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Synopsis
One may put a hot and a relatively colder glass of water simultaneously inside a

refrigerator and expect the colder one to freeze faster. But it is observed that the hotter
water freezes earlier. This counter-intuitive phenomenon, known as the ‘Mpemba effect’,
has been an important subject of discussion in the past decade. Earlier this effect was
thought to be true only for liquid systems, but, recently, the effect has been seen to
be present in a variety of other systems. In the literature, nevertheless, there exists
experimental evidences in favour as well as against the existence of this effect, even in
the case of water. This thesis contains results and discussion based on our investigation
of this puzzling effect in the context of the para-to-ferromagnetic transitions in the
two-dimensional generalised Ising model, i.e., the ‘q-state Potts model’.

The thesis is divided into three chapters. In chapters 1 and 2, we create a theoretical
background, introducing the concepts and techniques. In chapter 3 we discuss the
results.

Chapter 1 starts with a brief introduction to phase transitions and critical phenomena.
We discuss the important theories of phase ordering dynamics. In this chapter we provide
all the necessary information related to the Potts model. We have also provided our
motivation and a brief overview of the thesis.

In Chapter 2, we discuss in detail about the computational techniques and protocol
followed to carry out the simulations. We further describe and provide details of the
methodologies required to analyse the simulation results.

We present the results of our observation in Chapter 3. We prepare systems at
different starting temperatures, Ts, above the critical temperature Tc, and quench them
to low temperatures, viz., Tl = 0 and 0.5Tc. We perform this protocol for a set of q
values of the q-state Potts model. Interestingly, we observe Mpemba effect to exist in
second-order, weakly first-order and first-order phase transitions of the model, in the
case of quench to Tl = 0.5Tc. Strikingly, the effect is not so strong when the systems are
quenched to Tl = 0. We briefly discuss possible reasons of the nonparallel observations
in the non-zero and zero temperature quench cases. Our observation suggests that the
effect gets weaker with the increase of q.
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Chapter 1

Introduction

1.1 Phase Transition: A general overview

The study of phase transitions is of fundamental importance. Phase transition occurs
in a system when it is subjected to variations in thermodynamic parameters [1–7] such
as pressure (P ), temperature (T ), density (ρ) and magnetic field (H). This commonly
observed phenomena finds large industrial applications. An important example of phase
transition is that of water, which can exist in either of solid, liquid or vapor phases.
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Figure 1.1: Schematic diagram showing phases of a normal chemical substance in P - T
plane. The solid lines are the coexistence curves across which first-order phase transitions
occur.

The schematic in Fig. 1.1 shows the phase diagram of a chemical substance in P

- T plane [2, 7]. At any particular T and P , the phase with the lowest Gibbs energy
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[1, 7], G(T, P ), will exist. The three distinct phases, namely, solid, liquid and gas, are
separated from each other by the phase boundaries, referred to as the coexistence curves.
Along these curves, two different phases coexist in equilibrium. For example, the solid
and liquid phases coexist along the fusion or melting curve; solid and gas along the
sublimation curve; and the liquid and gaseous phases coexist along the vaporization curve
[1, 2]. While crossing these curved lines a system encounters discontinuity in densities
(first-order derivative of Gibbs free energy), resulting in first-order phase transitions
[1, 2].

All the three phases coexist in equilibrium at the triple point. It can be seen from
the diagram that, although the melting curve is never ending, the vaporization curve
terminates at a point called the critical point [1, 2, 7], denoted by the coordinates (Tc,
Pc), Tc being the critical temperature and Pc, the critical pressure. Beyond this point,
there is no difference between the liquid and gaseous phases and one can readily convert
a liquid to a gas, or vice versa, continuously, without crossing the vaporization curve
[1, 2]. Here, although the densities of the phases become continuous, certain second-order
derivatives of the free energy is singular. Such a phase transition is referred to as a
continuous or second-order phase transition [1, 2, 7].

Gas Liquid

Phase-separated state

Homogeneous state

gas-liquid coexistence

(ρ)

(T
)

ρc

Tc

Density

T
e
m
p
e
ra

tu
re

(ρc, Tc)

ρℓ − ρg = 0

ρℓρg

Figure 1.2: Schematic coexistence curve of a liquid-gas system in the ρ - T plane. Here, ρc

denotes the critical density and Tc the critical temperature. The left and right branches
of the coexistence curve correspond to the vapor and liquid phases, respectively.

Phase transitions are marked by the variation in a quantity called the order parameter
[3–10], ψ. When a phase changes, this quantity undergoes a variation from one value to
the other, depicting a transition. For a phase transition between liquid and gaseous phases,
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the order parameter can be defined as [2–5] ψ = ρℓ − ρg, where ρℓ is the density in the
liquid phase and ρg is the density in the gaseous phase. In Fig. 1.2, the coexistence curve
of a liquid-gas transition in the vicinity of the critical point has been shown schematically
in the ρ - T plane. In this phase diagram, the system is in a homogeneous phase with a
uniform spatial density outside the shaded region. Whereas, inside the shaded region,
the system exists in a two-phase state each having different density from the other. It
is evident from the diagram that the left and right branches of the coexistence curve,
corresponding to the low density gaseous and high density liquid phases, respectively,
are approaching each other with the increase in temperature. This implies that the
density difference between the liquid and gaseous phases, i.e., the order parameter, goes
on decreasing continuously with rise in temperature, until, it finally becomes zero at Tc.

Ferromagnetic Paramagnetic
state state

(T )

(H
)

Temperature

M
a
g
n
e
ti
c
fi
e
ld

Tc

Figure 1.3: Schematic phase diagram of a magnetic system, with para-to-ferromagnetic
transition, in the H - T plane. Here Tc is the Curie temperature, denoting a second-order
critical point. Below Tc, the system can acquire either all up or all down spins.

Another common and important example of phase transition is the para-to-ferro
transition in magnetic systems [7, 10]. The phase diagram of such a transition is shown
in Fig. 1.3 in the H - T plane, H being the external magnetic field. For such transitions,
with H = 0, Tc is known as the Curie temperature. Above Tc, the system is in a disordered
state, referred to as the paramagnetic state, with randomly oriented spins, providing zero
net magnetisation to the system. Below Tc, majority of the spins align in a particular
direction. The parallel orientation of the spins results in a net non-zero magnetization
of the system. Hence, for such systems, the correct choice of order parameter (ψ) is
the magnetisation. The phase diagram of the above mentioned system in the m - T
plane at H = 0 can be viewed in Fig. 1.4. A system at temperature Ts (> Tc) exists in
equilibrium in a paramagnetic phase. At temperature Tl (< Tc) there are two possible
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equilibrium phases with magnetisation ±mo, depending on the orientation of the spins,
in a uniaxial magnet.

Ferromagn etic Region

Paramagnetic

phase

T

m+m0 −m0

Tc

Tl

Ts

Figure 1.4: Schematic phase diagram of a magnetic system exhibiting para-to-
ferromagnetic transition in the m - T plane with H = 0.

Note here that when the thermodynamic parameters, temperature, pressure, etc., are
suddenly changed, the homogeneous systems are rendered thermodynamically unstable
and are put into far-from-equilibrium states [7, 10]. Let us consider the rapid quench to
temperatures below the critical point. The systems cannot reach the new equilibrium
state immediately after the quench, rather they slowly evolve towards it via coarsening
dynamics [7, 10]. The discussion about this phase ordering kinetics will be addressed in
section 1.4.

In the vicinity of the critical point related to a continuous transition, a system
encounters various interesting phenomena, referred to as the critical phenomena [1–
3, 5, 6, 9, 11–14]. Some non-trivial facts related to this phenomena are described in the
next section.

1.2 Critical Phenomena: A Brief Outline

There are several anomalies in the thermodynamic properties of systems near the critical
point [1, 2, 5]. Various measurable static and dynamic quantities show singular behaviour
on approaching the critical neighbourhood. These are referred to as the critical singu-
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larities [2, 5, 11–14]. These singularities are expressed mathematically as power-laws in
terms of the reduced temperature, ϵ = T−Tc

Tc
, and external field H.

The power-law exponents, viz., α, β, γ, δ, η, ν, of the static quantities [2, 11] are defined
via the following equations.

Heat capacity : C ∼ |ϵ|−α

Order parameter : M ∼ ϵβ

Susceptibility : χ ∼ |ϵ|−γ

Correlation length : ξ ∼ |ϵ|−ν


H = 0

(1.1)

(1.2)

(1.3)

(1.4)

Order parameter : M ∼ |H|1/δ
}

ϵ = 0 (1.5)

The correlation function, C(r), defined as [10]

C(r) = ⟨ψ(r⃗1) ψ(r⃗2)⟩ − ⟨ψ(r⃗1)⟩ ⟨ψ(r⃗2)⟩, (1.6)

follows the Ornstein-Zernike form

C(r) ∼ r−p exp (−r/ξ), (1.7)

where r is the scalar separation between the space points r⃗1 and r⃗2. In a d-dimensional
space, the power-law exponent p is defined as [1, 2]

p = d− 2 + η. (1.8)

The exponents ν and η refer to the behaviour of the C(r) in the critical region. The critical
exponent η is known as the Fisher exponent [1, 2]. The static quantity ξ [Eq. (2.20)]
plays a crucial role in the critical phenomena, as it provides a measure of the length scale
of fluctuations in the system.

The static critical exponents are connected to each other via various scaling laws
[2, 3, 6]:

Fisher equality : γ = ν(2 − η) (1.9)

Rushbrooke’s identity : α + 2β + γ = 2 (1.10)

Widom’s identity : γ = β(δ − 1) (1.11)

Josephson’s identity : νd = 2 − α (1.12)
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These relations imply that all the exponents are not independent.
The critical exponents are independent of the material properties, or even the type of

phase transition a system undergoes, and hence are universal in nature. This universality
is captured by the renormalization group theory [3, 6], stating that near criticality the
microscopic details of the systems become unimportant. However, the values of the
exponents depend upon the spatial dimension, symmetry of the order parameter and the
range of interactions. Depending on the type of interaction, there exists two universality
classes [3, 6]. These universality classes and related exponents are as follows:

1. Short range or Ising Universality in space dimension d = 3:

α = 0.11, β = 0.325, γ = 1.239, ν = 0.63, δ = 5, η = 0.035.

2. Long range or Classical Universality:

α = 0, β = 1
2 , γ = 1, ν = 1

2 , δ = 3, η = 0.

Understanding of the above mentioned static critical exponents are better than those
for the dynamic counterpart. The primary quantity of interest in dynamic critical
phenomena [5, 11] is the relaxation time τ . Near the critical point the systems witness
diverging fluctuations and as a result the relaxation times of the systems diverge as

τ ∼ ξz. (1.13)

This divergence in the relaxation time leads to critical slowing down. The value of
the critical exponent z depends upon the type of ensemble or physical transition being
studied [11, 15]. The dynamic exponents do not show universal behaviour as strong as
the static exponents [11, 15]. For example, value of z for phase-separating binary mixture
is different from that undergoing para-to-ferromagnetic transition. However, both these
systems are part of the same static universality class.

1.3 Potts Model and Related Critical Phenomena

In this thesis, the discussion moves around the 2D q-state Potts model that has the
Hamiltonian [16, 17]

H = −J
∑
⟨ij⟩

δSi,Sj
, Si = 1, 2, ..., q, (1.14)
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where J is the interaction strength, δSi,Sj
is the Kronecker delta and ⟨ij⟩ represents

summation over nearest neighbour spins Si. Here J > 0 corresponds to ferromagnetic
interaction. The q-state Potts model has q number of possible states. This model is a
generalization of the 2-dimensional Ising model, the Hamiltonian [7, 10] of which is given
as

HIsing = −J
∑
⟨ij⟩

SiSj, Si = ±1, (1.15)

where +1 and −1 are the only two possible values of Si, representing up and down states
of spins, respectively, at the lattice site i.

Figure 1.5: Generic configurations of 2D q = 4 state Potts ferromagnet, simulated on
a square lattice having linear size L = 128 in each direction, at temperatures below,
near and above Tc. The states of the spins at each of the L2 lattice sites can have 4
possible values that are depicted here by different colours. These results were obtained
via Glauber Monte Carlo simulations that will be defined later. The configuration for
Tl (<< Tc) represents a nonequilibrium situation.

Nevertheless, there exists some difference between the Ising model and the Potts
model with q = 2. One way to realize this is the following. For q = 2, considering
Si = ±1, the Potts model Hamiltonian H can be rewritten as [18],

H = −J
∑
⟨ij⟩

1
2(1 + SiSj) (1.16)

= −J

2 − J

2
∑

<ij>

SiSj (1.17)

= const+ 1
2HIsing. (1.18)

Thus, the Hamiltonian of the Potts model for q = 2 provides essentially half the value
of that of the Ising model. Unlike the Ising one, the exact solutions for q ≥ 3 of the
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Potts model is not known. However, many important features can be extracted, like the
transition temperature Tc [19], which is given by

Tc = J/[kB ln(1 + √
q)], for q ≥ 4, (1.19)

kB being the Boltzmann constant. Note that Tc can have a first or a second-order
character depending upon the value of q.

The Potts model captures a variety of critical behaviours [19–22]. It undergoes second-
order phase transition, exhibiting critical phenomena for q ≤ 4 [16, 17, 19]. For q = 2,
the model being equivalent to the Ising model, shares the same critical exponents, thus,
belonging to the Ising universality class. For both q = 3 and 4, the critical exponents,
however, are different from the above class [20, 21]. The model undergoes a first-order
transition [16, 17, 19] for q > 4. For q = 5 and 6, the model exhibits weak first-order
transitions, and thus show pseudo-critical phenomena [21]. For space dimension d = 2,
some of the static critical exponents of q = 2, 3 and 4 are tabulated below [23].

q α β γ ν

2 (Ising) 0 1
8

7
4 1

3 1
3

1
9

13
9

5
6

4 2
3

1
12

7
6

2
3

Table 1.1: Critical exponents for the Ising model, as well as for the 3 and 4-state Potts
model in two-dimensional space.

Several studies have been carried out on the critical dynamics of the q-state Potts
model. The dynamic exponent z (≈ 2.16) for the 2-dimensional Potts model, exhibits a
universal behaviour, as, it is, interestingly, independent of the value of the number of
states q [21, 22].
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1.4 Phase Ordering Kinetics

The dynamics of the evolution of a system from a thermodynamically unstable disordered
state to a new equilibrium state is referred to as ‘coarsening dynamics’ or ‘phase ordering
dynamics’ [7, 10]. During this evolution, ordered regions, called domains, rich in particles
or spins of the same kind, are formed. The characteristic length scale, ℓ, i.e., the average
size of the domains, grows with time. The structure or pattern formed by these domains
is characterised by the two-point equal-time correlation function, C(r⃗, t). For isotropic
systems C(r⃗, t) ≡ C(r, t) and it is defined as [10]

C(r, t) = ⟨ψ(r⃗, t) ψ(⃗0, t)⟩ − ⟨ψ(r⃗, t)⟩ ⟨ψ(⃗0, t)⟩, (1.20)

where r (= |r⃗|) is the separation between the two space points under consideration
and ψ(r⃗, t), as stated before, is an appropriate order parameter which is both time and
space dependent because of nonequilibrium nature of the system. In experiments, the
correlation function cannot be directly measured. Instead, the Fourier transform of the
correlation function, viz., the structure factor, S(k⃗, t), is measured, via probes like X-ray
or neutron in small-angle scattering experiments. S(k⃗, t) is defined as [10]

S(k⃗, t) =
∫
dr⃗ eik⃗.r⃗ C(r⃗, t), (1.21)

where k⃗ is the wave vector. In systems with isotropy, S(k⃗, t) ≡ S(k, t).

The correlation function and the structure factor usually exhibit the scaling property
[7, 10]

C(r, t) ≡ C̃(r/ℓ(t)), (1.22)

and

S(k, t) ≡ ℓd(t) S̃(kℓ(t)), (1.23)

respectively, where C̃ and S̃ are time independent master functions. The characteristic
length scale typically grows with time in a power-law fashion [7, 10]:

ℓ(t) ∼ tα. (1.24)
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The scaling properties in Eqs. (1.22) and (1.23) imply that the growth of domains
in an ordering system follows a self-similar behaviour [10]. The domain structures at
two instances are different from each other only by the change of a length scale. The
value of the exponent α depends on several factors [10] like system dimentionality, order
parameter symmetry, conservation of the order parameter and so on. The classification
of the dynamics on the basis of conservation of order parameter during the coarsening of
the system is discussed next.

1.4.1 Non-conserved Order-Parameter (NCOP) Dynamics

During NCOP dynamics, the total order parameter of the system, during ordering,
is time dependent [7, 10]. A typical example of such dynamics is the phase ordering
in a ferromagnet. We resort to this particular example for further discussions in this
subsection.

The dynamics of an ordering ferromagnet can be modelled via the q-state Potts model
[Eq. (1.14)], by implementing the spin-flip Glauber dynamics [24]. The evolution of the
two-dimensional nearest neighbour q = 4 state Potts model, quenched from temperature
Ts = ∞ to temperature Tl = 0.5Tc, obtained from Monte Carlo Simulations [15, 25]
(details povided later) using Glauber spin-flip mechanism, is depicted in Fig. 1.6. The
system is seen to evolve from a paramagnetic phase, where the spins are randomly
arranged, towards ferromagnetic ordering after lowering the temperature.

Figure 1.6: Snapshots from Monte Carlo simulations of the 2D q = 4 state Potts model,
with Glauber dynamics. The four different coloured regions identify the four different
states. Time is expressed in units of the Monte Carlo Steps (MCS). These snapshots are
recorded during evolution of a system following a quench from Ts = ∞ to Tl = 0.5Tc.

The domain growth is due to the curvature driven motion of the interfaces, i.e., the
domain boundaries. In order to reduce the free energy of the system, the interfaces move
with a velocity, say, v. According to Allen-Cahn equation of motion of the interfaces
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[7, 10, 26],

v = −K, (1.25)

where K is the local curvature of the interface. For the average domain size of length
ℓ(t), the above equation can be written as

dℓ(t)
dt

∝ 1
ℓ(t) , (1.26)

which gives [7, 10, 26, 27],

ℓ(t) ∼ t1/2, (1.27)

and is referred to as the Allen-Cahn law.

1.4.2 Conserved Order-Parameter (COP) Dynamics

The total order parameter of the system during the COP dynamics is independent of
time [7, 10]. Here we will consider the example of phase separation in a multi-component
mixture for further discussions.

Figure 1.7: Snapshots from Kawasaki exchange Monte Carlo simulations of the two-
dimensional q = 4 state Potts model. The different coloured regions show particles A, B,
C, D, respectively. The quench protocol here is same as that in Fig. 1.6.

The dynamics of the phase separation process can be modelled using the q-state
Potts model Hamiltonian [Eq. (1.14)], via the spin-exchange Kawasaki dynamics [28].
The states Si in H [Eq. (1.14)] can now be considered to be equivalent to particles of
different species, say, A, B, C and so on. In spin-exchange Kawasaki dynamics, two
neighbouring particles are interchanged. The snapshots in Fig. 1.7 correspond to the
two-dimensional nearest neighbour q = 4 state Potts model, quenched from temperature
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Ts = ∞ to temperature Tl = 0.5Tc. These were obtained from Monte Carlo Simulations
(details are provided later) using Kawasaki spin-exchange mechanism [15]. The evolution
snapshots replicate the phase separation in quaternary mixtures. For this dynamics
[29–33] average size of domains grow as ℓ(t) ∼ t1/3.

1.5 Mpemba Effect: A Brief History

Mpemba Effect refers to a phenomenon where hot water freezes faster than cold water
[34, 35]. The name of the effect is tributed to the then Tanzanian student, Erasto B.
Mpemba, who, in early 1960s, observed that a cup of hot milk had turned into ice-cream
faster than a cup of cold milk, on placing both of them in the refrigerator at the same
time [34]. This old and counterintutive phenomena had known practical applications
even at the time of Arisotle [36]. Mpemba and Osborne in the year 1969 showed that the
time taken by water to start freezing decreases with an increase in the initial temperature
of water. This effect is not only restricted to an ice-water system, but has recently been
observed to exist in cooling granular gases [37], colloidal systems [38], spin glasses [39],
etc. It is expected that this effect is associated with slowly evolving systems having
glass-like complex energy landscape. Further details will be provided in chapter 2.

1.6 Motivation of the Work

Recently, over the period of a decade, scientists have been interested in generalizing
the Mpemba effect [40]. In the phase transition community, there has been growing
interest in finding the effect in transitions of different types. There exists a belief that
frustration/metastability is essential for the appearance of the effect. However, very
recently it was shown that this effect exists in simple Ising ferromagnet [41], having
no in-built frustration! As an important extension of this even more counterintutive
observation, we have been investigating the role of the existence of the “critical point” in
deciding the presence or absence of the effect. For this purpose, the study of the Potts
model, whose q = 2 corresponds to the Ising model, is important. The importance, in
this context, lies in the fact that beyond q = 4 the transition loses its “critical” character.
This is an interesting new direction of research that can offer appropriate understanding
of this puzzling effect.



1.7 Overview of the Thesis 13

1.7 Overview of the Thesis

We examine the existence of Mpemba Effect in the 2-dimensional q-state ferromagnetic
Potts model, for q = 3, 5, 7 and 10. We prepare systems at different starting temperatures
Ts, which lie above Tc. The spin values of these systems are made to constitute of
all states in nearly equal proportions. The prepared systems are then instantaneously
quenched to a lower temperature Tl, inside the ordered region.
In chapter 2, we elaborate on the methodologies used.
In chapter 3, we first present the thermodynamic critical properties of the systems
by preparing them at a set of different Ts. We then quench these systems to Tl and
showcase the observations for each of the studied q values. At the end of this chapter we
summarize the results of this thesis.
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Chapter 2

Model, Methods, Observables and
Analysis

2.1 Computational Details

In this thesis, Monte Carlo simulations [1–4] have been used extensively to study the
kinetics of the q-state Potts model with Non-conserved Order-Parameter (NCOP) dy-
namics (see details in chapter 1, sec. 1.4.1). Below is a brief description of Monte Carlo
simulations.

2.1.1 Monte Carlo Simulations

The thermal average of an observable A is defined, for N possible microstates, as [1, 2]

⟨A⟩ =
N∑

i=1
AiPi (2.1)

where Pi is the probability of finding the system in the ith state. In the canonical ensemble
[1, 2]

Pi = e−βEi

Z
, (2.2)

where

Z =
N∑

i=1
e−βEi (2.3)
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is the partition function [1, 2], Ei is the energy of the ith state and β = 1/kBT , kB being
the Boltzmann constant. The exact calculation of ⟨A⟩ [Eq. (2.1)], using Eq. (2.2), can
be analytically as well as computationally challenging, as it requires summing over all
the possible microstates of the system. Monte Carlo technique devises an approximate
method to calculate ⟨A⟩, escaping the challenges of finding Z.

In Monte Carlo simulations, instead of considering all the microstates, only a sequence
of N ′ points are selected in the phase space according to the expected importance of
the observations, {Ai}, at that point. This is called importance sampling [1, 2]. Each of
these selected microstates are drawn from a probability distribution proportional to the
Boltzmann factor, e−βEi . This idea reduces Eq. (2.1) to [1, 2]

⟨A⟩ = 1
N ′

N ′∑
i=1

Ai. (2.4)

In the limit N ′ → ∞, ergodicity develops, and Eq. (2.4) resembles Eq. (2.1) with negligible
statistical error.

In this exercise, the states are sampled according to the Markov Chain [1, 2], where
the (i + 1)th state is produced from the ith state via a suitable transition probability
Wi→i+1, such that, in equilibrium

Pi Wi → i+1 = Pi+1 Wi+1 → i. (2.5)

This is known as the detailed balance condition [1, 2]. The ratio of probabilities of
transition from ith to (i+ 1)th state and the corresponding return move is given by [1, 2]

Wi→i+1

Wi+1→i

= Pi

Pi+1
= e−β(Ei−Ei+1) = e−β∆E. (2.6)

This ratio depends only on the energy difference ∆E (= Ei − Ei+1), between the two
states.

The two most commonly used choices of W are [1, 2]

1. Metropolis transition rate: Wi → i+1 =

e
−β∆E, if ∆E ≥ 0

1, otherwise

2. Glauber transition rate: Wi → i+1 = eβ∆E

1+e−β∆E .
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We will use Metropolis transition rate as the acceptance criteria for a move i → i+ 1.
The steps of the Metropolis algorithm are as follows, say, for Potts magnets in a lattice
[1]:

1. An initial configuration is generated.

2. A random lattice site is chosen and the state of the spin located there is changed
to any one of the other q− 1 states, randomly. This is referred to as the trial move.
This leads to NCOP dynamics. To establish Conserved Order-Parameter (COP)
dynamics (details in chapter 1, sec. 1.4.2), two random neighbouring lattice sites
are selected and their spins are interchanged.

3. The energies are calculated before and after each trial move using the Potts
Hamiltonian [Eq. (1.14)].

4. For acceptance of the trial moves, the Boltzmann factor (e−β∆E) is calculated and
compared with a random number, say r, lying between 0 and 1. If r ≤ Boltzmann
factor, the move is accepted.

5. Steps 2 to 4 are repeated L2 times, L being the side of the square lattice. Trials of
L2 spins correspond to one Monte Carlo step (MCS).

In the vicinity of Tc, due to critical slowing down of the system, the use of standard
Monte Carlo methods makes the computation time consuming. In order to overcome
this difficulty cluster flipping methods can be used, if dynamics is not of concern. We
resort to Wolff cluster flipping method [1, 5] to generate configurations near Tc in this
dissertation.

2.1.2 Wolff Algorithm

1. An initial configuration is generated.

2. A random lattice site is chosen.

3. For the chosen site, all nearest neighbours with equal spin states are identified and
added with a probability, p = 1 − e−βJ , to a cluster.

4. The above step is extended to the nearest neighbours of each lattice site that gets
added in the cluster.
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5. The spin state of all the lattice sites added in the cluster are changed to any one of
the other q − 1 available states. This completes one Wolff step.

Wolff algorithm is a rejection-free approach that helps in reducing the relaxation time
of the system significantly, thus, making it very effective near Tc.

2.2 Protocol for Mpemba Effect

2.2.1 Mpemba Effect: The Counterintuitive Phenomena

Consider two systems prepared at starting temperatures Ts1 and Ts2 , respectively, such
that Ts1 > Ts2 . According to the Mpemba effect [6–11], the time taken to equilibrate,
following quenches to a common lower temperature Tl, is comparatively shorter for the
system starting at Ts1 than the system at Ts2 . Despite the most intuitive expectation that
a relatively colder object should cool faster than the hotter one, under the same applied
conditions, there has been experiments that show the possibility of this unintuitive effect
to exist [6–11]. Although this effect was rediscovered in the 1960s by Erasto Mpemba
and Denis Osborne through their experiment on freezing of water [6], yet the first known
mention of this effect dates back to 350 B.C., see book I, part 12 of Meteorology by
Aristotle [12]. In his book the Greek philosopher mentioned that “to cool hot water
quickly, begin by putting it in the sun”. Reference of this effect also exists in the historical
works of other philosophers like Roger Bacon [13], Sir Francis Bacon [14] and René
Descartes [15].

Previously it was expected that this effect is limited to liquid systems, like, water or
milk [6, 12, 13, 15–17]. There have been proposals to unveil the cause of this effect. For
water, possible explanations have been tried on the basis of the concept of supercooling
[18], evaporation [19], convection [20], hydrogen bond relaxation [21, 22] and so on, but
a conclusion in this regard is still pending. In view of the reason that even factors like
the presence of impurity in the substance can lead to large variation in observations of
its freezing, it becomes difficult to reproduce experimental results [23]. This has led to
debates. Infact, there also exist arguments against the very existence of this effect [24].

With the advancement of researches in this area, scientists have witnessed this effect
to exist in systems of various kinds. There are experimental reports that assert this
effect to exist in systems with phase transitions like polymers [25], magnetic alloys [26],
clathrate hydrates [27], and also in systems like colloids [28] without any phase transition.
Mpemba-like behaviour has also been observed in numerical simulations [28] of granular
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gases [29–31], carbon nanotube resonators [32], cold gases [33], spin glasses [34], quantum
systems [35] and Ising ferromagnets [36]. In the cases of Mpemba-like observation
in frustrated systems like spin glasses, as well as, in simple systems with no in-built
frustrations like Ising ferromagnet, change in correlation length (ξ) exists in the systems
with different starting temperatures Ts [34, 36–38]. It is perceived that certain anomalies
must be present in the systems to observe Mpemba effect [34, 36]. The observation of
Mpemba effect in Ising model, with which a large variety of condensed-matter systems,
like binary mixtures and liquid-gas transitions, can be studied, provides a promising new
direction for research on this effect [23].

2.2.2 Models and Method

We will inspect whether Mpemba Effect exists in our model of interest: the q-state Potts
model in 2-dimensional space. The Hamiltonian H and transition temperature Tc [39] of
this model, as stated in chapter 1, are given by

H = −J
∑
⟨ij⟩

δSi,Sj
, Si = 1, 2, ..., q, (2.7)

and

Tc = J/[kB ln(1 + √
q)], (2.8)

respectively. Here J is the interaction strength, ⟨ij⟩ represents summation over nearest
neighbours, δSi,Sj

is the Kronecker delta and kB is the Boltzmann constant.
The protocol followed to investigate the presence of Mpemba Effect in this model

comprises of two parts:

1. System preparation at different starting temperatures Ts.

2. Quenching the systems to a common lower temperature Tl.

We choose a set of temperatures above Tc for preparing the systems. Some of these are
quite close to Tc. The spatial fluctuations and hence ξ diverges at T = Tc [36, 40, 41]. It
will, thus, be appropriate to inspect whether the variation of structure related parameters
are crucial to account for the observation of this effect. As stated above, in order to
prepare the systems at temperatures near Tc, we use Wolff algorithm (subsec. 2.1.2),
where a cluster of equal spins is flipped at one go. This algorithm helps avoiding strong
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critical slowing down of the system. These prepared systems are made to have critical
concentration with all states in nearly equal proportions. We then instantaneously quench
the prepared systems to Tl. The approach to the equilibrium at Tl is simulated via the
Monte Carlo Simulations (subsec. 2.1.1) with the Glauber spin-flip mechanism. The
energy decay and the growth of the systems, as they slowly relax to the new equilibrium
state, are recorded in order to investigate Mpemba effect.

We perform this exercise for q = 3, 5, 7 and 10. Some basic results are presented for
q = 2 as well. Periodic boundary conditions are applied in all directions of the systems.

2.3 Observables and Estimations

We will investigate some of the thermodynamic properties, like magnetization per spin
(M), susceptibility (χ), structure factor (S(k)) and correlation length (ξ), of the initially
prepared systems in the results chapter. The morphology of a system is characterized
by the two-point equal time correlation function, C(r⃗, t). For an isotropic system with
order parameter m(r⃗, t), the two-point correlation function, C(r, t), as a function of the
separation (r) between the two space points is calculated as [42]

C(r, t) = ⟨m(r⃗, t) m(⃗0, t)⟩ − ⟨m⟩2 ; r = |r⃗|. (2.9)

The order parameter or magnetization for q-state Potts model can be defined as [43, 44]

m =

N∑
i=1

[ q δSi,1 − 1]

N(q − 1) , (2.10)

where N is the number of spins in the lattice. Here δSi,1 represents the following:

δSi,1 =

1, if spin at site i, i.e., Si = 1

0, otherwise.

Note that 1 is just a representative number. Eq. (2.10) can be rewritten as

m =
q

[
N∑

i=1
δSi,1 − N

q

]
N(q − 1) (2.11)

= q

q − 1

[
⟨δSi,1⟩ − 1

q

]
. (2.12)
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Below Tc, when a system is ordered and all spins assume value corresponding to one
particular state, then ⟨δSi,1⟩ = 0 or 1. The minimum and maximum possible values of
magnetization [Eq. (2.12)] are

mmin = q

q − 1

[
0 − 1

q

]
= −1
q − 1 , (2.13)

and

mmax = q

q − 1

[
1 − 1

q

]
= 1, (2.14)

respectively. Above Tc, the system is homogeneous and the possibility of finding Si = 1,
at any site i is 1/q, i.e., ⟨δSi,1⟩ = 1/q. Therefore, Eq. (2.12) reduces to m = 0 at
temperatures above Tc. The magnetisation distribution of the systems for temperatures
below Tc will essentially have two peaks corresponding to mmin and mmax. These peaks
will continue to shift towards each other with increase in temperature, and for T > Tc, in
the disordered regime, they merge to form a single peak. However, mmax is obtained only
when Si = 1 (according to the used definition in Eq. (2.10)). This makes the height of
the peak corresponding to mmax to be shorter than the height of the peak corresponding
to mmin.

The fluctuations in the order parameter at T > Tc, once equilibrium is attained, gives
a measure of susceptibility χ, defined as [43]

kB T χ =
(
q − 1
q

)2

[N (⟨m2⟩ − ⟨m2⟩)]. (2.15)

For the q-state Potts model, C(r, t) is defined as [45]

C(r, t) = q

q − 1

[
⟨δSi,Sj

⟩ − 1
q

]
; r = |i− j|. (2.16)

This definition is appropriate in mimicking the morphology of the system. In the limit
r → 0, the value of ⟨δSi,Sj

⟩ = 1, thus resulting in C(r, t) = 1. In the limit r → ∞, the
possibility of finding the same spin at a distance r becomes less, providing ⟨δSi,Sj

⟩ = 1/q.
Therefore, in large r limit, C(r, t) = 0.
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The fourier transform of the correlation function is the structure factor [42]

S(k⃗, t) =
∫
dr⃗ eik⃗.r⃗ C(r⃗, t), (2.17)

and can be measured directly in scattering experiments, where k⃗ is the wave vector of
the scattered light beam. The intensity of the scattered beam is proportional to the
structure factor [46], that gets enhanced near the critical point. For isotropic systems
S(k⃗, t) ≡ S(k, t). Close to the critical point, when all the states of the system are present
in equal proportions, the structure factor (S(k)) gives a measure of spatial fluctuations
in the concentration [47]. For temperatures very close to Tc, as k → 0, S(k) diverges.
In the presence of correlated spatial fluctuations in the system with ξ ∼ λlight, say, the
latter being the wavelength of the incident light, the beam gets totally scattered [46].
This results in an opaque appearance of the system and is known as critical opalescence.
This phenomena is captured by the Ornstein-Zernike theory [41, 46], which describes
S(k) at small k limit as

S(k) = kB T χ

1 + k2 ξ2 . (2.18)

As mentioned in chapter 1, in the thermodynamic limit, the critical behaviour of χ
and ξ are defined as

χ ∼ |ϵ|−γ (2.19)

and

ξ ∼ |ϵ|−ν , (2.20)

respectively, where ϵ = T−Tc

Tc
is the reduced temperature.
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Chapter 3

Mpemba Effect in q-state Potts
Magnets

3.1 A Brief Recapitulation and Overview

In order to provide a complete context for the discussions in this chapter, we briefly
review some of the concepts already discussed in the previous chapters.

The work of Mpemba and Osborne [1] in 1969, showing faster freezing of hotter water,
than a colder one, inspired similar investigations in other systems. In this drive, the
‘generalized’ Mpemba effect was identified in granular gases [2–4], spin glasses [5] and
colloidal systems [6]. From some of these studies it seems that frustration or metastability
is believed to be necessary for the observation of this puzzling phenomenon. Interestingly,
in a recent work [7], Mpemba effect was shown to be present in a simple model system,
viz., the Ising ferromagnet with a second-order phase transition. This system has no
in-built frustration which indicates that the effect is rather common.

In this chapter, we are interested in investigating the presence of this effect in q-state
Potts model that exhibits para-to ferromagnetic transitions of both kinds - first and
second-order [8–14]. We consider two-dimensional (d = 2) systems prepared at a set of
different starting temperatures, Ts, above the ‘critical’ temperature Tc and quench them
to Tl = 0.5 Tc, for q = 3, 5, 7 and 10. In d = 2, beyond q = 4 the phase transition in the
model changes from second to first-order [8–14]. For both the varieties we look at the
relaxation of the systems as they slowly approach the new equilibrium. The evolutions of
the systems take place via the formation and growth of domains. The domain structures
at two different instances are self-similar, at late enough times, and differ from each other
only by the change of a characteristic length scale, ℓ(t). This self-similar behaviour is
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captured by the scaling property of C(r, t) [15, 16], viz.,

C(r, t) ≡ C̃(r/ℓ(t)), (3.1)

the symbols having meanings similar to the ones mentioned earlier.

3.2 Model and Simulations

For the q-state Potts model, Table 3.1 gives [11] the approximate values of Tc in the
thermodynamic limit, in units of J/kB, for the studied values of q. Here J is the
interaction strength and kB is the Boltzmann constant. The Hamiltonian H and the
mathematical expression for Tc of the model has been mentioned in Eq. (1.14) and
Eq. (1.19), respectively.

q Tc (J/kB)

2 1.1346

3 0.9950

5 0.8515

7 0.7731

10 0.7012

Table 3.1: The values of the critical temperature, Tc, for the q-state Potts model, in
two-dimensional space, have been listed for q = 2, 3, 5, 7 and 10.

As already mentioned, the initial configurations of Potts magnets are prepared at
different starting temperatures Ts above Tc using the Wolff Cluster Algorithm. Corre-
sponding morphology is characterised by the structure factor, S(k, t). We calculate the
latter via the fast Fourier transform (FFT) algorithm, using the relation [17]

S(k, t) = ⟨ ψk (t) ψ−k(t) ⟩, (3.2)
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where ψk (t) is the Fourier transform of the order parameter ψ (r⃗, t) (= ei θ(r⃗); θ =
2πn

q
, n = 1, . . . , q).
The evolution of the two-dimensional q-state Potts model, following quench from a

starting temperature Ts, to a lower temperature Tl, is studied via Monte Carlo simulations
using Glauber spin-flip mechanism. The trial move of changing a randomly chosen spin
to any of the other q− 1 states is accepted by the standard Metropolis criterion [18]. For
acceptance of the trial moves the Boltzmann factor is calculated and compared with a
random number, say r, lying between 0 and 1. If r ≤ Boltzmann factor, the move is
accepted. For Tl = 0, from which we present a limited set of results, if the energy after
trial is less than or equal to the energy before, the move is accepted.

The system size is taken to be L = 256, L being the side of the square lattice. Thus,
the total number of spins is given by L2. Time is measured in units of Monte Carlo Steps
(MCS). One MCS corresponds to the trials of L2 spins.

The average domain length, ℓ(t), during the ferromagnetic evolution is calculated
from the first moment of the domain size distribution function, P (ℓd) [19–21], i.e.,

ℓ(t) =
∫
P (ℓd, t) ℓd d ℓd, (3.3)

where ℓd is the distance between two consecutive interfaces along the Cartesian directions.
The morphology related calculations is done after the removal of thermal noise from
the system. The procedure of noise elimination follows a majority spin rule [19, 20].
According to this rule, the spin value on a lattice site i is replaced by the spin value that
is present in the majority amongst i and nearest neighbours of i.

All the data are averaged over runs with 18000 independent initial configurations.
Periodic boundary conditions are applied along all possible directions of the system.

3.3 Calculation of Critical Properties

In the ordered region below Tc, the probability distribution, P (m), of the order parameter,
i.e., magnetisation, m, has a double-peak structure. We denote these peaks by mmin

and mmax. In Fig. 3.1, we show P (m) versus m plots for the cases q = 3 and q = 5.
The difference between the heights of the peaks is expected because of the bias in the
definition of the order parameter. Furthermore, at a low temperature this gets affected
by a strong barrier due to the interfacial free energy.
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Figure 3.1: Probability distributions, P (m), of the magnetisation m, for (a) T = 0.6,
q = 3 and (b) T = 0.4, q = 5. The values of Tc in the thermodynamic limit for both
these q values have been mentioned inside the respective frames.
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Figure 3.2: (a) Probability distributions, P (m), of the magnetisation m for a set of
temperatures below Tc, for q = 3. (b) Plot of mmax − mmin versus (Tc − T ) for q = 3.
The solid line represents Eq. (3.4), with β = 0.11, whereas the circles are the simulation
results. These data are presented on a log-log scale. The discrepancies close to Tc are
due to finite-size effects.

With the rise in temperature, these peaks shift towards each other as shown in
Fig. 3.2a, for q = 3. Taking the temperature dependent locations of the peaks as points
along the coexistence curves, we have constructed the corresponding phase diagram. In
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Fig. 3.2b, we plot mmax −mmin versus (Tc − T ). This is expected to vary as [22]

A

(
1 − T

Tc

)β

, (3.4)

where A is a critical amplitude and β is a critical exponent. Agreement of the simulation
data with this form, for β = 1/9, the theoretically expected value [9, 10, 12, 14], is good.
Deviations closer to Tc are due to finite-size effects [23].
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Figure 3.3: Probability distributions, P (m), of magnetisation m, at three different
temperatures Ts. The width of fluctuations is higher for temperatures closer to Tc. The
solid lines represent Gaussian fits. These results are for q = 5.

At temperatures above Tc, the systems reside in the paramagnetic region of the
phase diagram with the mean value of the magnetisation being zero. We choose a set of
temperatures, Ts, in this region to prepare systems for the final quenches. In Fig. 3.3 we
show the probability distributions concerning the fluctuations in the order parameter, m,
using three such values of Ts for q = 5. The fluctuations in the order parameter can be
noted from the widths of the Gaussian looking curves. This is strong very close to Tc

and keeps on decreasing with increasing temperatures. From these fluctuations one can
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measure the susceptibility χ. In the critical regime, χ diverges as the power law [22]

kBTχ = Γ
∣∣∣∣∣1 − Tc

T

∣∣∣∣∣
−γ

, (3.5)

where Γ is another critical amplitude and γ the critical exponent. Note that the value
of the exponent remains same on approaching Tc from either side, i.e., T+

c or T−
c [22].

However, the values of Γ differ in the two cases [22, 24]. On approaching Tc from T+
c for

q = 3, it is expected that γ = 13/9 [9, 10, 12]. In Fig. 3.4, for temperatures Ts above
Tc, we plot kBTsχ as a function of ϵ

(
= 1−Tc

Ts

)
. For q = 2 and 3, the phase transition

being of second-order, χ diverges near Tc. Apparently, the enhancement gets weaker with
increasing q. This is because the model loses its critical character beyond q = 4. Note
that the solid lines in Fig. 3.4 have been plotted using Eq. (3.5), where Γ and γ, the
adjustable parameters, for q ≥ 5, are merely numbers which provide the best fits within
the temperature regime.
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Figure 3.4: Susceptibility χ, multiplied by kB Ts, is plotted versus the reduced temperature
ϵ. Results for several values of q are included. The solid lines are power-laws with different
values of γ and Γ.

Fig. 3.5a and 3.5b show equilibriated configurations of 3 and 5-state Potts models,
respectively, obtained at Ts values as mentioned at the top of the frames. In both the
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cases, the configurations have critical concentrations, i.e., all components are present in
practically equal proportions. The variation of spatial correlations at different Ts can be
recognized from the snapshots. It can be seen that with the increase in the value of Ts,
i.e., on moving farther away from Tc, the spatial correlations in the system diminishes.

(a) 3-state Potts model.

(b) 5-state Potts model.

Figure 3.5: Equilibrium snapshots of the q-state Potts model, for (a) q = 3 and (b) q = 5,
at critical compositions. Different colours represent different states. In each of the cases,
pictures from different Ts (> Tc) values have been included.

The presence of correlated spatial fluctuations in the system and its variation with
temperature can be quantified via the calculation of structure factor. We have presented
the plots of S(k, t), as a function of k, in Fig. 3.6. The enhancement of S(k, t) at small
k with the approach of Ts to Tc, implies that the fluctuation is getting critical. In this
regime S(k, t) is described well by the Ornstein-Zernike relation [22, 25, 26],

S(k) = kB T χ

1 + k2 ξ2 , (3.6)

where ξ is the correlation length.
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Figure 3.7: (a) Plots of 1/S(k) versus k2, at various Ts, with critical concentrations, for
the 5-state Potts model. In part (b) we provide an enlarged view of part (a), showing
the linear behaviour of 1/S(k) at small k limit.

In Fig. 3.7a, we plot 1/S(k) as a function of k2, for the 5-state Potts model. Fig. 3.7b
is an enlarged version of Fig. 3.7a showing data only for very small k. The linear behaviour
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in the k → 0 region is in agreement with Eq. (3.6). The enhancement of susceptibility
in the critical regime can be identified from the smaller values of the intercept of the
1/S(k) axis in Fig. 3.7b, with the decrease in temperature. The correlation length, ξ, of
the system can be measured from the slope of these linear regions. The slope and hence
ξ is seen to decease with the increase in temperature. As mentioned in chapter 2, ξ, at
criticality, diverges as

ξ ∼ |ϵ|−ν , (3.7)

where ϵ = T−Tc

Tc
is the reduced temperature. This can be seen from Fig. 3.8. The

divergence is rounded as the critical behaviour of the system is lost. The exponent ν
for q = 2 and 3 are known to have values [14] 1 and 5/6. For other q values the shown
exponents and amplitudes are merely the numbers in accordance with Eq. (3.7).
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Figure 3.8: Correlation length, ξ, is plotted as a function of reduced temperature ϵ. The
solid lines are fits to the simulation data, which have been shown by the open circles.
Results from several values of q are included.
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3.4 Kinetics of Ordering: A Short Discussion on the
Scaling of Correlation Function

In non-conserved order-parameter (NCOP) dynamics of the Ising model, following quench
inside the ferromagnetic region, the correlation function, C(r, t), is well described by the
Ohta-Jasnow-Kawasaki (OJK) function [27, 28]

C(r, t) = 2
π

sin−1
[

exp
(
ra

8Dt

)]
, (3.8)

where a = 2 and D is a diffusion constant. This, of course, complies with the growth
behaviour [15, 16, 29]

ℓ ∼ tα; α = 1/2. (3.9)
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Figure 3.9: Plots of the decay of the correlation function, C(r,t), with the variation of
the scalar distance r, for the mentioned time instances t in units of MCS. These results
are for q = 2, following quenches from Ts = ∞ to Tl = 0.5Tc.
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Fig. 3.9 shows the decay of C(r, t) at different times during the evolution of a 2-state
Potts system with Glauber spin-flip kinetics. Each of the systems discussed in this section
have been quenched from temperature Ts = ∞ to temperature Tl = 0.5Tc.

On scaling the distance variable r, along abscissa, by the average domain size ℓ(t) of
the systems corresponding to times t, we obtain a nice collapse of the data as shown in
Fig. 3.10a. This implies self-similarity of pattern at different times [15]. The scaled data
are in good agreement with the OJK function. However, we observed gradual deviation
from the OJK function with the variation in q. In Fig. 3.10b we show a comparison
of the scaled simulation data with the OJK function for q = 10. Such deviation is not
unexpected because of the possibility of formation of point defects for q > 2. Important
point to note is that there exists scaling.
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Figure 3.10: Scaling plots of C(r, t) for (a) q = 2, using data presented in Fig 3.9 and (b)
q = 10, for four different times. The solid line is the OJK function. While the scaled
data for q = 2 is in good agreement with the OJK function, there is disagreement in the
case of q = 10.
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3.5 Mpemba Effect: Results and Discussions

We instantaneously quench the systems, prepared at different starting temperatures
Ts, to the final lower temperature Tl = 0.5Tc. We present results by comparing the
relaxations of hotter and colder systems in the cases of second-order, weakly first-order
and first-order phase transitions.

The snapshots in Fig. 3.11 and 3.12, respectively, show evolutions of the 3 and 5-
state Potts model for two different Ts values. It can be seen that the system at higher
Ts reaches the final equilibrium state faster. The difference in the initial structures of
the systems, in terms of the characteristic length, can be observed from Fig. 3.5, where
the presence of higher spatial correlations in the systems at Ts nearest to Tc is easily
identifiable.

(a) Evolution snapshots at different times of a system initially at Ts = 1.0.

(b) Evolution snapshots at different times of a system initially at Ts = 2.0.

Figure 3.11: Snapshots from Monte Carlo simulations of the 3-state Potts model with
Glauber dynamics following quenches to Tl = 0.5Tc. Different colours identify different
states available in the system.
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(a) Evolution snapshots at different times of a system initially at Ts = 0.9.

(b) Evolution snapshots at different times of the system initially at Ts = 2.0.

Figure 3.12: Snapshots from Monte Carlo simulations of the 5-state Potts model with
Glauber dynamics, following quenches to Tl = 0.5Tc. Different colours identify different
states available in the system.

3-state Potts model (Second-order Phase Transition):

In Fig. 3.13 we present, for q = 3, a plot of the decay of energy per spin, E, as a
function of time, t, as the systems from different Ts relax towards the equilibrium at a
common Tl, i.e., Tl = 0.5Tc. For the sake of clarity we split the plot into two halves, cap-
turing the early and late time relaxations in the upper and and lower panels, respectively.
It is clearly identifiable that the trend of energy decay in the lower panel is opposite to
that of the upper panel. This indicates that there exists crossings among the curves,
implying quicker decay of energy for higher Ts. This is the basic essence of the Mpemba
effect. In order to demonstrate the early and late time behaviour more clearly, we take
a reference potential energy value, Eref , and note the time, tc,Eref

, at which the energy
curve for a Ts crosses Eref .

We plot the variation of tc,Eref
over a set of Ts in Fig. 3.14a and Fig 3.14b to showcase

the early and late time energy decay behaviours, respectively. The difference in the
nature of the two plots at early and late times gives a clear indication of the presence of
Mpemba effect.



42 Mpemba Effect

60 70 80 90 100 110 120

-1.88

-1.86

-1.84

-1.82

6000 6500 7000 7500 8000

-1.98

-1.979

-1.978

     = 1.1
     = 1.3

     = 1.5
     = 1.7
     = 2.0E

t

q = 3 Ts

Tl = 0.5 Tc

Figure 3.13: Energy per spin, E, is plotted versus time, t, for the q = 3 state Potts model.
Results from several Ts values have been included. It is observed that the hotter system
equilibrates faster. The frame has been split to capture the evolutions of the systems at
early and late times simultaneously.
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Figure 3.14: Plots of tc,Eref
versus Ts at (a) early and (b) late time regimes of evolution

for q = 3. At late time regime, the time taken to reach Eref monotonically decreases
with the rise in Ts.
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In Fig. 3.15, we show the times at which the energy curves of systems at different
Ts are crossed or overtaken by the average energy curve of the systems starting from
Ts = ∞. This crossing time is denoted as tc,E∞ . The infinite temperature scenario is
replicated by a system with a random initial configuration having “ξ = 0”. All systems
are seen to be overtaken by the Ts = ∞ energy curve.
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Figure 3.15: Plot of tc,E∞ versus Ts for q = 3. See text for the definition of tc,E∞ .

A similar trend of higher values of Ts relaxing faster, can be observed from the plots
of average domain length, ℓ(t), versus time t, in Fig. 3.16, indicating again the presence
of Mpemba effect. Crossings amongst the plots with different Ts values are clearly visible.
In Fig. 3.17, we show the same plots of time dependence of average domain length ℓ(t)
(Fig. 3.16) on a log-log scale. Here we also include the data for the systems starting from
Ts = ∞. The initial differences in the average domain length values among the systems
at different Ts, are clearly identifiable from these plots. The dashed line in the figure
denotes a power-law growth with exponent 0.5. This power-law exponent of the domain
growth holds good from reasonably early time for the cases of quench from Ts = ∞.
However, for the systems with other Ts values this realization gets delayed.

During the early time the systems spend time in forgetting the initial correlations.
While further studies are needed to make an accurate quantification of the memory loss
period, the basic fact can be captured from the scaling plots of correlation functions
below. At early times, because of the memory loss, one does not expect scaling in the
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correlation functions. Given that for different Ts the value of ξ is different, during this
transient period for different Ts the fractality will be different at a given instant. In
fact the exhibition of Mpemba effect by the Potts model can be connected to the time
dependence of memory loss. At very late times it is expected that the growth exponent
α = 0.5 will be followed by systems for all Ts. To validate that and make a meaningful
conclusion on the Mpemba effect from the crossings of the length plot, it is desirable
that C(r, t) exhibits scaling asymptotically.
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Figure 3.16: Plots of average domain length versus time for a range of Ts values for q = 3.
The plots have been split into two frames for clearer views of early and late time regimes.

In Fig. 3.18, we plot the correlation function, C(r, t), from different Ts, versus the
scaled distance, r/ℓ, to show that the systems quenched from different Ts have structural
similarities at least at late time and hence it is appropriate to compare their characteristic
lengths [7]. Except for Ts ≈ Tc the systems at other Ts are seen to attain a good scaling
at an early time. The overall scaling is seen to improve with the increase in time. Beyond
the crossing regime, at around t = 1000 MCS, i.e., the time scale around which the
crossings amongst majority of the systems have already occured, there is a good data
collapse.
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Figure 3.17: Plots of ℓ(t) versus t, for different Ts, on a log-log scale for q = 3. The
dashed line denotes a power-law growth behaviour with exponent 0.5.
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Figure 3.18: Scaled correlation function, for q = 3, at times (a) t = 120 MCS, much
before the crossings; (b) t = 400 MCS; and (c) t = 1000 MCS, in or beyond the crossing
regime.
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5-state Potts model (Weak First-order Phase Transition):

In Fig. 3.19, we show the time dependence of potential energy. As observed in the case
of q = 3, in this case too there is a faster decay of energy for the systems having higher
Ts. The early and late time behaviours are shown in Fig. 3.20a and 3.20b, respectively,
by plotting the times of crossing different reference energy values by energy curves
corresponding to different Ts. We also plot tc,E∞ as a function of Ts in Fig. 3.21. We
further show the growth of average domain length in the systems as a function of time t
in linear (Fig. 3.22) and log-log (Fig. 3.23) scales. In Fig. 3.23, it is seen that at late
time, following crossings, all the data sets with different Ts are growing in a power-law
fashion. Overall, the picture is same as in the case of q = 3. These trends indicate the
presence of Mpemba-like behaviour in the 5-state Potts model having weak first-order
transitions [12].
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Figure 3.19: Energy per spin, E, versus time, t, for the q = 5 state Potts model. Results
from several Ts values have been plotted. The upper and lower frames capture energy
decay at early and late times, respectively.
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Figure 3.20: Plots of tc,Eref versus Ts at (a) early and (b) late time regimes of evolutions
for q = 5.
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Figure 3.21: Plot of tc,E∞ versus Ts for q = 5. The value of tc,E∞ decreases monotonically
with the increase in Ts.
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Figure 3.22: Plots of average domain length versus time for a range of Ts values for q = 5.
The plots have been split to help view the early and late time regimes clearly.
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Figure 3.23: Plots of ℓ(t) versus t on a log-log scale for q = 5. Results from several Ts

values have been shown. The dashed line denotes a power-law growth behaviour with
exponent 0.5.
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We plot the scaled correlation functions for different temperatures at time scales
ranging from very early (Fig. 3.24) to early (Fig. 3.25a, 3.25b) to the late time (Fig. 3.26a,
3.26b) regimes. The correlation function C(r, t) is seen to scale reasonably well at an
early time of t = 30 MCS. However, at an even early time of t = 7 MCS, the variation
in the morphology of the systems for different Ts can be seen from Fig. 3.24. At very
early times the scenario of scaling is somewhat different. Close to Tc, the systems have
fractal-like structures. For such systems, the correlation function scales as [22, 30–32]

C(r, t) ≡ rd−df C̃(r/ℓ(t)), (3.10)

where d and df are the dimensions of space and fractal, respectively. Nevertheless, these
fractal-like features disappear later and we obtain good scaling with d = df at times
considerably before the crossings start [7]. This scaling continues till late time.
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Figure 3.24: Scaled correlation functions at t = 7 MCS, for q = 5. The structures of the
systems for different Ts are not self-similar.
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Figure 3.25: Scaled correlation functions at (a) t = 30 MCS and (b) t = 120 MCS, for
q = 5.
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Figure 3.26: Scaled correlation functions at (a) t = 1000 MCS and (b) t = 1500 MCS,
for q = 5, in the crossing regime. Data from different Ts show “perfect” scaling.

7 and 10-state Potts model (First-order Phase Transitions):

Parallel to the results in the cases of q = 3 and q = 5, we observe Mpemba Effect for
q = 7 and q = 10 as well. However, the general observation is that with the increase of
q the crossing time gets delayed. This is because the enhancement in the equilibrium
correlation length is weaker, with approach to Tc, as q becomes larger.
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(a) 7-state Potts model.
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Figure 3.27: Energy per spin, E, versus time, t, for the (a) q = 7 and (b) q = 10 state
Potts models. The frames have been split for clear visibility of the relaxation trends at
early and late times simultaneously. Data from several Ts values have been included.
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In Fig. 3.27, we present the behaviour of relaxations of the systems by plotting the
energy per spin, E, as a function of time, t, Fig. 3.27a and Fig. 3.27b containing the
results for q = 7 and q = 10, respectively. Next we show the early (Fig. 3.28) and late
(Fig. 3.29) time crossings of energy curves, for both the q values, with fixed energy values.
We further plot tc,E∞ versus Ts in Fig. 3.30. We plot the average domain length as a
function of time t in linear (Fig. 3.31) and log-log (Fig. 3.32) scales. Closer views of
the results in Fig. 3.32 tell that the late time exponent of the power-law behaviour is
somewhat less than the usual 0.5 exponent. Such a reduction in the growth exponent
was also reported in previous works [33–36]. We plot the scaled C(r, t) from different
times (MCS) for the 7 and 10-state Potts model in Fig. 3.33 and Fig. 3.34, respectively.
All these observations imply the presence of Mpemba-like behaviour in the 7-state and
10-state Potts model with first-order phase transitions. However, as already stated,
reasonably good scaling of the correlation functions for different Ts from rather early time
and increase in crossing times imply that the effect is less prominent and may disappear
for very large q.
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Figure 3.28: Plots of tc,Eref
versus Ts in early time regimes of evolutions for (a) q = 7

and (b) q = 10.
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Figure 3.29: Plots of tc,Eref
versus Ts in late time regimes of evolutions for (a) q = 7 and

(b) q = 10.

0.8 1 1.2 1.4 1.6 1.8

500

1000

1500

2000

2500

0.8 1 1.2 1.4 1.6 1.8 2

500

1000

1500

2000

2500

t c
,E

∞

t c
,E

∞

TsTs

q = 7 q = 10

Tl = 0.5 Tc Tl = 0.5 Tc

(a) (b)

Figure 3.30: Plots of tc,E∞ versus Ts for (a) 7-state and (b) 10-state Potts model.



54 Mpemba Effect

0 25 50 75 100 125

4

6

15000 16000 17000 18000 19000 20000

65

70

75

     = 1.1
     = 1.3

     = 1.5
     = 1.7
     = 2.0

ℓ(t)

t

q = 7

Ts

Tl = 0.5 Tc

(a) 7-state Potts model.

5 10 15 20 25 30 35 40

2.5

3

3.5

4

17000 18000 19000 20000

50

51

52

53

54

     = 0.85
     = 0.9

     = 1.0
     = 1.3
     = 2.0

ℓ(t)

t

q = 10

Ts

Tl = 0.5 Tc

(b) 10-state Potts model.

Figure 3.31: Plots of average domain length versus time for a range of Ts values, for
(a) q = 7 and (b) q = 10. The plot has been split to help view the early and late time
regimes clearly.
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Figure 3.32: Plots of ℓ(t) versus t on a log-log scale for (a) q = 7 and (b) q = 10. The
dashed lines denote power-law growths. Data from several Ts values have been included
for each of the q values.
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Figure 3.33: Scaled correlation functions at (a) early and (b) late times, for q = 7.
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Figure 3.34: Scaled correlation function at (a) early and (b) late times, for q = 10, using
data from different Ts values.
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3.6 Summary and Conclusion

We have studied kinetics of phase transitions in q-state Potts model [8–13]. The objective
has been to investigate the Mpemba effect [1–7]. Keeping this purpose in mind we
have prepared initial configurations at various different starting temperatures (Ts) above
the critical temperatures Tc. These configurations are quenched to the temperature
Tl = 0.5Tc.

We have considered several values of q, viz., q = 3, 5, 7 and 10. For q = 3, the
model exhibits a second-order transition [8–14]. For q = 5 there exists a weak first-order
transition [12]. Standard first-order transitions [8–14] are expected for q = 7 and 10.
Our conjecture is that enhancement in the spatial correlation (ξ), as Ts approaches Tc, is
responsible for the exhibition of Mpemba effect in this model. In the case of first-order
transition, a divergence of ξ, on approach of Ts to Tc, is not expected. However, a
continuous increase in ξ may occur towards a constant value. If this is so, it is possible
that the Mpemba effect will be observed for both types of transition.

Mpemba effect is related to the faster equilibration of a system starting from a higher
temperature than the colder ones when quenched to a common lower temperature. At
higher temperatures the potential energy is higher. Thus, we expect crossings in the
plots of energy decay for systems starting from different Ts values. This was indeed
observed for all the considered q values. Such crossings are expected in the plots of time
dependence of characteristic length scale as well.

Note that the equilibrium structures at different Ts have fractal character [22]. During
the early periods of evolution, following quenches to the ferromagnetic regime, the
systems try to forget the memory of such fractal structure. Because of this, the “standard
self-similarity” should be missing during this transient period. However, at late times,
structures from different Ts should obey same functional form. This, indeed, we have
observed which makes our conclusion on the presence of Mpemba effect meaningful.

The Mpemba effect in such spin systems may be a result of the competition between
the pace of memory loss and the rate of scaling growth. Because of larger ξ at lower Ts,
the nonequilibrium length plots start in reverse order. If the memory has a slower decay
rate than the asymptotic scaling growth rate, it is possible that there will be crossings.
To make a concrete statement on this memory related matter more systematic studies
are needed that should be supported by very accurate data and advanced methods of
analysis.
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We have observed the effect for second as well as first-order transitions. A first-order
transition provides two possibilities: i) far away from Tc, ξ increases and then practically
saturates before Ts reaching Tc and, as mentioned above, ii) ξ keeps growing, to a
constant value, until Tc is reached. We have calculated ξ quite close to Tc for all the
q values. Within the considered temperature ranges we have not observed any perfect
plateauing of this quantity. Approaching even closer to Tc will generate results that may
not be sensitive to temperature, particularly for large q values. In any case, over the
studied ranges of temperature, ξ showed detectable enhancement and Mpemba effect
was observed for all the q values. However, we warn that for much larger values of q the
effect may not be clearly observed.

We have made further interesting observations. We make only a brief mention of
these outcomes from preliminary studies. These are related to certain differences when
quenches are performed to different final temperatures. In Fig. 3.35 we show plots of
tc,Eref

versus Ts, for q = 3. There we have compared the results from Tl = 0 and 0.5Tc.
Clearly, the trends are different for Ts close to Tc. For Tl = 0, the data set implies that
the Mpemba effect may not be observed for Ts very close to Tc, even for a second-order
transition.
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Figure 3.35: Plots of tc,Eref
versus Ts for quenches to Tl = 0 and Tl = 0.5Tc, at late times,

for q = 3. Systems from the temperature Ts that is nearest to Tc, attains the reference
energy at the earliest for quenches to Tl = 0, which is opposite to the observation in the
case of quench to T = 0.5Tc .
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(a) Frozen snapshots for quenches from Ts = ∞ to Tl = 0.
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(b) Plots of ⟨ℓf ⟩ as a function of L, for quenches from Ts = ∞ to Tl = 0.

Figure 3.36: (a) Snapshots of frozen states for the mentioned q values. Sharp interfaces
that are formed during coarsening suppress curvature driven domain growth. (b) Variation
of the average final domain length, ⟨ℓf⟩, with the change in system size, L, for different
q values. For q = 2, the plot is nearly linear, for q > 2 there is deviation from linearity.
For q = 7 and q = 10, ⟨ℓf⟩ is seen to saturate and become independent of L.

In certain other systems it is thought that frustrations or metastability is the reason
behind the presence of Mpemba effect [5]. Such metastability occurs in the cases of
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Ising [37, 38] and Potts model [39, 40] as well. In Fig. 3.36a we show some snapshots
of metastable configurations for different q values following quenches from Ts = ∞ to
Tl = 0. In Fig. 3.36b we show plots of average final length ⟨ℓf⟩ as a function of system
sizes L, for different q values for the same quench protocol. For each of the q values,
the results imply freezing. Expected ground states are not obtained. For high q values
it is even more interesting. Beyond certain value of L, ⟨ℓf⟩ appear constant. To check
whether the results in Fig. 3.35 have bearing with such freezing, one needs to carry out
more systematic study on this freezing aspect by varying Ts as well as Tl and simulating
over much longer times. We leave this task for future.
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