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Synopsis

Excitation of a metal by ultrashort laser pulse involves very complex processes includ-

ing electron-electron, electron-photon, electron-phonon, and phonon-phonon scatter-

ings. The ultrafast pulse laser excited solid leads to a nonequilibrium state within

the electron and phonon subsystem due to the fact that mainly electrons absorb laser

energy and lattice remains cold initially and with the passage of time, two main pro-

cesses occur:(1) The electrons thermalize due to electron-electron interaction, and (2)

The electrons transfer energy to phonons via electron-phonon coupling. Ultrafast re-

laxation dynamics generally range from nanoseconds to femtoseconds. So, we can ask

one important question: what physics we can obtain from a study of the ultrafast

relaxation dynamics? Therefore, we explore an answer to this question by studying

the electron and phonon thermalization in simple metals excited by a laser pulse and

this dissertation is primarily focused on the modelling of the relaxation dynamics of

carriers in simple metals excited by a laser pulse, and the role of electron-phonon and

phonon-phonon scattering in thermalization.

This thesis consists of three chapters. Chapter 1 provides a brief introduction to Ul-

trafast spectroscopy and some commonly applied theoretical models which describe the

energy relaxation of electrons and phonons after laser irradiation including TTM(two-

temperature) model and NEP(nonequilibrium electron and phonon) model. Chapter

2 discusses the NEP(nonequilibrium electron and phonon) model in depth and the

motivation behind the implementation of this particular model. We then describe and

simplify some of the analytical calculation for this model as it is already done by Shota
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Ono. Chapter 3 discusses the findings from the study of nonequilibrium model. In

particular we reproduce relaxation dynamics of carriers and the evolution of electrons

and phonons distribution function obtained by Shota Ono already. From our study,

we find that electrons get thermalized in few femtoseconds (fs) and phonons takes few

picoseconds (ps) to come to equilibrium. Therefore, we can describe the electrons tem-

poral evolution of distribution function using a high-temperature effective model but

for phonons due to their large relaxation time, we need the full non-equilibrium dis-

tribution function analysis. Also, we have studied the time evolution of electrons and

phonons distribution function upto 300 - 400 fs. But to understand the phonons relax-

ation dynamics, we need to go upto 10’s of picoseconds. Therefore, our next goal is to

parallelize the code for more efficient computation and study complete thermalization

in metals.
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Chapter 1

Introduction

1.1 Ultrafast Spectroscopy

Spectroscopy is the study of the interaction between light and matter as a function of

wavelength and frequency of the electromagnetic radiation. The time scales of some

fundamental interactions are shown in Fig. 1.1. As mentioned in the figure, various

important interactions occur in either sub-picoseconds or femtoseconds time scales.

Therefore, we need a camera with very high temporal resolution to track the extremely

fast interactions, and the ultrafast laser provides such a potential [8]. At present,

even the table-top laser source can provide the laser of ∼ femtoseconds (fs) pulse

duration, and state-of-art laser source can even generate pulses in attoseconds or even

sub-attoseconds time scale. Research based on attosecond pulse generation is being

heavily investigated recently.

Many important processes in atoms and molecules, as well as the interactions among

them, occurs faster than even a time scale of picosecond (1 ps = 10−12 s). By the

Uncertainty principle, the product of the pulse-duration and the optical bandwidth

must be of the order unity (or larger). As the pulse duration increases, the bandwidth

decreases correspondingly.

Therefore, due to the Uncertainty principle, a temporally short pulse should have

1



1.1. Ultrafast Spectroscopy 2

a broad bandwidth (e.g., a 50-fs pulse gives a bandwidth of about 5 terahertz). A

Terahertz radiation generally falls in the frequency range of 0.1 - 10 THz (1012 cycles

per second). As shown in Fig. 1.2, THz region lies between infrared radiation and

microwave radiation, is resistant to the techniques commonly applied in these neigh-

bouring bands [1].

Figure 1.1: Typical time scales of some of the important fundamental interactions.

Therefore, the terahertz (THz) radiation regime of the electromagnetic spectrum is

one of the most difficult region to understand since this region shows many common

properties with the neighbouring bands. The coherent length of a broad bandwidth

radiation is very small which makes ultrashort pulses very useful in bio-imaging appli-

cations as well[9].

The ultrafast laser pulses have very high peak power. In the early 1990s, ultrafast

laser sources used to produce peak output power of the order of megawatt (106 W)

in a pulse, directly by a simple laser source. But, for many experiments, a peak

power of megawatt is not sufficient which makes it important and necessary to increase

the energy of pulse by using amplifier system. Therefore over the past decade, the

technology to produce high peak power amplified ultrafast pulses has been progressed

rapidly. Due to the high peak power, the ultrafast laser pulse can excite the sample

to a non-equilibrium state almost without delay. Such a fast phenomenon gives us a
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Figure 1.2: The electromagnetic spectrum. This figure is taken from [1]

chance to study the nonequilibrium dynamics far beyond the conventional thermal-

equilibrium(or quasiequilibrium) picture.

The ultrafast spectroscopy is a very efficient method to trace the dynamical changes

in materials by using the sequences of ultrafast laser pulses. In the last few decades,

this field of research is continuously undergoing an exceptional growth in the genera-

tion and development of some sophisticated spectroscopy techniques e.g. pump-probe

spectroscopy, ultrafast luminescence, and Terahertz spectroscopy. It has become a

very powerful tool to understand the basic physical interactions and investigating the

unconventional physical phenomena in many newly founded materials.

Typically the third order optical response is monitored using ultrafast spectroscopy

experiments for the systems interacting with the sequences of ultrafast light pulses. As

shown in Fig. 1.3(a) a system is irradiated by three time-delayed and synchronised

light pulses. In the pump-probe spectroscopy, the first two interactions of the pulse

field occur with the pump pulse so that t1=0 and the probe pulse is non-collinear

with the pump pulse and generates the nonlinear field in the probe pulse direction

(see Fig. 1.3(b)). Therefore by changing the delay between pump and probe pulses

enable us to observe the population dynamics of the system [2]. Although very simple

conceptually, transient absorption(pump-probe) spectroscopy is very powerful method

which has huge applications in solid-state research.
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Figure 1.3: (a) General arrangement of a third-order time-resolved nonlinear optical experiment. (b)
Pulse sequence in a pump-probe experiment. This figure has been taken from [2]

Nowadays as modern electronics shrink into nano-scale and operate with higher

power consumption, thermal management in devices has become an important issue

and has drawn attention among the research community in both experimental and

theoretical areas[10]. The interplay between different types of scattering have been the

object of extensive research for the last two decades both experimentally and theoret-

ically[11]. Many theoretical approaches which investigate the laser induced response

of materials, are currently applied on a wide range of time scales. However, the more

profound understanding of the ultrafast dynamics of the excitations in solids or the

thermalization of carriers even in simple metals is not well understood[6]. During the

laser excitation processes, electrons are accelerated by the laser pulse via light-matter

interaction and thermalize within femtoseconds to picoseconds and leave ions in their

initial state. If the initial state is a solid, then due to electron-phonon energy transfer

lattice is heated to a new thermal equilibrium over several picoseconds[12]. Laser exci-

tation of metal with an ultrafast laser pulse pushes the electrons out of equilibrium and

to describe this nonequilibrium phenomenon theoretically has become a great interest

for many scientists in the last two decade[13].
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In thermodynamics, temperature is defined at local thermal equilibrium locations.

A local thermal equilibrium means there is a common temperature that can be applied

to all the phonon branches and electrons separately. So, in local thermal equilibrium,

electrons which are fermions, follow Fermi-Dirac distribution function:

f(ε) =
1

exp[(ε− µ)/(kBT )] + 1
(1.1)

where ε is the electron energy state, kB is the Boltzmann constant, and T is the

temperature. Phonons which are Bosons and the particle representation of mechanical

waves in solids, follow Bose-Einstein distribution:

n(ω) =
1

exp[(h̄ω)/(kBT )]− 1
(1.2)

where ω is the phonon frequency. On the other hand, thermal nonequilibrium trans-

port involves thermal states which are not in equilibrium and can not be described

by Eq.(1.1) and Eq.(1.2). All the materials have multiple branches. Mostly metals

with face-centered cubic structure have 3 acoustic phonon branches. Phonons which

belongs to different phonon modes generally have different physical properties accord-

ingly. Therefore, under certain conditions, electrons and different phonon branches in

the materials can be driven into nonequilibrium regime [10]. Therefore, during the

ultrafast laser heating processes, the amount of energy received by different phonons of

different phonon modes vary from the electrons due to different e-ph coupling strength

and as shown in Fig. 1.4, they will not have a common temperature [3]. Therefore,

if local thermal equilibrium(quasiequilibrium) is considered, then one may get very

inaccurate results or even wrong results and to predict accurate physics behind this

phenomenon, the fundamental understanding of the nonequilibrium thermal transport

is very necessary. While experiments are a solid approach to describe this highly out-

of-equilibrium phenomenon, they have certain limitations. It is extremely difficult to

measure direct temperature of electrons and individual phonons branches, which makes
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Figure 1.4: Evolution of the temperatures of electrons(blue) and the three phonon branches of Al.
This figure has been taken from [3]

this approach not very useful in describing the complete picture of non-equilibrium

thermal transport using experiments alone.

Therefore, from a theoretical perspective, nowadays many models (see Fig. 1.5)

are commonly applied to describe the ultrafast carrier dynamics in laser excited met-

Figure 1.5: Different possibilities of thermal/nonthermal lattice models.
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als which are employed in the range of quasiequilibrium to complete non-equilibrium

thermal transport.

Fig. 1.5 represents:

I The quasiequilibrium electrons and the quasiequilibrium phonons characterized

by one phonon temperature (2TM) model

I The nonequilibrium electrons and the nonequilibrium phonons model (NEP)

I The nonequilibrium electrons and the quasiequilibrium phonons characterized by

three phonon temperatures (NE+3T) model

I The nonequilibrium phonons and the quasiequilibrium electrons (NP+1T) model

I The quasiequilibrium electrons and the quasiequilibrium phonons characterized

by three phonon temperatures (4TM) model

Notably among these models, the Two-Temperature model (TTM) and Nonequilib-

rium(NEP) model are the preferred models.

1.2 Two-Temperature model

The thermalization in pump pulse excited solids is governed by many relevant scattering
mechanism such as electron-electron (e-e), electron-phonon(e-ph), and phonon-phonon
(ph-ph) scattering. In 1957, the energy transfer between electrons and phonons was
studied by Kaganov et al.[14] via e-ph, and ph-e scattering, which was motivated by
the electron transport experiment. Anisimov et al.[15] was the first person to apply the
Two-Temperature model(2TM) to study the energy relaxation in photoexcited solids.
In the framework of 2TM, Allen et al.[16] derived a formula (γT = 3h̄λ < ω2 > /πkBT )
to determine the thermal relaxation rate, which revealed the interplay between the e-
ph coupling function used in the Two-temperature model and the Eliashberg function
and is widely used in the theory of superconductivity. Later on, Allen’s formula was
also verified by the ultrafast pulse laser experiments and found to be a fundamental
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formula for many traditional metals. Allen pointed out that until the system reaches to
thermally equilibrium state, excess electron energy is transferred to the phonon system
via e-ph coupling. This idea can be derived from Bloch-Boltzmann-Peierls formulas
for the electron and phonon distribution functions:[
∂Fk

∂t

]
e−ph

= − 2π

h̄Nc

∑
Q

|Mkk′ |2{Fk(1− Fk′)[(Nq + 1)δ(εk − εk′ − h̄ωQ) +NQδ(εk − εk′ + h̄ωQ)]

− (1− Fk)Fk′ [(NQ + 1)δ(εk − εk′ + h̄ωQ) +NQδ(εk − εk′ − h̄ωQ)]}

(1.3)

[
∂NQ

∂t

]
ph−e

= − 4π

h̄Nc

∑
k

|Mkk′ |2Fk(1− Fk′)[NQδ(εk − εk′ + h̄ωQ)− (NQ + 1)δ(εk − εk′ − h̄ωQ)]

(1.4)

The assumptions used in this model were: (a) The electron-electron (coulomb) and

phonon-phonon (anharmonic) collision rates are large enough to restrict the electron

and phonon distribution function equal to local equilibrium distributions (quasiequi-

librium) [17]; (b) Electron-phonon (e-ph) coupling strength between electrons and dif-

ferent branches of acoustic phonons is same, which means all the phonon branches

are at same temperature and these electron and phonon quasiequilibrium states are

characterized by separate effective electron and phonon temperature Te and Tph re-

spectively, at any time (see Fig. 1.6); (c) The laser pulse disappears at t=0 leaving

electron temperature at an elevated temperature Te(0); (d) The electrons and phonons

are in a thermal quasiequilibrium (QE) with two different time-dependent temperature

Te(t) and Tph(t)[18]. The time evolution of the two subsystems can then be described

by the time dependence of Te and Tph derived from the following coupled differential

equations[19]:
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Ce(Te)
∂Te
∂t

=−Ge−ph(Te − Tph) + P (t)

Cph(Tph)
∂Tph
∂t

=+Ge−ph(Te − Tph) (1.5)

where Ce and Cph are the heat capacities of electron and phonon, Ge−ph the e-ph

Figure 1.6: Schematic illustration of the Two-Temperature model (2TM). This figure has been taken
from [4]

coupling constant, and P(t) represents the absorbed power from laser irradiation.

This idea provides the simplest and intuitive description of the thermalization of

electronic and vibrational degrees of freedom in systems out of equilibrium. Also the

thermal relaxation rate γT has been proved to be proportional to the e-ph coupling

factor λ < ω2 >. The factor λ < ω2 > is of great interest in estimating the super-

conducting transition transition temperature Tc of metals. However, on below a few

hundreds of femtoseconds time scales, electrons distribution can not be defined by ther-

mal quasi-equilibrium distribution function since the nonequilibrium of electrons may

come into play. When the system size is so small that it becomes comparable with the

energy carrier’s mean free path (MFP), electrons and phonons travel almost without

scattering with each other. As a result, temperature cannot be defined using Eq. 1.5.

However, the assumption behind 2TM model is questionable in the sense that e-

e(coulomb) and ph-ph(anharmonic) scattering rates are not always large enough to

keep electron and phonon distribution function equal to local thermal equilibrium. In

fact, several experimental and theoretical works based on Boltzmann equation (BOE)
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considering all types of possible scatterings have shown the breakdown of the two-

temperature model (2TM) in layered materials [17, 20] and even in Aluminium (Al)[3]

because in these solids the occupation number of longitudinal phonons (LA) and trans-

verse phonons (TA) are described by Bose-Einstein (BE) distribution function with

different temperature, while in the two-temperature model (2TM), these are described

by the common temperature. Furthermore, for the better understanding of thermal-

ization in metals, recent studies have revealed the importance and necessity of ph-ph

scattering and therefore, a nonequilibrium approximation should now be reconsidered

for the thermalization in solids which is nonequilibrium electrons and phonons model

(NEP)[21].

1.3 Nonequilibrium electron-phonon (NEP) model

In ultrafast dynamics irradiated by pump pulse laser, nonthermalized electrons have fi-

nite relaxation time which means that before the electron subsystem reaches to thermal

equilibrium, electrons have transferred energy to phonon subsystem [22]. In this the-

sis, we investigate the electron and phonon thermalization in the conventional metals

by solving the Boltzmann equation (BOE) considering the e-e, e-ph, ph-e, and ph-ph

scatterings. Fann et al. in [23] has shown that nonthermalized electrons make e-ph

relaxation process slower. Also, the coupling constant between electrons and different

phonon branches are different and thus temporal nonequilibrium occurs between differ-

ent phonon modes. Generally in metals, in the initial stage of relaxation, free electrons

absorb energy from the laser while the lattice remains cold. Then through the e-ph

scattering, most of the electrons energy is transferred into longitudinal acoustic (LA)

phonons. Though the e-ph collision time (τe−ph) may be very much comparable to

e-e collision time (τe−e), the energy transfer from the hot electrons to the cold lattice

lasts much longer than the thermalization of the electrons due to the large mass differ-

ence between electrons and phonons; which is typically a few tens of picoseconds [24].



11 Chapter 1. Introduction

Figure 1.7: Schematic illustration of treating out-of-equilibrium dynamics of electrons and phonons.
This figure has been taken from [5]

Simultaneously, via ph-ph scattering, longitudinal acoustic (LA) phonons decay into

transverse acoustic (TA) phonons.

We can understand the nonequilibrium scheme of the time evolution of electrons

and phonons distribution from Fig. 1.7. So, we can see that the electrons subsystem

is initially irradiated by femtosecond laser pulses. A small part that absorbs most of

the pulse energy is in nonthermal state whereas the remaining part of the electronic

subsystem is considered to be in the local thermal equilibrium[5]. The electronic sub-

system then thermalizes by interacting with different phonon subsystem which finally

relax their energies by interacting among themselves (depicted by arrows). We can

study this nonequilibrium model by solving Boltzmann equation (BOE) without spa-

tial dependence for electron and phonon subsystem where collision integrals consider

e-e, e-ph, ph-e, ph-ph scattering, which is written as:

∂f~k,σ
∂t

= Γe−e + Γe−ph (1.6)

∂n ~Q,γ

∂t
= Γph−e + Γph−ph (1.7)
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where f~k,σ is the distribution of electrons with momentum ~k and n ~Q,γ the distribution

of phonons with momentum ~Q. The terms Γx−y represent complete collision integrals

and describe collisions of particles x with particles y[11]. So, Γe−ph and Γph−e represent

the collisions between electrons and phonons due to e-ph coupling, Γe−e describes the

collisions between electrons, and Γph−ph represents the collisions between phonons[25].

One assumption we have made here is that the external field caused by the laser pulse

has vanished at t = 0 and we can neglect the contribution from the diffusion and

external field. Therefore a key to the relaxation between laser excited electron bath

and the phonons is only scattering term[19]. Generally the applicability of Boltzmann

equation (BOE) in metals is restricted by two inequalities:

I kf » 1/d where kf is the Fermi wave vector and d is the characteristic length of

the inhomogeneity of the distribution function and in most cases, d can be tuned

with the thickness of the film or the penetration depth of light.

I h̄
τ

« Ef where Ef is the Fermi energy and τ is the characteristic time scale of the

changes of the distribution function.

Therefore the application of the Boltzmann equation (BOE) for the description of the

time-resolved experiments in the metals is justified on t > h̄/Ef time scale which is

well below the time resolution of all known experiments[26].
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Chapter 2

Theoretical Formalism

2.1 NEP Model

NEP model is the nonequilibrium electron and phonon model, with relevant scattering

processes. A deeper understanding of the nonequilibrium dynamics of electrons and

phonons is very important since it underpin many naturally occurring phenomena e.g.

photoluminescence, phase changes, catalysis, and heat transport etc[27]. Though it is

very difficult to understand the out-of-equilibrium behavior of carriers, kinetic models

such as Boltzmann equation (BOE), allow us to track the evolution of electronic and

phononic nonequilibrium. In many investigations published so far, different approaches

are used to model the nonequilibrium dynamics of carriers in metals photoexcited

with ultrafast laser pulse, where the electron distribution is significantly disturbed but

doesn’t cause the lattice damage. Here, we use a microscopic out-of-equilibrium dynam-

ics model derived by Shota Ono[6] to laser induced dynamics of electronic and phononic

subsystems on subpicoseconds to femtoseconds time scale. In this model, we investigate

the electrons and phonons dynamics in the thermalization process in simple metals by

solving Boltzmann equation (BOE) which is governed by the electron-electron (e-e),

electron-phonon (e-ph), phonon-electron (ph-e), and phonon-phonon (ph-ph) scatter-

ing. The relaxation time of electrons and phonons is also substantially influenced by

15
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their initial distribution functions and initial energies, according to research [6].

2.1.1 Hamiltonian

The total Hamiltonian for electrons, phonons, and electron-phonon interaction is writ-

ten as:

H = He +Hph +He−ph (2.1)

where He, Hph, and He−ph represents the electron, phonon, and electron-phonon inter-

action Hamiltonian respectively.

I He includes e-e interaction

I Hph includes ph-ph interaction

I He−ph includes e-ph and ph-e interaction part

The expression for each Hamiltonian is given as:

2.1.1.1 Electrons

If we don’t neglect the interactions between electrons, then electron-electron collisions,

which are not contained in the study of free Fermi gas, can indeed perturb the station-

ary Bloch states[28]. Now since coulomb interaction is the cause of e-e scatterings, the

electron Hamiltonian can be written as:

Htotal(e) = H0 + Vint

where

H0 =
∑
σ

∫
drΨ+

σ (r)h(r)Ψσ(r)
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and h(r) represents Kinetic Energy part. Similarly,

Vint =
1

2

∑
σ1σ2

∫
dr1dr2Ψ+

σ1
(r1)Ψ+

σ2
(r2)v(r1, r2)Ψσ2(r2)Ψσ1(r1)

Therefore,

He =
∑
σ

∫
drΨ+

σ (r)
(
−h̄2

2m
∇2

)
Ψσ(r) +

1

2

∑
σσ′

∫
dr
∫
dr′Ψ+

σ (r)Ψ+
σ′(r′)v(|x|)

Ψσ′(r′)Ψσ(r)

(2.2)

where h̄ is the Planck constant, m is the electron mass, and x=r-r’. Ψσ(r) is the field

operator and is given by the expression:

Ψσ(r) =
1√
V

∑
k

eik.rckσ

Ψ+
σ (r) =

1√
V

∑
k

e−ik.rc+kσ (2.3)

where c+kσ (ckσ) is the creation (annihilation) operator of the electrons with wave vector

k, spin σ, crystal volume V, v(|x|) is the screened Coulomb potential energy, and its

expression is given as:

v(|x|) = e2

4πε0

e−qTF |x|

|x|

where ε0 is the dielectric constant of vacuum, qTF is the Thomas-Fermi wave number,

and its expression is given as:

qTF =

(
12

π

)1/3
1

a0
√
rs



2.1. NEP Model 18

where rs is the dimensionless Wigner-Seitz radius, and a0 is the Bohr radius. Now

from Eq. 2.2 and Eq. 2.3, we get

He =
∑
kσ

εkc
+
kσckσ +

1

2

∑
q

∑
kσ

∑
k′σ′

vqc
+
k+qσc

+
k′−qσ′ck′σ′ckσ (2.4)

where εk = h̄2k2/(2m) is the free electron energy, vq is the Fourier component of the

screened Coulomb potential, and its expression is given as:

vq =
1

V

e2

(q2 + q2TF )

Each term in the summation of the second part of Eq. 2.4 represents a scattering

process in which two particles in states |kσ > and |k′σ′ > are annihilated, and two

particles are created in states |k + qσ > and |k′ - qσ′ > . The interaction is viewed as

a collision in which one particle transfers momentum h̄q to the other. The scattering

process may be represented pictorially, as shown in Fig. 3.8

Figure 2.1: Schematic representation of the interaction of two particles.

2.1.1.2 Phonons

We can understand the lattice dynamics in an atomistic system by considering the

elastic properties of a crystal which can be viewed as a homogeneous continuum medium

rather than as a periodic array of atoms. Generally, the continuum approximation is
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valid for elastic waves of wavelengths λ longer than 10−6 cm. The total anharmonic

Hamiltonian for this system is given by[6]:

Htotal = H2 +H3 +O(4) (2.5)

where H2 = T +V2 which is harmonic hamiltonian and H3 is the third order term from

the expansion of the crystal potential which is:

H3 =
1

3!

∑
ll′l′′
kk′k′′
α1α2α3

ψlk,l′k′,l′′k′′

α1α2α3
ulkα1

ul
′k′

α2
ul

′′k′′

α3
(2.6)

The expression of kinetic energy is given as:

T =
1

2

∑
qs

Q̇(qs)Q̇(−qs) (2.7)

and the expression of the harmonic potential energy is given as:

V2 =
1

2

∑
qs

ω2(qs)Q(−qs)Q(qs) (2.8)

such that the harmonic hamiltonian is given by:

H2 =
1

2

∑
qs

(P (−qs)P (qs) + ω2(qs)Q(−qs)Q(qs)) (2.9)

In strain tensor notation Eq. 2.5 is written as:

Htotal =
1

2ρi

∑
i

∫
p∗i (r)pi(r)dr

+
1

2!

∑
ijkl

∫
drCijklηij(r)ηkl(r)

+
1

3!

∑
ijklmn

∫
drCijklmnηij(r)ηkl(r)ηmn(r) (2.10)
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where Cijklmn(Cijkl) is the six-rank (fourth-rank) tensor whose expressions are given

as:

Cijkl = λLδijδkl + µL(δikδjl + δilδjk) (2.11)

where λL and µL are Lam
′

e constants, while the six-rank tensor is given as:

Cijklmn =E1δijδklδmn + E2[δij(δkmδln + δknδlm) + δkl(δimδjn + δinδjm)

+ δmn(δikδjl + δilδjk)] + E3[δik(δjmδln + δil(δjmδkn + δjnδkm)

+ δim(δjkδln + δjlδkn + δin(δjkδlm + δjlδkm))] (2.12)

where E1, E2, and E3 are third-order elastic constants, and the strain tensor is defined

as:

ηij(r) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∑
k

∂uk
∂xi

∂uk
∂xj

)
(2.13)

The displacement vector ui(r) is written as:

ui(r) =
∑
Q,γ

√
h̄

2ρiΩωγ(Q)
(bQγ + b+−Qγ)× ei(Qγ)eiQ.r (2.14)

where bQγ and b+Qγ are the annihilation and creation operators resp. for the phonons

with the wave vector Q=(Q1, Q2, Q3) and γ is the polarization which can be LA, TA1,

or TA2. e(Q, γ) is the polarization vector, and the momentum operator in Eq. 2.10 is

written as:
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pi(r) = −i
∑
Q,γ

√
h̄ρiωγ(Q)

2Ω
(bQγ − b+−Qγ)× ei(Qγ)eiQ.r (2.15)

Now we can use the orthonormality relation of the polarization vectors for a given Q

which gives:

e∗(Q, γ′).e(Q, γ) = δγ,γ′

and elastic wave equation is given by

ρiω
2
γ(Q)ei(Q, γ) =

∑
k

(∑
jl

CijklQjQl

)
ek(Q, γ) (2.16)

where ρi is the ion mass density such that ρi = MiNi/Ω with ion mass Mi and the

number of ions Ni in a volume Ω.

In the isotropic approximation, first term of RHS of Eq. 2.16 can be modified as:

∑
jl

CijklQjQl =Ci1k1Q1Q1 + Ci1k2Q1Q2 + Ci1k3Q1Q3 + Ci2k1Q2Q1 + Ci2k2Q2Q2

+ Ci2k3Q2Q3 + Ci3k1Q3Q1 + Ci3k2Q3Q2 + Ci3k3Q3Q3

Thus, RHS of Eq. (2.16) can be expanded as:
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∑
k

(∑
j,l

CijklQjQl

)
ek(Q, γ) =

{
Ci111Q1Q1 + Ci112Q1Q2 + Ci113Q1Q3 + Ci211Q2Q1

+ Ci212Q2Q2 + Ci213Q2Q3 + Ci311Q3Q1 + Ci312Q3Q2

+ Ci313Q3Q3

}
e1(Q, γ) +

{
Ci121Q1Q1 + Ci122Q1Q2 + Ci123Q1Q3

+ Ci221Q2Q1 + Ci222Q2Q2 + Ci223Q2Q3 + Ci321Q3Q1 + Ci322Q3Q2

+ Ci323Q3Q3

}
e2(Q, γ) +

{
Ci131Q1Q1 + Ci132Q1Q2 + Ci133Q1Q3

+ Ci231Q2Q1 + Ci232Q2Q2 + Ci233Q2Q3 + Ci331Q3Q1 + Ci332Q3Q2

+ Ci333Q3Q3

}
e3(Q, γ) (2.17)

Now since

Cijkl = λLδijδkl + µL(δikδjl + δilδjk)

Therefore if we compare the Eq. 2.11 and Eq. 2.17, we get

i Non zero coefficients of
e1(Q, γ)

Non zero coefficients of
e2(Q, γ)

Non zero coefficients of
e3(Q, γ)

1 C1111Q
2
1 = (λL + 2µL)Q

2
1 C1122Q1Q2 = λLQ1Q2 C1133Q1Q3 = λLQ1Q3

C1212Q
2
2 = µLQ

2
2 C1221Q2Q1 = µLQ2Q1 C1331Q3Q1 = µLQ3Q1

C1313Q
2
3 = µLQ

2
3

2 C2112Q1Q2 = µLQ1Q2 C2121Q
2
1 = µLQ

2
1 C2233Q2Q3 = λLQ2Q3

C2211Q2Q1 = λLQ2Q1 C2222Q
2
2 = (λL + 2µL)Q

2
2 C2332Q3Q2 = µLQ3Q2

C2332Q
2
3 = µLQ

2
3

3 C3113Q1Q3 = µLQ1Q3 C3223Q2Q3 = µLQ2Q3 C3131Q
2
1 = µLQ

2
1

C3311Q3Q1 = λLQ3Q1 C3322Q3Q2 = λLQ3Q2 C3232Q
2
2 = µLQ

2
2

C3333Q
2
3 = (λL + 2µL)Q

2
3

Table 2.1: Details of the relation between various elastic constants and Lamé constants.

Now after comparing the data of Eq. 2.16 and Table 2.1, we get

For i = 1, ρiω
2
γ(Q)e1(Q, γ) = ((λL + 2µL)Q

2
1 + µLQ

2
2 + µLQ

2
3)e1(Q, γ) (2.18)
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For i = 2, ρiω
2
γ(Q)e2(Q, γ) = (µLQ

2
1 + (λL + 2µL)Q

2
2 + µLQ

2
3e2)(Q, γ) (2.19)

For i = 3, ρiω
2
γ(Q)e3(Q, γ) = (µLQ

2
1 + µLQ

2
3 + (λL + 2µL)Q

2
3e3)(Q, γ) (2.20)

Now Eq.[ 2.18- 2.20] can also be written as:

ρiω
2
γ(Q) =


λL + 2µL µL µL

µL λL + 2µL µL

µL µL λL + 2µL



Q2

1

Q2
2

Q2
3



Here γ can be either LA, TA1, or TA2 polarization. So, if we take γ=LA polarization

as the first case, then we get:

ρiω
2
LA(Q)e1(Q, LA) = (λL + 2µL)Q

2
1e1(Q, LA) (2.21)

ρiω
2
LA(Q)e2(Q, LA) = (λL + 2µL)Q

2
2e2(Q, LA) (2.22)

ρiω
2
LA(Q)e3(Q, LA) = (λL + 2µL)Q

2
3e3(Q, LA) (2.23)

Now after adding above Eq.[ 2.18-2.23], we get:
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ρiω
2
LA(Q){e1(Q, LA) + e2(Q, LA) + e3(Q, LA)} = [(λL + 2µL)Q

2
1

+ (λL + 2µL)Q
2
2 + (λL + 2µL)Q

2
3]{e1(Q, LA) + e2(Q, LA) + e3(Q, LA)}

or

ρiω
2
LA(Q) =(λL + 2µL)(Q

2
1 +Q2

2 +Q2
3)

=(λL + 2µL)|Q|2

which gives

ω2
LA(Q) =

(λL + 2µL)|Q|2

ρi

=

√
(λL + 2µL)

ρi
|Q| (2.24)

=⇒ The frequency of LA branch is given by

ωLA(Q) =

√
(λL + 2µL)

ρi
|Q| ≡LA |Q| (2.25)

where vLA is the phonon velocity of LA mode. Similarly, if γ=TA1 or TA2, then

the wave vector is in the perpendicular direction of the component of polarization.

Therefore after doing the same procedure1 from Eq.[ 2.21- 2.25], we get the expression

of the frequencies of TA1 and TA2 polarization

ωTA1(Q) = ωTA2(Q) =

√
µL

ρi
|Q| ≡ vTA|Q| (2.26)

where vTA is the common phonon velocity of TA1 and TA2 mode.

1The details can be obtained from Appendix A.1
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Now if we put the ui(r), pi(r) values from Eq.[ 2.14- 2.15] into Eq. 2.10, we get

H2 =
∑
Qγ

h̄ωγ(Q)

(
b+QγbQγ +

1

2

)
(2.27)

and

H3 =
1

3!

∑
Q,Q′,Q′′

γγ′γ′′

Aγ,γ′,γ′′

Q,Q′,Q′′ × (bQγ + b+−Qγ)(bQ′γ′ + b+−Q′γ′)(bQ′′γ′′ + b+−Q′′γ′′)

=
1

6

∑
Q,Q′,Q′′

γγ′γ′′

Aγ,γ′,γ′′

Q,Q′,Q′′ ×BQγBQ’γ′BQ′′γ′′δQ+Q′+Q′′,0 (2.28)

where BQγ = bQγ + b+−Qγ. The operators act on the phonon states and thus create

or destroy phonons in the respective state. Let |nQγ > denote the occupation number

representation of phonons with wave vector Q in branch γ. Similarly the operator

combinations in Eq. 2.28 act on three-phonon states |nQγnQ′γ′nQ′′γ′′ > and according

to Eq. 2.28, four three-phonon interacting processes can be deduced, which can be

either one phonon give rise to two new phonons, or two phonons coalesce into one new

phonon. However due to energy conservation, the simultaneous annihilation or creation

of three phonons is not allowed. So, by the selection rules for energy and momentum,

the following processes are allowed

ω(Qγ) + ω(Q′γ′) = ω(Q′′γ′′)

Q + Q′ = Q′′ +G (2.29)

and

ω(Qγ) = ω(Q′γ′) + ω(Q′′γ′′)

Q +G = Q′ + Q′′ (2.30)
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Figure 2.2: Phonons creation and annihilation diagrams

for coalescence and decay of phonons, respectively. These scattering processes are

shown in Fig. 2.2. The three-phonon matrix elements Aγ,γ′,γ′′

Q,Q′,Q′′ in Eq. 2.28 is given by:

Aγ,γ′,γ′′

Q,Q′,Q′′ = − i√
Ω

(
h̄

2ρi

)3/2
Aph√

ωγ(Q)ωγ′(Q′)ωγ′′(Q′′)
(2.31)

where Aph
2 is defined as:

Aph = E1(e.Q)(e′.Q′)(e′′.Q′′) + E2(e.Q)[(e′.e′′)(Q′,Q′′) + (e′.Q′′)(e′′.Q′)] + E2(e′.Q′)

+ [(e.e′′)(Q.Q′′) + (e.Q′′)(e′′.Q)] + E2(e′′.Q′′)[(e.e′)(Q.Q′) + (e.Q′)(e′.Q)]

+ E3(e.e′)[(e′′.Q)(Q′.Q′′) + (Q.Q′′)(e′′.Q′)] + E3(e.Q′)[(e′′.Q)(e′.Q′′) + (Q.Q′′)

(e′.e′′)] + E3(e.e′′)[(e′.Q)(Q′.Q′′) + (Q.Q′)(e′.e′′)] + λL[(e.Q)(e′.e′′)(Q′.Q′′) + (e.e′′)

(Q.Q′′)(e′.Q′) + (e.e′)(Q.Q′)(e′′.Q′′)] + µL[(e.e′)(Q.e′′)(Q′.Q′′) + (e.e′)(Q.Q′′)

(Q′.e′′) + (e.Q′)(Q.Q′′)(e′.e′′) + (e.e′′)(Q.e′)(Q′.Q′′) + (e.e′′)(Q.Q′)(e′.Q′′) + (e.Q′′)

(Q.Q′)(e′.e′′)] (2.32)

Now γ, γ′, and γ′′ can be either LA, TA1, or TA2. So, many selection rules are possible

for the combination of different phonon modes. From Eq. 2.32, we have found that

three dominant decaying processes are possible:

2Abbreviation used in this term is: e=e(Qγ), e′ = e(Q′γ′), e′′ = e(Q′′γ′′)
Aph is symmetric under the exchanges (e,Q)↔(e′,Q′), (e′,Q′) ↔ (e′′,Q′′), and (e,Q)↔(e′′,Q′′)
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LA
 LA+ TA1

LA
 TA1 + TA1

LA
 TA2 + TA2

Let us take the first selection rule3

LA(Q) 
 LA(Q′) + TA1(Q′′) (2.33)

where Q′′ = (Q − Q′), and let Q = Qk̂, then

QQ′ = QQ′ cos θ′

Therefore

Q′′.k̂ = Q′′. cos θ′′ = (Q − Q′).k̂

=⇒ cos θ′′ = Q−Q′ cos θ′

Q′′ (2.34)

Similarly

Q′′ .̂i = Q′′. sin θ′′ cosφ′′ = (Q − Q′).̂i

=⇒ sin θ′′ = −Q′ sin θ′ cosφ′

Q′′ cosφ′′ (2.35)

3Phonons wave vector and polarization vector can be expressed using spherical coordinates system
and the details for these relations can be obtained from Appendix A.2
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and

Q′′.ĵ = Q′′. sin θ′′ sinφ′′ = (Q − Q′).ĵ

=⇒ sin θ′′ = −Q′ sin θ′ sinφ′

Q′′ sinφ′′ (2.36)

Now after comparing Eq. 2.35 and Eq. 2.36, we get

φ′ = φ′′

Therefore

sin θ′′ =
(
−Q′

Q′′

)
sin θ′

Now let us take the first term in Eq. 2.32,

ê.Q = Q

ê′.Q′ = êr′ .Q
′êr′ = Q′

ê′′.Q′′ = eθ′′Q
′′er′′ = 0

From above equations we can see that the first term will vanish for processes involving

the TA phonons irrespective of the selection rule, and therefore we can ignore E1.

For the second term,

ê′.ê′′ = êr′ êθ′′ = sin θ′ cosφ′ cos θ′′ cosφ′′ + sin θ′ sinφ′ cos θ′′ sinφ′′ − cos θ′ sin θ′

= sin θ′ cos θ′′ − cos θ′ sin θ′′

= sin θ′
(
Q−Q′ cos θ′

Q′′

)
+ sin θ′

(
Q′ cos θ′

Q′′

)
=

Q

Q′′ sin θ′
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Q′.Q′′ = Q′.(Q − Q′)

= QQ′ cos θ′ −Q′2

= Q′(Q cos θ′ −Q′)

ê′.Q′′ = êr
′.(Q − Q′)

= Q cos θ′ −Q′

ê′′.Q′ = êθ′′Q
′êr′ =

(
QQ′

Q′′

)
sin θ′

Therefore, the second term of Eq. 2.32 is

2E2

(
QQ′

Q′′

)
[Q2 sin θ′ cos θ′ −QQ′ sin θ′] (2.37)

For the third term,

ê.ê′′ = − sin θ′′ = Q′

Q′′ sin θ′

ê.Q′′ = Q′′ cos θ′′ = Q−Q′ cos θ′

ê′′.Q = êθ′′ .Q.k̂ = −Q sin θ′′ = QQ′

Q′′ sin θ′

Q.Q′′ = Q.(Q − Q′) = Q(Q−Q′ cos θ′)

Therefore, the third term of Eq. 2.32 is

2E2

(
QQ′

Q′′

)
Q′ sin θ′(Q−Q′ cos θ′) (2.38)

For the fourth term,

ê′′.Q′′ = 0 (2.39)
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For the fifth term,

ê.ê′ = êr.êr′ = cos θ′

Therefore, the fifth term of Eq. 2.32 is

E3

(
QQ′

Q′′

)
[(Q2 −Q′2) sin θ′ cos θ′] (2.40)

For the sixth term,

ê′.Q′′ = êr′(Qk̂ −Q′êr′) = Q cos θ′ −Q′

Therefore, the sixth term of Eq. 2.32 is

E3

(
QQ′

Q′′

)
(Q2 −Q′2) sin θ′ cos θ′ (2.41)

For the seventh term,

ê′.Q = êr′ .Q = Q cos θ′

Therefore, the seventh term of Eq. 2.32 is

2E3

(
QQ′

Q′′

)
Q′ sin θ′ cos θ′(Q cos θ′ −Q′) (2.42)

The solution of the eighth term is:

2E3

(
QQ′

Q′′

)
Q sin θ′ cos θ′(Q−Q′ cos θ′) (2.43)

The solution of the ninth term is:

λL

(
QQ′

Q′′

)
(Q2 −Q′2) sin θ′ cos θ′ (2.44)
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The solution of the tenth term is:

3µL

(
QQ′

Q′′

)
(Q2 −Q′2) sin θ′ cos θ′ (2.45)

Therefore, after adding Eq.[ 2.37- 2.45], we get

Aph =
QQ′

Q′′ (2E2 + 4E3 + λL + 3µL)(Q
2 −Q′2) sin θ′ cos θ′ (2.46)

Similarly for the second selection rule:

LA(Q) 
 TA1(Q′) + TA1(Q′′) (2.47)

The Aph solution4 for above Eq. 2.47 is given by:

Aph =
QQ′

Q′′ [E2 + λL + 2(E3 + µL)](Q
′ −Q cos θ)2 − (E2 + 2E3 + µL)Q

2 sin2 θ′ (2.48)

And for the third selection rule:

LA(Q) 
 TA2(Q′) + TA2(Q′′) (2.49)

The Aph solution4 for above Eq. 2.49 is given by:

Aph = QQ′[(E2 + λL)(Q cos θ′ −Q′) + 2(E3 + µL)(Q−Q′ cos θ′) cos θ′] (2.50)

The energy and momentum conservation restricts the allowed splitting processes to

only 2.33, 2.47, and 2.49 and the collinear process LA(Q) 
 LA(Q′)+LA(Q′′). But

the contribution to the decay rate by the collinear process has found to be very small

compared to other three processes mentioned. Hence, we ignore the collinear process

in our calculations.

4The details can be obtained from Appendix A.3
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2.1.1.3 Electron-phonon interaction

In determining the transport properties of metals, the coupling or interaction between

electrons and phonons plays a very important role. The electron-phonon coupling is

responsible for several many-body effects, e.g. in the measurements of specific heat at

low temperature, the increase in the effective mass of electrons can be observed[29].

The electron-phonon interaction Hamiltonian in second-quantized form is given by

Hel−ph =
∑

k,Q,σ,γ

g(Q, γ)a+k′σ
akσ(bQγ + b+−Qγ) (2.51)

where the operators bQγ and b+−Qγ are annihilation and creation operators respectively

for phonons of wave vectors Q with branch index γ. The selection rule which connects

the Bloch vectors k′ and k with phonons wave vectors Q is given by

k′ = k + Q + G

where G is the reciprocal lattice vector. And in the above equation, the expression of

g(Q, γ) is given by[6]:

|g(Q, γ)|2 = D2
0

h̄|Q|
2ρiΩvLA

δγ,LA (2.52)

where D0 is the deformation potentials, which describes the coupling between the LA

phonon and electrons. The free-electron approximation approach shows, D0 = 2εf/3,

where εf denotes the Fermi energy. Eq. 2.52 shows the matrix elements for LA phonon

mode only but if we want to consider TA phonon, then there should be one general

form of g(Q, γ) which is written as:

|g(Q, γ)|2 = D2
γ

h̄|Q|
2ρiΩvγ

(2.53)

where DTA =
(

vTA

vLA

)β
D0. In our calculation we have taken β = 1.5
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2.2 NEP model: A Boltzmann transport approach

This section involves the calculations in NEP (nonequilibrium electron and phonon)

model are based on the semi-classical Boltzmann transport equation which considers

the relevant scattering processes. The coupled Boltzmann equation (BOE) for electron

and phonon systems without magnetic field expressed as:

∂fk,σ

∂t
+ ve.∇rfk,σ −

eE
h̄
.∇k,σfk,σ =

(
∂f

∂t

)
e−e

+

(
∂f

∂t

)
e−ph

(2.54)

∂nQ,γ

∂t
+ vph,γ.∇rnQ,γ =

(
∂n

∂t

)
ph−e

+

(
∂n

∂t

)
ph−ph

(2.55)

where fk,σ denotes the distribution function of electrons and nQ,γ denotes the distri-

bution function of phonon subsystem. The right-hand sides denote the e-e, e-ph, ph-e,

ph-ph scatterings (collision integrals). If the external field caused by the laser has dis-

appeared at t = 0 ps and we do not consider the influence of transport (diffusion), and

external electric field term on the change of phonon-population. These simplified BOE

approaches have been widely used in investigating the phononic heat transport[10]. So,

within the Boltzmann transport model Eq. 2.54 and Eq. 2.55 can be rewritten as:

∂fk,σ

∂t
=

(
∂f

∂t

)
e−e

+

(
∂f

∂t

)
e−ph

(2.56)

∂nQ,γ

∂t
=

(
∂n

∂t

)
ph−e

+

(
∂n

∂t

)
ph−ph

(2.57)

So, to estimate the transition probability due to a particular scattering mechanism

many-body perturbation theory and Fermi’s golden rule can be employed.
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2.2.1 Electron-electron collisions

The collision integral for the electron-electron (e-e) scattering process is given by[6]:

(
∂f

∂t

)
e−e

=
∑
k′,q

2π

h̄
|Ṽ (q)|2δ(∆ε)[−fkf

′
k(1−fk+q)+ (1−fk)(1−fk′)fk+qfk′−q] (2.58)

where ∆ε = εk + ε′k − εk+q − εk′−q (see Fig. 3.8). The e-e collision process described

above is given by (k,k′) 
 (k+ q,k′ − q), and expression of Ṽ (q) (screened Coulomb

interaction potential) is written as

Ṽq =
1

V

e2

(q2 + q2TF )

When fk is averaged over the electron states having the energy ε, the we can obtain

the energy distribution function for the electrons which is given by:

f(ε) =
1

N (ε)

∑
k

δ(ε− εk)fk (2.59)

where N (ε) = Ω(2m)3/2
√
ε/4π2h̄3 is the density of states (DOS) per spin.

2.2.2 Electron-phonon and phonon-electron collisions

The collision integral for the electron-phonon (e-ph) and phonon-electron (ph-e) scat-

tering process is given by[6]:

(
∂f

∂t

)
e−ph

=
∑
Q,γ

2π

h̄
|g(Q, γ)|2{−fk(1− fk+Q)[(1 + nQ)δ(εk − εk+Q − h̄ωQγ)

+ nQδ(εk − εk+Q + h̄ωQγ)] + (1− fk)fk+Q[(1 + nQ)δ(εk − εk+Q + h̄ωQγ)

+ nQδ(εk − εk+Q − h̄ωQγ)]} (2.60)
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∂n

∂t

)
ph−e

=
∑

k

4π

h̄
|g(Q, γ)|2fk(1− fk+Q)[−nQ,γδ(εk − εk+Q + h̄ωQγ) + (1 + nQ,γ)

δ(εk − εk+Q − h̄ωQγ)]

(2.61)

By emitting or absorbing phonons, excess energy of electrons decreases or increases

respectively. Eq. 2.60 and Eq. 2.61 consider scattering processes which involves the

absorption or emission of single phonon only[29]. Therefore the processes, which involve

the emission or absorption of two or more phonons are of negligible importance here.

Eq. 2.60 and Eq. 2.61 describes the electron-phonon (e-ph) and phonon-electron (ph-e)

collision integrals, where by an absorption of the phonon with Q, electron with state

k is scattered into a new state k + Q or by an emission of the phonon with -Q, and

vice-versa. The different emission and absorption processes are illustrated in Fig. 2.3

Figure 2.3: Scattering of electrons with emission or absorption of phonons

The expression of g(Q, γ) is given by Eq. 2.53, and the phonons energy distribution
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function is given by

nγ(ω) =
1

Dγ(ω)

∑
Q

δ(ω − ωQγ)nQ,γ (2.62)

where ω is the frequency of phonon states. Dγ is the density of states (DOS) of phonons

with polarization γ, and the expression of Dγ is defined as

Dγ(ω) =
Ωω2

(2π2v3γ)
θH(Ωγ,D − ω)

where θH is the Heaviside step function with θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x ≤ 0.

2.2.3 Phonon - phonon collisions

The collision integral for the phonon-phonon (ph-ph) scattering process is given by[6]:

(
∂n

∂t

)
ph−ph

=
∑

Q′γ′γ′′

2π

h̄
|Aγ,γ′,γ′′

Q,Q′,−(Q+Q′)
|2
{
1

2
[(1 + nQ,γ)n−Q′,γ′nQ+Q′,γ′′ − nQ,γ(1 + n−Q′,γ′)

(1 + nQ+Q′,γ′′)]× δ(h̄ωQ,γ − h̄ω−Q′,γ′ − h̄ωQ+Q′,γ′′) + [(1 + nQ,γ)(1 + nQ′,γ′)

nQ+Q’,γ′′ − nQ,γnQ′,γ′(1 + nQ+Q′,γ′′)]δ(h̄ωQ,γ + h̄ωQ′,γ′ − h̄ωQ+Q′,γ′′)

(2.63)

Aγ,γ′,γ′′

Q,Q′,−(Q+Q′)
is defined in Eq. 2.31, and γ, γ′, γ′′ are restricted with selection rules

rules mentioned in Eq.[ 2.33, 2.47, 2.49]. Again we do not consider the three-phonon

collinear processes (in which all three phonons belong to the same phonon branch

or polarization) such as LA(TA) 
 LA(TA)+LA(TA), and there are no scattering

processes in which one TA phonon creates two LA phonons due to energy conservation

law[30]. In Eq. 2.63, the first process describes the decay of one phonon with (Q, γ)

into two phonons with (Q′, γ′) and (Q−Q′, γ′′), while for the case of the second process

two phonon modes with (Q, γ) and (Q′, γ′) coalesce into a phonon with (Q + Q′, γ′′)

[see Fig. 2.2]. Due to the inversion symmetry, the relations ωQγ = ω−Qγ and nQ,γ =

n−Q,γ are used in the derivation of the collision terms ( 2.63, 2.61, 2.60).
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Now after putting all collision integral terms into Eq. 2.56, 2.57, using DOS ex-
pression for electrons and phonons, the time (t) evolution for the electron and phonon
distribution functions are given by, respectively[6],

∂f(ε)

∂t
=2π

∫
dε′
∫

dξ

∫
dξ′Ce−e(ε, ε

′, ξ, ξ′)δ(ε+ ε′ − ξ − ξ′){−f(ε)f(ε′)[1− f(ξ)][1− f(ξ′)]

+ [1− f(ε)][1− f(ε′)]f(ξ)f(ξ′)}+ 2π
∑
γ

∫
dξ

∫
dωCe−ph(ε, ξ, ω, γ)(δ(ε− ξ − h̄ω)

{[f(ξ)− f(ε)]nγω} − f(ε)[1− f(ξ)] + δ(ε− ξ + h̄ω){[f(ξ)− f(ε)]nγ(ω) + f(ξ)

[1− f(ε)]}) (2.64)

∂nγ(ω)

∂t
=4π

∫
dε

∫
dξCph−e(ε, ξ, ω, γ)f(ε)[1− f(ξ)]{−nγ(ω)δ(ε− ξ + h̄ω) + [nγ(ω) + 1]

δ(ε− ξ − h̄ω)}+ 2π
∑
γ′

∑
γ′′

∫
dω′

∫
dω′′Cph−ph(ω, ω

′, ω′′, γ, γ′, γ′′)×
{
1

2
[n(+)

γ (ω)

nγ′(ω′)nγ′′(ω′′)− nγ(ω)n
(+)
γ′ (ω′)n

(+)
γ′′ (ω

′′)]δ(h̄ω − h̄ω′ − h̄ω′′) + [n(+)
γ (ω)n

(+)
γ′ (ω′)n

(+)
γ′

(ω′′)− nγ(ω)nγ′(ω′)]n
(+)
γ′′ (ω

′′)δ(h̄ω + h̄ω′ − h̄ω′′)
}

(2.65)

where n
(+)
Q,γ = 1 + nQ,γ with γ = LA, TA, and TA2. The expression of coupling

functions introduced in Eq.[ 2.64, 2.65] is given by:

Ce−e(ε, ε
′, ξ, ξ′) =

1

h̄N (ε)

∑
k,k′,q

|Ṽ (q)|2δ(ε− εk)δ(ε
′− εk′)δ(ξ− εk+q)δ(ξ

′− εk′−q) (2.66)

Ce−ph(ε, ξ, ω, γ) =
1

h̄N (ε)

∑
k,Q

|g̃(Q, γ)|2δ(ε− εk)δ(ξ − εk+Q)δ(ω − ωQγ) (2.67)
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Cph−e(ε, ξ, ω, γ) =
1

h̄Dγ(ω)

∑
k,Q

|g̃(Q, γ)|2δ(ε− εk)δ(ξ − εk+Q)δ(ω − ωQγ) (2.68)

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

1

h̄Dγ(ω)

∑
Q,Q′

|Ãγ,γ′,γ′′

Q,Q′,−(Q+Q′)
|2δ(ω − ωQγ)δ(ω

′ − ωQ′γ′)

δ(ω′′ − ωQ+Qγ′′)

(2.69)

Eqs.[ 2.66- 2.69] describes the coupling function for e-e, e-ph, ph-e, and ph-ph scatter-

ings respectively. Now for an isotropic system, above mentioned coupling functions are

expressed as:

The e-e coupling function

Eq. 2.66 can be rewritten as

Ce−e(ε, ε
′; ξ, ξ′) =

1

4π2ε2f

√
εf
ε

h̄

ma20

∫ ∞

0

ds

[
1

s2 + (qTF/kF )2

]2
× θH [1− h1(ε, ξ, s)]θH [1 + h1(ε, ξ, s)]× θH [1− h1(ε

′, ξ′, s)]

θH [1 + h1(ε
′, ξ′, s)] (2.70)

where kF is the Fermi wave number, and the expression of h1 is given by

h1(ε, ξ, s) =
1

2s

√
εF
ε

(
ξ

εF
− ε

εF
− s2

)
(2.71)
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The e-ph and ph-e coupling function

Ce−ph(ε, ξ, ω, γ) =
3Zval

128

√
εF
ε

(
Dγ

εF

)2
(h̄ω)2

(1
2
Miv2γ)(

1
2
mv2γ)

× θH [1− h2(ε, ξ, ω)]θH [1 + h2(ε, ξ, ω)] (2.72)

where Dγ, Mi, and Zval are the deformation potential, mass of ion, and number of the

valence electrons respectively.

Cph−e(ε, ξ, ω, γ) =
N (ε)

Dγ(ω)
Ce−ph(ε, ξ, ω, γ) (2.73)

where N (ε) is the electron density of states (DOS) per spin and Dγ(ω) is the phonon

density of states (DOS) for the polarization γ. The expression of h2 is given by

h2(ε, ξ, ω) =

√
Kγε2F
(h̄ω)2ε

[
ξ

εF
− ε

εF
− (h̄ω)2

4KγεF

]
(2.74)

where Kγ = mv2γ/2. Also when ε = ξ = εF then Ce−ph(ε, ξ, ω, γ) is related to the

Eliashberg function

Ce−ph(εF , εF , ω, γ) = α2F (ω, γ)

The ph-ph coupling function

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

Ω

(2π)6h̄Dγ(ω)

(
h̄

2ρi

)3 ∫
dS

∫
dS ′ × ωω′

(vγvγ′)3

|Aph|2

vγ′′ |Q + Q′|
δ(ω′′ − vγ′′ |Q + Q′|)

(2.75)
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where
∫
dS =

∫
dθ sin θ

∫
dφ. The numerical integrals for above equation are solved by

using the efficient spherical designs method5. Now using re scaling all the equations in

section 2.2, we simplify this model.

2.2.4 Dimensionless equations

We can rewrite the e-e coupling function (see Eq. 2.70) as

Ce−e(ε, ε
′, ξ, ξ

′
) =

1

4π2ε2f

h̄

ma0

√
1

ε

∫ supper

slower

ds

(
1

s2 + q2

)2

(2.76)

where q = qTF

kf
and ε = ε

εf
. Also the integration limits of s can be found out by using

the Heaviside step function in Eq. 2.70, and Eq. 2.71 such that

1

2s

1√
ε
(ξ − ε− s2) ≤ 1(
s+

√
ε
)2

≥ ξ

s ≥
√
ξ −

√
ε

and

1

2s

1√
ε
(ξ − ε− s2) ≥ −1(
s−

√
ε
)2

≤ ξ

s ≤
√
ξ +

√
ε

Therefore, the bounds of s will be (using Eq. 2.71)

max(
√
ξ −

√
ε,

√
ξ
′ −

√
ε′) ≤ s ≤ min(

√
ξ +

√
ε,

√
ξ
′
+
√
ε′)

5The details of efficient spherical designs with good geometric properties can be obtained from
Appendix A.4
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The e-ph coupling function (see Eq. 2.72) can be rewritten as

Ce−ph(ε, ξ, ω, γ) =
3Zval

32

D
2

γ√
ε

(h̄ω)2

K2
γ

m

Mi

=
3Zval

32

D
2

γ√
ε
ω2 (h̄ΩD,LA)

2

K
2

γε
2
f

m

Mi

(2.77)

where ΩD,LA is the Debye frequency of LA phonons, Kγ = Kγ/εF , Dγ = Dγ/εF , and

ω = ω/ΩD,LA. Also he integration limits can be found out by using the Heaviside step

function in Eq. 2.74 such that

1

2

1

ω

√
1

ε
[ξ − ε− ω2] ≤ 1

ω +
√
ε ≥

√
ξ

ω ≥
√
ξ −

√
ε (2.78)

1

2

1

ω

√
1

ε
[ξ − ε− ω2] ≥ −1

ω −
√
ε ≥

√
ξ

ω ≤
√
ξ +

√
ε (2.79)

Therefore, the limits of ω are

ωD(

√
ξ −

√
ε) ≤ ω ≤ ωD(

√
ξ +

√
ε) (2.80)

Similarly, the expression of ph-e coupling function can be written as

Cph−e(ε, ξ, ω, γ) =
1

h̄

(
3
√
2Zval

32

) D
2

γ√
Kγ

(
m

Mi

) (2.81)
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For the case of ph-ph coupling function: let us first consider the already defined di-

mensional ph-ph coupling function

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

Ω

(2π)6h̄Dγ(ω)

(
h̄

2ρi

)3 ∫
dS

∫
dS ′ × ωω′

(vγvγ′)3

|Aph|2

vγ′′ |Q + Q′|
δ(ω′′ − vγ′′ |Q + Q′|)

Then the the simplification of above equation is given by6:

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) = Kph−ph C̃ph−ph(ω, ω

′, ω′′, γ, γ′, γ′′) (2.82)

where Kph−ph is defined as7

Kph−ph =

(
1

4π

)4
h̄

Ω2
D

B2

ρ3i

Ω6
D

v90

and C̃ph−ph is defined as

C̃ph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

1

(vγ′)3

(
ω′

ωω′′

)
θH(ΩD − ω)

∫
dS

∫
dS ′|Aph|2

δ(ω′′ − vγ′′

ΩD

|Q + Q′|)

where B = ρiv
2
0, Aph = Aph

BQ3
0
, vγ = vγ

v0
, and Q + Q′ = ω′′ΩD

vγ′′
. Now after putting all

coupling function expressions into the Eqs.[ 2.64, 2.65], and further solving it, we get

6The details can be obtained from Appendix A.5
7From now onwards I will denote ΩD,LA as ΩD
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∂f(ε)

∂t
=

4.556√
ε

(
1

2q3

)∫
dε′
∫

dξ

∫
dξ

′
∫ shigher

slower

ds

(
1

[s2 + q2]

)
δ(ε+ ε′ − ξ − ξ

′
)
{
−f(ε)f(ε′)

[1− f(ξ)][1− f(ξ
′
)] + [1− f(ε][1− f(ε′]f(ξ)f(ξ

′
)
}
+

3πZval

16

Dγ
2

√
ε
ω2 (h̄ΩD)

3

K
2
γε

3
f

m

Mi

∑
γ

∫
dξ

∫
dωD

2
γω

2

(
δ

(
ε− ξ − h̄ωΩD

εf

){
[f(ξ)− f(ε)]nγ(ω)− f(ε)[1− f(ξ)]

}

+ δ

(
ε− ξ +

h̄ωΩD

εf

)
{[f(ξ)− f(ε)]nγ(ω) + f(ξ)[1− f(ε)]}

)
(2.83)

where γ can be LA, TA1, TA2. Therefore

∂f(ε)

∂t
=

4.556√
ε

(
1

2q3

)∫
dε′
∫

dξ

([
qs

q2 + s2
+ tan−1

(
s

q

)])supper

slower

{−f(ε)f(ε′)[1− f(ξ)]

[1− f(ε+ ε′ − ξ)] + [1− f(ε][1− f(ε′)]f(ξ)f(ε+ ε′ − ξ)}+ 3πZval

16

D
2
LA√
ε

(h̄ΩD)
3

K
2
LAε

3
f

m

Mi

∫
dω

ω2

({[
f

(
ε− h̄ωΩD

εf

)
− f(ε)

]
nLA(ω)− f(ε)

[
1− f

(
ε− h̄ωΩD

εf

)]}
+

{[
f

(
ε+

h̄ωΩD

εf

)

−f(ε)]nLA(ω) + f

(
ε+

h̄ωΩD

εf

)
[1− f(ε)]

})
+

3πZval

16

D
2
TA1√
ε

(h̄ΩD)
3

K
2
TA1ε

3
f

m

Mi

∫
dω ω2

({[
f

(
ε− h̄ωΩD

εf

)
− f(ε)

]
nTA1(ω)− f(ε)

[
1− f

(
ε− h̄ωΩD

εf

)]}
+

{[
f

(
ε+

h̄ωΩD

εf

)

−f(ε)]nTA1(ω) + f

(
ε+

h̄ωΩD

εf

)
[1− f(ε)]

})
+

3πZval

16

D
2
TA2√
ε

(h̄ΩD)
3

K
2
TA2ε

3
f

m

Mi

∫
dω ω2

({[
f

(
ε− h̄ωΩD

εf

)
− f(ε)

]
nTA2(ω)− f(ε)

[
1− f

(
ε− h̄ωΩD

εf

)]}
+

{[
f

(
ε+

h̄ωΩD

εf

)

−f(ε)]nTA2(ω) + f

(
ε+

h̄ωΩD

εf

)
[1− f(ε)]

})
(2.84)



2.2. NEP model: A Boltzmann transport approach 44

where t = t/τ and τ is given by:

τ =
h̄

εF
=

6.626× 10−34J

2π × 11.695× 1.6× 10−19J
= 0.0564× 10−15seconds = 0.0564 fs

and in our calculation we have used t = 0.01. Therefore, the time step we have taken is t =

0.564 ×10−3 fs.

∂nγ(ω)

∂t
=

(
3
√
2πZval

8

) Dγ
2√

Kγ

(
m

Mi

)∫ dε

∫
dξ f(ε)[1− f(ξ)]

{
−nγδ

(
ε− ξ

′
+

h̄ωΩD

εf

)}

[nγ(ω) + 1]δ

(
ε− ξ − h̄ωΩD

εf

)
+

2πΩD

h̄

∑
γ′

∑
γ′′

∫
dω′

∫
dω′′Cph−ph(ω, ω

′, ω′′, γ, γ′, γ′′)

×
{
1

2
[n(+)

γ (ω)nγ′(ω′)nγ′′(ω′′)− nγ(ω)n
(+)
γ′ (ω′)n

(+)
γ′′ (ω

′′)]δ
[
(ω − ω′ − ω′′)

]
+[n(+)

γ (ω)n
(+)
γ′ ω′n

(+)
γ′ (ω′′)− nγ(ω)nγ′(ω′)]n

(+)
γ′′ (ω

′′)δ
[
(ω + ω′ − ω′′)

]}
(2.85)

Again γ can be LA, TA1, TA2, but γ, γ′, γ′′ are restricted by the selection rules I have

mentioned earlier in Eqs.[ 2.33, 2.47, 2.49]. Thus Eq. 2.85 can further be split into

three equations correspond to three selection rules.

LA(Q) 
 LA(Q′) + TA1(Q′′)

Therefore the time evolution of phonon distribution function for the first selection rule
is given by
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∂nLA(ω)

∂t
=

(
3
√
2πZval

8

)[
D

2
LA√
KLA

(
m

Mi

)]∫
dε

∫
dξ f(ε)[1− f(ξ)] {−nLA(ω)

δ

(
ε− ξ

′
+

h̄ωΩD

εf

)}
[nLA(ω) + 1]δ

(
ε− ξ − h̄ωΩD

εf

)
+

2πΩD

h̄

∑
LA

∑
TA1

∫
dω′

∫
dω′′Cph−ph(ω, ω

′, ω′′, LA,LA, TA1)×
{
1

2
[n

(+)
LA (ω)nLA(ω

′)nTA1(ω
′′)− nLA(ω)

n
(+)
LA (ω′)n

(+)
TA1(ω

′′)]δ
[
(ω − ω′ − ω′′)

]
+ [n

(+)
LA (ω)n

(+)
LAω′nTA1(ω

′′)− nLA(ω)nLA(ω
′)]

n
(+)
TA1(ω

′′)δ
[
(ω + ω′ − ω′′)

]}
(2.86)

Similarly for the second selection rule:

LA(Q) 
 TA1(Q′) + TA1(Q′′)

The Eq. 2.85 can be written as:

∂nLA(ω)

∂t
=

(
3
√
2πZval

8

)[
D

2
LA√
KLA

(
m

Mi

)]∫
dε

∫
dξ f(ε)[1− f(ξ)] {−nLA(ω)

δ

(
ε− ξ

′
+

h̄ωΩD

εf

)}
[nLA(ω) + 1]δ

(
ε− ξ − h̄ωΩD

εf

)
+

2πΩD

h̄

∑
LA

∑
TA1

∫
dω′

∫
dω′′Cph−ph(ω, ω

′, ω′′, LA, TA1, TA1)×
{
1

2
[n

(+)
LA (ω)nTA1(ω

′)nTA1(ω
′′)− nLA(ω)

n
(+)
TA1(ω

′)n
(+)
TA1(ω

′′)]δ
[
(ω − ω′ − ω′′)

]
+ [n

(+)
LA (ω)n

(+)
TA1ω

′nTA1(ω
′′)− nLA(ω)nTA1(ω

′)

n
(+)
TA1(ω

′′)]δ
[
(ω + ω′ − ω′′)

]}
(2.87)

Now for the third selection rule:
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LA(Q) 
 TA2(Q′) + TA2(Q′′)

Then Eq. 2.85 can be written as:

∂nLA(ω)

∂t
=

(
3
√
2πZval

8

)[
D

2

LA√
KLA

(
m

Mi

)]∫
dε

∫
dξ f(ε)[1− f(ξ)] {−nLA(ω)

δ

(
ε− ξ

′
+
h̄ωΩD

εf

)}
[nLA(ω) + 1]δ

(
ε− ξ − h̄ωΩD

εf

)
+

2πΩD

h̄

∑
LA

∑
TA2

∫
dω′

∫
dω′′Cph−ph(ω, ω

′, ω′′, LA, TA2, TA2)×
{
1

2
[n

(+)
LA (ω)nTA2(ω

′)nTA2(ω
′′)− nLA(ω)

n
(+)
TA2(ω

′)n
(+)
TA2(ω

′′)]δ [(ω − ω′ − ω′′)] + [n
(+)
LA (ω)n

(+)
TA2ω

′nTA2(ω
′′)− nLA(ω)nTA2(ω

′)

n
(+)
TA2(ω

′′)]δ [(ω + ω′ − ω′′)]
}

(2.88)
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Chapter 3

Results and Discussions

3.1 Introduction

In this chapter we discuss the computational details we need to employ in order to

understand the relaxation dynamics of carriers in conventional metals. Followed by

computational details we discuss the findings from computational and theoretical (as

explained in chapter 2) analysis. We systemically investigate the temporal evolution of

electronic and phononic distribution along with the relaxation dynamics of electrons,

LA, and TA phonons.

3.2 Computational details

We have studied the thermalization in Aluminum (Al) whose dimensionless Wigner-

Seitz radius is rs = 2.07. To analyze the energy relaxation carrier dynamics in metals,

we need the numerical values of the elastic constants λL, µL, E1, E2, and E3. Therefore,

to determine the values of the elastic constants of the isotropic system, Ono et al. [6]

has employed the following procedure:

49
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I First, we define X2 and X3 as

X2 =
∑
ijkl

(Gijkl − Cijkl)2

X3 =
∑

ijklmn

(Gijklmn − Cijklmn)
2 (3.1)

where Cijkl, Cijklmn are the elastic constants of isotropic model and Gijkl, Gijklmn

are the elastic constants of a real solid.

I Then the most general definition of Gijkl and Gijklmn may be given by minimizing

X2 and X3.

Therefore, elastic constants of cubic crystals can be obtained by using this scheme. As

a result, the expression for these elastic constants is given by

λL =
1

5
(C11 + 4C12 − 2C44)

µL =
1

5
(C11 − C12 + 3C44)

E1 =
1

35
C111 +

18

35
C112 +

16

35
C123 −

6

7
C144 −

12

35
C155 +

16

35
C456

E2 =
1

35
C111 +

4

35
C112 −

1

7
C123 +

19

35
C144 +

2

35
C155 −

12

35
C456

E3 =
1

35
C111 −

3

35
C112 +

2

35
C123 −

9

35
C144 +

9

35
C155 +

9

35
C456 (3.2)

In the Eq. 3.2 mentioned above, Voigt notation is used to simplify the notations in the

tensors which is given by

11 → 1, 22 → 2, 33 → 3, 12 → 4, 23 → 5, 31 → 6 (3.3)

The Cij and Cijk values in the right hand side of Eq. 3.6 are calculated using Density

Functional Theory [7].

The BOE defined in Eqs.[ 2.88, 2.84] are solved by using Euler method, with a time
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Table 3.1: The calculated second-, third-, and fourth-order elastic constants of Aluminum (Al)[7]

C11 110.4 C12 54.5 C44 31.3
C111 -1253 C112 -426 C123 153
C144 -12 C166 -493 C456 -21
C1111 9916 C1112 2656 C1122 3708
C1123 -1000 C1144 -578 C1155 3554
C1255 -91 C1266 4309 C1456 148
C4444 3329 C4455 127

step of 0.564×10−3 fs. The Fermi energy energy for this model is taken as 11.695 eV[6],

and the Debye energy for LA phonons in model is given by

E0 = h̄ΩLA,D = 65 meV

200 total discrete energies are considered in the energy range of ε ∈ [εf − 10E0, εf +

10E0]. While for LA phonons 80, and for TA phonons 41 energies are taken.

3.2.1 Initial electron and phonon distribution function

3.2.1.1 Initial electron distribution function

The initial distribution function for electrons is a slight deviation from the thermal-

equilibrium distribution function with Gaussian-type peaks above and below the Fermi

level, which given as

f(ε, t = 0) = fFD(ε, T0) +
∑
s=±

sAs exp
[
−
(
ε− sε0
2We

)2]

=
1

exp
[
ε−εF
kBT0

]
+ 1

+
∑
s=±

sAs exp
[
−
(
ε− sε0
2We

)2]
(3.4)

where fFD(ε, T0) is the thermal-equilibrium Fermi-Dirac distribution function. εo, We,

A± are the peak position, the width, and the peak height. In the calculation we have
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done and so to benchmark Shota Ono’s results, we have taken A± = 0.1, ε0 = 300 meV,

and We = 50 meV. Now eq. 3.4 can further be written as:

f(ε, t = 0) =
1

exp[(ε− 1)/Temp+ 1]
+
∑
s=±

sAs exp
[
−
(
ε− sε0

2W e

)2]
(3.5)

where Temp = kBT0/εf , and W e = We/εf . The effective electron temperature is taken

as 800 K.

3.2.1.2 Initial LA phonon distribution function

Since due to electron-photon interaction, electron distribution changes as defined in

Eq. 3.4, but during finite-pulse width phonons are also created due to ph-e scatterings,

which will disturb the phonon distribution as well, and the initial phonon distribution

function is given by

nLA(ω, t = 0) = nBE(ω, T0) +B exp
[
−
(
ω − ΩLA,D

2Wph/h̄

)2]
=

1

exp
[

h̄ω
kBT0

]
− 1

+B exp
[
−
(
ω − ΩLA,D

2Wph/h̄

)2]
(3.6)

where nBE(ω, T0) is the thermal-equilibrium Bose-Einstein distribution function. Wph,

B are the peak width, and the peak height. In our calculations we have and to bench-

mark Shota Ono’s results, we have taken A = 0.01, and Wph = 20 meV. Now eq. 3.6

can further be written as:

nLA(ω, t = 0) =
1

exp
[
ω×h̄ΩLA,D

kBT0

]
− 1

+B exp
[
−
(
(ω − 1)h̄ΩLA,D

2Wph

)2]
(3.7)

where ω = ω/ΩD, and T0 = 300 K



53 Chapter 3. results

3.2.1.3 Initial TA phonon distribution function

Initial distribution function for TA phonons is same as thermal-equilibrium Bose-

Einstein phonon distribution function, which is given by

nTA(ω, t = 0) =
1

exp
[

h̄ω
kBT0

]
− 1

nTA(ω, t = 0) =
1

exp
[
ω×h̄ΩD

kBT0

]
− 1

(3.8)

where ω = ω/ΩD, T0 = 300 K, and ΩD is Debye frequency of LA phonons.

3.3 Results and Conclusions

The electron and LA phonon distribution function is plotted at time t = 10 fs for

various time steps in Fig. 3.1 and Fig. 3.2 by using the Euler method.

0 2 4 6 8 10
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0
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10
-1

10
0

f(
ε
)

∆t = 0.0002

∆t = 0.0004

∆t = 0.0006

∆t = 0.0008

∆t = 0.001

Figure 3.1: The electron distribution function is plotted at t = 10 fs for various time steps ∆t
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A
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∆t = 0.0002

∆t = 0.001

∆t = 0.0004

∆t = 0.0006

∆t = 0.0008

Figure 3.2: The LA phonon distribution function is plotted at t = 10 fs for various time steps ∆t

The initial temperature of electrons, and phonons is kept at 800 K, and 300 K.

Therefore, we can see from the above mentioned figures that as we decrease the time

step value (from ∆t = 0.001 to ∆t = 0.0002), we get a very small change in both

electrons and phonons distribution function as compared to higher time step value

(∆t), which is more accurate. Thus, Euler method is very sensitive with respect to

time step value. But with extremely small time step we can not achieve complete

relaxation of phonons and electrons using our current computational facilities.

Therefore, we need more accurate algorithms with small time step values e.g.

second-order Runge-Kutta (RK2) method, RK4 method, RK6 method, etc. In our

analysis, we employ RK2 method (see Fig. 3.3) with time step ∆t = 0.01, and we

have found that with the small time steps variation there is no change or negligible

change in phonon distribution function at time t = 10 fs. So we have tried to bench-

mark the results obtained by Shota Ono (see [6]) using RK2, though the author used

RK4 method to track the relaxation dynamics of carriers in [6]. Now since RK4 is more

accurate and efficient than RK2, we expect a slight change in the results obtained by us.
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Figure 3.3: The LA phonon distribution function is plotted at t = 10 fs for various time steps ∆t
using RK2 method

The electronic f (ε) and phononic nLA(ω) distribution function temporal evolution

is plotted by Eqs.[ 2.84, 2.86, 2.87, 2.88] using the above mentioned computational

details
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t = 60 fs
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t = 360 fs
T = 25 meV
T = 35 meV
T = 40 meV

Figure 3.4: The f(ε) for various ts and Fermi-Dirac (FD) distribution with several temperatures is
plotted.
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(see Fig. 3.4 and Fig. 3.6). In both the Fig.[ 3.4, 3.6], the Fermi-Dirac distribution

functions (FD) and Bose-Einstein distribution functions (BE) with several Ts are also

shown for the comparison. Therefore, in Fig. 3.4, we compare and benchmark the

results obtained by us with the results obtained by Shota Ono (see Fig. 3.5). At t

= 360 fs, nonequilibrium electron distribution function is almost coinciding with the

Fermi-Dirac distribution curve at Temperature T = 464 K (40 meV). Therefore, we can

say that after t = 0.36 ps, the electron distribution can be treated as quasiequilibrium

distribution function. However, upto t ∼ 0.12 ps, LA phonon population increases due

to the presence of ph-e scattering. The phonon population increases with time and is

maximum at t = 0.12 ps. After t ∼ 0.12 ps the phonon population starts decreasing,

as we can can observe the phonon distribution function curve at t = 0.36 ps (solid blue

line curve) in Fig. 3.6. The similar behaviour is reported in [6] (see Fig. 3.7).

In our calculations, the initially present Gaussian peak which was observed at ε/E0 =

5 in f (ε) is smeared out very quickly within 10 fs.

Figure 3.5: This figure represent the f (ε) for various ts and FD distribution with several Ts. This
figure is taken from [6]

However, the same dynamics is slower in Fig. 3.5. There might be many reasons

for this different behaviour e.g.

I In our calculations, the phonon-phonon coupling is not making a significant

change in the distribution function.
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I There might be some flaw in our coded program. As a result, we are still debug-

ging the code by revisiting all the coefficients used and other errors.

I In [6], the author has used RK4 method. While we are using RK2 method which

gives less accurate results compared to RK4 method.

0 0.2 0.4 0.6 0.8 1

ω/Ω
LA,D

0.1

1

n
L

A
(Ω

)

t = 0.0 fs
t = 10 fs
t = 60 fs
t = 120 fs
t = 180 fs
t = 360 fs
T = 26 meV
T = 27 meV
T = 28 meV

Figure 3.6: The nLA(ω) for various ts and the Bose-Einstein (BE) distribution with several tempera-
tures is plotted.

Figure 3.7: The image shows the nLA(ω) for various ts and the BE distribution with several Ts. This
figure is taken from [6]
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I The author in [6] has taken 1600 electron energies in the energy window of ε ∈

[εf−10E0, εf+10E0]. But till now we could do computation only for 200 energies

and upto t = 360 fs.

We have also investigated the electron relaxation dynamics in the presence and ab-

sence of electron-phonon coupling. In Fig. 3.8, we have studied the out-of-equilibrium

electronic distribution function in the absence of e-ph coupling for various times and

then the distributions are compared with Fermi-Dirac distribution (FD) function at

temperature T = 800 K.
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t = 0.05 fs
t = 0.1 fs
t = 0.5 fs
t = 0.8 fs
t = 1 fs
T = 800 K

Figure 3.8: The electron distribution functions is plotted for several ts in the absence of electron-
phonon coupling and compared with the Fermi-Dirac distribution function (FD) at T = 800 K

We have found that electrons equilibrate at time t∼ 0.5 fs (see solid red line curve),

and leaves the electrons subsystem at an effective temperature T ∼ 800 K. Therefore

after time t ∼ 1 fs, electrons can be treated using quasi-thermal equilibrium model

provided the phonon don’t play any role in the electrons relaxation process or when

e-ph coupling is zero.

We have also investigated the electron and phonon relaxation dynamics in the pres-
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Figure 3.9: The electron distribution functions is plotted for several ts in the presence of electron-
phonon coupling and compared with the Fermi-Dirac distribution function (FD) at T = 800 K

ence of e-ph coupling (see Fig. 3.9, 3.10). From Fig. 3.9, we see that in the presence

of e-ph coupling, the electrons equilibrate at t ∼ 2 fs which is slower compared to the

previous case when e-ph coupling was not present. The reason for that might be the
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Figure 3.10: The LA phonon distribution functions is plotted for several ts in the presence of e-ph
and ph-e coupling.
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backward energy flow from phonons to electrons via ph-e coupling. While there is a

huge change in the electron distribution function as well as in the electrons tempera-

ture at t ∼ 1 fs, the change in the LA phonon distribution function is very small and

thus the TA phonons will still be cold at t ∼ 1 fs, and T = 300 K (see Fig. 3.10). So,

we have found that in the initial stage of relaxation, most of the electron energy is

transferred into the LA phonons through e-ph, and ph-e scattering. Therefore after t

∼ 2 fs, the electrons distribution can be described by using some effective temperature

model. Since after 2 fs instead of electrons distribution, temperature is evolving with

time and thus to describe the electron distribution time evolution, we don’t need full

nonequilibrium lattice model.

3.4 Future Work

We have done the relaxation dynamics analysis of the laser excited carriers by solving

Boltzmann transport equations taking into account the relevant scattering mechanisms.

We have found that the relaxation time for phonons (t>0.36 ps) is much higher than

electrons. However till now we have reached upto 0.36 ps. Also we have found some

mismatches from the reported results [6]. Therefore, our first future goal is to include

the phonon-phonon coupling part into our analysis and then benchmark the results

reported in [6]. Since to study the relaxation dynamics of phonons, we need to go upto

10.2 ps, and thus our next goal will be to parallel the code and study the phonons

dynamics.



Appendix A

A.1 Calculation of TA phonon frequencies

Details of the relation between various elastic constants and Lam
′

e constants as defined

already on Page 22,

For i = 1, ρiω
2
γ(Q)e1(Q, γ) = ((λL + 2µL)Q

2
1 + µLQ

2
2 + µLQ

2
3)e1(Q, γ) (A.1)

For i = 2, ρiω
2
γ(Q)e2(Q, γ) = (µLQ

2
1 + (λL + 2µL)Q

2
2 + µLQ

2
3e2)(Q, γ) (A.2)

For i = 3, ρiω
2
γ(Q)e3(Q, γ) = (µLQ

2
1 + µLQ

2
3 + (λL + 2µL)Q

2
3e3)(Q, γ) (A.3)

for γ=TA1 and TA2, the wave vector is in perpendicular direction of component of

polarization. Hence Eq.[ A.1- A.3], will further reduced to

ρiω
2
γ(Q)e1(Q, γ) = (µLQ

2
2 + µLQ

2
3)e1(Q, γ)

ρiω
2
γ(Q)e2(Q, γ) = (µLQ

2
1 + µLQ

2
3)e2(Q, γ)

ρiω
2
γ(Q)e3(Q, γ) = (µLQ

2
1 + µLQ

2
2)e3(Q, γ)
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After adding the above mentioned equations, we get

ρiω
2
γ(Q) = 2µL(Q

2
1 +Q2

2 +Q2
3)

ρiω
2
γ(Q) = 2µL|Q|2 (A.4)

The above Eq. A.4 has components for both TA1, and TA2. Therefore we can rewrite

Eq. A.4 as

ρi
(
ω2
TA1(Q) + ω2

TA2(Q)
)
= 2µL|Q|2 (A.5)

Hence Eq. A.5 is valid when ωTA1 = ωTA2. Therefore

ρiω
2
TA1(Q) = µL|Q|2

ωTA1(Q) =

√
µL

ρi
|Q|

Similarly

ρiω
2
TA2(Q) = µL|Q|2

ωTA2(Q) =

√
µL

ρi
|Q|

=⇒

ωTA1(Q) = ωTA2(Q) =

√
µL

ρi
|Q| = vTA|Q| (A.6)

where vTA is the TA phonon velocity.
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A.2 Representation of the phonon wave vector and

the polarization vectors

We can express the phonon wave vector and the polarization vectors using the spherical

coordinates. Their representation is given as:

Q = Qer

e(Q, LA) = er = (sin θ cosφ, sin θ sinφ, cos θ)

e(Q, TA1) = eθ = (cos θ cosφ, cos θ sinφ,− sin θ)

e(Q, TA2) = eφ = (− sinφ, cosφ, 0) (A.7)

where we employ abbreviated notations θ = θQ and φ = φQ etc. Similarly,

Q′ = Q′er′

e(Q′, LA) = er′ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′)

e(Q′, TA1) = eθ′ = (cos θ′ cosφ′, cos θ′ sinφ′,− sin θ′)

e(Q′, TA2) = eφ′ = (− sinφ′, cosφ′, 0) (A.8)

where the abbreviation of θ′ = θQ′ and φ′ = φQ′ is used.
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A.3 Details of the allowed scattering processes

The first selection rule

LA(Q) 
 LA(Q′) + TA1(Q′′) (A.9)

is discussed already, and the solution for this process is also derived in Eq. 2.46. Now

let us consider the second allowed scattering process

LA(Q) 
 TA1(Q′) + TA1(Q′′)

where Q′′ = (Q − Q′), and let Q = Qk̂, Therefore

Q′′.k̂ = Q′′. cos θ′′ = (Q − Q′).k̂

=⇒ cos θ′′ = Q−Q′ cos θ′

Q′′ (A.10)

Similarly

Q′′ .̂i = Q′′. sin θ′′ cosφ′′ = (Q − Q′).̂i

=⇒ sin θ′′ = −Q′ sin θ′ cosφ′

Q′′ cosφ′′ (A.11)

and

Q′′.ĵ = Q′′. sin θ′′ sinφ′′ = (Q − Q′).ĵ

=⇒ sin θ′′ = −Q′ sin θ′ sinφ′

Q′′ sinφ′′ (A.12)

Now after comparing Eq. A.11 and Eq. A.12, we get

φ′ = φ′′
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Therefore

sin θ′′ =
(
−Q′

Q′′

)
sin θ′

Since this scattering process also involves TA phonons, therefore the First term doesn’t

contribute to Eq. 2.32. Now let us take the second term in Eq. 2.32

e.Q = Q

e′.e′′ =
Q cos θ′ −Q′

Q′′

Q′.Q′′ = Q′(Q cos θ′ −Q′)

e′.Q′′ = −Q sin θ′

e′′.Q′ =
QQ′

Q′′ sin θ′

Therefore the second term of Eq. 2.32 is

E2
QQ′

Q′′ [(Q cos θ′ −Q′)2 −Q2 sin2 θ′] (A.13)

For both third and forth terms in Eq. 2.32, because of the presence of two TA1 phonon

modes,

e′.Q′ = e′′.Q′′ = 0

Now for the fifth term,

e.e′ = − sin θ′

e′′.Q =
QQ′

Q′′ sin θ′

Q.Q′′ = Q(Q−Q′ cos θ′)
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Therefore the fifth term of Eq. 2.32 is

E3

(
QQ′

Q′′

)
sin2 θ′[Q′2 −Q2] (A.14)

Now for the sixth term,

e.Q′ = Q′ cos θ′

Therefore the sixth term of Eq. 2.32 is

2E3
QQ′

Q′′ Q
′ cos θ′(Q cos θ′ −Q′) (A.15)

Now for the seventh term,

e.e′′ =
Q′

Q′′ sin θ′

e′.Q = −Q sin θ′

Q.Q′ = QQ′ cos θ′

Therefore the seventh term of Eq. 2.32 is

E3
QQ′

Q′′ [−Q
′(Q cos θ′ −Q′) sin2 θ′ −QQ′ sin2 θ′ cos θ′] (A.16)

Now for the eighth term,

e.Q′′ = Q−Q′ cos θ′

Therefore the eighth term of Eq. 2.32 is

E3
QQ′

Q′′ [(Q−Q′ cos θ′)(Q cos θ′ −Q′) cos θ′ −Q sin2 θ′(Q−Q′ cos θ′)] (A.17)
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Using the above solve expressions, we can see that the the solution of the ninth term

in Eq. 2.32 is

λL
QQ′

Q′′ (Q cos θ′ −Q′)2 (A.18)

Also the Tenth term of Eq. 2.32 is given by

2µL((Q
′ −Q cos θ′)2 −Q2 sin2 θ′) (A.19)

The Aph solution for Eq. A.9 is given by:

Aph =
QQ′

Q′′ [E2 + λL + 2(E3 + µL)](Q
′ −Q cos θ)2 − (E2 + 2E3 + µL)Q

2 sin2 θ′

(A.20)

Now let us consider the third allowed scattering process

LA(Q) 
 TA2(Q′) + TA2(Q′′) (A.21)

After doing the similar procedure from Eq. A.10 to Eq. A.12, we get:

Q′′.k̂ = Q′′. cos θ′′ = (Q − Q′).k̂

=⇒ cos θ′′ = Q−Q′ cos θ′

Q′′

and

sin θ′′ =
(
−Q′

Q′′

)
sin θ′

Again due to the presence of the TA phonons, the first term of the Eq. 2.32 will not

contribute to the calculation of Aph. Therefore for the second term

e.Q = Q

e′.e′′ = 1

Q′.Q′′ = Q′(Q cos θ′ −Q′)
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e′.Q′′ = 0

Therefore the second term of Eq. 2.32 is

E2[QQ
′(Q cos θ′ −Q′)] (A.22)

Again for both third and forth terms in Eq. 2.32, because of the presence of two TA2

phonon modes,

e′.Q′ = e′′.Q′′ = 0

and fifth term will also be zero because

e.e′ = 0

Now for the sixth term

e.Q′ = Q′ cos θ′

e′′.Q = 0

Q.Q′′ = Q(Q−Q′ cos θ′)

Therefore the sixth term of Eq. 2.32 is

E3[QQ
′ cos θ′(Q−Q′ cos θ′)] (A.23)

The seventh term in Eq. 2.32 is 0 because

e.e′′ = 0 (A.24)
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Now for the eighth term:

e.Q′′ = Q−Q′ cos θ′

e′.Q = 0

Q.Q′ = QQ′ cos θ′

Therefore the eighth term of Eq. 2.32 is

E3[QQ
′ cos θ′(Q−Q′ cos θ′)] (A.25)

Using the above solve expressions, we can see that the the solution of the ninth term

in Eq. 2.32 is

λL[QQ
′(Q cos θ′ −Q′)] (A.26)

Also the Tenth term of Eq. 2.32 is given by

2µL[QQ
′ cos θ′(Q−Q′ cos θ′)] (A.27)

The Aph solution for Eq. A.3 is given by:

Aph = QQ′[(E2 + λL)(Q cos θ′ −Q′) + 2(E3 + µL)(Q−Q′ cos θ′) cos θ′] (A.28)
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A.4 Efficient spherical designs method

Efficient spherical designs method helps us to evaluate the numerical integrals for θ

and φ. Efficient spherical designs are sets of N points xj, j = 1,...,N on unit sphere S2

such that these points on the sphere will have equal weights. The files of points set for

degrees t = 1, 2, 3, ....180 can be found here[31]. There are some points that should

be noted:

I For each point set, the text file has three items per row: the xj, yj, and zj

Cartesian coordinates in [-1, 1] for the point xj = (xj, yj, zj) on S2.

I The equal cubature weight for j = 1, 2, 3, 4, ....., N is given by

wj =
|S|2

N

I The area of Unit sphere S2 is given by |S2| = 4π

I These spherical t - designs on S2 have points

N =
t2

2
+ t+O(1)

I All points are on the unit sphere such that |xj|2 = x2j + y2j + z2j = 1 for all j =

1, 2, 3, ....., N.

https://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/sf.html


71 Appendix A. Appendix A

A.5 Details of phonon-phonon coupling function

Let us first consider the phonon-phonon (ph-ph) coupling function,

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

Ω

(2π)6h̄Dγ(ω)

(
h̄

2ρi

)3 ∫
dS

∫
dS ′ × ωω′

(vγvγ′)3

|Aph|2

vγ′′ |Q + Q′|
δ(ω′′ − vγ′′ |Q + Q′|)

(A.29)

where Dγ(ω) is given by

Dγ(ω) =
Ωω2

(2π2v3γ)
θH(Ωγ,D − ω)

Therefore after putting the Dγ(ω) expression into Eq. A.29, we get

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

h̄2

(4π)4ωρ3i
θH(ΩD − ω)

∫
dS

∫
dS ′ × ω′

vγ′′v3γ′

|Aph|2

|Q + Q′|
δ(ω′′ − vγ′′|Q + Q′|) (A.30)

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

h̄2

(4π)4ΩD ρ3i

1

(vγ′)3

(
ω′

ω

)
θH(ΩD − ω)

∫
dS

∫
dS ′

|Aph|2

ω′′ΩD

vγ′′

vγ′
δ(ω′′ − vγ′′|Q + Q′|

ΩD

) (A.31)

from delta function in the right-hand-side:

|Q + Q′| = ω′′ ΩD

vγ′′
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where ω′′ = ω/ΩD. Now Eq. A.31 can be modified as

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

h̄2

(4π)4Ω2
D

B2Q6
0

(vγ′)3ρ3i

(
ω′

ω ω′′

)
θH(ΩD − ω)

∫
dS

∫
dS ′

(
|Aph|
BQ3

0

)2

δ(ω′′ − vγ′′ |Q + Q′|
ΩD

)

(A.32)

where B = ρi v
2
0 and Q0 = ΩD/v0. So, Eq. A.32 can be written as:

Cph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) = Kph−ph C̃ph−ph(ω, ω

′, ω′′, γ, γ′, γ′′) (A.33)

where Kph−ph is defined as

Kph−ph =

(
1

4π

)4
h̄

Ω2
D

B2

ρ3i

Ω6
D

v90

and C̃ph−ph is defined as

C̃ph−ph(ω, ω
′, ω′′, γ, γ′, γ′′) =

1

(vγ′)3

(
ω′

ωω′′

)
θH(ΩD − ω)

∫
dS

∫
dS ′|Aph|2

δ(ω′′ − vγ′′

ΩD

|Q + Q′|)

(A.34)

where the expression of |Aph| is defined as

|Aph| =
Aph

BQ3
0

and the numerical integrals for θ, and φ are evaluated using spherical designs method.
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