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Synopsis

Genetic diversity is the frequency of genetically non-identical individuals in a population,

and is the raw material on which evolution acts. For this reason, it plays a key role in

understanding the evolutionary history and future evolutionary changes that may occur

in the population. For example, when there is a change in the environment, genetic

diversity helps the population to avoid the risk of extinction by providing opportunities for

adaptation to occur. However, a large body of work assumes that the environment remains

constant over evolutionary time scale, but since the natural environments continually

change with time (for example, due to seasonal variations), it is vital to understand the

e�ect of changing environment on genetic diversity and is the subject of this thesis.

An important statistic for measuring the within-population genetic diversity is the

site frequency spectrum, which gives unnormalised allele frequency distribution across

polymorphic sites in the genome, and is related to the heterozygosity, which is the

frequency of individuals carrying a di�erent gene (relative to the reference) at the same

position in the chromosome. In this thesis we study these two quantities in detail when

the environment is changing in time. The thesis is divided into five chapters, and a brief

description of each chapter is given below.

Chapter 1 introduces the primary evolutionary forces, namely, natural selection,

mutation, and random genetic drift, that a�ect genetic diversity. We discuss three

theoretical models, i) birth-death process, ii) the infinite sites model, and iii) the Wright-

Fisher model, that are pertinent to the discussion in this thesis and are commonly used in

the population genetics literature to quantify the combined e�ects of evolutionary forces.

We also describe the mathematical framework of di�usion theory (Fokker-Planck equation)

which can be used for any type of mutation, and a semi-deterministic approximation for

the beneficial mutation. Besides numerical simulations, these mathematical frameworks
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are used to obtain the fixation time, the site frequency spectrum, and heterozygosity in

the following chapters.

Chapter 2 deals primarily with the reduction in the genetic diversity at a linked

neutral locus due to the fixation of beneficial or deleterious mutant (selective sweep)

where the selection coe�cient changes periodically with time. We consider a constant

size, randomly mating, diploid population in which one locus is under selection and

model its dynamics using a birth-death process. We study beneficial sweeps using semi-

deterministic approximation and deleterious sweeps using the di�usion theory framework.

It is known that in the static environment, the conditional mean fixation time for a

codominant mutant is identical for the beneficial and deleterious mutant (Maruyama-

Kimura symmetry). We find that the Maruyama-Kimura symmetry does not hold in

the changing selective environment, even when there the environment changes slowly.

For a meaningful comparison with the results in the static environment, we focus on the

slowly changing environment, and find that i) the conditional mean fixation time for the

beneficial mutant in changing environment is well approximated by the corresponding

result in the constant environment; ii) but for the recessive deleterious mutant, the

fixation time is substantially di�erent from that in the static environment. Since the

diversity patterns are intimately related to the fixation times, the changing environment

strongly impacts the diversity patterns due to the deleterious sweeps.

In Chapter 3, we relax the constant population size assumption and the population is

modeled according to the infinite sites model. We study the joint e�ect of time-dependent

selection coe�cient and demography on the site frequency spectrum (SFS) and mean

heterozygosity. We derive simple analytical expressions for the equilibrium SFS in the

static environment, and the time-averaged SFS when the environment changes either

slowly or rapidly compared to the other time scales in the model. The main results are,

in the slowly changing environment, when selection strength is strong and the mutant
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experiences both positive and negative selection, i) the time-averaged SFS is significantly

di�erent than the equilibrium SFS in the static environment with time-averaged selection

coe�cient, and ii) the di�erence depends upon the amount of time spent by the population

in the deleterious part of the cycle, and the phase di�erence between the population size

and selection coe�cient.

In Chapter 4, we relax the random mating assumption in previous chapters, and

discuss the reduction in genetic diversity at the linked neutral site due to the fixation

of the mutant at the selected locus when inbreeding occurs. We find that the e�ect of

slowly changing environment on the mean conditional fixation time due to deleterious

and beneficial sweeps is strongest for randomly mating populations. Furthermore, we

explore the e�ect of changing environment on strongly deleterious mutations. Due to

strong purifying selection, deleterious mutations are eliminated and result in a reduction

in linked neutral genetic diversity (background selection). We therefore study the e�ect

of recurrent deleterious mutations on the linked neutral sites in an asexual population

which is described by a Wright Fisher model. We find that for the slowly changing

environment, i) when the population fluctuates between zero and negative selection

coe�cient, the time-averaged SFS and mean heterozygosity are always larger than that

in the static environment with the time-averaged selection coe�cient, and ii) when the

selection coe�cient changes but is always negative, the time-averaged SFS and mean

heterozygosity are larger (smaller) than that in the static environment with time-averaged

selection coe�cient when the population is in slow (fast) Muller’s ratchet regime.

Chapter 5 concludes the thesis with a discussion of main results and some interesting

open questions related to our study.
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Chapter 1

Introduction

1.1 Introduction

Natural populations are typically subject to two opposing forces: on the one hand, the

population has a tendency to march towards specific types that are advantageous in the

given environment, and on the other hand, the population should have genetic diversity

in order to provide the potential to cope with changing environments. A classic example

where genetic diversity prevented the extinction of the population is observed in peppered

moths during the industrial revolution [1].

The causes and maintenance of genetic variation can be studied in the framework

of population genetics which involves modeling the temporal and spatial changes in

the allele frequencies over a period of time. A central goal of population genetics is to

examine the genetic make up of the population under the e�ect of selection, mutation,

recombination, random genetic drift and other evolutionary factors. The development of

mathematical models in population genetics has significantly refined our understanding

of how evolution works at the genetic level, and provided insights into the mechanisms of

the evolution which are sometimes very far from the intuitive expectations. One such
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Fig. 1.1 Random genetic drift: Either the allele A spreads into the entire population or
it gets extinct eventually due to stochastic fluctuations in the allele frequencies.

counterintuitive result related to the time taken by the mutations to spread in the entire

population is discussed in Chapter 2.

1.1.1 What shapes genetic diversity?

While mutations and genetic recombination increase the genetic variation within a

population, natural selection and genetic drift decrease the genetic diversity, as explained

below.

Mutation is the cause of new variation that can arise into the population, and considered

as the ultimate source of genetic variation. Mutations can arise due to occasional random

errors in DNA replication or due to the physical damage to the DNA. The mutational

e�ects on the fitness of an individual can be harmful (deleterious mutations), advantageous

(beneficial mutations), or null(neutral mutations).

Genetic recombination is the mixing of the maternal and paternal chromosomes

during meiosis, and introduces genetic variation in the population.

Natural selection is the di�erence in the reproductive output among the individuals.

The individuals which are fit in a particular environment are most likely to survive and



1.1 Introduction 3

Fig. 1.2 Selective sweep: When the mutation spreads in the population and the
recombination rate is small, the linked neutral mutants also get fixed, thereby reducing
the genetic variation in the population.

produce more o�spring as compared to the individuals which are less fit. Thus natural

selection reduces the genetic diversity by favoring or disfavoring a specific allele.

Random genetic drift is the change in the allele frequencies due to random sampling

e�ects. The fact that the two equally fit individuals can have di�erent number of o�spring

makes the randomness an important component of the population genetics theory. The

consequence of random genetic drift is illustrated in Fig. 1.1. Consider a population

of constant size N with haploid individuals, and two segregating neutral alleles, a and

A. If there are no mutations, eventually either the neutral allele a spreads into the

entire population (fixation) and replaces the wild type allele A, or it is lost from the

population. Thus, random genetic drift results in the reduction of the genetic variation

initially present in the population.

1.1.2 Lewontin’s paradox

In the absence of selection, the new variation is introduced in a population through

mutations at rate µ, and the random genetic drift eliminates the new mutations at a

rate 1/N in a population with size N . Under the action of these two opposite forces, the
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Fig. 1.3 Maruyama-Kimura symmetry: The conditional mean fixation times for a mutant
with selection coe�cient ≠s (red) and s (green) are identical.

genetic diversity reaches an equilibrium and the pairwise neutral diversity at a locus is

given by fi ¥ 4Nµ [2]. But empirical studies of over a thousand species show that the

genetic variability is much smaller than predicted by the neutral model. This observation

is known as Lewontin’s paradox [3–6].

Several explanations have been proposed to explain the observed narrow range of

neutral diversity. Selective sweep [7–11] and/or the background selection [12–14] at

selected sites are considered important mechanisms which can potentially reduce the

variation at linked neutral sites.

Selective Sweeps: When a new mutation arises in a population, either selection or

genetic drift can increase its frequency. In an asexual or weakly recombining population,

if the new mutation goes to the fixation, the linked neutral alleles hitchhike along

with it, thereby reducing the neutral genetic diversity. Furthermore, in regions of low

recombination, the reduction in neutral genetic diversity depends on the conditional
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Fig. 1.4 Background selection: The genetic sequences carrying strongly deleterious
mutation are eliminated from the population, thereby reducing the neutral ( ) genetic
variation in the population.

mean fixation time which is defined as the mean fixation time divided by the probability

of fixation. The conditional mean fixation time for a codominant mutant is the same for

a beneficial mutation with selection coe�cient +s, and deleterious mutant with selection

coe�cient ≠s (Maruyama-Kimura symmetry) [15, 16] as depicted in Fig. 1.3. As a

consequence of this symmetry the variability at the linked neutral sites is the same due

to beneficial and deleterious sweeps.

Background selection: The genetic diversity at the linked neutral sites can also be

reduced due to selection against the recurrent deleterious mutations in the genomic

regions of low recombination as depicted in Fig. 1.4. This process is known as background

selection [12].

1.2 Models

In population genetics, the allele frequency dynamics are described by deterministic or

stochastic models. In deterministic models, the evolutionary dynamics are described

solely by mean allele frequencies and fluctuations in the allele frequencies are ignored,
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Fig. 1.5 Birth-Death Model: Birth-Death process is a continuous-time Markov process in
which an individual gives birth and another one dies. The birth (rb,i) and death rates
(rd,i) may depend on the population size and the number of individuals of type i.

whereas in the stochastic models, the fluctuations are considered which arise due to the

finite size of the population. In this thesis, we have used three stochastic models that

are described below.

1.2.1 Birth-Death process

A birth-death process is a class of continuous-time Markov process where the outcome at

the next step depends only upon the state at the previous step. In birth-death process

[17–19], the system makes a transition from state i to i + 1 (birth), or state i to i ≠ 1

(death) according to the birth rate rb,i, and the death rate rd,i, respectively, as depicted

in Fig. 1.5. Once the system enters the state with i individuals, it stays in this state

for a time t (sojourn time), which is distributed exponentially with rate rb,i + rd,i. The

probability, Pi(t) that the system is in state i at time t satisfies the following di�erential

equations:

ˆP0(t)
ˆt

= rd,1P1(t) (1.1)

ˆPi(t)
ˆt

= rb,i≠1Pi≠1(t) + rd,i+1Pi+1(t) ≠ (rb,i + rd,i) Pi,t (1.2)

ˆPN(t)
ˆt

= rb,N≠1PN≠1(t) ≠ rd,NPN,t(t) (1.3)
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where 1 Æ i Æ N ≠1. We are interested in the special class of birth-death processes where

once the system reaches the states with i = 0 or i = N , it is trapped in them forever

(absorbing states). We have used this model in Chapter 2 to address a fundamental

question in population genetics regarding the time taken by a newly arisen mutation to

fix into the population when the environment is time-dependent.

1.2.2 Infinite sites model

In the infinite sites model, the genetic sequence is considered to be very long so that the

new mutation arises at a new site along the stretch of the DNA which has not mutated

before [20–22]. The second assumption is that the recombination is free, allowing allele

frequencies to evolve independently at each site. In the most basic case of neutral

mutations, genetic diversity is maintained in the population through the combined action

of genetic drift and recurrent mutations: the genetic drift removes variation from the

population, whereas mutations introduce variation at new sites. This model is used

in Chapter 3 to calculate important measures of the genetic diversity such as the site

frequency spectrum (described in Sec. 4.2) and heterozygosity, which is the frequency of

individuals carrying di�erent alleles.

1.2.3 Wright-Fisher model

The Wright-Fisher model is a discrete time Markov chain that describes the evolution of

allele frequency under the influence of various evolutionary forces [23, 24]. In the neutral

Wright-Fisher model without mutations, as depicted in Fig. 1.6, the o�spring generation is

obtained from the parent generation by the following steps: i) in the o�spring generation,

each individual chooses a parent at random from the parent generation, and ii) the

previous step is repeated until the number of individuals in the o�spring generation

equals the number of individuals in the parent generation. If selection is present, the
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Fig. 1.6 Wright-Fisher Model: Consider a population with constant size N where the
individuals are of two types, ( ) and ( ). Each individual in o�spring generation picks a
parent with probability proportional to the parent’s fitness.

chance that o�spring picks a particular parent is proportional to the parent’s fitness.

Here the time is measured in the units of lifetime of an individual. To illustrate this,

consider a small population of 5 haploid individuals (see Fig. 1.6) which are of two

types, represented by filled circles and open circles. For simplicity, we consider a neutral

population where the fitness of both types of individuals is the same, and there are

no further mutations. The o�spring generation at time t is generated from the given

parent generation at time t ≠ 1 according to the steps described above. Each o�spring is

connected to its parent through an arrow, which indicates the parent from which the

o�spring inherited its genetic information. The probability that in generation t, m Æ 5

open circle type individuals are present is given by

P (m) =
A

5
m

B 33
5

4m 32
5

4(5≠m)
(1.4)

The m = 0 and m = 5 are the absorbing states; if the population becomes of one type

of individual, then it will remain so for the subsequent generations. If there are more

than two type of individuals, the above binomial sampling is replaced by the multinomial

sampling. The Wright-Fisher model is used in Chapter 4 to describe the change in the

neutral diversity due to background selection when selection coe�cient is time-dependent.
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1.3 Mathematical frameworks

In this thesis, besides performing numerical simulations of the models described in the

last section, we also obtain simple, analytical results using a di�usion theory, and a

semi-deterministic theory.

1.3.1 Di�usion theory

As mentioned in Sec. 1.1, evolutionary processes are not deterministic, in general. If the

change in the allele frequency is regarded as a continuous-time stochastic process, then

the probability density of allele frequency x at time t, given that it starts with x0 at time

t0 obeys the following equation [25]:

ˆ„(x, t|x0, t0)
ˆt

= ≠
ˆ

ˆx
(M(x)„(x, t|x0, t0)) + ˆ

2

ˆx2 (V (x)„(x, t|x0, t0)) (1.5)

where M(x) is the average change in the allele frequency per generation due to selection

and mutation and V (x) is the variance in the allele frequency change per generation due

to random genetic drift. The above equation is the Kolmogorov forward equation, and in

the physics literature, it is known as the forward Fokker-Planck equation and used to

study dynamics or non-trivial stationary states. When the population eventually reaches

an absorbing state, it is comparatively easier to calculate the quantities of interest using

the following Kolmogorov backward equation:

≠
ˆ„(x, t|x0, t0)

ˆt0
= M(x0, t0)

ˆ

ˆx0
„(x, t|x0, t0) + V (x0, t0)

ˆ
2

ˆx
2
0
„(x, t|x0, t0) (1.6)

The above equations (1.5), and (1.6) assume that the mutation rate (µ) and the selection

coe�cient (s) are small, and that the population size N is large, but the scaled selection

coe�cient (Ns), and scaled mutation rate (Nµ) are finite.
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Fig. 1.7 Dynamical phases: The wild type frequency (red) and beneficial mutant allele
frequency (green) initially evolve stochastically (phase A), followed by deterministic
evolution (phase B), and again evolve stochastically when they are close to absorption
(phase C).

1.3.2 Semi-deterministic theory

Unfortunately, it is not possible to solve the di�usion equations (1.5) and (1.6) in a

closed form in the presence of selection. However, for beneficial mutations, we can use a

semi-deterministic theory [26, 27]. Given that the mutant allele fixes in the population,

the dynamics of its frequency can be divided into three phases as shown in Fig. 1.7: i)

initially, the mutant allele frequency is very low so that it evolves stochastically (phase

A), ii) once the mutant allele frequency becomes substantial, it evolves deterministically

(phase B), and iii) when the mutant allele is close to fixation, so that the wild type

frequency is very low, it again evolves stochastically once again (phase C).

In phase A, as the mutant allele frequency is low, the forward Fokker Planck equation

can be simplified to the Feller di�erential equation [28] in the limit x æ 0. The Feller
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equation can be solved exactly for the allele frequency distribution, and conditioned

on fixation, the allele frequency distribution reaches a stationary state at long times.

In these conditional trajectories, the further evolution of the allele frequency is treated

deterministically (phase B). In phase C, the wild type frequency is low and a Feller

equation similar to that in phase A can be written for the wild type. The average allele

frequencies in the stochastic phases and the deterministic phase are matched at the

boundaries. These ideas are used in Chapter 2 to find the full fixation time distribution

of the mutant allele in time-dependent environment.

1.4 Quantities of Interest

In this thesis, we will primarily focus on fixation time and site frequency spectrum that

are described below in detail.

1.4.1 Conditional mean fixation time

We discussed in Sec. 1.3 that the reduction in the genetic diversity at the linked neutral

sites depends on the conditional mean fixation time which is the mean fixation time

calculated only from those allele trajectories that are destined to fix. The unconditional

mean fixation time for the mutant which starts with frequency x0 can be calculated

using (1.5) as T̄ =
s Œ

0 dt t„(x æ 1, t|x0, 0). The conditional mean fixation time is given

by T̄c = T̄

u(x0)
where u(x0) is the eventual fixation probability and given by setting

u(x) = „(x æ 1, t æ Œ|x0, t0) in (1.5). In Chapter 2, we calculate the conditional

mean fixation time for the more complicated scenario where the selection coe�cient is

time-dependent.
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Fig. 1.8 Site frequency spectrum: Consider the genomic data set of 6 individuals and 8
sites where 0 and 1, respectively, denote the wild type and mutant allele. The number
of observed polymorphic sites (Si) with allele frequency i are then represented by a
histogram which is generated by counting the number of mutant alleles present at each
site.

1.4.2 Site frequency spectrum

In order to make computational or analytical progress, we must reduce the big genomic

dataset using some summary statistics that can encapsulate the variation within the

population. One such powerful statistics is site frequency spectrum (Si), which is defined

as the number of sites at which exactly i individuals carry the mutation.

Figure 1.8a illustrates a simple example to measure the site frequency spectrum from

the genomic data set. Consider a population of 6 individuals where each individual

DNA sequence has 8 sites. The mutant alleles are represented by 1, and wild types are

represented by 0. At each site, we count the total number of mutant alleles present

among all individuals and represent it by vector (1, 2, 3, 1, 1, 2, 5, 1). The histogram of

this vector yields the site frequency spectrum as depicted in Fig. 1.8b.

The shape of the site frequency spectrum provides information about the evolutionary

forces under which a population may be evolving. In static environment, the site frequency

spectrum approaches a stationary distribution under the action of mutation, selection

and genetic drift [29], and is shown for neutral, deleterious and beneficial mutations
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Fig. 1.9 Site frequency spectrum: Under the infinite sites model, the equilibrium site
frequency spectrum decreases monotonically for neutral and deleterious mutations. For
beneficial mutations, the site frequency spectrum is U-shaped because the beneficial
mutation can rise to high frequency in the population due to their advantageous e�ect.

.

in Fig. 1.9. When the mutations are neutral, the equilibrium site frequency spectrum

decreases monotonically as ◊

x
, where ◊ = 2Nµ is the scaled mutation rate. But it

decreases exponentially fast for deleterious mutations, and it is non-monotonic in the

case of beneficial mutations. In Chapters 3 and 4, we find the site frequency spectrum

when the population size and selection coe�cient vary with time.

1.5 Overview of the thesis

In this thesis, we focus on how various measures of genetic diversity are shaped in

changing environments under the influence of various evolutionary forces described in
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section 1.1. We consider the change in environment i) due to time-varying selection

coe�cient, and ii) time-varying population size.

In chapter 2, we study the reduction in the linked neutral variation due to the fixation

of mutation at the selected site in the changing environment when population size is

constant but selection coe�cient varies periodically with time using a continuous-time

birth-death model. We find that the Maruyama-Kimura symmetry is not preserved in

the changing environment when selection coe�cient varies with time resulting in di�erent

neutral genetic diversity levels due to the beneficial and the deleterious sweep. Even

in the slowly changing environment, the conditional mean fixation time is found to

be significantly di�erent than that in the static environment for recessive deleterious

mutations while the fixation time for beneficial mutation is hardly a�ected.

In chapter 3, we consider the joint e�ect of changing population size and changing

selection coe�cient on the measures of genetic diversity using infinite sites model. Our

most interesting result is for on-average neutral mutations in slowly changing environment,

where the time-averaged site frequency spectrum is found to have a qualitative di�erent

shape as compared to equilibrium site frequency spectrum in the static environment, and

mimics the site frequency spectrum for the beneficial mutations in the static environment.

As in chapter 2, the deleterious mutations are found to be the reason for this qualitatively

di�erent behavior of the site frequency spectrum.

In chapter 4, we further explore the e�ect of changing selection on selective sweeps

in inbreeding population, and the changing environment e�ects are strongest for the

randomly mating population. We also study the e�ect of background selection on the

linked neutral variation in the changing environment using discrete time Wright-Fisher

model, and find our results to be significantly di�erent than that in the static environment.

In chapter 5, we conclude the thesis with the main results and discuss some interesting

open questions.
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Glossary

Term Description

Allele variant forms of a gene.

Allele frequency fraction of an allele.

Background selection process of elimination of deleterious mutations due to selection bias

that reduces genetic diversity

Dominance one allele has a stronger e�ect on an individual’s traits than another

allele for the same gene.

Fitness refers to the relative ability of an individual to survive and reproduce

Fixation when the mutant allele frequency becomes 1

Heterozygosity frequency of di�erent alleles at a particular locus.

Locus position on a chromosome where a particular gene is located.

Linkage tendency of closely positioned genes to be inherited together

Selective sweeps process by which a mutant sweeps through the population reducing

the genetic variation at the linked neutral sites

Site frequency spectrum (SFS) distribution of allele frequencies across the polymorphic sites.
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Chapter 2

Time to fixation in changing

environments

2.1 Introduction

In this Chapter, we investigate the reduction in genetic diversity at a linked neutral

locus caused by the fixation of beneficial or deleterious mutants (selective sweep) in

the periodically changing selective environment. Here, we focus on conditional fixation

time because the reduction in linked genetic diversity in low recombination regimes is

proportional to it.

In a finite, recombining population where a selected locus is linked to neutral loci, if

a new advantageous mutation fixes faster than the time it takes for neutral loci to get

dissociated via recombination, the neutral genetic diversity in the neighborhood of the

selected locus is reduced (beneficial sweep) [1, 2]; a similar pattern arises when a mildly

deleterious mutation reaches fixation due to genetic drift (deleterious sweep). Thus, the

time of fixation is intimately related to the level and patterns of neutral diversity [3].

It is important to note that the fixation time under discussion here is obtained from a

stochastic process that is conditioned on fixation; this is because at the end of selective
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sweep, one is observing only those trajectories of the new allele in which fixation has

occurred and not all the trajectories in which it had appeared [4, 5].

Theoretical models of sweeps and their genomic applications assume the selective

environment to be constant in time; however, environmental variation is ubiquitous in

nature, and may potentially a�ect the fixation time. For example, suppose a mutant

arises while selection is positive and increasing. In this case, the mean fixation time,

conditional on fixation, is expected to be smaller than when the selection pressure remains

the same as that when the mutant arose, and can result in a larger reduction in the

neutral diversity. One may then ask: how much does the fixation time in a changing

environment (especially, if it varies slowly) di�er from that in a static environment?

Furthermore, in static environments, the conditional mean fixation time has the

important property of being the same for a mutant with selection coe�cient s and

dominance coe�cient h and a mutant with respective parameters, ≠s and 1 ≠ h [6, 7],

as a result of which it may be di�cult to distinguish between the diversity patterns due

to positive and negative selection [8]. In a changing environment, on general grounds,

this symmetry can be expected to be absent, and one may delineate the parameter space

where the lack of this symmetry has a strong e�ect on variability patterns.

As a first step towards an understanding of selective sweeps in changing environments,

here we study the properties of the conditional fixation time of a mutant in a finite,

diploid population when the selection coe�cient is time-dependent. To the best of our

knowledge, except for a preliminary study [9], the fixation time in a changing environment

has not been investigated in detail. We consider the evolution in an environment that

changes periodically due to, for example, seasonal cycles [10], and study how the fixation

time is a�ected by the rate of environmental change, the time of appearance of the

mutant, the strength of selection and the dominance coe�cient. Throughout the Chapter,

we assume random mating and autosomal inheritance.
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Our results are obtained analytically using a di�usion theory for time-inhomogeneous

processes when selection of either sign is weak or moderate and a semi-deterministic

theory for strongly selected beneficial mutants, and are supplemented and checked

by numerical simulations. Our main finding is that in slowly changing environments,

the conditional mean fixation time of an initially beneficial mutant with intermediate

dominance is well-approximated by that in a static environment, and the same holds

true for an initially deleterious mutant under moderate selection. However, if an initially

deleterious mutant is recessive, its conditional mean fixation time is considerably longer

or shorter in a slowly changing environment than in a static environment. In other words,

the symmetry property for the conditional mean fixation time mentioned above [6, 7] does

not hold between recessive deleterious and dominant beneficial mutants. Since by virtue

of Haldane’s sieve, which operates in both static [11] and slowly varying environments

[12], most deleterious mutations are recessive and beneficial ones are dominant, the

results obtained here are relevant to an understanding of selective sweeps in changing

environments (see DISCUSSION for details).

2.2 Model

We consider the model in Devi and Jain [12] that deals with a randomly mating

population of size N . We assume that a single biallelic locus is under selection and the

three genotypes, aa, Aa and AA have the fitness 1 + s(t), 1 + hs(t) and 1, respectively.

Here 0 < h < 1 is the dominance parameter and s(t) = s̄ + ‡ sin(Êt + ◊), t Ø 0 is the

time-dependent selection coe�cient that varies periodically with cycling frequency Ê.

Without loss of generality, we assume that the oscillation amplitude ‡ > 0 but the

time-averaged selection coe�cient s̄ is arbitrary, and the initial phase 0 Æ ◊ < 2fi.

For large population size and small selection coe�cient, instead of genotypic frequen-

cies, we can work with the allelic frequencies [13]. We start with a single mutant allele in
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the population and ignore any further mutations. The evolution of the population under

selection and random genetic drift is modeled by a continuous time birth-death process

(Chapter 4, Karlin and Taylor [14]) in which the number i of alleles a increase or

decrease by one at rate rb(t) or rd(t), respectively. These rates are given by

rb(t) = 2Niwa(t)
iwa(t) + (2N ≠ i)wA(t) ◊

2N ≠ i

2N
(2.1)

rd(t) = 2N(2N ≠ i)wA(t)
iwa(t) + (2N ≠ i)wA(t) ◊

i

2N
(2.2)

where wa(t) = (1 + s(t))i + (1 + hs(t))(2N ≠ i) and wA(t) = (2N ≠ i) + (1 + hs(t))i are,

respectively, the marginal fitness of allele a and A. The allele numbers at time t are

updated at time t + ”t where the interval ”t is chosen from the probability distribution

p(”t) = r(t + ”t)e≠
s t+”t

t
dtÕr(tÕ) with r(t) = rb(t) + rd(t) being the total rate at which either

birth or death events occur.

For computational e�ciency, numerical simulations of the above model were carried

out assuming that the birth and death rates remain constant at r(t) during the interval ”t.

Then it follows that ”t obeys an exponential distribution with rate r(t); however, we have

checked that our results do not change if we relax this assumption. In our simulations,

106
≠ 108 independent trajectories of the mutant allele were generated but the data for

the fixation time were averaged over only those trajectories that lead to the fixation of

the mutant. The conditional mean fixation time was thus obtained by averaging over

about 103 and 104 fixation events for deleterious and beneficial mutants, respectively.

The standard error on the conditional mean fixation time were also calculated for some

representative parameters and found to be at most 2% of the mean value.
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Fig. 2.1 Top panel: Conditional mean fixation time T c of a dominant mutant (h = 0.7,N)
and a recessive mutant (h = 0.3,H) with selection coe�cient s(t) = ‡ sin(Êt + fi/4) and
≠s(t), respectively (see inset for s(0)) to show that the symmetry between the conditional
mean fixation time for dominant beneficial and recessive deleterious mutant in static
environments is not preserved in changing environments. The data are obtained by
numerical simulations (closed symbols) and numerically integrating the di�usion theory
equations (2.4) and (2.5) (open symbols) for small cycling frequencies in a population of
size N . The conditional mean fixation time in the static environment with selection |s(0)|
(solid line) and in the neutral environment, given by 2N , (dashed line) are obtained from
di�usion theory and shown for comparison. Middle and Bottom panel: Mutant allele
trajectories for (b) the initially deleterious mutant (h = 0.3) and cycling frequencies,
Ê = 5◊10≠4(black), 2◊10≠3(magenta), and 4◊10≠3(blue), and (c) the initially beneficial
mutant (h = 0.7) for Ê = 0(blue), 5 ◊ 10≠4(black), and 2 ◊ 10≠3(magenta). The allele
trajectories in each panel are almost same at short times as they were started with the
same random seed in the computer simulation. The smooth curves show the selection
coe�cient for the corresponding cycling frequency. In all the panels, ‡ = 0.01 and
N = 500 so that – = N |s(0)| ¥ 3.5.

2.3 Conditional fixation time in changing environ-

ments

In a constant environment, the expected fixation time of a new mutant that is destined to

fix decreases with the magnitude of its selection coe�cient s since a strongly deleterious

mutant fixes soon to avoid extinction, whereas a strongly beneficial mutant that has a

low chance of extinction grows fast [15–17]. In a population of size N , this result holds

only for a strongly selected mutant (N |s| ∫ 1) but for weak selection (N |s| π 1), the

conditional mean fixation time can vary nonmonotonically with s [18]. Interestingly, for

any selection strength, di�usion theory predicts that the conditional mean fixation time

of a single mutant has a remarkable property: it is the same for a beneficial mutant

with selective coe�cient s and dominance coe�cient h and a deleterious mutant with

respective parameters ≠s and 1 ≠ h [6, 7]. For a codominant mutant (h = 1/2), this

symmetry is even stronger in that it holds for any initial mutant number 0 < i < 2N (p.

170, Ewens [19]).
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Fig. 2.2 Conditional mean fixation time of an initially deleterious (H) and initially
beneficial (N) mutant with selection coe�cient s(t) = s + ‡ sin(Êt + 3fi/4) and ≠s(t),
respectively, obtained by numerical simulations in a population of size N . The conditional
fixation time in static environment with selection |s(0)| (solid) and in the time-averaged
environment with selection |s| (dashed) are also shown for comparison, and obtained
using di�usion theory. In both cases, s = 0.01, ‡ = 0.007 and N = 500. The qualitative
behavior of these curves can be understood using the arguments given in the text.
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In order to test whether the Maruyama-Kimura symmetry mentioned above also

holds in a periodically changing environment, we need to compare the fixation time of

mutants whose selection coe�cients are of opposite sign at all times. Figure 2.1a shows

the conditional mean fixation time T c of mutants with dominance parameter h and 1 ≠ h

and selection coe�cient s(t) and ≠s(t), respectively, when they are under moderate

selection and on-average neutral (for nonzero average selection coe�cient, see Fig. 2.2).

It is clear from these figures that the Maruyama-Kimura symmetry does not hold when

selection is time-dependent.

To understand the qualitative behavior of the conditional mean fixation time T c in

Fig. 2.1a, we first consider the fixation time of the initially deleterious mutant in a slowly

deteriorating environment. If this mutant segregates in the population for too long, it is

at a risk of extinction even if it manages to reach a high allele frequency (see mutant allele

trajectory for cycling frequency Ê = 5 ◊ 10≠4 in Fig. 2.1b). For this reason, in Fig. 2.1a,

below Ê ¥ fi/(4 ◊ 900) = 8 ◊ 10≠4, the fixation time is smaller than the corresponding

result in the static environment. The fixation time of the initially beneficial mutant in

a slowly improving environment is also smaller than that in the constant environment

but for a di�erent reason: here, as exemplified by the allele trajectories for Ê = 0 (static

environment) and 5 ◊ 10≠4 in Fig. 2.1c, the mutant in the latter case, by virtue of its

larger selection coe�cient, grows faster than the one in the static environment; therefore,

for frequencies below Ê ¥ fi/(2 ◊ 900) = 2 ◊ 10≠3, the fixation time decreases.

However, if the environment changes fast enough (Ê > 8◊10≠4 in Fig. 2.1a) so that an

initially deleterious mutant experiences a relatively better environment (|ds/dt| > 0) on

reaching a high frequency, fixation can occur at a later time than in a static environment

(see allele trajectory for Ê = 2 ◊ 10≠3 in Fig. 2.1b). For a further increase in cycling

frequency (Ê > 2 ◊ 10≠3 in Fig. 2.1a), the mutant can experience strong positive selection

at late times (refer allele trajectory for Ê = 4 ◊ 10≠3 in Fig. 2.1b), which, as explained
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above, results in a faster growth and a decrease in the fixation time. For the initially

beneficial mutant, as the cycling frequency increases (Ê > 8 ◊ 10≠4), the mutant allele

experiences decreasing selection and must fix soon to avoid extinction (see allele trajectory

for Êr in Fig. 2.1c). As the cycling frequency is further increased (Ê > 2 ◊ 10≠3), the

mutant population sees negative but improving selection at late time, and hence runs a

lower risk of extinction which results in an increase of the conditional mean fixation time.

At even higher frequencies, as selection changes sign and direction several times, the

fixation time during the fixation process, the fixation time for both mutants approaches

the value in the time-averaged environment.

We also note that in Fig. 2.1a, an extremum in the fixation time occurs at the

resonance frequency, Êr = 2 ◊ 10≠3 which is defined as the cycling frequency at which the

environment changes at a rate proportional to a frequency scale in the population when

the oscillation amplitude ‡ = 0. In Fig. 2.1a, the resonance frequency Êr is proportional

to the reciprocal of the fixation time 2N in the neutral environment [15]. Whether this

extremum in the fixation time is a maximum or a minimum is determined by the initial

phase ◊ (for a discussion of the resonance frequency for fixation probability in changing

environments, refer to Devi and Jain [12]).

2.4 Di�usion theory in slowly changing environments

To explore and better understand the qualitative observations discussed above, we now

develop a di�usion theory for time-dependent selection coe�cients. As explained in

Appendix A.1 the probability distribution �b(x, t|p, t0) that the mutant frequency is x

at time t, given that it was p at time t0 < t obeys the following backward Kolmogorov

equation [20]:

≠
ˆ�b(x, t|p, t0)

ˆt0
= s(t0)g(p)ˆ�b(x, t|p, t0)

ˆp
+ pq

2N

ˆ
2�b(x, t|p, t0)

ˆp2 (2.3)
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where s(t0) = s̄+‡ sin(Êt0 +◊) and g(p) = pq(p+h(1≠2p)). Using (2.3), it can be shown

that the unconditional mean fixation time T (p, t0) and the eventual fixation probability

u(p, t0), respectively, obey (A.1.4) and (A.1.5). But, unfortunately, these equations do

not appear to be solvable for the full range of parameters. For slow and fast changing

environments, simple expressions for the eventual fixation probability have been obtained

in Devi and Jain [12] using a perturbation theory. Below, using the same method, we

find the mean fixation time in slowly changing environments.

In environments that change at a rate Ê π N
≠1

, s(0) with arbitrary Ns(0), the

unconditional mean fixation time T ¥ T 0 + NÊT 1 and the eventual fixation probability,

u ¥ u0 + NÊu1, where the subscript 0 and 1, respectively, denote quantities in a static

and slowly changing environment, respectively. As described in Appendix A.2, u1 and

‚1 = T 1/(2N) obey the following ordinary di�erential equations,

pq

2 u1
ÕÕ + –g(p)u1

Õ = ≠
ˆu0
ˆ◊

(2.4)
pq

2 ‚1
ÕÕ + –g(p)‚1

Õ = ≠Nu1 ≠
ˆ‚0
ˆ◊

(2.5)

and the quantities u0 and ‚0 = T 0/(2N) in the static environment obey [15]

pq

2 u0
ÕÕ + –g(p)u0

Õ = 0 (2.6)
pq

2 ‚0
ÕÕ + –g(p)‚0

Õ = ≠Nu0 (2.7)

In the above equations, prime denotes the derivative with respect to p and – = Ns(0) is

the scaled selection strength. Equations (2.4)-(2.7) are subject to boundary conditions

u0(1, t0) = 1 and ui(0, t0) = ‚i(0, t0) = ‚i(1, t0) = 0, i = 0, 1. The conditional mean

fixation time T̄c scaled by the mean fixation time 2N in the neutral environment is then

given by
T c

2N
= T

2Nu
¥

‚0
u0

+ NÊ

3
‚1
u0

≠ ‚0,c
u1
u0

4
(2.8)
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where ‚0,c = ‚0/u0 (see Appendix A.2 for details).

Although a formal solution of (2.4)-(2.7) can be written down, it appears di�cult to

obtain a simple analytical expression for the fixation time using these results in (2.8).

However, (2.4)-(2.7) can be easily integrated numerically, and as attested by Fig. 2.1a,

these numerical results are in good agreement with those obtained from the simulations

at small cycling frequencies.

2.4.1 Weak selection

In a static environment, the conditional mean fixation time of a beneficial mutant under

weak selection (N |s| π 1) and with dominance coe�cient h > 1/2 increases with the

selection pressure and can be larger than the fixation time of a neutral mutant. This

may be understood by noting that although the mutant population is subject to strong

random fluctuations, the fixation probability of a beneficial mutant increases with the

level of dominance [21] and therefore a beneficial dominant mutant can counter the risk

of extinction at late times. By the Maruyama-Kimura symmetry, an analogous result is

obtained for a deleterious mutant with dominance coe�cient h < 1/2 [18].

To see this result quantitatively, for small – = Ns, we expand the fixation probability

u0 and the fixation time ‚0 in a power series about – = 0 up to order –
2, and substitute

them in (2.6) and (2.7). Collecting terms with the same power of – on both sides of

these equations, we get a set of second order ordinary di�erential equations which can be

solved straightforwardly, and we finally obtain

‚0,c ¥ 1 + –H

9 ≠
–

2

72 (2.9)

where H = h ≠ (1/2) is the deviation from codominance. The above result shows

that the conditional mean fixation time (relative to the neutral fixation time) is a non-

monotonic function of – with a maximum at –
ú = 4H and the value at the maximum,
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Fig. 2.3 Scaled conditional mean fixation time, ‚c = T c/2N for a co-dominant mutant
under weak selection in slowly changing, on-average neutral environment in which the
selection coe�cient s(t) = ‡ sin(Êt + ◊). The parameter – = N |s(0)| was varied with
selection amplitude ‡, keeping the population size N and the initial phase ◊ = fi/4
(for positive –) and 5fi/4 (for negative –) fixed. The inset shows the variation of
the conditional mean fixation time with dominance in static environment (solid) and
slowly varying environment for initial phase ◊ = fi/4 (dotted) and 5fi/4 (dashed), and
‡ = 0.000158. In both plots, N = 2 ◊ 103 and NÊ = 0.08, and the lines show the
analytical expressions (2.9) and (2.10) and the points show the numerical solution of
(2.4)-(2.7).

‚0,c(–ú) = 1 + (2H
2
/9). As H

2
< 1/4, the conditional mean fixation time of the selected

mutant can exceed that of the neutral mutant at most by ≥ 5%, as observed numerically

in Mafessoni and Lachmann [18].

In a slowly changing environment, unlike in the last section where – > 1, the

fixation time of an initially beneficial (deleterious) mutant in an improving (deteriorating)

environment increases (decreases) with selection strength when – π 1; this is due to a

slight increase (decrease) in the fixation probability from the neutral value (see Fig. 2.3).
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But with increasing selection strength, the fixation time in either case eventually decreases.

Proceeding in a similar fashion as for the static environment, we expand u1(p) and ‚1(p)

in a power series in – to quadratic orders, and plug them in (2.4) and (2.5). We then

find the change in the fixation time due to slowly changing environment to be

‚1,c ¥
–

54
Ë1

70 ≠ 6fi
2
2

H + 9
1
fi

2
≠ 9

2È
cot ◊

+ –
2

108
1
3fi

2
≠ 38

2
cot ◊ (2.10)

for ◊ ”= 0, fi. Using this result, the maximum in the total conditional mean fixation time

is found to occur at

–
ú

¥ 4H + 2
3NÊ cot ◊

Ë
(6fi

2
≠ 82)H + 9fi

2
≠ 81

È
(2.11)

Equations (2.9) and (2.10) and also Fig. 2.3 show that the conditional mean fixation

time continues to be a non-monotonic function of the selection coe�cient in changing

environments. But, for a codominant mutant, while ‚0,c is symmetric about – = 0 in

a constant environment (see (2.9)), due to the lack of Maruyama-Kimura symmetry in

the changing environment, the maximum in the fixation time occurs at a nonzero –
ú, as

predicted by (2.11). For small –, from (2.10), we have ‚1,c ¥ 0.2h– cot ◊ which shows

that the changing environment has the strongest e�ect when the mutant of either sign is

dominant; however, the magnitude of these e�ects is quite small, see inset of Fig. 2.3.

2.4.2 Moderate selection

We now consider the parameter regime where selection is moderately strong and the

deleterious mutant has a significant chance of fixation (1 π |–| . 20). As in the last

subsection, one would like to obtain simple analytical expressions for the time T c but,

unfortunately, it is generally not possible to develop consistent approximations when the
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Fig. 2.4 Conditional mean fixation time T̄c for moderate selection in static (•) and slowly
changing environment with selection coe�cient s(t) = ‡ sin(Êt + ◊) (diamonds) and
≠s(t) (squares) for di�erent dominance coe�cients and the initial phase ◊ = fi/4 (open
symbols) and 3fi/4 (closed symbols) in a population of size N . The other parameters
are N = 2 ◊ 103

, NÊ = 0.05 and ‡ = 0.01. The inset depicts the arrival time of the
mutant in all the cases. The data are obtained within the framework of di�usion theory
by numerically solving (2.4)-(2.7).

parameters are of moderate size. Below, we therefore discuss the results obtained by

numerically integrating (2.4)-(2.7).

To understand the results shown in Fig. 2.4, we first consider the fixation time of the

initially deleterious mutant in a deteriorating environment and the initially beneficial

mutant in an improving environment (both denoted by open symbols) for a given

dominance coe�cient. On account of larger scaled selection strength, the former has

a lower fixation probability than a deleterious mutant in the constant environment,

and therefore should fix sooner to avoid extinction; the initially beneficial mutant, on
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Fig. 2.5 Absolute value of the deviation between the conditional mean fixation times in
slowly changing environment with selection coe�cient s(t) = ‡ sin(Êt + ◊) and static
environment with selection coe�cient s(0) for beneficial (◊ = fi/4,⌥) and deleterious
mutants (◊ = 5fi/4,⌅) as a function of |–| = N |s(0)| for fixed dominance coe�cient
h = 1/2 and ‡ = 0.01 obtained within the framework of di�usion theory by numerically
solving (2.4)-(2.7).

the other hand, grows faster in an improving environment than in the corresponding

static environment. In either case, the fixation time is smaller than that in the static

environment. For similar reasons, the fixation time of the initially beneficial (deleterious)

mutant in a deteriorating (improving) environment is larger than that in the static

environment. Crucially, however, as Fig. 2.4 shows, the magnitude of the deviation

between the fixation time in the changing and the constant environment is larger for

the initially deleterious mutant than that for the initially beneficial mutant. The reason

underlying for this behavior is the strong asymmetry between the fixation probabilities

of beneficial and deleterious mutants. In a static environment, for moderate-to-strong

selection, a small change in the selection coe�cient a�ects the chance of fixation of a

beneficial mutant only by a small amount, but the fixation probability of a deleterious

mutant changes by an exponential factor [21]. This strong asymmetry holds even in
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slowly changing environments (refer Fig. 2 for moderate selection and equation (11) for

strong selection of Devi and Jain [12]). As a result, the fixation time of an initially

deleterious mutant is more strongly a�ected by a changing environment. Although a

strongly deleterious mutation has a negligible chance of fixation, it is possible to obtain

some analytical understanding of its fixation time. In Appendix A.6, we find that v1,c

which captures the e�ect of changing environment on the fixation time decays slowly, as

|–|
≠1 for a deleterious mutant, while as shown in the following section for a mutant under

strong positive selection, ‚1,c ≥ –
≠2 (see (2.20)). These results again emphasize that the

changing environment has a much more stronger impact on deleterious mutations (see

also Fig. 2.5).

To understand the dominance-dependence of the fixation time, we first recall that in

the static environment, the fixation probability increases (decreases) with the dominance

level for mutants under positive (negative) selection. This result known as the Haldane’s

sieve [11] operates in slowly changing environments also [12], and explains the increasing

(decreasing) fixation time of the initially beneficial (deleterious) mutant with increasing

h. For the initially deleterious mutant, since the recessive mutant (as compared to the

dominant mutant) spends more time in the varying environment, its trajectories are more

influenced by the changing selection coe�cient and the fixation time di�ers considerably

from that in the static environment.

2.5 Semi-deterministic theory for on-average benefi-

cial mutants in a large population

In the preceding discussion, we assumed the mutant to be under weak-to-moderate

selection as strongly deleterious mutations are unlikely to fix [21]. Here we study the

conditional mean fixation time of a mutant that is under strong positive selection
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Fig. 2.6 Top panel: Conditional mean fixation time T̄c for a mutant under strong positive
selection at all times with selection coe�cient s(t) = s̄ + ‡ sin(Êt + ◊) when the mutant is
beneficial at all times to show that, except for strongly recessive or dominant mutations,
it depends weakly on the dominance coe�cient h. The points are obtained by numerically
calculating (2.18) for dominance coe�cient h = 0.1(⌥), 0.3(ú), 0.5(⌅), 0.7(¶), 0.9(•) in a
population of size N . The other parameters are N = 105

, s = 0.01, ‡ = 0.007, ◊ = fi/4.
The bottom panel shows the comparison between (2.18) (points) and (2.20) (line) for
the deviation in the conditional mean fixation time in a slowly changing environment
where Ê π s(0) ¥ 0.014.
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(|–| ∫ 102) at all times. Since the frequency of a mutant will rise faster (slower) if its

selection coe�cient remains larger (smaller) than s(0) until it fixes, the fixation time

shown in Fig. 2.6a initially decreases, then increases and finally approaches the fixation

time in the time-averaged environment exhibiting oscillations with decreasing amplitude.

For nonzero s̄, the resonance frequency Êr is inversely proportional to the fixation time

when the selection coe�cient is |s̄| (which, for strong positive selection, is given by (2.19)

on replacing s(0) by s̄), and we verify that the data in Fig. 2.6a is consistent with this

assertion.

Below we study the dependence of T c on the dominance coe�cient and the rate

of environmental change within a semi-deterministic theory [22]. This approach has

been recently used to find the distribution of the conditional fixation time in a constant

environment [23]; here, we are interested in generalizing these results to time-dependent

environments.

Starting at a low initial frequency, if it escapes stochastic loss, the mutant population

evolves stochastically until a time t1 when it reaches a finite frequency (phase A). For

such allele trajectories, it is a good approximation to treat the further evolution of the

mutant population deterministically (phase B). However, at a time t2(> t1), when the

mutant frequency is close to one, as the wildtypes are in low number, they are subject to

stochastic fluctuations and go extinct at a time Tc (phase C). The stochastic phases A

and C can be described by a Feller process, as discussed below.

2.5.1 Time-inhomogeneous Feller process

In a time-dependent environment, the allele frequency distribution �f(p, t|p0, 0) which

describes the probability that the mutant frequency is p given that its initial frequency
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is p0 obeys the following forward Kolmogorov equation [20],

ˆ�f(p, t|p0, 0)
ˆt

= ≠s(t) ˆ

ˆp
[g(p)�f(p, t|p0, 0)] + ˆ

2

ˆp2 [pq�f(p, t|p0, 0)
2N

] (2.12)

where, as before, g(p) = pq(p + h(1 ≠ 2p)) and s(t) = s̄ + ‡ sin(Êt + ◊), t Ø 0. At short

times where the mutant frequency is low (p æ 0), the frequency distribution �f æ F ,

and (2.12) reduces to

ˆF(p, t|p0, 0)
ˆt

= ≠hs(t) ˆ

ˆp
[pF(p, t|p0, 0))] + 1

2N

ˆ
2

ˆp2 [pF(p, t|p0, 0))] (2.13)

where F(p, t|p0, 0) is the probability distribution of a Feller process [24, 25]. This process

describes the mutant frequency dynamics when the lineages can be assumed to grow

independently, and is a continuous analogue of classical branching process that is defined

in discrete time and deals with the number of individuals. The Feller di�usion equation

above can be easily generalized to include mutations and time-dependent population

size [26–29]. In the later discussion, we will use the Feller process to describe the

wildtype dynamics also at large times where the wildtype frequency is low. As detailed

in Appendix A.3, the exact solution of (2.13) is given by (A.3.4).

2.5.2 Fixation probability

Since the probability that the mutant dies out by time t is equal to 1 ≠
s Œ

0 dpF(p, t), its

eventual fixation probability, u = LimtæŒ
s Œ

0 dpF(p, t) (see also Appendix A.3); using

(A.3.4), we then obtain

u(p0, 0) = 1 ≠ exp
S

U≠
2Np0

s Œ
0 dte

≠h
s t

0 dtÕs(tÕ)

T

V (2.14)
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Equation (2.14) shows that u is nonzero provided the integral J =
s Œ

0 dte
≠h

s t

0 dtÕs(tÕ)

is finite. We verify that for constant selection and single initial mutant, (2.14) gives

u = 1 ≠ e
≠hs

¥ hs, h > 0 for a beneficial mutant [11].

Before proceeding further, we compare the result (2.14) with that obtained using a

birth-death process in earlier studies [30, 9, 12]. While u
(Feller) = 1≠e

≠1/J , the probability

u
(birth-death) = (1 + J)≠1 (refer to (4) of Devi and Jain [12]) for a single mutant. For

small selection coe�cients, as the fixation probability is expected to be small, J must be

large. Then, it follows that to leading order in 1/J , both the processes yield the fixation

probability to be 1/J .

2.5.3 Mean fixation time in slowly changing environments

As described in Appendix A.4, the distribution of the conditional fixation time for a

mutant with initial phase ◊ is given by

P (Tc; ◊) = h�A
h ≠ 1

d�C
dTc

⁄ Œ

0
dqq

≠ h
1≠h e

≠�Cq
e

≠�Aq
≠ h

1≠h (2.15)

where

�C = 2N

s Tc
0 dte

(1≠h)
s t

0 dtÕs(tÕ)
(2.16)

�A = 2Ne
1≠2h
1≠h ln( h

1≠h)
u(◊) (2.17)

and the eventual fixation probability u is given by (2.14) for a single mutant. Figure 2.7

shows a comparison between the expression (2.15) and the results obtained using numerical

simulations when the cycling frequency is below, above and close to the resonance

frequency Êr, and we find a good agreement in all the three cases. For constant selection,

we find that the generating function for the conditional fixation time obtained using

(2.15) reduces to (A.11) of Martin and Lambert [23].
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Fig. 2.7 Fixation time distribution, P (Tc) in a finite population of size N when
the mutant is beneficial at all times and has a changing selection coe�cient given
by s(t) = s̄ + ‡(Êt + ◊). The points and the curves are obtained, respectively,
from numerical simulations and the semi-deterministic result (2.15) for cycling fre-
quency below, above and close to the resonance frequency Êr, and given by Ê =
10≠4 (•, solid line), 0.1 (¶, dashed line) and 0.002 (2, dotted line), respectively. The other
parameters are N = 105

, ◊ = 0, s = 0.01, ‡ = 0.007, h = 0.5. Note that while the distri-
bution is bell-shaped away from the resonance frequency, it is bimodal close to Êr which
results in a large variance in the conditional fixation time (see inset). For the cycling
frequency Êr, the selection coe�cient completes a full cycle and the mutant typically
fixes when selection is increasing resulting in the bimodal character of the distribution.
For the same reason, the distribution at high frequency also has multiple modes but with
very small amplitude.

Figure 2.6a shows that, except for strongly recessive or dominant mutants, the

conditional mean fixation time T c =
s Œ

0 dTcTcP (Tc) depends weakly on dominance for

arbitrary rate of environmental change. Figure 2.6a also suggests that for small and

large cycling frequencies, the conditional mean fixation time T c(h, s) ¥ T c(1 ≠ h, s). To
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understand this result, using (2.15), we rewrite the time T c as

T c = h�A
h ≠ 1

⁄ Œ

0
dqe

≠�Aq
≠ h

1≠h
q

≠ h
1≠h

⁄ Œ

0
d�CTc(�C)e≠�Cq (2.18)

and analyze it for slowly changing environments using a perturbation theory. As explained

in Appendix A.5, for Ê π s(0), we get T c ¥ T 0,c + (Ê/s(0))T 1,c where,

T 0,c

2N
¥

ln(2–)
2h(1 ≠ h)– + “ + (2 ≠ 3h) ln h + (3h ≠ 1) ln(1 ≠ h)

2h(1 ≠ h)– (2.19)

T 1,c

2N
¥ ≠

‡ cos ◊(ln –)2

4h2(1 ≠ h)2s(0)–

◊

C

1 + 2(ln 2 ≠ h + “ + (2 ≠ 3h) ln h + (3h ≠ 1) ln(1 ≠ h))
ln –

D

(2.20)

In the above equations, “ ¥ 0.577 is the Euler constant and, as before, – = Ns(0). Note

that while the fixation time T c was expanded in powers of NÊ in the last section, here

the expansion parameter is Ê/s(0).

The semi-deterministic theory described in this section is not a systematic, controlled

approximation (unlike various perturbation theories) and it is not clear how good this

approximation is; however, here we find that (2.19) matches exactly with (4.2) of Ewing

et al. [31] (on replacing N in the above expression by 2N) which is obtained using a

di�usion theory, and shows that the conditional mean fixation time in a population with

dominance coe�cient h is approximately equal to that in a population with corresponding

parameter 1≠h. Note that this result holds for large – (& 103) while as shown in Fig. 2.4

for moderate selection, the dominant mutant takes longer than the recessive one to fix

(see also Teshima and Przeworski [16]).

Equation (2.20) captures the e�ect of a slowly changing environment on the conditional

mean fixation time and matches well with the data obtained by numerically integrating

(2.18) as shown in Fig. 2.6b. The leading term on the right-hand side (RHS) of (2.20) is

symmetric about h = 1/2 pointing to the approximate symmetry, T c(h, s) ¥ T c(1 ≠ h, s)
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Fig. 2.8 Distribution of the conditional fixation time Tc in a finite population of size
N when the mutant is beneficial at all times and has a changing selection coe�cient
given by s(t) = s̄ + ‡ sin(Êt + ◊). The data are obtained within a semi-deterministic
approximation and given by (2.15) when a mutant is beneficial at all times to show
that it does not have the h ¡ 1 ≠ h symmetry in fast changing environments. The
overlapping left curves for Ê = 10≠4 show the distribution for h = 0.7 (solid blue) and
0.3 (dashed red), and the right curves are for Ê = 0.002 where h = 0.7 (dashdotted blue)
and 0.3 (dotted red). The other parameters are N = 105

, ◊ = fi/4, s = 0.01, ‡ = 0.007.
Inset: Distribution of the fixation time of an initially beneficial mutant when the time-
averaged selection is zero and the environment changes slowly. The solid curve is
obtained from (2.15) and the points are generated from simulations. The parameters are
N = 105

, ‡ = 0.007, Ê = 10≠6
, h = 0.3, ◊ = fi/4.

discussed above. While the subleading correction does not have h ¡ 1 ≠ h symmetry but

its e�ect is small compared to the leading term for intermediate dominance. Figure 2.8

further suggests that the distribution of the fixation time has h ¡ 1 ≠ h approximate

symmetry for small cycling frequencies but not for frequencies close to the resonance

frequency, in accordance with the behavior of the mean fixation time shown in Fig. 2.6a.
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Equation (2.20) also shows that the mean fixation time decreases (increases) if the

beneficial allele arises when the selection gradient (in time) is positive (negative), as

intuitively expected; furthermore, both T 0,c and T 1,c decay with increasing selection.

Finally, we mention that at the beginning of this section, we had assumed that ‡ < s̄.

But in a slowly changing environment, the semi-deterministic approximation may be

expected to work for ‡ > s̄ and 0 < ◊ < fi; this is indeed confirmed in Fig. 2.8.

2.6 Discussion

In this Chapter, we have studied how a selective environment that is varying periodically

and predictably in time a�ects the fixation time of a mutant in a finite, diploid population.

E�ect of the environmental parameters: We find that if the environment changes

fast, the fixation time in the temporally varying environment di�ers considerably from

that in the static environment, as can be seen in Figs. 2.1a and 2.6a at intermediate

cycling frequencies. But for a meaningful comparison with the body of work on the

fixation time in constant environments [17], most of our analysis has focused on the e�ect

of slowly changing environments.

It should be noted that for time-dependent selection coe�cients, the stochastic process

is time-inhomogeneous and therefore the fixation time depends on the time at which

the mutant arose and whether the environment is improving or deteriorating [9, 12].

If an initially deleterious mutant on the way to fixation experiences a more favorable

environment, its chance of extinction reduces and such a mutant can be expected to have

a larger time of fixation than in an environment that remained unfavorable. On the other

hand, if an initially deleterious (or beneficial) mutant faces an even more unfavorable

environment, due to the higher risk of extinction at late times, the mutant is likely to

fix sooner. The dynamics of an initially beneficial mutant that remains beneficial until

fixation are, however, less a�ected by the random genetic drift - if selection increases,
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due to the higher growth rate, the mutant fixes sooner than in an environment that had

remained constant.

Selection regimes: In static environments, the qualitative behavior of the conditional

mean fixation time of a mutant depends on the sign and strength of the scaled selection

coe�cient, – = Ns. For a beneficial mutant, if selection is weak (0 < – π 1), the fixation

time increases with the dominance coe�cient h and selection strength –, and can even

exceed the fixation time of a neutral mutant [18]. But for moderately strong selection

(1 π – π 100), the conditional mean fixation time decreases with – and increases with

h [16, 17]. For stronger selection, it decreases with – and is approximately same for

two mutants with the same selection coe�cient but dominance coe�cients h and 1 ≠ h

[32, 31]. The patterns for deleterious mutations follow on realizing that the conditional

fixation time for a beneficial mutant with dominance coe�cient h and a deleterious

mutant with the same magnitude of selection but dominance level 1 ≠ h are equal [6, 7].

Here, we find that all the qualitative patterns described above continue to hold when

the environment changes slowly but there are quantitative di�erences. While a slowly

changing environment has only a mild e�ect on the conditional mean fixation time if the

mutant is beneficial, its impact is much stronger for deleterious mutants. This asymmetry

can be traced back to the fact that the fixation probability of a deleterious mutant is

much more sensitive to a change in selection than the fixation probability of a beneficial

mutant. Furthermore, for an initially deleterious mutant, as the fixation probability of

the recessives is higher than the dominants, the former can segregate in the population

for a longer time and are therefore exposed to the changing environment for a longer

duration resulting in a fixation time which is substantially di�erent from that in the

constant environment.

Implications: In a constant environment, due to the Maruyama-Kimura symmetry

for the conditional mean fixation time [6, 7], similar diversity patterns for beneficial
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and deleterious sweeps may be generated [8]. But in a changing environment, due to

the lack of the Maruyama-Kimura symmetry, a beneficial mutant in a slowly improving

(deteriorating) environment can generate a diversity pattern di�erent from that due to

the fixation of a deleterious mutant under the same selection pressure but in a slowly

deteriorating (improving) environment.

To ascertain this e�ect, we have conducted a preliminary study of the e�ect of hard

sweep on linked neutral variation in a two-locus model of a finite, diploid population in

which the first locus is modeled as in the Model section but the second biallelic locus

is neutral. Recombination is assumed to occur with a probability c π 1 but recurrent

mutations are not allowed. As a result of genetic hitchhiking, the heterozygosity Hfix at

the neutral locus following the fixation event (relative to the heterozygosity H0 before

the new mutant appeared) is expected to decrease [1]. Figure 2.9 shows the relative

heterozygosity as a function of the cycling frequency for the parameters in Fig. 2.1a, and

we find that its qualitative behavior is the same as that of the conditional mean fixation

time [3]. The inset of Fig. 2.9 emphasizes that the slowly changing selective environment

only mildly influences the heterozygosity of an initially beneficial dominant mutant but

it has a strong e�ect on the heterozygosity of an initially deleterious recessive mutant.

A more detailed study of the e�ect of environmental variation on various measures of

genetic diversity will be taken up in a future work.

As already mentioned, although the qualitative patterns for the fixation time in a

static environment are robust with respect to a slow change in the environment, there

are quantitative di�erences. As a consequence, the e�ect of varying environment may be

interpreted as an e�ective selection coe�cient or dominance parameter. For example, in

Fig. 2.4, the fixation time in slowly changing environment, and for dominance coe�cient

h = 1/2 and selection strength – = ≠14.14 (◊ = 5fi/4) is about 1691. But if one assumes
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Fig. 2.9 Reduction in the mean heterozygosity at the linked neutral locus due to the
fixation of dominant (h = 0.7,N) and recessive mutant (h = 0.3,H) with selection
coe�cient s(t) = ‡ sin (Êt + fi/4) and ≠s(t), respectively, to show that the heterozygosity
following the fixation of deleterious and beneficial mutant is significantly di�erent in the
changing environment, unlike in the static environment where they are identical. The
reduction in the mean heterozygosity in the static environment with selection (solid line)
and in the neutral environment (dashed line) are also shown for comparison. All the data
are obtained by numerical simulations. The inset shows the heterozygosity reduction due
to the fixation of dominant mutant (h = 0.9,N) and recessive mutant (h = 0.1,H) in the
slowly changing environment with selection coe�cient s(t) = ‡ sin (Êt + 3fi/4) and -s(t),
respectively. The other parameters for both figures are ‡ = 0.01, c = s(0)/10, Q0 = 0,
R0 = 0.2002 and p0 = 1/2N , where c is the recombination probability, Q0 and R0 are,
respectively, initial relative frequencies of a neutral allele in a chromosome with a and A

allele on the first locus, and the population size N = 500 (main) and 1000 (inset).

a constant environment, the same fixation time is obtained for – = ≠15.27 which implies

an 8% increase in the selection coe�cient.

We therefore suggest to include the e�ect of changing environment in theoretical

models of selective sweeps as this can potentially allow one to distinguish between the
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sign of selection, detect deleterious sweeps and correctly estimate the model parameters.

Generalizing the above results to include the e�ect of inbreeding and sex-linked inheritance

[33, 34] could also help to assess the importance of changing environment in evolutionary

dynamics.
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Chapter 3

Joint e�ect of changing selection and

demography on the site frequency

spectrum

3.1 Introduction

In the previous chapter, we assumed that population size was constant; in this chapter,

we relax that assumption. Here, we will investigate the site frequency spectrum in a

randomly mating diploid population where both population size and selection coe�cient

change periodically over time.

Despite several decades of intense research, the factors that determine the genetic

variation in a population are not completely understood [1, 2]. An important statistic for

measuring the within-population genetic diversity is the site frequency spectrum (SFS)

which gives the (unnormalized) distribution of allele frequency across polymorphic loci

in the genome. It is known that in a neutral population of constant size, the equilibrium

SFS decreases with the allele frequency of the derived allele whereas it is a U-shaped

function when the mutant allele is under constant, positive selection [3, 4]. However, these
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classical results can change due to complex evolutionary processes such as hitchhiking of

neutral alleles with a beneficial mutant [5, 6], and in populations with high mutation

rate [7, 8], fat-tailed o�spring distribution [9], seed bank [10], etc..

The above discussion assumes that the environment remains constant over evolutionary

time scales. But in a changing environment, in general, there is no stationary state and

the nonequilibrium SFS can di�er significantly from the equilibrium SFS in a constant

environment. For example, in an expanding neutral population, there is an excess of rare

variants as compared to when the population size remains constant at its initial size,

while a population bottleneck leads to a deficit in the low-frequency alleles due to the

stronger e�ect of random genetic drift [11]. The SFS is also related to other measures of

genetic diversity such as mean heterozygosity and mean number of segregating sites which

have been extensively studied when the population size is variable and selection is absent

[12–14], and in recent years, there has been some progress in understanding the e�ect of

demography on SFS in a population under constant selection [15–18]. However, the impact

of temporally changing selection on the nonequilibrium SFS is little studied [19, 20]) and

to our knowledge, the joint e�ect of time-dependent selection and demography has not

been investigated so far.

Furthermore, most studies on the nonequilibrium SFS are concerned with historical

demography such as population expansion in the human population at the end of the last

ice age [17] or population bottleneck in the non-African population of D. melanogaster

around 6000 years ago [21]. However, variation in population size occurs over short

time scales also, for which di�erent demographic models are needed. An example is

the oscillatory change in the prey and predator population size over the course of a few

generations (see, for e.g., Chapter 3 of Murray [22]).

To better understand the SFS in populations of varying size and in changing selective

environments, here we consider a randomly mating, diploid population in which either
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population size and/or the selection coe�cient change with time in a periodic fashion.

We will explore the e�ect of selection strength, frequency of environmental variation, and

genetic dominance on the time-dependent SFS, and focus on how the time-averaged SFS

deviates from the equilibrium SFS in a constant environment.

3.2 Model

We consider a randomly mating, diploid population of size N(t) at time t in which an

individual’s genome is described by an infinite-sites model [23] that makes the following

key assumptions: first, a large number of sites are available for mutation which occurs

with a small rate µ per site so that every mutation occurs (irreversibly) at a new site,

and second, recombination is free so that at each site, allele frequency dynamics occur

independently.

Furthermore, at each site, the homozygotes AA and aa have fitness 1 and 1 + s(t),

respectively, and the fitness of the heterozygote aA is 1 + hs(t) where the dominance

coe�cient 0 < h < 1. The frequency x of the mutant allele a increases or decreases at

rate rb or rd respectively, which are given by [24, 25]

rb(t) = 2N(t)x(1 ≠ x)wa(t)
w̄(t) (3.1)

rd(t) = 2N(t)x(1 ≠ x)wA(t)
w̄(t) (3.2)

where wa(t) = (1 + s(t))x + (1 + hs(t))(1 ≠ x) and wA(t) = (1 ≠ x) + (1 + hs(t))x are the

marginal fitness of allele a and A, respectively, and w̄(t) = wa(t)x + wA(t)(1 ≠ x) is the

average fitness. The population size and the selection coe�cient are assumed to vary in

time in a periodic fashion. We therefore write the selection coe�cient as

s(t) = s̄ + ‡ sin(Êt) (3.3)
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where the average s̄ is arbitrary but the amplitude ‡ Ø 0. The population size varies

deterministically as

N(t) = N̄(1 + ‹ sin(�t)) (3.4)

where 0 Æ ‹ < 1 to ensure that the total population size remains strictly positive at

all times. In general, the variation in population size and selection can have a phase

di�erence also. But, unless specified otherwise, we will assume that these two parameters

vary in phase.

3.3 Site frequency spectrum: di�usion theory

To obtain an analytical understanding of the SFS and other measures of genetic diversity

such as the mean heterozygosity, we work in the framework of the di�usion theory. It

has been shown that in a large population, the average (unnormalized) density f(x, t) of

polymorphic sites with mutant allele frequency x at time t obeys the following partial

di�erential equation: ˆf(x,t)
ˆt = ≠

ˆ
ˆx [a(x, t)f(x, t)] + ˆ2

ˆx2 [b(x, t)f(x, t)] where a(x, t) and

b(x, t) are, respectively, the mean and variance of the transition probability [26].

For the model detailed in Section 3.2, these coe�cients have been derived in our

earlier work [25], from which we find that

ˆf(x, t)
ˆt

= ≠s(t) ˆ

ˆx
[x(1 ≠ x)(x + h(1 ≠ 2x))f(x, t)]

+ ˆ
2

ˆx2

C
x(1 ≠ x)
2N(t) f(x, t)

D

. (3.5)

The above equation is subject to the initial condition f(x, 0), and boundary conditions,

Limxæ0xf(x, t) = 2N(t)µ and f(1, t) finite [26]. The first and second term on the

RHS of (3.5) describe the e�ect of selection and random genetic drift, respectively, and

the boundary condition at low allele frequency models the balance between the loss of

polymorphism due to the absorption of the mutant allele by genetic drift alone and the
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gain by new mutations (for other modeling approaches, see éivkoviÊ et al. [18], Gravel

[27]).

However, for both numerical and analytical purposes, it is easier to work with the

density g(x, t) = x(1 ≠ x)f(x, t) which obeys [26],

ˆg(x, t)
ˆt

= ≠s(t)x(1 ≠ x) ˆ

ˆx
[(x + h(1 ≠ 2x))g(x, t)]

+ x(1 ≠ x)
2N(t)

ˆ
2
g(x, t)
ˆx2 (3.6)

with initial condition g(x, 0) = x(1 ≠ x)f(x, 0), and boundary conditions

g(0, t) = ◊fl(t), g(1, t) = 0 (3.7)

where

◊ © 2N̄µ , fl(t) ©
N(t)
N̄

(3.8)

A standard approach to solve partial di�erential equations such as (3.6) is to carry out

an eigenfunction expansion of it’s solution; unfortunately, the required eigenfunctions are

not known in a closed form when selection is present [28]. However, as detailed in the

following section, it is possible to make analytical progress even when the mutant allele

is under selection in the limiting cases where the environment is changing either slowly

or rapidly [29].

In the following, we will also study the unfolded sample frequency spectrum defined as

the expected number of sites at which exactly 1 Æ i Æ n ≠ 1 individuals in a population

sample of size n π N carry a mutation which is given by [30]

fn,i(t) =
A

n

i

B ⁄ 1

0
dxx

i(1 ≠ x)n≠i
f(x, t) . (3.9)
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The sample SFS is also related to the mean heterozygosity,

H(t) © f2,1(t) = 2
⁄ 1

0
dxx(1 ≠ x)f(x, t) . (3.10)

We will mainly focus on the time-averaged statistics obtained by averaging the time-

dependent quantity Q(t) over the slower cycle, that is,

Q̄ = min(Ê, �)
2fi

⁄ 2fi
min(Ê,�)

0
dtQ(t) (3.11)

and compare the results with those in the constant environment to ascertain the e�ect of

the changing environment.

3.4 Results

3.4.1 Static environment

We first consider the equilibrium SFS which is obtained at large times when the selection

coe�cient and population size are time-independent. Although an exact expression for it

has been known for a long time, simple analytical approximations have not been obtained

and therefore, below we proceed to derive them.

In a constant environment, polymorphic sites are lost due to absorption of the mutant

allele and created by new mutations thus resulting in a steady state. Therefore, for

s(t) = s̄, N(t) = N̄ , on setting the LHS of (3.5) equal to zero, the stationary state SFS is

found to be [3, 31, 4, 23, 16]

f
ú(x) = ◊e

N̄ s̄[(1≠2h)x2+2hx]

x(1 ≠ x)

s 1
x dye

≠N̄ s̄[(1≠2h)y2+2hy]
s 1

0 dye≠N̄ s̄[(1≠2h)y2+2hy] . (3.12)
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Equation 3.12 can also be derived by noting that as ◊ mutations occur per unit time per

site in the population, f
ú(x)dx/◊ is the mean sojourn time of the mutant allele between

frequency x and x + dx before absorption, when the mutant allele is initially present in a

single copy [32].

Weak selection

A power series expansion of (3.12) in scaled selection strength (N̄ s̄) yields

f
ú(x) ¥

◊

x
≠

◊

3N̄ s̄[1 ≠ 2x + h(4x ≠ 5)], N̄ |s̄| π 1 (3.13)

which, as for a neutral population, decreases monotonically with the allele frequency.

This is because at most sites, single mutant will quickly get lost due to genetic drift, and

therefore the average number of loci with very low mutant frequency would be high, and

only a small number of loci will have intermediate to high allele frequency.

Strong selection

As explained in Appendix B.1, when selection is strong, the integrals in (3.12) can be

estimated using (B.1.2) for h ”= 0, 1, and we obtain

f
ú(x) ¥

Y
____]

____[

◊

x(1 ≠ x)
h

h + x(1 ≠ 2h) , N̄ s̄ ∫ 1 (3.14a)

◊e
≠N̄ |s̄|(1≠¸(x))

x(1 ≠ x) , N̄ s̄ π ≠1 (3.14b)

where ¸(x) = (1 ≠ x)[(1 ≠ x) + 2x(1 ≠ h)] (for completely dominant and recessive mutant

allele, see Appendix B.1). Figures 3.1a and 3.1b show that when selection is strong,

except for high allele frequencies, the exact equilibrium SFS given by (3.12) is in good

agreement with the approximate expressions (3.14a) and (3.14b).
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Fig. 3.1 Static environment: The top panel shows the site frequency spectrum of a
large population for selection strength (a) N̄ s̄ = 30, and (b) N̄ s̄ = ≠10. The solid
lines show the exact expression (3.12), while the dashed lines show the approximate
expression (3.14a) and (3.14b) for beneficial and deleterious mutations, respectively. The
bottom panel shows the mean heterozygosity calculated numerically using (3.12) for (c)
a positively selected mutant which approaches the asymptotic value (3.16b) depicted by
dashed lines, and (d) a negatively selected mutant that decreases towards zero as 1/N̄ |s|

(black curve) for all h in accordance with (3.16c). In all the plots, the scaled mutation
rate ◊ = 1.

Equations (3.14a) and (3.14b) show that for x π (N̄ |s̄|)≠1, f
ú(x) ¥ ◊/x so that at

low allele frequencies, the SFS for strong selection behaves the same way as that for a

neutral population, and the e�ect of selection becomes apparent only at intermediate and

high allele frequencies. For negative selection, the SFS decreases monotonically towards

zero with the mutant allele frequency for the same reason as for the neutral population.

But for positive selection, it has the characteristic U-shape reflecting the fact that the

mean sojourn time is long at high allele frequencies for beneficial mutations [32].
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From (3.14a) and (3.14b), we also find that for a given allele frequency, the SFS

increases with the dominance coe�cient for beneficial mutations and decreases for delete-

rious ones; this is due to the longer sojourn time to fixation for dominant, advantageous

mutation and the fact that the deleterious recessives are more likely than the dominant

alleles to reach finite frequencies [16].

Sample SFS

Using the approximate results (3.13), (3.14a) and (3.14b) for a large population in (3.9),

we find the sample SFS to be (see Appendix B.1 for details)

f
ú
n,i ¥

Y
__________]

__________[

◊

i
+ ◊[h(5n ≠ 4i + 6) + 2i ≠ n]N̄ s̄

3(n + 1)(n + 2) , ≠1 π N̄ s̄ π 1 (3.15a)

n◊

i(n ≠ i)2F 1

3
1, i; n; 2 ≠

1
h

4
, N̄ s̄ ∫ 1 (3.15b)

A
n

i

B
◊�(i)

(2N̄ |s̄|h)i
, N̄ s̄ π ≠1 (3.15c)

where �(i) is the gamma function and 2F 1(a, b; c; z) is the Gauss hypergeometric function

[33]. For i π n ≠ 1, the contribution to the integral on the RHS of (3.9) comes from

small x, while for large i, variants at high frequency matter; as a result, the sample SFS

behaves qualitatively in the same manner as the SFS for a large population discussed

above.

The neutral mean heterozygosity in a constant size population is given by ◊. From

(3.15a)-(3.15c), we find that when the mutant allele is under selection, the mean het-

erozygosity can be approximated by

H
ú

¥

Y
_________]

_________[

◊ + ◊h

3 N̄ s̄ , ≠1 π N̄ s̄ π 1 (3.16a)

2h◊

1 ≠ 2h
ln

A
1 ≠ h

h

B

, N̄ s̄ ∫ 1 (3.16b)

◊

hN̄ |s̄|
, N̄ s̄ π ≠1 . (3.16c)
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As positive (negative) selection decreases (increases) the chance of loss of the new mutant

allele, one expects the heterozygosity to be enhanced (reduced) with increasing magnitude

of selection for beneficial (deleterious) mutants; indeed, (3.16a) and (3.16c) are consistent

with this expectation. But, for strong positive selection, as Figure 3.1c shows, the mean

heterozygosity does not necessarily increase with selection. In fact, on equating the RHS

of (3.16b) to ◊, we find that the mean heterozygosity saturates to a value smaller than

that for the neutral allele for h <
1

1≠2W≠1

1
≠ 1

2Ô
e

2 ¥ 0.221589 where W≠1(z) is the lower

branch of the Lambert W function [34]. We also note that with increasing magnitude of

selection, the mean heterozygosity approaches the asymptotic value, viz., (3.16b) for a

beneficial mutant and zero for a deleterious one, algebraically slowly (see (B.1.6a) and

(B.1.6b), and Fig. 3.1d).

For positively selected, codominant mutant, on taking the limit h æ 1/2 in (3.16b),

we find that the mean heterozygosity is equal to 2◊. Equation (3.16b) also shows that

H
ú for a dominant (recessive) allele is larger (smaller) than that for the co-dominant

allele; the mean heterozygosity increases with the dominance level since the mutant’s

chance of escaping stochastic loss is enhanced with increasing h [35], and hence it can

contribute to the population diversity before eventually fixing. Similarly, one can argue

that for negative selection, H
ú will decrease with increasing h (see Figs. 3.1c and 3.1d).

In the following discussion, we will denote the equilibrium SFS (and, similarly,

heterozygosity) for positive and negative selection by f
ú
p (x) and f

ú
n(x), respectively.

3.4.2 Slowly changing environment

We now turn to the properties of the SFS in a slowly changing environment. If the

frequency with which the selective environment and population size change are much

smaller than the inverse average population size and average selection coe�cient (that is,

Ê, � π N̄
≠1

, s̄), one can obtain the time-dependent SFS within an adiabatic approxima-
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tion [29]. For this purpose, we first rewrite (3.5) as

N̄Ê
ˆf(x, Â)

ˆÂ
= ≠N̄s(Â) ˆ

ˆx
[x(1 ≠ x)(x + h(1 ≠ 2x))f(x, Â)]

+ 1
2fl(�)

ˆ
2

ˆx2 [x(1 ≠ x)f(x, Â)] (3.17)

where Â = Êt, � = �t and the ratio 0 < �/Ê < Œ. For arbitrary scaled selection, on

expanding f(x, Â) as a power series in N̄Ê and substituting it in the above equation, we

find that to leading order in N̄Ê, the LHS of (3.17) is zero. It is easy to verify that this

result also holds when either the population size or the selection coe�cient varies with

time. Thus in a slowly changing environment, the mean density f(x, t) of sites with allele

frequency 0 < x < 1 obeys the steady state equation at instantaneous N(t) and s(t),

and one can therefore obtain f(x, t) by simply letting N̄ æ N(t), s̄ æ s(t), ◊ æ ◊fl(t) in

(3.12) and arrive at

f(x, t)
◊fl(t) ¥

e
N(t)s(t)[(1≠2h)x2+2hx]

x(1 ≠ x)

s 1
x dye

≠N(t)s(t)[(1≠2h)y2+2hy]
s 1

0 dye≠N(t)s(t)[(1≠2h)y2+2hy] . (3.18)

Figure 3.2a shows that (3.18) is in good agreement with the results obtained by

numerically integrating (3.5) for small cycling frequencies. We find that for strong

positive selection, f(x, t) is nonzero and increases (decreases) with increasing (decreasing)

selection strength but it is close to zero when the selection strength is small or negative;

this behavior may be understood by appealing to the results (3.14a) and (3.14b) in static

environments. It is evident from (3.18) that when either N or s is time-dependent, f(x, t)

is a periodic function in time with the period of the varying parameter; if both N and s

vary such that Ê = (n1/n2)� with n1, n2 being integers and n1 < n2 (say), the period of

f(x, t) is given by 2fin1/�.
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Fig. 3.2 Changing environment and on-average neutral selection: The time-dependent
site frequency spectrum (solid line) in a large population when the population size and
selection coe�cient (dashed line) change periodically in time with equal cycling frequency
obtained by numerically solving (3.5) for (a) N̄Ê = 0.01 and (b) N̄Ê = 500. The result
(3.18) obtained within adiabatic approximation (dotted line) is also shown for comparison
in the slowly changing environment. The other parameters are x = 0.2, ‹ = 0.3, h = 1/2,
◊ = 1 and N̄‡ = 100.

No selection

In the absence of selection, (3.18) gives f(x, t) = ◊fl(t)/x from which it immediately

follows that the time-averaged SFS, f̄(x) = �
2fi

s 2fi/�
0 dt

Õ
f(x, t

Õ) is simply ◊/x and the

time-averaged sample SFS is equal to ◊/i. In Appendix B.3, these results are obtained

using an eigenfunction expansion of f(x, t) which furthermore shows that the correction

to the adiabatic approximation is of order (N̄�)2, see (B.3.17). Figure 3.3 shows the

sample SFS for various �’s, and we find that it is well approximated by ◊/i when the

population size changes slowly.

Weak selection

When both population size and selection vary with the same frequency, using (3.11) and

(3.13), we find that the time-averaged SFS, f̄(x) di�ers from f
ú(x) by an amount

”f̄ = f̄(x) ≠ f
ú(x) = ≠

◊

3N̄ s̄

A
‹

2

2 + ‹‡

s̄

B

[1 ≠ 2x + h(4x ≠ 5)] . (3.19)
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Fig. 3.3 Changing population size and no selection: The time-averaged sample site
frequency spectrum when population size changes with time for sample size n = 20. The
bars are obtained by numerically solving (3.5) and (3.9) for di�erent cycling frequencies
while the crosses and triangles show (B.3.17) and (B.3.24) for small and large cycling
frequencies, respectively.

Similarly, the change in the time-averaged mean heterozygosity ”H̄ = H̄ ≠ H
ú due to

slowly changing environment is given by

”H̄ = ◊N̄ s̄h

A
‹

2

2 + ‹‡

s̄

B

. (3.20)

The factor in the bracket on the RHS of the above equation captures the joint e�ect of

the change in the selection and population size, and shows that (to leading order in N̄ s̄),

changing selection but constant population size results in the same heterozygosity as in

the static environment and therefore the mean heterozygosity is a�ected mainly due to
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demography; however, as expected, the change ”H̄ is small for weak selection, as shown

in Fig. 3.4a and Fig. 3.5a.

The correction to the adiabatic approximation is obtained in Appendix B.4 when

selection is weak and constant but population size varies, and we find that the time-

averaged mean heterozygosity is given by (see (B.4.8) and (B.4.11)),

H̄ ¥ ◊ + ◊N̄ s̄h

3 + ◊N̄ s̄h‹
2

6 ≠
◊‹

2
N̄

2�2

2 . (3.21)

The first three terms on the RHS of the above equation match with the result from

adiabatic theory, and the last term can be ignored for N̄� π

Ô

N̄ s̄.

Strong, on-average nonzero selection

On replacing the selection coe�cient and population size by the corresponding time-

dependent quantities in (3.14a) and (3.14b), we obtain the time-dependent SFS for

on-average non-neutral mutants under strong selection to be

f(x, t) ¥

Y
____]

____[

◊fl(t)
x(1 ≠ x)

h

h + x(1 ≠ 2h) , s(t) > 0 (3.22a)

◊fl(t)
x(1 ≠ x)e

≠N(t)|s(t)|(1≠¸(x)) , s(t) < 0 . (3.22b)

If both selection and population size change with the same frequency and selection is

strong enough so that the exponentially small contribution in selection strength from the

negative cycle of selection can be ignored, then the time-averaged SFS is given by

f̄(x) ¥
2N̂eµ

x(1 ≠ x)
h

h + x(1 ≠ 2h) (3.23)

where

N̂e = N̄

⁄ 2fi/Ê

0
dt

Õ fl(tÕ)�(s(tÕ))
2fi/Ê

(3.24)



3.4 Results 65

N, s

▼ ▼ ▼
▼

▼
▼
▼

▼

▼

▼
▼
▼

▼ ▼▼▼▼▼▼

▼ N(t), s

◼ ◼ ◼ ◼
◼
◼
◼

◼

◼

◼
◼
◼

◼
◼◼◼◼

◼◼

◼ N, s(t)

▲ ▲
▲

▲

▲
▲
▲

▲

▲

▲
▲
▲

▲ ▲▲▲▲
▲▲

▲ N(t), s(t),
ω

Ω
=1

0.001 0.010 0.100 1 10 100

1.0

1.2

1.4

1.6

1.8

2.0

N s

H

(a)

▲ ▲ ▲
▲

▲
▲

▲

▲

▲

▲
▲

▲

▲
▲
▲

▲

▲ ▲ ▲▲

◼ ◼ ◼
◼

◼
◼

◼

◼

◼
◼
◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

▼ ▼ ▼
▼

▼
▼

▼

▼

▼

▼
▼

▼
▼

▼
▼

▼
▼ ▼ ▼▼

▲ N(t), s(t),
ω

Ω
=1

◼ N, s(t)

▼ N(t), s

N, s

0.01 0.10 1 10 100 1000

0.75

1.00

1.25

1.50

1.75

2.00

N s

H

(b)

Fig. 3.4 Changing environment and positive selection at all times: The time-averaged
heterozygosity, H̄ as a function of selection strength when either the selection coe�cient
(indicated in the legend by N̄ , s(t)) or population size (N(t), s̄) or both (N(t), s(t))
vary with time. The top panel shows the results in slowly changing environments
(Ê, � π N̄

≠1
, s̄) for N̄Ê = 0.01, and the bottom panel in rapidly changing environments

(Ê, � ∫ N̄
≠1

, s̄) for N̄Ê = 1400. The points are obtained by numerically solving (3.5)
and (3.10) for di�erent scenarios as indicated in the legend for ‹ = 0.7, ‡ = s̄/8, ◊ = 1,
and h = 1/2. The broken line shows the results in the static environment that are
obtained using (3.12). The solid lines show the analytical approximation (3.21) and
(3.25) for weak and strong selection, respectively, in slowly changing environment, and
(3.35) for weak selection in rapidly changing environment.
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and �(x) is the Heaviside step function. The e�ective population size N̂e defined above

states that the contribution to f̄(x) comes from the average population size during the

time selection is positive.

This shows that when both selection and population size are changing but selection

remains positive throughout the cycle, f̄(x) is well approximated by the static result

given by (3.14a). Figure 3.4a shows the time-averaged heterozygosity when the selection

is positive at all times, which, in the light of the above discussion, is given by

H̄ = H
ú
p = 2h◊

1 ≠ 2h
ln

A
1 ≠ h

h

B

. (3.25)

However, for s̄ > 0, if s(t) is negative for a part of the cycle, (3.23) shows that f̄(x)

is proportional to ◊̂e © 2N̂eµ which is smaller than ◊. Thus, in a slowly changing

environment, for strong selection, the time-averaged heterozygosity is smaller than H
ú
p if

the mutant becomes deleterious during a part of the cycle. Similarly, for s̄ < 0, H̄ > H
ú
n

due to a nonzero contribution from the positive part of the selection cycle.

Strong, on-average zero selection

One can obtain explicit expressions for the time-averaged SFS when the mutant spends

equal time in both the positive and negative part of the selection cycle (that is, s̄ = 0).

For strong selection (N̄‡ ∫ 1) and equal cycling frequencies (Ê = �), from (3.23), we get

f̄±(x) = ◊

x(1 ≠ x)
h

h + x(1 ≠ 2h)

31
2 ±

‹

fi

4
(3.26)

for fl±(t) = 1 ± ‹ sin(�t). Thus we find that unlike in the static, neutral environment

where the SFS decays with allele frequency, the time-averaged SFS in an on-average

neutral environment is a non-monotonic function of the allele frequency as, up to a scale

factor, it is given by the equilibrium SFS for positively selected mutant (see (3.14a)). The
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Fig. 3.5 Changing environment and on-average neutral selection: The time-averaged
mean heterozygosity, H̄ as a function of selection strength when either only the selection
coe�cient (indicated in the legend by N̄ , s(t)) or both selection coe�cient and population
size (N(t), s(t)) vary with time. The top panel shows the results in slowly changing
environments (Ê, � π N̄

≠1
, s̄) for N̄Ê = 0.01, and the bottom panel in rapidly changing

environments (Ê, � ∫ N̄
≠1

, s̄) for N̄Ê = 1400. The points are obtained by numerically
solving (3.5) and (3.10) for di�erent scenarios as indicated in the legend for ‹ = 0.7,
◊ = 1, h = 1/2 and no phase di�erence between selection and population size variation.
The broken line shows the results in the static environment that are obtained using (3.12).
The solid lines show the analytical approximation (3.21) for weak selection, and (3.28)
and (3.29) for strong selection in slowly changing environment.
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factor in the parentheses on the RHS of (3.26) shows that when the population size varies

in-phase with selection, as the population size is larger than the average N̄ during the

positive cycle and stronger positive selection leads to larger heterozygosity, demography

ameliorates the e�ect of deleterious mutations. On the other hand, when selection and

population size change out-of-phase, the mean heterozygosity is smaller than in the

situation where only selective environment is varied. Quantitatively, from (3.26), we find

that the relative mean heterozygosity 0.5 Æ H̄+/H
ú
p < 0.81 and 0.18 < H̄≠/H

ú
p Æ 0.5 for

0 Æ ‹ < 1.

When the population size is constant (‹ = 0), selection is strong (N̄‡ ∫ 1) and

h = 1/2, from (3.26), we find that the time-averaged mean heterozygosity is the same

as in the constant, neutral environment. In fact, as shown in Appendix B.5, this result

holds exactly for any cycling frequency and selection strength provided the population

size remains constant:

H̄(h = 1/2) = ◊ , for ‹ = 0, arbitrary N̄Ê, N̄‡ . (3.27)

However, for h ”= 1/2, from (3.16b) and (3.26), we find that H̄ = H
ú
p/2 which is smaller

than ◊ for h < 1/2 and larger for h > 1/2.

We now consider the general situation where the population size and selection

coe�cient vary with di�erent cycling frequencies and have a phase di�erence. For

simplicity, we assume that the ratio of the two frequencies is an integer and consider

the average over the smaller frequency (that is, larger time period) as defined in (3.11).

If selection changes slower than the population size (� = KÊ, K = 1, 2, ...), and s(t) =

‡ sin(Êt), fl(t) = 1 + ‹ sin(�t + �), 0 Æ � < 2fi, averaging (3.22a) over the selection cycle
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and ignoring the contribution from (3.22b) for strong selection, we obtain

f̄(x)
f ú

p (x) =

Y
__]

__[

1
2 + ‹ cos �

fiK
, K=odd (3.28a)

1
2 , K=even . (3.28b)

To understand the K-dependence, we consider the case when � = 0. When an even

number of cycles of population size occur during one cycle of selection, K/2 complete

cycles of N(t) lie in the beneficial part of the selection cycle. But as the average population

size in each of the K/2 cycles is N̄ , the final result (3.28b) is found to be independent of

K. In contrast, for odd K, the first one half of the (K+1
2 )th cycle of N(t) contributes

more than N̄ but it’s duration shrinks with increasing K as captured by the second term

on the RHS of (3.28a). Similarly, when selection changes faster than the population size

(Ê = Ÿ� , Ÿ = 1, 2, ...), and s(t) = ‡ sin(Êt), fl(t) = 1 + ‹ sin(�t + „), 0 Æ „ < 2fi, we

obtain

f̄(x)
f ú

p (x) =

Y
__]

__[

1
2 + ‹ cos „

fi
, Ÿ = 1 (3.29a)

1
2 , Ÿ Ø 2 . (3.29b)

The above analysis thus demonstrates that unequal cycling frequencies and phase

di�erence can a�ect the time-averaged SFS. Figure 3.5a summarizes the results obtained

above when population size and selection change in phase, and shows that for strong

selection, the time-averaged mean heterozygosity in a slowly changing environment is

smaller than that in the constant environment with population size N̄ and selection

coe�cient ‡ > 0. But, due to (3.28b) and (3.29b) and recalling that the equilibrium

heterozygosity of a positively selected, co-dominant mutant is equal to 2◊, we find that

H̄ is equal to the mean heterozygosity in the constant neutral environment for unequal

cycling frequencies. However, H̄ can be smaller than ◊ if the population size and selection

coe�cient variation have a phase di�erence.
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From (3.15b) and (3.15c), for in-phase variation in population size and selection

coe�cient with equal cycling frequency, we find the time-averaged sample SFS to be

f̄n,i ¥
Ê

2fi

⁄ fi/Ê

0

◊fl(t)n2F 1(1, i; n; 2 ≠
1
h)

i(n ≠ i) (3.30)

=
31

2 + ‹

fi

4
◊n2F 1(1, i; n; 2 ≠

1
h)

i(n ≠ i) . (3.31)

Figure 3.6a shows that in slowly changing environment, the sample SFS obtained

by numerically integrating (3.5) and the above analytical approximation are in good

agreement except at i = 1, n≠1. Thus the sample SFS in on-average neutral environment

is not a monotonically decreasing function unlike for equilibrium neutral SFS. In Fig. 3.6a,

the nonequilibrium SFS is also compared with the equilibrium SFS for mutant under

strong, positive selection with selection strength N̄‡, and we find that the sample SFS

in changing environment is consistently smaller than the equilibrium SFS.

3.4.3 Rapidly changing environment

We now consider the parameter regime where the rate of change of population size and

selection is much larger than the inverse population size and average selection coe�cient

(Ê, � ∫ N̄
≠1

, s̄). Figure 3.2b shows the periodic variation of the time-dependent SFS

with changing environment for large frequencies. We note that, unlike in slowly changing

environment, there is a phase di�erence between the SFS and environment: the SFS

increases while the selection is positive and decreases in the deleterious part of the cycle.

In rapidly changing environments, a general expectation is that the population is

sensitive only to the time-averaged environment [36]. If the population size remains

constant in time but selection varies rapidly, the boundary condition (3.7) for g(0, t)

is time-independent, and one can use a standard argument to find ḡ(x) [37]. For this
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Fig. 3.6 Changing environment and on-average neutral selection: The time-averaged
sample site frequency spectrum represented by bar chart and obtained by numerically
solving (3.5) and (3.9). The top panel shows the results in slowly changing environment
for N̄Ê = 0.01 that are compared with equilibrium SFS for neutral and positively selected
mutant in constant environment. The bottom panel shows the sample SFS in rapidly
changing environments for two cycling frequencies which is compared with the equilibrium
neutral SFS. The points in the top panel are obtained using (3.31). The other parameters
are ‹ = 0.7, Ê = �, ◊ = 1, h = 1/2, N̄‡ = 100, n = 20 and no phase di�erence between
selection and population size variation.
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purpose, we first rewrite (3.6) as

ˆg(x, Â)
ˆÂ

= ≠
s(Â)

Ê
x(1 ≠ x) ˆ

ˆx
[(x + h(1 ≠ 2x))g(x, Â)]

+ x(1 ≠ x)
2N̄Ê

ˆ
2
g(x, Â)
ˆx2 (3.32)

where Â = Êt, and expand g(x, Â) as a power series in (N̄Ê)≠1, that is, write g(x, Â) =

g0(x, Â) + (N̄Ê)≠1
g1(x, Â) + ..., and substitute this expansion in the above equation.

Keeping terms to leading order in the expansion parameter, we obtain ˆg0(x,Â)
ˆÂ = 0,

which implies that g0 is a function of x alone and subject to boundary conditions

g0(0) = ◊, g0(1) = 0. As a result, the next order term g1 obeys the following partial

di�erential equation:

ˆg1(x, Â)
ˆÂ

= ≠N̄s(Â)x(1 ≠ x) d

dx
[(x + h(1 ≠ 2x))g0(x)]

+ x(1 ≠ x)
2

d
2
g0(x)
dx2 . (3.33)

Integrating both sides of the above equation over the period 2fi and using the periodicity

property of g(x, Â), we find that the LHS of the above equation is zero, and f0(x) =

g0(x)/(x(1 ≠ x)) is given by (3.12).

Therefore, when the population size is constant, the time-averaged SFS in a rapidly

varying environment is simply given by the equilibrium SFS in the time-averaged envi-

ronment. For this reason, the time-averaged mean heterozygosity shown in Fig. 3.4b and

Fig. 3.5b when only selection changes matches with the equilibrium mean heterozygosity

in the time-averaged environment for any (nonnegative) selection strength. But when

demographic changes also occur, as the boundary condition g(0, t) is time-dependent,

it is not clear how to generalize the above argument. As we will discuss below, the

time-averaged selective environment is the primary determinant of the behavior of the

time-averaged SFS: if the selective environment is neutral or weak on-average, the de-
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mography has a strong impact, but if selection is on-average strongly positive, changing

population size does not influence the genetic diversity.

No selection

Previous numerical studies [12, 13] with demography and no selection (s̄ = ‡ = 0) suggest

that for large N̄�, the time-averaged mean heterozygosity is equal to 2Neµ where Ne is

the e�ective population size given by the harmonic mean over the period 2fi/�,

Ne = N̄

C
1

2fi

⁄ 2fi

0

d�
fl(�)

D≠1

= N̄

Ô
1 ≠ ‹2 (3.34)

which decreases with increasing amplitude of the population size variation. In Ap-

pendix B.3, we show that at large cycling frequencies, indeed the e�ect of demography is

to replace N̄ by Ne in the static environment results. Thus the time-averaged sample

SFS is given by f̄n,i = 2Neµ/i (see (B.3.24)) from which it immediately follows that the

time-averaged mean heterozygosity, H̄ = 2Neµ © ◊e. Figure 3.3 shows that the sample

SFS is well approximated by ◊e/i when the population size changes rapidly.

Weak selection

In Appendix B.4, we develop a perturbation theory to understand the SFS in rapidly

changing environments. In particular, for weak constant selection (N̄ |s̄| π 1, ‡ = 0),

from (B.4.8) and (B.4.12), we find that the time-averaged mean heterozygosity is given

by

H̄ = ◊e + ◊eh

3 Nes̄ (3.35)

which is simply the equilibrium result (3.16a) for a weakly selected mutant with population

size Ne and matches with the numerical results shown in Fig. 3.4b. We have verified

analytically that for a weakly selected, on-average neutral mutant also, the e�ect of



74 Joint e�ect of changing selection and demography on the site frequency spectrum

changing selection and demography is to replace N̄ by Ne in the constant neutral

environment results, and which yields H̄ = ◊e (refer to Fig. 3.5b).

Thus the above discussion suggests that when the environment changes rapidly and

time-averaged selection is neutral or weak (while the population size may or may not

vary), the time-averaged sample SFS is given by the expression (3.15a) in a constant

environment with selection coe�cient s̄ and population size Ne,

f̄n,i ¥
◊e

i
+ ◊e[h(5n ≠ 4i + 6) + 2i ≠ n]Nes̄

3(n + 1)(n + 2) . (3.36)

Strong, on-average positive selection

For strong and positive selection (N̄ s̄ ∫ 1), from (3.6), we have

1
s̄

ˆg(x, t)
ˆt

= ≠

3
1 + ‡

s̄
sin(Êt)

4
x(1 ≠ x) ˆ

ˆx
[(x + h(1 ≠ 2x))g(x, t)]

+ x(1 ≠ x)
2N̄ s̄fl(t)

ˆ
2
g(x, t)
ˆx2 (3.37)

¥ ≠x(1 ≠ x) ˆ

ˆx
[(x + h(1 ≠ 2x))g(x, t)] (3.38)

where the last equation is obtained for large N̄ s̄ and ‡ π s̄. Then averaging both sides

of (3.38) over the slower cycle (as defined in (3.11) and for integer ratio of the two cycling

frequencies), and using the boundary condition ḡ(0) = ◊, we obtain

ḡ(x) ¥
◊h

x + h(1 ≠ 2x) (3.39)

which gives the time-averaged SFS to be the same as for the positively selected mutant

in constant environment with population size N̄ (see (3.14a)). Note that the above

argument is valid for arbitrary scaled cycling frequency. Furthermore, due to (3.15b),
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the time-averaged sample SFS is given by

f̄n,i ¥
n◊

i(n ≠ i)2F 1

3
1, i; n; 2 ≠

1
h

4
. (3.40)

The above discussion shows that for a co-dominant mutant under strong selection,

the time-averaged mean heterozygosity is equal to 2◊ in both slowly and rapidly changing

environments in agreement with the data shown in Figs. 3.4a and 3.4b. Thus, when both

selection and population size vary rapidly, while the results for weak selection are given

by the equilibrium ones on replacing N̄ by Ne, the equilibrium SFS for population size N̄

remains valid when selection is strong. This is because in the above deterministic analysis

for large N̄ s̄, the genetic drift term on the RHS of (3.37) whose coe�cient depends on

the inverse population size is neglected, and the population size enters the expression for

SFS through the scaled mutation rate only.

Strong, on-average zero selection

When the selective environment is on-average neutral, the time-averaged mean het-

erozygosity displayed in Fig. 3.5b for large cycling frequencies is equal to ◊ for constant

population size and changing selection as discussed at the beginning of Section 3.4.3.

When both population size and selection vary with equal frequencies, H̄ again approaches

◊; however, for unequal frequencies, the results obtained by numerically integrating (3.5)

suggest that H̄ is independent of the selection strength and given by ◊e. We do not have

an analytical understanding of these results; see, however, Appendix B.6. Thus, barring

the case when the cycling frequencies are equal, the time-averaged heterozygosity is given

by that in the time-averaged selective environment for both weak and strong selection

strength and hence the results obtained in Sec. 3.4.3 apply.
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Fig. 3.7 Changing environment and on-average neutral selection: The time-averaged
mean heterozygosity as a function of scaled environmental frequency for the dominance
parameter h = 0.3(H), 0.5(⌅) and 0.7(N) when both selection coe�cient and population
size change in time with equal frequency. The points are obtained by numerically solving
(3.5) and (3.10), and the solid lines on the left show the analytical approximation (3.31)
for slowly changing environment while the dashed line on the right is the equilibrium
mean heterozygosity ◊ in the time-averaged environment. The other parameters are
‹ = 0.7, ◊ = 1, and N̄‡ = 100. For comparison, note that the mean heterozygosity in
neutral constant environment is equal to ◊ = 1.

3.5 Discussion

In this chapter, we are interested in understanding how a changing environment, be it

due to demography and/or time-dependent selection, impacts genetic diversity within a

population. The importance of demography in understanding various measures of genetic

diversity has long been appreciated [12–14, 17, 18], but the e�ect of fluctuating selection

on genetic variation has been relatively less studied [19, 20]. Here we have considered the
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e�ect of periodic changes in selection coe�cient and population size on the site frequency

spectrum and mean heterozygosity.

When selection is weak, as expected, the time-averaged mean heterozygosity is

essentially the same as for a neutral population with changing population size (see

Figs. 3.4 and 3.5). We find that the e�ect of demography is mainly seen when the

population size changes rapidly; in this case, the time-averaged statistical quantities

behave the same way as in the constant environment, but with reduced population size

Ne given by the harmonic mean of the changing population size over a period (see (3.34)).

Although the e�ective population size has been derived when the population size has

random fluctuations, and verified numerically for other models of demographic change

[12–14], here we have analytically derived the e�ective population size for periodically

changing population size in Appendices B.3 and B.4. Our explicit expressions for the

time-averaged SFS are given by (B.3.17) and (B.3.24) for slowly and rapidly changing

environments, respectively, and shown graphically in Fig. 3.3 when selection is absent.

For strong selection, if time-averaged selection is positive, a deterministic argument,

given in Sec. 3.4.3, shows that the time-averaged SFS is the same as for a positively

selected mutant in a constant environment for any cycling frequency. But the results

depend on the cycling frequency when the selection is zero on-average. For large cycling

frequencies, the time-averaged mean heterozygosity is found, in general, to behave as in

constant neutral environment with e�ective population size Ne discussed above; however,

in a slowly changing environment, the time-averaged SFS is the same as in the static

environment with an e�ective population size N̂e given by the average population size

over the time the selection is positive, see (3.24). For neutral populations, the census

population size in changing environment can be replaced by an appropriately defined

e�ective population size when the mutation rate is small relative to the frequency of

change in the population size [12] and stochastic changes in the population size are
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independent random variables [36, 38]. Here, in addition to the demographic Ne in fast

changing environment discussed above, we find that the census population size in slowly

changing, selective environment can be replaced by an e�ective population size, N̂e (refer

to (3.24)).

Furthermore, in a slowly changing, on-average neutral environment, we find that the

time-averaged SFS is a U-shaped function as one would expect for beneficial mutants

in a constant environment. However, as shown in Fig. 3.6, relative to the SFS in

constant environment, the time-averaged SFS is reduced by a factor equal to the fraction

of the time the selection is negative in a seasonal cycle. Figure 3.6 also shows that

there are more high-frequency variants in the changing environment as compared to in

the constant, neutral environment; similar behavior has also been seen when there is

fluctuating selection (but no demography) [19, 20]. Taken together, these studies suggest

that varying selection, even if zero on-average, can produce an SFS similar to that in a

constant, positively selective environment. Fig. 3.7 further shows that the time-averaged

heterozygosity follows the same qualitative trend with dominance coe�cient as for a

positively selected mutant in a constant environment (see Fig. 3.1c).

Figure 3.5 shows that the time-averaged heterozygosity for on-average neutral selection

and various environmental scenarios is smaller than for positively selected mutants in a

constant environment. This is simply because a newborn mutant is more likely to be

lost when selection is negative than when it is positive, and therefore the contribution

to polymorphism comes only from the part of the cycle when the selection is strongly

positive. In a recent study, we have also shown that while the neutral heterozygosity at

a linked site due to beneficial and deleterious sweeps is identical in a constant selective

environment, varying selection coe�cient breaks the symmetry; in particular, it is found

that the neutral heterozygosity is strongly a�ected by the deleterious sweeps even when

selection is changing slowly while the footprint of beneficial sweeps is not much impacted
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[25]. These results suggest that in addition to demography, varying selective environment

(about zero mean) is a potentially important factor for explaining the lower levels of

neutral genetic diversity than predicted on the basis of constant neutral population

assumption (for a recent overview, see Buffalo [39]).

Throughout this chapter, we have assumed completely unlinked sites; a generalization

of the infinite sites model studied here to include finite recombination, and detailed

investigations of the joint e�ect of changing selective environment and demography in

more complex scenarios, such as when genetic hitchhiking occurs [40], remains a task for

the future.
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Chapter 4

E�ect of beneficial sweeps and

background selection on genetic

diversity in changing environments

In this Chapter, we relax the assumption of randomly mating population and discuss the

reduction in the linked neutral genetic diversity due to fixation of mutant at the selected

site when inbreeding occurs within population.

4.1 Introduction

There has been much interest in understanding how the neutral genetic diversity patterns

are shaped for a long time. It has been observed that pairwise diversity in various natural

species is several orders of magnitude lower than predicted by the neutral theory [1],

and the neutral genetic diversity for various species varies in a narrow range for several

orders of magnitude change in the population sizes—this is known as Lewontin’s paradox

[2]. The indirect e�ects of selection on the linked neutral variation are one possible

contributor to resolving Lewontin’s paradox [3, 4].
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When a beneficial mutation spreads throughout an entire population, the linked

neutral variants can hitchhike along with it; this is referred to as selective sweep [5–

8]. Other variants not linked to the selected mutation are subsequently lost from the

population, reducing genetic diversity at the linked neutral sites. The genetic diversity

can also be reduced due to the elimination of the recurrent deleterious mutations from

the population, known as background selection [9] because the deleterious mutations are

selected against and subsequently eliminated from the population, which also eliminates

the linked neutral variants. Several analytical and simulation studies have been conducted

to investigate the e�ect of background selection [9–11] and selective sweeps [12, 8] on the

linked neutral genetic diversity considering environment to be selectively constant.

Natural environments, on the other hand, are not static and change over time. It is

therefore important to ask how the genetic diversity at the linked neutral sites is a�ected

by selective sweeps and background selection in the changing environment. We primarily

want to know how the levels of genetic variation change in the selectively changing

environment. As selective sweeps and background selection e�ects are strong when

recombination is low, we work in low recombination regimes throughout the Chapter.

In a recent study [13], the e�ect of a continually changing environment on the genetic

diversity in a randomly mating population was investigated using a two-locus model

with one neutral and one selected locus. It was discovered that the Maruyama-Kimura

symmetry [14, 15] for conditional mean fixation time in static environment does not

hold in a changing environment, and the deleterious sweeps are strongly a�ected due

to varying selection. The beneficial sweeps, on the other hand, are robust for slow or

moderate changes in the selective environment [13]. Here, we extend these results for

selective sweeps to a more general case of inbreeding population. We use di�usion theory

to calculate the conditional mean fixation time for the inbreeding population. When the

inbreeding coe�cient is high, the deleterious and beneficial sweeps are weakly a�ected in
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the changing environment, and the changing environment e�ects are most significant in

a randomly mating population.

Because the deleterious mutations are more likely to be lost than fix in population,

we investigate the impact of background selection on the shape of the site frequency

spectrum (SFS) in changing selective environment. In a finite asexual population, fittest

class of individuals is eventually lost from the population [16, 17]. Previous research has

shown that in slow Muller’s ratchet regime and static environment, the reduction in the

genetic diversity caused by strong selection against the recurrent deleterious mutations

is equivalent to the neutral population with a reduced e�ective population size [9, 10]

in the absence of recombination. However, the e�ect of background selection in the

population where Muller’s ratchet clicks fast is much less studied [11]. In this Chapter,

we will investigate the e�ect of background selection for arbitrary selection strength

in slowly changing environment. We give simple analytical expression for change in

heterozygosity when Muller’s ratchet clicks slowly and study the fast Muller’s ratchet

regime numerically.

We find that, even in a slowly changing environment, genetic diversity at linked

neutral sites di�ers significantly from that in a static environment when the selected site

contains deleterious mutations; in particular when the population fluctuates between

zero and a negative selection coe�cient, the shape of the time-averaged SFS is found to

di�er from the shape of the SFS with a time-averaged selection coe�cient.

4.2 Selective sweeps in changing environments

The reduction in genetic variation caused by selective sweeps is significant in regions

with low recombination and depends on the time it takes for the mutation to fix in the

population [5, 18]. In this section, we discuss the conditional mean fixation time, which

is calculated by averaging the time taken by the mutation to fix into the population only
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in the trajectories destined to fix, when the selective environment is time-dependent and

a single locus is under selection.

4.2.1 Di�usion theory

When the environment is selectively constant, the conditional mean fixation time for

beneficial mutation with selective advantage +s and dominance coe�cient h is identical

to that of deleterious mutation with selective disadvantage ≠s and dominance 1 ≠ h

[14, 15]. In the static environment, this symmetry also holds for the inbreeding population

[19]. It has recently been demonstrated that this symmetry breaks for randomly mating

populations in a changing environment [13]. In this section, we consider the case when

inbreeding occurs in the population.

Consider a diploid population of constant population size N . The biallelic locus

experiences time-dependent selection coe�cient, s(t) = s̄ + ‡ sin(Êt + ◊0) that varies

periodically with time, where s̄ is the time-averaged selection coe�cient, 0 < ◊0 < 2fi is

the initial phase, ‡ > 0 is the amplitude of the oscillation, and Ê is the rate of change of

environment. The three genotypes, AA, Aa and aa have frequencies p
2 + fpq, 2pq(1 ≠ f)

and q
2 + fpq, and fitnesses 1, 1 + hs(t), and 1 + s(t) respectively [20, 21] where h is the

dominance coe�cient (0 < h < 1), and f is the inbreeding coe�cient (0 < f < 1). The p

and q are the frequency of allele A and a, respectively.

The backward Fokker-Planck equation for the randomly mating population (Eqn. A4

in Kaushik and Jain [13]) for mean fixation time for a mutation with initial frequency

x at time t0, can be generalized for inbreeding population, which satisfies

≠
ˆT̄ (x, t0)

ˆt0
≠ Pf (x, t0) = s(t0)g(x)ˆT̄ (x, t0)

ˆx
+ x(1 ≠ x)

2Ne

ˆ
2
T̄ (x, t0)
ˆx2 (4.1)

where g(x) = (x + h(1 ≠ 2x) + f (1 ≠ h ≠ x (1 ≠ 2h))), Pf is the eventual fixation proba-

bility, and Ne is the e�ective population size given by N/(1+f) [23].
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Fig. 4.1 The variation of conditional mean fixation time T c with dominance parameter
(h) for moderate selection in static (•) and slowly changing environment where selection
coe�cient is on-average neutral (s̄ = 0), and given by s(t) = ‡ sin(Êt + ◊) (diamonds)
and ≠s(t) (squares) respectively. The other parameters are Ne = 2 ◊ 103

, Ne Ê = 0.05,
‡ = 0.01, ◊ = fi/4, (a) f = 0.2 and (b) f = 0.8. When inbreeding is high, the conditional
mean fixation time for both beneficial and deleterious is mildly a�ected in the slowly
changing environment.

The above equation does not appear to be exactly solvable, so we use first-order

perturbation theory for the approximate solution. Previous research [13] indicates that

the e�ects of a changing environment are significant when the mutation is on-average

neutral, so we focus on-average neutral mutation. In the slowly changing environment,

Ê π N
≠1
e , s(0), for on-average neutral mutation (s̄ = 0) the mean fixation time and

eventual fixation probability are approximated as T̄ ¥ T̄0 +NeÊT̄1, and Pf ¥ P0 +NeÊP1.

Here, T̄0 and P0 are the mean fixation time and fixation probability in the static

environment; and T̄1 and P1 are the leading order deviation in Ê in the mean fixation

time and fixation probability, respectively. These are calculated in Appendix C.1.

The conditional mean fixation times for the slowly changing environment are shown

in Fig. 4.1, where the data is obtained by numerically solving (C.1.3), (C.1.9), and

(C.1.10). We find that the Maruyama-Kimura symmetry does not hold for the inbreeding

population, and deleterious mutations are more a�ected than the beneficial ones by

changing environment. Thus, in the case of an inbreeding population, the qualitative
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behavior of conditional mean fixation time is similar to that of a randomly mating

population in a slowly changing environment.

Whereas, unlike the randomly mating population where the recessive deleterious

mutations are strongly impacted, deleterious mutations, whether recessive or dominant,

are mildly a�ected due to the slowly changing environment when the inbreeding coe�cient

is high, as shown in Fig. 4.1b. This can be understood qualitatively using the following

argument. In a randomly mating population, the recessive deleterious mutations are

strongly a�ected because they have a higher fixation probability than dominant mutations

[22] allowing recessive mutations to have a less strong tendency to fix quickly as compared

to the dominant deleterious mutation, and former mutations can continue to segregate

in the population for long periods of time, making them more sensitive to the changing

environment [13]. However, when the inbreeding coe�cient is high, the fixation probability

for the deleterious mutations is weakly dependent on the dominance coe�cient (see C.1.7,

C.1.8). The trajectories for recessive, as well as dominant deleterious mutations, are

then exposed to the changing environment for nearly the same amount of time and thus

a�ected in the similar manner. Thus, these results suggest that in the case of a highly

inbred population in a slowly changing environment, the deleterious and beneficial sweeps

produce similar genetic diversity patterns.

4.2.2 Semi-deterministic theory: strongly beneficial mutations

The solution of di�usion equation does not have a closed form in the presence of selection

and thus cannot be used to calculate the fixation time distribution. However, we can use

semi-deterministic theory for the beneficial mutations when the population size is large

(2Ns ∫ 1), as recently used by Martin and Lambert [23], and Kaushik and Jain

[13]. In a static environment, the conditional mean fixation time, T̄c, for the mutation

with selection coe�cient +s and dominance coe�cient h is the same for the mutation
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Fig. 4.2 Strongly beneficial mutations: The deviation in the conditional mean fixa-
tion time, T̄1,c, in the slowly changing environment with selection coe�cient s(t) =
(s̄ + ‡ sin (Êt + fi/4)) when the mutation is beneficial at all times for f = 0 (black),
f = 0.2 (green), and f = 0.8 (magenta) to show that the deviation is maximum for
randomly mating population. The points are obtained by numerically solving (C.2.1).
The other parameters are Ne = 105, s̄ = 0.01, ‡ = 0.007 and h = 0.5 respectively.

with selection coe�cient +s, and dominance 1 ≠ h for arbitrary inbreeding coe�cient.

In other words, T̄ (+s, h, f) ¥ T̄ (+s, 1 ≠ h, f) [24, 19]. This symmetry is preserved in

the changing environment for the panmictic population in the strong selection limit, as

recently demonstrated by Kaushik and Jain [13]. Here, we will explore the h to 1 ≠ h

symmetry when inbreeding occurs.

The allele frequency distribution, �f(p, t|p0, 0), that the mutation frequency is p at

time t, given that the initial mutation frequency is p0 at time t0 obeys the following
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forward Kolmogorov equation [25],

ˆ�f(p, t|p0, 0)
ˆt

= ≠s(t) ˆ

ˆp
[g(p)�f(p, t|p0, 0)] + ˆ

2

ˆp2

C
pq�f(p, t|p0, 0)

2Ne

D

(4.2)

where, g(p) = sa(1 ≠ p) + sbp, sa = h + (1 ≠ h)f and sb = 1 ≠ (1 ≠ f)h, respectively. For

p æ 0, the (4.2) reduces to a Feller di�usion equation [26] which can be solved exactly.

Conditional on fixation, �f(p, t|p0, 0) converges to a stationary distribution at large times,

which gives the eventual fixation for the beneficial mutation having frequency p0 at time

t = 0 as

Pf(p0, 0) = 1 ≠ exp
S

U≠
2Nep0

s Œ
0 dte

≠sa

s t

0 dtÕs(tÕ)

T

V (4.3)

Slowly changing environment

In a slowly changing environment, the fixation probability for an on-average neutral

mutation (s̄ = 0), when the mutation occurs in the positive cycle of the selection

coe�cient with initial phase, ◊0 = Êt0 (0 < ◊0 < fi), is obtained by a Taylor series

expansion of (4.3) to the linear order in Ê. The fixation probability is then given as

Pf(p0) = 2Nep0 (sa‡ sin ◊0 + Ê cot ◊0) (4.4)

The deviation in the fixation probability is independent of the dominance parameter and

weakly dependent on the inbreeding coe�cient. As previously discussed, the conditional

mean fixation time is closely related to the eventual fixation probability; thus (4.4)

suggests that a slowly changing environment is expected to a�ect conditional mean

fixation time mildly.

The conditional mean fixation time is approximated as T̄c ¥ T̄0,c + Ê

s(0) T̄1,c when the

environment changes slowly.
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For a single mutation, and keeping terms up to the order (ln –)2

–
, the first order

correction to the conditional mean fixation time is given by (see Appendix C.2 for details),

T̄1,c

2Ne
= ≠

‡ cos ◊0(ln –)2

4s(0)–
(1 + f)2

s2
as

2
b

(4.5)

For a randomly mating population, f = 0, the above expression reduces to Eqn. (20)

in Kaushik and Jain [13]. In slowly changing environment, the leading order term

in T̄1,c has h æ 1 ≠ h symmetry. In other words, like in randomly mating population,

T̄ (+s, h, f) ¥ T̄ (+s, 1 ≠ h, f) holds in the slowly changing environment for the inbreed-

ing population also. The deviation in the conditional mean fixation time, T̄1c, due to

changing environment is maximum when f = 0, as depicted in Fig. 4.2.

Fig. 4.2 shows that the conditional fixation times are a�ected very mildly in the wide

range of environmental change. Thus, the results of the beneficial sweep in the changing

environment for a randomly mating population are robust in the inbreeding population.

4.3 Background selection in changing environment

In the previous section, we have shown that the e�ect of changing environment on

deleterious sweeps is strongest for the randomly mating population (f = 0). In this

section, we focus on haploid asexual populations (f = 0) to explore the e�ect of

background selection (BGS) on the linked neutral genetic variation in the changing

environment. In particular, we will study the neutral site frequency spectrum (SFS) and

neutral heterozygosity.
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4.3.1 Multilocus Wright-Fisher model

We use the multilocus Wright-Fisher model to study the e�ect of recurrent deleterious

mutations at the selected site in a haploid asexual population (f = 0) of size N . Consider

a large genome in which a single selected site is linked to infinite number of neutral

sites. At the linked neutral sites, the mutations occur according to an infinite-sites

model, meaning that each mutation occurs at a new site that does not have any mutation

before. The population evolves according to discrete-generation Wright-Fisher process

[27, 28], described in a following manner. At t = 0, we start with a monomorphic

population, and subsequent generations are obtained by first reproduction and then

mutation. In reproduction, the o�spring generation is generated by sampling individuals

from the parent generation with equal probabilities. The neutral mutations occur in

the population with a rate un at a monomorphic site. After a drift-neutral mutation

equilibrium for the SFS has been reached, the deleterious mutations are introduced, and

the chosen individual acquires deleterious mutations according to the Poisson distribution

with mean Nud. The o�spring generation is then generated by picking individuals from

the parent’s generation with probabilities proportional to their relative fitnesses. The

absolute fitness for an individual with k deleterious mutations is given by (1 ≠ s(t))k.

Unlike in the previous section, here we study the discrete-time model, and the selection

changes periodically in the square waveform given by

s(t) =

Y
___]

___[

s̄ + ‡, nTp Æ t <

3
n + 1

2

4
Tp

s̄ ≠ ‡,

3
n + 1

2

4
Tp Æ t < (n + 1) Tp

(4.6)

where ‡(< s̄) is the amplitude, Tp is the time period of the oscillation and n is a positive

integer.

To quantify the e�ect of background selection on the linked neutral diversity, we

mainly focus on the two summary statistics, time-averaged site frequency spectrum (SFS),
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(a) Slow Muller’s ratchet
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Fig. 4.3 Strictly deleterious mutations: The time-averaged site frequency spectrum for
the static environment (blue) and for the slowly changing environment (red) when the
selection coe�cient is always negative and varies periodically with time period Tp between
s̄+‡ in first half of the cycle and s̄≠‡ in the second half of the cycle. The parameters are
N = 1000, Nun = 1, ud = 0.08, ‡ = s̄/2, Tp = 12000, (a) s̄ = 0.1 and (b) s̄ = 0.05. The
solid blue line is

1
2Nune

≠ud/s̄
2

/x . The inset shows the time-dependent heterozygosity
for the slowly changing environment (red) and static environment (blue), the solid lines
represent heterozygosity for the neutral population with the corresponding e�ective
population sizes. The population evolves under drift neutral mutations equilibrium for
SFS till t = 3000, and after that, deleterious mutations are introduced.

and time-averaged heterozygosity, H̄ = 1
Tp

s Tp
0 H(t)dt. It has previously been shown [9]

that in static environment, for strongly deleterious mutations, the e�ect of the BGS on

SFS is same as the neutral expectation with an e�ective population size, Ne = Ne
≠ud/s̄,

where s̄ is the magnitude of the selection strength for the deleterious mutation. But for

moderately strong selection, the background selection distorts the shape of the SFS from

the neutral expectation of monotonically decaying function to a U-shaped function [29].

Here we investigate these results in changing environment.

4.3.2 Fluctuating environment between deleterious mutations

We consider the case when the selection coe�cient changes between two negative selection

coe�cients so that the mutation always remains deleterious. We find that, in the slowly

changing environment, the time-averaged SFS f̄(x) and time-averaged heterozygosity
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H̄ are significantly di�erent compared to the corresponding quantities in the static

environment with the time-averaged selection coe�cient as depicted in Fig. 4.3.

Figs. 4.3a, and 4.3b show respectively that when Muller’s ratchet clicks slowly and

rapidly, the time-averaged SFS is smaller and larger, respectively, in the slowly changing

environment than the SFS with the time-averaged selection coe�cient (s̄) in the static

environment. When the neutral allele frequency is very low, the e�ect of deleterious

mutations is negligible, and the time-averaged SFS in changing environment is the same

as the neutral SFS, which is analogous to the e�ect of background selection on neutral

SFS in static environment at low frequency [29]. However, when the frequency of linked

neutral mutations is intermediate, the deleterious mutations are exposed to a changing

environment for a longer time, and the SFS at linked neutral sites changes more as a result

(Figs. 4.3a, 4.3b). In a slowly changing environment, the time-dependent heterozygosity,

H(t), oscillates between the static heterozygosities, H(s̄ + ‡) and H(s̄ ≠ ‡), reaching

equilibrium in both positive and negative cycles of selection coe�cient (inset of Fig. 4.3).

The e�ect of changing environment on mean heterozygosity for slow and fast Muller’s

ratchet is the same as that on SFS described above. For the slow Muller’s ratchet,

H̄ < H(s̄), whereas when Muller’s ratchet clicks fast, H(s̄) < H̄. The e�ect of changing

environment is strong for the moderately strong selection (Ns̄ . 100) as depicted by

Fig. 4.4, where even in the slowly changing environment, the mean heterozygosity has

deviated to 30 ≠ 40% (inset of Fig. 4.4) from the corresponding heterozygosity in the

static environment.

When the selection strength is strong (Ns̄ ∫ 1), and Muller’s ratchet operates slowly,

the time-averaged heterozygosity in the changing environment can be approximated by

the mean of heterozygosity in the static environment with selection coe�cient s̄ + ‡, and
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s̄ ≠ ‡,

H̄ ¥
◊

2

Q

cae

≠
ud

s̄ + ‡ + e

≠
ud

s̄ ≠ ‡

R

db (4.7)

where ◊ is the scaled mutation rate, ◊ = 2Nun. In the strong selection limit (ud

s̄
π 1),

on expanding the R.H.S of above equation, we find

H (s̄) ≠ H̄ ¥

3
ud

s̄

4 A
‡

2

s̄2 ≠ ‡2

B

(4.8)

which shows that mean heterozygosity (4.7) in changing environment is always smaller

than that in static environment
1
H(s̄) = ◊e

≠ud/s̄
2
, as shown in Fig. 4.4, and the deviation

is given by,

Using the same argument, the time-averaged SFS in the slowly changing environment

is smaller than that in the static environment for strong selection, as depicted in Fig. 4.3a.

When the selection strength is moderately strong, and ‡ is of the order s̄ (but smaller

than s̄), the selection coe�cient in the second half of the cycle becomes weak (s̄ ≠ ‡),

where Muller’s ratchet operates fast, and the mutation classes other than the least loaded

class can contribute to the SFS. The mean heterozygosity in fast ratchet regime when

s̄ ≠ ‡ becomes very weak can be approximated by the neutral heterozygosity ◊ whereas

the selection in the first half of the cycle, s̄ + ‡, is strong and only the least loaded class

contributes to the heterozygosity. The mean heterozygosity is then given by

H̄ ¥
◊

2

Q

ca1 + e

≠
ud

s̄ + ‡

R

db (4.9)

which is greater than the static heterozygosity
1
H(s̄) = ◊e

≠ud/s̄
2
. The time-averaged

heterozygosity behaves non-monotonically with selection strength in the changing en-

vironment as observed in Fig. 4.4. The similar dependence is shown by Gordo et al.
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Fig. 4.4 Strictly deleterious mutations: The mean heterozygosity as a function of scaled
selection coe�cient for static environment (circles) and slowly changing environment with
selection coe�cient (triangles) varies between s̄ + ‡ and s̄ ≠ ‡ with time period Tp. The
other parameters are N = 1000 (open symbols), N = 2000 (closed symbols) , Nun = 1,
ud = 0.08, ‡ = s̄/2 and Tp = 12000 respectively. The solid lines represent mean
heterozygosity for the neutral population with e�ective population size as 2Nune

≠ud/s̄.
The inset shows the relative change in the mean heterozygosity due to the changing
environment as compared to the static environment for N = 1000.

[11], and Good et al. [30] for the mean number of pairwise di�erences in the static

environment. Since the two regimes of Muller’s ratchet are separated by Ns̄e
≠ud/s̄

> 1

[31, 32], the minimum of the mean heterozygosity scales linearly with Ns̄ for the fixed

ud/s̄ as shown in Fig. 4.4.
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Fig. 4.5 Deleterious and neutral mutations: The time-averaged SFS, when the environment
is static (blue) with selection coe�cient (s̄) and changes slowly (red) with selection
coe�cient varies between 0 (neutral) and 2s̄ (deleterious), and the Muller’s ratchet clicks
slowly in the deleterious cycle. The blue solid and blue dashed line represents SFS for
the neutral mutation with population size N and Neff = Ne

≠ud/s̄ respectively. The

red solid line represents the time-averaged SFS given as, ◊

2x

1
1 + e

≠ud/s̄
2
. The other

parameters are N = 1000, ud = 0.08, un = 0.001, s̄ = 0.06, and ◊ = 2Nun. The inset
shows the time-dependent heterozygosity in the slowly changing environment (red) which
oscillates between the corresponding heterozygosity in the neutral population with size
N and Neff respectively. For the static environment (blue), the heterozygosity in the
equilibrium population is given by ◊e

≠ud/s̄. The solid lines from top to bottom represents
◊, ◊e

≠ud/2s̄ and ◊e
≠ud/s̄ respectively. The population evolves under drift neutral mutations

equilibrium for SFS till t = 3000, and after that, deleterious mutations are introduced.

4.3.3 Fluctuating environment between neutral and deleterious

mutations

Here, we examine the scenario where the environment changes in such a way that the

mutation is deleterious in the first half of the cycle where background selection operates,

but neutral in the second half of the cycle where the neutral mutation can get eliminated

or fixed due to genetic drift.
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Figure 4.5 shows that, for the moderate selection, the time-averaged SFS in changing

environment at the low frequencies (0.01 ≠ 0.05) has a di�erent shape than that in the

static environment with a time-averaged selection coe�cient, and it is more skewed in

the latter case. The contribution of the neutral cycle (◊/x) to the SFS is larger than that

of the deleterious cycle (◊e
≠ud/2s̄

/x), resulting in the time-averaged SFS in the changing

environment to have the similar shape to that in the neutral environment as depicted in

Fig. 4.5.

Fig. 4.6 shows that H̄ in a slowly changing environment is significantly di�erent from

heterozygosity in a static environment (H (s̄)) when the selection is moderately strong,

H̄ ¥
◊

2

Q

a1 + e
≠

ud

2s̄

R

b (4.10)

whereas in the static environment, H = ◊e
≠ud/s̄ where ◊ = 2Nun. The mean heterozy-

gosity in slowly changing environment, H̄, is always greater than that in the static

environment, H(s̄), as depicted in Fig. 4.6. The deviation is approximately (3/4)(ud/s̄)

when (ud/s̄) < 1. In the slowly changing environment, H̄ = ◊ in limits Ns̄ æ 0

and Ns̄ æ Œ as shown in Fig. 4.4. The time-averaged heterozygosity follows the

non-monotonic behavior with selection strength similar to the previous case where the

mutation is always deleterious, and here also, the minimum of the time-averaged het-

erozygosity scales linearly with Ns̄ as shown in the inset of Fig. 4.6. Hence, these results

suggest that the levels of genetic variation at the linked neutral sites are significantly

di�erent in the changing selective environment for the deleterious mutation than in the

static environment.
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Fig. 4.6 Deleterious and neutral mutations: The relative change in the mean heterozygosity
in the changing environment (H̄) from the static environment (H) when selection
coe�cient varies periodically between zero (neutral) and 2s̄ (deleterious) with time period
Tp. The other parameters are N = 1000, Nun = 1, ud = 0.8 and Tp = 12000 respectively.
The inset shows that the time-averaged heterozygosity behaves non-monotonically with
the scaled selection coe�cient and the minimum of the mean heterozygosity scales linearly
with Ns̄. The other parameters are N = 1000 (•), N = 1500 (N) and N = 2000 (H)
respectively. The solid lines represents 2Nune

≠ud/s̄ for N = 1000, 1500, and 2000 from
top to bottom.

4.4 Discussion

In a recent study by Kaushik and Jain [13], it was found that the Maruyama-Kimura

symmetry [14, 15] for the conditional mean fixation time in constant environment does

not hold in changing environment. In this paper, we have explored this symmetry for the

more general case when inbreeding occurs in the population. We find that the deviation

in the conditional mean fixation time for both beneficial as well as deleterious sweeps is

maximum in the case of randomly mating population. When the inbreeding coe�cient is

high, the symmetry between beneficial and deleterious conditional mean fixation time
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breaks very mildly, which makes it di�cult to distinguish the diversity patterns generated

due to beneficial and deleterious sweeps.

Since the e�ects of changing environment are more significant in deleterious mutations

in the randomly mating population, we investigated the e�ect of changing environment

when recurrent deleterious mutations arise at the selected site and are eliminated from

the population [9]. When the selection strength is moderate, the e�ect of background

selection on time-averaged SFS is found to be qualitatively di�erent from that in the

static environment [29].

When the population fluctuates between zero and a negative selection coe�cient in

a slowly changing environment, the time-averaged SFS and mean heterozygosity are

larger than in a static environment with a time-averaged selection coe�cient. Whereas,

when the selection coe�cient fluctuates in such a way that it is always negative, the

time-averaged SFS and mean heterozygosity are smaller (larger) than that in the static

environment with a time-averaged selection coe�cient when the Muller’s ratchet clicks

fast (slow). These findings imply that the recurrent deleterious mutations at the selected

site result in qualitatively di�erent levels of genetic variation in the changing environment.

Here, we have studied the e�ect of changing environment on the SFS due to the

background selection using numerical simulations. However, there is a scope to develop

the analytical theory to study the behavior of non-equilibrium SFS in the changing

environment when Muller’s ratchet operates fast. Here, we have the selected site being

either deleterious or neutral; it will be interesting to look at the case where the selected

site is beneficial where selective sweeps also occur. Throughout this Chapter, we have

assumed that population size is constant, and it will be interesting to explore the e�ects

of demography. Studying the background selection in the changing environment for the

selfing population is also interesting because inbreeding is expected to reduce genetic

diversity significantly.
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Chapter 5

Summary and open questions

The primary focus of this thesis is to understand how the various evolutionary forces

shape the genetic diversity within a population. Since natural environments are not

static, we have considered the situation when the environment is continually changing.

In this thesis, we have studied the following three quantities in detail to quantify the

e�ect of changing environments on genetic variation: conditional mean fixation time, site

frequency spectrum (SFS), and heterozygosity. We have considered the environmental

change due to changing selection coe�cient and changing population size, and their

e�ects on the genetic variations are summarised below.

Summary of results

Case 1: Changing selection coe�cient and constant population

size

In Chapters 2 and 4, we have studied the e�ect of selective sweeps and background

selection on the linked neutral genetic variation when the selection coe�cient is time-

dependent but population size is constant in time.
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Selective sweeps: The fixation of the mutant (selective sweep) at the selected site

reduces the genetic variation at the linked neutral sites, and the reduction in the diversity

is proportional to the conditional fixation time of the mutant. We find the following

main results in the case of selective sweeps.

i) The Maruyama-Kimura symmetry for the conditional mean fixation time in static

environment is not preserved in the changing environment, suggesting that the genetic

diversity patterns generated by deleterious and beneficial sweeps are no longer identical.

ii) The constant environment assumption holds for the beneficial mutations, whereas

the deleterious mutations are strongly impacted due to the changing environment. In

particular, the recessive deleterious mutations are strongly a�ected.

iii) Even the slowly changing environment produces qualitatively di�erent genetic

diversity levels.

iv) The changing environment e�ect is most substantial for the randomly mating

population, and the constant environment assumption holds for beneficial and deleterious

sweeps when the inbreeding coe�cient is high.

Background selection: The deleterious sweeps are very rare, and in most cases,

the deleterious mutations arise in the population and are eliminated from the population

due to their adverse e�ects on fitness (background selection). Hence, we have studied

the e�ect of background selection on genetic diversity in the changing environment and

found that:

i) When the population fluctuates between a neutral and negative selection coe�cient,

the time-averaged heterozygosity and SFS are always greater than that in the static

environment with a time-averaged selection coe�cient.

ii) When the selection coe�cient is changing but it is always negative, the time-

averaged heterozygosity and SFS are greater (smaller) than the corresponding heterozy-
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gosity and SFS in the static environment with a time-averaged selection coe�cient when

the population experience slow (fast) Muller’s ratchet.

Case 2: Combined e�ect of changing selection and changing

population size

In Chapter 3, we have studied the site frequency spectrum in a randomly mating diploid

population in which both population size and selection coe�cient change periodically with

time. We find that the time-averaged SFS for the changing environment is qualitatively

and quantitatively di�erent compared to that in the static environment. The main

findings are:

i) The time-averaged SFS for an on-average neutral mutations mimics the shape of

the static SFS for the beneficial mutations.

ii) The deleterious mutations are responsible for the deviation in the time-averaged

SFS in the changing environment, and the extent of the deviation depends upon the

phase di�erence between the population size and selection coe�cient.

Open questions

Finally, we discuss some open questions related to our study.

i) In Chapter 3, we have considered the infinite sites model where the sites are

completely unlinked. It will be interesting to generalize the infinite sites model to include

finite recombination and investigate the combined e�ect of changing population size and

selection.

ii) In Chapter 4, we have numerically studied the non-equilibrium SFS for the

deleterious mutations. Still, there is a scope to develop the analytical theory which can

potentially capture the e�ect of Muller’s ratchet on non-equilibrium SFS in the changing
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environment. The non-equilibrium SFS will also be interesting to study for neutral and

beneficial mutations where selective sweeps also occurs.



Appendix A

A.1 Di�usion theory for time-inhomogeneous pro-

cess

For a large finite population with small selection coe�cient, the average fixation time can,

in principle, be studied using the backward Fokker-Planck equation with time-dependent

selection coe�cient. The probability distribution �b(x, t|p, t0) obeys the following partial

di�erential equation:

≠
ˆ�b(x, t|p, t0)

ˆt0
= s(t0)g(p)ˆ�b(x, t|p, t0)

ˆp
+ pq

2N

ˆ
2�b(x, t|p, t0)

ˆp2 (A.1.1)

where s(t0) = s̄ + ‡ sin(Êt0 + ◊) and g(p) = pq(p + h(1 ≠ 2p)). In the above equation, the

first term on the RHS is obtained on using that the deterministic rate of change of the

mutant allele frequency is given by dp/dt = s(t)g(p), and the second term is due to the

sampling noise in a finite population. In A.1.1, the probability distribution is assumed to

be a function of the initial time t0 and the final time t. But one can also consider the

variables t0 and the time interval t ≠ t0 which leads to (S5) in Uecker and Hermisson

[1]. However, as the formulation (A.1.1) is much easier to handle, we work with it in the

Chapter 2.
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The (unconditional) mean fixation time for a mutant arising at time t0 can be written

as

T (p, t0) =
⁄ Œ

t0
dt(t ≠ t0)�b(x æ 1, t|p, t0) (A.1.2)

Using Leibniz integral rule,

⁄ Œ

t0
dt(t ≠ t0)

ˆ�b(x, t|p, t0)
ˆt0

= ˆ

ˆt0

⁄ Œ

t0
dt(t ≠ t0)�b(x, t|p, t0) +

⁄ Œ

t0
dt�b(x, t|p, t0),

(A.1.3)

and (A.1.1), we then obtain

≠
ˆT (p, t0)

ˆt0
≠ u(p, t0) = s(t0)g(p)ˆT (p, t0)

ˆp
+ pq

2N

ˆ
2
T (p, t0)
ˆp2 (A.1.4)

where the eventual fixation probability u(p, t0) =
s Œ

t0 dt�b(x æ 1, t|p, t0) obeys [1, 2]

≠
ˆu(p, t0)

ˆt0
= s(t0)g(p)ˆu(p, t0)

ˆp
+ pq

2N

ˆ
2
u(p, t0)
ˆp2 (A.1.5)

We verify that (A.1.4) and (A.1.5) reduce to the corresponding equations for the time-

homogenous process where the fixation probability and the fixation time are independent

of the initial time [3]. The partial di�erential equations (A.1.4) and (A.1.5) along with

the boundary conditions

u(0, t0) = 0, u(1, t0) = 1 , T (0, t0) = T (1, t0) = 0 (A.1.6)

can, in principle, be used to find the mean fixation time for either sign of selection.

However, these equations do not appear to be solvable, even for the dominance parameter

h = 1/2, as the eigenfunction expansion method commonly employed for solving partial

di�erential equations with time-dependent coe�cients requires the eigenfunctions of the

problem with constant selection that are, unfortunately, not known in a closed form [4].
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A.2 Mean fixation time in slowly changing environ-

ments

In slowly changing environments where Ê π N
≠1

, s(0) and Ns(0) is arbitrary, the eventual

fixation probability and the mean fixation time can be expanded in a power series in the

small, dimensionless parameter NÊ, that is, u = qŒ
i=0(NÊ)i

ui, T = qŒ
i=0(NÊ)i

T i. But

for small enough NÊ, it is a good approximation to terminate this series at i = 1.

To find the equation satisfied by ui, it is useful to rewrite (A.1.5) for the fixation

probability as

≠NÊ
ˆu(p, t0)

ˆ� = Ns(�)g(p)ˆu(p, t0)
ˆp

+ pq

2
ˆ

2
u(p, t0)
ˆp2 (A.2.1)

where � = Êt0 + ◊. Substituting the power series expansion for u on both sides of the

above equation, collecting terms with the same power of NÊ and taking � æ ◊ (that

is, Ê æ 0), we obtain (2.4) and (2.6) in the main text for u1 and u0, respectively. The

fixation probability in a static environment obeys the boundary conditions, u0(0, t0) =

0, u0(1, t0) = 1. Therefore, due to (A.1.6), u1(0, t0) = u1(1, t0) = 0. In a similar fashion,

the equations (2.5) and (2.7) for the mean fixation time and the corresponding boundary

conditions can be derived.

The conditional mean fixation time in slowly changing environment can be written as

T c = T

u
¥

T 0
u0

Q

a
1 + NÊ

T 1
T 0

1 + NÊ
u1
u0

R

b (A.2.2)

from which (2.8) follows on using (1 + ‘1)/(1 + ‘2) ¥ 1 + ‘1 ≠ ‘2 for small ‘1, ‘2.
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A.3 Feller process with time-dependent coe�cients

Taking the Laplace transform on both sides of (2.13), we find that F̃(Ÿ, ·) =
s Œ

0 dpe
≠Ÿp

F(p, ·)

obeys a first order di�erential equation,

ˆF̃

ˆ·
= (Ÿ ≠ Ÿ

2
¸(·))ˆF̃

ˆŸ
(A.3.1)

where ·(t) = h
s t

0 dt
Õ
s(tÕ) and ¸(·) = (2Nhs(t))≠1. The above di�erential equation can

be solved using the method of characteristics for the initial condition F(p, 0) = ”(p ≠ p0),

and we obtain [5, 6]

F̃(Ÿ, ·) = exp
C

≠
p0Ÿe

·

1 + Ÿe·
s ·

0 d· Õe≠· Õ
¸(· Õ)

D

(A.3.2)

= e

≠ p0s ·

0
d· Õe≠· Õ

¸(· Õ)

◊

Œÿ

n=0

1
n!

A
p0s ·

0 d· Õe≠· Õ
¸(· Õ)

Bn 1
(1 + Ÿ

s ·
0 d· Õe·≠· Õ

¸(· Õ))n
(A.3.3)

Taking the inverse Laplace transform of the summand in the last expression and then

carrying out the sum over n, we get

F(p, t) = 1
ÈpÍ

Û
ÈpÍ

p

2Np0e
≠

2Np0(1+ p
ÈpÍ )s ·

0
d· Õe≠· Õ (hs(tÕ))≠1

s ·
0 d· Õe≠· Õ(hs(tÕ))≠1 I1

Q

a
4Np0

Ò
p

ÈpÍ
s ·

0 d· Õe≠· Õ(hs(tÕ))≠1

R

b (A.3.4)

where In(z) is modified Bessel function of the first kind. In (A.3.4), Èp(t)Í =
s Œ

0 dpF(p, t)p =

p0e
· is the expected mutant allele frequency at time t, as can also be checked using

(2.13); however, when conditioned on fixation, this frequency grows as p0e
·
/u which is

faster than ÈpÍ [1]. We also note that the eventual fixation probability (2.14) can also be

written as u = LimŸ,·æŒF̃(Ÿ, ·).
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A.4 Distribution of the fixation time of on-average

beneficial mutant

In the stochastic phase A, although the expected mutant frequency grows exponentially

with time, (A.3.4) and (2.14) show that at large times (where · æ Œ, since s(t) > 0

at all times), the random variable y = p/ÈpÍ, conditioned on fixation, has a stationary

distribution,

Fc(y, t) = F(yÈpÍ, t)ÈpÍ

1 ≠ F(0, t)
·æŒ
≠æ ue

≠uy (A.4.1)

(see also Uecker and Hermisson [1]). Furthermore, in the vicinity of time t1, the

mutant frequency in the stochastic phase A is given by p = (p0y)e·(t)
, t . t1 and in the

deterministic phase B, the average mutant frequency grows as p(t) ¥ p(t1)e·(t)≠·(t1)
, t &

t1. Thus the initial mutant frequency in the deterministic phase is given by p(t1) =

p0ye
·(t1), and from (A.4.1), it follows that the random variable p(t1)e≠·(t1) is exponentially

distributed with mean (2Nu)≠1.

In the deterministic phase B that begins at time t1 and ends at time t2, the average

mutant frequency obeys dp/dt = s(t)g(p); integrating this equation over time from t1 to

t2, we get ·(t2) ≠ ·(t1) = h[D(p(t2)) ≠ D(p(t1))], where

D(p) = ln p

h
≠

ln q

1 ≠ h
+ 2h ≠ 1

h(1 ≠ h) ln(h + (1 ≠ 2h)p). (A.4.2)

But as the frequency p(t1) æ 0, q(t2) æ 0, the initial frequency q(t2) in phase C is related

to p(t1) as

h

h ≠ 1 ln[q(t2)e
1≠h

h ·(t2)] ¥ ln[p(t1)e≠·(t1)] ≠
1 ≠ 2h

1 ≠ h
ln

A
h

1 ≠ h

B

(A.4.3)

In the stochastic phase C, the wildtype population evolves stochastically from time t2

until it goes extinct at time Tc. The wildtype frequency can be described by a Feller process
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that obeys (2.12) for the distribution F̂(q, t) when p æ q, s(t) æ ≠s(t), h æ 1 ≠ h. For

constant selection, it has been claimed that looking backward in time (that is, t æ Tc ≠ t),

the wildtype frequency obeys the same dynamics as the mutant frequency with h æ 1≠h

but s unchanged [7]; however, this prescription results in a forward Kolmogorov equation

with negative population size which is clearly absurd. Therefore, we will work always

looking forward in time.

Proceeding in a manner similar to that for stochastic phase A, the distribution F̂(q, t)

for the wildtype frequency subject to the initial condition q(t2) can be found for t > t2.

Then the probability that the wildtype goes extinct by time Tc is given by (refer (2.14)

for a comparison)

1 ≠

⁄ Œ

0
dqF̂(q, Tc) = exp

S

WU≠
2Nq(t2)

s Tc
t2 dte

(1≠h)
s t

t2
dtÕs(tÕ)

T

XV (A.4.4)

Tc∫t2
¥ exp

S

U≠
2Nq(t2)e

1≠h
h ·(t2)

s Tc
0 dte

(1≠h)
s t

0 dtÕs(tÕ)

T

V (A.4.5)

On taking the derivative of the above cumulative distribution with respect to Tc and

averaging over the distribution of q(t2) which can be found using (A.4.1) and (A.4.3),

we finally arrive at (2.15) in the main text.

A.5 Mean fixation time of on-average beneficial mu-

tant

To find the conditional mean fixation time given by (2.18), we need to express Tc as a

function of �C using (2.16) which is given by

2N

�C
=

⁄ T

0
dt

Õ
e

(1≠h)s̄tÕ
e

≠ (1≠h)‡
Ê (cos(ÊtÕ+◊)≠cos(◊)) (A.5.1)
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For small Ê, we first expand the exponent of the integrand on the RHS to linear order in

cycling frequency to obtain

2N

�C
¥

⁄ T

0
dt

Õ
e

s0tÕ
e

s1Ê cos ◊ tÕ2
2 ¥

⁄ T

0
dt

Õ
e

s0tÕ
A

1 + s1Ê cos ◊
t
Õ2

2

B

(A.5.2)

where s0 = (1 ≠ h)s(0) and s1 = (1 ≠ h)‡. On carrying out the integrals and taking the

logarithm on both sides, to order Ê, we get

ln
32Ns0

�C

4
= s0T + s1Ê cos ◊

s
2
0

A

1 ≠ s0T + s
2
0
2 T

2
B

(A.5.3)

which can be inverted to finally give

s0T = A + Ês1 cos ◊

s
2
0

A

A ≠ 1 ≠
A

2

2

B

(A.5.4)

where A = ln
1

2Ns0
�C

2
. Using this expression in the inner integral of (2.18) and carrying

out the integrals, to leading and subleading orders in –, we obtain (2.19) and (2.20) in

the main text.

A.6 Mean fixation time of initially deleterious mu-

tant under strong selection

Below we consider the conditional mean fixation time of a co-dominant mutant in slowly

changing environment (Ê π N
≠1

π ‡) which is neutral on average (s̄ = 0) and can be

written as ‚c = ‚0,c + NÊ‚1,c with ‚1,c=‚1
u0

≠ ‚0,c
u1
u0

(see (2.8)). In a static environment

with selection coe�cient s(0) = ‡ sin ◊, the eventual fixation probability u0 and the
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unconditional mean fixation time ‚0 are given by [3]

u0(p, –) = 1 ≠ e
≠–p

1 ≠ e≠–
(A.6.1)

‚0(p, –) = u0(p, –)G0(1, –) ≠ G0(p, –) (A.6.2)

where

G0(p, –) = 1
–

⁄ p

0
dy

1 ≠ e
≠–(p≠y)

y(1 ≠ y) u0(y, –) (A.6.3)

and – = N‡ sin ◊. In a slowly changing environment, due to (2.4) and (2.5) in the main

text, the corresponding quantities are given by

u1(p, –)
2 cot ◊

= u0(p, –)H1(1, –) ≠ H1(p, –) (A.6.4)

‚1(p, –)
u0(p, –) = G1(1, –) ≠

G1(p, –)
u0(p, –)

pæ0
æ G1(1, –) (A.6.5)

where

H1(p, –) =
⁄ p

0
dy

1 ≠ e
≠–(p≠y)

y(1 ≠ y)
ˆu0(y, –)

ˆ–
(A.6.6)

G1(p, –) =
⁄ p

0
dy

1 ≠ e
≠–(p≠y)

y(1 ≠ y)

A
u1(y, –)

–
+ 2 cot ◊

ˆ‚0(y, –)
ˆ–

B

(A.6.7)

As discussed in the main text, for strong selection, the conditional mean fixation

time for a mutant that remains beneficial until it fixes can be found within a semi-

deterministic approximation and given by (2.20). Here, we therefore consider the

di�erence �(p, –) = ‚1,c(p, –) ≠ ‚1,c(p, ≠–) which, for single initial mutant, is given by

� pæ0= G1(1, –) ≠ G1(1, ≠–) ≠ ‚0,c(p, –)
A

u1(p, –)
u0(p, –) ≠

u1(p, ≠–)
u0(p, ≠–)

B -----
pæ0

(A.6.8)

To find �, we require the conditional mean fixation time ‚0,c and the fixation probability

u1 for arbitrary initial frequency. Although one can write exact expressions for them in



120

terms of the exponential integrals, here we are interested in the strong selection regime

(|–| ∫ 1). Using (5.1.10) and (5.1.51) in Abramowitz and Stegun [8], to leading order

in large –, we obtain

‚0,c(y, –) ¥

Y
____]

____[

2(ln |–| + “)
|–|

≠
y

2 , 0 < y < |–|
≠1 (A.6.9a)

ln(1 ≠ y) ≠ ln y + ln |–| + “

|–|
, |–|

≠1
Æ y < 1 (A.6.9b)

which decreases with the increasing frequency of initial mutants, as expected. For an

initially beneficial mutant (that is, s(0) > 0), the fixation probability can be approximated

by
u1(y, –)
2 cot ◊

¥ ≠ e
≠–y ln(1 ≠ y) , 0 < y < 1 , (A.6.10)

while for a mutant with s(0) < 0, we have

u1(y, –)
2 cot ◊

¥

Y
_]

_[

≠e
≠|–| ln |–|(e|–|y

≠ 1) , 0 < y < |–|
≠1 (A.6.11a)

e
≠|–|(e|–|y ln y + ln |–|) , |–|

≠1
Æ y < 1 (A.6.11b)

The above expressions (A.6.10) and (A.6.11a) reduce, respectively, to (11b) and (11c) of

Devi and Jain [2] when a single mutant is initially present.

Using (A.6.9a), (A.6.10) and (A.6.11a), we find that

u1(–, p)
u0(–, p)

pæ0
¥

2 cot ◊

–
, – ∫ 1 (A.6.12)

u1(≠|–|, p)
u0(≠|–|, p)

pæ0
¥ ≠2 cot ◊(ln |–| + “) , – π ≠1 (A.6.13)

and therefore the last term on the RHS of (A.6.8) is given by 4 cot ◊
|–| (ln |–| + “)2. To

estimate the di�erence, G1(1, –) ≠ G1(1, ≠–), we first note that for a codominant mutant,

the conditional fixation time, ‚0(p, –) is symmetric about – = 0 for any initial frequency
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p (refer Sec. 5.4, [3]). From the definition (A.6.7), we then get

G1(1, –) ≠ G1(1, ≠–)
2|–|≠1 cot ◊

=
⁄ 1

0
dy

(1 ≠ e
≠–(1≠y))u1(y,–)

2 cot ◊

y(1 ≠ y) +
⁄ 1

0
dy

(1 ≠ e
–(1≠y))u1(y,≠–)

2 cot ◊

y(1 ≠ y)

+
⁄ 1

0
dy

2–‚0,c(y, –)
y sinh(–

2 ) sinh
3

–y

2

4
sinh

A
–(1 ≠ y)

2

B

(A.6.14)

Using the results for ‚0,c and u1 found above in the last equation and carrying out

the integrals, we find that the first integral on the RHS is of order 1/|–|, the second

integral, to order one, is equal to 1
2(ln |–|)2 + “ ln |–| and the last integral is given by

3
2(ln |–|)2 + 3“ ln |–| + O(1). Putting all these results together shows that � decays as

1/|–| or faster. As the order one terms in (A.6.14) seem rather hard to calculate, we also

studied these integrals numerically and find our numerical analyses to be consistent with

� ≥ |–|
≠1. Thus, while ‚1,c ≥ –

≠2 for beneficial mutant under strong selection (refer

(2.20)), the change in the conditional mean fixation time for deleterious mutant decays

slowly as |–|
≠1.
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Appendix B

B.1 Equilibrium site frequency spectrum for strong

selection

In order to obtain an approximate expression for the SFS when the environment is static

and selection is strong, we first note that

⁄ 1

x
dye

≠Ay2≠By =
Ô

fie
B2
4A

1
erf

1
2A+B
2
Ô

A

2
≠ erf

1
2Ax+B

2
Ô

A

22

2
Ô

A
(B.1.1)

|A|,|B|∫1
≥ e

B2
4A

Q

ae
≠A(x+ B

2A )2

2Ax + B
≠

e
≠A(1+ B

2A )2

2A + B

R

b (B.1.2)

where the last expression is obtained using the asymptotic expansion of the error function

for large argument (see (7.1.23) of Abramowitz and Stegun [1]), and holds provided

2Ax + B and 2A + B are nonzero.

Using this result in (3.12), we find that in constant environment, when the population

is under strong selection (N̄ |s̄| ∫ 1) and h ”= 0, 1, the stationary state SFS can be

approximated as

f
ú(x) = ◊e

N̄ s̄[(1≠2h)x2+2hx]

x(1 ≠ x)

s 1
x dye

≠N̄ s̄[(1≠2h)y2+2hy]
s 1

0 dye≠N̄ s̄[(1≠2h)y2+2hy] (B.1.3)

≥
◊

x(1 ≠ x)

h
h+x(1≠2h) ≠

h
1≠he

≠N̄ s̄¸(x)

1 ≠
h

1≠he≠N̄ s̄
(B.1.4)
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which further leads to

x(1 ≠ x)f ú(x)
◊

¥

Y
_____]

_____[

h

h + x(1 ≠ 2h) ≠
he

≠N̄ s̄¸(x)

1 ≠ h
, N̄ s̄ ∫ 1 (B.1.5a)

e
≠N̄ |s̄|(1≠¸(x))

≠
(1 ≠ h)e≠N̄ |s̄|

h + x(1 ≠ 2h) , N̄ s̄ π ≠1 (B.1.5b)

where ¸(x) = 1 ≠ x
2

≠ 2h(x ≠ x
2) = (1 ≠ x)[(1 ≠ x) + 2x(1 ≠ h)] lies between zero and

one. If x is not close to one, the subleading (second) term in the above equations can be

neglected, and we arrive at (3.14a) and (3.14b) in the main text.

Using (B.1.5a) and (B.1.5b) in (3.9) for the sample SFS, we obtain

f
ú
n,i ¥

Y
____]

____[

◊n2F 1(1, i; n; 2 ≠
1
h)

i(n ≠ i) ≠

A
n

i

B
◊h

1 ≠ h

�(n ≠ i)
(2N̄ s̄(1 ≠ h))n≠i

, N̄ s̄ ∫ 1 (B.1.6a)
A

n

i

B
◊�(i)

(2N̄ |s̄|h)i
, N̄ s̄ π ≠1 (B.1.6b)

where �(i) is the gamma function and 2F 1(a, b; c; z) is the Gauss hypergeometric function

[1]. To obtain the above result for negative selection, we needed to evaluate
s 1

0 dxx
i≠1(1≠

x)n≠i≠1
e

≠N̄ |s̄|(x2+2h(x≠x2)), which may be approximated by
s Œ

0 dxx
i≠1

e
≠2hN̄ |s̄|x on noting

that the main contribution to the integrand comes from small x when N̄ |s̄| is large. For

positive selection, the second term on the RHS of (B.1.6a) is obtained in a similar fashion,

and shows how the asymptotic result is approached.

We briefly discuss the equilibrium SFS for a completely recessive and dominant allele.

For h = 0, we can use (B.1.2) for the integral in the numerator of the RHS of (B.1.3).

But as 2Ax + B = 0 for x = 0, we use the asymptotic expansion of the error function for

the integral in the denominator, and finally obtain

x(1 ≠ x)f ú(x)
◊

¥

Y
_]

_[

1
Ô

N̄ s̄fix

(1 ≠ xe
≠N̄ s̄(1≠x2)) , N̄ s̄ ∫ 1 (B.1.7a)

e
≠N̄ |s̄|x2 , N̄ s̄ π ≠1 . (B.1.7b)
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Similarly, for h = 1 and N̄ |s̄|(1 ≠ x)2
∫ 1, we get

x(1 ≠ x)f ú(x)
◊

¥

Y
_]

_[

1
x

, N̄ s̄ ∫ 1 (B.1.8a)

e
≠N̄ |s̄|(2x≠x2) , N̄ s̄ π ≠1 . (B.1.8b)

B.2 Eigenfunction expansion of the site frequency

spectrum

The density g(x, t) obeys (3.6) with homogeneous boundary condition g(1, t) = 0 and

inhomogeneous boundary condition g(0, t) = ◊fl(t). But one can shift g(x, t) using

a (non-unique) simple function that allows one to work with homogeneous boundary

conditions (see, for example, Chapter 8 of Mathews and Walker [2]). We therefore

write

g(x, t) = ◊(1 ≠ x)fl(t) + ◊v(x, t) (B.2.1)

where v(x, t) satisfies an inhomogeneous partial di�erential equation,

ˆv(x, t)
ˆt

= ≠s(t)x(1 ≠ x) ˆ

ˆx
[(x + h(1 ≠ 2x))v(x, t)] + x(1 ≠ x)

2N(t)
ˆ

2
v(x, t)
ˆx2

≠ fl(t)s(t)x(1 ≠ x)[1 ≠ 2x + h(4x ≠ 3)] ≠ (1 ≠ x)dfl

dt
(B.2.2)

with homogeneous boundary conditions, v(0, t) = v(1, t) = 0 and initial condition v(x, 0)

defined through (B.2.1).

The homogeneous boundary conditions allow one to use the method of separation of

variables, and therefore one can expand v(x, t) as a linear combination of the eigenfunction

Ân(x) of the homogeneous operator on the RHS of (B.2.2) with constant selection and

fixed population size. Unfortunately, the eigenfunctions Ân(x) are not known in a closed

form when selection is present [3], and we will therefore study (B.2.2) in Appendix B.3

in the absence of selection.
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B.3 Nonequilibrium site frequency spectrum for neu-

tral population

Although the moments of g(x, t) have been studied when selection is absent and the

population size is an arbitrary function of time [4, 5], an explicit expression for g(x, t) for

periodically changing population size has not been obtained. For s(t) = 0 at all times,

from (B.2.2), we have

ˆv(x, t)
ˆt

≠
x(1 ≠ x)
2N(t)

ˆ
2
v(x, t)
ˆx2 = r(x, t) (B.3.1)

where r(x, t) = ≠(1 ≠ x)dfl
dt . We first write

v(x, t) =
ÿ

m

am(t)Âm(x) (B.3.2)

r(x, t) =
ÿ

m

bm(t)Âm(x) (B.3.3)

where the eigenfunction Ân obeys the eigenvalue equation x(1 ≠ x)ÂÕÕ
n(x) + 2fl⁄Ân(x) = 0

with boundary conditions Ân(0) = Ân(1) = 0, and is orthonormal with respect to

the weight function w(x) = [x(1 ≠ x)]≠1, that is,
s 1

0 dxw(x)Ân(x)Âm(x) = ”m,n. It is

known that the eigenfunction Ân(x) = Cnx(1 ≠ x)P (1,1)
n≠1 (1 ≠ 2x) with the eigenvalue

⁄n = n(n + 1)/(2N), n = 1, 2, ... [6] where P
(a,b)
n (x) is the Jacobi polynomial and the

normalization constant Cn is given by

Cn =
Û

(2n + 1)(n + 1)
n

. (B.3.4)

on using (22.2.1) of Abramowitz and Stegun [1].

Substituting (B.3.2) and (B.3.3) in (B.3.1) and using the orthonormality condition

for the eigenfunctions, we find that the time-dependent coe�cient am(t) is the solution
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of the following first order ordinary di�erential equation,

fl(t)dam(t)
dt

+ m(m + 1)am(t)
2N̄

= ≠
Cm

m + 1fl(t)dfl(t)
dt

. (B.3.5)

Substituting the normalized eigenfunction Ân(x) obtained above in (B.3.2), and using

the resulting expression for v(x, t) in (B.2.1), we find that the site frequency spectrum

for a large population is given by

f(x, t) = g(x, t)
x(1 ≠ x) = ◊

fl(t)
x

+ ◊

Œÿ

m=1
am(t)CmP

(1,1)
m≠1(1 ≠ 2x) . (B.3.6)

Furthermore, using the above expression and (7.391.2) of Gradshteyn and Ryzhik [7],

the sample SFS is found to be

fn,i(t) = ◊fl(t)
i

+ ◊

n + 1

Œÿ

m=1
am(t)Cmm3F2(1 ≠ m, 2 + m, i + 1; 2, n + 2; 1) (B.3.7)

where 3F2(a1, a2, a3; b1, b2; c) is the generalized hypergeometric function. Using the

moments of g(x, t), the above result has also been obtained by éivkoviÊ and Stephan

[5].

For the periodically varying population size, the homogeneous solution of (B.3.5)

decays to zero at large times and the inhomogeneous solution is a periodic function with

frequency �. Therefore, at large times, the time-dependent part am(t) can be expanded

in a Fourier series as

am(t) =
Œÿ

k=≠Œ
d

(m)
k e

ik�t
. (B.3.8)

Substituting the above equation in (B.3.5), we find that the coe�cients d
(m)
k obey the

following three-term recursion equation,

d
(m)
k

A
m(m + 1)

2N̄
+ ik�

B

+ ‹�
2

1
(k ≠ 1)d(m)

k≠1 ≠ (k + 1)d(m)
k+1

2
= D

(m)
k (B.3.9)
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with D
(m)
1 = D

(m)
≠1 = ≠

‹�Cm
2(m+1) , D

(m)
2 = D

ú(m)
≠2 = i‹2�Cm

4(m+1) and D
(m)
k = 0, k ”= ±1, ±2 where

the subscript ú denotes the complex conjugate. It is clear from (B.3.9) that d
(m)
≠k = d

ú(m)
k

which ensures that am(t) is real. The above recursion equation does not seem to be

exactly solvable but we can obtain approximate expressions for the d
(m)
k ’s when the

cycling frequency is small or large relative to the inverse average population size.

Small cycling frequencies: We first consider the parameter regime � π 1/N̄ . On adding

(B.3.9) for k = ±1, we obtain

≠�Im(d(m)
1 ) + m(m + 1)

2N̄
Re(d(m)

1 ) ≠ ‹�Re(d(m)
2 ) = Re(D(m)

1 ) . (B.3.10)

Since am(t) and hence d
(m)
k ’s must vanish with �, it follows that the first and third term

on the LHS of the above equation are of order �2 or higher. But since the RHS is of

order �, we have Re(d(m)
1 ) ¥

2N̄
m(m+1)Re(D(m)

1 ). Using this result in (B.3.9) for k = 0, we

find that

d
(m)
0 ¥ ≠

2‹
2
N̄

2�2
Cm

m2(m + 1)3 , � π 1/N̄ . (B.3.11)

The higher coe�cients can also be obtained, and to order N̄
2�2, we get

d
(m)
1 ¥ ≠

Cm‹N̄�
m(1 + m)2 + i

Cm‹(2 + ‹
2)N̄2�2

m2(1 + m)3 (B.3.12)

d
(m)
2 ¥

3Cm‹
2
N̄

2�2

m2(1 + m)3 + i
Cm‹

2
N̄�

2m(1 + m)2 (B.3.13)

d
(m)
3 ¥ ≠i

Cm‹
3
N̄

2�2

m2(1 + m)3 (B.3.14)

d
(m)
k ¥ 0, k > 3 . (B.3.15)

From (B.3.7), the time-averaged sample SFS can be written as

f̄n,i = ◊

i
+ ◊

Œÿ

m=1

d
(m)
0 Cmm3F2(1 ≠ m, 2 + m, i + 1; 2, n + 2; 1)

n + 1 (B.3.16)

¥
◊

i
≠

◊

n + 1

Œÿ

m=1

2‹
2
N̄

2�2(2m + 1)
m2(m + 1)2 3F2(1 ≠ m, 2 + m, i + 1; 2, n + 2; 1)(B.3.17)
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where the last expression is valid for small cycling frequencies. The time-averaged mean

heterozygosity can be obtained from the above equation using 3F2(1≠m, 2+m, 2; 2, 4; 1) =

”m,1, and is given by

H̄
(neu) = ◊ ≠

◊

2‹
2
N̄

2�2
. (B.3.18)

Large cycling frequencies: For � ∫ 1/N̄ , the recursion equation (B.3.9) for k ”= 0, ±1, ±2

can be approximated by 2ixk + ‹(xk≠1 ≠ xk+1) ¥ 0 where xk = kd
(m)
k . The solution of

this equation is given by xk = A+x
k
+ + A≠x

k
≠ where

x± = i
1 ±

Ô
1 ≠ ‹2

‹
. (B.3.19)

In order that the Fourier series (B.3.8) converges, for positive k, we demand d
(m)
k

kæŒ
æ 0

which yields the coe�cient A+ = 0. Using the solution for d
(m)
k , k Ø 2 in (B.3.9) for

k = 1, 2, we can find A≠ and d1 to leading order in (N̄�)≠1, and finally obtain

d
(m)
k ¥

imCm

2N̄�
x

k
≠
k

, k Ø 2 (B.3.20)

d
(m)
1 ¥ ≠

‹mCm

2N̄�
1

1 +
Ô

1 ≠ ‹2 + i
‹Cm

2(m + 1) . (B.3.21)

Using the above result for d
(m)
1 in (B.3.9) for k = 0, we get

d
(m)
0 ¥ ≠

Cm

m + 1(1 ≠
Ô

1 ≠ ‹2) , � ∫ 1/N̄ . (B.3.22)

Thus, for large cycling frequencies, the time-averaged sample SFS is given by

f̄n,i ¥
◊

i
≠

◊(1 ≠
Ô

1 ≠ ‹2)
n + 1

Œÿ

m=1
(2m + 1)3F2(1 ≠ m, 2 + m, i + 1; 2, n + 2; 1)(B.3.23)

= ◊

i

Ô
1 ≠ ‹2 (B.3.24)
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where the last expression follows on using that the sum on the RHS of (B.3.23) equals

(n + 1)/i, as can be verified numerically.

B.4 Nonequilibrium site frequency spectrum for weak

selection

Here we develop a perturbation theory for weak selection when both the selection

and population size oscillate with the same frequency. In the following discussion, we

will write s(t) = ˘’(t) where ˘ = s̄, ’(t) = 1 + ‡
s̄ sin(Êt) and ˘ = ‡, ’(t) = sin(Êt)

when on-average selection is nonzero and zero, respectively. We begin by writing

v(x, t) = v0(x, t) + N̄˘v1(x, t) and substitute it in (B.2.2). Keeping terms up to linear

order in N̄˘, we find that v0 obeys (B.3.1) and v1 is a solution of the following equation,

ˆv1(x, t)
ˆt

= x(1 ≠ x)
2N(t)

ˆ
2
v1(x, t)
ˆx2 + r1(x, t) (B.4.1)

where,

r1(x, t) = ≠’(t)x(1 ≠ x) ˆ

ˆx
[(x + h(1 ≠ 2x))v0(x, t)]

≠ fl(t)’(t)x(1 ≠ x)[1 ≠ 2x + h(4x ≠ 3)] . (B.4.2)

As in Appendix B.3, we expand v1 and r1 as a linear combination of the eigenfunctions

Âm(x),

v1(x, t) =
Œÿ

m=1
Am(t)Âm(x) (B.4.3)

r1(x, t) =
Œÿ

m=1
Bm(t)Âm(x) (B.4.4)
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where Am(t) obeys the following ordinary di�erential equation,

fl(t)dAm(t)
dt

+ m(m + 1)
2N̄

Am(t) = fl(t)Bm(t)
N̄

(B.4.5)

and its long time solution can be expanded in a Fourier series as Am(t) = qŒ
k=≠Œ D

(m)
k e

ikÊt.

The coe�cient Bm(t) =
s 1

0 dxr1(x, t)Âm(x)w(x) can be found using the orthonormality

condition for the eigenfunctions (see Appendix B.3). But as the integrals involved in

Bm(t) do not seem to be known for arbitrary m, here we will focus on B1(t) which is

related to mean heterozygosity and given by

B1(t) = ≠
C

2
1(1 ≠ 2h)’(t)a1(t)

60 ≠
C1C3(1 ≠ 2h)’(t)a3(t)

70

+ C1C2’(t)a2(t)
30 + C1h’(t)fl(t)

6 (B.4.6)

where am(t) is defined in (B.3.8). The sample SFS averaged over a period can be written

as

f̄n,i = f̄
(neu)
n,i + N̄˘◊

n + 1

Œÿ

m=1
D

(m)
0 Cmm3F2(1 ≠ m, 2 + m, i + 1; 2, n + 2; 1) (B.4.7)

where f̄
(neu)
n,i is given by (B.3.17). In particular, for the time-averaged heterozygosity, we

have

H̄ = H̄
(neu) + ◊N̄˘C1

3 D
(1)
0 (B.4.8)

where H̄
(neu) is given by (B.3.18) for small cycling frequencies and f̄2,1 in (B.3.24) for

large cycling frequencies.

To demonstrate the weak selection calculation, below we consider the case when

˘ = s̄, ’(t) = 1, that is, selection is constant. We find that the coe�cients D
(1)
k obey the
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following recursion equation,

D
(1)
k

31
2 + ikN̄�

4
+ ‹N̄�

2
1
(k ≠ 1)D(1)

k≠1 ≠ (k + 1)D(1)
k+1

2
= D

(1)
k (B.4.9)

where

D
(1)
k = C1h

6

AA
‹

2

2 + 1
B

”k,0 + i‹”k,≠1 ≠ i‹”k,1 ≠
‹

2

4 ”k,≠2 ≠
‹

2

4 ”k,2

B

≠
C

2
1

60 (1 ≠ 2h)
3

i‹

2 d
(1)
k+1 + d

(1)
k ≠

i‹

2 d
(1)
k≠1

4

+ C1C2
30

3
i‹

2 d
(2)
k+1 + d

(2)
k ≠

i‹

2 d
(2)
k≠1

4

≠
C1C3

70 (1 ≠ 2h)
3

i‹

2 d
(3)
k+1 + d

(3)
k ≠

i‹

2 d
(3)
k≠1

4
. (B.4.10)

For small cycling frequencies, using an argument similar to that given in Appendix B.3

for d
(m)
0 , we get Re(D(1)

k ) = Re(D(1)
k ); on using d

(m)
k given by (B.3.11)-(B.3.15), we find

that Re(D(1)
1 ) ≥ O(N̄�). But as D

(1)
0 is a constant in N̄�, we finally obtain

D
(1)
0 = D

(1)
0 + ‹Re(D(1)

1 )N̄� ¥
C1h(2 + ‹

2)
12 . (B.4.11)

For large cycling frequencies, as in Appendix B.3, D
(1)
k = A≠x

k
≠/k, k Ø 3. Then using

the properties of d
(m)
k for |k| < 3 described above, we find

D
(1)
0 = h(1 ≠ ‹

2)
Ô

6
. (B.4.12)

B.5 Mean heterozygosity for co-dominant, on-average

neutral mutant

For co-dominant allele in an on-average neutral environment with constant population

size, the time-averaged mean heterozygosity is equal to ◊ for any cycling frequency and
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strength of selection. For h = 1/2, s̄ = ‹ = 0, (3.6) reduces to

ˆg(x, t)
ˆt

= ≠
‡ sin(Êt)x(1 ≠ x)

2
ˆg(x, t)

ˆx
+ x(1 ≠ x)

2N̄

ˆ
2
g(x, t)
ˆx2 . (B.5.1)

We first note that the above equation has the following symmetry:

g(x, t) = ◊ ≠ g

3
1 ≠ x, t + fi

Ê

4
(B.5.2)

where the boundary conditions, g(0, t) = ◊, g(1, t) = 0 have been used. Then using the

definition H(t) = 2
s 1

0 dxg(x, t) and on integrating by parts, (B.5.1) yields

dH

dt
= ‡ sin(Êt)

⁄ 1

0
dx(1 ≠ 2x)g(x, t) + ◊

N̄
≠

H(t)
N̄

. (B.5.3)

Integrating both sides over the period 2fi/Ê, we find that the LHS vanishes since H(t)

is a periodic function, and the first term on the RHS is also zero due to the symmetry

property (B.5.2); we thus finally arrive at H̄ = ◊.

B.6 Nonequilibrium site frequency spectrum for strong

selection

For on-average neutral selection and equal cycling frequencies for selection and population

size, we write (3.6) as

ˆg(x, Â)
ˆÂ

= ≠
N̄‡ sin Â

N̄Ê
x(1 ≠ x) ˆ

ˆx
[(x + h(1 ≠ 2x))g(x, Â)]

+ x(1 ≠ x)
2N̄Êfl(t)

ˆ
2
g(x, Â)
ˆx2 (B.6.1)
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where Â = Êt and expand g(x, t) in powers of (N̄Ê)≠1. If N̄‡ π 1 and N̄Ê ∫ 1, the first

term on the RHS must be neglected in comparison to the second term on the RHS, and

therefore the leading order result for g(x, t) is given by the neutral population already

discussed in Appendix B.3 and the subleading correction due to selection in Appendix B.4.

For strong selection, if the LHS is also ignored, we get g(x, t) is a constant in allele

frequency which is not true.

Here, we are therefore interested in the regime where N̄‡ ∫ 1, N̄Ê ∫ 1 with ‡/Ê

finite. Then for rapidly changing environment and strong selection, the second term on

the RHS can be ignored resulting in a first order partial di�erential equation for g(x, t). A

numerical analysis of the resulting approximate equation with boundary conditions (3.7)

is found to be in reasonable agreement with that for the exact equation. For simplicity,

we consider the case when h = 1/2 and solve the first order partial di�erential equation

by the method of characteristics.

For this purpose, we consider a change of variables as › = ›(x, Â) and ÷ = ÷(x, Â),

and choose › = Â and ÷ = constant so that

ˆ÷

ˆÂ
+ ‡ sin Â x(1 ≠ x)

2Ê

ˆ÷

ˆx
= 0 (B.6.2)

which leads to the characteristic equation,

dx

dÂ
= ‡ sin Â

2Ê
x(1 ≠ x) (B.6.3)

and the characteristic curve to be,

÷ = ln
3

x

1 ≠ x

4
+ ‡

2Ê
cos Â . (B.6.4)
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We then obtain ˆg/ˆ› = 0 which implies that g(›, ÷) = G(÷) where G should be found

using the boundary conditions. We are, however, unable to implement the boundary

conditions (3.7) in this solution. If instead we determine G using the initial condition,

g(x, 0) = ◊(1 ≠ x), we get

g(x, t) = ◊

1 + x
1≠xe

‡(cos(Êt)≠1)
2Ê

(B.6.5)

which shows that the g(x, t) has phase di�erence of fi/2 from selection, but this result is

independent of ‹ and � which is inconsistent with the numerical results for g(x, t).



Bibliography

[1] Abramowitz, M. and I. A. Stegun, 1964 Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. Dover.

[2] Mathews, J. and R. L. Walker, 1970 Mathematical methods of physics. Pearson

Education Limited.

[3] Kimura, M., 1957 Some problems of stochastic processes in genetics. Ann. Math.

Stat. 28: 882–901.

[4] Evans, S. N., Y. Shvets, and M. Slatkin, 2007 Non-equilibrium theory of the

allele frequency spectrum. Theor Popul Biol. 71: 109–119.

[5] éivkoviÊ, D. and W. Stephan, 2011 Analytical results on the neutral non-

equilibrium allele frequency spectrum based on di�usion theory. Theor. Popul. Biol. 79:

184–191.

[6] Kimura, M., 1964 Di�usion models in population genetics. J. Appl. Prob. 1:

177–232.

[7] Gradshteyn, I. S. and I. M. Ryzhik, 2007 Table of Integrals, Series, and Products.

Academic Press, New York.



Appendix C

C.1 Di�usion Theory

The eventual fixation probability, Pf(x, t0), that the mutation allele with initial frequency

x at time t0 fixes in the population obeys the following backward Kolmogorov equation,

and depends upon on the arrival time of the mutation (t0) [1–3] as

≠
ˆPf(x, t0)

ˆt0
= s(t0)g(x)ˆPf(x, t0)

ˆx
+ x(1 ≠ x)

2Ne

ˆ
2
Pf(x, t0)
ˆx2 (C.1.1)

When the mutation is on-average neutral, and environmental change is slow, fixation

probability is approximated using perturbation theory as Pf ¥ P0 + NeÊP1. The P0 and

P1 are, respectively, the eventual fixation probability in the static environment and the

leading order deviation in Ê in the fixation probability, which obey the following partial

di�erential equations [3],

0 = s(◊0)g(x)ˆP0(x, ◊0)
ˆx

+ x(1 ≠ x)
2Ne

ˆ
2
P0(x, ◊0)

ˆx2 (C.1.2)

≠
ˆP0(x, ◊0)

ˆ◊0
= Nes(◊0)g(x)ˆP1(x, ◊0)

ˆx
+ x(1 ≠ x)

2
ˆ

2
P1(x, ◊0)

ˆx2 (C.1.3)

with the boundary conditions as P0(0, ◊0) = 0, P0(1, ◊0) = 1, P1(0, ◊0) = 0, and

P1(1, ◊0) = 0. The ◊0 = Êt0 is the initial phase at which mutation arises in the

population. Equation (C.1.3) is similar to Eqn. (B.3) in [3] and can be solved using the
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integrating factor method for the arbitrary inbreeding coe�cient. Using (C.1.2), the

fixation probability in static environment is given by

P0 =
1 ≠

ae
≠A(x2+2ax)
x + a

1 ≠
ae

≠A(1+2a)

1 + a

(C.1.4)

where

A = |Ne‡ sin ◊0| (1 ≠ 2h ≠ f(1 ≠ 2h)) (C.1.5)

a = h + f(1 ≠ h)
1 ≠ 2h ≠ f(1 ≠ 2h) (C.1.6)

For strong selection |Ne‡| ∫ 1, and the initial mutation frequency x æ 0, the P0, and

P1 are given as

P0 = 2x|Ne‡ sin ◊0| (1 ≠ h(1 ≠ f)) e
≠|Ne‡ sin ◊0|(1+f) (C.1.7)

P1 = 2x|Ne‡ cos ◊0|(1 + f)(1 ≠ h + fh)
f + h(1 ≠ f)

◊ e
≠|Ne‡ sin ◊0|(1+f) ln (|Ne‡ sin ◊0| (h + f (1 ≠ h))) (C.1.8)

Unlike in a randomly mating population, the deviation in fixation probability is weakly

dependent on the dominance parameter when the inbreeding coe�cient is high. Since

conditional mean fixation time depends upon the fixation probability as discussed in the

main text, the deleterious mutations, be it deleterious or recessive, are weakly a�ected in

the slowly changing environment for highly inbred individuals, which is not the same in

randomly mating population.

The time inhomogeneous Kolmogorov backward equation used for randomly mating

populations in Kaushik and Jain [4] can be extended easily for inbreeding populations.

We use the same perturbation theory used in fixation probability for the conditional

mean fixation time when mutation is on-average neutral, by writing T̄c = T̄0,c + NeÊ T̄1,c
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in (4.1). The T̄0,c, and T̄1,c follows [4]

≠NeP0 = Nes(◊0)g(x)ˆT0,c(x, ◊0)
ˆx

+ x(1 ≠ x)
2

ˆ
2
T0,c(x, ◊0)

ˆx2 (C.1.9)

≠
ˆT0,c(x, ◊0)

ˆ◊0
≠ NeP1 = Nes(◊0)g(x)ˆT1,c(x, ◊0)

ˆx
+ x(1 ≠ x)

2
ˆ

2
T1,c(x, ◊0)

ˆx2 (C.1.10)

C.2 Semi-deterministic approximation

We follow the same procedure as in Martin and Lambert [5], and Kaushik and Jain

[4] to calculate the fixation time for the beneficial mutations in an inbreeding population.

Using (4.2), the fixation time distribution can be straightforwardly generalized for

inbreeding population as

P (Tc) =
3

≠sa

sb

4 ⁄ Œ

0

dqB
2
e

(sb/sa)·(Tc) exp (≠Bq)
2Ne�n

1
“aq

≠sa/sb
2

2n
e

≠“aq≠sa/sb (C.2.1)

where ·(Tc) =
s Tc

0 s(tÕ)dt
Õ, and

B = 2Ne
s Tc

0 dte
sb

s t

0 s(tÕ)dtÕ
(C.2.2)

“a = 2NePfe
≠A (C.2.3)

where Pf = sa‡ sin ◊0/(1 + f) is the eventual fixation probability for a single mutation.

For the static environment the fixation time is given by [5]

T̄0,c =

1
(c1 + 1)k

≠ 1
2

(log[“sb
a (2Nes0)sa ] + “EM(sa + sb)) ≠ c1ksb 2F1(1 ≠ k, 1, 2, ≠c1)

cks0sa

(C.2.4)

where s0 = sbs(0), k and n are the initial and the established copies of mutation allele

respectively. The 2F1(a, b; c; z) is the Gauss hypergeometric function [6]. The “a, c1, and
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ck are given by

c1 = Pf

1 ≠ Pf
(C.2.5)

ck = 1 ≠ (1 ≠ Pf )k

(1 ≠ Pf )k (C.2.6)

“a = 2NePfe
≠A (C.2.7)

A =
3

sa ≠ sb

sb

4
ln

3
sa

sb

4
(C.2.8)

For a single mutation (k = 1), the (C.2.4) matches exactly with Eqn. (17) in Glémin [7]

where approximate expression of the conditional mean fixation time is obtained using

di�usion theory. The deviation in the conditional mean fixation time in the slowly

changing environment, T̄1,c is then given by,

T̄1,c = ≠
‡ cos ◊0
2s(0)2s2

a

kÿ

n=1

A
k

n

B
c1
ck

51
ln

1
(2Nesbs(0))(sa/sb)

“a ≠ Â
0(n)

222
≠ Â

1(n)
6

(C.2.9)

where, Â
n (x) is the Polygamma function, given by the (n + 1)st derivative of the

logarithm of the gamma function (�(x)) [6].
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