerated by the ap-
plication of cyclic shear. To make a direct comparison, MD runs are performed at low
temperatures (reported in [240]), with the lowest temperature being T = 0.365. These
simulations reveal that the temperature dependence of relaxation times undergoes a
crossover, with low temperature relaxation times being signi�cantly smaller than the
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Figure 4.7: (a) Temperature dependence of the inherent structure (IS) energy for a
liquid equilibrated in a molecular dynamics simulation. The equilibrium molecular
dynamics simulation data has been �tted below temperature T = 0.7 to obtain a map-
ping between the IS energy and temperature, which is used to map the IS energy vs.
time data in panel (b) to the temperature values in panel (c). Panel (c) also shows the
VFT relationship between temperature T and relaxation times τ when �tted to two
di�erent temperature regime.
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Figure 4.8: (a) Inherent structure energies eIS vs. time for di�erent shear rates and
di�erent damping parameters (Q), at the simulation temperature T = 0.3. (b) The
energies eIS is transformed to temperatures corresponding to those energies for equi-
librated samples. Two extrapolated VFT curves are shown as they are �tted to two
di�erent temperature regimes (up to TMCT and up to substantially low temperatures
below TMCT ).
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VFT extrapolation from temperatures above T = 0.435. The relaxation times over this
extended temperature range are also �tted to the VFT form, which is also shown in
Fig.4.8 (b) (maroon curve). A comparison of the cyclic shear results with results from
low temperature MD simulations indicates that, contrary to the earlier conclusion, no
signi�cant acceleration is obtained through the application of cyclic shear. Although
the application of cyclic shear deformation does not therefore appear promising as
an approach to performing accelerated sampling at low temperatures, it does lead to
overaging when simulations are performed at temperatures lower than T = 0.3. We
have discussed this elaborately in the next chapter.

4.3.4 Properties of sheared con�gurations

Apart from the question of whether cyclic shear induces acceleration of relaxation,
addressed in previous section, it is of importance to ascertain whether the proper-
ties of the sheared liquids are comparable to the equilibrium liquid. We perform a
comparison of properties of the sheared liquid and that simulated with conventional
MD. Results presented here show that the con�gurations generated by cyclic shear are
isotropic, homogeneous, and have properties that are indistinguishable from the equi-
librated liquid con�gurations. We have chosen T = 0.4 (and higher temperatures) for
a comparison of the structures generated by conventional constant temperature MD
and cyclic shear, at which the liquid can easily be equilibrated with moderate e�ort in
a constant temperature molecular dynamics simulation and (as described later) cyclic
shear simulations reach steady states within the simulated time window. For cyclic
shear, we have kept our shear rate �xed at γ̇ = 10−5 and based on short runs across
di�erent strain amplitudes, identify γmax = 0.005 as being a reasonable choice based
on data shown in Fig. 4.5, for comparison with MD simulations. In Fig. 4.9 we compare
the average inherent structure energy obtained from molecular dynamics simulations
and �nite temperature, �nite shear rate, cyclic deformation, as a function of temper-
ature, and show that the energies in these cases are comparable to each other and
follow 1/T behaviour in the low temperature range.Fig.4.10 shows that the distribu-
tion of energies in the steady state for the cyclic shear simulations is identical to the
MD trajectory.
Fig. 4.11 shows that the partial radial distribution functions of the inherent structures

obtained by NVT MD and cyclic shear simulations agree with each other quantita-
tively, which implies that the structures generated by cyclic shear are the same as
those generated by MD.
We also show, in Fig. 4.12, that the vibrational density of states of con�gurations ob-
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Figure 4.9: The eIS energies obtained from the equilibrium MD is compared to the eIS
energy obtained from sheared con�gurations at amplitudes of γmax = 0.003,0.005.
The energies show good quantitative agreement. The temperature varies in the range
[0.4 − 0.45], where the system can be equilibrated easily by normal molecular dy-
namics. The shear rate has been kept �xed at γ̇ = 10−5. The inset shows the inherent
structure energies against inverse temperature, indicating that the energy obeys a 1/T
dependence on T .

tained by NVT MD and cyclic shear at T = 0.4 are the same, whereas they are clearly
di�erent from those of con�gurations generated by MD at higher temperatures.
To obtain an estimate of the energy barriers surrounding the minima obtained from

sheared simulations we have looked at the strain interval distribution for the �rst plas-
tic drop when these con�gurations are sheared. This gives us the idea of the measure
of the potential energy barriers of the corresponding minima [188]. Here we have
taken the inherent structures obtained from equilibrium MD and cyclic shearing at
T = 0.4. These con�gurations are subjected to a uniform athermal quasistatic defor-
mation with a strain step of 10−5. With the application of uniform shear, the elastic
energy of the system increases and this increase is punctuated by local plastic drops
as long as the strain is below the yield strain. The strain value (∆γiso) at which the in-
herent structure energy decreases discontinuously, as opposed to the expected elastic
increase as a result of shearing, has been identi�ed as the occurrence of a plastic event
or a barrier crossing. This strain value gives us the estimate of the energy barrier [188]
surrounding the minima obtained from our simulations. For both the cases of equilib-
rium MD and non-equilibrium shearing, the distributions shown are qualitatively and
quantitatively comparable. From this observation, we can conclude that the energy
barriers surrounding the minima obtained through cyclic shearing is similar to the
minima visited in a normal molecular dynamics simulation at constant temperature.
In order to ensure that the apparent agreement is meaningful, we compare these dis-
tributions to the strain interval (∆γiso) distributions for higher temperatures (obtained
by molecular dynamics), and note that indeed, these higher temperature distributions
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Figure 4.11: The partial radial distribution functions of the IS con�gurations obtained
through equilibrium MD and cyclic shear at a high enough temperature, (T = 0.4)
where the system can be equilibrated easily through conventional MD. The data show
that there is no signi�cant structural di�erence between the con�gurations generated
from the two approaches.
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are distinguishably di�erent (see Fig. 4.13).

We next examine possible anisotropies in the structures we generate. The ultrastable
glasses produced by physical vapor deposition (PVD) method have shown features
that can be connected to more anisotropic packing, compared to its ordinary glass
counterpart formed by cooling the liquid. Since we perform shear in a given plane,
anisotropies are also possible in our case. We also consider the e�ect of shearing in al-
ternating shear planes (xy, xz, and yz, repeated after 3 cycles). As shown in Fig. 4.14 (a)
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Figure 4.14: (a) Inherent structure (IS) energies (when shear is applied in alternating
planes) vary in the same way with time as when only xy shear is applied. (b) For
strain amplitudes lower than or close to the yielding amplitude, stress anisotropies for
strain rate 10−5 compare with those of isotropic inherent structures (indicated by the
horizontal line). (c) The same observation holds for di�erent strain rates indicated,
and also when shear in applied in alternating shear planes. (d) Variation of density in
the shear direction indicating that the system is homogeneous in all cases.

the generated energies are essentially the same (however, it has been reported that for
larger systems at lower temperatures and shear amplitudes, alternating shear planes
leads to better annealing [234, 241]). To characterise anisotropy and inhomonegeity,
we �rst consider the stress anisotropy, which is de�ned as SA = (S1−S3)/(S1+S2+S3),
where Si (S1 > S2 > S3) are the eigenvalues of the stress tensor. Excepting for very
large strain amplitudes, we �nd the stress anisotropies to be small, and comparable to
those of inherent structures quenched directly from liquid con�gurations, as shown in
Fig.s 4.14 (b) and (c). We also test for the possibility of shear localisation accompanied
by inhomogeneities in the local density. Density values obtained for slabs in the shear
direction show no evidence of strain localisation (as they do beyond the yield strain
in AQS simulations [134], although for larger samples), as shown in 4.14 (d).
We also compute the radially averaged and two dimensional (partial) pair correlation



4.3 Results 97

functions, for stroboscopic con�gurations, in order to analyse the structure. For tem-
perature T = 0.3 γ̇xy = 10−5, γmax = 0.035 has been identi�ed as the yielding strain
amplitude. For this amplitude, the radially averaged pair correlation function is cal-
culated after 0 (newly quenched from the liquid), 5, 50 and 500 cycles. The Increase
in the number of shear cycles corresponds to a decrease in energy and the tempera-
ture. The pair correlation functions show very small amounts of change, comparable
to what is observed in the equilibrium liquid at di�erent temperatures (Fig.4.15).
We calculate the two dimensional radial distribution function (g(x,y)), in the xy−
(shear) plane, de�ned as

g(x,y) =
1

2Naρ
×
〈N−1∑
i=1

N∑
j,i

δ(x − (xi − xj))δ(y − (yi − yj))θ(a− |zi − zj |)
〉
, (4.4)

where “〈〉" represents the averaging over independent samples. xi , yi , and zi are
coordinates of particles. A pair of particles is considered to be in the same plane if
the separation between them does not exceed a threshold value a = 0.2σAA, which is
enforced by the Heaviside function above.
As shown in Fig. 4.16, these correlation functions do not reveal any indications of
anisotropy.
All the above comparisons show that the IS con�gurations obtained by cyclic shear
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Figure 4.15: The partial pair correlation functions of the liquid con�gurations at the
end of di�erent cycles compared with the initial con�guration.

are isotropic. Such isotropy is surprising, but has previously been noted in the con-
text of both symmetric [151] and asymmetric [242] cyclic shear of glasses. It appears
that such isotropy arises from the high density of the systems, the cyclic nature of the
deformation, and the presence of plastic rearrangements, which needs better under-
standing. This is in contrast with low density systems subjected to cyclic [243] and
uniform [244] driving. They also show that they exhibit the same response to shear
(in the form of the distribution of strain required to undergo a plastic rearrangement)
as those obtained from conventional MD.
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Figure 4.16: Two dimensional, partial pair correlation functions in the shear plane for
(left panel) the initial con�gurations at T = 0.466, and (right panel) after 2000 shear
cycles (t 4x107). No indications of anisotropy is observed.

4.4 Conclusion

To summarise, we have explored the possibility of generating low energy con�gura-
tions by the application of cyclic shear deformation and have attempted to �nd opti-
mal conditions for doing so, namely temperatures close to the Kauzmann temperature
(T = 0.35), strain amplitudes close to yield strain (γmax ≈ γy) and small strain rates.
According to the extrapolated VFT prediction, the obtained low energy con�gurations
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= 0.37.)

are generated faster than con�gurations obtained by performing normal molecular dy-
namics simulation. But veri�cation of the validity of the VFT prediction leads us to the
work described in Chapter 6 of this thesis. We observe that faster relaxation by normal
equilibrium dynamics occurs at a low temperature regime. Extrapolated VFT �t gives
an overestimation of the relaxation times at substantially low temperatures when the
actual simulation data used for �tting and extrapolation is limited to a comparatively
high temperature regime (up to TMCT ). We �nd that the temperature regime where the
system can still be equilibrated with long computational simulation, the cyclic shear
method does not o�er e�ective acceleration. In this regard, we will mention that In
Chapter 6, we have been able to equilibrate the same system via equilibrium molecular
dynamics down to the temperature T = 0.365. As we have seen earlier, at the temper-
ature range T = 0.4 − 0.45 (see Fig. 4.9) and further down to temperature T = 0.37

(see Fig. 4.17), ( temperatures within the equilibrium range), the system does not show
faster sampling when driven with deformation amplitude close to the yielding ampli-
tude. However, we will show that cyclic shear does overage the system in the aging
regime. So even if cyclic shear cannot be employed as an e�ective equilibrium sam-
pling method, the phenomena of reaching lower energy states by cyclic driving than
by thermal aging still remains. But beyond which temperature thermal �uctuation be-
comes more prominent than mechanical perturbation, this remains to be investigated
and understood in our future work. Nonetheless, cyclic shear with the optimal choice
of deformation amplitude and strain rate generates anisotropy free equilibrium like
con�gurations in the temperature regime where the system can be equilibrated.
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Chapter 5
Overaging by cyclic shear deformation

5.1 Overaging by cyclic shear deformation

The aging of glasses is an important matter of practical interest. A huge range of poly-
mer glasses used in everyday life is the systems that have undergone glass transition.
Hence the system stays out of equilibrium. Any property of such aging systems be-
comes a function of time. Therefore any measurements in such glassy systems have a
crucial parameter called the waiting time tw. Waiting time is the time elapsed from the
time when the glass is formed. Aging alters properties like embrittlement or dielectric
strength that are crucial for the application purpose of the material. Therefore, it is
essential to understand the nature and predict the amount of aging that can happen in
material to determine its sustainability when used in various applications. As the sys-
tem ages further, the relaxation in the system becomes progressively slower. Hence,
the more aged the system is, the slower the change of the properties of concern can
be.
Aging behaviour can be a�ected by the application of mechanical drive. The mechan-
ical drive can take the system to such parts of the landscape where the structural
relaxation becomes slower. This phenomenon is known as overaging or mechanical
aging. The driving can also lead the system to such parts of the landscape where the
relaxation becomes faster. This phenomenon is known as the rejuvenation of glasses.
In several computational studies and experiments, the e�ects of mechanical driving
on aging have been observed and studied. Studies have shown that mechanical ag-
ing changes the mechanical properties of the system, such as making them stronger
glasses by increasing the modulus [245]. Studies in polymer glasses show that me-
chanical drive leads the system to such parts of the landscape that are qualitatively
and quantitatively di�erent from the results of thermal treatment of the system [246].
Again study of polymer glasses shows overaging in glasses prepared by quenching,
but the e�ect recedes when the system is well annealed. The overaging phenomenon

101
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depends on di�erent timescales in the system like β relaxation timescale or cooling
timescales [247]. Nonetheless, in various systems, overaging in the pre-yield regime
has been reported. However, the absence of overaging and recovery of the relaxation
in the absence of mechanical drive has also been observed in the study of polymer
glasses [158].
In our work, we �nd that when a model metallic glass former is subjected to cyclic
driving, a signi�cant amount of overaging occurs in the pre-yield regime at certain
low temperature regimes. In this chapter, we discuss di�erent aspects of overaging
under cyclic shear deformation.

5.2 Methods

We study the Kob-Andersen 80:20 mixture [160] with a quadratic cuto� at rcαβ =

2.5σαβ , applying Lees-Edwards periodic boundary conditions [164]. The model pa-
rameters are εAB/εAA = εBA/εAA = 1.5, εBB/ εAA = 0.5, and σAB/σAA = σBA/σAA =

0.8, σBB/σAA = 0.88. Energy values reported are energies per particle, in units of εAA.
Unit of timescale is

√
σ2
AAmAA/εAA. We perform non-equilibrium molecular dynamics

simulations (NEMD) to shear deform a model glass former at �nite temperatures and
strain rates. The trajectories are generated via the SLLOD algorithm [170], employ-
ing LAMMPS [237] with a Nosé-Hoover thermostat (or for simulations of equilibrium
sampling). Equilibrium molecular dynamics simulations have been performed in the
NVT ensemble for a range of temperatures t = 0.37−0.1. We consider a system of size
N = 4000 particles at the reduced density ρ = 1.2. The simulation run length has been
mostly till t ∼ 107. We have performed simulations in the aging regime. We have cho-
sen simulation time t = 107 to be the long time approximation in this work. We have
compared the energies of di�erent cases, taking an average of quantities within the
time block of t ≈ 8×106−107. Eight independent con�gurations have been quenched
from equilibrated T = 0.466 liquid con�gurations to the target temperature, and sub-
sequently, the NVT MD simulations and cyclic shear simulations have been performed.

5.3 Results

5.3.1 Faster equilibrium relaxation at low temperatures

We have discussed how cyclic shear generates low energy con�gurations for suitable
combinations of temperature, shear rate, and shear deformation amplitude. In the
previous chapter, we performed a comparative study of deformed and undeformed
systems in the temperature regime where the system can be equilibrated by normal
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molecular dynamics simulation (such as at T = 0.4). We have concluded that sheared
con�gurations are similar to the undeformed equilibrated con�gurations in the pre-
yield regime. We have seen that in equilibrium and sheared simulations, the system
reaches similar low energy con�gurations at comparable times. But the extrapolated
VFT prediction indicates one should expect faster sampling at further lower tempera-
tures, such as at T = 0.37.
Most metallic glasses are fragile glass-forming liquids. Their relaxation time shows
a faster divergence than relaxation time predicted by Arrhenius law at lower tem-
peratures. But a couple of recent studies of metallic glasses [40, 42, 248–251] that
are generally known as fragile glass formers show a possible dynamical crossover to
strong glass formers-like behaviour at low-temperature regime, implying their relax-
ation time divergence becomes milder than expected. At this point, carrying out an
equilibrium molecular dynamics simulation at further low temperatures like T = 0.37,
we �nd that the relaxation time predicted by VFT extrapolation overestimates the re-
laxation times at this low-temperature regime (see appendix). Similar to the recent
dynamical crossover mentioned in di�erent metallic glasses, we also �nd evidence of
a dynamical crossover at low temperatures in our system (further discussion in Chap-
ter 6) that causes slower divergence of relaxation time at lower temperatures. Next,
We performed cyclic shear at T = 0.37, γ̇ = 10−5 and γmax = 0.005(≤ γy). Compar-
ing equilibrium MD and the cyclically sheared trajectory, we �nd thermal �uctuation
alone is su�cient for the optimum relaxation at such a temperature range (see Fig.
5.1). The time evolution of the eIS for the equilibrium dynamics and the sheared simu-
lation do not show any signi�cant di�erence. But in this chapter, we will discuss how
mechanical perturbation becomes more signi�cant than thermal �uctuation at further
low temperatures, where the system enters the aging regime. This implies when cyclic
deformation is applied to the system (under optimal conditions), it accesses lower en-
ergies faster compared to the energies accessed by the system when evolving under
thermal �uctuation alone. We further show in this chapter how the variation of dif-
ferent parameters (such as temperature, rate, and amplitude) provides a better route
to access lower energies faster or to overage the system.

5.3.2 Comparison betweennormalmolecular dynamics and cyclic
shear deformation lower temperatures

We carried out cycle shear and molecular dynamics simulations at very low tempera-
tures, ranging from T = 0.35− 0.10. As mentioned in the previous chapter, we have
considered t 107 as our long-time observation timescale. The long time values of IS
energies (or temperature), obtained as an average for t = 8 × 106 to t = 107. We
have shown comparisons of eIS between sheared con�gurations and con�gurations
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Figure 5.1: The energy relaxation of MD and sheared simulation is very similar at T =
0.37.)

obtained from equilibrium simulations for combinations of temperature, shear rate,
and amplitude. The temperature regime mentioned here is substantially low, and the
system does not equilibrate within a computationally feasible timescale. The system
ages. When the system is driven with amplitudes close to or lower than the yielding
amplitude(γy), it accesses lower energies faster than the energies achieved when the
system evolves under equilibrium �uctuation. As mentioned earlier, γy is the ampli-
tude of deformation that drives the system to the lowest possible energy. The evolution
of eIS has been shown as a function of time for temperatures within T = 0.2−0.1 (eIS
vs in Fig. 5.2 (t data for T = 0.25 and T = 0.3 has been shown already in Chapter 4).
Under the mechanical drive system reaches lower energy faster or overages. We see
around T = 0.3 the system starts showing the e�ect of overaging (see Fig. 5.3). As the
temperature decreases further, the amount of overaging increases, implying mechan-
ical perturbation becomes progressively important for the system to access available
energy states.
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Figure 5.2: (a)-(c)The evolution of IS energy for the three lowest temperatures (T =
0.1,0.15,0.2) has been shown. The amplitude at which the long time energy value
reaches a minimum is identi�ed as the optimal amplitude γy .
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Figure 5.3: Beyond temperature T = 0.3 the system starts showing overaging be-
haviour under mechanical deformation. Inherent structure energy evolution has been
looked at for a range of temeperatures.
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5.3.3 Dependence on deformation amplitude and rate
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Figure 5.4: MD run from T = 0.3 − 0.1 has been compared to the sheared runs for
a �xed shear rate and γmax ≤ γy . Signi�cant overaging (energy di�erence between
sheared and unsheared con�gurations at t ∼ 107) at the pre-yield regime. The e�ect of
overaging increases as the driving amplitude is increased up to the yielding amplitude.
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In the aging regime, the amount of overaging increaes when driven with ampli-
tude progressively closer to the yielding amplitude. Though the e�ect is marginal we
have shown in Fig. 5.4 that for a given temperature (T = 0.3 − 0.1) and a given rate
(γ̇ = 10−5) the system shows maximum overaging closest to their yielding points.
The amount of overaging has been measured by the di�erence in inherent structure
energy (eMDIS − e

CS
IS ) at t ∼ 107. In Fig.5.4 we show the eIS averaged between the time

window t ∼ 8x106 − 107. We see that the amount of overaging increases as the γ ′y
is approached. γ ′y is the average of the deformation amplitude at which eIS attains a
minimum value and the next higher amplitude at which eIS increases again.
The overaging behaviour has a shear rate dependence. We compared the evolution of
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Figure 5.5: MD run at T = 0.3,0.25 has been compared to the sheared runs for di�erent
shear rate and γmax ∼ γy . we see a signi�cant overaging e�ect (energy di�erence
between sheared and unsheared con�gurations at t ∼ 107) at the high shear rate end.

the energies under deformation to the energies in the case of the equilibrium dynamics
for two temperatures (T = 0.3,0.25)and four shear rates (10−3−10−6). The shear am-
plitudes are the yielding amplitudes (γy) shown in Fig. 5.5. The amount of overaging
has been measured by the di�erence in inherent structure energy (eMDIS − e

CS
IS ) at t ∼

107 . In Fig.5.5 we show the eIS averaged between the time window t ∼ 8x106 −107.
Even though there is a mild trend of overaging increasing with increasing shear rate,
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the dependence is not very prominent. However, for the lowest shear rate, the energy
curve stays closest to the energy curves of the corresponding equilibrium dynamics,
implying the lowest ∆eIS and the least amount of overaging. Here the mechanical
perturbation is smaller, and hence the system ages more like the system aging under
thermal �uctuation.
A gap between the energies reached in MD simulations and cyclic shear simulations
increases upon lowering the temperature. To quantify this, we compute the di�erence
between the energy reached at t ≈ 107 and the initial value, ∆eIS , in MD and cyclic
shear simulations respectively. The ratio ∆ecsIS /∆e

md
IS , shown in Fig. 5.6, indeed grows

as the temperature decreases, indicating a greater degree of overaging induced by the
cyclic shear deformation, the lower the temperature.
Fig. 5.7 summarizes how the combination of the shear rate and the shear amplitude
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Figure 5.6: The ratio of the di�erence between the energy reached at (t ∼ 107) and the
initial value, for cyclic shear and MD(∆ecsIS and ∆emdIS respectively), as a function of
the simulation temperature. The ratio increases above 1 with decreasing temperature,
signifying the amount of overaging increases as the temperature is decreased.

together clearly makes a case of mechanical aging at a lower temperature. Mechanical
aging at low temperature can be achieved by increasing strain rate and amplitude (still
maintaining the amplitude stays below or around the yielding amplitude). The nor-
mal equilibrium dynamics appear to be the zero strain rate and zero amplitude limit
at these temperature regimes.
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at T = 0.3, for sets of shear rates and strain amplitudes that approach the limit of van-
ishing shear rate and strain amplitude together. Comparison with normal molecular
dynamics shows that energies in the aging regime deviate from the normal dynamics
as amplitude and shear rate are increased together. The arrows indicate the direction
of increasing strain amplitude and increasing shear rate.

5.4 Conclusions

To summarize, in our system, overaging under mechanical deformation is observed
at temperatures T ∼ TVFT and below. The amount of overaging increases with ap-
proaching yielding amplitude and higher shear rate. Though why at comparatively
higher temperatures, thermal �uctuation becomes the e�ective relaxation mechanism
is not understood at this moment. At this point, it remains an interesting question
to investigate and understand the existence of the optimum temperature that dictates
thermal �uctuation or mechanical perturbation to be the more signi�cant medium of
relaxation at low temperature glass-forming liquids.



Chapter 6
Crossover in dynamics in the
Kob-Andersen binary mixture
glass-forming liquid

6.1 Introduction

The concept of fragility was introduced by Angell [6, 252, 253] as a way of organiz-
ing the diversity of the remarkable slow down of dynamics in glass forming liquids as
the glass transition is approached. Glass formers such as silica near the glass transi-
tion display an Arrhenius variation of viscosity, whereas other commonly investigated
glass formers exhibit super-Arrhenius dependence of viscosity and relaxation times
on temperature, to various degrees. Glass formers exhibiting Arrhenius temperature
dependence are termed strong and those exhibiting super-Arrhenius temperature de-
pendence as termed fragile. Fragility quanti�es the degree of deviation from Arrhenius
behavior, and has been investigated extensively [254].
In attempting to rationalise experimental results close to the glass transition of water
with those obtained at considerably higher temperatures in supercooled water, An-
gell [24] proposed the possibility of a crossover from fragile behaviour at the higher
temperatures to strong behaviour close to the glass transition. In addition to wa-
ter [25–28], such a fragile to strong transition has been investigated in computer sim-
ulations of silica [29–32], and silicon [33–36]. In these liquids, all of which exhibit
several well known anomalous properties arising from low density, open tetrahedral
order that becomes dominant at low temperatures. The fragile to strong crossover is
associated with a change in liquid structure towards more tetrahedral local geometries
upon lowering temperature, a possible liquid-liquid transition [31, 255], and with the
crossover being characterised by the presence of a heat capacity maximum.
In recent years, the fragile to strong crossover in dynamics has also been reported in a
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variety of other glass formers, including phase change alloys [38, 39] used in memory
devices, and several metallic glasses [42,249,250,256,257]. In many of these instances,
though not all, the fragile to strong crossover has been shown to be accompanied
by a heat capacity maximum. Unlike the cases such as silica discussed above, how-
ever, there is no broadly applicable picture of structural change that may drive such a
crossover.
Interestingly, a well studied computational model glass former that is commonly de-
scribed as a fragile glass former, the Kob-Andersen 80 : 20 binary Lennard-Jones mix-
ture (KA-BMLJ), also exhibits a crossover in dynamics [40, 41] that is reminiscent of
the transition seen in computer simulations of silica [30]. Such a crossover has also
been recently investigated for the same model potential but for di�erent compositions
(2 : 1 and 3 : 1 rather than 4 : 1) [43] and for a soft sphere mixture [258]. In the
KA-BMLJ model, below the mode coupling temperature TMCT , the relaxation times
exhibit a crossover from non-Arrhenius to Arrhenius temperature dependence. We
perform molecular dynamics simulations which are roughly an order of magnitude
longer than those reported in [41], and characterise the dynamics in detail, including
several aspects of dynamical heterogeneity. We perform an analysis of the structure of
clusters of mobile particles, to understand the changes in the geometry of such clusters
across the dynamical crossover. We investigate the relation between the dynamics to
thermodynamic changes. Speci�cally, we consider the behaviour of the heat capac-
ity. Although the presence of a heat capacity maximum was reported in an earlier
study [259], the recent work reported in [41] does not �nd evidence for such a maxi-
mum, a result which we con�rm to hold to lower temperatures. We also investigate the
validity of the Adam-Gibbs relation, found to be valid in computer simulations of the
KA-BMLJ [52, 74, 75] as well as other systems [16, 31, 73]. However, recent work [76]
concludes that a generalised form of the Adam-Gibbs relation is required to describe
the relaxation times at temperatures signi�cantly lower than previously investigated,
as also observed for two dimensions in [75]. We �nd deviations from the Adam-Gibbs
prediction below the dynamical crossover temperature, when the con�gurational en-
tropy is evaluated with a harmonic approximation to the vibrational entropy (as has
been done in the past for the studied system [52,74, 75]). However, when anharmonic
correction to the vibrational entropy estimates are included, the relaxation times are
found to obey the Adam-Gibbs relation across all the temperatures investigated.
We �rst describe the model studied and the simulation details, followed by a descrip-
tion of the simulation results. We conclude with a discussion of the signi�cance and
implication of these results.
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6.2 Methods

We study the Kob-Andersen (KA) 80 : 20 binary mixture [160], with the interaction
potential between particles given by

Uαβ(r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6
]

+4εαβ

c0 + c2

(
r
σαβ

)2 , rαβ ≤ rc αβ
= 0, rαβ > rc αβ . (6.1)

Here, c0 and c2 are chosen such that the potential and force between particles go to
zero continuously at the cuto� distance rc αβ (= 2.5σαβ). The indices (α,β) represent
particle type (A or B) in the binary mixture. We report results in reduced units, with
units of length, energy and time scales being σAA, εAA and

√
σ2
AAmAA/εAA, respec-

tively. The model parameters are εAB/εAA = εBA/εAA = 1.5, εBB/ εAA = 0.5, and
σAB/σAA = σBA/σAA = 0.8, σBB/σAA = 0.88. Energy values reported are energies per
particle. Constant volume, temperature (NVT) simulations have been performed for
the system size N = 4000 using the Nosé–Hoover thermostat. The initial con�gu-
rations for the simulation below T = 0.466 are prepared by quenching equilibrated
con�gurations from T = 0.466 and for the simulations above T = 0.466 con�gura-
tions are obtained by quenching equilibrated con�gurations from T = 1.0 to respective
target temperatures. We have performed equilibrium simulation for a range of tem-
peratures, from T = 0.9 to T = 0.365. The number density (ρ = N/V , where V is
the volume) has been kept constant at 1.2. At each temperature, 16−24 independent
trajectories have been studied. The time step below and above the mode coupling tem-
perature TMCT = 0.435 are respectively dt = 0.01 and dt = 0.005. We note, however,
that the use of the larger time step at low temperatures leads to a shift in the per par-
ticle energy of ≈ 5 × 10−3. We perform additional runs with the smaller time step of
0.005 to rectify this shift in the energy values employed. At the lowest temperatures,
run lengths extend up to 2×1010 integration time steps or a time duration of 2×108.
All simulations have been performed using LAMMPS [237]. The relevant quantities
are reported for the A type of particles unless otherwise mentioned. The system is
prone to crystallization at low temperatures. In the range of temperatures from TMCT
to the lowest simulated temperature, the percentage of runs that crystallize increases
from 5% to 80%. The crystallizing samples have been identi�ed using standard meth-
ods employing bond orientational order parameters [260], as described in [41,96,167]
and discarded from the analysis.
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6.3 Results

We present results concerning the structural relaxation times, and several measures of
dynamical heterogeneity, which display a crossover around the mode coupling tem-
perature. We describe next the results concerning the thermodynamic changes with
temperature and their relationship with the observed dynamical crossover.

6.3.1 Structural Relaxation

Structural relaxation times are computed by considering the overlap function q(t) and
the self intermediate scattering function Fs(k, t).

10
-2

10
0

10
2

10
4

10
6

10
8

t

0

0.2

0.4

0.6

0.8

1

q
(t

)

0.9
0.8
0.7
0.6
0.55
0.52
0.5
0.47
0.46
0.45
0.44
0.435
0.43
0.42
0.41
0.4
0.39
0.38
0.37
0.365

T

Figure 6.1: The self part of the overlap function is shown for A of particles. The dotted
lines are �ts to the data.

The overlap function q(t), de�ned as

q(t) =
1
N

∫
drρ(r, t)ρ(r, t + t0) (6.2)

=
1
N

∑
i

∑
j

δ(rj(t0)− ri(t + t0))

where ρ(r, t) is the local density of particles at position r at time t, can be divided into
a self part and a distinct part. In the present work, we will employ the self part, q(t)s,
de�ned as

q(t)s =
1
N

∑
i

δ(ri(t0)− ri(t + t0)) (6.3)
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as a good approximation to the full overlap function. In simulations, the δ function is
approximated by a window function w(x) described below, where we further de�ne
the function considering the A particles only. Thus, we consider

q(t) =
1
NA

NA∑
i=1

w(|ri(t0)− ri(t + t0)|)

where w(x) = 1.0 if x ≤ a and = 0 otherwise. Here, t0 is the time origin and the
overlap function is calculated with an average over multiple time origins. The value of
the overlap function depends on the choice of the cuto� parameter a. This parameter
is chosen in such a way that the particle positions separated due to vibrational motion
are treated as the same. We choose a = 0.3, which corresponds to displacements at
the plateau region of the mean squared displacement (MSD) curves, as shown in, e.
g., [173] and used in previous literature. The overalp function for all the temperatures
has been shown in Fig. 6.1. The structural relaxation time has also been calculated
from the self part of the intermediate scattering function F(k, t) de�ned as:
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Figure 6.2: The self part of the intermediate scattering function Fs(k, t) is shown for a
range of k values. The dotted lines are �ts to the data.

Fs(k, t) =
1
NA

NA∑
i=1

e−i.k.(ri(t0)−(ri(t+t0)) (6.4)

where we calculate Fs(k, t) for the A type of particles, performing an isotropic
average over the directions of k. The structural relaxation time is measured from the
Fs(k, t), with k = |k| = 7.25, the �rst peak of the structure factor, unless otherwise
noted (see Fig. 6.2). Fs(k, t) values we report are obtained by averaging over multiple
time origins (t0). Fs(k, t) for di�erent values of k has been shown in the Appendix.
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These time correlation functions are �tted with a four parameter functional form,
which is expressed for q(t) as

q(t) = (1− fc)exp(−(t/τs))
n + fcexp(−t/τα)βkww (6.5)

where fc is the non-ergodicity parameter, τα is the structural relaxation time, βkww is
the Kohlrausch-Williams-Watts stretching exponent, and τs is a relaxation time that
describes the short time decay of the correlation functions. The exponent n describing
the short time decay, based on results in [53], is chosen to be n = 2. The τα extracted
from the �tted form for q(t) are plotted as the function of the temperature (see Fig.
6.3). We next �t the structural relaxation time τα with the the Vogel Fulcher Tamman
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Figure 6.3: (a) Relaxation times τα extracted from the decay of the overlap q(t) for
temperatures across TMCT are shown, along with VFT �ts to data for T > TMCT (red
dashed line) and the full range of T values (blue solid line). The �t to high temperature
data overestimates relaxation times at lower temperatures, whereas the �t to the entire
range shows deviations from the data points at the higher temperatures. (b) Relaxation
times τα from the decay of q(t) vs. 1/T . The �t line through the data for T < TMCT
demonstrates that at low temperatures, relaxation times can be better approximated
by an Arrhenius temperature dependence.

relation (VFT) expression.

τ = τ0 exp
[

1
(KVFT (T /TVFT − 1))

]
, (6.6)

that is often employed to describe relaxation times in glass formers. Previous work
has estimated the mode coupling temperature TMCT to be T = 0.435 from power
law �ts of relaxation times for higher temperatures (τ = τ0(T − TMCT )−γ ) [160]. In
Fig. 6.3 (a), we show VFT �ts to the relaxation times, by considering data only for
T > TMCT (τ0 = 0.3101, KVFT = 0.2243, TVFT = 0.2989), as well as the entire
range available. The VFT �ts to the high temperature data clearly overestimate the
relaxation times for T < TMCT . On the other hand, for the VFT �t to the full range
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(τ0 = 0.1175,KVFT = 0.1383, TVFT = 0.2592.), the VFT form does not provide a good
description of the data at higher temperatures. Fig. 6.3 (b) shows the same results in an
Arrhenius plot, which shows that at temperatures below TMCT , the slower increase of
relaxation times can be better approximated by an Arrhenius form. The value of the
activation energy barrier from the �t is∼ 15, which agrees well with the the previously
reported value in [41] at which the activation energy shows a possible saturation. Such
a crossover from super-Arrhenius to Arrhenius behavior has indeed previously been
observed [40, 41, 43]. Our results extend the range of temperatures explored.

6.3.2 Dynamical heterogeneity

We next discuss three quantities that are associated with dynamical heterogeneity,
namely the stretching exponent in the stretched exponential �ts to the relaxation func-
tions, βKWW , the non-Gaussian parameter α2, and the dynamical susceptibility χ4.
Stretching exponent(βkww): Dynamical heterogeneity in supercooled liquids is under-
stood in terms of the existence of regions with their inherent exponential relaxation
with di�erent relaxation timescales. The superposition of these di�erently relaxing
regions gives rise to the overall stretched exponential behaviour, and this behaviour
is identi�ed by the stretching exponent or the Kohlrausch-William-Watts (KWW) ex-
ponent mentioned as βkww previously in the long time relaxation of the correlation
functions. It is shown [261] that the relative variance of these di�erent relaxation
times increases monotonically with the decrease of the stretching exponent. Hence,
The decrease of the exponent clearly indicates the increase of the heterogeneity in
the system. We have extracted βkww from the four parameters �t mentioned earlier.
After an initial decrease, βkww almost saturates at further lowering of the tempera-
tures [262, 263]. We have also extracted βkww linearizing the stretched exponential
form for a better estimate of the exponent.

6.3.2.1 Stretching exponent (βkww)

The Kohlrausch-William-Watts (KWW) stretched exponential form exhibited by cor-
relation functions (q(t) and Fs(k, t) in our study) have been investigated as a manifes-
tation of heterogeneous dynamics [53, 264]. We extract the exponent βkww from the
�ts as expressed in Eq. 6.5, from q(t) as well as Fs(k, t) at k = 7.25, as shown in Fig.
6.4 (a). We also estimate βkww by linearizing the long time behavior of q(t), which can
be written as q(t) = fcexp(−(t/τ)β). From this, we can write (along the lines in [265]).

ln[− d
dt

[ln q(t)]] = ln(
β

τβ
) + (β − 1)ln t (6.7)



118 Chapter 6.

1 1.5 2 2.5 3
1/T

0.5

0.6

0.7

0.8

0.9

1
β

k
w

w
from q(t)

linearized q(t)
from F

S
(k,t)

T
MCT

(a)

10
0

10
2

10
4

10
6

10
8

10
10

t

10
-8

10
-6

10
-4

10
-2

10
0

- 
d
/d

t[
ln

q
(t

)]

0.55
0.52
0.5
0.47
0.46
0.45
0.44
0.435
0.43
0.42
0.41
0.4
0.39
0.38
0.37
0.365

T

Slope β-1

(b)

Figure 6.4: (a) The stretching exponent βkww is shown here as a function of the temper-
ature, obtained from stretched exponential �ts of the overlap function q(t) and Fs(k, t),
as well as by transforming the q(t) to obtain βkww from the resulting linearisation of
the data. (b) The transformation of q(t) used to estimate βkww from the linearised data.
The smallest q(t) value used is q(t) = 3× 10−3.

6.3.2.2 Non-Gaussian parameter (α2(t))

The non-Gaussian parameter α2(t) is de�ned as

α2(t) =
3 < r4(t) >
5 < r2(t) >2 − 1 (6.8)

and is a measure of how non-Gaussian the distribution of single particle displacements
is. In the case of normal di�usive dynamics the displacement distribution is Gaussian
and α2 is zero. In glass forming liquids, below the onset temperature [175, 266], the
parameter goes through a maximum at a characteristic time t∗ and is zero in the short
and the long time limits [14,16,53]. The peak value is taken as a measure of the degree
of heterogeneity, which increases with the decrease of the temperature. The time at
which the peak occurs, t∗, is considerably shorter than the alpha relaxation time τα .
Analysis presented in [16] showed that the heterogeneity re�ected in the behavior of
α2(t) is associated with clusters of spatially correlated mobile particles, and that the
time scale at which such heterogeneity is maximum is closely related to the di�usive
time scale (D/T )−1. We will return to these considerations below.
Fig. 6.5 (a) shows the α2(t) values for the range of temperatures studied, indicating
that both the peak value αpeak2 , and the time at which it occurs, t∗, increases upon
lowering temperature. We will discuss the behavior of t∗ further below when we com-
pare di�erent time scales emerging from our study. Fig. 6.5 (b) shows the temperature
dependence of the peak value αpeak2 , which displays a change in the temperature de-
pendence below TMCT , with values at lower temperatures falling below values one
may expect from an extrapolation of the high temperature behavior. The same trend
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Figure 6.5: (a) The non-Gaussian parameter α2(t) as a function of time. The tempera-
tures are indicated in the legends. (b) The peak value of the non-Gaussian parameter
α
peak
2 , increases monotonically upon lowering temperature, but displays a change in

the manner of increase around TMCT . (c) The same behaviour of αpeak2 is re�ected in
when plotted with the charactersitic time t∗

is re�ected in the the αpeak2 vs t∗ plot in Fig6.5 (c).

6.3.2.3 Dynamical susceptibility (χ4)

The dynamical susceptibility χ4(t) measures the �uctuations of the overlap function
q(t), and is de�ned (considering only A particles) as

χ4(t) =NA[< q(t)2 > − < q(t) >2]. (6.9)

The peak of the χ4(t) [50, 52] gives a measure of the amount of heterogeneity in the
system. In Fig. 6.6 (a), we show χ4(t) for the di�erent temperatures studied. Like
α2(t), χ4(t) exhibits a peak at a characteristic time τ4. We compare τ4 with other
characteristic time scales below. The peak height χpeak4 , shown in Fig. 6.6 (b), clearly
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Figure 6.6: (a) The dynamical susceptibility χ4 as a function of time. The tempera-
tures are indicated in the legends. (b) The peak value of χ4 shows a saturation at the
lower temperatures. (c)The χ4 vs characteristic time τ4 behaviour shows the change
in behaviour of the peak value across mode coupling temperature.

displays a crossover in behavior upon crossing TMCT , becoming nearly constant, and
possibly exhibiting a weak maximum. Our results are consistent with those obtained
in [41], and the change in behavior of χ4(t) observed for the 2 : 1 and 3 : 1 KA-BMLJ
model reported in [43]. In recent work on a metallic glass model [42], a clear peak in
the χpeak4 values is observed, along with a speci�c heat maximum, which are described
as manifestations of a fragile to strong crossover. As described later and in [41], no
evidence of a speci�c heat maximum is found in the present model. Further, it is argued
in [41] that the occurrence of the crossover near TMCT may be accidental. Our results
are not able to clarify the issue further, although the change in behavior inχpeak4 occurs
quite convincingly when TMCT is crossed. The χ4 vs characteristic time τ4 behaviour
shows the change in behaviour of the peak value across mode coupling temperature
(see Fig. 6.6 (c)).

To summarise brie�y the results so far, we see a change in the nature of dynamical
heterogeneity when the temperature is decreased below TMCT , most convincingly in
the case of χ4, but also in the case of α2(t). The stretching exponent βkww results
we have are su�ciently noisy that we can not draw any conclusions of a crossover in
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behavior, although they do indicate that the dynamics becomes more heterogeneous
as temperature decreases.

6.3.3 Mobile particle clusters and strings

Figure 6.7: Di�erent mobile clusters (left,in di�erent colours) and strings of mobile
particles (strings with more than four particles)has been shown in the system.

We next consider the statistics and morphology of clusters of particles that move in
a correlated fashion, which have been a subject of considerable study [15,16,42,43,48,
50, 51, 69, 267]. In particular, the time dependent size of spatially correlated clusters of
mobile and immobile particles, as well as string-like correlated mobile particles were
investigated in [16], as also the morphologies of such clusters. It was found that the
mean size of mobile particle clusters as well as strings displayed a non-monotonic time
dependence, exhibiting a peak size at a time scale tpeaknM and tpeakL respectively. These
time scales were found to closely track the time t∗ at which α2(t) exhibits a maximum,
and in turn, the di�usion time scale (D/T )−1. It was found further in [16] that clusters
of immobile particles exhibit a maximum mean size at a time that corresponds to the
alpha relaxation time. In the present work, we do not investigate immobile particle
clusters, but focus attention on clusters of mobile particles and strings.
The large values of the non-Gaussian parameter for times ∼ t∗ has been shown in
several works [14, 48] to correspond to the presence of a sub-population of particles
that move much farther than the remaining particles. Such particles have further been
shown to be spatially correlated. In these investigations, analysis of spatially corre-
lated clusters was performed by considering the top 5% most mobile particles, which
we also follow here (other works employ slightly di�erent fractions; while the choice
of the subset of mobile particles is thus arbitrary, qualitative behavior that emerges
from such choices is not sensitively dependent on the choice). For any given time t,
mobile particles identi�ed as the 5% most mobile particles at that time are de�ned to
belong to the same cluster (see Fig. 6.7) if they are within a distance 1.4σAA of each
other (We consider distances at the time the clusters are identi�ed, but do not �nd
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Figure 6.8: The average size of mobile clusters and strings, shown in (a) and (b), exhibit
maxima at characteristic time scales tpeaknM and tpeakL respectively. (b) The time scales
t
peak
nM and tpeakL plotted as functions of time t∗.

signi�cant changes in the distribution of clusters if the separation of particles at the
initial time is considered instead). The average of the sizes of these clusters is nor-
malised by the average cluster size when the subset labeled as mobile is randomly
chosen in the initial con�guration. In practice, we compute the normalisation based
on labeling particles as mobile considering their displacements in the �rst integration
step at the time origin.
We next consider string-like cooperatively moving particles. Strings have been iden-
ti�ed as groups of mobile particles such that the position of one of the particles is
occupied by another particle at a later time [15]. After we identify mobile particles at
a time t, we check if the ith mobile particle has been replaced by the jth mobile parti-
cle within the radius δ over the interval t. If so, those two particles are considered to
form a string (see Fig. 6.7). Here, two particles are identi�ed as belonging to the same
string if |rj(0)−ri(t)|] < 0.6σAA. It has been observed that for a given i, multiple other
particles may satisfy such a criterion, in which case, the particle j which has the min-
imum distance |rj(0)− ri(t)|] is identi�ed as the particle that replaces i. In computing
the average string length, we include particles that are not connected with any other
as strings of length 1, so that at very short and very long times, the average length of
a string tends to a value of 1.
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Fig. 6.8 (a) shows the time dependence of the mean size of mobile clusters, which ex-
hibit a maximum at a characteristic time tpeaknM . The mean length of strings is shown
as a function of time in Fig. 6.8 (b), which exhibits a maximum at a characteristic time
t
peak
L . These times are plotted against the time t∗ at which α2(t) is maximum, in Fig.

6.8 (c). Consistently with observations in [16], these times are seen to be essentially
the same (but see below for further discussion on this point).

6.3.4 Summary of various timescales
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Figure 6.9: Di�erent time scales, τα (from q(t) and Fs(k, t)), τ4, t∗, (D/T )−1, tpeaknM , tpeakL ,
plotted against 1/T in an Arrhenius plot. All time scales show a crossover to Arrhenius
behavior at low temperatures. They fall in to two groups: τα and τ4 are larger and have
stronger T dependence, whereas t∗, (D/T )−1, tpeaknM , and tpeakL , are smaller, and show
weaker T dependence.

We have reported above on di�erent characteristic times, de�ned with respect to
structural relaxation and dynamical heterogeneity. We summarise the temperature
dependence of these time scales here and compare them with each other. Fig. 6.9
shows an Arrhenius plot of the alpha relaxation time τα (from q(t) and Fs(k, t)), the
di�usion time scale (D/T )−1, the time at which χ4, α2, the size of mobile particles nM ,
string length L show maximum values, which are, respectively, τ4, t∗, tpeaknM , and tpeakL .
The time scales shown fall into two groups: The time scales τα and τ4 are essentially
the same, as previously observed [50–52,59,268]. The remaining time scales, (D/T )−1

(which has been scaled to match the magnitude of the others at one reference tem-
perature), t∗, tpeaknM , and tpeakL , also exhibit the same temperature dependence, which is
milder than that of τα [16, 59]. We note that recent work on a metallic glass former
indicates that tpeaknM is larger than t∗ ∼ tpeakL and is equal to the time scale associated
with the Johari-Goldstein process [42], although all these time scales exhibit a milder
temperature dependence than the alpha relaxation time τα . Such a distinction is not
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apparent from our present results.
The decoupling of the di�usion time scale and the alpha relaxation time scale have
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Figure 6.10: (a) the vertical blue line in the Dτα vs T plot represents the TSEB at
which the Stokes-Einstein relation breaks down. The temperature TSEB is identi�ed
as the temperature (T ∼ 0.55) at which Dτα signi�cantly increases from the Dτα =
const. value at high temperature, shown by the horizontal red line. (b)The di�usion
coe�cient D is shown against τα exhibiting the breakdown of the Stokes-Einstein
relation. A �t to high temperature data with exponent −1 is shown for reference.
Results below T = 0.8 exhibit a best �t exponent of −0.81 and the behavior in this
regime does not show any indication of a crossover around TMCT . The Dτα vs τωα
plot show fractional positive value of ω = 0.19. The relation between ξAG and ω
satis�es with the relation 1 + ξAG =ω.

been investigated extensively ( [53–55, 58, 59, 269–278] and references therein), in the
context of the breakdown of the Stokes-Einstein relation, employing τα as being pro-
portional to the viscosity [53]. We consider the breakdown of the Stokes-Einstein
relation in order to investigate whether it reveals any indication of the crossover in
dynamics around TMCT , as reported in [42]. In the plot of Dτα vs T , the vertical
blue line shows the temperature at which SER breaks down. The data points at high
temperatures have been �tted into a horizontal red line. When theDτα value substan-
tially varies from this constant value, we identify that temperature as the breakdown
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temperature or TSEB. The signi�cant deviation ofDτα from the constant value occurs
around T ∼ 0.55, which matches well as shown in Ref. [53] at around T ∼ 0.52. We
plot the di�usion coe�cient D vs. τα in Fig. 6.10. The results clearly display a break-
down of the Stokes-Einstein relation, consistently with previous results in [53, 58],
but do not exhibit any marked change in behavior around TMCT . The breakdown
exponent ξ we obtain by �tting the D values to the form D ∝ τ−ξ

SE

α is ξSE = 0.81,
which is consistent with values in the range 0.78 to 0.83 previously reported [53,58].
In another representation we have shown Dτα vs τα (see Fig. 6.10). We have �tted a
power-law �t ofDτα vs τωα . The positive fractional value ofω (0.19) indicates the SER
breakdown. The relation between ξSE and ω satis�es with the relation 1 + ξSE =ω.
As it has been shown previously [16, 59], we also see t∗ is the inverse relaxation time
that corresponds to D/T . The plot of t∗ vs (D/T )−1 shows an exponent of ∼ 0.95 for
the whole temperature range (see Fig.6.11). Even though there is a recent �nding of
decoupling of these two timescales at lower temperature [42] for metallic glasses, we
do not see any signi�cant di�erence across the crossover temperature.
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Figure 6.11: t∗ vs (D/T )−1 shows an exponent of ∼ 0.95 for the entire temperature
regime. The orange line is of exponent of 1.

6.3.5 Morphology of correlated rearrangements

In addition to the sizes of rearranging regions, there has been considerable interest in
analysing the morphology of the correlated rearranging regions. In addition to inves-
tigations of string-like cooperative motion already mentioned [15], the observation
of string-like rearrangements at temperatures accessed in computer simulations had
led to theoretical analysis within the framework of the random �rst order transition
theory (RFOT) [69], leading to the prediction of a crossover of rearranging regions
from compact to fractal morphology at the dynamical transition temperature, iden-
ti�ed with the mode coupling transition. In [16], the fractal dimensions of mobile,
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Figure 6.12: The fractal dimension of mobile clusters: (a) The dependence of the size
of the clusters on the radius of gyration, for di�erent temperatures. (b) The fractal
dimensions df shown as a function of τα or temperature (inset) reveal a marked change
as TMCT is traversed. The horizontal lines mark df = 2.0 and df = 2.5 respectively,
for reference.

immobile clusters and strings were analysed. It was found that mobile and immobile
clusters exhibited a change in the fractal dimension from df ∼ 2 to df ∼ 2.5 as the
temperature was lowered, and strings exhibited a change from df ∼ 5/3 to df ∼ 2.
For mobile and immobile clusters, the fractal dimensions found were described as be-
ing in the range of the df value of 2 for lattice animals, to df = 2.5 observed for
branched polymers with screened excluded volume interactions. Similarly, df = 5/3

is the fractal dimension for self-avoiding walks, and df = 2 is the fractal dimension
for self-avoiding walks with screened excluded volume interactions. We consider here
the fractal dimensions for mobile clusters, following the results in [16], to investigate
whether a crossover in the cluster morphology is observed that accompanies the dy-
namical crossover.
For a cluster of size n, we may de�ne the fractal dimension df from its dependence of
the radius of gyration,

n ∼ R
df
g (6.10)

where,
R2
g =

1
2n2

∑
i,j

(ri − rj)2 (6.11)

The results obtained at di�erent temperatures of the dependence of the cluster size
on the radius of gyration are shown in Fig. 6.12 (a) for mobile clusters. As observed
in [16], the cluster size does not depend on Rg with a single power law exponent,
which indicates that as the clusters grow larger, their morphology changes. We con-
sider clusters of size > 5 and at each temperature, and obtain the fractal dimension
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with a single best �t to the form in Eq. 6.10. Such a procedure will provide an un-
derestimate of the fractal dimension of the largest clusters, but alternate procedures
lead to comparable estimates. The fractal dimensions so obtained are shown in Fig.
6.12 (b), both as a function of temperature (inset) and of τα . Remarkably, we �nd that
a clear crossover is observed for the fractal dimension in each case, showing that the
dynamical transition we observe is indeed accompanies by a change in the morphol-
ogy of correlated rearranging regions. Although Fig. 6.12 (a) suggests that the largest
clusters approach a fractal dimension of df = 2.5, our numerical estimates saturate at
a lower value.

6.3.6 Thermodynamics

We consider next the thermodynamic aspects of the dynamical crossover observed.
As mentioned in the introduction, the fragile to strong crossover has been associated
with the presence of a speci�c heat maximum. We thus �rst consider the constant
volume speci�c heat Cv obtained by di�erentiating numerically the internal energy
with temperature. The resulting speci�c heat, shown in Fig. 6.13 (a), displays a mono-
tonic increase as the temperature is decreased, consistently with [41]. We note that
the presence of a speci�c heat maximum has been reported in [259,279] for the model
studied here and a similar binary mixture glass former in a similar temperature range
as the lowest temperatures we study, which may have arisen either as a result of a
lack of equilibration or system size e�ects. Such a maximum has also been reported in
a metallic glass model which exhibits a more marked fragile to strong crossover [42].
Our results indicate that the dynamical crossover we observe is not related to the pres-
ence of a speci�c heat maximum, at least in the temperature range investigated.

A related quantity that has been investigated in the context of the fragile to strong
crossover (e. g., in the context of silica [32, 280]) is the average energy of local energy
minima, or inherent structures, eIS , as a function of temperature. The average inherent
structure energy displays a 1/T dependence for, e. g., KA-BMLJ [74,281], but displays
deviations for liquids displaying a fragile to strong crossover. The inherent structure
energies shown in Fig. 6.13 (b) do indeed show a 1/T temperature dependence below
T ∼ 0.7, and more importantly, do not show any indication of a deviation from the
1/T behavior down to the lowest temperatures investigated.
We next consider the Adam-Gibbs relation, which relates dynamical properties such
as relaxation times in glass forming liquids, to the con�gurational entropy, a thermo-
dynamic quantity. The relationship can be written as

τ = τ0 exp

(
A
T Sc

)
(6.12)
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Figure 6.13: (a) The speci�c heat Cv , plotted against temperature, shows a monotonic
increase as the temperature is lowered. (b) The inherent structure energy eIS plotted
against inverse temperature, shows a 1/T dependence at all temperatures below T ∼
0.7.

and has been investigated extensively, both experimentally and in computer sim-
ulations [16, 31, 52, 73–75, 176, 282] (where τ is a relaxation time scale, either τα or
the di�usion time (D/T )−1 in most studies, including here). While several computa-
tional investigations �nd the Adam-Gibbs relationship to be valid, recent work [43,76]
raises questions about whether results from an extended range of temperatures would
continue to validate the relationship. We note in particular that in [76], an extrapo-
lation of relaxation times were performed using a parabolic law, which, however, has
been found to be valid for the present system in only a limited temperature range,
with deviations at higher temperatures and indication of deviations at lower temper-
atures as well [41]. Thus, accessing directly the relaxation times over a temperature
window across which the character of dynamics may change provides a more reliable
test. Given the crossover in dynamics in the system investigated here, by performing
simulations over a much wider range of relaxation times than the previous studies
mentioned, we consider whether the Adam-Gibbs relation continues to hold in this
extended range of temperatures.
The con�gurational entropy is calculated by subtracting the vibrational entropy as-
sociated with individual glasses (or basins of free/potential energy minima or inher-
ent structures) from the total entropy of the liquid. Based on the observation that
a harmonic approximation to the basin free energy provided a satisfactory descrip-
tion [174, 175] below the onset temperature for the KA-BMLJ, the vibrational entropy
has been evaluated in the harmonic approximation [52,58,74,75,174,281]. However, it
has been found necessary to incorporate anharmonic corrections for other systems in-
vestigated, which have been done in several ways, as reviewed in [176]. The procedure
used to obtain the total entropy, and the vibrational entropy, at a given temperature T
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Figure 6.14: (a) The vibrational entropy along with the total entropy is shown as a
function of the temperature. The vibrational entropy computed according to the har-
monic approximation (Shvib) as well as by including the anharmonic correction (Sanhvib ),
are shown. (b) The con�gurational entropy is shown as a function of the temperature,
obtained by subtracting from the total entropy the vibrational entropy without (Shc )
and with (Sac ) the anharmonic correction.

and density ρ are described in Chapter 2. [283].

Accordingly, we �rst compute the con�gurational entropy employing the har-
monic approximation for the basin entropy. The computed entropies, and the con-
�gurational entropies, are shown in Fig. 6.14 (a) and (b) respectively.
In Fig. 6.15 we show the Adam-Gibbs plots for logτα and the di�usion time scale
log(D/T )−1, plotted as a function of

(
T Shc

)−1
, where Shc is the con�gurational entropy

in the harmonic approximation. The Adam-Gibbs plots, for both τα and (D/T )−1,
show that for temperatures below TMCT , a deviation is observed from the linear be-
havior observed at temperatures above TMCT .
Although similar results have been reported in various contexts [43,75,76], the obser-
vation of deviations raise questions about the relevance of anharmonic e�ects, since
several results clearly show a change in the energy landscape topology when the mode
coupling temperature is crossed [130,284–287]. We thus compute the anharmonic cor-
rection to the vibrational entropy and the con�gurational entropy [16, 176, 288–290]
as we describe below.

The vibrational entropy with anharmonic corrections are shown in Fig. 6.14 (a),
and the con�gurational entropies with anharmonic corrections are shown in Fig. 6.14
(b). Although the change in vibrational entropies appears small in Fig. 6.14 (a), inclu-
sion of anharmonic contributions leads to a substantial change in the con�gurational
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Figure 6.15: Adam-Gibbs plots of di�usion time (D/T )−1 and ταA employing con�g-
urational entropies Shc obtained with the harmonic approximation to the vibrational
entropies. A change in slope is observed around TMCT , indicated by the vertical line.
The �tted Adam-Gibbs coe�cient A for di�usion times is AD = 1.30,0.95 (D0 =
2.69,4.96) at temperatures above and below TMCT . Similarly, for τα , Aτ = 1.73,1.24
(τ0 = −1.53,1.62) at temperatures above and below TMCT . The blue lines are �t lines
for the data in the range of T > TMCT which are extrapolated to T < TMCT and the
magenta lines are �t lines for the data in the range of T < TMCT which are extrapolated
to T > TMCT .
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Figure 6.16: Adam-Gibbs plots of di�usion time (D/T )−1 and τα employing con�gura-
tional entropies Sac obtained with the anharmonic corrections included in evaluating
the vibrational entropies. The Adam-Gibbs relation is valid across TMCT , indicated by
the vertical line. The �tted Adam-Gibbs coe�cient A for di�usion times is AD = 1.67
(D0 = 2.2)„ and similarly, for τα , Aτ = 2.19 (τ0 = −2.1 ). The blue lines are �t lines
for the whole temperature range.

entropies, as seen in Fig. 6.14 (b). The corresponding Adam-Gibbs plots are shown
in Fig. 6.16. Both logτα and log(D/T )−1 are linear in (T Sac )−1 (where Sac is the con-
�gurational entropy obtained after including anharmonic corrections), indicating that
they obey the Adam-Gibbs relation across the entire temperature range as was found
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Figure 6.17: Anharmonic corrections to the energy, along with polynomial �ts accord-
ing to Eq. 2.40.

in previous studies of water [288,289]. We note that the results in this case are noisier,
owing to the numerical errors involved in obtaining the anharmonic correction, which
needs to be improved upon. However, no systematic deviation from the high temper-
ature Adam-Gibbs behavior is seen at low temperatures, barring small deviations at
the lowest two temperatures for which the results are the least reliable. We thus con-
clude that the observed deviations when the harmonic approximation is used are an
artefact of an improper accounting of the vibrational entropy. It is important to note
further that, even disregarding the data at temperatures above TMCT , the Adam-Gibbs
relation is seen to be valid for roughly three decades of relaxation times below TMCT .
In order to evaluate the anharmonic contribution to vibrational entropy, we consider
1000 inherent structures at each temperature Tp. For each of them, a short simula-
tion (of 1000 integration steps, using a time step of 0.005) is performed for a range of
temperatures T from close to 0 to Tp. The simulation is chosen so that (a) it is longer
than the time required for the system to thermalize (as we verify), and (b) not much
longer than the caging time, as judged by the plateau of the mean squared displace-
ment, so that a roughly constant energy is obtained in this time window. The energies
from 150 to 650 (150 to 500 for the highest two temperatures) steps are averaged to
obtain estimates of Evib(T ), from which Eanh(T ) is calculated. The resulting data, for
each Tp is �tted to the form Eq. 2.40, with nmax = 4 (except for Tp = 0.9 for which
we use nmax = 5, from which Sanh(Tp) is computed. The �t coe�cients for selected
temperatures are shown in Table I below.We show the anharmonic corrections to the
energy, along with the �t lines, in Fig. 6.17.
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Tp c2 c3 c4
0.8 -0.0765996 0.0787235 0.011623
0.7 -0.0973854 0.10679 0.0143602
0.6 -0.0922832 0.0587472 0.056073
0.55 -0.0914617 0.0269616 0.0859847
0.52 -0.0964523 0.026074 0.0820558
0.5 -0.09677 0.00530751 c=0.10677
0.47 -0.101674 -0.00922972 0.123299
0.46 -0.104524 -0.00645234 0.117956
0.45 -0.105043 -0.0221009 0.142661
0.44 -0.0447678 -0.307807 0.464361
0.435 -0.110282 -0.0195387 0.137634
0.43 -0.111109 -0.0171819 0.131073
0.42 -0.112789 -0.030111 0.154218
0.41 -0.117866 -0.0162058 0.1348
0.4 -0.121862 -0.0144479 0.13501
0.39 -0.124955 -0.0192352 0.141607
0.38 -0.131393 -0.00304849 0.122281
0.37 -0.134462 -0.00880651 0.131821
0.365 -0.134091 -0.0263324 0.16287

Table 6.1: Fit coe�cients cn in Eq. 2.40 from �ts shown in Fig. 6.17.

6.4 Discussion and conclusions

We have described several dynamical quantities, including those that describe dynam-
ical heterogeneity and the morphology of rearranging regions, that demonstrate a
crossover in the dynamics, when the mode coupling temperature is crossed, with re-
laxation times better approximated by an Arrhenius temperature dependence at lower
temperatures. Although it is tempting to describe it as a fragile to strong crossover,
whether the dynamical crossover we see is a fragile to strong crossover as originally
proposed by Angell [24–26] is open to question. Unlike liquids with energetically fa-
vorable tetrahedral structure (such as water, for which the fragile to strong crossover
was originally proposed, and silica), the model we investigate does not display a ther-
modynamic signature of a change in regime in the form of a heat capacity maximum.
On the other hand, several glass forming liquids typically described as fragile glass
formers do display some form of a crossover at low temperatures [282], as also seen
in computer simulations (for, e. g., a model of ortho-terphenyl [291]). A crossover has
been predicted as a generic feature in [69] within the RFOT, and in extended mode
coupling theory [292]. Our results do indicate a signature in the changes in morphol-
ogy of rearranging regions, although with some modi�cations as compared to those
envisaged in [69]. In seeking further a structural explanation, it will be interesting to
investigate also the morphology of immobile particles, which we have not attempted
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in this work, in conjunction with investigations of locally preferred structures [293].
Investigating the Adam-Gibbs relation, we �nd deviations from the high temperature
conformity to the Adam-Gibbs relation at temperatures lower than TMCT , when a har-
monic approximation to the vibrational entropy is employed. However, inclusion of
anharmonic contributions in estimating the vibrational entropy leads to the conclu-
sion that the Adam-Gibbs relation is valid across the temperature range we study. A
more rigorous estimation of the vibrational entropy than what we have presented here
should be attempted in light of the results we present here. Another issue to consider
in the present system is the possible role of �nite size e�ects. Based on the available
results, it has been argued in [41] that the observed dynamical crossover is unlikely
to be a result of �nite size e�ects. We haven’t addressed this aspect any further in
the present work, but with the present day computational resources, this is a question
that can be more satisfactorily addressed at the present time. Our work, and related
work that has been described, illustrates that exploring the nature of dynamics be-
low the mode coupling crossover is now feasible computationally. Exploration of such
low temperature dynamics should help bridge the gap between the temperature range
computer simulations have been able to access in the past, and the temperature range
relevant for several experimental and theoretical results.
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Chapter 7
Conclusions

In this chapter, we summarize the main �ndings of the thesis, their implications, and
the aspects of the works that merit further investigation. The work in the thesis falls
under two main themes. One theme is the study of a range of disordered systems un-
der cyclic deformation, and the other is the study of supercooled liquids at very low
temperatures.

In the �rst work chapter, Chapter 3, we have presented the study of the reversible-
irreversible transitions in sphere assemblies under the application of oscillatory shear
deformation for a range of densities across the isotropic jamming density. The ex-
tremum of the densities represents very di�erent systems like low-density colloids or
very high-density glasses. Our work shows that even if the systems are very di�erent,
the transitions from a reversible state to an irreversible state have similarities and cer-
tain di�erences. Reversible-irreversible transition across the whole density spectrum
has been identi�ed by the onset of di�usion. All the transitions have been identi�ed
by the discontinuous changes in the appropriate quantities. One very interesting as-
pect of the work is the identi�cation of a jamming density termed as φcycJ , a higher
density compared to the isotropic jamming density (φJ ). The signi�cance of this den-
sity is that an unjammed pocket has emerged between φJ and φcycJ that has facilitated
the study of frictionless shear jamming above isotropic jamming density φJ and as-
sociated dilatancy. This work leaves some interesting directions to be explored by
further investigation. One such direction is establishing a correspondence between
cyclic shear jamming (with added friction) and irrevresible transition. This connec-
tion could be complementary to the yielding and the irreversible transition at the high
density limit. Finally, the question can be asked about how robust the phase diagram
is. For a further better understanding of the phase diagram, the inclusion of friction,
thermal �uctuation, or noise will be an interesting avenue to explore.
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In Chapter 4, we have studied the annealing of the glassy system under oscillatory
shear deformation. We have studied the yielding behavior of the system under cyclic
shear deformation at a �nite rate and a �nite temperature. As observed previously
for the athermal deformation cases, we also found that the system anneals or accesses
the lowest possible energy when the amplitude of the deformation is closest to the re-
spective yielding transition amplitude (γy). It has been shown that driving the system
with a �nite rate and a temperature helps it access lower energies than the energies
accessed through athermal driving. But at the temperature regime where the system
can be equilibrated by the thermal �uctuations alone, the mechanical driving does
not o�er a faster sampling. Interestingly, the sheared con�gurations generated under
optimal conditions are equilibrium like in terms of structure, energy, and degree of
anisotropy.

With the follow up of the work in Chapter 4, in Chapter 5, we show the overag-
ing of the glassy system under the application of oscillatory deformation. We have
found that mechanical perturbation does not o�er a faster sampling at a comparatively
higher temperature, where the thermal �uctuations can equilibrate the system. But at
a relatively lower temperature, where the system enters the aging regime and cannot
be equilibrated, mechanical driving makes the relaxation faster. Mechanical driving,
along with thermal �uctuation, helps the system access lower energies faster; in other
words, it helps the system ‘overage’. It is an interesting question to pursue under what
conditions mechanical perturbation becomes a more signi�cant component than the
thermal �uctuation that helps the system access lower energy minima. It is interesting
to �nd out how overaging changes system properties such as mechanical properties
as aging glasses (like polymer glasses) have vast and signi�cant applications.

In Chapter 6, we have studied a dynamical crossover in a model glass former. We have
studied di�erent dynamical quantities, dynamical heterogeneity, and morphology of
correlated rearrangements. Such dynamical quantities signify a crossover in dynam-
ics in the system around the mode-coupling temperature. Even though the dynamical
measurements hint at a non-Arrhenius to Arrhenius transition in an otherwise well
known fragile glass-forming liquid, the nature of transition remains di�erent than the
extensively studied fragile to strong transition in anomalous liquids. Even though a
dynamical crossover is observed, no associated change in thermodynamic quantities
has been found. A proper estimate of con�gurational entropy (with the anharmonic
correction added to the estimate of the vibrational entropy) shows that the Adam-
Gibbs relation holds reasonably well across the crossover temperature. This work
contributes to the recent �ndings of fragile to strong transitions in a range of systems
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that are otherwise known as fragile glass formers at comparatively lower tempera-
tures. The nature of this transition remains to be understood further in the absence
of obvious structural changes. This work also emphasizes the role of anharmonicity
in the proper enumeration of entropy and demands further re�ned estimation of the
entropy.
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Appendix A
Appendix

A.1 Minimization methods and contact numbers

In this section, we describe the dependence of the contact numbers on the minimiza-
tion methods. Relevant details and de�nitions of the contact numbers are described.

A.1.1 Dependence of geometric contacts on the minimization
protocol

The con�gurations in the unjamming region have a �nite value of Z . This is due
to the minimization method used during AQS simulations [294]. We use the FIRE
minimization protocol during AQS steps and show that the unjammed con�gurations
so obtained hasZ = 0. In Fig. A.1 we show how the distribution of the contact numbers
changes for di�erent minimization protocols. In Fig. A.2, we show the evolution of
the average contact number as a function of γaccum, for CG and FIRE protocol. We
observe that the geometric contact number rapidly falls to zero when we use FIRE.
By using di�erent tolerance (ε) values to identify the geometric contacts (like the
mechanical contacts), Z from the CG approaches the Z from the FIRE, see Fig. A.2.
Even though FIRE removes overlaps completely, computationally FIRE is almost one
order of magnitude slower compared to CG.

A.1.2 Mechanical contacts

In jammed packings especially close to φJ there are always rattler particles. Rattler
particles do not belong to the stress carrying rigid network of a jammed packing. The
percentage of rattler particles depends on the density of jammed packings and pro-
tocol. The higher the packing fraction the lower is the percentage of rattlers. For

139



0 2 4 6 8 10 12
Z

0

0.05

0.1

0.15

0.2

0.25
p
(z

)
cyc 0
cyc 1
cyc 10
cyc 100

cyc 500

φ = 0.653, γ
max

 = 0.05
 SD

0 5 10
Z

0

0.05

0.1

0.15

0.2

0.25

p
(Z

)

cyc 0

cyc 5

cyc 10

cyc 100

cyc 1000

cyc 51195

φ = 0.653    γ
max

 = 0.05
 CG

0 2 4 6 8 10 12
Z

0

0.2

0.4

0.6

0.8

1

p
(Z

)

cyc 0
cyc 1
cyc 2
cyc 3
cyc 4

cyc 75

φ = 0.653, γ
max

 = 0.05
 FIRE

Figure A.1: The distribution of contact numbers shows with the increase of cycles
numbers, the peak of the distribution moves slowly to a lower value than 6 with SD
and CG minimization. In the case of CG, along with the shift of the peak, the zero
contact number increases slowly. In the FIRE method, the average contact number
goes to zero pretty fast as the system unjams.

frictionless particles, the geometric criterion for identifying rattlers is that they have
contact number z < D+1. A more robust criterion is a mechanical one, that is, rattlers
are particles that do not carry any forces or stresses. However this mechanical crite-
rion requires us to introduce a tolerance to identify a contact that carry stress due to
the minimization protocol and the precision of computation. In Fig. A.3, we show the
cumulative distribution of overlaps for a jammed and an unjammed packing. Ideally
the tolerance value is r −σ = 0 but due to the �nite precision of the minimization and
protocol details we use a tolerance value of 10−10 (shown as a vertical dashed line in
Fig. A.3). Observe that for a jammed packing, we can clearly see that the two distribu-
tions are well separated, i.e., contacts that carry stress and those that do not. We also
show the cumulative distribution for a quadruple (quad) precision minimization, see
Fig. A.3. We see that with quadruple precision, we can lower the tolerance value but
the contacts that carry stress do not change. Note that in the jammed case, the con-
tacts that have small overlaps with double precision computation, are removed when

140



10
0

10
1

10
2

10
3

γ
accum

0

1

2

3

4

5

6

7

8

Z

CG (ε =0)

CG (ε  = − 10
−14

)

CG (ε  = − 10
−12

)

CG (ε  = − 10
−10

)

FIRE (ε = 0)

φ = 0.653
γ

max
 = 0.05 

(a)

10
3

10
4

10
5

10
6

10
7

MC Step

0

0.5

1

1.5

2

Z

φ = 0.653 
γ

max
 = 0.05

(b)

Figure A.2: (a)The average contact number Z as a function of γaccum, shown for φ =
0.653, for the CG method, with di�erent tolerances, and the FIRE method. Compared
to the conjugate gradient method, the Fire algorithm performs better minimization and
removes all the contacts. (b) Once the system unjams the hard sphere MC simulation
also brings down the contact number of the system to zero.

we perform quadruple precision computation. In Fig. A.4, we show the full cumula-
tive distribution of the contacts for a jammed and an unjammed con�guration. For an
unjammed con�guration the plateau is below 2D and for a jammed con�guration the
plateau emerges above 2D .
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Figure A.3: Cumulative distribution of overlaps for a jammed and an unjammed pack-
ing at φ = 0.653, for two precision values. The vertical dashed line shows the toler-
ance value we use to identify ZM .

We have shown that the results do not depend on the choice of cuto�. With a bet-
ter precision of minimization, this cuto� can be shifted to a much lower value. While
de�ning the rattlers, we have calculated the contact network for that given con�g-
uration and identify rattlers for that given con�guration as particles with less than
D + 1 = 4 contacts (see above). We do not generate the contact network iteratively,
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Figure A.4: The full cumulative distribution of contacts (interparticle separation r both
above and below σ ) for an unjammed and a jammed con�guration shows plateau be-
low and above 2D respectively. The vertical lines indicate r = σ .

and thus our procedure is di�erent from Ref. [210]. As reported in [295], where we do
such a computation, the iterative or ‘bootstrap’ procedure generate contact numbers
that agree well with the mechanical contact number.

A.1.3 Fraction of non-rattlers at di�erent phases

The fraction of the non-rattlers in the jammed phase (absorbing (A) and yielded phase
(Y)) is around 0.95, slightly higher than the fraction of non-rattler percentage (0.82)
mentioned [111]. In the unjammed phase the fraction is lower than the cuto� men-
tioned in [111] as can be expected(see Fig. A.5). At this point, we will mention that in
the latter part of this chapter, we have discussed the procedure of counting contacts
for the unjammed systems fNR values for the jammed phase (A and Y) are consistent
with the fNR value of the initial unsheared jammed con�gurations. In the study of 2D
frictional shear jamming [295], the value of the fraction of non-rattlers (fNR) at the
shear jamming transition ranges from (0.8-0.93) depending on the density and proto-
col.

A.1.4 Contacts below isotropic jamming density φJ

First, we mention the details of how to de�ne contacts for low density systems below
isotropic jamming density. Above φJ , we have done structural characterisation of the
system in di�erent phases and have identi�ed di�erent phases depending on various
contacts. De�ning contacts in a similar way for the unjammed phases below isotropic
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jamming density is not useful. We have seen that for low density con�gurations, con-
jugate gradient minimization removes the contacts further away than r = σ . We have
found that contact numbers are zero for comparatively small and intermediate ranges
of amplitudes, below φJ . This range of amplitudes span LR and PR phases. Therefore
we have performed two rounds of minimization in such cases. First, we take steady
state con�gurations sheared with the minimization method CG. Then we apply fur-
ther deformation cycles accompanied by the SD minimization method. As shown in
Chapter 2, the SD minimization method does not remove the contacts very far apart.
So the cumulative distribution of contact numbers Z(r) shows a plateau when plotted
as a function of r − σ . With a proper choice of tolerance of r − σ (10−12), we can de-
�ne contact numbers even for smaller amplitudes (the choice of tolerance and details
has been described earlier). We show (Z(r)) vs r − σ plot for con�gurations obtained
through shearing via CG minimization and con�gurations obtained through further
shearing via SD minimization (see Fig. A.6) for two representative packing fractions
(φ = 0.627 and φ = 0.638). That way, we can have a �nite value of contact numbers
for all the amplitudes in all the phases when minimized using SD.
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A.2 Equilibriumproperties of binarymixture ofKob-
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Figure A.7: (a) Relaxation times from molecular dynamics simulations vs. temperature,
and the corresponding �t to the VFT form. (b) The con�gurational entropy density as
a function of the inherent structure energy, and a quadratic �t. The extrapolated value
of IS energy at which con�gurational entropy vanishes is (≈ −7.15).

In Fig. A.7 (a), we show VFT �ts to the relaxation times (Kob- Andersen 80:20
mixture), �rst by considering temperatures only for T > TMCT (τ0 = 0.3101, KVFT =

0.2243, TVFT = 0.2989). The VFT �ts to the high temperature data clearly overesti-
mate the relaxation times for T < TMCT . On the other hand, for the VFT �t to the full
range (τ0 = 0.1175, KVFT = 0.1383, TVFT = 0.2592.), the VFT form does not pro-
vide a good description of the data at higher temperatures [240]. Fig. A.7. (b) shows
con�gurational entropy (Sc) vs eIS plot [74] with the lowest estimated value of eIS to
be at ≈ −7.15 which con�gurational entropy vanishes.

A.3 Stress in cyclically sheared glassy con�gurations

In Fig. A.8 we show the shear stress (σxy) arising from the interaction of the particles
in stroboscopic con�gurations (at the end of each cycle of strain) obtained by shearing
at a rate γ̇ = 10−5, temperature T = 0.3 across the yielding transition amplitude (γy),
which is γmax = 0.035 for these parameters. As long as the strain amplitude stays
below the yielding amplitude, the stroboscopic shear stress values �uctuate around
zero, similar to the initial undeformed con�gurations. Beyond the yielding amplitude,
the stroboscopic con�gurations retain a �nite amount of stress (see Fig. A.8(a)). This is
also realisable from the evolution of the shear stress within a shearing cycle. The area
under the stress-strain curve is negligible when the system is sheared at amplitudes
below the yielding transition amplitude. Beyond the yielding amplitude, a �nite area
under the curve emerges signifying the onset of built-in stress in the system as shown
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earlier in Fig. 4.1. We show in Fig. A.8 (b) the distribution of the shear stress per
particle in a stroboscopic con�guration at a strain amplitude very close to but below
the yielding amplitude, which are also seen to be symmetric around zero. Thus, we
demonstrate that we are indeed generating low energy structures without any built-in
stress.
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Figure A.8: (a) Distributions of the global shear stress of stroboscopic con�gurations
(at the end of each cycle) are shown for di�erent strain amplitudes across the yielding
(γmax = 0.035 in this case) in comparison to the initial undeformed con�gurations. As
long as the strain amplitude is less than or close to the yielding amplitude the shear
stress �uctuates around zero in stroboscopic con�gurations. Beyond yielding, strobo-
scopic con�gurations retain a �nite mean value of shear stress. (b) Distribution of xy
components of the stress tensor evaluated for individual particles, in a con�guration
obtained by shearing close to yielding amplitude (γmax = 0.035), which is seen to be
symmetric around zero.

A.4 wavelength dependence of correlation functions

The Fs(k, t) curves (of binary mixture of Kob-Andersen 80:20 mixture) are shown in
Fig. A.9 for several k values, along with �ts of the following form

Fs(k, t) = (1− fc)exp(−(t/τs))
n + fcexp(−t/τα)βkww (A.1)

. The �t values obtained, of τα(k), βkww(k) and fc(k) are shown in Fig. A.10. The
Fs(k, t) curves are shown in Fig. A.9 for several k values, along with �ts to the same
form as above for q(t). The �t values obtained, of τα(k), βkww(k) and fc(k) are shown
in Fig. A.10.
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Figure A.9: The self part of the intermediate scattering function Fs(k, t) is shown for
a range of k values. The dotted lines are �ts to the data.
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Figure A.10: The variation of relaxation time τα(k), stretching exponent βkww and the
non-ergodicity parameter (fc), obtained from Fs(k, t), are shown for several k values.
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