V. RAJARAMAN

Supercomputers

About the Series

The educational monograph series of the JNCASR attempts to cultivate
a general appreciation of some of the frontier areas of science and
engineering, amongst its readers. Each book in this series, written by an
acknowledged authority, presents an emerging or a frontier topic from
scientific, historical and utilitarian angles. The series though addressed
primarily to graduate and postgraduate students of science and
engineering also enjoys a general readership interested to keep abreast
of what is going on in the world of science.

Editorial Board
S. K. Biswas Coordinator
V. Krishnan

N. Mukunda
J-V. Narlikar
G. Padmanaban
V. Rajaraman
K.J. Rao
C.N.R. Rao

J- Srinivasan
M. S. Valiathan

Titles published
1. Superconductivity Today — T. V. Ramakrishnan and
C.N.R. Rao
2. Bohr and Dirac —
Images of Twentieth
Century Physics — N.Mukunda
Forthcoming Title

Genetic Engineering — G. Padmanaban

SUDETCOMmpUter

V.RAJARAMAN

Jawaharlal Nehru Centre for Advanced Scientific Research
Bangalore-560012, India

JAWAHARLAL NEHRU CENTRE FOR
ADVANCED SCIENTIFIC RESEARCH, BANGALORE

PUBLISHING FOR ONE WORLD

WILEY EASTERN LIMITED

NEW DELHI BANGALORE BOMBAY CALCUTTA GUWAHATI
HYDERABAD LUCKNOW MADRAS PUNE

Jawaharlal Nehru Centre for Advanced Scientific Research

WILEY EASTERN LIMITED

NEew DELHI: 4835/24 Ansari Road, Daryaganj, New Delhi 110 002

BANGALORE: 27, Bull Temple Road, Basavangudi, Bangalore 560 004

BOMBAY: Post Box No. 4124, Saraswati Mandir School, Kennedy Bridge,
Nana Chowk, SBombay 400 007

CALCUTTA: 40/8, Ballygunge Circular Road, Calcutta 700 019

MADRAS: No. 6, First Main Road, Gandhi Nagar, Madras 600 020

HYDERABAD: 1-2-412/9, Gaganmahal, Near AV College, Domalguda,
Hyderabad 500 029
PUNE: Flat No. 2, Building No. 7, Indira Co-op Housing Society Lid.
Indira Heights, Paud Faua, Erandawane, Karve Road, Pune 411 038
LuckNow: 18, Pandit Madan Mohan Malviya Marg, Lucknow 226 001
GUWAHATE: Pan Bazar, Rani Bari, Guwahali 781 001

Copyright © 1993 { Wiley Eastern Limited

This book or any part thereof may not be
reproduced in any form without the
wrilten permission of the publisher

This book is not to be sold outside the
country to which it is consigned by
Wiley Eastern Limited

ISBN: 81-224-0496-0

Published by H.S. Poplai for Wiley Eastern Limited, 4835/24, Ansari | '
Road, Daryaganj, New Delhi 110 002 and printed at S.P. Printers,
E-120, Sector 7, Noida. Printed in India.

Foreword

The Jawaharlal Nehru Centre for Advanced Scientific Research was
established by the Government of India in 1989 as part of the centenary
celebrations of Pandit Jawaharlal Nehru. Located in Bangalore, it
functions in close academic collaboration with the Indian Institute of
Science.

The Centre functions as an autonomous institution devoted to ad-
vanced scientific research. It promotes programmes in chosen frontier
areas of science and engineering and supports workshops and symposia
in these areas. It also has programmes to encourage young talent.

In addition to the above activities, the Centre has undertaken a
programume of high quality publications at three levels:

(a) Popular Science and General Books—intended for the general
public.

(b) Educational Monographs—short accounts of interesting areas in
science and engineering addressed to students at the graduate
and postgraduate levels.

(c) Aduanced Monographs—devoted to specialised topics in current
research intended for the international research community.

This monograph is one of the series being brought out as part of the
publication and activities of the Centre. The Centre pays due attention
to the choice of authors and subjects and style of presentation, to make
these monographs attractive, interesting and useful to students as well as
teachers. It is our hope that these publications will be received well both
within and outside India.

C.N.R. Rao
President

Preface

Of late there has been a lot of interest in our country on Supercom-
puters. They have become part of the vocabulary of all educated
persons as press reports appear regularly in newspapers about these
computers and how they are being used to solve a whole range of
very interesting problems from predicting the monsoons to synthezis-
ing life-saving drugs. There is thus a widespread curiosity to know
what are supercomputers, in what way they are different from other
computers ard why they are considered strategic machines by the ad-
vanced western countries which have imposed strict export controls
on them. The purpose of this educational monograph is to answer
these questions and review the current state-of-the-art of supercom-
puters.

This book is meant for students in their final year M.Sc. or B.E.
courses, (with a basic knowledge of programming in a high level lan-
guage such as Fortran) who would like to know about supercomput-
ers. It should also interest other scientists and engineers who would
like to know about this subject.

The book begins with an introductory chapter which explains
what is a supercomputer and why such a machine is needed to solve
some problems. Chapter 2 discusses the architectural features of su-
percomputers which distinguish them from other computers. The
third chapter deals with programming supercomputers. The need to
vectorize programs to make effective use of supercomputers is brought
out and some simple methods for vectorizing programs are explained.

Chapter 4 is on parallel computers. Parallel computers have emerged
as a cost effective replacement for traditional vector supercomput-
ers in some application areas. This chapter discusses briefly how
problems may be solved in parallel and the architectural features of
computers which can solve efficiently problems in parallel. The fifth
chapter presents details of some of the commercially available super-
computers and parallel computers. The last chapter deals with some
interesting applications of supercomputers.

The book is a broad based introduction to this subject. Many
topics are discussed at an elementary level without delving deep into
the detailed technical aspects of the problem. A set of references is
provided at the end of the book to guide an interested reader to the
material needed for deeper study. .

In writing a book of this type, I naturally gained a number of
ideas from numerous articles in journals and books on this sub-
ject. I thank all these authors, too numerous to acknowledge in-
dividually. Many colleagues and students generously assisted me
by reading a draft of this book and suggested improvements. I
thank all of them. My colleagues at the Indian Institute of Sci-
ence, Dr.N.Balakrishnan, Dr. Mathew Jacob, Mr.R.Krishnamurthy,
Mr.T.S.Mohan, Dr.A.Patel, Dr.S.Ramasesha, Dr.V.Viswanathan and
Dr.S.Yashonath generously helped me by reading the manuscript
carefully and suggesting many improvements which 1 have incorpo-
rated in the book. I sincerely thank them for their assistance.

I thank Prof.C.N.R.Rao, President, Jawaharlal Nehru Centre for
Advanced Scientific Research, Bangalore, who encouraged me to write
this monograph and for continually evincing interest in all my endeav-
ours. I thank Ms. Mallika who cheerfully typed the manuscript in
IATEX format and drawing the figures in Xfig. I thank Mr.T.S.Mohan
and Mr.S.Sundaram, who besides contributing their technical exper-
tise in installing and running all the hardware and software, spent
a lot of time in editing and in drawing the more difficult figures. I
thank them for their very cheerful and willing efforts. Finally I ex-
press my heartfelt appreciation to my wife Dharma for reading the

manuscript, suggesting many improvements to make it understand-
able, editing and cleaning up the manuscript on IWITgX and Xfig and
for her enthusiastic support which enabled me to write this book.

V.RAJARAMAN

Bangalore
1% July 1992

Contents

Foreword
Preface

1.

INTRODUCTION

1.1 Defining a Supercomputer I

1.2 Why Do We Need Supercomputers? 4

1.3 How Do Supercomputers Achieve Their Speed ?

ARCHITECTURE OF VECTOR SUPERCOMPUTERS
2.1 Pipeline Processing 11

2.2 Vector Processing 14

2.3 Logical Structure of a Supercomputer 18

2.4 Technology of Vector Supercomputers 29

COMPUTING WITH VECTOR SUPERCOMPUTERS
3.1 Vector Instructions 32

3.2 Vectorization of Programs 34

3.3 Whatis Vectorization? 37

3.4 The Vectorization Process 37

3.5 Scalar Optimization of Programs 47

PARALLEL COMPUTERS

4.1 Array Processors 49

4.2 Executing Task Graphs on Parallel Computers

4.3 A Generalized Structure of a Parallel Computer

4.4 Shared Memory Multiprocessors 62

4.5 Message Passing Multicomputers 65

4.6 Comparison of Vector and Parallel
Supercomputers 67

AVAILABLE HIGH PERFORMANCE COMPUTERS
5.1 Vector Supercomputers: Cray & Others 7/
5.2 Vector Computer on a Chip: Intel 80860 74

9

54
60

i

31

49

71

5.3

Shared Memory Systems: Alliant & Convex 76

54 Message Passing Multicomputers:
iPSC & PARAM 80
5.5 Data Parallel Computers: Connection Machine 83
56 Performance Evaluation of Supercomputers 85
APPLICATIONS OF SUPERCOMPUTERS 90
6.1 Motor Car Crash Simulation 9/
6.2 Application in Oil Exploration 93
6.3 Movie-making with Supercomputers 95
6.4 Weather Forecasting 97
6.5 Magnetic Fusion Energy Research 100
6.6 Computational Chemistry 100
6.7 Conclusions 101
BIBLIOGRAPHY 103

INDEX 106

1

Introduction

In the last three years a lot of interest has been generated in our
country on supercomputers. Supercomputers have become part of
the vocabulary of all educated persons as press reports and cartoons
regularly appear in the newspapers on India’s order for a supercom-
puter and the delays in procuring it due to export controls on high
technology by the countries manufacturing these machines. There is
thus a widespread curiosity to know what is a supercomputer and
how it is different from other computers. The purpose of this small
book is to answer this question and to explain the logical organization
of supercomputers and how they are programmed.

1.1 Defining a Supercomputef

The fastest and the most expensive computers available at any
given time are generally called supercomputers. This is not a satisfac-
tory definition but we are forced to use such a definition as computer
technology has been evolving rapidly. In the past 20 years there has
been a thousand fold increase in the speed of arithmetic operations
of computers and it is thus difficult to give a time invariant definition
of the speed of a supercomputer. Although the cost of computers for
a specified speed and size has been going down, typically the cost of
supercomputers has remained constant around US$ 10 million. Cur-
rently (1992), for a computer to be called a supercomputer it must
have the following characteristics:

High Computing Speed: The computing speed of a supercom-
puter is measured in megaflops. A mega is a million and flops is an
abbreviation for floating point operations per second. A floating point
operation is an arithmetic operation (add, subtract, multiply or di-

2 Supercomputers

vide) on operands which are real numbers with fractional parts. The
operands are expressed as a pair (mantissa, ezponent). For example,
the number 185.67827 which equals 0.18567827 x 103 is expressed as
(0.18567827, 3) where 0.18567827 is the mantissa and 3 is the ex-
ponent. In supercomputers the number of digits in the mantissa is
15 whereas it is 8 in other computers. By other computers we mean
personal, mini and mainframe computers normally used in comput-
ing laboratories. The range of the exponent in supercomputers is also
high, around £5000 compared to £99 in other computers. Thus the
arithmetic precision and range of numbers used in supercomputers is
significantly higher than those used in other computers.

The peak megaflop rating of modern supercomputers is around
1000 megaflops. In other words, supercomputers should perform
around 1000 million floating point arithmetic operations per second

. with operands which have 15 digit mantissa and 4 digit exponent.
Today higher speed supercomputers are being designed which will
have a peak speed of about 10,000 megaflops. The peak megaflop
rating is calculated by assuming that all units of a supercomputer
work simultaneously at their highest speed on a single program. It
is thus an idealization. The steady average speed obtainable is more
important for a user and is much smaller. In fact the best average
sustained megaflop rating obtained in solving a typical problem of
inverting a 100 x 100 matrix of real numbers is of the order of 50
megaflops which is much smaller than the peak megaflop rating of
1000 megaflops. We will explain later why there is a wide disparity
between the peak megaflop rating and the average sustained megaflop
rating. In contrast with supercomputers, the average megaflop rat-
ing of, for instance, VAX 8810 a mainframe computer made by the
Digital Equipment Corporation (DEC) is around 1 and that of an
IBM PC is 0.01.

High Precision of Stored Numbers: We mentioned that super-
computers use 15 digits for mantissa which is double the number used
normally in computers. One may wonder why such a high precision
for representing numbers is needed. The reason is the possibility of ac-

Introduction 3

cumulation of the small rounding errors made by the computer while
- performing arithmetic operations. Larger the number of arithmetic
operations, larger will be the accumulation of errors. A computer
carrying out 100 million operations per second will also be making
100 million rounding errors per second! Special care should thus be
taken to prevent accumulation of rounding errors. More significant
digits are used to represent real numbers in supercomputers to pro-
vide better factor of safety in arithmetic computation.

All numbers are stored as binary numbers in computers. Each real
number is stored in a supercomputer’s memory as a 64 bit unit called
a word. Out of these 64 bits 49 are used to represent the mantissa
(giving around 15 digit significance) and 15 bits are used to store the
exponent and its sign. This provides an exponent range of 10+5000,

Large, Fast Main Memory: The size of the main memory and its
speed are important parameters of a supercomputer. As pointed out
in the previous paragraph a word of a supercomputer is 64 bits long.
The width of one data path from the main memory to the processing
unit of a supercomputer is 64 bits. The size of the main memory is
atleast 8 million words and recent machines provide 256 million words
of main memory. This is to be contrasted with mainframe computers
whose main memories are around 8 million 32 bit words. Besides
the size, the time to access data from the main memory should be
comparable to the arithmetic speed. Thus the memory is organized
as an interleaved set of memory banks. Typically around 64 banks
are interleaved allowing 64 words to be read in almost the same time
as it takes to read one word. This time is around 50 nsec giving an
average access of one word from the main memory to the processor
every 0.78 nsec. (1 nsec = 1 nanosec = 1079 sec). This is to be
contrasted with mainframe computers whose average access time of
data from main memory to the processor is at least 100 times slower.

Large, Fast Secondary memory: As the computation speed of su-
percomputers is high the data to be processed must be readily avail-
able in the main memory. For a processing speed of 150 megaflops
a maximum of 150 million pairs of operands would be needed per

4 Supercomputers

second and all of them cannot be stored in the main memory. As
data is retrieved from the main memory and processed new data
should be moved to the main memory from the secondary memory.
The size of the secondary memory should be large and the speed with -
which data is to be transferred to main memory should be compatible
with the speed of the main memory. Normally atleast 40 Gigabytes
(Giga = 10°). Gigabytes usually abbreviated as GB) storage is pro-
vided In supercomputers. The rate at which data is transferred from
the secondary memory (usually magnetic disk memory) is around 40
Megabytes per second (Mega = 106, Megabytes abbreviated as MB).
Disks in mainframe computers provide a data transfer rate of around
5MB per second.

To summarize, a computer may be classified as a supercomputer
now (1992), if its average arithmetic speed is of the order of 50
Megaflops with 64 bit operands; it has a large capacity main memory
of the order of 256 million 64 bit words with an access time compat-
ible with the arithmetic speed and it has around 40 GB of secondary
memory with a data transfer rate to main memory of around 100
MB per second. The main point to note is that mere megaflop rating
is not sufficient to call a computer a supercomputer; there must be
matching high speed high capacity main memory and high capacity
disk drives with very high speed data transfer capability.

1.2 Why do we need Supercomputers?

Of late simulation has emerged as an important method in science,
complementing theoretical analysis and experimental observations.
Numerical simulation has many advantages:

o It is cheaper than setting up big experiments or building pro-
totypes of physical systems.

o It is possible in a numerical model to change many parameters
and observe their effect. Experiments do not allow easy change
of many parameters.

¢ Numerical modelling is versatile. A wide range of problems can
be simulated on a computer. i

Introduction 5

o Observations and interactions allow models to be refined. Such
refinements provide a better understanding of physical prob-
lems which cannot be obtained from experiments.

EXPERIMENTAL
o Suggest Theory o Generate Data
o Test Theory y
o Model Processes
i \ o Suggest Experiments
o Suggest Experiments 0 Analyse Data
o Interpret Experiments o Control Apparatus
THEORETICAL COMPUTATIONAL
o Provide Equations o0 Suggest Theory
o Interpret Results o Large-scale Calculation

Fig 1.1. Interaction between theory, experiments and simu-
lation

Numerical simulation is also known as “numerical experimenta-
tion” as the philosophy is similar to conducting experiments. In
some instances it may in fact be the only feasible substitute for ex-
periments, for example, nuclear fusion experiments and finding out
the damage to an aircraft and type of injuries to passengers when an
aircraft crashlands.

The role of experiments, theoretical models and numerical simu-

lation models is shown in Fig 1.1. It is seen that experiments, theory
and numerical simulation now form three interacting methods in sci-

(] Supercomputers

ence and engineering.

With the advance in science, the models used incorporate more de-
tail. This has increased the demand for computing speed and storage
capacity. For example, in order to design supersonic aircraft[7] it is
necessary to realistically simulate turbulent aerodynamic flows round
its wings and body. This is a general non-linear problem modelled by
using partial differential equations and cannot be solved analytically.
Such a problem is solved by numerical simulation which requires the

o L)

Fig 1.2. Grids on the surface of an aircraft wing used for
simulation

surface of the body and wings to be modelled by 107 tiny squares
bounded by parallel lines (or a grid) as shown in Fig 1.2.

The partial differential equations are discretized to difference equa-
tions which are in turn solved as a set of simultaneous algebraic equa-
tions. For each grid point 5 to 30 real numbers are stored to represent

Introduction 7

vector quantities such as velocity, acceleration, and pressure. Sets of
these equations are normally solved numerically using iterative meth-
ods (i.e., trial and error methods). In such iterative methods several
trials (100 to 1000) are needed for each grid point before the results
converge. The calculation of each trial value normally requires around
100 to 500 floating point arithmetic operations. Thus the total num-
ber of floating point operations required for each simulation run is
approximately given by:

Number of floating point operations per simulation
= Number of grid points x

Number of values per grid point x

Number of trials x

Number of operations per trial

107 x 20 x 100 x 500

1013 '

If each floating point operation takes 1 microsecond (correspond-
ing to 1 megaflop speed) then the time taken for each simulation run
is 107 seconds which is 115 days!

A computer with 1 megaflop speed will thus take 115 days to
complete one simulation run if it is operated 24 hours a day. In other
words, this problem cannot be solved using such a computer. If the
sustained megaflop rating of a supercomputer is 200 megaflops, then
each simulation run will take 13.8 hours, which is still quite high, but
manageable.

There are many other problems which also require large compu-
tational time. A common application is to model global weather.
The behaviour of the earth’s atmosphere affects global weather, The
behaviour is modelled by partial differential equations in which the
most important variables are the wind speed, air temperature, humid-
ity and atmospheric pressure. The objective of a numerical weather
model is to predict the status of the atmosphere at a particular area
at a future time based on the current and past observations of the
atmosphere. This is done by approximating the partial differential
equations by a system of difference equations in which physical quan-

Supercomputers

Fig 1.3. Grid for numerical weather model for the Earth

titles are specified at points on a three dimensional grid over the sur-
face of the earth as shown in Fig. 1.3. In the horizontal plane the grid
points are defined by 87 parallels of latitude between the north and
south poles and 144 meridian circles equally spaced around the globe.
In the vertical direction nine layers describe the atmosphere and five
physical variables are used for the description. In this example ailso
around 10'® floating point calculations are needed for each solution.

In general, the problem complexity is described by the formula:

PC=GXxVxTxA

where
PC Problem Complexity
G Geometry of the grid system

\Y Variables per grid point

Introduction 9

T
A

Number of steps per simulation for solving problem
Number of floating point operations per variable.

For the supersonic aircraft desngn example: G =107, V=20, T =
100 and A = 500 giving

PC=GXxVxTx A=10"
operations. For the weather modelling problem:
G=144x 87x 9=112752,V =5, T =200 A = 400
giving PC ~ 10! operations.

Currently a large number of realistic applications require 1012 to
10! operations per solution. If each solution has to be done in about
an hour, then the sustained speed of a computer should be 10*4/60 x
60 operations per second which is equal to 27,700 Megaflops!

If computing time per solution exceeds 100 hours we call it an
intractable problem. Thus with a machine givirg 100 megaflop sus-
tained speed a problem requiring 10** floating point operations for a
solution is intractable. From the above examples it is clear why we
need supercomputers with speeds in the thousands of megaflop range
to solve problems of current interest to scientists and engineers.

1.3 How do Supercomputers achieve their speed?

One method of increasing the speed of computers is to use faster
semiconductor components to build units of a computer. Higher
speed components cost more and normally dissipate more heat. For
example, low speed personal computers use integrated circuits based
on silicon semiconductors. Currently Gallium Arsenide semiconduc-
tor devices which are faster are used in some supercomputers. The
rate of growth of speed by using better devices and technology is rela-
tively slow. For instance, the time to add two floating point numbers
in a high performance computer in 1980 was 20 nanoseconds and in
1990 it was 6 nanoseconds.

Another method to increase the speed of computation is to de-
sign the computer so that the different units of the computer work

10 Supercomputers

simultaneously. For instance, while the processor is computing, data
which may be needed later could be fetched from memory and si-
multaneously an I/Q operation can be going on. Such an overlap of
operations is achieved by using both hardware and software features.
This method is called an architectural method.

Besides overlapping operations of various units of a computer the
arithmetic unit itself may be designed to exploit parallelism inherent
in the problem being solved. For example, if two vectors are to be
added, all pairs of components of the vector may be added simulta-
neously by a set of adders thereby reducing the time taken to add
the vectors. This type of parallelism is called data parallelism. Time
taken to add two vectors may also be reduced by designing an adder
known as a pipeline adder which uses temporal parallelism. (We will
explain this in the next chapter). Still another method of increasing
speed of computation is to organize a set of computers to work si-
multaneously and cooperate to carry out tasks in a program. These
methods are also classified as architectural methods.

Table 1.1. Methods used to increase the speed of computers
¢ Use faster devices such as GaAs to build computers
o Use architectural methods to exploit parallelism
The Architectural Methods are:
— Overlap operation of different units of a computer
— Execute many instructions simultaneously with multiple
functional units
— Increase speed of arithmetic logic unit by exploiting data
and/or temporal parallelism.

As the increase in speed of electronic components is limited by
physical constraints, supercomputers primarily use architectural meth-
ods to exploit parallelism. Table 1.1 summarizes the architectural
methods used to increase the speed of computers. In the subsequent
chapters of this book we will explain the architectural methods.

2

Architecture of Vector
Supercomputers

From their advent supercomputers have used a technique called vec-
tor pipelined processing to attain high speeds. This technique exploits
temporal parallelism (i.e. time oriented parallelism) inherent in the
problem being solved. In this chapter we will explain how temporal
parallelism is perceived and utilized in the architecture of supercom-
puters.

2.1 Pipeline Processing

We will illustrate the idea of pipeline processing or assembly line
* processing with an example[6]. Assume that an examination paper
has 4 questions to be answered and 1000 answer books are to be
graded. Let us label the four questions in the answer books to be
- graded as @, @2, @3, Q4. Assume that the time taken to grade the
answer to each question @, @2, @3, Q4 is equal to 5 minutes. If one
teacher grades all the answers he/she will take 20 minutes to grade
a paper. As there are 1000 answer papers, the total time taken will
be 20,000 minutes. If we want to increase the speed of grading, then
we may employ 4 teachers to cooperatively grade each answer book. -
The four teachers are asked to sit in a line (Fig 2.1). The answer
books are placed in front of the first teacher. This constitutes the
input. The first teacher takes an answer book, grades Q; and passes
it on to the second teacher who grades Q3; the second teacher passes °
the paper on to the third teacher who grades (3 and passes it on to
the last teacher in the line. The last teacher grades @4, adds up the
marks obtained by the student, and puts the paper in a tray kept for
collecting the graded answer books which is the output.

12 Supercomputers

73,0 Tg.Q

1883

P e—
] — I
BT h i: R
Pile B \ l)2 Q Pl \
4 P P, B, P —
A;::,: ps \ . \ - \ P1
4 3 2
S 73 \ P5 \ P4 \ p3 _
(Input) (Output)

Fig 2.1. Four teachers grading papers in a pipeline

It is seen from Fig 2.1 that when the first answer book is being
graded three teachers are idle. When the second answer book is being
graded, two teachers are idle. However, from the fourth answer book
all teachers are busy, with teacher 1 grading @; of book 4, teacher
2 grading @ of book 3, teacher 3 grading Q3 of book 2 and teacher
4 grading Q4 of book 1. As the time to grade each question is 5
minutes, the first answer book will take 20 minutes to be graded but
subsequent papers will take only 5 minutes each. The total time
taken to grade 1000 answer books will be 20 + (999 x 5) = 5015
minutes. This is about one fourth of the time taken by one teacher.

In this example we define a job as that of correcting an answer
book. This job has been divided into four tasks. The four tasks are
correcting the answer to Q;, @2, Q3 and Q4 respectively. As this
method breaks up a job into a set of tasks to be executed overlapped

Architecture of Vector Supercomputers © 13

in time it is said to use temporal parallelism. This method of process-
ing is appropriate if:
1. The jobs to be carried out are identical
2. A job can be divided into many independent tasks. In other
words, each task can be done by a processor independent of
other tasks.
3. The time taken for performing each task is the same.
4. The time taken to transmit a job from one processor-to the next
is negligible compared to the time needed to execute a task.
5. The number of tasks into which a job is broken up is much
smaller compared to the number of jobs to be carried out.

We can quantify the above points as worked out below:
Let the number of jobs = n
Let the time taken to do a job = p
Let a job be divisible into k tasks each taking time = p/k
Time required to complete n jobs with a pipeline of k stages

= p + (n-1)(p/k)
= p(k+n-1)/k

Speedup due to pipeline processing is

= np/{p(k +n—1)/k}
= k/[1+ {(k-1)/n}]
If the number of jobs n is much larger than the number of stages
in the pipeline k, then (k — 1)/n << 1 and the speedup is nearly
equal to k.

The main problems encountered in implementing pipeline process-

ing are:

1. Synchronization: Each stage in the pipeline must take equal
time for completion of a task so that a job can flow between
stages without holdup. If the time taken by stage 1 is say ¢;
and is less than the time taken by stage 2, tz, then a job has to
wait for a time ({2 — t1) before entering stage 2. This job will

14 Supercomputers

thus need, between stages, a temporary storage area (called a
buffer) where it can wait.

2. Bubbles in Pipeline: If some tasks are absent in a job “bub-
bles” form in the pipeline. In the example of teachers grading
papers, if an answer book has only two questions answered,
two teachers will be forced to be idle when that paper is being
corrected.

3. Fault Tolerance: The system does not tolerate faults. If one
of the stages in the pipeline fails for some reason, the entire
pipeline halts.

4. Intertask Communications The time to transmit a job be-
tween pipeline stages should be much smaller compared to the
time taken to do a task.

Inspite of these disadvantages, this method is a very effective tech-
nique as it is easy to perceive in many problems how jobs can be bro-
ken up into tasks to use temporal parallelism. Further, the pipeline
can be made very efficient by tuning each stage in the pipeline to do
a specific task well. Pipelining is the main technique used by vector
supercomputers to attain their high speed. We will examine in the
next section how this is done.

2.2 Vector Processing

Consider a procedure for adding two floating point numbers z
and y. As was pointed out a floating point number consists of two
parts: a mantissa and an exponent. Let z be represented by the tuple
(mant z,exp z) and y by the tuple (mant y,ezp y). Let the result z
be represented by the tuple (mant z,ezp z) The job of adding z and
y can be broken up into the following four tasks:

Task 1: Compute (ezpz — ezpy)=m

Task 2: If m > 0 shift mant y, m positions right and fill the
leading bits of mant y with zeros. Set expz = expx
If m < 0 shift mant z, m positions right and fill the leading
bits of mant z with zeros. Set ezpz = ezpy. Hm =0 do
nothing. Set ezpz = ezpz.

Architecture of Vector Supercomputers 15

mant x mant y
exp x 1 l exp y
Stage 1[Compare exponents of operands I

Stage Zr Shift operand with smaller exponent and align mantissa]

|

Stage 3, Add aligned mantissa }
Stage 4r Normalize and adjust result exponent I
Sum x +y

Fig 2.2. A pipelined adder unit with 4 stages
Task 3: Add mant ¢ and mant y. Let (mant z + mant g) =

mant z
Task 4: If mant 2 > 1 then shift mant z right by 1 bit and add 1
to exp 2. If one or more most significant bits of mant 2 = 0

shift mant z left until leading bit of mant z is non zero. Let
the number of shifts be p. Subtract p from ezp 2.

An electronic adder can be designed with 4 stages, each stage
doing one of the tasks explained above. Such an adder is called a
pipelined adder and is shown in the block diagram of Fig 2.2. To use
this adder a sequence of operand pairs to be added (ay,b;), (az,b2),
(a3,b3) ..., (@n,by,) are fed to the adder (See Fig 2.3) and are shifted
into the pipeline one pair at a time. Let T seconds be the time taken
by each stage. One pair of operands is shifted into the pipeline from
an input register every T seconds. The shifting is controlled by a
series of pulses called a clock. The time elapsed between successive
pulses is the clock period which in this example is T' seconds (See
Fig 2.3). The sum ¢; = a1 + by comes out of the pipeline after 4

16 Supercomputers

4 Stage Adder

3,:84:8) ,3
b4 b3 :2 ’b—b ™ %
4’°37°2° 1
Time Stage 1 Stage2 Stage3 Stage4d
Clock 1 al , b1
T
b ,b
Clock 2 32) 31 A
2T
Clock 3 a3,hj az,b2 al,b1
3T
Clockd | 3, ,b | a,,by0 a,,b, a . b
VL 4T
‘Clock Interval
1
Clock Pulses]

Output

G = (al+ bl)

P

Fig 2.3. Adding vectors in a pipelined adder

clock periods which is 4T seconds. However, sums

c2={(az + b2), c3 = (a3 +b3)...¢ca = (an+bn)

come out at time 5T, 6T ...(4 + » — 1)T seconds.

An ordered sequence of operands (a1,4az,03,...,0,) is known as
a vector. In the above example we add vectors (ay,az,a3,...,a,)
and (b1, 52,b3,...,b,) to obtain the sum vector (¢, €2,¢3,...,¢5). In
order to obtain the potential speedup of a pipelined arithmetic unit,

Architecture of Vector Supercomputers 17

it is necessary to add vectors with number of components much larger
than 4, where 4 is the number of stages in the pipeline.

All vector supercomputers use pipelined processing of vectors ex-
tensively to attain high speeds. A typical vector pipeline unit of su-
percomputers manufactured by Cray Research Inc., USA, a pioneer
in supercomputer design, is shown in Fig. 2.4. Here pipelined units
consisting of a number of stages work synchronously for arithmetic
computations. The computer has a centralized clock which generates
a pulse once every T seconds (T is around 10~8sec). In a pipelined
addition unit one addition is carried out every T seconds by the sys-
tem (after an initial time required to fill the pipeline). In a model
known as Cray YMP system the value of T is 6 nano seconds (nano
= 107°). Thus one floating point arithmetic operation is carried out
in 6 nanoseconds giving a peak speed of (1/6 x 107°) flops which is
166 megaflops. The size of the vector registers is 64 words in Cray
computers.

Referring to Fig. 2.4 observe that a pipelined adder unit adds
vectors A and B. Observe also that the sum (A+B) can be fed to
another pipelined multiply unit. The pipelined multiply unit has as
one input, components of (A+B) and as another input, components of
a vector C. As components of (A+B), namely, (a3 +b1), (a2 +b2),...,
(an + b,) are generated, they are multiplied by components of C,
namely, ¢1, ¢2,...cp to produce (a;+b1)*cy, (az+b2)*cs, (az+b3)*ca,
«vu (@n + by) * ¢, respectively and stored in the vecor register marked
D. This method of feeding the output of one pipelined arithmetic unit
to another is called vector chaining. If a program has instructions of
the type D = (A + B) # C this chaining can be used. With chaining
the speed of computation is doubled as an add and a multiply are
done in one clock period.

Besides vector chaining, many independent pipelined arithmetic
units can be provided in a supercomputer. In Fig 2.4, for example,
there is a second pipelined adding unit using registers P and . This
unit can be used independently and simultaneously with the other
pipelined units provided the program being executed can use this

18 Supercomputers

V. . Pipelined
ector Regiters Adder Vector Registers
A+ B
A
B Multiplier c
Main
Memory >
Adder P +Q
P
Q

Fig 2.4. Organization of vector pipelined arithmetic units

facility.
2.3 Logical Structure of a Supercomputer

A block diagram of the various units of a supercomputer is shown
in Fig 2.5. The main logical units of a supercomputer are:
1. Input/Output processors
. Main memory
. Instruction registers and processor
. Scalar registers and processor
. Vector registers and processor
. Secondary storage system

- S N

. Frontend computer system

The most important characteristic of supercomputers is the logi-
cal organization which facilitates the parallel operation of the subsys-
tems. Parallelism is obtained by overlapping the operation of various
units, for example, the I/O processor, the instruction processor and

Architecture of Vector Supercomputers 19

Pipelined Instruction Plpelmed Scalar Pipelined Vector
Processor Processor Processor
Instruction Registers Scalar Registers Vector Registers
Main Memory
[
Input/Output Processors Frontend Computer

= ?1

Semi-Conductor Graphics

Disk Memory Banks
Secondary Memory ~ Workstations

Fig 2.5. Block diagram of units of a supercomputer

the vector processor. Each of these processors also use parallelism
obtained with pipelined processing.

Input-Output System: The I/O processing system consists of
4 to 16 small processors with their owp instruction set, memory,
arithmetic units and control. These processing units control read-
ing/writing of programs and data from secondary storage to main
memory, coordinate the operation of graphic workstations and also
the frontend computer system. Each I/O processor has a memory of
several thousand bytes and an instruction repertoire enabling them
to run I/O programs independent of the CPU of the supercomputer.
All I/0O processors can work simultaneously. They have the ability
to transfer blocks of words or a single word from the main memoryto
the peripherals and vice-versa. They can also interrupt the CPU if

20 Supercomputers

needed.

Main Memory: The main memory is a very important part of su-
percomputers. The memory is normally organized to store upto 256
megawords where each word is 64 bits long. A large storage is ex-
tremely beneficial in solving large scale scientific problems as speed
improvement of more than 20 can be achieved if all data is stored in
the main storage rather than in the secondary storage. This is due to
the fact that data transfer rate from the main memory to the proces-
sor is at least 100 times faster compared to that from the secondary
memory to the processor. Access time to a word in main memory is
of the order of 50 nsec which is several times the basic clock cycle
used by the CPU. To improve the speed of retrieval of words from the
memory, it is arranged as a number of parallel “banks”. Requests for
reading words from memory can then be issued to each of the banks
successively so that retrievals go on simultaneously. If the memory
is organized as eight banks then request to read from the same bank
will come after the other seven banks are read. Effectively the speed
of retrieval will be increased eight times. The basic assumption made
is that successive elements 10 be retrieved are in different banks and
that data in consecutive addresses are to be retrieved. The organiza-
tion of memory into banks and issue of requests to banks is illustrated
in Fig. 2.6. It is clear that the idea of pipelined retrieval of elements
from the memory is used in this case also.

The number of independent paths to the main memory has a direct
bearing on the capability of a supercomputer to overlap execution of
instructions. For example, Cray YMP supercomputer has two fetch
paths and one store path all of which can operate simultaneously.
Thus in executing the loop

DO 25 I = 1,64
¢(I) = AM(I) + B(D)
25 CONTINUE

Cray YMP will do the following:

Address
Array
Elements

Address
Array
Elements

Bank

Architecture of Vector Supercomputers

Bank

Bank

Bank

Bank

Bank

Bank

21

1
AQ)

2
A2)

3
A(3)

4
Ad)

5
AG)

6
AS)

7
AT

9
A9)

10
A(10)

11
AlY)

12

13
A12) | A(3)

15
A(15)

Bank Requests

Bank1

A1)

A(9)

Bank2

AQ)

A(10)

A1)

A4)

5)

A7)

AD

8

10 11

Fig 2.6. Organization of memory into banks

1. Fetch the 64 components of vector A represented by A(l : 64)
and the 64 components of B, B(1 : 64) simultaneously to two
vector registers

2. As soon as A(1) and B(1) arrive start adding and place the
result in a third vector register

3. As soon as C(1) is ready start storing vector C(1 : 64) concur-
rently into the main memory. Fig. 2.7 illustrates this.

Reliability of data rcad from the memory is of paramount im-
portance. To ensure this, a Single Error Correction Double Error
Detection (SECDED) coding scheme is used for all data stored in

22 Supercomputers

Path 1 } Fetch A(1:64) |

Path 2 Fetch B(1:64)

Add Aand B
Store C(1:64)

Path 3 b

Clock N 1 >
Cydes ¢ 64

Fig 2.7. Addition and store times with multiple fetch and
store paths to memory

the main memory, In order to detect and correct errors eight extra
bits called check bits are appended ‘o each 64 bit stored word in the
main memory. When a word is received from the main memory to
CPU, the 64 data bits are used to generate eight check bits. These
eight check bits generated by the system are compared with the eight-~-
check bits retrieved along with the word. If they match then there is
no error. If they do not match there may be one o1 more errors. A
single error can be corrected or two errors can be detected by using
the eight check bits. The coding scheme used is the one suggested by
R.W.Hamming and is called the Hamming Code.

Instruction Buffers and Processor: The rate at which instruc-
tions are processed is faster than the rate at which instructions can
be retrieved from the main memory. This speed mismatch between
CPU and main memory has remained through various generations
of computers. Computer architects have attempted to alleviate this
problem by a technique called instruction caching. In this technique
a small fast memory called a cache memory is provided in the CPU.
A group of instructions are fetched before they are needed and stored
in the cache. The instructions are taken one after another from the
cache and executed. The fast cache memory can be partitioned into
two segments. While instructions from one segment are being exe-
cuted the other segment can be filled up with some more instructions
from the main memory. Such a scheme will reduce overall instruction
fetch time. Another advantage of having instructions in an instruc-
tion cache is that it enables repetitive use of these instructions from

Architecture of Vector Supercomputers 23

. the cache for executing programs with loops. I all the instructions
belonging to a loop can be placed in the cache, then until the num-
ber of repetitions of the loop are completed there will be no need
to fetch instructions from memory. As many programs in science
and engineering are written in Fortran and use DO loops extensively,
supercomputers provide a large instruction cache where all the loop
instructions are stored. In the Cray YMP architecture, for example,
instructions are divided into 16 bit “parcels”. Four instruction caches
called instruction buffers are provided each storing 128 parcels. Eight
words (64 bits long) are read from memory each clock cycle and fill
the least recently used instruction buffer. Backward and forward
referencing of instructions within the buffer is possible for loop exe-
cution. If an instruction needed is not in the buffer then a word has
to be accessed from the main memory. It takes 16 clock cycles to get
an instruction from the main memory compared to one clock cycle
for an instruction which is already in the instruction buffer.

The idea of instruction caching works because of the sequential
nature of programs written in Fortran. There is a strong locality of
reference to instructions in Fortran and similar sequential languages.

Besides instruction buffer, a special arithmetic unit to compute
addresses of operands is also provided in the instruction processor.
These arithmetic units perform pipelined integer arithmetic opera-
tions with 32 bit addresses in Cray YMP (32 bits are used for ad-
dressing in Cray YMP). Besides address computation this integer
arithmetic unit can also be used for fast computation with small in-
tegers.

Scalar Registers and Processor: Even though vector arithmetic
is crucial for obtaining the high speed of supercomputers, it is also
very important to provide fast scalar arithmetic.(By a scalar we mean
individual floating point numbers). Here again, the pipelining idea is
used. The scalars are stored in buffer registers in CPU which feed the
pipeline. Buffering is essential as accessing data from the memory is
very slow compared to access from buffer registers. In Cray YMP, for
example, there are eight 64 bit registers (called S-registers) to hold

24 : Supercomputers

scalar operands. These are backed up by 64 registers each with 64
bits which communicate with the main memory. A scalar instruction
performs an operation such as addition obtaining two operands from
two scalar registers and storing the result in another scalar register.

Vector Registers and Processors: Vector arithmetic forms the
core of supercomputers. A set of vector registers (called V registers)
are provided to store vector operands. In Cray YMP, for example,
there are eight V' registers. Each register can store 64 components
of a vector with each component being 64 bits long. Many pipelined
units to perform various operations such as add/subtract, multiply,
shifting, finding reciprocal etc. using vector operands are provided.
These units are called functional units. In Cray YMP, for example,
there are 14 pipelined functional units in a CPU. Out of these, five
are exclusively for vector operations, three are shared for vector as

- well as scalar operations, four are exclusively for scalar operations
and two are for operations on addresses.

In Cray YMP a six stage pipeline is used for addition or sub-
- traction and a seven stage pipeline for multiplication. Division is
performed by first approximating the reciprocal of the divisor and
multiplying it by the dividend. Table 2.1 shows the performance of
some of the vector functional units of Cray YMP.

Table 2.1. Cray YMP vector functional units

Operation Start-up time Time taken for
(No.of clock pulses) N results
Add/subtract 6 6+N
Multiply 7 T+N
Divide 38 38+3N
One Add Subtract & Multiply 7 7+ N
(called vector triad)

More than one pipeline vector unit may be used simultaneously

in most supercomputers. The Cray YMP allows three pipelines to be
used simultaneously.

Architecture of Vector Supercomputers 25

As explained earlier in this chapter, operands from the main mem-
ory are retrieved and stored in vector registers from which they are
sent to the pipelined arithmetic unit. One pair of operands is sent
per clock cycle to the arithmetic unit. The result is stored in a vector
register. The contents of this register is stored later on in the main
memory. If the number of components in a vector is shorter than the
number of words in the vector register (64 words in the case of Cray
YMP) there is nothing special to be done. If the number of compo-
nents in the vector exceeds 64, then the extra components have to
wait for another vector instruction to start execution. Thus there is
a small drop in speed of arithmetic when the number of components
in the vectors increase from 64 to 65 as shown in Fig 2.8. For very
long vectors the buffers have to be filled many times. If one pair of
operands can be retrieved from the main memory in each clock in-
terval, then these operands can be fed directly to the pipelined arith-
metic unit without any intermediate buffer store. The result can also
be stored back immediately in the main memory. As there is no buffer
size limitation, there is no limit to the length of vectors which can be
handled in such a system. Further, this method will perform well with
long vectors. The disadvantage, however, is the need for a very high
speed memory from which a pair of operands can be retrieved each
clock cycle. Cyber 205 and ETA 10 supercomputers which used to be
manufactured by Control Data Corporation, USA, used this idea but
had to use a slower clock. Such an architecture is called a memory to
memory architecture system as the operands and results are directly
retrieved from the memory and stored back in the memory. In con-
trast the Cray architecture is called a Load-Store architecture as the
only operations involving memory are loading operands from mem-
ory to CPU registers and storing back results from CPU registers
to the memory. Load-Store architecture is currently the preferred
architecture as it is faster.

Secondary Storage Units: The size of the main memory available
in supercomputers is not sufficient to store data and programs for
many large scale scientific applications. Further, supercomputers are
shared by many users and all the users’ programs and data should

26 : Supercomputers

Peak ‘L __________________
Rate | T TTTTTTTETETETTEEETT

Megaflop
Rate

1 i P
T -

T
. 64 . 128 Vector Length

Fig 2.8. Vector processing rate as a function of length of
vector

be kept ready for processing. Secondary memory systems normally
consisting of large magnetic disk storage units with a capacity of over
" 30GB are required for this purpose. The data access speed from the
disks should be of the order of 100 MB per second.

Cray YMP provides one more level of secondary storage which is
a random access storage similar to the main memory but which uses
cheaper and slower solid state storage system with a capacity of upto
512 Mwords and a data transfer rate of 128Mwords per second. This
transfer rate is significantly faster than electro-mechanical magnetic
disk units.

Manufacturers of most mainframe computers provide a much larger
address space than actual physical main memory capacity. Many
computers provide address length of 32 bits which gives a potential

Architecture of Vector Supercomputers 27

memory capacity of 4 Gwords. Programs may be written assuming
that 4G words of memory space is available. The physical main mem-
ory is, however, limited to tens of hundred megawords due to cost and
technological limitations. The programs and data are distributed be-
tween the main memory and the secondary memory. Moving the
relevant portion of a program and data needed during execution of
the program to the main memory from the secondary memory and
taking it back to the secondary memory is managed by the operat-
ing system of the computers. This is called a virtual memory system.
The operating system divides a program and data into discrete blocks
known as pages and brings only those pages into the main memory
which are currently needed. As soon as they are used, they are sent to
the secondary store and new pages which are needed immediately are
brought to the main memory. The system will work very efficiently as
long as all the pages of data and program needed during execution are .
available in the main storage. Whenever the pages that are needed
are not in the main memory and have to be fetched from the sec-
ondary memory there is a delay and consequently the program takes
longer to execute. Virtual memory is a convenience to programmers
but entail overheads and also possibility of inefficient execution.Some
manufacturers such as CDC and NEC of Japan provide a virtual
memory system in their supercomputers. Cray computers, however,
never provided a virtual memory system as Cray designers were con-
vinced that virtual memory’s disadvantages outweigh its advantages.
They try to provide as large a main memory as possible within the
technological constraints prevailing at a given time. Early models of
Cray computers had only 4 Mwords of main memory. Current models
have increased the capacity of the main memory to 256 Mwords.

The requirement of secondary storage, in particular, high speed
disk, has rapidly been increasing. As the speed of a machine increases
the volume of data needed by applications also increases. Currently
a balanced configuration of a supercomputer would require anywhere
between 25 to 100 GB of high speed disk storage.

28 Supercomputers

Frontend Computer System: Supercomputers are designed to be
excellent number crunchers. They are most efficiently operated in
a non-interactive mode. A set of user programs are queued up as
a batch and one user’s program at a time is taken up for execution.
From the point of view of the user, however, this is not desirable, par-
ticularly during program development phase. In this phase programs
are tested, modified and optimized, and a user finds it desirable to
have an interactive communication with the computer. It will be un-
economical to allow a single user to use a supercomputer interactively
as human response time is much slower than that of a supercomputer.
Thus a large number of users time share the computing facility and a
fair amount of computer’s resources are required to manage multiple
users. The high speed arithmetic facility of a supercomputer is not
needed for this management function. In fact, it will be a misuse
of a supercomputer if it spends a lot of time to manage users’ re-
source allocation problems. This resource management job can be
done by a cheaper machine attached to the supercomputer. Such a
computer is called a frontend computer. Most of the program de-
velopment and debugging are done using the frontend computer in
a time-shared mode. Production programs are transferred from the
frontend machine to the supercomputers’ secondary store from where
the supercomputer takes one program after another for execution. All
slow peripherals such as printers and plotters are also connected to
the frontend computer.

A limited interaction with the supercomputer is normally allowed
with a separate frontend interface to which a graphics terminal is
connected. This is provided for visualization, animation etc. Such
use is however very expensive.

The frontend connected to a supercomputer is normally a large
main frame computer with large volume disk storage (around 30 GB),
tapes, printers, plotters etc. The Cray series machines normally use
an IBM mainframe or CDC’s Cyber mainframe or Amdahl’s main-
frame or a DEC-VAX mainframe computer as the frontend.

Architecture of Vector Supercomputers 29

2.4 Technology of Vector Supercomputers

Vector supercomputers are very expensive costing millions of dol-
lars and are manufactured only by four companies in the world today
- Cray in USA, and Fujitsu, Hitachi and NEC in Japan. One of the
main reasons for their high cost is the difficulty in fabricating elec-
tronic circuits to the exacting standards and high speeds demanded
by supercomputers. In supercomputers, the basic clock speeds are
around 6 nseconds. The time taken by electricity to travel 10 cms in
a wire is 0.33 nsec. Distance between components must thus be min-
imized so that wire lengths are small. Seymour Cray who designed
and built the world’s first supercomputers built them in a cylindrical
shape to reduce wire lengths. (In fact, a sphere would have been ideal
as it has the minimum surface area for the volume enclosed. How-
ever, fabricating a computer as a sphere is difficult). To reduce wire
lengths electronic circuits have to be densely packed. Dense packing
makes it difficult for electronic circuits to dissipate heat. The heat
generated in the electronic circuits switching at nanosecond rates is
quite high. For example, assume that a switch dissipates 100 mi-
crowatts. If an integrated circuit package has 100,000 switches it will
dissipate 10 watts. If there are 10,000 packages mn 1 m® 100 Kilo-
watts will be dissipated. If the system is not cooled, the circuits will
burn. Thus it is necessary to cool the system efficiently to maintain
the integrated circuits at a constant temperature of around 20°C.
Thus Cray YMP requires special cooling systems with copper pipes
carrying ice cold water on which the electronic circuits are mounted.
In fact Seymour Cray is reputed to have said that supercomputer
designers are glorified plumbers! Many methods are used for cool-
ing. The simplest one is to blow cold air between the circuits. This
method removes moderate amounts of heat and is not sufficient for
machines such as Cray YMP built in the 80s. The next method is
to run copper pipes carrying cold water on which the semiconductor
integrated circuits are mounted. This method is used in some of the
supercomputers such as the one made by NEC of Japan. Instead of
water, freon refrigerant is passed through pipes in Cray YMP. Cray 2
uses an ingenious technique to dissipate heat. This computer’s CPU

30 Supercomputers

is immersed in liquid fluon (a flouro carbon) which is an electrical
insulator but a good thermal conductor. Fluon is circulated through
a heat-exchanger and the temperature of the fluid is kept constant at
72°F. As all the semiconductor components are in contact with the
fluid there is good heat transfer and there is no need for copper tube
plumbing as in Cray YMP system.

Yet another cooling technique was tried by ETA 10 systems. The
entire CPU board of ETA 10 supercomputer was immersed in a liquid
nitrogen bath. This method, besides removing the heat emitted by
the circuits, kept the semiconductor at a low temperature improving
its switching speed.

The semiconductor circuits in most of the supercomputers used
silicon. Earlier systems used high speed bipolar switches which emit-
ted a lot of heat. Later they were replaced by Complementary Metal
Oxide Silicon (CMOS) devices. These dissipate less heat compared
to bipolar circuits but are slower. Recent Bipolar CMOS circuits
switch at high speed with low power dissipation. The dominance of -
silicon as a semiconductor is being currently challenged by Gallium
Arsenide (GaAs) semiconductor devices. GaAs has a higher switch-
- ing speed compared to silicon. However, it is a brittle material and
integrated circuits with large number of GaAs devices are just being
commercially mass produced. It is expected that the next generation
of Cray supercomputers named Cray 3 would use GaAs semiconduc-
tor switching devices. Convex computers, a manufacturer of parallel
computers, has already delivered their new generation machines using
GaAs technology. The GaAs based supercomputers are expected to
use a faster 2 nanosecond clock compared to the 4 nanosecond clock
used by the fastest supercomputers available now (1992).

3

Computing with Vector
Supercomputers

In the last chapter we saw that vector supercomputers attain their
high speed of computing by using pipelined functional units. Further
we saw that in order to efficiently use such pipelined functional units
we need a long sequence of operands or operand pairs on which the
function is applied. Thus an application program will be able to use
the potential speed offered by a supercomputer only if it has long
sequence of operands called vectors to be processed. For example, a
Fortran program using the loop

D0 100 I = 1, 80
C(I) = A(D) + B(D
100 CONTINUE

can use the pipeline capability effectively as 80 components of vector
A are added to 80 components of vector B, In contrast, the program

DO 50 I
P(I)
50 CONTINUE

cannot effectively use the pipeline capability as the length of the
vectors is small compared to the number of stages in the pipeline.

,5
(

1
Q (I) + RCI)

Given a Fortran program it may often be possible to transform it
either manually or automatically to an equivalent Fortran program
which is capable of using the pipeline capabjlity efficiently. Such a
transformation is called Vectorization. In this chapter we will explain
first the basic ideas used in vectorization. We will also discuss the

32 Supercomputers

general question of optimizing programs to reduce their total execu-
tion time. i

3.1 Vector Instructions

A vector operand is an ordered set of n elements, where n is called
the length of the vector. Each element in a vector is a scalar quantity
which may be an integer, a real number, a character or a bit. There
are four types of vector operations [3]:

Type 1: fy : V—V
Type 2: f: V— §
Type 3:f3: - V (operator)V — V
Type 4: f4 : © V (operator) S — V

where V is a vector and S is a scalar.

Table 3.1. Vector Operations

(X, Y and Z are n component vectors)

Vector operation type Vector operation carried out
Type 1 | Vector square root Y = SQRT(X)
Absolute value Y = ABS (X)
Vector Sine Y = SIN (X)
Type 2 | Vector mipimum Min1 Ya,..., Y3) =Y
Sum of Yha
components where Y = (y1, ¥2,.-+5 Yn)
Type 3 Vector add Z=X+Y
Vector multiply Z=Xs*Y
Vector OR Z = X(OR)Y
Type 4 Add scalar Z=X+a
to vector 5n =z + q
2 =22 + a,
Zn=2In t a

Type 1 and Type 2 are unary operations whereas Type 3 and Type
4 are binary operations. Some examples of these types of vector

Computing with Vector Supercomputers 33

operations are given in Table 3.1. These types of operations are
implemented in supercomputers using pipelined units and there are
" hardware instructions to carry them out. In Fig. 3.1 we show how
these operations are implemented using pipelined units.

T TTT}~

AT T
T 1T

=TT [T}~

Fig 3.1. Pipelines for four types of vector instructions

As vector supercomputers have built-in hardware to operate on
vector operands efficiently it is essential while programming these
machires to use vector operands and operators wherever it is possible.
Consider, for example,

DO 100 I =1, 50
A(I) = B(I) + D(I)
C(I) = K * P(I+5)

100 CONTINUE

The above program may be rewritten using vector operands and vec-
tor instructions as:

A(1:50) = B{1:50) + D(1:50)
C(1:50) = K * P(6:55)

The following program:
DO 26 I =1,N

34 Supercomputers

DO 25 J = 1,100

P(J) = Q(N)* TQ,I) + C(D)
25 CONTINUE
may be replaced by:
DO 25 I=1,N
P(1:100) = Q(1:100)*T(1:100,I)+C(I)
25 CONTINUE

The program using vector operands use the operators +,* etc.
as operations on vector operands. When the program is compiled,
instructions will be issned to the pipelined arithmetic units to perform
the operations. The main poins is to write programs which use the
hardware pipeline features to the maximum extent possible. If a user
wants to execute an existing program on a computer with vector
pipelines, he/she should convert them to a form which effectively
uses the vector facilities of the computer. This conversion is done
automatically by a program called a vectorizer. The vectorization
process and the function of the vectorizer will be discussed at greater
length in sections 3.3 and 3.4.

3.2 Vectorization of Programs

If we examine a typical supercomputer the speed of electronic cir-
cuits for scalar processing is around a tenth of the speed attainable
with vector processing. In other words, if an operation such as mul-
tiply takes ¢, seconds to perform in the scalar mode then the time
taken to perform the same operation in vector mode i, is ¢,/n where
n is around 10. Suppose a program is executed on a scalar computer
and takes time T'. (See Fig. 3.2). Assume that T=T, + T, where
T, is the time taken to execute the parts of the program which uses
scalar operations and T, is the time taken by the vectorizable part of
the program. If the program is run on a supercomputer with vector
capability and n is the speedup due to vector processing then the
time taken to execute the program is:

Time taken = T, + (T,/n)

Computing with Vector Supercomputers 35

T, T,
Scalar =l T he ~ >l » Time
Time : 4
”
Scalar : Vectorizable P4
Code] code P4 ’
1 4
.] .7
Vectorized j » ‘fime
Time Tg T,/n

Fig 3.2. Scalar and vectorized time comparison
‘The speedup obtained by using the supercomputer is:
Speedup = (T, + T,,)/ (T, + (To/n))

Let us define Vectorization ratio as:
v=T,/(T,+T)

Speedup = S,(v, n)= n(T, + Tp)/(nTs + T,)
=n/(n(l - v)+v)

If the code is fully vectorizable, ie. Ty = 0 then v = 1 and speedup
Sp(v,n) = n (100% speedup). If there is no vectorizable code
in the program then v = 0. In this case there is no speedup as
Sp(v,n) = 1.5,(v,n)is plotted for n = 10, and various vectorization
ratios in Fig. 3.3. Observe that the improvement in speed increases
rapidly beyond v = 0.9. When vectorization is less than 0.8 the
improvement in performance is relatively low.

Consider a computer with a vector megaflop rating of 100. Assume
its scalar speed is 10 megaflops with 0.8 vecterization ratio. The
speed up is (10/2.8). Thus the effective megaflop of the mackine -
is 10 x (10/2.8) = 35.7megaflops. If the vectorization ratio is
0.975 the effective megaflop is 83.8. From this calculation it is clear
that a supercomputer will operate at reasonable speed only if the
vectorization ratio is very high. In other words the vectorizable part
of the program must take much longer time to execute compared to
the part which is not vectorizable.

Most programs will have a scalar part. The scalar part cannot
be entirely eliminated and around 10 to 15% of the code will be

368 Supercomputers

208
16 |
Speedup L
Sp(nv) 12k
8 -
- n = Infinity ——pm «—— n=10
4 -
,___é————/
1 1 1 l L 1 1 1 4 1 l:
0 02 04 06 0.8 1.0

Vectorization Ratio
Fig 3.3. Speedup for various vectorization ratios

scalar code. Thus good performance cannot be achieved by merely
increasing the vector speed without increasing the scalar speed. This
is commonly known as Amdahl’s law which informally[1] states:

“When a computer has two distinct modes of operation, a
high speed mode and a low speed mode, the overall speed
is dominated by the low speed mode unless the low speed
mode can be totally eliminated”.

Amdahl’s law is somewhat pessimistic as it is usually not possible
to completely eliminate scalar processing. The redeeming feature is
that in many programs 10 to 15% of the code consumes 90% of the
execution time. This 10 to 15% of the code can be often vectorized
to get a vectorization ratio exceeding 0.95. Thus the overall program
execution time is reduced. If 2 program takes 10 minutes to execute,
and out of this 10% of the code which takes 9 minutes can be vector-
ized to 98% then the total time taken would be 1 + (9/9.8) or 1.918
minutes if the ideal speedup is 10. Even though the entire code may
not be vectorizable to 93% the effective time reduction is substantial.

Computing with Vector Supercomputers 37

3.3 What is Vectorization?

When a new application program is developed for a vector super-
computer, the algorithm chosen must be such that it fully exploits the
vector facility provided by the hardware. The programming language
chosen must have language features to express vectors and operations
with vector operands. The new standard evolved for Fortran, called
Fortran 90, has recognized this need and allows vector operands and
operations. A compiler for Fortran 90 will compile a Fortran 90
program to a machine language program which uses vector machine
instructions available in these computers.

This situation of writing a new program for an application is more
an exception. Usually scientists use programs supplied by others for
their applications. These programs are written most often in Fortran
for mainframe computers which have no vector processing capabil-
ity. These programs must be modified to use the vector processing
capabilities of supercomputers if they are to run faster. This pro-
cess of modifying a program is know as vectorization of the program.
Vectorization of programs can be either automatic or manual. In au-
tomatic vectorization a program called a vectorizer supplied by the
manufacturer of the supercomputer is used to translate the Fortran
program to one which uses vector instructions of the computer. In
manual vectorization a programmer examines the program and de-
cides which parts are vectorizable and rewrites those parts. Manual
vectorization is difficult and slow and is done only when automatic
vectorization is not effective,

3.4 The Vectorization Process

The questions we will now ask are “how is vectorization per-
formed?” and “when is vectorization effective?”. The primary idea in
vectorization is to recognize DO loops in Fortran programs in which
all the component values of the vector operands are readily avail-
able to be streamed through the pipelined functional units of the
supercomputer. These DO loops are replaced by equivalent-vector
instructions, For example, the loop

38 Supercomputers

DO 26 I = 1,100
A(I) = B(I) + ¢(D)
D(I) = A(1) * 2
25 CONTINUE

is vectorized and expressed in Fortran 90 array notation as:
A(1:100) = B(1:100) + C(1:100)

D(1:100) = A(1:100) * 2
Observe that all the values of vector A are calculated by the first vec-
tor instruction and are properly used in the second vector instruction
without altering the meaning of the loop (See Fig 3.4). Consider

Vector
Registers

Vector Register

Pipelined Adder Unit

m Scalar Register
D Pipelined Multiplier Unit

Fig 3.4. Usage of successive vector instructions

the loop:
p020I=1, N
B(I) = ¢(I) * 2
20 D(I) = B(I+1) + A(L}

A naive vectorization of the above loop as

B(1:N) = C(1:N) * 2
D(1:N) = B(2:N+1) + A(1:N)

Computing with Vector Supercomputers 39

will be incorrect as the vector calculation will yield

B(1) = C(1)* 2

B(2) = C(2)* 2

B(3) = C(3)* 2

BOY) = C(N)# 2

D(1) = B(2) + A(1) = C(2)*2 + A(1)
D(2) = B(3) + A(2) = C(3)*2 + A(2)
D(N) = B(N+1)+A(N) = C(N+1)*2+A(N)

whereas the following was intended:

B(1) = C(1)* 2

D(1) = B(2)+A(1)

B(2) = C(2)* 2

D(2) = B(3)+ A(2)

D(N) = B(N+1)+ A(N)
The correct vectorized code is:

D(1:N) = B(2:N+1) + A(1:N)
B(1:N) = C(1:N) * 2

which presefves the meaning of the original loop. Some more exam-
ples of vectorization are given below.

Consider the loop:
DO 50 I
A(D
D(D)

1,100
B(I) * c(D)
DULT(ACI) * X(I))

40 Supercomputers

E(I) = D(I)/B(I) + ACI)
50 CONTINUE

Assume that the function DULT is not a vectorizable function (i.e.,
it cannot be computed by using a pipeline). The vectorized code is:

A(1:100) = B(1:100) * C(1:100)
DO SO I = 1,100
D(I) = DULT(A(I) * X(I))
50 CONTINUE
E(1:100) = D(1:100)/B(1:100)+4(1:100)

The following loop is not vectorizable:

D0 90 I = 2,50
A(I) = B(I-1)
B(I) = C(I)
90 CONTINUE

The actual assignments by this loop are:

A(2) = B(1)
B(2) = ¢(2)
A(3) = 38(2)
B(3) = C(3)

A(SC); B(49)
B(50)= C(50)

If we write a vectorized code as:

A{2:50)
B(1:50)
the computer will first assign

AC2)
AC3)

B(1:49)
C(1:50)

B(1)
B(2)

Computing with Vector Supercomputers 41

A(SO); B(49)

and then assign

c(1)
c(2)

B(1)
B(2)

B(50)= C(50)

Thus vector A will have old values of vector B and not its updated
values. This error has occurred due to data dependency in the loop.
This data dependency may be eliminated manually by rewriting the
code as:

A(2) = B(1)

B(2:50) = C(2:50)

A(3:50) = B(2:49)
The code given above is vectorized. Some intelligent vectorizers do
this vectorization automatically. The loop

DO 150 I = 2,100
150 A(I) = A(I-1) + P

[}

is not vectorizable as values of components of A are values of pre-
vious components which are calculated sequentially. This is called a
recursive DO loop and is not vectorizable by automatic vectorizers.
A programmer may, however, observe that when the loop is expanded
one gets:

A(2) = AQ1)+P
A(3) = A(2)+P = A(1)+2%P
A(4) = A(3)+P = A(1)+3*P

and rewrite the program as:

DO 150 I = 2, 100
150 A(I) = AQ1)+P*(I-1)

42 Supercomputers

which is vectorizable.

All possible vectorizations which preserve the meaning of the orig-
inal Fortran program are automatically performed by the vectorizer
supplied by a manufacturer. Part of Fortran programs which have
dependent or recursive DO loops are highlighted by the automatic
vectorizer. This information is valuable to a user to enable him/her
to alter the code if appropriate to facilitate vectorization.

Program Profiler: In practice many scientists and engineers use
programs written by others for an application. Many of these pro-
grams are written in Fortran and have more than 10,00,000 state-
ments of Fortran code. It is impossible to manually go through such
" programs, understand them and vectorize them. Computer aids are
thus necessary to locate the subroutines in the program which take
most of the execution time. As was pointed out earlier 90% of the
execution time of many programs is spent in 10% of the source code.
It is thus worthwhile locating this 10% of the source code. Super-
computer manufacturers supply a program called a profiler to assist
in this effort. The profiler adds instructions to the program for mea-
suring the processing time taken by each subroutine in the program,
how many times each subroutine is called and the percentage of the
total execution time spent by the program in each subroutine. Thus
the practical method used to vectorize programs is to start with the
source program and execute it on the supercomputer along with the
profiler programi. A typical output of a profiler is shown in Table 3.2
It is seen from Table 3.2 that the subroutines funz and caisph account
for 94.1% of the total executior time of the program. Thus reducing
the execution time of these two subroutines would give the greatest
benefit for the least effort.

After getting the execution profile of the source program, the pro-
gram is recompiled with the vectorizer turned on for vectorizing the
entire program. Even though it is beneficial to vectorize only those
subroutines which take he largest percentage of execution time, the
program is run once fully vectorized to compare the scalar and vector
times of each subroutine. After vectorizing the program the profiler

Computing with Vector Supercomputers

43

Table 3.2. Profile of a Fortran Program (Unvectorized)

Subroutine | Percentage time | Time spent | No.of subroutine
name spent in in subroutine invocations
subroutine (sec)

funx 69.8 167.15 100
calsph 24.3 58.25 100
pion 4.8 11.43 305
valcal 0.5 1.3 100
molwt 0.2 0.5 100
kroot 0.2 0.4 1
picky 0.2 0.45 1
Total 100% 239.48 -

is re-run to obtain the new profile. It is shown in Table 3.3. It is
interesting to note that vectorization has reduced the execution time
of the first three routines: funz runs seven times faster after vector-
ization, calsph runs about two and a half times faster and pion about
five times faster. In contrast routines valcal, molwt, krost and picky
run slower with vectorization. Although vectorization yields very
good time reduction in a number of cases, there are cases where the
overhead of vectorizing short loops can cause these loops to execute
slower than when scalars are used.

Table 3.3. Profile of a Fortran Program (Vectorized)

Subroutine | Percent time spent | Time spent | No.of subroutine
name in subroutine in subroutine invecations
funx 44.7 24.25 100
calsph 42.6 23.12 100
pien 4.1 2.21 305
valcal 3.0 1.61 100

molwt 2.8 1.53 100
kroot 1.2 0.67 1
picky 1.6 h 0.85 1
Total 100 | 54.24 -

44 Supercomputers

For such short loops a method known as loop unrolling would lead
to faster execution. For example the DO loop

DO 25 I-=
25 1) = B(I)
could be written as:
A(1) = B(1)
A(2) = B(2)
A(3) = B(3)
A(4) = B(4)

The code given above is said to be “unrolled”. Unrolling eliminates
the overhead of incrementing the index in each iteration and compar-
ing its value with the final value of the index for loop termination.

In the example being considered, the program is recompiled again
after vectorizing only the first three subroutines. If further time re-
duction is desired one may look in detail at the subroutines funz and
calsph and see if any loops have been left unvectorized by the au-
tomatic system. To iook at the detailed execution of loops another
profiler known as loop profiler is used. This profiler creates a table
similar to Table 3.2 for each of the loops in a subroutine. Such a
profiler also highlights those loops which have been automatically
vectorized and those loops which have not been vectorized. The user
can attempt to vectorize such loops manually by restructuring the
code.

As stated earlier it is most often found in programs that 90% of
the execution time of a program is spent in 10% of the code. Thus
it is more cost effective to spend one’s time in manually vectorizing
this 10% of the code. The reasons are:

¢ The largest speedup is possible by concentrating on this part
of the code.

» When a small part of a program is manually rewritter there is
less chance of introducing errors in the program.

Computing with Vector Supercomputers 45

¢ As only a small part of the program is restructured the new
program is close to the original program and is thus easy to
maintain.

¢ One may look deeper into improving the algorithm for a small
part of the overall program to tune it to a vector computer.

Manual vectorization requires careful examination of dependencies
in loops, the type of subscript expressions in loops and understanding
the manner in which memory banks are accessed by multidimensional
arrays. Discussion on these points is beyond the scope of this book
and the interested reader is referred to [1] and [2] given at the end of
this book.

Subroutine in-lining: Another technique for reducing the execu-
tion time of programs is called subroutine in-lining. This is replacing
a subroutine or function call in a calling routine by the actual code
of the called subroutine. Consider the following simple example:

DO 200 I = 1,100

CALL INIT(P(I))

CALL PAL(X(I),Y(I),Z(I),P(1))
200 CONTINUE

SUBROUTINE INIT(4)
A=1.0
RETURN

END

SUBROUTINE PAL(A,B,C,D)
D=D+A*B+Cx*C
RETURN

END

The above code may be replaced by

DO 200 J = 1,100
P(J) = 1.0

46 Supercomputers

P(J3) = P(I)+X(I)*Y(1)+2(I)*2(D
200 CONTINUE

The main reasons for subroutine in-lining in the above example are
the reduction in the overhead of subroutine calling in each loop and
the possibility of vectorization with this transformation. If the sub-
routine is invoked from within a loop, vectorization of the loop is
inhibited.

The subroutine calling overhead is computer-dependent. It is nor-
mally of the order of tens of microseconds. In-lining of subroutine
code is justifiable if the number of calls to the subroutine is (as seen
from the profiler information of Table 3.3) of the order of hundreds
of thousands. It is also justifiable if the profiler shows that the sub-

routine is taking a large proportion of computer’s execution time and
by in-lining vectorization becomes feasible.

" The role of Fortran: We have been extensively using Fortran lan-
guage in our examples so far. The main reason is that inspite of the
emergence of many improved programming languages such as Pascal
and C, Fortran is still the most popular language among scientists and
engineers. The reasons for this are many. Fortran compilers are very
efficient; many programs for common applications have been written
in Fortran and are widely available; most scientists have learnt For-
tran as their first language to write programs and are reluctant to
change unless there is an immense advantage in doing so. Fortran is
a simple language to learn and use and finally many good books are
available to learn Fortran. As new languages are invented and come
into vogue the demise of Fortran is predicted but Fortran continues
to thrive. Periodically Fortran has been improved and standardized.
Fortran 77 was standardized by the International Standards Orga-
nization and more recently a new standard called Fortran 90 has
emerged in 1990. The new standard has absorbed some of the good
qualities of more recent languages such as Pascal while retaining com-
patibility with earlier Fortran compilers. Besides this, Fortran has
recognized the emergeuce of supercomputers and has enhanced For-
tran syntax and semantics to include constracts to facilitate vector

Computing with Vector Supercomputers 47

processing, Thus we note that any one who wants to use a super-
computer has to be well conversant with programming in Fortran
primarily because of the availability of:

1. A large number of application programs written in Fortran

2. Efficient compilers and optimizers for Fortran particularly for
supercomputers and

3. Availabillity of special constructs in Fortran 90 to operate on
vector operands.

4. Many of the new languages such as C have advanced features
such as pointers which inhibit vectorization. Codes written in
these languages to exploit vector hardware may end up like
Fortran using simple for loops and array data structures.

3.5 Scalar Optimization of Programs

Besides vectorization, it is necessary to optimize the ncn-vector
part of a Fortran program to reduce its execution time. Due to
many advancements in knowledge about languages and compilers,
automatic optimizing compilers have improved considerably over the
years. Supercomputer manufacturers are particularly sensitive to this
and improve their optimizers regularly. Inspite of this, it is essential
for a serious Fortran programmer who wishes to reduce execution
time on a supercomputer to follow some simple rules which assist the
optimizing compilers to recognize optimization opportunities. Some
rules which are effective and found in optimizing compilers are:

¢ Evaluating constant expressions

¢ Moving code independent of loop index out of a loop

¢ Eliminating common subexpressions

¢ Eliminating unnecessary store statements.

Numerous examples of such optimization and an extensive discus-

sion of this topic is outside the scope of this bock and the interested
readers may refer to the books [1) and [2] in the bibliography.

48 Supercompuiers ‘

Besides vectorizers and optimizing compilers, supercomputer man-
ufacturers also provide libraries of commonly used mathematical pro-
cedures such as matrix inversion, eigenvalue calculation, curve fitting
etc. These libraries are vectorized and optimized to work efficiently
on the manufacturer’s machine and are sometimes written using as-
sembly language. If the examination of a program profiler’s output
shows that a large proportion of the program’s execution time is taken
by the subroutines written by the user for such common mathemati-
cal procedures, then the user written procedures should be replaced
by the manufacturer’s optimized subroutines and linked to the rest of
the program. In some cases this method reduces execution time of a
program by a factor of four! Thus manufacturers’ routines should be
used whenever they lead to significant reduction in computing time.

In conclusion we note that in order to attain the high speed of
computation promised by supercomputers it is essential to vector-
ize and optimize the program. It is not possible to fully automate
the vectorization process and some manual vectorization may be re-
quired. A profiler should be used to find the parts of the code which
consume most of the execution time and devote manual vectorization
and optimization effort to these parts of the code. These parts are
normally quite small in terms of number of lines of code and thus
this effort would not be enormous. These methods are used to get
the best out of existing programs. When new applications are de-
veloped for vector supercomputers the algorithms should be matched
to the architecture. Vector operands and operations should be used
extensively.

4

Parallel Computers

We saw that vector supercomputers use pipelining as the method of
exploiting temporal parallelism in solving problems. Apart from tem-

poral parallelism, data parallelism is inherent in solving many prob- .
lems and can be easily exploited to increase the speed of computing.

It is also possible to combine both types of parallelism to further

increase the speed of a computer and this is done in most supercom-

puters marketed now. In this chapter we will discuss how parallelism
in algorithms is exploited in building parallel supercomputers. We

will also look at a generalized structure of parallel computers. Fi-

nally we will compare vector computers with parallel computers.

4.1 Array Processors

In a pipelined (vector) computer, two vectors (a1, ag, @3 ...8n)
and (b, ba, bs,...,b,) are added by streaming in pairs of operands
through a pipelined adder. The adder is designed with several stages
or segments, each segment performing a specialized operation on a
different pair of input operands. If a pipelined adder has, say, four
stages and the pipeline is full then four pairs of operands will be in
different stages of addition in the pipeline (see Fig.2.3). If each stage
in the pipeline takes T seconds to do its work, then the first sum
takes 4T seconds but subsequent sums take T seconds each. As we
saw in chapter 2, pairs of operands are streamed through the pipeline,
one pair of operands entering once every T seconds. This method of
designing an adder is said to exploit temporal parallelism. If we write
a DO loop for addition

DO 251 =1, 100
25 C(I) = ACI) + B(I) .

50 Supercomputers

o b a4 b 2 b % b

A O

Adder Adder Adder Adder
! ! ! !
9 9] %

Add Command

Fig 4.1. An array adder

then we can think of the index I as representing time and the vectors

A(I) and B(I) as being sequentially streamed through the adder
pipeline.

Another method of adding vectors is to have an array of n adders
and to distribute one pair of operands (ay, by), (az, b2} . .. (@n,ba) to
each adder. An add instruction may then be broadcast to all the
adders. All the adders then simultaneously start adding the operand
pair assigned to them (Fig. 4.1). If each adder takes T seconds to
add then the time to add a vector is T' seconds if we ignore the time
taken to distribute the operands to the adders. Such an organization
of adders is called an array adder. We can generalize the system and
arrange a set of Processing Elements (PEs) with each PE capable of
performing not only addition but other operations such as multipli-
cation, division, exponentiation etc. Such an organization of PEs is
called an Array Processor.

An array processor uses data parallelism. In the vector addition
example a single instruction, namely ADD, is performed simultane-
ously on multiple data items, namely, pairs of components of two
vectors. This type of computer is thus called a Single Instruction
Multiple Data (SIMD for short) type computer.

If we write a DO loop for addition

Parallel Computers 51

Input Data and Results Path

ESNREDINED) [re00
HOST

Instructions Path

Fig 4.2. An array of processors for data parallel computation

D0 25 I =1, 100
C(I) = A(I) + B(D)
25 CONTINUE

then we can think of the index I as representing a PE number and each -
component of the vectors A(I) and B(I) as being added in parallel in
the respective PE(I). In fact the DO loop may be written to explain
this point as:

DO ACROSS PE(I)
FORI = 1, 100
C(I) = A(I) + B(D

END DO

An array processor (see Fig 4.2) is normally attached to a host
computer. The host computer stores the program to be executed.
Components of the data arrays to be processed are first despatched to
each of the PEs. The host computer then broadcasts the instructions
to operate on components of the array to all the PEs. All the PEs
independently and simultaneously perform the arithmetic operation
on the data arrays stored in their respective private data memory.
The results are then sent back to the host by each of the PEs. These
are combined and output by the host. (Each PE in the array can
itself use pipelining for performing arithmetic operations. In such a
case the vectors to be processed should be very long so that each PE
in the array is sent a vector of reasonable length to process).

52 Supercomputers

The idea used in an array processor can be extended to design a
computer which efficiently executes data parallel algorithms. In this
structure a set of identical Computing Elements (CEs for short) are
connected to a host computer. A computing element consists of a
CPU and a private memory which stores both data and instructions.
The host compiles a program to be executed and stores one copy of
the object code in the memory of each CE. The data set is partitioned
equally and one partition is stored in the memory of each CE. On a
command from the host all CEs execute simultaneously the program
stored in their respective memories using the data stored in each CE.
The results are then output by the individual CEs or by the host. This
method of organizing a parallel computer is called a Single Program
Multiple Data (SPMD) architecture.

SPMD mode of working is of great practical interest as many
problems can be easily partitioned to use data parallelism. Some
examples are:

o Averaging a set of n numbers: If there are k CEs, (n/k) num-
bers can be allocated to each CE. Each CE averages the data
allocated to it. The CEs work simultaneously and indepen-
dently. The average computed by each CE is returned to the
host. The host computes the average of the averages received
by it and outputs the result. This method will be effective if
the computing time taken by each CE is much larger than the
time required by each CE to receive the data and program from
the host.

One interesting side-effect of data parallel computing is the re-
duction in rounding errors. As the number of arithmetic oper-
ations performed by each CE is only (n/k) the rounding error
is reduced compared to the case in which one CE does all n
arithmetic operations.

o Integrating a function f(z): In this case the region between
A and B (See Fig 4.3) is divided into k strips with each strip
having width (B — A)/k. The function f(z) and the begin-
ning and end z-coordinates of a strip to be integrated by a CE

Parallel Computers 53

fe)

et

(B -A)k
Fig 4.3. Parallel computing of an integral

are despatched to each of the ¥ CEs. Each CE integrates the -
portion of the function allocated to it. All the CEs work con-
currently and independently. Each CE then sends the integral
calculated by it to the host which adds all these integrals and
outputs the result, The same idea can also be used to compute
surface and volume integrals.

Generating a frequency table for a given data set: Here again
the data set can be partitioned into k sets and distributed to
the k CEs. Each CE then computes a frequency table with the
data set allocated to it. These tables are then gathered by the
host, consolidated and printed.

Sorting a list of names: If a list of names is to be sorted, the
list may be partitioned into several sublists and each CE may
be given a sublist to sort. The sorted sublists are then sent to
the host by each CE. The host then merges these sublists into
one sorted list.

The efficiency of data parallel computing with an array of proces-
sors depends on the time taken for computation in comparison with
the time taken to distribute data to the processors. Let the time

54 Supercomputers

taken to compute a job on a single processor be T. Assume that the
data is partitioned and distributed to k processors. Let T, be the
time taken to send data to the processors. Let each processor take
T/k seconds computing time. Let T, be the time taken by the host
to receive the results. Then the speedup due to parallel processing
is:

Speedup = T/((T/k) + T, + T;)

When (T/k) >> (T, + T,) the speedup is nearly ideal, i.e., k.

4.2 Executing Task Graphs in Parallel Computers

X

Fig 4.4. Task graph for a complex computation

In the last section we looked at problems which could be broken
up into a number of independent tasks and carried out in parallel.
In general, problems cannot be broken up into independent tasks.
Consider, for example, the following computations:

a = cos(f3(2)) + cos(f(z) + 9(y)) + €M)

Parallel Computers 55

Table 4.1. Time for each task in a task graph

Task T1 Tz T3 T4 T5 Te T7
Time{ 3|41 5 4 3 1 {3
Task |[Te | To |Tho | T | T2 | Tha | -
Time | 2 [4 | 4 4 1 2 -
b= sin(ehe)) + p(u) » b3

The computations above can be depicted by the task graph of
Fig. 4.4. The task graph clearly shows the sequence of execution of
tasks. Each circle in the task graph represents a task. For example,
I is the task of computing f(z). A line with an arrow connecting
two circles shows the dependency between tasks. The direction of
the arrow shows precedence. In Fig 4.4, task Ts can be done only
after tasks T} and T, are done. On the other hand tasks Ty, T3, T3
and Ty can be done independent of one another and can be carried
out in parallel. Task Tj3 can be done only after tasks Ty, Tio, and
T are completed. Tasks Ti,Ts,To and Tis have to be performed
sequentially one after another.

We will now examine how a and b are calculated in parallel, if 4
CEs are available. We will assume that the CEs are identical. In
Table 4.1 the time necessary to execute each task is given.

The minimum time in which all the tasks can be completed by 4
CEs working in parallel (if there is no dependency between tasks) is
given by:

Minimum time = Sum of execution time of Tasks T} to T13/4
= 40/4

10

The above estimate is an optimistic estimate as it does not take
into account the constraints placed by the task graph on the sequenc-
ing of tasks. If we inspect the graph we find that the earliest time
at which a can be computed is 12 units of time and the earliest time
b can be computed is 13 units of time. The tasks T} to Tj3 may be

56 Supercomputers
scheduled on 4 CEs as shown in Fig. 4.5. The assignment shown in
this figure is optimal.

Programs to compute a and b for the 4 CEs may be written as
below:

Program for CE1 Program CE2
do Tl do T2
Send ry to CE2 get 1y from CE1
do Ts do Tg
do Ty do Tyo
get r¢ from CE2 Send rg to CE1
get rg from CE3 Stop
do T13
Write a
Stop

Program from CE3 Program for CE4
do Ty do Ty
do Tr get rg from CE3
Send rg to CE4 do T3
Send rg to CE1 get rg from CE3
do Tu do T12
Send rg to CE4 Write b
Stop Stop

Observe that as soon as the Program for CE1 performs task i,
the result ry is sent to CE2, Thus there should be a data path be-
tween CE1 and CE2. Further, as soon as ry is sent by CEl it can
proceed with the rest of its work and perform tasks T5 and T5. When
these tasks are done, it cannot proceed further as it needs the results
r¢ and rg from CE2 and CE3 respectively to do task T'3. Data paths
are needed from CE2 and CE3 respectively to receive r¢ and r3. CEl
issues commands to get r¢ and rg from CE2 and CE3 respectively
and waits till the corresponding Send commands have been executed
by CE2 and CE3. As soon as r¢ and rg are received T3 is executed.
Programs for CE2, CE3 and CE4 are similarly interpreted. For effi-
ciently executing this task graph, data paths between CEs must be

Parallel Computers 57

CEl 3 I 3 1 4 ! 2 ! Time
1 L] .V
TI I 5 Tl 3 Write a
CE2 4 (RN 4 1
T. T T T T Li bl
2 6 10
ces —t—
5 ? 7
4 2
CE4 4 2 1
z Tdle A 1dle Ty Writeb

Fig 4.5. Assignment of tasks of task graph to 4 CEs

available as shown in Fig. 4.6. Observe that a CE which receives data
from another CE must provide a small storage area called a buffer to
receive the data.

/ Buffer Store

CEl jCE2 CE3 CE4

O
:]

Fig 4.6. Interconnection of computing elements to task graph
of Fig 4.3

The data paths connecting CEs shown in Fig 4.6 is specialized to
efficiently execute the task graph of Fig. 4.4. For executing densely
interconnected graphs it would be ideal to provide data paths be-
tween every CE and every other CE. The paths will become numerous
if there are many CEs. For n CEs the total number of paths will be
n(n—1). For 4 CEs these paths are shown in Fig. 4.7. To reduce the
complexity of connections one may connect all the CEs to a bus (i.e.
a set of paralle] data lines and control lines) as shown in Fig. 4.8.

This is a cost effective method but the problem with this method is
that at a given time only one data packet can be sent on the bus. Thus
if CE2 sends data on the bus, no other CE can use the bus until the

58 Supercomputers

| Y
o
a N
CE2 CE3 B4
CEl o C
| T r
Fig 4.7. A fully connected set of CEs
BUS
g -
CE1 CE2 CE3 CEA

Fig 4.8. CEs connected by a bus

data reaches its destination(s). In a fully interconnected system (See
Fig 4.7), any CE can send data to any another CE and receive data
from any other CE simultaneously. Another possible interconnection
scheme between CEs is shown in Fig. 4.9. This interconnection is
called a 2D hypercube interconnection. In this interconnection CE3
cannot directly send data to CE1. If CE3 wants to send data to
CEl, it sends it to either CE2 or CE4 with a request to forward it to
CEL. Thus the time taken to send the data is longer and also another
CE has to interpret this request and do the work of data forwarding.
The advantage, however, is the number of interconnections is smaller
than a fully connected network. The hypercube structure can be gen-
eralized. A 3D hypercube connection of 8 CEs is shown in Fig. 4.10.
A general hypercube structure of dimension d has n = 2¢ processors.
The total number of links (bidirectional) is n X d/2. If any CE wants
to communicate with any other CE which is not directly connected to
it, the maximum number of intervening CEs will be d. For example, if

Parallel Computers 59

CE1
[

L] | LT
E CE3
]

Fig 4.9. A 2D hypercube connection of CEs

CE4

Fig 4.10. A 3D hypercube connection of CEs

CEl wants to send data to CE7 (in Fig. 4.10) it can either send data
to CE2 which will forward it to CE3 which will in turn forward it to
CE7 or the route can be CE1-CE4-CE3-CE7 or CE1-CE5-CE8-CE7
etc. In fact, there are 6 paths of length 3 from CE1 to CE7 (length
is defined as the number of links traversed). As the number of links
is of the order of n x d and the maximum distance is d the hyper-
cube interconrection of CEs is very popular and many commercial
multicomputer systems use this method of interconnection.

60 Supercomputers

4.3 A Generalized Structure of a Parallel Computer

A conceptual structure of a general purpose parallel computer is
given in Fig. 4.11. It consists of a set of CEs which are intercon--
pected by a communication network. The task graph to be executed
is stored in a task store and the data to be processed in a data store.
A scheduler assigns tasks to be processed to the CEs. CEs use the
communication network to send or receive data from each other. Re-
sults computed by the CEs are despatched to an output unit. A host
computer is often used to store the task graph, perform the functions
of the scheduler, read input data and output results.

HOST

[by
-

Communication Network

Fig 4.11. Generalized message passing multicomputer

Given this structure of a parallel computer we assume that the
task graph and requisite data are stored in the host computer. The
scheduler uses an algorithm to statically allocate groups of tasks to
CEs. The static allocation keeps in view the available parallelism in
the task graph and the expected time needed to execute each task.
Each task is a small program which is stored in a CE’s private mem-
ory. One way of representing a task to be executed by a CE would
be:

Name of Task to { Slots for input | Slots for results
be carried out data

Once the tasks are allocated to CEs the following steps are fol-
lowed to execute a program:

Parallel Computers 81

Step 1: Send a command from the scheduler to all CEs to start
executing tasks.

Step 2: CEs execute those tasks which have all the input data avail-
able,

Step 3: The results are sent to the scheduler which routes them to
the CEs which need this data.

Step 4: Steps 2 and 3 are repeated until no tasks remain unexecuted
and no data (to be processed) is left in the communication
network or CEs.

There could be many variations to Step 3. They are:

1. The results are not sent to the scheduler but to a storage unit
shared by all CEs. Whichever CE requires a result to execute
the task assigned to it reads the results from the shared storage
unit.

2. Each CE keeps a program which consists of all the tasks to
be executed, the identity of the CEs from which data is to be
received and the identity of the CEs to which results are to
be sent. After executing a task the results are sent via the
communication network to the appropriate CEs which receive
them. '

3. At the end of execution of a task a CE broadcasts the result
on the communication network. All the CEs needing this result
capture it and store it in their local memory. An uncaptured
result is kept in a result buffer by the scheduler and broadcast
again.

The parallel computer hardware organization is normally tailored to
match the corresponding execution model.

The scheduling philosophy described above is a static philosophy.
Tasks are pre-assigned to CEs. A dynamic schedule may be more
efficient particularly in cases where the completion times of tasks are
strongly data dependent. In dynamic scheduling the task graph is
stored in the host computer. The host computer schedules tasks as
follows:

62 Supercomputers

Step 1: The host sends tasks ready to be executed to free CEs.

Step 2: The CEs execute tasks assigned to them and send results to
the host.

Step 3: The host fills the input data slots of waiting tasks with rel-
evant results and marks them ready.

Step 4: Steps 1, 2 and 3 are repeated until no more tasks are left
in the task graph, all CEs are free and no data remains in the
communication network.

This method requires a lot of coordination by the host and the
host may become the real bottleneck and slow down execution. A
combination of the static scheduling method and this method is often
used and is called quasidynamic schedule.

Observe that in this organization of a parallel computer multiple
tasks are carried out on multiple data sets asynchronously. Such ma-
chines are called Multiple Instruction Multiple Data (MIMD) parallel
computer. This is in sharp contrast with Pipelined Processors, Array
Processors and SPMD computers which synchronously carry out a
single task on multiple data.

Referring again to Fig. 4.11, the heart of the system is a set of Pro-
cessing Elements (PEs) or Computing Elements (CEs). This general
structure can have many variations in the type of PEs, the disposi-
tion of the memory modules and the way the communication network
connects the two and the philosophy of scheduling tasks. These vari-
ations lead to a rich variety of parallel computers. We will describe
now some of the common parallel computers which have been built.

4.4 Shared Memory Multiprocessors

In thic type of computer around 8 to 128 microprocessors or very
powerful processors are connected to a set of memory modules using a’
communication network. This set of memory modules can be accessed
by any PE and forms the main memory with one common address
space. The program to be executed, data and results are stored in
it. This type of parallel computer is also known in the literature as

Parallel Computers 63

a tightly coupled multiprocessor system.

Memory

Bus

PI:; p[-2 I-‘E’l

Fig 4.12. A shared bus multiprocessor

The most commonly used communication network to connect PEs
to the main memory is a bus. The bus is shared by the processors and
the memory (see Fig. 4.12). There will be lines in the bus to address
locations in memory and also to address PEs. The bus is a common
resource used by the PEs to access memory and other PEs. Two
PEs cannot use the bus at the same time. Thus if two or more PEs
want to access memory simultaneously, a queue is formed. Even if
simultaneous access is not requested, a shared bus limits the number
of PEs which can be effectively used in this system as explained below.

Assume that a PE can carry out 1 million instructions per second
(1 mips) and that after each instruction is carried out a 64 bit(8 byte)
data is to be stored in the shared memory. Let the time to store a
result in memory be 0.2usec. The time to carry out one instruction
is 1/10° or 1usec. If the memory is connected to a bus and the bus
speed is 40 megabytes per sec then the time to transport the result
(8 bytes) on the bus is equal to 8/(40 10%) which equals 0.2usec.

Assume that 10 PEs share the bus and PEs request access to the
bus with equal probability. The minimum time taken to get access
to the bus is 0. The maximum time to get access to the bus is 9%0.4
or 3.6usec. Thus the average time to get access to the bus is 1.8usec.

64 Supercomputers

The average time to carry out an instruction = Average bus access
time + Time on bus + memory access time + average instruction
execution time =1.8 + 0.2 + 0.2 + 1 = 3.2usec.

Memory Modules

M M E M
El‘_' L Interconnection Network I ——-@

Input Unit ‘ Output Unit

PE PE I PE I PE

Processing Elements

Fig 4.13. General structure of a shared memory multiproces-
sor

Therefore the effective speed of 10 PEs will be (10/3.2) or 3.125
mips. If all PEs work simultaneously without the need to access a
shared memory using a bus then the maximum speed of computation
is (10/1.4) or 7.14 mips. Sharing the memory using a bus has reduced
the effective speed of the multiprocessor by 55%.

This very elementary calculation shows that the shared bus limits
the number of PEs in such a parallel computer. Most shared bus
parallel computers which are commercially available use a small fast
memory called a cache in each PE and copy currently required con-
tents of the main memory into the cache of each PE. This reduces
the time required to access memory by a PE. It, however, introduces
another problem. If a PE alters a data item in its cache, then this
should be broadcast to all other PEs having the same data item in
their caches. This problem called cache coherence problem introduces
complexity in the design and limits the number of PEs to less than
16 in bus based systems. Inspite of this, shared bus shared mem-
ory multiprocessors are popular as they are inexpensive to build and

Parallel Computers 85

relatively easy to program.

Instead of using a shared bus we may use an interconnection net-
work (see Fig. 4.13) connecting a set of memory modules with a set of
PEs. Such a network allows many simultaneous transactions between
processors and memories. A larger number of PEs can thus be used
in such a computer. The cost of such networks is much higher than
that of a bus. In this case also the cache coherence problem limits
the number of PEs.

Supercomputers such as Cray combine both pipelined vector pro-
cessing and shared memory parallel computing. For example, the
Cray YMP 132 is a single processor vector computer with 32 Mwords
of memory (The 1 in the numbering indicates a single processor and
the 32 the memory size). A Cray YMP 864 is an eight processor
machine in which each processor is a Cray YMP processor. The 8
processors share a common memory of 64 Mwords. The eight proces-
sors can work independently or can cooperate to solve one program
stored in the shared memory.

4.5 Message Passing Multicomputers

The parallel computer structure discussed in Section 4.2 (Fig. 4.9)
is called a message passing multicomputer. The result obtained af-
ter executing a task by a CE which is sent to another CE is called
a message. In Section 4.2 we looked at an interconnection scheme
between CEs called a hypercube interconnection. There are other
interconnection schemes called a ring, a 2D mesh, a tree, a 2D torus

" etc., which are shown in Fig. 4.14.

For a message passing multicomputer to work efficiently it is nec-
essary to:
1. Minimize the number of messages transmitted beween CEs.
2. Minimize the number of inter-CE links the messages have to
traverse from source CE to destination CE.
3. Minimize the time taken to communicate messages between
CEs. This must be much less than that taken to compute.

66 Supercomputers

CEA I cssjl c&le CE7 I
(©

@

(a) A ring. (b) A 2D mesh. (c) A tree. (d) A 2D torus.
Fig 4.14. Some interconnection networks used in message
passing multicomputers

Unlike a shared memory computer a message passing computer
does not share a common global memory. It is thus scalable. In
other words the number of CEs can be increased provided a proper
task allocation is possible. Message passing machines with 1024 CEs
have been built and used for solving problems.

Programming message passing multicomputers is more difficult
than programming shared memory machines. The major difficulty in
programming is the allocation of tasks to CEs and managing message
routing between CEs. As the time taken for messages to travel be-
tween CEs is normally much higher than the computing time, a pro-
gram with a poor task allocation which requires many messages to be
transmitted to distant CEs will be executed very slowly. Some auto-
mated tools to optimize task allocation to reduce execution time have

Parallel Computers 67

been proposed. The problem is, however, difficult to solve as task
graphs vary from one program to another, whereas the CE intercon-

nection structure is fixed. Another approach is to have a dynamically .

reconfigurable interconnection between CEs. The reconfiguration is
program controlled and is dependent on the task graph.

4.6 Comparison of Vector and Parallel Supercomputers

We saw in Chapter 3 that vector supercomputers will achieve their
ideal speed provided hundred percent of a program is vectorizable. In
practice this is not possible. However, the most time consuming part
of a program is normally vectorizable leading to good speedup of the
overall program. The main advantage of vector machines is the ease
with which temporal parallelism is used by a vectorizing compiler.

Time Taken by Time taken by
Non-Parallelizable Parallelizable
part’yrogram part of Program

Execution Time

!LT> :\4\ 2;’ 4’5’ >
[. e
i AN ~
! ' AN ,*” Execution Time
—t—st ‘\1" >
L% I
(Parallelized Program

Execution Time)
Communication and
Synchronization Time

Fig 4.15. Finding execution time of parallel program

Parallel computers, on the other hand, use data parallelism. The
speedup depends upon the type of task graph and on how many tasks
can be carried out simultaneously. In order to estimate the speedup
obtainable with paralle] machines we use Fig. 4.15. In this figure T,
indicates the time taken by the sequential part of a program which
cannot be executed in parallel and 7}, the time taken by the paralleliz-

}intercon

lillt

68 Supercomputers

able part of a program. If we run the program on a parallel computer
with k processors the time taken for executing the program is shown
in the lower part of Fig. 4.15. The time taken by the sequential part
of the program remains the same. The time taken by the part which
can be executed in parallel is (T,/k)+ T, where T is the time taken
to synchronize execution of tasks and/or time taken to communicate
data and results between tasks. A

The speed up is given by:

Speedup= (T + T5)/((T5 + Tc) + (Tp/k))
= k(KT + T)/[(Tp + T0)) + (Tp/(Tp + T5)))

I we call T,/(T, + T5) = f = the fraction and the time taken to
execute the parallelizable code and T./(T, + T,) = g = fraction of
the time spent in synchronization and communication, then

Speedup = k/(f+kg+ k(1= f))

If (f = 1) and (g
(f =1) then

Speedup = k/(1+kg) = 1/(g+(1/k))
Asymptotically when k — oo, Speedup — (1/g).

0) the speedup is maximum and is k. I

Thus if the fraction of time g spent in communication and syn-
chronisation is (1/100), regardless of the number of processors, the
maximum speedup cannot exceed 100! In Table 4.2 we give speedup
for various values of k for given values of f and g. It is seen that
the efficiency defined as (Speedup/ k)rapidly decreases with the in-
crease in the number of processors. Thus the figure of 1000 Megaflops
speed specified for a parallel supercomputer by some vendors for a
computer configured with 1000 processors each of 1 Megaflop speed
has to be taken with a pinch of salt!

An interesting question to ask is,*Under what conditions will a
parallel supercomputer (of the type we discussed in this chapter)
give near linear speedup?” We list some of these conditions below:

Parallel Computers 69

Table 4.2. Speedup obtainable from parallel computers

k {f | g | Speedup | Efficiency
2 09] 0 1.8 0.9
10 09} 0 5.26 0.526
100 [09] O 9.17 0.0917
1000 {09 O 9.9 0.0099
10000 (09| O 9.99 0.00099
[2 J10]01] 167 0.833
10 1.0 [0.1 5.0 0.5
100 1.010.1 9.1 0.091
1000 [1.0 /0.1 9.9 0.0099
10000 | 1.0 | 0.1 9.99 0.000099

¢ If an algorithm can be composed of a set of independent tasks
with no need for inter-processor communication :

¢ Ifan algorithm is designed for an architecture so that while com-
putation is being performed, synchronization and communica-
tion are carried out simultancously and the parallelism available
in the algorithm always exceeds the number of available pro-
cessors,

e If the time taken for computation by the non-parallelizable part
is very small compared to the parallelizable part and the par-
allelizable part has f = 1 and g = 0.

In Table 4.3 we give a comparison of vector computers and parallel
computers.

In general it is difficult to satisfy any one of the conditions stated
above, particularly if there are very large number of processors in a
computer. Parallel supercomputers such as Cray YMP 864 have only
8 computers working in parallel. Each computer is a powerful vector
processor. Thus it is relatively easy to exploit parallelism inherent
in programs being executed on this machine. Such a machine is
thus very efficient and very often delivers the promised speed. On
the other hand, a parallel computer using a thousand one megaflop

70

Table 4.3. Comparison of Parallel and Vector Computers

Supercompulers

Type of Type of Task Programming
Computer Parallelism size ease
ezploited
Pipelined Temporal Small | Relatively
Vector (Fine easy
computer grain) (automatic)
vectorization
Array Data Small Relatively
Processor Parallelism (Fine easy
(SPMD) grain)
Shared Memory Multiple Medium Due to
multicomputer tasks and | (Small to availability
(with around Multiple medium | of global space
12 to 16 data grain) relatively easy.
Processors) (General Scalability
Purpose) ‘poor
Message Multiple Big Difficult. Good
Passing tasks and (Medium | task allocation
multicomputer | multiple data | grain) and
(General synchronization
Purpose) needed

microcomputers will rarely deliver 1000 megaflop speed if one tries
to execule a variety of programs. It is extremely difficult to program
such a machine to obtain the promised speed.

5

Available High Performance
Computers

In this chapter we will describe some of the high performance com-
puters available in the market now (1992). We will also discuss how
the performance of these machines is evaluated. The word “super-

. computers” has been commonly misused during the last five years
and is losing its distinct meaning. The reason for this is the avail-
ability of very high-speed microprocessors at a low cost and the ease
with which these microprocessors are intereconnected as a parallel
computer with a high nominal megaflop speed. Whereas high speed
vector computers such as Cray YMP cost around US $10 million
these micro-based parallel machines cost less than US $1 million
with a nominal megaflop figure in the same range. There is thus
a widespread confusion about the true capabilities of such low cost
“supercomputers” (sometimes also known as mini supercomputers)
in comparison with existing vector supercomputers. In the absepce of
a precise definition of the word supercomputers, particularly by com-
puter vendors, we prefer to use the terminology high performance
computers in this chapter. The main objectives of this chapter are to
describe some of the currently available vector supercomputers and
other parallel high performance low cost computers, their strengths
and weaknesses. We will also discuss how to scientifically evaluate
the true capabilities and performance of supercomputers.

5.1 Vector Supercomputers: Cray & Others

Currently only four manufacturers in the world make high perfor-
mance “traditional” vector supercomputers. Many people call them
“true” supercomputers as they fulfill all the desirable architectural

72 Supercomputers

requirements such as 64 bit words, large main memory (exceeding
256MB), large secondary memory (exceeding 40Gb), high speed data
transfer between main memory and the vector processor, extensive
pipelining, high speed data transfer between the secondary memory
and the main memory (around 100 Mbytes/sec), peak arithmetic
speed exceeding 1000 megaflops and sustained arithmetic speed ex-
ceeding 50 megaflops. These machines can solve a large class of com-
pute intensive problems very effectively. All these machines have an
architecture similar to that of Cray computers. We will describe two
of them.

Cray Resedrch Supercomputers: Cray Research, USA, are pioncers
in supercomputer design. Starting with Cray 1S in 1978, the latest
offering is Cray 3 expected to be delivered in 1992. Currently (1992)
they made two classes of supercomputers - Cray YMP and Cray 2.
The minimum configuration of a Cray YMP is Cray YMP 14 and
the highest is Cray YMP C90. Cray computers are designed by Sey-
mour Cray who designed the first supercomputer. The YMP in the
model stands for model YMultiProcessor. The first digit following
YMP indicates the number of processors in the system and the other
digits indicate the number of megawords of shared main memory.
For example, YMP 132 specifies a 1 Processor 32 megaword memory
machine (1 word = 64 bits) and YMP 8256, a machine with 8 proces-
sors sharing 256 megawords of main memory. The latest model Cray
YMP C90 has 16 processors and 256 megawords of memory. The
other important characteristics of the computer are illustrated in Ta-
ble 5.1. Besides the hardware features, the main merit of Cray range
of machines is the variety of software available for the machine. Be-
sides a good vectorizing Fortran Compiler, Crayalso provides a library
of mathematical subroutines for common operations such as matrix
computations, eigen value/vector calculation, polynominal computa-
tions etc. These subroutines have been written in assembly language
and are optimized for Cray machines. As Cray’s internal architec-
ture has remained invariant, the assembly language routines work for
all models of Cray. Fortran for Cray has been enhanced to include
vector instructions (Some of these have been included in Fortran 90).

Available High Performance Computers 73

Many application programs have been developed for Cray both by the
manufacturer and by numerous users and software vendors. These
. programs are usually written in Fortran and vectorized. Cray has the
largest number of application programs in almost all areas of science
and engineering. This is one of the important considerations when
an organization buys a supercomputer.

Table 5.1. Characteristics of Cray Supercomputers

Characteristics Cray Cray-2 Cray-3
YMP C90
Peak Speed in
Megaflops 16000 2000 16000
Cycle Time
in nsecs. 6 4 2.5
Shared Main Memory
(Max in megawords) 256 256 2048
Number of Processors 16 4 16
Semiconductor used Silicon Silicon Gallium
Arsenide
Cooling Method Processor
Freon immersed in | Water
Fluon

NEC Computers: NEC Corporation of Japan is a large diversified
company which embarked on building supercomputers in 1984. NEC
introduced a serics of machines known as the SX series. The smallest
in the series 15 SX1 and the latest is $X3. The unique feature of the
SX series is a built-in frontend computer. The SX series machines
can work in both 32 bit and 64 bit modes. Thus the megaflop rating
for 32 bit operands is almost double that of the 64bit mode. This
feature is useful in many problems. The hardware of the machine is
superb. It is mostly air cooled with the CPU being water cooled. The
hardware features of the NEC series machines(5] is given in Table 5.2.

The Fortran Com'piler and Vectorizer on NEC machines are very
good. The operating system, however, is not upto the mark. It is not

74 Supercomputers

- Table 5.2. Characteristics of Japanese Vector Supercomput-
ers.

Characteristics Fuyjitsu NEC Hitachi
: VP-200 5X2 5-810/20
Peak speed in 855 1333 855 .
Megaflops
Cycle time 7 6 14
in nano seconds
Main Memory 128 32 32
Megawords
Vector 8192 8192 10,240
Registers
Vector 2 load/ 3 load/ 8 load/
Pipelines store 1 loadstore | 4 store
Cooling Method Forced Water Air
Air
Operating Sytem VSP, ACOS HAP
MVS/XA

compatible with the UNIX operating system which is now universally
used. Further it is of an old vintage with restricted facilities. Net-
working features of NEC machine with the machines of other vendors -
is also poor. Another weakness of NEC machines is a poor application
software library. As it is a relatively new machiue there are not many
users of this machine. Consequently, very few application programs
are available from independent software vendors. Until this applica-
tions bottleneck is solved these machines will not be very popular.
“'Besides NEC, there are two other Japanese manufacturers of vec-
tor supercomputers. They are Fujitsu and Hitachi. They are slowly
gaining a share of the market. Cray, however, holds a pre-eminent
position in the high end high performance supercomputer market.

5.2 Vector Computer on a Chip: Intel 80860

During 1989 a new Very Large Scale Integrated Circuit (VLSI)
chip incorporating a microcomputer with architectural features mimic-

Available High Performance Computers 75

Table 5.3. Characteristics of Intel i860 microprocessor

Characteristics Value Characteristics Value
Word length 64 bits Vector registers 16
Cycle time 25 Virtual Memory | 4 Gigabytes
in nsec size
Peak Floating [80 megaflops || No.of pipeline 4
add/multiply stages in adder/
speed multiplier
(64bit operands)
On chip memory 8 Kbytes Number of 75
data cache instructions
Instruction cache 4 Kbytes RISC Yes
architecture

ing a supercomputer was released by Intel Corporation, one of the
leading integrated circuit manufacturers in the world. The main fea-
tures of the Intel 80860 (also known as i860) are given in the Table 5.3.

The processor has a pipelined four stage adder and a four stage
multiplier. The operands are stored in a fast register file in the
processor (16 registers each 64 bits long) and streamed through the
pipelined arithmetic unit. One addition and one multiplication can
be performed independently by the two units (See Fig. 5.1). The
basic clock is 40 MHZ (one clock pulse every 25 nsec). One addi-
tion operation and one multiplication operation are performed every
25 nsec giving a peak megaflop rating of 80 megaflops (for 64 bit
operands) provided a program can generate both these operations
simultaneously. This is so far the highest speed obtained using a
microprocessor chip at a low cost.

So called super minicomputers have been built around 1860 proces-
sor by many manufacturers including two companies in India: Wipro
Infotech Ltd., and DCM Data Products. The characteristics of the
Wipro Landmark 860 machine and DCM COSMOS 860 - machine
are given in Table 5.4. They cost around Rs.15 lakhs (1991 price)
and the cost is quite competitive considering the floating point speed

76 Supercomputers

Table 5.4. Characterisitcs of some 1860 based computers
made in India (1991)

Characleristics Manufaclurers
Wipro DCM Data
Infotech Products
CPU 1860 Intel 80486 + i860°
1/O Processor
Disk: 80286 80386 (Optional)
Terminal: 80186 80186
Max.Main 64 32
memory (Mbytes)
Bus | Multibus 11 Proprietary
DCM Bus
Multiple 1860
possible yes yes
Operating System | UNIX System V 4 | UNIX System V 4
Fortran 77 Greenhill® DCM or Greenhill
Vectorizer for Pacific Sierra® Pacific Sierra
Fortran VAST-2 VAST-2
Networking Ethernet Ethernet

°Both can work concurrently and independently
*Company which developed Fortran for i860
“Pacific Sierra Company deveioped VAST-2 vectorizer for i860

delivered by the machines.
5.3 Shared Memory Systems: Alliant & Convex

Many manufacturers have been designing high performance par-
allel computing systems using either a commercially available micro
processor or special customized processors. An example of the former
is the Alliant FX/2800 parallel computers and that of the latter is
Convex computers. These machines are often called mini supercom-
puters.

Alliant FX 2800 Parallel Computer: This computer uses the i860
processor for computing. It has 28 processors (i860) arranged as 14
Super Computational Elements (SCE) for parallel processing of large

Available High Performance Computers 77

Result
Floating .{64 A6a £ 64 l ‘
point

Address Floating point Floating point

Controller and Multiplier
32 Register file
1
Kot /64 | f {—
Data Cache Floating point
Memory Adder

* N: Indicates a bus of width ‘N’.
Fig 5.1. Floating point arithmetic unit of 1860

compute intensive tasks and 14 Super Interactive Processors (SIP) for
multiprocessing serial compute jobs, executing system tasks, I/O and
3D graphics processing. A single Processor Module (PM) contains
four i860 processors arranged as two supercomputational elements
and two super interactive processors. Upto seven processing modules
are supported by the largest FX/2800 configuration. A separate I/0
module contains two super interactive processors combined with two
20 MB/sec Channel interfaces.

All the 14 processor modules share a common memory which can
be upto 1 GB. The main memory is connected to the Processors via a
cache which can be upto 4 MB. A block dlagram of Alliant FX/2800
computer is shown in Fig. 5.2.

An interesting feature of the architecture is the possibility of run-
ning a single job using all the 14 computing elements in parallel and
simultaneously running 14 other jobs, each using one computing el-
ement. The scheduling of various jobs is managed by a proprietary
operating system which attempts to optimize the use of all the re-

78 Supercomputers

1/0

Main Memory
Module

(Max 1 GB)
Cache Memory (Max 4 MB)

Terminals

g

i

scelsce| | ! ! H ! |scejsce
1,12]]]]] 131 14

1 (] 1 1] []]

ol T e
sielse| | ! H H ! |sieyse
1y 2 (])]] ' 131 14

[! 1 [§ i [

Processor Module

Fig 5.2. Alliant FX /2800 parallel computer

sources of the parallel computing system.

The division of a processing module into an interactive part and
a computing part is intended to provide interactive program devel-
opment, debugging, editing and visualization facilities through the
interactive processor which is a high speed processor using an i860.
The interactive part also executes operating system tasks such as
paging, swapping, file system management, networking and I/0.

The system also provides parallel compilers for Fortran and C. A
vectorizer is also provided to take advantage of the i860’s pipelining
capabilities.

Convez Computer Systems: This is a shared memory multiprocessor
made by Convex Computer Corporation, USA. The salient features
of the Convex 3800 system are:

¢ Eight processors sharing a common main memory of upto 4Gbytes
and a virtual memory of 2 Gbytes per process. The memory
has 8 ports which connect it to the CPUs. Each port can carry

Available High Performance Computers 79

Main Memory
(Max 4 GB)

Cache Memory (16 KB)

Non-Blocking Crossbar Network
(9 Actual Ports)

64 b 64l 64l 64 b 64 k¥ 500 MB
" 1 Y 4 1 Channels
/o cpu| |cpu| [cPU| |CPU
Units 1 2 7 8

< I I

Communication Registers
(1K x 64)

Fig 5.3. Convex C3800 parallel computer

data at a rate of 500 Mbytes/sec. In other words 64 bits data
can be transferred in parallel from the main memory to the
- CPU in 1.6 nsec. The ports are connected to the memory by
a crossbhar switch. The cross bar allows simultaneous access of
each CPU to a different memory bank. If two CPUs try to ac-
cess the same memory bank there is hardware to temporarily
store the request and honour it after a delay (See Fig. 5.3)

The CPUs use Gallium Arsenide semiconductor technology and
have a basic clock speed of 20 nsec. It has a Cray like instruc-
tion set including vector instructions. The vector operands and
results are taken from the memory, processed, and returned
to memory (This is known as a memory to memory vector in-
structions). A set of parallel processing instructions to enable

80 Supercomputers

parallelising DO loops is also provided. The peak megaflop rat-
ing of the Convex C 3800 quoted by the manufacturer is 2000
megaflops.

Convex has an interesting new software scheduler to allocate
parallel processes and threads. A thread is a sequence of in-
structions that represents the smallest schedulable entity. When
a parallel region is detected by the compiler, a thread is cre-
ated. These threads are picked up by idle processors. A thread
initiates execution with its own value of the program counter
and stack management registers. While leaving a parallel re-
gion all processors asynchronously and independently execute
join instructions. When a processor executes a join it is free to
execute other threads or processes of different programs. The
processor schedules itself by picking a waiting thread or process
kept in despatch queues maintained in a set of communication
registers. When the last processor executes the join, it executes
the subsequent scalar part of the program.

Compiler for Fortran, C and Ada support both vectorizing and
parallelizing features.

o A variant of Unix is used as the operating system.

The system seems to have reasonable software and is currently
quite popular. Besides C3800 which is the most powerful system in
their series, Convex computers have two other less powerful machines
which use the same architecture but slower technology. C3400 uses
upto 8 processors using BICMOS technology. The maximum memory
available is 2 Gigabytes and the peak speed is 800 megaflops. The
C3200 has upto 4 processors, uses ECL and CMOS technology, upto
2 Gigabytes of memory and a peak rating of 200 megaflops.

5.4 Message Passing Multicomputers: iPSC & PARAM

The structure and property of message passing multicomputers
were discussed in section 4.5. We will consider two systems of this
type.

Intel Hypercube: Intel Scientific Computers has pioneered in build-

Available High Performance Computers 81

ing low cost message passing multicomputers. The individual CEs in
their early model (called iPSC) were Intel 80286 microprocessors.
The iPSC system consists of two major functional elements; the cube
and the cube manager. The cube is a set of CEs connected as a hyper-
cube with upto 128 CEs. Each node is an independent microcomputer
(80286/80287 set with 512 Kbytes local memory in early models).
Each node stores a small program (called a kernel) which manages
the messages sent and received by the node, routes messages to appro-
priate destinations and supports execution of multiple processes., The
cube manager serves as the host for the parallel computer supporting
the programming environment, communication/control software and
the system diagnostic facility. The responsibilities of the cube man-
ager include program compilation, program loading, mput/output
and error handling.

Later version of iPSC, called iPSC2, uses 80386/80387 as the node
processor, a hardware router to route messages automatically be-
tween processors and a higher speed communication link compared
to iPSC.

The most recent system being built using the same basic message
passing hypercube structure is called Touchstone DELTA System.
This system incorporates 570 Intel i860 and 386 microprocessors,
along with a custom mesh routing chip developed at Caltech. It
is claimed to have a peak speed of 32000 megaflops.

C-DAC’s PARAM: Centre for Development of Advanced Comput-
ing set up by the Government of India at Pune, has developed a high
performance parallel multicomputer with 256 CEs. This computer is
called PARAM, an acronym for PARAllel Machine, which is also the
Sanskrit word for supreme. Each CE in PARAM is a microcomputer
called a transputer. Transputer is manufactured by INMOS and each
CE in PARAM is a T805 transputer with 4MB main memory. This
transputer is a 32 bit processor and has a good floating point speed
of 4.3 megaflops. The transputer was designed to be a building block
of parallel computers with built-in links to communicate with other
transputers. Each transputer has 4 communication links and can thus

82 Supercomputers

CE1 Disk
Cluster
CE2
: 1
L)
4 x 96
CE 32 /0
Cross Point Processors
Control Bus
Switch
CE 33 1
CE 34
L]
.
CE 64
1
| Gateways | | Switch Manager |
le
[Exchange |-

| I o+ Host Computers o

Fig 5.4. Architecture of the 64CE PARAM

be connected to 4 other transputers. Data can be sent and received
via the communication link without disturbing the processing unit.
Hardware support is also provided to allow the transputer to concur-
rently execute many processes and to communicate with neighbours.
It is thus convenient to build parallel computers with transputers.

' PARAM is a message passing multicomputer system. The CEs are
interconnected using a crosspoint switch. The four communication
ports of each CE is connected to the switch. The switch connections

Available High Performance Computers 83

can be controlled by a switch manager. This allows the CEs to be
connected in different configurations such as a tree, a ring, a torus,
a hypercube etc. The only restriction is the limit of 4 ports per
CE. The architecture of a 64 node mchine is shown in Fig 5.4. A
special feature of PARAM is that the 64 CEs can be partitioned into
a number of sets. Each set can be allocated to a different user who has
a host. The interconnection of the CEs within a set can be specified
by the user. Thus if 4 users are each allotted 16 nodes, one user may
use a hypercube interconnection, another a ring, third a tree and the
fourth user a mesh. Only one user can use a set of CEs at a time.

The maximum number of CEs which are available in PARAM

currently is 256. If all 256 CEs are needed for a program, they can

be used but by only one user at a time. A maximum of 20GB disk is
now provided. '

A software environment to program PARAM has been developed
and is called PARAS. It has tools for parallel program development
such as process allocation to CEs, process management, debugging
and profiling. Percieving parallelism in a program and allocating
tasks to CEs is the user’s responsibility. A new version of PARAM
which uses an intel i860 processor as a vector coprocessor shared by
4CEs has now been designed. It is expected to enhance the speed of
PARAM.

5.5 Data Parallel Computers: Connection Machine

In the last chapter we described the idea of duia parallelism. We
described the structure of array processors. The idea of array of
processors has been generalized in the Connection Machine built by
Thinking Machines Corporation of USA. The Connection Machine,
CM 2 system has 65,536 physical processors. Each processor has 4096
bits of memory and has an Arithmetic Logic Unit which operates on
1 bit operands. Sixteen processors are integrated into one chip and
are connected in a mesh. There are 4096 chips.

These 4096 chips are connected together, as a 12 dimensional hy-
percube. Routing of messages between chips is done by a hardware

84 Supercomputers

Local Area Network
i I |
CP CP | seeee | CP I0CP

Data and Control Network

PE PE | «+.s. | PE /O | +eee| 1O

VME FDDI
Fig 5.5. The CM 5 architecture

router in each chip. The basic message passing instruction is send.
Arguments of send specify the length of the message, the message
itself and the address of the destination processor. The Connection
Machine routing hardware handles a large number of messages effi-
ciently. CM 2 is an SIMD machine.

Model CM 2 has now been replaced by model CM 5. Model CM
5[4] has thousands of processing elements, one or more control pro-
cessors and I1/0 units to support disks, graphics terminals and other
peripherals. These are connected by two networks called the control
network and the data network as shown in Fig. 5.5.

A processing element of CM 5 is a general purpose 32 bit computer
with 8 to 32 megabytes of private memory. Thus it can compute
by itself. It can also cooperate with other processing elements (as
specified by the control processor) and compute in parallel. A high
performance arithmetic accelerator can be added to the processing
elements to give it the capability to deliver 128 Mflops speed. The
arithmetic accelerator is connected to the processor through a 64 bit
bus and consists of 4 vector arithmetic units each with 8 Mbytes of
Jata memory. The vector units carry out vector instructions issued

Available High Performance Computers 85

by the processing element. In fact a single CM 5 processor with a
vector unit is a minisupercomputer by itself.

The control processor consists of a high performance microproces-
sor, memory, I/O and an interface to connect it to the control and
data networks. The main function of the control processor is schedul-
ing user tasks on processors, allocating resources, ensuring security
etc. The control processor runs a version of Unix operating system.
Programs are loaded on CM 5 control processor. It broadcasts blocks
of instructions to the parallel processing elements and then initiates
execution. When all processors are on a single control thread, they
are kept closely synchronized. When the processors take different
branches, they fetch instructions independently and synchronize only
as required by the program.

To maximize system utilization a system administrator may di-
vide the parallel processing elements into groups known as partitions.
Each partition is then managed by a control processor.

The main advantage of CM 5 is its special structure and software
aids to perform efficiently data parallel computations at both fine and
coarse grains. As it is easy to perceive data parallelism in programs
the promised speed of 100 Gflops on a thousand processors may be
attained with such programs.

5.6 Performance Evaluation of Supercomputers

When a customer wants to buy a supercomputer paying millions
of dollars he would like to know how the computer will perform for
his applications. Manufacturers normally quote peak megaflop rat-
ing which is based on the best possible hardware capability of the
computer. There is a wide disparity between the average megaflop
speed obtained when applications are run and the peak value. For
instance, in some applications, the average megaflops obtained may
be 5 while the peak rating may be 2500! The main reason for this is
that algorithms and programs, if not properly designed, can perform
very poorly on supercomputers. Small differences in code can make
a supercomputer run signficantly slower or faster. Thus it is impor-

86 Supercomputers

tant to get a realistic measure of the performance of a supercomputer
before it is bought.

There are many methods of evaluating the performance of high
performance computers. A very good method is to collect a reason-
able variety of (atleast 15 programs) from the users’ applications for
which the high peformance computer is intended to be used. The
programs must be the ones which take a long time on a mainframe to
compute. The expected execution time of each program on the fast
computer should be atleast 10 minutes.

This batch of programs, called benchmark programs, are then ex-
ecuted on the specific configuration of a high performance computer
one intends to buy and the execution times are recorded. The pro-
grams are run in four different modes:

1. As it is, with no vectorization (parallelization) or optimization

2. Programs vectorized (parallelized) and optimized using the ven-
dor’s automatic vectorizer and optimizer

3. Programs further vectorized (parallelized) and optimized man-
ually. Manufacturer’s assembly language code for some of the
standard routines such as matrix inversion may be substituted
in the place of users’ routines. This is expected to give the least
execution time

4, Program algorithm changed and program re-written keeping in
view the specific architecture of the machine on which the pro-
gram is executed. This may be particularly critical for parallel
computers for which special programming may be required.

Even though this is a good method there are many practical prob-
lems in following this method. The exact configuration required may
not be available. It is expensive as it requires both computing and
human resources of the vendor. Vendors are thus reluctant to run
benchmark programs of prospective customers unless they feel the
customer is a very serious prospect. The entire operation of collect-
ing a set of benchmarks, validating them, running them on existing
machines to get sample answers with data and then converting them

Available High Performance Computers 87

to run on a vendor’s machine is very time consuming and expensive
for the prospective customer also. Thus there have been attempts to
standardize a set of commonly used application programs which are
representative of the load on supercomputers. We will describe some
of these approaches.

A popular benchmark (also known as a kernel plrogram as it is the
heavily used core of a program) is the LINPACK kernel. This is a
program to solve a set of 100 simultaneous algebraic equations. The
set of equations is dense, in other words, most of the coefficients of
the equations are non zero. The program is coded in Fortran and
is run in 2 modes: one with 32 bit real number precision and one
with 64 bit precision. The 64 bit precision is more relevant for su-
percomputers. Executing LINPACK requires very frequent calls of
the so-called Basic Linear Algebra Subprograms (BLAS). LINPACK
execution time is quoted using only Fortran. Another LINPACK
time quoted is by replacing BLAS by optimized assembly language

" programs for specific machines. LINPACK program was developed
by Jack Dongarra of Argonne National Laboratory, USA. LINPACK
program has been run for almost all computers starting with a Per-
sonal Computer to the most powerful supercomputer. The quoted
megaflop rating is known as LINPACK megaflop and it is around 40
for a Cray YMP single processor machine. Even though LINPACK
program is not truly representative of all scientific and engineering
problems it is well understood and relative performance of computers
can be evaluated. Another drawback of LINPACK is its relevance to

only single processor computers.

More recently scientists at the Centre for Supercomputer Research
and Development (CSRD) at the University of Illinois, USA, have
evolved a set of benchmark programs called the PERFECT CLUB
benchmarks. This set of benchmarks is the result of extensive work
undertaken by CSRD to develop a set of thirteen long-running super-
computer application program representing a spectrum of scientific
applications. These benchmarks are becoming widely accepted as
standard benchmarks for evaluating supercomputers. In Table 5.5

88 Supercomputers

Table 5.5. Perfect Benchmark Results for Cray Machines

CRAY YMP | CRAY YMP 8
Unoptimized | Optimized | Unoptimized | Optimized
Program speed in Speed in Speed in Speed in
Mflops Mflops Mflops Mflops
Fluid
Dynamics
ADM 19 62 19 91
ARC3D 140 148 291 989
FLO52 109 111 329 347
OCEAN 32 124 36 275
SPEC77 36 101 36 543
Chemistry &
Physics
BDNA 84 142 121 288
MDG 17 80 17 595
QCD 13 39 13 250
TRFD 56 76 56 440
Engineering
Design
DYFESM 47 136 59 295
SPICE 6 20 6 20
Signal
Processing
MG3D 23 191 23 1094
TRACK 8 18 8 39
Harmonic mean 20 57 21 116
megaflops

we give the megaflops obtained on 13 Perfect club benchmarks for
Cray YMP. It is clear that there is a wide variability in megaflops
obtained. The harmonic mean value gives an estimate of the sus-
tained speed available. Observe also that the peak megaflop is nine
times larger than the harmonic mean of the megaflops obtained for
the 13 applications in CRAY YMP 8. Thus performance evaluation
of supercomputers for specific applications is very difficult without
actually implementing and running the program.

Evaluating the performance of parallel computers is still more dif-

Available High Performance Computers 89

ficult. Optimizing the program is highly architecture dependent. An
algorithm and a corresponding program which runs very fast on a
particular parallel machine may be very inefficient on another. Thus
the peak megaflop rating quoted by vendors would be meaningless
when one tries to run specific applications. The field is still nascent
and. it will take some time before acceptable methods of performance
evaluation of such machines are established.

Fl

6
Applications of
Supercomputers

Supercomputers are indispensable tools for scientists and engineers in
their research and development. As was pointed out in the first chap-
ter, numerical experimentation using computers is now as important
as hypothesis or theory formulation and experimental verification.
Numerical experimentation, namely, simulation on a cdmputer of the
mathematical model enhances a scientist’s ability to reason about
complex phenomenon in many ways. Simulation allows the study of
phenomenon which are difficult to study experimentally(8]. Exam-
ples of such situations are simulating accidents in nuclear reactors,
simulating crashes of a motor car or aeroplane or spread of fire in oil
wells. Simulation allows study of complex, non-linear models which
are difficult to solve analytically. Examples are the study of fusion
reactors, formulating atmospheric models and modelling spread of oil
spills in oceans. Simulation is also useful to test whether a proposed
theory is correct. Examples are numerical study of drug reactions,
and synthesis of drugs. We illustrate these with examples in this
chapter. Besides their use in science and engineering which may be
thought of as traditional applications, many other applications have
now emerged which were not foreseen by supercomputer designers.
The interesting ones are the use of supercomputers in Hollywood
to make cartoons and, by advertising agencies to make innovative
graphics based video presentations. Economists now use it for large
economic models, security agencies use them to design secret codes
and cryptologists to break these codes. The enormous speed of su-
percomputers, wider availability, reduction in cost and the emergence
of excellent high resolution graphics have all led to an increase in the

Applications of Supercomputers 91

variety and novelty of supercomputer applications. In this chapter,
we will describe some interesting applications of supercomputers to
enable the reader to get an appreciation of the versatility of these
computers,

6.1 Motor Car Crash Simulation

An interesting application of supercomputers is to simulate the
effect of various types of accidents involving a motor car, its driver
and passengers. The primary aim is to design a car body in such
a way that if it collides with another vehicle on the side, or head
on, or crashes against a barrier the driver and the passengers in the
car will be safe. In Western countries standards have been specified
for motor car bodies to ensure safety which should be adhered to by
manufacturers. Thus manufacturers design their vehicles with care
so that it is a safe vehicle to drive.

Force Vector

[~ Boundary

—

A finite element
Fig 6.1. Division of a Motor Car body as finite elements

In earlier days (1970s and 80s) manufacturers used to make model
cars and actually crash them against a barrier at different speeds and
study the effect. This has many disadvantages. It is very expensive
to make a car and crash it. Thus the number of experiments carried
out would be limited by this cost. If it is found after the crash that

92 Supercomputers

major modifications are needed in the body design there will be a
long delay before the new model car is ready to be marketed. This
delay will reduce the competitiveness of the manufacturer and hence
his sales. Thus extensive crash tests were not feasible.

With the advent of computers a natural question to ask is “Is it
possible to model the motor car body mathematically in enough detail
and simulate crashes using this mathematical model on a computer?”.
To answer this question let us examine how to mathematically model
the body of the car. This is done by taking the surface of the body
and dividing it into small squares called finite elements, as shown in
Fig. 6.1.

The force due to collision is modelled as force vectors on each
finite element. With the known geometry of the element and the
property of the material of the motor car body the stresses and re-
sultant deformation is computed. If the body is divided using a 100
x 100 grid, each corner has three translational and three rotational
degrees of freedom so that there are roughly 6% unknown quantities
to be computed. The basic matrix equation to compute these is[8]:

(K)1{U} = {P}
where {K] is the stiffness matrix generated from the known charac-
teristics of the material used for the body {U} is the unknown dis-
placements to be computed and {P} is the vector of forces applied to .
the grid points and generated from the type of crash to be simulated.

The computations required to generate [K] {P} and subsequently
solve for {U} are substantial. They are around 10° floating point
operations for each simulation run. The stiffness matrix is sparse
with over 90% of the element values being zeros. This problem takes
too long a time on mainframe computers. It is found that the time to
run one simulation on a 200 megaflop (peak speed) supercomputer is
6 hours. Inspite of this, manufacturers find this technique more cost-
effective than testing with physical car models. The main advantage
is that simulation can be performed very early in the design cycle of
a motor.car. Manv body designs can be simulated and only the good

Applications of Supercomputers 93

ones kept for futher detailed design and analysis. Fewer real crash
tests on physical prototypes are needed. The body design can be
optimized to meet very strict safety specifications. This is one of the
applications for which car manufacturers abroad use supercomputers
extensively.

Similar ideas are used to design bodies of aircraits and space ve-
hicles. The problems are a lot more complex and need very large
supercomputers.

6.2 Application in Oil Exploration

Geologists carry out what are known as seismic exploratory studies
to find out whether a given region has a potential oil well. These
studies are also used to pick out a spot which is the most promising
one for digging an oil well. As digging a deep well is very expensive, it
is advisable to find ways whereby every drilling exercise is successful.
The usual method used by geologists is to dig a deep hole in the earth,
plant an explosive there and detonate it. When the bomb explodes,
shock waves travel all around and eventually arrive at various points
on the surface after a lapse of time. A number of detectors are placed
surrounding the hole and the intensity of the signals received and the
elapsed time between the detonation and the detection of signals are
measured. A large number of such experimental results are stored on
storage devices such as magnetic tapes. The intensity of the signals
received and elapsed time are functions of the composmon of the
ground in the region surrounding the excavation. . :

The question a geologist would ask is “What is the composition
of layers of rocks, sand, soil, water, oil etc. which will result in the
signals detected by the explosion?”. Once this composition is known
the geologist can predict the best place to dig for oil. In order to
answer this, the composition of the earth in that area is modelled
by multiple layers of materials with varying densities as shown in
Fig. 6.2. The acoustic wave propagation in the surrounding region
when an impulse blast is applied at the specified point is calculated.
The governing equation is a 3D accoustic wave equation given by [11]:

94 Supercomputers

Measurement Points

Fig 6.2. Model of earth for exploration

ANQIF)+AAN) = if# +

where p(x, Y, z) is density, k(x, vy, z) is the bulk modulus and s(x, v,
z, t) is the pressure. It is assumed that p, k and s are known and
p(x, Yy, z, t) is calculated.

A realistic seismic model for oil exploration requires a 6km X 6km
surface and a depth of 3km and simulation should simulate the values
of p(x, y, z,t) for 3 seconds. The experimentally detected acoustic
waves are sampled at 0.75 or 1 msec interval. Thus the simulation
should be tun with time intervals of At = 1msec and 3000 steps
are needed to simulate 3 seconds. The values of Ai, Ay, Az should
be around 5 meters for a good finite difference approximation. Thus
there will be 6000 x 6000 x 3000 elements in the finite difference
model. With assumed values for p, k and s, the function p(x,y,z,t),

Applications of Supercomputers 95

is computed for the selected values of (x,y,z,t).

These computed results are matched with the experimental values.
If they do not match the assumed values of p, k, and s are changed
and the calculations are repeated. As can be seen, the trial and error
method is very tedious and time consuming. Only a supercomputer
with a very large main memory and speed around a gigaflop can solve
these equations realistically.

After the calculations are complete the model nearest to the one
which gave answers p(x,y,z) close to the experimental observations
is chosen. This is used to decide the best place to explore for oil by
digging a well.

Even though the computing time is very large and an expensive
supercompter is needed to solve the problem, it is much cheaper than
digging a well and finding no oil. Computer simulation considerably
increases the probability of correct drilling and is thus used exten-
sively by geologists prospecting for oil.

6.3 Movie-making with Supercomputers

One of the innovative uses of high performance computers coupled
to high resolution colour graphics terminals is in producing anima-
tion and special effects of excellent clarity and realism for the motion
picture industry. Hollywood has pioneered [13] in the use of super-
computers such as Cray XMP to revolutionize movie making, partic-
ularly, those which combine humans and animated characters such as
in the famous movie “Who Framed Roger Rabbit”. The dream is to
even simulate and synthesize human characters by computers. The
most difficult problem wil be the creation of believable human figures
and human interaction. Currently exaggerated expressions can be
modelled, but not subtle facial features. The personality, persona, or
psyche of a character must be accurately portrayed to achieve total
realism.

Computer simulation of a scene starts with the conception of
scenes by an art director. Using the script of the movie and the

96 Supercomputers

scenes, a storyboard artist draws visual descriptions of the key frames.
Simultaneously a production designer isolates the objects of a scene
such as spaceships, animals, humanlike figures,trees, houses etc. Each
object is designed in great detail and an architectural plan is drafted
that contains complete 3D information. The surface shape of each
part of an object is drawn as a set of polygons. A large number of
polygons are needed to describe complex objects realistically. Both
computer storage and time needed for simulation increase rapidly as
"the number of polygons increase. The polygons are translated into
numbers using a digitizing tablet and stored in a data file in the com-
puter. Using this data a computer program constructs 3D models and
displays them on a graphics terminal connected to the computer. So-
phisticated hardware and software on the graphics terminal and the
computer allows the objects to be rotated, enlarged and contracted.
This facility is used to make any modifications in the design. A li-
brary of designed objects is normally kept in a database for future
use. The image of an object created on the graphics terminal is called
a wire-frame as it is a line drawing and looks as if a wire mesh has
been stretched over the surface of the object.

The wireframe is then converted by software to look like the
artist’s conception of the original object. In doing this the texture of
the object, the type of lighting, colour etc., is realistically portrayed.
The computer faithfully portrays the type of material such as glass,
metal, wood, wool etc. The surfaces are made dull or shiny, smooth
or rough, shadows are shown, transparency, translucency, reflection,
refraction etc., by objects are simulated. The artist, the software
consultant and the producer work closely together to ensure accu-
racy and realism.

Trial animation is done by the technical director using the wire
frame images. The animation should faithfully follow the concep-
tualisation of the art director. The technical director specifies the
starting and end wire frames, the actions which take place in ‘be-
tween and length of time for each action. A software package uses
these specifications, computes the number of intermediate frames to

Applications of Supercomputers 97

be generated, the changes from frame to frame and automatically cre-
ates the appropriate actions. This is viewed by the technical director
and approved. If not satisfactory the specifications are changed by
the technical director and the program is re-run.

When the final video film is made, the software computes each
frame using all the characteristics of the object including texture,
colour, etc., and creates visually realistic scenes. A high performance
. computer is needed to create realistic intermediate objects. The film
segments are edited and combined with live action footage and special
effects to entertain movie fans.

The scope of computer based animation systems is very broad.
Movie directors, advertising companies, and television producers have
realized the enormous potential of this medium and are investing
large amounts on supercomputers and high resolution graphics sys-
tems. These systems allow artists and directors to create new worlds
far from reality. These creations can defy gravity, turn inside-out, go
through solid walls, explode and recombine instantaneously after be-
ing shattered to pieces. The productivity of the medium is increasing
rapidly. It is possible to produce 24 minutes of film per month or
288 minutes per year which is equal to 4 full length feature films. In
contrast, using traditional techniques Walt Disney studio animators
produce, on the average, one film every two years.

6.4 Weather Forecasting

A major goal in atmospheric sciences is to forecast weather over
long periods accurately. Accurate prediction of monsoons in India,
for instance, can make an enormous economic impact. The date of
onset of the monsoon in various parts of the country and the pattern
of the monsoon can help agriculturists to start their sowing opera-
tions in time thereby increasing yield of crops. It was not practical
to do this three years ago due to the non availability of supercomput-
ers. With improvements in modelling, better understanding of the
monsoon phenomenon, better and more reliable recording of temper-
ature, rainfall, etc., coupled with the availability of supercomputers,

98 Supercomputers

has now made it feasible to predict the onset and the pattern of mon-
soons two months before the actual onset of the monsoon. The mon-
soon model is quite ingeneous and uses many empirically determined
parameters. The model is continuously being refined based on the dif-
ference between observed monsoon and predicted monsoon. In order
to predict monsoons and also for medium range weather forecasting
a supercomputing facility has been established by the Department of
Science and Technology, Government of India at Delhi. This centre
has a Cray XMP 28 supercomputer and a VAX front-end computer.

Besides forecasting the pattern of monsoons it is also very useful
to predict the detailed weather well ahead of time. Twenty years
ago it was thought impossible to forecast weather for long periods
such as 2 weeks. Today such forecasts are routinely done by the
European Medium Range Weather Forecasting Centre with the help
of supercomputers. The weather is governed by physical laws which
can be modelled as a set of partial differential equations in which the
most important variables are the wind-speed, air temperature, water
content and atmosphereic pressure. These three dimensiopal models
can be divided into two classes - grid point or spectral depending
on the manner in which horizontal (with respect to earth’s surface)
fields are represented. In the grid point model fields are represented
by values on a discrete grid and derivatives are approximated by finite
differences. In the spectral model fields are represented by a finite
series of analytic functions such as Sines and Cosines, and derivatives
are approximated by differentiating each function in the series (12].
The details of these models are described in text books on weather
modelling. Spectral methods are now more commonly used for both
numerical weather prediction and climate simulation in USA, Canada
and Europe as the predictions based on this model have been closer
to the observed weather.

When considering operational weather forecasting one must al-
ways keep in mind its timeliness. The sooner the forecast is available,
the more useful it is. Supercomputers are essential to ensure time-
liness as computation of forecasts are very time consuming. Besides

Applications of Supercomputers 99

the time taken by the supercomputer, the elapsed time also includes
the time taken to convert raw observations to a form the computer
mode] can use and the time to send the forecasts to the user.

Besides weather forecasting, models of the atmosphere have also
been used to simulate the “Greenhouse Effect”. .Emission of gases
such as carbon dioxide, methane and chloroflourocarbons by big in-
dustries has started intensive debates on the potential of global warm-
ing which could occur due to these gases accumulating in the atmo-
sphere. This is called the Greenhouse Effect. Scientists in many coun-
tries are using supercomputers to model the atmosphere for studying
the potential impact of emission of these gases on average daily tem-
perature. :

Forecasts based on simulation of the effect of these gases on global
weather in the next 50 to 100 years have been computed. Various
scenarios are considered in simulation such as:

-1. Emissions being as they are now
2. Emission increasing each year by 5%
3. Emission decreasing by 5% each year.

These computations would be impossible to carry out without a su-
percomputer. Simulation results are compared with past observations
and authenticated. The results of simulation of the future scenario
will give governments of various countries the proper information to
assist in proposing a law to control industries to reduce the adverse

impact of greenhouse gases.

Another related problem is that of ozone depletion in the upper
atmosphere. This is due to the free chlorine in chlorofluorocarbons
and the oxygen in nitrous oxide (from motor car exhaust gases) re-
acting with ozone in the upper atmosphere and breaking down ozone
into oxygen. The loss of ozone increases ultraviolet radiation leading
to skin cancer in humans and destruction of some cells in plant and
animal life. Supercomputers are being used to study how chemical
reactions take place in the upper atmosphere, whether both deple-
tion and creation of ozone goes on simultaneously and how ozone

100 Supercompulers

depletion can be halted. -
6.5 Magnetic Fusion Energy Research

The Sun and the Stars seem to radiate inexhaustible energy due
to fusion reactions which are continuously maintained in the system.
The major problem scientists and engineers try to solve is to design
a reactor which simulates the conditions in the Sun. The conditions
are simulated by the behaviour of plasmas (hot electrons and ions)
that while trapped inside intense magnetic fields interact with neu-
tral particles and sources of electromagnetic energy. One of the fields
of study is known as Magneto Hydro Dynamics (MHD) which tries
to predict the behaviour of a plasma of ions and electrons in a com-
plex magnetic field. A successful research area in plasma physics in
recent years has been the analysis of the non-linear evolution of ideal
and resistive MHD modes. This success has been achieved by us-
ing computer programs which simulate the system in 3 dimensions.
" The model uses non-linear partial differential equations and requires
intensive computational effort. The non-linearity and complexity of
these equations preclude analytical solutions and thus computer sim-
ulation of these equations is essential. The results of this simulation
have played a key role in guiding the theorist in understanding mag-
netic island{9] development, which is essential in determining sets of
parameters of the system which lead to a stable plasma in a confined
volume. Earlier experimental results which were not well understood
have been clearer after the simulation results obtained by using a
supercomputer nearly matched the experimental observations.

6.6 Computational Chemistry

One of the interesting problems solved by structural chemists is
to predict the structure of complex molecules. Chemical bonds bind
atoms together and one looks for molecules which have some useful
properties. Electrons in a molecule have several energy states that
can be approximated as a combination of basis functions. The basis
functions are a set of orthogonal polynominals. When a set of basis
functions with appropriate coefficients are picked to meet a minimum

Applications of Supercomputers 101

energy criterion they describe the stable arrangement of the atoms in
the molecule. A technique known as ab-initio method computes the
energies of electron states, ignoring those above a specified energy.
With N basis functions, the number of interactions are of the order
of N4 (N is of the order of 100). The interactions, or Gaussian in-
tegrals, typically number in the billions and need a large high speed
disk storage device for their storage and high speed computers for cal-
culations. The processing of these integrals usually involves repeated
matrix multiplications[14]. Typical matrices in computational chem-
istry are sparse with less than 1% nonzero elements. Thus algorithms
which can exploit sparsity will lead to ten thousand fold increase in
speed of computation.

Ab-initio methods have also been used to study chemical prop-
erties of various clinically active drug molecules which are difficult
to study experimentally. These studies are extremely useful to syn-
thesize new drugs. For example, cyclophosphomide, one of the most
widely used and effective anticancer and immuno-suppressive agents
acts on a wide variety of tumours and lukemias. The local chemical
determinants of cytotoxicity of this drug were identified by using a
supercomputer and a hierarchy of molecular computational methods.
The number of experiments carried out were much smaller as 2 num-
ber of unpromising cases could be eliminated by examining the sim-
ulation results[15]. Thus the total time taken to discover life-saving
drugs is reduced considerably.

6.7 Conclusions

In this chapter we described some applications of supercomput-
ers so that a reader will get a flavour of the variety of problems for
which these machines are used. Computer technology is progressing
very fast. Every two years the speed of computers is doubled and the
price is reduced. Computers which were considered supercomput-
ers ten years ago and which cost over ten million dollars and required
stringent environmental control and maintenance are now available as
desk top workstations. The emergence of massively parallel comput-
ers has thrown a big challenge to traditional vector supercomputers

102 Supercomputers

such as Cray YMP. The very definition of supercomputers is now
-questioned and many Computer Scientists prefer to call them high
performance computers. The topic of supercomputers is of poten-
tially great interest to all educated persons as it points to the leading
edge of technology and its impact on our lives. We have attempted in
this book to give a bird’s eye view of this important field. At the end
of this book a small bibliography of books which have more detail
and research articles for those who want to explore this topic further
is given.

Bibliography

(1]

2

3

ol

4

[lamy

[5

o

(6]

Lazou, Christopher; Supercomputers and their use, Clarendon
Press, Oxford, U.K., 1986.

A book intended for those who want to know details of vector su-
percomputers, such as Cray, and use them for solving their numeric
intensive problems. Fair amount of detail on the architecture of
supercomputers.

Levesque, J.M. and Williamson, J.W; A Guidebook to Fortran
on Supercomputers, Academic Press, California, USA, 1989,
This is for persons well versed in Fortran programming who would
like to vectorize their Fortran programs for vector supercomputers.
The authors are experienced programmers with Pacific Sierra Asso-
ciates which specialises in writing vectorizing Fortran Compilers for
Supercomputers.

Hwang, K.,and Briggs , F.A; Computer Architecture and Parallel
Processing, McGraw Hill, N.Y., USA, 1984.

A textbook for postgraduate level students in Computer Science on
the hardware and architectural features of high performance com-
puters including vector supercomputers and paralle} computers. Not
recommended for a beginner.

CM 5 Technical Summary, Thinking Machines Corporation Inc,
Cambridge, MA, USA, October 1991.

Hwang, K., DeGroot, D.S., Parallel Processing for Supercomput-
ers and Artificial Intelligence, McGraw-Hill, N.Y., USA, 1989,
A collection of long articles written by experts in Computer Sci-
ence on the role of parallel computers in high performance numeric
and non-numeric processing. Intended for postgraduate students in
Computer Science.

Rajaraman, V., Elements of Parallel Computing, Prentice- Hall
of India, New Delhi, India-1990.

104 Supercomputers

An introductory book intended for beginners which gives an ele-
mentary and self-contained presentation of parallel computing. It
explains the notion of parallelism in formulating algorithms, meth-
ods of programming parallel machines and their architectural fea-
tures.

[7] Levine R.D., Supercomputers, Scientific American, Vol.46, No.1,
pp. 118-35 (1982)
A long popular article which explains why supercomputers are nec-
essary and describes how they solve problems. It is somewhat old
but is a very good article for a lay scientist.

[8] Buzbee, B.L., Gaining Insight from Supercomputing, Proceed-
ings IEEE, Vol.72, No.1, pp. 19-21 (1984)
An interesting article which gives three situations in which super-
computers are indispensable. This issue of IEEE Proceedings is a
special issue on “Supercomputers - Their impact on Science and
Technology”. It has many interesting articles giving details on how
a supercomputer was used to solve important and difficult problems.

[9] Fuss, D., Tull, C.G., Centralised Supercomputer Support for
Magnetic Fusion Energy Research, Proc.IEEE, Vol.72, No.1, pp.
32-41, (1984)

[10] Gloudeman, J.F, The anticipated impact of Supercomputers o
Finite-Element Analysis, Proc.lIEEE, Vol.72, No.1, pp. 80-84
(1984)

[11] Johnson, O.G., Three-Dimensional Wave Equation Computation
on Vector Computers, Proc. IEEE, Vol.72, No.1, pp. 90-95 (1984)
Explains application of supercomputers in seismic data processing.

(12] Williamson, D.L., and Swarztrauber,A., A Numerical Weather
Prediction Model - Computational Aspects on Cray -1,
Proc.IEEE, Vol.72, No.1, pp.56-67(1984).

[13] Demos, G., Brown, M.D. and Weinberg P.A., Digital Scene Sim-
ulation - The Synergy of Computer Technology and Human Cre-
ativity, Proc. IEEE, Vol.67, No.1, pp.22-31 (1984).

Describes graphics and animation and how supercomputers are used

(14]

(15

—_

(16]

[17]

(18]

Bibliography 105

in these applications.

Gustaffson, J.L., Computer-Intensive Processors and Multicom-
puters, Chapter 5 in the book by Hwang and DeGroot cited as
reference 4 above.

Hausheer, F.H., and Singh, U.C., Computational Design of Phar-
mocologic Agents for Cancer and AIDS therapy, Cray Channels,
Vol.12, No.2, pp. 18-21 (1990).

Cray channels is a quarterly publication of Cray Research Inc. it
is for limited circulation and contains many interesting articles on
applications of Cray supercomputers in diverse areas of Science and
Technology.

Bell, G., The Future of High Performance Computers in Sci-
ence and Engineering, Commn. ACM, Vol.32, No.9, pp.1091-
1101 (1989).

This article is by a pioneer computer designer, the designer of DEC-
PDP and VAX series machines. It is a survey of the state-of-the-
art of traditional supercomputers such as Cray and new massively
parallel computer, which have now entered the market.

Dongarra, J., Martin, J.J., and Worlton, J., Computer Bench-
marking: Paths and Pitfalls, IEEE Spectrum, Vol., No.7, pp.
38-43(1989)

Describes various methods of comparing the performance of super-
computers using benchmarks.

Bhatkar, V.P., etal (Editors),Advanced Compuling, Tata
McGraw-Hill, New Delhi, 1991.

This 796 page collection of technical reports of the work done at
CDAC, Pune and Bangalore describes in great detail the hardware
and software features of PARAM parallel computer designed by
CDAC engineers.

Index

iPSC2 81

80860 74,75

Alliant 76,77

Amdahl’s law 36

Array Processor 50,62

Array adder 50

Benchmark programs 86,87

Bubbles in Pipeline 14

CM 5: 84

Computational Chemistry 100

Connection Machine 83,84

Convex 30,76,78,80

Cray 17,25,27,28,29,30
65,71,72,73,74,79

Cray 2: 29,72

Cray 3: 30,72

Cray Research Inc 17

Cray YMP 17,20,23,24,26,29
65,69,71,72,87,88,102

Data Parallel Computers 88

Data parallelism 10,49,
50,52,67,83

Fortran 23,31,37
42,46,72,73,78,80,87

Frontend Computer 18,28

Input-Output System 19

Intel 74,75,80,81

LINPACK 87

Loop profiler 44

MIMD 62

Magnetic Fusion 100

Main Memory 20

Megaflops 4,9,17,35

Message passing 65,66,80
81,82,84

Message passing inulticomputer
65,66,80,82

Motor Car Crash Simulation 91

106

Movie making 95

Multicomputers 66,81

Multiprocessor 63,64,78

NEC 27,29,73,74

Numerical experimentation 5,90

PERFECT Club Benchmarks 87

Parallel computer 49,52,60,61,
62,64,65,71

Parallelism 18

Performance evaluation 88,89

Pipelined adder 15,16,17,49

Pipelined processing 11,17,19

Program Profiler 42

SIMD 50

SPMD 52,62

Scalar registers 18

Secondary memory 4,20,27,72

Shared memory 63,64,65,66,78

Subroutine in-lining 45,46

Supercomputers 1,2,3,4,
9,10,14

Tightly coupled Multiprocessors 63

Vector chaining 17

Vector instructions 37,72,79

Vector processing 34,37,65

Vector registers 17,21,24,25

Vector supercomputers 17,31
33,37,49,67,71,74,101

Vectorization 31,34,35,36,39,
41,42,43,45,46,47,48

Virtual memory 27,78

Weather Forecasting 98

TITLES
OF
RELATED INTEREST

UNIX IN EASY STEPS

Azam, M.

Contents : A comprehensive guide to learning UNIX, this book gradually
moves from the elementary principles of the subject 1o the more complex con-
cepts. Adopts an integrated approach in treatment of commands and concepts.
The lucidity of the text accompanied by the numerous exercises provide a theo-
retical and practical knowledge of UNIX.

HARDWARE AND SOFTWARE OF PERSONAL COMPUTERS
Bose, Sanjay K.

Contents : Microcomputer Organization. An Introduction to the 8088 CPU.
Hardware Organization of the PC. The Video Display of the PC. The ROM-
BIOS Services. The Fundamentals of DOS. The DOS Functions of INT21H.
Disks and files under DOS. Memory Allocation, Program Loading and
Execution. Intermapt Handling Through DOS. Filters for DOS. Review
Questions. .
8122403034 1991 271pp paper Rs. 75

DIGITAL SYSTEMS: FROM GATES TO MICROPROCESSORS,
2nd Edition

Bose, Sanjay K.

Contents : Boolean Algebra and Combinatorial Circuit Design. Semiconduc-
tor Memory Elements. Sequential Circuit Design. Dependency Notation.
Microprocessor Architecture and Instruction Execution. Microcomputer Or-
ganization. Assembly Language Programming Using the 8085 A. Pin-Out and
Timing of the 8085 A. Input/Output (I/0) Techniques. Analog Interfacing.
Interrupts. Single-Chip Microcomputers. The Intel 8086/8088 CPU. Micropro-
cessor System Development Aids.

8122404324 1992 448pp paper Rs. 100

INTRODUCTION TO COMPUTER SCIENCE
Govindaraju, S., M. Chandrasekaran, A.Abdul Hag, T. R. Narayanan.
Contents : Overview of Computers. Information Representation. Algorithm

and Flowcharting. Theoretical Models of a Computer. An Operating System for
Personal Computer Software Packages, Programming in Basic. Information
Processing. Computer Graphics. Pascal from Basic. Artificial Intelligence.

8122404251 1992 346pp paper Rs. 70

THE C LANGUAGE TRAINER WITH C++

Jayasrl, J.

Contents : Introduction to Computer Languages. Introduction to ‘C’, Lexical
Elements of ‘C’ Language. Entering and Executing A ‘C’ Program. Input/
Output in ‘C’. Operators and Expressions. Control Structures. ‘C’ Functions.
Arrays and Strings. Pointers. Structures and Unions. °C' Files. *C’ Preproces-
sors and Command Line Arguments. Graphics Features in ‘C’.

CREATIVE COMPUTING USING BASIC

Kannan, N.

Contents : About Computers. Formation of Algorithms and Flowcharting.
Fundamentals of Computers. Beginning to Compute with BASIC. Basic
Control Statements. For-Next Loop. Subscripted Variables. Functions and
Subroutines. Testing and Debugging. Aspecis of Efficiency. Sorting, Searching
and Some Business Applications. Problem Solving with Computer. Structured
Basic using Microsoft Basic. File Handing. Graphics. Antificial Intelligence.
8122402666 1990 299pp paper Rs. 60

DESIGN OF ELECTRONIC CIRCUITS AND COMPUTER

AIDED DESIGN

Shah, M.M. :

Contents : PART [: Design of Electronic Circuits : Power Supplies. Filters.
Design of Power Supplies. Regulated Power Supplies. Series Voltage Regula-
tor. Controlled Rectifiers. Amplifiers. Jfet Amplifiers. Power Amplifiers.
PART II : Computer Aided Design of Electronic Circuits : DC Circuit Analysis.
Device Modelling. Design of Circuits.

8122404723 1993 246pp paper Rs. 70

WILEY EASTERN LIMITED

4835024, Ansari Road, Daryaganj, New Delhi 110 002, INDIA
Bangalore, Bombay, Calcutta, Guwahati, Hyderabad, Lucknow, Madras, Pune|

SUPERCOMPUTERS

Of iate there has been a lot of interest in our country on Supercomputers. They
have become part of the vocabulary of all educated persons as press reports
appear regularly In newspapers about these computers and how they are being
used tosolve a whole range of vei” interesting problems from predicting the
monsoons to synthesizing life-saving drugs. There Is thus a widespread curiosity
to know what are supercomputers, inwhat way they are different from other
computers and why they are considered strategic machines by the advanced
western countries which have imposed strict export controls on them. The
purpose of this educational monograph is to answer these questions and review
the current state-of-the-art of supercomputers.

This book explains what is a supercomputer and why such a machine Is needed
to solve challenging problems in science and engineering. The architecture of
supercomputers which distinguishes them from other computers is explained.
The need to vectorize programs to make effective use of supercomputers Is
brought out and some simple methods of vectorizing programs are discussed.
Ttie emergence of parallel computers as cost effective replacement for Cray type
vector supercomputers Is explained. The architecture of parallel machines and
the principles used to program them Is discussed. The book presents details of
some of the commercially available high performance computers. It concludes by
describing some Interesting applications of supercomputers.

This book is meant for students In their final year M.Sc. or B.E. courses, (witha
basic knowledge of programming in a high level language such as Fortran) who
would like to know about supercomputers. It should also interest other scientists
and engineers who would like to know about this subject.

V. Rajaraman Ph.D. (Wisconsin), Is Tatachem Professor of Computer Science
and Chairman, Supercomputer Education and Research Centre at the Indian
Institute of Science, Bangalore. He is also Honorary Professor at the Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore. Earlier, Professor
Rajaraman taught at the Indian Institute of Technology, Kanpur, from 1963 to
1982.

A pioneer In computer science education and research In India, Professor
Rajaraman was awarded the prestigious Shantl Swarup Bhatnagar Prize in 1976.
He is also the recipient of the Homl Bhabha Award for Research In Applied
Sciences, and the U.P. Government National Award for Excellence In Teaching
and Research. He is a Fellow of the Indian Academy of Sciences, the Indian
National Science Academy and the Indian National Academy of Engineers. An
author of several well established and highly successful computer books.
Professor Rajaraman has published many research papers In reputed national
and International journals.

WILEY EASTERN LIMITED
New Delhi Bangalore Bombay Calcutta Guwahatl
Hyderabad Lucknow Madras Pune

ISBN 81.224.0496-0

