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Foreword

The Jawaharlal Nehru Centre for Advanced Scientific Research 
was established by the Governm ent o f India in 1989 as part of 
the centenary celebrations of Pandit Jawaharlal Nehru. Located in 
Bangalore, it functions in close academic collaboration with the 
Indian Institute of Science.

The Centre functions as an autonom ous institution devoted to 
advanced scientific research. It prom otes programmes in chosen 
frontier areas o f science and engineering and supports workshops 
and symposia in these areas. It also has programmes to encourage 
young talent.

In  addition to the above activities, the Centre has undertaken 
a program m e o f publishing high quality Educational M onographs 
written by leading scientists and engineers in the country. These 
ai-e short acoouats o l  interesting areas in science and engiaeeriag 
addressed to students at the graduate and postgraduate levels, and 
the general research community.

This m onograph is one of the series being brought out as part 
o f the publication activities o f the Centre. The Centre pays due 
attention to the choice of authors and subjects and style of presen
tation, to make these m onographs attractive, interesting and useful 
to students as well as teachers. It is our hope that these publications 
will be received well both within and outside India.

C.N.R. Rao 
President



Preface

This book is about Deterministic Chaos. That is, how simple physical 
laws, such as Newton’s laws of motion, acting on simple physical 
systems, such as a pendulum , can turn out an irregular and seem 
ingly random  m otion that is too complex to predict or compute 
to any given degree of accuracy in the long run. Chaos is the 
science of complexity o f change —  N ature’s apparent madness in 
method.

T here are compelling reasons why one ought to be mindful of 
chaos. First, chaos exists and it is common. I t  is obviously there in 
the turbulence of a fluid in flow —  through pipes, past obstacles, in 
rotation, o r in convection when heated from below, beyond certain 
thresholds of velocity, tem perature gradient, etc. It also lurks in 
the dripping of a leaking faucet as the flow rate is gradually turned 
on. It underlies the long-term unpredictability o f weather and it 
seems to be implicated in the fluctuations of share prices in stock 
markets. The erratic reversals of the polarity o f earth ’s magnetic 
field, o f which we have had at least sixteen in the past four million 
years, are suspected to hide an erratic geomagnetic dynamo. So 
is possibly the case with the occurrence of earthquakes. Indeed, 
researchers have detected chaos at work in the most unexpected 
places, often m asquerading as noise, e.g., in ecology (rise and fall 
o f the population of certain moths, fishes, and of o ther com pet
ing species in a given region), epidemiology (recurrence pattern  
o f epidemic infections like measles as different from small pox), 
economics (fluctuation of commodity and stock prices), dynami
cal diseases like apnea (a tem porary cessation of breathing) and 
disturbed chemical and biological clocks (the circadian rhythms of 
m osquitoes). Chaos-informed analysis of the erratic signals fi-om 
the schizophrenic brain (EEG ) and the arrhythmic heart (EC G ) 
are opening up new directions in brain research and cardiology. 
Thus, chaos is the rule rather than the exception, or a m ere odd
ity. In fact, all m otions in physics and reactions in chemistry turn 
chaotic for some initial conditions when driven hard enough, far 
from equilibrium, to the nonlinear regime —  when m ore becom es 
different.



xii Deterministic chaos

Second, chaos provides a novel, non-Newtonian world-view where 
chance emerges out of the very necessity o f the determ inistic laws. 
I t  provides a powerful and controlled way of thinking meaningfully 
about many an old as well as new phenomenon, such as turbulence, 
that otherwise appears a maelstrom of confusion. H ere chaos has 
a philosophical flavour that one cannot resist.

Third, while chaos is definitely all about complexity, it itself is 
rather easy to get acquainted with. And what is more, here one can 
go a long way without much formal training beyond the level of 
pre-university science. Most encouraging! This is so because some 
of the most powerful methods developed for the study of chaos are 
also mostly qualitative in nature and are best visualized through 
pictures —  a kind of visual mathematics you might say (see the 
Visual M athem atics Library (Vismath) publication Dynamics: The 
Geometry o f  Behaviour by Ralph H. Abraham and Christopher D. 
Shaw, Aerial Press, Santa Cruz (1981), for a delightful exposition). 
Thus, one typically asks what happens to a geometrical form when it 
is alternately and repeatedly stretched out and folded back. In  fact, 
repeated application (or iteration) of a simple recursive rule is the 
standard tool for producing and analysing chaotic motions. A fter 
all, more and more iterations can eventually lead to som ething that 
either stays put (constant), or keeps on repeating itself (periodic), 
o r keeps changing without ever repeating itself (aperiodic). The last 
one signifies chaos. There is no o ther alternative! Further, chaos, 
because of the inherent sensitive dependence on initial conditions, 
can be put to practical use —  chaotic mixing by advection in fluid 
flows for example. This is much faster than molecular-level diffusion 
and much less energy consuming than vigorous stirring. This has 
obvious relevance to pollutant dispersal and industrial mixing. As 
we will see later, chaos has within it barriers to mixing that must 
be fully appreciated.

And finally, studying chaos can be great fun, especially if you 
own a programmable calculator, o r better still a personal computer. 
With simple programmes you can generate complex patterns that 
evolve creatively as if possessing a free will of their own. One 
cannot ignore the eudemonic aspect of chaos study.

O ur knowledge of chaos is of recent origin. It all began in the 
early 1960’s with the M IT meteorologist Edward Lorenz trying 
out his convective toy model simulating weather on his com puter 
and finding it impossible to get reproducible outputs. Rounding off 
errors of the digitized computation were obviously getting amplified 
uncontrollably. Chaos was, of course, detected even earlier but 
dismissed as mere noise as by Balthasar van der Pol, who complained 
of interm ittent noise while tuning the capacitor in a neon-bulb R -C



relaxation oscillator driven by a sinusoidal voltage. But scientific 
interest in chaos has really mushroomed in the last two decades or 
so, and has become a growth industry by now.

In order to see chaos in the proper perspective consider the 
following. The first half of the twentieth century had witnessed the 
revolutionary development of three of the greatest scientific con
ceptions of the human mind. The first two are quantum mechanics 
and special relativity that together dom inate the realm of the small
—  molecules, atoms and so on down to the smallest constituents 
of m atter and the fundamental forces that hold them together. The 
third is general relativity (gravitation) that dominates the realm of 
the very large. These are the great framework theories to which 
all happenings in the physical world must be justified. The second 
half of this century, at its turn now has, however, witnessed the 
developm ent of yet another scientific conception —  the idea of 
deterministic chaos, that some believe is as revolutionary in that it 
represents a new paradigm —  of uncertainty consistent with de
terminism. Quantum  mechanics and relativity have shown that the 
classical Newtonian laws of physics are a t best approximate and 
have a limited domain of validity: Nature does not obey the laws 
of classical physics exactly. But deterministic chaos goes differently: 
Chaos obeys the letter of the law that be, but not the spirit of 
it! W hat could be simpler than a damped, rigid pendulum driven 
by a periodic force off resonance? And yet, beyond a threshold 
condition the motion becomes erratic after just a cycle or two and 
as unpredictable as the successive outcomes of a tossed coin. How 
can this unpredictable ‘chance’ emerge from the very necessity of 
the deterministic law? The answer lies in the sensitive dependence 
on the initial conditions. The latter blows out of proportion an ‘ever 
so-small-a-swerve of an atom ’. And this there must ahvays be. This 
is the basis of the new world-view that deterministic chaos has 
offered: Chance out o f  necessityl

Scientific literature on chaos in the form of original research 
papers in journals and m onographs has simply exploded. I t  goes 
by the forbidding name ‘Nonlinear Dynamical Systems’. B ut all 
this is for experts. There are also several popular books on chaos, 
e.g. the 1987 bestseller by Jam es Gleick addressed to the general 
public.

In  this book, however, I have addressed the curious lot among 
students o f Science and Engineering a t all stages of their under
graduate studies. I  also have in mind college teachers who may 
want to enliven their lectures, on mechanics in particular, with 
some current topics. Much of the book is, however, accessible to 
anyone with a  pre-university science background.

Preface xiii



riv Deterministic chaos

The book is organized as follows. C hapter 1 is a general in tro
duction to  deterministic chaos. M ost basic concepts haVe been in
troduced here. It is essentially complete in itself. I strongly urge the  
reader not to skip it. It is intentionally written in a discursive style. 
Chapter 2 introduces some simple geometric tools such as phase- 
space flows, maps, attractors, Lyapunov exponents, etc., mostly 
through pictures. Chapter 3 treats the period-doubling route to  
chaos through the celebrated examples of the logistic m ap  and 
the circle map. O ther routes to chaos are also briefly m entioned. 
Chapter 4 discusses the strange attractor —  the heart o f chaos. 
Chapter 5 introduces chaos in non-dissipative dynam ical systems
—  Hamiltonian chaos. It presupposes some knowledge c>f H am ilto
nian mechanics, and acquaints the reader with the celebrated K A M  
theorem. C hapter 6 offers a  lightning course in fractals that under
lie the strange geometric structure of strange attractofs. C hapter 
7 concludes with general remarks on other aspects of chaos not 
discussed in the book, and some open questions. There is a set o f 
tour Appendices that help the reader with technical ijiatters like 
linear stability, Lyapunov exponents, saddle points, sepafatrices, ho
moclinic orbits, etc. Finally, for the highly motivated reader I have 
suggested a selection of books and articles. In particular, the book 
Cnaos and Nonlinear Dynamics: A n  Introduction fo r  Scientisls anil 
Engineers by Robert C. Hilbom  (Oxford University Press, Oxford, 
1994), with its list of annotated references, should be of much help.

I would like to express my gratitude to Prof. N. M ukunda tor 
carefully scrutinising the manuscript and making valuab le  sugges
tions. The organization of m atter for this book was also much 
facilitated by reference to the chapter on chaos in the book Invi
tation to Contemporary Physics (World Scientific, Singapore, 1990) 
th a t I  had co-authored with Dr. Ho-Kim Quang and Dr. C. S. Lam. 
I have also benefited much from reading Chaotic Dynarfiics: A n  In 
troduction by G. L. Baker and J. P. Gollub (Cambridge University 
Press, Cambridge, 1990), and Exploring Complexity by G. Nicolis 
and L Prigogine (W. H. Freeman, San Francisco, 1989). Finally, 
I  w ould also like to thank my long-time friend Mr. R. Ashiya of 
IS R O  Satellite  C entre (ISAC), Bangalore, for his keen interest in 
this p ro jec t and for bringing several references to my attention.

P rof. P. W. A nderson of Princeton University has spoken of the 
study  o f  com plexity as ‘the leading edge of Science’ and ‘exhilarat
ing’. A n d  chaos, afte r all, is all about the complexity o f change. So, 
re a d  o n  —  w ith  attention!

N. Kum ar 
Bangalore, 1996



1 Introduction

1.1 What is deterministic chaos?

By chaos we mean an irregular, seemingly random change in time or 
m otion which is too complex to predict in detail or rather compute 
with any given precision in the long run. We say seemingly random 
because the physical laws and the forces that govern the motion are 
all perfectly deterministic and given —  Newton’s laws of motion, 
springs and friction for example. Hence the more appropriate term 
deterministic chaos is used in order to distinguish it from what is 
merely a stochastic noise that results from the unreckoned and 
uncontrolled forces that may be acting on the system from the 
outside. A textbook example of the latter is the Brownian m otion 
of a speck of pollen moving zigzag in water under the influence 
of countless impulses from the unobserved water molecules (the 
unpredictability here results from the statistical complexity of the 
system —  the large num ber of molecular degrees of freedom 
involved that defy all attem pts at book-keeping). Deterministic 
chaos is, however, different. Even a small system, that is one 
consisting of a small num ber of sub-units (or degrees of freedom ) 
can become chaotic. Thus, a system of just two coupled oscillators 
can act up and show chaos if excited beyond an energy threshold. It 
is this complex and seemingly unpredictable behaviour of relatively 
simple systems that deterministic chaos is all about. Such systems 
are computationally irreducible, in the sense that watching their 
own evolution continuously is the shortest and the most efficient 
procedure for determining their future course.

L et us get acquainted with chaos through some common real-life 
examples. Think of a game of chance of your choice. It may involve 
a mere tossing of coins, or the shuffling of a pack of cards, o r the 
spinning of a wheel of fortune, or doing just about any such thing 
that people often do for fun and occasional profit. You may have 
watched the erratic movements o f the kinetic toys that are found in 
expensive gift shops. Or, if you are given to serious thought, you may 
have wondered a t the everchanging pattern  o f daily w eather and the 
hopeless task o f forecasting it in the long term . You may have also 
been fascinated by the sm ooth stream lines o f w ater flowing past an



to the monotonous dripping of a ' •“
a never repeating pattern, like the beats of an 
drummer, as the flow is gradually turned on. Or you c o u l d  perhaps 
experiment now with numbers if you own a program m able calcu
lator, or a PC. You could generate a sequence of num bers by the 
repeated application (that is, iteration) of a set o f simple arithm etic 
operations, such as choosing an arbitrary input number, betw een 0  
and 1, multiplying it by 2  and retaining just the fractional part o f 
the product as the output which then serves as input for the next 
round of iteration. You will be surprised to find that the sequence 
of numbers so generated through the strictest (mathem atical!) de 
terminism turns out to be as random as the outcomes of the tossing 
of a coin. Indeed, it is by some such device that com puters generate 
their store of random (or rather pseudo-random) numbers. T he list 
of examples is endless. Now ask yourself what is the com m on ele
ment in all these examples. The answer that leaps to the m ind is, 
of course, unpredictability. It is there in the tossing of the coin and 
understandably so; but strangely enough it is also there in the rising 
column of the cigarette smoke and in the little arithm etic game that 
we had devised, despite their simplicity and the strictly determ inis
tic laws that govern them. Let us sharpen this observation further.

1.2 Deterministic reductionism

The laws of classical (that is Newtonian) physics are determ inistic. 
Given a complete knowledge of the initial conditions, namely the 
mitial positions and velocities of all the particles, the entire  future 
courK of events is determined uniquely. This is the N ew tonian 
world-view that has served us so well. Just think of the accuracy 
with which astronomers can calculate the positions of planets and 
ramets and the times of eclipses years in advance; o r contem plate 
the unthinkable precision of the calculations that bring beam s of 
electrons and positrons together in a head-on collision at L EP
Ir  .ri \  in Geneva). Simi

lar triumphs of deterministic dynamics led Pierre Simon M arquis
ae Laplace to pronounce an extreme reductionism that viewed the 
? a f  do“n m " '"  outworking of the determ inistic laws

d « e m t . H ?  "''^^■“ ■̂ '‘ght-a-swerve’ of even an atom  from 
Ae calculable in principle. All we need  is
the complete set of mitial conditions (and perhaps a  L aplacean

2 Deterministic chaos________ ____________________ ________________ _
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demon to do the reckonings). The necessity of the deterministic 
laws leaves no room for the play of chance. Randomness and 
probability emerge as mere convenient measures of the missing in
formation about the initial conditions. These derived concepts are 
useful when the information is partially, contaminated or priced, 
but otherwise o f no fundamental significance. In principle, the uni
verse is as predictable and calculable as the motion of the cue ball 
on the billiards table, o r o f a simple pendulum —  only much more 
complex. This reassuring ‘billiards-ball’ world-view of Laplace, with 
its razor-edge exactness in principle, was, however, suspected of 
missing the point, or of being irrelevant, by Jam es Clerk Maxwell; 
it was questioned more critically later by the great French m athe
matician H enri Poincare at the end of the 19th century. It is now 
known to be in serious error, in a well-defined sense, as dem on
strated by the recognition of deterministic chaos. Poincare spoke of 
the sensitive dependence on initial conditions that could square up 
ideal determinism with real chaos that prevails. L et us examine how.

1.3 Sensitive dependence on initial conditions:
The butterfly effect

The strict determinism of classical physics is, of course, not in doubt. 
W hat is really in question is the insistence on the complete and 
exact specification of the initial conditions —  the numerical values 
of positions and velocities of all the particles composing the system. 
Now specifying any such initial data involves physical measurements 
and all such m easurements are necessarily approximate due to finite 
instrumental accuracy. For example, every vernier has a least count. 
The relevant question then is whether these approximately known 
initial conditions permit quantitative predictions which are approxi
m ate roughly in the same numerical proportion. In fact it is in this, 
and this practical sense only, that predictability acquires meaning 
operationally. The errors due to the rounding off of the numerical 
initial data must remain bounded, o r  at worst grow linearly with 
time. The system must be error tolerant and robust. But, what if 
the initial errors grow exponentially with time? Then no m atter 
how small but finite initially, the errors get amplified catastrophi
cally, and much too quickly at that. Such an error will not go away 
merely by increasing the numerical accuracy with which the initial 
conditions are known. All that the latter can do is to delay the 
catastrophe slightly (logarithmically). Such is the tyranny of expo
nentials! Such a runaway propagation and growth of errors blurs the 
correlation between the final output and the initial input (data) after 
a sufficient lapse of tim e which, in practice, turns out to be rather
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short. This loss o f memory of the initial conditions is w hat makes the 
long-range prediction all but impossible while the evolution is still 
strictly deterministic. We say that the system has become chaotic!

This idea is best illustrated graphically through a ‘phase space’ 
picture as in F ig .l.l(a ). The abscissa (X) and the ordinate {Y) 
represent, respectively, the position and the velocity o f a ‘particle’, 
and thus specify its instantaneous state  and, therefore, determine 
its future trajectory completely and uniquely inasmuch as the laws 
of m otion are strictly deterministic. We can see now that the two 
trajectories that started off initially at two closely spaced points 
diverge ou t far apart. The exponential divergence with time may be 
written as and A >  0 is then called the Lyapunov exponent (see 
Appendix A). It m easures how fast the divergence develops. This is 
reminiscent of the instabilities we know from common experience, 
e.g. of objects critically poised on a pinnacle —  a needle standing 
vertically on its point, o r a marble resting atop a convex vessel. The 
slightest disturbance, as if a mere ‘thinking at it’, will produce effects 
totally ou t of proportion to the cause, namely the needle falling 
off to the left or to the right, say. For a chaotic system of course, 
every point on its trajectory has this instability. An ‘ever-so-slight-a- 
swerve’ will lead to an entirely different destination. Reminds one o f 
the ‘clinamen’ of Lucretius who argued that such minimal swerves 
of atoms give the plurality of the observed universe. This point is 
further driven home by the following example taken again from 
billiards. It has been claimed that an initial miscue of the cue ball 
(positional uncertainty) of the order of the d iam eter o f a nucleus 
(about 10“ ’^cm), or even much less, can get amplified to the size 
of the billiard table after just about 15 collisions with o ther balls 
and with the edges of the table! O r better still, the gravitational 
force due to an electron at the edge of the universe can alter the 
cue ball course qualitatively in just about one minutel Im perceptibly 
small differences a t the points o f contact of the convex curved sur
face of the ball with other surfaces get amplified exponentially. See 
Fig .l.l(b). This remarkable sensitivity is referred to figuratively as 
the butterfly effect ’ —  the flap of a butterfly’s wings in Brazil sets oflf 
a tornado in Texas! For a chaotic system, the underlying strict de te r
minism manifests at a scale which is too fine grained to be sensible 
to our coarse-grained sensors that necessarily have finite resolution.

The above discussion merely hints a t a possible scenario that 
seems odd enough. The question now is: what can possibly cause

This figurative statement dramatizes the unpredictability of w eather because of 
the extreme sensitivity of the atmosphere to perturbations. I t firet appeared in an 

ress y E.N. Lorenz at the annual meeting of the American Association for the 
Advancement of Science, in Washington on 29 Dec. 1979. It epitomizes chaos now.
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this hypersensitivity to initial conditions? Do we, for instance, have 
to fine tune param eters? The answer is no, we do not have to. 
W hat is needed is nonlinearity —  the single most creative principle 
at work in Nature.

(a)

(b)

Fig.l.l(a) Sensitivity to initial conditions (SIC). Divergence of two initially 
neighbouring trajectories, (b) Defocusing of trajectories by the convexity 
of scattering surfaces giving sensitivity to initial conditions.

1.4 Nonlinearity

Nonlinearity is N ature’s way o f  ensuring that more may be different. 
I t  is something like changing the rules of the game depending on the 
current status (or stage) o f the game, thus generating surprises. By
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contrast, linearity is nothing but more o f  the same. Thus, ^n+ , =  2X„ 
is a linear recursion relation that generates Xn+\ from by just 
doubling it. H ere the previous n th  output X„ acts as input for the 
next ( n +  l)th  output X„+i, and the process is to be repeated, or 
iterated. A change in X„ produces a proportional change in X„+i. 
The constancy of the multiplier 2 is the constancy of the rule of the 
game of multiplication. We get an entirely predictable and readily 
calculable growth. The effort involved in computing the output at 
the end of n  iterations, starting with a given seed, o r initial value 
Xo, is more or less independent of n  no m atter how large n  is. Now 
let us introduce a nonlinear feedback. L et AT„+] =  2X„ (mod 1). 
We have mentioned this example earlier. It is called the Bernoulli 
shift (see Appendix B). In plain English it reads thus —  choose any 
input num ber Xo between zero and one, multiply it by two, discard 
the integer part of the resulting num ber and retain the fractional 
part as the output, X j.  The last operation is abbreviated as (mod 
1) above. Repeat, or iterate this operation any num ber (n) of times 
and get the sequence Xo, X i, X t, . . X„.  It should be obvious that 
the X ’s will all be between 0 and 1 by the rule of construction. 
This may be likened to a dynamical system but with discrete time 
n. You can imagine to be the population of a community at 
the end of the n th  year. Or, your savings bank balance n  years 
after the initial deposit. (For an amusing example, let Xo be your 
initial deposit with the bank and X„ its compounded value a t the 
end of n  years, expressed as a fraction of some maximum ‘ceiling’ 
fixed by the bank. The bank has an unbelievably high interest rate  
that would double your balance every year, but for the unfortunate 
proviso that should at any stage your balance exceed the ceiling, 
that is unity, you will be left only with the fractional part o f it —  
a kind of Sisyphean bank account if you like.) Doubling at each 
iteration is a linear amplification that would make X„ eventually 
exceed 1, but the proviso (mod 1) is a nonlinear feedback that folds 
it back into the unit interval. We will see now how this combination ' 
makes the system evolve in a most unpredictable m anner, making 
it chaotic despite its deterministic simplicity. It shows sensitivity to 
initial conditions (or SIC for short).

Let us start with the initial value, or seed, Xq = 0.1249, say. Succ
essive iterations give X^ = 0.2498, X 2 = 0.4996, X 3 = 0.9992, and so 
on. Now we start again with a slightly different seed Xq = 0.1251, 
say, that differs from the earlier seed Xo by just 0 .0002  (the ‘erro r’, 
if you like). Successive iterations now give X[ =  0.2502, X^ =
0.5004, X 3 = 0.0008, and so on. Now compare X 3 =  0.9992 and 
X 3 =  0.0008 and you should get the point. The two sequences, 
or trajectories (the unprimed and the primed), that started  with
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a mere difference of 0.0002, have already diverged drastically. In 
fact it can be demonstrated that for large enough n, the points Xn 
jum p erratically on the unit interval, covering it almost uniformly, 
but randomly with constant probability density. This can be made 
m ore transparent by writing the num bers in the binary system, i.e. 
as sequences of zeros and ones. W ritten this way, the values X„ will 
resemble the outcom es of the tossing of a true coin, with the heads 
and the tails representing ones and zeros respectively. W hat we 
have here is a random num ber generator, o r  generator o f  disorder 
(G O D  for short). We will return to this curious example of what is 
technically known as the Bernoulli shift. Note that when multiplied 
by 2, the binary sequence shifts one place to the left (see Appendix 
B). The reason for all this is quite clear. It is just the strctching 
(multiplication by 2 ) and the folding-back (mod 1) that accompany 
every round of iteration. The stretching-out doubles the initial 
separation, while the folding-back confines them by re-injection 
into the unit interval and, in doing so, sends them out to different 
destinations, amplifying the separation catastrophically. We see here 
the snowballing of the initial error. A synthetic chaos, if you like.

T he stretching-out and folding-back described above is essential 
to the mixed-upness that goes with chaos. A striking illustration 
of this mixing is the routine kneading of dough by the baker for 
rolled, multilayered pastries, or by the tafiy candy puller. A fter 
about twenty stages of rolling-out and folding-back, the dough 
would have been elongated a millionfold and reduced to mole
cular thickness, leading to an intricate texture o f multilayers! Add 
a blob of food colouring and what you get is an apparently uni
formly coloured mass. But a closer examination will reveal a highly 
ramified fine-grained structure of alternating white and coloured 
layers —  the initially neighbouring points ending up far apart. This 
repeated operation of stretching-out and folding-back is known as 
the baker's transformation and is shown schematically in Fig.1.2 (see 
also Appendix B).

We emphasize again that the evolution law described by the 
stretching-out and folding-back, such as X„+i =  2X„ (mod 1), is 
strictly deterministic. Yet there is no way we can explicitly write 
down the outcom e X ^  as a function o f n  that is computable 
with a short computer programme, whose length is more or less 
independent o f (or weakly dependent on) n. We have to run 
through the entire course o f n  iterations in full. There is no short 
cut, no compression of information possible. It is this kind of 
com putational complexity, called the algorithmic complexity, that 
characterises chaos (Appendix B). In the final analysis, the simple 
can be equated with the periodic, and the complex with the aperiodic.
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1

Fig.1.2 Successive stages of stretching and folding-back. Baker’s transfor
mation (schematic).

1.5 Small can be chaotic

A small system is one that consists of a small number of interacting 
sub-uniU (dynamical degrees of freedom). A well-known example 
would be the pendulum that Galileo had studied some 400 years ago. 
The interesting and surprising thing about deterministic chaos is that 
even a small system, with a small number of degrees of freedom, 
can become unpredictable. Thus a damped pendulum driven by 
an external sinusoidal force can become chaotic if driven hard 
enough. So can the system of two nonlinearly-coupled oscillators 
when sufficiently excited. Indeed, it would hardly be surprising if 
a system with a large number of degrees of freedom behaved 
chaotically. The web of effects caused by interactions among the 
multitude of degrees of freedom can get all too quickly entangled 
beyond our power to resolve it. The complexity here would be 
that of information handling and processing. The complexity of a 
truly chaotic system, on the other hand, is algorithmic as discussed 
before.

One could try to create a semblance of chaos through incom- 
mensuration. Consider a system of a large number o f pendulum s 
oscillating independently at frequencies which are incommensurate,
i.e., the ratios of frequencies are irrational numbers. It is clear 
that such a dynamical system as a whole will be aperiodic —  the 
state of the system (the set of all positions and velocities) will 
almost but never quite repeat itself. This quasi-periodicity is, how
ever, not chaos. There is no mixed-upness here. It is not robust. 
That is, and this is important, a small nonlinear coupling, as may 
be provided by the common support for the two pendulums, can
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lead to frequency enlrainraent. The incommensurate frequencies 
can get phase-locked into the nearest commensurate values. This 
makes the system periodic again. Such frequency entrainm ent was 
first observed by Christiaan Huygens in the 17th century when he 
noticed that two clocks hanging on the same wall ran in precise 
synchronism. H ere the coupling, though weak, is provided through 
the common suspension or support.

But how small can this small be? As we will see later, there 
is a minimum num ber of degrees o f freedom needed for chaos. 
Thus, for a system evolving continuously in time through differential 
equations, the state space must be a t least three dimensional. Two 
dimensions turn out to be a straitjacket. For chaotic behaviour 
there must be an escape into the third dimension. For a discrete 
time evolution through difference equations such as X„+\ = 2X„ 
(mod 1), which are not invertible, there is no such minimum.

1.6 Examples of deterministic chaos

We conclude this chapter with some common examples of chaos 
taken from real life.

1.6.1 Leaking fauce t

A leaking faucet with its m onotonous drip-drip-drip . . .  is not an 
uncommon sight or sound. The regularity of its dripping pattern 
makes it a water-clock. The dripping pattern, however, changes as 
the flow rate (the control param eter) is gradually turned on. First, 
at a low enough flow rate, we have the drip-drip-drip . . .  with 
the drops falling at equal time intervals, say To- Thus, the repeat 
unit consists of a single interval To, i.e. a single drop. Beyond a 
threshold of the control param eter, however, the pattern  changes 
abruptly to pitter-patter-pitter-patter . . .  The repeat pattern  now 
consists of one short and one long interval, T] and Tj, say. We say 
that the period has doubled. By doubling what we mean here is 
that the repeat unit now consists of two successive drops —  the 
twosomeness of it —  and not the actual length of the time interval 
(which, if anything, must have diminished). This new pattern with 
period two, persists till the control param eter hits yet another higher 
threshold. Then the pattern again changes —  the repeat unit now 
consists o f four successive drops with unequal intervals T3 , Ti, Tj, 
Te, say. Thus the period has doubled again. W hat has happened 
is that each of the two periods has bifurcated into one short and 
one long period as is shown schematically in Fig.1.3. And so on, 
at successive thresholds. Thus a t the fcth threshold, we have the
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fcth bifurcation, giving period —2*. However, the successive control- 
param eter thresholds come closer and closer and eventually, a t a  
critical flow rate, converge to a point o f accumulation as k  tends to  
infinity. There the period becom es 2°°, that is, infinite. The dripping 
pattern never repeats itself! It becomes aperiodic, as if dripping to  
the tune of an infinitely inventive drum mer. This is chaos.

)r— To-

Time

AA
Time — ►

F ig .U  Period doubling in a leaking faucet. From 2®-cycle (period To) to 
2’-cycle (periods T i, T j).

I t  is important to note that the actual lengths of time intervals 
and the threshold values o f the flow rate may depend on all sorts of 
details —  the surface tension of the liquid, its density and viscosity, 
the diameter of the faucet, etc. But the period-doubling bifurcation 
pattern is, however, robust and universal. You may, for example, 
replace water with alcohol and still have the same scenario. It is 
called the period-doubling route to chaos and there is m ore about 
this later.

J.6L2 Turbulence in pipe flow

This example is taken from fluid dynamical turbulence —  the 
last unsolved problem  of classical physics. The simple experiment 
described is essentially the original experiment of Osborne Reynolds, 
who pioneered research on turbulence in the late 19th century. A 
long glass tube is connected to a reservoir of water and the flow
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is m ade visible by injecting a ‘thread’ of dye into the m outh of 
the tube along its axis (Fig.l.4(a)). Initially, at low flow velocity 
the thread remains parallel to the axis of the tube, indicating a 
lam inar (stream line) flow. As the velocity is gradually increased (by 
increasing the pressure head) beyond a critical threshold, the thread 
of dye abruptly begins to oscillate wildly and within a short distance 
from the point of entrance, the dye spreads uniformly throughout 
the tube. The control param eter here is the dimensionless num ber 
called Reynolds num ber =  VLp/ii, where V  is the flow velocity 
in the tube, L  the tube diameter, p the fluid density and /j the 
fluid viscosity. Thus is the ratio of the transverse length scale 
of the macroscopic flow to the characteristic length scale on which 
the velocity tends to vary. It is also the inertial-to-dissipative force 
ratio as one can learn from the Navier-Stokes flow ec^uation. It 
really measures the nonlinear effects. At large R^, the flow is 
dom inated by inertia while at small R^, it is dom inated by viscosity. 
Wide range of R^ is encountered in Nature, from 10“® for a 
bacterium to 10® for a human swimmer to 10® tor a submarine. 
For swimming, at low Reynolds number (<  1), one uses viscosity 
(ciliary propulsion). For higher Reynolds number (>  1), one chooses 
inertial propulsion (flagellation). The critical threshold condition for 
the transition from laminar-to-irregular (turbulent) flow is iZ, =  R „  
with Rc about 200 0  (but it is sensitive to pipe roughness and 
can be as high as 10® if the pipe is very smooth and the flow 
is increased very slowly. On the other hand, the critical Reynolds 
num ber for the reverse, irregular-to-laminar flow transition is about 
2300 and is much less sensitive to these conditions). W hat seems 
to happen is that as Re exceeds R^, the flow goes through a 
bifurcation sequence of self-limiting instabilities, cascading into fully 
developed turbulence all too quickly. By self-limiting we mean that 
the initial exponential growth of a linearly unstable amplitude settles 
down to a finite value due to nonlinear effects. Turbulence is also 
encountered downstream, in the flow of a fluid past obstacles, such 
as a cylinder (Fig.l.4(b)), i.e., in the wake with an open boundary. 
In the gradual transition between the onset of the first instability 
and the fully developed turbulence, we have patterns of vortices and 
their shedding, the so-called Karman vortex street (for an excellent 
visualization, see A n  A lbum  o f  Fluid Motion, Milton D.van Dyke, 
Parabolic Press, Stanford, 1982). The wild fluctuations of the fluid 
velocity in turbulence can be probed very accurately by the Doppler 
velocimetry method, i.e. by the shift in the frequency of a laser beam 
scattered by the fluid in m otion, to 1 part in 10'^! I t  confirms the 
unpredictability of the chaotic motion. Similar vortex instabilities 
occur in the circular Couette flow  of a fluid confined between two
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cylinders when the angular velocity o f the inner cylinder exceeds a 
critical Reynolds number. This Taylor vortex flow turns turbulent a t a 
higher Reynolds number in a  m anner which is not fully understood.

Turbulence in pipe flow, and in open wakes, are still incom 
pletely understood phenomena. In any case, the two appear to 
be quite different. They are obviously governed by the d e te r
ministic Navier-Stokes equations (these nonlinear equations are 
essentially Newton’s equations of motion adapted to  fluid flow). 
However, the route to chaos (from laminar flow to turbulence) 
is far from clear. The original idea of the great Russian physicist 
L.D. Landau that turbulence results from the incom m ensuration of 
frequencies of the modes appearing one at a time as a result of 
instabilities, is not tenable.

(a)

Dye streak

Fig.1.4 (a) Laminar to turbulent transition in closed (pipe) flow beyond 
critical Reynolds number. Abrupt onset downstream; (b) steady streamlines 
o f open ivake flow past cylinder; (c) onset o f first instability downstream 
beyond critical Reynolds number. Higher flow rates give vortex shedding 
and finally turbulence.

1.6.3 R ayle ig h -B en a rd  convection

This is yet ano ther exam ple of chaos in a  fluid se t in convective



Introduction 13

m otion controlled by a vertical tem perature gradient. Confine a 
fluid between two horizontal, parallel, thermally conducting plates, 
with the lower plate warmer than the upper one. For a sufficiently 
small tem perature difference 4T, heat is simply conducted away 
from the hotter bottom to the cooler top plate without any mass 
motion. But beyond a threshold value of 6Tc\, the steady state 
becomes unstable and convective rolls set in. This happens when 
the buoyancy forces exceed the frictional forces. The heated and 
hence the lighter fluid at the bottom plate rises to the cooler top 
plate, loses the excess heat and then moves out and down, forming 
a spatially organized pattern that resembles rotating parallel cylin
ders (Fig.1.5) (similar convection gives rise to the ‘Mackerel Sky’

Cold

(a)

(b)

0 < AT" <  ^Tc^ 

Hot T + ^ T  

Conduction

h
. 1 G ra v ity ^

< >
<-------- ao-------- >

tsTc\ <  A T <  A7’c2 

Convection rolls: Instability

A7’c2 < AT < A7g3 
Oscillatory convective rolls: Instability

Fig.1.5 (a) Thermal difTusion without convective flow; (b) Rayleigh-Benard 
convective rolls instability; (c) oscillatory convective rolls instability. Period- 
doubling bifurcations cascade to turbulent mixing eventually as Rayleigh 
number is increased.
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on a hot sum m er day visualized by condensation. O ther convection 
patterns such as the hexagonal Benard cells are easily dem onstrated 
in the laboratory. Indeed, they are easily m ade on the surface of 
coffee prepared by pouring boiling water into a  cup containing 
instant coffee and then quickly adding the cream.). A t a still higher 
tem perature difference beyond the threshold (5T<.2, the cylinders 
begin to wobble transversely. M ore complex patterns develop at 
successive thresholds and finally the sequence of instabilities (bi
furcations) cascades into a fully chaotic m otion beyond the critical 
threshold b%oo- In fact the route to chaos turns out to be precisely 
the period-doubling bifurcation discussed above in the case o f the 
leaking faucet (the control param eter for the R ayleigh-Benard sys
tem is the dimensionless Rayleigh num ber Ra =  gpah^ST/va, where 
g is the acceleration due to gravity, p is the density, a  is the therm al 
expansion coefficient, h is the height o f the cell, u  is the kinematic 
viscosity (dynamic shear viscosity divided by density) and a is the 
therm al diffusivity (therm al conductivity divided by specific heat)).

I t  was precisely this convective system that Edward Lorenz had 
reduced to a three-dim ensional state-space to model w eather in the 
1960s, and discovered chaos. A highly sophisticated and controlled 
version of this experiment was done by A lbert Libchaber in 1977 
using ‘helium-in-a-box’. I t  confirmed the period-doubling route to  
chaos. The low viscosity o f liquid helium scaled down the cell size 
to millimeters and the tem perature difference to millidegrees and 
allowed very precise and controlled experimentation at as high 
as 10 '^ o r more.

Above, we have described briefly a few of the commonly oc
curring fluid dynamical systems that are all well described by the 
deterministic Navier-Stokes’ equation (Newton’s laws of m otion in 
disguise) and yet show complex, unpredictable behaviour, that is 
deterministic chaos. But examples abound. There are also chemical 
reactions that show periodic-to-chaotic transition, in which con
centrations of reactants fluctuate in time and space. The most 
celebrated example is that of the Belousov-Zhabotinski (BZ) reac
tion that has been known to chemists for about half a century now. 
The typical preparation consists of cerium sulphate (0 6 2 (8 0 4 )3), 
potassium  brom ate (KBrOs) and malonic acid (CH2(C O O H )j) —  
all dissolved in sulphuric acid (H2SO4). The state space has three 
dimensions corresponding to the concentrations of H B rO j, Br“ 
and Ce'*'*'. U nder the condition of stirred flow, the concentration 
of Ce^+ZCe '̂*' can fluctuate chaotically beyond a critical threshold 
o f flow rate. The high flow rate ensures reduced residence time 
o f the  reactants in the open reactor. This is essential to avoid 
equilibration. These fluctuations can be made visible by adding a
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colouring reagent, ferroin. The resulting chaotic alternations of red 
and blue on time scales of a  fraction of a minute are visible to 
the naked eye. The conceptual relevance of this chemical chaos 
to biological clocks is obvious, e.g. the beating of the heart and 
various circadian (daily) rhythms.

I t  has become clear now that most systems maintained far from 
equilibrium organize themselves in space and time. And chaos is an 
essential aspect o f this self-organization beyond certain thresholds.



2 The Tools and Language of Chaos

We have observed earlier that while chaos itself is all about 
complexity, some of the most powerful tools used for studying chaos 
are rather graphical in Nature and, therefore, simple to appreciate. 
They give a qualitative, global understanding of chaos. This chapter 
is meant to introduce briefly some of these pictorial-geometrical 
tools. One can, as a m atter of fact, go a long way towards describing 
chaos just through these pictures. Some of these m ethods were de
veloped by the great French mathematician, Henri Poincare at the 
end of the 19th century. W hen we speak of geometrical forms here, 
the exact shapes and sizes are often not quite relevant. Two forms 
are taken to be the same if they can be continuously deform ed 
into each other. We say that they are topologically the same. Thus 
a sphere and an ellipsoid are topologically the same, but a torus 
(doughnut) is quite different. Surprisingly this is som ething that a 
four-year old learns even before he or she can tell a circle from 
a square. This greatly helps bring out the intrinsic commonality of 
otherwise dissimilar dynamical systems.

2.1 Phase space and phase flow

This is a straightforward generalization of the commonly used idea 
of Cartesian coordinates, the three numbers (Xi, X3) needed to 
position a particle in the familiar three-dimensional Euclidean space, 
much the same way as we need to know the latitude, the longitude 
and the altitude of an aircraft to pinpoint its location. We say that the 
particle has three degrees o f freedom. In order to specify completely 
the state of motion of the particle, however, we need not only the 
three  coordinates but also the corresponding three components of 
velocity (or momentum), making up six numbers in all. Thus, tor 
N  particles, the same reasoning would require 6 iV numbers. We 
can now imagine a space of (>N dimensions. A single point in this 
hypothetical space represents completely the state of m otion of all 
the 6 Af particles a t any instant of time. We call it the phase space.

As the AT-particle system evolves in time according to the laws of 
m otion, the representative point describes a trajectory or an orbit in
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the phase space. Now the laws of motion being deterministic second 
order differential equations, there must be a unique trajectory 
passing through any given phase point inasmuch as the phase point 
gives the positions and velocities of all the 6 N  particles at the given 
instant o f time. It follows then that these phase trajectories cannot 
intersect o r self-intersect. They can, however, close on themselves. 
This avoided crossing is the essence o f  the deterministic dynamics. (It 
should be noted here that sometimes, for ease o f visualization, we 
look at the projection of the trajectory on one of the many planes, 
the X \ — X i  plane say, much the same way as we may look at 
the shadow of a kite on the ground. This projected figure of the 
trajectory on the plane can, of course, cross itself, simply because we 
have ‘flattened’ the orbit.) One more generalization is called for. In 
the study of chaos we may talk about non-mechanical systems where 
X i,  X 2, X 3 , . . .  at any given instant of time determine the entire 
course o f evolution in time. The phase space now becomes a state 
space with X i, X 2 , X 3 , . . .  as the axes. Figure 2.1 shows some typical 
trajectories in the phase space of a harmonic oscillator, damped as 
well as undamped, having one degree of freedom. The phase space 
in this case is two-dimensional —  it is a phase plane. H ereafter we 
use the term s state space and phase space interchangeably.

Fig.2.1 (a) Phase flow incompressible for undamped oscillator; (b) phase 
flow compressible for damped oscillator (schematic).

Next, consider a  dust of phase points occupying a  region of the 
phase space a t some initial time. I l iis  would represent an ensemble 
o f identical systems prepared with different initial conditions. With 
the passage of time, as each phase point moves deterministically, 
the cloud of phase points will sweep through the phase space and 
occupy a new region a t a later time. Something like the flow of a 
fluid —  a phase fluid if you like. We may now ask if the volume
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of the phase fluid has changed. It is a simple fact that for m otion 
without 'dissipation’ (or friction), the volume remains constant —  
the phase fluid is incompressible —  as in the case of an undamped 
oscillator (Fig.2.1). On the o ther hand, for a dissipative system (i.e. 
one with friction) the phase volume contracts with the passage of 
time as in the case of a dam ped oscillator. Non-dissipative dynamical 
systems are said to be conservative (or Ham iltonian systems). In 
our study of chaos, we will be mainly concerned with dissipative 
systems. Friction is ubiquitous!

Next, what about the  shape of the phase-dust cloud? Well, it 
changes in all cases. But for systems showing chaos, it becom es 
rather weird. It thins out and begins to cover a region of space 
sparsely (Fig. 2.2). But m ore of this later.

Fig.2.2 Thinning out of phase fluid for dissipative flow (schematic).

Incidentally, all that has been said so far refers to m otion in 
continuous time —  it is a phase-flow. If, on the o ther hand, there 
is a  discrete tim e (n) evolution as in — 2X„ (mod 1), it
is referred to as a map  ra ther than a Jfotv. (In this case the 
phase space is two-dimensional, the two axes being X„+i and X„, 
the successive iterates.)

2.2 Attractors

The question naturally arises: what happens to a trajectory if we wait 
long enough? L et us assume that the trajectory remains confined 
to a finite volume of the phase-space as is expected of a dissipative 
m otion anyway. The simplest possibility is that it eventually (asymp
totically) settles down to a point and stays put there. We refer to 
it as being asymptotically stable —  a point o f stable equilibrium 
at which all m otion becomes dead beat. We call it a stable fixed  

p o in t  (Fig.2.3). Thus, for a damped harmonic oscillator the origin 
is the  fixed point. T he fixed point is stable because if the particle is



The tools and language o f  chaos 19

displaced slightly away from it, it returns to it, in fact spirals into 
it. The stable fixed point is an attractor —  it attracts trajectories 
in its neighbourhood, which is its domain of attraction. For the 
damped harmonic oscillator, the entire phase space is its domain 
of attraction. We can obviously also have an unstable fixed pbint 
or a saddle point (Fig.2.3). A simple example will suffice. Consider 
the discrete evolution You start with an initial value
X q and keep squaring it (iteratively) to get the successive X 's .  Now 
it is clear that for Xo lying between —1 and + 1, the successive 
values get progressively smaller and converge to 0. Clearly, X  =  
0 is a stable fixed point, an attractor. The domain of attraction is 
the open interval - 1  to +1. On the other hand, for any Xo lying 
outside this interval, the successive values iterate away to infinity. 
So there  is an attractor at infinity, with the domain of attraction 
outside the above interval. But what about Xo = 1? Clearly it stays 
put on squaring (i.e., 1  ̂ =  1) and hence it too is a fixed point, 
but an unstable fixed point. Slightly displaced, the values iterate to 
zero or to infinity. It is actually a repeller.

Next in the hierarchy of attractors is another geometrical object, 
a lim it cycle. H ere the trajectory closes on itself, that is to say that 
the system settles down to a stable periodic oscillation (Fig.2.3). It 
is asymptotically stable. It becomes a clock. In a two-dimensional 
state space, the limit cycle is the only attractor o ther than the 
fixed point. Some thought will convince you that this is a direct 
consequence of the fact that a phase trajectory cannot cross itself (it 
can, however, close on itself). In order to have a more complicated 
attractor, the phase trajectory must escape in the third dimension. 
A  remarkable, ra ther amusing, example of a fixed point or a limit 
cycle is provided by the iteration procedure called Robinsonization. 
Consider the following statem ent: “In this sentence the num ber of 
occurrences of 0 is — , 1 is — , 2 is — , 3  is — , 4 is — , 5  is — ,
6 is — , 7  is — , 8 is — , 9  is — , ”. Now try to fill in the blanks 
(— ) faithfully. The ten entries in the ten blank spaces constitute 
the vector with ten components. Start off with a seed vector Xo = 
(0, 1, 2, 3, 4, 5, 6 , 7, 8 , 9), say. Now look at these entries while 
reading the sentence and update them faithfully. You should get 
the vector X ,  =  (2, 2, 2, 2, 2, 2, 2, 2, 2, 2). Now repeat this process 
to get the vectors X i, X 3 , X 4 and so on. You will soon find out 
that X s =  Xe =  . . .  = X '  =  (1. 11, 2, 1, 1, 1, 1, 1, 1, 1). You 
have clearly hit a fixed point X*. This fixed point has a domain 
of attraction in the space of ten-dimensional vectors noted above. 
Indeed, there is one more such fixed point. There is also a two- 
state loop (i.e. a period-2 attractor). For an interesting discussion of 
Robinsonization, see Metamagical Themas: Questing fo r  the Essence
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o f  M ind and Pattern by Douglas R. HoCstadter, Page 390, Bantam  
Books, New York, (1985).

Fig.2J (a) Stable fixed point; (b) saddle 
point; (c) unstable fixed point; (d) limit cycle; 
(e) biperiodic torus.

Next to the limit cycle representing a singly-periodic m otion, one 
has a biperiodic torus (Fig.2.3(e)) —  a doughnut-shaped attractor in 
a state space which is at least three-dimensional. H ere the trajectory 
winds round in the latitudinal as well as in the longitudinal direction 
o f the torus with frequencies / i  and / j ,  say (hence the name 
biperiodic). Clearly, if the ratio j \ l h  is rational (equal to ratio 
o f two integers), we have a periodic motion and the trajectory 
eventually closes on  itself. If / 1 //2  is an irrational num ber, we have 
a quasi-periodic m otion —  the trajectory comes arbitrarily close
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to closing on itself but never quite does so. One can have higher- 
dimensional tori (multiple period motions) in higher dimensions.

The attractors mentioned above all correspond to regular mo
tions. Is there an attractor that corresponds to deterministic chaos? 
The answer is in the affirmative. It is called the strange attractor. 
It is perhaps the most profound discovery in the theory of dete r
ministic chaos. It is an enigmatic, geometrical object of fractional 
dimension. We will return to this later.

Thus, attractors are geometrical objects in the phase space to 
which the trajectories are attracted and on which they eventually 
lie. They have domains, or ‘basins’ of attraction. In general there 
may be several attractors in the phase space with their domains 
of attraction separated by separatrices —  like valleys separated by 
ridges. Together they form a landscape called the phase portrait —  
the geography of the phase space. One may wonder about the points 
on the boundaries of the basins o f  attraction. It is like sitting on 
the fence. Well, this set of points (the basin-of-attraction boundary) 
can be a bizarre object, called the Julia set. As a small example, 
for the complex map z„+i =  (z„)^ , the unit circle \z \  =  1 is one 
such set. But in the general case o f z^+i =  (2,1)^ — /i, the Julia set 
is a fractal object.

2.3 Poincare section

A trajectory in a  higher than two-dimensional phase space is often 
hard to visualize. O ne resorts to looking at its projection on a plane. 
It is like following the shadow of a kite on the ground. Indeed, 
one can reconstruct the actual trajectory from its projections on 
several planes. There is, however, a much more powerful approach 
based on  the idea o f Poincare section which is more like snapshots 
o f the phase-space motion taken at regular time intervals. The idea 
is simplicity itself.

Fig.2.4 Poincare section for three-dimensional phase flow. S  denotes surface 
of section.



Consider a three-dimensional state  space (A'l, X 2, ^ 3)- Choose a 
s e c t io n  plane, X 1- X 2, say. For higher dimensions it will be a surface 
o f  section. Now mark the points a t which the trajectory crosses this 
plane successively in the same sense, downward along the negative 
Xs-axis, say (Fig.2.4). We thus get a set of snapshot points Po. P\, 
Pj This set constitutes the Poincare section. Inasmuch as the 
motion is deterministic, there m ust be a rule (a mapping) relating 
the successive points, i.e. P„+i =  f{Pn), v/hich really expresses the 
coordinates of the point P„+i in terras of those of the previous point 
P„ through the function /. This is known as the Poincar^ map (or 
the first return map). The time periods elapsed between successive 
returns need not necessarily be equal. W hat is achieved here is 
the reduction of the three-dimensional continuous flow to a lower, 
two-dimensional discrete map. In exceptional cases the points P 's  
may lie on a smooth curve, giving strong dimensional reduction. 
The nonlinear three-dimensional differential equations are replaced 
by nonlinear algebraic two-dimensional difference equations that are 
much easier to handle. (Thus, we could have the famous H enon 
map X„+i =  1 +  V"n -  ^n+i =  bX„. You could amuse yourself 
by plotting this two-dimensional map with a =  1.4 and b =  0.3. 
You will get the Henon attractor.) And yet, the essential qualitative 
features of the phase flow are fully retained. If  the flow was periodic 
following a limit cycle attractor, the successive points Po, Pi, Pi, ■■■ 
of the Poincare section will collapse to a single point. If, on the 
other hand, the flow trajectory hved on a biperiodic torus, the 
Poincare section will be a finite set of points or a quasi-continuous 
curve, depending on whether the two frequencies o f the biperiodic 
motion are mutually commensurate (have a ratio which is rational) 
or incommensurate (have a ratio which is irrational). And finally, 
if the dynamics is chaotic, the Poincare section will be a splatter of 
points covering an area —  successive points of intersection jumping 
erratically all over the area. Also, for dissipative flows, the Poincar6 
section will generate a discrete map that will contract areas in the 
plane too.

The idea of the Poincare section has a natural generaliza
tion to higher than three-dimensional flows. In general, for an 
n-dimensional flow, we take a section with an (n—1) dimensional 
hypersurface, locally transverse to the flow. Thus, we reduce the 
dimension by one which is a great simplification.

There is yet another way of dimensional reduction involving the 
idea o f the first return map. One constructs the Poincare surface o f  
section and records the successive intersections of the orbit with 
the surface as before, and then considers the sequence for just one 
variable, {X„) say, so generated (one could also m easure X  values
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at some regular time intervals, or every time X  has some local 
extremal value or crosses a prescribed level). From this sequence, 
for a single variable, one can obtain an amplitude plot of X„+i 
against X„ —  the first return map. As we will see later it is possible 
to essentially reconstruct the underlying attractor from such a map. 
Thus, for instance, if this plot generates to a good approximation 
a curve with a single hump and a smooth maximum, the system is 
expected to have the universal features of the logistic map, which 
will be discussed later.

2.4 Dissipative and conservative flows 
in phase space

Every point in the phase space or state space describes a unique 
trajectory governed by the deterministic laws of motion. We can thus 
imagine the phase space to be filled with a fluid —  a phase fluid
—  that flows. For a system without dissipation (i.e. a conservative 
system) the volume of any elem ent of the fluid is a constant of 
m otion, as in the case of an undamped harmonic oscillator. On the 
o ther hand, for a dissipative (non-conservative) flow, the volume 
diminishes with time. To know whether a phase flow is dissipative 
or not is quite simple. Consider the case of a damped harmonic 
oscillator along x-axis. Let X-̂  be the coordinate and X 2 =  X \  
its velocity (the overhead do t denotes rate of change of velocity 
with time, that is it is a time derivative). Then the motion o f the 
oscillator is given by =  X 2 , X 2 = - u ^ X i  -  n X j, where wo is 
the natural circular frequency and 77 the friction coefficient. These 
two first-order differential equations are completely equivalent to 
the usual single second-order differential equation. Thus the phase 
space is two-dimensional (X i, X i)  and the phase velocity of any 
point at (A^i, X2) is uniquely determined by the coordinates X i, 
X i  (because the right-hand side is fixed by X^ and ^^2). This is 
exactly how it should be for a phase-space description. Now, to 
check if the m otion is dissipative (i.e. phase volume contracts), all 
we have to do is to find the divergence of the velocity field X. 
Then D iv  X  =  -rj, which is negative, thereby verifying contraction 
and hence dissipation.

For the dissipative m otion the phase volume must eventually tend 
to zero, that is, it must converge to an attractor of a dimension lower 
than that of the phase space. For example, for a two-dimensional 
phase space, the trajectory may tend to a fixed point (dimensionality 
0 ) or to a limit cycle (dimension 1), both being less than 2 , the 
dimension of the phase space. Similarly, for a  three-dimensional 
phase space, the attractor may be a  torus (two-dimensional surface).
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But, in general, in three and higher dimensions there are o ther 
possibilities —  the attractor may have fractional dimension (to be 
discussed later).

One last point. For an n-dimensional phase space, the coordi
nates Jfi, X 2 , X^, . . .  all evolve according to equations such as 
■ 1̂ =  / i  (-^ii -^2> -^3, •••), X 2 =  f i  (-^ii X 2, X 3 , . . . )  and so on. 
Such systems are said to be autonomous. Time does no t occur 
explicitly in the functions / i ,  /a, f i ,  . . .  A  point in the phase 
space completely determ ines the trajectory passing through that 
point. Even systems which are not autonom ous can be m ade so by 
augmenting the phase space. Just consider time as the additional 
variable, =  t  so that X„+i =  1. We now have an (n +  1) 
dimensional phase space. This is how a damped oscillator driven 
by a sinusoidally varying tim e-dependent force is reduced to the 
usual phase-space description.



3 Simple Models of Chaos

3.1 Logistic map

We will now introduce and discuss in some detail one of the simplest 
models of chaos, the logistic map. This has become something of 
a poor m an’s laboratory to gain hands-on experience with chaos. 
Despite its simplicity and seemingly contrived form, it shows a gamut 
of behaviour that is common to a whole class of real dynamical 
systems if viewed properly. Indeed, it is this universality of behaviour 
that makes the study of this simple model really worthwhile.

The logistic map is a difference equation of the form

=  =  ' '  (3.1)

giving the evolution of a variable X  as function ‘/  ’ o f discretized 
time ‘n ’. H ere A is a  param eter (control param eter) which is tunable. 
You start with an initial condition Xo (seed value X„ for n  =  0), 
pu t it in the right-hand side (RHS) and get X j  as the output. 
You can now repeat (iterate) this process by treating X i  as your 
new input on the RHS and get X^ as the output and so on. 
This is the kind of repeated operation (iteration) that computers 
are really good at. The logistic map is the discrete version of the 
corresponding continuous (differential) equation introduced by P.F. 
Verhulst in 1845 to model population growth subject to limited 
resources (or logistics). Hence the qualifier logistic. The discrete 
version was subsequently studied extensively, notably by the physicist 
turned ecologist-biologist Robert May in 1976. H ere denotes the 
population in the n th  year expressed as a fraction of its maximum 
possible value. Clearly, when the population is small it multiplies 
happily (boom) unmindful of the resource limitation. But when it 
grows too large, the resource crunch is felt and this may lead to 
a  decline o f the population (bust). However, it may also lead to 
oscillations, or even chaotic fluctuations depending on the logistics. 
The control param eter A in this case, is called the boom and bust 
param eter. O f course, as we have seen, such a one-dimensional 
discrete map (the first return  map) can arise naturally as a Poincar6
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section of trajectories in a three-dimensional phase space. It may 
turn up unexpectedly therefore. It is trivially verified that any 
quadratic map ‘/  ’ can be reduced to the logistic form by proper 
scaling and translation such as X ' = a X  + b.

Some general features of this one-dimensional nonlinear diffe
rence equation strike us at once. All through we maintain A positive 
and less than four. First, note that if we start off with an initial 
value of X  between zero and one, the future values also lie in the 
same unit interval. So the phase space (to be introduced shortly) is 
a finite one, a unit square in fact. Further, since X„+i is obtained 
from the previous value X„ by multiplying it by A(1 - X „ ) ,  it is clear 
that for A(1 -  X„) greater than 1, the successive values will grow 
bigger and bigger —  that is, a change in X„ will get amplified. This 
is the ‘stretching-out’ we had referred to earlier. But, of course, 
X„ cannot increase indefinitely. Somewhere A(1 - X „ )  will become 
smaller than 1 and then the subsequent values must diminish. This 
is the ‘folding-back’ that we had referred to earlier. This ‘stretching- 
out and folding-back’ is essential to chaotic behaviour.

We will now study the evolution of X„ with n  by iterating the 
logistic difference equation. This is done best graphically by plotting 

(output) as the ordinate against X„ (input) as the abscissa. 
Thus we have a two-dimensional phase space (or rather phase 
plane) which is a unit square in this case. Now we plot the function 
f { X )  against X  which is a parabola standing on the horizontal axis, 
giving you the ordinate A’n+i for the abscissa X„. Finally, we draw 
the diagonal joining (0, 0) to (1, 1). We are now all set to study 
the evolution graphically.

Let us fix the control param eter (A) that determines the steepness 
of the parabola to be less than 1. Then the parabola is readily seen 
to lie entirely below the diagonal. Start off with any initial value 
(input) Â o. To get X \,  we go up vertically to meet the parabola 
and then move horizontally till we m eet the diagonal at Pi, say. 
The abscissa of Pi is then our output, A î. Similarly, to get the next 
point X 2, we move vertically up from Pi till we m eet the parabola 
and then horizontally till we meet the diagonal at P2, say. The 
abscissa of P2 is then our next output, X 2 and so on. It is clear 
that for A less than unity, we zigzag down to the origin (0, 0) as 
n  —» 00 , and stay put there (Fig.3.1). This is so no m atter what the 
initial value Xq is. The origin is a stable fixed point, an attractor 
with the entire unit interval as its basin of atti'action. We denote it 
by a starred value, Xg =  0 .

This situation persists for A less than unity (i.e., till the diagonal 
becom es tangent to the parabola at the origin). For A greater than 1, 
however, it changes qualitatively. I t  is readily seen that starting with
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F ig J .l  Stable fixed point (a) at origin; (b) away from origin; (c) period-2; 
(d) period-4 (schematic).

any initial value Xq, we now zigzag up to a different fixed point 
say (Fig.3.1). The earlier fixed point X I  has become unstable 

now. A little algebra will help us find these two fixed points. By 
definition, a fixed point X '  must get m apped onto itself on iteration. 
Thus, in the case of the logistic map, X '  =  AX*(1 -  X ') .  This gives 
two roots, =  0 and X; = l - 1 / A .  A look at stability will show 
that Xq is stable for A less than 1 while JCJ is stable for A greater 
than 1. For stability all we require is that |d //d il  <  1 a t the fixed
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point (see Appendix C). The stability criterion turns out to be just 
that the slope of the parabola at the point of its intersection with 
the diagonal be less than unity in absolute magnitude. (A student 
o f electrical engineering would readily see the connection with the 
self-excitability of a d.c. shunt generator.) Physically, the fixed point

implies a periodic oscillation of period 1 (single iteration step). 
Just think in terms of the Poincare section of a limit cycle. We 
call it a period-one orbit, a 1-cycle, or a 2°-cycle for uniformity of 
notation later.

Things become curiouser and curiouser as A is tuned to larger 
values. Thus, for A greater than a threshold A, =  3, both XJ and 
X; become unstable. There are no stable fixed points any more. 
Instead, the map settles down to alternating between a pair of 
values, (y,’, Y2 ) say, which together constitute a stable attractor set 
now (Fig.3.1). Thus, as we iterate the map, after some transients we 
converge to a two-step square dance, V,* —» Y2 . . .
Hence we call it a period-2 orbit, or a 2 '-cycle, and say that 
there has been a period-doubling bifurcation. You can now guess 
what happens next. As the control param eter crosses the next 
threshold Aj =  3.44 . . . .  we have a new attractor consisting of a 
set of 4(=2^) points, -* Z^ -* Z \ Z^ —> Z 2 -> ■ ■ ■
We have a 2^-cycle. In general, at the n th  threshold A„, we have 
the nth period-doubling bifurcation to period-2" orbit, or a 2"- 
cycle. W here does all this lead us to? Well, it turns out that the 
successive thresholds come on closer and closer, and as n  —* 00  they 
accumulate at the critical value Aoo =  Ar =  3.5699..., where the 
period becomes infinite. The motion has now become aperiodic. It 
never quite repeats itself. This is the onset of chaos! The phase 
point X ’ jumps all over the unit interval, covering a set which is 
fractal (see Chapter 6 ).

This period-doubling bifurcation route to chaos is best illustrated 
through a scheme called the bifurcation diagram, in which we 
plot the attractor set against the control param eter (Fig.3.2(a)). 
One clearly sees the ‘pitchfork’ bifurcations cascading into chaos 
at Ae.

W hat happens beyond Â  ? Well, this calls for a much more 
detailed analysis. Broadly speaking, one has periodic windows in 
A interrupting chaos. We call it intermittency. The limiting value 
A =  4, however, calls for special attention. A simple substitution, 
Xn =  sin^fin, gives an equivalent recursion relation =  20„ 
(mod 2-n). This is precisely the example we had encountered earlier 
except for the m inor change from mod 1 to mod 27t. It, therefore, 
shows the stretching-out and the folding-back so very characteristic 
o f chaos.
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3.1.1 U niversality

It comes as a pleasant surprise that the beautiful bifurcation phe
nom enon described above is common to most maps that have 
a single hump, o r convexity, of tunable steepness. The details of the 
precise form, whether a parabola or a semicircle etc., turn out to be 
irrelevant. All one requires is a quadratic map, with a non-vanishing 
second derivative a t its maximum. This has been called structural 
universality. By contrast, in general maps such as f { X )  =  1 -o|A^l", 
and in particular the ‘tent’ map }{X) =  1 -  \2X  - 1| for 0 < X  < 1 
are qualitatively different.

The idea of universality manifests itself more strongly at yet 
another quantitative level. As we have noted earlier, the succes
sive thresholds (A„) get closer and closer as n  -* oo. One can 

/ quantify this by asking for the ratio of the successive spacings,
' (A„ — A„_])/(A„+, -  A„). It turns out that this ratio tends to a  num 

ber S = 4.6692 . . .  as n  - t  oo. W hat is again a pleasant surprise 
is that this num ber is universal —  it is the same for most single
hump maps. The feature that determ ines this universality class is the 
quadratic N ature of the map at its maximum. Parabolas and most 
o ther single hump maps ‘f{ X ) ’ have such a quadratic maximum. 
I t  is the Nature of the map in the infinitesimal neighbourhood of 
its maximum that controls the long-time (large n  or asymptotic) 
behaviour of the orbit {X„). The universal number is the cel
ebrated Feigenbaum number, named after its discoverer Mitchell 
Feigenbaum who zeroed in on it on his hand-held calculator, an 
HP-65! There is yet another universal number associated with the 
ratio o f  spacings of the points of successive attractors, (Vi*, Y2 ), 
{Z{, Z3 , Z4 ) say, at the successive thresholds A„ as n  -* 00 .
With reference to the pitchfork bifurcation, it is really the ratio 
o f the openings of the successive generations of forks (Figs.3.2(b) 
and (c)). The spacings get smaller and smaller and the ratio con
verges to a universal num ber <x =  2.5029 . . .  rather rapidly. This 
kind, o f numerical universality is called the metric universality. The 
idea is quite reminiscent of the universality of critical exponents 
at second-order phase transitions, like the param agnetic to ferro
magnetic transition at the Curie tem perature. It is precisely this 
universality that makes the study of the logistic map worthwhile. 
O therwise, it would have remained just another amusing oddity.

There are several cousins of the one-dimensional logistic map. 
One has, for example, the complex logistic map Zn+i =  2̂  -  /i, which 
has some of the properties of a two-dimensional logistic map. An 
interesting aspect of this map is the set o f all complex num bers /i 
such that the seed z  = 0 does not iterate away to infinity. The set
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FigJ.2(a) Bifurcation diagram for period-doubling route to chaos (sche
matic); (b) logistic map attractor sets at successive period-doubling
bifurcations {AJ. Spacing at Ae is o ’ times that at A4.hence self-similar, 
shown within dotted boxes (schematic); (c) logistic map. Bifurcation di
agram showing openings of successive forks measured from X  = 0. The 
asymptotic ratio defines a  as A —* Aoo-
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of all such numbers in the complex ^  plane defines a strange 
cactus-like figure called the Mandelbrot set. One could also think 
of coupled logistic maps, indeed a lattice of coupled logistic maps, 
that may simulate spatially extended chaotic systems.

3 .12  M ore on the logistic map: Tangent- and  period-doubling  
bifurcations, interm ittency

As we have discussed before, a  period-iV orbit by definition returns 
to the initial point after N  iterations. Each point (X*) of the asso
ciated attractor set is, therefore, a fixed point of the modified M h- 
return map g =  that is A:* =  /" (X * ) =  / ( / ( / . . .  ( /(X * )...) ) )  =  
g (X ') ,  with the map ‘/ ’ acting iteratively iV times on X*. This 
is formally no different from the prototypical period-1 orbit case 
X* =  S ix '')  except for the replacem ent of /  by g. Again, stability 
demands —1 < g \ X ' )  < 1. A little thought should convince us 
that the limiting value g '{X ')  = 1 corresponds to the condition 
that g{ X)  be tangent to the diagonal X„+n  =  X„ line at X '.  The 
resulting bifurcation is said to be the tangent bifurcation. Thus, at 
A = 1 there is a tangent bifurcation a t which the attractor XJ = 0 
becomes a repeller while X \  becomes an attractor. The other lim
iting value g{X ') =  - 1  similarly corresponds to the condition that 
g{X)  be perpendicular to the diagonal X„+n =  X„ line. This is 
the period-doubling bifurcation. It is clear that as A increases, the 
slope g '{X ')  starts with the value -1-1 (corresponding to tangent 
bifurcation) where the orbit first appears and ends with a value —1 
(corresponding to period doubling bifurcation) and the orbit bifur
cates with a doubling of the period.

Let us illustrate this with the simple example of period-2 orbit 
(i.e. 2'-cycle). The fixed points o f g =  / ( /(x ) )  are

=  (A +  1 ±  V(A -I- 1)(A -  3))/2A. -  .  ■

Clearly they exist for A >  3. Now, it is readily verified that 
^ '(A '; ,)  =  l - ( A  +  l) (A -3 ) . Thus at the onset of the stable period-2 
orbit when A = 3, we have <;'(X; 2 ) =  -1-1. As A increases the alge
braic slope decreases through zero to  —1 at which the period -2  orbit 
bifurcates to  a stable period-4 orbit. Indeed, setting g '{X \ 2 ) =  —1 
gives the value of the control param eter A2 «  3.45 . . . ,  at which the 
stable period-4 orbit first appears.

Associated with the tangent bifurcation, there is a fascinating 
phenom enon of intermittency that we now briefly examine. In ter
mittency provides windows in time of stable periodic orbits in the 
param eter range of chaos (Aoo <  A <  4). It manifests ubiquitously 
as coherent, periodic oscillations interrupted by chaotic bursts in
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the nonlinear systems —  oscillators and fluid flows. Indeed, it is 
a common route to chaos. The basic idea is quite straightforward. 
Consider the map =  fx(.X„) shown schematically in Fig.3.3(a) 
with two fixed points, one stable X ,  and one unstable X„ tor A ~  Ac. 
L et Xs and coincide at Xc as A —* Ac when the curve fx  c ( X ) 
is tangential to  the diagonal line X„+i =  X„. Now, by continuity, 
the map f \ { X )  must lie just above the diagonal for A ~  Ac as 
shown by the dotted line in Fig.3.3(b). L et us look at the trajectory 
constructed graphically as usual. It is clear that the phase trajectory

(a)

(b)

10

Fig33(a) Intermittency when the return map approaches the tangent to 
the diagonal; (b) the phase point trapped in the narrow channel giving 
almost periodic, slow motion; (c) the third return map of logistic map at 
intermittency. Note tangency at three points 1, 2, 3 (schematic).



Simple models o f  chaos 33

is trapped in the narrow channel between the map and the tangent 
Hne (diagonal) for a long time (i.e. for a  large number of iterations) 
performing a regular m otion (laminar phase). O f course, once it 
emerges ou t of the channel it wanders chaotically (bursts) until 
it is trapped again in a similar channel. The situation shown in 
Fig.3.3(c) is realized, for example, if we look at the third return 
map PA =  /a(-X^) of the logistic map. One can readily verify that 
the stable period-3 orbit starts a t A =  =  (1 -I- 2y/2). The plot in
Fig.3.3(c) shows f^^{X )  which is tangent to the diagonal =  X„ 
at three points. For A ~  Â  we get a period-3 stable orbit through 
the tangent bifurcation. The situations described in Figs.3.3(a) and
(b) develop in the neighbourhood of these three points as A crosses 
Â . To be precise, this is what is known as Type-1 intermittency. 
However o ther variations are also known to exist.

Interm ittency brings in unexpected richness to the logistic map 
in the so-called chaotic regime A„o <  A < 4. There is an infinity of 
stable periodic windows, the periodic attractors, besides the strange 
attractors in this regime. In fact they are dense in that a periodic 
a ttractor can be found arbitrarily close to any strange attractor in 
this param eter regime. For any given value of A >  Aoo, however, 
there is only one attractor. There is also an infinity of unstable 
periodic orbits for each A > A^, but these will be almost always 
missed in a numerical simulation. Some of this fine structure is too 
fine for computers (with their approach of rounding off errors) to 
resolve.

The N ature o f the attractor set, whether a strange attractor, a sta
ble periodic attractor, or an unstable periodic repeller, is measured 
quantitatively by its Lyapunov exponents, fractal dimensionalities 
and the power spectra. We will return to these rather technical 
issues later on.

3.2 Circle map

W hile the logistic map is prototypical of chaotic dynamics in that it 
exhibits sensitivity to initial conditions, stretching-out and folding- 
back of trajectories, period-doubling, intermittency and a fractional 
dimensional attractor (the strange attractor), it misses some of 
the o ther commonly observed and fascinating features o f recurrent 
motions, such as phase locking and quasi-periodicity, because of 
its being a one-dimensional map and possessing just one control 
param eter. We, therefore, introduce and discuss briefly yet another 
standard map called the circle map  which is a two-param eter map. 
It is derivable in some approximation from a two-dimensional map



34 Deterministic chaos

representing the Poincare section for a damped driven pendulum. 
The phase locking here means that the ratio of the frequency of 
the driven pendulum m otion to that o f the external drive remains 
pinned at the ratio of two integers (r = p jq  = a rational num ber) 
for a range of values of the control param eter a  which is the ratio 
for the undriven pendulum  (i.e. for drive amplitude zero), and that 
the range increases with the amplitude /3 of the drive.

The equation of m otion for the angular displacement 0 o f a 
damped driven pendulum  can be reduced to the motion in a three- 
dimensional phase space (ff, u), <j>) by introducing an additional 
variable <f> =  wof. where wq is the circular frequency of the external 
drive. Thus, we have the autonom ous system of equations;-

Cj  =  —T]Lj — sin 0 +  / c o s  <p

0 = u  (3.2)

^  =  Wo

H ere the overdot indicates time derivative, tj measures friction and 
/  is the amplitude of the periodic cosinusoidal driving force. Clearly, 
<t> and 4> + 2n are to be identified. The same is true of 6 . We can 
now resort to dimensional reduction from three to two dimensions 
by constructing a Poincare section obtained by strobing the values 
of o> and 0  at equal time intervals of lit/u o  (=  period of the drive). 
This gives a  two-dimensional Poincare map of the type:-

6n+\ = h {^n ,^n )
(3.3)

w„+] =  5](0„,u„)

Further reduction to a one-dimensional map takes place if the set 
(fin. w„) fills out a smooth curve on the surface o f  section. Now, 
the curve must, of course, be bounded. This could imply that 
is a smooth function of 0„, and thus the map reduces to a one
dimensional map 0„+i =  g(0„), for the angle 0 with 0 = 0+2 n. This is 
obviously the map of a circle to itself. Hence the name circle map.

A widely studied circle map in the standard form is the two- 
param eter (a, 0 ) map

A-„+i =  -I- a  -  (/3/27T) sin (27tX„) (mod 1), (3.4)

where we have set X  =  Oflir, the normalized angle, so that the 
unit interval is now m apped to itself. H ere the param eter a  is 
called the ro tation frequency. It is equal to the winding num ber
7  for /3 =  0 (to be introduced shortly). Finally, /3 m easures the
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nonlinear coupling of the pendulum to the periodic external force. 
It is essentially the amplitude of the periodic drive.

To see the physical significance of the rotation frequency pa
ram eter a , we set /3 =  0. Then a  is nothing but the increment of 
the normalized angle per iteration. Thus, for a rational a ( =  p/q), 
g iterations will return  the normalized angle X  to its starting value 
after making p  rounds of the unit interval, i.e. X„+, =  X„. We get 
a periodic orbit. For an irrational a, however, X„ never quite hits 
the starting value, though it will pass arbitrarily close to it. We have 
here quasi-periodicity —  “quasi” reminding us of the near hits. 
All this is familiar from the stroboscopic viewing of a mark on a 
spinning wheel. One can, for instance, trivially freeze the mark by 
making the period of the strobe light equal to that of the spinning 
wheel, o r generate o ther stationary multimark patterns by keeping 
the ratio of the two periods rational. For an irrational ratio, how
ever, the m ark will appear to advance or retrograde because of the 
‘closure-failure’.

Now if we turn on the nonlinear coupling 0, we have a whole 
range of fascinating behaviours. The sinusoidal term in the circle 
map gives some additional oscillatory contribution (to the o ther
wise constant increm ent a  per iteration) which depends on the 
current value X„ of the state variable X  In o ther words, it non- 
linearly m odulates the steady rotation. This perturbation may be 
expected to foul up th e  harmony of the periodic m otion noted 
above for a  rational value of a  =  p/q. On the contrary, it turns 
out, however, that the very nonlinear nature of this ^ d e p e n d e n t  
oscillatory perturbation provides the necessary play, o r shall we 
say elbow room, to absorb the ‘misfit’ and maintain the periodic 
m otion even for an irrational a  as the frequency param eter (a ) is 
varied continuously over a finite interval that contains necessarily 
mostly irrationals. We say that the oscillations are phase-locked. 
In fact they are locked-in to a rational approximant of the now 
irrational a. In terms of the original system of a driven damped 
pendulum , the frequency of the pendulum is entrained to a ratio
nal multiple o f the driving frequency. This is indeed a rational or 
harm onious dynamical compromise between the system trying to 
oscillate at its natural frequency as well as at the frequency of the 
external drive. Any quasi-periodic motion is then the result o f a 
possible frustration to reach this compromise. This highly intrigu
ing and im portant phenom enon is variously called phase locking, 
m ode locking, frequency entrainm ent, or resonance. The tendency 
of a nonlinear driven oscillator to phase-lock makes synchronization 
a robust possibility and not just a hard-to-achieve coincidence. It 
occurs widely in real life. Indeed, it enables the rational num bers
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to physically beat the irrationals that otherwise outnum ber them 
zero to one in the strict m athematical sense!

As mentioned earlier, frequency entrainm ent was noticed by 
Christiaan Huygens way back in the 17th century when he found that 
two clocks mounted back-to-back on the same wall tend to become 
synchronized. There is complete phase locking of the lunar spin and 
the orbital motion, so that one side o f the moon always faces the 
earth. The spin-orbit coupling here is due to the moon’s elongation 
towards the earth. Phase locking enables the synchronization o f the 
giant electric power generators coupled via a common grid. Com
mercial lock-in amplifiers and the driven nonlinear oscillators, such 
as the van der Pol oscillator, work on the principle of phase locking. 
One could have an acoustically-entrained cyclic chemical reaction. 
Indeed, David Jones in Daedalus speculates on such an en tra in 
ment of the crucial Krebs cycle of glucose oxidation to regulate 
the metabolic rate to advantage (see Nature, 354, 192 (1991)). But 
the example, perhaps closest to our heart, is that of a Pace M aker 
that entrains the irregular heartbeats of an arrhythmia patient.

As we vary the frequency param eter a  for a fixed amplitude 
we pass through both the periodic (phase-locked) and the quasi- 
periodic motions. Indeed, there are infinitely many such periodic 
windows of phase-locked motion associated with ranges o f a  values. 
Their widths ( =  0 at /3 =  0) increase monotonically with increasing 
nonlinear coupling j}. Thus, in a (/3, a)-plot, these windows appear 
as the so-called Arnold’s tongues o r horns (Fig.3.4) within which 
the orbits are phase locked periodically. In order to fully grasp 
these windows of phase-locked motion despite a  being irrational, 
we must introduce another quantity 7  (=  the winding num ber =  
phase change per iteration averaged over many iterations). For the 
driver amplitude 0 = 0 , obviously, the winding num ber 7  =  a , the 
frequency parameter. For 0 ^ 0 ,  however, the phase modulation 
due to the nonlinear forcing term makes them unequal. Thus even 
for a  irrational, the averaged winding num ber 7  may maintain 
its rationality and hence the periodic motion. This would lead to 
plateaus in the plot of 7  versus a  for a given /3. T hat is to say, that 
while the winding number 7  indeed increases with increasing a, it 
does so in a stick-slip manner. These plateaus resulting from the 
rational winding numbers in the (7 - a )  plot for a fixed /3 give it the 
appearance of an incomplete staircase. For the critical value o f the 
driving am plitude )3 =  1, the plateaus form a complete staircase in 
that they exhaust the measure of the full range of a  values. Fur
ther, the staircase is self-similar in that any part of it when viewed 
under high resolution looks like the whole —  it becomes the so- 
called devil’s staircase (Fig.3.5). Properly viewed, phase locking is a
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nonlinear generalization of the concept o f resonance where the nat
ural frequency of the driven system is not necessarily equal to that 
of the driver. It may be an integral multiple (ultraharmonic), a sub- 
multiple(subharmonic), or a rational multiple (subultraharmonic) 
of the driver frequency. The operative point is that the resonance 
persists over a finite range of the driver frequency param eter a  for 
a given driving amplitude, or the nonlinear coupling fi.

Bifurcations to Critical 
line/3 =  1

FigJ.4 A few Arnold’s tongues (hatched) for circle map on the amplitude 
(/3)-frequency (a )  plot. Winding number 7 stays a constant rational across 
the tongue giving phase locking. Chaos co-exists with regular motion for 
/3 > 1. Three routes to chaos shown (schematic).

Phase-locked
plateau

FigJ.5  Devil’s staircase plot for winding number (7) versus the frequency
(a )  for the standard circle map with drive ampUtude 0 = 1  showing 
plateaus at rational 7. Plot is self-similar (schematic).
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Simple stability analysis can now reveal the route to chaos. 
Rewriting the circle map as

=  /(^ n )

with

J{ X)  =  X  +  a  -  sin(27rX) (mod 1), (3.5)

we readily verify that } '{ X )  =  1 -  Pcos{1irX) >  0 for /3 <  1, and 
hence the map is invertible for /3 <  1. Therefore, for <  1 no 
chaos is possible; all one has is either phase-locked periodic orbits 
or quasi-periodic orbits, and transition from one to the other. The 
fixed points (A ')  of the map (3.5) are

a  — sin(27rA’ ) =  integer (m) (3.6)

The slope at any one of these points is

f i x ’ ) =  1 -  /3cos(27tX*) (3.7)

The stability condition - 1  <  /'(X * ) <  1 then gives (for m  = 0, for 
instance)

/3=  V'4 +  (27ra)2 (3.8(a))

for period-doubling bifurcation transition, and

=  ±27ro: (3.8(b))

for tangent bifurcation, or transition, to an infinite period which is 
quasi-periodic for small /3. ■

This reveals three routes' to chaos possible for ;S >  1 as shown 
schematically in Fig.3.4. Also note that for /3 >  1 the map /  (X )  
is bimodal, i.e. double-humped. It has two critical points where 
f ' ( X )  =  0. Bimodality admits co-existence o f attractors with their 
own basins o f  attraction (i.e. the phase space has more than one 
basin o f attraction for a given param eter value. By contrast the 
logistic m ap was unim odal and hence there was only one basin of
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attraction for a given value of the control param eter). Thus, both 
chaotic and periodic orbits are possible for /3 > 1 depending on 
the initial conditions.

The three-fold way to chaos is:

QPLC =  quasi-periodic —» phase-locked -* bifurcation to chaos on 
crossing the critical line 0 = 1 ;  QC =  quasi-periodic -* meets 
junction o f two phase-locked modes at i3 =  1 and turns chaotic; 
PLC =  phase-locked —► period-doubling cascade to chaos beyond 
a point greater than /3 =  1.

N ote that the periodic windows (the Arnold’s tongues) containing 
the phase-locked or resonant modes overlap at the critical value of 
the driver amplitude 0 = 1 .

3.3 Routes to deterministic chaos

We have just discussed the period-doubling bifurcation route to 
chaos in some detail. The physical example of the leaking faucet 
discussed earlier obviously follows this route. So also is the case 
for convective turbulence (Rayleigh-B enard instability) where the 
tem perature fluctuations at any point in the cell follow the period- 
doubling scenario. Both these rather different physical systems be
long to the same universality class. But there are o ther bifurcation 
routes to chaos too. We have, for example, the quasi-periodic route 
to chaos. Here, the system starts with an equilibrium, a stationary 
point (the zero-dimensional attractor, or the stable fixed point) that 
becomes unstable at a threshold value of the control param eter, and 
bifurcates to a singly-periodic limit cycle which is a one-dimensional 
attractor (we call it the H o p f bijurcation). The limit cycle then bi
furcates to a doubly-periodic torus (a two-dimensional attractor) 
which in turn  bifurcates to a chaotic attractor of fractal dimension 
greater than two. This route to chaos is seen in the turbulence 
in a fluid flow confined between two co-axial cylinders with the 
inner cylinder rotating (the so-called Couette—Taylor flow). The con
trol param eter here is the speed of rotation of the inner cylinder. 
There is yet another route to chaos, called the intermittency route, 
but we will let it pass. It seems very reasonable to suppose that as 
the control param eter is raised, the lower dimensional attractors 
get destabilized in favour o f the higher dimensional attractors and 
this eventually leads to chaos.

Below, in Table 3.1, we give two of the common routes to chaos 
(see also Fig.3.6).
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Table 3.1 Some common routes to chaos

ROUTE MECHANISM
Period-doubling

Stationary 
(Fixed point)

Pitchfork
bifurcation —•

CHAOS

Singly-periodic 
(Period 2T)

Hopf 
bifurcation —*

Pitchfork 
bifurcation —•

Limit cycle 
Singly-periodic —♦ 

(Period T) 
Singly-periodic 
(Period 4T) —

Quasi'periodic
Stationary Hopf Limit cycle

(Fixed point) bifurcation —* Singly-periodic —»
Hopf Doubly-periodic

bifurcation Torus CHAOS

^  Fixed point 
stationary

i i - O
Limit cycle 
singly-periodic

(a|

CHAOS

Period-2 Period-4
singiy-periodic singly-periodic

, ) y

Fixed point 
stationary

Limit cycle 
singly-periodic

(b)

Biperiodic torus 
doubly-periodic

CHAOS

FigJ .6 (a) Period-doubling route to chaos; (b) quasi-periodic route to 
chaos.



4 Strange Attractors

We have now become acquainted with attractors. These are geom et
rical structures, or limit point sets in the phase space on which the 
trajectories settle down eventually. The fixed point, the limit cycle 
and the biperiodic torus are all regular attractors and correspond to 
equilibrium or regular periodic motions. They have dimensions less 
than that of the phase space in which they are embedded. Their 
dimensions are, of course, integral. The chaotic motion is, on the 
o ther hand, irregular and aperiodic. It was shown by David Ruelle 
in 1971 that the attractor underlying the chaotic m otion is a geo
m etrical object whose dimension is fractional. Besides its strange 
‘fractal’ geometry, this attractor is strange also in the dynamical 
term s of how this object is traversed by the phase trajectories. The 
trajectories are attracted to this attractor, but they are unstable on 
it, and thus show the sensitivity to initial conditions (or, SIC-ness) 
that characterises deterministic chaos. No wonder then that it has 
been- named strange attractor.

L et us see how such a fractal attractor arises naturally as a result 
o f the contradictory demands of dissipation (i.e. diminishing phase 
volume), sensitivity to initial conditions (exponential divergence of 
neighbouring trajectories), and confinement to a bounded region 
of the phase space in which it is embedded.

To fix ideas, consider a three-dimensional phase space (or state 
space) of a dissipative dynamical system. Inasmuch as the flow is 
dissipative, the trajectories must converge eventually to a geom et
rical object of dimension less than three so that its volume is zero. 
This would normally mean either a fixed point (equilibrium state), 
a limit cycle (singly-periodic motion), or a biperiodic torus (doubly- 
periodic m otion) having integral dimensions 0 , 1 and 2  respectively. 
B ut all these are, o f course, regular m otions and, therefore, cannot 
represent the aperiodic, chaotic dynamics. The only possibility is to 
relax the Euclidean hang-up of integral dimensions. The dimension 
m ust be between 1 and 3 in this case.

Next, let us see how a strange attractor reconciles the diver
gence o f trajectories (SIC) with their convergence and confine
m ent to a  bounded region. It does so through the alternation of 
stretching-out and folding-back. Figure 4.1(a) schematically shows a
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three-dimensional phase flow along the Z-axis in the mean, but di
verging in the XX '-direction while converging in the yy '-direction. 
Figure 4.1(b) is a section o f the flow, perpendicular to the Z- 
axis, and clearly shows the divergence (stretching) and the conver
gence (folding-back) of the trajectories characteristic of a  saddle 
point. Figures 4.1(c) and 4.1(d) show the exponential divergence 
of neighbouring trajectories to nearly double their initial sepa
ration and their subsequent folding-back to confine them  to a 
bounded region giving SIC. And finally, Fig.4.1(e) shows the fully- 
developed chaos (strange attractor), called the Rdssler attractor for 
a three-dimensional flow. The Rossler attractor is quite common

Fig.4.1 (a) Phase flow along .^-axis, diverging in the XA^'-direction and 
converging in the >y'-direction; (b) cross section showing saddle point; (c) 
divergence of trajectories; (d) folding-back of trajectories; (e) the Rossler 
strange attractor.
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and has been observed in fluid flows and chemical reactions. The 
phase flow underlying the Rossler attractor is described by the three 
coupled equations X  =  - Y - Z ,  Y =  X  + aV,  and Z =  b + Z ( X - c ) .  
For typical values, a = b = 0.2 and c = 5.7, one has chaos.

As our second and last example, let us now  consider the Lorenz 
attractor, named after its discoverer Edward Lorenz, who detected 
it in his computer modelling of weather as atmospheric convection 
way back in 1961, long before the idea of strange attractor was 
developed formally by David Ruelle, H ere the phase space is three 
dimensional, (X, Y, Z), where X  measures the intensity o f convection 
(i.e., circulatory fluid motion), y th e  tem perature difference between 
the ascending and the descending currents, and Z  the deviation of 
the vertical tem perature profile from linearity. This is obviously a 
highly truncated version of convection, a synthetic convection if you 
like. The flow equations are

X = a { Y - X ) ,  Y =  ~ X Z + r X - Y m d  Z  = X Y - b Z  (4.1)

H ere a, r  and 6 are the control param eters and are necessarily posi
tive. M ore explicitly, r  =  R ajR r  =  Rayleigh number Ra normalized 
with respect to its critical value with =  agd^A T/va, where 
a  =  therm al expansion coefficient, g  =  acceleration due to gravity, 
d  =  vertical distance between the two horizontal plates, A T  = tem
perature inversion (the tem perature of the lower hotter plate minus 
the tem perature of the upper colder plate), a = thermal diffusivity 
=  therm al conductivity divided by the specific heat, and v  =  7)/p 
(the Stokes kinematic viscosity where tj =  dynamic shear viscosity 
and p = density o f the fluid). The param eter Rc = 7r‘‘(l-f-ao)^/on 
with oo =  a dimensionless param eter defining the wavelength of the 
convective rolls. Here, time is m easured in units o f rf^/7r^(l -t-Oo)a. 
Physically, the Rayleigh num ber J?„ measures the ratio of internal 
energy released by the buoyancy to the kinetic energy dissipated 
by the viscosity, and drives the nonlinearity. Also <r =  i//a  is a 
material property (the Prandtl num ber ~  0.7 for air and ~  7 for 
water) and b = 4/(1 -(- o§), a geometrical factor. In practice, one 
varies only the control param eter r , keeping <r and b fixed. Thus, 
Lorenz had set a =10, and b =  8/3 and obtained chaos. In most 
numerical simulations the values set are the same.

L et us now have a  closer look a t this strange flow. First, it is 
readily verified that the flow is dissipative; in o ther words, the di
vergence o f the velocity field is negative. It can be represented as,

d X '  9 Y  d Z  .
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and hence the contraction of the phase-space volume as T(t )  =  
To exp ( - ( 1  + b  + <T)t). Next, it is quite straightforward to perform  
a linear stability analysis for the Lorenz equations. Note that there  
are three critical points obtained by just setting all the velocities 
X  = Y  = Z  = 0. These are X  = Y  = Z  = 0 (labelled as O) and, 
additionally for r  >  1, X  = y  =  Z  = r - 1  (labelled
as C± ). The critical point O  represents no fluid flow (stagnation)
—  there is just heat conduction by molecular diffusion. The pair 
of critical points C± has each associated with it a steady circulatory 
convection. Now, linearising the nonlinear Lorenz equations about 
the critical poiiit O yields the stability (or the ‘p lant’, or the local 
Jacobian) matrix with eigenvalues 's’ given as the roots o f the 
equation (s +  b){s^ +  (1 +  (t) 3  +  cr(l -  r))  =  0. One can easily verify 
that all the eigenvalues are real and negative for r  <  1. Thus, 
for r < 1, O is a stable fixed point (a global attractor) as C± are 
unphysical for r  <  L For r  >  1, however, one of the roots becom es 
positive making O  unstable (a repeller). This is the R ayleigh- 
Benard convective instability. Thus r  =  1 marks the onset of steady 
convective circulation governed by the pair of critical points C± 
that now attract the orbit for r  >  L C+ and C_ correspond to 
oppositely directed convective circulations. One has here a pitchfork 
bifurcation O —* C+ +  C_ at r  =  1, in which a fixed point becom es 
unstable, generating a pair of stable fixed points (foci). Next, we 
must examine the linear stability of C± by linearizing the Lorenz 
equations about C-|_ and C_ (it is sufficient to analyse just one of 
them because of the obvious symmetry). Proceeding as before, we 
obtain the eigenvalues ‘a’ o f the stability matrix as given by the 
equation s ^ + ( l+ t+ c r)s ^ + i) ( ( r+ r) i-2 i( r ( l- r )  =  0. One eigenvalue is 
necessarily real and the o ther two are complex conjugates. Now, for 
the stability of these two convecting equilibria (C±), the roots m ust 
have negative real parts. The necessary and sufficient condition 
for this can be shown to be i>(l +  t  +  (j)(cr +  r) >  2t a ( - l  +  r). 
W hen this is so, both C± are asymptotically stable equilibrium 
points. Further, these steady convective rolls become unstable for 
r  >  ct(3 +  6 +  c r ) /( - l  -  6 +  cr) =  r^, say, and a > 1 +b. Then all the 
equilibria are unstable and chaos results. For the typical choice of 
param eters (<t =  10 and b =  8/3), we get =  24.74. Thus, for r  <  1, 
there is stagnation, and for all initial conditions the system settles 
down to the stable fixed point O without any macroscopic fluid 
m otion, i.e. without convection. For r  > 24.74, we have eventually 
chaotic orbits for all initial conditions. The situation is ra ther subtle 
for 1 <  r  <  24.74. I t  turns out that for 1 < r  <  24.06, all initial 
conditions relax to  one of the two asymptotically stable convective 
equilibria. For 24.06 <  r  <  24.74, however, depending on the
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initial conditions the orbit settles down either to one o f the two 
stable convective equilibria, o r to chaos —  hence the possibility of 
hysteresis. [In fact the m otion is much more fine structured in the 
param eter space, with the possibility of chaos (strange attractor) 
co-existing with the condition of asymptotic stability (equilibrium).] 
The chaotic regime, r  >  r „  is characterized by bounded motion 
comprising random  alternate sequence of windings around the two 
unstable foci C±. .

(b)

Fig.4.2 (a) Lorenz Attractor projected on YZ-plane; (b) signal X{ t )  
(schematic).

In Fig.4.2(a) we have shown the projection of the trajectory for 
this strange attractor on the Y - Z  plane. The trajectory is seen to 
wind around the unstable fixed point C+, spiralling out till it exceeds 
some critical distance, and then flips over and starts winding around 
the o ther unstable fixed point C_. If we were to list the num ber of 
times it winds around C+ before flipping to C_, the sequence so 
generated will be as random  as the heads and tails in the tossing of 
a true coin. Figure 4.2(b) gives a trace of X{t)  as a function of time 
and clearly shows the above random flippings between C+ and C_. 
The trajectory seems to live on a surface, but actually the surface 
has finite thickness within which there is an intricate multilayered 
fine structure like the foUations o f an onion shell. If we were to 
pass a line through this surface, the points of intersection would 
form a set o f fractional dimensions lying between 0 and 1. The 
strange attractor is a fractal.

The Lorenz attractor is the archetype of strange attractors. Its 
owl-like double scroll (or the Cantor-book like) appearance deco
rates the cover pages of many a monograph on chaos.

O ne m ust rem em ber that the real physical problem of a fluid 
heated from below involves solving equations of fluid dynamics (the
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Navier-Stokes equations) together with the heat-flow equations —  
the heat is advected by the fluid motion as well as conducted by 
the molecular difTusion (the Fourier equation). These are partial 
differential equations and, therefore, correspond to infinitely many 
degrees of freedom. The Lorenz equations are a highly truncated 
version of these differential equations where only a small num ber 
of coupled, spatial Fourier components (modes) of the flow field 
has been retained. In fact the truncated set {Lorenz model) is a 
rather bad approximation in the physically interesting dom ain of 
parameters. Still, it has become a laboratory for numerical work 
on deterministic dissipative chaos. It turns out, however, that the 
model describes ra ther well the dynamics of a three-level laser 
action with X  =  electric field, Y  = polarization and (r  — Z) =  the 
population inversion.

We should emphasize here, that despite its intricate mixed- 
upness, the strange attractor is highly structured and organized. 
It is also very robust —  it is stable against local perturbations. 
Admittedly, a strange attractor, particularly a higher-dimensional 
one, is hard to determ ine experimentally. It is, however, possible to 
partially reconstruct it from the m easurem ent o f any single variable, 
X(t )  say, as a function of time, for example the tem perature o r 
the velocity com ponent at a point. The point is that the very 
mixed-upness of the strange attractor makes it a kind of ‘implicate’ 
universe in which every variable affects and is, therefore, implied 
in every other variable to  an extent. Hence, measuring any one 
of them as a function of time can tell us, for example, how many 
variables there are that constitute the whole. This reconstruction is 
done by constructing an artificial phase space from the m easured 
signal X{t).  I t is like, being able to tell the num ber of factors 
affecting the disturbed (or fibrillating) heart of a patient from the 
single ECO trace (see Chapter 6 for details).

The strange attractor is a geometrical object in phase space 
which is neither point-like nor space-filling. Once on it, the phase 
point remains confined to it and appears to walk randomly, coming 
eventually arbitrarily close to every point o f the attracting set. 
Its orbit is unstable everywhere on the attractor, but the strange 
attractor as a whole is robustly stable.



5 Chaos Without Dissipation: 
Hamiltonian Chaos

Until now, we have looked for chaos in dissipative dynamical sys
tems. The chaos we found there resulted from a conflict between 
the continual contraction (dissipation) o f the phase-space volume 
towards zero m easure on the one hand, and the absence of an at
tractor, such as a fixed point or a limit cycle to converge to, on the 
other. This conflict is resolved by the phase trajectory converging 
to, and wandering endlessly on, a limit set of fractional (fractal) 
dimension that fills a finite region of the phase space densely, but 
has measure zero —  the so-called strange attractor, the engine 
that drives chaos. Such a behaviour, i.e. wandering endlessly, is 
caused by local instability which is marked by the presence of sad
dle points in the phase portrait. We recall that the saddle point, 
also referred to as the hyperbolic point, stretches the trajectories 
along an unstable (repelling) direction, and folds them back along 
a  stable(attracting) direction which is perpendicular to the former, 
generating thereby SIC-ness and hence chaos.

There are, however, dynamical systems that do not dissipate. We 
call them  conservative —  their motion keeps the associated phase- 
space volume constant in time. The commonest among them, and 
by far the best studied, are the Hamiltonian systems that obey the 
classical Newton’s laws of m otion without friction. Thus, we have 
the celebrated three-body problem of the M oon-E arth-S un  system 
bound by gravitation. It is obviously of great interest, and of some 
concern whether this system is really locked in an eternally stable 
regularity of motion, or if the earth  (or the moon), under the per
turbing aspects of the other planets, may after all tumble chaotically 
in the long run and wander too close to, or too far from the sun for 
hum an comfort. Approximate calculations giving short-term  stability 
over the time-scale of 10® years set by the strength of the planetary 
perturbations will not do. W hat is really in question is the long-term 
stability on the time-scale o f 10® years! We could also consider star 
clusters, o r clusters o f whole galaxies. There are still o ther such 
Keplerian systems that have held great fascination for astronom ers 
in the past. Thus we have the enigmatic rings of Saturn, discs of
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particulate m atter in orbit, divided by possibly the periodic pertu r
bation of one of the saturnine moons, the Mimas. A stronom ers call 
these the Cassini divisions. Similarly the asteroid belt between M ars 
and Jupiter, again with systematic absences called the Kirkwood 
gaps in their orbital periods. As we will see later these gaps, genet
ically the KAM gaps, are the flip side of chaos. Then, there are 
the man-made satellites orbiting the earth  and o ther lesser systems 
in the laboratory down here on earth. Thus there is the m otion of 
charged particles trapped in the electric and magnetic fields in the 
storage rings o f giant particle accelerators, o r the plasmas confined 
magnetically in Tokamaks, or just a heavy gyroscope (rem em ber 
the uncanny upending Tippe Top that fascinated great physicists 
like Sir William Thompson, Niels Bohr and Wolfgang Pauli no end! 
See, e.g., Richard J. Cohen, American Journal o f  Physics, 45, 12 
(1977).). In all these systems, the friction (e.g., the tidal friction 
for planetary motions) can be almost always neglected in the ze
roth approximation. We, therefore, turn now to such conservative 
systems and explore the possibility of observing chaos there.

Conservative systems are qualitatively different from their dis
sipative counterparts. First, the dissipative system m ust be driven, 
otherwise it will run down due to dissipation —  it is an open 
system. But a conservative system can move perpetually on its own
—  it is a  closed system, though we will often consider it perturbed 
periodically by an externally applied force, e.g., a periodically kicked 
pendulum. A dissipative system can have asymptotically stable fixed 
points, or limit cycles. The conservative system, with its constancy 
of phase-space volume cannot have these linearly stable attractors. 
It can have an orbitally stable centre on the o ther hand, which is 
denied to a dissipative system. Unlike as in the dissipative systems, 
chaos in the conservative or the Ham iltonian systems is associated 
with these centres (elliptic points) bifurcating into a saddle point 
(the hyperbolic point) and two elliptic points. As we will see, a 
Ham iltonian system can be chaotic provided the system is non- 
integrable. Integrable Ham iltonian systems have no chaos. Such a 
non-integrable Hamiltonian chaos is ‘soft’ in the sense that the 
‘stochastic sea’ (of chaotically wandering trajectories) will co-exist 
with ‘islands of stability’ (containing periodic orbits) in the phase 
space, and the latter gradually shrink to a negligible m easure as 
the non-integrable Ham iltonian perturbation is turned on. But first 
we m ust briefly recall the elementary lessons of H am iltonian dy
namics and introduce the important ideas of the integrable system 
and the associated invariant tori, their gradual destruction by a 
non-integrable perturbation  and the great KAM theorem . These 
a re  m atters o f great technical complexity. We can only hope to get



a flavour o f the essentials here. We will follow our intuition that 
physics is closer to geometry than to algebra, and appeal freely 
to our sense of visual continuity that maps neighbourhoods into 
neighbourhoods. Any kind of derivation or completeness is frankly 
out of the question here.

5.1 Hamiltonian dynamics

Consider a dynamical system of N  degrees of freedom with coor
dinates q (=  9 i, 92. ■ ■ ■. 9w) and their conjugate m omenta p  (=  pi, 
P2, . . . ,  p n )' The motion in the 2AT-dimensional phase-space is now 
governed by the Ham iltonian h (9, p) which is nothing but the total 
energy of the system expressed in terms of 9 and p. The Newtonian 
laws of motion are then expressed by the Hamiltonian equations

. _  dqi _  dh

Inasm uch as there are 2 N  first-order differential equations, with 
the right-hand sides single-valued functions of (9, p) without explicit 
time dependence (i.e. autonom ous equations), there is a unique 
non-self-intersecting trajectory passing through any given point of 
the phase space. W hat is more, the phase flow conserves the phase- 
space volume. Hence the conservative system. Indeed, if we regard 
(9, p) as a 2AT-dimensional phase velocity vector field, r  say, then the 
first assertion is obvious as f  is defined uniquely at each point of the 
phase space through the Ham iltonian equations of motion, while 
the second assertion about the conservation of the phase-space 
volume follows at once by noting the vanishing of the divergence 
of the velocity vector field f:

where we have used the Ham iltonian equations for the velocities 
9( and p, and interchanged the order of partial differentiations. 
This is essentially the celebrated Liouville theorem. It helps us 
visualize this geometrically. Consider, for example, a ‘drop’ of the 
phase fluid at time t = 0  corresponding to all the possible initial 
conditions (9 (0), p(0)) lying within the ‘drop’. Then Eqn.5.2 asserts 
that as the drop moves under the Hamiltonian dynamics o f its
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constituent phase points, the volume enclosed by its boundary 
(surface of the drop) will remain unchanged (invariant). The shape 
of the ‘drop’ may, of course, change greatly. The ‘drop’ may send 
out fingers, become irregular and highly in-folded. Indeed, if we 
imagine the phase ‘drop’ coloured, and coloured differently from 
the rest of the phase fluid initially outside the phase ‘drop’, we 
could eventually have ‘bubbles’ o f  the outer phase fluid included 
within the now highly deform ed phase ‘drop’. In  fact, while the 
detailed volume of the ‘drop’ proper, visualized and tagged by its 
colour, should have remained unchanged, the unresolved coarse
grained volume enveloped by the now highly rarified phase ‘drop’ 
may have increased manifold, even exponentially with time. This is 
the local instability which is key to mixing and to Ham iltonian chaos 
despite the rigorous ‘conservatism’ of the phase-space volume. We 
will return to this point later.

U nder Ham iltonian dynamics, any phase function /  (g, p ) changes 
in time implicitly through the time evolution of (g, p) as

where

^ ^ f d A d B  d A d B \

is called the Poisson bracket. Thus [q̂ , py] = 5., (=  Kronecker delta 
=  1 for i  =  j ,  and = 0 for i #  j ) ,  and [?i, qj] =  [p,, pj] = 0. Clearly, 
d h /d t =  0 implying that the energy is a constant o f motion. Thus, 
for the Ham iltonian system [and with h (g, p) having no explicit time 
dependence), the energy of the system is a constant of m otion and, 
therefore, the trajectories lie on the (2 W -l)-dim ensional constant 
energy surface in the phase space.

With these basics o f mechanics in mind, we are now prepared 
to address the Hamiltonian chaos. But one final remark. Recall 
how we often simplify a dynamical problem by going over to 
(transforming to) new bases, coordinate systems or the frames 
of reference, conveniently adapted to the symmetry that may be 
there. Thus, e.g., for the motion in central force fields (Keplerian or 
Couiombic problems) we use the spherical polar coordinate system
—  it would be perverse to use the cartesian coordinates here. In a 
similar spirit, it is often apt to go over to new phase-space variables 
(Q, P )  that are physically at par  with the old variables (g, p), but 
more convenient, ‘Physically at pat> has a well-defined meaning



here; If  under the transformation (g, p) - •  (Q, P )  we have the 
Hamiltonian h{q, p) —> H  (Q, P ),  then the equations of motion in 
terms of (Q, P )  and H  {Q, P )  must have the same form as in terms 
of the old variables namely, Eqn.5.1. Thus, all the Poisson brackets 
must remain formally unchanged. Such a change of variables is 
called a canonical transformation.

Unfortunately, the simplifying symmetries are often of a dynami
cal Nature, rather hidden, and are not easy to visualize: This makes 
the choice of the canonical transformation highly non-trivial.

5.2 Integrable and non-integrable systems

For a conservative system such as a Ham iltonian one with the 
Ham iltonian h (q, p) not explicitly dependent on time, the energy 
(E  = h (q, p)) is a constant of motion. Such a constant of motion 
defines a surface E  = h {q, p) in the phase space. The trajectories 
are, therefore, confined to this (2 iV-l)-dimensional subspace, the 
constant energy surface of reduced dimensions (2 ^ - 1) embedded in 
the full 2AT-dimensional phase space. This reduction of dimensions 
restricts, and thereby simplifies the motion. The question naturally 
arises —  Are there more such obliging constants of motion? By a 
constant of m otion (also called a first integral or invariant) we mean 
a function, /  (g, p) say, not explicitly involving time that remains 
constant even as the coordinates and m omenta (q, p) change in 
time according to the canonical equations of motion, Eqn.S.l. It 
is clear geometrically that the trajectory will have to lie on the 
intersection of these invariant surfaces defined by these constants 
of motion. The greater the num ber of such independent constants 
of motion, the smaller the dimension of the intersection subspace, 
and, thus, the simpler the motion.

It turns out that the m otion is simplest if a system of N  de
grees o f freedom has exactly N  independent constants (invariants) 
of motion including energy, assumed to be mutually compatible as 
defined later. For then, the system is reducible essentially to that 
of N  non-interacting degrees of freedom —  like N  free particles 
moving uniformly along straight lines with constant momenta. In 
short, N  constants of motion are a straitjacket! Such a Ham ilto
nian system is said to be integrable. Obviously, integrability ex
cludes chaos. Let us have a closer look at this wonderful idea of 
integrability.

Assume that the system admits a canonical transform ation from 
the old (q, p) to the new (0, J )  coordinates-m om enta such that 
the transform ed Ham iltonian depends only on the N  momenta, 
J  (=  J i, Jfi). That is h (g, p) =  H {J). Recalhng now the
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form invariance of the H am iltonian equations of motion under a 
canonical transformation, we m ust have

^  =  0, giving Ji =  constant ' (5.4)
dt oOi

at oJi

Thus the  set of N  m om enta Jj (i =  1, 2, . . iV) are the N  constants 
of motion, and the N  coordinates 0, (i =  1, 2, N )  increase 
linearly with time as angles of uniform rotation.

These are the celebrated action ( J ) -  angle (6)  variables. But 
what about the unbounded growth of 6 i(t) as { —* oo? Well, for 
the m otion to remain bounded in phase space, we must physically 
identify 0, and $i +  27t. This periodic boundary condition renders 
the motion multi-periodic with the periods Ti = 27t/VV;. Thus, we 
have reduced our system to N  non-interacting degrees o f freedom  
0i (t) corresponding to free motions with constant momenta J,. All 
this was possible only because we had JV momenta Ji as constants 
o f motion. Such a system is called an integrable system. We can re
phrase it as follows. A Ham iltonian system of N  degrees of freedom 
is said to be integrable, if there are N  constants of motion. We 
can then identify these constants o f m otion (or their combinations) 
as the N  action variables ■/,. We must, of course, insist that these 
constants of m otion be functionally independent. For instance if 
J 2 =  (- î)^> ^hen J] and J2 are not functionally independent. For 
functional independence of J\ (q, p) and {g, p), say, it must not 
be possible to eliminate (g, p) in favour of a functional relation 
between Jj and such as J 2 =  /  (-^i). We must also dem and 
that these constants of motion be compatible. A fter all they must 
act as m om enta and hence the canonical Poisson brackets must be 
preserved, i.e. [J„  Jj\ =  0. (Also [J,, H\=Q because Jj is constant 
in time.) We say then that the 7i’s are in involution. The latter has a 
geometrical meaning, namely that the surfaces Ji (q, p) =  constant 
define an intersection that is smooth enough. (There is also a 
regularity condition on the Jacobian matrix {&^H/dJ{dJj), but we 
will let it pass.) Existence of N  such invariants in involution ensures 
the construction of a solution by quadrature (integration).

B ut then, requesting integrability is in fact a tall order. Also, 
there is no simple m ethod of determining whether a given system is 
integrable, and if so, what the N  constants of motion in involution 
inight be. Their existence is related to the symmetries (kinem atic 
and dynamical) o f the system that are often well hidden. The fact



of the m atter is that integrable systems are rare for N  > 2. (The 
N  = 1 case is always integrable because the energy is naturally 
the single constant of motion required for integrability.) Indeed, it 
comes as a surprise that until the middle of the 20 th century, much 
of classical mechanics was preoccupied with integrable systems —  
the harmonic oscillator, the Coulomb and the Keplerian problems, 
the free motion on a triaxial ellipsoid, the hydrogen molecular 
ion and the spinning top. For the spinning top, N  = 3 and the 
three regular first integrals are the e n e r ^  and the two angular 
m omenta. But the three-body M oon-E arth-Sun problem is already 
non-integrable. The rarity of integrable systems is best illustrated 
by the following comparison. We know that rational numbers on a 
unit real interval are (countably) infinite, but they occupy no length 
(measure). The entire length is occupied by the (uncountable) 
infinity of irrational numbers. Still, the rational numbers are dense 
in the interval in the sense that any irrational number can be 
approximated arbitrarily closely by a sequence of rational numbers. 
Now, the integrable systems are too rare to be dense in this sense. 
So much so that to look for a non-integrable Hamiltonian is like 
looking for a ‘non-elephant’ animal!

Given this rare occurrence and the fact that integrability negates 
chaos, one may rightly ask —  Why should we have to devote so 
much space to discussing integrable Hamiltonians? Well, the point 
is that the Ham iltonian chaos is best described and analysed as a 
gradual disruption of the simple integrable trajectories as we turn 
on a non-integrable perturbation. Thus prepared, we now turn to 
chaos in non-integrable Ham iltonian systems.

5.3 Invariant tori: Resonant and non-resonant

Let us once again return to our integrable Hamiltonian systems 
with the action-angle variables (Jj and Bi) with i = 1, 2, . . . ,  AT. It 
is easy to view each pair (J,, 9i) as polar coordinates describing a 
circle with Jj =  constant (as the radius) and 0  <  0i <  2 iv as the 
angle. Then N  such independent and simultaneous circular motions 
together describe a trajectory of the phase point lying on an ^-to rus, 
em bedded in the 2Af-dimensional phase space in general. Thus, for 
N = l,  the torus collapses to just a circle in the two-dimensional 
phase space. For iV=2, the 2-torus can be readily visualized as a 
doughnut-like surface embedded in a three-dimensional subspace. 
The latter is defined by the constant energy surface in the full 
four-dimensional phase spac^. Here Wj and W 2 are, respectively, 
the circular frequencies for motion round the meridional (poloidal 
or minor) (^-circle and the longitudinal (toroidal or major) ^-circle
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as shown in Fig.5.1. And so on for the JV-torus. One may, howevei, 
ask —  Why a torus and not a sphere? This is a rather deep question 
of topology. B ut the essential point of the argument is just this. 
The iV-constants o f m otion in the 2N-dimensional phase space 
define an N-dimensional surface on which the trajectories must 
lie. This defines an iV-component velocity vector field tangential to 
the surface. Now, it is readily appreciated that it is impossible to 
have a vector field lying on (tangential to) the surface of a sphere 
wrapping it smoothly and completely. One must have singularities
—  e.g. nodes, focal points, or saddle points, where the direction 
of the vector field is ill-defined, or the field itself vanishes. This 
is in fact a non-trivial theorem  in topology: You cannot comb the 
hair on a sphere! (Here each individual hair combed so as to lie 
tangentially to the sphere, represents the vector field locally. Thus, 
clearly, if the hair is combed along the longitudes, say, then  it 
will define the direction of the vector field uniquely at each point, 
except at the two poles where the longitudes converge to a point. 
Again, if the hair is combed along the latitudes, we will still have

(a)

(b)

Fig.S.l (a) Invariant 2-torus showing meridional surface of section S . The 
trajectory c generates Poincare section s  by intersections P  ; (b) twist 
map showing relative 0-shifts of initially aligned intersections with S  of 
trajectories lying on three nested tori.



the directional ambiguity at the polar points where the circular hair 
lines dwindle to points. In fact this ambiguity persists no m atter 
how the hair is combed.) The velocities here are 0, =  Wi and of 
course, =  0. An iV-torus with its multiple connectivity resolves 
this frustrating conflict.

Thus we conclude that the trajectories of an integrable Hamil
tonian system are confined to AT-tori, each of which is labelled by 
the N  constants o f motion, the N  actions Ji. We aptly call these 
invariant tori. Now, it may happen that the N  frequencies Wi are 
commensurate, i.e. rationally related. That is to say we can have 
k-iW-i+hiW2+ . . .+kNWf, =  0  for some integral coefficients fci, *2, . . . ,  
kti- This means that the trajectory will exactly close on itself after a 
finite period of time which would be the lowest common multiple of 
the N  periods l-n/W i. A  closed Lissajous figure! We have a periodic, 
o r more precisely, a  m ultiperiodic orbit. Accordingly, we call these 
invariant tori the rational tori. Indeed, the rational condition on the 
frequencies Wi (=  dOi/dt) gives k i0 i +  *202 +  • • • +  kn 0 N = constant, 
implying that the torus effectively has one dimension less. Hence 
also the name resonant tori. Celestial mechanics is full of such reso
nances. On the o ther hand, if the frequencies are incommensurate, 
i.e. not rationally related, the trajectory will wind eternally round 
the torus, never quite closing, never self-intersecting but passing 
arbitrarily close to any point on the torus —  a kind of endless 
Lissajous figure. We call these invariant tori the irrational tori, or 
the non-resonant Correspondingly, the m otion is said to be 
conditionally periodic, or quasi-periodic. In Fig.5.1 we have shown 
schematically the invariant tori for the case N = 2, with energy as one 
of the two constants of motion. The 2-torus can, therefore, be visu
alized as em bedded in a three-dimensional subspace —  a surface 
of constant energy. For the rational torus, a trajectory intersects a 
Poincare surface of section, taken in the meridional plane, at a finite 
set o f points; for the irrational torus it fills out a continuous curve.

5.4 KAM theorem

The distinction between the rational and the irrational tori may 
appear to be m ere nitpicking, inasmuch as the rational numbers 
(periodic orbits) are dense in real numbers and any irrational num 
ber (quasi-periodic orbit) can be approximated arbitrarily closely 
by a  sequence o f rational approximants. It turns out, however, 
that these two types o f m otion differ qualitatively as regards their 
stability against a  small non-integrable perturbation. And thereby 
hangs the question of existence of chaos in Ham iltonian systems. 
The question was answered in a  celebrated theorem  proved and
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elaborated by Andrei iColmogorov, Vladim ir /4rnold and Jurgen 
A/oser around the middle of the 20th century. This is the awe
inspiring KAM  theorem. Simply stated, the  theorem  proves that 
under fairly general conditions of regularity, addition of a suf
ficiently small non-integrable perturbation term  to an integrable 
Hamiltonian system leaves most irrational (non-resonant) tori in
tact, though slightly deform ed. Thus, the invariant tori persist in 
the phase space of the perturbed system, densely filled ou t with 
quasi-periodic trajectories. The num ber of independent frequencies 
equals the num ber o f degrees of freedom. We call these eternally 
stable tori Has. KAM  tori, or the K AM  surfaces. They are robust. There 
may be, however, a set of initial conditions on the tori that lead to 
trajectories wandering over the entire constant energy surface. But 
their m easure is negligibly small for a  small perturbation. It is only 
the resonant tori that get destabilized first. We will now explore 
this process with the help of what is known as the twist map.

5.5 Twist map

L et us reconsider an integrable Ham iltonian system of two degrees 
of freedom  [N  =  2) with the corresponding invariant, rational 2-tori 
as shown in Fig.5.1. L et and J2 be the two action variables defin
ing a torus and IV] and W2 the corresponding circular frequencies 
o f m otion along the m eridional (<̂ ) and the longitudinal (0 ) circles 
o f radii Ji and J 2 . L et W ^jW ^ = ■pjq =  a, with p  and q integers. 
H ere  a  is the rotation (winding) number. The intersection o f phase 
trajectories with the Poincare surface of section shows concentric 
closed curves (circles), corresponding to the nested tori with dif
ferent values of actions. It is im portant to note, however, that a 
particular trajectory on a given torus (IV1/W 2 =  p /? )  generates 
only a  finite set of q points on the continuous curve (circle) on the 
meridional surface of section. It is convenient and suflicient to study 
now the Poincare map so generated. Inasmuch as energy is the only 
constant of motion, it is sufficient to consider the 2 -torus em bedded 
in a 2 N —\  =  three-dimensional subspace (constant-energy surface) 
and label the different tori by just one action variable J  with 
=  W i(J )  and VV2 =  W2( J ) ,  giving the angles <̂> =  W i(J.)t +  (j)o and
0  = W i{ J ) t  + Bq. The successive <j> intersections on the meridional 
surface (plane) of section are then related by

0n+i =  <!>„ +  2jra(J„) (5.5(a))

J n + l  =  J n t

where ce{J„)=W-i{J„)/W2 {J„) =  rotation (winding num ber). This



recurrence relation is one of the standard maps, called the twist map, 
for conservative systems (verify that the Jacobian 9(0„+i, J„+i)/ 
d{4>n, Jn) =  !)• It is called the twist map for the obvious reason 
that, the rotation num ber a  being different for different tori, the 
points o f intersection of trajectories with the surface of section on 
different circles initially aligned radially (same phase angle <j>) will 
be phase-shifted relatively at later intersections (Fig.5.1), in much 
the same m anner as the runners on the circular tracks in a field.

Now we come to the m ost im portant consideration of what 
happens to the rational tori when we add a sufficiently small non- 
integrable perturbation (V )  to the integrable Ham iltonian (J/o)- In 
general, this amounts to adding a term eV  (J ], <j>i, . . . ,  J;^, to 
Ho- All we have to do now is to modify the twist map as
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4>n+l — 0 n  +  2 ? T Q ( J i , ) - t - e V i ( J „ ,  ^ „ ) ,

Jn-n =  Jn +  0 n)
(5.5(b))

with £ <  1, and a  = p/q. Inasmuch as the system is still Hamiltonian, 
this map must be conservative (i.e. area preserving).

5.6 Destruction of the resonant tori and soft chaos

L et us focus on one particular rational torus, or rather on its 
Poincard section (Fig.5.2(a)). Consider first the associated unper
turbed twist map. It is clear that this rational torus (S') must be 
flanked by (indeed ‘protected’ by) the two nearest, necessarily ir
rational tori (the KAM tori), one on the inside (i^i) and one on

Fig.S.2(a) Poincare section of rational a  = p /q  (S) and neighbouring 
irrational (5i and S2) tori for iV = 2 integrable system; (b) generation 
of elliptic (£;), hyperbolic (H) fixed points due to small non-integrable 
perturbation of S to Sr and 5^.



58 Deterministic chaos

the outside (^2). Let the small perturbation be switched on. Now, 
we have from the KAM theorem  that these two non-resonant tori 
are to persist tor a small enough perturbation. In order to see 
its effect on the resonant torus, just ask for the m apping of the 
unperturbed Poincar6  section, the ^-circle(s), under the perturbed 
map and appeal to continuity. We m ust have it m apped on  a closed 
curve then. Since, however, the map is conservative and the curve 
is closed, the latter must intersect the unperturbed circle an even 
num ber of times. The points of intersection will now be the fixed 
points of both the perturbed as well as the unperturbed map, and 
there will be 2  kq of these fixed points in general where k  is an 
integer. L et us emphasize once again that the unperturbed circle 
J  (=  constant on the Poincare surface of section of the rational 
torus ( a  =  p/q)) is a quasi-continuum of fixed points of period q in 
the sense that every trajectory intersecting the section at any point 
on the circle will re-intersect it a t the same point after q rounds. 
However, any given point on it generates only a finite  set of q points 
under the Poincare map. H alf o f these 2 kq will be elliptic, and half 
hyperbolic (see Appendices C and D). L et us see how this comes 
about.

L et us assume that the winding num ber a {J )  increases radially 
inward. Then we can see from the twist map that the quasi- 
periodic trajectory on the KAM torus just outside (inside) o f the 
resonant torus will lag (lead) relative to the resonant trajectory. 
On successive iterations of the Poincare map what happens to our 
rational torus between these two nested, robust, irrational tori? 
T hat is the question. Clearly, a point (r, <j>) on the unperturbed 
curve S will, after q iterations o f the perturbed map, get m apped to 
its own neighbourhood on the section S. Now, by continuity, it must 
be possible to find a nearby point (ro, <f>o) such that after q rounds 
of iteration (of the Poincare map, corresponding to q successive 
intersections with S of the trajectory on the perturbed torus), the 
angle (j> is returned to its initial value ((/>, =  (po). The locus of such 
points (ro, <j>o) then generates a  closed curve, on S. O f course, 
r ,  ^  ro in general and, therefore, the curve is not invariant under 
the q iterations. It will be transform ed into yet another closed-curve, 
S„ say. Conservation of phase-space volume (area here) and closure 
o f the curves and would require an even num ber o f their 
m utual intersections, and each such intersection (and its iterates) 
shall be fixed points of period q.

Further, simple considerations of flow directions in the vicinity 
o f these fixed points show that the hyperbolic fixed points (H) 
a lternate with the elliptic fixed points (£?) as we go round the curve 
o f section. Inasmuch as the hyperbolic (elliptic) points can get



m apped only onto hyperbolic (elliptic) points, we have in general 
2 kq such alternating fixed points in all where k  is an integer.

As the perturbation is increased, the elliptic points keep bifur
cating, each into two elliptic points and a hyperbolic point, and the 
intersecting curves S, and become more wiggly. TTiese bifurca
tions cause period doubling and the period of the orbit subtending 
the 2k  elliptic points is 2kq after k  bifurcations. Now the orbits 
originating close to the hyperbolic points are known to be chaotic 
while those near the elliptic points will be periodic, or quasi-periodic 
on invariant tori. The chaotic region progressively submerges more 
and m ore of the occupied region of the phase space while the 
islands o f regular (periodic or quasi-periodic) motion dwindle. This 
is the soft chaos. At any stage, the stable KAM tori form barriers 
to penetration by the irregular trajectories, harnessing thereby the 
tendency towards total chaos.

Thus we have on the Poincar^ section closed curves, islands 
of stability (stable, regular, periodic orbits) corresponding to the 
elliptic fixed points surrounded by the robust KAM irrational tori. 
On the o ther hand, and co-existing with these islands of stability, 
are the neighbourhoods o f the hyperbolic points (saddle points) that 
correspond to highly irregular, aperiodic motions that show up in the 
Poincar^ section as a dust o f points. All this is due to the SIC-ness, 
so very characteristic o f  the neighbourhoods o f separatrices o f the 
saddle points. In fact, the KAM theorem  sharpens the question of 
stability o f the non-resonant (irrational invariant) tori by quantifying 
the degree of irrationality o f the winding number. It asserts that for 
the non-resonant tori to persist despite non-integrable perturbation, 
we must have |(W ]/IVj - p / g ) |  >  c /g", where the small constant c 
measures the strength of the non-integrable perturbation and the 
exponent i/ is sufficiently large, e.g., i> =  2.5. This condition covers 
majority of trajectories. The KAM theorem  is perhaps the finest 
application of the purest of mathematics, the number theory.

A direct consequence of the KAM theorem  is that in the vicinity 
of the highly rational numbers there will be no invariant tori. These 
absences are known as the KAM gaps and provide an understanding 
of the Cassini divisions and the Kirkwood gaps in astronomy referred 
to earlier.

As a rule, the ‘more irrational’ a  is, the more robust is the torus 
against a given perturbation. Now, the most irrational num ber (i.e. 
m ost distant from rational numbers) in the strict m athematical sense 
is the so-called golden ratio r  =  (\/5  -  l ) / 2  of the ancient Greeks. 
Thus, the last irrational torus to be destabilized is the one with 
a  =  r. These KAM tori are effective barriers against the random  
wandering of the trajectories originating near the resonant rational
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tori. This phase-space localization, however, is absolute only for the 
case Af =  2. In higher dimensions, when iV=3 for instance, the three- 
dimensional KAM tori do not partition the five-dimensional constant 
energy surface into disconnected spaces. Hence the possibility of 
(ultra slow) irregular wandering or percolation from one resonant 
torus to another, leading to what is called the Arnold diffusion.

5.7 Standard map

As an example of a conservative map, consider the map generated 
by a periodically impulsively kicked rotator with angular momentum 
J„ and position 6 „ just before the impulse. The rotator rotates 
uniformly in between the kicks. The map is

Jn+i = Jn +  K  sin On (5.6(a))

®n+l = Sn + Jn

The Jacobian 6„+i)/9(J'„, 0„) equals unity. This is the famous
standard map. Physically, one can imagine a pendulum  subjected to 
a  gravity g which is switched on and off periodically but impulsively, 
i.e., g ixY ^„5{t — n). Each impulse instantaneously changes the an
gular momentum of the pendulum by an am ount proportional to the 
time integral of the tangential component (0) of the vertically acting 
gravity. In between the impulses, the pendulum  moves uniformly 
as a free rotator. The resulting ‘stroboscopic’ m otion relating the 
angular momentum (J„) and the angular position (0„), just before 
the n “’ impulse, is precisely the standard map.

For K = 0, one just has a twist map and a regular (periodic/quasi- 
periodic) motion, with J J 2 tt{= constant) acting as the winding 
num ber, rational o r irrational. For a small but non-zero K, one 
has the trajectories locked in stable m otion around the periodic 
orbits of the standard map forming chains of stability islands on 
the surface of section resulting from the progressive dissolution 
of the rational tori. These chains, however, remain separated by 
the KAM (irrational) tori that act as barriers. The KAM tori are 
progressively destabilized as K  increases. The disappearance of the 
last KAM orbit beyond a critical value of K  leads to global chaos.

5.8 Driven pendulum

O f course, we could also consider the pendulum  to be driven sinu
soidally. This too generates a conservative map (an area preserving
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map) that describes a non-integrable Ham iltonian system. It is as
sumed here that the pendulum can have not only small amplitude 
(—7T < 0  < % ) oscillations about its usual position of stable equi
librium ( 0  =  0 ), but can also rotate completely around the vertical 
circle passing through the point o f unstable equilibrium ( 0  =  ±rr). 
This system has a rich phase portrait and exhibits transition from 
the bounded oscillations (vibrations or librations) to unbounded 
rotation m odulated by oscillations and a host of phenomena such 
as periodic orbits, intermittency, and chaos as we tune the two 
param eters, namely, the ratio o f the natural frequency of small 
amplitude oscillations to the driving frequency and the strength of 
nonlinear coupling. The original equation for an undamped driven 
pendulum  suitably normalized reduces to the standard form

0 +  sinS =  ecosuot (5.6(b))

Introducing 0, ui =  d0/dt =  0 and ij> =  uigt, we have the autonom ous 
set o f equations

(5.6(c))

This has a three-dimensional phase space, or N=3/2  as there 
is no momentum conjugate to <j> and hence only half a degree of 
freedom  is reckoned for <j>- T he flow is clearly conservative.

In  Fig,5.3, we show the phase portrait in the 0 -  u  plane for the 
undamped pendulum  without the drive. One can readily identify the

Fig.S_5 Phase portrait of an undamped pendulum without drive. Notice 
the elliptic fixed point (E: oscillations) and the hyperbolic points (£fi, H^: 
rotations) and separatrices (dashed lines) through and Periodic 
perturbation destroys separatrices and creates a stochastic layer containing 
chaotic trajectories and stability islands, shown hatched in Poincare sectiqn 
(schematic).
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elliptic centre (S= 0 , w = 0 ) attracting the bounded oscillations around 
the stable equilibrium with zero angular velocity on the average. 
One can also identify the hyperbolic points (saddle points) at
0  =  ± 7T, w =  0 , corresponding to the unstable equilibrium, and 
the two separatrices joining these two hyperbolic points (hence the 
heteroclinic orbit, see Appendix D ) separating the  oscillating m otion 
from the unbounded rotation with non-zero average velocity.

Now, what happens when the periodic drive e is turned on? 
Well, it is quite similar to the case o f the standard map. All one 
has to do is to view the phase portrait (Fig.5.3) doubling now as a 
guide to the eye for the points of intersection of the trajectories 
with the w — 6  plane as the surface of section. The instability 
in the neighbourhood of the separatrices leads to the form ation 
of stochastic layers around them with chaotic m otion within the 
layers. A  layer contains, however, islands of stability impervious to 
stochastic trajectories. The interior of an island repeats the above 
structure at a finer level as energy B  is increased, and the islands 
shrink, and the stochastic layer gradually spans nearly the entire 
phase space. This is the route to soft chaos, with coexisting islands 
of stability and stochastic regimes.

A  characteristic feature of this soft chaos is intermittency. A 
chaotic trajectory passing near the boundary of a stability island 
(which it cannot penetrate) perform s temporarily a regular m otion 
there, approximating the nearby periodic orbit, and then wanders 
off chaotically. The brief encounters of regularity interrupting the 
chaotic wandering constitute intermittency. We had come across 
the phenom enon of intermittency earlier while discussing the dis
sipative logistic map. Interm ittency is a common characteristic of 
Ham iltonian chaos and, indeed, it distinguishes it from a purely 
stochastic, random  process. In turbulent flows it seems associated 
with the ‘coherent structures’ that coexist with turbulence. It is seen 
in rivers as ‘boils’, known as M ark Twain boils after M ark T\vain 
who is reported to  have noticed them in the Mississippi.

Finally, we have briefly described above just two specific m odels 
of H am iltonian chaos. We could include many, e.g. two-coupled 
pendulum s etc. But the point is that the main features of nonlinear 
dynamical systems in compact domains with a t least two degrees 
of freedom  are quite generic. This is due to the structural stability 
o f the governing equations that preserve the global behaviour and 
the phase portrait despite small changes o f param eters. There are 
also som e purely geometrical models of chaos, for example the 
Sinai billiard-ball models, that mimic hyperbolic systems leading 
to SIC-ness and mixing of trajectories. Thus, the m otion of a ball 
(hard elastic sphere) moving freely on a flat annulus with a  circular



hole and undergoing specular reflections at the boundaries leads to 
chaotic mixing due to the defocussing effects of the convex boundary 
of the hole. The same is true for the Sinai stadium  —  two semi
circles capping a rectangle. And the free motion on a pseudosphere
—  a surface of constant negative Gaussian curvature (a saddle 
point all the way!). Indeed, these Ham iltonian chaotic systems have 
provided deeper insights into the postulates of equilibrium statistical 
mechanics (such as mixing and ergodicity) and reveal the emergence 
of statistical laws in a deterministic dynamical system. By ergodicity 
all we mean is that the phase trajectory will have eventually passed 
through almost all points (or rather arbitrarily close to all the 
points) on the constant energy surface, spending equal time in the 
phase-space cells (pixels or voxels) of equal volume (it visits ‘every 
ham let’ so to say). This allows us to equate the time averages with 
the phase-space averages. The Ergodicity problem  has associated 
with it names of the great founding fathers of statistical mechanics
—  Ludwig Boltzmann, Jam es Clerk Maxwell, Josiah Willard Gibbs, 
H enri Poincare and George David Birkhoff —  from the late 19th 
and early 20th centuries. A related idea, but much stronger than 
ergodicity, is the condition of mixing (that again goes back to 
Gibbs) which is really responsible for the process of relaxation 
to equilibrium so very characteristic o f all physical systems. As 
discussed earlier, it involves instability o f  the  phase ‘drop’ leading 
eventually to a highly rarified shape that allows it to envelope 
the entire  phase space at any instant of time in a coarse-grained 
manner. It was only as recently as 1963 that a gas of elastic hard 
spheres (the Lorentz gas) was shown by Ya Sinai to be ergodic as 
well as mixing. Ham iltonian chaos provides new insights into these 
deep problems.
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6 Fractalŝ  Multifractals and 
Reconstruction of Strange Attractors

We live in a three'dimensional space. To locate a point in this space 
we need to specify three numbers, the three Cartesian coordinates 
(X, F, Z), say. A smooth surface is two-dimensional. To locate a 
point on it we need to specify two numbers, the latitude and the 
longitude, say. Similarly, the line is one-dimensional. We just have to 
give the distance of the point along the line from a given reference 
point on it, the origin. And of course the point has dimension 
zero. These Euclidean geometrical ideas can easily be generalized 
to higher dimensions. This idea of dimensionality has to do with 
the ideas of rontinuity and neighbourhood, of smoothness. We call 
it the topological dimension.

There is another sense in which we use the idea of dimensional
ity, It measures the content, or the capacity of a geometrical object 
—  how densely it covers the space in which it may be embedded, 
though the dimensionality is intrinsic to the object. We call it the 
metric, or the capacity dimension. Thus, the cube has a volume, 
the square has an area and the line has a length. For conven
tional geometrical objects that are smooth, or regular on relevant 
length scales, this dimensionality is an integer and has the same 
value as the topological dimension. But, there are unconventional 
geometrical objects that are irregular on all length scales. Their 
capacity dimension defined appropriately may be a fraction. We 
call such a geometrical object a Fractal. The discovery of fractals 
is due to the IBM mathematician Benoit Mandelbrot who was led 
to this idea through his studies of complex geometric structures 
of irregular shapes and forms such as rough coastlines, lightning’s 
zigzag paths, clouds and sponges that reveal seif-simiJarity down 
to the finest length scales of interest. A fractal is how Nature 
explores or covers almost fully a volume with a surface, or an 
area with a line, or in general a higher dimensional space with 
something of a lower dimensionality, sparsely but quite efficiently. 
We should note in passing that the term capacity dimension, as 
determined by a box-counting algorithm to be discussed later, is 
due to the great Russian theorist A.N. Kolmogorov. It is now often



used interchangeably with the term  fractal dimension. The latter 
was, however, introduced by M andelbrot for yet another dimension, 
the H ausdorff dimension best known to mathematicians.
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6.1 Fractal dimension

Let us take an operational viewpoint and measure the length of a 
line as shown in Fig.6.1(a). All that we have to do is to walk the 
curve with a divider, marking off equal divisions of size e, where e 
is the distance between the pointed ends of the divider, or the ruler 
length. L et N  (e) be the number of steps required to cover the 
curve. Then eN (() will be an estimate for its length. But not quite 
its length. This is because the chords subtended by the divider are 
necessarily shorter than the arc lengths. We are cutting corners! 
So what we have here is a polygonal approximation to the actual 
curve. Now make the step length f sufficiently small so that the 
polygon nearly hugs the curve. This is always possible for a smooth 
curve, one that is locally straight. We call this a regular curve. It 
has a well-defined tangent at every point of it. Then, eN  (e) must 
tend to the length of the curve as e tends to zero. In other words, 
N  (e) ~  as € —* 0, with D = l,  the dimensionality of the curve 
as expected.

Consider now an irregular, kinky curve that zigzags down to the 
smallest length scales (Fig.6.1(b)). At higher resolutions (magnifi
cations) the curve reveals progressively a finer structure similar to 
the one observed at the lower resolution. We say that the curve is 
self-similar. It is clear then that no m atter how small e is made, 
our polygonal walk will never quite hug the curve. It will always 
cut corners. However, we may still have the scaling N  (e) ~  
as e —» 0, but now Do is a fraction in general. We call it the fractal 
dimension o f the fractal curve (also called the capacity dimension 
Dc). Put a little more formally, Dq =  limit of -  In Af(f)/ln e as 
f -» 0. H ere ‘In’ denotes natural logarithm. It should be noted that 
Dq is the property o f the curve independent of the dimensionality 
d of the Euclidean space in which the curve happens to be em bed
ded. Also, instead of the chords o f length f, we could have used 
(^-dimensional balls of radius f, or d-dimensional boxes o f size e on 
the side, to cover our curve without affecting the computed fractal 
dimensionality Dq above (Fig.6.1(c)). Thus, the capacity dimension 
can be computed using some box-counting algorithm. Incidentally, 
all fractal objects need not have a  non-integral dimension. It is 
amusing that the fractal dimension of the coastline of England 
is about 1 .2 , while that of the distribution of stars in the sky is 
about 1.23.
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Fig.6.1 (a) Covering a line with scale e, (b) self-similar fractal curve; (c) 
covering a line with f-balls.

The above operational definition of the fractal dimension can 
now be applied to any set o f points and, therefore to any geometrical 
object such as a  strange attractor. Thus, for a set of points (or an 
attractor) in a two-dimensional phase space, as for the logistic map 
discussed in Chapter 3, all we have to do is to cover the set with 
N{e) squares, measuring e on the side, and apply the above formula. 
For the Lorenz attractor embedded in the three-dimensional phase 
space, we have to use e-cubes instead of e-squares. And so on.

6.2 Examples of fractals: Cantor dust,
Koch snow flake

Cantor set (or dust) is the canonical example of a fractal that can 
be constructed following a simple rule. Take a straightline segment, 
a  closed unit interval [0,1] say. Closed means that the end points 
are included in the interval. Open, by contrast, means that the 
end points are not included. Trisect the unit interval into three 
equal segments and omit the middle third open interval. Trisect 
the remaining two segments and again omit the two open middle



thirds. Itera te  this operation ad infinitum and you will be left with a 
sparse dust o f points —  a Cantor set of uncountably infinite number 
of points, but of m easure (length) zero (Fig.6.2), because 2"(l/3)" 
tends to zero as n  tends to infinity. W hat about its dimension? Well, 
on each round of iteration the ruler length (f) of the segments gets 
divided by 3 while the num ber N{e) of segments is doubled. Hence 
the fractal (capacity) dimension =  -  in 2 / In (1/3) =  0.630. Of 
course, one could generalize this by replacing the fraction 1/3 by a 
fraction fc, 0 <  i  <  1. T hat is, remove the middle section of relative 
length b and get =  In 2 / In (2/(1 -  6)).
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Fig.6.2 Cantor set construction by middle —  third deletion. Fractal di
mensionality = 0.630.

O ther examples of fractals include the Koch snow flake  (Fig.6.3) 
and the form ation of ice crystals, river and vascular networks, and 
clusters of galaxies! We even have the fractal Nature of music, 
notably that of J.S. Bach! Incidentally, the fractal dimension of the 
attractor set for the logistic map at Aoo (onset of chaos) can be 
shown to be about 0.538 using the box counting algorithm. For 
A =  4, however, the fractal dimension is 1. And for a finite set of 
points, £>0 =  0 .

TV

V
Fig.6J  Koch Snow Flake or Triadic Island. Each side sprouts an equilateral 
triangle iteratively. Encloses finite area with infinite perimeter.
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6.3 Correlation and information dimensions

As noted above, the firactai dimension defined above is also called 
the box counting, or the capacity dimension for obvious reasons 
and denoted by D^. However, two fractals having equal fractal 
dimensions (which is a global, average concept) are not necessarily 
identical. They may differ locally in terms of their inhomogeneity, i.e. 
small-scale variations of the density of points o f the fractal object. 
The geometrical object may be resolved as a  superposition of many 
fractals much the same way as a function may be resolved in terms 
of its Fourier components o r moments. One can actually define a 
spectrum  of dimensionalities that fully characterizes such a fractal, 
o r a  multifractal to be precise. One such very useful dimension is 
the correlation dimension D^, also called the frequency dimension, 
o r the scaling dimension of a set of points. For this, count the 
fraction C(e) of points on the average lying within a  radius e of 
any point on the fractal. Then D 2 is defined through the scaling 
form C(f) ~  as e —* 0. H ere C(e) is a correlation function that 
m easures the typical number of neighbours a point has on the set. 
D i is generally more efficient to compute.

M ore formally, the set of N  points in a (^-dimensional state space 
define the correlation integral introduced by P. Grassberger and I. 
Procaccia {Physical Review, A28, 259, 1983);

i j = l

where 8 {x) is the Heaviside step function, 5(a:)=0 for a: <  0 and 
6 {x) = l  for a: >  0. H ere X i is the position vector of the i ‘'' point and 
|>r,- -  X j\  the distance between the pair of points (t, j )  measured 
according to  the geometry of the cf-dimensional embedding space.

Then D 2 is given by the initial slope:

=  (6.2)
C-O In e

T here is yet another dimension that is physically highly m otivated — 
it is the information (entropic) dimension o f the geometrical object 
and is denoted by D\. It gives a physical substance to the geometrical 
content by asking how often, or densely, a  neighbourhood is visited. 
L et the (^-dimensional phase space be covered by m  boxes (bins o r 
pixels o r voxels) o f size (or resolution) e on the side . L et Ni be 
the  num ber o f points o f the geometrical object in the t" ’ box and



N  the total num ber of points. Then one can introduce the measure 
o f missing information (Shannon’s entropy) as

=  ' r V : , . : 7 .

where =  N i/N  is the relative frequency of occupation (or the 
probability) for the i“' box (this agrees with the usual idea of en
tropy, or missing information —  it is greatest if all boxes are equally 
frequently visited or occupied implying complete uncertainty, and 
zero if just one box is occupied implying total certainty). The infor
m ation dimension is now defined as the initial slope that measures 
how this information scales with the bin size e:

D j  =  l im (—/( e ) / l n  e) ; ■ > ■ -i' (6-4)

It turns ou t that Do (fractal), K i(inform ation) and D i (correla
tion) are the most im portant dimensions —  the invariant geomet
rical features. However, one can generalize to D ,, the generalized 
dimension of order g as
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D g  =  ---- - In
9 - 1

^ P i  / l o g e  (6.5)
\i= i /  '

It is readily verified that D , reduces to Do, D\ and ZJj for 9 =  0, 1 
and 2  respectively [for ? =  1 one must be a little careful and take 
the limit g -* 1 by writing pj =  p ,?’" ’ — Pi(l +  (? -  1)) 1“  P>+ terms 
involving higher powers of (9- I ) ] .  One can also verify that £>, >  D^ 
for q < q'. Equality holds for the uniformly distributed point set.

6.4 Multifractals and the spectrum of singularities 
of local density of points: The /(a) -  a  plot

M ultifractal analysis is required to describe completely the small- 
scale variation of the density (non-uniformity of the point-set). It 
measures the inhomogeneity. A set may be a superposition of frac
tals, thus having a spectrum of fractal dimensions. Multifractal analy
sis is thus the analogue of fourier analysis, a distant analogy though.

L et the set (e.g., an attractor) be partitioned with resolution e. 
Label the boxes (voxels) by i  =  1,2, N. Then one would expect 
a local scaling of the probability

Pi(e) =  e“‘W ' '■  (6 .6 )

with Oj(e) the strength of the singularity as e -* 0. The scaling index 
(exponent a  (e)) measures the density of points on different subsets
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o f  the attractor. Large a  (e) implies rarefied subsets, and small a  (e) 
implies densified subsets. Typically, one finds a„in < £» <  amux- Then 
“ max -  o:mi„ mcasurcs the degree of inhomogeneity. Thus a  is the 
spectral component. To find the intensity of the spectral component, 
we must count how frequently a given a  occurs on the set. TTiis will 
constitute a global characterization of the set —  a global scaling 
of the density o f points.

Now, we substitute for pi (e) from Eqn.6.6  in the expression 
for Dg (Eqn.6.5) and replace J^i =  J n  (a . e) da  by introducing a 
density-in -a  (i.e., number of points per unit interval of a), n (a , e), 
which is then taken to scale as n{a, e) =  H ere  / ( a )  is
an index reflecting the local scaling of the density n{a, e) with e 
as e —> 0. Straightforward saddle point integration then gives the 
saddle point condition

D,{q -  1) =  |(9a  -  =  a(g) -  /(« (?)) (6-7)

H ere q = d f/d a  is to be solved for a  as function o f q. One can 
readily verify from Eqn.6.7 that

^ ( 0 , (9 - l ) )  =  a(?) (6 .8 )

This suggests that the Eqn.6.7 describes a Legendre transformation;

f{a ) = q a - D , i q - l )  .

where 0 , ( g - l )  is a ‘Lagrangian’, q the Velocity’, a{q) the ‘m omen
tum ’ and f{a ) the ‘Ham iltonian’. One readily verifies d f/d q  = 0  as it 
should be. Thus, from the m easured D , one can calculate (a , /(a ) ) .

The Legendre transform ation is the standard technique in me
chanics and thermodynamics to formally change from one set of 
independent variables to another conjugate set of independent 
variables.

Thus we arrive at the f{a )  versus a  plot. This plot o f spectrum  
o f singularities (see Fig.6.4) has some universal features:

da

g < 0  (6.10(a))

I t  follows, therefore, that

(o) DQ=fmax{p^)
(6) Z?_oo — Q̂ max
(c) (6.10(b))
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Fig.6.4 Multifractal spectrum of Singularities: f { a )  — a  plot (schematic).

Finally, a highly illustrative and calculable example o f the m ulti
fractal can be constructed recursively as follows. Consider a uniform 
distribution (of m atter, say) having constant density o f unity over 
the interval [0,1] (see Fig.6.5). Now, in the first round of recursion, 
redistribute the density by piling up the weight in the middle half 
as shown in Fig.6.5. Thus, the density is unity over the interval

Around centre 
0 = 1/2

A t edges 
D=1

(a)

T
Iteration

rule

0.5 1

Fig.6.5 (a) Construction of a multifractal by iterative rule Contd.
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Fig.6.5 Contd. (b) Spectrum of singularities.

(0, 1/4), zero over (1/4, 3/8), two over (3/8, 5/8), zero over (5/8, 3/4) 
and again unity over (3/4, 1). Now repeat the same piling-up-by- 
redistribution procedure on each of the three piles so obtained. 
And so on, ad infinitum. This gives ultimately an inhomogeneous 
but self-similar distribution of the m atter which is multifractal. The 
corresponding spectrum  of the singularities, the / ( o r )  -  a  plot, is 
sketched in Fig.6.5. The spectral dimension varies from D=M 2  
near the centre signifying a high density, to D = \  near the edges 
signifying a low density. A sandpile if you like!

6.5 Reconstruction of strange attractors

An important geometrical aspect o f a strange attractor is its own 
dimensionality and the embedding dimensionality (the dim ension
ality of its phase space). T here are also dynamical aspects, e.g., the 
Lyapunov exponents. The question is this —  Can we reconstruct the 
strangeness o f the strange attractor from a limited set of m easure
m ents? It is almost like asking, ‘Can we hear the shape of a drum ?’ 
Now, it turns out that it is indeed possible to reconstruct the strange 
attractor, that is to extract certain invariant characteristics, dynam 
ical and metric, of the nonlinear dynamics such as the Lyapunov 
exponents, the fractal dimensions and the embedding phase-space 
dimensions, from the m easurement o f just a single scalar quantity 
as function o f time sampled so as to give a time series. This is 
the content o f the remarkable theorem  of Floris Takens —  the 
em bedding theorem . Formally, for the ti-dimensional phase m otion
governed by d first-order differential equations X i = f ,{ X i ........Xj ) ,
we can elim inate all but X i, say, in favour of a single differen
tial equation  o f  o rd e r (d -1) for X i. Thus, it should be sufficient to 
study just any one of the d  X /s, Xj  say, without loss o f information.



Instead of measuring all the state variables a t one time, we have 
to m easure one state variable at many times —  a real trade off! 
This rem arkable claim, however, becomes less unreasonable once 
we realize that all the dynamical state o r phase-space variables of 
the chaotic system are necessarily implicated in that single time 
series. Thus, the entire multidimensional attractor is folded-in into 
the one-dimensional time series, and the question is merely that of 
unfolding it back into the full phase space. This is made possible by 
constructing an artificial phase space o f sufficiently high dimension 
through the use o f ‘time-delayed coordinates’ as described below. 
The strange attractor is indeed an implicate universe, we might say.

L et the scalar signal be sampled so as to give a time series

s { n )  — s ( t o  +  t it )  ( 6 - 1 1 )

H ere to is some initial time and r  is the sampling time interval 
of the measuring instrument. The scalar signal may typically be a 
com ponent o f some fluid velocity a t a point in a  fluid measured 
by the laser Doppler interferometric technique, or by the hot-wire 
anemometry. The signal may also be the concentration of the 
brom ide ions, say, in the BZ reaction that involves some 25 chemical 
species! From the time series we construct an iV-dimensional vector

X ( N )  =  (s(n) , s ( n  + T s ( n  + ( N - l ) T )  (6.12)

where the delay T can  in principle be anything. H ere T  is an integer.
Now let n  take all integral values and use the resulting N - 

dimensional vectors to populate the artificial phase (state) space of 
JV dimensions so constructed out o f the time series. The resulting 
geometrical object, of course, will not be quite the same as the 
original attractor (because the components o f  JC(N) are not the 
original state  variables but ra ther some nonlinear functions of them ) 
but any sm ooth nonlinear change of variables should give an equally 
good set o f coordinate bases as far as the invariant features are 
concerned. In particular, for large enough N, we expect a complete 
unfolding of the time series into the original attractor. Thus, for a 
chosen JV, construct the artificial state space and populate it with 
the phase-points X ( N ) ’s. Evaluate the corresponding dimension 
£>^ o f this point set following the G rassberger-ftocaccia  procedure 
(Eqn.6.1). Plot against N. I t  should increase monotonically with 
JV saturating to a limiting value. The integer d =  beyond 
which saturates to the limiting value (fraction in general) is 
the embedding dimension of the attractor (i.e., dimension of the 
state space in which the attractor is em bedded), and the saturation
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value is the correlation dimension D j of the attractor. And, 
o f course Dc >  £>2- It turns ou t that £>2 =  1 for a singly periodic 
m otion (limit cycle), = 2  for a biperiodic torus and I >2 >  2  for 
a strange attractor. For a truly stochastic noise, £>2 =  oo.

B ut £>2 is not the only dimensionality to be recovered from the 
time-series. We can recover the entire spectrum £), of generalised 
dimensionalities of order q introduced earlier. For this consider the 
generalization of the correlation function

C ’(e) =  lim
N—oo

Then, it can be shown that

9-r
(6.13)

Thus it is possible to reconstruct the attractor by finding £),’s of 
an artificial phase-space of sufficiently high-dimension constructed 
from the time-series o f a single measured variable —  again the 
embedding theorem  of Takens.

Reconstruction of low-dimensional strange attractors from a  time- 
series by the embedding m ethod has been carried ou t successfully 
in many cases now. Notable among these are the chemical chaos 
in the B Z  reaction; the cardiac chaos from the ECG; the neuronal 
(brain) chaos from the E E G  giving lower dimensionality for the 
epileptic state compared with the normal state; chaotic epidemics 
like measles; in some types of fully developed turbulence, and the 
X-ray luminosity o f the neutron star H er-X l.  There is however, 
sometimes, the complication due to the really stochastic noise 
obscuring deterministic chaos.

Aside from these metric properties discussed above, the strange 
attractor has dynamic properties too, which are characterised dif
ferently. O ne could, for instance, Fourier analyse the tim e-series 
X {t), X { t + T), X {t +  2 T ) , . . .  The square o f the absolute value of the 
Fourier coefficient then gives the power spectrum  of the motion. 
For this one often resorts to the technique of fa st fourier tra n so m .  
For a  regular attractor, the periodicities will show up as sharp 
peaks (lines) in the spectrum. For the strange attractor, however, 
the spectrum  is continuous and rather flat corresponding to the 
aperiodicity of the motion.

T here  are other equally characteristic invariant dynamic proper
ties o f the strange attractor that measure, for instance, the rate of



exponential divergence of neighbouring trajectories (the Lyapunov 
exponents) o r the related dynamic entropy (the rate of information 
change or the Kolmogorov entropy). These qu,antify the stretching- 
out and the folding-back of the phase-space trajectories so very 
characteristic of deterministic chaos (see Appendix A).

________ Fractals, multifractals and reconstruction o f  strange atlractors 75



7 Concluding Remarks

Most real physical systems show chaos for some initial conditions 
and ranges of the control param eters. Essential for chaos is non- 
linearity that can lead to exponentially sensitive dependence on 
initial conditions and to orbit complexity. The chaotic trajectory 
is unstable all along it, but chaos itself is robust. Much of our 
discussion of deterministic chaos in the preceding pages has been 
limited to dissipative dynamical systems with continually contracting 
phase-fluid volume. Indeed, chaos resulted as subtle resolution of 
the apparently contradictory demands of diminishing phase volume, 
non-intersection of the phase trajectories and the exponential diver
gence of the once neighbouring trajectories (sensitivity to  initial con
ditions, or SIC). However, as we have also discussed, non-dissipative 
(that is conservative, o r Hamiltonian) systems with phase volume 
constant in time can and do show chaos too. For this we need 
non-integrable Hamiltonian systems. (A Hamiltonian system is said 
to be integrable if, roughly speaking, the number of constants of 
motion equals the num ber o f degrees of freedom —  such systems 
are reducible to as many independent, non-interacting degrees of 
freedom through certain transformations well-known in classical 
mechanics. Hence no mbced-upness, and no chaos therefore.) Two 
nonlinearly coupled harmonic oscillators (the H 6 non-H eiles sys
tem) is one such example that shows chaos when excited beyond an 
energy threshold. So is possibly the case with a gravitating stellar 
cluster. Chaos with a low dimensional strange attractor has been de
tected in the accreting neutron star H er-X l, and reconstructed from 
the time-series analysis of its X-ray emission. Examples abound. In 
deed, classical mechanics has received a new lease of life from the 
(non-integrable) Hamiltonian chaos. The latter is, in a way, the 
missing link between classical mechanics and statistical mechanics
—  it may provide a rationalization of the Boltzmannian hypothesis 
o f  m olecular chaos (the statistical assumption), of ergodicity and 
mixing.

Perhaps the greatest challenge facing the chaos theory is the one 
posed  by the  originally motivating problem of turbulence of a fluid 
flowing th rough  a pipe and particularly the open flow past obstacles, 
the  wake. T he problem  remains partially solved. Fully developed
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turbulence certainly has a strange attractor at the heart of it, but 
many non-universal aspects of turbulence remain open questions. 
The original idea of Landau that turbulence results from a casciade 
o f instabilities, with new incommensurate modes appearing one at a 
time, does not work. Turbulence remains the last unsolved problem 
o f classical mechanics.

Two-dimensional incompressible flow, however, can be reduced 
to the Ham iltonian form. It shows the characteristic coexistence 
of the ordered islands of stability, e.g., vortices and jets, and the 
chaotic regions in the phase space which is the physical space of 
the mbdng process itself. The two are separated by the KAM-type 
barriers (e.g., undulating jets) that obstruct mixing by advection. 
One believes that the gulf stream (jet) on Earth and the great 
red spot (vortex) on Jupiter are examples of such traps. Indeed, it 
has been suggested that a spectacular example o f such a trapping 
zone exists in the form of ‘meddies’, the vortices that originate 
in the M editerranean and drift across the Atlantic carrying with 
them the M editerranean marine life unmixed and trapped for a 
year, or even more. The persistence of such barriers to mbdng 
despite weakly turbulent flows as predicted by the KAM theorem, 
and the possibility o f realizing efficient mbdng by chaotic advection, 
are serious m atters of relevance to problems of pollutant dispersal 
in the environm ent and of mixing in chemical reactors. After all, 
gentle chaos with sensitivity to initial conditions is energetically 
much m ore cost-effective than the brute-force stirring to create 
mixing by turbulence.

Many more, rather subtle, applications and manipulations of 
chaos based on its very exponential sensitivity and orbit complexity 
are being experimented with —  chaos control, encoding of digital 
information, and targeting —  among others. Let us consider these 
briefly. (For a very readable discussion, see E. O tt and M. Spano, 
Phys. Today, 48, 35 (1995); T  Shinbrot, C. Grebogi, E. O tt and J.A. 
Yorke, Nature, 363, 411 (1993).)

Controlling chaos, when it is unavoidably present, exploits its 
hidden order —  namely the many unstable periodic orbits em 
bedded in the chaotic attractor. As we have learnt in Chapters 3 
and 5, a free-running chaotic trajectory shall, in the course of its 
random  walk, approach any given unstable periodic orbit arbitrarily 
closely, follow it for a few cycles, and then wander off. Now, one of 
these periodic orbits may be desirable for an optimal system perfor
mance. Chaos control then simply means that we give suitable kicks 
to the system so as to reset it back to the unstable periodic orbit,
i.e., we stabilize the latter. In practice it calls for a  control loop 
where the deviation from the desirable periodic orbit, as reflected
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in the deviation from the optimal system performance, is sensed 
as an error signal which is then fed back negatively. Because of 
the exponential sensitivity, these control signals need only be small. 
The other main advantage of chaos control, when possible, is the 
unlimited choice of unstable periodic orbits to lock-in to. Usually, 
chaotic attractors of low dimensions (less than 5) are to be har
nessed. Such a chaos control has been devised for a solid-state laser, 
for mechanical and electronic oscillators, and for the arrhythmic 
heart of a rabbit (in vitro). It is being attem pted for the ventricular 
fibrillation of a  canine heart.

The use of a chaotic attractor for encoding and transmitting 
digital information is best illustrated with the example o f a chaotic 
oscillator whose attractor is a ‘double-scroll’: the phase trajectory 
traces a number of loops in the left lobe, say, wanders off to 
the right lobe, traces a number of loops there, wanders back to 
the left lobe and so on, much the same way as for the Lorenz 
attractor in Fig.4.2(a). The sequence of the left-lobe and right-lobe 
windings may be represented by an ‘apparently’ random string of 
binary digits, 0 and 1. Now, because of exponential sensitivity, it is 
possible to give small but calculable kicks to the chaotic oscillator 
that change the sequence in a-computable m anner in the short run 
so as to encode the digital information. Again, the advantage is the 
smallness of the control signal, even though the chaotic oscillator 
(a powerful transmitter perhaps) itself may have a large output.

Targeting means coaxing the dynamical system to go quickly from 
a given initial condition to a final desirable condition (target re
gion) within the phase space of the attractor. Again, the exponential 
sensitivity makes this possible through a careful choice of p e rtu r
bations that need be only small. A spectacular implementation of 
such a targeting was the redirecting by the NASA scientists o f the 
S un-E arth  Explorer-3 Spacecraft from its near-Earth orbit towards 
a distant cometary encounter with a minimum of fuel consumption. 
This was done using the sensitivity o f the E arth-M oon-Spacecraft 
three-body system which is known to be non-integrable.

Applications of the ideas from chaos and strange attractors ou t
side the physical sciences, in particular in life sciences (biology and 
medicine) are very encouraging. The possibility o f reconstruction 
of the attractor from the measured time-series (the ECG and E EG  
traces, for example) has opened up new diagnostic routes. For an ex
cellent account of these, see Fractal Physiology and Chaos in Medicine 
by B ruce J. West, World Scientific, Singapore, (1990). I t  is strongly 
indicated , for example, that disorders such as schizophrenia can 
be m odelled by strange attractors associated with the middle layer 
o f  th e  forebrain, the limbic brain (which is the seat of emotions).
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causing chaotic oscillations between thought and emotions. Simi
larly, for the case of epilepsy it is significant that the normal neural 
activity o f the brain has a chaotic attractor of higher dim ension 
than that of the epileptic brain! Indeed one has Z>o ~  6.1 (quiet 
awake); Do ~  8.2 (rapid eye movement, or REM , sleep); £>o ~  4.05 
for deep sleep; and for the epileptic state Vo ~  2.05.

Finally, there is the rapidly expanding field of quantum chaos in 
the highly excited states of atoms and molecules that we have not 
touched upon a t all. W hat happens to a classically chaotic system 
when we quantize it? It has been found that the regular-to-chaotic 
transition in a quantum system is marked by a qualitative change 
in the statistics o f the energy-level spacings; in the chaotic-case 
the levels ‘repel’ each other. TTie Heisenberg uncertainty principle, 
however, blurs the classically sharp trajectories. It is not clear how 
the fine structure of a strange attractor will tolerate this quantum 
diffusion. These are some of the deep questions that remain to be 
fully answered. It may even provide deeper insights into quantum 
mechanics.

Strange attractors encountered in Nature are often low-dimen
sional despite the large dimension of the phase space in which they 
may be embedded. Obviously, most degrees of freedom are damped 
out, leaving just a small num ber of macroscopic degrees of freedom 
that make up the eventual attractor. A strange attractor, with all its 
mtxed-upness, is still a highly stable, robust and structured dynamical 
object. It is virtually an infinite reservoir of resonance frequencies, 
and is tunable by controlled feedback. It has an organization. 
It generates ‘chance’ ou t of the ‘necessity’ of deterministic laws of 
m otion. But there is also a simplicity at the far side of its complexity.
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Lyapunov exponent

Lyapunov exponent, named after the Soviet mathematician A.M. 
Lyapunov (1857-1918), is one of the most im portant dynamical 
invariants o f an attractor that quantifies its sensitivity to initial 
conditions (SIC). It measures the average rate of divergence (or 
separation) of neighbouring trajectories in phase space —  the SIC- 
ness of the system —  averaged over initial conditions spread 
over the trajectory. In a chaotic attractor this divergence in
creases exponentially. For example, consider a one-dimensional 
map The two trajectories starting at the neighbouring
points lo  and lo  -I-« with e <  1 may diverge out after n  iterations 
as |/ " ( io  -t-e) -  / " ( i o ) | /  ~  ee"^, n  >  1. H ere / ” (io) stands for the 
nth iterate o f xq. Thus p { x )  =  f i f { x ) , f ^ ( x ) )  =  / ( /( / (x ) ) ) ,  and so 
on. We define the Lyapunov exponent A as

A =  lim — Inn—oo n
d r { x o )

dxo (A .1 )

Using the chain-rule for the derivative o f the n**' iterate, we can 
write

1 H -l
lira -  V b—oo n

1 = 0
dxi (A .2)

where i ;  is the i'"" iterate o f iq- In the limit n  -* oo, the value of 
A may be expected to be independent o f the initial value xo- Thus, 
for example, for the logistic map x„+j =  ;tx„(l - x „ )  with /i =  4 , 
one can readily show that A =  In 2 > 0.

T he above definition can be generalized to higher-dimensional 
sta te  spaces, maps or flows as

A =  lim -  t—*00 t In
e(t)
e(0)

e(o) (A .3 )
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where e(t) is the distance between the points x{t) and x{t) + e{t), 
initially on the neighbouring trajectories (see Fig.A .l). The distance 
could be computed using any m etric for the phase space and X does 
not depend on it. O f course, the stretching and the contraction will 
depend on  the direction, i.e. f(t) is a d-dimensional vector for the 
d-dimensional phase-space and one must define 'cT Lyapunov expo
nents in general. All one has to do is to linearize the evolution equa
tion at each point of the trajectory and look at the eigenvalues and 
eigenvectors of the d x d  stability matrix that give the local exponen
tial growth/decay of separation along the eigenvectors (tangent di
rections). Thus we have d exponents Aq > A] >  A2 . . . >  Arf_i.

FigA .l Lyapunov exponent A. Points on neighbouring trajectories C  and 
C  separate out exponentially.

I t  is clear that for chaos to occur, at least one of the A’s must 
have a positive real part. Also, for dissipative dynamics the sum of 
the A’s must be negative. Indeed, one can show that the phase-space 
volume elem ent grows as

‘( e )  V
r(t) =  r(o) e

Also, for an autonom ous system with X,- =  f i { ^ ,  we have

V - /= E i
T he positive Lyapunov exponents signifying the expansion of the 

initial phase-space volume elem ents and, therefore, enhancing the 
uncertainty of localizing the phase point in the phase space, are 
directly related to the average rate of increase of the so-called 
Kolmogorov entropy K. I t is easily shown that K  < sum of all 
positive Lyapunov exponents. In  particular, i f  =  0 for a regular 
m otion (e.g. periodic), K  > 0 for a  chaotic motion, and K" =  00 
for a truly stochastic (random ) motion. The Kolmogorov entropy is 
an im portant calculable and m easurable quantity whose reciprocal 
determ ines the time-scale for short-range prediction.
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Randomness of deterministic sequences: Bernoulli 
shift. Baker transformation and the Smale horseshoe

Can a given sequence of numbers, or symbols, be random ? T his 
seems to be a contradiction in term s or, a t the very least, as 
paradoxical as deterministic chaos. Yet a given sequence, gener
ated through a deterministic algorithm, can be as random  as the  
outcomes of tossing a coin in a very well-defined sense. We will 
illustrate this through what is known as the Bernoulli shift.

Consider the one-dimensional non-invertible map

x„+i =  2 x„ (mod 1) . (B.l)

that maps the unit interval [0,1] to itself. Thus, starting with a 
seed xo, we can generate a well-defined sequence (xq, x j, X2 ,
As  we have noted in the text the mod (1) is a highly non-linear 
feedback operation that causes folding-back, while multiplication by 
two causes the stretching-out. Together they produce the sensitivity 
to initial conditions which is essential to chaos. Let us now see the 
precise operational sense in which the sequence (lo , x i, x j, . . . )  
generated by this deterministic algorithm is random.

Start with the seed xo written in the binary notation for conve
nience. All this means is to divide the unit interval 0 < x < 1 
in two equal halves and record 0  or 1 according as xq lies in 
the left half or the right half. Suppose it is in the left half, then 
subdivide the left half further in two equal halves and repeat the 
above procedure and so on and on. It is like zeroing in on the 
destination by travelling half way past to half way past to half . . .  
This generates a string of zeros and ones that represents xo in the 
binary representation, i.e. symbolically xo = -oo o_i a_2 . .  . a _ „ . . .  
with a ’s 0 o r 1. The longer the string, the greater the precision 
o f specifying xo in  the unit interval [0 ,1), W ritten in this digitized 
binary base 2 , we have
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Now, our map gives the first iterate of xo as

-1

=  “-1 “ - 2 ” - (B.3)
-OO

because the first term  oo/ 2  in the sum drops out when we multiply 
it by two and perform the(mod 1) operation. Thus, the rule of this 
iterative game (or map) is just to shift the ‘decimal point’ one digit 
or bit to the right and drop whatever appears on its le ft We have 
here a shift register so to say. This is the famous Bernoulli shift. 
Now, the point is that the initial seed xo is an input and as such the 
entries oo, a_i, a_2, etc., are entirely unpredictable by definition. 
Thus, e.g., giving oo does not specify o_i, a_2, . . . ,  etc. Thus, they 
may well be generated by the tossing of a coin with heads =  1 
and tails =  0, say. But our map generates an output which is 
nothing but the input shifted and rounded off and is, therefore,

, just as unpredictable. After all, you cannot predict the entries of 
an input data tape. In computer parlance, to print out the output 
you have to have a program to print out the entire input string —  
the program  length will be proportional to the bit length of the 
input. No short cut is possible. This is essentially what we mean 
by algorithmic complexity (a kind of computational complexity) of 
the given sequence.

There is yet another aspect to this randomness of a given se
quence. The later entries in the binary representation of xo give 
higher numerical definition of xq with a_„ corresponding to an error 
of less than Now, given that all quantitative determ inations
have a finite accuracy (i.e. are known to a finite number of significant 
figures) we will have a rounding off error, ~  1/ 2^ say, that makes 
all a-n  for sufficiently large n (>  N )  totally random, and just after 
N  iterations these late error-laden entries will have been shifted 
left to the dom inant place! This is a rather physically-motivated 
sense in which a given sequence may behave randomly.

We end this discussion with a few general num ber theoretic re
marks. We have taken the sequence oo, o -i, 0 - 2. ••• to be infinite. 
Why? Well, we know that there are countably infinitely many ratio
nal and uncountably infinitely many irrational numbers in the unit 
interval, but with the irrationals almost exhausting the measure 
(length) of the interval. Thus, any num ber drawn from the unit 
interval will almost always be irrational, and for irrational num 
bers the binary string (sequence) does not term inate. For rational 
num bers the sequence term inates —  it is finite. Indeed, such an 
exceptional finite sequence corresponding to a rational seed will 
show recurrence (the celebrated Poincare recurrence), i.e. it will be
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repeated after a given num ber of iterations and will.therefore, yield 
a periodic orbit in the phase space, and hence is fully predictable. 
An irrational num ber too, almost always, contains any finite subse
quence infinitely often. On iteration {Bernoulli shift register) these 
finite subsequences will also successively move left to a significant 
place and the corresponding phase trajectory will be quasi-periodic
—  the initial lo  will get m apped arbitrarily close to any value x  
(including xo) infinitely often. All this forms a fascinating subject of 
num ber-theoretic and symbolic dynamics for what might be called 
synthetic chaos.

B.l Baker transformation

This is just a two-dimensional, invertible, two-sided generalization 
of the previous example of the one-dimensional, non-invertible, one
sided Bernoulli shift discussed above. The ba/cer transformation is

=  2X„, =  y „ /2  , 0 < X „ < l /2
(B.4)

=  2 X n - \ ,  =  (y„ +  i ) / 2 , 1 /2  < JCn < 1

or its inverse

x„ =  x„+i/2, =  2y„+i, 0 < y„ <  1/2
(B.5)

X n  =  -I-1)/2, y„ = 2F„+1 - 1, 1/2 < < 1

It obviously reminds one of the stretching-out and the folding-back 
operations of a baker working the dough.

As shown in the above figure (Fig.B.l), it leads to an intricately 
mixed and layered fine-structure that exhibits sensitivity to initial 
conditions (SIC-ness). The map is conservative (area preserving) as

I a(y„+i, ;fn+i)/ a(x„, y„) | =  1,

and the Lyapunov exponents are ±  In 2. This contrasts with the 
earlier case of X„+i =  2  X „(m odl) which is non-conservative with 
the Lyapunov exponent =  In 2. We just note that it is again possible 
to represent the point (X , y) as a binary sequence . . .  03 0 2  “ i-
oo a_i o_2 a -3  . . .  and then the map corresponds to a two-sided 
Bernoulli Shift where the ‘decimal’ point separating X  and Y  digits 
moves one digit to the right, i.e., . . .  03 02 oi. oo a_i a _2 o-s . . .  
—* . . .  03 02 oi Oo. a_] o_2 0 -3  . . .  TWs is again a num ber theoretic 
model of mixing and SIC-ness. ,
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Fig.B.l Baker’s transfonnation. Notice the mixed-upness of “Arnold’s Cat”.

B.2 Smale horseshoe

This is a famous but rather abstract example of the chaotic be
haviour of a dissipative o r a conservative dynamical system invented 
by the American topologist Stephen Smale. It is a topological trans
form ation involving stretching-out in one direction, and squeezing in 
another, followed by folding so as to stay within bounds. The result
ing map dem onstrates clearly the sensitive dependence on initial 
conditions —  the instability which is at the heart of deterministic 
chaos. The transform ation is shown schematically in Fig.B.2 for a 
dissipative system. Take a square So; squeeze it top and bottom into 
a  horizontal bar S; bend the bar around into a horseshoe shape, 
with the arc and the two ends projecting outside the boundary 
of the original square. Thus, we have a contraction (dissipative) 
m apping of the original square So into the  straight legs iJi and Li 
o f the horseshoe Si. It is readily seen that these two horizontal legs 
R i and Li are generated by the two vertical legs Ro and Lo shown 
in dotted lines on the original square So. The intersection squares 

'»3i ^4 thus contain subsets which are invariant under the 
transform ation. W e call these recurrent point sets. Now reiterate 
the above transform ation on the horseshoe. The recurrent point set
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will consist o f 4^ smaller squares, four in each of the earlier tour 
squares. A fter n  iterations we will have 4" squares. Continued ad 
infinitum, this would lead to an uncountably infinite set of points 
covering zero m easure (area). It will be a fractal. The dynamics on 
this set induced by our mapping involves stretching, squeezing and 
folding-back. Thus, each point is a  saddle point by construction and 
signals instability. The horseshoe m ap is regarded as an archetype 
of chaotic dynamics.
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Fig.B.2 Smale horseshoe map obtained by stretching horizontally and 
compressing vertically by a factor of at least two recursively. Notice the 
invariant squares shown hatched (schematic).
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Linear stability analysis

Linear stability of the state of a nonlinear dynamical system refers 
to the response of the system in that state to a small (infinitesimal) 
perturbation of the state. The state may be a stable/unstable fixed 
point (equilibrium) or a limit cycle o r some reference trajectory in 
general, for a flow or map. If the perturbation grows exponentially 
with time, the state is said to be unstable; otherwise it is stable. 
In order to test this all one has to do is to linearize the nonlinear 
dynamical equations about that reference state in the phase space.

To fix ideas, consider the dynamical evolution equations X, =  ft  
( X i , . . X n), i  =  1 , . . . ,  N  and let (A^, . . A^)  be a fixed point,

. . . ,x % )  = 0.
L et us slightly perturb this equilibrium state and set X i =  X^+Sxi, 

and write down the time-evolution for the perturbation Sxi by 
linearizing the nonlinear equation about the fixed point. We have 
the tangent map

where the matrix (Jy  =  {dfi /dxj)o is the stability matrix (a.k.a. the 
Jacobian or the plant matrix). The eigenvalues and eigenfunctions 
o f this matrix now decide the linear stability/instability of the fixed 
point and the corresponding domain, or manifold, as follows (see 
Fig.C.l):

a) A real negative eigenvalue corresponds to the exponentially 
dam ped return  to the fixed point. It implies stability and con
traction along the corresponding eigenvector. Thus, if all eigen
values are real and negative, then the fixed point is stable. In 
fact it is a stable node inasmuch as it is approached radially.

b) Real positive eigenvalues imply exponential divergence away 
from  the fixed point. This implies stretching and instability along 
the corresponding eigenvectors. Thus, even a single positive 
real eigenvalue makes it an unstable fixed point (a repeller), o r 
specifically an unstable node.
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(a)

\
(b) (c)

(d) (el

Fig.C.l Fixed Points: (a) Stable fixed point (attractor node); (b) un
stable fixed point (repeller node); (c) stable fixed point (attractor focus); 
(d) unstable fixed point (repeller focus); (e) centre (elliptic point); (f) saddle 
point (hyperbolic point).

c) Complex eigenvalues come necessarily in pairs and give a spiral 
m otion falling into (stable focus) or away (unstable focus) from 
the fixed point according as their real parts are negative o r  
positive. The spiral m otion is in the plane defined by the two 
complex conjugate eigenvectors.

d) For a second-order system (i.e., two-dimensional phase space) 
a pair of purely imaginary eigenvalues give an elliptic point (i.e. 
a  centre).

e) For a  second-order system, two real eigenvalues of opposite 
signs give a saddle point (a.k.a. hyperbolic point). It implies 
stretching-out along the unstable direction and folding-back 
along the stable direction. Hyperbolic points are essential for 
SIC-ness and chaos.

f) An extremely interesting situation can arise in a third-order 
system (three-dimensional phase space) as in the Lorenz model 
where there  is a positive real eigenvalue (unstable direction) and 
a pair o f complex eigenvalues with negative real parts (a pair o f
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nodes). This can lead to a complex, irregular motion character
istic of the Lorenz strange attractor.

The above observations hold both for a continuous flow as well 
as a discrete map Xi{n  +  1) =  /j({.Yj(n)}). In the latter case, the 
Jacobian matrix is (df i /dXj ) .

An im portant idea when talking of stability is that of asymptotic 
stability as distinct from the orbital stability. Thus a limit cycle 
is asymptotically stable in the sense that neighbouring trajectories 
converge to it and points on those orbits get arbitrarily close a# 
t  —* oo. This can happen only for a dissipative system. The centre, 
on the other hand is only orbitally stable —  neighbouring periodic 
orbits stay neighbouring periodic orbits but do not converge to any 
limiting orbit, and points closest by on neighbouring orbits need 
not stay closest. H ere a perturbation can lead to jittering. Centre 
is possible only for non-dissipative (conservative) systems.

Finally, each limit set (i.e. a fixed point, a limit cycie, etc.) haS 
its dom ain or basin of attraction, or more generally its stable or 
unstable manifolds. These are generated by the iteration (evolution) 
o f the full nonlinearized maps (flows) towards or away from the 
limit set. These domains (manifolds) are separated by separatriceS-
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The Saddle point and homoclinic point: Generator 
of disorder (GOD)

A saddle point is a hyperbolic fixed point in phase space with both 
the stable and the unstable eigendirections along which we have, 
respectively, folding-in and stretching-out of the trajectories (in 
mechanics, it represents a point on the potential surface shaped like 
a mountain pass. Geometrically, the surface has a negative Gaussian 
curvature there). The stable/unstable directions are determ ined by 
the Jacobian matrix J  of the map Xi{t +  1) =  /j(x (t)), or the flow 
{dxi{t)/ dt) =  fi{x{t)),  linearized about the fixed point with Jij = 
(df i /dxj) .  Thus, the unstable manifold is the subspace generated by 
the infinity of full nonlinearized iterations of the points lying within 
an elem ental volume defined by the eigenvectors of the Jacobian 
matrix at the saddle point corresponding to the real eigenvalues of 
absolute magnitude greater than unity. Similarly, for the stable and 
the centre manifolds. To these manifolds, of course, correspond 
tangent spaces generated by the corresponding eigenvectors. The 
full nonlinearized iterations of the unstable eigenvector a t the saddle 
point can give an infinitely folded curve. In conservative systems, 
this type of exceptional subspace of unstable manifold is called a 
separatrix (more generally, a separatrix separates basins of attraction 
of different attractors in the phase-portrait).

We will now briefly illustrate how saddle points can generate 
chaotic trajectories. This requires a proper understanding of the 
role of a separatrix and what is known as a homoclinic po in t [at 
which the stable (S) and the unstable {U) manifolds (separatrices) 
intersect]. Consider first the unstable (!7i) and the stable (S i) 
separatrices associated with a hyperbolic point H \. These two can 
term inate in one of the following ways (Fig.D .l). They can term inate 
in another co-existing hyperbolic point H 2 such that Ui becom es Sj 
and U2 becomes Si. Thus we get a heteroclinic orbit. Or, they may 
bootstrap  so that closes on Hi as Si, giving a homoclinic orbit, 
o r  they can simply wander off to or in from infinity, respectively.

T h e  existence of the homoclinic orbit does imply, however, that 
a  certain  trajectoiy initially in the unstable manifold may enter the
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stable manifold and after an infinite time hit the fixed point (get 
reinjected) from which it had once begun (Fig.D.2). The existence

(a)

(b)

(0

Homoclinic
point

Fig.D.l (a) Heteroclinic orbit joining two saddle points H \  and Ha; (b) 
bootstrapping of separatrix at H\ (c) Homoclinic point P  and chaotic 
behaviour near H.

Fig.D.2 Homoclinic orbit to a focal fixed point possible for 3-dimensional 
phase space with a 2-dimensional stable and 1-dimensional unstable manifolds.
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of P  dem ands tuning of the param eter value. A small deviation 
from this param eter value produces time-periodic orbits near the 
homoclinic orbit (see Fig.D.2). The corresponding case for the 
heteroclinic orbit is, for example, as shown in Fig.4.2(a) for the 
Lorenz attractor.

B ut the most interesting case is when Ui intersects Sj at a 
point P  (not a fixed point) called the homoclinic point. We must 
note that we are now really talking about the intersections of the 
separatrices with the Poincare surface of section and hence the 
existence of P  does not violate the non-self-intersection property of 
phase trajectories. It is clear then that the unstable and the stable 
separatrices must intersect infinitely often as shown in (Fig.D .l). 
This follows from the fact that, inasmuch as P  lies on the stable 
separatrix S, it must get mapped on S  and converge to the hyperbolic 
fixed point H  as a limit along the stable separatrix S. But, since P  
also lies on U, its pre-images must be traceable back to H  along U. 
Further, as the map is conservative, for a Hamiltonian system say, 
it can be shown that the loops created by the repeated intersections 
of U and S  must have equal areas. It follows, therefore, that as the 
points o f intersection along the stable separatrix S  become closer 
and closer on approaching the limit point H, the loops must become 
m ore and more elongated and entangled in the transverse direction. 
This combination of large transverse excursions and folding-back 
(re-injection) leads to irregular, chaotic motion.
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