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Abstract

Two-phase flows are ubiquitous in natural and industrial settings. In the present work, we
have developed a general ‘one-fluid’ diffuse-interface model suitable for various two-phase
flow problems. The specific two-phase problem considered in the current work involves a
binary fluid system, which poses a unique property of being miscible in each other depending
on the system’s temperature and is completely miscible above a particular temperature, called
the upper critical solution temperature (UCST). Accordingly, we have developed a spectral
collocation-based phase field model to study the onset characteristics of Rayleigh-Bénard
convection in a two-layer binary fluid system. We have also considered the Marangoni effect
(variation of surface tension) in addition to the pure buoyancy-driven instability to examine
how the strength of surface tension gradient can alter the onset behavior of the system. We
have observed that the strength of the Marangoni effect can expand or contract the oscillatory
onset window observed in the case of pure buoyancy-driven convection. The solubility of the
system acts in unison with the interfacial tension term and comes with its own dual role in
making the onset of convection either oscillatory or stationary.
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Chapter 1

Introduction

Buoyancy-driven flows are ubiquitous in geophysical fluid dynamics, ranging from Earth’s
molten core flow to atmospheric flow. They are also central to various transport processes
in diverse industrial settings. Natural convection is essentially a buoyancy-driven flow that
is instigated by density inhomogeneities in the presence of a gravitational field, mainly
due to the variation in temperature or composition of the system. A typical example of
the phenomena is the problem of Rayleigh-Bénard-Marangoni (RBM) convection, wherein
fluid(s) is(are) subjected to adverse thermal gradient by sandwiching it(them) between two
horizontal isothermal plates. The single-layer RB convection has been extensively studied
since it serves as one of the model problems for understanding nonlinear physics, complex
dynamics, pattern formation, and turbulence [72]. An extension of RB convection involving
a multi-layer system also has many applications, like in the Earth’s mantle and liquid
encapsulation crystal growth. In a multi-layer setting, interfaces add further complexity to
the problem. Common approaches to handling interfaces in a multiphase problem assume
that the interface is of zero thickness. Necessary jump conditions across this zero-thickness
interface maintain the continuity of different quantities like velocity, temperature, etc., and
the associated fluxes.

It may be noted that the consideration of zero interface thickness is an idealization and
does not often portray a realistic picture of the fluid configuration, particularly for systems
closer to their critical (consolute) point. Here, the interface between the two fluids is a diffuse
region wherein the properties change rapidly but smoothly. The idea of non-zero interface
thickness was developed in detail by Rayleigh [59] and van der Walls [58]. An appropriate
approach to realistically model fluid interfaces in a multiphase problem should involve non-
sharp (diffuse) considerations, and in this regard, the widely-regarded ‘phase-field model’
serves as a potent tool. Here, the phase variable distinguishes between the phases involved
and their interfaces. The current work uses a modified phase-field formulation approach
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to understand the evolution of RBM convection in two-layer binary fluid systems. While
detailed discussions on the phase-field model and its application to multiphase problems are
reserved for subsequent chapters, a brief introduction of the Rayleigh-Bénard-Marangoni
(RBM) convection phenomena is presented below.

1.1 RBM convection

1.1.1 RB convection in a single-layer problem

The Bénard problem mainly refers to the thermal instabilities that arise when a horizontal
layer of fluid, confined between two plates, is heated from below, thereby creating an adverse
thermal gradient that results in unstable stratification. As the name suggests, this instability
was discovered by Bénard [6] in 1900. He observed hexagonal patterns in a thin layer
of spermaceti heated from the bottom. In 1916, Rayleigh [53] put forward a theory for
this instability wherein he identified buoyancy as the destabilizing force that instigates
fluid motion, and kinematic viscosity and thermal diffusivity as the stabilizing factors. For
sufficiently small temperature differences, thermal energy gets transferred via pure conduction
from the lower to the upper plate, and no fluid motion is involved. The agitating fluid parcels
start moving when the temperature difference exceeds a critical value. This process is called
as the onset of convection. In other words, the competition amongst various factors yields a
critical value that separates the flow and no-flow scenarios. Understanding how this criticality
changes with different system parameters is often pertinent.

The overall mechanism behind the onset of convection can be explained as follows.
Though the fluid density is uniform initially, the imposed temperature gradient creates a
density stratification in the system. The fluid closer to the lower plate becomes lighter than
the fluid above it. If one gives a small upward mechanical perturbation to this hot fluid
particle, it will start to move upwards due to buoyancy. This action will further reinforce the
buoyancy force acting on the particle as it experiences a colder ambiance during its ascent.
To satisfy continuity, liquid from the neighborhood fills the original location of the agitating
fluid. Thus, the fluid particles’ shifting and relocating actions set the convection in motion.
In the absence of any dissipative effects, this motion will continue indefinitely. However, no
fluids are ideal, and a few fluid properties inhibit the growth of the perturbations through
diffusion. For example, the kinematic viscosity tries to decelerate and diffuse the momentum
of the agitated parcel. The thermal diffusivity attempts to equilibrate the fluid blob with its
neighboring fluid particles thermally. In other words, due to the kinematic viscosity and the
thermal diffusivity, the fluid blob loses the momentum and heat it initially carried. Therefore,
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one can intuitively say that it is harder to set up convection in fluids having higher values of
momentum and thermal diffusivities, i.e. one needs to maintain a higher temperature gradient
in such fluids to start a convective motion.

From the above discussion, it is clear that the transition from a purely conductive state to
a convective one depends on the magnitude of the temperature gradient and the dissipating
entities like kinematic viscosity and thermal diffusivity. Essentially, the temperature gradient
gives rise to unstable density stratification, and in the presence of the gravitational field, the
destabilizing buoyant forces must outweigh the stabilizing dissipative forces for the onset of
convection to occur via the continued growth of the initial disturbance imposed on the fluid
particles. To quantify the relative importance of these opposite forces, one typically uses a
non-dimensional number called the Rayleigh number (Ra), which gives the ratio between
the buoyancy and the diffusive forces. Ra is defined as

Ra =
gβ∆θL3

νκT
, (1.1)

where g is the magnitude of gravitational acceleration, β is the volumetric expansion co-
efficient of the fluid, and ∆θ is the temperature difference between the top and bottom
plate. L is the characteristic length-scale, typically the height of the fluid layer. ν and κT

are the kinematic viscosity/momentum diffusivity and the thermal diffusivity of the fluid,
respectively. Hence to instigate the instability, the magnitude of buoyant force must exceed
the flow-inhibiting forces, i.e. Ra >> 1. Note that the Rayleigh number scales as L3.

1.1.2 Marangoni convection in a single-layer problem

Another type of thermal instability occurs when a free surface replaces the upper rigid
boundary. The length scale (L) of the problem is small such that the gravity-induced
buoyancy has less influence on the convection onset characteristics. Here, the surface tension
gradient plays a crucial role. With the imposed temperature gradient, any perturbation of
the free surface exposes the trough to a higher temperature than the crest. This process
creates a differential heating of the free surface, which incubates a gradient in the surface
tension. As a result, the fluid particles from a lower surface tension region are pulled towards
the higher surface tension region. Here again, the dissipating effects like momentum and
thermal diffusivities try to inhibit this motion. Therefore, a threshold value of surface tension
gradient is required to provoke convection in the system. The relative importance of the
destabilizing gradient of interfacial tension to the stabilizing dissipative effects is given by a
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non-dimensional number called the Marangoni number (Ma) written as

Ma =
σθ ∆θL

µκT
. (1.2)

Here, σθ is the surface tension gradient with respect to temperature, and µ is the fluid’s
dynamic viscosity.

Thus for the onset of instability, Ma should be >> 1, i.e., the inhibiting entities can no
longer outweigh the driving surface-tension gradient force. The Marangoni number scales as
L, and as we can see, the buoyancy-driven convection takes over the surface tension-driven
convection as we increase the length scale of the problem under the gravitational influence.

1.1.3 RB convection in a two-layer problem

The two-layer counterpart of the RBM convection is rich in physics and is usually more
complex. Typically, the lighter fluid is placed on top of the heavier fluid to maintain a stable
stratification. Sometimes fluids of equal density are also considered. However, they should
have different volumetric expansivity, preferably the top one with a higher value. An unstable
stratification , i.e. denser fluid on the top leads to the classical Rayleigh-Taylor instability.

In a typical two-layer RB system, different modes of convection (Fig. 1.1) can be observed
depending on the fluids’ properties and the height ratios of the individual layers. The first
mode is called the lower dragging mode, wherein the onset of buoyancy-driven convection
primarily occurs in the lower layer of the system, and the upper layer is passively driven due
to the continuity of velocity and shear stress at the fluid interface. The second one, called as
the upper dragging mode, is a mirror image of the first kind. Here, the initial buoyancy-driven
flow happens in the upper layer of the system, and the lower layer gets passively dragged. The
third kind is called the mechanical coupling mode, wherein both layers undergo simultaneous
excitation, and a proper mechanical continuity is maintained at the interface. The rotational
orientation of the convection rolls is opposite in the layers. The fourth case, where the rolls
rotate with the same orientation, is called the thermal coupling mode. Both layers undergo
simultaneous excitation again, and the thermal continuity is maintained at the interface.
Some idle rolls are formed in the vicinity of the interface to ensure mechanical continuity
and avoid the high shearing region. The fifth case is more pertinent to the liquid-gas system
and is called the surface tension driven mode. The buoyancy-driven instability occurs in the
gaseous layer, and these convection rolls create an uneven temperature distribution on the
fluid interface. This situation imposes a surface tension gradient on the interface, and the
fluid particles from the lower surface tension region are pulled towards the region of higher
surface tension, thereby forming a convective motion in the liquid layer. In this surface



1.2 Importance of multiphase/multilayer thermal instabilities 5

Fig. 1.1 Non-oscillatory modes of RB Convection

tension-driven mode, one can observe that the convection starts in the liquid layer due to the
gradient in interfacial tension and not essentially due to the continuity of velocity and shear
stresses.

Note that all the modes mentioned above can be categorised under the non-oscillatory
modes of convection onset. An interesting scenario occurs when there is an equal propensity
for the non-oscillatory mechanical coupling (MC) and thermal coupling (TC) modes to occur
at some height ratios. This situation leads to the ’oscillatory mode of convection’ wherein
the system oscillates between MC and TC modes. The Lyapunov exponent at this flow onset
condition is complex, i.e., the imaginary part of the exponent is non-zero. From a dynamical
system perspective, the oscillatory systems are essentially non-self-adjoint in nature. The
underlying mathematical features of oscillatory convection are discussed in the next chapter.

1.2 Importance of multiphase/multilayer thermal instabili-
ties

The need for the thorough characterisation of multi-layer convection arises both from the
requirement of understanding natural phenomena and from relevant industrial applications.
As mentioned earlier, the bi-layer thermal instabilities can be observed predominantly in the
geophysical context, for example, in Earth’s mantle convection [13]. As shown in Fig. 1.2,
two types of hypotheses have been proposed in this regard: the whole mantle convection
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Fig. 1.2 Earth’s mantle convection
(Credit: nationalgeographic.org)

theory and the layered mantle convection theory. The current study is more relevant to the
latter viewpoint, wherein the convective rolls are observed in the upper and lower mantles,
and there is an intermediate zone.

One of the industrial applications of the two-layer RB convection is in the process of
liquid encapsulated crystal growth [33]. The encapsulation protects the core material from
environmental effects. The basic idea of this process is to extract a high-quality crystal
from the melt sandwiched between two liquids. The formation of crystals is effectuated by
removing heat from the melt. However, this heat removal process can create a temperature
gradient, which can induce convection inside the melt and deteriorate the quality of the
crystal. Hence, understanding the convection onset behavior in such systems is essential to
obtaining high-quality crystals.

1.3 Need for diffuse interface approach

As early as the 19th century, the concept of a fluid interface being a region of rapid but
smooth property change over a finite thickness was well recognised. Later in the same
century, Rayleigh [59] and van der Walls [58] developed, in detail, the theory of non-zero
thickness interfaces. As a fundamental fact of mixture thermodynamics, it is well known
that there is limited miscibility between the so-called immiscible fluid components [39] even
at low temperatures. As the temperature increases, the fluids become more soluble in one
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another, and after a critical temperature, they form a single-well potential curve in the free
energy vs. phase-parameter diagram.

For the sake of convenience, the conventional approach to modelling multiphase systems,
via the sharp-interface approach, often assumes the interface to be a δ -function. Though this
approximation works well within the limit of negligible miscibility (immiscible limit), it
becomes ill-suited for fluid systems closer to their consolute point, a state beyond which the
fluids are completely miscible. In such scenarios, the only viable option is to consider models
that can account for the diffuse nature of the interface. The well-known ‘Phase field model’ is
one such approach that implicitly considers the fluid interface to be diffuse in the ‘one-fluid’
framework. The current work uses the phase field model to understand the evolution of
Rayleigh-Bénard-Marangoni (RBM) convection in two-layer binary fluid systems.

1.4 Overview of the thesis

In the present study, we attempt to computationally understand the onset characteristics of
RBM convection in a two-layer binary fluid system. Binary fluids pose a unique property of
being partially soluble in each other based on the temperature and are entirely miscible after
a critical temperature, called the upper critical solution temperature (UCST) [8]. In order to
capture this behaviour, we have employed the phase-field method with a modified free-energy
formulation. Apart from its ability to model the diffuse interface structure, the additional
benefit of using the phase-field method comes from its "one-fluid" formulation [50]. Note
that the current implementation involves the Chebyshev pseudospectral approach, keeping in
mind the stringent accuracy requirement for the stability problems. The need for obtaining
a proper resolution of the interfacial gradients prohibits us from directly implementing the
standard Gauss-Lobatto-Chebyshev (G-L-C) grid structure. To resolve this issue without
losing accuracy, we have taken the help of an adaptively transformed Chebyshev grid system
[67, 23]. Although the fluids considered are incompressible, their mixing region becomes
non-solenoidal [17]. Thus, via the conventional approach, the problem becomes a Quasi-
incompressible one [39] that is harder to solve since the chemical potential becomes a
function of the pressure. Note that the pressure is presently determined by the kinematic
condition and not by the thermodynamic constraints [3]. To overcome this issue, we have
redefined the velocity field as the volume-averaged quantity [20, 1] instead of the typical
mass-averaged value. This volume-averaged velocity field will be solenoidal throughout the
domain, including the mixing region [20]. Thus by varying the parameter that controls the
miscibility of the fluids, we have shown its importance and the way it affects the criticality of
a typical RBM convection system.
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The current thesis delves into the details of all the above activities via five chapters,
including the current introduction chapter. In chapter 2, we begin with the historical develop-
ment of RB convection. This is followed by the discussion on the occurrence of oscillatory
modes in two-layer RBM systems. We subsequently introduce the different numerical meth-
ods/schemes that are currently in use to solve multiphase problems. In this context, we
discuss the phase-field method in detail and show its appropriateness for the present problem
of consideration.

In chapter 3, we initiate discussions about the modifications for making the phase-field
model suitable for binary fluids. We provide a detailed description of the formulation,
including the volume-averaging process. The linear stability problem is formulated via the
spectral collocation procedure with appropriate mapping carried around the diffuse interface.
We show the consistency of our approach by matching our results at a very small interface
thickness with the results obtained from the domain decomposition method (DDM) (discussed
in detail in Appendix A) for immiscible and sharp-interface limits. Finally, we discuss the
RBM stability of binary fluids and how the miscibility factor affects the critical Rayleigh
numbers and the window of oscillatory onset. All the analyses in Chapter 3 are performed
ignoring the presence of Marangoni effects, which are dealt with in Chapter 4. The thesis
ends with Chapter 5, which provides the summary and conclusions of the current work along
with the scope for future extension.



Chapter 2

Literature review

As mentioned in the introduction chapter, the current work aims to understand the evolution
of the Rayleigh-Bénard-Marangoni (RBM) convection in two-layer binary fluid systems.
To this effect, the current chapter deals with an overview of the literature relating to RBM
convection in single and multiple layers, followed by different multiphase simulation methods
that can serve as tools to understand the binary fluid RBM convection problem. A brief
overview of the works relating to binary fluids is also provided towards the end of this chapter.
We now begin this chapter with a review of the literature describing the RBM convection in
single-layer systems.

2.1 Rayleigh-Bénard-Marangoni (RBM) Convection in a
single-layer system

The classical Bénard problem primarily refers to the thermal instabilities arising from unstable
stratification in a heated fluid layer. The theory for this instability was formulated by Rayleigh
[53] where he hypothesized that buoyancy is the driving force for the onset of convection
here. Later, investigations by Block [9] and Pearson [48] revealed the surface tension to be
the destabilizing force for the thin layer of fluid considered by Bénard in his experiments.

Note that the importance of surface tension fades away in comparison to buoyancy when
the thickness of the fluid layer is increased. As mentioned in the previous chapter, two
different non-dimensional numbers essentially govern the physics for these instabilities. For
a relatively thicker layer of fluid, the onset of convective instability primarily depends on
the Rayleigh number, which gives the relative importance of the destabilizing buoyancy
effect over the stabilizing diffusive effects involving the heat diffusivity and the momentum
diffusivity. Whereas for relatively thin layers, the onset of instability depends on the critical
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values of the Marangoni number, which gives the relative importance of advective transport
due to surface tension variations over the same diffusive effects. In 1964, Nield [43] shed light
on the relative importance of driving forces with the layer height. Scriven and Sternling [60]
investigated the effect of surface tension on cellular convection while neglecting buoyancy.
They concluded that there is nothing called a critical Marangoni Number for the onset of
stationary instability. However, further studies by Smith [63] confirmed the existence of a
non-trivial critical Marangoni Number by considering the effect of gravity waves.

2.2 Rayleigh-Bénard-Marangoni (RBM) Convection in a
two-layer system

Proceeding further, we move on to the two-layer systems where convective instabilities in
two different, stably-stratified fluids are considered. The goal is to understand the diverse
modes of convection that arise when such layers are subjected to destabilizing thermal
gradients. Busse [13] focused on modelling Earth’s mantle convection and concluded that
the horizontal scale of convection in the lower mantle determines the horizontal scale of
convection in the upper mantle owing to the larger thickness of the lower mantle. These
phenomena are referred to as the lower or upper dragging mode (Johnson & Narayanan [32]),
based on the layer which undergoes primary excitation. If both the layers have a propensity
to undergo excitation, one can expect either a stationary mechanical or thermal mode of
coupling between the layers. Interestingly, both MC and TC modes become equiprobable for
some height ratios and a favourable combination of fluid properties. This often leads to the
scenario of overstability, wherein the system oscillates between these modes as they cannot
coexist simultaneously at any given instant. Rasenat et al. [52] proved the existence of such
oscillatory instability, wherein a cyclic variation between the non-oscillatory mechanical and
thermal coupling modes was observed. Gershuni and Zhukhovitskii [26] considered a two
fluids system with a horizontal interface wherein the instability was set up when the fluids
were heated from above.

Renardy and Joseph [56] performed a linear stability analysis for the RB convection in the
two-layer setting. They found that the system of equations governing the onset of convection
to be non-self-adjoint (possibility of finding complex eigenvalues) and showed that a Hopf
bifurcation (a pair of travelling waves or a standing wave) could occur in fluids with different
properties like dynamic viscosities and thermal expansion coefficient. They also concluded
that the surface tension always gives a stabilizing effect for short wave disturbances. Renardy
and Renardy [55] considered fluids with slightly different properties with slip boundary
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conditions (shear stress vanishes at the boundaries) and concluded that the oscillatory modes
are still possible for a specific type of perturbation.

Rasenat et al. [52] proposed that for an oscillatory onset to occur, there needs to be a
competition between two different modes. They could be a bulk mode and an interfacial
mode or two bulk modes. The first bulk mode essentially originates from the buoyancy-
driven convection associated with adverse temperature gradients in a layer. Based on fluids’
properties, this bulk mode competes with either an interfacial mode that tries to oppose the
flow, to some extent, or another unstable bulk mode when the interfacial mode is highly
stable.

Renardy [54] mainly concentrated on the second mechanism that applies to the case
where the competition is between two bulk modes. Renardy [54] showed that for the case
of infinite Prandtl numbers, the system will not be oscillatory when ρβκT ≈ 1.0, since the
system will be self-adjoint for such a property combination (ρ: ratio of densities, β : ratio
of coefficients of thermal expansion, κT : ratio of thermal diffusivities). Here, the leading
eigenvalues are real. The following linearised form equation gives an idea on the eigenvalues
of the system where the modes are proportional to exp(λ t + ikx).

λ

[∫
κ|θ1|2 +

∫
κT |θ2|2

]
=−

∫
κ(k2|θ1|2 + |∇θ1|2)−

∫
(k2|θ2|2 + |∇θ2|2)

+
Λ2

k2Ra

[∫
|∇2v1|2 +

∫
ρβκT

η
|∇2v2|2

]
+

Λ2

k2Ra
(ρβκT −1)

∂ v̄1

∂y
∂ 2v1

∂y2

∣∣∣∣
y=I

(2.1)

As we can see, when ρβκT deviates from unity, the boundary term has a non-zero value and
it results in the system being non-self-adjoint. Thus, one can expect the onset of oscillations
when ρβκT deviates from unity.

Degen et al. [19] confirmed the above parameter by observing the onset of oscillatory
convection for the silicon oil-water system with ρβκT = 0.375 due to the formation of a
cold spot at the top of the lower layer which results in the reversal of flow. Nepomnyashchy
& Simanovskii [42] and Simanovskii & Nepomnyashchy [62] considered both buoyancy and
thermocapillary effects and showed numerically that the oscillatory onset in silicon oil-water
system is essentially due to the additional presence of thermo-capillarity. Diwakar et al. [22]
showed that in addition to the favourable property combination for ρβκT , the occurrence of
oscillatory modes is also dependent on the closeness of the fluid height ratio to the critical
height ratio at which the Rayleigh numbers of both the layers are equal. In the present
work, we intend to understand how the above factors get modified in the context of a binary
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fluid system that becomes miscible above a particular temperature. This requires a rigorous
relook at the fundamental assumption of all the above works, i.e. the consideration of a
sharp interface between the layers. To this effect, we now proceed to understand different
multiphase flow formulations in the remaining part of the chapter.

2.3 Multiphase models

Numerical modeling of multiphase flows is a challenging task. Apart from the regular
non-linearities of the simple fluid flow problem, multiphase flows are fraught with additional
complexities arising from the hierarchy of scales involving different phases. As a result, the
choice of using a particular multiphase modeling tool is often made based on the details of the
problem that one is interested in studying. For example, the behaviour of a fine distribution of
droplets in a spray can be emulated by a homogeneous model without paying much attention
to the individual dynamics of the droplets and the associated interfacial heat and mass transfer.
On the other hand, problems such as the dam-break or thin-film evaporation would require a
detailed focus on the interfaces and the phenomena occurring in their vicinity.

Broadly, the multiphase methods can be classified as either moving-grid or fixed-grid
based on the temporal action of the grid that is used to solve the problem. The grid for each
fluid sub-domain is well defined in a typical moving-grid method. The grid points deform
according to the fluid flow pattern, and the temporal evolution of the interface is obtained by
following the discretized sub-domain boundaries. The issues with the moving-grid method
primarily arise due to its inability to automatically handle phenomena like interfacial break-up
and coalescence.

On the other hand, fixed-grid methods use special schemes to predict the multiphase flow
dynamics on a non-deformable mesh. The fixed-grid methods can be further classified, either
under the umbrella of “one-fluid” methods or under pure “multiphase” approaches like the
Euler-Euler model. The latter, along with the population balance model, is quite effective in
modeling dispersed systems like sprays, etc. Since the present problem involves segregated
phases, the former “one-fluid” approach becomes a convenient means and is explained in the
following sub-section.

In a typical one-fluid model formulation, we write a single set of governing equations for
the entire domain and use markers to recognise the phases. The multiphase influence on the
conservation equations is brought in by the spatio-temporal variations of mixture properties
that are accounted for through the evolving marker function. The first model of this kind
was the marker-and-cell (MAC) method, which was used by researchers in the Los Alamos
National Laboratory in the 1960s. The MAC method was the first to simulate the dynamics
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of an incompressible free surface flow [71]. The technique comes under the broad category
of interface-tracking method since we track the tracer particles and define the interface
by connecting them. However, usage of marker particles manifests computational issues
primarily involving mass conservation. The method also does not automatically account for
the interfacial break-up and merger. In order to overcome these issues, interface-capturing
methods like the volume of fluid (VOF), the level-set method, and the diffuse interface (phase-
field) method were later developed and are widely used in solving multiphase problems. In
the case of the interface-capturing methods, an auxiliary variable is defined, which takes care
of the phases and the interfaces involved in the system. We now briefly review these methods
in the following subsections.

2.3.1 Volume of fluid (VOF)

The volume of fluid (VOF) method, introduced by Hirt and Nichols [29], is the most popular
procedure among the ‘one-fluid’models. The idea is to utilize an auxiliary function (F)
that represents the exact fraction of the primary fluid within a computational cell. The
spatio-temporal evolution of the phases is obtained by conserving ‘F’using the advection
equation.

DF
Dt

= 0 (2.2)

Note that F is a discrete function. Hence, the above advection equation is solved via
special algebraic procedures or through geometric means involving the reconstruction of an
approximate interface in the ‘mixed’ computational cells having F value between 0 and 1.

The algebraic VOF procedures compute the fluxes without needing interface construction
and are easier to implement. However, the interface gets diffused when exposed to high-
strain flows, and to avoid such distortion of the interface, an additional anti-diffusion term
is usually incorporated into the volume fraction PDE. A few examples of such methods are
high-resolution interface capturing (HRIC) technique (Muzaferija et al. [41]), compressive
interface capturing scheme for arbitrary meshes (CICSAM) method (Ubbink and Issa [68]),
switching technique for advection and capturing of surfaces (STACS) method (Darwish and
Moukalled [18]), bounded gradient maximization (BGM) method (Walter and Wolgemuth
[70]), high-resolution artificial compressive formulation (HiRAC) (Heyns et al. [28]).

The geometric VOF procedure, on the other hand, involves two steps, such as the interface
reconstruction and the advection of the reconstructed interface by computing the material
volumetric fluxes through the cell faces. The interface reconstruction step requires the
estimation of the orientation and position of the interface within the computational cell. This
also involves approximating the shape of the interface in each computational cell. In 1976,
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Noh and Woodward [45] proposed the simple line interface calculation (SLIC) procedure in
which the piecewise linear interfaces are positioned either vertically or horizontally based
on the normal orientation. Unfortunately, such restricted orientations led to the formation
of unrealistic ‘jetsam’and ‘floatsam’within the fluid domain. Later in 1982, Youngs [74]
developed piecewise linear interface calculation (PLIC) in which the position of the interface
is determined according to the normal vector calculated from the knowledge of volume
fraction from the adjacent cells. Subsequently, many methods have been proposed to improve
the robustness of the interface reconstruction step. A few examples are least-squares VOF
interface reconstruction algorithm (LVIRA) (Puckett et al. [51]), parabolic reconstruction of
surface tension (PROST) (Renardy and Renardy [57]), spline-based interface reconstruction
(SIR) (López et al. [38]), quadratic spline-based interface (QUASI) reconstruction (Diwakar
et al. [21]).

The advantages of the VOF method are its excellent volume conservation characteristics
and the ability to handle topological changes in the fluid structures automatically. How-
ever, the technique is fraught with challenges, such as the non-uniqueness of the interface
reconstruction process and the need for explicit geometric procedures.

2.3.2 Level-set method

In 1988, Osher and Sethian [47] introduced the level-set method. This method was extended
to the case of two-phase flows by Sussman et al. [66]. Here, the interface is represented
by a smooth auxiliary function [3] that denotes the signed distance of a grid point from the
interface. Like VOF, no user intervention is required to account for the topological changes
in the interface. Note that the level-set function ‘φ ’remains constant along particle paths, i.e.,

Dφ

Dt
= 0 (2.3)

In other words, the level-set value of a particle on the interface remains constant. The
interface boundary I (t) is defined by {X|φ(X, t) = 0}. The region Ω(t) is bounded by
I (t) : {X|φ(X, t)> 0} and its exterior is defined by {X|φ(X, t)< 0} [46]. The momentum
balance equation for the entire domain under consideration can be written as

ρ
Du
Dt

=−∇p+∇ · (2ηD)−σζ δ (φ)n (2.4)

The surface tension is incorporated as a force concentrated on the interface. The properties
of the fluids are expressed as the function of the level-set parameter. To ensure numerical
consistency, the surface tension force is converted to a localized volumetric force in the
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vicinity of the interface. Correspondingly, the Dirac-delta function in the surface tension
forcing term is replaced by a smoothed or modified delta function δ∆X [61]. A review paper
by Sethian and Smereka [61] discusses the numerical issues of this method, like the spatial
and temporal discretization schemes.

Son [64] developed a global mass correction method to ensure mass conservation in
this approach. In order to improve the mass conservation, a dual-grid level-set method was
introduced by Gada and Sharma [25], in which the momentum equations are solved using
coarse grids, and the level-set equation is solved on a finer grid.

2.3.3 Front-tracking method

Unverdi and Tryggvason [69] introduced the front-tracking/distributed force model, where a
few control points defined over the interface takes the place of the order parameter. Fluid
properties like density, viscosity, etc., are varied smoothly across a thin region around the
interface. Other desirable interfacial features, such as normals, curvatures, etc., are obtained
from the connectivity information of the points.

Unverdi and Tryggvason [69] used this model to study the motion and interaction of
multiple bubbles in two- and three-dimensional cases. In the second part, they studied
the Rayleigh-Taylor instability in two- and three-dimensional cases. Nobari et al. [44]
investigated the head-on-collision between two viscous droplets. A series of works by Juric
and Tryggvason [35–37] applied this technique to the problems involving phase change, for
example, vapor-bubble dynamics and film boiling. Notable issues with this approach include
the evolution of spurious currents near the fluid interface when the capillary number is low.
Also, this approach has no explicit means of enforcing mass conservation. Inguva et al. [30]
have used a moving unstructured staggered mesh approach to address the above issues.

2.3.4 Phase-field method

All the above approaches essentially work with inherent sharp-interface consideration.
Though the interface thickness would be of cell size, practically, one can approach the
sharp interface limit by employing mesh refinement. Despite being popular, these methods
are fraught with certain limitations that have been briefly discussed towards the end of
the current section. We now delve into the alternate approach involving diffuse-interface
consideration via the popularly known Phase-Field method.

Phase-field models offer a physically sound, systematic approach for investigating com-
plex multiphase systems such as near-critical interfacial phenomena, phase separation under
shear, microstructure evolution during solidification, etc. The basic idea here is to introduce



16 Literature review

an order parameter or ‘phase-field’ which distinguishes between the bulk phases and the inter-
vening interfaces. This order parameter varies rapidly but smoothly in the interfacial regions.
One can choose any variable, such as density, composition, etc., as the order parameter based
on the problem in hand [3].

Phase-field methods are built on the free energy of the fluid. Other methods focus on
smoothening the surface tension forces over thin, numerically resolvable layers. Whereas in
the phase-field formulation, the influence of interfacial phenomena is spread over a region
spanning more than just a few cells. Note that the surface tension force is derived from the
free energy expression using variational principles. The simplest model of the free energy
density that gives two phases is [31]

f (φ ,∇∇∇φ) = α1Ψ(φ)+
1
2

α2|∇∇∇φ |2 (2.5)

The first term is the free energy of the homogeneous phases. It is also called bulk energy and
is responsible for the separation of the two phases. This term takes the form of a double-well
potential in the bulk energy vs phase parameter diagram. Different forms of bulk energy
expressions are used in practice to mimic this double-potential nature. Ψ(φ) = (φ 2 −1)2

[75, 15] is the most commonly used form, where φ =±1 represents the bulk phase fluids.
Other varieties like Ψ(φ)= (φ 2−1/4)2 and Ψ(φ)= (φ 2−1/4)3/2, where φbulkphase =±1/2,
have also been used in literature [31].

The second term is the gradient energy term. It provides the extra energy required for
sustaining the interface between the two bulk phases. One of the crucial aspects of the phase-
field method is determining the interface structure and its role in calculating the interfacial
energy and the surface tension [31]. Note that the width of the interface is proportional to√

α2/α1 while the surface tension is proportional to
√

α1α2. Bestehorn et al. [8] proposed a
modified free energy functional to capture the miscibility to immiscibility transition in the
context of a binary fluid system. The corresponding free functional density is given as

f (φ ,∇∇∇φ) = α1(rq
φ

4 − rφ
2)+

1
2

α2rp|∇∇∇φ |2 (2.6)

where r is the parameter that controls the transition. We will discuss this equation and the
role of r in detail in the next chapter. Bestehorn et al. [8] used the above-mentioned free
energy expression for understanding miscibility-immiscibility transition in the context of
Faraday instability.

Note that all the above mentioned models are valid only for isothermal systems. In case
of a non-isothermal system, the temperature dependency will enter the free energy expression.
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The general form of the free energy density functional can then be expressed as [2]

f (φ ,∇∇∇φ ,θ) = α1(θ)Ψ(φ ,θ)+
1
2

α2(θ)|∇∇∇φ |2 (2.7)

Antanovskii [5] suggested the following form of free energy density in the context of
capillarity

ρ f = ρ1(θ) f1(θ)φ +ρ0(θ) f0(θ)(1−φ)

+
C(θ)

2a
[A(θ ,φ)2 +a2|∇∇∇φ |2]

(2.8)

where f1(θ) and f0(θ) are the specific free energy of the fluid 1 and fluid 0 respectively.
The evolution of the phase-field parameter φ can be considered via two distinct partial

differential equations (PDEs). For the non-conserved order parameter which involves the
phase-change problems, one usually employs a second-order PDE called the Allen-Cahn
equation that is given as

∂φ

∂ t
+uuu ·∇∇∇φ = α2∇

2
φ −α1Ψ

′
(φ) (2.9)

In two-phase flow situations, where the order parameter is conserved, a fourth-order PDE
called as Cahn-Hilliard equation is generally used:

∂φ

∂ t
+uuu ·∇∇∇φ = ∇∇∇ · [γ∇∇∇(α1Ψ

′
(φ)−α2∇

2
φ)] (2.10)

Note that there is no explicit specification of interfacial conditions in the phase-field
model; it has to be built into the governing equations. The surface specification emanates
from the free energy expression, as mentioned earlier. The phase-evolution PDE and the
momentum equations are coupled to take care of the surface evolution. Usually, an additional
term, either −φ∇∇∇µ or µ∇∇∇φ , is added to the Navier-Stokes equation to take care of the
interfacial forcing [31].

Mirjalili et al. [40] performed an unbiased comparison between the VOF and phase-field
methods and concluded that “it seems likely that whether the interfacial regions are filling
the domain or confined in space, the accuracy of DI accompanied by its scalability and low
cost allow for DI to outperform VOF in many practical simulations.” The phase-field method
shares many features with the level-set method, and hence, it can be viewed as a physically
motivated level-set method [15]. Solving PDEs in a complex domain is more cumbersome
and tedious using the level-set method, whereas the phase-field method comes handy [61].
The VOF, level-set, and front-tracking methods are sharp-interface methods and their phase
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(or marker) evolution PDEs are hyperbolic in nature. Thus, there is a fair chance that the
velocity field may not retain its smoothness when subjected to topological changes [61]. The
diffuse-interface models do not suffer from such short-comings. Note that sharp-interface
methods use approaches like the continuum surface force (CSF) method [12] to allow for the
single-domain treatment of a multi-phase system.

From the above arguments, it is evident that the phase-field model gives us an advantage
over the other existing models for carrying out the current study on binary fluids in the
vicinity of their critical behaviour.

2.4 Application of phase-field model to different problems

Jacqmin [31] addressed the importance of choosing a proper diffuse interface width and how
the wider interfaces can exacerbate problems like the curvature-dependent solubilities in
the phase-field model. He introduced a higher-order scheme that allowed the use of thinner
interfaces and gave an insight on choosing the mobility of the interface, which is related to
the relaxation time of the interface.

Anderson et al. [4] developed a phase-field model for the solidification of a pure material
by employing the principles of irreversible thermodynamics that included convection.

Borcia and Bestehorn [10] presented a phase-field formulation to study the Marangoni
convection in a liquid-gas system and described the short and long wavelengths instabilities
associated with it. Yue et al. [75] proposed a diffuse-interface model for micro-structured
complex fluids using the energy-based variational formalism. Celani et al. [15] studied
the onset of Rayleigh-Taylor instability for immiscible fluids in the limit of small Atwood
number via the phase-field formulation. Guo and Lin [27] proposed a thermodynamically
consistent model for thermo-capillary effects and discussed the migration in density-matched
fluids. Bestehorn et al. [7] proposed a new free energy functional to capture the miscibility
to immiscibility transition in the case of a binary fluid system and studied this transition in
the context of Faraday instability.

2.5 Binary fluids

Before we conclude this chapter, we briefly examine some important works on binary fluids.
In 1990, Joseph [34] experimented on miscible liquid droplets rising or falling in another
liquid and observed the capillary-type effects. He also observed that density in the interfacial
region changes due to the composition variations (and temperature if present), though not
affected by the pressure variations. This investigation gave rise to a different class of fluids
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called quasi-incompressible fluids. In the case of quasi-incompressible fluids, densities of the
individual fluid components remain constant. However, density change occurs in the mixing
region which gives rise to a non-solenoidal velocity field (∇∇∇ ·uuu ̸= 0) in the interfacial region.
The pressure will still be determined from kinematics, not from thermodynamics. This notion
of quasi-incompressibility was adopted into the diffuse-interface model by Lowengrub and
Truskinovsky [39]. They also showed the importance of taking a physical quantity as a
phase-field parameter. Typically, to achieve a solenoidal velocity field throughout the system,
one has to consider fluids of equal density or impose an additional assumption of a slow
diffusion process [17]. Note that the above studies have obtained the velocity field as a
mass-averaged quantity.

In 2007, Ding et al. [20] adopted a different approach to defining the mean velocity field of
the system and called it the volume-average velocity of the fluid components. The advantage
of implementing this idea is that the velocity field is solenoidal (∇∇∇ ·uuu = 0) throughout the
system including the interfacial region(s). In fact, in the bulk part, this velocity is the same
as the mass-average velocity; it differs only in the transition layers. Abels [1] used this idea
to develop a frame-invariant phase-field model for incompressible fluids. He has discussed
the choices for different order parameters.

2.6 Critical summary of the literature

From the above literature review, one can make the following observations:

1. The mechanism of onset of single layer R-B-M convection has been widely studied,
and there is sufficient understanding of the phenomena.

2. However, the literature on multi-layer R-B-M convection is limited, particularly con-
cerning the onset of oscillatory convection modes.

3. More importantly, we are unaware of any notable work that attempts to understand the
R-B-M convection in the context of partially soluble binary fluid systems.

4. A detailed review of different numerical multiphase approaches reveals that the diffuse-
interface (Phase-Field) model would be a suitable candidate for understanding the
above phenomena.

5. Since the present consideration of binary fluids involves large density differences, it is
imperative to use the volume-averaged velocity field so as to make the velocity field
solenoidal throughout the domain.
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2.7 Aim of the current work

The current work aims to develop a phase-field model to study the Rayleigh-Bénard-
Marangoni (RBM) convection in a binary fluid system. We have considered the inter-
miscibility of the fluids with change in the temperature of the system. Most of the prior
studies have neglected this factor of miscibility. This is important because, even at low tem-
peratures, there is always limited miscibility between the fluid components in a given fluid
mixture. First, we perform linear stability analyses to understand how the marginal Rayleigh
number and the window of oscillatory onset of the instability get affected by solubility in
a pure RB (neglecting the surface tension variation) setting. We then add the Marangoni
effect (surface tension variation with temperature) to the above problem and understand the
changes in the onset characteristics.



Chapter 3

Onset of Rayleigh-Bénard convection in a
two-layer binary fluid system

3.1 Introduction

As indicated in the previous chapter, the present work aims to understand the onset of
Rayleigh-Bénard-Marangoni convection in binary fluids that exhibit criticality with respect to
miscibility. The focus is to particularly identify and understand the occurrence of oscillatory
modes in such fluid combinations. It may be noted that the solubility and miscibility of the
fluids are considered here to be functions of temperature only. The fluids exhibit partial
miscibility below the so-called ‘upper consolute’ or ‘upper critical solution temperature’
(UCST) and are entirely miscible above it. Correspondingly, the current interest is focused
on systems in the immiscible regime that are gradually approaching the UCST.

With the above-stated larger objective in mind, this chapter presents the details of analyses
in the specific case of pure buoyancy-driven Rayleigh-Bénard (RB) convection where the
thermo-capillary effect is precluded. The combined influence of all these effects is dealt with
separately in the ensuing chapter.

The behavior of R-B convection in binary fluids is mimicked here using the phase-field
modeling approach. The model essentially uses fixed grids (Eulerian approach) and a diffuse
interface consideration between the fluids. The whole domain is represented as a single
continuum with additional consideration of a phase evolution equation that calculates the
phase distribution within the domain.

Note that the conventional procedure for understanding R-B-M convection typically
involves the Boussinesq approximation, wherein the variation in fluids’ densities is consid-
ered to be small. However, for the single domain consideration of the phase-field model
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and the mass-averaged velocity system [39, 17], a non-solenoidal velocity field, which is
proportional to the relative flux of the components, is obtained even for a small density varia-
tion. Eventually, the formulation and the solution procedure, as discussed in the preceding
chapter, become very complicated. In order to overcome this issue, we have employed a
volume-averaged velocity field, as suggested by Boyer [11] and Ding et al. [20], that results
in a solenoidal velocity field while conserving the mass of the individual fluids.

Along with the above modification, the present approach utilizes spectral/pseudospectral
discretization to accurately estimate the critical parameters. Note that the pseudospectral
discretization typically demands the use of standard Gauss-Lobatto-Chebyshev (G-L-C)
points which involve grid clustering in the vicinity of the domain extremities. While such a
configuration is conducive for modelling single-phase systems or decomposed domains, the
need for proper resolution of sharp gradients around the diffuse interface precludes its direct
implementation for the “one-fluid” phase field model. One may attempt to find a work-around
by using a large number of GLC points, but this may not always be practical. Hence, to
resolve the diffuse interface better and to reduce the associated computational effort, we have
implemented a strategy [67, 23] which maps the G-L-C points in the transformed domain
to a cluster of points around the diffuse interface in the physical domain. Note that the
current clustering around the mixing layer region is controlled by a scaling parameter, ∈.
The implementation of such a mapping in the present one-fluid context is explained in the
latter part of the current chapter.

In this chapter, we perform detailed linear stability analyses to estimate the critical
parameters for the onset of convection and identify the oscillatory/non-oscillatory states of
the onset. As a check for consistency, the reproducibility of the results obtained from a
sharp-interface based domain decomposition approach (DDM) is verified for infinitesimal
interfacial thickness value. For this consistency test, the dimensionless diffuse interface
width (ε/L) was maintained at 10−4.

We now begin this chapter with a brief description of the problem statement and the
various modifications carried out with regard to the convectional phase-field formulation for
modelling R-B convection in the present context.

3.2 Phase-field modeling and the governing equations

It may be recalled from Chapter 2 that the free energy density for an isothermal two-fluid
system is given as

f (φ ,∇∇∇φ) = α1Ψ(φ)+
1
2

α2|∇∇∇φ |2 (3.1)
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Fig. 3.1 Schematic of the problem under consideration

In the context of a non-isothermal system, one can use the free energy formulation
suggested by Alt and Pawlow [2], and Antanovskii [5] as given below

F(φ ,θ ,∇∇∇φ) =
∫

Ω

[
fbulk(φ ,θ)+

1
2

α2(θ)|∇∇∇φ |2
]

dxxx (3.2)

where
fbulk(φ ,θ) = ρc(φ)θ −ρc(φ)θ logθ +α1(θ)Ψ(φ ,θ) (3.3)

This formulation needs to be further modified for the present binary fluid consideration.
The schematic of the current two-layer system is shown in Fig. 3.1. The lighter fluid is
stacked over the heavier one to avoid the manifestation of the classical Rayleigh-Taylor
instability. The system is considered to be infinite in the horizontal directions. The top and
bottom walls are maintained at uniform temperatures, with the bottom being hotter than
the top. The interface between fluids is diffuse, and its thickness diverges as the system
approaches the UCST. Considering the change in miscibility of fluids (in each other) with
temperature, the free energy functional of Eq. (3.2) can be modified as [8]

F(φ ,θ ,∇∇∇φ) =
∫

Ω

[
fbulk(φ ,θ)+H (r)

Λ

2
rp|∇∇∇φ |2

]
dx (3.4)

Recall that φ is a continuous parameter that helps distinguish between the bulk phases and the
intervening interface and, in general, is called the order parameter. The above expression is
similar to the classical Ginzburg-Landau free energy expression wherein Λ is the magnitude
of the mixing free energy of the system. Here, r is an indicator of the system’s state with
regard to UCST.
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The first term in the free energy expression refers to the bulk energy part i. e. it gives the
energy for homogeneous phases and can be written in the form

fbulk(φ ,θ) = ρc(φ)θ −ρc(φ)θ logθ +H (r)
Λ

4ε2 rq
φ

4 − Λ

2ε2 rφ
2 (3.5)

As we can see, the free energy expression for the uniform phases is the same as that of
Besthorn et al. [8] with the addition of a few extra terms which account for the temperature
non-uniformity in the system. Here, we have taken the internal energy as a linear function
of φ . The third and fourth terms together can be interpreted as the mixing energy of the
system. The mixing energy takes the form of a double-well potential below UCST and a
single-well form above this critical temperature. This mixing bulk energy is responsible for
the separation of fluids.

The gradient part of the free energy represents the weakly non-local interaction between
the components [75] and is also responsible for the formation of the mixing layer between the
two fluids [15]. The coefficient Λ is sensitive to the exact nature of the long-range interaction
of intermolecular potential between the molecules in the system [14]. The structure of the
interface is determined by the competition between these philic (gradient energy) and phobic
(bulk mixing energy) effects [75].

The value of r provides detail about the base operating condition of the system. r = 1
indicates that the system is far below the upper consolute temperature of the liquids and its
diminishing value, say r = 0.1, indicates the system’s closeness to the UCST. Any negative
value of r indicates that the system’s temperature is above the UCST, wherein the components
are completely miscible with no intervening interfaces, and hence, there will be no distinction
between the phases. In the present case, r is defined as

r =
exp(−aϑ)− exp(aϑ)

exp(−aϑ)+(Le)exp(aϑ)
(3.6)

where the reduced temperature “ϑ” is defined as (θ −θcrit)/θcrit . a is a positive constant,
and Le is the Lewis number which gives the ratio of thermal diffusivity to the mass diffusivity
of the components involved. Figure 3.2 gives an idea of how r varies with ϑ for a = 10, and
Le = 10. As can be seen from the figure, r is equal to one when the system is far below the
UCST, and it saturates to a value of − 1

Le when the system is above UCST. In the present
consideration, ‘r’ provides a convenient means for modelling the immiscible to miscible
phase transition through the use of the Heaviside step function H (r), which is zero for any
negative value of r and is one for any non-negative of r.
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Fig. 3.2 Variation of r with ϑ

Obviously, the current R-B convection problem is non-isothermal, and the value of ‘r’
would be slightly inhomogeneous in the system. However, such inhomogeneity can be
deemed insignificant in the present case as we are interested in the criticality corresponding
to the onset of convection. From the Fig. 3.2, it is evident that r reduces from a value of one
to − 1

Le in the range of ϑ between −0.375 and 0.125. For a typical binary fluid system like
FC-72 and 1cSt Silicon Oil with UCST = 315.5 K, this ϑ range corresponds to a large change
in the absolute temperature, and correspondingly, the rate of change of ‘r’ with temperature
is meager. Interestingly, for a typical two-fluid configuration as considered by Degen et al.
[19], the critical temperature difference is of the order of 1K. Note that such temperature
difference values are also relatable to the Boussinesq approximation that becomes invalid
for larger temperature differences. Thus, the percentage change in r corresponding to 1 K
temperature difference is normally very small. Only when the system is very close to UCST,
the inhomogeneity in r would become significant. Even in such scenarios, the inhomogeneity
can be subdued by considering fluid layers of larger thickness that may result in smaller
values of critical temperature difference. Thus, the consideration of constant r is a reasonable
assumption for a large range of the problem’s parametric space, making the complex problem
at hand more tractable.
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Note that the generalized chemical potential [3], µ , which is responsible for driving any
change in the chemical composition of the system, is given as

µ =
δF
δφ

= Λ

[
H (r)rqφ 3 − rφ

ε2 −H (r)rp
∇

2
φ

]
(3.7)

We have assumed ρ1c1 ≈ ρ2c2 while deriving the above expression for the generalized
chemical potential. As mentioned before, we will mainly focus on the immiscible or partially
miscible cases where the value of r is positive, i.e. 0.1 ≤ r ≤ 1.0. Hence, we will consider
H (r) = 1 for all further analyses.

The kinetic equation for the evolution of the conserved order parameter can be written as
[49]

∂φ

∂ t
=−∇∇∇ · jjjφ (3.8)

Here, jjjφ is the flux of the order parameter and is given as jjjφ =−γ∇∇∇(δF/δφ) =−γ∇∇∇µ [3].
γ is the mobility of the diffuse interface and is assumed to be a constant [31]. Thus, a general
form of phase evolution equation can be written as

∂φ

∂ t
+uuu ·∇∇∇φ = ∇∇∇ ·

[
γ∇∇∇

{
Λ

(
rqφ 3 − rφ

ε2 − rp
∇

2
φ

)}]
(3.9)

This is known as the Cahn-Hilliard (CH) equation. We have added the convective term to
include the effects of fluid flow on the species transport [31]. At steady state, there is no bulk
movement of the fluids; hence, the base state profile for the order parameter can be obtained
by considering a trivial chemical potential, i.e. µ = 0. The resulting equation for ‘φ ’ can be
expressed as

Φ
b(y) =±r

1−q
2 tanh

(
y√
2ε

r
1−p

2

)
(3.10)

Figure 3.3 shows the variation of base ‘φ ’ in the domain with decreasing ‘r’, i.e., with
increasing operating temperature. Evidently, the peak magnitude of ‘φ ’ reduces in both the
layers owing to the enhanced solubility of the phases. The interfacial width, being inversely
proportional to r

p−1
2 , also increases with the increase in temperature of the system. Here, the

contribution of the gradient energy term decreases, and more material is introduced into the
interfacial region, thereby creating a wider interface.

Note that proper care should be taken while including the interfacial forces in the momen-
tum equations since we will not be using any explicit matching (jump) conditions at the fluids’
interface. The classical concept of the surface tension is contained in the total (bulk+gradient)
mixing energy of the system since this mixing energy represents the molecular interaction
between the existing phases [75]. The generalized form of the non-viscous/reversible second
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Fig. 3.3 Phase distribution with r

order tensor is given as [3, 73]

τττ
nv = L III −∇∇∇φ

∂L

∂ (∇∇∇φ)
(3.11)

where L = fmix(φ ,θ)+H (r)Λ

2 rp|∂φ(x)|2 is the Lagrangian energy density.
One can account for the surface tension effects through an additional forcing term in the

momentum equations. This surface tension force density can be modelled as a bulk stress
term obtained as the divergence of the reversible part of the stress tensor acting over the
interfacial width, which also inherently represents the Korteweg stress tensor. Thus, the
modified Navier-Stokes equations are written as

∂ρuuu
∂ t

+∇∇∇·(ρuuuuuu)=−∇∇∇p+∇∇∇·
[

η

(
∇∇∇uuu+(∇∇∇uuu)+− 2

3
∇∇∇·uuuIII

)]
+∇∇∇·

(
L III−∇∇∇φ

∂L

∂ (∇∇∇φ)

)
−ρ

′
g111y

Dρ

Dt
+ρ∇∇∇ ·uuu = 0 (3.12)

where ρ
′
= ρ −ρ0 and ρ = ρ1(1−β1(θ −θ0))(

1+φ

2 )+ρ2(1−β2(θ −θ0))(
1−φ

2 ). ρ0 is the
original density field without any temperature effect. The last term in the Navier-Stokes
equation accounts for the buoyancy effect and plays a crucial role in any natural convection
problem. The details of its approximation are provided separately in the following section.



28 Onset of Rayleigh-Bénard convection in a two-layer binary fluid system

At steady state and in the absence of fluid motion, the Navier-Stokes (NS) equation will
be reduced to the following form:

−∇∇∇p−ρ
′
g111y = 0 (3.13)

Finally, the overall energy balance equation can be written as

∂ρcθ

∂ t
+∇∇∇ · (ρuuucθ)+µ

Dφ

Dt
+L ∇∇∇ ·uuu = ∇∇∇ · (κ∇∇∇θ), (3.14)

where κ is the thermal conductivity. In the subsequent representations of the energy balance
equation, the viscous dissipation term will be neglected since it is very small as compared
to the amount of heat stored/convected by the system [65, 24]. In the absence of any bulk
movement of the fluid elements and at a steady state, the energy equation can be reduced to a
simple conduction problem.

∇∇∇ · (κ∇∇∇θ) = 0 (3.15)

Note that the phase evolution equation obeys the no flux boundary condition owing to the
consideration of impermeable no-slip walls at the top and bottom, as shown in Fig. 3.1.

111y ·∇∇∇φ = 0 @y = 0,H

111y ·∇∇∇µ = 0 @y = 0,H
(3.16)

Since µ = Λ

[
rqφ 3−rφ

ε2 − rp∇2φ

]
, we simplify the above equations to obtain

∂φ

∂y
=

∂ 3φ

∂y3 = 0 @y = 0,H (3.17)

The velocity conditions at the top and bottom no-slip boundaries are

uuu = 0 @y = 0,H (3.18)

Both the walls in the current problem are maintained at constant temperatures; hence, the
energy equation will obey the following boundary conditions.

θ = θB @y = 0

θ = θT @y = H
(3.19)
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Since the phase-parameter φ acts as a marker for the phases and the interfaces, the various
properties of the fluid mixture can be expressed as a linear function of φ as follows:

• Density : ρ

ρ2
= 1

2(1+
ρ1
ρ2
)+ φ

2 (
ρ1
ρ2
−1)

• Dynamic viscosity : η

η2
= 1

2(1+
η1
η2
)+ φ

2 (
η1
η2

−1)

• Thermal conductivity : κ

κ2
= 1

2(1+
κ1
κ2
)+ φ

2 (
κ1
κ2
−1)

• Heat capacity : ρc
ρ2c2

= 1
2(1+

ρ1c1
ρ2c2

)+ φ

2 (
ρ1c1
ρ2c2

−1)

3.3 Boussinesq approximation

A typical process of understanding the onset of convection begins by invoking the Boussi-
nesq approximation, which essentially means that the density variation can be neglected
everywhere except in the buoyancy term that drives the motion [65, 24]. With this in mind,
the continuity, the momentum, and the energy equations can be reduced to the following
expressions:

∇∇∇ ·uuu = 0 (3.20)

ρ0

[
∂uuu
∂ t

+uuu ·∇∇∇uuu
]
=−∇∇∇p+∇∇∇ ·

(
η
(
∇∇∇uuu+(∇∇∇uuu)+

))
+µ∇∇∇φ −ρ

′
g111y (3.21)

ρ0

[
∂ (cθ)

∂ t
+uuu ·∇∇∇(cθ)

]
+µ

Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (3.22)

where ρ
′
= ρ(φ ,θ)−ρ0, and ρ = ρ1(1−β1(θ −θ0))(

1+φ

2 )+ρ2(1−β2(θ −θ0))(
1−φ

2 ),
and ρ0 =

ρ1+ρ2
2 .

In this simplified representation, the density change brought in by the mixing process is
considered only in the buoyancy term and is ignored everywhere else. Unfortunately, such
an approximation is limited by its applicability, i.e., for fluids with minimal density disparity.
However, in the current problem, the density values of the two fluids are not close; hence,
directly implementing this approximation would lead to inconsistent results.

3.4 Partial non-Boussinesq/Boussinesq approximation

In order to overcome the above issue, we consider the effect of phase-mixing on the density
field everywhere, not only in the body force term of the N–S equations. However, we will
still neglect the temperature-induced density variations in all the terms except buoyancy.
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Note that this thermal effect can be neglected as a leading order approximation. Here, the
continuity equation takes the following form:

Dρ(φ)

Dt
+ρ(φ)∇∇∇ ·uuu = 0 (3.23)

Since ρ(φ) = ρ1(
1+φ

2 )+ρ2(
1−φ

2 ), the velocity field is no more solenoidal; rather it carries
an expansion part due to the density disparity of the two fluids which can be shown as [17]

∇∇∇ ·uuu =−ρ1 −ρ2

2ρ(φ)

Dφ

Dt
(3.24)

The above equation shows that the expansion velocity is proportional to the density difference
and the rate of phase evolution. The latter depends on the mobility of the phases and the
chemical potential gradient inside the interfacial region. Thus, we can expect this non-
solenoidal component of velocity to exist in the mixing layer between two incompressible
fluids. Consequently, the momentum balance equation takes the following form to account
for the contribution of the non-solenoidal velocity field.

ρ(φ)

[
∂uuu
∂ t

+uuu · ∂uuu
∂xxx

]
=−∇∇∇p+∇∇∇ ·

(
η

(
∇∇∇uuu+(∇∇∇uuu)+− 2

3
∇∇∇ ·uuuIII

))
+µ∇∇∇φ −ρ

′
g111y (3.25)

where ρ
′
= ρ(φ ,θ)−ρ(φ), and ρ(φ ,θ)= ρ1(1−β1(θ −θ0))(

1+φ

2 )+ρ2(1−β2(θ −θ0))(
1−φ

2 ),
and ρ(φ) = ρ1(

1+φ

2 )+ρ2(
1−φ

2 ). This equation is based on the assumption that the second
coefficient of viscosity (bulk viscosity) is independent of the rate of fluid compression.

The above consideration gives rise to the quasi-incompressibility condition, where both
components are incompressible, and the pressure is kinematic while the velocity field is
non-solenoidal [39]. Note that the analysis associated with quasi-incompressible fluids
is very complicated since the chemical potential µ becomes a function of the kinematic
pressure. Interestingly, one can avoid such complications by taking density-matched fluids
in the system. Since we aim to study the R-B convection in a general two-fluid system,
such considerations may not be appropriate. One has to then evolve an alternate approach
to simplify the analysis. It is worthy to note here that the very definition followed for the
velocity field has essentially created the non-solenoidal velocity in the mixing region. This
leads us to ponder over alternate means for defining the velocity field such that it would be
solenoidal throughout the domain. We now attempt to address this issue in the following
section.
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3.4.1 Incompressible approach

One may note that the mean velocity was implicitly defined as mass-averaged/barycentric
velocity field [17] before.

uuu =
ρ̃1uuu1 + ρ̃2uuu2

ρ
(3.26)

where ρ̃1 and ρ̃2 are the densities of fluid 1 and 2, respectively, and ρ = ρ̃1 + ρ̃2 is the total
density. With this mass-averaged velocity, the classical continuity equation, ∂tρ +∇∇∇ · (ρuuu) =
0, is satisfied.

Solving the resulting continuity and momentum formulations in the present case requires
more computation than its solenoidal counterpart.

In order to overcome this issue, we will now adopt a different approach as suggested by
Boyer [11], Ding et al. [20], and Abels et al. [1]. The objective is to come up with a solenoidal
velocity field throughout the system, including the interfacial region. Correspondingly, the
velocity is now defined as a volume-averaged field instead of a mass-averaged one, i.e.,

uuu =
ρ̃1

ρ1
uuu1 +

ρ̃2

ρ2
uuu2 (3.27)

where ρ1 and ρ2 are the densities of the fluid 1 and 2, respectively, in the pure immiscible
state. With the above form of velocity field, the mass conservation equations of the individual
species involved, ∂t ρ̃ j +∇∇∇ · (ρ̃ juuu j) = 0, are satisfied. This yields a solenoidal velocity field,
as shown below.

∇∇∇ ·uuu = ∇∇∇ ·
(

ρ̃1uuu1

ρ1

)
+∇∇∇ ·

(
ρ̃2uuu2

ρ2

)
=−∂t

(
ρ̃1

ρ1

)
−∂t

(
ρ̃2

ρ2

)
=−∂t

(
ρ̃1

ρ1
+

ρ̃2

ρ2

)
= ∂t(1) = 0

(3.28)

However, it does not satisfy the general continuity condition ∂tρ +∇∇∇ · (ρuuu) = 0 as before
and instead, it satisfies the following continuity equation while conserving the mass of the
individual species.

∂tρ +∇∇∇ · (ρuuu)+
∂ρ

∂φ
∇∇∇ · jjj = 0 (3.29)

It is worthy to note that one can recover the general continuity equation by taking fluids
of equal densities, where ∂ρ

∂φ
becomes identically zero. One can also show that the above
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PDE conserves the system’s total mass by choosing appropriate boundary conditions, for
example, the no-flux boundary conditions at the walls. We can integrate the above non-trivial
continuity equation over the entire domain of interest.∫

V
∂tρdV +

∫
∂V

ρuuu ·nnndA +
∂ρ

∂φ

∫
∂V

jjj.nnndA = 0 (3.30)

The total mass of the system will be conserved i. e. d
dt
∫
V ρdV = 0, if there is no exchange

of fluxes across the domain boundaries :

jjj ·nnn = 0

uuu ·nnn = 0
(3.31)

With the above volume-averaging of the velocity field, the Cahn-Hilliard (CH) equation
still remains the same as before.

∂φ

∂ t
+uuu ·∇∇∇φ = ∇∇∇ ·

[
γ∇∇∇

{
Λ

(
rqφ 3 − rφ

ε2 − rp
∇

2
φ

)}]
(3.32)

However, the conservative form of the momentum equation takes the form [20]:

∂ρuuu
∂ t

+∇∇∇ · (ρuuuuuu)+uuu
∂ρ

∂φ
∇∇∇ · jjjφ =−∇∇∇p+∇∇∇ ·

(
η
(
∇∇∇uuu+(∇∇∇uuu)+

))
+µ∇∇∇φ −ρ

′
g1̂11y (3.33)

∇∇∇ ·uuu = 0 (3.34)

The equation accounts for the advection due to the relative diffusional flux of species, and
this eliminates an artificial interfacial force. Fortunately, the non-conservative form of the
above equation can be written in simple form as follows:

ρ0

(
∂uuu
∂ t

+uuu ·∇∇∇uuu
)
=−∇∇∇p+∇∇∇ ·

(
η
(
∇∇∇uuu+(∇∇∇uuu)+

))
+µ∇∇∇φ −ρ

′
g1̂11y (3.35)

The conservative form of the energy equation takes the form:

∂ρ0cθ

∂ t
+∇∇∇ · (ρ0uuucθ)+θ

∂ρ0c
∂φ

∇∇∇ · jjjφ +µ
Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (3.36)

where we have neglected the viscous dissipation since the magnitude of the dissipation is
much lower compared to the storage/advection of the energy in a naturally convected flow



3.4 Partial non-Boussinesq/Boussinesq approximation 33

[24]. Its non-conservative counterpart is

ρ0c
(

∂θ

∂ t
+uuu ·∇∇∇θ

)
+µ

Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (3.37)

In summary, the governing equations considered for the current analysis are given below.

∂φ

∂ t
+uuu ·∇∇∇φ = ∇∇∇ ·

[
γ∇∇∇

{
Λ

(
rqφ 3 − rφ

ε2 − rp
∇

2
φ

)}]
(3.38)

∇∇∇ ·uuu = 0 (3.39)

ρ0

(
∂uuu
∂ t

+uuu ·∇∇∇uuu
)
=−∇∇∇p+∇∇∇ ·

(
η
(
∇∇∇uuu+(∇∇∇uuu)+

))
+µ∇∇∇φ −ρ

′
g1̂11y (3.40)

ρ0c
(

∂θ

∂ t
+uuu ·∇∇∇θ

)
+µ

Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (3.41)

3.4.2 Linear stability analysis

With the phase-field formulation described above, we now proceed with the actual objective
of understanding the onset of RBM convection in binary fluid systems. To this effect,
we now carry out linear stability analysis, which will provide information on the critical
parameter value for the onset of convection and the nature of convection, say oscillatory
or non-oscillatory. Note that the oscillatory mode of onset is observed when two non-
oscillatory modes (mechanical and thermal coupling modes) compete with each other. This
overstability condition happens when the value of ρβκT differs significantly from unity
[54]. We essentially intend to understand the evolution of infinitesimal perturbations that are
imposed on a quiescent base state. As discussed earlier, the base state conditions are given as
follows:

Φ
b(y) =±r

1−q
2 tanh

(
y√
2ε

r
1−p

2

)
(3.42)

∇∇∇p =−ρ
′
g111y (3.43)

∇∇∇ · (κ∇∇∇θ) = 0 (3.44)

Correspondingly, all the relevant quantities are represented as

φ = Φ
b(y)+φ

′
(x,y, t)

ui = ui
′
(x,y, t)

θ = Θ
b(y)+θ

′
(x,y, t)

p = pb(y)+ p
′
(x,y, t)

(3.45)



34 Onset of Rayleigh-Bénard convection in a two-layer binary fluid system

The perturbed quantities are assumed to be very small compared to the corresponding base
quantities; hence, any product of perturbed quantities can be neglected. So, upon substitution
of the above expressions in the governing equations and subtracting the corresponding base
state relations, we obtain the linearized equations for the evolution of perturbations as

∂φ
′

∂ t
+u j

′ ∂Φb

∂x j
= ∇m

[
γ∇m

{
Λ

(
rq3(Φb)2φ

′ − rφ
′

ε2 − rp
∇

2
φ

′
)}]

(3.46)

∂ui
′

∂ t
=− ∇i p

′

ρ(Φb)
+

η2

ρ(Φb)
∇ j

[(1
2
(1+

η1

η2
)+

Φb

2
(
η1

η2
−1)

)
(∇ ju

′
i +∇iu

′
j)

]
+

1
ρ(Φb)

µ
′
∇iφ

b

+
1

ρ(Φb)

ρ1β1 −ρ2β2

2
Θ

b
φ

′
gδi2 +

1
ρ(Φb)

[
ρ1β1 +ρ2β2

2
+

ρ1β1 −ρ2β2

2
Φ

b
]

θ
′
gδi2

(3.47)

∇iu
′
i = 0 (3.48)

ρc(Φb)

[
∂θ

′

∂ t
+u j

′ ∂Θb

∂x j

]
= κ

b
∇m

2
θ

′
+(∇mκ

b)(∇mθ
′
)

+(∇mk
′
)(∇mΘ

b)+κ f (φ
′
)∇m

2
Θ

b
(3.49)

We now non-dimensionalize the above equations using the following scales.

LR = H2 tR =
H2

2

κT 2
uR =

κT 2

H2
θR = θB −θT pR =

ρ2κT 2ν2

H2
2

The resulting dimensionless equations can be written as follows.
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(3.50)
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∇iu
′
i = 0 (3.52)
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Here, M = γΛ0
ε2κT2

is the non-dimensional mobility, which is the ratio of the diffusivity

of the interface to the thermal diffusivity of the reference fluid. Γθ = Λ0
ρ2κ2

T2

represents the

modified inverse Capillary number, which gives the ratio of capillary forces. Here, the word
’modified’ essentially refers to the fact that thermal diffusivity κT has been used instead of
kinematic viscosity ν to calculate these dimensionless numbers. µ is dimensionless here.
(ρc) f (Φ

b) = 1
2(1+

ρ1c1
ρ2c2

)+ Φb

2 (ρ1c1
ρ2c2

−1) , and ρ f (Φ
b) = 1

2(1+
ρ1
ρ2
)+ Φb

2 (ρ1
ρ2
−1)

Proceeding further, we now expand all the perturbed quantities in terms of normal modes.
Note that the modes are periodic in the horizontal direction for the present consideration.
Correspondingly, we use

φ = Φ
b(y)+ φ̂(y)exp(λ t + ikx)

ui = ûi(y)exp(λ t + ikx)

θ = Θ
b(y)+ θ̂(y)exp(λ t + ikx)

p = pb(y)+ p̂(y)exp(λ t + ikx)

(3.54)
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All the linearized perturbation equations get transformed as follows:
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= 0 (3.58)
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The associated boundary conditions at the top and bottom plates are as follows:

∂ φ̂

∂y
=

∂ 3φ̂

∂y3 = 0 @y = 0,1

ûi = 0 @y = 0,1

θ̂ = 0 @y = 0,1

(3.60)

Following the linearization and normal mode expansion, we have all the unknowns in
terms of the vertical coordinate. Owing to the accuracy requirements for predicting critical
values for the onset of convection, we spatially discretize the variables using the Chebyshev
pseudo-spectral method. Here, any variable Ξ can be expressed via a Lagrangian interpolation
of values at the collocation points as

ΞN(y) =
N

∑
i=0

hi(y)Ξ(yi), (3.61)

where N is the number of collocation points along the vertical direction. The cardinal
function, hi(y), defined over the collocation points, yi = cos πN

i , is expressed as

hi(y) =
(−1)i+1(1− y2)TN

′
(y)

ciN2(y− yi)
(3.62)

where ci = 2 for the endpoints and 1 for all in-between points. TN
′
(y) is the Nth derivative

of the Chebyshev polynomial of the first kind. To avoid the generation of spurious pressure
modes, the pressure variable alone is expanded as

pN−2(y) =
N−1

∑
i=1

ĥi(y)p(yi) (3.63)

wherein, the cardinal function, ĥi(y), is defined as

ĥi(y) =
(1− yi

2)

(1− y)
hi(y) (3.64)

Note that the choice of grid points in the above formulation is restricted to the standard
Gauss-Lobatto-Chebyshev (G-L-C) points owing to the stringent accuracy requirements. Un-
fortunately, these G-L-C points are finer at domain extremities and are coarser in the middle.
Such a configuration poses an issue in the present scenario, where sufficient grid points are
required around the diffuse interface to calculate the gradients of all variables accurately.



38 Onset of Rayleigh-Bénard convection in a two-layer binary fluid system

Thus one might have to use an exorbitant number of points so that the diffuse interface is
sufficiently resolved. In this work, we use an alternate and effective means of resolving the
diffuse interface by mapping the clustered points around the diffuse interface in the physical
domain to the classical G-L-C points in the computational domain. Correspondingly, we use
a transformation suggested by Tee and Trefethen [67] instead of the standard G-L-C grid
points:

ỹ = g(y) = δ+ ∈ sinh
[(

sinh-1
(

1−δ

∈

)
+ sinh-1

(
1+δ

∈

))
y−1

2
+ sinh-1

(
1−δ

∈

)]
(3.65)

Here, ∈ is the factor that decides the arrangement of the nodes in the transformed grid system,
and the value of δ determines the position of the interface in the domain. Lower the value of
∈, denser the interfacial region in the mapped domain (refer to Fig.2 from [23]). One has to
be careful while choosing the ∈ value as too dense an interfacial region would starve other
regions of points and eventually blow up for higher order derivatives.

Since the spatial derivative values are calculated in the original Chebyshev grid system,
we will use the following transformation relations to get the derivatives of any variable Ξ in
the physical domain.
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(3.66)

With the above polynomial expansions and grid transformations applied for different
variables, the set of normal-mode equations that govern equations that govern the evolution of
perturbations can be represented as a generalized eigenvalue problem of the form AX = λBX.
This eigenvalue problem has been presently solved by using the standard QR algorithm.
Note that solving the generalized eigenvalue problem in the above form may typically give
rise to spurious modes due to the zero-valued rows in matrix B occurring on account of
the continuity equation and the boundary conditions. These spurious modes pose a serious
threat to finding the largest eigenvalue since these large spurious modes may be confused
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with the actual eigenvalues. To avoid such a scenario, we employ the reciprocal approach.
Instead of finding the largest eigenvalue for AX = λBX, we aim for the smallest eigenvalue
for λAX = BX. We check for the presence of zero-valued eigenvectors while calculating
these eigenvalues, and if found, we discard those from the eigenvalue calculation process.

3.5 Single-layer counterpart

The underlying premise of the phase-field model is that it treats the entire domain as a
single continuum, and the phase variable acts as a marker for different fluids present in the
system and the intervening interface between the fluids. Therefore, with appropriate property
considerations, it should be possible to verify this premise and make the present formulation
mimic the single-layer Rayleigh-Bénard convection. Correspondingly, we carry out our first
consistency test wherein we assume the same properties for both the fluids and a uniform
phase-field distribution in the domain. Here, the phase evolution equation gets decoupled
from other equations, and latter get transformed to

∂ui
′

∂ t
=−∇i p

′

ρ0
+ν∇

2
jui

′
+βθ

′
gδi2 (3.67)

∇iu
′
i = 0 (3.68)

∂θ
′

∂ t
+u

′
j
∂Θb

∂x j
= κT ∇

2
jθ

′
(3.69)

We evaluate the critical Rayleigh number for different modes by employing the normal
mode analysis and computing the eigen-spectra. Fig. 3.4 shows the variation of the marginal
Rayleigh number with respect to the wave number of the imposed disturbances for the most
dangerous mode (1st even mode) and the next dangerous mode (1st odd mode), scaled by a
factor of 1

10 . Evidently, the present analysis is able to estimate the critical Ra and the critical
wavelength of the system very accurately.

3.6 Choice of fluid properties

Any analysis of complex problems like a two-layer Rayleigh-Bénard problem is fraught
with the challenge of identifying the proper parametric space for analysis. Along with the
different property ratios of the fluids, the present phase-field formulation utilizes four more
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Fig. 3.4 Neutral curves for the first two modes
(Single layer RB problem)

non-dimensional parameters to characterize the two-layer RB convection. This complicates
the scenario further, and as a remedy, we resort to the concept of balanced contrast proposed
by Colinet and Legros [16]. Accordingly, we choose the properties such that the combination
of properties, (ρβκT )r, is maintained at a value of 0.125. At the same time, following
Diwakar et al. [22], we choose the other properties such that they yield unique values of a∗.
Note that a∗ is the critical height at which the Rayleigh numbers of the two layers are equal
and is given as

a∗ =
(

βrρr

κrκT rηr

) 1
4

Correspondingly, the following property ratios have been chosen to perform the grid
independence test, consistency check and to obtain further results:

ρr =
ρ1

ρ2
= 2 ηr =

η1

η2
= 1 βr =

β1

β2
= 0.125 κr =

κ1

κ2
= 0.5 cr =

c1

c2
= 0.5

Different values of a∗ have been obtained by varying the viscosity ratio, as shown in the
table below.

Note that the lighter fluid is placed above the denser one to avoid Rayleigh-Taylor
instability. Since we know the property ratios will approach unity once the miscibility of the
fluids increases, we have kept the expansivity of the top layer to a relatively higher value to
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a∗ 1.0 0.667 1.5

η1
η2

1.0 5.0625 0.1975

Table 3.1 Viscosity ratios for different a∗

avoid the overturning of the fluids. The other non-dimensional parameters are

M = 1500 Γθ = 1000 Pr2 = 1.0

3.7 Consistency check: Sharp interface and the immiscible
limit

3.7.1 Grid independence test

To begin with, we perform a grid independence test to ensure that the results are insensitive
to the number of collocation points used to spatially discretize the variables in the y-direction.
Here, the test has been performed for different values of N(= 72,96,120,144), where N is
the number of collocation points in the domain. The a∗ value of the system is 1.0. Fig. 3.5
shows the identical results obtained for all grid sizes greater than 72. Hence, all the current
calculations have been performed here with N = 72 to save on the computational effort.

3.7.2 Check for consistency

Despite the numerous modifications to the governing equations and the boundary conditions,
the phase-field method (PFM) should ideally recover the sharp interface results in the limit of
vanishing interfacial thickness. Hence, we now check the consistency of the current model by
choosing ε

H2
= 10−4 to mimic the sharp interface limit of the immiscible fluids. The details

of the current implementation of the sharp interface approach via a domain decomposition
model (DDM) is presented in Appendix - A. Figures 3.6 and 3.7 show the consistency
results for different values of viscosity and conductivity ratios while the other properties are
maintained as follows: ρ1

ρ2
= 2, β1

β2
= 0.125, κ1

κ2
= 0.5, c1

c2
= 0.5.
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Fig. 3.5 Top: Grid Independence Result; Bottom: Magnified View
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Fig. 3.6 Top: Comparison between PFM and DDM (Variable Viscosity); Bottom: Magnified
view

In Figs. 3.6 and 3.7, the calculations have been carried out at an interfacial height,
yI = 0.5, and the values of the marginal Rayleigh number have been plotted against the wave
number of the disturbance.

Figure 3.8 shows the critical values of the Rayleigh number plotted against the position
of the interface. The properties are the same as those chosen for the grid independence test. It
is evident from the figures that an exact match is obtained between the results of the domain
decomposition method and the current phase field model for a limiting value of interfacial
thickness.
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Fig. 3.7 Top: Comparison between PFM and DDM (Variable Conductivity); Bottom: Magni-
fied view

3.8 Results and discussions

In this results section, our primary goal is to understand how the onset characteristics of
Rayleigh-Bénard convection, starting with a completely immiscible state of a binary fluid
system, varies as the system approaches the critical point. In other words, the interest is to
understand the pattern of deviation from the pure immiscible behavior as the fluid system
approaches the UCST. Correspondingly, we start with the immiscible consideration of fluids
(far below UCST) and then introduce the factor of miscibility ‘r’ that changes with the
system’s temperature. The range of r considered here varies between 1.0 and 0.005; r = 1.0
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Fig. 3.8 Top: A comparison between the neutral curves obtained from domain decomposition
method (DDM) and phase-field method (PFM) for immiscible fluids; Bottom: Magnified
view
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Fig. 3.9 A comparison between the marginal stability curves obtained from domain decom-
position method (DDM) and phase-field method (PFM) for sparingly miscible fluids.

corresponds to the pure immiscible states of the fluids, whereas r = 0.005 refers to the
operating condition closer to UCST.

As mentioned above, we now begin by characterizing the behavior of R-B convection in
pure immiscible fluids. This was already presented in the Figure 3.8 for a sample system
with (ρβκT )r = 0.125 and a∗ = 1.0. This figure represents the least stable modes at different
interfacial heights. Here the distinct modes are marked as ‘TOP’, ‘BOT’, and ‘OSC’,
respectively. The part marked as ‘TOP’ corresponds to the ‘upper dragging mode’ wherein
there is active buoyancy-driven convection in the top layer owing to its larger thickness. The
bottom layer is passively driven by the continuity of velocity and shear stress at the interface.
The ‘BOT’ curve represents the case vice-versa wherein the bottom layer is the driver, and
the top layer is driven.

At intermediate heights, 0.485 ≤ yI ≤ 0.53, the two modes intersect and result in the
manifestation of oscillatory (OSC) mode, wherein the system transiently oscillates between
a mechanically coupled state and a thermally coupled state. Here, both the layers have an
equal propensity for primary excitation, and the system responds by oscillating between two
possible modes of coupling between the layers. In fact, on either side of this oscillatory
range, the system exhibits stationary mechanical and thermal coupling modes depending on
the properties chosen. The occurrence of oscillatory convection in a system is not always
a guaranteed feature. A favorable combination of property ratios such as (ρβκT )r being
far from unity and a∗ being closer to unity is essential for the manifestation of oscillatory
excitation.
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Figure 3.8 showed the ability of the present phase-field model to exactly reproduce the
behavior of the sharp-interface system modelled via the domain decomposition method.
Interestingly, this exact match makes one question the necessity of the current phase-field
formulation. In fact, one would be tempted to consider the possibility of using DDM in
the binary fluid context wherein the fluid properties are obtained from the equilibrium
composition (Eq. (3.10)) of each layer at different temperatures. After all, the diffuse-
interface thickness is much smaller than the layer heights for the range of ‘r’ considered
in the present analysis. The answers to such quandaries are evident from Fig. 3.9 where
the results obtained from the phase-field model are compared with that of the DDM with
properties modified according to the equilibrium composition. The value of r used in this
comparison is 0.5 making the system not very close to the consolute temperature. Even in
this scenario, there is a noticeable difference between the neutral curves of PFM and DDM.
The latter approach underpredicts the critical behavior essentially due to the neglect of the
small diffuse interface. By properly accounting for the dissipative effects in this small region,
the PFM provides a more realistic picture of the onset behavior of the binary system.

Proceeding further to understanding the influence of miscibility, Fig. 3.10 shows the
variation of the marginal Rayleigh number with the position of interface, for different r
values. It is evident that with the increased miscibility of fluids in the system, the peaks of
the marginal stability curves move towards the left and the windows of oscillation become
narrow (From Fig 3.10). This decrease in the oscillatory window can be attributed to the
change in equilibrium composition of the two layers that results in a decrease in the effective
(ρβκT )r values, with a diminishing value of r. Also evident from Fig. 3.10 is that the change
in equilibrium composition has different influences on the ‘TOP’ and ‘BOT’ modes. Recall
that for the present fluid system with (ρβκT )r = 0.125 and a∗ = 1.0, the values of other
properties in the immiscible limit are ν1

ν2
= 0.5, β1

β2
= 0.125,

κT1
κT2

= 0.5. Thus, an increase in
temperature of the system alters these ratios such that the thermal expansivity coefficient
of the bottom layer increases, and so do the kinematic viscosity and thermal diffusivity.
However, the increase in the former coefficient is significant compared to the later dissipative
effects such that it becomes easy to destabilize the bottom layer. Hence, there is an effective
reduction in the critical Ra value for the ‘BOT’ mode. Obviously, the scenario for the top
layer is the opposite, and we observe a marginal stabilization of the ‘TOP’ mode.

Moving forward with other fluid combinations, we now consider a system with (ρβκT )r =

0.125 and a∗ = 0.667. From Fig. 3.11, we again see a similar behavior as observed in the
previous case. The peaks of the marginal curves swift leftward with the increase in tempera-
ture. Note that for the present system, in the immiscible limit, the kinematic viscosity ratio
(ν1

ν2
= 2.53) and any change in composition brought in by mixing makes the bottom layer
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Fig. 3.10 Top: Neutral curves for different values of r; Bottom: Magnified over the regime of
oscillatory onset
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Fig. 3.11 Neutral curves for different values of r for (ρβκT )r = 0.125,a∗ = 0.667
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Fig. 3.12 Neutral curves for different values of r for (ρβκT )r = 0.125,a∗ = 1.5
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less dissipative. Hence, there is a significant reduction in critical Ra of ‘BOT’ mode as it
becomes easy to establish convection in the bottom layer. This also makes the increase in the
critical Ra for the ‘TOP’ mode more prominent compared to the a∗ = 1.0 system.

Interestingly, the peak values of critical Ra do not decrease here as much as in the
previous case, mainly owing to the choice of fluid properties. Nonetheless, we observe a
similar reduction in the window of the oscillatory convection, and the peak value settles
around the interfacial height of 0.46−0.47.

Lastly, we analyse the behavior of the two-layer system with property ratio combinations,
(ρβκT )r = 0.125 and a∗ = 1.5. Note that the kinematic viscosity ratio of the system, ν1

ν2
,

is approximately 0.09875. Figure 3.12 shows the marginal stability curves for different
values of r. Interestingly, the curves undergo a rightward shift though we observe a similar
decrease in the window for the occurrence of oscillatory excitation in the system. The
latter behavior again relates to the increase in the effective (ρβκT )r value that makes the
occurrence of oscillatory excitation less probable. The rightward shift, however, occurs
due to the large disparity in the kinematic viscosities of the two layers. The change in
equilibrium composition due to the temperature increases the viscosity of the bottom layer
significantly such that it overwhelms the influence brought in by the increase in thermal
expansion coefficient. Consequently, the ‘BOT’ mode becomes more stable, requiring a
larger temperature gradient to provoke instability in the system. The behavior observed for
the ‘TOP’ mode is the case vice-versa.

3.9 Closure

The analysis of the onset of RB convection in binary fluids closer to UCST via a diffuse-
interface approach reveals interesting features. Firstly, it is evident that the phase-field
approach is potent enough to exactly reveal the sharp-interface features in the truly immiscible
limit. Secondly, the analysis reveals that the effect of the actual diffused nature of the interface
is too significant and cannot be ignored in the vicinity of the critical point. Thirdly, the
propensity of the system to exhibit oscillatory convection decreases as it approaches UCST.
The equilibrium composition at these states would have a lesser disparity in the property
ratios. Particularly, the combination (ρβκT )r approaches unity, and as shown by Renardy
[54] such systems would become devoid of any oscillatory convection. Of course, each
system would come with its own drift pattern in the stability curves, essentially determined
by the thermo-physical/transport properties of the fluids.





Chapter 4

Onset of Rayleigh-Bénard-Marangoni
convection in a two-layer binary fluid
system

4.1 Introduction

In the previous chapter, we explored the marginal attributes of RB convection using the
phase-field method while neglecting the variation of the interfacial tension coefficient. In the
current chapter, we will extend the analysis to understand how adding the surface tension
gradient influences the onset characteristics of convection in binary fluid systems. Here,
the focus will be only on the variation of the surface tension brought in by the temperature.
While the numerical methodology deployed here remains the same, the underlying free
energy formulation is modified to account for the variation of surface tension parameter with
temperature. We now begin this chapter by formulating the governing equations. Note that
the variation of surface tension parameter is considered to be linear with temperature.

4.2 Phase-field modeling and Governing equations

We start with the same free energy functional expression given in the previous chapter
Eq (3.4) i. e.

F(φ ,θ ,∇∇∇φ) =
∫

Ω

[
fbulk(φ ,θ)+H (r)

Λ

2
rp|∇∇∇φ |2

]
dx (4.1)
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where fbulk(φ ,θ) represents the bulk energy part and is expressed in the following form

fbulk(φ ,θ) = ρc(φ)θ −ρc(φ)θ logθ +H (r)
Λ

4ε2 rq
φ

4 − Λ

2ε2 rφ
2 (4.2)

Unlike the previous case, Λ is not a constant anymore. We assume it to linearly decrease with
the temperature. Hence, one can write Λ = Λ0 −Λθ θ . Once again, the generalized chemical
potential µ [3], which is responsible for driving any change in the chemical composition of
the system, is given by

µ =
δF
δφ

= Λ

[
H (r)rqφ 3 − rφ

ε2 −H (r)rp
∇

2
φ

]
(4.3)

We now restart formulating the problem from the basic governing equations given as

∂φ

∂ t
+uuu ·∇∇∇φ = ∇∇∇ ·

[
γ∇∇∇

{
Λ

(
rqφ 3 − rφ

ε2 − rp
∇

2
φ

)}]
(4.4)

∂ρuuu
∂ t

+∇∇∇ · (ρuuuuuu) =−∇∇∇p+∇∇∇ ·
(

η

(
∇∇∇uuu+(∇∇∇uuu)+− 2

3
∇∇∇ ·uuuIII

))
+∇∇∇ · τττnv −ρ

′
g111y (4.5)

Dρ

Dt
+ρ∇∇∇ ·uuu = 0 (4.6)

∂ρ(cθ)

∂ t
+∇∇∇ · (ρuuucθ)+Λ0

[
rqφ 3 − rφ

ε2 − rp
∇

2
φ

]
Dφ

Dt
+L ∇∇∇ ·uuu = ∇∇∇ · (κ∇∇∇θ) (4.7)

where
τττ

nv = L III −∇∇∇φ
∂L

∂ (∇∇∇φ)
(4.8)

and L = fmix(φ ,θ)+H (r)Λ

2 rp|∂φ(x)|2 is the Lagrangian energy density.
Since the phase-parameter φ acts as a marker for the phases and the interfaces, the

properties of the fluids can be expressed as a linear function of φ as:

η

η2
=

1
2
(1+

η1

η2
)+

φ

2
(
η1

η2
−1)

κ

κ2
=

1
2
(1+

κ1

κ2
)+

φ

2
(
κ1

κ2
−1)

ρc
ρ2c2

=
1
2
(1+

ρ1c1

ρ2c2
)+

φ

2
(
ρ1c1

ρ2c2
−1)

κT

κT2

=
1
2
(1+

κT1

κT2

)+
φ

2
(
κT1

κT2

−1)

(4.9)
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The phase evolution equation obeys the no flux boundary condition owing to the assump-
tion of impenetrable walls.

111y ·∇∇∇φ = 0 @y = 0,H

111y ·∇∇∇µ = 0 @y = 0,H
(4.10)

Since µ = Λ

[
rqφ 3−rφ

ε2 − rp∇2φ

]
, simplifying the above equations leads to the condition

∂φ

∂y
=

∂ 3φ

∂y3 = 0 @y = 0,H (4.11)

The no-slip and impenetrable walls at the top and bottom lead to the condition,

uuu = 0 @y = 0,H (4.12)

Both the walls in the current problem are maintained at constant temperatures; hence, the
energy equation will obey the following boundary conditions.

θ = θB @y = 0

θ = θT @y = H
(4.13)

4.3 Partial Non-Boussinesq/Boussinesq Approximation

4.3.1 Incompressible Approach

Once again, we adopt the same incompressible approach as mentioned in the previous chapter.
The velocity field is defined as a volume-average field i. e.

uuu =
ρ̃1

ρ1
uuu1 +

ρ̃2

ρ2
uuu2 (4.14)

which gives a solenoidal velocity field throughout the domain.
The Cahn-Hilliard (CH) equation remains the same as before:

∂φ

∂ t
+uuu ·∇∇∇φ = ∇∇∇ ·

[
γ∇∇∇

{
Λ

(
rqφ 3 − rφ

ε2 − rp
∇

2
φ

)}]
(4.15)
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The conservative form of the momentum equation takes the form,

∂ρuuu
∂ t

+∇∇∇ · (ρuuuuuu)+uuu
∂ρ

∂φ
∇∇∇ · jjjφ =−∇∇∇p+∇∇∇ ·

(
η
(
∇∇∇uuu+(∇∇∇uuu)+

))
+µ∇∇∇φ −ρ

′
g1̂11y

+

(
1

4ε2 rq
φ

4 − 1
2ε2 rφ

2 +
1
2

rp|∂φ(x)|2
)

∂Λ

∂θ
∇∇∇θ − rp

∇∇∇φ
∂Λ

∂θ
∇∇∇θ ·∇∇∇φ

(4.16)

∇∇∇ ·uuu = 0 (4.17)

The derivation of the above form of interfacial stress is provided in detail in Appendix
C. The above form of momentum balance accounts for the advection due to the relative
diffusional flux of species. The non-conservative form of the above equation can be written
in the following form:

ρ0

(
∂uuu
∂ t

+uuu ·∇∇∇uuu
)
=−∇∇∇p+∇∇∇ ·

(
η
(
∇∇∇uuu+(∇∇∇uuu)+

))
+µ∇∇∇φ −ρ

′
g1̂11y

+

(
1

4ε2 rq
φ

4 − 1
2ε2 rφ

2 +
1
2

rp|∂φ(x)|2
)

∂Λ

∂θ
∇∇∇θ − rp

∇∇∇φ
∂Λ

∂θ
∇∇∇θ ·∇∇∇φ

(4.18)

Finally, the conservative form of the energy equation takes the form (refer to Appendix-D
for the derivation):

∂ρ0cθ

∂ t
+∇∇∇ · (ρ0uuucθ)+θ

∂ρ0c
∂φ

∇∇∇ · jjjφ +Λ0

[
rqφ 3 − rφ

ε2 − rp
∇

2
φ

]
Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (4.19)

Here, like before, we have neglected the viscous dissipation since the magnitude of the
dissipation is much lower compared to the storage/advection of the energy in a naturally
convected flow [24]. The non-conservative counterpart is given as

ρ0c
(

∂θ

∂ t
+uuu ·∇∇∇θ

)
+Λ0

[
rqφ 3 − rφ

ε2 − rp
∇

2
φ

]
Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (4.20)

4.3.2 Linear Stability Analysis

As discussed earlier, the linear stability analysis is sufficient to give the nature of the onset
of convection in the RBM setting. The oscillatory mode of onset is observed when two
non-oscillatory modes (two bulk modes or one bulk and one interfacial mode) compete with
each other. For the two-layer Rayleigh-Bénard problem, oscillatory instability happens when
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the value of (ρβκT )r differs from unity [54]. The present chapter focuses on understanding
how the Marangoni effect modifies this criterion in the context of binary fluids. Following the
conventional procedures, we decompose any quantity into the base and perturbed quantities
as

φ = Φ
b(y)+φ

′
(x,y, t)

ui = ui
′
(x,y, t)

θ = Θ
b(y)+θ

′
(x,y, t)

p = pb(y)+ p
′
(x,y, t)

(4.21)

The perturbed quantities are assumed to be very small compared to the corresponding base
quantities. Hence, any product of perturbed quantities can be neglected. So, the linearized
equations are written as

∂φ
′

∂ t
+u j

′ ∂Φb

∂x j
== ∇k

[
γ∇k

{
Λ

(
rq3(Φb)2φ

′ − rφ
′

ε2 − rp
∇

2
φ

′
)}]

(4.22)

∂ui
′

∂ t
=− ∇i p

′

ρ(Φb)
+

η2

ρ(Φb)
∇ j

[(1
2
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2
(
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)
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′
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]
+

1
ρ(Φb)
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b
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1
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2
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b
φ
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1
ρ(Φb)
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2
+
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2
Φ

b
]
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+
1
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(
1

4ε2 rq(Φb)4 − 1
2ε2 r(Φb)2 +

1
2

rp|∇k(Φ
b)|2

)
∂Λ
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′

+
1
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(
1
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b

− 1
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(4.23)

∇iui
′
= 0 (4.24)

ρc(Φb)

[
∂θ

′

∂ t
+u j

′ ∂Θb

∂x j

]
= κ

b
∇m

2
θ

′
+(∇mκ

b)(∇mθ
′
)

+(∇mk
′
)(∇mΘ

b)+κ(φ
′
)∇m

2
Θ

b
(4.25)
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We now perform non-dimensionalization of the above equations using the following
scales.

LR = H2 tR =
H2

2

κT 2
uR =

κT 2

H2
θR = θB −θT pR =

ρ2κT 2ν2

H2
2

The resulting dimensionless equations can be written as follows.
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′

∂ t
+u

′
j∇ jΦ

b = M∇
2
[(

1− ϒRa
Ca

Θ
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(4.26)
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(4.27)

∇ ju
′
j = 0 (4.28)

(ρc) f (Φ
b)

[
∂θ

′

∂ t
+u j

′ ∂Θb

∂x j

]
=κ f (Φ

b)∇m
2
θ

′
+(∇mκ f (Φ
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(4.29)

Non-dimensional numbers M
(
= γΛ0

ε2κT2

)
, Γθ

(
= Λ0

ρ2κ2
T2

)
are the same as described in

chapter 3. We presently have two more dimensionless numbers, 1) the capillary number:
Ca = σH2

ηκT2
, and 2) the Marangoni number: Ma = σθ ∆θH2

η2κT2
, that gives the relative importance
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of the transport due to surface tension gradient to the diffusive effects of the gradient. Since
the Marangoni number (Ma) and the Rayleigh number (Ra) are not independent, we defined
another non-dimensional number ϒ, given as

Ma
Ra

=
σθ

gρ2β2H2
2
= ϒ (4.30)

The strength of the surface tension gradient is given by ϒ.
We assume the normal mode form of the perturbed quantities. In normal mode analysis,

we take the perturbation in the form of sinusoidal waves

φ = Φ
b(y)+ φ̂(y)exp(λ t + ikx)

uuu = ûuu(y)exp(λ t + ikx)

θ = Θ
b(y)+ θ̂(y)exp(λ t + ikx)

p = pb(y)+ p̂(y)exp(λ t + ikx)

(4.31)

The linearized perturbation equations are as follows:
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∂Φb
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(4.32)

The derivation of the above form is dealt with in detail in Appendix B.
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ikû+
dv̂
dy

= 0 (4.35)
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The boundary conditions are written as follows:

∂ φ̂

∂y
=

∂ 3φ̂

∂y3 = 0 @y = 0,1

ûi = 0 @y = 0,1

θ̂ = 0 @y = 0,1

(4.37)

The above set of equations is reduced to the generalized eigenvalue problem of type
AXXX = λBXXX . Once again, we solve the inverse problem so that spurious modes can be easily
filtered. We essentially look for the Ra value at which the real part of the largest eigenvalue
in the system is zero.

4.4 Consistency Check: Sharp interface and the immiscible
limits

Like in the previous chapter, we will now check for the ability of the current formulation
to mimic the sharp-interface behavior in the immiscible limits. In other words, we will
compare the results obtained using the diffuse-interface approach with those obtained using
the domain decomposition method shown in Appendix A. Here, we will maintain ε

H2
at 10−4

to mimic the sharp interface behavior. Since we know the fluids are far from the critical
temperature, we keep r to 1. Fig. 4.1 shows the exact match between the results obtained
from these different approaches and implies the consistency of the current phase-field model.
The fluid properties correspond to a∗ = 1.0 system of chapter 3 along with ϒ = 0.01.

It is interesting to note the absence of the oscillatory onset window in the present case.
We will discuss it in detail in the following section.
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Fig. 4.1 A comparison between the curves of marginal stability for the RBM convection
obtained from the domain decomposition method (DDM) and the phase-field method (PFM).

4.5 Results and Discussions

4.5.1 RBM convection in the immiscible limit

Before proceeding to understand the influence of solubility on the onset of RBM convection
in a binary fluid system deviating from the immiscible limit assumption, we would spend
some effort in understanding the behavior in the pure immiscible limit. It is well known from
the works of Degen et al. [19] and Nepomnysky and Simanovoskii [42] that the presence
of the Marangoni effect plays a significant role in the onset of oscillatory convection in
a two-layer system. A classical example described by the above works is the system of
Silicon-Oil and water combination, which would not exhibit oscillatory convection if not
for the thermo-capillary effects present in the system. In such systems, when the interface
is closer to the bottom plate, the critical Rayleigh number is higher in the RBM convection
case than in the RB convection. Here, the gradient in surface tension has a stabilizing effect,
and it inhibits the growth of the imposed perturbations. Thus, one would need a higher
value of the temperature gradient to instigate fluid motion from a purely conductive system.
The exact opposite behavior is observed when the interface is closer to the top plate. The
Marangoni effect has a destabilizing effect and thus, promotes the convection at a lower Ra
value compared to RB convection.

Unfortunately, beyond this, nothing much is comprehensively known in the literature
about the special influence of the Marangoni effect. In the present work, we now systemati-
cally study its influence by considering again (ρβκT )r = 0.125 and a∗ = 1.0 combination
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Fig. 4.2 A comparison between neutral curves between RB and RBM convections. For
RBM convection, we have used different values of ϒ to show how the strength of the surface
tension gradient affects the onset characteristics.

from the previous chapter and gradually increase the magnitude of the thermo-capillary effect
by increasing the ϒ value in the analysis. Figure 4.2 shows the neutral curves obtained from
the analysis, and it is very interesting to note that the thermo-capillarity does not always result
in the increase of parametric window for oscillatory onset. Evidently, with an increase in ϒ

from zero, the window of oscillatory convection shrinks and vanishes at around ϒ = 0.01.
Interestingly, a further increase in the ϒ value results in the reappearance of the oscillatory
onset. The reasons for this behavior can be obtained by extending the analysis of Renardy
[54] to include the Marangoni effect. The details of the steps involved are shown in Appendix
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E. For brevity, only the final equation is written below.

λ

[∫ I

0
κr|θ1|2dy+

∫ 1

I
κTr |θ2|2dy

]
=−

∫ I

0
κr(k2|θ1|2 + |∇θ1|2)dy−

∫ 1

I
(k2|θ2|2 + |∇θ2|2)dy

− λ

Pr2

Λ2

k2Ra2

[∫ I

0
(k2|v1|2 + |∇v1|2)dy+

∫ 1

I
βrκTr(k

2|v2|2 + |∇v2|2)dy
]

+
Λ2

k2Ra2

[∫ I

0
|∇2v1|2dy+

∫ 1

I

(ρβκT )r

ηr
|∇2v2|2dy

]
+

Λ2

k2Ra2

(
(ρβκT )r −1

)
∂ v̄1

∂y
∂ 2v1

∂y2

∣∣∣∣
y=I

+Λ2(ρβκT )rϒθ1
∂ v̄1

∂y

∣∣∣∣
y=I

(4.38)

It is evident that the interfacial term that leads to the non-self-adjointness of the system
has an additional term involving the Marangoni effect that competes with the other interfacial
term containing

(
(ρβκT )r −1

)
value. Thus, even in cases where (ρβκT )r (=0.125) value

is favorable to yield oscillatory convection, the magnitude of thermo-capillarity can nullify
its influence and make the system have only stationary onset, as shown in Fig 4.1. As
evident from Fig 4.2, this nullification happens around ϒ = 0.01 for present system under
consideration.

4.5.2 RBM convection in binary fluid system

In this subsection, we will discuss the onset characteristics of RBM convection in a binary
fluid system approaching UCST, i.e. once we start decreasing the value of r, the fluids
become soluble in each other. Correspondingly, the value of surface tension decreases,
and it approaches a trivial value once the system’s temperature approaches UCST. Thus,
the gradient of the surface tension term also decreases and attains a very small value for
diminishing r. Therefore, one would expect the minimal effect from surface tension gradients
on the convection characteristics for smaller values of r.

It is worthy to recall that in RB convection in the immiscible limit, the window of
oscillatory instability invariably shrunk with the decrease in ‘r’ value. Fig 4.3 and 4.4 show
the behavior of the neutral curves with reducing r for different ϒ values. Note that the first
system (Fig. 4.3) with ϒ = 0.01 has no oscillatory transition in pure immiscible state i. e.
r = 1. With the increase in temperature, i. e. decrease in r, there is a sizable window where
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Fig. 4.3 Marginal stability curves for different values of r for ϒ = 0.01, (ρβκT )r = 0.125. A
decrease in the value of r represents more soluble mixtures.
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Fig. 4.4 Marginal stability curves for different values of r for ϒ = 0.1, (ρβκT )r = 0.125. A
decrease in the value of r represents more soluble mixtures.

there is oscillatory onset. However, with the further decrease in ‘r’ the Marangoni effect
becomes feeble, and the system exhibits similar behavior as observed for RB convection in
the pure immiscible state.

The second system (Fig. 4.4) with ϒ = 0.1 possesses a relatively large window for
oscillatory onset in the immiscible limit. Interestingly, this system exhibits a different
behavior as compared to the previous one. Here, the oscillatory window initially shrinks with
the decrease in r, and at a value of r = 0.1, it completely vanishes. With further reduction in
‘r’, we see the oscillatory window reappears and has features similar to the first system.
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Fig. 4.5 A comparison between the marginal stability curves between the RB and RBM
convections closer to the critical temperature.

This can be generalized that when we go closer to the UCST, the Marangoni effect will
be negligible, and one observes similar kind of behavior from both RB and RBM convections.
It is very evident from Fig. 4.5 that the onset behavior of both the systems are quite similar.

4.5.3 Oscillatory and non-oscillatory onset in RBM convection

We can observe from the above discussions that the addition of the thermo-capillary effect
can affect the onset characteristics in both ways. It can either inhibit or expand the oscillatory
regime. In order to put things under proper perspective, we now take a combination of data as
shown in Fig 4.6. Here, the system with ‘ϒ = 0.01’ has no oscillatory onset in the immiscible
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Fig. 4.6 Marginal stability curves for different values of ϒ and r for (ρβκT )r = 0.125. We
have put markers (o) in the lines where oscillatory onset is absent.

limit, whereas it manifests a sizable window with the reduction of ‘r’. On the other hand,
the system with ‘ϒ = 0.1’ exhibits oscillatory onset in the immiscible limit and becomes
completely non-oscillatory at r = 0.1. With further reduction of ‘r’, it regains the zones of
oscillatory excitation.

It is worth remembering from the previous section that the nullification of the oscillatory
regime in the completely immiscible limit occurs at ϒ = 0.01. Though it is premature to
state that the rϒ plays the same role as ϒ in the pure immiscible state (r = 1.0) without
developing an expression similar to Eq (4.38) for the diffuse interface consideration. However,
we have been able to verify this claim for other system with (ρβκT )r = 0.25 and 0.5 as
shown in Fig 4.7. One can observe that the onset nature of the system becomes completely
time-independent when rϒ ≈ 10−2.

4.6 Closure

The current analysis of a two-layer RBM convection with a diffuse interface model provides
some interesting information. In the pure immiscible limit, the Marangoni effect plays the
dual role of suppressing the oscillatory convection in some range and enhancing it elsewhere.
This is essentially due to the contribution played by two boundary terms, one involving(
(ρβκT )r −1

)
and the other involving the non-dimensional surface tension gradient (ϒ). In

some range of parameters, these terms cancel each other resulting in a self-adjoint system. In
contrast, they do not nullify each other in other ranges to make the system non-self-adjoint
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Fig. 4.7 Marginal stability curves for different values of ϒ and r for (ρβκT )r = 0.25,0.5. We
have put markers (o) in the lines where oscillatory onset is absent.
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and thus, exhibit oscillatory excitation. The role of solubility is quite intriguing as it acts in
unison with the interfacial tension term to make the system either self-adjoint or non-self-
adjoint. Thus, it comes with its own dual role, a behavior not particularly evident for the RB
instability in the immiscible limit.



Chapter 5

Summary and Conclusions

In the current work, we have utilised a diffuse-interface approach to understand an interesting
two-phase instability problem. Notably, our efforts have been focused on predicting the onset
behavior of the Rayleigh-Bénard-Marangoni convection in a binary fluid system. A summary
of the significant outcomes from the present thesis is provided below.

• A diffuse-interface approach has been developed to understand the onset characteristics
of RBM convection in two-phase systems. Here, the two-phase system refers to a binary
fluid, which poses the unique property of being partially soluble in each other based on
the temperature. They exhibit complete miscibility above a critical temperature, called
the upper critical solution temperature (UCST). The current approach has been applied
to a wide range of parameters starting from the pure immiscible limit to the states very
close to the critical point, i.e., UCST.

• We have utilised a Chebyshev-based spectral collocation procedure for spatially dis-
cretising the flow and temperature parameters. This provides an ‘exponentially accu-
rate’ approach for predicting the critical parameters for the convection onset.

• In view of the thin diffuse interface region present in the domain, an adaptive Chebyshev
grid formulation has been employed instead of the standard Gauss-Lobatto-Chebyshev
(G-L-C) points to efficiently capture the interfacial region, thereby reducing the com-
putational cost.

• The consistency of the formulation was verified by considering a very small value
for the interfacial width (ε/H2 = 10−4) to mimic the behavior of the system in the
immiscible (far below UCST) sharp-interface limit.
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• The analysis unequivocally establishes the need for using models with diffuse interface
consideration so that the behaviour of systems closer to their critical point is estimated
accurately.

• The results reveal that the oscillatory window in the case of RB convection narrows
down with the increase in the system’s temperature. This behaviour occurs on account
of the increase in the system’s solubility with temperature. Hence, one can expect the
property ratios to approach unity, and the combination (ρβκT )r to become closer to
unity.

• Even in the pure immiscible limit, the Marangoni effect plays the dual role of suppress-
ing the oscillatory convection in some range and enhancing it elsewhere. Note that the
onset characteristics of RBM convection depend on the non-dimensional number ϒ in
the immiscible limit. For a smaller value of ϒ(= 0.001), onset characteristics of RB
and RBM convections are the same. For ϒ = 0.01, the onset of RBM convection is
completely time-independent. Any increase above ϒ = 0.01, one can expect to observe
oscillatory onset in the immiscible limit.

• Mathematically, the non-self-adjoint nature of the system, responsible for the man-
ifestation of oscillatory onset, is determined by two boundary terms, one involving(
(ρβκT )r − 1

)
and the other involving ϒ. In the above case, the terms nullify each

other at around the value of ϒ = 0.01, making the system self-adjoint and the onset
stationary.

• The Marangoni effect plays a minor role when the system operates very close to the
critical temperature. This is because the surface tension value is smaller, close to the
critical temperature and the gradient in surface tension is even smaller.

• Further extending the result (obtained for an immiscible system) to the miscible case
considerations, the time-independent behavior at the onset is observed at rϒ = 0.01.

5.1 Scope for future extension

In the present scenario, we have assumed the value of r to be constant owing to the small
temperature change in the system. This assumption will not hold well for a system where
the temperature change inside the system is more than 10K. In the future, one can attempt
to develop a model to address the inhomogeneities of the r value in the system. Using the
model developed in the current work, one can also attempt to perform a full non-linear fluid
flow simulation, which would be relevant for many practical applications.



Appendix A

Sharp-Interface approach

A.1 Domain decomposition approach to the two-layer RB
problem

The current appendix describes the procedure for predicting the onset characteristics/parameters
of a two-layer Rayleigh-Bénard convection under sharp-interface considerations. The sim-
plest way to perform the analysis is to identify the two layers to be distinct domains that have
their own set of equations governing the flow and temperature evolution. A set of match-
ing conditions are applied to the fluid-fluid interface to establish mechanical and thermal
continuity between the two layers. The interface is assumed to be non-deformable, a valid
consideration for predicting the onset of convection in a fluid system with large disparity in
their densities. We now begin the analysis by formulating the underlying governing equations
and the boundary/interfacial conditions.

A.1.1 Governing Equations

The current system consists of two non-reacting, immiscible, and incompressible fluids
lying quiescently in a cavity of finite height and infinite horizontal extents. Understandably,
the lighter fluid is on top of the denser one, in order to avoid Rayleigh-Taylor instability.
The interface has been considered non-deformable since the present interests are to study
the different scenarios of convection onset for fluids with large density disparity. Here, ρi,
ηi, νi, κi, κTi , and βi represent the density, dynamic viscosity, kinematic viscosity, thermal
conductivity, thermal diffusivity, and co-efficient of thermal expansion for the two fluids.
Note that i = 1 represents the bottom fluid and i = 2 represents the top fluid. Hence, the
ratios utilised here are reciprocal of the ratios specified in the chapters. The ratios of all the
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Fig. A.1 System configuration in a sharp interface limit

relevant properties form the input parameters for the problem. In fact, they give rise to the
following six dimensionless parameters:

ρ =
ρ1

ρ2
η =

η1

η2
ν =

ν1

ν2

κ =
κ1

κ2
κT =

κT1

κT2

β =
β1

β2

Our main aim is to investigate the flow onset behaviour in two distinct, quiescent
fluid layers that are subjected to perturbations under adverse thermal gradients. The non-
dimensionalised equations governing the flow and temperature evolutions are given as
follows:

For fluid 1 (Top layer)

∂u1 j

∂ t
+u1 ·∇u1 j =−Pr1∇ j p1 +Ra1Pr1θ 1δ j2 +Pr1∇

2u1 j

∇ ·u1 = 0 (A.1)

∂θ 1

∂ t
+u1 ·∇θ1 = ∇

2
θ1 (A.2)

For fluid 2 (Bottom Layer)

∂u2 j

∂ t
+u2 ·∇u2 j =−ρPr1∇ j p2 +

Ra1Pr1

β
θ 2δ j2 +

Pr1

ν
∇

2u2 j
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∇ ·u2 = 0 (A.3)

∂θ 2

∂ t
+u2 ·∇θ2 =

1
κT

∇
2
θ 2 (A.4)

The scaling has been performed here by using the properties of the fluid 1 as follows.

x =
x∗

a1
z =

z∗

a1
t =

t∗κT1

(a1)2

u =
u∗a1

κT1

θ =
θ ∗

∆θ
p =

p∗(a1)
2

ρ1κT1ν1

Ra1 =
gβ1∆θ ∗(a1)

3

ν1κT1

Pr1 =
ν1

κT1

Both the top and bottom plates are assumed to be rigid and are maintained at constant
temperatures. The bottom plate is usually heated to generate an adverse density gradient
which is responsible for onset of convection in the system. The following conditions are
enforced at the material interface between two fluids.

1. Continuity of horizontal velocity: u1 = u2

2. Continuity of vertical velocity: v1 = v2 = 0 (owing to the non-deformablity of the
interface)

3. Continuity of the heat flux: ∂θ1
∂y = 1

κ

∂θ2
∂y

4. Continuity of temperature: θ1 = θ2

5. Continuity of tangential stress: ∂u1
∂y − 1

η

∂u2
∂y = Ma∂θ

∂x

A.1.2 Linear stability analysis

We now perform the linear stability analysis to obtain the critical Rayleigh number and
the parametric space for oscillatory onset of convection. The base state profile is a pure
conduction problem without any underlying flow: Ub

i = 0, ∂Θb
i

∂y = Λb
i , where Λb

i is the vertical
temperature gradient in each fluid layer i. The perturbations to the base state field variables
are expanded in terms of normal modes as (u

′
i, p

′
i,θ

′
i ) = (ûi(y), p̂i(y), θ̂i(y))exp(λ t + ιkx).
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The resultant semi-discrete linearized equations are given as follows:

For fluid 1

λ û1 j =−Pr1∇ j p1 +Ra1Pr1θ̂1δ j2 +Pr1

(
d2û1 j

dy2 − k2û1 j

)
∇ · û1 = 0 (A.5)

λ θ̂1 =−Λ1v̂1 +
d2θ̂1

dy2 − k2
θ̂1 (A.6)

Fluid 2

λ û2 j =−ρPr1∇ j p2 +
Ra1Pr1

β
θ̂2δ j2 +

Pr1

ν

(
d2û2 j

dy2 − k2û2 j

)
∇ · û2 = 0 (A.7)

λ θ̂2 =−Λ2v̂2 +
1

κT

(
d2θ̂2

dy2 − k2
θ̂2

)
(A.8)

The associated boundary and interfacial conditions are

ûi = 0 θ̂i = 0 at y = 0,1 (A.9)

û1 = û2 v̂1 = v̂2 = 0 θ̂1 = θ̂2 κ
dθ̂1

dy
=

dθ̂2

dy
η

dû1

dy
=

dû2

dy
(A.10)

Once again, the spatial discretization of the variables are carried out using the chebyshev
pseudo-spectral method. Any variable Ξ can be expressed as a Lagrangian interpolation of
the collocation points

ΞN(y) =
N

∑
i=0

hi(y)Ξ(yi) (A.11)

where N is the number of collocation points along the vertical (normal to the interface)
direction and the cardinal function hi(y) is defined over the collocation points, yi = cos πN

i
expressed as

hi(y) =
(−1)i+1(1− y2)TN

′
(y)

ciN2(y− yi)
(A.12)
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where ci = 2 for the end points, 1 for all in between points and TN
′
(y) is the N-th derivative

of the Chebyshev polynomial of first kind. The pressure variable alone is expanded as,

pN−2(y) =
N−1

∑
i=1

ĥi(y)p(yi) (A.13)

wherein, the cardinal is defined as

ĥi(y) =
(1− yi

2)

(1− y)
hi(y) (A.14)

Using above polynomial expansions for different variables, the set of governing equations
can be represented as a generalized eigenvalue problem of the form AX = λBX. This
eigenvalue problem has been solved here by using the standard QR algorithm. Solving the
generalized eigenvalue problem may give rise to the spurious modes due to the sparsity of
the matrix B, mainly due to the zero-valued rows corresponding to the continuity equation
and the boundary conditions. The presence of these spurious modes possesses a serious
threat to finding the largest eigenvalue, since these large spurious modes may be confused
with the actual eigenvalues. To avoid such a scenario, we employ the reciprocal approach.
Instead of finding the largest eigenvalue for AX = λBX, we aim for the smallest eigenvalue
for λAX = BX. We check for the presence of zero-valued eigenvectors while calculating
these eigenvalues and if found, we discard those from the eigenvalue calculation process.
Figure A.2 shows the typical neutral curve obtained for the two layer system. The fluid
properties used for this analysis and inferences from these curves have been dealt in detail in
chapter 3.
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Fig. A.2 Neutral Curve obtained via Domain Decomposition Method



Appendix B

Linearization of the Cahn-Hilliard
equation

The current appendix deals with linearization of Cahn-Hilliard (CH) equation in the context
of Rayleigh-Bénard-Marangoni convection. In a general form, the CH equation is written as

∂φ

∂ t
+uuu ·∇∇∇φ = ∇∇∇ ·

[
γ∇∇∇

{
Λ

(rqφ 3 − rφ

ε2 − rp
∇

2
φ

)}]
(B.1)

We now intend to incorporate the non-trivial value of surface tension gradient into the
analysis. One typically represents the surface tension term via Λ, which is the magnitude
of the mixing free energy. Here, we will consider the variation of interfacial tension with
temperature only. Thus, Λ can no longer be considered as a constant and for the simplest case,
a linear form of Λ is assumed, Λ = Λ0 −Λθ θ . The linearized version of the CH equation is
then given as

∂φ
′

∂ t
+uuu

′
·∇∇∇Φ

b = ∇∇∇ ·
[

γ∇∇∇

{(
Λ0 −Λθ Θ

b)(rq3(Φb)2
φ

′
− rφ

′
−
(

ε

H2

)2
rp

∇
2
φ

′
)}]

(B.2)

Assuming the mobility parameter γ to be a constant, the dimensionless CH takes the
following form:

∂φ
′

∂ t
+uuu

′
·∇∇∇Φ

b = M∇
2
[(

1− Ma
Ca

Θ
b)(rq3(Φb)2

φ
′
− rφ

′
−
(

ε

H2

)2
rp

∇
2
φ

′
)]

(B.3)

Here, M is the dimensionless mobility which represents the ratio of the diffuse-interface
diffusivity to the thermal diffusivity, γΛ0

ε2κT2
. Ma(= σθ ∆θH2

η2κT2
) is the Marangoni number which

gives the relative importance of the transport due to surface tension gradient to the diffusive
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effects of the gradient, and Ca is the inverse capillary number. Note that this number is
different from Γθ that we defined earlier, where Γθ = Λ

ρ2κ2
T2

. Usually Ca is defined as

Ca =
σ

ηV
(B.4)

where

• η : dynamic viscosity

• V : velocity scale

• σ : surface tension

We have chosen the velocity scale, V to be
κT2
H2

. So, the inverse capillary number becomes
Ca = σH2

ηκT2
.

Also note that the Marangoni number (Ma) and the Rayleigh number (Ra) are not
independent.

Ma
Ra

=
σθ

gρ2β2H2
2
= ϒ (B.5)

Thus, the above dimensionless CH equation can be rewritten as

∂φ
′

∂ t
+uuu

′
·∇∇∇Φ

b = M∇
2
[(

1− ϒRa
Ca

Θ
b)(rq3(Φb)2

φ
′
− rφ

′
−
(

ε

H2
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∇
2
φ

′
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(B.6)
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)
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′
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ε
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∇
2
φ

′
)] (B.7)

We employ the normal mode analysis to carry out the linear stability analysis.
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Let us calculate the second part on RHS i.e.∇2
[
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(B.8)

Finally we can have the linearized form of the perturbed phase evolution equation

λ φ̂ + v̂
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Appendix C

Derivation of the interfacial stress terms

This appendix deals with derivation of the interfacial stress terms in the context of the phase-
field model representing the Rayleigh-Bénard-Marangoni convection. Recall from chapter 3
that the generalized Navier-Stokes equations involve the

∂ρuuu
∂ t

+∇∇∇·(ρuuuuuu)=−∇∇∇p+∇∇∇·
[

η

(
∇∇∇uuu+(∇∇∇uuu)+− 2

3
∇∇∇·uuuIII

)]
+∇∇∇·

(
L III−∇∇∇φ

∂L

∂ (∇∇∇φ)

)
−ρ

′
g111y

(C.1)

L =
Λ

4ε2 rq
φ

4 − Λ

2ε2 rφ
2 +

Λ

2
rp|∇∇∇φ(x)|2 (C.2)

Let us now calculate the contribution from the non-viscous stress tensor : ∇∇∇ ·
(

L III −

∇∇∇φ
∂L

∂ (∇∇∇φ)

)
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∇∇∇ ·
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Calculating the first part of the RHS of the equation gives
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The second part gives
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Finally, we obtain the contribution from the non-viscous stress tensor as
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Note that if we neglect the variation of Λ with temperature i.e. ignore the surface tension
gradient, we will obtain the form

∇∇∇ ·
(

L III −∇∇∇φ
∂L

∂ (∇∇∇φ)

)
= Λ0

(
rqφ 3 − rφ

ε2 − rp
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2
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)
∇∇∇φ

= µ∇∇∇φ

(C.7)

where µ = Λ0

(
rqφ 3−rφ

ε2 − rp∇2φ

)





Appendix D

Energy equation

In current appendix, we derive the appropriate form of the energy equation corresponding to
the phase-field formulation for Rayleigh-Bénard-Marangoni convection.

Here, the total energy of the system can be written as

E(φ ,θ) =
∫

Ω

[
1
2

ρ|uuu|2 +ρgy+ e0 +ρc(θ −θ0)+
Λ0

4ε2 rq
φ

4 − Λ0

2ε2 rφ
2 +

Λ0

2
rp|∇∇∇φ(x)|2

]
dx

(D.1)
Following Anderson et al.[4] the energy balance equation can be written as
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+∇∇∇·(ρuuucθ)+
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∇∇∇ ·uuu+Λ0rpQG =−∇∇∇·qqqE +D

(D.2)
The flux of energy through the boundary of the control volume is given by

qqqE = κ̃∇∇∇

( 1
θ

)
−Λ0rp

∇∇∇φ
Dφ

Dt
(D.3)

hence,

−∇∇∇ ·qqqE = ∇∇∇ · (κ∇∇∇θ)+Λ0rp
∇∇∇ ·

(
∇∇∇φ

Dφ

Dt

)
(D.4)

where κ̃ = θ 2κ [4]. κ is the thermal conductivity of the material.
Note that

QG = ∇∇∇ ·
(

∇∇∇φ
Dφ

Dt

)
−∇

2
φ
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Dt
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and
d
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∫
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1
2
|∇∇∇φ |2dxxx =

∫
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QGdxxx (D.6)
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Thus, we obtain

∂ρcθ

∂ t
+∇∇∇ · (ρuuucθ)+Λ0

(
rqφ 3 − rφ

ε2 − rq
∇

2
φ

)
Dφ

Dt

+
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2ε2 rφ
2 +
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2
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)
∇∇∇ ·uuu = ∇∇∇ · (κ∇∇∇θ)+D +Λ0rp

∇∇∇uuu : ∇∇∇φ∇∇∇φ

(D.7)

Now we discuss the significance of the term D , which is given as

D = τττ : ∇∇∇uuu− p∇∇∇ ·uuu+ τττ
nv : ∇∇∇uuu (D.8)

where τττnv = L III −∇∇∇φ
∂L

∂ (∇∇∇φ) , and τττ = µ

(
∇∇∇uuu+(∇∇∇uuu)+− 2

3∇∇∇ ·uuuIII
)

.

“τττ ::: ∇∇∇uuu” is the viscous dissipation term. We can perform an order of magnitude analysis
to find out the importance of the viscous dissipation term. The convection of internal energy
≈ ρc∆θuR

LR
, where uR is the reference velocity scale, LR is the reference macroscopic scale. The

viscous dissipation ≈ η
uR

2

LR
2 . Thus, the viscous dissipation to the rate of change of the internal

energy is of the order of ηuR
ρc∆θLR

. For a typical liquid system η

ρc ≈ 10−9 s K, and uR
∆θLR

is not
very large for the current system. Thus, from the above calculations, we can conclude that
the viscous dissipation will not play any significant role in the present convection problems
[65, 24].

The second term on the RHS i.e. “−p∇∇∇ ·uuu” represents the heating due to the compression.
This is a part of the reversible work done on the system by the normal forces. For a typical
liquid system, this heating is negligible at normal pressures, hence we can neglect this term
[24].

The last term represents the work done due to interfacial forcing terms. “τττnv : ∇∇∇uuu” is of
the order of Λ0uR

ε2LR
, where as the rate storage of internal energy is of the order ρc∆θuR

LR
. The ratio

of the reversible work to the storage term is given as Λ0
ε2ρc∆θ

, which is at least ≈ O(10−2) in
our case. Thus, we can neglect this term in our energy equation. Like wise, we can neglect
the last term on RHS of the energy equation.

Finally we obtain our energy balance equation as

∂ρcθ
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+∇∇∇ · (ρuuucθ)+Λ0

(
rqφ 3 − rφ

ε2 − rq
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2
φ

)
Dφ
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2
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)
∇∇∇ ·uuu = ∇∇∇ · (κ∇∇∇θ)

(D.9)



89

For constant value of Λ, one can write

∂ρcθ

∂ t
+∇∇∇ · (ρuuucθ)+µ

Dφ

Dt
+L ∇∇∇ ·uuu = ∇∇∇ · (κ∇∇∇θ) (D.10)

where L =

(
Λ

4ε2 rqφ 4 − Λ

2ε2 rφ 2 + Λ

2 rp|∇∇∇φ(x)|2
)

is the Lagrangian density, and

µ = Λ

(
rqφ 3−rφ

ε2 − rq∇2φ

)
.

Since we have considered the volume-averaged velocity to take the advantage of solenoidal
velocity field (∇∇∇ ···uuu = 0), the energy balance equation can further be rewritten to

∂ρcθ

∂ t
+∇∇∇ · (ρuuucθ)+θ

∂ρc
∂φ

∇∇∇ · jjjφ +Λ0

(
rqφ 3 − rφ

ε2 − rq
∇

2
φ

)
Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (D.11)

and for constant value of Λ, the equation gets reduced to

∂ρcθ

∂ t
+∇∇∇ · (ρuuucθ)+θ

∂ρc
∂φ

∇∇∇ · jjjφ +µ
Dφ

Dt
= ∇∇∇ · (κ∇∇∇θ) (D.12)





Appendix E

Revisiting theory to predict oscillatory
onset in RBM convection

In this appendix, we will derive a single equation concerning the growth rate of the perturba-
tion. The equation manifests information about the self-adjoint or non-self-adjoint nature of
the RBM convection. We take the governing equations as defined in [54], but we consider
the finite Pr case here. Stratification of the fluids (Fig (E.1)) gives six dimensionless ratios in
fluid properties:

ρ =
ρ1

ρ2
η =

η1

η2
ν =

ν1

ν2

κ =
κ1

κ2
κT =

κT1

κT2

β =
β1

β2

where ρi, ηi, νi, κi, κTi , and βi represent the density, dynamic viscosity, kinematic viscosity,
thermal conductivity, thermal diffusivity, and co-efficient of thermal expansion of fluid i.

We have used the following scales to arrive at the dimensionless equations:

LR = H2 tR =
H2

2

κT 2
uR =

κT 2

H2
θR = θB −θT pR =

ρ2κT 2ν2

H2
2

Following the typical normal mode expansion, i.e., the perturbations being proportional
to exp(λ t + ikx), we get the temporal derivatives as

λuuu1 =−Pr2∇∇∇p1 +Ra2Pr2θ 1111y +Pr2∇
2uuu1 (E.1)
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Fig. E.1 System configuration

λuuu2 =−ρPr2∇∇∇p2 +
Ra2Pr2

β
θ 2111y +

Pr2

ν
∇

2uuu2 (E.2)

λθ 1 =−v1Λ1 +∇
2
θ 1 (E.3)

λθ 2 =−v2Λ2 +
1

κT
∇

2
θ 2 (E.4)

Operating with 111y ·∇∇∇×∇∇∇, the momentum equations take the following forms

λ∇
2v1 =−k2Ra2Pr2θ 1 +Pr2∇

4v1, (E.5)

λ∇
2v2 =−k2 Ra2Pr2

β
θ 2 +

Pr2

ν
∇

4v2. (E.6)

Eventually, the set of governing equations can be written as

λ

Pr2
∇

2v1 =−k2Ra2θ 1 +∇
4v1 (E.7)

λ

Pr2
∇

2v2 =−k2 Ra2

β
θ 2 +

1
ν

∇
4v2 (E.8)

λθ 1 =−v1Λ1 +∇
2
θ 1 (E.9)
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λθ 2 =−v2Λ2 +
1

κT
∇

2
θ 2 (E.10)

Equations (E.9) and (E.10) are multiplied by κθ̄1 and κT θ̄2 respectively. The addition of
complex conjugate of the resultant equations gives

λ̄

[∫ I

0
κ|θ1|2dy+

∫ 1

I
κT |θ2|2dy

]
=
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0
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2
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I
κT Λ2v̄2θ2

(E.11)

Equations (E.7) and (E.8) are multiplied by Λ2v̄1 and κT Λ2v̄2 respectively to eliminate
the cross products like v̄1θ1 and v̄2θ2 from the momentum and energy equations.

Thus, the final form of the modified governing equation is given as
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y=I

(E.12)

The boundary value terms arise from integration by parts with respect to y with conditions
v1 = v2 = 0 (non-deformable interface), ∂v1

∂y = ∂v2
∂y (derived from continuity of velocity),

∂ 2v1
∂y2 = 1

η

∂ 2v2
∂y2 + k2Maθ1 (continuity of shear stress), and κ

∂θ1
∂y = ∂θ2

∂y (continuity of heat flux)
at the interface.
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