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Synopsis

Since the discovery of graphene, 2D materials have attracted substantial attention due to their

interesting physical and chemical features as well as their potential device applications. Various

2D materials have been predicted and discovered from semimetal, semiconductor, insulator to

conductors. In comparison to bulk materials, the current research on 2D materials and their

devices is focused on the growth of single 2D materials and the exploration of devices based on

heterostructures created by stacking one layer of 2D material on another. The growth of a van

der Waals heterostructure usually occurs by layering one material on top of another, and thus

has unique properties not seen in single materials. For example heterstructure constructured by

stacking magnetic and non-magnetic material, the magnetic proximity effect comes into play,

significantly changing the heterostructures’ electronic and magnetic properties. More interest-

ing phenomena kick in when external perturbations are applied and may lead to the appearance

of material-specific effects. In this thesis, we use density functional theory (DFT) to study the

electronic and magnetic properties of van der Waals heterostructure created by graphene and

monolayer of 1T-CrTe2. Chapter 1 of this thesis introduces a brief introduction to the theme

of this thesis. Chapter 2 discusses the methods and formalism used in our calculations. Chap-

ter 3 explores the electronic and magnetic properties and studies the effect of carrier doping

(holes and electrons) on the electronic and magnetic properties of Graphene/1T-CrTe2 het-

erostructure. We examine the effect of applying perpendicular external positive and negative

electric fields along z-direction on the magnetization and polarization in the heterostructure.

Due to the breaking of symmetries and plausible variation in magnetization and polarization,
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the magnetoelectric coupling is also investigated in this thesis. Furthermore, the coupling of

strain with magnetism and the intrinsic electric field is examined. Simulations using density

functional theory have thus proven to be effective for selecting materials for a given application

based on concerns of cost and performance and understanding the limitations of materials.
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Chapter 1

Introduction

Materials science involves combination of ideas from several fields of research such as physics,

chemistry, biology and engineering. Understanding material behavior such as electronic, me-

chanical, magnetic, optical, chemical and thermal properties help bring new insights into in-

teresting problems in science and research. Materials are enablers in unlocking applications in

electronics, energy, space technology, metallurgy, nanotechnology, etc.

Materials modeling or simulation of materials is one of the powerful methods to understand

and study the properties of materials, starting from macroscopic objects to microscopic de-

tails such as electrons and nuclei. Mathematical models can investigate complex problems and

help in understanding how material structures govern its properties and also complement the

experiments. The development of advanced and new materials such as semiconductors in nan-

otechnology, energy materials, soft materials, liquid crystals, and biomaterials aid in eradicating

challenges faced by today’s modern world.

As a result of high-throughput schemes, we obtain a large number of theoretical and exper-

imental data, a logical next step is the use and development of novel tools capable of extracting

knowledge from such data. Density Functional Theory (DFT) is powerful computational quan-

tum mechanical tool to solving and understanding properties of the many-body systems, in

particlar condensed phases, molecules, atoms and is used in various fields such as physics,

1



2 1.1. TWO-DIMENSIONAL MATERIALS

chemistry, biology, and materials science. The first-principles approach can be used to estimate

the physical properties of a material such as electronic structure [1], stress, elastic constants, po-

larisation, optical and vibrational properties, with high precision. We can describe a quantum

mechanical system as a set of atomic nuclei and electrons interacting via coulombic and elec-

trostatic forces [2]. All the properties can be derived by solving time independent Schrödinger’s

equation.

ĤΨn(R, r) = εnΨn(R, r) (1.1)

where εn are the energy eigenvalues and Ψn(R,r) are the corresponding eigenfunctions, which

must be antisymmetric with respect to exchange of electronic coordinates r and symmetric or

antisymmetric with respect to exchange of coordinates of nuclei R.

In Density Functional Theory, many electron equations are mapped onto a set of effective

equations for one electron. Alternatively, classical atomistic simultions like Monte Carlo meth-

ods can be used to study the properties of materials longer length scales. This thesis focuses

to explore properties of a van der Waals heterostructure created using Graphene and mono-

layer ferromagnetic 1T-CrTe2, and its response to external perturbations, such as electric field,

carrier doping, and strain.

1.1 Two-dimensional materials

Since the first realization of Graphene in 2004, two-dimensional materials have attracted great

interest due to their unique properties and applications such as optoelectronics, flexible elec-

tronics, sensors, solar cells and supercapacitors. It consists of single or few layers of atoms.

To understand and study several interesting phenomena in materials science and predictions of

new 2D materials, Density Functional Theory (DFT) plays a crucial role. Due to its extraordi-

nary properties, such as electronic, thermal, and mechanical properties, graphene [3] is among

the most remarkable nanomaterials. The developments in the research in graphene stimulates

research interests on 2D materials. There have been several experimental realizations of other
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2D materials such as MoS2 [4], hexagonal boron nitride [5].

It was predicted by theorists that there would be disintegration of low dimensional crystals

[6] at finite temperature because of thermal fluctuations due to significant displacements of

lattice atoms. These displacements were considered to be of the same order as the material’s

interatomic distance. Later, Mermin built on this theory [7], followed by evidence from the

experimental observation that with the reduction in thickness of film, the melting points of

thin films rapidly decrease [8]. In the past years, analogous materials to Graphene have been

synthesized such as borophene [9], phosphorene [10], germanene [11], stanene [12], antimonene

[13]. These 2D materials have similar structure, but have properties different from graphene.

Graphene has zero band gap and shows metallicity, whereas materials like MoS2, VSe2, h-BN,

WSe2, have direct band gaps, which makes them favourable materials for phototransistors,

energy storage, optical devices, and sensors [14–16]. Apart from these, stanene is theoretically

predicted to be a 2D topological insulator, which exhibits superconductivity at the edges [17].

The electronic, optical, thermal, and magnetic properties determine the potential applications

of 2D materials in manufacturing and engineering. The majority of the 2D materials being

investigated belong to the broader class of layered materials.

1.1.1 Layered materials

Layered materials are made of two-dimensional sheets formed of a single layer of atoms or poly-

hedra layer thick, firmly bonded covalently or ionically within each layer but weakly bonded by

van der Waals forces to adjacent layers. Usual approaches for obtaining single layer thick 2D

materials from these solids are mechanical exfoliation using ’Scotch tape’, chemical exfoliation

by dispersing in a solvent with suitable surface tension [18]. Mechanical exfoliation is considered

as less destructive method and has been used to create large, 10 µm single-layer flakes on sub-

strates. 2D layered crystals which are well known include transition metal dichalcogenides [19],

nitrides [20], and transition metal oxides [21]. Especially, the transition metal dichalcogenides

exhibit a wide range of electronic, optical, mechanical, chemical, and thermal properties. For
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example, WTe2 shows anomalous giant magnetoresistance and superconductivity [22]. Tran-

sition metal dichalcogenide (TMD) monolayers are layered materials of type AX2, with A as

transition metal atom and X as chalcogen atom. Layer of A atoms are sandwiched between

two layers of X atoms. Properties of these materials range from semiconducting, metallic, fer-

romagnetic, superconducting, depending on the atomic coordination of transition metal and

the number of electrons present in the d-orbitals [23]. 2D layered materials show diverse and

interesting properties in the bulk. Isolating sp2 bonded graphene from bulk graphite led to

some extraordinary properties of graphene, suggesting that monolayer of nongraphene 2D ma-

terials may also have unique properties which may differ from their bulk properties. Layered

chalcogenide materials such as Bi2Se3 and Bi2Te3, have attracted considerable attention for

being topological insulators due to their unique electronic and thermal properties. Recently,

studies on 2D magnetic materials have provided a unique platform for exploring the microscopic

origins of magnetic ordering in low dimensions.

1.1.2 Two-dimensional magnetic materials

A key feature of magnetism is the orderly arrangement of magnetic moments over macroscopic

scales, with the spontaneous breaking of time-reversal symmetry. 2D magnetic materials are

2D materials that exhibit some order such as antiferromagnetism or ferromagnetism. Interac-

tions between neighboring spins lead to specific relative orientations between them. At zero

temperature, this local order can extend upto larger length scales. With increased temperature,

thermal fluctuations tend to disturb the orientation of magnetic moments, which destroys the

long-range order above Tc. The dimensionality plays an essential role in understanding the

impact of thermal fluctuations on the critical behavior of systems [24]. In bulk case, magnetic

phase transition can occur at finite temperature, whereas in one-dimensional case, long-range

order is possible only at zero temperature [25]. It is more complex in 2D materials.

Magnetism in two-dimensional materials was first observed with the exfoliation of monolayer

and few-layer of FePS3 [26] and CrSiTe3 [27]. The first explicit experimental confirmation of
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magnetism occurred in 2017 by researchers in atomically thin CrI3 [28] and Cr2Ge2Te6 [29].

Since then magnetic order was also observed in single atomic layers of VSe2 [30], Fe3GeTe2 [31]

and MnSe2 [32].

1.2 van der Waals heterostructure

2D crystals have remarkable properties, but the most tremendous potential lies in stacking 2D

layers together to form hybrid multilayer heterostructures. Due to weak van der Waals forces,

such heterostructures are called van der Waals heterostructures (vdWHs). Heterostructures are

made by stacking 2D crystals on top of each other. For example, by taking a monolayer and

putting it on top of another monolayer or few layer crystal. The resulting stack represents an

artificial material. The in-plane stability of 2D crystals is due to strong covalent bonds and weak

van der Waals force, sufficient to keep the stack altogether. The possibility of experimentally

realizing multilayer van der Waals heterostructures has been demonstrated recently [33, 34]. It

gives rise to exciting possibilities for controlling the transport of charge carriers, phonons, and

photons within the interfaces and designing novel devices for engineering applications.

When stacking 2D materials into heterostructures, an important consideration is the crystal

orientation. The alignment of the lattice can have a notable impact on the structural effects

on systems such as moiré pattern, that might result in commensurate or incommensurate

transition. The commensurate state corresponds to the regions with matching lattice constants

and incommensurate state corresponds to the regions with significant lattice mismatch, where

the elastic energy is considerable compared to van der Waals energy [35].

1.3 Magnetic Proximity Effect

Magnetic proximity effects in heterostructures are crucial to exploring and manipulating phe-

nomena sensitive to interfacial properties such as spintronics, topological properties, supercon-
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ducting, etc. The recent inception of 2D magnetic materials have opened up new prospectives

in exploring proximity effect in heterostructures [28]. It is usually a short-range effect because

the extension of the electronic wavefunctions over the interface is finite. Therefore, van der

Waals materials serve as a platform to realize and harness proximity effect [36].

A material acquires properties of its neighbors through the proximity effect, becoming mag-

netic, superconducting, topologically nontrivial, etc. For example, in heterostructures formed

by monolayer WSe2 and atomically thin CrI3, valley Zeeman splitting of about 3 meV at zero

applied magnetic field is observed below the Curie temperature, equivalent to an effective mag-

netic field of about 13 T [37]. Such large induced exchange fields are promising for realizing

magnetic proximity effects that modify the properties of materials adjacent to the magnetic

material. Stacking one material on another magnetic vdW material leads to atomically sharp

interfaces that allow for consistent proximity coupling [38].

1.3.1 Magnetoelectric coupling

The magnetoelectric coupling denoted coupling between the magnetic and the electronic prop-

erties of materials. The first example of magnetoelectric effect was described by Wilhelm

Röntgen [39] in 1888, who observed that where an intrinsic linear magnetoelectric effect was

predicted theoretically and later confirmed experimentally is Cr2O3 [40]. The magnetoelectric

effect is prevalent in multiferroic materials [41]. The contribution to ME can be obtained in the

presence of electric fields by the Landau theory of free energy expansion of the material given

by,

F (E⃗, H⃗) = F0 − P s
i Ei −M s

iHi −
1

2
ϵ0ϵijEiEj −

1

2
µ0µijHiHj − αijEiHj − ... (1.2)

where E⃗ and H⃗ as electric field and magnetic field respectively. P⃗ s and M⃗ s are sponta-

neous polarization and magnetization respectively, whereas ϵ and µ are electric and magnetic
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susceptibilities. Electric polarization can be obtained by differentiating (2)

P⃗i(E⃗, H⃗) = − ∂F

∂Ei

(1.3)

P⃗i(E⃗, H⃗) = P s
i +

1

2
ϵ0ϵijEj + αijHj (1.4)

and magnetization

M⃗i(E⃗, H⃗) = − ∂F

∂Hi

(1.5)

M⃗i(E⃗, H⃗) =M s
i +

1

µ0

µijHj +
1

µ0

αijEi (1.6)

P⃗ s and M⃗ s are spontaneous polarization and magnetization, respectively, whereas ϵ and

µ are electric and magnetic susceptibilities. E⃗ and H⃗ as electric field and magnetic field,

respectively. The tensor αij corresponds to induction of polarization by a magnetic field or

magnetization by an electric field, which is identified as the linear ME effect. It is complemented

by higher-order ME effects parametrized by the tensors β and γ [42].

1.3.2 Piezoelectric effect

Piezoelectric Effect is the ability of materials to generate an electric field in response to ap-

plied mechanical stress. The piezoelectric effect was first seen in 1880 by Jacques and Pierre

Curie [43]. The piezoelectric effect results from the linear electromechanical interaction between

crystalline materials’ mechanical and electrical states with no inversion symmetry. When piezo-

electric material is placed under mechanical stress, there occurs reconfiguration of the dipole-

inducing surrounding or re-orientation of molecular dipole moments. The inverse piezoelectric

effect was deduced from the principles of thermodynamics by Lippman [44]. When the reverse

effect is taken into consideration, an external electrical field either stretches or compresses the

piezoelectric material. This effect has many applications such as sensors in the medical field,

microphones, sound detection, heating devices, ignition of gas stove, etc. The piezoelectric
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effect forms the basis for scanning probe microscopes that resolve images at the scale of atoms.

These effects are firmly dependent on the crystal orientation concerning the strain. In many

cases, a robust piezoelectric effect is observed in one direction. The direction of polarization,

also known as poling axis, is parallel to the z-axis. According to the standard notation, the x,y,

and z axes correspond to subscripts 1,2, and 3, respectively.

The electrical behaviour of piezoelectric materials can be described by Hooke’s law as [45]

D = εE (1.7)

where D is displacement of charge density, ε is the permittivity, and E is the electric field.

To define a system, Hooke’s law states that

S = sT (1.8)

where S is the strain, s is the compliance, and T is the stress.

Equations 1.7 and 1.8 can be combined to form relations,

S = [sE]T + [d]E

D = [dt]T + [εt]E

(1.9)

where [d] is direct piezoelectric effect matrix and [dt] is converse piezoelectric effect matrix,

E denotes zero or constant electric field is found in the system, T indicates zero or constant

stress field across the system, and t determines the transposition matrix.

The constitutive equation that represents the direct piezoelectric effect is given by [46]

D = dT + εE (1.10)

where D is electric polarization, d is piezoelectric coefficient matrix, T is the stress vector, ε is

the electrical permittivity, and E is the electric field vector.
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1.3.3 Piezomagnetic effect

The first observation of piezomagnetic effect was made experimentally in 1960, in the flourides

of cobalt and manganese [47]. Piezomagnetic material changes its magnetic properties when

put under mechanical strain or deformations in the material by application of magnetic field.

Piezomagnetic effect is mainly characterized by coupling between magnetization and mechanical

strain of the material.

1.4 Overview of the Thesis

This thesis revolves around first-principles theoretical calculations and analysis of van der Waals

heterostructure created using graphene and monolayer ferromagnetic 1T-CrTe2. In Chapter 2,

we present an overview of computational methods and formalism used in calculations. For

determination of ground state properties, the usage of density functional theory (DFT) is dis-

cussed. In Chapter 3, we study electronic and magnetic properties of vdW heterostructure

Graphene/1T-CrTe2. As a consequence of external perturbations such as application of per-

pendicular external electric field, carrier doping, and application of strain, there are changes in

the electronic and magnetic properties of Graphene/1T-CrTe2 vdW heterostructure.
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Chapter 2

Methods and Formalism

In this chapter, we discuss the theoretical description and the computational methods utilized

in our First-principles calculations within the framework of density functional theory. In section

2.1, the many-body electron problem is introduced, and in section 2.2, the concepts of density

functional theory (DFT) are discussed, including various approximations and self-consistent

methods.

2.1 Introduction

The quantum mechanical Hamiltonian operator Ĥ of a system made up of interacting electrons

and nuclei is given by

Ĥ = − ℏ2

2me

∑
i

∇2
i −

ℏ2

2MI

∑
I

∇2
I +

e2

2

∑
i ̸=j

1

|ri − rj|
+
e2

2

∑
I ̸=J

ZIZJ

|rI − rJ |

−e2
∑
i,I

ZIe
2

|ri −RI |
(2.1)

where ℏ is Planck’s constant, me and MI are masses of electron and nuclei, respectively, ri is

the position vector for ith electron, ZI and RI are atomic numbers and position vectors of Ith

ion and e is electronic charge. The first and the second terms represent the kinetic energy
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of electrons and nuclei, respectively. The third term constitutes interaction between electrons

and fourth term signifies interaction between nuclei. The fifth term is the Coulomb interaction

between electron and nuclei, which acts as an external potential (Vext) to the system.

With the Hamiltonian given, the time-independent Schrȯdinger equation can be written as

ĤΨ(RI , ri) = ϵΨ(RI , ri) (2.2)

where ϵ and Ψ(RI , ri) are energy eigenvalues and total wavefunction of the system that includes

electronic and ionic part.

2.1.1 Born-Oppenheheimer Approximation

The ground state total energy can be obtained from the equation 2.2. Materials have a large

number of electrons and ions which are coupled to each other. Since electrons move faster than

heavy nuclei, the electrons adiabatically do not undergo any transition between stationary

states. This approximation is called adiabatic or Born-Oppenheimer approximation [1] that

decouples electronic and nuclear degrees of freedom. After applying approximation to Equation

2.1, it reduces to Hamiltonian

Ĥ = − ℏ2

2me

∑
i

∇2
i +

e2

2

∑
i ̸=j

1

|ri − rj|
+ Vext (2.3)

where Vext is the external potential in the background of positive ions.

2.2 Density Functional Theory

Density functional theory is a theory of correlated many-body systems. Density functional

theory was developed through the pioneering work of Hohenberg-Kohn in 1964 [2], and Kohn-

Sham in 1965 [3], which are described in the following section.
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2.2.1 Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem and Kohn-Sham theorem form the basis for the formulation

of density functional theory as an exact theory for the ground state of many-body fermionic

systems.

Theorem I: The ground state electron density no(r) uniquely determines the external

potential except a trivial constant. The ground state properties of a system can be determined

when no(r) is known.

Theorem II: A universal functional for the energy E[n] can be defined in terms of the

density no(r), which is valid for any external potential Vext(r). The exact ground state energy

is the global minimum of this functional and the density that minimizes the functional is the

exact ground state density no(r).

The total energy functional, determined by n(r), is given by

EHK [n] = T [n] + Eee[n] +

∫
drVext(r)n(r) + Eion−ion (2.4)

where T[n] and Eee[n] are the kinetic and potential energies of the interacting electron system.

These theorems assist in calculating the ground state energy by reducing the minimization

problem from 3N to 3 variables. Eion−ion is the Coulomb interaction energy of nuclei.

2.2.2 Kohn-Sham ansatz

In 1965, Kohn and Sham [3] described systems consisting of non-interacting electrons having

the same n(r) moving in a mean-field of external potential arising from the electron-electron

and electron-ion interactions. The main aim of the Kohn-Sham approach was that if one can

find any non-interacting electronic system that produces the same electronic density as that

of the interacting system, then the kinetic energy of the electrons can be calculated through

one-electron orbitals. According to the Kohn-Sham approach, the energy functional can be
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written as

EKS[n(r)] = Ts[n(r)] +
1

2

∫
d3rd3r′n(r)n(r′)

|r − r′|
+

∫
drVext(r)n(r) + EXC [n(r)] + Eion−ion

= Ts[n(r)] + EHartree[n(r)] +

∫
drVext(r)n(r) + EXC [n(r)] + Eion−ion

(2.5)

The first term is the kinetic energy of electrons. The second and third terms are the

interaction energy between electrons and of electrons with external potential, respectively. The

fourth term is the exchange-correlation interaction between electrons.

The Kohn-Sham non-interacting single particle Hamiltonian is

HKS = Ts[n] + VKS(r) (2.6)

where VKS is Kohn-SHam potential, which is defined as,

VKS = Vext(r) + VHartree(r) + VXC(r) (2.7)

where Vext, VHartree, and VXC are external Hartree and exchange-correlation potentials respec-

tively.

Kohn-Sham equations are given as,

HKSΨi(r) = ϵiΨi(r) (2.8)

The ground state density can be written in terms of Ψi(r) as,

n(r) =
∑
i

|Ψi(r)|2 (2.9)

A self-consistent iterative method to solve equations 2.8 is shown in Fig
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Figure 2.1: Flowchart showing self-consistent iterative solution for Kohn-Sham equations

2.2.3 Exchange-correlation functionals

The exchange-correlation energy EXC is defined as the difference between exact energy and

Hartee energy, given as,

EXC = T [n]− Ts[n] + Eee[n]− EHartree (2.10)
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where Ts[n] and Eee[n] are exact kinetic energy and electron-electron interaction energy, respec-

tively. The exact form of EXC is not known. To determine exchange-correlation energy EXC ,

two commonly used approximations are local density approximation (LDA) and generalized

gradient approximation (GGA).

Local Density Approximation (LDA)

In this approximation, the exchange-correlation energy density at each point is the same as

that of a homogeneous electron gas of the same density. In LDA [3], the exchange-correlation

energy functional is written as,

ELDA
XC =

∫
drn(r)ϵXC [n(r)] (2.11)

To tackle highly localized orbitals in correlated systems, local density approximation (LDA)

is used along with additional orbital dependent term Hubbard U. There are several parameter-

izations for exchange-correlation. The most commonly used is that of Perdew and Zunger [4].

Generalized Gradient Approximation (GGA)

LDA describes the properties of homogeneous electron gas reasonably well, but it fails when

charge density changes very abruptly such as in molecules. In the case of inhomogeneous

charge densities, Generalized Gradient Approximation (GGA) [5] is used. In GGA, there are

parameterizations such as Perdew andWang (PW91) [6, 7] and Perdew, Burke and Ernzerhof [8].

The exchange-correlation energy can be showed in terms of the gradient and spatial derivatives

of the charge density as,

EGGA
XC =

∫
drn(r)ϵXC(n(r),∆n(r)) (2.12)

GGA leads to a notable improvement over LDA in estimating energies, bond lengths, and band

gap of semiconductors.
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2.2.4 Basis sets

A basis set is needed to expand the Kohn-Sham wavefunctions to solve Kohn-Sham equations.

The commonly used basis sets are plane waves, atomic orbitals, and mixed basis (a combination

of both). The Kohn-sham wavefunction in the plane basis can be expanded as,

Ψi(r) =
∑

|G|<Gcut

Ci,(k+G)e
i(k+G).r (2.13)

where k is the Bloch wave vector, G is the reciprocal lattice vector and Ci,(k+G) is expansion

coefficient [9, 10]. The expansion is infinite in principle and a kinetic energy cutoff is used to

truncate the set of G vectors and satisfy the condition given below.

ℏ2

2me

|k +G|2 ≤ Ecut (2.14)

where Ecut is cutoff energy, increased till energy is converged. We have used plane wave basis

in all our calculations.

2.2.5 Pseudopotentials

Pseudopotential is another approximation necessary in DFT calculations. The core electrons

in solids are tightly bound to the nucleus and are thus not involved in bonding. Valence and

semi-core electrons actively participate in chemical bonding and the effective screened potential

replaces the interaction of the valence electrons with the nucleus plus the core states. Pseudopo-

tentials are created by considering a cutoff radius (rc) beyond which the pseudo-wavefunction

matches precisely with the true wavefunction (as shown in figure 2.2). The most common

forms of pseudopotentials are norm-conserving and ultrasoft. In the region r <rc, if the charge

of each pseudo wavefunction is equal to the charge of the all-electron wavefunction, then the

pseudopotential is known as norm-conserving pseudopotential [11]. Ultrasoft pseudopotential

includes an augmented charge inside the core region to conserve the total charge while making
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Figure 2.2: Schematic representation of pseudopotential (solid line) and all-electron po-
tential (dotted line) and their corresponding wavefunctions. The figure is taken from
https://en.wikipedia.org/wiki/Pseudopotentials

the potential smoother [12]. Over norm-conserving pseudopotentials, ultrasoft pseudopotentials

offer computational efficiency and accuracy while maintaining transferability.

2.2.6 Dispersion corrections

GGA functionals cannot describe long-range electron correlations responsible for van der Waals

(vdW) forces. Several methods have been developed in recent years to include these dispersive

interactions in DFT calculations. There are two classes of dispersion interactions discussed here:

(1) semi-empirical corrections to existing local functionals, and (2) the application of non-local

exchange-correlation energy functionals to include the London interactions. The inclusion of

the DFT-D2 scheme of Grimme [13] in our calculations gives a reasonably accurate treatment

of London dispersion interactions. The total energy with dispersion correction is given as,

EDFT−D2 = EKS−DFT + EDisp (2.15)
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where EKS−DFT is the self-consistent Kohn-Sham energy. EDisp is the empirical dispersion

correction expressed as,

EDisp = −S6

Na−1∑
i=1

Na∑
j=i+1

Cij
6

R6
ij

fdmp(Rij) (2.16)

where Na refers to number of atoms in the system, S6 is the global scaling factor that depends

on functional and Rij is the interatomic distance. Cij
6 denotes the dispersion coefficient for

atom pain i and j expressed as,

Cij
6 =

√
Ci

6C
j
6 (2.17)

A damping function is used to avoid near-singularities at a smaller value of R in equation 2.16,

which is given as,

FDamping(Rij) =
1

1 + e−d(
Rij

Rr−1
)

(2.18)

where d is the dispersion correction parameter to the total energy and is fixed to value of 20 by

Grimme to give accurate dispersion energies, and Rr denotes the sum of atomic van der Waals

radii.

2.2.7 Electron-electron correlations

DFT fails to deal adequately with electron-electron correlations, which are treated averagely.

Although such a prescription is highly successful in most cases, it fails when the electron-electron

correlation becomes strong as d and f orbitals are present in the systems. The Hubbard model

is a model of interacting particles in a lattice with two terms in Hamiltonian. The first is a

kinetic term that allows the hopping of particles between sites of the lattice, and the second is

the potential term that consists of an on-site interaction. The inclusion of the Hubbard term

in DFT simulations improves the prediction of electron localization, preventing the incorrect

prediction of metallic conduction in insulating systems. The LDA+U method [14] consists of a

correction to the LDA (or GGA) energy functional to better describe electronic correlations [15].

The Hubbard model behaves differently from a tight-binding model when electrons interact



2.2. DENSITY FUNCTIONAL THEORY 25

strongly. For example, the Hubbard model predicts the existence of Mott insulators correctly.

A Hubbard model can also be studied using the dynamical mean-field theory (DMFT). In

addition, the U correction can enhance the description of physical properties other than the

electronic structure, including magnetic and structural properties of correlated systems. By

simply adding a semiempirically tuned numerical parameter U to the DFT+U method, it can

account for the underestimated electronic interactions [16].



Bibliography

[1] Max Born and Robert Oppenheimer. Zur quantentheorie der molekeln. Annalen der physik,

389(20):457–484, 1927.

[2] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review,

136(3B):B864, 1964.

[3] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correla-

tion effects. Physical review, 140(4A):A1133, 1965.

[4] JP Perdew, ER McMullen, and Alex Zunger. Density-functional theory of the correlation

energy in atoms and ions: a simple analytic model and a challenge. Physical Review A,

23(6):2785, 1981.

[5] Richard M Martin. Electronic structure: basic theory and practical methods. Cambridge

university press, 2020.

[6] John P Perdew, P Ziesche, and H Eschrig. Electronic structure of solids’ 91, 1991.

[7] John P Perdew, John A Chevary, Sy H Vosko, Koblar A Jackson, Mark R Pederson,

Dig J Singh, and Carlos Fiolhais. Atoms, molecules, solids, and surfaces: Applications of

the generalized gradient approximation for exchange and correlation. Physical review B,

46(11):6671, 1992.

[8] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approxima-

tion made simple. Physical review letters, 77(18):3865, 1996.

26



BIBLIOGRAPHY 27

[9] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo

Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, et al.

Quantum espresso: a modular and open-source software project for quantum simulations

of materials. Journal of physics: Condensed matter, 21(39):395502, 2009.

[10] Xavier Gonze, J-M Beuken, Razvan Caracas, F Detraux, M Fuchs, G-M Rignanese, Luc

Sindic, Matthieu Verstraete, G Zerah, F Jollet, et al. First-principles computation of ma-

terial properties: the abinit software project. Computational Materials Science, 25(3):478–

492, 2002.
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Chapter 3

van der Waals heterostructure of

graphene and ferromagnetic 1T-CrTe2

monolayer

3.1 Introduction

Graphene is composed of a single layer of carbon atoms arranged in a 2D honeycomb lattice.

Various remarkable properties of graphene have been reported, such as zero band gap, high

Young’s modulus, excellent thermal and electrical conductivity, and high surface area [1]. The

extraordinary properties of graphene make it a promising material for a wide range of applica-

tions such as high-speed electronics, energy generation, hybrid materials, sensors, and even DNA

sequencing [2]. In the monolayer limit, materials spans a wide range of electronic behaviors, for

example, graphene is a semimetal [3], hexagonal boron nitride (hBN) is a wide-gap insulator [4],

MoS2 is a semiconductor [5], NbSe2 is a superconductor [6], CrI3 is a ferromagnet [7], and WTe2

is a quantum spin Hall insulator [8]. Modifications of two-dimensional materials, such as met-

als, semimetals, topological insulators, and semiconductors, have mainly been achieved through

doping, adding magnetic impurities, and combining a substrate, where externally introduced

28
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defects were used to modify their properties [9]. The idea of spin injection into graphene by the

proximity effect is currently an exciting and developing field of research. Because the graphene

layer naturally short-circuits on magnetic conducting substrates, it restricts the design of new

types of devices. The discovery of atomic thin crystals with long-range magnetic order has

opened up new research opportunities in 2D magnetism and low-power spintronic devices [10].

Two-dimensional vdW materials are of great interest and their true potential lies in the pos-

sibility of mixing and matching atomically thin layers of various crystals to form heterostruc-

tures [11]. Van der Waals heterostructures formed by two-dimensional materials are emerging

as materials of great interest. in 2D crystals, strong covalent bonds provide sufficient in-plane

stability and relatively weak vdW interactions to keep the stack together [12]. Magnetic prox-

imity effect studies on vdW heterostructures from various 2D materials have been reported such

as graphene and EuS [13], graphene and CrI3 [14], graphene and hexagonal boron nitride [15],

and CrI3 on WTe2 [16]. Recently, in graphene/BiFeO3 heterostructures, large spin splitting,

as well as tuning of the interfacial exchange coupling, was demonstrated [17]. Various atomic

layers have been found to possess magnetic order, including Fe3GeTe2 [18], MnSe2 [19] and

VSe2 [20].

The proximity effect is an important tool in manipulating spintronics [9]. Doping, de-

fects, and coupling with magnetic substrates have been used previously to create externally

induced magnetic moments in layered atomic crystals. Extrinsic spin injections using robust

exchange interactions are challenging, and magnetic substrates coupled with 2D materials in-

hibit vdW heterostructures that are necessary for developing advanced spintronic devices [21].

Heterostructures have promising applications in nanoelectronics, optoelectronics, and photo-

catalyst fields. For practical application, vdW heterostructures should have flexible and con-

trollable electronic properties, especially a tunable direct bandgap. External application of

electric field and strain are commonly used to modulate the bandgap of 2D heterostructures.

By incorporating a magnetic material into non-magnetic material, the time-reversal symmetry

is broken and the electronic structure is altered due to hybridization with the magnetic layer.
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The motivation behind the present work comes from the successful experimental realiza-

tion of ferromagnetic vdW 1T-CrTe2 monolayer [22]. 1T-CrTe2 is a layered compound with

ferromagnetism critical temperature of 320 K and room temperature for bulk phase and two-

dimensional phase, respectively [23]. Recent work on 2D magnetic 1T-CrTe2 has attracted

considerable attention for applications in magnetic sensors and storage devices due to its strong

magnetic anisotropy and high Curie temperature [24]. CrTe2 is a transition metal dichalco-

genide (TMD) that crystallizes in a 1T phase, in which the chromium hexagonal planes are

sandwiched by tellurium layers [25]. Here, we have investigated the magnetic proximity effect

in the van der Waals heterostructure formed by graphene and monolayer T-CrTe2. Our the-

oretical calculations indicate that the electric and magnetic properties of Graphene/1T-CrTe2

can be tuned using carrier doping, strain, and external electric field.

3.2 Computational Details

Our first-principles calculations are based on density functional theory (DFT) within a General-

ized Gradient Approximation (GGA) [26] of the exchange-correlation energy with a functional

parameterized by Perdew-Burke-Ernzerhof (PBE) as implemented in QUANTUM ESPRESSO

(QE) package [27], which employs plane wave basis and pseudopotentials. The interactions

between ionic cores and valence electrons are represented using Projector Augmented Wave

(PAW) scalar relativistic pseudopotentials [28, 29]. We use an energy cutoff of 60 Ry to trun-

cate the plane-wave basis used to represent wave functions and a charge density cutoff of 500

Ry. In calculations for pristine graphene supercell of 3x3, we have taken energy cutoff of 40

Ry and charge density cutoff of 400 Ry. The van der Waals (vdW) interactions are taken into

account between graphene and ferromagnetic monolayer 1T-CrTe2 using the DFT-D2 method

proposed by Grimme [30]. The occupancy numbers of electronic states are smeared using the

Fermi–Dirac distribution and a smearing width (kBT) of 0.003 Ry. The correlation effects for

Cr-3d orbitals are considered by including the DFT+U approach suggested by Anisimov et
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al. [31] and Liechtenstein et al. [32] with Hubbard U parameter of 2 eV [33] as used by S. Li et

al. All calculations on heterostructure and monolayer 1T-CrTe2 are performed by taking ferro-

magnetic ordering at Cr atoms. We imposed a vacuum of 8 Å in z-direction all calculations. A

3 x 3 x 1 supercell of graphene is used to lattice match with 2 x 2 x 1 supercell of 1T-CrTe2 with

a lattice mismatch of around 0.54 %. C atoms of graphene and Cr and Te atoms of CrTe2 are all

relaxed to obtain the heterostructure. The total energy has been calculated using an accuracy

of 10−8 Ry using the Davidson method of diagonalization with overlap matrix. Brillouin zone

integrations were made on a Monkhorst-Pack grid of 7 x 7 x 1 k-points [34] for heterostructure

and 12 x 12 x 1 for 3 x 3 supercell of pristine graphene. The convergence threshold values on

the total energy and force were 10−6 Ry and 10−5 Ry/a.u., respectively. The external electric

field is applied in the direction perpendicular to the plane of the Graphene/1T-CrTe2. A biaxial

in-plane strain ranging from -1.5% to 1.5% is applied along x and y-directions.

3.3 Results and Discussion

3.3.1 Model Structure

1T-CrTe2 has a layered structure belonging to space group P3̄m1 (No. 164). The primitive

unit cell consists of 18 carbon, 4 chromium, and 8 tellurium atoms. Single-layer of graphene is

composed of carbon atoms arranged in a honeycomb lattice. To construct heterostructure, we

place a 3x3 supercell of graphene on a 2x2 supercell of 1T-CrTe2, having a lattice mismatch of

around 0.54 %. Monolayer 1T-CrTe2 has a hexagonal structure just like graphene. The lattice

constant of pristine graphene is 2.46 Å, and the C-C bond length is 1.42 Å, consistent with the

earlier reported value. Monolayer 1T-CrTe2 has a hexagonal structure. After performing struc-

tural relaxation, the optimized lattice constant is 3.71 Å [35]. Due to Octahedron coordination,

3d orbitals of 1T-CrTe2 splits into eg and t2g. The top and side views of the heterostructure

of graphene and monolayer T-CrTe2 are shown in figure 3.1(a). The heterostructure is fully

relaxed considering ferromagnetic ordering at chromium atoms. The interlayer distance be-
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Figure 3.1: (a) Model structure of Graphene/1T-CrTe2 heterostructure. Top and side views of
periodic unit cell of Graphene/1T-CrTe2 (AB stacking). Brown, blue and yellow balls represent
C, Cr, and Te atoms respectively (b) Brillouin zone of Hexagonal lattice system [36].

Lattice Parameters Pristine graphene Monolayer 1T-CrTe
Graphene/1T-CrTe2
heterostructure

a,b (Å) 2.46 3.71 7.64
supercell 3x3 2x2 1x1

Table 3.1: The calculated lattice parameters of monolayers and heterostructure

tween graphene and monolayer CrTe2 (Graphene/1T-CrTe2) is 3.6 Å. Also, figure 3.1(a) shows

graphene to chromium and graphene to tellurium interlayer distances. The Brillouin zone of

hexagonal lattice is shown in figure 3.1(b). The lattice constant is 7.64 Å. To attain the most

stable configuration, the graphene layer is moved along x and y-directions by 0.33 and 0.66

crystal coordinates, and there is a negligible difference in energy. The lattice constants of

monolayers and heterostructure are shown in the table below. To characterize the stability of

the interface, we calculated the binding energy between graphene and 1T-CrTe2 layers. The
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interface binding energy is defined as,

EB =
[EGraphene/1T−CrTe2 − EGraphene − E1T−CrTe2 ]

N
(3.1)

where Eb is the binding energy; Egraphene/1T−CrTe2 , EGraphene and E1T−CrTe2 are the total energy

of the vdW heterostructure, pristine graphene layer and monolayer 1T-CrTe2, respectively. N

is the number of atoms in the heterostructure. [37]. The binding energy obtained without

including vdW correction is 4.8 meV/atom and with the inclusion of vdW correction is -

160 meV/atom. The negative binding energy of the heterostructure with vdW interactions

indicates that the fabrication of the heterostructure is energetically feasible. Thus, the weak

vdW interactions play a non-trivial role in the heterostructure.

3.3.2 Electronic Structure and Projected Density of States

The electronic structure of the supercell of (3x3) graphene is shown in figure 3.2(a). The

red and black bands show spin up and spin down respectively. In pristine graphene, spin-

up and spin-down bands are degenerate. The K and K’ points in the unit cell are folded

to Γ point in the (3x3) supercell of graphene. Any wavevector in the higher Brillouin zones

can be folded to its corresponding wavevector in the first Brillouin zone via the translational

symmetry operation [38]. The pristine graphene shows two pairs of bands in the 3x3 supercell,

and since spin-polarized calculations are done, there are eight bands of graphene, including

four bands each for the spin up and spin down. The eight bands of graphene around the Γ

point appears to be preserved. The spin-polarized electronic structure of graphene/1T-CrTe2

is plotted, as shown in figure 3.2(b) along with the spin-polarized partial density of states.

The partial density of states describes the contribution of particular atomic orbitals in the

graphene/1T-CrTe2 heterostructure. The states near Fermi level have maximum contribution

from C-p, Cr-d and Te-p orbitals. The monolayer of 1T-CrTe2 is metallic and pristine graphene

is semimetallic in nature. Graphene/1T-CrTe2 heterostructure shows metallic characteristics.
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Figure 3.2: Spin-resolved electronic structure of (a) Pristine Graphene of supercell (3x3) (b)
heterostructure of Gr/1T-CrTe2 along with the spin-resolved projected density of states (c)
Magnified electronic structure of heterostructure near Γ point

The inclusion of 2D magnetic layer below graphene layer shifts and changes the electronic

structure of the graphene/1T-CrTe2 heterostructure remarkably due to different chemical and

magnetic environment. We note that the bands of 1T-CrTe2 are not affected significantly

and the graphene Dirac points are shifted above the Fermi level 0.48 eV and 0.49 eV for spin

up and spin down bands. However, the spin up and spin down bands near Γ point reveal a

significant change as shown in figure 3.2(c). There are four spin up and four spin down bands.

The spin up and spin down Dirac points have energy gap of about 2.5 meV. The band gap

arises from the proximity induced exchange splitting of spin up and spin down bands. It is

due to the exchange field in graphene induced by the 1T-CrTe2 layer containing ferromagnetic
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Cr atoms. The magnetic ordering of heterostructure is ferromagnetic in the ground state

having magnetic moment of 10.69 µB per cell. Whereas, magnetic moment for monolayer

1T-CrTe2 is 10.64 µB per cell with an increase of 20% in comparison to bulk counterpart

having magnetic moment of 10.44 µB per cell. The increase in the magnetic moment by

3% in heterostructure with respect to the monolayer 1T-CrTe2 indicates magnetic proximity

effect [39]. In the heterostructure Graphene/1T-CrTe2, inversion symmetry and time reversal

symmetry are broken due to ferromagnetic layer of 1T-CrTe2. In figure 3.2(c), out of the four

spin up bands, two bands have been observed to undergo a band splitting of about ϵ1 = 2.6

meV and ϵ2 = 3.6 meV. Similarly for spin down, two of the four bands have undergone band

splitting of ϵ1 = 6.9 meV and ϵ2 = 7.0 meV. In the next section, we will discuss regarding which

orbitals of Cr, Te and contribute to the states near Fermi level.

3.3.3 Orbital-resolved Electronic Structure

Orbital resolved electronic structure or fat band structure is used to visualize the contributions

of different orbitals to the electronic structure of the system. To get better understanding,

we calculate the projection of individual bands onto some orbital (such as s,p,d,f orbitals).In

fatbands we show the projections as functions of both momentum and energy i.e, projection onto

orbitals with different angular momentum such as l=0,1,2. In order to study the contribution of

each atomic orbital of atom to each band in the electronic structure, orbital-resolved electronic

structure of Graphene/1T-CrTe2 heterostructure for C, Cr and Te atoms are plotted, see figure

3.3(a)-(h). Spin up and spin down bands at Dirac cone have predominant C-pz character.

As shown in figure 3.3(c), (e) and (g), for spin up bands of heterostructure, the states near

Fermi level have contributions from Cr-dz2 , Cr-dx2−y2 , Te-px and Te-py orbitals. As shown in

figure 3.3(d), (f) and (h), the states near Fermi level in spin down bands of heterostructure has

contributions from Cr-dx2−y2 , Te-px and Te-py orbitals.
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Figure 3.3: Orbital-resolved electronic structure of Graphene/1T-CrTe2 in spin up and spin
down channels for [(a) and (b)] C, [(c) - (f)] Cr, [(g) and (h)] Te atoms.
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3.3.4 Work Function and Charge Transfer

Work function is defined as the minimum amount of energy required to remove one electron

from the highest occupied level to infinity. It is calculated using

ϕ = Evac − EF (3.2)

where Evac is energy of vacuum and EF is the Fermi energy. From equation 3.2, we can obtain

the ϕ work function for graphene, monolayer 1T-CrTe2 and heterostructure Graphene/1T-CrTe2

as shown in figure 3.4(a)

Materials Work Function (eV)
Pristine graphene 4.26
Monolayer 1T-CrTe2 5.35
Undoped
graphene/1T-CrTe2
heterostructure

5.07

Doped1

graphene/1T-CrTe2
heterostructure

4.68

Table 3.2: Work functions of monolayers and heterostructure calculated from macroscopic
average potential plots

The shift of the Dirac point above Fermi level can be accounted by charge transfer. To

illustrate the charge transfer, we calculated the electron density difference, which is obtained

by subtracting the charge densities of the isolated graphene and 1T-CrTe2 slabs from the total

charge density in the heterostructure. The electron density difference of the heterostructure

Graphene/1T-CrTe2 can be obtained using,

∆ρ = ∆ρHetero −∆ρGr −∆ρ1T−CrTe2 (3.3)

where ∆ ρHetero, ∆ ρGr and ∆ ρ1T−CrTe2 are charge densities of heterostructure, graphene and

1doping heterostructure with one electron per two unit cells
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1T-CrTe2 respectively. Figure 3.4(b) shows the charge density difference of the heterostructure.

Figure 3.4: (a)The macroscopic average and the average of the electrostatic potential for un-
doped heterostructure of Graphene/1T-CrTe2 (b) Charge density difference with the isosurface
value of 0.00022 e/Å3. Cyan and yellow colors represent electron depletion and accumulation
respectively.

The yellow and cyan represents electron accumulation and depletion respectively. Thus, the

electron transfers from graphene layer to monolayer 1T-CrTe2 layer. When two layers with

different work functions come in contact with each other, the charges redistribution to equalize

the EF between the layers. This charge redistribution results in intrinsic dipole moment and

the polarization is 0.12 µC/cm2. This refers to p-type doping of the graphene layer, which
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results from electron transfer from graphene to the 1T-CrTe2 layer. In the next section, we will

disuss magnetic properties of heterostructure.

3.3.5 Magnetic Properties

In the bulk and two-dimensional phase, 1T-CrTe2 has a ferromagnetism critical temperature

of 320 K and room temperature, respectively [23]. The spin density plots are shown in fig-

ure 3.5(a) and 3.5(b), which clearly shows that the Cr atoms contribute most to the magnetic

moment of the heterostructure (3.11 µB), whereas each Te atom provides -0.233 µB to the mag-

netic moment. The ferromagnetic properties of the heterostructure come from Cr atoms. The

magnetic ordering of heterostructure is ferromagnetic in the ground state having magnetization

of 10.69 µB per cell.

Figure 3.5: (a) Top and (b) side views of the heterostructure showing spin density distribution,
with yellow and cyan colors showing positive and negative magnetization density on Cr and Te
atoms respectively.

3.3.6 Carrier doping

One electron per two unit cells is doped in the graphene/1T-CrTe2 vdW heterostructure. Figure

3.6(a) shows a schematic of gap opening at Dirac point of the heterostructure due to magnetic
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proximity effect and doping for spin up bands. The spin-polarized electronic structure of one

electron doped per two unit cells of Graphene/1T-CrTe2 heterostructure is plotted in figure

3.6(b).

Figure 3.6: (a) Schematic diagram of gap opening in Graphene and 1T-CrTe2 vdW het-
erostructure for spin up channel (b) Spin-resolved electronic structure of Graphene/1T-CrTe2
after one electron per two unit cells doped along with the spin-resolved projected density of
states (PDOS) (c) Charge density difference with the isosurface value of 0.0001 e/Å3 of one
electron per two unit cells doped Graphene/1T-CrTe2 vdW heterostructure. Cyan and yellow
colors represent electron depletion and accumulation respectively.

Due to the n-type doping of heterostructure, the band gap open at Γ point are ϵ1 = 8.5

meV and ϵ2 = 9.9 meV, which are comparatively higher than the undoped heterostructure. It

should be noted that the Dirac cone of graphene at Γ point has shifted to the Fermi level and

shows enhanced electron transfer from Graphene to 1T-CrTe2 layer, as shown in figure 3.6(c).

To realize change in dipole moment after electron doping, the planar and macroscopic average
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Figure 3.7: The macroscopic average and the average of the electrostatic potential for one
electron doped per two unit cells in heterostructure of Graphene/1T-CrTe2

potentials are shown in figure 3.7. The strengthened charge distribution results in the change

in induced dipole moment which results in a polarization of around 0.16 µC/cm2.

Figure 3.8: Magnetization M and polarization P as a function of hole and electron doping in
Graphene/1T-CrTe2 vdW heterostructure
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Carrier doping can play a significant role in material properties. In figure 3.8, we have shown

the variation of magnetization and polarization with respect to hole and electron doping. As

a result of electron or hole doping, magnetization per cell varies linearly. On the other hand,

polarization decreases modestly with hole doping and varies drastically with electron doping.

This shows that there is possible magnetoelectric coupling in the heterostructure, which is

discussed in subsequent section.

3.3.7 External Electric Field

In addition to doping, a perpendicular external electric field may be used to tune the electronic

and magnetic properties of vdW heterostructures. Figure 3.9(a) depicts the change in magne-

tization with change in polarization for relaxed and self-consistent calculations, which implies

significant magnetoelectric coupling. Dzyaloshinskii [40] was the first to show a violation of

time-reversal symmetry explicitly for a particular system (antiferromagnetic Cr2O3), which

was soon followed by experimental confirmation of electric-field-induced magnetization. The

linear magnetoelectric effect was studied by Dzyaloshinskii from a symmetry point of view [41].

A perpendicular external electric field is applied in z-directions ranging from -0.5 V/Åto 0.5

Figure 3.9: (a) Change in polarization with change in magnetization considering self-consistent
and relaxation of structure (b) The Fermi level shift under external electric field in the z-
direction

V/Å. Figure 3.9(b) shows that the Fermi level is shifts deeper towards the valence band and
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into conduction band for electric field along positive and negative z-direction, respectively. In

other words, the Dirac points shift to higher energy and lower energy with respect to the Fermi

level for positive and negative electric field, respectively.

The change in electronic structure with externally applied electric field can be quantified

in terms of charge density difference profile. In undoped heterostructure, the electron transfer

from graphene to 1T-CrTe2 layer creates an intrinsic electric field across the heterostructure

and by providing a positive external field in the z-direction, additional electrons are transferred

from Graphene to the 1T-CrTe2 layer, which strengthens the p-type behaviour. For negative

electric field applied in z-direction, the electron transfer shows n-type behavior.

Figure 3.10: Spin-resolved electronic structure of Graphene/1T-CrTe2 under negative electric
field strength of 0.26 V/Å

At a particular value of negative electric field strength of 0.26 V/Å, the Dirac points of

graphene pin at the Fermi level as shown by spin-resolved electronic structure of Graphene/1T-

CrTe2 in figure 3.10. It is observed that the metallic behavior of heterostructure remains intact.

The Dirac points of graphene in the electronic structure of the heterostructure Graphene/1T-

CrTe2 are found to be tunable with an perpendicular external electric field, leading to the

self-induced p-type or n-type doping effect.
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3.3.8 Magnetoelectric coupling

Figure 3.11: Schematic showing fields and coupling [42]

Magnetoelectric effect is the induction of magnetization with the application of an electric field

or the induction of polarisation with the application of a magnetic field [43]. Since the electric

field E and the magnetic field H are vectors, the coupling parameters will be tensors. Application

of electric field leads to change in magnetization as shown in figure 3.12. The symmetry of a

biferroic with both electrical and magnetic ordering naturally permits a nonzero magnetoelectric

coupling. This can be understood by taking symmetry considerations for two order parameters,

polarization P and magnetization M. Polarization is the electric dipole moment per unit volume

and magnetization is the magnetic dipole moment per unit volume. In a quantum mechanical

sense, polarization is equivalent to the expectation value of the position operator r, while

magnetic moment corresponds to that of the angular momentum operator r x p (p is the

momentum), which is related to the symmetry properties [42]. Under spatial and time inversion,

it determines the transformation properties of P and M (under inversion i and reflection) are

given as,

îP = −P, îM =M

σ̂zPz = −Pz, σ̂zMz =Mz

σ̂zPx = Px, σ̂zMx = −Mx

(3.4)
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Figure 3.12: Variation of magnetization M under external electric field in the z-direction

From the theory discussed in section 1.3.1 of Chapter 1, the magnetoelectric coupling coef-

ficient αij is calculated here as,

αij = µ0
∂Mi

∂Ej

(3.5)

The above equation is applied to the negative electric field region, where linearity is observed.

The magnetoelectric coupling coefficient α is equal to 0.804 psm−1. Magnetoelectric coupling in

heterostructure depends on the interplay among the spin and charge degrees of freedom across

the interfaces.

3.3.9 Piezoelectricity and Piezomagnetism

The electronic, optical and magnetic properties can be tuned in 2D materials [44], especially

semiconductors by applying an in-plane strain. The strain ε applied along a direction is defined

as ε = (l - lo)/lo x 100%, where l and lo are the lattice constants of original and strained

structure. Positive and negative signs indicate tensile and compressive strains respectively. Fig

7(a) shows variation of magnetization and polarization with biaxial strain applied along x and

y-directions for relaxed structure of Graphene/1T-CrTe2 vdW heterostructure, ranging from

-1.5% to 1.5%.
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Figure 3.13: (a) Spin-resolved electronic structure of Graphene/1T-CrTe2 under 0.5 % biaxial
strain along x and y-directions (b) Change in magnetization under biaxial strains applied in
the x and y-directions

Spin-resolved electronic structure is shown in figure 3.13(a), there is hardly any change in

the electronic structure in comparison to that of unperturbed heterostructure. As shown in

figure 3.13(b), with biaxial strains, there occurs small change in magnetization.

In figure 3.14, we concur that the magnetization of the heterostructure changes from 10.69

µB per cell to 10.75 µB per cell linearly with stress , which indicates that the in-plane biaxial

strain, assumed to be isotropic, can affect the magnetization in the heterostructure. Conse-

quently, there occurs a piezomagnetic effect. It is also interesting to observe that the polariza-

tion also changes linearly with stress. We calculated the linear piezoelectric and piezomagnetic

coefficients dij and qij are given as

dij =
∂P

∂T
(3.6)

qij =
∂M

∂T
(3.7)

where T is the stress field and i, j indicates directions of polarization and applied stress, re-

spectively. Fom above equations, estimate of piezoelectric coefficient d31 is 0.063 pm/V and

piezomagnetic coefficient q31 is 16.32 pm/A. Consequently, strain applied to a heterostructure
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Figure 3.14: Magnetization M and polarization P as a function of stress in Graphene/1T-
CrTe2 heterostructure

changes its polarization and magnetization, which leads to appearance of piezoelectric and

piezomagnetic effects.

3.3.10 Model of Dirac bands of graphene

To understand the gap opening up at the Dirac point of graphene at Γ point, we have developed

the following model using k.p approximation. Electrons in a solid are described by the single

electron Schrödinger equation given as

Hψ = (
p2

2m
+ V )ψ (3.8)



48 3.3. RESULTS AND DISCUSSION

where V is the periodic potential with symmetries that obey crystal’s symmetry. The wave-

function ψ follows Bloch’s theorem expressed as,

ψn,k(x) = eik.xun,k(x) (3.9)

where k is crystal momentum vector, n is band index and un.k is periodic function having same

periodicity as crystal. In each band, there is a relation between the wavevector k and the energy

of the state En, k called the band dispersion [45].

Figure 3.15: Energy dispersion of Dirac bands near Γ point within k.p approximation

The dirac bands hamiltonian (4x4) for a particular spin (up/down) can be reduced to 2 x

2 by making use of Pauli matrices σx, σy and σz expressed as,

σx =

0 1

1 0



σy =

0 −i

i 0
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σz =

1 0

0 −1


The four band hamiltonian can be written as,

Hhetero =

γ0 γ1

γ1 γ0


where γ0 is the 2D Dirac hamiltonian of graphene is given by, γ0 = ℏvF σ⃗.⃗k, where σ

represents Pauli matrices, vF is the Fermi velocity and σ⃗.⃗k=kxσx+kyσy.

γ1 =

d 0

0 0


To model energy bands at Γ point as shown in figure 3.15, we have taken ky = 0 and d = 0.02

to get energy dispersion within tight-binding approximation generated using Mathematica 12.0

(Wolfram Research).

3.4 Conclusions

Using first-principles calculations within density functional theory, we determine the electronic

and magnetic properties of graphene/1T-CrTe2 heterostructure. The negative binding energy of

160 meV/atom shows that fabircation of heterostructure is feasible. The results show that due

to the magnetic proximity effect [41], there is spin splitting of graphene Dirac bands of 6.2 meV

and 14 meV for spin up and spin down channels respectively, in the heterostructure. The Dirac

points of graphene are shifted above the Fermi level due to electron transfer from graphene to

1T-CrTe2 layer. Due to electron doping of heterostructure by one electron per two unit cells,

the Dirac points of graphene shifts to the Fermi level and the energy difference between the

Dirac bands increases to 18.4 meV and 22.8 meV for spin up and spin down respectively. The
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Dirac points of graphene in the electronic structure of the heterostructure Graphene/1T-CrTe2

shows tunability with an external electric field that results in the so-called self-induced p-type

or n-type doping effect and are shifted to the Fermi level by one electron doping per two unit

cells. The application of strain to the heterostructure ranging from -1.5% to 1.5% changes its

polarization and magnetization, which leads to appearance of piezoelectric and piezomagnetic

effects, with piezoelectric and piezomagnetic coefficients equal to 0.063 pm/V and 16.32 pm/A,

respectively . Finally, the Dirac bands of graphene are modeled using k.p approximation.
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Chapter 4

Summary

The central theme of this thesis is to explore electronic and magnetic properties of heterostruc-

ture created by stacking graphene of 3x3 supercell over 1T-CrTe2 monolayer of 2x2 supercell,

which is reported to be 2D magnetic material showing ferromagnetism at room temperature.

The heterostructure is constructed having lattice mismatch of 0.54%. The heterostructure The

electronic structure showed that the heterostructure has metallic character and that the Dirac

points of graphene shoft above the Fermi level by 6.2 meV and 14 meV for spin up and spin

down channels, respectively. This shift is accounted by the electron transfer from graphene layer

to 1T-CrTe2 layer. The Dirac points of graphene are tunable with respect to perturbations ap-

plied such as perpendicular electric field in z-direction, carrier doping (holes and electrons) and

biaxial strain in x and y-directions. We found some interesting effects such as magnetoelectric

effect, piezoelectric effect and piezomagnetic effect. With application of external electric field in

z-direction, the Dirac points of graphene tune with positive and negative electric field. Because

of electron doping of the heterostructure by one electron per two unit cell, the Dirac points of

graphene shifts to the Fermi level and the energy difference between the Dirac bands increases

to 18.4 meV and 22.8 meV for spin up and spin down respectively. Similar shift of the Dirac

points of graphene to the Fermi level is seen with application of negative electric field of 0.26

V/Åalong z-direction. The polarization and magnetization in the heterostructure varies with
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external electric field, carrier doping and application of stress. The magnetoelectric effect is

prevalent in the heterostructure, with a non-zero magnetoelectric coupling coefficient of 0.804

ps/m. The heterostructure exhibits piezoelectricity and piezomagnetism. The piezoelectric and

piezomagnetic coefficients are calculated to be 0.063 pm/V and 16.32 pm/A, respectively. Our

work can serve as a foundation for understanding graphene based vdW heterostructures.
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