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Synopsis

A lot of fascinating phenomena occur across cell membranes. In this thesis, I address two
interesting facets of life across cell membranes using computational tools – what makes
membrane-active drugs effective, what is the signal that allows certain proteins to cross
cell membranes even when they lack a conventional signal peptide. While both these
subjects are areas of rapidly growing importance, the former is a well-explored subject
with several gaps in knowledge arising from the antibiotic resistance and new classes of
drug candidates, and the latter is mostly an unchartered territory.

In Chapter 1, I give a general introduction to the membrane active drugs as well as to
the transport of proteins across membranes.

Part I. Mechanism of action and design of membrane-active drugs.
Antibiotic resistance is a serious problem not only for global health but also for food
security. The reason for this antibiotic resistance is that conventional antibiotics target
crucial bacterial enzymes, and even a single point mutation in the enzyme can make
antibiotics ineffective. Drugs which mimic antimicrobial peptides (AMPs) in targeting
bacterial membranes thus have the potential to replace traditional antibiotics while com-
bating antibiotic resistance. However, the use of AMPs is not an easily scalable solution,
as they have high production costs, poor pharmacokinetics, and high susceptibility to
proteolysis. A better understanding of the properties and mechanism of membrane active
drugs and a basis for rational design may help improve the viability of AMPs or AMP-like
drugs against pathogens. Chapters 2-5 discuss some of these ideas.

Part II. Unconventional protein secretion across membranes.
Most of the proteins that are secreted out of the cell for various metabolic activities and
functions, follow a conventional pathway through the endoplasmic reticulum and Golgi
apparatus. All these proteins have a signal peptide at the N-terminus. Interestingly,
several recent studies show secretion of proteins under cellular stress, even in the absence
of conventional signal peptides. The way this unconventional protein secretion (UPS)
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is triggered remains an open question. Recent experimental data on the evidence of
unconventional secretion allows the possibility of bioinformatic analyses for developing
hypotheses. Chapter 6 and 7 tried to use these data to develop hypotheses for unconven-
tional protein secretion.

Part I

In Chapter 2, I present the detailed mechanism of selective action of a new class of
drug-candidate molecules on bacterial membranes using advanced molecular dynamics
simulations. Four different systems were studied with two different choices of the drug
candidate by changing the charge spacing in the acyl chains and two different model
membranes representing the bacterial and human RBC membranes. The study establishes
that the basis for the selectivity of the action is dictated by the spacing of the charges
that is commensurate with the thickness of the model bacterial membrane. The study
also explores the simultaneous insertion and aggregation of these molecules using detailed
atomistic simulations, something not explored even in the studies of AMPs to the best
of our knowledge. The results show that the molecules are primarily attracted by the
charges, and they initially self-aggregate and subsequently disrupt the membrane.

In Chapter 3, I present our work on a model for the rational design of AMPs against
A. baumannii. A. baumannii is a pathogen which is mostly associated with hospital-
acquired infections, and is an example of bacteria showing resistance to many antibiotics,
including the last line of drugs. Despite its importance, very few experimental studies are
performed to study the effect of AMPs against these bacteria. We trained an artificial
neural network with all the available data on AMP activity against A. baumannii. The
model was used to screen the library of naturally occurring AMPs for their effectiveness,
simultaneously also validating their toxicity. The lead molecules detected in the process
may serve as a starting point for performing detailed antibiotic activity studies on A.
baumannii.

In Chapter 4, I present the results of our attempt to capture the activity of AMPs
using short molecular dynamics simulations. We re-examine synthetic antimicrobial
peptides, CAMEL which were earlier studied for their Quantitative Structure Activity
Relationship (QSAR). These QSAR models were developed as meta-models using de-
scriptive parameters that are derived from sequence based property predictors. Since
biological parameters are usually associated with their dynamics, we used short molecular
dynamics in octanol to obtain descriptive parameters of each peptide and developed an
artificial neural network based model.

In Chapter 5, I introduce a new concept by asking how long membrane active drugs



remain effective as the bacteria adapt to this perturbation as well. Bacteria respond to
membrane active drugs by changing their membrane composition, typically by lysylation.
Thus, over time, the drug is faced with newer membrane compositions and its activity
against them needs to remain high. Conceptually one drug molecule weighed against
bacterial membranes that are continuously adapting is the opposite of a typical scenario
of screening multiple drugs against one bacterial target such as the works described in
Chapter 3 and Chapter 4. But specificity against the membrane of the targeting
bacteria has not been clearly understood. We curated data of activity of daptomycin
against Staphylococcus aureus from various experimental studies and using an artificial
neural network model, we could explore for the first time the effect of the same drug on
multiple membrane composition.

Part II

In Chapter 6, I begin part II of the thesis which focuses on finding a signature motif
for unconventional protein secretion (UPS). The only experimental evidence till date
which identified a potential signature motif for UPS is the one which identified that a
diacidic ‘DE’ motif was important in the secretion of SOD1 protein. Since the two amino
acid motif may be quite ubiquitous, we ask if it is possible to identify the structural
context in which this DE motif appears to better characterize the nature of the potential
signature motif. Using charge, hydrophobicity and structural flexibility around the DE
motifs in the 57 UPS proteins and 43 non-secreted proteins we curated from different
physiological and pathological conditions, we could identify that the DE in an ordered
region has higher odds of being an UPS signal.

In Chapter 7, we continue on the general theme of finding the UPS signature motif
by analyzing the recent data on around 200 RNA binding proteins that are secreted
through the autophagy pathway. Using this largest data set of established UPS cargos,
we performed several bioinformatic analyses searching for signal motifs that are 2, 3 or
4 amino acids long. Our results in which we compare these RNA binding proteins to
the entire large data set of conventionally secreted proteins led us to the finding that
presence of one of the four tri-acidic motifs (DDE, DED, DEE, EEE) in the neighborhood
of acts as a statistically significant discriminator of UPS proteins. The discovery is
incidentally validated using the SOD1 data that is discussed in chapter 6, is one of the
early hypotheses in this new and developing field that requires further validation.

Thus in my thesis, I use a range of techniques – artificial neural networks, molecular
dynamics, bioinformatic analyses to ask some of the questions that are arising newly in



the fields of drug action on membranes or transport of proteins across membranes.
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Chapter 1

Introduction

1.1 Life across the membrane
The cell membrane is one of the most distinguishing characteristics of life as we find
it on earth. It is made up of lipid molecules, and separates the cell’s internal from its
external environment. The amphipathic nature of the lipids with a hydrophilic head
group and a hydrophobic aliphatic chain, facilitates their self-aggregation as membranes
and forms a containment region for the cell. The cells derive their nutrients as well as the
signals for their growth or death, from the outside environment, and across this protective
membrane. The selective transport of signals, molecules or ions is facilitated by the
transmembrane proteins that are embedded in the membranes and further exchanges
with the environment occur through vesicular formation. So many fascinating aspects of
cellular life happen across the membranes and continue to offer challenging problems for
investigation.

When one looks at the cellular activities, they can all be traced back to the fundamental
and secrete code of life, the DNA. DNA is transcribed to RNA, which is then translated to
polypeptides or proteins. These proteins are then responsible for the various activities of
the cell. Unlike proteins and DNA, where the functional aspects may be interpreted from
the primary sequence or the structure, membranes large do not lend themselves to such
easy functional interpretations. The membranes being not so specific in their molecular
recognitions and being large in size, adds to the complexity of studying them. Not
surprisingly, a significant emphasis in biology, biological physics or computational biology
is given to the study of DNA, RNA and proteins. However, a lot of fascinating biological
phenomena happen across the membrane continues to be unearthed. In response to the
global threat of antimicrobial resistance, a new strategy to develop antibiotics which
target bacterial membranes rather than the conventional strategy of targeting their
proteins is emerging. Rational methods to support this strategy are urgently required.

1
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Similarly, newer and unconventional aspects of protein secretion across the membrane
under various conditions including extreme cellular stress are being identified, and they
need to be understood. These two unconventional aspects form the topics of investigation
in this thesis.

1.2 Antibiotic Resistance
The discovery of the first antibiotic penicillin marked the advent of a new era of healthcare.
Ever since, antibiotics have been extensively used with a high success for controlling
bacterial infections not just in humans but also in animal husbandry as growth stimulants
and for prophylactic protection against plant pathogens. Due to these reasons, there
is a spread of millions of tons of antibiotics in the biosphere, which has affected the
environment’s bacterial world.[1–3] In the past decade several multi-drug resistance
strains or superbugs, which can not be treated with any known antibiotic have emerged.
Less than a century after the discovery of penicillin, we are faced with a large reliance
on antibiotics and a simultaneous witnessing of the development of resistance to them.
While there are evidences for the antibiotic resistant genes from arctic samples from the
pre-antibiotic era, the role of the antibiotics in triggering adaptive defence mechanisms in
bacteria is undeniable. For example, the extensive use of vancomycin led to the widespread
adoption of vancomycin resistant enterococci into the normal food chain.[4, 5] The heavy
use of antibiotics also gave rise to multi-drug resistant (bacteria) or superbugs.[6] As
the bacteria have been developing to most antibiotics starting from the first antibiotic
Penicillin to the recent ones, it poses a major threat to the treatment of the diseases in
the future.[7] Without a viable solution, there is a risk that the quality of healthcare and
life may slip to the pre-antibiotic days.

Antibiotics are very selective in their action which gives them both an advantage
and disadvantage against bacteria. The advantage being that they mostly target specific
pathogen cells and not the host cells. They can understand both physiological and
biochemical differences between host cells and pathogens and selectively kill or inhibit the
target bacterial growth while causing no or minimal harm to the host. The disadvantage
of this specificity is that very often even a single point mutation in the bacterial target
region may render an antibiotic ineffective. While the clinical resistance for some of
the antibiotics developed within a few years of their introduction, it is easy to track an
even rapid adaptation of bacteria within a few days of serial-passage experiments. The
intrinsic bacterial adaptation and evolution when challenged by drugs is thus something
that may be witnessed almost in realtime, as in the recent Mega-Plate experiments.

Antibiotics are majorly classified into four categories based on the mechanism of their
action: antibiotics targeting cell wall, antibiotics inhibiting protein synthesis, antibiotics
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inhibiting DNA replications, and those inhibiting folic acid metabolism.[8] The bacteria
evolved a strategy to resist each of these classes of antibiotics - (a) Efflux pumps on
bacterial membranes export the antibiotics and prevent them from reaching their target.
These are present in the cytoplasmic membrane and are specific to antibiotics. Similarly,
porins present in the outer membrane are responsible for the modulation of membrane
permeability. (b) Since the antibiotics are target specific, alterations in the bacterial
target site can make an antibiotic ineffective. These changes are generally caused by
modification or mutation in the bacterial chromosomes or genes. (c) There are also
other mechanisms where the bacteria release enzymes into the environment, modifying or
damaging the antibiotics. Given all these bacterial adaptation strategies, one needs to
develop newer drug design strategies, motivated from the natural ecology of bacteria.

1.3 Antimicrobial Peptides and their action mecha-
nism

In order to tackle antibiotic resistance, the attention is now shifting towards a class of
drugs which act by disrupting bacterial membranes, rather than block their proteins.
Antimicrobial peptides (AMPs) are one such class of drugs which act on bacterial
membranes. They were first characterized in the 1980s, and subsequently found in
every multicellular organism as a key element of its innate immune system.[9] AMPs
are generally short peptides with usually 15 to 50 amino acids long, and are likely to be
amphipathic α-helices.[10] The net positive charge of AMPs, typically between +1 to +9,
helps them interact with the membrane and their amphiphilic nature which makes them
soluble in aqueous and lipid environments. Further, a clear topographic separation of
charges, one face of the helical peptide being mostly hydrophilic and the other face being
mostly hydrophobic, is a characteristic of the AMPs.

In general, the membranes surrounding the bacteria are negatively charged, and
the membranes of multicellular organisms are zwitterionic in nature. The positively
charged AMPs, gets electrostatically attracted to the negatively charged membranes
of microbes. Typical AMPs are disordered in an aqueous solution, but they form the
secondary structure upon contact with the membrane, either on it, when embedded into
it. [11, 12] AMPs act by disrupting the bacterial membranes. Several mechanisms of
action of AMPs against bacterial membranes have been proposed. These mechanisms can
be roughly classified into two categories – membrane curvature modulation and phase
separation. Membrane curvature modulation includes barrel stave model,[13–15] toroidal
pore formation,[16–19] and carpet mechanisms.[18, 20–22] The amphipathic structure of
these AMPs can cause the modulation in the curvature of the membrane. The interfacial
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region of the AMPs expand to form a void which creates a positive curvature strain and
thinning of the membrane.

AMPs have been studied extensively, and many clinical trials have been conducted.
Some of them are used as approved drugs, such as daptomycin and colistin.[23] However,
despite the inspiration from naturally occurring AMPs, and their effectiveness against
bacteria, and the reduced possibility of the development of resistance to them, there
are several limitations that do not allow AMPs to be viable drugs. Analyzing the
hydrophobic moment of the AMPs, which quantifies the degree of amphipathicity, it is
clear that peptides with larger hydrophobic moments have higher bacterial membrane
disruption potential and hemolytic activity against mammalian cells.[24, 25] Further,
poor pharmacokinetics, susceptibility to proteolysis and high production costs limit the
adoption of AMPs. Thus, the search for AMP inspired membrane acting drugs continues.

1.3.1 Rational strategies to improve or replace AMPs
As there is an urgent need to develop methods and find suitable alternatives to conventional
antibiotics as well as AMPs, the molecular details of the mechanism of action AMPs
and predictors of their effectiveness need to be understood. In this very complicated and
time-consuming search for the mechanisms of action and newer drugs, computational
tools will be helpful to guide the rational drug design. With the advancement in computer
technology, many methods to better understand the peptide/protein interactions with
the membrane.[26] have evolved. Using these tools and techniques, it becomes easier to
simulate, screen or process a large number of peptides to gain insights for improving the
drug candidates. For example, molecular dynamics simulation can help us understand
the atomistic details of the structure and function of a peptide and machine learning can
help us understand how the sequence or structure properties of peptides correlate with
their biological activity.

Molecular dynamics simulation of AMPs

As Richard Feynman once stated, "If we were to name the most powerful assumption
of all, which leads one on and on in an attempt to understand life, it is that all things
are made of atoms, and that everything that living things do can be understood in
terms of the jigglings and wigglings of atoms." Molecular dynamics (MD) simulation has
emerged as an extremely powerful method to understand these jigglings and wigglings
of biomolecules effectively[27, 28]. Molecular dynamics which is based on numerically
integrating classical Newton’s laws of motion for each of the atoms in the system, while
satisfying the relevant thermodynamic properties. All possible forces of bonded and
non-bonded interactions between every pair of atoms are calculated during the simulation,
combining the information on the various parameters such as partial charges, mass, bond
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length, bond angle, and a knowledge of the force fields which govern the specific types of
interactions. MD tracks the detailed movement of every atom of a molecule at a detail
that can be illuminating but difficult to probe in experiments.[29] MD simulation is thus
like a very powerful microscope that can help in visualizing atom-by-atom interactions
between various biomolecules.

With the recent advances in computer technology, the complexity of the systems that
can be studied continues to increase. Some of these simulations have been extensively used
in the study of the interaction between AMPs and membranes. Various mechanisms are
also explored using the MD simulation to understand peptide and lipid interactions.[30]
Such simulations show how the AMPs self assemble in cell membrane, as well as binding,
folding, insertion and translocation with atomistic details of interaction between membrane
and peptides. Many MD simulations have validated the physical experimentation of
AMPs acting on membranes. These simulation are also becoming common in the drug
discovery, and easier to implement.[31] However, simultaneously the need to study larger
biological systems with more intricate details also grows. Or alternative ways to include
several unknowns in biological systems implicitly are required.

Artificial intelligence models for AMPs

Machine learning and artificial neural networks help the computer to learn from the
existing data and then utilize the learning to build predictive models or to identify hidden
patterns in the data. The fundamentals and theory of machine learning such as the
Bayes’ theorem, principal component analysis, multiple linear regression, least-square
fitting, etc., which are extensively used in today’s machine learning algorithms have
been there far before the invention of the modern computers.[32] In earlier times, the
quantitative structure activity relationship (QSAR) models were efficiently able to screen
and optimize a small number of datasets. Design and optimization of the peptides was
traditionally performed using a manual interpretation of the sequences and a screening of
their substitution libraries.[33, 34] But these methods were very labour intensive and now
the focus has shifted towards data-driven processes. With the development of machine
learning and computer technology, several new methods and models to understand the
properties and activity of antimicrobial peptides against bacteria have been developed.
Improved QSAR models are being widely used in pharmaceutics and drug discovery.[35]

In machine learning, the data preparation begins by identifying suitable variables,
knowing as features of descriptors, that can describe the various important characteristics
of the molecule. The simplest descriptors can be a charge, hydrophobicity, molecular
weight, etc. and more complicated can be some structural parameters for which molecular
dynamics simulation may be used. These descriptors as independent variables, and the
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observed outcome are used as the data set to train the artificial intelligence algorithm.
With the advancement in the machine learning technology, better tools were developed to
calculate effective descriptors of AMPs combining NMR and in silico methods to improve
the predictions.[36–38] Following the training, the model validated with data not used for
the training, sometimes using methods known as the k-fold cross-validation, where the
entire dataset divided into k-parts is used iteratively by training on k-1 parts, and testing
the 1 part that was not used in training. Over the years, newer techniques such as the
Artificial Neural Network, Decision Tree, XGBoost, Random Forest, etc are becoming
available, continuing to offer newer options to explore for specific data sets. Apart from
these models, some other complex machine learning tools like Deep-Learning and artificial
intelligence are used that can process very large datasets, and with suitable data sets and
the right biophysical questions these methods will continue to offer improved predictive
capabilities and insights.

1.3.2 Challenges and problems in the AMPs
Various molecular dynamics studies were performed to understand the effect of drug
candidates on membranes. The studies have shown either the self-assembly or insertion of
the molecules inside the membrane. The combined effect of self-assembly and aggregation
has not been studied so far. Further, the delicate balance between the charges and
atomistic details can not be captured in coarse-grained models that are commonly used
in the membrane simulations. Can an atomistic mechanism be identified which can show
the behaviour of simultaneous insertion and assembly of drug candidates that will help
in the disruption of membrane? Will such a study reveal the differences in specificity
and sensitivity across different target membranes? Can a rational guidance for drug
development be provided which can help in combating infection from the most dangerous
multi-drug resistant bacteria? Despite better computational tools and machine learning,
without the proper descriptors the predictions will remain poor. Many antimicrobial
activity predictions use properties derived from sequences alone. If structural descriptors
using MD simulation are used, will the prediction of the AMPs be improved? The
traditional drug designing approach involves screening multiple drugs against a single
type of bacteria or target. The methodology is fairly standard. But it is not clearly
understood how a particular drug will be effective once the bacteria adapt by lysylating
their phospholipids. If the bacteria change their membrane composition, will the same
AMP continue to be effective against them?
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1.4 Unconventional Protein Secretion
Another interesting phenomenon that occurs across the membrane is called membrane
trafficking, where cargo like proteins and macromolecules occurs in the cell or transported
to the outside of the cell. It is a very fundamental and important process in all types
of cells. Proteins are secreted out to the extracellular space for various activities like
growth, cell homeostasis, cytokinesis, defence, structural maintenance, hormone release,
and neurotransmission. In the liver, 70% of the total proteins produced are secreted out
to blood. Similarly, pancreatic cells produce several enzymes that are secreted out of the
cell to intestinal regions for various digestive processes.[39] Most of the cargo proteins are
secreted to the target sites through well documented ‘conventional‘ pathways that consist
of the Endoplasmic Reticulum (ER) and Golgi complex. The cargo protein made in the
lumen of ER travels to the cis-Golgi network of the Golgi complex via COPII vesicles.
The proteins then travel from cis-Golgi to trans-Golgi network via medial-Golgi with
the process called cisternal progression. Finally, the proteins are sorted into secretory
vesicles, which gets integrated into the plasma membrane releasing the proteins to the
extracellular environment.[40]

These conventional secretion mechanisms have received enough attention and there
are several ways to identify the part of the protein that serves as a signal that marks it
for this molecular transport. SP serves the purpose of a ‘zipcode‘ that marks the pathway
and target location.[41, 42] The signal peptide (SP) is around 16-30 amino acids long
[43] consists of three main regions: amino-terminal positively charged region or n-region
(1 to 5 amino acid long); a central hydrophobic region or h-region (7 to 15 amino acid
long); and a polar carboxy-terminal region or c-region (3 to 7 amino acid long). Beyond
this region, there is a stretch of an amino acid called the cleavage site, which is cleaved
by a type of enzyme called signal peptidase.

Apart from the conventional pathway mentioned above, some proteins are also secreted,
in hithertho unknown pathways and without a clearly known signal. This phenomeon
which occurs in several situations including the secretory autophagy conditions triggered
during starvation, is known as the unconventionally protein secretion (UPS or UPS) of
‘leaderless‘ (without a well-defined signal) proteins. There are four types of UPS - type I,
II, III, and IV. The leaderless cytoplasmic proteins, which are directly transported out of
the cell either through plasma membrane pores [44] or through ABC transporters,[45]
come under type I and type II UPS, respectively. The type III UPS includes the leaderless
cytoplasmic proteins that are transported through membrane-bound organelles such as
autophagosomes, lysosomes, endosomes and exosomes. [46–49] Whereas type IV proteins
contain either signal peptide or transmembrane domain but bypass the Golgi when they
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are delivered to the plasma membrane.[50]
The first time, protein interleukin (IL)-1 revealed its secretion without any signal

peptide in response to the cell injury and inflammation.[51] Later again it was reported
about the secretion of IL-1β from activated human monocytes.[52] Since then, many other
proteins which lack signal peptides were discovered in the extracellular space of eukaryotic
cells. But understanding their pathways and secretion has remained a mystery. Some
attempts were taken to understand the unconventional secretion of IL-1β. For example,
once it was proposed that the shedding of micro-vesicles in response to activation of P2X7

receptor is a major pathway for rapid IL-1β release.[53] Another work suggested that
IL-1β release is mediated by multi-vesicular bodies as a vehicle.[54] However, no such
studies could identify the single pathway of IL-1β secretion. Some of the computational
models were developed to understand signals for the unconventional protein secretion
but had limited success.[55] Even artificial neural networks could not explicitly reveal
patterns in unconventional secretory proteins.[56, 57]

UPS is mostly induced by cellular stresses e.g., nutrient starvation,[58] mechanical
stress,[59] inflammation[60] and ER stress.[61, 62] During many diseases like Alzheimer’s,
diabetes, allergies, and cancer, UPS can be triggered. Different trafficking pathways of
UPS cargoes related to various human diseases have been discussed.[63] It was found
that autophagy also mediates the secretion of proteins of both conventional and un-
conventional secretion. Autophagy is in general a self degradative process when there
is a need for energy during nutrient stress. It also helps in maintaining the cellular
homeostasis by removing misfolded proteins and other damaged organelles. Apart from
being involved in self-digestion, autophagy-related (ATG) genes play an important role
in UPS.[64] This type of unconventional secretion is called secretory autophagy. In
the core of autophagy, there is a LC3 domain in the phagophore region where the
LC3 interacting region (LIR) of a protein targets. These LIR regions are four amino
acid long sequence, ΘXXΓ, where X is any amino acid, Θ is one of W/F/Y and Γ is
one of I/L/V. There are also certain special LIR motifs called xLIR which is derived
from experimentally verified functional LIRs. These have the consensus sequences -
[ADEFGLPRSK][DEGMSTV][WFY][DEILQTV][ADEFHIKLMPSTV][ILV].

1.4.1 Computational methods
Several tools based on machine learning are available to identify the N-terminal signal
peptide meant for the conventional secretion.[65, 66] SignalP is the most widely used
online tool for predicting the conventional secretion by identifying the N-terminal signal
peptides. Apart from SignalP, there are other tools that have advantages under certain
circumstances.[67] The predictive accuracy for the signal peptide is very high. But UPS
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lacks any clear signal. The data on UPS of proteins has been very limited, not leaving
ample scope for the development of the predictive models. There are some prediction tools
available which generally use the conventional secretory proteins by removing the signal
peptides, with a hypothesis that the conventional and unconventional secretion share
common properties and features which can be related to protein function outside the cell
and not to the secretory pathways.[56, 68]. Some of the recent tools such as OutCyte,[69]
and ExoPred,[70] developed models using recent machine learning methods, XGBoost and
Random Forest respectively. The former was trained on in-house experimental secretome
data, and the latter on the exosome data. The predictions of these models for new data
sets has not been satisfactory.

1.4.2 Challenges and recent development
As mentioned, using machine learning approaches many advances in the prediction of
conventional protein secretion were achieved. But as the data sets are limited, detailed
analysis and predictions of the chances of unconventional secretion of proteins has not
been unravelled. Recently, one article revealed that the diacidic motif “DE” plays an
important role in the secretion of superoxide dismutase 1 (SOD1) and Acb1 proteins
by comparing the analogs from human, mouse and yeast.[71] This first and concrete
observation raises a hope that DE motif could be a signal for the unconventional protein
secretion. But given the potential ubiquity of a two amino acid motif, the question on
what additional factors, make that set the context of DE motif specific for UPS needs
to be explored. Is there any other context like charge, hydrophobicity, structural order,
etc., which adds to the secretory nature? Or are there some other types of acidic motifs
which can contribute to the secretion, along with some other factor like LC3 interacting
region (LIR) motifs, as they are said to be in connection with the protein secretion? All
these need an investigation in order to identify the potential ‘signal‘ or the context that
increases the odds of the unconventional secretion.

Given the importance and the complexity of the various phenomena that occur across
the membrane, we explore two aspects noted above - the possibility of a rational design of
membrane active antibiotics, and the factors that define the possibility of unconventional
secretion.
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Abstract

Molecules which disrupt bacterial membranes are being seen as a solution to the problem
of antibiotic resistance. Recently, a new class of small cationic amphiphilic molecules
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have been developed as an alternative to the conventional drugs in avoiding antibiotic
resistance and to the antimicrobial peptides in avoiding difficult synthesis routes. Al-
though the experiments suggest that these molecules selectively disrupt the bacterial
membrane, the mechanism of action of these molecules is not known. In this work, we use
advanced molecular dynamics simulations to investigate the interaction between two such
Membrane Disruptive Amphiphilic (MeDiAm) molecules with prototypical bacterial and
red blood cell membranes. The cationic groups of these drug candidates interact with the
head group of the lipid molecules, thinning the membrane, suggesting the possibility of
disruption. Interestingly the disruptive action is by self-assembly of the small molecules.
The all atom molecular dynamics simulations also highlight the subtle differences in the
action of two different types of drugs candidate on two different membrane models. The
differences in charge separations and the length of the alkyl chains lead to a differential
selectivity of the drugs between the bacterial and the human membrane, as seen in the
differential thinning of the membranes in our calculations.

2.1 Introduction
The development of resistance by bacteria to a broad spectrum of antibiotics is currently
one of the major challenges in medicine[1]. This points towards an urgent need to develop
novel antimicrobial drugs having low propensity for the bacteria to develop resistance
against. The reason for the antibiotic resistance is that conventional antibiotics target
specific sites of bacterial proteins and even single point mutations in these sites are
sufficient to make the drugs ineffective. In this respect, drugs that affect the integrity
of bacterial membranes with high selectivity were considered as a solution. Naturally
occurring antimicrobial peptides (AMPs)[2, 3] are one such class of molecules which
have bacteriocidal action by membrane disruption. But, high costs of production,
poor pharmacokinetics and susceptibility to proteolysis, have offset the large scale
pharmaceutical application of these peptides.[4]

Given the drawbacks of AMPs, techniques to develop non-natural peptidomimetics
that mimic the membrane disruptive action of natural AMPs [5–13] with facile synthesis
pathway[14, 15] have been developed. They are aimed to improve the plasma stability
and selectivity, thereby, surpassing some of the limitations associated with AMPs.[6, 13]
However, designing peptidomimetics involves complex molecular frameworks required to
tune the structure-activity relationship, limiting their large scale synthesis and use in
medicine.[13] Recently, certain Membrane Disrupting Amphiphilic (MeDiAm) molecules
have been developed, that are devoid of any amino acid (consist of non peptidic amide
bonds), having a positive charge of two units on the quaternary ammonium groups
that are separated by a hydrophobic alkyl chain (Figure 2.1a).[16] The basic idea
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behind the synthesis of these molecules of varying chain length is to systematically
assess the amphiphilic balance and to fine-tune the structure activity relationship. The
first goal is achieved by varying the lipophilic alkyl chain length pending from the
quaternary ammonium groups whereas for the second goal, the lipophilic methylene
spacer is varied between the amino groups of the diaminoalkane framework. Several
selective antibacterial small molecule peptidomimetics are found to be selectively active
against bacterial membranes and non toxic against red blood cells (RBCs)[17, 18]. The
lower chance of bacteria developing to these drug candidates and their efficacy against
esisting drug resistance strains was demonstrated. Their antibacterial efficacy has been
evaluated against a wide range of drug sensitive bacteria such as S. aureus, E. coli,
and P. aeruginosa and drug-resistant bacteria such as methicillin-resistant S. aureus
(MRSA), vancomycin-resistant E. faecium (VRE), β–lactam-resistant K. pneumoniae,
norfloxacin-resistant S. aureus (NRSA), and colistin-resistant E. coli (CREC).[16]

The mechanism of action of these small molecules as suggested by propidium iodide
permeation and fluorescence spectroscopy is through the disruption of the bacterial
membrane. Since the molecules are of a newer class, lack in ordered structure and
amphiphilicity compared to AMPs, and are smaller in size compared to other antimicrobial
polymers, [19] the mechanism of action needs to be investigated. Understanding the
dynamics of the interaction between the bacterial membrane and the drug molecule
would serve as an important tool to rationally design novel drug molecules possessing
the essential features that make them antimicrobial in behaviour with a low rate of
haemolysis. In this respect a molecular level understanding holds a key role in developing
and intuition about the atomic level mechanism.[20, 21]

Molecular dynamics simulation have been employed for understanding the mechanism
of interaction of AMPs with membranes. However, these studies are restricted to the
interaction of one-type of membrane (bacterial) with one class of drug molecules, and
thus do not probe the sensitivity and specificity of potential drug activity. Further the
scope is usually limited to exploring the peptides starting in water and depositing on
the membrane or of the peptides embedded in membrane causing a membrane distortion.
In this work, we explore the pathway of the action of two different drug candidates and
their specificity towards model bacterial membranes over the RBCs. Atomistic molecular
dynamics combined with advanced sampling methods was used for this purpose.

2.2 Methods
Two small amphiphilic MeDiAm molecules, which showed the best and least selectivity
were considered in our study (Figure 2.1a). These two MeDiAms were selected by
considering their minimum inhibition concentration (MIC) and the concentration need
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(a) (b)

Figure 2.1: (a) Chemical structure of the MeDiAms ‘A’ and ‘B’. The distance between
the methylated ammonium group in molecule ‘A’ is larger than molecule ‘B’. (b) MIC
and HC50 of the two MeDiAms. Both have comparable MIC (∼1.5µg/ml and 2µg/ml
respectively), but very different HC50s (805µg/ml and 60µg/ml respectively). The
structures of MeDiAms were optimized at B3LYP/6-31G* [22–24] level of theory.

to destroy 50% of human RBCs (HC50). Although their molecular formula is same, they
show very different HC50s (740µg/ml and 55µg/ml). The sp3 hybridised nitrogen atoms
possess a formal positive charge causing the whole molecule to be positively charged.
These nitrogen atoms are separated by an alkyl chain which varies in the length, and
hence determines the charge separation in the molecule. The three dimensional geometries
were obtained by performing a genetic algorithm based search using the OpenBabel 2.3.2
tool.[25] Initially, ten structures were obtained and the energy was estimated using the
universal force field (UFF).

Generation of the membranes

The models for both bacterial membrane and human membrane were constructed using
an online tool, CHARMM-GUI[26], with two types of lipid molecules DPPE and DPPG
for bacterial membrane and DPPC for human membrane. In bacterial membrane, a total
of 116 lipid molecules were considered. The ratio of DPPE and DPPG in each leaflet
of the lipid bilayer was 7:51. The net charge of each DPPG molecule was -1. Where as
in human membrane, total 124 DPPC lipid molecules were considered with 62 in each
leaflet. DPPC was overall neutral.

Molecular Dynamics

As a first simulation, one molecule (molecule ‘A’) was inserted into the model bacterial
and RBC membranes, and molecular dynamics simulation were performed on both these
systems. CHARMM-36[27] and TIP3P[28] force field were used for the lipid molecules
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and water molecules respectively. A solvation box, containing around 120 lipid molecules
was chosen and the solvated system had nearly 35,000 atoms. For the molecular dynamics
simulation we used GROMACS 5.0.5[29]. For these molecules we used a force field
that was developed in our group by performing B3LYP/6-31G* level calculations for
all interactions with high penalty. Over 400 ps, the position restraints on the lipid
molecules were relaxed slowly in 6 steps. NVT ensemble were used for first two steps
and NPT ensemble for the next 4 steps were used at temperature 303 K and pressure 1
atm. SHAKE[30] algorithm was used to hold the hydrogen atom covalent bond. For total
Coulombic interaction, PME[31] was employed. van der Waals interaction cut-off was 12
Å with a smooth switching function at 10 Å . Structural coordinates of the system were
saved every 10 ps. The procedure was again repeated for molecule ‘B’.

Umbrella Sampling

For the advance sampling analysis Umbrella sampling[32] method was used. A total of six
molecules were inserted vertically into the membrane. The collective variable employed in
this case was the distance of center of mass between two groups of molecules (ξ). During
the umbrella sampling method the distance between the centers of mass was reduced
from 10 Å to 3 Å in 1 Å steps. A force constant of 956 kcal/mol/nm2 was used on the
(ξ), and in each umbrella 10 ns of simulation was performed. The free energy profile
obtained after the sampling were analysed using WHAM[33].

Metadynamics

In order to understand the aggregation of these molecules and their stability inside the
membrane, two dimensional metadynamics[34] simulation was performed on a system
of six molecules ‘B’ in the bacterial membrane. A larger system was used for these
calculations and the total number of atoms were around 100,000. The collective variables
were radius of gyration (Rgyr) for studying aggregation between six molecules and distance
in the z-direction between the center of mass of the molecules and center of mass of all
the phosphorous atoms of the lipids (Xcom). Radius of gyration was computed between
the heavy atoms of the molecules. The metadynamics simulation was performed using
GROMACS 5.1.4[29] patched with PLUMED 2.3.0[35]. The Gaussian width for the
radius of gyration and distance in the z-direction was 2 Å. The biasing hills of height 0.3
kcal/mol was deposited every 2 ps. The simulation was run in NPAT ensemble where
temperature was 303 K and pressure was 1 atm. The coordinate files were saved every
10 ps. All other parameters were same as in the previous molecular dynamics run.
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2.3 Results

2.3.1 Membrane is not disrupted by a single molecule

(a) (b)

Figure 2.2: Bacterial membrane with (a) molecule ‘A’ and (b) molecule ‘B’ (shown in
red color) after 50 ns of classical molecular dynamics simulation. The phosphorous atom
in the bacterial lipid head group is shown in golden color. After 50 ns, the molecule and
membrane interaction results in a small membrane distortion, which is however far from
the membrane disruption required for action.

Two separate 50 ns classical molecular dynamics simulations of the bacterial membrane
with a single molecule ‘A’ and molecule ‘B’ were performed. It was observed that
methylated ammonium group of the molecule interacts with the phosphate group of
the membrane. The phosphate groups of the MeDiAm interact either with both the
leaves of the membranes (molecule ‘A’) (Figure 2.2a) or just the same leaf (molecule
‘B’) (Figure 2.2b). The difference between these two can be easily interpreted from
the length of the acyl chain between the methelated ammonium group in the two cases.
However, with a single MeDiAm molecule, sufficient damages or changes in the human or
bacterial membrane were not observed.

2.3.2 Clusters of the molecules disrupts membranes
In order to study the possible consequences of these MeDiAm molecules aggregating in
the membrane, six molecules ‘A’ were inserted into the membrane approximately 10 to
15 Å apart and their effect on the membrane was studied. The choice of the number
of molecules was justified a posteriori, after the stable cluster size was found to be of
4 molecules. Since the aggregation of these molecules or the disruption of membrane
did not happen in a classical molecular dynamics, we resorted to umbrella sampling
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simulation. The distance between the center of mass of one molecule to the center
of mass of remaining five molecules combined (ξ) was used as a collective variable in
umbrella sampling. The free energy profile obtained using umbrella sampling (Figure
2.3) has a minimum at ξ = 7.4 Å. The structure corresponding to this stable minimum
energy configuration (Figure 2.4a) shows that there is an aggregation of 4 molecules
and that the integrity of the membrane is compromised, which we use as an a posteriori
justification for the sufficiency of six molecules in the simulations. We then repeated these
umbrella sampling simulation for the other three systems as well. The results showed a
variable disruption of the membranes consistent with the experimental observations. We
used this as a validation of the force fields in capturing the experimental data. Figure
2.4d points that the combined effect of the molecules helps in the disruption of the
bacterial membrane.

Figure 2.3: Free energy profile of the sys-
tem containing six molecules of ‘A’, obtained
using umbrella sampling. At 7.4 Å free en-
ergy profile shows a metastable state. 2 3 4 5 6 7 8 9 10
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2.3.3 Selectivity in membrane disruption
Umbrella sampling simulations on all four systems, molecules ‘A’ and ‘B’ on human and
bacterial membrane were analyzed to understand the basis for selectivity. The minimum
energy configurations from these four systems are compared in Figure 2.5. The distance
between the phosphorous atoms of the upper and the lower leaflets was defined as the
membrane thickness for that specific structural frame, and the average thickness of the
membrane for the last 2 ns of the umbrella sampling corresponding to the minimum
energy configurations are shown (Figure 2.5). We observed that the molecule ‘B’ causes
disruption to both human and bacterial membranes, where as molecule ‘A’ is being more
selective and shows effective pinching in bacterial membrane.

As depicted in Figure 2.5, lateral inhomogeneity was observed due to the insertion
of these molecules. It is evident from the plots that a pinching of the membrane due to
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(a) (b)

(c) (d)

Figure 2.4: Metastable structures corresponding to the minimum free energy config-
uration of the system obtained from the umbrella sampling simulations (Figure 2.3)
of MeDiAm ‘A’ (a, b) and MeDiAm ‘B’ (c, d) are shown. Bacterial membrane that is
disrupted the molecules ‘A’ in a representation (a) without showing the ‘A’ molecules
(b) and with the ‘A’ molecules suggests the mechanism of action. Similarly, (c) and (d)
show the disruption to the bacterial membrane by molecule ‘B’. The phosphate ions of
the lipid head group interacts with the positively charged nitrogen of these molecules.
Color representations in are the same as in Figure 2.2a.

the insertion of these molecules. However this membrane pinching is much more localized
in the case of molecule ‘B’ than in molecule ‘A’. This suggest that the molecule ‘B’ be
more lethal than its other counterpart. It is evident that molecule ‘B’ tends to show
aggregation, but there is no exclusive separation of the polar and non polar groups within
the structure. However, molecule ‘A’ does not show any signs of aggregation and the
molecules independently span over the total lipid bilayer. This difference in the behavior
can be attributed to the long side chain in molecule ‘B’ that causes an increase in the van
der Waals interaction as a result of which these molecules cluster together. In molecule
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Figure 2.5: The dark patches in the membrane thickness map indicate a pinching in
the membrane and potential for the antibiotic effectiveness of the molecule. Comparing
the four plots explains the selectivity and effectiveness seen in the two molecules.

‘A’, though the central chain is long it is bound between two positively charged methyl
ammonium groups, and thus their van der Waals interactions are counteracted by the
electrostatic repulsion of the positively charged groups. The 2D number density was
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Figure 2.6: 2D number density of the lipids along the x-y plane (A) Bacterial Membrane
(Averaged over last 20 ns) (B) Molecule ‘A’ in bacteria (averaged over 6 ns) (C) Molecule
‘B’ in bacteria (averaged over 6 ns)

plotted to analyse the effect of inserting these molecules on the membrane (Figure 2.6).
This indicates the distribution of the lipid molecules along the x-y plane. As is depicted
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in Figure 2.6, the addition of the molecules caused an aggregation of the lipid molecules,
thereby affecting the integrity of the membrane. Interestingly, molecule ‘A’ causes a hole
formation suggesting the membrane to be completely disrupted due to the presence of
these molecules. Molecule ‘B’ also caused the aggregation of the lipid molecules, but the
hole formation was not very distinctly observed in this case.

2.3.4 Mechanism of drug interaction with membrane
The umbrella sampling simulations were performed to analyse the aggregation of molecules
which were already inserted into the membrane. The selectivity and sensitivity interpreted
from the membrane thickness profiles validates that the simulation and the forcefields
we used capture the phenomenon being modelled. With this validation, we performed a
Metadynamics calculation which simultaneously biased the insertion of these molecules
into the membrane and their aggregation, to map the pathway from membrane penetration
to the molecule assembly. This is complementary to the extensive aggregation studies in
the four systems and was performed just for the case of molecules ‘B’ interacting with
bacterial membrane.

The free energy profile for the dynamics along the two CVs was obtained using
Metadynamics, the most likely pathway of simultaneous aggregation and insertion is
studied. The minimum energy pathway starting from dispersed molecules in water and
ultimately aggregating inside the membrane is obtained using MEPSA[36] python script
(Figure 2.7a). While moving through the minimum free energy pathway the system
encounters three intermediate metastable state excluding the final target (marked in
Figure 2.7b) indicated as A, B, C, and D. All the configurations corresponding to the
collective variables are investigated. In the state A, it is observed that most of the time
four molecules are resting on or inside the membrane and two are in water. In state B,
mostly five molecules are in membrane and one is outside. In state C, we see three kinds
of configurations. One where, all the molecules are near the surface of the membrane
but all inside. In another instance where five molecules are inside and one is outside
the membrane but close to it. And in another case, one molecule is in water far from
membrane, but five molecules are close to each other. And finally in state D, all the
molecules are inside the membrane, clustered and some structure suggest the pinching of
the membrane too.
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Figure 2.7: (a)The free energy profile obtained from the Metadynamics simulations
and the black solid line represents the minimum free energy pathway connecting the
fully soluble molecules to the final disrupted membrane state. The radius of gyration
of the molecules and the distance from the center of the membrane were used as two
independent variables to capture the molecular aggregation and membrane insertion (b)
Free energy profile along the minimum energy pathway mentioned above. (c) to (f) are
the snapshot of the system at different states (A,B,C,D respectively), which shows the
alignment and position of the molecules and the membrane. The membrane is denoted
by the phosphorous (yellow balls) in the head group.
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2.4 Discussion

2.4.1 Self assembly, aggregation, disruption
Combining the result of Metadynamics for aggregation and disruption, with those from
the umbrella sampling simulations on the subtle differences in activity and selectivity,
we infer a mechanism of action of this new class of molecules. As mentioned earlier, the
bacterial membrane is negatively charged while the human membrane is neutral. Hence,
the positively charged MeDiAms should have a stronger electrostatic interaction with the
bacterial membrane thereby causing a selective rupture of the bacterial membrane. The
propensity of a charged molecule to interact with a neutral but polar lipid bilayer can
not be completely overlooked. However, due to a longer alkyl separation between the two
ammonium groups (molecule ‘A’), this molecule spans between the two charged leaflets
of the membrane. It is interesting to note that the extent of membrane thinning is less
for the human membrane with respect to the bacterial membrane. It may be speculated
from here that molecule ‘A’ probably has selectivity towards the human membrane.
This selectivity can be attributed to the lack of aggregation in this case that reduces
the positive charge density and hence the extent of electrostatic interaction with the
membrane. Thus, it may be concluded that, although both molecule ‘A’ and ‘B’ are able
to disrupt the bacterial membrane, the selectivity of molecule ‘A’ towards this process
makes it a better drug candidate.

The overall mechanism of interaction and action of these MeDiAm molecules may thus
be interpreted from our simulations. The MeDiAm molecules are drawn to the membrane
and their cationic part first rests on the membrane surface due the partial negative charge
of the head-group of the lipids. These molecules form an aggregated structure inside the
membrane, as could be seen from minimum free energy structures (Figure 2.8). These
molecular clusters disturb the integrity of the membrane, by bending the membrane and
in some cases resulting in the formation of a water channel in the membrane. The entire
mechanism may thus be summarized as one in which the dissolved molecules deposit on
the membrane, followed by their self-assembly, aggregation in the membrane, resulting in
a final disruption.

2.4.2 Differential selectivity of the molecules
Different membrane disruption mechanisms have been proposed for the AMPs. Three
major pathways discussed in literature so far are the barrel-stave, carpet and toroidal
mechanism.[37–40] Amphiphilicity in the secondary structure is peculiar to majority of
the classes of AMPs. However, these MeDiAms do not have the facial amphiphilicity, but
still have the potential to perturb the membrane’s integrity. The mechanism of action
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Figure 2.8: A snapshot describing the membrane disruption and the formation of a
water channel across it. The disrupted membrane is shown (a) with the molecule and (b)
without the MeDiAm molecules. One may notice that the phosphorous of the membrane
interacts with the charged groups of the molecules thinning the membrane to the point
that water penetratesit.

is thus expected to be different form that of AMPs. The presence of a cationic group
induces the selectivity towards binding to the anionic bacterial membrane and not the
zwitterionic human membrane.[38, 41–43] Once the binding takes place, the hydrophobic
components interact with the lipid chains, causing the disruption of the membrane.

2.5 Conclusions
In this work, the interaction of the small amphiphilic molecules with a prototypical
bacterial membrane has been explored by applying enhanced sampling techniques to the
all atom molecular dynamics simulation. The small molecules are highly flexible and
contain charged ammonium groups along with a long hydrophobic alkyl tail. Their anti-
microbial activity has been experimentally tested on a broad-spectrum of gram-positive
and gram-negative bacteria.[16] Our results show a difference in the clustering ability of
the two molecules and this can be controlled by tuning the distance between the charged
groups and the alkyl tail length. The amphiphilic small molecules induce a segregation
of the lipid molecules, resulting in the formation of domains. This is shown to induce a
bilayer leakage resulting in the entry of water across the membrane. A partial selectivity
can be induced in case of molecule ‘A’ which can be attributed to the tuning of the
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ammonium group distance in such a way that it can span over the height of the lipid
bilayer but not form aggregates.
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Chapter 3

Computational screening of
antimicrobial peptides for
Acinetobacter baumannii

Abstract

Acinetobacter baumannii, has been developing resistance to even the last line of drugs.
Antimicrobial peptides (AMPs) to which bacteria do not develop resistance easily may
be the last hope. A few independent experimental studies have designed and studied
the activity of AMPs on A. baumannii, however the number of such studies are still
limited. With the goal of developing a rational approach to the screening of AMPs against
A. baumannii, we carefully curated the drug activity data from 75 cationic AMPs, all
measured with a similar protocol, and on the same ATCC 19606 strain. A quantitative
model developed and validated with a part of the data. While the model may be used

This chapter is reprinted from "https://journals.plos.org/plosone/article?id=10.1371/journal.pone.
0219693" under the Creative Commons Attribution License.
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for predicting the activity of any designed AMPs, in this work, we perform an in silico
screening for the entire database of naturally occurring AMPs, to provide a rational
guidance in this urgently needed drug development.

3.1 Introduction
Acinetobacter baumannii (A. baumannii) [1] is mainly implicated in hospital infections
and is responsible for 80% of the Acinetobacter infections. A. baumannii can also be found
on normal human skin, but it generally does not pose a threat to a healthy person [2–5],
besides the not-so-frequent skin and soft tissue infections, infections in the surgical site,
urinary tract infection, etc [6, 7]. In the past 30 years, A. baumannii has evolved into a
multidrug resistant (MDR) [8–10] opportunistic pathogen that selectively infects seriously
ill patients in intensive care unit (ICU), trauma or burn patients [2–4, 11]. The presence
of intrinsic efflux pump and high rates of genetic adaptation, contributes to adaptation
against the antibiotics [12–14]. Besides, it also possesses several beta-lactamase genes
which offer resistance against beta-lactam antibiotics [15, 16]. A. baumannii has also
been developing resistance against carbapenem [17] which had been one of the last line of
drugs against it. Combination therapies such as of colistin, polymixin B, and tigecycline
are used to treat MDR strains, but these are complex compared to a single drug when it
comes to quantification of the effect and the validation of their safety [18–20]. Due to
the growing concern about MDR, new types of antimicrobial agents are needed.

Antimicrobial peptides (AMP) are a fundamental part of the innate defense system
and are reportedly present in organisms from bacteria and fungus to humans [21, 22].
Although several modes of AMP activity, including DNA damage [23], RNA damage [24]
and targeting ribosomes [25–27] regulatory enzymes [28] or other proteins [29] have been
proposed, it is generally believed that the positively charged AMPs act by disrupting
the bacterial membrane [30–32] and the membrane disruption is one of the key factor for
the AMP activity[29, 33, 34]. Because of this fundamental difference in the mechanism
compared to the traditional drugs, it is believed that the bacteria do not develop resistance
easily against AMPs [21]. The low toxicity of AMPs towards human cells and their
tendency not to result in resistant strains makes them an ideal rational choice as the next
generation antimicrobial agents [35–37], possibly eventually becoming effective drugs for
A. baumannii.

Quantitative Structure and Activity Relationship (QSAR) [38] is an approach in
computer aided rational drug design, which uses biophysical or biochemical parameters
of the molecules to develop a quantitative relation with the measured activities. Once
validated, the computational model can be used for predicting the activities of the possible
drug candidates and for pre-screening them. Recent studies have developed a QSAR
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relation using 29 small molecule drug candidates which act on the oxphos metabolic path
of A. baumannii [39]. As noted above, since bacteria are less likely to develop resistance
against AMP based drugs, we focus on QSAR for AMPs against A. baumannii.

The present work has three major objectives. Several experimental groups have
independently evaluated the activity of AMP against A. baumannii. We curated these
experimental results against a single, well studied target, ATCC 19606 strain, whose
activity is quantified using Clinical and Laboratory Standards Institute (CLSI) or related
protocols.[40] We developed a computational model using neural networks to rationally
predict the activity from the biochemical attributes of the AMP. Since A. baumannii is a
growing threat, while realizing the potential limitations of training on 75 peptides, we
also predict the activity of all the naturally occurring AMPs in the AMP database to
enable a rational screening of AMPs against A. baumannii.

3.2 Methods

3.2.1 Curation of data
Training QSAR models with data from multiple sources, obtained with different protocols
and on different strains can lead to poor predictive capabilities.[41] In order to standardize
the data used in the analysis, we used three criteria for inclusion – the tests should
be on ATCC 19606 strain, with cationic antimicrobial peptides and studied according
to the CLSI or equivalent guidelines. With these inclusion criteria, we believed that
the mechanism of antibiotic action will be similar and the data curated from different
sources can be compared. Since data availability was limited, we had to include data from
different groups. AMP sequence and activity data against A. Baumannii was curated
from different sources [42–52] and is presented in Table B.1 of Appendix B. The
curated AMP data set had the activity of 75 AMPs with their length ranging from 10 to
43 amino acids and charges in the range +1 to +12. Of these, for 63 AMPs the MIC was
available (referred to as quantitative data ), and for the remaining 12, only the lower
bound of minimum inhibitory concentration (MIC) (refered to as the qualitative data).

3.2.2 Parameter computation
For each peptide eight parameters were calculated. in vivo aggregation propensity is
calculated by using a web-based software AGGRESCAN [53]. Where the aggregation
propensity is calculated on the basis of aggregation- propensity scale of amino acids. in
vitro aggregation propensity is calculated by using TANGO software (with ionic strength
0.0 M, pH 7.0 and T=298 K)[54], where we only consider the β-sheet aggregation
term. Aliphatic index of the peptides is calculated as described by Ikai [55]. Grand
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average hydropathy is calculated on the scale given by Kyte-Doolittle [56] and the
hydrophobic moment is calculated by using HELIQUEST software [57]. Apart from
the above mentioned parameters, charge, length and molecular weights were calculated
using basic python script. The toxicity of the AMPs was predicted using ToxinPred
(http://crdd.osdd.net/raghava/toxinpred/).[58] The method allows for the prediction of
toxicity of peptides shorter than 50 amino acids. However, this was not a limitation as
peptides longer than that are anyways complicated to synthesize and may not be ideal
drug candidates.

3.2.3 Artificial neural network
Since the available data is limited, we used used both the quantitative and the qualitative
data, albeit with different proportions, to train and test the models. We used 63 of the
MIC values from the quantitative data and 3 from the qualitative data for which the
cited lower bound was treated as the MIC for the purpose of this analysis. We performed
a 10-fold cross validation to check the robustness of our models. To do the 10-fold cross
validation, we divide the data set into 10 different test sets, each contains 7 data points.
We performed the artificial neural network (ANN) calculation for each test set by taking
remaining 53 data points for training and 6 data points for validation. Rest of the 9
points from the qualitative data are used for an independent qualitative test. The activity
of the AMPs was predicted by ANN model with an open module for machine learning
called Scikit-learn [59] in Python using Multi-layer Perceptron Regressor function. For
the activation function, logistic function was used and low memory BFGS optimization
algorithm was used a solver. Constant learning rate of 0.001 was used with maximum
iteration of 5000. Three independent neural network calculations have been performed to
do the 10-fold cross validation, by using one hidden layer of 6 neurons, 8 neurons and
10 neurons, respectively. 2500 trial runs in each case were made by taking 50 different
random initializations for the input biases and 50 random choices for the training and
validation sets. We screened the results of these 2500 trials with R2

training > 0.7 and
R2
validation > 0.6. Two best models were selected based on the result obtained from

the 10-fold cross validation. The models were expected to perform with R2
test > 0.8

for the quantitative data and at least 5 predictions for the qualitative data set. These
models were then used to predict the MIC values of a complete AMP database [60–62]
(https://aps.unmc.edu).

http://crdd.osdd.net/raghava/toxinpred/
https://aps.unmc.edu
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3.3 Results

3.3.1 Curated data for AMPs and their effectiveness
The data on the activity of AMPs on A. baumannii is scattered in literature. We curated
the data mainly with the goal of developing a quantitative model, and hence restricted
the focus to the most commonly studied ATCC 19606 strain. To maintain uniformity of
standards, we included studies which were performed according to CLSI or equivalent
guidelines. The sequence data and the antimicrobial activity of these peptides measured
as the MIC was gathered (Table B.1 of Appendix B). Overall, the comprehensive
collection of the data on AMP activity allowed a classification based on the various
biophysical parameters which are commonly used for developing a quantitative relation
with activity: (1) charge, which draws the AMPs selectively to anionic membrane, (2)
length, reflecting how it has to be commensurate with the membrane thickness for an
improved activity [63, 64] (3) molecular weight, which gives an idea of the bulkiness and
membrane penetration efficiency (4) hydrophobic moment (µH), [57] which quantifies the
amphipathic characters required to form pores in the membrane, (5) aliphatic index [55],
which indicates the volume of aliphatic content (A, V, I and L) of the peptide, (6) grand
average of hydropathy (GRAVY) based on Kyte-Doolittle hydropathicity scale [56], (7) in
vivo aggregation propensity, calculated by using a web-based software AGGRESCAN [53]
and (8) in vitro (β-sheet) aggregation propensity, calculated by using TANGO software
(with ionic strength 0.02 M, pH 7.0 and temperature 298 K) [54]. The in vitro aggregation,
before interaction with the membrane can at times stop proteolytic degradation [65] by
the bacteria but in many other cases reduce the drug potency [66, 67]. Further, the
aggregation propensity affects the barrel-stave [68] and carpet mechanisms [63] of action
differently. Toxicity of peptides obtained from ToxinPred[58] was categorical, and it was
used only to classify the AMPs from the database as potential drug candidates, and not
for the activity prediction. The distribution of the eight parameters for all the curated
AMPs are given in Figure B.1 of Appendix B and their individual relation with MIC
in Fig 3.1, which shows that each of the parameters individually is not sufficient to
describe the activity.

3.3.2 Quantitative Models for AMP activity
ANN model was used to obtain the relationship between the various above-mentioned
parameters and MIC values (Methods). A schematic of how we developed the model
is shown in Figure B.2 of Appendix B. The first step was to create a model with
the activity data from 75 AMPs, of which some were used for an internal assessment
of the quality of predictions. The second step was to use the test set in the 75 AMP
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Figure 3.1: MIC versus different parameters. The AMPs used in the analysis along
with the sequences and biophysical parameters are given in Table B.1 of Appendix B.

data analysis as a secondary validation for refining the choice of model that can be used
for making the predictions for the AMP database. The details are as follows. Out of
the 75 AMPs curated, for 12 of them a lower bound of MIC, as being greater than a
certain value (Table B.2 of Appendix B), rather than a precise number was cited.
To include them in the analysis, and not to reduce the data size which is already small
(75 AMPs), we created two independent test sets, one in which a quantitative MIC
comparison was made (referred to as quantitative data) and another qualitative one
in which the calculated MIC was checked if it was more than the experimental lower
bound (referred to as qualitative data). The combined data set with quantitative and
qualitative data was used to construct training, validation and test sets (Methods). We
performed a 10-fold cross validation with three different architectures with 6, 8 and 10
hidden neurons respectively. The overall error in the architecture with 8 neurons was
optimal, thus justifying a small sampling around it with 6 and 10 neurons (Table B.3
of Appendix B). However, all three architectures were satisfactory in their predictions
(Figure B.3, B.4 and B.5 respectively of Appendix B), resulting in many models,
which qualify for the criteria (R2

training > 0.7 & R2
validation > 0.6). Several of these models

also had good predictions for the test sets, which are about 10% of the data.

3.3.3 Selecting the best model
In a traditional QSAR analysis, the choice of the best model would be guided by the
combination of the best R2

training and R2
validation, following which R2

test on a small fraction
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of the data, in our case 7 data points, comes as a consequence. Since the goal of screening
through the large set of potential AMPs whose activities against an extremely important
pathogen are not yet available is more ambitious than performing well on these 7 points,
we performed a secondary validation check to select the best models. We used two
additional criteria: R2

test > 0.6 for the quantitative and that at least 5 predictions in
qualitative data set were correct to within a factor of 2 (Table B.2 of Appendix B).
Two models satisfied these conditions, with R2

test > 0.8 and they were selected. The best
among these models (referred to as Model-1) obtained from the calculation with 8 hidden
neurons, had good predictions (R2

training = 0.975, R2
validation = 0.866 and R2

test = 0.827).
The experimental MIC for the quantitative data set versus MIC values predicted from
Model-1 is shown in Fig 3.2. Results obtained from another model (Model-2) are given
in Figure B.6 of Appendix B.
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Figure 3.2: Comparison of the experimental and calculated MIC (µg/ml) of curated
AMPs on A. baumannii obtained from Model-1, calculated by using 8 hidden neurons.
Training (purple circles), validation (orange squares) and test (green diamonds) sets are
shown. The data used in the analysis is shown in Table B.1 of Appendix B.

3.3.4 Predicting the results for naturally occurring AMPs
Considering the health threat A. baumannii is posing, and the potential of AMPs for
antibiotic-resistance-free activity, we propose a rational basis for an in silico screening of
AMPs active against A. baumannii. Our models were used to predict the MIC values
of the 2338 AMPs obtained from database[60–62] (https://aps.unmc.edu) of naturally
occurring AMPs. We made the predictions from Model-1 and Model-2 (Data File in
GitHub https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx). In order to
reduce the risk of a poorly trained ANN model with limited data, we filtered these

https://aps.unmc.edu
https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx
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results for a consistent prediction that is within ∆MIC ≤ 5µg/ml for both the models
(Table 3.1). Despite the potential statistical limitations of training and validating on 75
AMPs, a pre-screening to rationally sort multiple AMPs with their predicted activity,
in vitro and in vivo aggregation potential, toxicity and length (a surrogate for synthetic
complexity), all are provided in Table 3.1 and in the Data File in GitHub (https:
//github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx). The computational scripts
and the predictions are made accessible (GitHub Folder: https://github.com/malayrb/
Thesis/tree/main/Ch3/Models), to provide an immediate access to a pool of rational
choices that can help progress towards large scale experimental testing, considering the
extreme urgency of developing effective strategies to combat the superbug, A. baumannii

Table 3.1: Using the 2 different models, we predicted the activity of 2338 naturally
occurring AMPs documented in the AMP database. The complete list of predictions are
given in the Data File in GitHub (https://github.com/malayrb/Thesis/blob/main/Ch3/
File_S2.xlsx). However, of these the AMPs which had consistent predictions from both
the models (∆MIC ≤ 5 µg/ml) were selected and presented in this table. All of these
were peptides listed below were non-toxic according to the predictions from ToxinPred
(http://crdd.osdd.net/raghava/toxinpred/).[58]

Peptide Sequence Length Model-1 Model-2
MIC(µg/ml) MIC(µg/ml)

AP01466 VNWKKILGKIIKVAK 15 2.84 6.20
AP00143 KKLLKWLKKLL 11 9.08 4.59
AP01456 VGKTWIKVIRGIGKSKIKWQ 20 9.34 4.60
AP00708 GFKRIVQRIKDFLRNLV 17 9.38 4.59
AP00161 GLWSKIKTAGKSVAKAAAKAAVKAVTNAV 29 14.24 10.44
AP00577 GLFTLIKGAAKLIGKTVAKEAGKTGLELMACKITNQC 37 14.24 15.64
AP00608 KRIVQRIKDFLR 12 14.40 14.25
AP01525 SWLSKTYKKLENSAKKRISEGIAIAIQGGPR 31 16.38 20.78
AP00869 ILPLVGNLLNDLL 13 17.60 20.67
AP00425 GCWSTVLGGLKKFAKGGLEAIVNPK 25 18.23 20.86
AP01388 GLLSGILNSAGGLLGNLIGSLSN 23 21.02 20.67
AP00733 LLGDFFRKAREKIGEEFKRIVQRIKDFLRNLVPRTES 37 21.70 19.43
AP01387 GLLSGILNTAGGLLGNLIGSLSN 23 22.83 20.67
AP00061 GIGGVLLSAGKAALKGLAKVLAEKYAN 27 23.57 20.66
AP00210 GMASKAGAIAGKIAKVALKAL 21 25.07 20.26
AP00006 GNNRPVYIPQPRPPHPRI 18 27.10 26.77
AP00007 GNNRPVYIPQPRPPHPRL 18 27.10 26.77

https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx
https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx
https://github.com/malayrb/Thesis/tree/main/Ch3/Models
https://github.com/malayrb/Thesis/tree/main/Ch3/Models
https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx
https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx
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Peptide Sequence Length Model-1 Model-2
MIC(µg/ml) MIC(µg/ml)

AP00024 GVSGHGQHGVHG 12 27.10 27.98
AP00025 HGVSGHGQHGVHG 13 27.10 26.77
AP00141 RKKWFW 6 27.10 26.77
AP00150 ILPWKWPWWPWRR 13 27.10 26.77
AP00152 VRRFPWWWPFLRR 13 27.10 26.77
AP00169 GRPNPVNTKPTPYPRL 16 27.10 26.77
AP00170 VDKGSYLPRPTPPRPIYNRN 20 27.10 26.77
AP00172 GKPRPYSPRPTSHPRPIRV 19 27.10 26.79
AP00190 HPLKQYWWRPSI 12 27.10 26.77
AP00191 ECRRLCYKQRCVTYCRGR 18 27.10 26.77
AP00211 RRWCFRVCYRGFCYRKCR 18 27.10 26.77
AP00212 RRWCFRVCYKGFCYRKCR 18 27.10 26.77
AP00213 KWCFRVCYRGICYRKCR 17 27.10 26.77

3.3.5 Parameter importance in model
It is important to know which are the parameters (Pi) that are most responsible for
the activity on A. baumannii. In the combined training and validation set used for
accepting the models, we replaced (Pi) with its average <Pi> and measure the difference
∆R2

Pi
= R2

training+validation − R2
training+validation,<Pi>

. ∆R2
Pi

is treated as reflecting the
importance of the parameter. The results obtained from Model-1 are given in Fig 3.3
and the result obtained from another model is given in Figure B.7 of Appendix B.
From our calculations, we found out that the aliphatic index is the most important
parameter in both the models.

3.3.6 Relevance of predictions for MDR strains
In order to reduce the uncertainties, our computational model was trained on data
standardized in three ways, A. baumannii strain used, choice of cationic AMPs and
measurements by CLSI method. However, considering the threat that A. baumannii MDR
strains are posing, it is important to ask whether our calculations have any relevance
to these clinical variants. The two limitations of this work are the smaller data size
used for training, and it was based on ATCC 19606 strain. Interestingly, in the limited
studies that we found the activity of cationic AMPs against ATCC 19606 and other
MDR strains of A. baumannii are comparable[43, 46], thus potentially removing the
latter strain specific data limitation for A. baumannii, although for other bacteria, such
as S. aureus the activity changes quite significantly with the strain[69, 70]. Drawing
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Figure 3.3: The relative importance of the different parameters in Model-1 is shown
(blue color). Aliphatic index influences the outcomes of the predictions the most in this
model. The green line shows the average and standard deviation value of the variable
importance by taking into account all the models of 10 fold cross validation.

confidence from this fact, we used our models to predict the activity for a few MDR
strains[71–73]. The results reported in Table B.4 of Appendix B are encouraging at
this stage, although more such validations will be helpful in establishing the utility of the
screening models we proposed.

3.3.7 Conclusions
To our knowledge, the present work is the only QSAR study for predicting AMP activity
against A. baumannii. The present work is different from the only other QSAR in two
different ways, using AMPs instead of small molecules for a better tolerance to antibiotic
resistance and a slightly larger set (75 AMPs compared to 29 small molecules). Using
the ANN models we developed, we could make quantitative predictions for the entire
database of naturally occuring AMPs. We hope that our work will inspire the further
studies quantifying the activity of AMPs on A. baumannii, some of which may follow
the activity predictions and others that differ offer an opportunity to retrain the ANN
models.
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Chapter 4

Molecular dynamics based
antimicrobial activity descriptors for
synthetic cationic peptides

Abstract

There is an urgent need to identify novel antimicrobial drugs in light of the devel-
opment of resistance by the bacteria for a broad spectrum of antibiotics. Antimicrobial
peptides (AMPs) are proving to be an effective remedy to which bacteria have not
been able to develop resistance easily. With the goal of progressing towards a rational
design of AMPs, we developed a neural network based quantitative model relating their
physicochemical properties to their activity. A set of synthetic cationic polypeptides
(CAMEL-s) (Mee et al. in J. Peptide Res. 49:89, 1997) which were studied systematically

This chapter is reprinted by permission from Springer Nature: Journal of Chemical Sciences, Prakash
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in experiments was used in the development of our model. Intuitive variables derived
from short molecular dynamics simulations in octanol were used as descriptors, resulting
in a good prediction of activity and underscoring the possibility of a rational design.

4.1 Introduction
Antimicrobial peptides (AMPs) that are part of innate immune system in all multicellular
organism are typically of about 12 to 50 amino acids. [1] These AMPs are typically
effective against various pathogens like bacteria, fungi, yeast, viruses and even cancer
cells.[2] Conventional antibiotics which targets specific bacterial sites sometimes become
ineffective by a single mutation at the target site.[3, 4] Unlike these antibiotics, AMPs
have an entirely different mode of action by attacking the cell membrane of the bacteria.[5]
Various mechanistic models have been proposed for the action of AMPs:[6] barrel stave
model, toroidal model and carpet model, which result in the formation of pores or breaking
up of the membrane into micelles. Bacteria do not develop resistance to these AMPs easily.
Therefore there is an urgent need to identify novel AMPs. There is a growing interest
in the development of synthetic AMPs that are able to mimic the natural antimicrobial
peptides in their functionality.[7, 8] But owing to the high cost of production, poor
pharmacokinetics and susceptibility to proteolysis, large scale pharmaceutical application
has not been possible yet.[9] Resolving some of these problems as well as developing
AMPs against new pathogens requires a rational design approach. Understanding the
properties of AMPs would serve as an important tool to design novel drug molecules
with the essential features that make them antimicrobial, with possibly a low rate of
haemolysis. In this work, we focus on one such quantitative structure-activity relationship
(QSAR) models, relating the physicochemical properties of AMPs to their activity.

We performed our analysis on a series of cationic AMPs, also known as CAMEL-s.[10]
CAMEL-s were designed by making substitutions in the 15 amino acid long synthetic
design. Their activity was experimentally quantified[10] in terms of the minimum
inhibitory concentration (MIC) against 24 Gram-positive and Gram-negative bacteria.
QSAR methods have been used for modelling activity in various contexts.[11–15] The
activity data of CAMEL-s peptide was previously used by other QSAR models.[10, 16, 17]
These earlier models predominantly used either sequence based parameters[18] or in turn
depended on other predictive tools such as in vitro and in vivo aggregation propensities.[19]
In our work we explore the possibility of predicting activity of CAMEL-s peptides using
their structure and dynamics.
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4.2 Methods

4.2.1 Structure and dynamics simulation
The structure of the peptides were generated via homology modelling of the sequence using
the Modeller tool.[20] We used α helix as a template for this modelling. Two different
sets of molecular dynamics (MD) simulations were performed using GROMACS 5.1.1,[21]
one with the peptides solvated in water and another in octanol. For the simulation in
octanol, OPLS-AA/L[22] all-atom force field was used for both peptides and octanol.
Instead, for the simulation of peptides in water we used AMBER99SB forcefield[23] for
protein and TIP3P[24] for water. Most of the average properties converged within 5 ns
of MD simulation. RMSD relative to the starting structure and ellipticity at 222 nm
calculated using gmx rms and gmx helix program were used respectively for monitoring
the convergence. The results shown in Figure 4.1 show that the systems stabilize after
5 ns. The following parameters were obtained by post-processing the last 5 ns of MD
trajectories using the tools available with GROMACS 5.1.1:[21] average dipole moment
(gmx dipoles), average number of hydrogen bonds within the peptide (gmx hbond),
solvent accessible surface area (SASA) (gmx sasa), ellipticity which is proportional to
the number of residues in the helix (gmx helix), root mean square deviation, volume
(gmx sasa), density (gmx sasa), moment of inertia along major, middle and minor axes
(gmx principal). In addition to these, averaged root mean square deviation relative to
the starting structure was calculated using VMD.[25] These structural properties were
then used as input parameters to the artificial neural network study.

4.2.2 Neural Network Model
Artificial neural network based model was set up using sci-kit learn module[26] in Python
2.7.6. A two layer feed-forward network using MLPRegressor with logistic sigmoid hidden
layer and a linear output layer was used. The network was trained using the low-memory
BFGS optimization algorithm. The number of neurons for the hidden layer were varied
and the number corresponding to the best R2 value of the validation set was chosen for
further analysis. The calculations were repeated using independent calculations with
3 to 5 neurons in the hidden layer. The results we report correspond to the optimal
predictions we obtained with 4 hidden neurons. The data was divided into training sets
with 81 peptides, validation sets with 10 and test sets with 10 peptides. 50 different
training sets were prepared by randomly choosing them from the data. For every pair of
training and validation sets, 50 sets of random inputs for initialization of weights and
biases of neural network were used, making them a total of 2500 calibration sets. Of
these 12 sets were chosen where the R2 for the training and validation data was greater
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than 0.6. Based on these, R2 for the test set was calculated.
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Figure 4.1: (a)RMSD of the peptide was calculated with reference to the starting
structure and (b) Ellipticity at 222 nm value calculated for some of the peptides solvated
in octanol, shows that the physical parameters stabilizes after 5 ns. We used data from
5 ns to 10 ns in our analysis.

4.3 Results

4.3.1 Dynamical properties
The sequence and biological activity data of 101 CAMEL-s peptides was obtained from
Mee et al.[10] Starting from the sequence, a putative helical structure was ascribed to
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each of the peptides, as AMPs mostly assume an α helical structure, especially in the
membrane. The structures were generated using Modeller (Methods Section). The
dynamics of the peptides in octanol medium, which is believed to mimic the properties in
lipid membranes, was investigated using molecular dynamics (MD) simulations and ten
different dynamical properties were calculated as noted in the Methods section. The
properties converged with 2 ns as shown in Figure 4.1 and Figure C.1 of Appendix C.
Since biological activity of proteins or peptides usually is associated with their dynamics,
we modelled it using these properties derived from MD simulations. We also repeated the
MD with the peptides solvated in water, although as we comment later the predictions
were better with octanol simulations.

4.3.2 Model for CAMEL-s activity prediction
Ten different variables obtained by processing the MD trajectories (Methods section)
were used as descriptors of the activity. These variables included the descriptors of
flexibility of the peptide such as RMSD or properties which could describe how easy or
difficult an insertion into the membrane might be – such as the average volume or density
of the peptide along the trajectory. The activity data was modelled using artificial neural
networks (ANN) on these descriptors. The data was randomly split into several sets –
80% training, 10% validation and tested with remaining 10% test set (Methods). While
considering the parameters obtained from simulation in water the neural network model
prediction was poor (Figure C.2 of Appendix C). But with simulation in octanol, the
model was able to predict the biological activity with fairly good accuracy, the coefficient
of determination, R2 for the training set being 0.86, and that for the validation and test
set was 0.62 and 0.65, respectively (Figure 4.2).

Of the 2500 calibration sets we tried with random initialization (Methods), 12
resulted in R2 of training and validation sets to be greater than 0.6. We reported the
data set with the best R2 for the test set. When we repeated the calculations with 70%
training, 10% validation and tested with remaining 20%, the results were not as good
(data not shown), possibly because of the size of the data set used in the analysis.

4.3.3 Importance of the variables used
In order to understand the relative importance of the ten variables, we compared the
R2 value of the model by replacing variables with their average values. The replaced
variables were used as a test data and the R2 was calculated. The difference between
total R2 of original and modified data was calculated and plotted in Figure 4.3. It is
observed that the density of AMPs affects their activity the most, followed by volume
and SASA. From Figure 4.3 it is observed that the density is the most relevant variable
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Figure 4.2: The experimental vs the calculated values of biological activity for the
training (purple circle), validation (orange square) and the test set (green diamond).
Blue color area corresponds to 95% confidence interval.

and average hydrogen bond is the least. But overall collective effect of the variables helps
to determine the activity of the peptides.
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0.86, 0.62 and 0.65 for training, validation and test sets respectively.

4.4 Discussion
Sequence-structure-dynamics-function is the present paradigm in understanding how
a sequence translates into a functional peptide or a protein by virtue of its flexible
motions in the medium surrounding it. Continuing on this theme, we have used the
dynamical properties of AMPs along with artificial neural network models to predict
their antibacterial activity. A couple of earlier studies[18, 19] attempted the prediction of
the activity. We performed the present research with the goal of addressing the following
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concerns: (i) Since protein/peptide dynamics is believed to be the underlying factor
determining their activity, can the the activity be captured using molecular dynamics
alone? (ii) Can simple and intuitive variables e.g, volume, density, SASA and RMSD
of the peptide be sufficient, as compared to the earlier reported works[18, 19] which
required derived variables such as aggregation propensities which were in turn predictions
from other computational models (iii) Can a secondary dependence of the descriptive
parameters on other predictive tools/softwares which have not been thoroughly validated
be avoided? Our results answer these questions in affirmative, demonstrating the utility
of MD for the prediction of AMP activity. The comparison between earlier work and our
work is plotted in the Figure 4.4 and it shows that the results of our predictions are at
least as good or slightly better than the predictions from the previous models.

Further, we could see from our calculations that the parameters calculated using MD
of peptides in octanol performed better than those from water. The simulations in water
resulted in structures which were more flexible than in octanol. The variables density,
volume and SASA from the simulations in octanol playing an crucial role in the activity
of CAMEL-s peptides and the relatively flexible water models not being representative of
the activity suggest the importance of the dynamical state of peptides in octanol, which
is usually believed to mimic the membrane environment, are more representative of their
functional state.

4.5 Summary
In summary, we could use parameters based on molecular dynamics in octanol to model
the activity of antimicrobial peptides on bacteria. The good quantitative results also
suggest the utility of peptide dynamics in understanding their biological activity as well
as potential for designing novel AMPs.
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Chapter 5

One drug multiple targets: An
approach to predict drug efficacies
on bacterial strains differing in
membrane composition

Abstract

The development of drug resistance by bacterial adaptation, or the undesirable damage
to gut microbiota raise new challenges in drug design and require one to look beyond
the canonical approach of screening multiple drugs against a single target. We develop a
complementary approach, one drug multiple targets, and quantitatively illustrate it for a
specific case of antibiotics targeting membranes. We curated the data on the activity of
daptomycin against Streptococcus aureus strains with different membrane compositions,
varying mainly in lysylation, and validated the concept. The results of the predictions
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are good, and within the limits of the scarcely available data, hint at the activity of
daptomycin by interacting with the outer leaflet of the membrane.

5.1 Introduction
Antibiotic resistance is one of the major health threats in the decades to come. Rational
antibiotic design methodologies use structure-activity relationships to predict the activity
of the drug candidates against well-defined targets, bacterial proteins or membranes.
However, as the knowledge of disease biology and complications of infections increase
in the modern times, several newer challenges are emerging in drug design. Many drug
candidates are rejected for their toxicity, and others which translate as drugs become
redundant as bacteria adapt to them. In the last few decades, several pathogenic bacteria
developed resistance to new antibiotics within a few years of their introduction.[1] In
what apparently seems unrelated, gut bacteria have been implicated in several important
roles in human health and development[2] and a disturbance in their balance can lead
to several disorders including Parkinsons’ [3]. As such, the effects of commonly used
drugs on gut bacteria[4] are being evaluated. Only in the recent times physico-chemical
rational intuitions are being used not just for efficacy prediction, but also to understand
why most of the drug candidates do not reach advanced stages of clinical trials[5]. The
next generation of antibiotic design thus requires one to go beyond the traditional drug
design paradigm and address a more comprehensive set of challenges rather than being
an efficient drug against a well-defined target.

Computational methodologies such as quantitative structure activity relationships
(QSAR) have been traditionally motivated around designing drugs for well defined
targets, by binding to the active site,[6, 7] or trapping reaction intermediates[8] or acting
allosterically.[9] Several similarity based methods have been developed to predict drug-
target interactions using structural or non-structural latent features [10]. Since bacteria
have been developing resistance to drugs targeting their enzymes[11, 12], the focus of
QSAR has been shifting towards evaluating the activity of cationic antimicrobial peptides
(AMP)[13] and their mimics[14] which act on anionic bacterial membranes.

Several mechanisms illustrating the action of AMPs on membrane disruption have
been proposed[15, 16]. However, unlike in the case of drugs targeting enzymes, specificity
against the membrane of the target bacterium has not been clearly identified. Further,
although it is believed that bacteria do not develop resistance to AMPs easily,[17–19]
bacteria typically adapt by surface charge reduction using lipid lysylation[20]. It is not
immediately apparent how effective the same drug remains when the bacteria adapts by
lysylating a fraction of its phospolipids, for example in serial passage experiments.[21]
The rational design of AMPs focusing on screening hundreds of drug candidates against
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a single bacterial target membrane,[22–24] ignores the potential non-specificity of AMP
interactions as well as the plasticity of bacterial genome and thus seems restrictive.
Addressing this class of questions needs a complementary strategy of screening drugs
against multiple desirable or undesirable targets. Procedurally our approach is the same
as a standard QSAR, with a simple shift of focus from considering multiple drugs to
multiple targets. We however believe that this simple change in perspective begins a new
paradigm in quantitative structure activity predictions for the activity of a drug towards
a broader range of targets, membranes in this case. To the best of our knowledge, the
systematic data needed to build such model was available only for Streptococcus aureus
(S. aureus). We curated this data on the activity of daptomycin against a variety of S.
aureus strains from across several pieces of work and used it to develop a quantitative
model.

Pathogenic strains of S. aureus which can cause severe skin and respiratory infections,
develop resistance very fast to new antibiotics, and methicillin resistant S. aureus (MRSA)
infections are especially problematic due to the lack of a suitable vaccine or antibiotic.[25,
26] Daptomycin is a cyclic lipopeptide antibiotic,[27–29] which binds to the bacterial
membranes in a Ca2+ dependent manner.[30–34] The lipophilic acyl tail of daptomycin
interacts with the membrane which then leads to K+ leakage and inhibition of protein,
DNA or RNA synthesis.[35–37] Daptomycin shows a significant activity against MRSA[38,
39] and vancomycin intermediate S. aureus.[30, 40, 41] In this work, with the goal of
broadening the scope of a conventional QSAR, we study the activity of daptomycin
quantified by its minimum inhibitory concentration (MIC) against S. aureus strains
characterized by varying compositions of phosphatidylglycerol (PG), cardiolipin (CL),
lysyl-PG (LPG).

5.2 Results

5.2.1 Membrane descriptors
Bacterial membranes are usually composed of lipids such as phosphatidylglycerol (PG),
cardiolipin (CL), lysyl-PG (LPG) and zwitterionic phosphatidylethanolamine (PE). We
curated this data from 12 different studies [21, 42–52] (Table D.1 of Appendix D),
which were mostly obtained using the Etest protocol (AB Biodisk, Dalvagen, Sweden). S.
aureus does not have PE lipids, and these S. aureus strains differing in PG, LPG and CL
show varying levels of drug resistance (MIC). The curated data on average reflects that
(Figure D.1 of Appendix D) daptomycin binds and oligomerizes in the PG enriched
region,[53] as its mechanism of action is believed to be charge driven. The latter might
also be the reason for the reduced toxicity to mammalian cells, as they are low in PG
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content[15]. CL[54] and LPG[55] on the other hand are negative factors decreasing the
activity of daptomycin. However a quantitative relation is non-trivial (Figure D.1 of
Appendix D), since it depends on PG, LPG and CL varying simultaneously, and our
goal in this work is to develop such relation for both the susceptible (MIC ≤ 1 µg/ml)
and non-susceptible strains (MIC > 1 µg/ml)[38].

5.2.2 Membrane bilayer model
Artificial neural network (ANN) model (Methods section) was used to obtain a relation
for the activity of daptomycin (MIC) on the strains characterized by different membrane
compositions (Methods). The percentage of different lipids in each strain were the inde-
pendent variables and the experimentally determined minimum inhibitory concentration
(MIC) was the dependent variable in this ANN model. Input and output layers, with
one hidden layer with 4 to 10 neurons was used in our model. In order to standardize
the procedure, the results presented in this manuscript were trained and tested using
the MIC experimentally determined by Etest (Table D.1 of Appendix D). Results
obtained from the 10-fold exhaustive cross validation with the total membrane data are
given in Table D.2 and Figure D.2 of Appendix D, and the mean squared error
(MSE) and standard deviation (SD) were noted as a function of the number of neurons
in the hidden layer Table B.3. In our calculations with total membrane composition
and MIC from Etest, one hidden layer of 8 neurons with an input and output layer
gave the best results. We obtained good results, as indicated by the goodness of fit
measure, R2, independently for the training, test and validation sets. (R2

training = 0.831,
R2
validation = 0.734, R2

test = 0.695). The experimental MIC versus the MIC calculated
using the total membrane composition of S. aureus is given in Figure 5.1. For the sake
of completeness, we also predicted the MIC values of the data points which were not
measured by Etest method by using the best models obtained from our calculations. All
the results are given in Table D.3 of Appendix D, and the results were found to be
good.
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Number of neurons in the hidden layer
3 neurons 4 neurons 5 neurons 6 neurons 8 neurons 10 neurons

Inner
leaflet

#R2
test > 0 2 7 5 3 4 3

MSE 64.174 38.183 45.774 47.572 64.688 57.331
SD 59.622 45.636 67.132 43.895 68.610 79.144

Outer
leaflet

#R2
test > 0 4 6 6 6

MSE 11.323 20.179 9.042 13.849
SD 9.670 26.090 9.252 19.915

Total
mem-
brane

#R2
test > 0 8 8 7 7

MSE 4.396 4.193 3.723 4.994
SD 5.268 4.744 4.317 4.802

Table 5.1: 10-fold cross validation analysis was repeated with a hidden layer between
the input and output layers, and by varying the number of neurons in the hidden layer.
Here we tabulated the number of times, out of 10, R2

test > 0, as well as the mean squared
error (MSE) and standard deviation (SD). MSE and SD were used for choosing the
optimal number of neurons for each of the membrane compositions studied.
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Figure 5.1: Comparison of the experimental MIC (µg/mL) and MIC (µg/mL) of
daptomycin calculated using 8 neurons in the hidden layer on different total membrane
compositions. Training (purple circles), validation (orange squares) and test (green
diamonds) sets are shown. The details of the source of the data as well the method by
which the MICs were obtained are given in Table D.1 of Appendix D.

5.2.3 Inner and outer leaflet models
We derived the lipid compositions in the inner and outer leaflets where the required
data was available (Methods section and Table D.4 of Appendix D), and performed
two independent activity predictions considering these compositions. 10-fold exhaustive
cross validations with different number of neurons in the hidden layer were performed
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separately using the inner or the outer leaflet composition as the independent variable,
and MIC as the dependent variable. As seen from Table B.3, calculations with a
hidden layer having 8 and 4 neurons gave the best results for the outer and inner leaflet
calculations respectively. The results are shown in Figure 5.2. The data analysis shows
that the test predictions using only the outer leaflet (R2

training = 0.944, R2
validation = 0.907,

R2
test = 0.816) were better than those with the inner leaflet compositions (R2

training = 0.729,
R2
validation = 0.728, R2

test = 0.759). Results obtained from the 10-fold validation for the
outer leaflet composition is given in Table D.5 and Figure D.3 of Appendix D and
for the inner leaflet composition is given in Table D.6 and Figure D.4 of Appendix
D.
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Figure 5.2: Comparison of the experimental (µg/mL) and MIC (µg/ml) of daptomycin
calculated on different membrane compositions, using the data only from (a) the outer
leaflet, with 8 neurons in the hidden layer, or (b) the inner leaflet, with 4 neurons in
the hidden layer. Training (purple circles), validation (orange squares) and test (green
diamonds) sets are shown. The data used in the analysis is shown in Table D.4 of
Appendix D.

5.3 Discussion

5.3.1 One drug multiple membrane targets
In designing drugs to address antibiotic resistance, newer drugs such as antimicrobial
peptide [13] or their mimics[14] which are cationic and effective against anionic bacterial
membranes are being developed. As may be expected, bacteria adapt to such drugs, with
a surface charge reduction by lysyl modification of the lipids.[20] However, rational design
strategies, computational or experimental have focused mainly on designing the activity
against a specific target, and effectiveness of the same drug when the bacteria adapts, for
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example, by lysylating a fraction of its PG is not clear. From the results of the present
work, a direct inference is the efficacy of daptomycin against several strains of S. aureus
varying in composition, which may be relevant because of the antibiotic resistance. A
deeper implication is the scope of addressing the newer challenges arising in rational drug
design. The work is an illustration of how when sufficient data is available, the efficacy of
a given drug against the adapting pathogen may be established in a rational way. When
systematic experimental data is available for training, similar approach can be used to
study the effect of any one drug on membranes characterized by differences in lengths,
types and saturation levels of lipids.

5.3.2 Possible mechanism of action
Our calculations suggest that the composition of the total membrane and outer leaflet
better predicts the activity of daptomycin on S. aureus (Table B.3). Although the
size of the data is small, the number of data points with the outer or the inner leaflet
are both the same, which suggests that the composition in the outer leaflet is a better
determinant of the antibiotic activity than the inner leaflet. A possible reason for this
could be that the daptomycin activity begins with the charged interactions at the outer
leaflet. Earlier experiments have suggested a correlation of the MIC with the LPG in the
outer leaflet.[21] However this correlation was based on few data points they obtained
in that specific work, and our work demonstrates a similar dependence over a range of
membrane compositions where the intuition does not seem trivial. As with the rest of
the analysis in this article, the approach is conceptually new and the data available,
especially for the individual leaflets, is limited. Of course, these conclusions may have to
be re-examined and adapted when more data becomes available.

5.3.3 Predicting daptomycin activity
Using the three ANN models we developed for the total membrane, outer and inner leaflets,
we calculated the MIC of daptomycin for a systematic variation in the compositions for
each of these cases. The results are shown in Figure 5.3 (and for the inner leaflet in
Figure D.5 of Appendix D ). In case of total membrane and outer leaflet compositions,
MIC value is low when %PG is very high. In the case of outer leaflet composition,
for a given value of %PG, MIC increases with increase in LPG content, which is both
intuitive and in agreement with the earlier experimental results, as daptomycin activity
is believed to be driven by charge interactions. No other trends could be seen in the
calculations based on the total membrane composition. But, in case of outer leaflet,
when the PG content is below 80%, the MIC values increases with the increase in the
%PG. Interestingly, these non-monotonous trends are seen both in the experimental
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data (Figure D.1 of Appendix D) as well as prediction from outer leaflet composition
(Figure 5.3) Physically MIC can not be negative, however our calculations resulted in
some negative values, which are artefacts of making predictions with smaller data sets in
a landscape with several non-monotonous trends. Continuing our hypothesis that the
outer leaflet captures the most relevant interactions, the negative MIC predictions with
the outer leaflet data are fewer. The non-monotonous MIC trends in experiments and
calculations suggests that there are several ‘local equilibria’ in the membrane compositions
that an adapting bacterium may drift towards for improving its resistance (or increasing
MIC), depending on the initial conditions or other constraints. A knowledge of how
bacteria reach islands of drug resistance with changes in membrane composition may
help a drug designer to understand how or how quickly the adaptation may happen.
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Figure 5.3: Prediction of daptomycin MIC (µg/mL) values for a complete range of
variation of lipid composition in the (a) outer leaflet and (b) total membrane. The
blue-green color represents the %CL percentage for positive values of MIC and the circle
size represents MIC. Since we trained our model on the non-monotonous trends (Figure
D.1 of Appendix D), the prediction from the model gives few negative MIC values
(µg/mL), represented in red color, over a small parametric region.

5.4 Conclusion
To the best of our knowledge a quantitative model that considers the effect of the same
drug candidate on multiple membrane compositions had been explored for the first time
in this work. Specifically the new approach was used in the present work to characterize
the activity of daptomycin on different S. aureus strains. With the limited systematic
data available, we could build a neural network based model which predicted the activity
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and suggested that the composition in the outer leaflet reflects the drug activity better.
While practically this ‘one drug multiple targets’ is a trivial extension of the canonical
QSAR, conceptually it addresses an entirely new class of problems where the membrane
adapts or the drug inadvertently acts on a heterogeneous population of bacteria.

5.5 Methods
Data curation The experimental data on the membrane phospholipid composition of
the different S. aureus strains, including methicillin resistant strain and their correspond-
ing minimum inhibitory concentration (MIC) of daptomycin was curated from several
published works.[21, 42–52] These works reported the total phospholipid composition
- phosphatidylglycerol (PG), lysyl-PG (LPG) and cardiolipin (CL) - in the membrane
bilayer (Table D.1 of Appendix D). In addition, some works [21, 43, 44, 47–51] also
reported the composition of the inner and outer leaflet LPG (referred to as iLPG and
oLPG respectively) in the overall composition. The data was then used as follows to
obtain the fractions of the phospholipids in the individual leaflets.

Assuming 2N lipid molecules in the bilayer, the composition was used to calculate the
number of molecules (PG, LPG and CL) in the inner and outer leaflet. CL is assumed
to be equally divided (%CL × N) between the two layers. (%iLPG×2N), (%PG×
2N+%oLPG×2N -%iLPG×2N)/4N , (%CL× N) are the number of LPG, PG and CL in
the inner leaflet and (%oLPG×2N), (%PG× 2N + %iLPG × 2N - %oLPG×2N)/4N ,
(%CL ×N) are the number of LPG, PG and CL in the outer leaflet. The percentage within
each leaflet was then calculated based on these lipid molecule numbers. The phospholipid
compositions thus derived for the inner and outer leaflets of the membrane, and the
corresponding with daptomycin MIC values are given in Table D.4 of Appendix D.
Dividing data into training and test sets Artificial neural network (ANN) model
was used to obtain a relation between membrane composition and activity. We have
performed three separate ANN calculations, using the 66 data points corresponding to
total membrane composition, and 38 data points corresponding to the outer and inner
leaflet compositions. In all three cases, we tried 10-fold cross validation to establish the
robustness of the model. To implement this, we shuffle the data set and divide it into
ten different test sets. For each choice of the test set, the rest of the data was randomly
split into training and validation sets. 54 and 6 data points were chosen for training and
validation respectively with the total membrane. Similarly, 30 and 4 data points were
respectively chosen for training and validation with the outer or inner leaflets. The ANN
model was based on scikit-learn[56], an open module for machine learning in Python.
Logistic function was used as the activation function and low memory BFGS optimization
algorithm was used as solver for this neural network.
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Neural Network model Our ANN model was based on scikit-learn module using
MLPRegressor function, had input and output layers, with one hidden layer. The number
of neurons in the hidden layer were exhaustively varied from 4 to 10 to determine the
optimal number of neurons. With the total membrane composition data, 2500 trial
runs were made, using 50 different randomized choices for the input biases in the neural
network and 50 different randomized choices for the training and validation set. We
used neural network models with an input, output and a hidden layer with 4, 6, 8 or
10 neurons as an additional parameter. We calculated the mean square error (MSE)
and standard deviation (SD) for the 10-fold cross validation model. If ni is the number
of data points present in each test set and Yexp & Ypredicted are the experimental and
predicted value for each data point representing a combination of PG, LPG and CL, and
CV i

10 represents the MSE of ith test set in the 10-fold cross validation model, then MSE
is calculated as follows.

CV i
10 = 1

ni

ni∑
j=1

(Yj,exp − Yj,predicted)2 (5.1)

MSE = 1
10

10∑
i=1

CV i
10 (5.2)

SD = SD{CV 1
10, CV

2
10, ..., CV

10
10 } (5.3)

The 10-fold cross validation was used to choose the optimal number of neurons in
each of the different membrane composition analyses. Further, for performing detailed
predictions, we had to pick one of the 10 data set based models. The best ANN models
were selected by screening for two quality criteria, R2

training > 0.7 and R2
validation > 0.6.

The same procedure was used when performing the calculations for the 10-fold cross
validation with the total membrane composition or with just the inner or outer leaflet
compositions. One hidden layer of 8 neurons with an input and output layer gave the
best result in our calculation for data corresponding total membrane composition. On the
other hand, for the outer leaflet, a model with one hidden layer and 8 neurons gave the
best results, while 4 neurons was the optimal choice in modelling the inner leaflet. From
this 10-fold calculation, we select the best model for all the three cases, which gives the
best R2 values for all training, validation and test sets. We performed the calculations
over the entire range of PG, LPG and CL compositions using this model. The p-values
for the variables in the training, validation and test data sets with our neural network
model were found to be satisfactory Table D.7 of Appendix D.
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PART II

Unconventional protein secretion
across membranes





Chapter 6

Exploring the context of diacidic
motif DE as a signal for
unconventional protein secretion in
eukaryotic proteins

Abstract

Unconventional protein secretion (UPS) is an important phenomenon with fundamental

This chapter is reprinted from "https://doi.org/10.12688/wellcomeopenres.14914.1" under the Creative
Commons Attribution License.
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implications to cargo export. How eukaryotic proteins transported by UPS are recog-
nized without a conventional signal peptide has been an open question. It was recently
observed that a diacidic amino acid motif (ASP-GLU or DE) is necessary for the secre-
tion of superoxide dismutase 1 (SOD1) from yeast under nutrient starvation. Taking
cue from this discovery, we explore the hypothesis of whether the diacidic motif DE,
which can occur fairly ubiquitously, along with its context, can be a generic signal for
unconventional secretion of proteins. Four different contexts were evaluated: a physical
context encompassing the structural order and charge signature in the neighbourhood of
DE, two signalling contexts reflecting the presence of either a phosphorylatable amino
acid (‘X’ in XDE, DXE, DEX) or an LC3 interacting region (LIR) which can trigger
autophagy and a co-evolutionary constraint relative to other amino acids in the protein
interpreted by examining sequences across different species. Among the 100 proteins we
curated from different physiological or pathological conditions, we observe a pattern in
the unconventional secretion of heat shock proteins in the cancer secretome, where DE in
an ordered structural region has higher odds of being a UPS signal.

6.1 Introduction
Proteins need to be secreted outside the cell for several physiologically important reasons.[1–
3] In eukaryotes, proteins with an N-terminal signal peptide are known to get conven-
tionally secreted in a vesicular mode through the endoplasmic reticulum (ER) - Golgi
secretory pathway (ER-Golgi-secretory vesicles).[4, 5] However, interestingly, many pro-
teins which lack in such well-defined signal peptides are also secreted, mostly under cellular
stress.[6] This important class of unconventional protein secretion (UPS) reflects the
cellular response to stressors such as inflammation, nutrient stress, ER stress, mechanical
stress, etc., and continues to grow in relevance as many such instances are detected in
disease associated with dysfunctional autophagy such as neurodegeneration.[7] Secretion
of leaderless proteins (without signal peptides) is intriguing, and this non-canonical export
mechanism raises several mechanistic questions on their presumably unique secretory
pathways.[6] While at least four different UPS mechanisms have been identified so far,[6, 8]
even simpler and fundamental questions on how these leaderless proteins are identified
remain open.

Conventional signal peptides are 15-50 amino acid tags (“zip code”) at the N-terminus
of the proteins.[4, 5, 9] These signal peptides have a characteristic tripartite structure -
positively charged N-region, a hydrophobic H-region, and a polar C-region; which makes it
easier for the export machinery in the cells, as well as for the computational models, to sort
the secretory from the non-secretory proteins. Several predictive models for identifying
these signals have been developed.[10, 11] On the other hand, identifying unconventionally
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secreted proteins has not been equally intuitive, as they lack in the pattern of canonical
leader sequence.[4, 12] Modelling attempts to predict the unconventional secretion have
had limited success so far in deciphering the signatures of non-canonical secretion.[13]
Using artificial neural networks, which work by recognizing implicit patterns in protein
sequences, unconventional secretory proteins were categorized by properties such as amino
acid composition, secondary structure, and disordered regions, but do not explicitly reveal
the patterns among the unconventional secretory proteins.[14, 15] A rational basis for
how non-classically secreted proteins are identified has been missing thus far.

In a recent landmark work, a motif which drives a protein through the non-canonical
secretion pathway was identified for the first time. By systematically comparing the
superoxide dismutase 1 (SOD1) from human and mouse cells with their extracellular
SOD1 counterparts from human, mouse and yeast cells, a diacidic motif (Asp-Glu or DE)
had been identified to be responsible for its unconventional secretion. Of the 6 amino
acid insertion in SOD1, compared to its extracellular homologs, UPS was found to be
sensitive to the mutation of two amino acids aspartate (D) and glutamate (E).[16] As
a first and concrete observation, this finding raises the possibility that DE could be a
generic UPS signal motif. However, as the short two amino acid length motif could occur
in most proteins, in this study, we nucleate a minimal but rational hypothesis for the
role of DE and its structural and charge context to act as a trigger for UPS.

6.2 Methods

6.2.1 Data curation
All the proteins used in this analysis are eukaryotic proteins. Since the hypothesis was
centred on the contexts in which DE acts as a UPS trigger, any protein which had no DE
motif was discarded from the analysis. The proteins used in the analysis were chosen from
four different groups:- Group 1: Since it was recently demonstrated that the presence
of DE in UPS of SOD1[16] (cargo involved in neurodegenerative disease, Amyotrophic
lateral sclerosis (ALS), we intended to check the same in all other neurodegeneration
causing aggregates such as α-synuclein, β-amyloid, TDP-43, Tau followed by Group 2
that encompasses all the known UPS cargoes known to date. All these Group 2 secretory
proteins were chosen from Keulers et al.,[17] Group 3 were chosen from the dataset of
heat shock proteins that are reported to be secreted in an unconventional manner in
cancer[18] and the proteins from the breast cancer secretome where UPS is the major
contributor.[19] Group 4: While the list of non-secretory proteins could be very large,
we did not add any more of them than the number of secretory proteins to keep the
data set groups unbiased. Non-secretory proteins (cytoplasmic), were chosen from the
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Human Protein Atlas. The complete list of proteins used in the analysis is tabulated
in Dataset 1 (http://www.doi.org/10.17605/OSF.IO/2DMT4).[20] The final curated set
included 100 different eukaryotic proteins, 57 secretory and 43 non-secretory, whose DE
sequence details, and the nature of protein are mentioned in Table E.1 of Appendix
E and Dataset 1.[20]

6.2.2 Variables describing the physical context
For each of the selected proteins, three parameters defining the context in which DE
occurs in a protein were defined: (1) Hydrophobicity (H) of the local region, by adding
the hydrophobicity score[21] of 3 amino acids on either side of the DE motif (2) Charge
(C) of the local region, by summing the charge of 3 amino acids flanking on either side of
DE and (3) structural order - the local structure around DE was initially categorically
classified as ordered (O) if DE is in α-helix or β-sheet, disordered (D) if DE is in a loop
or disordered region (as illustrated in Figure 6.1). If DE occurred in the border (B) of
structured/unstructured regions, given the limited sample size of the data, we considered
the option of regrouping B either as O or as D which is discussed below along with other
cases.

Figure 6.1: Illustration of the definition of structural order in NADP Isocitrate dehy-
drogenase (PDB:2B0T). The protein has multiple DE motifs, in ordered, loop and border
regions.

6.2.3 Most relevant DE motif
For every protein used in the analysis, we characterized all DE motifs by their physical
descriptors (H,C,O/D/B). DE motif occurs in several places in many protein, and we
wanted to identify the most important DE motif for UPS signalling using the analysis

http://www.doi.org/10.17605/OSF.IO/2DMT4
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of the curated data. To identify the most relevant DE motif, we generated 16 possible
hypotheses listed as cases in Table E.1 of Appendix E. The analyses were performed
on all 16 data sets thus created.

6.2.4 Multivariate binary logistic regression
For each of the 16 hypotheses, different DE motifs were considered to be important,
and thus 16 different input files were prepared. Using these different data sets, and the
binary prediction (secreted/not-secreted), we performed 16 independent binary logistic
regression calculations using scikit-learn module (version 0.19.1) in Python (version
2.7)[22]. Significance quantified by p-values were obtained from these Python analyses.
The choice of the hypothesis comes a posteriori, comparing the quality of multivariate
binary logistic regression model for the prediction of secretion (Table E.2 of Appendix
E).

6.2.5 LIR motif analysis
We predicted the occurrence of microtubule-associated protein, LC3 interacting motifs in
the proteins using the iLIR database[23]. The details of the LIR motifs in the proteins
analysed are tabulated in Dataset 1.[20]

6.2.6 Co-evolution analysis
Homologous sequences and their multiple sequence alignments (MSA) for SOD1 and Acb1
proteins were obtained from the Pfam website using their identities Pf00080 and Pf00887
respectively. From the 3904 and 3489 sequences downloaded for the homologs of SOD1
and Acb1, we used a maximum gap frequency of 0.2, and used the selected sequences
for co-evolutionary analyses. A consensus sequence was created by choosing the most
common amino acid in each position. The entire MSA was then binarized, substituting 1
if the amino acid in a certain position is the same as the one in the consensus sequence,
and 0 otherwise. A co-evolution matrix was created with a home-written Python code,
following the protocol used in Statistical Coupling Analysis (SCA)[24]. The pairwise
co-evolution possibility was used to compare the co-evolutionary couplings different DE
motifs have.

6.3 Results

6.3.1 Physical nature of the DE neighbourhood as a context
Dependency on single variable. Before building a multivariate predictive model, the
curated data was classified as either secretory (UPS) or non-secretory, and their relation
to each of the individually chosen variables describing the structural context of where DE
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occurs in the protein was examined. The secretory nature has a dependence, although
not very strong, on all three physical context variables hydrophobicity (H) , charge (C),
and (dis)order D/O that we calculated based on the protein sequence and structure data
(see Methods). The most significant difference between the physical variables describing
secreted and unsecreted proteins was observed in our analysis of the data from the cancer
secretome (Figure 6.2). Similar analysis for the other sets are represented in Figure E.1
of Appendix E).
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Figure 6.2: Dependence of secretory nature on the local properties of DE motif in cancer
protein data (Groups 3B, 3C in Dataset 1[20]) on the extreme values of the descriptive
parameters. (A) Maximum charge (B) minimum hydrophobicity (C) minimum charge
(D) maximum hydrophobicity of the neighbouring amino acids were calculated for all the
occurrences of the DE motifs, in each of the proteins appearing in the cancer secretome
data.

Multivariate regression. Since the three physical parameters showed a relation to
the secretory nature, we combined all of them for a multivariate regression model in
a binary logistic regression model to predict the odds of secretion. However, there are
several DE motifs in most of the proteins, and we developed several hypotheses on how
to identify the specific DE which may act as a putative UPS signal. These hypotheses
were characterized by the choice of the extremes in the physical parameters used for
describing each DE motif. An example of one such hypothesis is a composite assumption
that among all the DEs occurring in the protein, DE in the ordered region is more
likely to serve as a UPS signal, especially when it is flanked by amino acids with the
lowest charge. For the simplicity of the analysis, the border region may be classified
as disordered region, making the complete hypothesis as in case 9 in Table E.1 of
Appendix E. With 16 different hypotheses (Table E.1 of Appendix E), 16 different
data sets were generated which were used for independent binary logistic regressions.
The p-values from these analyses, listed in Table E.2 of Appendix E, were used to
pick the most plausible hypothesis a posteriori. In each subgroup of data analysis, we
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find a few hypotheses which had a p value of <0.1 and possibly even <0.05. However,
one hypothesis that is significant in the total data analysis is that from case 12 (Table
E.2 of Appendix E) - that DE in an ordered region with lower charge and higher
hydrophobicity context is most relevant for the UPS. Further analysis of the subgroups
representing the different pathological conditions suggested a better significance for case
14, but all of them underscored the importance of having DE in the ordered region. In
the subgroup comprising the neurodegenerative data set, an ordered region with high
hydrophobicity was most relevant.

6.3.2 Signalling context via phosphorylation of the motif
The DXE motif in the cytoplasmic domain of the membrane proteins has been implicated
as a signal, in a different context, for the cargo transport.[25] It raises questions on
whether the same motif could be relevant in other proteins too, especially because DXE
has been implicated in the cargo concentration during the protein export from ER. There
are several occurrences of DXE or DXXE in our curated data, both in the secretory
and non-secretory proteins. Since the unconventional protein secretion is not always
active, and it is triggered by cellular stress, we examined the possibility that the there
is a phosphorylatable amino acid that might act as an on/off signal in the immediate
proximity of DE motif. We screened the curated sequences for a motif XDE, DXE,
DEX, XED, EXD, EDX where X is one of the following six amino acids that have the
propensity for phosphorylation :- three O-phosphorylated amino acids (S, T, Y) or three
N-phosphorylated amino acids (H,R,K).[26, 27] The analysis separated the proteins into
those which have at least one such motif, and those which do not and studying their
relevance for secretion. The contingency tables for the possibility of secretion along with
insertions DXE (Table E.4 of Appendix E) or a general proximity of X (Table E.5
of Appendix E) do not suggest any significant conclusions, either for the overall data
or for the subgroups considered.

6.3.3 Signalling context via LC3 interacting region (LIR) anal-
ysis

The LIR is a motif that aids in autophagy.[28] We observed that most of the proteins,
whether secretory or non-secretory, in our curated data had an LIR motif and thus the
proximity of LIR to the DE motif was used for differentiating the different proteins. We
explored the hypothesis that DE motif in the immediate proximity of LIR motif (joined
in the primary sequence) triggers UPS. Most secretory proteins had DE and LIR motifs
that are discontiguous (Dataset 1[20]). The group I had 4/5 , group II with 20/26, group
IV - secretory proteins within 7/8 and HSPs with 10/11 discontiguous stretches. No
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significant conclusion could be derived either about the presence of LIR or about its
proximity to the DE motif.

6.3.4 Co-evolutionary context
By using over 3000 homologous sequences (see Methods), pairwise co-evolutionary rela-
tionships were constructed among all the amino acids in SOD1 and Acb1. Both these
proteins had two DE motifs each, specifically one motif being implicated in UPS (amino
acids 77-78 in SOD1 and 23-24 in Acb1).[16] We explored to see if the motifs implicated
in UPS signalling have co-evolutionary patterns that are conspicuously different from
the other two. D102 in SOD1 had a co-evolutionary relation with three other amino
acids (amino acids 58,72,81), but a similar pattern could not be seen in the other DE
motifs from SOD1 and Acb1. The identification of the DE signature[16] involved the
knowledge of sequences as well an additional information on the protein localization.
Thus sequence alignment and coevolution information alone used in the present analysis
could not distinguish the DE that acts as a UPS signature.

6.4 Discussion
The role of diacidic motif DE as a component of retention or export signals has been
noted in several contexts.[29] For example, it had long been known that KDEL or HDEL
sequences at the C-terminus act as retention signal to keep the proteins in ER.[29]
Further, DXE was identified as the signal for the export of transmembrane proteins
such as VSV-G by COPII-coated vesicles from the endoplasmic reticulum to Golgi.[25]
Although exporting proteins containing these signals work through conventional secretory
pathway, DE signal in SOD1 directs the protein export through the UPS. Thus, it is clear
that the same DE motif depending on its flanking residues and insertions can assume a
different signalling role.[16] In this work, we examine several eukaryotic proteins to find
clues for the patterns leading to UPS.

Since the knowledge of the factors contributing to unconventional secretion is in its
nascent stages, the aim of this work was not to predict the possibility of cargo secretion
by unconventional pathways but rather to build a hypothesis which may be accepted
or rejected as and when more data will be available. The known secreted cargoes that
take the UPS route are limited. In this direction, we curated available data which
could allow us to make comparisons between the secretory and non-secretory proteins.
Towards this, we gathered data from different pathological conditions - cancer secretome,
neurodegeneration, and cellular stress. In terms of analysis, we examined the occurrence
of DE motif in four different contexts, namely in ordered regions such as helix or sheets, in
disordered regions such as loops, or alternatively in the border region between the ordered
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and disordered regions. We also considered the possible post-translational modifications
of the “X” in the DXE motif, co-evolution of DE motif in Acb1 and SOD1, and charge,
hydrophobicity and order of DE motif. Specifically, the physical context defining DE
was further dissected into 16 different cases to build a hypothesis to identify the most
relevant DE among all that were present in the proteins analyzed.

Our analyses suggest that when the diacidic motif DE appears in an ordered structural
environment with lower charge and higher hydrophobicity, it is likely to increase the odds
of unconventional protein secretion. While the overall p-values for the binary logistic
regression predictions were significant in some of the cases, the dependence on some of
the individual variables used was not significant. One of the reasons for this observation
might be the limited sample size of UPS cargoes. There are two ways to validate the
hypothesis. The first is to curate data on more eukaryotic proteins which certainly go
through UPS and ascertain if the statistics improve significantly. Alternatively, since the
hypothesis is centred around the structural order and charge on the amino acids flanking
DE, SOD1 secretion may be re-examined with mutations which promotes structural order
or by increasing the charges, in addition to the substitutions to alanine that have been
already explored by the Malhotra group.[16]

Considering the alternative hypothesis proposed in this work that DXE motif could
be a signatory sequence for UPS, it is plausible that the post-translational modifications,
especially, phosphorylation of the inserted amino acids may act as a signal for UPS.
It was observed that among the analysed data, the amino acids with propensity for
hydroxyl or amino group phosphorylation (O- or N-phosphorylation) are inserted as DXE
in the proteins that undergo UPS. Contrary to this, the DXE motif that was seen in
COPII is with aliphatic amino acid insertions.[25] Serine, threonine, tyrosine, as well as
arginine,[30] histidine and lysine[28] can undergo phosphorylation under oxidative stress,
which is also known to be the external cue that triggers UPS. This hypothesis can be
validated by searching for similar patterns in a larger dataset as well as by introducing
the DXE motif and observing its chances for unconventional protein secretion.

From the binary logistic regression and odds ratio analysis of the different groups
(Figure 2 and Table E.3 of Appendix E), it is evident that the secretion may be favoured
by the microenvironment inside and outside the cell in the pathophysiological conditions.
For example, altered proteome,[19] intracellular pH,[31] surface charge of the tumour
cells,[32] etc., may allow proteins with buried DXE motif to be exposed and accessible for
the UPS machinery as has been suggested for the secretion of Acb1 and SOD1.[16] Our
analysis that the odds of secretion is significant in terms of minimum charge and maximum
hydrophobicity (Table E.3 and Table E.6 of Appendix E) is in agreement with the
propensity of UPS cargoes to be efficiently secreted in an altered microenvironment, as
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seen in cancer and neurodegenerative diseases[33] such as Parkinson’s disease, Alzheimer’s
disease, Huntington disease and ALS.

We also tested the hypothesis that DE motif in the immediate proximity of LIR motif
(joined in the primary sequence) triggers UPS. Most secretory proteins had DE and LIR
motifs that are discontiguous (Dataset 1[20]). We did not observe any significance in the
proximal position of the LIR motifs with the DE signal. Moreover, it is seen that the
sequence alignment and coevolution information alone used in the present analysis could
not distinguish the DE that acts as a UPS signature.

6.5 Conclusions
In this work, we introduce a hypothesis that the diacidic motif DE, when present in the
appropriate context, which may be either structural, evolutionary, or aiding in signalling,
acts as a unconventional secretion. Despite the limited availability of data, we find the
conditions for the odds of unconventional secretion to be significant. The hypothesis
about structural order flanking DE or about the phosphorylation of the insertion DXE
or the relevance of the LIR motif that is proximal to the DE motif can be validated
either with larger data sets, and/or may be a cue for experimental validation. With this
study, we hope to raise testable hypotheses about the recognition of proteins secreted by
unconventional pathways, something which remains underexplored as yet.
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Abstract

Several proteins are secreted outside the cell, and in many cases they may be iden-
tified by a characteristic signal peptide. However, more and more studies point to the
evidence for an ‘unconventional’ secretion, where proteins without a hitherto unknown
signal are secreted, possibly in conditions of starvation. In this work, we analyse a
recently established large data set of 202 RNA binding proteins that are secreted without
a signal peptide. Analysis of these proteins secreted by LC3 mediation, the largest
unconventionally secreted dataset to our knowledge, identifies the role of KKX motif as
well as triacidic amino acid motif, an extension of the recent implication of diacidic amino
acids in unconventional secretion. Further data analysis evolves a hypothesis on the
sequence or structural proximity of the triacidic or KKX motifs to the LC3 interacting
region, and a phoshphorylatable amino acid such as serine as a statistically significant
feature among these unconventionally secreted proteins. This hypothesis although needs
to be validated in experiments that challenge the specific details of each of these aspects,
appears to be one of the early steps in defining what may be a plausible signal for
unconventional protein secretion.

7.1 Introduction
Proteins secretion is an essential cellular process. The first step in the translocation
of secretory proteins across intracellular membranes and their final localization is the
recognition of the ‘address tags’ contained within the amino acid sequences of the proteins.
In many cases of protein secretion, a specific configuration of 13 to 36 amino acids in
the N-terminal region acts as a ‘signal peptide’, and helps the translocation across the
first membrane on the secretory pathway and thus universally controls the entry of all
proteins to the secretory pathway in eukaryotes and prokaryotes. In eukaryotes, the
signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the
rough endoplasmic reticulum (ER) membrane and initiates the transport of the growing
peptide chain across it.[1, 2] In prokaryotes, the signal peptide directs the pre-protein
to the cytoplasmic membrane. However, the signal peptide is not responsible for the
final destination of the mature protein; secretory proteins devoid of further address tags
in their sequence are by default secreted to the external environment. Although signal
peptides are not highly conserved, they have a common positively charged n-region,
a hydrophobic h-region and a neutral, polar c-region. The c-region contains a weakly
conserved cleavage site recognized by membrane-bound signal peptidases. Before the
translocation of the pre-protein across the ER membrane, a ribonucleoprotein called
signal recognition particle (SRP) binds to the signal peptide emerging from the ribosome.
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Then the SRP-signal peptide-ribosome complex binds to the ER membrane via an SRP
receptor. The signal peptide is then inserted into the ER membrane via a signal peptide
binding protein and the nascent polypeptide then crosses the ER membrane through a
transmembrane channel.

The detail in which the signal recognition and secretion process is described above
suggests the volumes of research performed on this subject and the clarity on the
mechanism of how proteins are ‘conventionally’ secreted. Alternatively, Unconventional
protein secretion (UPS) of proteins bypasses the conventional endoplasmic reticulum (ER)-
Golgi route. Studies suggest four principal types of UPS that can be further distinguished
into non-vesicular and vesicular pathways.[3, 4] The non-vesicular pathways are further
classified into Type I (e.g., FGF1) and Type II (e.g., yeast MATα). The vesicular
pathways are mediated by Type III (e.g., Acb1) and Type IV (e.g., CFTR) mechanisms.
Based on a recent classification, Type I is a pore-mediated translocation across the
plasma membrane, Type II is an ABC transporter mediated secretion, Type III is an
autophagosome/endosome-based secretion and Type IV is a Golgi bypass mechanism.[4]
The type III system has a unique feature as the autophagy process has the ability to form
de novo vesicles, that have cargo specificity. One such selective form of autophagy that
participates in UPS is known as secretory autophagy[5] wherein the cargo is secreted out
instead of being degraded.

Unlike the classical secretory proteins that follow the canonical route of secretion
(Conventional protein secretion, CPS), the unconventionally secreted protein cargoes
follow a plethora of divergent secretory mechanisms. There are no concrete studies on the
motif analysis of UPS. Even the signals that may trigger this UPS are not clear. One of
the early indications for what may be a possible signal in this fascinating unconventional
secretion process, has only recently been discovered. The discovery of the diacidic motif,
DE as the signal for UPS[6] along with the context dependence of the presence of this
motif in proximity with the charged, unstructured amino acids[7] might provide some
clues. With the DE as a potential UPS export signal, the LIR containing proteins possess
specific membrane associated receptors and the cells might use this in combination for
the type III secretion. This can be resonated with the hypothesis that the UPS cargo
containing DE binds to specific binding partner.[8]

Predicting whether or not a protein undergoes a conventional secretion is a relatively
well understood phenomenon. Several predictors, such as SecretomeP[9] identify the
signal peptide with very high accuracy. There are several other newer predictors such
as the OutCyte[10] and ExoPred[11] which are meant to capture the unconventionally
secreted proteins as well. These models based on artificial intelligence emphasize the
accuracy rather than interpretability in terms of the potential signal-motifs. Further,
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the quality of the predictions itself may not be reliable as the models are trained on
protein secretion data that is highly inhomogenous. As such, a key to understanding the
unconventional secretion signals, and mechanisms is the availability of the relevant high
quality data.

Increasing evidence implicates ATG proteins (ATGs) in processes distinct from
classical autophagy, such as cellular secretion. Indeed, genetic loss-of-function studies
have revealed ATGs are required for the efficient secretion of inflammatory cytokines,
extracellular release of bactericidal enzymes and tissue repair factors, EV production
and unconventional secretion of proteins lacking amino-terminal leader sequences. The
concept of LC3 dependent EV loading and secretion (LDELS) from the secretomic studies
has opened up more avenues to ponder upon the autophagy mediated protein secretory
cargoes in detail.[12, 13] The recent data on the 202 RNA binding proteins which are
unconventionally secreted through an LC3 mediated pathway[13] opens up the possibility
of various analyses to understand UPS. We performed bioinformatic analyses on this
largest data set till date to explore the possibility of identifying the signals that trigger
unconventional secretion.

7.2 Methods
Sequence curation. The 202 unconventionally secreted set used in the analysis is
obtained from the set of proteins proved to be secreted by LC3 mediated mechanism
in the analysis of Leidal et al.[13] The set of 1576 conventionally secreted proteins
were obtained from the reference set used for training in SecretomeP[9] database (http:
//119.3.41.228:8080/SPRomeDB/download_enabled.php). For convenience these data sets
are also provided in our Supplementary Data set (https://github.com/malayrb/Thesis/
tree/main/Ch7).
Discriminatory Motif analysis. Discriminatory motif (DiMotif ) analysis[14] of a set
relative to the Swiss-Prot reference was performed using the code https://github.com/
ehsanasgari/dimotif/blob/master/notebook/DiMotif_step_by_step_example.ipynb
Motif search. In addition to the DiMotif analysis, we performed a motif search using
our script to analyze the differential occurrence of the motifs. The analyses presented in
this work are based on 3 amino acid motifs, and which can result in 4200 combinations
or 8000 combinations respectively with and without considering the mirror symmetry of
the motifs. The proteins from the conventionally secreted and the LC3 mediated groups
were scanned for these motif combinations, and the presence or absence of the motif was
noted. Similarly, scripts were also used for analysing 4 amino acid motifs as well as the
LIR motif (WXXL).[15, 16]

http://119.3.41.228:8080/SPRomeDB/download_enabled.php
http://119.3.41.228:8080/SPRomeDB/download_enabled.php
https://github.com/malayrb/Thesis/tree/main/Ch7
https://github.com/malayrb/Thesis/tree/main/Ch7
https://github.com/ehsanasgari/dimotif/blob/master/notebook/DiMotif_step_by_step_example.ipynb
https://github.com/ehsanasgari/dimotif/blob/master/notebook/DiMotif_step_by_step_example.ipynb
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7.3 Results

7.3.1 Acidic motifs top the differential motif analysis
The presence of a signature signal sequence is common in protein sorting. To identify
the presence of a signal sequence in the 202 RNA binding proteins, we performed two
different analyses:

Discriminatory motif analysis

To capture the unique signature in the 202 LC3 interacting proteins (UPS-ATG dataset),
they were compared against 20,117 proteins from the Swiss-Prot database using the
DiMotif server.[14] This discriminatory motif analysis is meant to identify the motifs
which were significantly represented in a chosen set, relative to the all proteins from the
Swiss-Prot database. The most significant motifs identified by this analysis are (details
shown in Table 7.1(a)): EEE, DD, DED, DE, AK, KKE, KK, KT, AKK, KE. These discriminatory
motifs have two or three amino acids.

Table 7.1

Table 7.1(a): Discriminatory mo-
tif analysis of the UPS-ATG set rel-
ative to the Swiss-Prot database.
The E-value denotes the significance
level of the hypothesis that the se-
quence appears selectively in the
UPS-ATG dataset, and with these
extremely small values of it, it is
practically the same as the p-value.

Top motifs E-value

EEE 4.47E-034
DD 1.40E-029
DED 9.08E-027
DE 2.14E-026
AK 6.32E-026
KKE 4.56E-024
KK 3.65E-023
KT 4.23E-023
AKK 8.80E-023
KE 9.78E-023
DDD 2.98E-022
EK 8.83E-022
RGRG 1.25E-021

Table 7.1(b): A summary of the motifs
that occur at least 30% more in the UPS-
ATG dataset than in the CPS dataset. The
total number of proteins in both the sets as
well as the percentage of occurrence in them
are both shown.

Motifs %UPS-ATG
(202)

%CPS
(1576)

EEE 50.990 13.388
KKS 45.545 11.358
AEK 47.525 13.959
AKK 44.554 11.104
KKR 41.584 8.629
KEL 54.950 22.081
DEE 51.980 19.226
KAL 51.980 19.353
EKL 51.980 19.543
KER 42.079 9.772
EKK 43.564 11.802
EEK 49.505 17.830
EKR 43.069 12.183
AEE 51.980 21.129
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Custom motif analysis

In addition to the above-mentioned analysis from DiMotif server, we also performed
a custom motif search comparing the LC3 interacting proteins with the database of
conventionally secreted proteins used for training the SecretomeP.[9] In this analysis,
all possible motifs of 2, 3 and 4 amino acids were combinatorially generated and a
systematic search for them was performed in the LC3 interacting UPS-ATG dataset
(positive-set), and the conventionally secreted proteins (negative-set).[9] The implicit
assumption being that the conventionally secreted proteins are not secreted through the
LC3 mediated pathway. Comparing the motifs in the positive and the negative sets, the
top ten differentiating proteins were identified after imposing a constraint that the motif
must occur in at least 30% more often among the proteins in the positive-set than in
the negative-set. The occurrence of a motif in the protein, rather than the number of its
occurrences in the same protein, was considered important. In this differential analysis,
three amino acid motifs had the highest difference between the two sets, while two or
four amino acid motifs did not appear to differentiate the two sets significantly to appear
among the top differentiators. The three amino acid motifs with the highest difference
between the two sets are (details in Table 7.1(b)): EEE, KKS, AEK, AKK, KKR, KEL, DEE,
KAL, EKL, KER. As may be seen, most of the differentiating motifs are charged, with the
triacidic motif at the top.

7.3.2 Acidic motifs appear in the proximity of LIR motifs
The transport of the specific set of proteins analysed in this work is mediated through
the LC3 domains. We identified all the LC3 Interacting Regions (LIR) in each protein
by performing a search for WXXL motif,[15, 16] and studied the frequency of occurrence of
the different 3 amino acid motifs in the proximity of LIR. As the structural information
of these proteins is sparse, we restricted the primary analysis to sequence based proximity
and wherever the structural information was available, the structural proximity check
was subsequently checked for. The most commonly occurring sequences in the proximity
of the LIR regions were: KEL, EEL, ALE, KAL, DEE, EKL, AEE, EEE, EEK (details in Table
7.2).

7.3.3 Phosphorylatable amino acids occur preferentially in the
UPS proteins

Since the unconventional secretion is usually activated under conditions of stress, we
explored the possibility that a post-translational modification may be required for its
activation. We searched for the presence of serine, threonine or tyrosine within 3 amino
acid positions from the differentiating motifs. For almost all the reference motifs we were
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Table 7.2: Propensity of occurrence of the various motifs in the proximity of LIR
motif in the unconventionally secreted proteins as well as in the conventionally secreted
proteins.

Motifs UPS-ATG (202) CPS (1576)
Number % Number %

KEL 20 9.901 92 5.838
EEL 17 8.416 118 7.487
ALE 16 7.921 54 3.426
KAL 15 7.426 57 3.617
DEE 5 2.475 30 1.904
EKL 19 9.406 91 5.774
AEE 17 8.416 32 2.030
EEE 8 3.960 20 1.269
EEK 12 5.941 25 1.586

analysing, the S/T/Y amino acid in the proximity of the motifs occurred preferentially
among the proteins from the positive set (Table 7.3).

7.4 Discussion

7.4.1 Triacidic motif is potentially a signal for UPS
The discriminatory motifs identified relative to the Swiss-Prot database and the conven-
tional protein secretion dataset were re-grouped to identify the common patterns among
them. Two major patterns emerge among these three amino acid motifs: triacidic motifs
(EEE/DDD/DEE/etc) occurring in 160 of the 202 from the positive set, and 625 of the 1576
in the negative set, and basic motifs (KKX) occurring in 187 of the 202 from the positive
set and 796 of the 1576 in the negative set. Considering either of these triacidic or KKX
motifs as a signal, the difference in the proportion between the positive and the negative
data sets is statistically significant (p<0.0002 in a Z-test).

Of these two statistically significant observations the triacidic motif, by coincidence,
happens to be an extension of the observation of the diacidic motif[6] and our earlier
attempt to find the context in which the diacidic motif appears.[7] In fact, a quick
reanalysis of the multiple sequence alignments from the homologs of SOD1, Acb1[6] by
focusing on the mammalian sequences alone shows that they all have a common triacidic
motif (Figure 7.1). However, despite the statistical evidence over the 202 proteins
for the possibility of KKX as a UPS signal, it is present neither in SOD1, nor in Acb1.
Since, there is very limited data on unconventionally secreted proteins, we consider the
independent finding of the triacidic motif in an already experimentally validated data set
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Table 7.3: The occurrence of proximal phosphorylatable amino acids close to motifs
appearing in the differential analysis is shown here. The motifs are sorted in the decreasing
order of occurrence in the UPS-ATG group.

Motifs UPS-ATG (202) CPS(1576)
Number % Number %

DEE 83 41.089 213 13.515
EEE 79 39.109 140 8.883
KKS 68 33.663 112 7.107
AKK 65 32.178 95 6.028
KES 64 31.683 155 9.835
KAL 62 30.693 205 13.008
GKK 60 29.703 177 11.231
DDE 59 29.208 169 10.723
EKR 59 29.208 132 8.376
KER 56 27.723 96 6.091
KKP 56 27.723 96 6.091
AEK 55 27.228 141 8.947
EAK 54 26.733 130 8.249
KAV 54 26.733 138 8.756
ASK 51 25.248 115 7.297
KVT 51 25.248 174 11.041
DED 47 23.267 99 6.282
GSK 46 22.772 219 13.896
APK 46 22.772 125 7.931
EGE 39 19.307 116 7.360
DKK 36 17.822 111 7.043

as an evidence in support of our finding. Needless to say, the role of which KKX as well as
the other features possibly contributing to the siganl, as described below require further
computational as well as experimental investigations. Further, the positive set which is
derived from LC3 mediated secretion (Leidal et al.).[13] The validity of the triacidic or
KKX motifs for other types of unconventional secretion will also require investigation.

7.4.2 Phosphorylation may be activating the signal
Unlike conventional secretion, the UPS is activated under conditions of stress, suggesting
the possibility that post-translational modifications may play a role in activating the
signal. In continuation of the hypothesis that the triacidic or KKX motifs may be the
‘signal’, we explored the possibility that the amino acids S/T/Y in the proximity of
responsible for activating this signal. S/T/Y amino acids in the proximity of triacidic
motifs appeared in 133 of the 202 proteins from the positive-set, and in 422 of the 1576
proteins from the negative set. Similarly, S/T/Y amino acids in the proximity of KKX
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(a) Multiple sequence alignment from homologos
of SOD1

(b) Multiple sequence alignment from homologos
of ACB1

Figure 7.1: A reanalysis of the multiple sequence alignments obtained from Cruz et
al.[6]. A comparison among the mammalian sequences, highlighted in purple, shows a
common triacidic motif DEE (highlighted in yellow), rather than a diacidic motif (shown
in red colored text) when comparing sequences across all species.

appeared in 170 of the 202 proteins from the positive set, and in 603 of the 1576 proteins
from the negative set. The statistical significance of the difference between the two sets
remains high (p<0.00001 in a Z-test).

7.4.3 LIR motif in the proximity of triacidic motif is discrimi-
natory

The positive set being analysed here, is about the set of proteins where LC3 conjugation
machinery is involved in their secretion.[13] However, the LIR motifs are present in
abundance in both the positive and the negative sets, making them non-discriminatory.
To go beyond the statistical averages from the 202 proteins, and to obtain fine-grained
insights into the role of LIR and the triacidic motifs, we analysed the 31 class I proteins
from the positive-set which were secreted in all three replicates in a statistically significant
way. Among them, 6 proteins had LIR motif within 3 amino acids of the triacidic motif
(Figure 7.2) along the sequence. From the remaining proteins, structural information
was available for 8 of them and in all of them the LIR region was within a structural
proximity (Figure 7.3), if not a sequential proximity of XYZ Angstrom from triacidic
motifs (Table 7.4). Coincidentally, in the cases where the structural proximity between
the LIR and the triacidic motifs was not seen, it could be seen with the KKX motifs
(Figure 7.4), underscoring the possible complementarity between the triacidic and KKX
motifs in signalling the UPS.

7.4.4 Deriving the hypothesis for the signal for UPS
Given the importance of unconventional protein secretion, it is important to identify
the signals that trigger it, if such signals exist. The key to building hypotheses is to
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Table 7.4: The structural distance between the triacidic motif and the LIR region
in some of the class I proteins from the UPS-ATG positive dataset, when there is no
sequence proximity, is shown.

Class 1
Protein

Uniprot PDB Chain LIR Tri-acdic Distance
between LIR
and Triacidic
Motif (Å)

MAP1LC3B Q9GZQ8 1V49 A QAFFLL DED 11.5
MTR Q99707 4CCZ A RAYHLL DEE 3
DSG2 Q14126 5ERD A,B ARYVKL DED 8.1
CPSF6 Q16630 3Q2S C,D KGFALV DED 7.1
CDC37 Q16543 5FWL E SVWDHI DDE 6.6
EEF1D P29692 2N51 A AAFNKI EDD 7.3
SF3A1 Q15459 6FF7 EB VAYAQI EEE 7.8
DDX39B Q13838 1XTK A VFFGGL DEE 4.6

Figure 7.2: An analysis of the sequence-proximity of the triacidic motif with the LIR
motif among some of the proteins from the class I of the UPS-ATG data set is shown.

work with highly reliable data, preferably from fewer sources to avoid any biases in the
experimental protocols. In this work, we chose to work with a very specific data set
from the LC3 machinery driven protein secretion with 202 proteins, and to build a few
hypotheses on what may be the signal for the unconventional secretion. The presence
of three amino acid motifs, triacidic or KKX, appears recurrently in the set of 202 UPS
proteins, significantly more than it occurred either in the conventionally secreted proteins
or in the Swiss-Prot database. Although the 202 proteins are believed to be secreted
by the LC3 dependent pathway, 5 of these proteins do not have an LIR motif that can
interact with the LC3 region. Interestingly even in these proteins, triacidic motif in
the proximity of a phosphorylatable amino acid is a common occurrence. Among the
proteins that had the LIR motif, it was found mostly in the sequence or a structural
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Figure 7.3: An analysis of the structural-proximity of the triacidic motif with the LIR
motif among the proteins from the class I of the UPS-ATG data set for which structures
are known is shown. The blue and red colors indicate the LIR and triacidic motifs. For
convenience, only the closest pair is shown and other occurrences of LIR or triacidic
motifs are not shown.

proximity from the triacidic or the KKX motifs. Thus, it appears that triacidic or KKX
aminoacid motifs in the proximity of LIR and/or phosphorylatable amino acids may
play a significant role in triggering the unconventional secretion. This result was also
validated in the independently curated dataset of unconventionally secreted proteins from
other mammalian cells,[7] where among the 26 mammalian proteins that are secreted
unconventionally, 5 of them had triacidic motifs within a 5 amino acid proximity of LIR. 9
of the remaining proteins where there was no sequence proximity, but the structures were
available, had LIR motifs within 10 Å of the triacidic motif, and three other structures
had them within 15 Å. It is will be very interesting to see if this hypothesis can be
validated with new experiments in which mutant constructs are designed to challenge
each of these aspects of the composite hypothesis – triacidic, KKX, proximity of LIR,
proximity of serine amino acid - are developed.

7.5 Conclusions
In conclusion, we explored the plausible signals for a very fundamental cellular process
- unconventional protein secretion. The field is still in its nascent stages compared to
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Figure 7.4: An analysis of the structural-proximity of the triacidic as well as the KKX
motifs with all LIR motifs occurring among the proteins from the class I of the UPS-ATG
data set for which structures are known is shown. The blue, green and red colors indicate
the LIR, KKX and triacidic motifs. One may notice that in some structures LIR is close
to the triacidic motif, and in others to the KKX motif.

conventional protein secretion where the signals as well as the mechanisms are clearly
identified. Exploiting the recent experimental findings of a large set of unconventionally
secreted proteins, we could perform bioinformatic analyses as well build hypothesis on
the potential role of triacidic amino acids or KKX motif in the proximity of LIR region
and phosphorylatable amino acids. As the next steps, we will be exploring collaboration
with the relevant experimental groups to validate these hypotheses as well as explore the
possibility of deciphering the patterns using interpretable deep-learning methods on the
same datasets.

Supplementary data
The LC3 interacting proteins (positive-set) and the conventionally secreted protein
sequences (negative-set) used in the present analysis are all curated at: https://github.
com/malayrb/Thesis/tree/main/Ch7.

https://github.com/malayrb/Thesis/tree/main/Ch7
https://github.com/malayrb/Thesis/tree/main/Ch7
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Chapter 8

Conclusions and Future Outlook

In this thesis, I explored aspects of two interesting phenomena that happen across the
membrane. Motivated by the new conceptual developments and unfoldings from experi-
ments, and equipped with computational tools such as artificial intelligence, advanced
molecular dynamics, I explored the molecular signatures of these phenomena. In the first
part of the thesis, I studied various aspects of what makes several novel drug candidates
suitable and specific for antibiotic activity against bacterial membranes. In the second
part, I performed bioinformatic analyses to search for a potential signal, hitherto unknown,
that helps the unconventional protein secretion possible.

PART 1: Mechanism of action and design of membrane-active
drugs
Detailing the Molecular Mechanism of Selective Antibiotic Action Against Bacterial
Membranes via Self Assembly and Membrane Penetration. We used advanced MD
simulations to study the action of drug molecules on bacterial membranes. The novelty
of the work was the simultaneous consideration of the self-aggregation and penetration of
drug molecules on the membrane disruption. Further, it was observed that the activity
critically depends on the distance between the cationic functional groups, which defines
the “effective length” of the drug molecule, in comparison to the membrane thickness.
Using Metadynamics, the drug acting pathway showed how the drug could interact with
the membrane then self-aggregating to affect the membrane finally.

Computational screening of antimicrobial peptides for Acinetobacter baumannii. Using
artificial neural networks, we developed models to screen AMPs for their activity against
A. baumannii. Although A. baumannii is emerging as a global threat, until now, the
availability of experimental data in this regard is minimal thus making the computational
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efforts important as they can help in prioritizing the experiments from over thousands of
possible AMP drug candidates.

Molecular dynamics based antimicrobial activity descriptors for synthetic cationic peptides.
We used an artificial neural network and the structural parameters from short MD
simulations to understand the biological activity of AMPs. Though performing an MD
simulation may appear complicated compared to using sequence properties, it did provide
an intuitive meaning to the descriptors as well as served the function of estimating the
biological activity.

One drug multiple targets. A traditional drug design approach screens several molecules
for their activity against one target bacteria. But this approach fails to ask the question
about how long the same drug will be effective if the bacteria adapt. In this work,
we made an effort to understand the effect of daptomycin against various strains of S.
aureus with varying degrees of lysine on the phospholipid membranes using an artificial
neural network model. Even though this one drug and multiple targets study is a trivial
extension of traditional QSAR study, this opens up a new direction of drug development
where the drugs can be designed to target one type of bacteria or a specific range of
bacteria.

In this part we studied three main important part of a drug development: (a) how drug
differentiate between bacteria and human cell, (b) what properties makes a drug effective
against bacteria, and (c) can the drug act against a specific type of bacteria taking their
membrane composition into account? All these steps are very crucial to understand to
develop a drug against bacteria, and we tried to contribute our findings to this ongoing
important field of antibiotic resistance.

PART 2: Unconventional protein secretion across membranes
Exploring the context of diacidic motif DE as a signal for unconventional protein secretion
in eukaryotic proteins. Unconventional protein secretion is still a very nacent field.
Taking a cue from a recent experimental finding where DE is shown to be important
for unconventional proteins secretion, we explored how the context of this DE ( the
charge, hydrophobicity and structural information) possibly enhances its effectiveness.
We found that the odds of secretion is significant in terms of minimum charge, maximum
hydrophobicity of the flanking DE and when DE is present in the structural region of
the proteins. This hypothesis should be further validated either with a larger data set or
experimental validation or structural predictions.
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Early bioinformatic evidence for a tri-acidic amino acid motif as a possible signature for
autophagy dependent unconventional protein secretion. We used the most exhaustive set
of unconventionally secreted proteins till date to further expand the search for a possible
signal for UPS. We scanned all possible 3-amino acid motifs, and comparing with the con-
ventional secreted protein, we found that the triacidic motif (DEE/EEE/DDD/DED,etc)
along with proximal LC3 interacting region (LIR) may be a signal for protein secretion.
Also, from discriminatory motif analysis, it was observed that KKX also shows to be sig-
nificant in the UPS. This hypothesis which is consistent with the diacidic motif discovery
and identified in a larger data set of over 200 unconventionally secreted proteins, needs
to be examined in experiments.

The two topics chosen in this work, combating the threat from antibiotic resistance
and understanding the molecular steps that lead to secretory autophagy, continue to
gain importance. Many fascinating discoveries continue offering much more scope for a
theoretical and computational investigation.

From the specifics of the details of membrane-disrupting action, general aspects of
how the length of the peptide or peptide-like molecules affects the membrane should be
derived. This knowledge should also be coupled with the development of other predictive
models for quantifying the undesirable effects of these drug candidates on human tissues
to avoid potential rejections during the clinical trials. However, the bigger question still
lingers. Will the bacteria eventually develop resistance also to membrane-active drugs?
Theoretical models which study the mechanisms of membrane modification, and their
repercussions on bacterial growth need to be developed to understand this.

In this work the continuous amino acid motifs, and their structural context were
explored to search for the signals or triggers for the unconventional secretion. However,
newer deep learning methods may be helpful in identifying patterns that are non-local,
and not continuous. This understanding may further be enhanced using structural
predictors such as alphafold 2.

In summary, membrane separates the internal and the external of the cell and the
phenomena that happen across the membrane while maintaining or destroying the cellular
activity are extremely critical. The need and scope for detailed investigations continues
to remain a challenge and inspires us for further advanced theoretical and computational
analyses.
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Detailing the Molecular Mechanism
of Selective Antibiotic Action
Against Bacterial Membranes via
Self Assembly and Membrane
Penetration
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Figure A.1: Thickness profile of the membrane (A) Bacterial Membrane (Averaged
over last 20ns) (B) Molecule ‘A’ in bacteria (C) Molecule ‘B’ in bacteria; All data
corresponding to the 7 Å distance between the center of mass of the aggregates for both
molecule ‘A’ and ‘B’. The plots are averaged over last 6 ns of the simulation for moleucules
‘A’ and ‘B’.

The thickness profile, across the plane of the membrane was analyzed in the presence
and absence of the molecules. The plane of the lipid bilayer along the z-axis was divided
into bins of 1 Å × 1 Å, and the distance between the C2 atoms of the upper and lower
leaflets was calculated. As depicted in Figure A.1, lateral inhomogeneity was observed
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Figure A.2: Thickness profile of the membrane (A) Human Membrane (Averaged over
last 20ns) (B) Molecule ‘A’ in human (C) Molecule ‘B’ in human; All data is corresponding
to the 7 Å distance between the center of mass of the aggregates for both molecule ‘A’
and ‘B’. The plots are averaged over last 6 ns of the simulation for moleucules ‘A’ and ‘B’.

due to the insertion of the molecules. It is evident from the plots that a pinching of the
membrane is taking place owing to the insertion of the molecules. However the pinching
is much more localized in the case of molecule ‘B’ than in molecule ‘A’. This suggest that
the molecule ‘B’ is more lethal than its other counterpart.
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Figure A.3: Deuterium order parameter (a) Chain 1 (b) Chain 2; data averaged over
6ns

In order to get deeper insights into the lateral inhomogeneity and reduction in the
bilayer thickness value, the deuterium order parameter (Scd) for the lipid acyl tail was
calculated, which is defined as:[1, 2]

Scd = 1
2〈3cos

2θ − 1〉 (A.1)

where θ is the angle between a C–H bond and the membrane normal of the lipid. Higher
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is the Scd value more is the ordering in the lipid bilayer. The values have been computed
for both the chains in the upper and the lower leaflet and are shown in Figure A.3. The
figure clearly suggests that molecule ‘A’ in bacteria causes maximum reduction in the
ordering of the lipid molecules. In addition to this, a rotation angle was defined as the
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Figure A.4: Comparison of the rotation of the lipid molecules to the splay between the
lipid acyl chains (A) Molecule ‘A’ in bacteria (B) Molecule ‘B’ in bacteria; for lipids
within 5 Å of the molecules.

angle between the membrane normal and the vector connecting C2 atoms of the lipid
head groups and the C216/C316 of the lipid tail. The splay angle was defined as the
angle between the two vectors, each connecting the C2 atom of the lipid to the C216
and C316 atoms of the lipid tail. The results are shown in Figure A.4. The rotation
and the splay angles are more widely distributed for molecule ‘B’. This suggests that
the inhomogeniety is higher for the case of molecule ‘B’, suggesting a more impactful
destruction of the membrane.

The simulation results depict the formation of a water channel all through the
membrane in case of molecule ‘B’ which was absent in the absence of the molecules
(Figure A.5). However, the effect of molecule B’ is more drastic on the membrane in
comparison to molecule ‘A’. The molecules in particular interacts with the phosphate
group of the membrane, thereby causing a pinching in the membrane. Thus, it is clear
that the mechanism of action of these small amphiphilic molecules is different from the
conventional antimicrobial peptides.[3]
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Figure A.5: Formation of a water channel across the membrane (A) Molecule ‘B’ in
bacteria (B) Molecule ‘A’ in bacteria

(a) (b)

Figure A.6: 3D structure of (a) Molecule ‘A’ and (b) Molecule ‘B’.
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Figure A.7: Partial charges on lipid head group shown for DPPC, DPPE and DPPG
lipid molecules.
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(a) (b)

(c)

Figure A.8: 3D and 2D structure of (a) DPPC, (b) DPPE and (c) DPPG are shown.
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Appendix B

Computational screening of
antimicrobial peptides for
Acinetobacter baumannii

Table B.1: Details of all the 75 antimicrobial peptides and their experimental protocol
used in the present work. Qualitative test set is indicated by blue color, and with a lower
bound in MIC.

Sl.
No

Peptide Sequence
MIC

(µg/ml)
Ref. Methods

1 Bactenicin RLCRIVVIRVCR 64 [1] CLSI

2 Cecropin A KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK 32 [1] CLSI

3 Cecropin B KWKIFKKIEKVGRNIRNGIIKAGPAVAVLGEAKAL 32 [1] CLSI

4 Cecropin P1 SWLSKTAKKLENSAKKRISEGIAIAIQGGPR 1.6 [1] CLSI

5 Histatin 8 KFHEKHHSHRGY 32 [1] CLSI

6 HNP-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC 50 [1] CLSI

7 HNP-2 CYCRIPACIAGERRYGTCIYQGRLWAFCC 50 [1] CLSI

8 Indolicidin ILPWKWPWWPWRR 8 [1] CLSI

9 Magainin I GIGKFLHSAGKFGKAFVGEIMKS 64 [1] CLSI

10 Magainin II GIGKFLHSAKKFGKAFVGEIMNS 256 [1] CLSI

11 Mastoparan INLKALAALAKKIL 4 [1] CLSI

12 Melittin GIGAVLKVLTTGLPALISWIKRKRQQ 4 [1] CLSI

13 β-Defensin DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK 256 [1] CLSI

14 LysAB2 P01 NPEKALEPLIAIQIAIKGMLNGWFTGVGFRRKR 237.66 [2] Conlon et.al.[3]

15 LysAB2 P11 EKALEKLIAIQKAIKGMLNGWFTGVGFRRKR 28.48 [2] Conlon et.al.[3]
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Sl.
No

Peptide Sequence
MIC

(µg/ml)
Ref. Methods

16 LysAB2 P21 EKALEKLIAIQKAIKGMLAGWFTGVGARRKR 55.06 [2] Conlon et.al.[3]

17 LysAB2 P31 NPEKALEKLIAIQKAIKGMLNGWFTGVGFRRKR 30.12 [2] Conlon et.al.[3]

18 LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 4 [4] CLSI

19 Aurein 1.2 GLFDIIKKIAESF -NH2 16 [4] CLSI

20 CAMEL KWKLFKKIGAVLKVL -NH2 2 [4] CLSI

21 Citropin 1.1 GLFDVIKKVASVIGGL -NH2 16 [4] CLSI

22 Omiganan ILRWPWWPWRRK -NH2 32 [4] CLSI

23 r-Omiganan KRRWPWWPWRLI -NH2 16 [4] CLSI

24 Pexiganan GIGKFLKKAKKFGKAFVKILKK -NH2 2 [4] CLSI

25 Temporin A FLPLIGRVLSGIL -NH2 128 [4] CLSI

26 rr WLRRIKAWLRR 24.86 [5] CLSI

27 rr2 WIRRIKKWIRRVHK 3.95 [5] CLSI

28 rr3 WLRRIKAWLRRKRK 31.46 [5] CLSI

29 rr4 WLRRIKAWLRRIKA 3.73 [5] CLSI

30 CLP-19 CRKPTFRRLKWKIKFKFKC 80.36 [6] CLSI

31 C18G2 ALWKKLLKKLLKSAKKLG -NH2 3.87 [7] Wiegand et.al.[8]

32 C18G-Arg2 ALWRRLLRRLLRSARRLG -NH2 8.48 [7] Wiegand et.al.[8]

33 NK-2 KILRGVCKKIMRTFLRRISKDILTGKK -NH2 2 [9] CLSI

34 NK27 KILRGVSKKIMRTFLRRISKDILTGKK -NH2 2 [9] CLSI

35 N17 KILRGVSKKIMRTFLRR -NH2 8 [9] CLSI

36 C20 KKIMRTFLRRISKDILTGKK -NH2 8 [9] CLSI

37 C20-DK KKIMRTFLRRISKKILTGKK -NH2 8 [9] CLSI

38 NK23a KISKKIMRTFLRRISKDILTGKK -NH2 4 [9] CLSI

39 NK23b KILRGVSKKIMRRISKDILTGKK -NH2 8 [9] CLSI

40 NK22b KILGVSKKIMRRISKDILTGKK -NH2 16 [9] CLSI

41 NK23c KILRGVSKKIMRTFLRRILTGKK -NH2 4 [9] CLSI

42 NK19a KISKKIMRTFLRRILTGKK -NH2 4 [9] CLSI

43 NK19b KILRGVSKKIMRRILTGKK -NH2 2 [9] CLSI

44 NK19b-KR RILRGVSRRIMRRILTGRR -NH2 8 [9] CLSI

45 NK13 KISKKIMRTFLRR -NH2 256 [9] CLSI

46 Pepcon2 FLFSLIPSAIGGLISAFK 37.62 [10] Wiegand et.al.[8]

47 BP100 KKLFKKILKYL -NH2 8.5 [11] CLSI

48 RW-BP10 RRLFRRILRWL -NH2 8.5 [11] CLSI

49 BP202 KRLFRKILKYL -NH2 4.5 [11] CLSI

50 BP203 KKLFKKILRYL -NH2 8.5 [11] CLSI
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Sl.
No

Peptide Sequence
MIC

(µg/ml)
Ref. Methods

51 H4 KFKKLFKKLSPVIGKEFKRIVERIKRFLR 36.34 [12] CLSI

52 BR0013 KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK
-NH2

10 [13] Jorgensen et.al.[14]

53 BR0023 GWLKKIGKKIERVGQHTRDATIQGLGIAQQAANVAATAR
-NH2

10 [13] Jorgensen et.al.[14]

54 BR0033 GGLKKLGKKLEGAGKRVFNAAEKALPVVAGAKALRK 5 [13] Jorgensen et.al.[14]

55 BR0053 RGFRKHFNKLVKKVKHTISETAHVAKDTAVIAGSGAAVVAAT
-NH2

20 [13] Jorgensen et.al.[14]

56 BR0293 KWKIFKKIEKAGRNIRDGIIKAGPAVSVVGEAATIYKTG 20 [13] Jorgensen et.al.[14]

57 BR0313 GWLRDFGKRIERVGQHTRDATIQAIGVAQQAANVAATVRG 20 [13] Jorgensen et.al.[14]

58 BR0323 GWLKKIGKKIERVGQHTRDATIQVLGVAQQAANVGPATARG 20 [13] Jorgensen et.al.[14]

59 BR0333 GWLKKIGKKIERVGQHTRDATIQTIGVAQQAANVAATLKG 20 [13] Jorgensen et.al.[14]

60 BR0343 GWLKKFGKKIERVGQHTRDATIQAIGVAQQAANVAATLKG 20 [13] Jorgensen et.al.[14]

61 BR0353 GWLKKIGKKIERVGQHTRDASIQAIGIAQQAANVAATARG 10 [13] Jorgensen et.al.[14]

62 BR0363 GWLKKIGKKIERVGQHTRDATIQVLGVAQQAANVAATARG 20 [13] Jorgensen et.al.[14]

63 BR0373 GLVKKIGKKIERVGQHTRDASIQAIGIAQQAANVAATARG 20 [13] Jorgensen et.al.[14]

64 Buforin I AGRGKQGGKVRAKAKTRSSRAGLQFPVGRVHRLLRKGNY >256 [1] CLSI

65 Histatin 5 DSHAKRHHGYKRKFHEKHHSHRGY >256 [1] CLSI

66 rr1 WKRRIKIWKKIR >438.06 [5] CLSI

67 C18G-His ALWHHLLHHLLHSAHHLG -NH2 >31.93 [7] Wiegand et.al.[8]

68 I10 KKIMRTFLRR -NH2 >128 [9] CLSI

69 NK15 KILRGVSKRILTGKK -NH2 >128 [9] CLSI

70 NK14 KILGVSKRILTGKK -NH2 >256 [9] CLSI

71 NK11 KISKRILTGKK -NH2 >256 [9] CLSI

72 NK10 ISKRILTGKK -NH2 >256 [9] CLSI

73 BR0303 KWKFYKKIERVGQNIRDGIIKAGPAVQVVGQQPRYIKENRFYS >20 [13] Jorgensen et.al.[14]

74 BR0433 AGFRKRFNKLVKKVKHTIKETANVSKDVAIVAGSGVAVGAAMG >20 [13] Jorgensen et.al.[14]

75 BR0443 GFRKRFNKLVKKVKHTIKETANVSKDVAIVAGSGVAVGAAMG >20 [13] Jorgensen et.al.[14]

1These MIC values are calculated according to CLSI guideline.
2These MIC values are calculated according to CLSI and EUCAST guideline.
3MIC values obtained from this procedure is comparable with the MIC values obtained
according to CLSI guideline.
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Figure B.1: Histogram of all the parameters corresponding to the AMPs shown in
Table B.1. The raw data of these parameters is in Data File in GitHub (https:
//github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx).

https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx
https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.xlsx
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Figure B.2: Flow chart showing the schematic of how the ANN models were developed.
The part embedded in the dotted box is the logic of selecting the best models in traditional
QSAR method, if the goal had been to be content with the prediction for the test set
with 7 peptides. In such methods, typically a person conducting the test or the person
developing the model but chooses to stay blind to this additional test data, eventually
compares the performance of the predictions on this small test set. However, in our case,
the goal is to make predictions for the 2338 AMPs for which no activity measurements
are yet available, a secondary validation criteria was used to screen the models further.
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Table B.2: Experimental and predicted MIC values of the 9 qualitative AMP data that
were used for an additional test. Before accepting a model, at least 5 of these 9 results
were verified to be more than the lower bound suggested by the experiments (to within a
factor of 2). An additional condition R2 > 0.6 was used with the test data set from the
quantitative data.

Name Expt. MIC Model-1 MIC Model-2 MIC
µg/ml µg/ml µg/ml

C18G-His >31.9275 75.9 9.4
I10 >128 482.1 437.1
NK15 >128 4.6 14.2
NK14 >256 60.1 14.2
NK11 >256 239.17 215.1
NK10 >256 86.1 14.6
BR030 >20 255.5 214.8
BR043 >20 22.4 14.2
BR044 >20 62.6 14.2

Table B.3: 10-fold cross validation analysis was performed with a hidden layer between
the input and output layers. The hidden layer architecture with 6, 8, and 10 neurons
respectively were independently modelled. Here we tabulated the number of times, out
of 10, R2

test > 0.6, as well as the mean squared error (MSE) and standard deviation
(SD). The overall error was optimal with the choice of 8 neurons, although all three
architectures performed satisfactorily.

Number of neurons in the hidden layer
6 neurons 8 neurons 10 neurons

#R2
test > 0.6 6 9 8

MSE 1963.979 1119.023 1423.350
SD 1984.295 1112.944 1972.955
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Figure B.3: Comparison of the experimental MIC (µg/ml) and predicted MIC (µg/ml)
values of AMP obtained from the 10 fold cross validation calculation. The neural network
is trained with one hidden layer consisting of 6 neurons.
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Figure B.4: Comparison of the experimental MIC (µg/ml) and predicted MIC (µg/ml)
values of AMP obtained from the 10 fold cross validation calculation. The neural network
is trained with one hidden layer consisting of 8 neurons.
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Figure B.5: Comparison of the experimental MIC (µg/ml) and predicted MIC (µg/ml)
values of AMP obtained from the 10 fold cross validation calculation. The neural network
is trained with one hidden layer consisting of 10 neurons.
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Figure B.6: Comparison of the experimental and calculated MIC (µg/ml) of curated
AMPs on A. baumannii obtained from Model-2, calculated by using 6 hidden neurons.
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shown. The data used in the analysis for the peptides given in Table B.1. The raw data
is in Data File in GitHub (https://github.com/malayrb/Thesis/blob/main/Ch3/File_S2.
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Table B.4: Comparison of the experimental and predicted MIC values for the MDR
A. baumannii strains. The results were satisfactory for most of these cases. Polydim-I
has extremely low values in one of the parameter used in the model (µH), which is not
falling in the training range.

Peptide Expt. MIC Model-1 MIC Model-2 MIC Reference
µg/ml µg/ml µg/ml

Agelaia-MPI 39.2 76.1 9.4 [15]
Polybia-MPII 40.4 76.1 9.4 [15]
Polydim-I > 61.1 -110.9 -172.2 [15]
Con10 70.6 74.8 -174.7 [15]
NDBP-5.8 > 37.8 76.0 9.4 [15]
LS-sarcotoxin 4 20.7 14.2 [16]
LS-stomoxyn 4 76.1 14.2 [16]
BP56 4 4.6 14.2 [17]
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Figure C.1: The SASA and volume over 10ns simulation shows the system gets stabilized
within 10ns. Only 10 peptides are shown as an example.
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Appendix D

One drug multiple targets: An
approach to predict drug efficacies
on bacterial strains differing in
membrane composition

Strain MIC %LPG %PG %CL %iLPG %oLPG References
C3 0.5 23.5 68.5 8 - - [1]
C4 4 25.6 65.7 8.7 - - [1]
C5 0.25 14.2 81.8 4 - - [1]
C6 3 19.2 77.7 3 - - [1]
C9 0.5 19.3 76 4.7 - - [1]
C10 3 23.9 71.5 4.7 - - [1]
C19 0.38 14.9 75.1 10 - - [1]
C21 4 30.9 50.5 18.6 - - [1]
C26 0.38 31.8 62.9 5.3 - - [1]
C27 2 28.7 68.9 2.4 - - [1]
C32 0.5 21.9 71.2 6.9 - - [1]
C33 2 24.1 73.1 2.7 - - [1]
C36 0.5 15.1 81.5 3.4 - - [1]
C37 3 26.1 69 5 - - [1]
C40 0.25 26 68.4 5.6 - - [1]
C41 3 30 59.7 10.3 - - [1]
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Strain MIC %LPG %PG %CL %iLPG %oLPG References
CB11181 1 12.37 83.96 5.38 11.16 1.21 [2]
CB2201 1.5 12.29 86.37 3.6 10.92 1.37 [2]
CB2202 3 13.34 80.95 8.59 11.64 1.7 [2]
CB2203 6 17.96 72.93 12.7 15.41 2.56 [2]
CB2205 12 24.61 70.02 7.43 18.61 6 [2]
CB1483 0.25 15.3 77.21 7.49 13.39 1.91 [4]
CB185 4 35.96 52.31 11.73 32.1 3.85 [4]
CB5079 0.5 15.43 72.12 12.44 13.63 1.8 [4]
CB5080 2 26.18 64.08 9.75 24.78 1.39 [4]
CB5083 0.25 12.07 83.3 4.63 10.15 1.92 [4]
CB5082 4 21.61 73.58 4.82 19.24 2.37 [4]
CB5088 0.5 15.36 77.66 6.97 13.61 1.75 [4]
CB5089 2-4 24.91 65.93 9.16 22.62 2.29 [4]
CB1631 0.5 12.08 80.41 7.51 10.25 1.83 [4]
CB1634 4 20.61 71.75 7.63 18.68 1.93 [4]
CB1663 0.5 11.96 83.2 4.84 10.24 1.72 [4]
CB1664 4 16.05 81.33 2.62 14.69 1.36 [4]
CB5057 0.5 15.91 79.25 4.85 14.32 1.59 [4]
CB5059 4 27.22 69.92 2.87 24.77 2.44 [4]
CB5062 0.5 12.71 79.9 7.4 11.49 1.21 [4]
CB5063 8 31.55 59.01 9.44 29.23 2.33 [4]
CB5015 1 14.06 83.31 2.63 12.73 1.32 [4]
CB5016 4 19.27 77.2 3.53 17.61 1.66 [4]
C11 0.38 18 78 5 - - [5]
C12 3 25 68 7 - - [5]
C28 0.12 15 79 6 - - [5]
C29 2 23 70 7 - - [5]
C44 0.38 20 74 5 - - [5]
C45 4 26 68 6 - - [5]
Newman 0.5 17 72 11 - - [6]
Newman mprF 0.125 0 86 14 - - [6]

1CB1118 strain was used as a parental strain in two independent serial passage studies [2, 3]. Novel
mutations evolved in the latter study and led to two notable changes - a decreased LPG after certain
time and an increased production of carotenoid. Since the influence of carotenoids was an additional
parameter for which no other study we considered provided the data, we excluded the latter study from
our analysis.
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Strain MIC %LPG %PG %CL %iLPG %oLPG References
CS295L 1 12 82 7 - - [6]
CS295L+L826F 0.38 0 91 9 - - [6]
CT345A 2 18 72 10 - - [6]
CT345A+L826F 0.38 0 91 9 - - [6]
None 0.5 13.2 81.5 5.3 11.2 2 [7]
None 1 15.9 75.5 8.7 13.6 2.3 [7]
None 2 24.5 68 7.5 22 2.5 [7]
L271 0.125 14.35 83.05 2.59 13.28 1.07 [8]
L8 2 31.75 66.78 1.47 30.86 0.89 [8]
L16 0.75 31.01 66.12 2.87 29.55 1.46 [8]
L56 2 39.15 58.6 2.26 36.27 2.88 [8]
L76 0.38 16.81 72.27 11 14.76 2.05 [8]
SA144 0.75 17.45 74.28 8.27 15.38 2.08 [9]
SA145 0.75 17.86 69.92 12.22 15.24 2.63 [9]
SA147 1.5 18.86 69.42 11.72 15.04 3.83 [9]
MRSA 11/11 1 18.91 75.24 5.86 17.17 1.73 [10, 11]
MRSA 11/17 1 19.63 72.57 7.81 18.16 1.46 [10, 11]
MRSA 11/21 3 34.16 62.45 5.68 32.15 2.72 [10, 11]
REF2145 4 36.66 55.25 7.8 34.67 2.29 [10, 11]
1A2 0.25 13 81 6 11 2 [12, 13]
1C2 4 26 68 6 22 5 [12, 13]
2A2 0.5 11 84 5 9 2 [12, 13]
2C2 2 24 67 9 19 4 [12, 13]
3A2 0.5 22 69 9 19 3 [12, 13]
3B2 4 16 80 4 13 3 [12, 13]
Table D.1: Summary of the data curated from multiple experimental sources on different
S. aureus strains is shown. Total membrane phospholipid composition is described in
terms of phosphatidylglycerol (PG), lysyl-PG (LPG), cardiolipin (CL), inner leaflet LPG
(iLPG) and outer leaflet LPG (oLPG) and the daptomycin MIC values are given in
µg/mL. All the MIC values are evaluated according to standard Etest, except when
mentioned.

All the curated experimental data are plotted in Figure D.1. Bacterial membrane
phospholipid is mainly composed of anionic phosphatidylglycerol (PG), cardiolipin (CL)
and lysyl-phosphatidylglycerol (LPG).

2MIC values obtained from CLSI guideline, and excluded from our ANN model.
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Figure D.1: Dependence of the experimentally determined daptomycin MIC values on
the phospholipid compositions in a) total membrane, b) inner leaflet and c) outer leaflet.
The radius of the circle represents MIC (µg/ml) and the change in color represents CL
concentration. The data shows ‘non-monotonous’ trends, as the magnitude of MIC goes
through variations, rather than a straightforward increase with the parameters.
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Serial no. R2
training R2

validation R2
test

1 0.757 0.631 0.643
2 0.833 0.719 0.555
3 0.765 0.857 -0.922
4 0.844 0.644 0.503
5 0.865 0.608 -0.057
6 0.831 0.734 0.695
7 0.881 0.667 0.299
8 0.804 0.623 0.898
9 0.864 0.680 -0.152
10 0.749 0.964 0.257

Table D.2: R2
training, R2

validation and R2
test values obtained from the 10 fold validation

calculation for total membrane composition. The neural network is trained with one
hidden layer consisting of 8 neurons. A summary of mean square error and standard
deviation when the number of neurons is varied is shown in Table D.3.
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Figure D.2: Comparison of the experimentally determined MIC (µg/ml) of daptomycin
with the MIC calculated using the 10-fold cross validation for total membrane composition.
The neural network is trained with one hidden layer consisting of 8 neurons. The choice
of the 8-neurons was made after trying calculations with different number of neurons.
The mean square error and standard deviation for these choices of neurons are shown in
Table D.3.
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Strain MIC(µg/ml)
MIC with best model
Total outer inner

1A 0.25 0.943 -0.76 0.855
1C 4 3.271 22.701 3.064
2A 0.5 0.943 0.648 0.855
2C 2 2.716 10.49 3.018
3A 0.5 -0.533 2.76 2.901
3B 4 0.152 0.256 0.838

Table D.3: Predictions for the data points that were not measured by Etest. The best
model developed based on Etest results was used for making this cross-prediction for the
data measured by other methods. All the data used for this calculation is given in Table
D.1 & D.4.

Strain MIC
Inner leaflet Outer leaflet

References
%LPG %PG %CL %LPG %PG %CL

CB1118 1 21.94 72.77 5.29 2.38 92.33 5.29 [2]
CB2201 1.5 21.36 75.12 3.52 2.68 93.8 3.52 [2]
CB2202 3 22.63 69.02 8.35 3.3 88.35 8.35 [2]
CB2203 6 29.75 57.99 12.26 4.94 82.8 12.26 [2]
CB2205 12 36.47 56.25 7.28 11.76 80.96 7.28 [2]
CB1483 0.25 26.78 65.73 7.49 3.82 88.69 7.49 [4]
CB185 4 64.21 24.06 11.73 7.7 80.57 11.73 [4]
CB5079 0.5 27.26 60.3 12.44 3.6 83.96 12.44 [4]
CB5080 2 49.56 40.69 9.75 2.78 87.47 9.75 [4]
CB5083 0.25 20.3 75.07 4.63 3.84 91.53 4.63 [4]
CB5082 4 38.48 56.7 4.82 4.74 90.44 4.82 [4]
CB5088 0.5 27.22 65.81 6.97 3.5 89.53 6.97 [4]
CB5089 2-4 45.24 45.6 9.16 4.58 86.26 9.16 [4]
CB1631 0.5 20.5 71.99 7.51 3.66 88.83 7.51 [4]
CB1634 4 37.36 55.01 7.63 3.86 88.51 7.63 [4]
CB1663 0.5 20.48 74.68 4.84 3.44 91.72 4.84 [4]
CB1664 4 29.38 68 2.62 2.72 94.66 2.62 [4]
CB5057 0.5 28.64 66.51 4.85 3.18 91.97 4.85 [4]
CB5059 4 49.54 47.59 2.87 4.88 92.25 2.87 [4]
CB5062 0.5 22.98 69.62 7.4 2.42 90.18 7.4 [4]
CB5063 8 58.45 32.11 9.44 4.66 85.9 9.44 [4]
CB5015 1 25.46 71.91 2.63 2.64 94.73 2.63 [4]
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Strain MIC
Inner leaflet Outer leaflet

References
%LPG %PG %CL %LPG %PG %CL

CB5016 4 35.22 61.25 3.53 3.32 93.15 3.53 [4]
None 0.5 22.40 72.30 5.30 4.00 90.70 5.30 [7]
None 1 27.17 64.14 8.69 4.60 86.71 8.69 [7]
None 2 44.00 48.50 7.50 5.00 87.50 7.50 [7]
L271 0.125 26.56 70.85 2.59 2.14 95.27 2.59 [8]
L8 2 61.72 36.81 1.47 1.78 96.75 1.47 [8]
L16 0.75 59.10 38.03 2.87 2.92 94.21 2.87 [8]
L56 2 72.53 25.21 2.26 5.76 91.98 2.26 [8]
L76 0.38 29.50 59.51 10.99 4.10 84.91 10.99 [8]

SA144 0.75 30.76 60.97 8.27 4.16 87.57 8.27 [9]
SA145 0.75 30.48 57.30 12.22 5.26 82.52 12.22 [9]
SA147 1.5 30.08 58.20 11.72 7.66 80.62 11.72 [9]

MRSA 11/11 1 34.34 59.80 5.86 3.46 90.68 5.86 [10, 11]
MRSA 11/17 1 36.32 55.87 7.81 2.92 89.27 7.81 [10, 11]
MRSA 11/21 3 62.43 32.06 5.51 5.28 89.20 5.51 [10, 11]
REF2145 4 69.33 22.87 7.80 4.58 87.62 7.80 [10, 11]

1A2 0.25 22 72 6 4 90 6 [12, 13]
1C2 4 43.56 50.5 5.94 9.9 84.16 5.94 [12, 13]
2A2 0.5 18 77 5 4 91 5 [12, 13]
2C2 2 38.38 52.53 9.09 8.08 82.83 9.09 [12, 13]
3A2 0.5 38 53 9 6 85 9 [12, 13]
3B2 4 26 70 4 6 90 4 [12, 13]

Table D.4: Inner and outer leaflet of membrane phospholipid compositions of the different
S. aureus strains in terms of lysl-phosphatidylglycerol (lysl-PG), phosphatidylglycerol
(PG), cardiolipin (CL) and the daptomycin MIC values in µg/ml. These numbers were
derived as discussed in the Methods section of the article. All the MIC values are
evaluated according to standard Etest, except when noted otherwise.

2MIC determined using CLSI guideline, and was excluded in the 10-fold cross validation ANN model
analysis.
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Serial no. R2
training R2

validation R2
test

1 0.944 0.907 0.816
2 0.916 0.675 0.413
3 0.879 0.694 -0.010
4 0.896 0.952 0.693
5 0.902 0.814 -0.092
6 0.984 0.892 -0.191
7 0.833 0.936 0.948
8 0.874 0.605 0.861
9 0.966 0.934 -0.038
10 0.907 0.686 0.070

Table D.5: R2
training, R2

validation and R2
test values obtained from the 10 fold validation for

outer leaflet composition. The neural network is trained with one hidden layer consisting
of 8 neurons.
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Figure D.3: Comparison of the experimentally determined MIC of daptomycin (µg/ml)
and the MIC obtained from the 10-fold cross validation using the outer leaflet composition.
The neural network is trained with one hidden layer consisting of 8 neurons.
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Serial no. R2
training R2

validation R2
test

1 0.786 0.708 0.830
2 0.716 0.682 -1.486
3 0.841 0.815 -0.656
4 0.780 0.722 0.031
5 0.771 0.902 0.108
6 0.880 0.692 -0.217
7 0.736 0.698 0.830
8 0.769 0.915 0.107
9 0.713 0.649 0.648
10 0.729 0.728 0.759

Table D.6: R2
training, R2

validation and R2
test values obtained from the 10-fold cross validation

calculation for inner leaflet composition. The neural network is trained with one hidden
layer consisting of 4 neurons.
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Figure D.4: Comparison of the experimentally determined MIC of daptomycin (µg/ml)
with the MIC calculated with 10-fold cross validation for inner leaflet composition. The
neural network is trained with one hidden layer consisting of 4 neurons.
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Figure D.5: Dependence of daptomycin MIC (µg/ml) values in our predictions across
the entire range of %PG and %LPG compositions of the inner leaflet. The blue-green and
red color represents the change in CL percentage for positive and negative MIC values
respectively and radius of the circle increases with increase in absolute value of MIC.
Negative MIC is not physically meaningful and we believe it is an artefact of training a
non-monotonous variation of MIC on a limited data.

total outer inner
LPG PG oLPG oPG iLPG iPG

Training set 0.002 0.002 0.029 0.395 0.108 0.069
Validation set 0.037 0.072 0.146 0.112 0.007 0.001
Test set 0.056 0.245 0.302 0.697 0.113 0.198

Table D.7: P-values of the variables used in the analysis, obtained from our neural
network analysis performed using total membrane and outer leaflet composition with 8
neurons, and inner leaflet composition with 4 neurons. We report for two independent
variables, since the percentage of the third lipid (CL) is 100-PG-LPG. The p-values for
the training set are good.
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Appendix E

Exploring the context of diacidic
motif DE as a signal for
unconventional protein secretion in
eukaryotic proteins

Table E.2: Probability of various cases considering the three factors (Order, charge
and hydrophobicity) affecting the secretion process and the p-value for each case with
individual p-value for each variable

CASE NN NS SN SS p-Value
p-Value
Charge

p-Value
Hydro-
phobicity

p-Value
Ordered
or dis-
ordered

Odds
Ratio

Total
data

1 5 5 34 45 0.7430 0.5234 0.7412 0.4599 1.3235
2 10 8 29 42 0.2963 0.5355 0.2447 0.4599 1.8103
3 15 10 24 40 0.0620 0.2017 0.4791 0.4599 2.5
4 5 4 34 46 0.4974 0.9483 0.9435 0.4599 1.6912
5 4 8 35 42 0.5393 0.6623 0.2526 0.6801 0.6
6 12 8 27 42 0.1266 0.3702 0.3558 0.6801 2.3333
7 13 9 26 41 0.1371 0.1439 0.3871 0.6801 2.2778
8 13 6 26 44 0.0195 0.9116 0.1294 0.6801 3.6667
9 17 14 22 36 0.1784 0.9694 0.9351 0.1030 1.987
10 19 14 20 36 0.0504 0.8179 0.9141 0.1030 2.4429
11 16 14 23 36 0.2593 0.5252 0.8126 0.1030 1.7888
12 19 11 20 39 0.0125 0.8703 0.4019 0.1030 3.3682
13 15 10 24 40 0.0620 0.7699 0.8581 0.0921 2.5
14 15 11 24 39 0.1048 0.8016 0.7573 0.0921 2.2159
15 15 10 24 40 0.0620 0.9585 0.9043 0.0921 2.5
16 15 11 24 39 0.1048 0.7480 0.6659 0.0921 2.2159

Cancer
data

1 4 4 5 6 1.0000 0.6710 0.6148 0.3574 1.2
2 7 3 2 7 0.0698 0.1023 0.4396 0.3574 8.1667

157
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3 6 2 3 8 0.0698 0.0743 0.9077 0.3574 8
4 5 4 4 6 0.6563 0.7676 0.6083 0.3574 1.875
5 4 5 5 5 1.0000 0.6710 0.4939 0.3574 0.8
6 7 3 2 7 0.0698 0.1023 0.4396 0.3574 8.1667
7 6 2 3 8 0.0698 0.0743 0.9165 0.3574 8
8 5 3 4 7 0.3698 0.6761 0.2528 0.3574 2.9167
9 7 4 2 6 0.1698 0.6355 0.1570 0.5248 5.25
10 7 2 2 8 0.0230 0.3695 0.0932 0.5248 14
11 5 4 4 6 0.6563 0.4150 0.1674 0.5248 1.875
12 7 3 2 7 0.0698 0.4923 0.0213 0.5248 8.1667
13 6 3 3 7 0.1789 0.8981 0.3846 0.8550 4.6667
14 7 2 2 8 0.0230 0.1463 0.1157 0.8550 14
15 7 3 2 7 0.0698 0.7961 0.4372 0.8550 8.1667
16 6 2 3 8 0.0698 0.2956 0.0358 0.8550 8

Neuro
degener-
ative and
known
UPS
vs Non
secretive

1 11 9 19 20 0.7847 0.6737 0.9057 0.2535 1.2865
2 11 6 19 23 0.2516 0.7667 0.6940 0.2535 2.2193
3 15 10 15 19 0.2949 0.5951 0.9860 0.2535 1.9
4 12 9 18 20 0.5889 0.6624 0.9549 0.2535 1.4815
5 18 13 12 16 0.3015 0.9443 0.4684 0.4868 1.8462
6 15 11 15 18 0.4348 0.8550 0.6208 0.4868 1.6364
7 13 12 17 17 1.0000 0.5935 0.8455 0.4868 1.0833
8 16 12 14 17 0.4379 0.8875 0.1979 0.4868 1.619
9 16 9 14 20 0.1154 0.5707 0.4625 0.0858 2.5397
10 19 11 11 18 0.0698 0.6842 0.1387 0.0858 2.8264
11 21 10 9 19 0.0092 0.8826 0.0903 0.0858 4.4333
12 20 10 10 19 0.0194 0.1129 0.4808 0.0858 3.8
13 14 11 16 18 0.6010 0.3080 0.2024 0.1815 1.4318
14 20 8 10 21 0.0040 0.2402 0.0334 0.1815 5.25
15 18 10 12 19 0.0692 0.8311 0.1085 0.1815 2.85
16 20 5 10 24 0.0002 0.0440 0.0333 0.1815 9.6

HSP
vs non
secre-
tive

1 30 11 0 0 1.0000 0.5400 0.8180 0.5548 INFINITY
2 29 8 1 3 0.0521 0.5607 0.0454 0.5548 10.875
3 30 6 0 5 0.0006 0.9918 0.0278 0.5548 INFINITY
4 30 11 0 0 1.0000 1.0000 0.7788 0.5548 INFINITY
5 30 11 0 0 1.0000 0.4061 0.2668 0.5548 INFINITY
6 30 11 0 0 1.0000 0.9943 0.2741 0.5548 INFINITY
7 29 7 1 4 0.0138 0.5367 0.0286 0.5548 16.5714
8 30 11 0 0 1.0000 0.8656 0.6823 0.5548 INFINITY
9 30 10 0 1 0.2638 0.8164 0.8852 0.0457 INFINITY
10 27 6 3 5 0.0218 0.9888 0.1194 0.0457 7.5
11 27 9 3 2 0.5977 0.7103 0.3108 0.0457 2
12 27 7 3 4 0.0692 0.3611 0.2940 0.0457 5.1429
13 28 7 2 4 0.0351 0.0567 0.0540 0.0896 8
14 27 6 3 5 0.0218 0.3252 0.0985 0.0896 7.5
15 27 8 3 3 0.3162 0.9544 0.0610 0.0896 3.375
16 30 11 0 0 1.0000 0.6073 0.9951 0.0896 INFINITY

HSP and
cancer
data
from
group
3A, 3B,
and 3C

1 0 0 9 21 1.0000 0.9252 0.9577 0.3551 INFINITY
2 4 0 5 21 0.0046 0.1169 0.4540 0.3551 INFINITY
3 3 0 6 21 0.0207 0.1483 0.5472 0.3551 INFINITY
4 0 0 9 21 1.0000 0.7578 0.7099 0.3551 INFINITY
5 0 0 9 21 1.0000 0.9252 0.6532 0.3551 INFINITY
6 4 1 5 20 0.0195 0.0702 0.8616 0.3551 16
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7 4 1 5 20 0.0195 0.0932 0.5881 0.3551 16
8 0 0 9 21 1.0000 0.8562 0.7565 0.3551 INFINITY
9 0 1 9 20 1.0000 0.7687 0.5010 0.7552 0
10 5 2 4 19 0.0139 0.3427 0.0395 0.7552 11.875
11 4 2 5 19 0.0492 0.7600 0.0741 0.7552 7.6
12 4 2 5 19 0.0492 0.1545 0.0953 0.7552 7.6
13 2 2 7 19 0.5632 0.9180 0.3877 0.2739 2.7143
14 5 1 4 20 0.0046 0.2981 0.0553 0.2739 25
15 3 2 6 19 0.1432 0.6566 0.2073 0.2739 4.75
16 4 1 5 20 0.0195 0.1748 0.2009 0.2739 16
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Table E.1: All possible cases considered for analysis. If at least one DE motif is present
in disordered region (or ordered region) then disordered (or ordered) is important. There
are cases where the DE motif is in the border between ordered and disordered region.
We have looked those as both ordered (O) and disordered (D) cases.

CASE Important Bordered
region in D/O

Parameters sorted
for analysis

1 Disordered is important Border as D min C (max H)
2 Disordered is important Border as D max C (min H)
3 Disordered is important Border as D min H (max C)
4 Disordered is important Border as D max H (min C)
5 Disordered is important Border as O min C (max H)
6 Disordered is important Border as O max C (min H)
7 Disordered is important Border as O min H (max C)
8 Disordered is important Border as O max H (min C)
9 Ordered is important Border as D min C (max H)
10 Ordered is important Border as D max C (min H)
11 Ordered is important Border as D min H (max C)
12 Ordered is important Border as D max H (min C)
13 Ordered is important Border as O min C (max H)
14 Ordered is important Border as O max C (min H)
15 Ordered is important Border as O min H (max C)
16 Ordered is important Border as O max H (min C)



Appendix E 161

Table E.3: Binary logistic regression – odds ratio of the groups analyzed

Total data
B Sig. Odds=Exp(B)

Charge 0.016 0.931 1.016
Hydrophobicity -0.031 0.908 0.97
Order -0.808 0.105 0.446

Neuro degenerative and known UPS vs non-secretory
B Sig. Odds=Exp(B)

Charge 0.636 0.037 1.889
Hydrophobicity 1.062 0.011 2.892
Order -0.143 0.834 0.867

HSP vs non-secretory
B Sig. Odds=Exp(B)

Charge -0.098 0.79 0.907
Hydrophobicity -0.903 0.097 0.405
Order -2.014 0.083 0.134

Cancer data from Groups 3B, 3C
B Sig. Odds=Exp(B)

Charge 0.011 0.984 1.011
Hydrophobicity -4.526 0.05 0.011
Order -5.629 0.106 0.004

Cancer secretion data including HSP secretion (Groups 3A, 3B, 3C)
B Sig. Odds=Exp(B)

Charge -0.232 0.568 0.793
Hydrophobicity -2.37 0.031 0.093
Order -3.185 0.056 0.041
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Table E.4: Propensity of the amino acid insertion at DXE sites among secre-
tory and non-secretory proteins: Among the secretory and non-secretory proteins
with a DXE motif, we analyzed to see how often X is one of the three O-phoshporylated
amino acids (S, T, Y) or one of the three N-phosphorylated amino acids (H, R, K)

Total data
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 37 10
Unsecreted 28 10

Neurodegenerative and known UPS vs non-secretory
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 18 9
Unsecreted 23 5

Cancer data from Groups 3B, 3C
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 10 0
Unsecreted 5 5

HSP vs non-secretory
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 9 1
Unsecreted 23 5

Cancer secretion data including HSP secretion (Groups 3A, 3B, 3C)
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 19 1
Unsecreted 5 5

• 15 proteins do not have DXE
• Only 85 proteins are considered for calculation.
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Table E.5: Propensity of the amino acid insertion at DEX/EDX sites among
secretory and non-secretory proteins: Among the secretory and non-secretory
proteins with a DEX/EDX motif, we analyzed to see how often X is one of the three
O-phoshporylated amino acids (S, T, Y) or one of the three N-phosphorylated amino
acids (H, R, K)

Total data
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 42 8
Unsecreted 29 10

Neurodegenerative and known UPS vs non-secretory
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 23 6
Unsecreted 20 10

Cancer data from Groups 3B, 3C
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 8 2
Unsecreted 9 0

HSP vs non-secretory
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 11 0
Unsecreted 20 10

Cancer secretion data including HSP secretion (Groups 3A, 3B, 3C)
Insertion
X=S,T,Y,H,R,K

Other insertions

Secreted 19 2
Unsecreted 9 0

• 11 proteins do not have DE
• Only 89 proteins are considered for calculation.
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Table E.6: Secondary structure of DE motif in secretory and non-secretory proteins.
The DE motif is ordered (O) if they are in α-helix or β-sheets and disordered (D) if they
are in loop or missing residues. Separate cases has been considered if they are in between
ordered and disordered

Disordered
is important
& B is
Disordered

Disordered
is
important
& B is
ordered

Ordered is
important &
B is
Disordered

Ordered is
important
& B is
ordered

Total data
O D O D O D O D

S 4 46 5 45 33 17 39 11
N 5 34 5 34 19 20 24 15

Neurodegenerative and known UPS vs non-secretory
O D O D O D O D

S 2 27 3 26 20 9 23 6
N 5 25 5 25 14 16 19 11

Cancer data from Groups 3B, 3C
O D O D O D O D

S 1 9 1 9 4 6 6 4
N 0 9 0 9 5 4 5 4

HSP vs non-secretory
O D O D O D O D

S 1 10 1 10 9 2 10 1
N 5 25 5 25 14 16 19 11

Cancer secretion data including HSP secretion (Groups 3A, 3B, 3C)
O D O D O D O D

S 1 10 1 10 9 2 10 1
N 5 25 5 25 14 16 19 11
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Figure E.1: Comparison between the secretory and non-secretory proteins with their
charges and hydrophobicity for various groups
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