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Abstract

This thesis broadly deals with the motion of passive particles in density stratified fluids in
the viscous limit and can be divided into two parts. The first part is concerned with the
evaluation of the drift volume, as defined by Darwin [1953], due to slow settling of a sphere
in a weakly stratified fluid in the convection dominant limit. This problem is motivated by the
intent to examine the validity of the rather provocative proposal of a biogenic contribution
to ocean mixing [Katija and Dabiri, 2009; Leshansky and Pismen, 2010; Subramanian,
2010]. The main intention is therefore to evaluate the drift volume due to a passive sphere
settling, in the regime mentioned above, which in turn requires the velocity field generated
by sphere translation. Thus, the problem considered in the first part is concerned with
the evaluation of the velocity and density fields due to translation of a sphere in a stably
stratified ambient in the limit of small Reynolds (Re ≪ 1) and viscous Richardson (Riv ≪ 1)
numbers; here, Re = ρUa

µ
and Riv =

γa3g
µU with a being the sphere radius, U the translation

speed, ρ and µ the density and viscosity of the stratified ambient, g the acceleration due
to gravity, and γ(> 0) the density gradient (assumed constant) characterizing the stable
ambient stratification. In contrast to most earlier efforts, our study primarily considers the
convection dominant limit corresponding to Pe = Ua

D ≫ 1, D being the diffusivity of the
stratifying agent. However, the diffusion dominant (Pe → 0) regime [Ardekani and Stocker,
2010; List, 1971] is also considered for purposes of completeness, with a few new results,
with regard to the structure of the velocity and density fields being presented. Using a
combination of numerical computations and far-field asymptotics, we have characterized
in detail the velocity and density fields in what we term the Stokes stratification regime,
defined by Re ≪ Ri1/3

v ≪ 1, and corresponding to the dominance of buoyancy over inertial
forces. We have used a Fourier transform approach to write down the velocity and density
fields as Fourier integrals, and a far-field analysis of these integrals leads us to distinguish
between different regions of the flow field. On the whole, buoyancy forces associated with
the perturbed stratification fundamentally alter the viscously dominated fluid motion at large
distances. At distances of order the stratification screening length, that scales as aRi−1/3

v in
the large-Pe limit, the fluid motion transforms from the familiar fore-aft symmetric Stokesian
form to a fore-aft asymmetric pattern of recirculating cells with primarily horizontal motion
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within; except in the vicinity of the rear stagnation streamline. At larger distances, the motion
is vanishingly small except within (a) an axisymmetric horizontal wake whose vertical extent
grows as O(Ri−1/5

v r2/5
t ), rt being the distance in the plane perpendicular to translation and (b)

a buoyant reverse jet behind the particle that narrows as the inverse square root of distance
downstream. For Pe = ∞, the motion close to the rear stagnation streamline starts off pointing
in the direction of translation, in the inner Stokesian region, and decaying as the inverse of
the downstream distance; the motion reverses beyond a distance of 1.15aRi−1/3

v , with the
eventual reverse flow in the far-field buoyant jet again decaying as the inverse of the distance
downstream. For large but finite Pe, the narrowing jet is smeared out beyond a distance of
O(aRi−1/2

v Pe1/2), leading to an exponential decay in the aforementioned reverse flow.
The velocity field obtained above in the convection dominant limit, is used to calculate

the associated fluid pathlines, drift displacements, drift surfaces, and finally, the drift volume
for different viscous Richardson (Riv) and Peclet (Pe) numbers. In order to account for the
finite size of the sphere, a uniformly valid expression for the velocity field is found by means
of an additive composite approximation involving the summation of the inner and outer
region expressions and subtraction of the overlapping contribution. Numerical integration of
the ODE’s governing the positions of the fluid elements is carried out using the composite
velocity field above (both axial and transverse components), at each time instant, with the
outer-region contribution being given as Fourier integrals. At the initial time t = 0, fluid
elements are assumed to occupy a horizontal plane z = 0. The calculations of the upstream
and downstream drift components are then carried out by integrating to suitably large negative
and positive times, respectively. Our results clearly show that the pathlines and the drift
displacements thus obtained do not show the characteristics associated with a homogeneous
Stokes flow. In particular, the drift displacements do not exhibit a logarithmic-in-time
divergence characteristic of a homogeneous Stokesian regime. Further, the downstream
calculations show a reversal of fluid pathlines due to the effects of the aforementioned
existence rearward jet for times t > O(Ri−1/3

v ). The drift surfaces, corresponding to times
approaching negative and positive infinity, are shown to asymptote to finite limiting forms,
implying that the drift volume converges to a finite value in a density stratified fluid for any
finite Pe. For sufficiently large Pe, the upstream and downstream components of the total
drift volumes are shown to scale as Ri−2/3

v , although the convergence to this limiting large-Pe
plateau is much faster for the upstream component. The final drift volume has the character
of a reflux owing to the aforementioned reversal of fluid pathlines, and the cancellation
between the upstream and downstream components appears to result in a net drift volume
that is smaller than that expected from naive scaling arguments, with the scaling obtained
from the numerics being closer to Ri−1/3

v . Further, the fact that the total drift volume has the
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character of a reflux clearly indicates the singular role of stratification, for sufficiently long
times, on the drift induced by particles in density stratified fluids.

The second part of the thesis is concerned with the rotation of a sedimenting spheroid,
of an arbitrary aspect ratio, in a weakly stratified fluid again in the convection dominant
limit. This work is primarily motivated by the recent experiments of Mercier et al. [2020];
Mrokowska [2018, 2020a,b]. These recent efforts demonstrated the non-trivial effects of
stratification on settling anisotropic particles such as the emergence of a longside-on settling
regime, and evidence of long-lived orientations with an inclination intermediate between
the limiting broadside-on and longside-on configurations. In order to explain this behavior,
we consider the rotation of a spheroid in a viscous density stratified fluid in the convection-
dominant limit. We derive analytically the angular velocity of a spheroid of aspect ratio κ ,
sedimenting in a linearly stratified ambient. A generalized reciprocal theorem is used to write
down the different contributions to the angular velocity. The analysis demarcates regions
in parameter space corresponding to broadside-on and edgewise (longside-on) settling in
the limit Re,Riv ≪ 1, where Re = ρ0UL/µ and Riv = γL3g/µU , the Reynolds and viscous
Richardson numbers, respectively, are dimensionless measures of the importance of inertial
and buoyancy forces relative to viscous ones. Here, L is the spheroid semi-major axis,
U an appropriate settling velocity scale, µ the fluid viscosity, and γ(> 0) the (constant)
density gradient characterizing the stably stratified ambient, with ρ0 being the fluid density
taken to be a constant within the Boussinesq framework. We use the generalized reciprocal
theorem formulation to identify three different contributions to the torque: (1) an O(Re)
inertial contribution that already exists in a homogeneous ambient, and orients the spheroid
broadside-on; (2) an O(Riv) hydrostatic contribution due to the ambient linear stratification
that also orients the spheroid broadside-on; and (3) a hydrodynamic contribution arising
from the perturbation of the ambient stratification by the spheroid whose nature depends
on Pe; Pe =UL/D being the Peclet number with D the diffusivity of the stratifying agent.
Our work shows that, for Pe ≫ 1, the hydrodynamic contribution is O(Ri2/3

v ), and therefore
dominant over the O(Riv) hydrostatic one, in the Stokes stratification regime characterized by
Re ≪ Ri1/3

v , and orients the spheroid edgewise regardless of κ . Further, the hydrodynamic
stratification torque exhibits a non-trivial orientation dependence on account of its singular
character, in contrast to the regular sinψ cosψ dependence exhibited by the inertial torque; ψ

here being the angle between the spheroid orientation and gravity. The differing orientation
dependencies of the inertial and large-Pe hydrodynamic stratification torques imply that
the broadside-on and edgewise settling regimes are separated by two distinct κ-dependent
critical curves in the Riv/Re3/2−κ plane, with the region between these curves correponding
to stable intermediate equilibrium orientations. The predictions for large Pe are shown to be
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broadly consistent with the aforementioned experimental observations [Mercier et al., 2020;
Mrokowska, 2018, 2020a,b].
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Chapter 1

Introduction

Motion of particles in continuous and sharply stratified fluid environments occurs in a wide
variety of problems, transcending an immense range of length scales from those relevant
to microfluidic applications to those pertaining to astrophysical scenarios [Magnaudet and
Mercier, 2020]. This clearly points to the importance of studying particle motion through
a density-stratified fluid medium. The case of naturally occurring settings is particularly
important since both the atmosphere and oceans, on average, are stably stratified fluids, and
thus motion of particles moving through them is a ubiquitous phenomenon [Magnaudet
and Mercier, 2020]. In the case of oceans, there exist examples of both active and passive
particles moving through the pycnocline, the layer of the ocean corresponding to the largest
(stable) density gradients. Examples of passive particles (the so-called marine snow) moving
in the oceanic ambient consist primarily of a variety of organic and inorganic matter such as
dead or dying animals, phytoplankton, sand and fecal matter, and these are known to play
an important role in oceanic carbon cycle [Dutkiewicz et al., 2019]. With regard to active
particles, the relevant examples are the smallest swimming organisms (zooplankton) since
they contribute to the major portion of the oceanic bioamass (note further that the majority of
the aquatic biomass is located within the oceans). The diurnal migration pattern of these small
swimming organisms through the oceans has, in fact, been termed the largest migration on
earth [Martin et al., 2020]. Thus, investigation of the fluid mechanical processes arising from
perturbation of the ambient density stratification, by both swimmers and passive particles, will
potentially help us better understand the various issues concerning environmental pollution
and climate variability.

Most earlier studies, that have focused on the particles moving through stratified fluids,
have examined the increase in the drag on, and the associated slowing down of, the particles
when they move through discontinuous/continuous stratified environments Candelier et al.
[2014]; Srdić-Mitrović et al. [1999]; Yick et al. [2009]; Zvirin and Chadwick [1975]. Previous
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studies have also reported the accumulation of particles/marine snow at density interfaces
[Alldredge et al., 2002; MacIntyre et al., 1995]. An ambient stratification has also been
known to alter the dispersion characteristics of both the passive and active particles [see
Magnaudet and Mercier [2020] and references therein; Clercx et al. [2018]]. Apart from
the translation of particles that is directly affect by the drag, it is also important to examine
the role of density stratification on the orientation degrees of freedom when the particles are
anisotropic, and the nature of the induced fluid motion for both spherical and anisotropic
particles.

Since the first part of this thesis is concerned with the role of density stratification on
the fluid motion, we briefly motivate this problem to begin with. Meridional overturning
circulation of oceans [Summerhayes and Thorpe, 1996; Vallis, 2011] [see Figure 1.1 for an
artist’s representation] has been known to be driven by winds, tides, and contributions from
Coriolis effects, cabeling, etc. Estimates indicate that there exists a shortfall in the energy
budget (of the order of Terawatts) required for large-scale ocean mixing after accounting for
the energy supply from the above mentioned well known sources Munk and Wunsch [1998];
Munk [1966]. Katija and Dabiri [2009] in their article have argued that it is possible for small
swimming microorganisms (which constitute most of the oceanic biomass, as mentioned
above) to mix the oceans by an amount comparable to winds and tides. In contrast to the
winds and tides, the energy input in this so-called biogenic contribution occurs at the smallest
scales. The aforementioned authors’ arguments for the biogenic mixing mechanism are based
on the concept of the drift of fluid elements induced by small moving (or swimming) bodies.
This ’drift’ correlates to the net fluid displacement induced by the zooplankton or copepods,
involved in the aforementioned migration across the pycnocline, and that range in sizes from
tens of microns to a few millimeters. The idea of a drift was first analyzed theoretically by
Maxwell [1869] and Darwin [1953] in the inviscid limit, for a translating cylinder (Darwin
[1953] considered the drift due to a translating sphere as well). The authors postulate that
lower Reynolds numbers (Re), as is the case for the smallest swimmers above that constitute
the dominant aquatic biomass, would tend to enhance the drift of fluid elements via the
slowly decaying velocity field in the organism’s wake. However, Katija and Dabiri [2009]’s
arguments are in error as clarified by Subramanian [2010] and Leshansky and Pismen [2010],
since they have not differentiated between the velocity fields generated by a translating
passive particle and an active swimmer. Regardless of this error, however, the calculation of
the drift volume associated with a single translating passive or active particle, in a viscous
ambient, remains an interesting and non-trivial question. The drift volume, for any finite
Reynolds number (Re), associated with a translating passive particle is essentially infinite
[Chisholm and Khair, 2017; Eames et al., 2003]; this in turn arises owing to the divergent
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drift displacements undergone by fluid elements entrained by the viscous wake. As indicated
by Subramanian [2010], to obtain a sensible finite estimate for the drift volume, one would
have to also account for the stratification of the ocean, since stable stratification would act to
inhibit the vertical motion of fluid elements, thereby truncating the divergence in the drift
volume that would otherwise occur in a homogeneous fluid. This can be understood from
the fact that any fluid element displaced from its equilibrium position in a stably stratified
ambient (like the ocean) would undergo an oscillation (given by the Brunt-Vaisala frequency
[Turner, 1979] in the case of an inviscid oscillation) due to a restoring buoyant force. Thus,
the objective of the first part of the thesis is to consider the motion of a passive particle in
a stratified medium, along the ambient density gradient, in an attempt to estimate the drift
volume as a function of the underlying dimensionless parameters. For a homogeneous fluid,
the only parameter that influences the drift volume is the Reynolds number; for the stratified
medium under consideration, the drift volume will be both a function of the Reynolds (Re)
and the viscous Richardson numbers (Riv). For small Re, Riv is a measure of the strength
of the buoyancy forces in relation to viscous forces (note that this is in contrast to the usual
Richardson number which is a measure of buoyancy forces in comparison to inertial forces).
There is an additional dependence on the Peclet number based on the diffusivity of the
stratifying agent; excluding very small particles, the Peclet number (Pe) may be regarded
as large when assuming salt to be the agent responsible for the stratification. Finally, the
medium stratification considered is continuous and a linear function of the vertical coordinate,
keeping in mind that the particles of relevance are marine snow and small aquatic swimmers
(copepods of a size much smaller than the typical scale of the stratification associated with
ocean’s pycnocline).

The second part of the thesis is mainly motivated by recent experiments on the anisotropic
particles settling in density stratified fluids [Mercier et al., 2020; Mrokowska, 2018, 2020a,b]
and we give a brief motivation below. A large fraction of the research on the vertical motion
of particles through stratified fluids, including cases of both sharp (Srdić-Mitrović et al.
[1999],Camassa et al. [2009]) and continuous (Hanazaki [1988],Hanazaki et al. [2009a],Yick
et al. [2009],Doostmohammadi et al. [2012],Doostmohammadi et al. [2014], Mehaddi et al.
[2018]) stratification profiles has focused on spherical particles (including the first part
of the present thesis). Although this research has shed light on the non-trivial effects of
stratification on the structure of the disturbance flow field induced by a sedimenting sphere,
for instance, its sensitive dependence on the diffusivity of the stratifying agent via the Peclet
number (Pe) (see List [1971], Ardekani and Stocker [2010], Doostmohammadi et al. [2012],
Shaik and Ardekani [2020b] and the first part of the present thesis), the vast majority of
particles and living (micro)organisms in natural scenarios depart from the idealized spherical
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Fig. 1.1 Schematic of meridional overturning oceanic circulation (Adapted from wikipedia
[Wikipedia contributors, 2022] under Creative-Commons BY-SA 4.0 license)
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shape. Indeed, both marine phytoplankton and zooplankton come in an astonishing variety
of shapes (Lab [2018], Kiorboe [2011]), and it is, in fact, known that the shape distribution
of marine phytoplankton is peaked at an aspect ratio considerably greater than unity (about
five; see Clavano et al. [2007]) . Other classes of organic particles including marine snow
aggregates (Prairie et al. [2015]), phytodetritus and faecal pellets, which make up the so-
called biological pump (Turner [2015]), and undesired microplastics (Turner and Holmes
[2011],Matthew et al. [2011]), also depart significantly from the canonical spherical geometry.
Extensive research over a long time has now led to a fairly mature understanding of the
dynamics of anisotropic particles sedimenting in a homogeneous ambient (Guillaume and
Magnaudet [2002],Auguste et al. [2013]). While the non-trivial effects of unsteady wake
dynamics come into play at higher Reynolds numbers (Re greater than about 100), as manifest
by the onset of path instabilities of sedimenting spheroids (Patricia et al. [2012]), the simplest
scenario which prevails for low to moderate Reynolds numbers, when the wake has a quasi-
steady character, involves inertial forces acting to turn sedimenting anisotropic particles
broadside-on. For small Re, and in the case where the anisotropic particle is a prolate or
an oblate spheroid, the inertial torque acting to turn the spheroid broadside-on has been
determined analytically as a function of the spheroid aspect ratio (Dabade et al. [2015a],Jiang
et al. [2020]). Recent DNS simulations have shown this inertial torque to strongly influence
the orientation distribution of such particles in an ambient turbulent flow (Gustavsson et al.
[2019],Anand et al. [2020]), with these distributions exhibiting a pronouncedly non-Gaussian
character (Anand et al. [2020]).

It is natural to ask if there are other reorientation mechanisms, competing with inertia-
induced rotation, that arise in a stratified ambient. Indeed, non-trivial effects have been
observed in very recent experiments involving cylindrical and disk-shaped particles [Mercier
et al., 2020; Mrokowska, 2018, 2020a,b]. that are among the first to systematically explore
the role of shape anisotropy for sedimenting particles in a heterogeneous stably stratified
fluid ambient. The experiments and computations reported by Mercier et al. [2020] pertain to
a linearly stratified ambient, while the experiments reported in Mrokowska [2018, 2020a,b]
pertain to a non-linearly stratified fluid layer sandwiched between homogeneous upper
and lower layers (see Figure 1.2). While the detailed results obtained for the two sets of
experiments differ on account of the differing nature of the ambient stratification, one of the
most important findings, common to both sets of experiments, pertains to the ability of the
torque due to buoyancy forces to oppose, and even overwhelm the aforementioned inertial
torque that acts in a homogeneous setting, thereby turning the particle longside-on. The
existence of long-lived intermediate orientations (between the longside-on and broadside-on
limits) is also observed in the experiments of Mrokowska [2020a]. Thus, the second part of
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Fig. 1.2 Schematic of thin and thicks disks falling through a three layered fluid system where
the intermediate layer is stratified and is sandwitched between two homogeneous layers
(Reproduced with permission from Mrokowska [2020a])

the thesis is devoted completely to explaining the behaviour of the anisotropic particles in
density stratified fluids, with the intent of characterizing the different settling regimes in an
appropriate parameter space.

Outline of the Thesis

This thesis is organized into three main chapters (Chapter 2, 3 & 4). The first two of these
chapters are concerned with the settling of a sphere in a density stratified fluid in the viscous
limit, whereas Chapter 4 considers the orientation dynamics of a sedimenting spheroid, of an
arbitrary aspect ratio, in the same limit. A brief outline of each of these chapters is given
below.

In Chapter 2, we give a detailed introduction to the literature of the motion of passive
particles in stratified fluids, before the equations governing fluid motion are analyzed in the
limit of Re ≪ 1, Riv ≪ 1 for the diffusion (Pe ≪ 1) and convection dominant (Pe ≫ 1) limits.
For both these limits, the length scales at which the stratification becomes important are
obtained by using scaling arguments in the limit of negligibly small Re, corresponding to the
Stokes stratification regime. The diffusion dominant limit, although analysed in the earlier
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literature, has nevertheless been considered here first, and a few additional results, determined
using both numerical and analytical approaches, are given with regard to features associated
with the structure of the far-field velocity disturbance. Next, a similar approach towards the
convection dominant limit is taken. The convection dominant limit is the main focus of this
thesis considering its applicability to oceanic processes. The detailed characterization of the
velocity and density fields, around the translating particle, is again obtained via numerical
evaluation, and asymptotic calculation, of the associated Fourier integrals. Effects of weak
inertia (small but finite Re), on the far-field structure of the disturbance fields, are finally
analyzed via scaling arguments, towards the end of this chapter.

In Chapter 3, we give a detailed introduction to the literature on the drift volume and
its importance in the problems concerning particles moving through the ’density-stratified’
fluids. With the intention of obtaining insights into the fluid drift displacements and drift
volume, in the convection dominant limit, we use the results obtained in Chapter 2 to evaluate
both the drift displacements and volume for varying Riv and Pe. The numerical results are
used to infer the drift volume scaling with Riv, in the limit Pe ≫ 1, in the Stokes stratification
regime. Further estimates for the drift volume are obtained, via scaling arguments, outside
this regime. We end this chapter by examining the different directions along which the
present work may be usefully extended.

In Chapter 4, the problem of rotation of an arbitrary aspect ratio spheroid (both prolate
and oblate), in a density-stratified fluid, is considered in the Stokes stratification regime. We
use the reciprocal theorem formulation that helps us identify the different contributions to the
spheroid angular velocity arising both from inertial forces in a homogeneous ambient, and
from the effects of density stratification. The latter contributions may be further separated
into two distinct components, namely the hydrostatic and hydrodynamic contributions. For
large Pe, the hydrodynamic contribution is shown to arise from the outer region, characterized
by the lengthscales of O(Ri−1/3

v ), and is accordingly formulated as a Fourier integral by
using the convolution theorem. The major portion of this chapter is devoted to an analysis of
the hydrodynamic contribution, and using these results to organize the spheroid orientation
dynamics in an Riv/Re3/2 −κ parameter plane, κ here being the spheroid aspect ratio (κ is
greater and less than unity for prolate and oblate spheroids, respectively). In Chapter 5, we
summarize our results from the chapters 2, 3 & 4 and mention possible future directions of
the present effort.





Chapter 2

Motion of a sphere in a viscous density
stratified fluid: velocity and density fields

2.1 Introduction

As mentioned in the first chapter of this thesis, the phenomena of particles moving in a density
stratified environment is a common occurrence in nature especially since both the atmosphere
and the oceans are, on average, stably stratified. In this chapter, we consider a passive particle
moving along the density gradient direction although the motion of particles in stratified fluids
moving vertical to the density gradient is also of interest in literature previously [Chadwick
and Zvirin, 1974; Janowitz, 1968]. With the intention of calculating the drift volume for a
passive particle settling in a density stratified fluid in the viscous limit, we characterize, in
detail, the fluid velocity and density fields around such a particle. Specifically, we consider
a sphere translating along the direction of stratification at small Reynolds (Re = ρ0Ua

µ
) and

viscous Richardson numbers (Riv), the translation assumed to be the result of a density
difference. Riv =

γa3g
µU measures the relative importance of viscous and buoyancy forces,

and is therefore the key dimensionless parameter for motion of small particles in a stratified
ambient; here, γ = −dρ

dz is the constant density gradient in the ambient (γ > 0 for stable
stratification), a the sphere radius, ρ0 the base state density within Boussinesq approximation,
g the acceleration due to gravity, µ the fluid viscosity and U the speed of translation. Note that
Riv = Re

Fr2 , where Fr = U
Na is the Froude number that is the usual measure of the importance of

stratification in the inviscid limit, N =
√

gγ

ρ
here being the Brunt-Vaisala frequency [Turner,

1979]. In a significant departure from most earlier efforts (discussed below), and keeping in
mind the oceanic scenario, we consider the Peclet number, defined as Pe = Ua

D , D being the
diffusivity of the stratifying agent (salt in the oceanic case) to be large.
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Earlier efforts, particularly the ones devoted to analysis of the fluid motion around a
moving particle (or) swimmer, have mostly been restricted to small Pe; an exception is
the very recent effort of Shaik and Ardekani [2020b], and we discuss this in section 2.4.
Motivated by the need to understand laminar jets in a stratified ambient, List [1971] was the
first to characterize the analog of a Stokeslet (the limiting scenario of a small translating
particle, for Re = 0, approximated as a point force) in a linearly stratified fluid, and for small
Pe. The author considered both vertical and horizontal Stokeslet orientations in two and
three dimensions; for the vertical orientation, relevant to the problem analyzed here, the
motion although fore-aft symmetric was shown to decay away much more rapidly than the
O
(

1
r

)
decay characteristic of a Stokeslet in a three-dimensional homogeneous ambient. The

resulting weak far-field motion, shown in the article only for the two-dimensional case, was
in the form of recirculating cells stacked along the direction of stratification. ’Far-field’ here
refers to (in units of a ) length scales of O(RivPe)−

1
4 , the stratification screening length for

Pe ≪ 1; as will be seen below, the number of such cells is finite. Much later, Ardekani
and Stocker [2010] considered the same problem, but for both passive and active particles
modeled as point force and force-dipole singularities, respectively. The density and velocity
fields were obtained numerically using a fast Fourier transform technique, the singularities
being termed ’stratlets’. More recently, Fouxon and Leshansky [2014] examined the role
of turbulence, within the Boussinesq framework, in disrupting the stratification-induced
signatures on the flow field around passive particles and active swimmers. As part of their
analysis, the authors derived an asymptotic expression for the far-field flow in the absence
of turbulence, and that exhibited a rapid algebraic decay, consistent with the findings of the
aforementioned studies. Candelier et al. [2014] calculated the correction to the Stokes drag
on a sedimenting passive particle, for small Pe, arising from stratification effects in the outer
region characterized by scales of O(RivPe)−

1
4 ; see discussion in the paragraph after the next

one. The authors also determined the history force that characterizes the approach to the
terminal settling regime. Wagner et al. [2014] examined the mixing efficiencies associated
with the flow induced by micro-swimmers, for small Pe, finding them to be negligibly small.

While the aforementioned efforts have analyzed the fluid motion around both passive
particles and active swimmers primarily in the small Pe regime, the motion of a typical particle
or small-sized swimmer (zooplankton) in the oceanic ambient, relevant to the biogenic mixing
hypothesis, pertains to large Pe; for instance, a zooplankton of size 0.1 mm moving at a
speed of 1 mm/s in a typical oceanic stratification of γ = 1.67×10−3 kg

m4 , yields Re = 0.116,
Riv = 1.84×10−8 and Pe = 100. Note that the large Pe regime pertains generically to cases
where salt is the stratifying agent, for particles larger than a few microns, the aforementioned
oceanic ambient only being one such instance. The first theoretical effort in this regime
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is that of Zvirin and Chadwick [1975] who calculated the drag enhancement in what we

term the Stokes stratification regime below, defined by Re ≪ Ri
1
3
v ≪ 1. The calculation was

restricted to determining the drag enhancement arising from buoyancy effects in the outer

region, on scales of O(Ri
− 1

3
v ), corresponding to the stratification screening length (this is

the screening length for large Pe, in contrast to the O(RivPe)−
1
4 screening length above,

for small Pe, that was obtained by List [1971] and Ardekani and Stocker [2010]). Similar
to Childress’s determination of the drag correction for the axial motion of a sphere in a
rotating fluid [Childress, 1964], and Saffman’s calculation of the inertial lift on a sphere in an
ambient simple shear flow [Saffman, 1965], the analysis was done in Fourier space, with the

enhancement to the Stokes drag coming out to be O(Ri
1
3
v ), the inverse of the aforementioned

screening length. Recently, Mehaddi et al. [2018] have extended the efforts of Candelier et al.
[2014] and Zvirin and Chadwick [1975] for small and large Pe, respectively, with Re = 0, and
have obtained the outer-region drag correction for any Pe, and for small but finite Re and Riv.
In the process, the authors show that the Zvirin and Chadwick [1975] calculation remains

valid over an unexpectedly large interval of Pe, corresponding to Pe ≫ Ri
1
3
v , an aspect that is

also mirrored in the torque calculation for sedimenting anisotropic particles that we consider
in the Chapter 4 of this thesis. More recently, Zhang et al. [2019], by using detailed numerical
calculations and an ingenious splitting procedure, showed that the enhancement in drag at
low Reynolds numbers comes from the induced baroclinic torque and the resulting change

in the flow structure. The enhancement was found to be proportional to Ri
1
3
v , in agreement

with the Zvirin-Chadwick result above, but in opposition to the observations of Yick et al.

[2009] who obtained a scaling closer to Ri
1
2
v ; the latter mismatch is likely due to additional

non-Boussinesq contributions arising from heavily deformed iso-pycnals close to the sphere;
here, iso-pycnals denote the lines/surfaces along which the density is constant.

As discussed in Chapter 1 of this thesis, there have been very recent experiments (and
computations) by Mercier et al. [2020] on the motion of anisotropic disk-shaped particles
(and the resulting orientation dynamics) in a stably stratified fluid. The experiments pertain to
finite Re and Riv, and highlight the existence of an edgewise-settling regime for sufficiently
large Riv or small Fr; in this regard, also see the experiments of Mrokowska [2018, 2020a,b])
and the computations of Doostmohammadi and Ardekani [2014]. This is in contrast to
the stable broadside-on settling regime known for small to moderate Re in a homogeneous
ambient [Cox, 1965; Dabade et al., 2015b]. The experiments of Mercier et al. [2020]
have motivated the recent theoretical effort of Dandekar et al. [2020] which evaluates the
hydrodynamic force and torque on an arbitrarily shaped body in a linearly stratified ambient
for arbitrary Pe, and finds a torque, arising from the ambient stratification, for chiral particles.
The role of stratification in the orientation dynamics of achiral particles, such as the ones
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used in Mercier et al. [2020], has been analyzed in detail in the Chapter 4 of this thesis. In the
present context, we only note that although the studies in this and the preceding paragraph,
for both spherical and non-spherical particles, pertain to the large-Pe limit, the fluid motion
induced by the translating particle was not examined in detail, which forms the basis for this
and next chapter.

The primary motivation for our calculation is to eventually determine the drift volume
in a stably stratified ambient, and thereby, estimate the importance of the biogenic mixing
contribution. Now, as mentioned in Chapter 1, the infinite-time drift volume is divergent, for
any finite Re, in a homogeneous ambient [Chisholm and Khair, 2017; Eames et al., 2003;
Subramanian, 2010], this divergence arising from the slow O(1

r ) decay of velocity field
within the far-field wake, r being the distance downstream. For Re = 0, the velocity field
decays as O(1

r ) at large distances regardless of the direction, and as a result, the drift volume
diverges for any finite time. This implies that the finiteness of the drift volume, for a weakly
stratified ambient pertaining to the aforementioned Stokes stratification regime, must arise
from the transition of the far-field fluid motion from an O(1

r ) Stokesian decay to a more rapid

decay beyond the O(Ri
− 1

3
v ) stratification screening length. Thus, for small Re, unlike the drag

problem considered in Zvirin and Chadwick [1975], one expects the dominant contribution
to the drift volume to arise from the fluid motion far from the sphere, or in other words,
the outer region. It is with this in mind that the analysis here is restricted to the linearized
equations in the far-field. One may nevertheless question the relevance of this linearization,
given that the motion in the outer region is indirectly influenced by the heavily deformed
iso-pycnals, close to the sphere, for large Pe. However, these deformed iso-pycnals contribute
to a localized buoyant envelope around the sphere, and at large distances, one may regard the
combination of the envelope and the sphere as an effective point force, albeit of a different
magnitude, as far as the outer region is concerned; the linearity of the outer-region equations
implies that the nature of fluid motion is independent of the magnitude of the force. More
detailed scaling arguments pertaining to the velocity and density fields in the inner region
(length scales of O(a)) are given in the conclusions section.

In the next section, we present the quasi-steady governing equations for the fluid motion
under the Boussinesq approximation and a scaling analysis to determine the screening
lengths arising from the effects of inertia and stratification, for both small and large Pe.
Next, the linearized equations in the outer region are solved using a Fourier transform
approach [Childress, 1964; Saffman, 1965], and the velocity and density field are written
as Fourier integrals, in the aforementioned small and large-Pe limits, and in the so-called
Stokes stratification regime, when buoyancy forces are dominant over inertial ones; this
translates to Re ≪ (RivPe)1/4 for small Pe, and Re ≪ Ri1/3

v for large Pe. In section 2.3, we
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contrast the streamline patterns and iso-pycnals obtained from a numerical evaluation of
the Fourier integrals for Pe = 0 and Pe ≫ 1; the numerical results are also compared to
analytical approximations valid for distances much greater than the respective screening
lengths. In the diffusion-dominant limit, for first time, we show analytically that there exist
an algebraic decay of the velocity and density fields for any arbitrary transverse distance (rt)
from the sphere. In the Stokes-stratification regime in the convection-dominant limit, for first
time, we present a detailed characterization of the velocity and density fields surrounding
a sphere using both the exact and far-field calculations. It will be shown here that the
motion at large distances of stratification screening length (O(aRi−1/3

v )) transforms from the
familiar fore-aft symmetric Stokesian form to a fore-aft asymmetric pattern of recirculating
cells with primarily horizontal motion within; except in the vicinity of the rear stagnation
streamline. It will be also seen that, at larger distances, the motion is vanishingly small
except within (a) an axisymmetric horizontal wake whose vertical extent grows as O(r2/5

t ),
rt being the distance in the plane perpendicular to translation and (b) a buoyant reverse jet
behind the particle that narrows as the inverse square root of distance downstream. For
large but finite Pe, the narrowing jet is smeared out beyond a secondary screening length
of O(aRi−1/2

v Pe1/2), leading to an exponential decay of the aforementioned reverse flow.
Even though the existence of jets in stratified fluids at moderate-to-high Reynolds numbers
is known for sometime, This existence of a rearward jet in the far-field, even in the limit of
Re = 0, is shown in this chapter for first time. We also present arguments for the transition
from the far-field wake, to a different wake-regime, owing to effects of weak inertia. Similar
arguments are presented for the diffusion-dominant limit for the transition from the far-field
diffusion-dominant wake to different wake regimes. In the concluding section 2.4, we
summarize our work, and follow this up with scaling arguments pertaining to the inner region
dynamics.

2.2 The disturbance fields in a linearly stable stratified am-
bient

We consider a sphere moving vertically in an unbounded stably stratified fluid with a linear
stratification profile dρ

dz′ =−γ (γ > 0), z′ being the vertical lab-fixed coordinate. The ambient
density in the dimensional terms is given by ρ = ρ0 − γz′, ρ0 being the reference density
corresponding to z′ = 0. We need to write the density equation in sphere-fixed coordinate
system as we will solve our equations in this frame of reference. Considering a sphere of
radius a, moving vertically downwards with a velocity of U , the density field in the sphere-
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fixed reference frame is given by ρ = ρ0(z0)−γz+γUt, z being the vertical coordinate in the
new sphere-fixed reference frame, and z0 being the initial vertical coordinate of the sphere
at which the reference density ρ0 is measured. Since the sphere perturbs the original linear
density gradient, we have to include the density disturbance term (ρ f ) as well, leading to the
expression being ρ = ρ0(z0)− γz+ γUt +ρ f . Using a, U and γa for the length, velocity and
density scales, this expression then simplifies to ρ = ρ0 − z+ t +ρ f ; note that z, t and ρ f in
this expression are now non-dimensional quantities even though we use the same symbols as
their dimensional counter parts.

Non-dimensionalizing the continuity equation, the Navier-Stokes equations using the
aforementioned scales, and substituting the density expression given above, leads to the
following set of equations in the sphere-fixed reference frame.

∇ ·u = 0, (2.1)

Re[u ·∇u] =−∇p+∇
2u−Rivρ f 1z, (2.2)

1−w+u ·∇ρ f =
1
Pe

∇
2
ρ f , (2.3)

with the boundary conditions:

u = 0, n ·∇ρ f =−n ·1z at r = |x|= 1, (2.4)

u → 1z, ρ f → 0 as r = |x| → ∞, (2.5)

where r is the non-dimensional distance from the sphere and w in (2.3) is the vertical velocity
component [Candelier et al., 2014; Mehaddi et al., 2018; Shaik and Ardekani, 2020a]. The
term involving 1−w in (2.3) denotes the convection of the base-state stratification (along
the vertical) by the perturbation velocity field. Note that the Boussinesq approximation has
been used above to neglect the density disturbance in the convective terms of the equations
of motion, so Re in (2.2) is based on an appropriate reference density. Further, in taking ρ f

in particular to be independent of time, we have assumed a quasi-steady state to be achieved,
in the sphere-fixed reference frame, for long times. This assumption is examined in section

2.4.2 for both the inner (r ∼ O(a)) and outer regions (r ≥ O(Ri
− 1

3
v )).

As is well known, although we examine the limit Re,Riv ≪ 1, the inertial and stratifi-
cation terms in (2.2) cannot be neglected. The Stokes equations are not a uniformly valid
approximation, and the aforementioned terms become comparable to the leading order vis-
cous terms at sufficiently large distances [Lagerstrom, 2013; Proudman and Pearson, 1957;
Van Dyke, 1975]. As discussed in the introduction of this chapter, the large length scales
above are precisely the ones that control the drift volume that in turn underlies the biogenic
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mixing hypothesis. For a homogeneous fluid, the length scale (in units of a) at which inertial
forces first become comparable to viscous forces is Re−1, referred to here as the inertial
screening length. Obtaining a similar estimate for the buoyancy forces requires one to obtain
the far-field behavior of the density field which in turn depends on whether Pe is large or
small.

For Pe → 0, the density perturbation on length scales of O(a) arises, at leading order, as
a diffusive response to the no-flux boundary condition on the surface of the particle, and
decays as O( 1

r2 ) at large distances. The convective correction to the density field satisfies
1
Pe∇2ρ f ∼ (1−w); using (1−w) ∼ O(1

r ) for the Stokeslet field leads to ρ f ∼ Pe r. The
buoyancy forces arising from the convective perturbation grow as O(RivPe r). Equating
them to the decaying viscous forces of O( 1

r3 ) leads to the small-Pe stratification screening

length lc ∼ (RivPe)−
1
4 . The equations governing the disturbance fields on scales of order

the aforementioned screening length may be obtained by using the expansions: u = 1z +

(RivPe)1/4ū(r̄rr), p = p∞ +(RivPe)
1
2 p̄(r̄rr) and ρ f = Pe(RivPe)−

1
4 ρ̄ f (r̄rr), with r̄rr = (RivPe)

1
4 rrr.

Note that these scalings are based on the variation of the velocity, pressure and density
disturbance as 1

r , 1
r2 and Pe r, respectively, in the inner Stokesian region far away from the

particle. The outer-region equations are given by

∇̄.ū = 0, (2.6)

−α0
∂ ū
∂ z̄

=−∇̄p̄+ ∇̄
2ū− [ρ̄ f +6πδ (r̄)]1z, (2.7)

−1z.ū+β0
∂ ρ̄ f

∂ z̄
= ∇̄

2
ρ̄ f . (2.8)

Here, α0 and β0 are given by Re
(RivPe)1/4 and Pe

(RivPe)1/4 , respectively, and denote the ratios of the

low-Pe stratification screening length to the inertial (Re−1) and convective(Pe−1) screening
lengths. Note that the boundary condition on the particle surface has now been replaced by a
point force on the RHS of (2.7).

Defining the relations between the physical space and Fourier transformed disturbance
fields as:

f̂ (k) =
∫

f (x)eik.rdk, (2.9)

f (x) =
1

(2π)3

∫
f̂ (k)e−ik.rdx, (2.10)
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with f (x) denoting the relevant disturbance field, and Fourier transforming (2.6-2.8), one
obtains, after some algebra, the velocity and density disturbance fields as the following
integrals with α0 and β0 as parameters:

ū(r̄) =
−3
4π2

∫ k2(ik3β0 + k2)(1z − k3k
k2 )

k2(ik3α0 + k2)(ik3β0 + k2)+ k2
t

eik.r̄dk, (2.11)

ρ̄ f (r̄) =
−3
4π2

∫ k2
t

k2(ik3α0 + k2)(ik3β0 + k2)+ k2
t

eik.r̄dk, (2.12)

where kt = (k2 − k3
2)

1
2 is the magnitude of the wavevector projected onto the plane perpen-

dicular to the translation direction.
For Pe,Re ≪ (RivPe)

1
4 , one may ignore the terms proportional to α0 and β0, with the

velocity and density disturbance fields reducing to the following Fourier integrals

ū(r̄) =
−3
4π2

∫ k4(1z − k3k
k2 )

k6 + k2
t

eik.r̄dk, (2.13)

ρ̄ f (r̄) =
−3
4π2

∫ k2
t

k6 + k2
t

eik.r̄dk, (2.14)

The above diffusion dominant limit has been considered previously (see [Ardekani and
Stocker, 2010; Fouxon and Leshansky, 2014; List, 1971]), as indicated in the introduction of
this chapter.

For Pe → ∞, one neglects the diffusion term in (2.3) and thus u ·∇ρ f ∼ (1−w). Again,
using (1−w)∼ O(1

r ), one has ρ f ∼ O(1), so the buoyancy forcing term in (2.2) is O(Riv).
Equating this to the O( 1

r3 ) viscous term, one obtains the large-Pe stratification screening

length lc ∼ Ri
− 1

3
v , as originally shown by Zvirin and Chadwick [1975]. Again, keeping in

mind the Stokesian scalings in the inner region, the disturbance fields in the outer region may

be expanded as: u = 1z +Ri
1
3
v ũ(r̃rr), p = p∞ +Ri

2
3
v p̃(r̃rr) and ρ f = ρ̃ f (r̃rr), with r̃rr = Ri

1
3
v rrr. One

obtains the following outer-region equations:

∇̃.ũ = 0, (2.15)

−α∞

∂ ũ
∂ z̃

=−∇̃p̃+ ∇̃
2ũ− [ρ̃ f +6πδ (r̃)]1z, (2.16)

−1z.ũ+
∂ ρ̃ f

∂ z̃
= β∞∇̃

2
ρ̃ f . (2.17)

Here, α∞ = Re
Ri1/3

v
is the large-Pe analog of α0, with β−1

∞ = Pe
Ri1/3

v
being the analog of β0 above.
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As in the case of low Pe, Fourier transforming (2.15-2.17), one obtains the velocity and
density fields as the following Fourier integrals with α∞ and β∞ as parameters given by

ũ(r̃) =
−3
4π2

∫ (ik3 +β∞k2)k2(1z − k3k
k2 )

(ik3 +β∞k2)(ik3α∞ + k2)k2 + k2
t

eik.r̃dk, (2.18)

ρ̃ f (r̃) =
−3
4π2

∫ k2
t

(ik3 +β∞k2)(ik3α∞ + k2)k2 + k2
t

eik.r̃dk. (2.19)

In the Stokes stratification regime, corresponding to Re ≪ Ri
1
3
v , one can set α∞ in (2.16)

to zero. Although our primary focus is on the limit β∞ → 0(Pe → ∞), retaining a small but
finite β∞ is important. While the structure of the disturbance fields, almost everywhere in the
domain, is independent of β∞ in this limit, in section 2.3.2, it is shown that a small but finite
β∞ crucially affects the structure of the fields right behind the translating sphere. Further, a
non-zero β∞ is also important for numerical convergence of the Fourier integrals below.

ũ(r̃) =
−3
4π2

∫ (ik3 +β∞k2)k2(1z − k3k
k2 )

(ik3 +β∞k2)k4 + k2
t

eik.r̃dk, (2.20)

ρ̃ f (r̃) =
−3
4π2

∫ k2
t

(ik3 +β∞k2)k4 + k2
t

eik.r̃dk. (2.21)

2.3 Results and Discussion

Herein, we analyze the axial velocity and density disturbance fields, and the resulting
streamline and iso-pycnal patterns in both the diffusion and convection dominant limits
by using a combination of numerics (Gauss-Legendre quadrature integration) and far-field
asymptotics. As already mentioned in the introduction, the results in both limits are for the
case of buoyancy forces being dominant (the Stokes stratification regime), corresponding to
α0,α∞ ≪ 1. The role of weak inertial effects is discussed, via scaling arguments, towards
the end of this section.

2.3.1 Diffusion-dominant limit (Pe ≪ 1)

List [1971] used residue theory to enable the reduction of (2.13) and (2.14) to one-dimensional
integrals for both the two and three-dimensional cases. We use a different method that reduces
the disturbance fields to two-dimensional integrals instead, this being conveniently applicable
in both the diffusion and convection dominant limits. The Fourier integrals are expressed
in a spherical coordinate system with its polar axis aligned with the translation direction.
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The integral over the azimuthal angle (φ ) can be carried out analytically, and the resulting
expressions are given by:

ūz =
−3
2π

∫
∞

0
dk
∫

π

0
dθ

k4 sin3
θJ0(kr̄t sinθ)eikz̄cosθ

(k4 + sin2
θ)

, (2.22)

ρ̄ f =
−3
2π

∫
∞

0
dk
∫

π

0
dθ

k2 sin3
θJ0(kr̄t sinθ)eikz̄cosθ

(k4 + sin2
θ)

, (2.23)

where J0(x) is the zeroth order Bessel function of the first kind. Note that since the problem
is axisymmetric, the fields are written as functions of (r̄t , z̄) with z̄ and r̄t being the distances
along and orthogonal to the direction of translation. Not including the complex exponential,
the Fourier integrand for the density disturbance field in (2.23) decays as 1

k5/2 for large k,
while that for the axial velocity in (2.22) only decays as 1

k1/2 ; the latter slow decay reflects
the 1

r -decay of the Stokeslet for small r. As a result, an accurate evaluation of (2.22)
relies essentially on cancellation induced by the complex Fourier exponential. To facilitate
numerical evaluation, we therefore separate out the Stokeslet contribution, writing the axial
velocity integral above as:

ūz =
−3(2+ r̄2

t
z̄2 )

4|z̄|(1+ r̄2
t

z̄2 )
3
2

+
3

2π

∫
∞

0
dk
∫

π

0
dθ

sin5
θJ0(kr̄t sinθ)cos(kz̄cosθ)

(k4 + sin2
θ)

, (2.24)

where the integrand in (2.24) now decays as 1
k9/2 for large k. The Stokes streamfunction may

be found using the relation ūz =
1
r̄t

∂ψ̄

∂ r̄t
and is given by:

ψ̄s =
−3r̄2

t

4(r̄2
t + z̄2)

1
2
+

3r̄t

2π

∫
∞

0
dk
∫

π

0
dθ

sin4
θJ1(kr̄t sinθ)cos(kz̄cosθ)

k(k4 + sin2
θ)

. (2.25)

The density disturbance and axial velocity fields, and the Stokes streamfunction, given
by (2.23), (2.24) and (2.25), respectively, are evaluated using Gaussian quadrature. This
numerical evaluation of the above integrals is carried out after first using k = tan k̂ f to
transform the original k-interval to a finite one in k̂ f ; a large number of quadrature points(∼
50000) for both the dimensions are used to ensure convergence. Even larger number of
quadrature points are required for the large-Pe integrals that will be discussed later in the
section. The instantaneous streamline and iso-pycnal patterns, in a reference frame with a
far-field quiescent ambient, are shown in figure 2.1, and are seen to be fore-aft symmetric, as
may also be inferred from the cosine in (2.24) and (2.25). As originally found by List [1971]
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and Ardekani and Stocker [2010], buoyancy forces suppress the long-ranged vertical motion
associated with the Stokeslet at large distances, leading to the development of recirculating
cells aligned with the direction of stratification, and wherein the motion is predominantly
horizontal. Interestingly and perhaps surprisingly (if one’s intuition is based on the cellular
disturbance flow fields set up internal gravity waves in an unbounded stratified ambient), the
far-field analysis in the next subsection shows the number of such cells to be finite, likely on
account of the neglect of inertial/convection effects.

Far-field analysis

At large distances, as already mentioned, one expects largely horizontal motion. As a
consequence, the characteristic length scale in the vertical direction will be much smaller
than that along the horizontal - this is already evident from the rather small aspect ratios of
the recirculating cells in figure 2.1. Thus, the Fourier integrals in (2.13) and (2.14), for length
scales large compared to O(RivPe)−1/4, may be simplified using k3 ≫ kt , leading to:

ū(r̄) =− 3
4π2

∫ k4(1z − k3k
k2 )

(k6
3 + k2

t )
eik.r̄dk, (2.26)

ρ̄ f (r̄) =− 3
4π2

∫ k2
t

(k6
3 + k2

t )
eik.r̄dk, (2.27)

which can be reduced to one-dimensional integrals only involving the similarity variable
η = z̄

r̄t
1
3

via contour integration in the complex-k3 plane as shown below.

In a cylindrical coordinate system aligned with the translation direction, and after carrying
out the φ integration, the expressions for the axial and transverse velocities, and the density
disturbance, reduce to

ūz =
−3
2π

∫
∞

−∞

dk3

∫
∞

0
dkt

k2
3k3

t J0(kt r̄t)eik3z̄

(k6
3 + k2

t )
, (2.28)

ūrt =
3i
2π

∫
∞

−∞

dk3

∫
∞

0
dkt

k3
3k2

t J1(kt r̄t)eik3z̄

(k6
3 + k2

t )
, (2.29)

ρ̄ f1 =
−3
2π

∫
∞

−∞

dk3

∫
∞

0
dkt

k3
t J0(kt r̄t)eik3z̄

(k6
3 + k2

t )
(2.30)

Now, we use contour integration to first evaluate the k3-integral. Contributions arise from
the existence of six poles in the complex-k3 plane, with these poles being symmetrically
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Fig. 2.1 (a) Streamlines and (b) Isopycnals (Lines/surfaces along which density is constant)
for a translating sphere in a linearly stratified fluid in the diffusion dominant limit (Pe = 0);
in the point-particle approximation used, the sphere is at the origin and moving vertically
downward.
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disposed about the real k3-axis, consistent with the fore-aft symmetry of the disturbance
fields. The contour integration yields the following one-dimensional integrals

ūz =−3i
∫

∞

0
k2

t J0(kt r̄t)

(
lq2

1eiq1k
1
3
t |z̄|+mq2

2eiq2k
1
3
t |z̄|+nq2

3eiq3k
1
3
t |z̄|

)
dkt , (2.31)

ūrt =−3sgn z̄
∫

∞

0
k

4
3
t J1(kt r̄t)

(
lq3

1eiq1k
1
3
t |z̄|+mq3

2eiq2k
1
3
t |z̄|+nq3

3eiq3k
1
3
t |z̄|

)
dkt , (2.32)

ρ̄ f =−3i
∫

∞

0
k

4
3
t J0(kt r̄t)

(
leiq1k

1
3
t |z̄|+meiq2k

1
3
t |z̄|+neiq3k

1
3
t |z̄|

)
dkt . (2.33)

Here q1, q2, q3, l, m and n are complex-valued constants given by

[q1,q2,q3,q4,q5,q6] = [e
πi
6 ,e

πi
2 ,e

5πi
6 ,e

7πi
6 ,e

9πi
6 ,e

11πi
6 ],

l =
1

(q1 −q2)(q1 −q3)(q1 −q4)(q1 −q5)(q1 −q6)
,

m =
1

(q2 −q1)(q2 −q3)(q2 −q4)(q2 −q5)(q2 −q6)
,

n =
1

(q3 −q1)(q3 −q2)(q3 −q4)(q3 −q5)(q3 −q6)
.

Setting (kt r̄t)
1
3 = p as the integration variable, and using η = z̄

r̄t
1
3

, with some simplification,

yields the following expressions for the disturbance fields

ūz =
−9i
r̄3
t

∫
∞

0
p8J0(p3)

(
lq2

1eiq1 p|η |+mq2
2eiq2 p|η |+nq2

3eiq3 p|η |
)

d p, (2.34)

ρ̄ f =
−9i

r̄
7
3
t

∫
∞

0
p6J0(p3)

(
leiq1 p|η |+meiq2 p|η |+neiq3 p|η |

)
d p, (2.35)

ūrt =
−9sgn(η)

r̄
7
3
t

∫
∞

0
p6J1(p3)

(
lq3

1eiq1 p|η |+mq3
2eiq2 p|η |+nq3

3eiq3 p|η |
)

d p. (2.36)

These integrals are functions of |η |, consistent with fore-aft symmetry. Thus, the above
self-similar forms point to a thin axisymmetric wake bracketing the horizontal plane con-

taining the settling sphere, in the far-field, whose vertical extent grows as z ∝ (RivPe)−
1
6 r

1
3
t ,

where z and rt are now in units of a; the self-similarity is also evident from figure 2.1 where
the number and shapes of recirculating cells is invariant for large rt , with their vertical extents
alone increasing with increasing rt . Even within the self-similar wake, it can be seen from
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(2.34-2.36) that the disturbance fields decay more rapidly compared to the O(1/r) decay of
the Stokeslet, reinforcing the fact that buoyancy forces screen the originally long-ranged
Stokesian fields. The one dimensional integrals in (2.34-2.36) are readily evaluated numer-
ically, and furthermore, the large-η asymptotes, obtained from using the small argument
approximation for the Bessel function, are given by ūz ≈ 181440

r̄3
t |η |9

, ūrt ≈ sgn(η) 816480
r̄7/3
t |η |10 , and

ρ̄ f ≈ −3240
r̄7/3
t |η |7

.

The comparison between one-dimensional profiles of the axial velocity field, obtained
from the exact calculations above (that led to the streamline pattern in figure 2.1), and those
obtained from the far-field self-similar approximation given by (2.34) is shown in figure
2.2 for various r̄t’s. The plots correspond to r̄3

t ūz as a function of |η |, as a result of which
the far-field approximation shown remains invariant to a change in r̄t . In the log-log plots
shown, the zero-crossings of the axial velocity (which roughly correlate to the boundaries
between recirculating cells) appears as sharp dips (to negative infinity). There exist significant
differences between the numerical and far-field predictions for r̄t’s of order unity; for instance,
the number of zero crossings in the numerical field depends upon r̄t , being 7 for r̄t = 1, 6
for r̄t = 4 and increasing to 8 (the same as the far-field approximation) for r̄t ≥ 15. The
agreement improves with increasing r̄t , and there is near-quantitative agreement for the
largest r̄t (= 25); note that the streamline pattern in figure 2.1a includes only three of the
eight zero crossings for r̄t = 25. Finally, for r̄t’s greater than that corresponding to the
final zero crossing, the axial velocity profiles conform to the algebraic asymptote above viz.
r̄3
t ūz ≈ 181440

|η |9
, and shown as the dashed orange line in figure 2.2. An analogous scenario

prevails for the density disturbance field as can be seen from figure 2.3.
As one approaches the translation axis (the stagnation streamline corresponding to r̄t = 0),

η becomes asymptotically large for any finite z̄, and only the large-η asymptotes are of
relevance. On substituting for η , the large-η asymptotes for the axial velocity and density
fields above are seen to be functions of only |z̄|, suggesting that these asymptotes remain
valid far-field (large |z̄|) approximations even along the translation axis. The radial velocity is,
of course, zero along the stagnation streamline, with the large-η approximation above being
O(r̄t) for small r̄t . In figure 2.4, we compare the exact axial velocity field for r̄t = 0, again
obtained numerically, with the large-η asymptote that is now proportional to z̄−9. Although
the locations of the (seven) zero-crossings of the exact profile can no longer be predicted, the
far-field algebraic decay nevertheless conforms to the asymptote above. For r̄t = 0 alone, the
velocity field given by (2.20) is expressible in terms of a one-dimensional integral that again
yields the aforementioned large-z̄ asymptote [Fouxon and Leshansky, 2014].



2.3 Results and Discussion 23

Fig. 2.2 The axial velocity profiles in the diffusion-dominant limit (Pe = 0): comparison
between the exact numerical profiles and the far-field approximation (given by (2.34) for
various r̄t’s; in each of the plots, the large-η analytical asymptote is shown as a dashed
orange line.
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Fig. 2.3 The density disturbance profiles in the diffusion-dominant limit (Pe = 0): comparison
between the exact numerical profiles and the far-field approximation (given by (2.34) for
various r̄t’s; in each of the plots, the large-η analytical asymptote is shown as a dashed
orange line.
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Fig. 2.4 Axial velocity, as a function of |z̄|, for r̄t = 0 (the translation axis), in the diffusion
dominant limit (Pe = 0); the large-z̄ asymptote is shown as a dashed orange line.

2.3.2 Convection dominant limit (Pe ≫ 1)

The simplification of the Fourier integrals in the convection dominant limit, given by (2.20)
and (2.21), is analogous to the diffusion dominant case above. In a spherical coordinate
system aligned with the translation direction, and after integration over the azimuthal angle,
the disturbance fields are given by

ũz =
−3(2+ r̃2

t
z̃2 )

4|z̃|(1+ r̃2
t

z̃2 )
3
2

+
3

2π

∫
∞

0
dk
∫

π

0
dθ

sin5
θJ0(kr̃t sinθ)eikz̃cosθ

(ik3 cosθ +β∞k4 + sin2
θ)

, (2.37)

ρ̃ f =
−3
2π

∫
∞

0
dk
∫

π

0
dθ

k2 sin3
θJ0(kr̃t sinθ)eikz̃cosθ

(ik3 cosθ +β∞k4 + sin2
θ)

, (2.38)

where we have again separated out the Stokeslet contribution in (2.37) for purposes of
numerical convergence. The Stokes streamfunction is given by

ψ̃s =
−3r̃2

t

4(r̃2
t + z̃2)

1
2
+

3r̃t

2π

∫
∞

0
dk
∫

π

0
dθ

sin4
θJ1(kr̃t sinθ)eikz̃cosθ

k(ik3 cosθ +β∞k4 + sin2
θ)

. (2.39)

Note from (2.37) and (2.38) that, although our interest is in the limit β∞ = 0, corresponding
to convection effects being infinitely dominant, we have retained the terms proportional to
β∞ in the integrands. One reason is ease of numerical evaluation (as can be seen below).
The second reason is the sensitive dependence of the structure of both the velocity and
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Fig. 2.5 The comparison given highlights the importance of weak diffusive effects (small but
finite β∞) in obtaining an accurate representation of the disturbance fields in the convection-
dominant limit. The profiles for β∞ = 0 asymptote to a spurious plateau regardless of N;
here, N represents the number of quadrature points used for numerical integration. The axial
velocity calculations shown here are performed for rt = 25.

density fields, in the neighorhood of the rear stagnation streamline, on β∞; the density field
in particular diverges for β∞ = 0.

The rationale behind the retention of weak diffusion effects (small but finite β∞) is il-
lustrated in Figure 2.5 where we compare the numerically evaluated axial velocity profiles
at rt = 25 for β∞ = 0 and 10−5 for varying number of quadrature points. The β∞ = 0
profile deviates from the true profile, asymptoting instead to a spurious plateau beyond a
certain z̃. Further, there is only a modest effect of quadrature resolution on this threshold
z̃, and as a result, for β∞ = 0, the eventual algebraic decay regime remains numerically
inaccessible regardless of the number of quadrature points. On the other hand, the profile for
β∞ = 10−5 does access the algebraic decay regime, and the numerical error does reduce with
increase (from 30000 to 50000) in the number of quadrature points).

Figure 2.6 shows the streamline pattern and the isycnalopycnal contours for the smallest
β∞ (= 10−5) accessed in our calculations. The limited spatial extent here, in comparison
to figure 2.1, is on account of the numerical difficulties involved in calculating the farfield
isopycnals; the streamline pattern alone, over a larger spatial extent, appears below in figure
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2.14a. Nevertheless, the profound asymmetry of both the streamline and iso-pycnals patterns
is readily evident from Figure 2.5, and is in contrast to those in the diffusion-dominant limit
(Figure 2.1). This asymmetry may be anticipated from the integral expressions in (2.37-2.39)
where, unlike the Pe = 0(β∞ = ∞) limit, one can no longer replace the complex exponential
by a Cosine. Apart from the different shapes and numbers of the recirculating cells in front
of and behind the translating sphere, there is also the appearance of a radially localized but
vertically extended structure, in the streamline pattern, in the rear. As will be seen below,
this corresponds to a buoyant reverse jet that develops behind the particle with decreasing
β∞ (see figure 2.14f). It can be noted that the streamline pattern in Figure 2.5a is, in fact,
quite analogous to Figure 2d in Zhang et al. [2019] which, although it pertains to the region
around a finite sphere of order its own size, corresponds to a relationship between Re and
Riv consistent with the Stokes-stratification regime. The far-field analysis in the subsections
below points to both a stratification-induced wake in the convection-dominant limit with a
structure that is insensitive to β∞ (for β∞ ≪ 1); and the buoyant reverse jet mentioned above
whose structural features depend essentially on β∞.

Far-field wake analysis

Similar to the diffusion-dominant case analyzed in section 2.3.1, the expected dominance of

horizontal motion for distances large compared to Ri
− 1

3
v points to the assumption k3 ≫ kt in

the Fourier integrals in (2.20) and (2.21), when characterizing a far-field wake region. The
integrals, in this limit, reduce to

ũ(r̃) =
−3
4π2

∫ ik3k2
t

(ik5
3 + k2

t )
eik.r̃dk, (2.40)

ρ̃ f (r̃) =
−3
4π2

∫ k2
t

ik5
3 + k2

t
eik.r̃dk, (2.41)

where we have set β∞ = 0. The integrals in (2.40) and (2.41) can be reduced to one-
dimensional integrals, written in terms of the similarity variable η = z̃

r̃t
2
5

, via contour integra-

tion as shown below.
Starting from 2.40 and 2.41, in a cylindrical coordinate system aligned with the translation

direction, and after carrying out the φ integration, the expressions for the axial and transverse
velocities, and the density disturbance, reduce to

ūz =
−3i
2π

∫
∞

−∞

dk3

∫
∞

0
dkt

k3k3
t J0(kt r̄t)eik3z̄

(ik5
3 + k2

t )
, (2.42)
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Fig. 2.6 (a) Streamlines and (b) Iso-pycnals for a translating sphere in a linearly stratified fluid,

in the convection dominant limit (β∞ = 10−5), in the Stokes stratification regime (Re ≪ Ri
1
3
v );

in the point-particle approximation used, the sphere is at the origin and moving vertically
downward.
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ūrt =
3i
2π

∫
∞

−∞

dk3

∫
∞

0
dkt

k2
3k2

t J1(kt r̄t)eik3z̄

(ik5
3 + k2

t )
, (2.43)

ρ̄ f1 =
−3
2π

∫
∞

−∞

dk3

∫
∞

0
dkt

k3
t J0(kt r̄t)eik3z̄

(ik5
3 + k2

t )
. (2.44)

As for the diffusion dominant case analyzed before, we first evaluate the k3-integral using
contour integration. There now exist five poles in the complex-k3 plane with two poles in the
lower half and three poles in the upper half of the complex plane; the differing number of
poles in the two halves of the plane translates to fore-aft asymmetry of the axial velocity and
density disturbance fields. The residue integration then yields the following ’one-dimensional’
integrals for positive and negative z̃

ũz =−3i
∫

∞

0
k

9
5
t J0[ktrt ][Q1q1eiq1k

2
5
t z̃ +Q2q2eiq2k

2
5
t z̃ +Q3q3eiq3k

2
5
t z̃]dkt (for z̃ > 0)

= 3i
∫

∞

0
k

9
5
t J0[ktrt ][Q4q4eiq4k

2
5
t z̃ +Q5q5eiq5k

2
5
t z̃]dkt (for z̃ < 0), (2.45)

ũrt =−3
∫

∞

0
k

6
5
t J0[ktrt ][Q1q2

1eiq1k
2
5
t z̃ +Q2q2

2eiq2k
2
5
t z̃ +Q3q2

3eiq3k
2
5
t z̃]dkt (for z̃ > 0)

= 3
∫

∞

0
k

6
5
t J0[ktrt ][Q4q2

4eiq4k
2
5
t z̃ +Q5q2

5eiq5k
2
5
t z̃]dkt (for z̃ < 0), (2.46)

ρ̃ f =−3
∫

∞

0
k

7
5
t J0[ktrt ][Q1eiq1k

2
5
t z̃ +Q2eiq2k

2
5
t z̃ +Q3eiq3k

2
5
t z̃]dkt (for z̃ > 0)

= 3
∫

∞

0
k

7
5
t J0[ktrt ][Q4eiq4k

2
5
t z̃ +Q5eiq5k

2
5
t z̃]dkt (for z̃ < 0). (2.47)
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Here q1, q2, q3, q4, q5, Q1, Q2, Q3, Q4 and Q5 are complex-valued constants given by

[q1,q2,q3,q4,q5] = [e
πi
10 ,e

πi
2 ,e

9πi
10 ,e−

7πi
10 ,e−

3πi
10 ],

Q1 =
1

(q1 −q2)(q1 −q3)(q1 −q4)(q1 −q5)
,

Q2 =
1

(q2 −q1)(q2 −q3)(q2 −q4)(q2 −q5)
,

Q3 =
1

(q3 −q1)(q3 −q2)(q3 −q4)(q3 −q5)
,

Q4 =
1

(q4 −q1)(q4 −q2)(q4 −q3)(q4 −q5)
,

Q5 =
1

(q5 −q1)(q5 −q2)(q5 −q3)(q5 −q4)
.

Setting kt r̄t = p as the integration variable, and using η = z̃

r̃t
2
5

yields the following expressions

for axial velocity, density disturbance and transverse velocity

ũz =− 15i
2r̃t

14/5

∫
∞

0
m6J0[m5/2][Q1q1eiq1mη +Q2q2eiq2mη +Q3q3eiq3mη ]dm (η̃ > 0),

=
15i

2r̃t
14/5

∫
∞

0
m6J0[m5/2][Q4q4eiq4mη +Q5q5eiq5mη ]dm (η̃ < 0), (2.48)

ρ̃ f =− 15
2r̄t

12/5

∫
∞

0
m5J0[m5/2][Q1eiq1mη +Q2eiq2mη +Q3eiq3mη ]dm (η̃ > 0),

=
15

2r̃t
12/5

∫
∞

0
m5J0[m5/2][Q4eiq4mη +Q5eiq5mη ]dm (η̃ < 0), (2.49)

ũrt =− 15
2r̃t

11/5

∫
∞

0
m9/2J1[m5/2][Q1q2

1eiq1mη +Q2q2
2eiq2mη +Q3q2

3eiq3mη ]dm (η̃ > 0),

=
15

2r̃t
11/5

∫
∞

0
m9/2J1[m5/2][Q4q2

4eiq4mη +Q5q2
5eiq5mη ]dm (η̃ < 0). (2.50)

The fore-aft asymmetry implies that one has different asymptotic approximations depending
on the sign of η̃ (or z̃). Nevertheless, the above self-similar forms point to a far-field wake,
that includes the horizontal plane containing the settling sphere, and whose vertical extent

grows as z ∝ Ri
− 1

5
v r

2
5
t , with z and rt being measured in units of a. The axial and radial velocity

profiles, and the density disturbance profiles, obtained from a numerical evaluation of the
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one-dimensional integrals above, are shown both on the linear and logarithmic scales in figure
2.7, with the logarithmic plot clearly highlighting the zero-crossings at larger distances. The
logarithmic plot also shows that while there are still only a finite number of zero crossings,
similar to Pe = 0, they differ in number for negative and positive η̃ , with there being fewer
zero crossings for negative η̃ . This implies fewer recirculating cells below the settling
sphere, and is consistent with the streamline pattern in figure 2.6 (also see figure 2.14 below).
Similar to the diffusion-dominant limit, one may obtain the large-η asymptotic forms from
(2.48-2.50) which govern the eventual algebraic decay of the disturbance fields beyond the
final zero crossing; these are given by [ 3240

r
14
5

t η̃7
,− 2160

r
14
5

t η̃7
] for the axial velocity, [ 11340

r
11
5

t η̃8
,− 7560

r
11
5

t η̃8
]

for the radial velocity, and [− 540

r
12
5

t η̃6
, 360

r
12
5

t η̃6
] for the density disturbance, with the members of

each ordered pair corresponding to positive and negative η̃ , respectively. These asymptotes,
and the above approximate profiles based on the one-dimensional integrals above will be
compared to the exact (numerical) fields below.

The structure of the far-field wake may also be characterized in terms of the η̃-moments
of the disturbance fields above. The motion being largely horizontal, it is the moments
of the radial velocity field that are the most important. A calculation using the far-field
approximation above (equation (2.50)) shows that the zeroth and first moments of the radial
velocity field in the wake vanish, and that the second moment, defined as

∫
∞

−∞
η̃2ũrt dη̃ = 6, is

the first non-trivial member of the moment hierarchy (interestingly, this may also be seen from
direct neglect of the viscous term ik3k4 in the original Fourier integral (2.20), and additionally
setting β∞ = 0; the radial velocity may now be obtained in terms of generalized functions
as ũrt =

3
r̃t

δ ′′(z), which yields the same value for the second moment). The moment-based
characterization above offers an interesting contrast to the known solution for the motion
induced by a sphere settling through a linearly stratified ambient in the linearized inviscid
approximation, when stratification forces are (infinitely) dominant. As shown in (Vladimirov
and Li’in [1991]), the motion is strictly horizontal and restricted to an infinite horizontal slab
whose upper and lower planes bound the sphere. Within this slab, the fluid moves radially
inward (outward) in the rear (front) half of the translating sphere. The nature of this motion
is easily understood from the changing size of the sphere cross-section in a given horizontal
plane, and the requirement of satisfying the impenetrability condition at the sphere surface. In
two dimensions (that is, a settling cylinder), the horizontal velocity field is a constant, while
in three dimensions (a settling sphere), the motion would have a 1/rt-dependence consistent
with incompressibility. Such a motion corresponds has a dipolar character with a non-trivial
first moment for the radial velocity. In contrast, as already seen, the structure of the far-field
wake above does not exhibit the aforementioned structure. This is because although the
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Fig. 2.7 The axial velocity, the radial velocity and density disturbance profiles, within the
far-field wake region, in the convection dominant limit (Pe ≫ 1) pertaining to the Stokes
stratification regime: (a) the disturbance fields on a linear scale; the absolute value of the
disturbance fields on a logarithmic scale for (b) negative η̃ and (c) for positive η̃; here,
n = 14/5, 11/5 and 12/5 for uz, urt and ρ f , respectively. The aforementioned wake includes

the plane of the settling sphere, and grows in vertical extent as z ∝ Ri
2

15
v r

2
5
t .

Stokeslet in the inner region has a radial component consistent with the symmetry of the
linearized inviscid solution above (directed inward behind the sphere and outward in front of
it), the Stokeslet is screened by the buoyancy forces induced in a surrounding volume with

a linear dimension of O(Ri
− 1

3
v ). As a result, the wake velocity field on length scales much

larger than O(Ri
− 1

3
v ), has the symmetry pertaining to a force-dipole consisting of the original

Stokeslet and an effective upward force arising from the volumetric distribution of induced
buoyancy forces.
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Far-field jet analysis

As for the diffusion-dominant case, the large-η asymptotes for the axial velocity and density
disturbance fields in the convection-dominant limit, given in (2.48-2.50), are seen to be
independent of r̄t , with the radial disturbance field being O(r̄t) for z̃ → 0. Thus, one expects
the large-η asymptotes to continue to remain valid at sufficiently large distances (large z̃)
along the stagnation streamline (z̃ = 0). This remains true for the front stagnation streamline,
with ũz =−2160

z̃7 and ρ f =
360
z̃6 for large negative z̃.

The wake approximation in the earlier subsection, and therefore, the large-η approxima-
tions derived from it, are no longer valid in the vicinity of the rear stagnation streamline. The
pronounced asymmetry in the streamline pattern in figure 2.1, and the predominantly vertical
motion behind the sphere, are already indicative of the breakdown of this approximation.The
neighborhood of the rear stagnation streamline, at large distances, corresponds to large
positive z̃ and small r̃t which, in Fourier space, is equivalent to k3 ≪ kt - the opposite of the
wake-approximation above. The resulting integrals are

ũ(r̃) =− 6πi
8π3

∫ k3k2
t (1z − k3k

k2 )

(ik3k4
t + k2

t +β∞k6
t )

eik.r̃dk, (2.51)

ρ̃ f (r̃) =− 6π

8π3

∫ k2
t

(ik3k4
t + k2

t +β∞k6
t )

eik.r̃dk, (2.52)

where, unlike the wake-approximation above, we retain the O(β∞) terms in the integrands, in
anticipation of the fact that the reverse jet we find below has a structure that crucially depends
on β∞ even in the limit β∞ ≪ 1. The integrals in (2.51-2.52) can be further simplified by
contour integration in the complex-k3 plane. From the denominator of the integrand in (2.51-
2.52) one notes that the only pole exists in the upper half of the complex plane, being given
by k3 = iβ∞k4

t +1
k2

t
, and contributes for positive z. Performing the integral over the azimuthal

angle, and accounting for the contribution of the aforementioned pole in the k3-integration,
the disturbance fields reduce to the following one-dimensional integrals

ũz = 3
∫

∞

0

J0(kt r̃t)e
−z̃(β∞k2

t +
1

k2
t
)

k3
t

dkt , (2.53)

ρ̃ f =−3
∫

∞

0

J0(kt r̃t)e
−z̃(β∞k2

t +
1

k2
t
)

kt
dkt . (2.54)
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For r̃t = 0, the integrals in (2.53) and (2.54) may be evaluated analytically, giving:

ũz = 3
√

β∞K1[2
√

β∞z̃], (2.55)

ρ̃ f =−3K0[2
√

β∞z̃]. (2.56)

Here, K0 and K1 are the zeroth and first order modified Bessel functions of the second kind,
respectively. The crucial role of weak diffusion on the jet structure may now be seen. On
using K1(2

√
β∞z̃)≈ 1

2
√

β∞z̃
in the limit β∞ → 0, (2.55) is found to be independent of β∞ at

leading order, reducing to ũz ≈ 3
2z̃ . Rather remarkably, this implies that the axial velocity,

although pointing in the reverse direction (that is, opposite to the translating sphere) decays

in the exact same manner as the Stokeslet on length scales much larger than O(Ri
− 1

3
v ) - this is

the infinite-Pe reverse jet. On using the small argument form K0(2
√

β∞z̃)≈− ln(2
√

β∞z̃),
the density disturbance given by (2.56) is seen to be logarithmically singular all along the
rear stagnation streamline for Pe = ∞. We comment further on this singular behavior in the
context of Figure 2.9.

The far-field behavior above changes fundamentally for any small but finite β∞. Now,
there exists a second screening length across which the buoyant jet transitions from the 1

z
decay above to a much faster exponential one, this arising from the exponentially decaying
forms of the large-argument asymptotes of the modified Bessel functions above; likewise,
the density disturbance transitions from the logarithmic form above, again to a far-field
exponential decay. From (2.55) and (2.56), this second screening length is seen to be

O(β
− 1

2
∞ ), in units of aRi

− 1
3

v , or O(Ri
− 1

2
v Pe

1
2 ) in units of a. The radial extent of the reverse-

Stokeslet behavior, that may be interpreted as the width of the jet region, can be inferred
from (2.51) and (2.52). Setting β∞ = 0, one notes that z̃ ∼ O(k2

t )∼ O(r̃−2
t ) for the argument

of the exponential integrand to be of order unity. Thus, the reverse-Stokeslet behavior above
is valid in a region r̃t ∝ z̃−

1
2 for β∞ = 0; the buoyant jet narrows as O(z̃−

1
2 ), with increasing

downstream distance, until the effects of diffusion become important. The diffusive smearing
of the jet, and the transition to an exponentially decaying reverse flow, occurs across a second

screening length of O(β
− 1

2
∞ ) when the jet has a width of O(β

1
4

∞ ), both in units of aRi
− 1

3
v ;

interestingly, this transition width is O(RivPe)−
1
4 , the small Pe screening length in units of

a. At moderate to large Reynolds numbers, the observation of a rearward vertical columnar
structure behind a particle moving through density stratified fluid goes back to the studies of
Ochoa and Van Woert [1977]. It is confirmed in the experimental and numerical studies of
Hanazaki et al. [2009a] that these vertical structures behind the particle are indeed rearward
jets. Previously, this appearance of jets has been primarily attributed to the inertial effects (for
instance, see Eames and Hunt [1997]). It is even safely assumed that the rearward jet
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behind the particle vanishes at small enough Reynolds numbers due to lack of any theoretical
evidence [Okino et al., 2021]. Thus, the existence of such a jet in the Stokes stratification
regime comes as a surprise, and shows the non-trivial signature of stratification even at zero
Reynolds number. Even though all the earlier studies on the jets in stratified fluids are at
moderate-to-high Re [Akiyama et al., 2019; Hanazaki et al., 2009a,b, 2015; Okino et al.,
2017, 2021], we make a qualitative comparison with our results here. Our finding that the
width of the jet at secondary screening length is O(RivPe)−1/4(= Re−1/2Pr−1/4Fr1/2) is
consistent with the findings of Akiyama et al. [2019] that the jet radius scales as Fr1/2. It is
also qualitatively consistent with their finding that the jet radius decreases as Pr is increased.
Finally, it is also worth emphasizing that, unlike the usual case of the laminar (or turbulent)
wake or jet, the buoyant jet in a density stratified fluid does not conserve momentum flux; the
implication of the jet region for the drift volume in a stratified fluid is briefly discussed in
section 3.2.

Figures 2.8 and 2.9 show plots of the axial velocity and density disturbance fields
evaluated numerically at points along the stagnation streamline, based on (2.37) and (2.38),
with r̄t = 0. In figure 2.8, the right hand side plot shows the transition of the axial velocity
field, for negative z̃, from an O(1/z̃) Stokeslet decay in the inner region, to the more rapid
O(1/z̃7) decay of the large-η asymptote derived earlier (see section 2.3.2), on length scales
greater than the (primary) screening length. Note that this transition is accompanied by a
reversal in direction, as evident from the sharp dip around |z̃| ≈ 8.85 (z ≈ −8.85Ri−1/3

v )
in the aforementioned logarithmic plot. Thus, the axial flow in the neighborhood of the
front stagnation streamline, and at distances larger than the screening length, points towards
the sphere. Importantly, the axial velocity profiles are virtually coincident for β∞ ≤ 10−2,
implying that the flow pattern in the vicinity of the front stagnation streamline converges
to a limiting form for Pe → ∞ that is characterized by the primary screening length of

O(Ri
− 1

3
v ). In contrast, the plot on the left hand side, for positive z̃, shows a transition from

the inner region Stokeslet decay to an eventual exponential decay at the largest distances,
with this transition being postponed to progressively larger z̃ with decreasing β∞. For the
smallest β ′

∞s(= 10−4 and 10−5), one can see the emergence of an intermediate asymptotic

regime, corresponding to 1 ≪ z̃ ≪ β
− 1

2
∞ , where the velocity conforms to the reverse-Stokeslet

behavior predicted above. Note that both the Stokeslet and reverse-Stokeslet behavior appear
as the same asymptote (the black dot-dashed line), since the plot is for the absolute value of
the velocity field on a logarithmic scale, and the indication of the reversal in direction is again

the intervening sharp dip corresponding to z̃ ≈ 1.15(z ≈ 1.15Ri
− 1

3
v ). The inset in this plot

shows that the axial velocity profiles collapse onto a universal exponential behavior, when the

ordinate and abscissa are rescaled with β
1
2

∞ and β
− 1

2
∞ , respectively, the latter corresponding to
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the axial distance being scaled by the secondary screening length. This collapse is consistent
with (2.55) above; although, since the distance corresponding to the reversal in direction
scales with the primary screening length, the dips of the curves in the inset plot, are no longer
coincident for varying β∞.

The plots in figure 2.9 again highlight the contrast between the density disturbance fields
along the front and rear stagnation streamlines. The plot on the right hand side, for negative
z̃, shows that the density disturbance converges to a limiting form for β∞ ≤ 10−2, with
an O(1/z̃6) far-field decay, consistent with the large−η asymptote obtained earlier in the
far-field wake analysis of the present section; although, the numerics break down beyond a
certain |z̃| that is a function of the number of quadrature points used. In contrast, the left hand
side plot shows that the density disturbance transitions from a near-field plateau to a far-field
exponential decay, with this plateau increasing in magnitude logarithmically with decreasing
β∞, consistent with (2.56), and thereby precluding a collapse of the density profiles for small
β∞. The inset in this figure plots the density profiles as a function of the rescaled abscissa,

β
1
2

∞ z̃, so as to highlight their collapse onto a common curve (the modified Bessel function
asymptote given by (2.56)). The individual curves deviating from this common asymptote on
account of the near-field plateauing behavior, with this deviation occurring at a progressively
smaller distance with decreasing β∞; for β∞ → 0, the said plateau regime becomes vanishingly
small, while the exponential decay is pushed off to infinitely large distances (in units of the
primary screening length), so the density field becomes logarithmically singular along the
entire rear stagnation streamline. While the singularity itself is an expected consequence (for
Pe = ∞) of the steady state assumption, the nature of the divergence is an artifact of the outer
region analysis. The logarithmic singularity implies that the density disturbance, obtained
from a time dependent analysis, should diverge logarithmically for long times. The density
along the rear stagnation streamline of a finite-sized sphere must instead diverge linearly in
time, this divergence arising due to the asymptotically large residence time of fluid elements
in the immediate neighborhood of the rear stagnation point. There is no notion of a stagnation
point in an outer-region analysis, and therefore, unlike the velocity field given by (2.55), the
density field given by (2.56) is not valid exactly on the rear stagnation streamline (r̃t = rt = 0).
One must instead interpret (2.56) as being valid for r̃t ≪ 1, but with rt still being much
greater than a. The (negative) logarithmic divergence for β∞ → 0 can then be attributed to
the logarithmically divergent (in time) downward drift displacements arising from the O(1/z)
Stokesian disturbance field.
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Fig. 2.8 The axial velocity field plotted along the stagnation streamline for both posi-
tive (Figure (a)) and negative z̃ (Figure (b)), and for different small β∞. In the Figure (a),
both the Stokeslet and reverse-Stokeslet asymptotes appear as the black dot-dashed line; the
inset shows the collapse of the far-field profiles onto a common far-field decay, when plotted

as a function of β
1
2

∞ z̃, consistent with (2.55). The Figure (b) shows the transition from the
near-field Stokeslet decay (blue dashed line) to the far-field decay given by −2160

z̃7 (the black
dash-dotted line).
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Fig. 2.9 The density disturbance field plotted along the stagnation streamline for both
positive (Figure (a)) and negative z̃ (Figure (b)), and for different small β∞. The inset plot
in the Figure (a) shows the collapse of the density disturance profiles onto a common

far-field asymptote, given by (2.56), when plotted as a function of β
1
2

∞ z̃. The Figure (b)
shows that the small-β∞ density profiles converging to a common limiting form given by
360
z̃6 ; although in agreement with the farfield asymptote, the numerical approximations (with

N = 1,50,000) break down for large axial distances, with this breakdown being delayed the
most for β∞ = 10−2.
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Comparison of numerical profiles with the far-field approximations: Transition from
the jet to the wake regimes

Having characterized the far-field approximations for the disturbance fields in both the
buoyant jet and wake regions in (section 2.3.2) above, we now compare the exact results for
the axial velocity, obtained from a numerical evaluation of (2.37), for β∞ = 10−5, with these
approximations. The comparison is shown in Figures 2.10 and 2.11 for negative and positive
η̃ , respectively. Motivated by the self-similar one-dimensional integral approximation given

by (2.48), both figures plot r̄
14
5

t |ũz| as a function of η̃ . Only the wake-similarity profile (2.48)
is relevant for negative η̃ , and is shown alongside the exact numerical profiles in figure 2.10
for different r̄t , together with its large-η asymptotic form given by 2160/η̃7. The comparison
here is similar to the diffusion dominant case, the agreement being poor for small to order
unity r̄t , with the number of zero crossings also being in disagreement, but improving with
increasing r̄t . There is good agreement for r̄t = 6, and almost a perfect match between the
analytical and numerical profiles for r̄t = 25.

The comparison for positive η̃ is more elaborate since one now has both far-field wake
and jet approximations in different regions of the half-space. One expects the axial velocity
profile to transition from a jet-like profile to a wake-like one as one moves away from the
rear stagnation streamline, that is, for a fixed z̃ and with increasing r̄t . This is seen in figure
2.11 where the numerically determined axial velocity profiles are shown for six different r̄t’s
ranging from 0.05 to 25, together with the far-field wake and jet approximations developed in
the earlier two subsections. For the smallest r̄t (= 0.05), the exact calculation matches the far
field jet approximation for z̃ greater than about 10; for the chosen β∞, this jet approximation is
virtually identical (in magnitude) to a Stokeslet decay over the range of η̃ examined. For the
aforementioned r̄t , similar to figure 2.8, the numerical profile has a zero-crossing at a smaller
z̃ ≈ 1.15, and continues to diverge at smaller z̃, in accordance with the expected Stokeslet
behavior in the inner region, with there being the beginning of a plateau at the smallest z̃’s.
For r̄t = 0.25, the plateauing tendency for small z̃ is more readily evident, with there still
being a good agreement with the jet approximation for large z̃. The plateauing behavior
arises for any finite r̄t since the disturbance velocity field is now finite in the plane z̃ = 0; the
continued divergence down to z̃ = 0 only occurs along the rear stagnation streamline (see
figure 2.8). For r̃t values greater than unity, the exact profile starts to agree better with
with the wake approximation, and for rt = 25 this agreement is near-perfect, with the jet
approximation being virtually irrelevant. Analogous comparisons for the density disturbance
profiles, for both negative and positive z̃, are shown in figures 2.12 and 2.12 respectively,
even though numerical convergence issues arise for large r̃tand z̃due to the slower decay
of the associated density disturbance integral for large k. Importantly, a jet-to-wake like
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transition for the density disturbance for positive z̃ can nevertheless be seen with increasing
r̃t .

From figures 2.8 and 2.11, one sees that although the axial profile velocity exhibits only
a single zero crossing along the rear stagnation streamline (corresponding to the Stokeslet-
reverse-Stokeslet transition for β∞ = 0), the jet-approximation for any non-zero r̃t (the
expression (2.53)) appears to exhibit multiple zero crossings (likely, a denumerable infinity of
them) as evident from the plots in the latter figure for r̃t = 6 and r̃t = 25. These zero-crossings
suggest additional recirculating cells in the region z̃ ≫ r̃t for z̃, r̃t ≫ 1. In fact, with β∞ = 0
and k̂t = kt/z̃

1
2 as a rescaled wavenumber, (2.53) is easily shown to be of the form z̃−1F(r̃t z̃

1
2 ),

with F having an oscillatory character, implying that the reverse Stokeslet identified above is
only the central part of a far more elaborate axial flow structure behind the particle, one that
exhibits multiple reversals as one proceeds outward from the rear stagnation streamline, with
successive reversals separated by a distance that decreases as z̃

1
2 . Note that this predominantly

vertical flow structure is not in conflict with the finite number of zero-crossings predicted by
the wake approximation, since the latter is restricted to the region z̃ ≪ r̃t . Thus, although
the self-similar profiles in the wake predict an eventual algebraic decay, this decay might
not extend to indefinitely large distances. Instead, with increasing z̃, one will again have
zero-crossings in the region z̃ ≫ r̃t . As of now, however, this is difficult to verify, given the
near-impossibility of accurate numerical evaluation at such large distances. Nevertheless,
and although not evident from figures 2.6 and 2.7, the implication is that the flow-field in
the convection-dominant limit exhibits an infinite number of recirculating cells (unlike the
diffusion-dominant limit).

Finally, figures 2.14 and 2.15 show the streamline and iso-pycnal patterns, respectively, for
β∞ varying over the range 10−5 −10. The departure of both patterns from fore-aft symmetry,
with decreasing β∞, is evident, with the buoyant jet clearly evident in the streamline patterns
for β∞ ≤ 10−2. The spatial extent of all the streamline patterns shown corresponds to |z̃|, r̃ ≤
20, with these intervals measured in units of aRi

− 1
3

v . For β∞ = 10−5, this implies that the
streamline pattern includes the first two zero crossings that appear in the large-r̃t axial velocity
profile in figure 2.11, while including both the zero crossings that appear in the profiles

in figure 2.10. Note that the length scale characterizing the pattern changes from Ri
− 1

3
v to

(RivPe)−
1
4 with increasing β∞. In units of aRi

− 1
3

v , this corresponds to the characteristic length

scale increasing as β
1
4

∞ . Thus, for the same range in z̃ and r̃t , one samples a proportionately
smaller region of the streamline pattern with increasing β∞. This reduction in the spatial
extent is evident from a comparison of the streamline pattern for β∞ = 10 to the one in figure
2.1. In figure 2.15, the iso-pycnals are seen to become heavily compressed and distorted for
the smallest β∞’s, in a manner consistent with the density disturbance approaching being
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Fig. 2.10 The comparison, for negative z̃, between the numerically evaluated axial velocity
profile, and the far-field wake-approximation given by (2.48), in the convection dominant

limit, and in the Stokes stratification regime (Re ≪ Ri
1
3
v ); the exact profile is obtained from a

numerical integration of (2.37) with β∞ = 10−5.
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Fig. 2.11 The comparison, for positive z̃, between the numerically evaluated axial velocity
profile, and both the far-field jet and wake-approximations given by (2.53) and (2.48),
respectively. The profiles pertain to the convection dominant limit and the Stokes stratification

regime (Re ≪ Ri
1
3
v ); the numerical profile is obtained from an integration with β∞ = 10−5.



2.3 Results and Discussion 43

Fig. 2.12 The comparison, for negative z̃, between the numerically evaluated density dis-
turbance profile, and the far-field wake-approximation given by (2.49), in the convection

dominant limit, and in the Stokes stratification regime (Re ≪ Ri
1
3
v ); the exact profile is

obtained from a numerical integration of (2.38) with β∞ = 10−5.
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Fig. 2.13 The comparison, for positive z̃, between the numerically evaluated density dis-
turbance profile, and both the far-field jet and wake-approximations given by (2.54) and
(2.49), respectively. The profiles pertain to the convection dominant limit and the Stokes

stratification regime (Re ≪ Ri
1
3
v ); the numerical profile is obtained from an integration with

β∞ = 10−5.
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infinitely large (and negative) along the rear stagnation streamline (r̄t = 0, z̃ > 0) and as a
result, numerically resolving the iso-pycnal becomes very difficult; this difficulty is reflected
in the range of accessible r̃t and z̃ in figure 2.15 progressively decreasing with decreasing
β∞ (this isn’t an issue for the streamline patterns, given that the axial velocity remains finite
along the rear stagnation streamline even for β∞ = 0).

2.3.3 Effects of weak inertia or convection

In our calculations thus far, we have completely neglected the role of inertia. This is
equivalent to assuming the inertial screening length (of O(Re−1)) to be much larger than the

relevant stratification screening length, the latter being (RivPe)−
1
4 for Pe≪ 1 and O(Ri

− 1
3

v ) for
Pe ≫ 1, with this ordering of the screening lengths corresponding to the Stokes stratification
regime. With regard to the calculations above, this is equivalent to setting α0 = 0 in (2.7) and
α∞ = 0 in (2.16), for small and large Pe, respectively. While the detailed calculation of the
flow field in the presence of competing effects of inertia and buoyancy is beyond the scope
of the present work, the effect of weak inertia on the larger-scale structure of the velocity
field may nevertheless be inferred via scaling arguments.

We begin with the diffusion-dominant case (Pe ≪ 1) where, for small but finite α0,
the denominator of the Fourier integrals for the disturbance fields, obtained from Fourier
transforming (2.6)-(2.8), takes the form α0β0k2

3k2 + ik3(α0 +β0)k4 + k6 + k2
t , with k here

being scaled by (RivPe)
1
4 . Note that the term proportional to β0k3k4 denotes effects arising

from the (weak) convection of the density disturbance field, and is typically associated with a
screening length of O(Pe−1) [Leal, 2007]; the fore-aft asymmetry in the far-field arising from
this term alone was already seen in the streamline and iso-pycnal patterns corresponding to
the largest β∞’s in figures 2.14 and 2.15. Assuming buoyancy forces to first become important
with increasing distance from the settling sphere, we now know from section 2.3.1 that the
dominant motion is restricted to an axisymmetric wake on distances greater than O(RivPe)−

1
4 ,

and is primarily horizontal. Thus, in order to examine inertia-induced transitions in the wake-
scaling at larger distances, one may set k3 ≫ kt , whence the aforementioned Fourier-space
expression takes the form α0β0k4

3 + i(α0+β0)k5
3 +k6

3 +k2
t . For α0 = β0 = 0, one obtains the

balance k6
3 ≈ k2

t , and the vertical extent of the aforesaid wake growing as z ∝ (RivPe)−
1
6 r

1
3
t (in

units of a), as shown in section 2.3.1. For α0,β0 small but finite, the neglected terms
invariably become important, and balance buoyancy forces (instead of viscosity) on larger
lengthscales, corresponding to smaller k’s. For α0 ≪ β0 (or Re ≪ Pe), one obtains the

balance β0k5
3 ≈ k2

t beyond a radial length scale of O(Ri
1
2
v Pe−

5
2 ); this balance is the same as

that in section 2.3.2, and therefore, implies a wake that grows as z ∝ Ri
− 1

5
v r

2
5
t . Thus, even for
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Fig. 2.14 Streamline patterns, pertaining to the Stokes-stratification regime (defined by the
stratification screening length being the smallest of all relevant scales), for various β∞. The
first plot for β∞ = 10 is in the diffusion-dominant limit and nearly fore-aft symmetric; the
plot for β∞ = 10−5 shows the buoyant reverse jet in the rear.
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Fig. 2.15 Isopycnals pertaining to the Stokes-stratification regime for various β∞. The first
plot for β∞ = 10 is in the diffusion-dominant limit and nearly fore-aft symmetric; the plots
for the smallest β∞’s are suggestive of a developing singularity along the rear stagnation
streamline.
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Pe ≪ 1, one obtains the large-Pe wake-scaling derived in section 2.3.2, but only beyond the
aforementioned secondary screening length. Note, however, that there is no buoyant jet on
these scales, implying that the jet structure seen in Figure 2.14(c) does not ’come in’ from
infinity with decreasing β∞. Finally, on the largest scales, the leading order balance is between
inertial and buoyancy forces, and takes the form α0β0k4

3 ≈ k2
t , leading to a wake that grows

as z ∝ Re
1
4 Ri

− 1
4

v r
1
2
t beyond a radial scale of Re−

5
2 Ri

1
2
v that may be termed a tertiary screening

length, again for Re ≪ Pe. Thus, in the diffusion-dominant limit, weak convection (small
but finite Pe) and inertia effects (small but finite Re) alter the far-field wake-scaling, causing
it grow progressively faster beyond the screening lengths obtained above. Although the
difference in the growth exponents is marginal (1/3 → 2/5 → 1/2), one expects a more
significant alteration of the wake structure; the change in structure accompanying the first
transition in growth exponent (1/3 → 2/5) involves a departure from fore-aft symmetry, and
the details may already be inferred from sections 2.3.1 and 2.3.2. Provided the stratification
screening length, (RivPe)−

1
4 , remains the smallest of the three possible primary screening

lengths viz. (RivPe)−
1
4 , Re−1 and Pe−1, an assumption that defines the Stokes stratification

regime for small Pe, the screening lengths derived above remain well ordered under the
assumption Re ≪ Pe. If we allow for convection and inertial effects to be small but of
comparable importance (Re ∼ Pe), so that α0/β0 ∼ O(1), then the growth exponents found
above remain the same, but the secondary and tertiary screening lengths are now given
by max(Re,Pe)−3(RivPe)

1
2 and min(Re,Pe)−5/2max(Re,Pe)−

1
2 (RivPe)

1
2 . A schematic of the

different wake-scaling regimes in the diffusion-dominant limit is given in figure 2.16; fluid
motion outside the wake remains negligibly small.

The effects of inertia in the convection dominant limit, corresponding to Pe ≫ 1, is
based on the same expression as that in the preceding paragraph, except that k is now scaled

with Ri
1
3
v , and accordingly, one has the form −α∞k2

3k2 + iα∞β∞k3k4 + ik3k4 + β∞k6 + k2
t .

Outside of the buoyant jet, one may neglect β∞k6 and use k3 ≫ kt implying the dominance of
horizontal motion. Setting α∞ = β∞ = 0 then leads to the balance k5

3 ≈ k2
t which, as already

seen in section 2.3.2, and again in the analysis of the diffusion-dominant case above, yields

the wake scaling z ≈ Ri
− 1

5
v r

2
5
t . At length scales larger than a radial threshold of O(Re−

5
2 Ri

1
2
v ),

the balance is between inertial and buoyancy forces, leading to the same square-root scaling

z ∝ r
1
2
t seen above. Thus, the difference with regard to the wake-scalings, in relation to the

diffusion-dominant limit analyzed above, is that the initial scaling regime z ∝ r
1
3
t is now

absent, and one directly transitions to the z ∝ r
2
5
t scaling regime at distances much greater

than the stratification screening length of O(Ri
− 1

3
v ). As already mentioned in section 2.3.2, a

novel feature in the large-Pe regime is the emergence of a buoyant jet that is smeared out by
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Fig. 2.16 Schematic of the different wake-growth regimes in the diffusion-dominant
limit (Pe ≪ 1).

diffusion beyond a length scale of O(Ri
− 1

2
v Pe

1
2 ). The diffusion-screening length for the jet is

asymptotically smaller than the secondary screening length, of O(Re−
5
2 Ri

1
2
v ) above, provided

Re ≪ Ri
2
5
v Pe−

1
5 . A schematic of the various scaling regimes, in the convection-dominant

limit, is given in figure 2.17.
While the discussion in this chapter has been restricted to the Stokes stratification regime,

we briefly mention the screening lengths relevant to the inertia-stratification regime that, for

large Pe, is defined by Ri
1
3
v ≪ Re, or α∞ ≫ 1; the inertial screening length of O(Re−1) is

now the primary screening length. For Re ≪ 1, the fore-aft symmetric flow field in the inner
Stokesian region first transitions, on scales of O(Re−1), to a far-field structure consisting
of an O(1/r2) source flow everywhere except for a viscous wake behind the translating
sphere that acts as a directed sink [Batchelor, 1967; Subramanian, 2010]. In terms of the
Fourier-space expression given in the preceding paragraph, the viscous wake corresponds to
the balance ik3k4 ∼ α∞k2

3k2, leading to the familiar scaling rt ∼ (z/Re)
1
2 for the wake growth

in physical space. This source-wake structure is expected to be modified by buoyancy forces
when k2

t becomes comparable to the terms in the aforementioned balance. This happens

for k ∼ O(α
− 1

2
∞ ), which gives a secondary screening length of O(Re

1
2 Ri

− 1
2

v ) in the inertia-
stratification regime [Zhang et al., 2019]. The structure of the flow field on these length
scales is currently under investigation.
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Fig. 2.17 Schematic of various regions in the convection dominant limit for non-zero Reynolds
and Péclet numbers in the Stokes-stratification regime
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2.4 Conclusions

2.4.1 Summary of main results

We have analyzed in detail both the disturbance velocity and density fields induced by a
sphere translating in a linearly stratified ambient fluid otherwise at rest. The analysis pertains
to the Stokes stratification regime when buoyancy forces are dominant over inertial ones, so
the transition from the well known Stokesian behavior, in the inner region, first occurs across
a screening length determined by a balance between viscous and buoyancy forces. While
we analyze the fluid motion in the diffusion-dominant limit (section 2.3.1), this scenario has
also been the focus of earlier work [Ardekani and Stocker, 2010; List, 1971], and our main
focus is therefore on the convection dominant limit (Pe ≫ 1) when the screening length is

Ri
− 1

3
v . In the latter limit, and within the Stokes stratification regime defined by Re ≪ Ri

1
3
v ≪ 1,

we show through both computations (section 2.3.2) and asymptotic analysis (section 2.3.2),
that the far-field fluid motion consists of an axisymmetric wake surrounding the sphere

whose vertical extent grows as z ∝ Ri
− 1

5
v r

2
5
t , and wherein the fluid motion is predominantly

horizontal; an analog of this wake also exists in the diffuson dominant limit, in which case

it grows as z ∝ (RivPe)−
1
6 r

1
3
t ; z and rt here being scaled by a. Although not obvious from

the figures in earlier sections,the amplitude of fluid motion at a given non-dimensional
distance (measured in units of the relevant screening length) is significantly greater for
Pe ≫ 1. In sharp contrast to the diffusion dominant limit, we have shown (section 2.3.2) that
there also exists a buoyant reverse jet in the vicinity of the rear stagnation streamline for
Pe ≫ 1. Unlike the usual laminar or turbulent jets which broaden with increasing distance
downstream on account of the momentum flux being conserved, the buoyant jet region above

narrows down with increasing distance downstream as rt ∝ Ri
− 1

6
v z−

1
2 , with a velocity field

that, although oppositely directed, decays in the same manner as a Stokeslet for Pe = ∞;

the jet is screened by diffusion beyond a length scale of O(Ri
− 1

2
v Pe

1
2 ) for large but finite Pe.

The recent effort of Shaik and Ardekani [2020b] has investigated the flow pattern due to a
particle settling in the aforementioned ’convection dominant’ limit, based on a numerical
fast Fourier transform technique. Although the primary emphasis was on calculating the drift
volume, their examination of the fluid motion shows the existence of a strong reverse flow
along the rear stagnation streamline, consistent with our findings. Finally, in section 2.3.3,
we comment briefly on the role of weak inertial (and convection) effects on the structure of
the fluid motion beyond the primary buoyancy-induced screening length.

The fore-aft asymmetry of the large-Pe disturbance velocity field found here has impli-
cations for pair-interactions. A vertically oriented particle-pair will experience a repulsive
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interaction for sufficiently large separations (on scales of O(Ri
− 1

3
v )). This is in contrast to

the Stokesian scenario where the particle-pair separation remains invariant with time, as
may be established using reversibility arguments; note that the fore-aft symmetry of the
Pe = 0 velocity field, obtained in section 2.3.1, implies that the particle-pair separation, in a
stratified fluid, is conserved to leading order in the diffusion dominant limit. For Pe ≫ 1, the
aforementioned repulsive pair-interaction is initially controlled by the greater magnitude of
the velocity field along the front stagnation streamline, this because the zero-crossing along

the front stagnation streamline (≈ 8.85Ri
− 1

3
v ) occurs at a greater distance than that on the rear

stagnation streamline (≈ 1.15Ri
− 1

3
v ). However, for distances a little beyond approximately

2Ri
− 1

3
v , the more rapid O(1/z7) decay of the disturbance velocity in front of the particle

implies that the repulsion is controlled by the slowly decaying O(1/z) disturbance along the
rear stagnation streamline. Succinctly put, the rear particle pushes the one in front for smaller
separations, while the opposite is true at larger separations. The range of repulsion is limited

to a length scale of O(Ri
− 1

2
v Pe

1
2 ) by the effects of diffusion. The above repulsive interaction is

also in contrast to the homogeneous inertial case (Re finite, Riv = 0), where the well-known
drafting-kissing-tumbling scenario prevails, implying that a vertically oriented particle-pair
experiences an initial attraction [Joseph et al., 1994]. For a horizontally oriented particle-pair
in the large Pe limit, the inward radial velocities (not shown) imply an attractive interaction,
again in contrast to the respulsion in the homogeneous inertial case (that leads to a self-
similar expansion of sedimenting clusters; see Daniel et al. [2009]; Subramanian and Koch
[2008]), but consistent with the recent work of Doostmohammadi and Ardekani [2013] for a
stratified medium, although the pair separations in this latter study were of O(a). It is worth
adding that the more complicated structure of the large-Pe velocity field (see Figure 2.14)
implies that, unlike the homogeneous case, considering horizontal and vertically-aligned
particle-pairs alone does not really encompass the spectrum of pair-interactions possible for
other orientations.

2.4.2 Discussion: the inner-region scaling estimates

It was indicated in the introduction as to how the validity of a linearized approximation is
not obvious at large Pe, given that the ambient iso-pycnals in the inner region are severely
distorted by the sphere velocity field. An examination of the density disturbance in the inner
region for large Pe should help identify possible restrictions on the results obtained in this
chapter, and a few comments in this regard are in order. We begin with the simpler case
of small Pe when the density perturbation around the sphere, on length scales of O(a) (the
inner region), quickly approaches a finite quasi-steady state for all subsequent times. The
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no-flux condition on the sphere surface causes the ambient iso-pycnals to tilt, so as to meet
the sphere in a normal orientation. This tilting effect is significant in a region of O(a3),
implying that the density perturbation associated with the aforementioned quasi-steady state
is O(γa). The resulting baroclinically induced vorticity drives a flow of O(γa3g/µ), or
O(Riv) in non-dimensional terms (scaled by U ; see Varanasi et al. [2021]). For Riv ≪ 1,
this weak flow may evidently be neglected compared to the primary Stokesian field. On
larger length scales, convection of the base-state stratification by the perturbation Stokeslet
field leads to a density perturbation that grows as O(Per) in the inner region. The buoyancy
forcing due to this density perturbation becomes comparable to viscous forces on length
scales of O(RivPe)−

1
4 , the small-Pe stratification screening length screening length identified

first by List [1971] and Ardekani and Stocker [2010]. Importantly, for small Pe and Riv, the
Stokesian flow remains a valid leading order approximation in the inner region for all times.

For large Pe, the density perturbation in the inner region can become much larger than
the nominal O(γa) estimate above. This may be seen by considering the limiting case of
Pe = ∞, when the iso-pycnals are affinely convected by the sphere velocity field, there being
no steady state. The sphere, as it settles through the stably stratified medium, continuously
entrains positively buoyant fluid in a quasi-spherical annular region that extends behind it
in a narrow wake that lengthens with time. The amplitude of the density perturbation near
the sphere increases linearly with time as O(γUt), leading to a buoyancy forcing per unit
volume of O(γUtg). Clearly, for large enough times, this buoyancy forcing will become
comparable to the viscous terms even in the inner region, and for Riv ≪ 1. Since the viscous
terms in the equations of motion are O(µU

a2 ) in the inner region, the threshold time at which
buoyancy forces are of a comparable magnitude is O( µ

γa2g), or O( a
U Ri−1

v ). This is therefore
the time at which the flow in the inner region must deviate from the leading Stokesian
approximation on account of buoyancy forces; as mentioned in the introduction, it is still
possible for the structure of the fluid motion to remain similar to that detailed in this chapter,
but for a buoyancy-induced renormalization of the force exerted by the particle, although
only a detailed examination of the inner region would confirm this. Moving to the outer
region, in the Stokes stratification regime, the time scale associated with the development
of the flow field in this region may be estimated as the time required for momemtum to
diffuse to a distance of O(aRi−1/3

v ), which is O(a2

ν
Ri−2/3

v ). The ratio of this latter time to the
time scale estimated above, for the inner region to depart from a homogeneous Stokesian
evolution, is O(ReRi1/3

v ), and therefore, asymptotically small for Re, Riv ≪ 1. Thus, there
is an asymptotically long interval of time corresponding to a2

ν
Ri−2/3

v ≪ t ≪ a
U Ri−1

v , where
one has a quasi-steady response in the outer region, with the motion in the inner region still
governed by the Stokes equations at leading order. The findings with regard to the nature of
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the fluid motion, detailed in section 2.3.2, are certainly valid in this time period. Note that
for any finite Pe, however large, the distortion of the isopycnals will not continue indefinitely.
Instead, there will eventually be a steady state boundary layer, of thickness O(aPe−

1
3 ), as far

as the density gradient is concerned (although not for the density itself which will continue
to increase with time for an assumed constant U).

Scaling arguments similar to those in the preceding paragraph may also be used to assess
the possibility of observing quasi-steady dynamics on scales beyond the primary screening
length, and thereby, examine the relevance of the wake-scaling regimes sketched in section
2.3.3; see figures 2.16 and 2.17. Focusing on the Stokes stratification regime for large Pe,

the arguments in section 2.3.3 pointed to a secondary screening length of O(aRe−
5
2 Ri

1
2
v )

across which the dominant balance shifted from one between buoyancy and viscous forces to
one between buoyancy and inertial forces. Given that the inertial forces enter the dominant
balance, the time scale for a quasi-steady wake to be established on the aforementioned

secondary screening length may be estimated as aRe−
5
2 Ri

1
2
v

U . The ratio of this time scale to
aRi−1

v
U gives us Re−

5
2 Ri

3
2
v , with this ratio needing to be much less than unity in order for a

quasi-steady analysis of the fluid motion to hold; this yields Re ≫ Ri
3
5
v . Combining this with

the primary criterion for the large-Pe Stokes stratification regime gives Ri
3
5
v ≪ Re ≪ Ri

1
3
v for

the dynamics in both the primary and secondary outer regions to be quasi-steady, in the time
that the inner region region has a Stokesian character.



Chapter 3

Fluid drift due to a settling sphere in a
stratified fluid

In the last chapter, we have examined the translation of a sphere in a stably stratified
ambient in the limit of small Reynolds (Re ≪ 1) and viscous Richardson numbers (Riv ≪ 1)
and characterized in detail the velocity and density fields around the particle in both the
diffusion dominant (small Pe) and convection dominant (large Pe) limits. For large Pe, the
characterization pertains to what we termed the Stokes stratification regime, defined by

Re ≪ Ri
1
3
v ≪ 1, and corresponding to the dominance of buoyancy over inertial forces (both

nevertheless being small in comparison to viscous forces). In this chapter, by using this
velocity field in the convection dominant limit (large Pe), we obtain the associated fluid
pathlines, drift displacements and drift volume for different viscous Richardson(Riv) and
Peclet(Pe) numbers. In the next two sections, we briefly introduce the previous literature
on fluid drift in a homogeneous ambient, its relevance to the drift in a density-stratified
environment, and then present scaling estimates for the drift volume in a viscous density-
stratified fluid. Next, we formulate the framework for the actual calculation of the fluid
pathlines, the drift displacements, and the corresponding drift volume.

3.1 Introduction

The idea of drift in fluids and pathlines goes back to the study of Maxwell [1869]. In an
Eulerian description of the fluid, one is concerned about the flow field in space at a fixed point
as time progresses. Maxwell [1869] realized that one could draw important observations by
looking instead at the velocities of individual fluid elements and the paths traced by these
fluid elements. This pertains to the Lagrangian description in fluid mechanics. Specifically,
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Maxwell studied the problem of a two-dimensional cylinder (a potential dipole in two
dimensions) translating through an ideal fluid, and numerically calculated the trajectories
traced by the individual fluid elements as they are convected by the disturbance velocity field
[see also Rankine [1864]]. Much later, Darwin [1953], apparently unaware of Maxwell’s
work, found closed-form solutions for the fluid element trajectories, for the above problem,
in terms of elliptic functions. He also noted that an analogous closed-form solution is not
possible for the case of a sphere moving through an ideal fluid (a potential dipole in three
dimensions) due to the existence of hyper-elliptic integrals [see also Lighthill [1956]]. Thus,
one must resort to a numerical evaluation of the pathlines for this latter case.

Darwin [1953], in his work, also introduced the concept of drift volume, now known
as ’Darwin’ drift Eames et al. [2003]; Eames and McIntyre [1999]; Pushkin et al. [2013];
Yih [1997]; this is in contrast to ’Stokes’ drift of fluid elements that arises in the context of
irrotational water waves Craik [2005]; Stokes [1847]. Darwin’s definition of the drift volume
is as follows. He considers a solid body moving through an ideal fluid from far upstream (say,
x =−∞) of an unbounded plane of fluid elements (given by x = 0), oriented perpendicular
to the translation direction. As this solid body moves far downstream (x = ∞), the plane
of fluid elements under consideration gets deformed. The volume contained between the
initial and final (deformed) material planes is defined as the drift volume. Darwin [1953]
showed that this drift volume is given in terms of a conditionally convergent integral; the
conditional convergence arises from, in effect, integrating the disturbance velocity field that
decays as O(1/rD) over volume that increases as rD, r being the distance from the translating
particle, and D being the embedding dimension. One gets the answer to be half the volume of
a body for the case of a translating sphere in a volume whose horizontal extent is much larger
than the vertical extent; this being equivalent to choosing the particular order of integration
where the integration over the coordinate aligned with the translation is carried out first,
so as to evaluate the drift displacements [see also Benjamin [1986]; Yih [1985]], before
integrating over the plane of upstream offsets. For the order of integration above, Darwin
showed that the volume of displaced fluid, for a general body, equals half the added mass
divided by the fluid density. Recently, Yih [1995] has shown that the integral for the drift
volume becomes absolutely convergent on including a weak compressibility, and the answer
obtained is the same as that originally found by Darwin. For the case of incompressible ideal
fluid, Eames and coworkers Eames et al. [1994] generalized the concept of drift volume
to define the partial drift volume, and examined Lagrangian reflux and drift in a detailed
manner. A similar study of the drift displacements and drift volume for the case of a droplet
moving in a viscous fluid in the Stokes regime has also been carried out by Eames and
coworkers Eames et al. [2003]; the concept of the partial drift volume developed in the earlier
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Eames effort above is crucial to the Stokesian regime, since the total drift volume, as defined
by Darwin, is divergent in the Stokes limit. Indeed, Eames and coworkers found both the
drift displacements and the drift volume to be divergent quantities due to the slow O(1/r)
decay of the velocity field; note that the potential flow field used by Darwin in his original
calculation decays as O(1/r3) allowing for a finite drift volume. For the case of small but
finite inertia (non-zero Reynolds number), one would still have a divergent drift volume due
to the presence of the viscous wake behind the translating particle where the velocity field
still decays as O(1/r), as is the case for entire velocity field in the Stokes limit Subramanian
[2010]; the drift volume diverges logarithmically for large times. More recently, closed-form
asymptotic expressions have been found for the partial drift volume, for both the passive and
active particles moving in an unbounded homogeneous fluid domain,with the use of a flux
interepretation by Chisholm and Khair [2017, 2018].

The concept of fluid drift has also been used and interpreted in a variety of other scenarios.
For instance, Eames and McIntyre [1999] have established connections between the Darwin
drift and the so-called Stokes drift exhibited by fluid elements due to the progression of
small amplitude irrotational water waves. The idea of drift has been used in multiphase
and multibody problems Eames [2003], mixing in gas-fluidized beds Eames and Gilbertson
[2005], fluid transport due to vortex motion Dabiri [2006]; Eames and Flor [1998], and
protein transport in membranes Prasad et al. [2007]. However, as mentioned in Chapter 1,
the idea of drift has most recently been invoked in the context of biogenic mixing of oceans
Katija and Dabiri [2009] to understand the possible missing energy contributions to the
meridional overturning circulation Munk and Wunsch [1998]; Munk [1966]. It is in this
context that we intend to calculate the drift volume for a passive particle settling in a density
stratified fluid in the present chapter.

This chapter is divided into different sections. In section 3.2, scaling estimates for the
drift volume in a density stratified fluid are provided for both the Stokes-stratification (Re ≪
Ri1/3

v ;α ≪ 1) and Inertia-stratification (Re ≫ Ri1/3
v ; α∞ ≫ 1) regimes. The methodology

and details of exact calculation of the pathlines, drift displacements and drift volume, which
pertain to the Stokes stratification regime, are given in section 3.3. The results of the
numerical calculations are discussed in section 3.4, along with the drift volume scalings
obtained from the numerical evaluation. Through rigorous calculations, we show, for first
time, that the drift volume in a density stratified fluid in the convection-dominant limit is
convergent (and is of O(Ri−1/3

v )), and is of reflux in nature. The drift displacement plots in
our results clearly point to this convergence as will be seen in this section. Finally, in section
3.5, revised estimates for drift volume are proposed along with the summary of the main
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results of the current chapter. We also discuss the relevance of the current studies on drift
volume to the oceanic mixing towards the end.

3.2 Estimates for drift volume scalings in a density strati-
fied fluid

In this section, we estimate the drift volume for a sphere settling in a viscous density-stratified
fluid whose calculation, as mentioned in the introduction of the Chapter 1, was one of the
motivations of this thesis. The rapid algebraic decay of the far-field velocity disturbance (as
shown in Chpater 2), induced by buoyancy forces, implies that the drift volume (D) will be
finite in presence of an ambient stratification, as originally argued by Subramanian [2010].
Estimates for D as a function of Riv and Re, in the Stokes and inertia-stratification regimes,
are obtained below.

For the homogeneous Stokesian scenario, the O(1/r) decay of the disturbance field
implies a divergent drift volume for any finite time. As originally shown by Eames et al.
[2003], it therefore becomes necessary to define a partial drift volume (Dp) where, in contrast
to Darwin [1953], one only considers an initial material plane of a finite spatial extent. The
partial drift volume for the case of a sphere moving in an unbounded viscous fluid is defined
as

Dp = 2π

∫ h

0
rtdrt

∫ t

−t
dt ′uz (rt ,Z − t) (3.1)

Here, uz is the axial velocity, (rt ,Z) are coordinates of the fluid element in the lab reference
frame, (−t,t) the time interval, and h the radius of material plane. Taking the limits t → ∞

and h → ∞ in the above expression gives the full drift volume. In a recent effort, Chisholm
and Khair [2017] have shown that, at leading order in a/h, Dp ∼ ah2 sinh−1(Ut/h), t and
h here being the time and radius of the aforementioned material plane, respectively; the
h-scaling clearly points to the finite-time divergence of D (= limh→∞ Dp) in the Stokesian
limit. In the limits Ut/h ≪ 1 and Ut/h ≫ 1, the authors find Dp to be O(ahUt) and
O[ah2 ln(Ut/h)], respectively. These scalings may be readily obtained without a detailed
calculation: for Ut ≪ h, the flux through the original plane is independent of time, and due
to the U-component of the Stokesian field, in the transverse plane containing the sphere.
This component is 3Ua/(4rt), and the flux through a circular section of radius h is therefore
given by

∫ h
0 3U(a/4rt)2πrtdrt ≈ (3π/2)Uah, implying Dp ≈ (3π/2)Uaht; here, the lower

limit of the integral is taken to be 0 since the leading contribution comes from rt of O(h) (this
is also the reason why a Stokeslet approximation suffices for the leading order estimate).
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In the long-time limit of interest, when the distance of the material plane from the sphere
is much larger than its radial extent, the flux is primarily due to the velocity uz ≈ 3U/az
along the rear stagnation streamline. The drift displacement due to this disturbance velocity
field may be estimated as

∫ t dt uz =
∫Ut(dz′/U)uz =

∫Ut dz′(3a/2z′) ∼ (3a/2) ln(Ut), and
is logarithmically divergent in time. A subtle point here is with regard to the argument of the
logarithm; the approximate estimate above gives a dimensional argument for the logarithm,
and one needs an additional length with respect to which Ut in the logarithm is measured.
Although an obvious choice would be a, the correct choice is h (as also evident from the
exact result above), and this is because the onset of the logarithmic divergence is dependent
on the transverse radial location of the fluid element. The decreasing magnitude of the
disturbance field implies that it takes a progressively longer time for an element, further
off from the translation axis, to be displaced through a distance of O(a); evidently, the
logarithmic divergence in time can only begin after the drift displacement has attained a
magnitude of O(a). For an element at a transverse distance of O(h), the scales that contribute
dominantly to Dp, this time is O(h/U), implying that the argument of the logarithm, in
the expression for the drift displacement above, should be t/(h/U); multiplication by πh2

gives the estimate Dp ≈ 3π

2 ah2 ln(Ut/h). In the Stokes-stratification regime, one expects the
dominant contribution to the drift volume to come from the range h ∼ lc, lc being the relevant

stratification screening length; lc ∼ O[(RivPe)−
1
4 ] for Pe ≪ 1, and O(Ri

− 1
3

v ) for Pe ≫ 1.
However, for elements at these distances (from the translation axis), the drift displacement
attains a magnitude of O(a) only in the O(lc/U) time taken for the sphere to translate through
a screening length. Since the velocity field decays faster for larger separations, there cannot
be the analog of the aforementioned logarithmic-in-time behavior, for larger times, that
occurred in the homogeneous case. This implies that D for the Stokes drift displacement can
be obtained from the aforementioned long-time estimate for the Stokesian case by replacing
h with lc, but removing the logarithm. One therefore obtains D ∼ O[a3(RivPe)−

1
2 ] and

O(a3Ri
− 2

3
v ), for small and large Pe, in the Stokes stratification regime, the latter estimate

being relevant to the oceanic scenario [Katija and Dabiri, 2009; Subramanian, 2010]; both
estimates diverge in the limit of a homogeneous ambient (Riv → 0), as must be the case.
The numerical pre-factors in these estimates would require a detailed calculation of the
drift displacements on length scales of order the stratification screening length; the large-
Pe case is considered in 3.4. Note that fluid elements that start off at distances of h ≪ lc
from the translation axis will suffer drift displacements of O(a lnRi

− 1
3

v ), and one therefore
expects higher-order terms involving logarithms in a small Riv expansion of D in the limit

Re ≪ Ri
1
3
v ≪ 1. Recent efforts by Shaik and Ardekani [2020a] and Shaik and Ardekani

[2020b] have obtained Dp numerically, in both the small and large Pe limits, Consistent
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Fig. 3.1 Schematic for scaling estimates of drift volume in a density straified fluid: In
the Stokes stratification regime the scaling for the drift is given by Ri−2/3

v whereas in the
inertia-stratification regime, the drift scales as (ReRiv)−1/2. One expects a smooth transitions
between Stokes and Inertia stratification regimes.
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with the results of Chisholm and Khair [2017], Dp exhibits an O(h2) scaling with the radial
extent of the material plane under consideration. The scaling arguments above imply that
this algebraic divergence must be cut off once h ∼ O(lc). It is also important to note that the
narrowing down of the buoyant jet as 1/z

1
2 with downstream distance implies that the O(1/z)

Stokesian decay of the axial velocity field within this jet region will not lead to divergent
drift displacements, and thereeore does not affect the above drift volume estimates.

In the inertia-stratification regime (Riv ≪ Re ≪ 1), discussed briefly towards the end of
section 2.3.3 in Chapter 2, the disturbance velocity field attains the familiar source-sink struc-
ture on length scales larger than the primary (inertial) screening length of O(aRe−1) [Batchelor,
1967]. It is well known that the presence of a viscous wake leads to D diverging linearly in
time for the homogeneous scenario [Chisholm and Khair, 2017; Subramanian, 2010]. This
divergence is readily seen from the constant flux through a fixed plane driven by the viscous
wake. This flux is given by uz(rwake

t )2, where rwake
t ∼ (az/Re)

1
2 , and is O(Ua2/Re), leading

to D ∼ (Ua2/Re)t for the homogeneous case. For the stratified case, and for Pe ≫ 1, this
viscous wake only persists until the secondary screening length of O(Re/Riv)−

1
2 obtained in

section 2.3.3, and therefore the linear divergence above will be cut off for t ∼ O(a(Re/Riv)
− 1

2

U ),
when stratification forces screen the wake velocity field, and one obtains D ∼ a3(ReRiv)−

1
2 in

the inertia-stratification regime. Note that this scaling is consistent with the scaling obtained
above in the Stokes-stratification regime, in that it reduces to O(Ri−2/3

v ) for Re = Ri1/3
v . In

summary, for a fixed Riv ≪ 1, D starts off being O(a3Ri
− 2

3
v ) until an Re of O(Ri

1
3
v ), decreas-

ing thereafter as O(a3Re−
1
2 Ri

− 1
2

v ) for Re ≫ Ri
1
3
v . The estimates mentioned above for both

the Stokes stratification and Inertia stratification regimes can be summarized in figure 3.1
where the drift estimates are plotted against Re. A detailed examination of pathlines and drift
volume, to verify the scaling arguments above, is carried out in the remaining sections of this
chapter. This detailed examination pertains to the Stokes stratification regime; the Inertia
stratification regime is beyond the scope of this thesis

3.3 Evaluation of drift volume in a density stratified fluid

The numerical evaluation of the fluid pathlines, drift displacements, and drift volume requires
the use of the velocity field obtained in the Chapter 2. Note that in a density stratified fluid
in the limit of Re = 0, the velocity field, when expressed in inner coordinates, is a function
of Riv and Pe. Thus, the drift volume given by 3.1 is expected to be a function of both the
above mentioned dimensionless numbers in the Stokes stratification regime. As derived in
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the last chapter, for the convection dominant limit, the velocity field, in outer coordinates, in
the Stokes stratification regime (α∞ = 0), is given by the following Fourier intergal

ū1 =− 3
4π2

∫ (ik3 + k2β∞

)
k21z.

(
I− k̂k̂

)
(
ik3k4 +β∞k6 + k2

t
) eik.rdk (3.2)

Note that we have retained the O(β∞) term which, as mentioned above, renders the drift
volume a function of Pe; Although, one expects the drift volume to approach a Pe-independent
value in the limit β∞ ≪ 1 despite the Pe-dependent reverse jet region.

To obtain fluid pathlines in the Stokes stratification regime in the convection-dominant
limit (Re= 0, Riv ≪ 1 and Pe≫ 1), we find the axial and transverse velocities after separating
the Stokeslet contributions, and taking only the real part. The expressions for both the velocity
components in outer coordinates are now given by

ūz =− 3(r2
t +2z2)

4(r2
t +z2)

3
2
+ 3

π

∫
∞

0 dk
∫ π

2
0 dθ

sin5
θJ0(krt sinθ)[cos(kzcosθ)(β∞k4+sin2

θ)+k3 cosθ sin(kzcosθ)]
(β∞k4+sin2

θ)2+k6 cos2 θ

(3.3)
ūrt =− 3rtz

4(r2
t +z2)

3
2
+ 3

π

∫
∞

0 dk
∫ π

2
0 dθ

cosθ sin4
θJ1(krt sinθ)[k3 cosθ cos(kzcosθ)−(β∞k4+sin2

θ)sin(kzcosθ)]
(β∞k4+sin2

θ)2+k6 cos2 θ

(3.4)
As the above expressions are written for the case of a point-particle approximation, they

are only valid at large distances (r ≫ a) from the sphere. To obtain the pathlines of fluid
elements over the entire range of distances from the sphere, and thence, the drift volume,
uniformly valid expressions for both the axial and transverse velocities are required. This can
be done by writing down the additive composite velocity field, obtained by adding the inner
region Stokes velocity field to the outer region velocity field, while removing the matching
region contribution to avoid double-counting Van Dyke [1975]. This leads to the following
composite expressions for both the components of velocity written in the inner coordinates.

ūC
z =− r2

t −2z2

4(r2
t +z2)

5
2
+− 3(r2

t +2z2)

4(r2
t +z2)

3
2
+ 3

π

∫
∞

0 dk
∫ π

2
0 dθ

sin5
θJ0(krt sinθ)[cos(kzcosθ)(β∞k4+sin2

θ)+k3 cosθ sin(kzcosθ)]
(β∞k4+sin2

θ)2+k6 cos2 θ

(3.5)
ūC

rt
= 3rtz

4(r2
t +z2)

5
2
− 3rtz

4(r2
t +z2)

3
2
+ 3

π

∫
∞

0 dk
∫ π

2
0 dθ

cosθ sin4
θJ1(krt sinθ)[k3 cosθ cos(kzcosθ)−(β∞k4+sin2

θ)sin(kzcosθ)]
(β∞k4+sin2

θ)2+k6 cos2 θ

(3.6)
For evaluating the pathlines of fluid elements, we now take ūC

z = dz
dt and ūC

rt
= drt

dt , and
therefore have to solve coupled ODE’s for z and rt with given initial coordinates at t = 0.
We choose the plane of fluid elements to be given by z = 0 at t = 0 with an additional
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constraint given by rt > a. Note that, on account of axisymmetry, it suffices to choose an
initial line of fluid elements transverse to the direction of translation - this line corresponds
to the intersection of the aforementioned initial plane with a vertical plane passing through
the axis of symmetry (the direction of translation). The initial interval of rt ’s is (1,2Ri−1/3

v );
the largest rt is chosen to be twice the large-Pe stratification screening length to ensure
convergence. Having chosen the rt -interval, forward and backward integrations are carried
out for large times for a given pair (Riv,Pe). We use a fourth order Runge-Kutta method
for integration with the axial and transverse velocities (and the associated Fourier integrals)
evaluated at each time instant to update the position of the fluid elements. The backward
integration in time mentioned above implies the sphere moves upward from z = 0 to large
positive z (corresponding to a large negative time). Similarly, a forward integration implies
that the sphere moves from z = 0 to a large negative z (corresponding to a large positive time).
The above procedure helps us calculate the pathlines of individual fluid elements, with the
associated drift displacements being given by difference between the z coordinates of the
particular fluid element corresponding to large positive and negative times. The magnitudes
of these positive and negative times is chosen to be Tmax ∼ Ri−1/2

v Pe1/2, corresponding to
the sphere translating through a secondary screening length (where diffusion effects become
important), which must ensure convergence of the drift displacements, and thereby ensure
that the initial plane above converges to asymptotic upstream and downstream deformed
surfaces for the largest negative and positive times. Having calculated the upstream and
downstream drift surfaces by way of backward and forward integrations, respectively, the
upstream drift volume component is calculated by evaluating the volume between the initial
plane of fluid elements at t = 0 ; the downstream drift volume component is calculated in an
analogous manner.

3.4 Results and Discussion

To begin with, we briefly consider the homogeneous Stokesian scenario - that is, of a sphere
translating with Re = Riv = 0 - and calculate the pathlines of fluid elements and drift surfaces.
Note that we do not perform a detailed calculation of the drift displacements and drift
volume in the above case as these aspects are treated in the previous literature [Chisholm
and Khair, 2017; Eames et al., 2003] as explained in the introduction of this chapter. Since
the instantaneous streamlines in the lab reference frame associated with the homogeneous
Stokes flow are open, one obtains open pathlines irrespective of the transverse distance(rt

) of the fluid element from the sphere at time t = 0 (note that the pathlines for the original
potential problem have a looped character, with the loop size approaching the size of the
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Fig. 3.2 Fluid pathlines (depicted as black lines in the figure) due to a translating sphere
in a homogeneous viscous fluid without stratification at Re = 0. The initial plane of fluid
elements, at time t=-1000, is depicted as red deformed curve whereas the the final plane of
fluid elements, at time t=1000, is in blue; the sphere is at the origin, at time t=0, and moving
vertically downward.
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whole pathline with increasing rt - see Darwin [1953]). These Stokesian pathlines are shown
as black curves for different rt ’s in figure 3.2. The logarithmic-in-time divergence of the drift
displacements due to the slow O(1/r) decay of the velocity field in the homogeneous viscous
case implies that the integrations can be carried out only for finite times. The forward and
backward integrations in figure 3.2 are carried out up until a maximum time of Tmax = 1000.
The plane of fluid elements given by the red curve is the result of the backward integration
in time, and denotes the initial drift surface when the sphere starts far upstream at z = 1000
for t =−1000. The symmetrically located blue curve is likewise the final drift surface when
the sphere ends up far downstream at z = −1000 for t = 1000. The partial drift volume
enclosed between these two surfaces (extending up to rt = 20) is already large compared to
the volume of the sphere (a3) itself. This largeness is, of course, related to the divergence
of the Stokesian drift volume (for any finite time) discussed in section 3.1, and is in sharp
contrast to the homogeneous potential flow case where the drift volume remains of order the
volume of the transating particle. Now we turn to the detailed calculations for the case of a
density stratified fluid.

Figures 3.3a and 3.3b show the pathlines of the fluid elements in a stratified fluid at a
fixed viscous Richardson number Riv = 10−3 and for two different Peclet numbers (Pe = 50
& 1000 respectively). The effect of the rapid algebraic decay of the axial velocity, on the
pathlines of fluid elements that are located at transverse distances of r ≥ Ri−1/3

v at time
t = 0, is evident. The spatial extent of the pathlines is much smaller for these transverse
distances (this will be again illustrated via drift displacement plots that we consider later
in this section). Note that for calculating the drift surfaces at Riv = 10−3, we have chosen
Tmax = 1000 since this is the secondary screening length (Ri−1/2

v Pe1/2) for this Riv and the
largest of Pe considered here. We will come back to this in detail in this section when we
discuss the drift displacement plots.

As can be seen from the figures, the pathlines are strongly affected by weak stratification
and are evidently different from their counterparts in the homogeneous Stokesian scenario.
This is a consequence of the streamlines in the instantaneous frame of reference, in a
density stratified fluid, not exhibiting the open configuration, as already seen in Chapter 2.
Fluid elements outside the region corresponding to the reverse buoyant jet exhibit primarily
horizontal motion for transverse distances much larger than stratification screening length
(Ri−1/3

v ); the fluid elements located in the region of the buoyant jet do exhibit a reversal of
fluid motion. For the symmetric time intervals considered here, the pathlines are seen to
be fore-aft asymmetric, unlike the homogeneous viscous case or the case of the diffusion
dominant limit (recall that, in the latter case the velocity field is fore-aft symmetric leading
to fore-aft symmetric pathlines over any symmetric time interval; the detailed calculations
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of pathlines in Pe = 0 limit are not shown in this thesis). From figure 3.3a and 3.3b
corresponding to Pe = 50 and Pe = 1000 respectively, we note that the pathlines and drift
surface patterns are almost similar underlining the fact that the drift volume is independent
of Pe for Pe ≫ 1. However, it can also be seen that the reversed motion of fluid elements
starting at smaller transverse distances from the line of translation of the sphere is slightly
weaker for Pe = 50, which may be anticipated due to smaller secondary diffusion screening
length for Pe = 50 in comparison to Pe = 1000.

Now we turn to the variation of drift displacements with time, for different Pe, which
is ultimately related to the convergence of the drift volume in the limit Pe ≫ 1. Figure 3.4
shows the evolution of the drift displacement of a fluid element that is located close to the
sphere, at (rt ,z) = (1.005,0), at time t = 0, over a range of Pe from 10 to 1000. The plot
shows both the upstream and downstream drift displacements as a function of time. This plot
(and the others after it) includes several vertical lines. The first (black) vertical line indicates
the axial distance where the zero crossing in the axial velocity field exists (1.1Ri−1/3

v , in the
units of sphere radius a).In this particular case of Riv = 10−3, this zero-crossing turns out
to be 11 (in the units of a). We expect the Stokeslet field to dominate for distances much
smaller than this. This behavior is also reflected in the drift displacement evolution for times
t < 11a, which suggests there is logarithmic divergence (to plus and minus infinity for the
upstream and downstream displacements). This logarithmic divergence gets cut off for times
t > 11a. However, due to the asymmetric influence of stratification on the instantaneous
velocity field (already seen in Chapter 2), at distances larger than the stratification screening
length, the upstream and downstream drift displacement evolution differs significantly for
times t > 11a. The upstream drift displacement is seen to reach a plateau for times t ∼ 50a as
the velocity field (for negative z) exhibits a rapid algebraic decay. Further the convergence of
the upstream drift displacment with increasing Pe is again quite rapid, with the displacement
curve being virtually independent of Pe for Pe ≥ 10 (smaller values of Pe have not been
shown). However, the evolution of downstream drift displacements is more sensitive to Pe,
which correlates to the sensitivity of the jet region behind the sphere (in the instantaneous
streamline pattern) to increasing Pe. The convergence of downstream drift displacements is
only seen to happen for times t > O(RivPe−1/2), which is essentially the secondary screening
length in the large Pe limit. The multiple vertical lines (in different colors) are drawn to
emphasize the above fact. The second black vertical line in figure 3.4 indicates the time
(or distance) for the onset of the O(1/z) decay of the axial velocity field (corresponding to
the reverse Stokeslet behavior) in the jet region. The remaining vertical lines correspond to
the secondary diffusion screening lengths, for each of the Pe’s considered, beyond which
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(a) Pathlines and Drift surfaces for Pe = 50

(b) Pathlines and Drift surfaces for Pe = 1000

Fig. 3.3 Fluid pathlines (depicted as black lines in the figure) due to a translating sphere in
a viscous stratified fluid at Re = 0 and Riv = 10−3 for two different Pe (= 50,1000). The
initial plane of fluid elements, at time t=-1000, is depicted as red deformed curve whereas
the the final plane of fluid elements, at time t=1000, is in blue; the sphere is at the origin,
at time t=0, and moving vertically downward. The blue dotted vertical lines indicate the
stratification screening length.
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there is an exponential decay of the axial velocity. It can be seen that the downstream drift
displacements converge and reach a plateau beyond the secondary diffusion screening length.

The evolution of the drift displacements for fluid elements that begin at transverse
distances of O(Ri−1/3

v ) at t = 0 (for Ri−1/3
v , this is rt = 10) at t = 0) is shown in figure 3.5.

The time variation of the drift displacements for this case is different from those of fluid
elements starting at smaller transverse distances (an instance of which was shown in figure
3.4 above). The downstream drift displacements still show a sensitive dependence on Pe;
however, more importantly, the fluid elements exhibit a Lagrangian reflux (that is, a net
displcement in the direction opposite to the translating particle) rather than Lagrangian drift.
This behavior clearly suggests the strong role of stratification on the drift in the convection-
dominant limit. As will be seen later in this section, this has implications for the drift
volume. From figure 3.6, for fluid elements that have started at two times the stratification
screening length, we observe that the drift displacements are approximately independent of
Pe in the convection dominant limit (especially Pe ≥ 50). This implies that the convergence
of upstream drift displacements is no longer a function of secondary screening length (the
fluctuations in drift displacements at these distances are due to numerical convergence issues
as we need much larger number of quadrature points to resolve this which is beyond the scope
of the present work). Finally, Figure 3.7 shows the drift displacements for fluid elements
starting at different transverse distances at t = 0 and clearly suggest the convergence, for
large times, for the case of Riv = 10−3 and Pe = 1000. We draw analogous conclusions
from drift displacements and pathlines for any other viscous Richardson and Peclet numbers
(whose calculations are not shown here).

With the above results having established the convergence of the fluid drift displacements,
we now move on to calculate the drift volume. For this purpose, we first calculate the
upstream and downstream drift surfaces for large negative and positive times, respectively, by
virtue of backward and forward integrations over a whole range of rt values until twice the
primary screening length. For Riv = 10−3 and Pe = 1000, the evolution of these drift surfaces
with time is shown in the figures 3.8a and 3.8b. While the evolution of the upstream drift
surfaces in figure 3.8a corresponds to the fluid elements being dragged along in the same
direction as the translating sphere, a change in the evolution of the downstream drift surfaces,
arising from a reversal in the fluid element trajectories can be seen in figure 3.8b for times
t ≥ Ri−1/3

v . For different Riv and Pe, the upstream drift volume is evaluated by calculating
the volume between the large (negative) time upstream drift surface and the plane of fluid
elements at time t = 0. Similarly, the downstream drift is evaluated by considering the large
(positive) time drift surface. Figures 3.9a and 3.9b show the upstream and downstream drift
volumes, respectively, against Riv for different Pe (≥ 50). Our results indicate that both the
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Fig. 3.4 Drift displacement against time for a fluid element located at (1.005,0) at time t = 0
in viscous density stratified fluid at Re = 0 and Riv = 10−3 for different Pe values. Drift
displacements are plotted by doing both the backward and forward integration. The upstream
drift displacement plots start at small positice Z for small times, whereas the downstream
drift displacement plots start at small negative Z for small times.
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Fig. 3.5 Drift displacement against time for a fluid element located at (10,0) at time t = 0 in
viscous density stratified fluid at Re = 0 and Riv = 10−3 for different Pe values.
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Fig. 3.6 Drift displacement against time for a fluid element located at (20,0) at time t = 0 in
viscous density stratified fluid at Re = 0 and Riv = 10−3 for different Pe values.
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Fig. 3.7 Upstream and downstream drift displacements of fluid elements starting at different
transverse distances against time in a viscous density stratified fluid at Re = 0 and Riv = 10−3,
and Pe = 1000. As before, drift displacements are plotted for both the backward and forward
integration(upstream and downstream).
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upstream and downstream drift volume components scale as Ri−2/3
v . However, while the

upstream drift is a positive quantity (= 3.71Ri−2/3
v ) indicating a net Lagrangian drift, the

downstream drift is a negative quantity (=−3.79Ri−2/3
v ) indicating a net Lagrangian reflux.

For different Pe(≥ 50), the total drift volume (found by adding upstream and drift
volumes) is plotted as a function of Riv in figure 3.10. The total drift volume evidently
does not scale as Ri−2/3

v ; instead, the scaling appears to be closer to Ri−1/3
v (although, one

needs to go to even smaller Riv in order to be certain of this exponent); the black line in the
figure corresponds to 1.4Ri−1/3

v . Importantly, the total drift has the character of a Lagrangian
reflux (instead of a net Lagrangian drift) in the convection dominant limit. This can clearly
be attributed to the negative downstream drift discussed earlier. The scaling arguments
presented in section 3.2 suggested that the drift volume ina density stratified fluid in the
convection-dominant limit scales as Ri−2/3

v . Although the numerical calculations for the
upstream and downstream drift volume agree with our scalings, the cancellation between the
reflux and drift contributions implies that the scaling for the total (net) drift volume does not
conform to the expected scaling; instead, the total drift volume turns out to be closer to being
O(Ri−1/3

v ).
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Fig. 3.8 Evolution of upstream and downstream drift surfaces, for negative and positive times
respectively, for the the plane of fluid elements that has a radius rt = 20 at time t = 0, in a
viscous density stratified fluid, at Re = 0, Riv = 10−3, and Pe = 1000. For t ≥ 10, a reversal
in the trajectories of the fluid elements can be seen.
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(a) Upstream drift surfaces in a density stratified fluid
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(b) Downstream drift surfaces in a density stratified fluid

Fig. 3.9 The upstream and downstream drift volumes plotted against Riv for different Pe
(≫ 1). The upstream drift volume scaling, for Pe ≫ 1, approaches 3.71Ri−2/3

v for Riv → 0 (a
Lagrangian drift). The downstream drift volume scaling, for Pe ≫ 1, approaches 3.79Ri−2/3

v
and is negative (a Lagrangian reflux).
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Fig. 3.10 The absolute drift volume plotted against viscous Richardson number for different
Peclet numbers. The drift volume scaling in the convection dominant limit appears close
to that of 1.4Ri−1/3

v . Note that as mentioned in the text, the total drift volume is negative
indicating a net Lagrangian reflux
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3.5 Conclusions

In this chapter, we have carried out a detailed numerical evaluation of the pathlines, drift
displacements, drift surfaces and drift volume by using a composite velocity field that remains
valid over length scales from r of O(a) to O(aRi−1/3

v ). A few comments are in the order with
regard to comparison between the detailed numerical calculations performed in section 3.4
and the drift estimates made in section 3.2. We also discuss the relevance of drift volume
with regard to the mixing in a density stratified fluid towards the end.

We know that the ’full’ drift volume calculation, corresponding to the volume enclosed
between the surfaces at t =−∞ and ∞, is not possible numerically. Thus, it makes sense to
calculate the partial drift volume corresponding to the time interval (−Tmax,Tmax) with the
radius of plane of fluid elements being truncated at hmax. For Tmax and hmax much larger than
the primary stratification screening length (aRi−1/3

v ), one expects this partial drift volume to
approach the ’full’ drift volume. Theoretical arguments mentioned in section 3.2 suggest that
the drift volume in the Stokes stratification regime must diverge as Ri−2/3

v for Riv going to
zero. We find such a divergence (with an exponent close to −2/3 ), but only for the upstream
and downstream drift volumes corresponding to the time intervals (−Tmax,0) and (0,Tmax)
respectively. However, when we add both the upstream and downstream drift volumes to
obtain the drift volume over the entire time interval, there appears to be a cancellation at
leading order, and thereby, we find a reduced divergence with an exponent that is closer
to −1/3. With the present numerical results it is difficult to say whether this corresponds
to what is presumably the next term in the asymptotic series (in Riv) for the drift volume
in the Stokes stratification regime, or if the reduced divergence is only an apparent one,
and reflecting of a very small numerical prefactor multiplying Ri−2/3

v . Nevertheless, and
interestingly, the total drift volume is negative corresponding to a net reflux in the opposite
direction to translation. This reflux arises for times much longer than that taken for the
sphere to translate a distance equal to the stratification screening length, suggesting a strongly
singular role of buoyancy forces.

The finding that the drift volume (or rather Lagrangian reflux) in the Stokes stratification
regime is indeed smaller than expected, and apparently of O(Ri−1/3

v ) implies that the original
estimates mentioned in the section 3.2 need to be revised. Recall that the drift volume
was predicted to plateau at O(Ri−2/3

v ) in the Stokes stratification regime, and until an Re of
O(Ri1/3

v ). It should then transition to an algebraic decay regime of O(ReRiv)−1/2 for larger
Re, corresponding to the inertia-stratification regime. Thus, the simplest expectation is for the
drift volume to decrease monotonically, with increasing Re, from an initial plateau value of
O(Ri−2/3

v ). In light of the cancellation above, we examine the contribution to the drift volume
at the next order. The general form of the drift volume (in units of a3) may be written as
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Fig. 3.11 Schematic for revised scaling estimates of drift volume in a density straified fluid
as discussed in section 3.5: In the Stokes stratification regime the scaling for the drift is
now given by Ri−1/3

v whereas in the inertia-stratification regime, the drift still scales as
(ReRiv)−1/2. The drift volume maximum will still scales as Ri2/3

v as described in the text.
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Ri−2/3
v F(Re/Ri1/3

v ). In the Stokes stratification regime, it is natural to expect a correction to
the leading O(Ri−2/3

v ) estimate to arise at O(Re/Ri1/3
v ) due to inertial effects (assuming that

the correction due to inertial effects scales linearly with the ratio of the respective screening
lengths); this is equivalent to assuming an expansion for F to be of the form c1 + c2Re/Ri1/3

v

in the limit Re/Ri1/3
v ≪ 1, where c1 and c2 are constants of order unity. This leads to an

inertial correction of O(ReRi−1
v ) to the leading order estimate of O(Ri−2/3

v ). There will, of
course, be higher order corrections within the Stokes stratification regime, and one expects
the leading correction to be O(Ri−1/3

v ). In light of the absence of the leading O(Ri−2/3
v )

contribution, one only has the two smaller contributions of O(ReRi−1
v ) and O(Ri−1/3

v ), With
increasing Re, therefore, one expects the drift volume to begin from a plateau of O(Ri−1/3

v )

until an Re of O(Ri−2/3
v ), and then increase as ReRi−1

v for Ri2/3
v ≪ Re ≪ Ri1/3

v , attaining
a maximum value of O(Ri−2/3

v ) for Re/Ri1/3
v ∼ O(1), before decreasing as O(ReRiv)−1/2

for Re ≫ Ri1/3
v . Thus, the consequence of the (numerical) cancellation found at leading

order, in section 3.4 is that the drift volume likely exhibits a non-monotonic dependence
on Re as explained above. Note that any other algebraic scaling for F (not the linear one
assumed above) would lead to the drift volume still being non-monotonic, although the value
of the initial plateau, and the Re at which the drift volume starts increasing first, will scale
differently with Riv.

We briefly discuss the relation between drift volume presented in this section and the
mixing in a density stratified fluid. Katija and Dabiri [2009] suggested that the divergent drift
volume in the viscous limit can be an essential contribution to the mixing of oceans. The
underlying idea is that this divergent drift amounts to an indefinite increase in the available
potential energy [Lorenz, 1955; Vallis, 2017; Winters et al., 1995] of the oceans, which
can be released elsewhere (via instabilities) to contribute to the mixing of the oceans. Our
calculations in the Stokes-stratification regime (large Pe limit) clearly showed that there
would be a convergent drift volume with the incorporation of a weak density stratification.
Although not a direct measure of the mixing, the convergent drift volume in a density stratified
fluid implies that the available potential energy cannot be an arbitrarily large quantity at any
instant of time. This available potential energy is intimately related to the drift displacements
and the perturbed density disturbance fields calculated in the present thesis. The concept
of the available potential energy was first introduced by Lorenz [1955] in the context of
atmospheric circulation. Available potential energy is defined as the energy released by
the fluid as it undergoes adiabatic rearrangement to move towards a minimum energy state.
It is important to note that the available potential energy is only an indicator the energy
made available for fluid motion; this can be released as the kinetic energy of the fluid via
different mechanisms such as instabilities, and subsequent wave generation and interactions.
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Wagner et al. [2014] calculated the mixing efficiency defined as the ratio of gravitational
potential energy created and the rate of work done by the swimmer; the mixing efficiencies
were, however, found to be asymptotically small, as expected for small Pe. However, one
will expect a larger mixing efficiency in the convection-dominant limit. This calculation of
available potential energy using the disturbance fields evaluated in the present thesis, and
thereby the determination of the mixing efficiency, will be considered in future work.



Chapter 4

The rotation of a sedimenting spheroidal
particle in a linearly stratified ambient

In this chapter, we obtain the expression for the angular velocity of a torque-free sedimenting
spheroid in a linearly stratified fluid in the limit of Re ≪ 1, Riv ≪ 1 ,using a reciprocal
theorem formulation. The interest is in the contribution to the angular velocity arising from
the perturbation of the ambient stratification, that is, the hydrodynamic component of the
stratification torque. In what follows, we present a brief introduction to the literature, before
formulating the problem and presenting the detailed results.

4.1 Introduction

The present study is specifically motivated by very recent experiments involving cylin-
drical and disk-shaped particles (Mrokowska [2018],Mercier et al. [2020],Mrokowska
[2020a],Mrokowska [2020b]) that are among the first to systematically explore the role
of shape anisotropy for sedimenting particles in a heterogeneous stably stratified fluid am-
bient. The experiments and computations reported by Mercier et al. [2020] pertain to a
linearly stratified ambient, while the experiments reported in Mrokowska [2018],Mrokowska
[2020a] and Mrokowska [2020b] pertain to a non-linearly stratified fluid layer sandwiched
between homogeneous upper and lower layers (mimicking the well-known three-layered
verical structure of the ocean away from the poles). While the detailed results obtained
for the two sets of experiments differ on account of the differing nature of the ambient
stratification, one of the most important findings, common to both sets of experiments,
pertains to the ability of the torque due to buoyancy forces to oppose, and even overwhelm
the aforementioned inertial torque that acts in a homogeneous setting, thereby turning the
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particle longside-on (see Figures 4.1 and 4.2 illustrating broadside-on and longside-on con-
figurations for prolate and oblate spheroids respectively). It is worth mentioning here that the
rotation of an anisotropic particle (a prolate spheroid of aspect ratio 2) towards the edgewise
configuration, in a stratified setting, was originally discovered in the numerical simulations
of Doostmohammadi and Ardekani [2014]. Such a rotation was found to occur for both
a linear and a discontinuous stratification (a density interface). This study of anisotropic
particle reorientation was in turn motivated by an earlier work, of the same authors, where
they found analogous behavior in the context of pair-interactions of sedimenting spherical
particles; particle-pairs in close contact were found to rotate at a slower rate in a stratified
ambient, implying a stratification-induced torque favoring a long-side orientation of the
resulting dumbbell-shaped configuration [Doostmohammadi and Ardekani, 2013]. A recent
theoretical study [Dandekar et al., 2020] has analytically determined the stratification-induced
corrections to the force and torque acting on a non-spherical particle settling in a viscous
linearly stratified ambient. While a correction to the force was determined in terms of the
viscous Richardson number (Riv defined below in section 4.2) for both chiral and achiral
particles, a hydrodynamic torque was found to arise from buoyancy forces only for chiral
particles, the origin of this torque being the translation-rotation coupling that already exists
for such particles in a homogeneous ambient. As will be seen later, the hydrodynamic
torque for the spheroids (achiral particles) considered here, arises at an order higher than that
explored in the above study. Thus, the said analysis does not explain one of the principal
observations in the aforementioned experiments, and simulations, involving the stratification-
induced transition of a sedimenting anisotropic but achiral particle from a broadside-on to an
edgewise configuration.

In this chapter, we show that buoyancy forces associated with the ambient stratification
do lead to a torque even for achiral particles modeled as prolate and oblate spheroids of an
arbitrary aspect ratio. This stratification-induced torque consists of both hydrostatic and
hydrodynamic components; the former contribution has been given in [Dandekar et al., 2020]
for a slender cylindrical rod of a circular cross-section, and acts to orient the rod broadside-
on. Consistent with this finding, it is shown here (also see [Varanasi et al., 2021]) that the
hydrostatic contribution turns a spheroid broadside-on regardless of whether its prolate or
oblate, and regardless of its aspect ratio. However, the hydrodynamic component of the
stratification-induced torque is shown to be asymptotically larger than the hydrostatic one for
large Pe, and orients spheroids edgewise, thereby offering the first theoretical explanation of
the experimental observations above - that of edgewise settling of an anisotropic particle in a
stratified fluid.
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Fig. 4.1 Figures (a) and (b) depict the prolate spheroid’s longside-on and broadside-on
orientations, respectively.
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Fig. 4.2 Figures (a) and (b) depict the oblate spheroid’s longside-on and broadside-on
orientations, respectively.

The layout of the chapter is as follows. In section 4.2, we describe the reciprocal theorem
formulation which yields the angular velocity of a spheroid sedimenting in a linearly stratified
viscous fluid in terms of distinct contributions originating from the effects of fluid inertia
and the buoyancy forces associated with the ambient stratification. The angular velocity
contributions arising from the fluid inertial torque, and the hydrostatic component of the
stratification torque, are readily evaluated on account of their regular character; the former
has been given in [Dabade et al., 2015b]. We summarize these results briefly in section 4.3.
The calculation of the hydrodynamic component of the stratification torque is more involved,
being sensitively dependent on Pe. The regular contributions arising in the small Pe limit
Varanasi et al. [2021] are briefly summarized in section 4.4.1. Certain aspects pertaining to
singular contributions in the small-Pe regime are discussed in section 4.4.1 and in appendix
B.1; specifically, the derivation of an outer-region torque contribution in the latter appendix
helps demarcate the regime of validity of the results summarized in section 4.4.1. The
large Pe calculation which forms the main part of the present chapter is presented in section
4.4.2. Finally, section 4.5 discusses the transition from broadside-on to edgewise settling
that arises due to the competing influences of the inertial and hydrodynamic components
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of the stratification torque, at large Pe, and ends with a qualitative comparison with recent
experiments. In section 4.6, we briefly summarize our results.

4.2 A sedimenting spheroid in a linearly stratified ambient:
The generalized reciprocal theorem formulation

The torque acting on a spheroid, sedimenting in a stably stratified fluid ambient, is derived
below using the generalized reciprocal theorem (see Kim and Karrila [1991];Dabade et al.
[2015a, 2016]). The theorem relates two pairs of stress and velocity fields, and may be stated
in the form:

∫
Sp

σ
(2)
i j u′(1)i n jdS−

∫
Sp

σ
(1d)
i j u(2)i n jdS =

∫
∂σ

(1d)
i j

∂x j
u(2)i dV, (4.1)

where Sp denotes the surface of the spheroid, and with the neglect of the surface integrals
at infinity, the volume integral on the right hand side of (4.1) is over the unbounded fluid
domain external to the spheroid. In (4.1), the pair (σσσ (1d),uuu′(1)) denotes the dynamic stress
and velocity fields associated with the problem of interest viz. a torque-free spheroid
sedimenting under gravity in an ambient linearly stratified medium for small Reynolds (Re)
and viscous Richardson (Riv) numbers, with uuu′(1) corresponding to the lab reference frame
with a quiescent far-field ambient (the prime indicates that the velocity field has a disturbance-
like character in this reference frame, and decays away in the far-field). The Reynolds and
viscous Richardson numbers measure the relative importance of inertial and buoyancy forces
relative to viscous forces, respectively, and the aforementioned smallness of these parameters
corresponds therefore to the case where inertia and stratification act as weak perturbing
influences about a leading order Stokesian approximation; note, however, that the result
for the stratification torque obtained below in section 4.4.1 is an exception to this general
assumption, in that it continues to be valid for finite values of the Richardson number. The
Reynolds and Richardson numbers are defined later in this section when writing down the
non-dimensional system of governing equations; the precise definition of the dynamic stress
field, σσσ (1d), is also provided at the same place.

The pair (σσσ (2),uuu(2)), that defines the test problem in (4.1), corresponds to the stress and
velocity fields associated with inertialess (Re = 0) rotation of the same spheroid, about an axis
orthogonal to its axis of symmetry, in a homogeneous and otherwise quiescent ambient with
the same (assumed constant) viscosity as the medium in the actual problem. The equations
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governing the test problem may be written as

∂u(2)i
∂xi

=0, (4.2)

µ
∂ 2u(2)i

∂x2
j

− ∂ p(2)

∂xi
=0, (4.3)

with the boundary condition uuu(2) = ΩΩΩ
(2)∧ xxx on Sp, ΩΩΩ

(2) being the angular velocity of the
spheroid in the test problem, and far-field decay conditions for both uuu(2) and p(2). Note that
the test velocity (uuu(2)) and stress (σσσ (2)) fields decay as O( 1

r2 ) and O( 1
r3 ), respectively, r being

the distance away from the spheroid; this decay, together with the decaying (dynamic) stress
field in the problem of interest, justifies the neglect of the surface integrals at infinity in (4.1).
Use of the aforementioned surface boundary condition in (4.1) leads to

∫
Sp

σ
(2)
i j u′(1)i n jdS−Ω

(2)
j

∫
Sp

εi jkxkσ
(1d)
il nldS =

∫
∂σ

(1d)
i j

∂x j
u(2)i dV (4.4)

where the second integral on the left hand side in (4.4) now denotes the torque due to the
dynamic stress field σσσ (1d). We postpone further simplification of (4.4) until after we define
the pair (σσσ (1d),uuu′(1)) below.

As mentioned above, problem 1 corresponds to an arbitrarily oriented spheroid, sedi-
menting under the action of a gravitational force Fĝgg, in an ambient fluid that is linearly
stratified (along ĝgg) in the absence of the fluid motion induced by the spheroid. The unit vector
ĝgg is aligned along gravity, with g denoting the magnitude of the gravitational acceleration,
and F = 4π

3 Lb2∆ρg(4π

3 L2b∆ρg) denoting the buoyant weight for a prolate (oblate) spheroid.
Here, L and b are the semi-major and semi-minor axes of the spheroid, with κ = L/b and
b/L being the aspect ratios of prolate and oblate spheroids, respectively; thus, κ > 1 and < 1
for the prolate and oblate cases. The density difference that enters the buoyant weight above
is ∆ρ = ρs −ρ

(1)
∞ (xxxc), with ρs being the density of the spheroid (assumed homogeneous),

and ρ
(1)
∞ (xxxc) = ρ0 being the ambient fluid density at the center of the spheroid. The latter

simplification arises because of the linear stratification and the fore-aft symmetry of the
spheroid, both of which imply that the weight of the equivalent stratified spheroidal fluid
blob that gives the buoyant force, within an Archimedean interpretation, is the same as the
weight of a homogeneous fluid blob with density equal to the ambient value at the spheroid
center. In a lab-fixed reference frame, the ambient density field in problem 1 may be written
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in the form:

ρ
(1)
∞ (xxxL) = ρ0 + γxL

i ĝi (4.5)

where xxxL denotes the position vector in laboratory coordinates with the spheroid center as
the origin, and γ > 0 is the constant density gradient that characterizes the stable ambient
stratification. The calculations for the torque are, however, best done in a reference frame
translating with the spheroid where a quasi-steady state is assumed to prevail at leading order.
The latter assumption is motivated by the asymptotically weak rotation of the sedimenting
spheroid in the limit Re,Riv ≪ 1. The precise condition for the quasi-steady state assumption
to hold depends on Pe, being more restrictive for large Pe, and is stated later alongside the
results for the spheroid angular velocity for small and large Pe, obtained below.

The ambient density in the particle-fixed reference frame takes the form:

ρ
(1)
∞ (xxx) = ρ0 + γ(xi +Uit)ĝi, (4.6)

xxx being the position vector in the new reference frame. In (4.6), UUU is the spheroid settling
velocity, and related to the force (Fĝgg) via a mobility tensor that is a known function of
the spheroid aspect ratio κ . In terms of the spheroid orientation vector ppp, one may write
UUU = 1

µL [X
−1
A pppppp+Y−1

A (III − pppppp)] · (Fĝgg), XA(κ) and YA(κ) being the non-dimensional axial
and transverse translational resistance functions. The aspect ratio dependence of these
functions is well known (see Kim and Karrila [1991]), and is given in Appendix A.1 for
convenient reference. Note that the ambient density at the center of the spheroid (xxx = 0)
is given by ρ0 + γ(Uiĝi)t, the time dependence arising from the spheroid translation. The
equations of motion for problem 1, within a Boussinesq framework where the fluid density
multiplying the inertial terms is taken as a constant ρ0 (say), may be written as

∂u(1)i
∂xi

=0, (4.7)

µ
∂ 2u(1)i

∂x2
j

− ∂ p(1)

∂xi
=ρ0u(1)j

∂u(1)i
∂x j

−ρ
(1)gi, (4.8)

∂ρ(1)

∂ t
+u(1)j

∂ρ(1)

∂x j
=D∇

2
ρ
(1), (4.9)

where D is the diffusivity of the stratifying agent (Candelier et al. [2014]; Mehaddi et al.
[2018]; Shaik and Ardekani [2020b]). One now defines the perturbation density (ρ ′(1)) via
ρ(1) = ρ0 + γ(xi +Uit)ĝi +ρ ′(1). Next, using the scales U = F/(µLXA) for the velocity, L
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for the length, µU/L for the pressure and γL for ρ ′(1), one obtains the following system of
non-dimensional equations:

∂u(1)i
∂xi

=0, (4.10)

∂ 2u(1)i

∂x2
j

− ∂ p(1)

∂xi
+

ρ0gL2

µU
ĝi +Riv(Û jt + x j)ĝ jĝi =Reu(1)j

∂u(1)i
∂x j

−Rivρ
′(1)ĝi, (4.11)

u(1)j
∂ρ ′(1)

∂x j
+(Û j +u(1)j )ĝ j =

1
Pe

∇
2
ρ
′(1), (4.12)

where Re = ρ0UL/µ , Riv = γL3g/(µU) and Pe =UL/D are the Reynolds, viscous Richard-
son and Peclet numbers, respectively; note that Riv = Re/Fr2, where Fr is the Froude
number, and the usual measure of the importance of stratification in the inviscid limit (Turner
[1979]). In (4.10-4.12), we continue to use the same notation for the dimensionless fields
for simplicity. The velocity fields, in the lab reference frame used in (4.1), and in the
particle-fixed reference frame adopted in (4.10-4.12) are related as uuu′(1) = (ÛUU +uuu(1)), with
ÛUU =

[
pi p j +XA/YA(δi j − pi p j)

]
ĝ j, now being a dimensionless vector along the direction

of settling, and −ÛUU therefore being the far-field ambient flow in the particle-fixed frame;
note that ÛUU is not a unit vector for an arbitrarily oriented spheroid, and reduces to one
only for a spheroid aligned with gravity. Thus, the combination (ÛUU + uuu(1)) · ĝgg in (4.12)
denotes the convection of the (constant) base-state density gradient by the component of the
disturbance velocity field (u′(1)3 ) along gravity. Finally, the time dependence of uuu(1) in (4.11),
and that of ρ ′(1) in (4.12) in particular, that arise from the (slow) rotation of the spheroid,
have been neglected owing to the quasi-steady state assumption made in (4.10-4.12); the time
dependence of the density multiplying the inertial terms, on account of spheroid translation,
has already been neglected within the Boussinesq approximation.

One now defines a disturbance pressure field (p′(1)) via p(1) = p(1)0 + p′(1) with

∂ p(1)0
∂xi

=
ρ0gL2

µU
ĝi +Riv(Û jt + x j)ĝ jĝi, (4.13)

so that p(1)0 defines the baseline hydrostatic contribution arising from the ambient linear
stratification. Having incorporated the baseline hydrostatic variation in p(1)0 , one may write
the governing equations above in terms of the disturbance velocity, pressure and density
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fields as follows:

∂u′(1)i
∂xi

=0, (4.14)

∂σ
(1d)
i j

∂x j
=Re(−Û j +u′(1)j )

∂u′(1)i
∂x j

−Rivρ
′(1)ĝi, (4.15)

(−Û j +u′(1)j )
∂ρ ′(1)

∂x j
= −u′(1)j ĝ j +

1
Pe

∇
2
ρ
′(1). (4.16)

where the left hand side of (4.11) has been written in terms of the dynamic stress field
σσσ (1d) defined by σσσ (1d) = −p′(1)III +(∇∇∇uuu′(1)+∇∇∇uuu′(1)

†
). Thus, one has the relation σσσ (1) =

−p(1)0 III +σσσ (1d) between the total (σσσ (1)) and the dynamic stress fields of problem 1.
Assuming the spheroid in problem 1 to rotate with an angular velocity ΩΩΩ

(1), one has the
boundary condition uuu′(1) = ΩΩΩ

(1)∧ xxx on Sp. Using this in the first surface integral in (4.4),
and substituting the divergence of the dynamic stress from (4.15) in the volume integral in
(4.1), one obtains

Ω
(1)
j L

(2)
j −Ω

(2)
j L

σ(1)d
j =Re

∫
u(2)i (−Û j +u′(1)j )

∂u′(1)i
∂x j

dV −Riv
∫

ρ
′(1)ĝi u(2)i dV, (4.17)

where L σ(1)d now denotes the torque contribution due to the dynamic stress σσσ (1d). Now,
the particle in problem 1 is torque-free. In light of the above relation between σσσ (1) and σσσ (1d),
the total torque (L (1)) may be written as L (1) = L σ(1)d +L σ(1)s, where the dynamic
torque component L σ(1)d includes both inertia and stratification-induced contributions,
while L σ(1)s is the hydrostatic contribution due to the pressure field p(1)0 associated with the
linearly varying density field of the stably stratified ambient, and defined by (4.13). Thus,
L (1) = 0 ⇒ L σ(1)d =−L σ(1)s, and the relation involving the spheroid angular velocity in
problem 1 takes the following form:

Ω
(1)
j L

(2)
j = Re

∫
u(2)i (−Û j +u′(1)j )

∂u′(1)i
∂x j

dV −

[
Ω

(2)
j L

σ(1)s
j +Riv

∫
ρ
′(1)ĝi u(2)i dV

]
,

(4.18)

where

L
σ(1)s

i = − εi jk

∫
Sp

p(1)0 x jnkdS, (4.19)
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with p(1)0 being defined in (4.13). Since the buoyancy force in a homogeneous ambient acts
through the centre of the spheroid, only the linearly varying term in (4.13) contributes to the
hydrostatic torque, which may therefore be written as

L
σ(1)s

i = −Riv εi jk

∫
Sp

1
2
(xl ĝl)

2x jnkdS, (4.20)

the contribution above remaining the same regardless of the choice of reference frame (xxx
or xxxL). On substitution of the above expression for L

σ(1)s
k , and using the relation uuu(2)i =

UUU (2)
i j ΩΩΩ

(2)
j (on account of the linearity of the Stokes equations), the second order tensor UUU (2)

i j

being known in closed form (see Dabade et al. [2015a], and section 4.3 below), (4.18) takes
the form:

Ω
(1)
j L

(2)
j =Ω

(2)
k

Re
∫

U (2)
jk (−Ûl +u′(1)l )

∂u′(1)j

∂xl
dV

−Riv

[
−1

2
εklm

∫
Sp

(x jĝ j)
2xlnmdS+

∫
ρ
′(1)ĝ j U

(2)
jk dV

] , (4.21)

Again, on account of linearity, one may write the torque on the rotating spheroid in the test
problem, in the form L (2) = [XC pppppp+YC(III − pppppp)] ·ΩΩΩ(2), where XC(κ) and YC(κ) are the
non-dimensional axial and transverse rotational resistance functions, and are known functions
of κ (Kim and Karrila [1991]), whose expressions are given in Appendix A.1. By symmetry,
the sedimenting spheroid cannot spin about its axis regardless of its orientation, and therefore
without loss of generality, the test problem 2 can be taken as that of a tranverse rotation in
the inertialess limit (ΩΩΩ(2) · ppp = 0), in which case the test-torque-angular-velocity relation
takes the simpler form L (2) = YCΩΩΩ

(2). Finally, accounting for the fact that the test angular
velocity ΩΩΩ

(2) can point in an arbitrary direction in a plane perpendicular to ppp, one obtains
the following relation for the spheroid angular velocity in problem 1:

Ω
(1)
i =

1
YC

Re
∫

U (2)
ji (−Ûl +u′(1)l )

∂u′(1)j

∂xl
dV +Riv

[
εilm

∫
Sp

1
2
(x jĝ j)

2xlnmdS .

−
∫

ρ
′(1)ĝ j U

(2)
ji dV

] . (4.22)

Since a settling spheroid in a homogeneous ambient must retain its initial orientation in the
Stokes limit on account of reversibility, expectedly, the rotation of the spheroid, as given by
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(4.22), arises due to the combined (weak) effects of fluid inertia and the ambient stratification.
The first term within the curly brackets in (4.22) corresponds to the inertial torque, while the
second and third terms which have been grouped together (within square brackets) correspond
to the hydrostatic and hydrodynamic components of the stratification torque, respectively.
The hydrostatic torque only involves knowledge of the ambient density field, and is easily
evaluated. The inertial torque has a regular character in that the dominant contributions to
the O(Re) volume integral in (4.22) arise from a volume of O(L3) around the sedimenting
spheroid, and therefore, the integral may again readily be determined at leading order using
the Stokesian approximations for the velocity fields involved, as has been done in Dabade
et al. [2015a]. The evaluation of these two simpler contributions is detailed in the next section.
The nature of the hydrodynamic torque arising from the perturbed stratification depends
crucially on Pe, and this more complicated calculation is given in sections 4.4.1 and 4.4.2,
for small and large Pe, respectively.

4.3 The spheroidal angular velocity due to the inertial and
hydrostatic torque contributions

The O(Re) inertial angular velocity in (4.22) has recently been calculated for spheroids, both
prolate and oblate, of an arbitrary aspect ratio (see Dabade et al. [2015a]). Although the
analysis in Dabade et al. [2015a] pertains to the limit Re ≪ 1, the results have been shown to
remain qualitatively valid even for Re’s of order unity (see Jiang et al. [2020]). As mentioned
above, this angular velocity has a regular character, as may be seen from the convergence
of the inertial volume integral in (4.18) based on the leading order Stokesian estimate for
the integrand. As argued in Dabade et al. [2015a], the inertial acceleration uuu(1) ·∇uuu′(1) ∼
ÛUU ·∇uuu′(1) ∼ O(1/r2) for distances large compared to L, or r ≫ 1 in dimensionless terms, on
using uuu′(1) ∼ O(1/r) for the Stokeslet field due to the translating spheroid. The test velocity
field uuu(2) due to the rotating spheroid has the character of a rotlet-cum-stresslet in the far-field,
and is therefore O(1/r2). This leads to an integrand that decays as ÛUU ·∇uuu′(1) ·uuu(2) ∼ O(1/r4)

for r ≫ 1, implying a convergent volume integral. This volume integral has been evaluated
in closed form using spheroidal coordinates in Dabade et al. [2015a]. For the prolate case,
the spheroidal coordinates (ξ ,η ,φ) are defined by the relations: x1 + ix2 = dξ̄ η̄ exp(iφ),
x3 = dξ η , with the 3-axis of the Cartesian system (1113) aligned with the spheroid axis of
symmetry. Here, 1 ≤ ξ < ∞, |η | ≤ 1 and 0 ≤ φ < 2π , with ξ̄ = (ξ 2−1)

1
2 and η̄ = (1−η2)

1
2 .

The constant-ξ surfaces correspond to confocal prolate spheroids and the constant-η surfaces
to confocal two-sheeted hyperboloids, both with the interfoci distance 2d, and the constant-φ
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surfaces are planes passing through the axis of symmetry. The corresponding expressions for
the oblate case may be obtained by the substitutions d ↔−id, ξ ↔ iξ̄ , the constant-ξ and η

surfaces now being confocal oblate spheroids and single-sheeted hyperboloids, respectively.
In either case, the spheroid is the surface ξ = ξ0, its aspect ratio being given by κ = ξ0

ξ̄0
and

ξ̄0
ξ0

for prolate and oblate spheroids; thus, the near-spherical limit (κ → 1) for either prolate or
oblate spheroids corresponds to ξ0 → ∞, while the slender fiber (κ → ∞) and flat disk (κ → 0)
limits correspond to ξ0 → 1. The fluid domain in the volume integrals in (4.22) corresponds
to ξ ≥ ξ0.

For a prolate spheroid, the volume integration can be carried out analytically which is
detailed in Dabade et al. [2015b];Varanasi et al. [2021], and the inertial angular velocity
(Ω(1)I) is given by

Ω
(1)I
i =Re

[
F p

I (ξ0)XA

YCYA
(εi jkĝ j pk ĝl pl)

]
, (4.23)

for prolate spheroids. The corresponding expression for the oblate case may be obtained by
the aforementioned substitutions viz. d ↔−id, ξ0 ↔ iξ̄0 in the dimensional angular velocity,
and is given by

Ω
(1)I
i =Re

[
Fo

I (ξ0)XA

YCYA
(εi jkĝ j pkĝl pl)

]
. (4.24)

The expressions for F p
I (ξ0) and Fo

I (ξ0), as functions of the spheroid eccentricity (e = 1/ξ0),
were first obtained by Dabade et al. [2015a], and are given in Appendix A.1. The inertial
angular velocity given by (4.23) and (4.24) orients sedimenting spheroids broadside-on re-
gardless of κ . The combination of the aspect-ratio-dependent functions, F p/o

I (ξ0)XA/(YCYA),
that multiplies Re(ĝgg · ppp)(ĝgg∧ ppp), and that determines the κ-dependence of the inertial angular
velocities above, is plotted as a function of the eccentricity in 4.3, for both the prolate and
oblate cases. One obtains the expected O(1/ξ 2

0 ) scaling in the near-sphere limit (ξ0 → ∞); at
the other extreme(ξ0 → 1), the inertial angular velocity approaches zero as O[ln(ξ0 −1)]−1

in the slender fiber limit, consistent with viscous slender body theory (Khayat and Cox
[1989],Subramanian and Koch [2005]), while remaining finite in the limit of a flat disk.

The calculation of the hydrostatic component of the stratification torque in spheroidal
coordinates is easily performed, and the angular velocity due to the hydrostatic torque is
found to be
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, that characterize the aspect-ratio-dependence
of the inertial contributions to the angular velocities of prolate and oblate spheroids, plotted
as a function of the spheroid eccentricity. (Reproduced with permission from Varanasi et al.
[2021])

,

Ω
(1)s
i =Riv

4π

15YC

1−ξ 2
0

ξ 4
0

(εi jkĝ j pk)(ĝl pl), (4.25)

for the prolate case, and using the transformations mentioned above,

Ω
(1)s
i =Riv

4π

15YC

√
ξ 2

0 −1

ξ 3
0

(εi jkĝ j pk)(ĝl pl), (4.26)

for the oblate case. The angular velocities given by (4.25) and (4.26) also orient the
spheroid broadside-on like the inertial torque above. The aspect-ratio-dependent functions
that multiply Riv(ĝgg · ppp)(ĝgg∧ ppp) in (4.25)and (4.26) are plotted as functions of ξ0 in Fig. 4.4.
Since the hydrostatic torque is only a function of the particle geometry, these aspect ratio
functions are algebraically small in both the near-sphere, and the slender fiber and flat-disk
limits.
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The inertial and hydrostatic angular velocities above have an identical angular dependence,
of the form (ĝgg · ppp)(ĝgg∧ ppp), one which is easily inferred based on the requirement that the
angular velocity be a pseudovector quadratic in ĝgg (Dabade et al. [2015a]). The dependence
implies that the maximum angular velocity occurs midway between the horizontal (ĝgg · ppp = 0)
and vertical (ĝgg · ppp = 1) orientations. The hydrostatic torque arises because the point of
action of the upward buoyant force, the center of mass of the equivalent stratified fluid
blob (in the Archimedean interpretation), lies below the geometric center through which the
weight of the (homogeneous) spheroid acts vertically downward. The two forces therefore
constitute a couple that turns the spheroid broadside-on. The broadside-on nature of the
inertial torque is on account of ‘wake-shielding’ - the wake associated with the front portion
of the spheroid shields the rear, which catches up with the front as a result. As pointed out in
Dabade et al. [2015a], this is not literally true for small Re. A signature of the wake arises
only on length scales greater than O(LRe−1), the Oseen region, in contrast to the scaling
arguments above which show that the O(Re) inertial torque arises from fluid inertial forces
in a region of O(L3) (the inner region) around the sedimenting spheroid. Nevertheless, the
velocity field in the inner region, at O(Re), reflects the asymmetry of the outer Oseen field,
and the sense of rotation remains the same for small Re. Importantly, the broadside-on
nature of the inertial and hydrostatic torques imply that the transition from broadside-on to
edgewise settling, observed in the recent experiments (see Mercier et al. [2020]) discussed in
the introduction, must depend entirely on the hydrodynamic component of the stratification
torque, that is, the second term within square brackets on the right hand side in (4.22). While
the calculation above shows the hydrostatic component to be O(Riv), consistent with the
nominal order in (4.22), this is not true of the hydrodynamic component. As will be shown
in section 4.4 below, the hydrodynamic component scales as O(Riv) only for sufficiently

small Pe(≪ Ri
3
5
v for Riv ≪ 1; see section 4.4.1), when the dominant contribution to the

associated torque integral comes from length scales of O(L) similar to the inertial torque
above. In the opposite limit of Pe ≫ 1, and for the so-called Stokes stratification regime

corresponding to Re ≪ Ri
1
3
v (see Mehaddi et al. [2018], Varanasi and Subramanian [2021]),

the dominant contributions to the torque integral arise from much larger length scales of

O(LRi
− 1

3
v ), and the hydrodynamic component scales as O(Ri

2
3
v ), being much larger than the

hydrostatic component above. Before proceeding with the calculation of the hydrodynamic
component of the stratification torque, it is worth remarking on the nature of the coupling
between the inertial and stratification torque contributions that is not obvious from the formal
result (4.22) above, where they appear as separate additive contributions. On account of the
convergent volume integral, the O(Re) inertial angular velocity, as given by (4.23) and (4.24),
only involves the Stokesian fields in a homogeneous ambient, and is evidently independent
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[2021])
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of the ambient stratification. The correction to this leading order estimate is dependent on
the nature of the ambient stratification, however, even within the Boussinesq framework. To
see this, we return to the inertial volume integral, and estimate the next correction. Recall
that the angular velocities in (4.23) and (4.24) were based on the approximating the volume
integral by Stokesian estimates, and the torque contribution at the next order requires one to
examine the next term in the small-Re expansion for the velocity field in problem 1. Writing
uuu′(1) = uuu′(10)+Reuuu′(11), uuu′(10) is the Stokesian approximation whose solution is detailed
in Dabade et al. [2015b] (see equation 3.20 therein), and is O(1/r) for r ≫ 1, while uuu′(11)

remains O(1) in the far-field. The latter, of course, implies that the above regular expansion
breaks down at length scales of O(LRe−1), a manifestation of the singular nature of inertia
in an unbounded domain (the so-called Whitehead’s paradox; see Leal [1992]). Provided
one assumes buoyancy forces to dominate the inertial ones on scales much smaller than the
inertial screening length (of O(LRe−1)), the above far-field estimate of uuu′(11) may still be used
to estimate the correction to the leading O(Re) contribution. The O(Re2) inertial acceleration
is now ÛUU ·∇uuu′(11) ∼ O(1/r), and using uuu(2) ∼ O(1/r2) , the resulting volume integral, at
O(Re2), is logarithmically divergent. The divergence will be cut off at the stratification
screening length that is O(RivPe)−

1
4 for Pe ≪ 1 (Ardekani and Stocker [2010],List [1971]),

and O(Ri
− 1

3
v ) for Pe ≫ 1 (Mehaddi et al. [2018],Varanasi and Subramanian [2021]), implying

that the next correction to the inertial angular velocity is O[Re2 ln(RivPe)−
1
4 ] for Pe ≪ 1 and

O(Re2 lnRi
− 1

3
v ) for Pe ≫ 1, and is thereby a function of the ambient stratification. For self

consistency, one requires that both of the aforementioned stratification screening lengths be
less than O(Re−1), which translates to the requirement Riv ≫ Pe−1Re4 for small Pe, and for

one to be in the aforementioned Stokes stratification regime (Ri
1
3
v ≫ Re) for large Pe.

4.4 The spheroidal angular velocity due to the hydrody-
namic component of the stratification contribution

Owing to the differing character of the hydrodynamic component in the limits of small
and large Pe, the calculations in these two asymptotic regimes are carried out in separate
subsections below. Keeping in mind that Pe = RePr, Pr being the Prandtl number, the
small Pe case doesn’t necessarily place a restriction on Pr which may either be small or
large (although, large Pr imposes a greater restriction on the smallness of Re since Re must
now be smaller than O(Pr−1)). However, the assumption of small Re implies that the large
Pe case necessarily requires a large Pr which may be realized in experiments that use salt as
a stratifying agent.
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4.4.1 The hydrodynamic stratification torque in the diffusion-dominant
limit (Pe ≪ 1)

In the limit Pe ≪ 1, one may neglect the convective terms in the advection diffusion equation
(4.16), and the density perturbation ρ ′(1) in the stratification torque integral therefore arises
as a diffusive response to the no-flux condition that must be satisfied on the spheroid surface.
As a result, the spheroid acts as a concentration-dipole singularity in the far-field (r ≫ 1),
implying that ρ ′(1) must decay as O(1/r2). Since the test velocity field uuu(2) corresponding
to the rotating spheroid also decays as O(1/r2), the integrand is O(1/r4) for r ≫ 1. This
decay is the same as that of the inertial integrand estimated above, and the integral for
the hydrodynamic stratification torque is therefore convergent for small Pe, based on the
leading order diffusive estimates above. Thus, the effects of stratification arise as a regular
perturbation for small Pe, or said differently, the dominant contribution to the hydrodynamic
component of the stratification torque arises from buoyancy forces in a volume of O(L3)

around the sedimenting spheroid. As a consequence and as is shown below, for small Pe, the
hydrodynamic component is O(Riv) similar to the hydrostatic component given in (4.25) and
(4.26) above. It turns out that there is, in fact, a more severe constraint on the Peclet number;
as explained below under a separate subheading, the O(Riv) scaling for the hydrodynamic

component holds only when Pe ≪ Ri
3
5
v ≪ 1.

To determine the detailed dependence of the O(Riv) hydrodynamic component on κ , one
needs to solve for the density perturbation ρ ′(1) which satisfies

∇
2
ρ
′(1) = 0. (4.27)

in the fluid domain ξ ≥ ξ0. The no-flux boundary condition on the spheroid surface (ξ = ξ0)
may be written as 111ξ ·∇∇∇ρ ′(1) =−111ξ · ĝgg where we have used that nnn = 111ξ , and the right hand
side of the boundary conditon arises from the gradient of the linearly varying ambient density;
there is the additional requirement of far-field decay viz. ρ ′(1) → 0 for ξ → ∞. Note that
the linearity of the governing equation (4.27) and the boundary conditions in ρ ′(1), and the
linear dependence on ĝgg of the surface boundary condition above, imply that ρ ′(1) must be
linear in ĝgg at leading order for small Pe. From (4.22), the hydrodynamic component of the
stratification torque must therefore be quadratic in ĝgg. This implies that the hydrodynamic
torque must have an angular dependence identical to the inertial and hydrostatic contributons,
of the form (ĝgg∧ ppp)(ĝgg · ppp), with a multiplicative pre-factor that is a function of κ . Thus, for
small Pe, the ratio of the hydrostatic and hydrodynamic components of the stratification
torque is independent of the spheroid orientation and Riv, and only a function of κ .
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The solution for the density perturbation can be found by solving 4.27 with the no-flux
boundary condition mentioned above [see Varanasi et al. [2021] for details]. This solution
together with the test velocity field can be substituted in the integral for the hydrodynamic
stratification torque in 4.22. The volume integration leads to the following expression for the
angular velocity in the Pe = 0 limit

Ω
(1)d
i =Riv

F p/o
s (ξ0)

YC
(εi jkĝ j pk)(ĝl pl) , (4.28)

with

F p
s (ξ0) = 2πξ̄0
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)
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2
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)(
−ξ 2
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ξ 2
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Cp −ξ0

) ,

(4.29)

for prolate spheroids, where Cp = coth−1
ξ0. Using the transformation mentioned in section

4.3, one obtains

Fo
s (ξ0) = 2π((

7ξ 4
0 −7ξ 2

0 −2
)
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(
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0 −3ξ 2

0 +2
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ξ 4
0 C3
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(
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ξ 2
0 Co +
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o
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15ξ 3

0

(
ξ 2

0 Co)− ξ̄0

)((
ξ 2

0 −2
)
(Co)− ξ̄0

)(
−ξ 2

0 + ξ̄0ξ 2
0 Co −1

) ,

(4.30)

for the oblate case, where Co = cot−1 ξ̄0. Fig. 4.5 shows a plot of the aspect-ratio-dependent
functions given by (4.29) and (4.30), divided by YC. The hydrodynamic component of
the stratification torque given by (4.29) always orients a prolate spheroid edgewise for
small Pe. Interestingly, Fig. 4.5 shows that (4.30) changes sign below a critical aspect
ratio κc ≈ 0.41(e ≈ 0.9), and therefore, the hydrodynamic component acts to orient oblate
spheroids, with aspect ratios lower than the aforementioned threshold, broadside on.

The hydrodynamic stratification torque arises due to the flow associated with the baro-
clinic source of vorticity, although the reciprocal theorem formulation used here bypasses the
explicit calulation of this flow. The vorticity arises from the tilting of the iso-pycnals to the
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Fig. 4.5 The aspect-ratio-dependent functions given by (4.29) and (4.30), divided by Yc, for
prolate and oblate spheroids that arise from hydrodynamic contributions in the small Pe
limit, plotted as a function of the spheroid eccentricity. (Reproduced with permission from
Varanasi et al. [2021])
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vertical (the direction of gravity) due to the requirement that they meet the spheroidal surface
in a normal orientation, consistent with a no-flux constraint. A sketch of the deformed iso-
pycnals in the plane φ = 0,π , and the resulting sign of the baroclinc vorticity field (∝ ∇ρ ∧ ĝgg)
in different regions of the fluid domain, appears in Figure 4.6, for both prolate and oblate
spheroids. The baroclinically induced flow has a dipolar character in the Stokes limit, and
the relative sizes of the different flow quadrants are set by the pair of singular iso-pycnals
that meet the spheroid surface in the points S1 and S2. This pair separates the iso-pycnals
that do not meet the spheroid surface from those that do. The baroclinically induced flow on
account of diffusive iso-pycnal tilting has been known for a long time, having originally been
proposed in the oceanic context where the induced flow has a boundary layer character on
account of the dominance of inertia (Phillips [1970],Wunsch [1970]). Such a flow has also
been examined in a Stokesian scenario more recently (Anis Alias and Page [2017]), although
only for the case of a horizontal circular cylinder wherein symmetry precludes a torque
contribution. That there must be a torque on an inclined spheroid, due to the aforementioned
baroclinic flow, is obvious. While the sense of the torque (broadside-on vs edgewise) is
not readily evident, one may nevertheless rationalize the scalings observed for the extreme
aspect ratio cases. Figure 4.5 shows that the angular velocity remains finite in the limit of
a flat disk (κ → 0) which is consistent with the iso-pycnals being perturbed in a volume of
O(L3) around the spheroid in this limit, with the density perturbation being O(γL), and the
test velocity field UUU (2) being O(1) in this region; the points S1 and S2 remain bounded away
from the edges of the flat disk. On the other hand, the angular velocity approaches zero as
O(ξ0 −1) in the limit of a slender fiber, with the points S1 and S2 now moving towards the
ends of the fiber. The dominant contribution continues to come from a volume of O(L3).
But, while UUU (2) is O[ln(ξ0 − 1)]−1, the density perturbation in this region is algebraically
small. The slender fiber only perturbs the iso-pycnals in a thin O(d2L) shell around itself,
with the density perturbation being O(γd) in this region. Further, each cross-section of the
fiber acts as a 2D concentration dipole, implying that the density perturbation decays as
O(1/r) for r much greater than d, and is therefore O(γd)(d/L) for r ∼ O(L). Using these
estimates, and dividing by the O[ln(ξ0 −1)]−1 rotational resistance for a slender fiber leads
to the aforementioned scaling for the fiber rotation due to the hydrodynamic contribution of
the stratification torque.

A closer look at the Pe ≪ 1 analysis

Although the O(Riv) angular velocity given by (4.28) was said to be valid for small Pe, there
are, in fact, multiple contributions to the stratification-induced rotation for Pe ≪ 1; the more
detailed arguments herein, and the analysis in Appendix B, yield a precise estimate of the
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Fig. 4.6 Figures (a) and (b) depict the baroclinically-driven flow, for small Pe, that is
responsible for the rotation of an (a) oblate, and a (b) prolate spheroid, in a stably stratified
ambient. The curved blue arrows denote the sense of the baroclinically induced vorticity in
the different quadrants of the fluid domain, with vorticities corresponding to anticlockwise
and clockwise senses of rotation being denoted by solid and dashed lines; the blue contours
denote the deformed iso-pycnals around each of the spheroids.
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Pe-interval of validity. While the dominant contribution to (4.28) arose from buoyancy forces
on length scales of O(L), as will be seen in section 4.4.2 below, the dominant length scale

contributing to the hydrodynamic component of the stratification torque changes to O(LRi
− 1

3
v )

with increasing Pe; one therefore expects the singular effect of convection to already be
evident for small but finite Pe. To see this, we note that, for small Pe, besides the density
perturbation driven by the no-flux condition on the spheroid surface that has been analyzed
above, an independent contribution arises from perturbation of the ambient stratification on
much larger length scales due to weak convection effects. To obtain an estimate for this latter
torque contribution, we consider the correction to the leading order density perturbation, now
denoted as ρ ′(10), in a manner similar to the velocity field examined at the end of the earlier
section; thus, one writes ρ ′(1) = ρ ′(10)+Peρ ′(11), with ∇2ρ ′(11) ∼ uuu′(1) · ĝgg. With uuu′(1) ∼ 1/r
on length scales smaller than O(LRe−1), one obtains ρ ′(11) ∼ r. The stratification torque at
the next order is proportional to RivPe

∫
ρ ′(11)ĝgguuu(2)dV , which turns out to diverge as O(r2),

on using the above estimate for ρ ′(11). Cutting off the divergence at the small-Pe stratification
screening length of O[L(RivPe)−

1
4 ] (Ardekani and Stocker [2010],List [1971]) would seem

to lead to an O(RivPe)
1
2 torque contribution. However, it is shown in Appendix B.1 that this

contribution is identically zero for a spheroid, on account of the fore-aft symmetry of the
disturbance density field on scales of [L(RivPe)−

1
4 ] (Ardekani and Stocker [2010],Varanasi

and Subramanian [2021]).
The fore-aft asymmetry of the density perturbation, necessary for a non-trivial torque

contribution, requires inclusion of the O(Pe) convective term (uuu ·∇ρ ′) in (4.12). It is well
known that, for Pe small but finite, this convective term becomes comparable to the diffusive
term on length scales of O(LPe−1), the mass/heat transfer analog of the inertial screening
length (Leal [1992]), and the angular velocity scaling therefore depends on the relative mag-
nitudes of the convective (LPe−1) and stratification (L(RivPe)−

1
4 ) screening lengths, which in

turns depends on the relative magnitudes of Pe and Ri
1
3
v ; this criterion being analogous to the

classification into Stokes (Re ≪ Ri
1
3
v ) and inertia (Re ≥ Ri

1
3
v )-stratification regimes based on

the structure of the large-Pe disturbance velocity field (Mehaddi et al. [2018],Varanasi and

Subramanian [2021]), except that Pe now replaces Re. For Pe ≪ Ri
1
3
v , fore-aft asymmetric

buoyancy forces acting on scales of O[L(RivPe)−
1
4 ] lead to an O(Ri

1
4
v Pe

5
4 ) hydrodynamic

torque contribution, an exact expression for which is obtained in Appendix B. In the oppo-

site limit of Pe ≫ Ri
1
3
v , the dominant contribution to the torque integral arises on scales of

O(Ri
− 1

3
v ), and the resulting torque comes out to be O(Ri

2
3
v )! Thus, the arguments above, and

those in Appendix B, show that, for small Pe, in addition to the O(Riv) torque contribution
given by (4.29) and (4.30), there exists a second independent contribution that increases with
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Pe as O(Ri
1
4
v Pe

5
4 ) for Pe ≪ Ri

1
3
v , but is independent of Pe, being O(Ri

2
3
v ) for Ri

1
3
v ≪ Pe ≪ 1.

This far-field hydrodynamic contribution, arising from a weak convective distortion of the
stratified ambient, can evidently exceed the hydrostatic contribution, possibly leading to
an edgewise settling regime even for small Pe. In light of this additional contribution, the
dominance of the O(Riv) hydrostatic contribution and the prevalence of broadside-on settling

requires Riv ≫ Ri
1
4
v Pe

5
4 , which translates to the stricter criterion Pe ≪ Ri

3
5
v ≪ 1, instead of

Pe ≪ 1, as originally assumed.
It is important to point out that the O(Riv) scaling in (4.25), (4.26) and (4.28) implies that

the associated (dimensional) angular velocities are independent of U . While this must be
the case for the hydrostatic contributions, it turns out to be the case for the hydrodynamic
component too, at small Pe, since the leading order density perturbation arises as a diffusive
response, and is therefore independent of the ambient flow. Despite this U-independence, the
torque associated with (4.28) does have a hydrodynamic character, in that it still arises from
the flow induced by buoyancy forces. Using the O(γL) density perturbation produced by the
diffusive response, one obtains a buoyancy-driven velocity scale of O(γL3g/µ), implying a
spheroidal angular velocity of O(γL2g/µ); the latter is O(Riv) in units of U/L, this being
the scale used in the reciprocal theorem formulation in section 4.2. Importantly, the U-
independence implies that this torque contribution is not necessarily limited to small Riv.
Instead, it is limited by the assumption of a quasi-steady density perturbation set up on
scales of O(L) by diffusion alone, which requires an appropriate Peclet number (based on the
aforementioned O(γL3g/µ) velocity scale) to be small; an analogously defined Reynolds
number must also be small for the baroclinic flow to be obtained from the Stokes equations.
These two requirements translate to RivPe,RivRe ≪ 1, which also ensures that the spheroid
rotation may be neglected when deriving the disturbance fields. Thus, (4.28) remains valid
even when Riv ∼ O(1) provided Re,Pe ≪ 1. Note, however, that a genuine dependence,
of the hydrodynamic component of the angular velocity contribution, on U arises due to
contributions from the outer region, and an estimate of this contribution was obtained in the
preceding paragraph (also see Appendix B.1).

To summarize then, for sufficiently small Pe, all three contributions that appear in (4.22)
have a regular character, and therefore, the same dependence on the spheroid orientation
viz. sinψ cosψ with ψ being the angle between ppp and ggg as defined above; the Pe-interval

of validity depends on Riv, being Pe ≪ 1 for Riv ∼ O(1), and Pe ≪ Ri
3
5
v for Riv ≪ 1. The

inertial contribution is O(Re), while both hydrodynamic and hydrostatic components of the
stratification contribution are O(Riv), with the hydrodynamic component alone acting to
orient the spheroid edgewise for prolate spheroids of arbitrary κ and oblate spheroids with
κ > 0.41. Therefore, oblate spheroids with κ < 0.41 will certainly orient broadside-on for
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Pe ≪ 1. Further, it is seen from Fig. 4.4 and Fig. 4.5 that the hydrodynamic component
always remains smaller in magnitude than the hydrostatic one in the edgewise-rotation
regime, and therefore, a sedimenting spheroid, either prolate or oblate, is expected to settle
in the broadside-on configuration, regardless of κ , for sufficiently small Pe.

4.4.2 The angular velocity due to the hydrodynamic torque in the convection-
dominant limit (Pe ≫ 1)

In contrast to the small Pe limit, for Pe ≫ 1, the dominant contribution to the integral for the

stratification-induced hydrodynamic torque in (4.21) comes from length scales of O(LRi
− 1

3
v ),

the stratification screening length in the Stokes stratification regime (Re ≪ Ri
1
3
v ≪ 1). To see

this, we note from the right hand side of the advection diffusion equation (4.16) that, for large
Pe, the density perturbation is driven by the convection of the base-state stratification of order
unity by the vertical component of the Stokeslet field, u′(1)3 . Since u′(1)3 ∼ O(1/r), one finds
ρ ′(1) ∼ O(1) for r ≫ 1. This, along with the far-field O(1/r2) decay of the test velocity field,
implies that the integrand in the stratification torque integral decays as O(1/r2), and that
the volume integral therefore diverges as O(r). This divergence is expected to be resolved
only when the slow O(1/r) decay of the Stokeslet is accelerated by stratification that, for

large Pe, occurs on length scales of O(LRi
− 1

3
v ). It has recently been shown in the Chapter

2 of the present thesis that, for a sedimenting sphere at large Pe, the density and velocity

fields are indeed asymptotically small on length scales larger than O(Ri
− 1

3
v ), except within

a horizontal wake whose vertical extent grows as O(r
2
5
t ), rt being the distance in the plane

transverse to gravity, where the density and axial velocity perturbation decay as r
− 12

5
t and

r
− 14

5
t , respectively; and a buoyant jet in the rear where u3 reverses sign, but continues to

exhibit an O(1/r) Stokesian decay. Despite the latter slow decay, the asymptotically narrow
character of the buoyant jet implies that the torque integral does converge on length scales

of O(LRi
− 1

3
v ), and is O(Ri

− 1
3

v ). The pre-factor of Riv in front of the integral in (4.21) implies

that the torque and the angular velocity scale as O(Ri
2
3
v ) for Pe → ∞.

Since the dominant contribution to the torque integral comes from length scales much

larger than O(L), of O(LRi
− 1

3
v ), the calculation requires one to rewrite the integral involving

ρ ′(1), in (4.21), in outer coordinates (defined below), with the sedimenting spheroid in
problem 1 now regarded as a point force, and the rotating spheroid in the test problem acting
as a combination of rotlet and stresslet singularities (see Marath and Subramanian [2017]).
The details of this calculation are provided below; a similar calculation, but for low Pe,
with the outer region being characterized by a length scale of O(RivPe)−

1
4 , has been given
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in Appendix B.1 and the resulting O(Ri
1
4
v Pe

5
4 ) torque contribution was discussed above in

section 4.4.1.
Before delving into the large-Pe analysis, it is worth noting that a reciprocal theorem

formulation to determine the stratification-induced correction to the force (that would in-
clude both drag and lift components for an arbitrarily oriented spheroid) would involve
the test problem of a translating spheroid instead. Since the test velocity field now de-
cays as O(1/r) in the far-field, this would lead to a stronger O(r2) divergence of the force

integral, leading to a scaling of O(Ri
− 2

3
v ) on truncation of the divergence, and thence, an

O(Ri
1
3
v ) stratification-induced correction to the Stokes drag. Such a correction was originally

calculated for a spherical particle by Zvirin and Chadwick [1975]. A similar calculation
was done by Candelier et al. [2014] for the small-Pe regime, the drag contribution from
the outer region now being O(RivPe)

1
4 ; a later effort has connected this outer-region drag

calculation across the different asymptotic regimes (Mehaddi et al. [2018]). In a very recent
study, Dandekar et al. [2020] have examined the force and torque acting on an arbitrarily
shaped particle sedimenting in a linearly stratified ambient. For anisotropic particles lacking
a handedness (that includes the spheroids examined here), the authors find a correction to

the force at O(Ri
1
3
v ) similar to the case of a spherical particle mentioned in the above efforts,

but end up not finding a torque at this order, a result that is not surprising in light of the

above scaling arguments which show the torque to be O(Ri
2
3
v ). Within the framework of the

matched asymptotics expansions approach used by the said authors, the O(Ri
1
3
v ) correction

to the drag appears as a response of the particle to an ‘ambient uniform flow’ that is the

limiting form of the outer solution in the matching region (1 ≪ r ≪ Ri
− 1

3
v ); the uniformity of

this flow is consistent with the absence of a torque at this order. Incidentally, the existence

of an inertial torque induced by a uniform flow suggests a higher O(ReRi
1
3
v ) inner-region

contribution to the leading O(Re) inertial angular velocity, in response to the aforementioned

O(Ri
1
3
v ) uniform flow that would again orient the spheroid broadside-on; this is in addition to

the outer-region correction obtained in section 4.3.
As mentioned above, the stratification torque integral in (4.22) needs to be evaluated

in outer coordinates which are related to the coordinates in the particle-fixed reference

frame as x̃xx = Ri
1
3
v xxx, so an O(1) change in x̃xx corresponds to xxx changing by an amount of

order the stratification screening length. However, as originally shown by Childress [1964]
and Saffman [1965], a Fourier space approach turns out to be much more convenient for a
calculation involving the outer region, and we therefore consider the Fourier transformed
equations of continuity and motion, and the advection diffusion equation for the density field,
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obtained from (4.14-4.16), and given by

kiû
′(1)
i =0, (4.31)

−4π
2k2û′(1)i −2πiki p̂′(1) = −Riv(ρ̂ ′(1)ĝi)+ F̃ ĝi, (4.32)

2πik jÛ jρ̂
′(1) = û′(1)j ĝ j +

1
Pe

4π
2k2

ρ̂
′(1)+

1
Pe

i2πkiDs
i , (4.33)

for problem 1. Here, we have used the definition f̂ (kkk) =
∫

dxxxe−2πikkk·xxx f (xxx) for the Fourier
transform, and the sedimenting spheroid has been replaced by a point force, F̃FFδ (xxx), on
the right hand side of the physical space equations of motion viz. (4.15), with F̃FF = F̃ ĝgg,
F̃ being the non-dimensional buoyant force (in units of µUL) exerted by the spheroid; the
corresponding dimensional expression has been given in section 4.2 (given that U is itself
defined in terms of F , this re-scaling of F merely amounts to multiplication by XA). Note
that the inertial term in the original equation of motion, (4.15), has now been omitted in
(4.32) since, as already argued earlier, the leading O(Re) inertial torque is dominated by

the inner region, with the outer region contribution being only O(Re2 lnRi
− 1

3
v ) (see end of

section 4.3), and not considered here. Further, on large length scales relevant to the outer
region, the spheroid, on account of the no-flux boundary condition at its surface, appears as
a concentration-dipole forcing in the advection-diffusion equation. In physical space, this
corresponds to a term of the form DDDs.∇∇∇δ (xxx), and the Fourier transform of this term appears
on the RHS of (4.33); DDDs here is the Pe-dependent strength of the dipole forcing; this can be
neglected for the same reason as the inertial term above, its contribution being asymptotically
small compared to that arising from the distortion of the base-state stratification (the first
term on the RHS of (4.33)).

Thus, neglecting the term proportional to the concentration-dipole forcing in (4.33), for
large Pe , one obtains

ρ̂
′(1) =

û′(1)j ĝ j

2πiklÛl − 4π2k2

Pe

. (4.34)

Using (4.34) in (4.32), and operating on both sides with (δi j − k̂ik̂ j) to eliminate the pressure
field, one obtains

4π
2k2û′(1)i =Rivĝ j(δi j − k̂ik̂ j)

û′(1)l ĝl

(2πikpÛp − 4π2k2

Pe )
+ F̃ ĝ j(δi j − k̂ik̂ j). (4.35)
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Contracting with ĝgg gives:

û′(1)i ĝi =
F̃ ĝiĝ j(δi j − k̂ik̂ j)[

4π2k2 −Riv
ĝmĝn(δmn−k̂mk̂n)

2πi(klÛl)

] , (4.36)

which, on using in (4.34), yields the following final expression for ρ̂ ′(1):

ρ̂
′(1)(kkk) =

F̃Pe[1− (k̂iĝi)
2]

{8π3Peik3(k̂nÛn)−16π4k4 −RivPe[1− (k̂mĝm)2]}
, (4.37)

which will be used in the Fourier-space torque integral that is defined below.
The test velocity field u(2)i =U (2)

i j Ω
(2)
j satisfies the Stokes equations, with the rotating

spheroid, on length scales of O(LRi
− 1

3
v ), acting as a force-dipole singularity that includes

both stresslet and rotlet contributions. Thus, the equations of motion may be written in the
form (see Marath and Subramanian [2017]):

∂ 2u(2)i

∂x2
j

− ∂ p(2)

∂xi
=S(2)i j

∂

∂x j
[δ (xxx)], (4.38)

where

S(2)i j = B1[(εilmΩ
(2)
l pm)p j +(ε jlmΩ

(2)
l pm)pi]+B3εi jkΩ

(2)
k (4.39)

with

B1 =
8π

ξ 3
0 (−3ξ0 +3coth−1

ξ0(1+ξ 2
0 ))

, (4.40)

B3 =
8π(1−2ξ 2

0 )

ξ 3
0 (−3ξ0 +3coth−1

ξ0(1+ξ 2
0 ))

, (4.41)

for prolate spheroids. There is an additional contribution that is neglected in (4.39), on
account of the test spheroid rotating about an axis transverse to ppp, that is, since ΩΩΩ

(2) · ppp = 0.
The term proportional to B3 in (4.39) is the rotlet singularity (due to transverse rotation),
while that involving B1 is the stresslet singularity. Thus, for ξ0 → ∞, B3 = −4π and B1

is O(1/ξ 2
0 ), consistent with a rotating sphere acting as a pure rotlet singularity; note that

B3 = YC/2, the latter being the resistance function mediating the torque-angular-velocity
relation for transverse rotation defined earlier.
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Fourier transforming (4.38), and contracting with the projection operator (III − k̂kkk̂kk), one
obtains

û(2)i = − i
2πk

{B1[(εmqrΩ
(2)
q pr)pn +(εnqrΩ

(2)
q pr)pm]+B3εmnqΩ

(2)
q }k̂n(δim − k̂ik̂m), (4.42)

so the second-order tensor UUU (2) is given by

U (2)
i j (kkk) = − i

2πk
{B1[(εm jr pr)pn +(εn jr pr)pm]+B3εmn j}k̂n(δim − k̂ik̂m). (4.43)

Now, using the convolution theorem, the integral for the angular velocity contribution
due to the hydrodynamic component of the stratification-induced torque in (4.21) may be
written as

Riv
∫

ρ
′(1)ĝ jU

(2)
ji dV =Riv

∫
dkkkρ̂

′(1)(kkk)ĝ jU
(2)
ji (−kkk), (4.44)

where, in applying the convolution theorem, we have assumed the volume integral on the
left hand side of (4.44) to extend over the entire domain, and thereby, have neglected the
O(L3) volume of the spheroid. Since the dominant contribution arises from length scales of

O(LRi
− 1

3
v ), this neglect only amounts to an error of O(Riv) in the torque integral, and O(Ri2v)

in the resulting angular velocity.
Using (4.37) and (4.43) in the Fourier space torque integral in (4.44), and after some

simplification which includes defining a rescaled wavevector 2πkkk, one obtains the angular
velocity induced by the hydrodynamic stratification torque as

Ω
(1)d
i =RivPe

iF̃
8π3YC

∫
dkkk

[1− (k̂xĝx)
2]

{ik3Pe(k̂yÛy)− k4 −RivPe[1− (k̂zĝz)2]}k

[
B1

{
(εir j prĝ j)(k̂m pm)

+(εir j prk̂ j)(ĝm pm)−2(k̂mĝm)(k̂ j p j)(εirl prk̂l)
}
+B3εi jrĝ jk̂r

]
, (4.45)

the terms proportional to B1 and B3 being the stresslet and rotlet-induced torque contributions,

respectively. Redefining the new wavevector to be Ri
− 1

3
v kkk, so it remains of order unity on

length scales of order the stratification screening length (and thereby, pertains to the outer
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region in Fourier space), and considering only the real part of the integral above, one obtains

Ω
(1)d
i =Ri

2
3
v

F̃
8π3YC

[
B1

∫
dkkk

[1− (k̂xĝx)
2]k2(k̂vÛv)

{k6(k̂yÛy)2 +[β∞k4 +1− (k̂zĝz)2]2}

[{
(εir j prĝ j)(k̂m pm)+(εir j prk̂ j)(ĝm pm)

−2(k̂mĝm)(k̂ j p j)(εirl prk̂l)
}]

+B3

∫
dkkk

[1− (k̂xĝx)
2]k2(k̂vÛv)

{k6(k̂yÛy)2 +[β∞k4 +1− (k̂zĝz)2]2}
εi jrĝ jk̂r

]
,

(4.46)

where the angular velocity due to the hydrodynamic stratification torque finally comes out

to be O(Ri
2
3
v ), as anticipated by the scaling arguments above, and the convergent Fourier

integrals in (4.46) are evaluated below; note that the imaginary part of (4.45), neglected in
(4.46), may be shown to equal zero by symmetry. β∞ in the above expression is given by
Ri1/3

v
Pe as introduced in Chapter 2 of this thesis, and denotes the importance of diffusion effects.

Before evaluating the integrals above using a specific coordinate system, we note that the
force-velocity relationship for a sedimenting spheroid, for the scalings used here, is given by

Ûi = [pi p j +
XA

YA
(δi j − pi p j)]ĝ j. (4.47)

Defining the aspect-ratio-dependent resistance ratio An(κ) = XA/YA, (4.47) may be written
as

Ûi = [(1−An)pi p j +Anδi j]ĝ j. (4.48)

where An decreases monotonically from unity for a sphere to a minimum of 1/2 for an
infinitely slender prolate spheroid (κ → ∞); on the oblate side, An increases from unity to a
maximum of 3/2 for a flat disk (κ → 0). Both of these may be readily verified based on the
expressions given in Appendix A.

To evaluate the above Fourier integrals, we choose a spherical coordinate system with its
polar axis along ĝgg. After expressing ÛUU in terms of ĝgg, ppp and An(κ) as in 4.48, the unit wave
vector k̂kk and ppp may be written in the form −cosθ ĝgg+ sinθ cosφ111g⊥1 + sinθ sinφ111g⊥2 and
−cosψ ĝgg+ sinψ111g⊥1 , respectively, in a ĝgg-aligned coordinate system; θ and φ here being the
polar and azimuthal angles, with the polar axis being along −ĝgg. After substituting the above,
the integral in 4.46 can be simplified to a three dimensional Fourier integral with β∞ as a
parameter. These three dimensional integrals are then evaluated using Gaussian quadrature
with sufficient number of quadrature points to ensure convergence for different (small) β∞

values in the convection-dominant limit. Numerical evaluation in the ĝgg-aligned coordinate
system presented here turns out to more involved. The individual integrals multiplying B1 and
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B3 in 4.46 diverge as Pe in the limit β∞ → 0 with the divergence arising due to the buoyant
jet mentioned in the Chapter 2 of the thesis (see also Varanasi and Subramanian [2021]). We
have verified that the divergences of the individual contributions cancel out, and the total
angular velocity integral is nevertheless convergent and independent of Pe for Pe → ∞. The
ψ-dependence of the large-Pe hydrodynamic angular velocity is seen to be more complicated
than the cosψ sinψ dependence obtained earlier for the inertial and hydrostatic contributions
in section 4.3, and for the hydrodynamic component, in the limit Pe ≪ Ri3/5

v , in section
4.4.1. This is along expected lines since the large Pe limit examined in this section is a
singular perturbation problem, as evident from the outer region contributing at leading order
(this aspect is also seen in the outer-region contribution to the torque at low Pe, derived in
Appendix B.1). Another feature of the singular character is that, unlike the earlier angular
velocity contributions, the large-Pe hydrodynamic stratification angular velocity is in general
a non-separable function of ψ and κ .

Figures ?? and ?? show plots of the angular velocity (Ω(1)d), due to the hydrodynamic
component of the stratification torque, versus ψ for prolate and oblate spheroids, respec-
tively. As evident from Figure ??, for prolate spheroids, the magnitude of the angular
velocity is expectedly small in the near-sphere limit, increasing monotonically with κ to
a (finite) maximum in the limit of a slender fiber. Figures ?? shows plots of the angular
velocity scaled with the square of the eccentricity (ξ−2

0 ), so as to obtain a collapse in the
near-sphere limit. Note that the finite value of the stratification-induced angular velocity in
the limit of a slender fiber (ξ0 → 1) is in contrast to the O[ln(ξ0 −1)]−1 scaling exhibited by
the inertial angular velocity calculated in section 4.3 (also see Dabade et al. [2015a]), and
implies that, for fixed Re and Riv, the stratification torque invariably becomes dominant for
large aspect ratios. Figure ?? confirms the squared-eccentricity scaling for oblate spheroids
with near-unity aspect ratios; expectedly, the angular velocity approaches a finite value in the
limit of a flat disk. Importantly, for both prolate and oblate spheroids, the sign of Ω(1)d is
such as to rotate the spheroid onto an edgewise orientation.

The non-trivial orientation dependence of the angular velocity referred to in the previous
paragraph is also evident from the plots in figures ?? and ??. For near-unity aspect ratios,
the angular velocity curve is nearly symmetric about ψ = π

4 ; that the angular dependence in
this limit is indeed of the form sinψ cosψ may be shown based on the fact that for An → 1,
ψU ≈ ψ . The asymmetry about ψ = π

4 increases as the aspect ratio departs from unity, with
the location of the maximum angular velocity moving to ψ’s greater than, and less than, π

4
for prolate and oblate spheroids, respectively, as shown in figure 4.9. To see the deviation
of the angular dependence from the aforementioned simple form more clearly, in figures
4.10a and 4.10b we plot the angular velocity scaled by the inertial angular velocity (which is
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Fig. 4.7 The angular velocity due to the hydrodynamic component of the stratification torque,
for prolate spheroids of different aspect ratios. The figure shows Ri−2/3

v Ω(1)d , (a) plotted as
a function of the spheroid inclination with gravity, and (b) normalized by the near-sphere
scaling (1/ξ 2

0 ) plotted as a function of the spheroid inclination with gravity.
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Fig. 4.8 The angular velocity due to the hydrodynamic component of the stratification torque,
for oblate spheroids of different aspect ratios. The figure shows Ri−2/3

v Ω(1)d , (a) plotted as
a function of the spheroid inclination with gravity, and (b) normalized by the near-sphere
scaling (1/ξ 2

0 ) plotted as a function of the spheroid inclination with gravity.
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Fig. 4.9 The angle corresponding to the maximum angular velocity, arising from the hydro-
dynamic component of the stratification torque, plotted as a function of the spheroid aspect
ratio (both prolate and oblate spheroids); the inset shows the variation of this angle on a
log-log scale, emphasizing the approach to finite values for extreme aspect ratios (κ = 0 and
∞).
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Fig. 4.10 Ratio of the angular velocities due to the hydrodynamic-stratification and inertial
torques. The stratification-induced rotation is higher for the near-vertical and near-horizontal
orientations for prolate and oblate spheroids, respectively; note that the angular velocity ratio
at ψ = π/4 has been subtracted for convenient depiction.
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proportional to sinψcosψ) minus its value at π/4, as a function of ψ . For near-unity aspect
ratios, one obtains a horizontal line, while for both larger and smaller aspect ratios, this
renormalized angular velocity asymptotes from one plateau for ψ → 0 to a second one for
ψ → π

2 .

A closer look at the Pe ≫ 1 analysis

In contrast to the inertial contribution determined in section 4.3, which was independent of
the ambient stratification at leading order, the stratification-induced torque can, in principle,

be coupled to inertial forces even in the limit Re,Riv ≪ 1. For sufficiently small Pe (Pe ≪ Ri
3
5
v

as argued in section 4.4.1), the density perturbation that determines the stratification torque
arises from a diffusive response to the no-flux condition on the surface of the sedimenting
spheroid, and is therefore independent of the fluid motion. As a result, a non-trivial coupling
between stratification and inertia occurs primarily for large Pe. Since the dominant length
scales contributing to the stratification torque in this limit are much larger than O(L), the
magnitude of the density perturbation is controlled by the convection of the ambient stratifi-
cation by the far-field disturbance fluid motion. The nature of this convection is therefore
dependent on the form of the disturbance velocity field, and this in turn depends on the

relative magnitudes of the inertial (LRe−1) and stratification (LRi
− 1

3
v ) screening lengths. The

calculation of the angular velocity due to the hydrodynamic stratification torque detailed

above pertains to the Stokes stratification regime, with Re ≪ Ri
1
3
v , where the disturbance ve-

locity field directly transitions from the Stokeslet form to a more rapid decay on length scales

of O(LRi
− 1

3
v ) (Varanasi and Subramanian [2021]) and is therefore independent of Re. In the

Stokes stratification regime therefore, the stratification-induced rotation, both in the limit of
small and large Pe, is independent of Re, and the inertial and stratification angular velocity

contributions are additive. This will no longer true when Re ≥ O(Ri
1
3
v ), corresponding to the

so-called inertia-stratification regime, in which case the leading order stratification-induced

rotation for large Pe will be a function of Re/Ri
1
3
v . In the limit Ri

1
3
v ≪ Re ≪ 1, opposite to

the one analyzed above, the disturbance velocity transitions from an O(1/r) to an O(1/r2)

decay (outside of a viscous wake) across length scales of order the inertial screening length.
This leads to the stratification torque integrand decaying as O(1/r3) for length scales much
larger than O(LRe−1), and the torque integral in (4.22) continues to exhibit a logarithmic
divergence. This (milder) divergence is only eliminated when buoyancy forces become
comparable to inertial forces at a secondary screening length that was estimated in Varanasi
and Subramanian [2021] to be O(Re/Riv)

1
2 . Accounting for the aforementioned cut-off of

the logarithmic divergence, the angular velocity arising from the hydrodynamic stratification
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torque is expected to have a leading O[RivRe−1 ln(Re/Ri
1
3
v )] contribution arising from a re-

gion between the primary and secondary screening lengths (that is, due to the logarithmic
growth for Re−1 ≪ r ≪ (Re/Riv)

1
2 ), with logarithmically smaller O(RivRe−1) contributions

arising from length scales of order the two screening lengths. Assuming this angular veloc-
ity to rotate the spheroid towards an edgewise configuration, and equating it to the O(Re)
inertial contribution, one obtains Re ≤ Ri2v for a transition to an edgewise-settling regime.

This, however, contradicts the requirement Re ≫ Ri
1
3
v characterizing the inertia-stratification

regime, implying that the inertial angular velocity contribution remains dominant in this
regime. Thus, one concludes that, in the limit of small Re and Riv, a broadside-on-edgewise
transition is possible only in the Stokes stratification regime.

To end this subsection, we again examine the validity of a quasi-steady state assumed
in the analysis above for large Pe. As already argued in section 4.3, momentum diffusion
occurs asymptotically fast for small Re, and therefore, the quasi-steady assumption used to
evaluate the stratification torque integral relies on the time scale for the density disturbance
to approach a steady state being much shorter than that characterizing spheroid rotation.
The former time scale may be regarded as that required to convect the density perturbation

through the O(LRi
− 1

3
v ) stratification screening length, and is therefore O(L/URi

− 1
3

v ). The

time scale of rotation is O(L/URe−1) or O(L/URi
− 2

3
v ), depending on which of Re or Ri

2
3
v is

greater. In either case the time scale for the development of a steady density perturbation is

smaller, provided one remains in the Stokes stratification regime Re ≪ Ri
1
3
v ≪ 1. Note that

the perturbation density field, for Pe = ∞, is expected to be logarithmically singular along
the rear stagnation streamline, as has been shown for the case of a spherical particle (see
Varanasi and Subramanian [2021]), with this singularity either being resolved on a larger
diffusive time scale (that is, due to Pe being regarded as large but finite), or on account of the
unsteadiness arising from the rotation of the settling spheroid. However, the convergence of
the Fourier integrals involved in the stratification torque above implies that the contribution
of the transiently developing region in the immediate neighborhood of the rear stagnation
streamlilne is irrelevant as far as the leading order hydrodynamic stratification torque is

concerned, and a quasi-steady analysis of this torque remains valid for Re ≪ Ri
1
3
v .

4.5 Results and Discussion

In earlier sections, we have derived expressions for the angular velocity of a spheroid settling
in a viscous linearly stratified ambient. The spheroid angular velocity is the sum of three
components; the inertial and hydrostatic contributions are given by (4.23) and (4.25)[(4.24)
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Fig. 4.11 Figures (a),(b) and (c) illustrate the competition between inertia and stratification
in the large Pe limit for the case of a prolate spheroid; the absolute values of angular velocity
contributions from inertia and stratification are plotted against ψ for different Riv

Re3/2 values.
The non-trivial dependence of stratification contribution to the angular velocity on the
orientation implies the possibility of the intermediate orientation as shown in (b). It is also
easy to see that this intermediate orientation is stable as explained in the main text.
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Fig. 4.12 The upper and lower threshold curves that demarcate the regimes of broadside-
on settling (below), edgewise settling (above) and intermediate equilibrium orientations (in
between), plotted as a function of eccentricity, for a prolate spheroid; the plot on the right
presents a magnified view of the thresholds near the slender-fiber limit.
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Fig. 4.13 The upper and lower threshold curves that demarcate the regimes of broadside-
on settling (below), edgewise settling (above) and intermediate equilibrium orientations (in
between), plotted as a function of eccentricity, for an oblate spheroid; the plot on the right
presents a magnified view of the thresholds near the flat-disk limit.

and (4.26)] for prolate [oblate] spheroids; the hydrodynamic contribution arising from the
stratification is given by (4.29) and (4.30) for prolate and oblate spheroids, respectively, in
the limit of small Pe; and is obtained from the numerical evaluation of (4.46) for Pe ≫ 1.
As already argued in section 4.4.1, both prolate and oblate spheroids will settle broadside-
on for sufficiently small Pe regardless of κ . Herein, we therefore focus on the transition
from broadside-on to edgewise settling that becomes possible for large Pe. In this limit,

the hydrodynamic stratification component is O(Ri
2
3
v ) and rotates the spheroid towards an

edgewise orientation regardless of κ . It is dominant over the O(Riv) hydrostatic component
that favors the broadside-on orientation. Thus, the transition from broadside-on to edgewise
settling, at leading order, depends on the relative magnitudes of the inertial and hydrodynamic
stratification angular velocities, and for a fixed κ , the transition threshold is determined by
the ratio Riv/Re

3
2 in the limit Re,Riv ≪ 1. However, the differing orientation dependence of

the inertial and stratification angular velocities, as evident from figure 4.10a, for instance,
implies that the transition cannot be characterized by Riv/Re

3
2 equalling a single κ-dependent

threshold. An instance of the latter scenario, that of a single threshold demarcating differing
orientation dynamics regimes, occurs when the competing physical effects are inertia and
viscoelasticity, both of which lead to angular velocities with a sinψ cosψ dependence, so
that the edgewise and broadside-on settling regimes are demarcated by a single critical curve
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in the De/Re−κ plane, De here being the Deborah number, a dimensionless measure of
elasticity (see Dabade et al. [2015a]).

Writing the leading order hydrodynamic stratification component in the general form

Ri
2
3
v Fs(κ,ψ), for large Pe, and equating it to the inertial component, of the form ReFI(κ)sinψ cosψ ,

the threshold criterion for the broadside-on-edgewise transition is determined by the ra-
tio Riv/Re

3
2 = [(sinψ cosψ)FI(κ)/Fs(κ,ψ)]

3
2 . Recall from figure 4.10 that, for all κ >

1 (κ < 1), Fs(κ,ψ)/(FI(κ)sinψ cosψ) approaches its minimum and maximum values for
ψ → 0(π/2) and π/2(0), respectively, varying monotonically in between these limits. Now,
define (Riv/Re

3
2 )max = limψ→0(ψ→ π

2 )
[(FI(κ)sinψ cosψ)/Fs(κ,ψ)]

3
2 and (Riv/Re

3
2 )min =

limψ→ π

2 (ψ→0)[(FI(κ)sinψ cosψ)/Fs(κ,ψ)]
3
2 for prolate (oblate) spheroids, both of which

are finite and only functions of κ . One then has the following behavior for the orientation
of either a sedimenting prolate or an oblate spheroid. For Riv/Re

3
2 < (Riv/Re

3
2 )min, the

broadside-on orientation is the only equilibrium; likewise, for Riv/Re
3
2 > (Riv/Re

3
2 )max the

longside-on orientation is the only equilibrium. For Riv/Re
3
2 between the aforementioned

thresholds, the inertial and stratification angular velocity curves must intersect at an ori-
entation, ψi (say), intermediate between 0 and π/2. It is easily seen that this equilibrium
is a stable one for both the prolate and oblate cases; for example, in the prolate case, the
stratification-induced angular velocity is greater than the inertial one for ψi < ψ < π/2, with
the converse being true 0 < ψi < ψ , implying that a prolate spheroid with its orientation
in either of these intervals is rotated towards ψ = ψi; this is graphically illustrated for the
prolate spheroid in figure 4.11. As Riv/Re

3
2 increases from the lower [(Riv/Re

3
2 )min] to

the upper threshold [(Riv/Re
3
2 )max], the intermediate equilibrium orientation, ψi, decreases

from π

2 to zero. Figures 4.12 and 4.13 show the aforementioned pair of threshold curves,
(Riv/Re

3
2 )min(κ) and (Riv/Re

3
2 )max(κ), plotted in the Riv/Re

3
2 − κ plane for prolate and

oblate spheroids, respectively. Both the threshold values in figure 4.12 approach zero in
the limit of large aspect ratios because, as already noted in section 4.4.2, the stratification-
induced torque remains finite in this limit, in contrast to the inertial torque which becomes
logarithmically small (see figure 4.3). As seen from the log-log plot in figure 4.12, the
convergence of the thresholds to zero is slow on account of the aforementioned logarithmic
scaling. For oblate spheroids, the lower and upper thresholds approach distinct finite values
in the limit of a flat disk. Since the angular velocity due to the hydrodynamic stratification
torque approaches a sinψ cosψ dependence for κ → 1 from either the prolate or oblate side,
the two threshold curves towards a common albeit finite critical value in the near-sphere limit
in both figures 4.12 and 4.13. In effect, for a prolate spheroid, the thresholds diverge from a
common finite value for κ = 1, tending to a maximum separation for κ ≈ 4.11(e ≈ 0.94),
before approaching zero in the limit κ → ∞. For flat disks, the threshold curves diverge away
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monotonically from a common value as κ increases from unity, approaching a maximum
separation in the limit of a flat disk.

In order to connect to experiments, we now discuss the implication of the aforementioned
predictions, within a quasi-steady framework, for a spheroid that starts off with an arbitrary
initial orientation and sediments through a stratified fluid at large Pe; arguments in sections
4.4.1 and 4.4.2 show that the quasi-steady assumption remains rigorously valid in the Stokes
stratification regime, regardless of Pe, provided Re and Riv are small. The experiments
reported in Mercier et al. [2020] correspond to an ambient linear stratification that includes
a neutral buoyancy level. The latter would correspond to the equilibrium location of the
sedimenting spheroid for long times, and for the viscous overdamped regime under consider-
ation, one expects the spheroid velocity U to decrease monotonically to zero as it approaches
this level. In dimensionless terms, Re and Pe decrease with time, while Riv increases with
time. If the spheroid starts off sufficiently far above neutral buoyancy level, then the initial
terminal velocity is likely large enough for the ratio Riv/Re

3
2 ∼U− 5

2 to be below the lower
κ-dependent threshold in figure 4.13 (note that the particles used in the experiments were
disk-shaped, and maybe likened to thin oblate spheroids). As a result, the spheroid starts off
rotating towards a broadside-on orientation. The spheroid will slow down as it approaches
the neutral buoyancy level, and the resulting increase in Riv/Re

3
2 will eventually cause it to

exceed the aforementioned lower threshold, leading to the broadside-on orientation becoming
an unstable equilibrium. Assuming the spheroid to have had sufficient time prior to this point,
to have already attained a near-broadside-on orientation, one expects the onset of a reversal
in rotation. Strictly speaking, the arguments in the previous paragraph, with regard to the
existence of an intermediate stable equilibrium, only pertain to a truly steady setting (where
the neutral buoyancy level corresponds to an infinitely great depth). For the experimental
scenario, assuming a sufficiently slow decrease in Riv/Re

3
2 with time, the spheroid would

progress quasi-statically through a sequence of intermediate orientation equilibria, on its
way to an edgewise configuration. Finally, in the immediate neighborhood of the neutral
buoyancy level, the dynamics would appear to be slow enough for one to be in the small-Pe
regime analyzed in section 4.4.1, and the resulting dominance of the hydrostatic component
of the stratification torque, over the O(Riv) hydrodynamic component, should again reverse
the spheroid rotation, causing it to finally approach its equilibrium location in a broadside-
on configuration. The aforementioned sequence of events is broadly consistent with the
observations in Mercier et al. [2020]. Note that since U → 0 for long times in the vicinity
of the neutral buoyancy level, Riv becomes arbitrarily large in the vicinity of the neutral
buoyancy level, in turn leading to an apparent breakdown of the analysis. As discussed in
section 4.4.1, the expressions (4.29) and (4.30), for the hydrodynamic component of the
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stratification angular velocity remain valid, even for Riv of order unity or greater provided
RivPe ≪ 1 (for sufficiently small Re). The magnitude of RivPe, which is independent of U ,
therefore determines if the small-Pe analysis remains valid close to the neutral buoyancy
level. For large RivPe, the small-Pe screening length of O[L(RivPe)−

1
4 ] would be much less

than L, implying that the baroclinic flow driving spheroid rotation is likely restricted to a thin
boundary layer on the surface of the spheroid, this boundary-layer character being similar
to the original analysis of Phillips [1970]; the resulting magnitude of the hydrodynamic
stratification component is not known. It must also be emphasized that both Re and Riv for
the disks in the said experiments are of order unity, and a direct quantitative comparison with
the experimental trajectories is therefore not possible. Such a comparison would require
the analogs of the thresholds in Figures 4.12 and 4.13 for finite Re and Riv; even, within

the asymptotic framework analyzed here, there exist corrections of O(Ri
1
3
v ) to the threshold

Riv/Re
3
2 values in the said figures, owing to the neglect of the smaller O(Riv) hydrostatic

contribution.
The experiments reported in Mrokowska [2018], Mrokowska [2020a] and Mrokowska

[2020b] correspond to a non-linearly stratified ambient where the density varies within
an intermediate layer sandwiched between homogeneous upper and lower layers. The
effects of the stratification on particle orientation, and the resulting coupling to the settling
velocity via the orientation-dependent resistance coefficient, lead to extrema (both maxima
and minima) in the settling velocity profile; five different phases have been identified in the
settling behavior of thin disks. A detailed theoretical investigation to establish the variation
of the settlng velocity profile for small Re andRiv requires an integration of the coupled
translational and orientational equations of motion, and this will be reported separately. It
is worth noting one interesting feature in these experiments, however. The particles used
in the experiments have a density that is greater than that of the lower denser layer of
the non-linearly stratified ambient, and the resulting absence of a neutral buoyancy level
renders these experiments closer to the ideal steady state scenario of a constant U , thereby
pointing to the possible relevance of the intermediate orientation equilibria identified in
figures 4.12 and 4.13. Interestingly, in Mrokowska [2020a], the author observes thick disks
to behave differently from thin ones. On entering the transition layer, these disks appear
to rotate from an initial broadside-on configuration, attained in the upper layer, towards an
intermediate inclined orientation, before rotating back onto a broadside-on orientation in
the lower homogeneous layer. The persistence of the inclined orientation in the transition
layer appears consistent with the prediction of equilibrium orientations in figure 4.13. The

ratio Riv/Re
3
2 equals γL

3
2 µ

1
2 g

U
5
2 ρ

3
2

0

in terms of the underlying physical parameters. Further, using
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the scale F/(µLXA) for U , one obtains the ratio as (3XA
4π

)
5
2

γµ3

(ρ0g)
3
2 (∆ρ)

5
2 Lb

5
2

. Both the thick and

thin disks used in the experiments of Mrokowska [2020a] correspond to κ ≪ 1, implying
that XA(κ)≈ XA(0) in the expression for Riv/Re

3
2 above. It is therefore the thickness b that

varies significantly in going from the thin to the thick disk in the experiments, and the b−
5
2

scaling of the above ratio implies that the thick disk will correspond to a significantly lower
value of Riv/Re

3
2 . Thus, it is possible for the thin disk to correspond to an Riv/Re

3
2 above

the upper threshold, with the thick disk falling in between the two thresholds above; In this
sense, our predictions again appear broadly consistent with the observations in Mrokowska
[2020a].

4.6 Conclusions

To summarize, in this study, we present the first rigorous theoretical description of the
orientation dynamics of spheroidal particles in a stably stratified ambient. The stratification-
induced hydrodynamic torque, acting on a spheroidal particle, has been calculated for the first
time. For large Pe in particular, the torque is shown to rotate both prolate and oblate spheroids
towards an edgewise orientation regardless of aspect ratio. The theoretical predictions with
regard to the transitions between broadside-on and edgewise settling, and with regard to the
existence of intermediate inclined equilibrium orientations, appear broadly consistent with
very recent experiments. Unfortunately, and as already mentioned in section 4.5, a detailed
quantitative comparison appears out of reach at the moment; the particles used in all of the
experiments, referred to in section 4.5, correspond to Riv and Re values of order unity and
higher. The quantitative disconnect between experiment and theory is also evident from
the threshold Froude number condition identified by Mercier et al. [2020] for the so-called
perfect disk which, translated to our notation, corresponds to a threshold Riv/Re3; as opposed
to the ratio Riv/Re

3
2 identified in section 4.5. We therefore hope that future experiments will

use smaller particles, in an attempt to access the regime of small Re and Riv, and thereby
validate the detailed predictions given here. It needs to be emphasized that the many of
the smaller zooplankton, for typical values of the stratifcation pertaining to the oceanic
pycnocline, correspond to the small Re−Riv regime, and thus the theoretical framework
given here is certainly relevant to natural settings (the oceanic realm in particular).



Chapter 5

Conclusions and Future Work

In this thesis, we have carried out detailed analyses of a pair of problems involving the slow
motion of particles in a density stratified fluid. The first problem analyzes the fluid motion
due to the vertical translation of a sphere, and the second problem analyzes the rotation of
a spheroid, both sedimenting in a viscous linearly density-stratified fluid. As part of the
first problem, we demonstrated, using a combination of analytical and numerical tools, the
existence of a reverse buoyant jet behind a translating particle; further, the velocity field
obtained was used to evaluate, numerically, the drift volume in the Stokes stratification
regime. Importantly, the drift volume was shown to be a convergent quantity in presence of a
weak stratification. The analysis of the second problem involving the spheroid enabled a first
explanation of the onset of a longside-on sedimenting regime observed in recent experiments.
In the present chapter, we discuss a number of key areas that can be considered as part of
future work.

5.1 Future work: Fluid motion due to settling sphere and
relevance to oceanic mixing

In order to calculate the drift volume in a density stratified fluid, we have only considered the
limit of α∞ = 0 (Stokes-stratification regime), and even here, our focus was on the convection
dominant limit (β|in f ty << 1). Although we have also considered the diffusion-dominant
limit when characterizing the flow field around the translating sphere, the answer for the drift
volume, of O(RivPe)−1/2, was based only on scaling estimates, without detailed calculations.
We expect that explicit verificaiton of this scaling, and the calculation of the associated
numerical prefactor may be obtained in a manner similar to the large-Pe calculation described
in Chapter 3. Note, however, that the dynamical significance of the drift volume in the
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Fig. 5.1 Organization of different stratification regimes based on two parameters α0 and β0.
This thesis is concerned with the small and large Pe Stokes stratification regimes.

small-Pe limit, especially with regard to implications for large-scale ocean mixing, is limited
on account of diffusion being the dominant influence in the mixing process. In this regard,
and more importantly, it is worth considering, in future the effect of finite inertia on the flow
field around the translating sphere, and the corresponding drift volume. Indeed, most marine
swimmers, including the average-sized zooplankton that contribute to biogenic mixing,
pertain to the inertia stratification regime (α0, α∞ ≥ 1, depending on Pe). The various
dynamical regimes in a density stratified fluid depending on Riv, Re and Pe are depicted in
figure 5.1. As can be readily seen from this figure, both the flow field and the drift volume
need to be characterized in the large-Pe and small-Pe inertia stratification regimes through
detailed analyses along with the calculation of the drift volume in these cases. These detailed
calculations would help validate the proposed drift volume scaling of (ReRiv)−1/2 for the
large-Pe inertia-stratification regime as detailed in section 3.2.

As discussed in Chapter 3 of the thesis, it is also important to calculate the available
potential energy of the density stratified fluid due to steady settling of a sphere in the
convection-dominant limit using the results obtained in the thesis. This will help us calculat-
ing the mixing efficiency of the density stratified fluid and this calculation will be taken up in
future work.
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Another calculation of interest that is worth looking into is that of the fluid velocity
variance, and the associated tracer diffusivity, associated with a unbounded homogeneous
suspension of sedimenting particles in a stratified fluid. The calculation of the above quantities
has attracted much attention for a homogeneous suspension on account of the divergence
(with system size) predicted for the fluid velocity variance by Caflisch and Luke [1985], this
divergence being reflective of the long-ranged hydrodynamic interactions at low Reynolds
numbers. Our calculation of the fluid velocity field show a transition from the slow O(1/r)
Stokesian decay, to a much more rapid one, beyond a length scale of O(Ri−1/3

v ) for large
Pe. This transition induced by stratification should lead to both a finite velocity variance (of
O(U2Ri−1/3

v )) and a finite tracer diffusivity (of O(UaRi−2/3
v )) in the convection dominant

limit, in the Stokes stratification regime. This calculation can be considered in future work

5.2 Future work: Anisotropic particles in stratified fluids

With regard to the work carried out on anisotropic particles moving through density stratified
fluids, it is worth mentioning that the focus in the present thesis has been on the large-Pe
scenario, in an attempt to explain the transition between broadside-on and edgewise settling
observed in experiments all of which correspond to a salt-stratified ambient, and for the
millemeter-sized particles used, therefore pertain to large Pe. However, there are several
interesting issues that emerge even in the small Pe regime:

1. Scaling arguments given in 4.4.1, and the analysis in Appendix B.1, highlight the
possibility of an analogous broadside-on-edgewise transition in the range Ri3/5

v < Pe ≪
1. One expects the parametric combination (Ri1/4

v Pe5/4)/Re to determine the transition
threshold in the range Ri3/5

v ≪ Pe ≪ Ri1/3
v , with the ratio Riv/Re3/2 controlling

this transition for Pe ≫ Ri1/3
v . The emergence of an O(Ri1/3

v ) torque for Pe ≫ Ri1/3
v

suggests that the large-Pe analysis might be applicable to a wider range of Pe that
initially apparent. The suggested wider range of validity of the large-Pe analysis for
the torque mirrors the drag scenario where the analysis of Zvirin and Chadwick [1975]
was found to be valid for a larger interval of Pe than originally anticipated, as shown
by Mehaddi et al. [2018].

2. The opposing senses of rotation of oblate spheroids, with κ < 0.41 in the small- Pe
(Pe≪Ri3/5

v ) and large-Pe regimes point to a non-trivial dependence of the stratification-
induced angular velocity on Pe, one that can be examined in detail through a numerical
investigation over the entire range of Pe.
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3. It would be of interest to study a fore-aft asymmetric particles (such as a right circular
cone, a spherical cap geometry or an asymmetric dumbbell composed of two differently
sized spheres) which will allow translational-rotational coupling to be studied in its full
generality accounting for both the inner and outer-region contributions to the torque
and drag as opposed to the symmetry-induced cancellation that occurs for symmetric
shapes.

Some of these aspects can be considered in future work.
Finally, it is also of interest to move beyond orientation dynamics, towards a more detailed

illustration of actual particle trajectories which requires an integration of the quasi-steady
equations of motion for both translational and rotational degrees of freedom. This would
enable a more comprehensive comparsion with the experiments of Mrokowska [2020a] and
Mrokowska [2020b]. We expect some of the non-trivial signatures to be revealed in an
analysis that might only incorporate an anisotropic Stokes drag for the positional dynamics,
a valid leading order approximation for Re,Riv ≪ 1.



Appendix A

A.1 Resistance functions and inertial torque

The expressions for F p
I (ξ0) and Fo

I (ξ0) defined in (4.23) and (4.24) are given in terms of the
eccentricity of the spheroid (e = 1/ξ0) as

F p
I (ξ0) =

−πe2
(

420e+2240e3 +4249e5 −2152e7
)

315((e2 +1) tanh−1 e− e)2((1−3e2) tanh−1 e− e)

+
πe2

(
420+3360e2 +1890e4 −1470e6

)
tanh−1 e

315((e2 +1) tanh−1 e− e)2((1−3e2) tanh−1 e− e)

−
πe2

(
1260e−1995e3 +2730e5 −1995e7

)
(tanh−1 e)2

315((e2 +1) tanh−1 e− e)2((1−3e2) tanh−1 e− e)
, (A.1)

and

Fo
I (ξ0) =

πe3
√

1− e2
(
−420+3500e2 −9989e4 +4757e6

)
315

√
1− e2(−e

√
1− e2 +(1+2e2)sin−1 e)(e

√
1− e2 +(2e2 −1)sin−1 e)2

+
210πe2

(
2−24e2 +69e4 −67e6 +20e8

)
sin−1 e

315
√

1− e2(−e
√

1− e2 +(1+2e2)sin−1 e)(e
√

1− e2 +(2e2 −1)sin−1 e)2

+
105πe3

(
12−17e2 +24e4

)
(sin−1 e)2

315(−e
√

1− e2 +(1+2e2)sin−1 e)(e
√

1− e2 +(2e2 −1)sin−1 e)2
. (A.2)
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The resistance functions XA, YA and YC are expressed in terms of the spheroid eccentricity
as:

XA =
16πe3(

2e− (1+ e2) log
(

1+e
1−e

)) , (A.3)

YA =− 32πe3(
2e+(3e2 −1) log

(
1+e
1−e

)) , (A.4)

YC =
32πe3(e2 −2)

3
(
−2e+(1+ e2) log

(
1+e
1−e

)) , (A.5)

for a prolate spheroid and as:

XA = − 8πe3[
e
√

1− e2 +(2e2 −1)cot−1
(√

1−e2

e

)] , (A.6)

YA =
16πe3[

e
√

1− e2 − (1+2e2)cot−1
(√

1−e2

e

)] , (A.7)

YC =
16πe3(e2 −2)

3
[

e
√

1− e2 − (1−2e2)cot−1
(√

1−e2

e

)] , (A.8)

for an oblate spheroid.



Appendix B

B.1 Additional convective contributions to the spheroid an-
gular velocity for Pe ≪ 1

In section 4.4.1, an O(Riv) contribution to the spheroid angular velocity, given by (4.28),
arose from the density perturbation driven by the no-flux condition on the spheroid surface
(whose solution is obtained in detail by Varanasi et al. [2021] as mentioned in section
4.4.1). This contribution denotes the effect of buoyancy forces acting in a volume of O(L3)

around the spheroid, and may be termed the inner-region contribution. Herein, we show
that there exist additional buoyancy-induced contributions to the spheroid angular velocity
arising from a perturbation of the ambient stratification, on much larger length scales, due to
weak convection effects. Convection effects become important on length scales of order the
stratification screening length of L(RivPe)−1/4 for RivPe ≪ 1 (Ardekani and Stocker [2010]
and section 4.4.1), and the resulting outer-region contribution may be isolated from the
full integral for the hydrodynamic component of the stratification torque in (4.22), by first
subtracting the aforementioned inner-region contribution. Thus, we begin from the following
difference integral:

Riv
1
Yc

∫
(ρ ′(1)−ρ

′(10))ĝ jU
(2)
ji dV, (B.1)

where the density disturbance, whose governing equation is given by 4.27, is now denoted as
ρ ′(10) (as in section 4.4.1); the test velocity field tensor UUU (2) is given in (4.43). Now, recall
from section 4.4.1 that the difference ρ ′(1)−ρ ′(10) grows as O(Per), leading to the dominant
contribution to the difference integral in (B.1) arising from scales large compared to O(L),
even in the limit RivPe ≪ 1. Therefore, neglecting the volume of the spheroid, and applying
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the convolution theorem, one obtains:

Riv
1
Yc

∫
(ρ ′(1)−ρ

′(10))ĝ jU
(2)
ji dV = Riv

1
Yc

∫
[ρ̂ ′(1)(k)− ρ̂

′(10)(k)]ĝ jÛ
(2)
ji (−k)dk. (B.2)

The Fourier transformed density field, ρ̂ ′(1)(k), is obtained by solving (4.31-4.33), being
given by

ρ̂
′(1) =

−F̃Pe[1− (ĝmk̂m)
2]+ i8π3k2k jDs

j[
iPe8π3k2k jÛ j −PeRiv(1− (ĝnk̂n)2)−16π4k4

] . (B.3)

The Fourier transformed density, ρ̂ ′(10)(k), in (B.2) corresponds to the approximate form of
ρ ′(10) at large distances (k ≪ 1), and may be obtained from Fourier transforming the solution
of the diffusion equation with a concentration-dipole forcing at the origin (see discussion
after (4.33) in section 4.4.2); thus, ρ̂ ′(10)(k) is given by:

ρ̂
′(10) =−

i2πk jDs
j

4π2k2 , (B.4)

where the dipole strength, DDDs, is an order unity function of the spheroid aspect ratio for Pe ≪
1; it may be shown that DDDs =D1sĝgg.(III− pppppp)+D2s(ĝgg.ppp)ppp, where D1s = 8π

(
ξ 2

0 −1
)
/3ξ 2

0 (−ξ 2
0 +

(ξ 2
0 −1)ξ0coth−1ξ0+2) and D2s = 4π(ξ 2

0 −1)/3ξ 3
0 (−ξ 2

0 coth−1ξ0+ξ0+coth−1ξ0) for pro-
late spheroids; the corresponding expressions for oblate spheroids may be obtained using the
transformation presented in section 4.3.

Since the dominant contributions to (B.2) come from scales of O[L(RivPe)−1/4], we
define a rescaled Fourier wavevector pertaining to the outer region as ko =(RivPe)−1/4k. On
doing so, one finds from (B.3) and (B.4):

ρ̂
′(1)(ko)− ρ̂

′(10)(ko) =

F̃ [1− (ĝmk̂om)
2]−Ri

3
4
v Pe−

1
4 i8π3ko

2ko jDs
j

Riv

[
−iPe

3
4 Ri

− 1
4

v 8π3k2
oko jÛ j +(1− (ĝnk̂on)2)+16π4k4

o

] + i2πko jDs
j

(RivPe)1/44π2k2
o
. (B.5)

The relative magnitudes of the first vis-a-vis the remaining terms in the denominator of

ρ̂ ′(1)(ko) depends on the ratio Pe/Ri
1
3
v , as mentioned in section 4.4.1. In the limit Pe ≪ Ri

1
3
v ,
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the density difference in (B.5) reduces to

ρ̂
′(1)(ko)− ρ̂

′(10)(ko)≈
F̃ [1− (ĝmk̂om)

2]

Riv
[
(1− (ĝnk̂on)2)+16π4k4

o

] , (B.6)

at leading order. The test velocity field tensor in (4.43) is again O(1/k)∼ O[RivPe)−1/4/ko].
Using this along with the O(RivPe)

3
4 volume in Fourier space that contributes to the integral

in (B.2) (that is, dk = (RivPe)
3
4 dko), would appear to lead to an O(RivPe)

1
2 outer-region

contribution to the angular velocity for Riv,Pe ≪ 1. This contribution is, however, identi-
cally zero on account of the integrand being an odd function of kkk. The absence of such a
contribution arises from the fore-aft symmetry, at leading order, of the density and velocity
disturbance fields in the outer region (see Ardekani and Stocker [2010],Varanasi and Subra-
manian [2021]); the symmetry of the density disturbance field may be seen from its Fourier
transform in (B.6) which is an even function of ko.

Recall that in section 4.4.1, we had mentioned that the O(Riv) inner-region contribution
remained valid even for finite Riv provided RivPe ≪ 1, this because this torque contribution
arose from O(γL3g/µ) baroclinic flow induced due to the deformed iso-pycnals around a
stationary spheroid, rather than the O(U) disturbance velocity field associated with trans-
lation; the resulting dimensional angular velocity was independent of U . Interestingly, the
small-Pe screening length above is also independent of U ; it equals (µ.D/Lgγ)

1
4 in terms of

the actual physical parameters. The U-independence suggests that screening length for the
onset of buoyancy-induced screening is independent of the source of the disturbance flow; it
may indeed by verified, using an O(γL3g/µ) scale for the velocity field and going through
the arguments of section 4.4.1, that one obtains the same screening length. However, the
more rapid O(1/r2) decay of the dipolar baroclinic flow implies that the O(1/r) Stokeslet
field dominates the distorts the pycnals at leading order, and it is this contribution that is
accounted for in (B.6).

In light of the symmety-induced cancellation at leading order, one needs to consider the
correction to (B.6) to obtain the leading order contribution from the outer region. In the limit

Pe ≪ Ri
1
3
v , on expanding (B.5), one readily finds:

ρ̂
′(1)(ko)− ρ̂

′(10)(ko)≈
[F̃(1− (ĝmk̂om)

2)]

Riv
[
(1− (ĝnk̂on)2)+16π4k4

o

]
+

i2πko jDs
j

[
(1− (ĝmk̂om)

2)
]

(RivPe)
1
4

[
(1− (ĝnk̂on)2)+16π4k4

o

]
4π2k2

o

+
Pe

3
4 iF̃(1− (ĝmk̂om)

2)8π3ko
2ko jÛ j

Ri
5
4
v

[
(1− (ĝnk̂on)2)+16π4k4

o

]2 , (B.7)
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where we have only included correction terms that are odd in kkk which will lead to a nonzero an-
gular velocity in (B.2). On combining the scalings arising from the test velocity ((RivPe)−

1
4 ),

the Fourier space volume ((RivPe)
3
4 ) and the Riv prefactor in (B.2), one finds the first correc-

tion term (proportional to DDDs) in (B.7) to lead to an angular velocity of O(Ri
5
4
v Pe

1
4 ), while the

second correction term gives a contribution of O(Ri
1
4
v Pe

5
4 ). The first correction is, however,

always smaller than the O(Riv) inner-region contribution for Riv,Pe ≪ 1. Therefore, we only
consider the second correction for the explicit calculation below. Substituting (B.7) into the
integral in (B.2), one finally obtains the following integral expression:

Ω
(1)d
i

outer
=

Ri
1
4
v Pe

5
4

Yc

∫ iF̃(1− (ĝmk̂om)
2)8π3ko

2ko jÛ j[
(1− (ĝnk̂on)2)+16π4k4

o

]2 ĝlÛ
(2)
li (−ko)dko, (B.8)

for the outer-region contribution to the hydrodynamic component of the stratification-induced
angular velocity, where:

U (2)
i j (kkko) = − i

2πko
{B1[(εm jr pr)pn +(εn jr pr)pm]+B3εmn j}k̂on(δim − k̂oik̂om), (B.9)

with B1 and B3 being given by (4.40) and (4.41), respectively for prolate spheroids. The
aspect-ratio- dependent functions B1 and B3 for oblate spheroids can again be obtained as
mentioned above .

To reiterate, the contribution given by (B.8) exists in addition to the O(Riv) contribution
evaluated in section 4.4.1, and given by (4.28). A comparison for Riv ≪ 1 readily shows that

the (B.8) is dominant when Pe ≫ Ri
3
5
v . Using (B.9) in (B.8), one obtains

Ω
(1)d
i

outer
=

Ri
1
4
v Pe

5
4

4π2F̃
Yc

B1

∫
(1− (ĝmk̂om)

2)ko
2k̂o jÛ j[

(1− (ĝnk̂on)2)+16π4k4
o

]2 εir j pr{ĝ j(k̂ol pl)+k̂o j(ĝl pl)−2(k̂ol pl)(k̂oqĝq)k̂ j}]dko

+B3

∫
(1− (ĝmk̂om)

2)ko
2k̂o jÛ j[

(1− (ĝnk̂on)2)+16π4k4
o

]2 εi jrĝ jk̂ordko

 . (B.10)

The evaluation of the integral in (B.10) is best done in a ĝgg-aligned spherical coordinate
system. After expressing ÛUU in terms of ĝgg, ppp and An(κ) as in (4.48), the unit wave vector
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k̂kko and ppp may be written in the form −cosθ ′ĝgg+ sinθ ′ cosφ ′111g⊥1 + sinθ ′ sinφ ′111g⊥2 and

−cosψ ĝgg+ sinψ111g⊥1 , respectively, in a ĝgg-aligned coordinate system similar to the ÛUU-aligned
coordinate system used in section 4.4.2; θ ′ and φ ′ here being the polar and azimuthal angles,
with the polar axis being along −ĝgg. Substituting these in (B.10) and using the rescaled
wavevector 2πkkko leads to the following form:

Ω
(1)d
2

outer
=

Ri
1
4
v Pe

5
4

F̃
8π3Yc

∫ ∞

0
dko

∫
π

0
dθ

′
∫ 2π

0
dφ

′[(cosψ cosθ
′+ sinψ sinθ

′ cosψ)cosψ(1−An)

+ cosθ
′An](B1 f1 +B3 sinθ

′ cosφ
′)

k4
o sin3

θ ′

(k4
o + sin2

θ ′)2

, (B.11)

Ω
(1)d
2

outer
=

Ri
1
4
v Pe

5
4

F̃
8π3Yc

π
5
2 Γ(9

4)sin2ψ

231
√

2Γ(3
4)

[
−12AnB1 −6(1−An)B1 +11(1−An)B3 +(1−An)B1 cos2ψ)

]
.

(B.12)

An explicit calculation shows that the angular velocity given by (B.12) always acts to orient
the spheroid edgewise, and as mentioned above, is greater than the inner-region contribution

for Pe > Ri
3
5
v . A comparison with the inertial torque obtained in section 4.3 (given by (4.23)

and (4.24) for prolate and oblate spheroids) suggests that the broadside-on-edgewise transition

may now be characterized on the Ri
1
4
v Pe

5
4/Re−κ plane in the range Ri

3
5
v ≪ Pe ≪ Ri

1
3
v . Note

that the dependence on ψ in (B.12) is more complicated than that the sin2ψ-dependence
characterizing the regular contributions derived in sections 4.3 and 4.4.1. However, the
deviation from the sin2ψ-dependence turns out to be very small in magnitude, and as a result,
the upper and lower thresholds, separating the broadside-on and edgewise orientations in the
aforesaid parameter-plane, are nearly coincident.

The above analysis for the outer-region contribution is restricted to the limit Pe ≪ Ri
1
3
v .

In the opposite limit, Pe ≫ Ri
1
3
v , the first term in the denominator in (B.5), that denotes

the effects of the ambient convection, is dominant over the second one that denotes the
buoyancy forces. The first term in the numerator continues to be dominant, and therefore,
at leading order, one now obtains ρ̂ ′(1)(ko)≈ F̃ [1−(ĝmk̂om)

2]

[−i(RivPe)
3
4 8π3k2

oko jÛ j+Riv16π4k4
o]

. The two terms

in the denominator, denoting the convection and diffusion of the density disturbance, are
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comparable when ko ∼ O(Ri
− 1

4
v Pe

3
4 ) which, in physical space, corresponds to the familiar

(dimensional) convective screening length of O(LPe−1). However, combining this with
the test velocity field leads to an integrand that is O(1/k4) for small k, in turn leading to
the Fourier integral in (B.2) being divergent for k → 0. This suggests that the dominant
contribution in the said limit comes from length scales much larger than O(Pe−1). A closer

examination shows that, for Pe≫Ri
1
3
v , the dominant contribution to the integral in (B.2) arises

for k ∼ O(Ri
1
3
v ), corresponding to the large-Pe stratification screening length of O(Ri

− 1
3

v ), and
that is indeed much larger than the aforementioned convective screening length; the viscous
forces are now asymptotically small compared to the convection and buoyancy terms, so the
balance reduces to that considered in section 4.4.2 for large Pe. Thus, the implication is that
the angular velocity integral in (B.2) reduces to the same one as that obtained in section 4.4.2

when Pe ≫ Ri
1
3
v , and the outer-region contribution is now O(Ri

2
3
v ).

To summarize, for Pe small compared to unity, the hydrodynamic component of the
stratification-induced angular velocity always includes an inner-region contribution of O(Riv)
that has been derived in section 4.4.1, with an additional outer-region contribution that is

O(Ri
1
4
v Pe

5
4 ) for Pe ≪ Ri

1
3
v , being given by (B.12) above, and that is O(Ri

2
3
v ) for Pe ≫ Ri

1
3
v ,

the corresponding expression being the same as that obtained in section 4.4.2. The only

difference between the angular velocity contributions in the regimes Ri
1
3
v ≪ Pe ≪ 1 and

Pe ≫ 1 is that, although sub-dominant, there is still an O(Riv) inner-region contribution in
the former case owing to the dominance of diffusion on length scales of O(L); in contrast,
diffusion is only expected to be important in a boundary layer with a thickness of O(Pe−

1
3 )

for Pe ≫ 1, and there can be no analog of the small-Pe O(Riv) contribution.
Finally, we note that the leading O(RivPe)

1
2 contribution, obtained by using the analog

of (B.6) for a fore-aft asymmetric particle, may not be zero. The inner region contribution
continues to be O(Riv), and hence, such a particle may experience a broadside-on to edgewise
transition at a smaller Pe; that is when (RivPe)

1
2 > Riv or Pe > O(Riv), in contrast to the

fore-aft symmetric spheroidal geometry examined above.
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