
V. RAJARAMAN

SupercoiiiilerS

About the Series

The educational monograph series o f tlie JNCASR attempts to cultivate
a general appreciation of some of tlie frontier areas o f science and
engineering, amongst its readers. Each book in tliis series, written by an
acknowledged autliority, presents an emerging or a frontier topic from
scientific, historical and utilitarian angles. The series tliough addressed
primarily to graduate and postgraduate students o f science and
engineering also enjoys a general readership interested to keep abreast
of what is going on in tlie world o f science.

Editorial Board
S. K. Biswas Coordinator
V. Krishnan
N. Mukunda
J.V. Narlikar
G. Padmanaban
V. Rajaraman
K.J. Rao
C. N. R. Rao
J. Srinivasan
M. S. Valiathan

T itles published
1. Superconductiviiy Today — T. V. Ramakrishnan and

C. N. R. Rao
2. Bohr and Dirac —

Images o f Twentieth
Century Physics — N. Mukunda

Forthcom ing Title
Genetic Engineering — G. Padmanaban

V. RAJARAM AN
Jawaharlal Nehru Centre fo r Advanced Scientific Research

Bangalore-560012, India

JA W A H A R LA L N E H R U C E N T R E FO R
A D V A N C ED S C IE N T IF IC R ESEA R C H , B A N G A LO R E

PUBLISHING FOR ONE WORLD

WILEY EASTERN LIMITED
N e w D e l h i B a n g a l o r e B o m b a y C a l c u t t a G u w a h a t i

H y d e r a b a d L u c k n o w M a d r a s P u n e

Copyright O 1993 Willey Eastern Limited
Jaw a^rlal Nehru Centre for Advanced Scientific Research

W I L E Y E A S T E R N L I M I T E D
N e w D e lh i : 4835/24 Ansari Road, DaryaganJ, New Dellii 110 002
B a n g a l o r e : 27, Bull Temple Road, Basavangudi, Bangalore 560 004
B o m b a y : Post Box No. 4124, Saraswati Mandir School, Kennedy Bridge,

Nana Chowk, Bombay 400 007
C a l c u t t a : 4Q/8, Ballygunge Circular Road, Calcutu 700 019
M a d r a s : No. 6, First Main Road, Gandiu Nagar, Madras 600 020
H y d e r a b a d : 1-2-412/9, Gaganmahal, Near AA ̂College, Domalguda,

Hyderabad 500 029
Pune: Flat No. 2, Building No. 7, Indira Co-op Housing Society Ltd.

Indira Heights, Paud Fatta, Erandawane, Karve Road, Pune 411 038
L u c k n o w : IS, Pandit Madan Mohan Malviya Marg, Lucknow 226 001
G u w a h a t i : Pan Bazar, Rani Bari, Guwahaii 781 001

This book or any part thereof may not be
reproduced in any form without the
written permission of the publisher

This book is not to be sold outside the
country to which it is consigned by
Wiley Eastern Limited

ISBN: 81-224-0496-0

Published by H.S. Poplai for Wiley Eastern Umited, 4835/24, Ansari
Road, Daryaganj, New Delhi 110 002 and printed at S.P. Printers,
E-120, Sector 7, Noida. Printed in India.

Foreword

T he Jaw aharlal N ehru Centre for Advanced Scientific Research was
established by the Government o f India in 1989 as part o f the centenary
celebrations o f Pandit Jawaharlal Nehru. Located in Bangalore, it
functions in close academic collaboration with tlie Indian Institute of
Science.

The Centre functions as an autonomous institution devoted to ad
vanced scientific research. It promotes programmes in chosen frontier
areas o f science and engineering and supports workshops and symposia
in tliese areas. It also has programmes to encourage young u len t.

In addition to the above activities, the Centre has undertaken a
program m e o f high quality publications at tliree levels:

(a) Popular Science and General Books—intended for the general
public.

(b) Edticational Monographs—short accounts o f interesting areas in
science and engineering addressed to students at the graduate
and postgraduate levels.

(c) Advanced Monographs—devoted to specialised topics in current
research intended for the international research community.

This monograph is one of the series being brought out as part o f the
publication and activities o f tlie Centre. The Centre pays due attention
to the choice o f authors and subjects and style of presentation, to make
these monographs attractive, interesting and useful to students as well as
teachers. It is our hope tliat tliese publications will be received well both
within and outside India.

C.N.R. Rao
President

Preface

Of la te there has been a lot of interest in our country on Supercom
puters. They have become p a rt of the vocabulary of all educated
persons as press reports appear regularly in newspapers about these
com puters and how they are being used to solve a whole range of
very in teresting problem s from predicting the monsoons to synthezis-
ing life-saving drugs. There is thus a widespread curiosity to know
w hat are supercom puters, in w hat way they are different from other
com puters and why they are considered strategic machines by the ad
vanced western countries which have imposed strict export controls
on them . T he purpose of this educational m onograph is to answer
these questions and review the current state-of-the-art of supercom
puters.

T h is book is m eant for studen ts in their final year M.Sc. or B.E.
courses, (w ith a basic knowledge of program m ing in a high level lan
guage such as F ortran) who would like to know about supercom put
ers. It should also in terest o ther scientists and engineers who would
like to know abou t this subject.

T he book begins w ith an introductory chapter which explcdns
w hat is a supercom puter and why such a machine is needed to solve
some problem s. C hapter 2 discusses the architectural features of su
percom puters which distinguish them from other computers. The
th ird chapter deals w ith program m ing supercom puters. The need to
vectorize program s to make effective use of supercom puters is brought
ou t and some simple m ethods for vectorizing program s are explained.

C hapter 4 is on parallel com puters. Parallel com puters have em erged
as a cost effective replacem ent for trad itiona l vector supercom put
ers in some application areas. T his chapter discusses briefly how
problems may be solved in parallel and the architecturzil features of
com puters which can solve efficiently problem s in parallel. T he fifth
chapter presents details of some of the commercially available super
com puters and parallel computers. T he last chapter deals w ith some
interesting applications of supercom puters.

T he book is a broad based introduction to th is subject. M any
topics are discussed a t an elem entary level w ithout delving deep in to
the detailed technical aspects of the problem . A set of references is
provided a t the end of the book to guide an interested reader to the
m ateria l needed for deeper study.

In w riting a book of this type, I naturally gsiined a num ber of
ideas from num erous articles in journals and books on this sub
ject. I thank all these authors, too numerous to acknowledge in
dividually. Many colleagues and students generously assisted me
by reading a draft of this book and suggested im provem ents. I
thank all of them . My colleagues a t the Indian In stitu te of Sci
ence, D r.N .B alakrishnan, Dr. Mathew Jacob, M r.R .K rishnam urthy,
M r.T.S.M ohan, D r.A .Patel, Dr.S.Ram asesha, D r.V .V isw anathan and
D r.S.Y ashonath generously helped me by reading the m anuscrip t
carefully and suggesting many improvements which I have incorpo
ra ted in th e book. I sincerely thank them for their assistance.

I thank Prof.C .N .R .R ao, President, Jaw aharlal Nehru C entre for
Advanced Scientific Research, Bangalore, who encouraged me to write
th is m onograph and for continually evincing interest in all my endeav
ours. I th an k Ms. Mallika who cheerfully typed the m anuscrip t in
M g X form at and drawing the figures in Xfig. I thank M r.T.S.M ohan
and M r.S .Sundaram , who besides contributing their technical exper
tise in instjilling and running all the hardware and software, spent
a lo t o f tim e in ed iting and in drawing the more difficult figures. I
th an k them for their very cheerful and willing efforts. Finally I ex
press my h eartfe lt appreciation to my wife D harm a for reading the

m anuscrip t, suggesting m any improvem ents to make it understand
able, editing and cleaning up the m anuscript on M g X and Xfig and
for her enthusiastic support which enabled me to write this book.

V.RAJARAM AN

Bangalore
Ju ly 1992

Contents

Foreword y
Preface uti

1. INTRODUCTION 1
1.1 D efin in g a S u p e rc o m p u te r 1
1.2 W hy D o W e N eed S u p e rc o m p u te rs? 4
1.3 H ow D o S u p e rc o m p u te rs A chieve T h e ir S p ee d ? 9

2. ARCHITECTURE OF VECTOR SUPERCOMPUTERS 11
2.1 P ip e lin e P rocessing 11
2.2 V ec to r P ro cessin g 14
2.3 L ogical S tru c tu re o f a S u p e rc o m p u te r 18
2.4 T e c h n o lo g y o f V ec to r S u p e rc o m p u te rs 29

3. COMPUTING W ITH VECTOR SUPERCOMPUTERS 31
3.1 V ec to r In s tru c tio n s 32
3 .2 V ec to riz a tio n o f P ro g ram s 34
3 .3 W h a t is V ecto riza tio n ? 37
3.4 T h e V ecto riz a tio n P rocess 37
3 .5 S c a la r O p tim iz a tio n o f P ro g ra m s 47

4. PARALLEL COMPUTERS 49
4.1 A rray P rocesso rs 49
4 .2 E x e cu tin g T a sk G rap h s o n P ara lle l C o m p u te rs 54
4 .3 A G e n era lize d S tru c tu re o f a P ara lle l C o m p u te r 60
4.4 S h a re d M em o ry M ultip rocesso rs 62
4 .5 M essage P assing M u ltic o m p u te rs 65
4 .6 C o m p a riso n o f V ecto r an d P ara lle l

S u p e rc o m p u te rs 67

5. AVAILABLE HIGH PERFORMANCE COMPUTERS 71
5.1 V e c to r S u p e rc o m p u te rs ; C ray & O tlie rs 71
5 .2 V ec to r C o m p u te r o n a C hip : In te l 808 6 0 74

5 .3 S h a re d M em o ry System s: A llian t & C o n v ex 76
5.4 M essage P assing M u llico n ip u le rs;

iPSC & PARAM 80
5 .5 D a ta P a ra lle l C o m p u te rs ; C o n n ec tio n M acliine 83
5 .6 P e rfo rm a n c e E va lua tion o f S u p e rc o m p u te rs 85

6 . APPLICATIONS OF SUPERCOMPUTERS 90
6.1 M o to r C a r C ra sh S im u la tio n 91
6 .2 A pp lica tion in O il E x p lo ra tio n 93
6 .3 M o v ie-m ak in g w ith S u p e rc o m p u te rs 95
6 .4 W ea tlie r F o recastin g 97
6 .5 M agne tic F usion E nergy R esearch 100
6 .6 C o m p u ta tio n a l C h em istry 100
6.7 C o n clu sio n s lOI

BIBLIOGRAPHY 103

INDEX 106

Introduction
In the last three years a lot of interest has been generated in our
country on supercom puters. Supercomputers have become p a rt of
the vocabulary of all educated persons as press reports and cartoons
regularly appear in the newspapers on India’s order for a supercom
puter and the delays in procuring it due to export controls on high
technology by the countries m anufacturing these machines. There is
thus a widespread curiosity to know what is a supercom puter and
how it is different from other computers. The purpose of this small
book is to answer this question and to explain the logical organization
of supercom puters and how they are programmed.

1.1 D efin ing a S u p e rco m p u te r

T he fastest and the m ost expensive computers available a t any
given tim e are generally called supercomputers. This is not a satisfac
tory definition but we are forced to use such a definition as computer
technology has been evolving rapidly. In the past 20 years there has
been a thousand fold increase in the speed of arithm etic operations
of com puters and it is thus difficult to give a tim e invariant definition
of the speed of a supercom puter. Although the cost of computers for
a specified speed and size has been going down, typically the cost of
supercom puters has remained constant around US$ 10 million. Cur
rently (1992), for a com puter to be called a supercom puter it m ust
have the following characteristics:

H ig h C o m p u tin g S p e e d : The computing speed of a supercom
p u ter is m easured in megaflops. A mega is a million and flops is an
abbreviation for ^oa ting point operations per second. A floating point
operation is an arithm etic operation (add, subtract, multiply or di

vide) on operands which are real numbers with fractional parts . The
operands are expressed as a pair (mantissa, exponent). For exam ple,
the num ber 185.67827 which eq u ^s 0.18567827 x 10® is expressed as
(0.18567827, 3) where 0.18567827 is the m antissa and 3 is the ex
ponent. In supercom puters the num ber of digits in the m antissa is
15 whereas it is 8 in other computers. By other com puters we m ean
personal, mini and mainframe computers norm ally used in com put
ing laboratories. The range of the exponent in supercom puters is also
high, around ±5000 compared to ±99 in o ther computers. Thus the
arithm etic precision and range of numbers used in supercom puters is
significantly higher than those used in other computers.

The peak megaflop rating of m odern supercom puters is around
1000 megaflops. In other words, supercom puters should perform
around 1000 million floating point arithm etic operations per second

. w ith operands which have 15 digit m antissa and 4 digit exponent.
Today higher speed supercomputers are being designed which will
have a peak speed of about 10,000 megaflops. The peak megaflop
ra ting is calculated by assuming th a t all units of a supercom puter
work sim ultaneously a t their highest speed on a single program . It
is thus an idealization. The steady average speed obtainable is more
im portan t for a user and is much smaller. In fact the best average
sustjiined megaflop rating obtained in solving a typical problem of
inverting a 100 x 100 m atrix of real numbers is of the order of 50
megaflops which is much smaller than the peak megaflop ra tin g of
1000 megaflops. We will explain later why there is a wide d isparity
between the peak megaflop rating and the average sustained megaflop
ra ting . In contrast w ith supercom puters, the average megaflop r a t
ing of, for instance, VAX 8810 a mainframe computer m ade by the
D igital Equipm ent Corporation (DEC) is around 1 and th a t of an
IBM PC is 0.01.

H ig h P re c is io n o f S to re d N u m b e rs : We m entioned th a t super
com puters use 15 digits for m antissa which is double the num ber used
norm ally in com puters. One may wonder why such a liigh precision
for representing num bers is needed. The reason is the possibility of ac

2 Supercomputers

cum ulation of the smail rounding errors made by the com puter while
perform ing arithm etic operations. Larger the number of arithm etic
operations, larger will be the accumulation of errors. A computer
carrying ou t 100 million operations per second will also be m aking
100 million rounding errors per second! Special care should thus be
taken to prevent accumulation of rounding errors. More significant
digits are used to represent real numbers in supercom puters to pro
vide be tte r factor of safety in arithm etic com putation.

All numbers are stored as binary numbers in computers. Each real
num ber is stored in a supercom puter’s memory as a 64 bit unit called
a word. O ut of these 64 bits 49 are used to represent the m antissa
(giving around 15 digit significance) and 15 bits are used to store the
exponent and its sign. This provides an exponent range of 10**°°°.

L a rg e , F a s t M a in M e m o ry : The size of the m ain memory and its
speed are im portan t param eters of a supercom puter. As pointed out
in the previous paragraph a word of a supercom puter is 64 bits long.
The w idth of one d a ta path from the main memory to the processing
unit of a supercom puter is 64 bits. The size of the main memory is
a tleast 8 million words and recent machines provide 256 million words
of m ain memory. This is to be contrcisted with mainfram e computers
whose msJn memories are around 8 million 32 bit words. Besides
the size, the tim e to access d a ta from the main memory should be
com parable to the arithm etic speed. Thus the memory is organized
as an interleaved set of memory banks. Typically around 64 banks
are interleaved allowing 64 words to be read in almost the same time
as it takes to read one word. This time is around 50 nsec giving an
average access of one word from the m ain memory to the processor
every 0.78 nsec. (1 nsec = 1 nanosec = 10“ ® sec). This is to be
contrasted w ith m ainfram e computers whose average access tim e of
d a ta from m ain memory to the processor is a t least 100 times slower.

L a rg e , F a s t S e c o n d a ry m em o ry : As the com putation speed of su
percom puters is high the d a ta to be processed m ust be readily avail
able in the m ain memory. For a processing speed of 150 megaflops
a m axim um of 150 million pairs of operands would be needed per

Introduction 3

second and all of them cannot be stored in the m ain memory. As
d a ta is retrieved from the main memory and processed new d a ta
should be moved to the m ain memory from the secondary memory.
The size of the secondary memory should be large and the speed with
which d a ta is to be transferred to m ain memory should be com patible
w ith the speed of the main memory. Normally a tleast 40 Gigabytes
(G iga = 10®). Gigabytes usually abbreviated as GB) storage is p ro
vided In supercom puters. The ra te a t which d a ta is transferred from
the secondary memory (usually magnetic disk memory) is around 40
Megabytes per second (Mega = 10®, Megabytes abbreviated as M B).
Disks in mainfram e computers provide a d a ta transfer ra te of around
5MB per second.

To summarize, a com puter may be classified as a supercom puter
now (1992), if its average arithm etic speed is of the order of 50
Megaflops with 64 bit operands; it has a large capacity m ain memory
of the order of 256 million 64 bit words with an access tim e com pat
ible with the arithm etic speed and it has around 40 GB of secondary
m emory with a d a ta transfer ra te to main memory of around 100
MB per second. The main point to note is th a t mere megaflop ra ting
is not sufficient to call a computer a supercom puter; there m ust be
m atching high speed high capacity main memory and high capacity
disk drives with very high speed d a ta transfer capability.

1.2 W h y do we need S u p erco m p u ters?

O f late simulation has emerged as an im portan t m ethod in science,
complementing theoretical analysis and experim ental observations.
Num erical simulation has many advantages:

• It is cheaper than setting up big experiments or building pro
totypes of physical systems.

• It is possible in a numerical model to change m any param eters
and observe their eflTect. Experiments do not allow easy change
of m any param eters.

• Numerical modelling is versatile. A wide range of problem s can
be sim ulated on a computer.

4 Supercomputers

• Observations and interactions allow models to be refined. Such
refinements provide a better understanding of physical prob
lems which cannot be obtained from experiments.

Introduction 5

o Provide Equations
o Interpret Results

o Suggest Theory
o Large-scale Calculation

Fig 1.1. In terac tion between theory, experim ents and simu
lation

Numerical sim ulation is also known as “numerical experim enta
tion” as the philosophy is sim ilar to conducting experiments. In
some instances it may in fact be the only feasible substitu te for ex
perim ents, for example, nuclear fusion experiments and finding out
the dam age to an aircraft and type of injuries to passengers when an
aircraft crashlands.

T he role of experiments, theoretical models and numerical simu
lation models is shown in Fig 1.1. It is seen th a t experiments, theory
and num erical sim ulation now form three interacting m ethods in sci

Supercomputers

ence «ind engineering.

W ith the advance in science, the models used incorporate m ore de
tail. This has increased the demand for computing speed and storage
capacity. For example, in order to design supersonic ajrcraft[7] i t is
necessary to reaJistically sim ulate turbulent aerodynam ic flows round
its wings and body. This is a general non-linear problem modelled by
using partia l difTerential equations and cannot be solved analytically.
Such a problem is solved by numerical sim ulation which requires the

Fig 1.2. G rids on the surface of an aircraft wing used for
sim ulation

surface of the body and wings to be modelled by 10 ̂ tiny squares
bounded by parallel lines (or a grid) as shown in Fig 1.2.

T he partia l differential equations are discretized to difference equa
tions which are in tu rn solved as a set of sim ultaneous algebraic equa
tions. For each grid point 5 to 30 real num bers are stored to represent

vector quantities such as velocity, acceleration, and pressure. Sets of
these equations are norm ally solved numerically using iterative m eth
ods (i.e., tria l and error m ethods). In such iterative m ethods several
tria ls (100 to 1000) are needed for each grid point before the results
converge. The calculation of each tria l value normally requires around
100 to 500 floating point arithm etic operations. Thus the to ta l num
ber of floating point operations required for each sim ulation run is
appro.ximately given by:

Num ber of floating point operations per simulation
= Number of grid points x

Num ber of values per grid point x
Number of trials x
Num ber of operations per trial

= 10^ X 20 X 100 X 500
= 10*3

If eaclf floating point operation takes 1 microsecond (correspond
ing to 1 megaflop speed) then the tim e taken for each sim ulation run
is 10^ seconds which is 115 days!

A com puter w ith 1 megaflop speed will thus take 115 days to
com plete one sim ulation run if it is operated 24 hours a day. In other
words, this problem cannot be solved using such a computer. If the
sustained megaflop ra ting of a supercom puter is 200 megaflops, then
each sim ulation run will take 13.8 hours, which is still quite high, but
m anageable.

There are m any other problems which also require large compu
ta tional tim e. A common application is to model global weather.
The behaviour of the e a r th ’s atm osphere affects global weather. The
behaviour is modelled by partia l diflferential equations in which the
m ost im portan t variables are the wind speed, air tem perature, hum id
ity and atm ospheric pressure. The objective of a numerical weather
model is to predict the sta tu s of the atm osphere a t a particular area
a t a future tim e based on the current and past observations of the
atm osphere. This is done by approxim ating the partial differential
equations by a system of difference equations in which physical quan-

Introduction ^

Supercomputers

Fig 1.3. G rid for numerical w eather model for the E arth

titles are specified a t points on a three dimensional grid over the sur
face of the earth as shown in Fig. 1.3. In the horizontal plane the grid
points are defined by 87 parallels of latitude between the no rth and
south poles and 144 m eridian circles equally spaced around the globe.
In the vertical direction nine layers describe the atm osphere and five
physical variables are used for the description. In this exam ple ailso
around 10'® floating point calculations are needed for each solution.

In general, the problem complexity is described by the form ula:

P C = G x V x T x A

where

P C
G
V

Problem Complexity
Geometry of the grid system
Variables per grid point

T = Number of steps per simulation for solving problem
A = Num ber of floating point operations per variable.

For the supersonic aircraft design example: G = 10^, V = 20, T =
100 and A = 500 giving

P C = G x V x T x A = 10‘®

operations. For the weather modelling problem:

G = 144 X 87 X 9 = 112752, V = 5, T = 200 A = 400

giving P C ~ 10^* operations.

C urrently a large num ber of realistic applications require 10*^ to
10^'‘ operations per solution. If each solution has to be done in about
an hour, then the sustained speed of a computer should be 10^'*/60 x
60 operations per second which is equal to 27,700 Megaflops!

If com puting tim e per solution exceeds 100 hours we call i t an
intractable problem . Thus with a machine giving 100 megaflop sus
tained speed a problem requiring 10^̂ floating point operations for a
solution is in tractable. From the above examples it is clear why we
need supercom puters with speeds in the thousands of megaflop range
to solve problems of current interest to scientists and engineers.

1 .3 H o w d o S u p e r c o m p u t e r s a c h ie v e t h e i r s p e e d ?

One m ethod of increasing the speed of computers is to use faster
sem iconductor components to build units of a computer. Higher
speed com ponents cost more and normally dissipate more heat. For
exam ple, low speed personal computers use integrated circuits based
on silicon sem iconductors. Currently Gallium Arsenide semiconduc
to r devices which are faster are used in some supercomputers. The
ra te of grow th of speed by using be tte r devices and technology is rela
tively slow. For instance, the tim e to add two floating point numbers
in a high perform ance com puter in 1980 was 20 nanoseconds and in
1990 it weis 6 nanoseconds.

A nother m ethod to increase the speed of com putation is to de
sign the com puter so th a t the different units of the computer work

Introduction 0

sim ultaneously. For instance, while the processor is com puting, d a ta
which may be needed la te r could be fetched from memory and si
m ultaneously an I/O operation can be going on. Such an overlap of
operations is achieved by using both hardware and software features.
Tills m ethod is called an architectural m ethod.

Besides overlapping operations of various units of a com puter the
arithm etic unit itself may be designed to exploit parallelism inherent
in the problem being solved. For example, if two vectors are to be
added, all pairs of components of the vector may be added sim ulta
neously by a set of adders thereby reducing the tim e taken to add
the vectors. Tliis type of parallelism is called data parallelism. T im e
taken to add two vectors may also be reduced by designing an adder
known as a pipeline adder which uses temporal parallelism. (We wiU
explain this in the next chapter). Still another m ethod of increeising
speed of com putation is to organize a set of com puters to work si
m ultaneously and cooperate to carry out tasks in a program . These
m ethods are also classified as architectural m ethods.

10 Supercomputers

Table 1.1. M e th o d s u sed to in c re a s e th e s p e e d o f c o m p u te rs
« Use fcister devices such as GaAs to build computers
• Use architectural m ethods to exploit parallelism

T he Architectural Methods are:
- Overlap operation of different units of a com puter
- Execute m any instructions simultaneously w ith m ultiple

functional units
- Increase speed of arithm etic logic unit by exploiting d a ta

a n d /o r tem poral parallelism.

As the increase in speed of electronic components is lim ited by
physical constraints, supercomputers prim arily use a rch itectural m eth
ods to exploit parallelism. Table 1.1 summarizes the architectural
m ethods used to increase the speed of computers. In the subsequent
chapters of this book we will explain the architectural m ethods.

A rchitecture o f Vector
Supercom puters
From their advent supercom puters have used a technique called vec
tor pipelined processing to a tta in high speeds. This technique exploits
temporal parallelism (i.e. tim e oriented parallelism) inherent in the
problem being solved. In this chapter we will explain how tem poral
parallelism is perceived and utilized in the architecture of supercom
puters.

2.1 P ip e lin e P ro cessin g

We will illu stra te the idea of pipeline processing or assembly line
processing with an example[6]. Assume th a t an exam ination paper
has 4 questions to be answered and 1000 answer books are to be
graded. Let us label the four questions in the answer books to be
graded as Q i, Q 2 , Q 3 , Q i- Assume th a t the tim e taken to grade the
answer to each question Q i, Q 2 , Q 3 , Q i is equal to 5 minutes. If one
teacher grades all the answers he/she wiU take 20 m inutes to grade
a paper. As there are 1000 answer papers, the to ta l tim e taken will
be 20,000 m inutes. If we want to increase the speed of grading, then
we may employ 4 teachers to cooperatively grade each answer book.
The four teachers are Jisked to sit in a line (Fig 2.1). The answer
books are placed in front of the first teacher. This constitutes the
inpu t. T he first teacher takes an answer book, grades Q i and passes
i t on to the second teacher who grades Q 2; the second teacher passes '
the paper on to the th ird teacher who grades Q 3 and passes it on to
the last teacher in the line. The last teacher grades Q4 , adds up the
m arks obtained by the student, and puts the paper in a tray kept for
collecting the graded answer books which is the output.

12 Supercomputers

T j.Q i T 2 . Q 2 T3 . Q 3

© o ©
T4,Q4

©
A A A A

Pile
o f

Answer
Books

X
X

X
X

X

X

X
X

X
X
X

(Input) (Output)

Fig 2.1. Four teachers grading papers in a pipeline

It is seen from Fig 2.1 th a t when the first answer book is being
graded three teachers are idle. W hen the second answer book is being
graded, two teachers are idle. However, from the fourth answer book
all teachers are busy, with teacher 1 grading Q i of book 4, teacher
2 grading Q 2 of book 3, teacher 3 grading Q 3 of book 2 and teacher
4 grading Q 4 of book 1. As the tim e to grade each question is 5
m inutes, the first answer book will take 20 m inutes to be graded but
subsequent papers wiU take only 5 m inutes each. The to ta l tim e
taken to grade 1000 answer books will be 20 + (999 x 5) = 5015
m inutes. This is about one fourth of the tim e taken by one teacher.

In th is example we define a job as th a t of correcting an answer
book. This job has been divided into four tasks. The four tasks are
correcting the answer to Q i, Q^, Qz and Q i respectively. As this
m ethod breaks up a job into a set of tasks to be executed overlapped

in tim e it is said to use temporal parallelism. This m ethod of process
ing is appropria te if:

1. The jobs to be carried out are identical
2. A job can be divided into many independent tasks. In o ther

words, each task can be done by a processor independent of
o ther tasks.

3. The tim e taken for performing each task is the same.
4. The tim e taken to transm it a job from one processor-to the next

is negligible compared to the tim e needed to execute a task.
5. The num ber of tjisks in to which a job is broken up is much

sm aller compared to the number of jobs to be carried out.

We can quantify the above points as worked out below;
Let the num ber of jobs = n
Let the tim e taken to do a job = p
Let a job be divisible in to k tasks each taking tim e = p /k
Tim e required to complete n jobs with a pipeline of k stages

= ;» + (« - i)(p /fc)
= p (k + n - l) / k

Speedup due to pipeline processing is

= np / {p{ k + n - l) / k)
= fc/[l + { (f c - l) /n }]

K the num ber of jobs n is much larger than the number of stages
in the pipeline k, then {k - l) / n < < 1 and the speedup is nearly
equal to k.

The m ain problem s encountered in implementing pipeline process
ing are:

1. S y n c h ro n iz a tio n ; Each stage in the pipeline m ust take equal
tim e for completion of a task so th a t a job can flow between
stages w ithout holdup. If the time taken by stage 1 is say ti
and is less than the tim e taken by stage 2 , <2, then a job has to
wait for a tim e (<2 - <i) before entering stage 2. This job will

Architecture o f Vector Supercomputers 13

thus need, between stages, a tem porary storage area (called a
buffer) where it can wait.

2. B u b b le s in P ip e lin e : If some tasks are absent in a job “bub
bles” form in the pipeline. In the example of teachers grading
papers, if an answer book has only two questions answered,
two teachers wiU be forced to be idle when th a t paper is being
corrected.

3. F a u lt T o le ran c e : The system does not to lerate faults. K one
of the stages in the pipeline fails for some reason, the entire
pipeline halts.

4. I n t e r t a s k C o m m u n ic a tio n s The tim e to transm it a job be
tween pipeline stages should be much smaller com pared to the
tim e taken to do a task.

Inspite of these disadvantages, this m ethod is a very effective tech
nique as i t is easy to perceive in many problems how jobs can be bro
ken up into tasks to use tem poral parallelism. Further, the pipeline
can be made very efficient by tuning each stage in the pipeline to do
a specific task well. Pipelining is the main technique used by vector
supercom puters to a tta in their high speed. We will exam ine in the
next section how this is done.

2 .2 V e c to r P r o c e s s in g

Consider a procedure for adding two floating point num bers x
and y. As was pointed out a floating point num ber consists of two
parts: a m antissa and an exponent. Let i be represented by the tuple
{m an t x ,exp x) and y by the tuple {m ant y ,e xp y). Let the result z
be represented by the tuple {m ant z , exp z) The job of adding x and
y can be broken up into the following four tasks:

T a sk 1 : Com pute {exp x - exp y) = m
T a s k 2: If m > 0 shift m ant y, m positions right and fill the

leading bits of m ant y with zeros. Set exp z = exp x
If m < 0 shift m ant x , m positions right and fill the leading
bits of m ant x w ith zeros. Set exp z = exp y. If m = 0 do
nothing. Set exp z = exp x.

14 Supercomputers

Architecture o f Vector Supercomputers 15

Sum X ■* y

Fig 2.2. A p ip e lin e d a d d e r u n i t w i th 4 s ta g e s

T ask 3: Add m a n t x and m a n t y. Let {m ant x + m a n t ly) =
m a n t z

T a s k 4: If m a n t z > 1 then shift m ant z right by 1 bit and add 1
to exp z. If one or more m ost significant bits of m ant ^ = 0
shift m a n t z left until leading bit of m a n t z is non zero. Let
the num ber of shifts be p. Subtract p from exp z.

An electronic adder can be designed with 4 stages, each stage
doing one of the tasks explained above. Such an adder is called a
pipelined adder and is shown in the block diagram of Fig 2.2. To use
this adder a sequence of operand pairs to be added (ai ,bi) , (02, 62)1
(“3i h) ■ ■ •) (on, in) are fed to the adder (See Fig 2.3) and are shifted
in to the pipeline one pair a t a time. Let T seconds be the time taken
by each stage. One pair of operands is shifted into the pipeline from
an inpu t register every T seconds. The shifting is controlled by a
series of pulses called a c/ock. The tim e elapsed between successive
pulses is the clock period which in this example is T seconds (See
F ig 2.3). The sum ci = Oi + 61 comes out of the pipeline after 4

16 Supercomputers

4 Stage Adder

b ^ .b ^ b ^ .b

Time

2T ■

3T

4T

J Z JL

Stage 1 Stage 2 Stage 3 Stage 4

Clock 1 3 j , b j

Clock 2
^2'*>2

a , b

Clocks
^ ’ ‘ ’2

Clock 4 4̂ ' ' ’4 “3 • ' ’3

‘=4>‘=3’ V ‘=1

Cj= (a j+

Clock Pulses

Clocklnterval
*------ 1------ •

0 T 2T 3T

Fig 2.3. Adding vectors in a pipelined adder

clock periods which is AT seconds. However, sums

C2 = (0 2 + (>2)> C3 = (0 3 + t 3) . . . C n = (a „ + 6 n)

come ou t a t tim e 5T, 6 T . . . (4 + n - 1)T secoDds.

An ordered sequence of operands (a i ,02, 03, . . . ,o „) is known as
a vector. In the above example we add vectors (01, 02, 03, . . . ,cin)
and (61, 62)h,--- , l>n) to obtain the sum vector (ci,C2,C3, . . . , c„). In
order to obtain the potential speedup of a pipelined arithm etic un it,

it is necessary to add vectors with number of components much larger
th an 4, where 4 is the number of stages in the pipeline.

All vector supercom puters use pipelined processing of vectors ex
tensively to a tta in high speeds. A typical vector pipeline unit of su
percom puters m anufactured by Cray Research Inc., USA, a pioneer
in supercom puter design, is shown in Fig. 2.4. Here pipelined units
consisting of a num ber of stages work synchronously for arithm etic
com putations. The computer has a centralized clock which generates
a pulse once every T seconds (T is around 10~*sec). In a pipelined
addition unit one addition is carried out every T seconds by the sys
tem (after an initial tim e required to fill the pipeline). In a model
known as Cray YM P system the value of T is 6 nano seconds (nano
= 10“ ®). Thus one floating point arithm etic operation is carried out
in 6 nanoseconds giving a peak speed of (1 /6 x 10“ ®)//op« which is
166 megaflops. The size of the vector registers is 64 words in Cray
computers.

Referring to Fig. 2.4 observe th a t a pipelined adder unit adds
vectors A and B. Observe also th a t the sum (A-f-B) can be fed to
another pipelined m ultiply unit. The pipelined multiply unit has as
one in p u t, components of (A +B) and as another input, components of
a vector C. As components of (A-)-B), namely, (oi -|-6i) , {aj + b i) , . .
(Oji + bn) are generated, they are m ultiplied by components of C,
namely, c i, C2, . . .c„ to produce (ai-t-6i)* c i, (o2-|-62)*C2, (03+ 63) tea,
. . . , (o„ + 6„) ♦ c„ respectively and stored in the vecor register marked
D. T his m ethod of feeding the ou tpu t of one pipelined arithm etic unit
to another is called vector chaining. If a program has instructions of
the type D = {A + B) * C th is chaining can be used. W ith chaining
the speed of com putation is doubled as an add and a m ultiply are
done in one clock period.

Besides vector chaining, m any independent pipelined arithm etic
units can be provided in a supercomputer. In Fig 2.4, for example,
there is a second pipelined adding unit using registers P and Q. This
unit can be used independently and simultaneously with the other
pipelined units provided the program being executed can use this

Architecture o f Vector Supercomputers 17

18 Supercomputers

Main

Memory

Vector Reguers
Pipelined

Adder

Multiplier

■aznî -QD^
Adder

Vector Registers
A + B

P + Q

r r m

Fig 2.4. Organization o f vector pipelined arithm etic units

facility.

2.3 Logical S tru c tu re of a S u p e rco m p u te r

A block diagram of the various units of a supercom puter is shown
in Fig 2.5. The m ain logical units of a supercom puter are:

1 . In p u t/O u tp u t processors
2. M ain memory
3. Instruction registers and processor
4. Scalar registers and processor
5. Vector registers and processor
6 . Secondary storage system
7. Frontend com puter system

T he most im portant characteristic of supercom puters is the logi
cal organization which facilitates the parallel operation of the subsys
tem s. Parallelism is obtained by overlapping the operation of various
un its , for example, the I /O processor, the instruction processor and

Architecture o f Vector Supercomputers 19

Disk Memory Banks TaptSemi-Conductor Graphics
Secondary Memory Workstations

Fig 2.5. B lock diagram o f units o f a supercom puter

the vector processor. Each of these processors also use parallelism
obtained with pipelined processing.

I n p u t - O u tp u t S y s te m : The I/O processing system consists of
4 to 16 small processors with their own instruction set, memory,
a rithm etic units and control. These processing units control read
ing /w riting of program s and d a ta from secondary storage to main
mem ory, coordinate the operation of graphic workstations and also
the frontend com puter system . Each I/O processor has a memory of
several thousand bytes and an instruction repertoire enabling them
to run I /O program s independent of the CPU of the supercom puter.
All I /O processors can work simultaneously. They have the ability
to transfer blocks of words or a single word from the main m emoryto
the peripherals and vice-versa. They can also in terrup t the CPU if

20 Supercomputers

needed.

M a in M e m o ry : The m ain memory is a very im portan t pa rt of su
percom puters. The memory is normally organized to store upto 256
megawords where each word is 64 bits long. A large storage is ex
trem ely beneficial in solving large scale scientific problems ais speed
im provem ent of more than 20 can be achieved if all d a ta is stored in
the m«un storage ra ther than in the secondary storage. T his is due to
the fact th a t d a ta transfer ra te from the main memory to the proces
sor is a t least 100 times faster compared to th a t from the secondary
memory to the processor. Access tim e to a word in m ain m em ory is
of the order of 50 nsec which is several times the basic clock cycle
used by the CPU. To improve the speed of retrieval of words from the
memory, it is arranged as a number of parallel “banks” . Requests for
reading words from memory can then be issued to each of the banks
successively so th a t retrievals go on simultaneously. If the memory
is organized as eight banks then request to read from the same bank
will come after the other seven banks are read. Effectively the speed
of retrieval will be increased eight times. The basic assum ption m ade
is th a t successive elements to be retrieved are in different banks and
th a t d a ta in consecutive addresses are to be retrieved. The organiza
tion of memory into banks and issue of requests to banks is illustra ted
in Fig. 2.6. It is clear th a t the idea of pipelined retrieval of elements
from the memory is used in this case also.

The num ber of independent paths to the m ain memory has a direct
bearing on the capability of a supercom puter to overlap execution of
instructions. For example, Cray YMP supercom puter hjis two fetch
pa ths !uid one store path all of which can operate sim ultaneously.
Thus in executing the loop

DC 25 I = 1 ,64
C (I) = A (I) + B (I)

25 CONTINUE

Cray YMP will do the following;

Architecture o f Vector Supercomputers 21

Bank Bank Bank Bank Bank Bank Bank Bank

Address
Array
Elemeots

Address
Array
Elements

1 2 3 4 5 6 7 8
A(l) A(2) A(3) A(4) A(5) A(6) A<7) A(8)

9 10 11 12 13 14 15 16
A(9) A(10) A (ll) A(12) A(13) A(14) MIS) A(16)

Baok Requests

B ank l A (l) A(9)

Bank2 A(2) A(10)

Bank3 A(3) A (ll)

Bank4 A<4)

Bank5 MS)

Bank6 A(6)

Baok7 M I L

Banks Â 8)

Time
2 3 4 5 6 7 8 9 10 11

Fig 2.6. Organization o f mem ory into banks

1. Fetch the 64 components of vector A represented by ^4(1 : 64)
and the 64 components of B, B(1 : 64) simultaneously to two
vector registers

2. As soon as 4 (1) and B{1) arrive s ta rt adding and place the
result in a th ird vector register

3. As soon as C (l) is ready sta rt storing vector C(1 ; 64) concur
rently in to the m ain memory. Fig. 2.7 illustrates this.

Reliability of d a ta read from the memory is of param ount im
portance. To ensure this, a Single Error Correction Double Error
D etection (SECDED) coding scheme is used for all d a ta stored in

Path l I Fetch A(1.64) .

Path 2 I B(1.64) ^

Add A and B

22 Supercomputers

Path 3 I Store q i:6 4) ^

Qock

Cy<=>« 0 64

Fig 2.7. A d d i t io n a n d s to re t im e s w ith m u lt ip le fe tc h a n d
s to r e p a th s to m e m o ry

the m ain memory. In order to detect and correct errors eight ex tra
b its called check bits are appended to each 64 bit stored word in the
mciin memory. W hen a word is received from the mciin memory to
C PU , the 64 d a ta bits are used to generate eight check bits. These
eight check bits generated by the system are compared w ith the e ig h t'
check bits retrieved along with the word. If they m atch then there is
no error. If they do not m atch there may be one oi more errors. A
single error can be corrected or two errors can be detected by using
the eight check bits. The coding scheme used is the one suggested by
R.W .Ham m ing and is called the Hamming Code.

I n s t r u c t io n B u ffe rs a n d P ro c e sso r: The ra te a t which instruc
tions are processed is faster than the ra te a t which instructions can
be retrieved from the main memory. This speed m ism atch between
CPU and m ain memory has remained through various generations
of com puters. Com puter architects have a ttem pted to alleviate this
problem by a technique called instruction caching. In this technique
a sm«dl fast memory called a cache memory is provided in the CPU.
A group of instructions are fetched before they are needed and stored
in the cache. The instructions are taken one after another from the
cache and executed. The fast cache memory can be partitioned into
two segments. While instructions from one segment are being exe
cuted the other segment can be filled up w ith some more instructions
from the m ain memory. Such a scheme will reduce overall instruction
fetch tim e. Another advantage of having instructions in an instruc
tion cache is th a t it enables repetitive use of these instructions from

the cache for executing program s with loops. If all the instructions
belonging to a loop can be placed in the cache, then until the num
ber of repetitions of the loop are completed there will be no need
to fetch instructions from memory. As m any programs in science
and engineering are w ritten in Fortran and use DO loops extensively,
supercom puters provide a large instruction cache where all the loop
instructions are stored. In the Cray YM P architecture, for example,
instructions are divided in to 16 bit “parcels” . Four instruction caches
called instruction buffers are provided each storing 128 parcels. E ight
words (64 bits long) are read from memory each clock cycle and fill
the least recently used instruction buffer. Backward and forward
referencing of instructions within the buffer is possible for loop exe
cution. If an instruction needed is not in the buffer then a word has
to be accessed from the m ain memory. It takes 16 clock cycles to get
an instruction from the m ain memory compared to one clock cycle
for an instruction which is already in the instruction buffer.

The idea of instruction caching works because of the sequential
na tu re of program s w ritten in Fortran. There is a strong locality of
reference to instructions in Fortran and sim ilar sequential languages.

Besides instruction buffer, a special arithm etic unit to compute
addresses of operands is also provided in the instruction processor.
These arithm etic units perform pipelined integer arithm etic opera
tions w ith 32 bit addresses in Cray YM P (32 bits are used for ad
dressing in Cray YM P). Besides address com putation this integer
arithm etic unit can also be used for fast com putation with small in
tegers.

S c a la r R e g is te r s a n d P ro c e s s o r : Even though vector arithm etic
is crucial for obtaining the high speed of supercom puters, it is also
very im portan t to provide fast scalar arithm etic.(By a scalar we mean
individual floating point num bers). Here again, the pipelining idea is
used. T he scalars are stored in buffer registers in CPU which feed the
pipeline. Buffering is essential as accessing d a ta from the memory is
very slow com pared to access from buffer registers. In Cray YM P, for
exam ple, there are eight 64 bit registers (called 5-registers) to hold

Architecture o f Vector Supercomputers 23

24 Supercomputers

scalar operands. These are backed up by 64 registers each w ith 64
b its which communicate with the m ain memory. A scalar in struction
performs an operation such as addition obtaining two operands from
two scalar registers and storing the result in another scalar register.

V e c to r R e g is te rs a n d P ro c e s so rs : Vector a rithm etic forms th e
core of supercomputers. A set of vector registers (called V registers)
are provided to store vector operands. In Cray YM P, for exam ple,
there are eight V registers. Each register can store 64 com ponents
of a vector with each component being 64 bits long. M any pipelined
units to perform various operations such as ad d /su b tra c t, m ultiply,
shifting, finding reciprocal etc. using vector operands are provided.
These units are called functional units. In Cray YM P, for exam ple,
there are 14 pipelined functional units in a CPU. O ut of these, five
are exclusively for vector operations, three are shared for vector as

■ well as scalar operations, four are exclusively for scalar operations
and two are for operations on addresses.

In Cray YM P a six stage pipeline is used for addition or sub
traction and a seven stage pipeline for m ultiplication. Division is
perform ed by first approxim ating the reciprocal of the divisor and
m ultiplying it by the dividend. Table 2.1 shows the perform ance of
some of the vector functional units of Cray YMP.

Table 2.1. Cray Y M P vector functional units

Operation Start-up time
(No.of clock pulses)

Time taken for
N results

Add/subtract 6 6-l-N
Multiply 7 7+N
Divide 38 38-1-3N

One Add Subtract & Multiply
(called vector triad)

7 7 -t- N

More than one pipeline vector unit may be used sim ultaneously
in m ost supercom puters. The Cray YM P allows three pipelines to be
used simultaneously.

As explained earlier in this chapter, operands from the m ain mem
ory are retrieved and stored in vector registers from which they are
sent to the pipelined arithm etic unit. One pair of operands is sent
per clock cycle to the arithm etic unit. The result is stored in a vector
register. The contents of this register is stored later on in the main
memory. If the num ber of components in a vector is shorter than the
num ber of words in the vector register (64 words in the case of Cray
YM P) there is nothing special to be done. K the num ber of compo
nents in the vector exceeds 64, then the extra components have to
wait for another vector instruction to s ta rt execution. Thus there is
a sm all drop in speed of arithm etic when the number of components
in the vectors increase from 64 to 65 as shown in Fig 2.8. For very
long vectors the buffers have to be filled many times. If one pair of
operands can be retrieved from the main memory in each clock in
terval, then these operands can be fed directly to the pipelined arith
m etic unit w ithout any interm ediate buffer store. The result can also
be stored back im m ediately in the mciin memory. As there is no buffer
size lim ita tion , there is no lim it to the length of vectors which can be
handled in such a system . Further, this m ethod will perform well with
long vectors. The disadvantage, however, is the need for a very high
speed memory from which a pair of operands can be retrieved each
clock cycle. Cyber 205 and ETA 10 supercom puters which used to be
m anufactured by Control D ata C orporation, USA, used this idea but
had to use a slower clock. Such an architecture is cedled a memory to
m emory architecture system &s the operands and results are clirectly
retrieved from the memory and stored back in the memory. In con-
treist the Cray zirchitecture is called a Load-Store architecture as the
only operations involving memory are loading operands from mem
ory to CPU registers and storing back results from CPU registers
to the memory. Load-Store architecture is currently the preferred
architecture as it is faster.

S e c o n d a ry S to ra g e U n its : The size of the main memory available
in supercom puters is not sufficient to store da ta and program s for
many large scale scientific applications. Further, supercom puters are
shared by m any users and all the users’ programs and d a ta should

Arvhitecture o f Vector Supercomputers 25

26 Supercomputers

vector
be kept ready for processing. Secondary memory systems norm ally
consisting of large m agnetic disk storage units with a capacity of over
30GB are required for this purpose. The d a ta access speed from the
disks should be of the order of 100 MB per second.

Cray YM P provides one more level of secondary storage which is
a random access storage similar to the m ain memory bu t which uses
cheaper and slower solid sta te storage system with a capacity of upto
512 Mwords and a d a ta transfer ra te of 128Mwords per second. This
transfer ra te is significantly faster than electro-mechanical m agnetic
disk units.

M anufacturers of most m ainfram e computers provide a much larger
address space than actual physical m ain memory capacity. Many
com puters provide address length of 32 bits which gives a potential

m em ory capacity of 4 Gwords. Program s may be w ritten assuming
th a t 4G words of memory space is available. The physical m ain mem
ory is, however, lim ited to tens of hundred megawords due to cost and
technological lim itations. The programs and d a ta are distributed be
tween the m ain memory and the secondary memory. Moving the
relevant portion of a program and d a ta needed during execution of
the program to the main memory from the secondary memory and
taking it back to the secondary memory is managed by the operat
ing system of the computers. This is called a virtual memory system.
The operating system divides a program and d a ta into discrete blocks
known as pages and brings only those pages into the main memory
which are currently needed. As soon as they are used, they are sent to
the secondary store and new pages which are needed imm ediately are
brought to the m ain memory. The system will work very efficiently as
long as all the pages of d a ta and program needed during execution are .
available in the m ain storage. Whenever the pages th a t are needed
are not in the m ain memory and have to be fetched from the sec
ondary m em ory there is a delay and consequently the program takes
longer to execute. V irtual memory is a convenience to program m ers
bu t entcul overheads and also possibility of inefficient execution.Some
m anufacturers such as CDC and NEC of Japan provide a virtual
memory system in their supercom puters. Cray computers, however,
never provided a virtual memory system as Cray designers were con
vinced th a t virtual m em ory’s disadvantages outweigh its advantages.
They try to provide as large a m ain memory as possible within the
technological constraints prevailing a t a given time. Early models of
Cray com puters had only 4 Mwords of m ain memory. Current models
have increased the capacity of the m ain memory to 256 Mwords.

T he requirem ent of secondary storage, in particular, high speed
disk, has rapidly been increasing. As the speed of a machine increases
the volume of d a ta needed by applications also increases. Currently
a balanced configuration of a supercom puter would require anywhere
between 25 to 100 GB of high speed disk storage.

Architecture o f Vector Supercomputers 27

Frontend C om puter System : Supercomputers are designed to be
excellent num ber crunchers. They are most efSciently operated in
a non-interactive mode. A set of user program s are queued up as
a batch and one user’s program a t a time is taken up for execution.
From the point of view of the user, however, this is not desirable, par
ticularly during program development phase. In this phase program s
are tested, modified and optimized, and a user finds it desirable to
have an in teractive communication with the computer. It will be un
economical to allow a single user to use a supercom puter interactively
as hum an response tim e is much slower than th a t of a supercom puter.
Thus a large num ber of users tim e share the computing facility and a
fair am ount of com puter’s resources are required to m anage m ultiple
users. The high speed arithm etic facility of a supercom puter is not
needed for this management function. In fact, it will be a misuse
of a supercom puter if it spends a lot of tim e to m anage users’ re
source allocation problems. This resource m anagem ent job can be
done by a cheaper machine attached to the supercom puter. Such a
com puter is called a frontend computer. Most of the program de
velopment and debugging are done using the frontend com puter in
a tim e-shared mode. Production program s are transferred from the
frontend machine to the supercom puters’ secondary store from where
the supercom puter takes one program after another for execution. All
slow peripherals such as printers and plotters are also connected to
th e frontend computer.

A lim ited interaction with the supercom puter is norm ally allowed
w ith a separate frontend interface to which a graphics term inal is
connected. This is provided for visualization, anim ation etc. Such
use is however very expensive.

T he frontend connected to a supercom puter is norm ally a large
m ain fram e computer with large volume disk storage (around 30 GB),
tapes, printers, plotters etc. The Cray series machines norm ally use
an IBM mainfram e or CDC’s Cyber mainfram e or A m dahl’s m ain
fram e or a DEC-VAX mainframe computer as the frontend.

28 Supercomputers

2 .4 T e c h n o lo g y o f V e c to r S u p e r c o m p u t e r s

Vector supercom puters are very expensive costing millions of dol
lars and are m anufactured only by four companies in the world today
- Cray in USA, and Fujitsu, Hitachi and NEC in Japan. One of the
m ain reasons for their high cost is the difficulty in fabricating elec
tronic circuits to the exacting standards and high speeds demanded
by supercom puters. In supercom puters, the basic clock speeds are
around 6 nseconds. The tim e taken by electricity to travel 10 cms in
a wire is 0.33 nsec. Distance between components m ust thus be m in
imized so th a t wire lengths are small. Seymour Cray who designed
and built the world’s first supercom puters built them in a cylindrical
shape to reduce wire lengths. (In fact, a sphere would have been ideal
as it has the minimum surface area for the volume enclosed. How
ever, fabricating a computer as a sphere is difficult). To reduce wire
lengths electronic circuits have to be densely packed. Dense packing
makes i t difficult for electronic circuits to dissipate heat. The heat
generated in the electronic circuits switching a t nanosecond rates is
quite high. For example, assume th a t a switch dissipates 100 mi
crow atts. If an in tegrated circuit package has 100,000 switches it will
dissipate 10 w atts. If there are 10,000 packages in 1 100 Kilo
w atts will be dissipated. If the system is not cooled, the circuits will
burn. Thus i t is necessary to cool the system efficiently to m aintain
the in tegrated circuits a t a constant tem perature of around 20°C.
Thus Cray YMP requires special cooling systems with copper pipes
carrying ice cold water on which the electronic circuits are mounted.
In fact Seymour Cray is reputed to have said th a t supercom puter
designers are glorified plumbers! Many m ethods are used for cool
ing. The sim plest one is to blow cold air between the circuits. This
m ethod removes m oderate amounts of heat and is not sufficient for
machines such as Cray YM P built in the 80s. The next m ethod is
to run copper pipes carrying cold water on which the semiconductor
in tegrated circuits are mounted. This m ethod is used in some of the
supercom puters such as the one made by NEC of Japan. Instead of
w ater, freon refrigerant is passed through pipes in Cray YMP. Cray 2
uses an ingenious technique to dissipate heat. This com puter’s CPU

Architecture o f Vector Supercomputers 29

is imm ersed in liquid fluon (a flouro carbon) which is an electrical
insulator bu t a good therm al conductor. Fluon is circulated through
a heat-exchanger and the tem perature of the fluid is kept constant at
72°F. As all the semiconductor components are in contact w ith the
fluid there is good heat transfer and there is no need for copper tube
plumbing as in Cray YMP system.

Yet another cooling technique was tried by ETA 10 system s. The
entire CPU board of ETA 10 supercom puter wais immersed in a liquid
nitrogen bath. This m ethod, besides removing the heat em itted by
the circuits, kept the semiconductor a t a low tem perature im proving
its sw itching speed.

T he semiconductor circuits in most of the supercom puters used
silicon. Earlier systems used high speed bipolar switches which em it
ted a lot of heat. Later they were replaced by Com plem entary M etal
Oxide Silicon (CMOS) devices. These dissipate less heat compared
to bipolar circuits but are slower. Recent Bipolar CMOS circuits
switch a t high speed with low power dissipation. The dom inance of
silicon as a semiconductor is being currently challenged by Gallium
Arsenide (GaAs) semiconductor devices. GaAs has a higher sw itch
ing speed compared to silicon. However, it is a b rittle m ateria l and
in tegrated circuits with large number of GaAs devices are ju s t being
commercially mass produced. It is expected th a t the next generation
of Cray supercom puters named Cray 3 would use GaAs semiconduc
to r switching devices. Convex computers, a m anufacturer of parallel
com puters, has already delivered their new generation machines using
GaAs technology. The GaAs based supercom puters are expected to
use a faster 2 nanosecond clock compared to the 4 nanosecond clock
used by the fastest supercomputers available now (1992).

30 Supercomputers

C om puting w ith Vector
Supercom puters
In the last chapter we saw th a t vector supercom puters a tta in their
high speed of com puting by using pipelined functional units. Further
we saw th a t in order to efficiently use such pipelined functional units
we need a long sequence of operands or operand pairs on which the
function is applied. Thus an application program will be able to use
the po ten tial speed offered by a supercom puter only if i t has long
sequence of operands cedled vectors to be processed. For example, a
F ortran program using the loop

DO 100 I = 1, 80
C (I) = A (I) + B (I)

100 CONTINUE

can use the pipeline capability effectively as 80 components of vector
A are added to 80 components of vector B., In contrast, the program

DO 50 I = 1 ,5
P (I) = q (I) + R'(I)

50 CONTINUE

cannot effectively use the pipeline capability as the length of the
vectors is small compared to the number of stages in the pipeline.

Given a Fortran program it may often be possible to transform it
e ither m anually or autom atically to an equivalent Fortran program
which is capable of using the pipeline capability efficiently. Such a
transform ation is called Vectorization. In this chapter we will explain
first the basic ideas used in vectorization. We will also discuss the

32 Supercomputers

generzd question of optim izing programs to reduce their to ta l execu
tion time.

3.1 V ec to r In s tru c tio n s

A vector operand is an ordered set of n elem ents, where n is called
the length of the vector. Each element in a vector is a scalar quan tity
which may be an integer, a real number, a character or a b it. T here
are four types of vector operations [3]:

T ype 1 :A : V V
T ype 2 ; / 2 : V — > S
Type 3:/3 : V {operator) V — ► V
Type 4: / i : V (operator) S — ► V

where V is a vector and S is a scalar.

Table 3.1. Vector Operations

(.y , Y and Z are n component vectors)
Vector operation type Vector operation carried out

Type 1 Vector square root
Absolute value

Vector Sine

Y = SQ RT(X)
Y = ABS (X)
Y = SIN (X)

Type 2 Vector minimum
Sum of

components

M in { Y iY 2 , . . . , y„) = y p
V'

where y = (yi, 3/2, . . . , Vn)
Type 3 Vector add

Vector multiply
Vector OR

Z = X + Y
Z = X * Y

Z = X { O R)Y
Type 4 Add scalar

to vector
Z = X + a

zi = x i + a,
Z2 = X2 + 0 ,

Hn = x„ + a

Type 1 and Type 2 are unary operations whereas Type 3 and Type
4 are binary operations. Some examples of these types of vector

Computing with Vector Supercomputers 33

operations are given in Table 3-1. These types of operations are
implemented in supercom puters using pipelined units and there are
hardw are instructions to carry them out. In Fig. 3.1 we show how
these operations are implemented using pipelined units.

''2-

Type 1

Type 2

Type 4

D

Fig 3.1. P ip e lin e s fo r fo u r ty p e s o f v e c to r in s t ru c t io n s

As vector supercom puters have built-in hardware to operate on
vector operands efficiently it is essential while programming these
machines to use vector operands and operators wherever i t is possible.
Consider, for example,

DO 100 I = 1, SO
A (I) = B (I) + D (I)
C (I) = K * P(I+S)

100 CONTINUE

T he above program may be rew ritten using vector operands and vec
to r instructions as;

A (l;5 0) - B (l:5 0) + D (l:5 0)
C (l :5 0) = K ♦ P (6 :5 6)

The following program;

DO 25 I = 1,N

34 Supercomputers

DO 25 J = 1,100
P (J) = q(J)* T (J , I) + C (I)

25 CONTINUE

may be replaced by:

DO 25 I = 1, N
P (l ;1 0 0) = q (l : 100) * T (l : 100 , I)+ C (I)

25 CONTINUE

T he program using vector operands use the operators + ,♦ etc.
jis operations on vector operands. When the program is compiled,
instructions will be issued to the pipelined arithm etic units to perform
the operations. The main point is to write program s which use the
hardw are pipeline features to the maximum extent possible. If a user
wants to execute an existing program on a com puter w ith vector
pipelines, he/she should convert them to a form which effectively
uses the vector facilities of the computer. This conversion is done
autom atically by a program called a vectorizer. T he vectorization
process and the function of the vectorizer will be discussed a t greater
length in sections 3.3 and 3.4.

3.2 V ec to riza tion of P ro g ram s

If we examine a typical supercom puter the speed of electronic cir-
ciiits for scalar processing is around a tenth of the speed a tta inab le
w ith vector processing. In other words, if an operation such as mul
tiply takes t , seconds to perform in the scalar mode then the tim e
taken to perform the same operation in vector mode ty is t , I n where
n is around 10. Suppose a program is executed on a scalar com puter
and takes tim e T . (See Fig. 3.2). Assume th a t T = Ta + where
T , is the tim e taken to execute the parts of the program which uses
scalar operations and is the tim e taken by the vectorizable p a rt of
the program . If the program is run on a supercom puter w ith vector
capability and n is the speedup due to vector processing then the
tim e taken to execute the program is;

Tim e taken = T, + {T„/n)

Computing with Vector Supercomputers 35

Scalar
Time

Vectorized
Time

----------1 ------------ --------------------- ----------------► Time
{ ✓
I

Scalar l Vectorizable

Code I code

!
^ 'lime

T j n

Fig 3.2. S c a la r a n d v e c to r iz e d t im e c o m p a r iso n

T he speedup obtained by using the supercom puter Is:

Speedup = (r , + r „) / (r , + (T „/n))

Let us define Vectorization ratio as:
V = r „ / (r , + T„)

Speedup = Sj,{v, n)= n{T , + T v)/{nT , + T„)
= n / (r e (l - v) + u)

II the code is fully vectorizable, ie. T, = 0 then v = 1 and speedup
S p (v ,n) = n (100% speedup). If there is no vectorizable code
in th e p rogram then d = 0. In this case there is no speedup as
Sp{v, n) = 1. Sp(v, n) is plotted for n = 10, and various vectorization
ra tios in Fig. 3.3. Observe th a t the improvement in speed increases
rapidly beyond v = 0.9. W hen vectorization is less than 0.8 the
im provem ent in perform ance is relatively low.

Consider a com puter with a vector megaflop rating of 100. Assume
its scalar speed is 10 megaflops with 0.8 vectorization ratio . The
speed up is (10/2.8). Thus the effective megaflop of the machine
is 10 X (10/2 .8) = 35./megaflops. If the vectorization ra tio is
0.975 the effective megaflop is 83.8. From this calculation it is clear
th a t a supercom puter will operate a t reasonable speed only if the
vectorization ra tio is very high. In other words the vectorizable part
of the program m ust take much longer tim e to execute compared to
the p a r t which is not vectorizable.

Most program s will have a scalar part. The scalar p a rt cannot
be entirely elim inated and around 10 to 15% of the code will be

36 Supercomputers

Fig 3.3. S p e e d u p fo r v a r io u s v e c to r iz a tio n r a t io s

scalar code. Thus good performance cannot be achieved by merely
increasing the vector speed without increasing the scalar speed. This
is commonly known as Am dahl’s law which informaJly[l] states:

“W hen a computer has two distinct modes of operation, a
high speed mode and a low speed mode, the overall speed
is dom inated by the low speed mode unless the low speed
m ode can be totally elim inated” .

A m dahl’s law is somewhat pessimistic as it is usuedly not possible
to completely elim inate scalar processing. The redeeming feature is
th a t in m any program s 10 to 15% of the code consumes 90% of the
execution time. This 10 to 15% of the code can be often vectorized
to get a vectorization ratio exceeding 0.95. Thus the overall program
execution tim e is reduced. H a program takes 10 m inutes to execute,
and ou t of this 10% of the code which takes 9 m inutes can be vector
ized to 98% then the to ta l tim e taken would be 1 + (9 /9 .8) or 1.918
m inutes if the ideal speedup is 10. Even though the entire code m ay
no t be vectorizable to 98% the effective tim e reduction is substan tia l.

3 .3 W h a t is V ecto riza tion?

W hen a new application program is developed for a vector super
com puter, the algorithm chosen m ust be such that it fully exploits the
vector facility provided by the hardware. The programming language
chosen m ust have language features to express vectors and operations
w ith vector operands. The new standard evolved for Fortran, called
F ortran 90, has recognized this need and allows vector operands and
operations. A compiler for Fortran 90 will compile a Fortran 90
program to a machine language program which uses vector machine
instructions available in these computers.

This situation of w riting a new program for an application is more
an exception. Usually scientists use programs supplied by others for
their applications. These program s are written most often in Fortran
for m ainfram e com puters which have no vector processing capabil
ity. These program s m ust be modified to use the vector processing
capabilities of supercom puters if they are to run faster. This pro
cess of m odifying a program is know as vectorization of the program.
Vectorization of program s can be either automatic or manual. In au
tom atic vectorization a program called a vectorizer supplied by the
m anufacturer of the supercom puter is used to translate the Fortran
program to one which uses vector instructions of the computer. In
m anual vectorization a program m er examines the program and de
cides which parts are vectorizable and rewrites those parts. Manual
vectorization is difficult and slow and is done only when autom atic
vectorization is not effective.

3.4 T h e V ec to riza tio n P rocess

T he questions we will now ask are “how is vectorization per
form ed?” and “when is vectorization effective?” . The primary idea in
vectorization is to recognize DO loops in Fortran programs in which
all the component values of the vector operands are readily avail
able to be stream ed through the pipelined functional units of the
supercom puter. These DO loops are replaced by equivalent-vector
instructions. For example, the loop

Computing with Vector Supercomputers 37

38 Supercomputers

DO 25 I = 1,100
A (I) = B (I) + C (I)
D (I) = A (I) ♦ 2

25 CONTINUE

is vectorized and expressed in Fortran 90 array no tation as:

A (l;1 0 0) = B (l:1 0 0) + C (l:1 0 0)
D (l:1 0 0) = A (l:1 0 0) ♦ 2

Observe th a t all the values of vector A are calculated by the first vec
tor instruction and are properly used in the second vector in struction
w ithout altering the m eaning of the loop (See Fig 3.4). Consider

Vector
Registers

Pipelined Adder Unit

Vector Register

Pipelined Multiplier Unit
Scalar Register

Fig 3.4. U sag e o f su ccess iv e v e c to r in s t r u c t io n s

th e loop:

DO 20 I = 1, N
B (I) = C (I) » 2

20 D (I) = B(I+1) + k (.l:

A naive vectorization of the above loop as

B(1:N) = C(1:N) ♦ 2
D(1:N) = B(2:N+1) + A(1:N)

will be incorrect as the vector cjJcuIation will yield

B (l) = C (D * 2
B (2) = C (2)* 2
B(3) = C (3)* 2

Computing with Vector Supercomputers 39

B(N) = C(N)+ 2
D (l) = B(2) + A (l) = C(2)+2 + A (l)
D(2) = B(3) + A(2) = C(3)+2 + A(2)

D(N) = B(N+1)+A(H) = C(N+1)*2+A(N)

whereas the following was intended:

B (l) = C (D * 2
D (l) = B (2)+ A (l)
B(2) = C(2>* 2
D(2) = B(3)+ A(2)

D(N) = B(N+1)+ A(H)

The correct vectorized code is:

D(1:N) = B(2:N+1) + A(1;N)
B(1:N) = C(1:N) * 2

which preserves the moaning of the original loop. Some more exam
ples of vectorization are given below.

Consider the loop:

DO 50 I = 1,100
A (i; = B (I) ♦ C (I)
D (I) = DULT(Ad) * X (D)

E d) = D (I) /B (I) + A (I)
50 CONTINUE

Assume th a t the function D U LT is not a vectorizable function (i.e.,
i t cannot be computed by using a pipeline). The vectorized code is:

A (l:1 0 0) = B (l:1 0 0) ♦ C (l:1 0 0)
DO 50 I = 1,100

D (I) = DULT(Ad) ♦ X (D)
50 CONTINUE

E (l;1 0 0) = D (l:1 0 0) /B (l :1 0 0)+ A (l:1 0 0)

T he following loop is not vectorizable:

DO 90 I = 2 ,60
A (I) = B (I - l)
B (I) = C (I)

90 CONTINUE

T he actual £issignments by this loop are:

A(2) = B (l)
B(2) = C(2)
A(3) = 3 (2)
B(3) = 0 (3)

40 Supercomputers

A(SO)= B(49)
B(60)= C(50)

If we write a vectorized code as:

AC2:50) = B (l:4 9)
B (l :5 0) = C (l:5 0)

th e com puter will first assign

A(2) - B (l)
A(3) = B(2)

Computing with Vector Supercomputers 41

A(50)= B(49)

and then assign

B (l) = C (l)
B (2) = C(2)

B(50)= C(50)

Thus vector A will have old values of vector B and not its updated
values. This error has occurred due to data dependency in the loop.
This d a ta dependency may be elim inated manually by rewriting the
code as:

A(2) = B (l)
B (2 :50) = C (2:S0)
A (3:50) = B (2 :49)

The code given above is vectorized. Some intelligent vectorizers do
this vectorization autom atically. The loop

DO 150 I = 2 ,100
150 A (I) = A tI-1) + P

is no t vectorizable as values of components of A are values of pre
vious components which are calculated sequentially. This is called a
recursive DO loop and is not vectorizable by autom atic vectorizers.
A program m er may, however, observe th a t when the loop ic expanded
one gets:

A(2) = A (l)+P
A(3) = A(2)+P = A(1)+2*P
A(4) = A(3)+P = Ai;i)+3*P

and rew rite the program as:

DO 150 1 = 2 , 100
ISO A (I) = A (1)+ P *(I-1)

which is vectorizable.

All possible vectorizations which preserve the m eaning of the orig
inal Fortran program are autom atically performed by the vectorizer
supplied by a m anufacturer. Part of Fortran program s which have
dependent or recursive DO loops are highlighted by the au tom atic
vectorizer. Phis information is valuable to a user to enable h im /her
to a lter the code if appropriate to facilitate vectorization.

P r o g r a m P ro f i le r : In practice many scientists and engineers use
program s w ritten by others for an application. Many of these pro
gram s are w ritten in Fortran and have more than 10,00,000 s ta te
m ents of Fortran code. It is impossible to m anually go through such
program s, understand them and vectorize them . C om puter aids are
thus necessary to locate the subroutines in the program which take
most of the execution time. As was pointed out earlier 90% of the
execution tim e of many programs is spent in 10% of the source code.
I t is thus v/orthwhile locating this 10% of the source code. Super
com puter m anufacturers supply a program called a profiler to assist
in this effort. The profiler adds instructions to the program for m ea
suring the processing time taken by each subroutine in the program ,
how m any times each subroutine is called and the percentage of the
to ta l execution tim e spent by the program in each subroutine. Thus
the practical m ethod used to vectorize program s is to s ta r t w ith the
source program and execute it on the supercom puter along w ith the
profiler program . A typical output of a profiler is shown in Table 3.2
It is seen from Table 3.2 th a t the subroutines funx and caisph account
for 94.1% of the to tjJ execution tim e of the program . Thus reducing
the execution tim e of these two subroutines would give the g reatest
benefit for the least effort.

After getting the execution profile of the source program , the p ro
gram is recompiled with the vectorizer turned on for vectorizing the
entire program . Even though it is beneficial to vectorize only those
subroutines which take the largest percentage of execution tim e, the
program is run once fully vectorized to compare the scalar and vector
tim es of each subroutine. After vectorizing the program the profiler

42 Supercomputers

Computing with Vector Supercomputers 43

Table 3.2. P ro f i le o f a F o r t r a n P r o g r a m (U n v e c to r iz e d)

Subroutine
name

funx
calsph
pion

valcal
molwt
kroot
picky
Total

Percentage time
spent in

subroutine
69.8
24.3
4.8
0.5
0.2
0.2
0.2
100%

Time spent
in subroutine

(sec)
167.15
58.25
11.43
1.3
0.5
0.4

0.45
239.48

No.of subroutine
invocations

100
100
305
100

100

is re-run to obtain the new profile. It is shown in Table 3.3. It is
interesting to note th a t vectorization has reduced the execution time
of the first three routines: funx runs seven times faster after vector
ization, calsph runs about two and a half times faster and pion about
five tim es faster. In contrast routines valcal, molwt, krost and picky
run slower w ith vectorization. Although vectorization yields very
good tim e reduction in a num ber of cases, there are ca-ses where the
overhead of vectorizing short loops can cause these loops to execute
slower th an when scalars are used.

Table 3.3. P ro f i le o f a F o r t r a n P r o g ra m (V e c to r iz e d)

Subroutine Percent tim e spent Time spent No.of subroutine
name in subroutine in subroutine invocations
funx 44.7 24.25 100

calsph 42.6 23.12 100
pion 4.1 2.21 305

valcal 3.0 1.61 100
m olwt 2.8 1.53 100
kroot 1.2 0.67 1
picky 1.6 0.85 1
T otal 100 54.24 -

For such short loops a m ethod known as loop unrolling would lead
to faster execution. For example the DO loop

DO 26 I = 1,4
25 A(I) = B(I)

could be w ritten as:

A(l) = B(l)
A(2) = B(2)
A(3) = 3(3)
A(4) = B(4)

The code given above is said to be “unrolled” . Unrolling elim inates
th e overhead of incrementing the index in each iteration and com par
ing its value with the final value of the index for loop term ination .

In the example being considered, the program is recom,piled again
after vectorizing only the first three subroutines. If fu rther tim e re
duction is desired one may look in detail a t the subroutines fu n x and
calsph and see if any loops have been left unvectorized by the au
tom atic system. To look a t the detailed execution of loops ano ther
profiler known as loop profiler is used. This profiler creates a tab le
sim ilar to Table 3.2 for each of the loops in a subroutine. Such a
profiler also highlights those loops which have been autom atically
vectorized and those loops which have not been vectorized. T he user
can a ttem p t to vectorize such loops manually by restructuring th e
code.

As sta ted earlier it is most often found in program s th a t 90% of
the execution tim e of a program is spent in 10% of the code. T hus
i t is m ore cost effective to spend one’s tim e in manujdly vectorizing
this 10% of the code. The reasons are;

• T he largest speedup is possible by concentrating on this p a r t
o f the code.

♦ W hen a small pa rt of a program is manually rew ritten there is
less chance of introducing errors in the program.

44 Supercomputers

• As only a small pa rt of the program is restructured the new
program is close to the original program and is thus easy to
m aintain.

• One may look deeper into improving the algorithm for a small
p a r t of the overall program to tune i t to a vector computer.

M anual vectorization requires careful exam ination of dependencies
in loops, the type of subscript expressions in loops and understanding
the m anner in which memory banks are accessed by m ultidim ensional
arrays. Discussion on these points is beyond the scope of this book
and the in terested reader is referred to [1] and [2] given a t the end of
this book.

S u b r o u t in e in -lin in g : Another technique for reducing the execu
tion tim e of program s is called subroutine in-lining. This is replacing
a subroutine or function call in a calling routine by the actual code
of the called subroutine. Consider the following simple example:

DO 200 I = 1,100
CALL IN IT (P d))
CALL P A L (X (I) ,Y (I) ,Z (I) ,P (D)

200 CONTINUE

Computing with Vector Supercomputers 45

SUBROUTINE INIT(A)
A = 1 .0
RETURN

END
SUBROUTINE PAL(A,B,C,D)

D = D + A * B + C * C
RETURN

END

T he above code may be replaced by

DO 200 J = i ,1 0 0
P (J) = 1 .0

P (J) = P (J)+ X (J)* Y (J)+ Z (J)* Z (J)
200 CONTINUE

T he m ain reasons for subroutine in-lining in the above exam ple are
the reduction in the overhead of subroutine calling in each loop and
the possibility of vectorization with this transform ation. If the sub
routine is invoked from within a loop, vectorization of the loop is
inhibited.

The subroutine calling overhead is com puter-dependent. It is nor
m ally of the order of tens of microseconds. In-lining of subroutine
code is justifiable if the number of calls to the subroutine is (as seen
from the profiler m formation of Table 3.3) of the order of hundreds
of thousands. It is also justifiable if the profiler shows th a t th e sub
routine is taking a large proportion of com puter’s execution tim e aud
by in-lining vectorization becomes feasible.

T h e ro le o f F o r t r a n : We have been extensively using Fortran lan
guage in our examples so far. The main reason is th a t inspite of the
emergence of m any improved programming languages such as Pascal
and C, Fortran is still the most popular language among scientists and
engineers. The reasons for this are many. Fortran compilers are very
efficient; many programs for common applications have been w ritten
in Fortran and are widely available; most scientists have learnt For
tran as their first language to 'vrite program s and are re luc tan t to
change unless there is an immense advantage in doing so. Fo rtran is
a simple language to learn and use and finally m any good books are
available to learn Fortran. As new languages are invented and come
in to vogue the demise of Fortran is predicted but Fortran continues
to thrive. Periodically Fortran has been improved and standardized.
Fortran 77 was standardized by the International S tandards O rga
nization and more recently a new standard called Fortran 90 has
emerged in 1990. The new standard has absorbed some of the good
qualities of more recent languages such as Pascal while re taining com
patib ility with earlier Fortran compilers. Besides this, F ortran has
recognized the emergence of supercomputers and has enhanced For
tra n syntax and semantics to include constructs to facilitate vector

46 Supercomputers

processing. Thus we note th a t any one who wants to use a super
com puter has to be well conversant with program m ing in Fortran
prim arily because of the availability of:

1. A large num ber of application program s w ritten in Fortran
2. Efficient compilers and optimizers for Fortran particularly for

supercom puters and
3. Availabillity of special constructs in Fortran 90 to operate on

vector operands.
4. Many of the new languages sued as C have advanced features

such as pointers which inhibit vectorization. Codes w ritten in
these languages to exploit vector hardware may end up like
F ortran using simple fo r loops and array d a ta structures.

3 .5 S c a la r O p t i m i z a t i o n o f P r o g r a m s

Besides vectorization, it is necessary to optim ize the ncn-vector
p a rt of a Fortran program to reduce its execution time. Due to
m any advancem ents in knowledge about languages and compilers,
au tom atic optim izing compilers have improved considerably over the
years. Supercom puter m anufacturers are particularly sensitive to this
and improve their optim izers regularly. Inspite of this, it is essential
for a serious Fortran program m er who wishes to reduce execution
tim e on a supercom puter to follow some simple rules which assist the
optim izing compilers to recognize optim ization opportunities. Some
rules which are effective and found in optimizing compilers are:

• Evaluating constant expressions
• Moving code independent of loop index out of a loop
• E lim inating common subexpressions
• Elim inating unnecessary store statem ents.

Numerous examples of such optim ization and an extensive discus
sion of this topic is outside the scope of this book and the interested
readers may refer to the books [1] and [2] in the bibliography.

Computing with Vector Supercomputers 47

Besides veclonzers and optimizing compilers, supercom puter m an
ufacturers also provide libraries of commonly used m athem atical pro
cedures such as m atrix inversion, eigenvalue calculation, curve fitting
etc. These libraries are vectorized and optim ized to work efficiently
on the m anufacturer’s machine and are sometimes w ritten using as
sembly language. H the exam ination of a program profiler’s ou tp u t
shows th a t a large proportion of the program ’s execution tim e is taken
by the subroutines w ritten by the user for such common m ath em ati
cal procedures, then the user w ritten procedures should be replaced
by the m anufacturer’s optimized subroutines and linked to th e rest o f
the program . In some cases tiiis m ethod reduces execution tim e of a
program by a factor of four! Thus m anufacturers’ routines should be
used whenever they lead to significant reduction in com puting tim e.

In conclusion we note th a t in order to a tta in the high speed of
com putation promised by supercomputers i t is essential to vector
ize and optim ize the program. It is not possible to fully au to m ate
th e vectorizatiou process and some manual vectorization m ay be re
quired. A profiler should be used to find the parts of the code which
consume m ost of the execution time and devote m anual vectorization
and optim ization effort to these parts of the code. These p a rts are
norm ally quite small in terms of number of lines of code and thus
this effort would not be enormous. These m ethods are used to get
the best out of existing programs. W hen new applications are de
veloped for vector supercomputers the algorithms should be m atched
to the architecture. Vector operands and operations should be used
extensively.

48 Supercompuitrs

Parallel Com puters
We saw th a t vector supercom puters use pipelining as the m ethod of
exploiting tem poral parallelism in solving problems. A part from tem
poral parallelism , d a ta parallelism is inherent in solving m any prob
lems and can be easily exploited to increase the speed of computing.
It is also possible to combine both types of parallelism to further
increase the speed of a com puter and this is done in m ost supercom
puters m arketed now. In this chapter we will discuss how parallelism
in algorithm s is exploited in building parallel supercom puters. We
will also look a t a generalized structure of parallel computers. Fi
nally we will compare vector computers with parallel computers.

4.1 Array Processors

In a pipelined (vector) computer, two vectors (a i, Q2, 03 . . . a „)
and (6i , 62, ^3, • • •, b„) are added by stream ing in pairs of operands
through a pipelined adder. The adder is designed with several stages
or segm ents, each segment performing a specialized operation on a
different pair of input operands. If a pipelined adder has, say, four
stages and the pipeline is full then four pairs of operands will be in
different stages of addition in the pipeline (see Fig.2.3). If each stage
in the pipeline takes T seconds to do its work, then the first sum
takes 4 T seconds but subsequent sums take T seconds each. As we
saw in chapter 2 , pairs of operands are stream ed through the pipeline,
one pair of operands entering once every T seconds. This m ethod of
designing an adder is said to exploit tem poral parallelism. If we write
a DO loop for addition

DO 25 I = 1, 100
25 C (I) = A (I) + B (I)

50 Supercomputers

A dd Command

Fig 4.1. A n array adder

then we can think of the index I as representing tim e and the vectors
A (I) and B {I) as being sequentially stream ed through the adder
pipeline.

Another m ethod of adding vectors is to have an array of n adders
and to distribute one pair of operands (o i, 61), (02, i j) ■ • •(am^’n) to
each adder. An add instruction may then be broadcast to all the
adders. All the adders then simultaneously s ta rt adding the operand
pair assigned to them (Fig. 4.1). H each adder takes T seconds to
add then the tim e to add a vector is T seconds if we ignore the tim e
taken to distribute the operands to the adders. Such an organization
of adders is called an array adder. We can generalize the system and
arrange a set of Processing Elements (PE s) with each PE capable of
performing not only addition but o ther operations such as m ultipli
cation, division, exponentiation etc. Such an organization of PE s is
called an Array Processor.

An array processor uses data parallelism. In the vector addition
exam ple a single instruction, namely ADD, is performed sim ultane
ously on m ultiple d a ta item s, namely, pairs of components of two
vectors. This type of computer is thus called a Single Instruction
M ultiple D a ta (SIMD for short) type computer.

If we write a DO loop for addition

Parallel Computers

Input Data and Results Path

51

Fig 4.2. A n array o f processors for data parallel com putation

DO 25 I
C (I)

26 CONTINUE

1 , 100
A (I) + B (I)

then we can th ink of the index I as representing a PE num ber and each
component of the vectors A(I) and B(I) as being added in parallel in
the respective P E (I). In fact the DO loop may be w ritten to explain
this point as:

DO ACROSS P E (I)
FOR I = 1, 100
C (I) = A (I) + B (I)

END DO

An array processor (see Fig 4.2) is normally attached to a host
com puter. T he host computer stores the program to be executed.
Com ponents of the d a ta arrays to be processed are first despatched to
each of the PE s. The host com puter then broadcasts the instructions
to operate on components of the array to all the PEs. All the PEs
independently and simultaneously perform the arithm etic operation
on the d a ta arrays stored in their respective private d a ta memory.
The results are then sent back to the host by each of the PEs. These
are combined and ou tpu t by the host. (Each PE in the array can
itself use pipelining for performing arithm etic operations. In such a
case the vectors to be processed should be very long so th a t each PE
in the array is sent a vector of reasonable length to process).

The idea used in an array processor can be extended to design a
com puter which efficiently executes d a ta parallel algorithm s. In this
struc tu re a set of identical Com puting Elements (CEs for sho rt) are
connected to a host computer. A computing elem ent consists of a
CPU and a private memory which stores bo th d a ta and instructions.
The host compiles a program to be executed and stores one copy of
the object code in the memory of each CE. The d a ta set is partitioned
equally and one partition is stored in the memory of each CE. On a
comm and from the host all CEs execute sim ultaneously the program
stored in their respective memories using the d a ta stored in each CE.
T he results are then ou tpu t by the individual CEs or by the host. This
m ethod of organizing a parallel computer is called a Single P rogram
M ultiple D ata (SPM D) architecture.

SPM D mode of working is of great practical in terest as m any
problem s can be easily partitioned to use d a ta parallelism . Some
examples are:

• Averaging a set of n numbers: If there are k CEs, { n /k) num
bers can be allocated to each CE. Each CE averages the d a ta
allocated to it. The CEs work simultaneously and indepen
dently. The average computed by each CE is retu rned to the
host. The host computes the average of the averages received
by it and ou tputs the result. This m ethod will be effective if
the computing tim e taken by each CE is much larger th an the
tim e required by each CE to receive the d a ta and program from
the host.
One interesting side-effect of d a ta parallel computing is th e re
duction in rounding errors. As the num ber of a rithm etic oper
ations performed by each CE is only (n /k) the rounding error
is reduced compared to the case in which one CE does all n
arithm etic operations.

• Integrating a function /(x) : In this case the region between
A and B (See Fig 4.3) is divided into k strips with each strip
having width (B - A) /k . The function f { x) and the begin
ning and end j-coordinates of a strip to be integrated by a CE

52 Supercomputers

Parallel Computers 53

Fig 4.3. Parallel com puting o f an integral

are despatched to each of the k CEs. Each CE integrates the
portion of the function allocated to it. All the CEs work con
currently and independently. Each CE then sends the integral
calculated by it to the host which adds all these integrals and
ou tp u ts the result. The same idea can also be used to compute
surface and volume integrals.

• G enerating a frequency table for a given d a ta set: Here again
the d a ta set can be partitioned into k sets and distributed to
the k CEs. Each CE then computes a frequency table with the
d a ta set allocated to it. These tables are then gathered by the
host, consolidated and printed.

• Sorting a list of names: If a list of names is to be sorted, the
list may be partitioned into several sublists and each CE may
be given a sublist to sort. The sorted sublists are then sent to
the host by each CE. The host then merges these sublists in to
one sorted list.

T he efficiency of da]ta parallel computing with an array of proces
sors depends on the tim e taken for computation in comparison with
the tim e taken to distribute da ta to the processors. Let the tim e

54 Supercomputers

taken to compute a job on a single processor be T . Assume th a t the
d a ta is partitioned and distributed to k processors. Let T , be the
tim e taken to send d a ta to the processors. Let each processor take
T / k seconds computing tim e. Let Tr be the tim e taken by the host
to receive the results. Then the speedup due to parallel processing
is:

Speedup = T / ({ T /k) + T , + Tr)

W hen [T /k) » (T , + Tr) the speedup is nearly ideal, i.e., k.

4 .2 E x e c u t in g T a s k G r a p h s in P a r a l l e l C o m p u te r s

Fig 4.4. T ask g ra p h fo r a c o m p le x c o m p u ta tio n

In the last section we looked at problems which could be broken
up in to a number of independent tasks and carried out in parallel.
In general, problems cannot be broken up into independent tasks.
Consider, for example, the following computations;

a = c o s{ p (x)) + co s(/(x) + g{y)) + eM*)

Parallel Computers 55

Table 4.1. T im e for each task in a task grapli

Task
Tim e
Task
Time

T9

T z

Tio

T5

r i3

b = sin(e'>W) + j , (u) t e '‘W

The com putations above can be depicted by the task graph of
Fig. 4.4. The task graph clearly shows the sequence of execution of
tasks. Each circle in the task graph represents a task. For example,
Ti is the task o f com puting f (x) . A Dne with an arrow connecting
two circles shows the dependency between tasks. The direction of
the arrow shows precedence. In Fig 4.4, task Te can be done only
after tasks Ti and T 2 are done. On the o ther hand tasks T i,T ^ ,T 3

and T i can be done independent of one another and can be carried
out in parallel. Task T 1 3 can be done only after tasks Ts,T io , and
Tr are completed. Tasks T i,T i,T g and T 1 3 have to be performed
sequentially one after another.

We will now examine how a and b are calculated in parallel, if 4
CEs are available. We will assume th a t the CEs are identical. In
Table 4.1 the tim e necessary to execute each task is given.

T he m inim um tim e in which all the tasks can be completed by 4
CEs working in parallel (if there is no dependency between tasks) is
given by:

M inimum tim e = Sum of execution tim e of Tasks Ti to I 13/4
= 4 0 / 4
= 10

T he above estim ate is an optim istic estim ate as it does not take
in to account the constraints placed by the task graph on the sequenc
ing of tasks. If we inspect the graph we find th a t the earliest tim e
a t which a can be computed is 12 units of tim e and the earliest tim e
b can be com puted is 13 units of time. The tasks T\ to T \ 3 may be

56 Supercomputers

scheduled on 4 CEs as shown in Fig. 4.5. T he assignm ent shown in
this figure is optim al.

Program s to compute a and b for the 4 CEs may be w ritten as
below:

Program for C E l
d o T i
Send r i to CE2
d o T s
do T s
get re from CE2
get rg from CES
do T i 3
Write a
Stop

Program from CE3
d o T i
d o T j
Send rg to CE4
Send rg to C E l
do T il
Send T9 to CE4
Stop

Observe th a t as soon as the Program for C E l performs task T i,
the result r i is sent to CE2. Thus there should be a d a ta p a th be
tween C E l and CE2. Further, as soon as r i is sent by C E l it can
proceed with the rest of its work and perform tasks Tj and Tg. W hen
these tasks are done, it cannot proceed further as it needs the results
rg and rg from CE2 and CES respectively to do task T13. D a ta p a ths
are needed from CE2 and CES respectively to receive rg and rg. C E l
issues commands to get rg and rg from CE2 and CES respectiyely
and waits till the corresponding Send commands have been executed
by CE2 and CES. As soon as rg and rg are received T13 is executed.
Program s for CE2, CES and CE4 are similarly in terpreted. For effi
ciently executing this task graph, d a ta paths between CEs m ust be

Program CE2
do T 2

get ri from C E l
doTe
do Tio
Send rg to C E l
Stop

Program for CE4
d o T i
get rg from CES
d o T i
get rg from CES
do 7i2
Write b
Stop

Parallel Computera 57

CEl I ' 1
3

1 ' 1 ^ 1
h T jj ' Write a

CE2 4
1 ' 1 4 1

^2 ho

CE3 5 \ 3 1 " 1 r1

4 2
CE4 4 2

1 ' ' ^ ' 1 ‘ 1 •-T
4 Idle 8̂ IdU ^ 2 Write b

Fig 4.5. A ssignm ent o f tasks o f task graph to 4 CEs

available as shown in Fig. 4.6. Observe that a CE which receives da ta
from another CE m ust provide a small storage area called a buffer to
receive the da ta .

Fig 4.6. Interconnection o f com puting elem ents to task graph
o f Fig 4.3

The d a ta paths connecting CEs shown in Fig 4.6 is specialized to
efficiently execute the task graph of Fig. 4.4. For executing densely
interconnected graphs it would be ideal to provide d a ta paths be
tween every CE and every o ther CE. The paths will become numerous
if there are m any CEs. For n CEs the to ta l number of paths will be
n (n - 1). For 4 CEs these paths are shown in Fig. 4.7. To reduce the
complexity of connections one may connect all the CEs to a bus (i.e.
a set of parallel d a ta lines and control lines) as shown in Fig. 4.8.

This is a cost effective m ethod but the problem with this m ethod is
th a t a t a given tim e only one da ta packet can be sent on the bus. Thus
if CE2 sends d a ta on the bus, no other CE caji use the bus until the

58 Supercomputers

Fig 4.7. A fully connected set o f CEs

BUS

Fig 4.8. CEs connected by a bus

d a ta reaches its destination(s). In a fully interconnected system (See
Fig 4.7), any CE can send da ta to any another CE and receive d a ta
from any o ther CE simultaneously. Another possible interconnection
scheme between CEs is shown in Fig. 4.9. This interconnection is
called a 2D hypercube interconnection. In this interconnection CES
cannot directly send d a ta to C E l. If CE3 wants to send d a ta to
C E l, i t sends it to either CE2 or CE4 with a request to forward it to
C E l. Thus the tim e taken to send the d a ta is longer and also ano ther
CE has to in terpret this request and do the work of d a ta forwarding.
T he advantage, however, is the number of interconnections is sm aller
than a fully connected network. The hypercube structure can be gen
eralized. A 3D hypercube connection of 8 CEs is shown in Fig. 4.10.
A general hypercube structure of dimension d has n = 2'̂ processors.
T he to ta l num ber of links (bidirectional) is n x d /2 . If any CE w ants
to com m unicate with any other CE which is not directly connected to
i t , the m aximum number of intervening CEs will be d. For exam ple, if

Parallel Computers 59

Fig 4.9. A 2D hypercube connection o f CEs

Fig 4.10. A 3D hypercube connection o f CEs

C E l w ants to send d a ta to CE7 (in Fig. 4.10) it can either send d a ta
to CE2 which will forward it to CE3 which will in tu rn forward it to
CE7 or the rou te can be CE1-CE4-CE3-CE7 or CE1-CE5-CE8-CE7
etc. In fact, there are 6 paths of length 3 from C E l to CE7 (length
is defined as the num ber of links traversed). As the num ber of links
is o f the order of n x d and the maximum distance is d the hyper-
cube interconnection of CEs is very popular and m any commercial
m ulticom puter system s use this m ethod of interconnection.

60 Supercomputers

4 .3 A G e n e r a l iz e d S t r u c t u r e o f a P a r a l l e l C o m p u t e r

A conceptual structure of a general purpose parallel com puter is
given in Fig. 4.11. It consists of a set of CEs which are intercon
nected by a communication network. T he task graph to be executed
is stored in a task store and the d a ta to be processed in a d a ta store.
A scheduler assigns tasks to be processed to the CEs. CEs use the
comm unication network to send or receive d a ta from each o ther. Re
sults computed by the CEs are despatched to an ou tp u t un it. A host
com puter is often used to store the task graph, perform the functions
of the scheduler, read input d a ta and ou tpu t results.

Input

Output

HOST
COMPUTER

CEj CEj

CE^ CE^

□
Communicatioa Network

Fig 4.11. Generalized message passing m ulticom puter

Given this structure of a parallel computer we assume th a t the
task graph and requisite d a ta are stored in the host com puter. T he
scheduler uses an algorithm to statically allocate groups of tasks to
CEs. The sta tic allocation keeps in view the available parallelism in
the task graph and the expected tim e needed to execute each task .
Each task is a small program which is stored in a C E ’s private m em
ory. One way of representing a task to be executed by a CE would
be:

Name of Task to
be carried out

Slots for input
da ta

Slots for results

Once the tasks are allocated to CEs the following steps are fol
lowed to execute a program;

Step 1: Send a command from the scheduler to all CEs to s ta r t
executing tasks.

Step 2: CEs execute those tasks which have all the inpijt d a ta avail
able.

Step 3: T he results are sent to the scheduler which routes them to
the CEs which need this data .

Step 4: Steps 2 and 3 are repeated until no tasks remain unexecuted
and no d a ta (to be processed) is left in the communication
network or CEs.

There could be m any variations to Step 3. They are;

1. T he results are not sent to the scheduler but to a storage unit
shared by all CEs. W hichever CE requires a result to execute
the task assigned to it reads the results from the shared storage
unit.

2. Each CE keeps a program which consists of all the tasks to
be executed, the identity of the CEs from which d a ta is to be
received and the identity of the CEs to which results are to
be sent. After executing a task the results are sent via the
com m unication network to the appropriate CEs which receive
them .

3. A t the end of execution of a task a CE broadcasts the result
on the communication network. All the CEs needing this result
capture i t and store i t in their local memory. An uncaptured
result is kept in a result buffer by the scheduler and broadctist
again.

The parallel com puter hardware organization is normally tailored to
m atch the corresponding execution model.

The scheduling philosophy described above is a sta tic philosophy.
Tasks are pre-assigned to CEs. A dynamic schedule may be more
efficient particularly in cases where the completion times of tasks are
strongly d a ta dependent. In dynamic scheduling the task graph is
stored in the host computer. The host computer schedules tasks as
follows:

Parallel Computers ’61

S te p 1: The host sends tasks ready to be executed to free CEs.
S te p 2: The CEs execute tasks assigned to them and send results to

the host.
S te p 3: The host fills the input d a ta slots of waiting tasks w ith rel

evant results and m arks them ready.
S te p 4: Steps 1, 2 and 3 are repeated until no m ore tasks are left

in the task graph, all CEs are free and no d a ta rem ains in the
communication network.

This m ethod requires a lot of coordination by the host and the
host may become the real bottleneck and slow down execution. A
com bination of the sta tic scheduling m ethod and this m ethod is often
used and is called quasidynamic schedule.

Observe th a t in this organization of a parallel com puter m ultiple
tasks are carried out on m ultiple d a ta sets cisynchronously. Such m a
chines are called M ultiple Instruction M ultiple D a ta (M IM D) parallel
com puter. This is in sharp contrast w ith Pipelined Processors, A rray
Processors and SPMD computers which synchronously carry ou t a
single task on multiple data.

Referring again to Fig. 4.11, the heart of the system is a set of P ro
cessing Elements (PEs) or Computing Elements (CEs). This general
struc tu re can have many variations in the type of PEs, the disposi
tion of the memory modules and the way the comm unication netw ork
connects the two and the philosophy of scheduling tasks. These vari
ations lead to a rich variety of parallel computers. We will describe
now some of the common parallel computers which have been built.

4 .4 S h e ire d M e m o r y M u l t ip r o c e s s o r s

In this type of computer around 8 to 128 microprocessors or very
powerful processors are connected to a set of memory m odules using a-
comm unication network. This set of memory modules can be accessed
by any PE and forms the main memory with one common address
space. T he program to be executed, d a ta and results are sto red in
it. This type of parallel computer is also known in the lite ra tu re as

62 Supercomputers

Parallel Computers

a tightly coupled multiprocessor system.

63

Fig 4.12. A shared bus m ultiprocessor

The m ost commonly used communication network to connect PEs
to the m ain memory is a bus. The bus is shared by the processors and
the m em ory (see Fig. 4.12). There will be lines in the bus to address
locations in m em ory and also to address PEs. The bus is a common
resource used by the PEs to access memory and o ther PEs. Two
PE s cannot use the bus a t the same time. Thus if two or more PEs
want to access memory simultaneously, a queue is formed. Even if
sim ultaneous access is not requested, a shared bus lim its the num ber
of PEs which can be effectively used in this system sis explained below.

Assum e th a t a P E can carry out 1 million instructions per second
(1 m ips) and th a t after each instruction is carried out a 64 bit(8 byte)
d a ta is to be stored in the shared memory. Let the tim e to store a
result in m em ory be 0.2/^sec. The tim e to carry out one instruction
is 1/10® or 1/isec. If the memory is connected to a bus and the bus
speed is 40 megabytes per sec then the time to transport the result
(8 bytes) on the bus is equal to 8/(40 ♦ 10®) which equals 0.2fisec.

Assum e th a t 10 PEs share the bus and PEs request access to the
bus w ith equal probability. The minimum time taken to get access
to the bus is 0. The maximum time to get access to the bus is 9*0.4
or 3.6nsec. Thus the average time to get access to the bus is 1.8/xsec.

64 Supercomputers

The average tim e to carry ou t an instruction = Average bus access
tim e + T im e on bus + memory access tim e + average instruction
execution tim e =1.8 + 0.2 + 0.2 + 1 = 3.2/xsec.

Memory Modules

Input Unit

M M M M

Interconnection Network

PE PE PE PE

Processing Elements

Output Unit

Fig 4.13. General structure o f a shared m em ory m ultiproces-

Therefore the effective speed of 10 PEs wiU be (10/3.2) or 3.125
mips. If ail PEs work simultaneously w ithout the need to access a
shared memory using a bus then the maximum speed of com putation
is (10/1.4) or 7.14 mips. Sharing the memory using a bus has reduced
the effective speed of the multiprocessor by 55%.

T his very elementary calculation shows th a t the shared bus lim its
the num ber of PEs in such a parallel computer. Most shared bus
parallel computers which are commercially available use a sm all fast
m em ory called a cache in each PE and copy currently required con
ten ts of the main memory into the cache of each PE . This reduces
the tim e required to access memory by a PE. It, however, introduces
ano ther problem. If a PE alters a da ta item in its cache, then th is
should be broadcast to all other PEs having the same d a ta item in
their caches. This problem called cache coherence problem introduces
complexity in the design and limits the number of PEs to less th an
16 in bus bcised systems. Inspite of this, shared bus shared m em
ory multiprocessors are popular as they are inexpensive to build and

relatively easy to program .

Instead of using a shared bus we may use an interconnection net
work (see Fig. 4.13) connecting a set of memory modules with a set of
PEs. Such a network allows many simultaneous transactions between
processors and memories. A larger num ber of PEs can thus be used
in such a com puter. The cost of such networks is much higher than
th a t of a bus. In this case also the cache coherence problem lim its
the num ber of PEs.

Supercom puters such as Cray combine both pipelined vector pro
cessing and shared memory parallel computing. For example, the
Cray YM P 132 is a single processor vector computer with 32 Mwords
of memory (The 1 in the numbering indicates a single processor and
the 32 the memory size). A Cray YMP 864 is an eight processor
machine in which each processor is a Cray YMP processor. The 8
processors share a common memory of 64 Mwords. The eight proces
sors can work independently or can cooperate to solve one program
stored in the shared memory.

4 .5 M e s s a g e P a s s in g M u l t i c o m p u te r s

The parallel computer structure discussed in Section 4.2 (Fig. 4.9)
is called a message passing multicomputer. The result obtained af
ter executing a task by a CE which is sent to another CE is called
a message. In Section 4.2 we looked a t an interconnection scheme
between CEs called a hypercube interconnection. There are other
interconnection schemes called a ring, a 2D mesh, a tree, a 2D torus

' etc., which are shown in Fig. 4.14.

For a message passing m ulticom puter to work efficiently i t is nec
essary to:

1. Minimize the num ber of messages transm itted beween CEs.
2. Minimize the nuraber of inter-CE links the messages have to

traverse from source CE to destination CE.
3. Minimize the tim e taken to communicate messages between

CEs. This m ust be much less than th a t taken to compute.

Parallel Computers 85

66 Supercomputers

(•) (b)

CE4 CE5 CE6 CE7

(c)

CEl CE2 CE3
T ■ 1

CE4 CES CE6

1

CE7 CES CE9

(i)
(a) A ring, (b) A 2D mesh, (c) A tree, (d) A 2D torus.

Fig 4.14. Som e interconnection networks used in m essage
passing m ulticom puters

Unlike a shared memory computer a message passing com puter
does not share a common global memory. It is thus scalable. In
o ther words the num ber of CEs can be increased provided a proper
task allocation is possible. Message passing machines with 1024 CEs
have been built and used for solving problems.

Program m ing message passing m ulticom puters is more difficult
than program m ing shared memory machines. The m ajor difficulty in
program m ing is the allocation of tasks to CEs and m anaging message
routing between CEs. As the time taken for messages to travel be
tween CEs is norm ally much higher than the computing tim e, a p ro
gram w ith a poor task allocation which requires many messages to be
transm itted to d istan t CEs will be executed very slowly. Some au to
m ated tools to optim ize task allocation to reduce execution tim e have

been proposed. T he problem is, however, difficult to solve as task
graphs vary from one program to another, whereas the CE intercon- 1 illtCrCOIl
nection s truc tu re is fixed. A nother approach is to have a dynamically .
reconfigurable interconnection between CEs. The reconfiguration is
program controOed and is dependent on the task graph.

4.6 C o m p ariso n of V ecto r an d P ara lle l S u p e rco m p u te rs

We saw in C hapter 3 th a t vector supercom puters will achieve their
ideal speed provided hundred percent of a program is vectorizable. In
practice this is not possible. However, the most tim e consuming p a rt
of a program is norm ally vectorizable leading to good speedup of the
overall program . The m ain advantage of vector machines is the ease
with which tem poral parallelism is used by a vectorizing compiler.

Time Taken by Time taken by
Non-Parallelizable Parallelizable

Parallel Computers 87

part of Program part of Program

l \

Execution Time
^

y '' Execution Time

I Tplk (Parallelized Program
Execution Time)

Communication and
Synchronization Time

Fig 4.15. Finding execution tim e o f parallel program

Parallel com puters, on the other hand, use d a ta parallelism. The
speedup depends upon the type of task graph and on how m any tasks
can be carried out simultaneously. In order to estim ate the speedup
ob tainab le with parallel machines we use Fig. 4.15. In this figure T ,
indicates the tim e taken by the sequential p a rt of a program which
canno t be executed in parallel and Tp the time taken by the paralleliz-

able p a rt of a program . If we run the program on a parallel com puter
with k processors the tim e taken for executing the program is shown
in the lower p a rt of Fig. 4.15. The tim e taken by the sequential pa rt
of the program remains the same. The tim e taken by the p a rt which
can be executed in parallel is {Tp/k)+ Tc, where Tc is the tim e taken
to synchronize execution of tasks an d /o r tim e taken to com m unicate
d a ta and results between tasks.

T he speed up is given by:

Speedup= iT , + T ,)/{ {T , + T ,) + { T ,/k))
= k/{{k{T, + T M + T,)) + (r,/(Tp + T,)))

If we call Tp/(Tp + T ,) = / = the fraction and the tim e taken to
execute the p a r^e lizab le code and Td{Tj, + T ,) = g = fraction of
the tim e spent in synchronization and comm unication, then

Speedup = k / (f + kg + fc(l - /))

If (/ = 1) and {g = 0) the speedup is maxim um and is k. If
(/ = 1) then

Speedup = k l { l + kg) = l / (j + (!/*:))

A sym ptotically when k oo, Speedup -+ (1 /s) .

Thus if the fraction of time g spent in comm unication and syn
chronisation is (1/100), regardless of the number of processors, the
maxim um speedup cannot exceed 100! In Table 4.2 we give speedup
for various values of k for given values of / and g. It is seen th a t
the efficiency defined as (Speedup/ /:)rapidly decreases with the in
crease in the num ber of processors. Thus the figure of 1000 Megaflops
speed specified for a parallel supercom puter by some vendors for a
com puter configured with 1000 processors each of 1 Megaflop speed
has to be taken with a pinch of salt!

An interesting question to ask is,“Under what conditions will a
parallel supercom puter (of the type we discussed in this chap ter)
give near linear speedup?” We list some of these conditions below:

68 Supercomputers

Parallel Computers 69

Table 4.2, Speedup obtainable from parallel com puters

10
100

1000
10000

10
100

1000
10000

f
0.9
0.9
0.9
0.9
0.9
1.0
1.0
1.0
1.0
1.0

0.1
0.1
0.1
0.1
0.1

Speedup
1.8

5.26
9.17
9.9

9.99
1.67
5.0
9.1
9.9

9.99

Efficiency
0.9

0..526
0.0917
0.0099

0.00099
0.833

0.5
0.091

0.0099
0.000099

• If an algorithm can be composed of a set of independent tasks
w ith no need for inter-processor communication

• If an algorithm is designed for an architecture so th a t while com
p u tatio n is being performed, synchronization and communica
tion are carried out simultaneously and the parallelism available
in the algorithm always exceeds the number of available pro
cessors.

• If the tim e taken for com putation by the non-parallelizable p a rt
is very sm all compared to the parailelizable part and the par-
allelizable pa rt has f = 1 and g = 0.

In Table 4.3 we give a comparison of vector computers and parallel
com puters.

In general it is difficult to satisfy any one of the conditions sta ted
above, particularly if there are very large number of processors in a
com puter. Parallel supercom puters such as Cray YMP 864 have only
8 com puters working in parallel. Each computer is a powerful vector
processor. Thus i t is relatively easy to exploit parallelism inherent
in program s being executed on this machine. Such a machine is
th u s very efficient and very often delivers the promised speed. On
th e o th er hand, a parallel computer using a thousand one megaflop

70 Supercomputers

Table 4.3. Com parison of Parallel and Vector C om puters

Type o f
C om puter

Pipelined
Vector

com puter

A rray
Processor

Shared M em ory
m u lticom pu ter
(w ith around

12 to 16
Processors)

Passing
m ulticom pu ter

Type o f
Parallelism

exploited
Tem poral

D a ta
Parallelism

(SPM D)
M ultiple

tasks and
M ultiple

d a ta
(G eneral
Purpose)
M ultiple

tasks and
m ultiple d a ta

(G eneral
Purpose)

Task
size

S m a ll.
(F ine
grain)

Sm all
(F ine
grain)

M edium
(Sm all to
m edium

grain)

Big
(M edium

grain)

Program m ing
ease

R elatively
easy

(a u to m a tic)
vecto rization

R elatively
easy

D ue to
availab ility

o f global space
re la tively easy.

Scalab ility
•poor

Difficult. G ood
task a llocation

and
synchron ization

needed

m icrocom puters will rarely deliver 1000 megaflop speed if one tries
to execute a variety of programs. It is extremely difficult to program
such a machine to obtain the promised speed.

A vailable High Perform ance
C om puters
In th is chapter we will describe some of the high performance com
puters available in the m arket now (1992). We will also discuss how
the perform ance of these machines is evaluated. The word “super-

. com puters” has been commonly misused during the last five years
and is losing its distinct meaning. The reason for this is the avail
ability of very high-speed microprocessors a t a low cost and the ecise
w ith which these microprocessors are intereconnected as a parallel
com puter with a high nominal megaflop speed. Wherezis high speed
vector com puters such as Cray YMP cost around US $10 million
these micro-based parallel macliines cost less than US $1 million
w ith a nom inal megaflop figure in the same range. There is thus
a widespread confusion about the true capabilities of such low cost
“supercom puters” (sometimes also known eis mini supercom puters)
in com parison with existing vector supercomputers. In the absepce of
a precise definition of the word supercom puters, particularly by com
p u ter vendors, we prefer to use the terminology high performance
com puters in th is chapter. The main objectives of this chapter are to
describe some of the currently available vector supercom puters and
o ther parallel high performance low cost computers, their strengths
and weaknesses. We will also discuss how to scientificsdly evaluate
the true capabilities and performance of supercom puters.

5.1 Vector Supercomputers: Cray & Others

C urrently only four m anufacturers in the world make high perfor
m ance “trad itiona l” vector supercomputers. Many people call them
“ tru e” supercom puters as they fulfill all the desirable architectural

requirem ents such tis 64 bit words, large m ain memory (exceeding
256MB), large secondary memory (exceeding 40Gb), high speed d a ta
transfer between m ain memory and the vector processor, extensive
pipelining, high speed d a ta transfer between the secondary m em ory
and the m ain memory (around 100 M bytes/sec), peak arithm etic
speed exceeding 1000 megaflops and sustained arithm etic speed ex
ceeding 50 megaflops. These machines can solve a large class of com
pute intensive problems very effectively. All these m achines have an
architecture similar to th a t of Cray computers. We will describe two
of them .

Cray Research Supercomputers: Cray Research, USA, are pioneers
in supercom puter design. S tarting with Cray IS in 1978, the la test
offering is Cray 3 expected to be delivered in 1992. C urrently (1992)
they m ade two classes of supercom puters - Cray YM P and Cray 2.
The minimum configuration of a Cray YM P is Cray YM P 14 and
the highest is Cray YM P C90. Cray computers are designed by Sey
m our Cray who designed the first supercom puter. The YM P in the
m odel stands for model VMultiProcessor. The first digit following
YM P indicates the num ber of processors in the system and the o ther
digits indicate the num ber of megawords of shared m ain m em ory.
For example, YMP 132 specifies a 1 Processor 32 megaword mem ory
m achine (1 word = 64 bits) and YMP 8256, a machine w ith 8 proces
sors sharing 256 megawords of m ain memory. The latest m odel Cray
YM P C90 has 16 processors and 256 megawords of memory. The
o ther im portan t characteristics of the com puter are illustra ted in Ta
ble 5.1. Besides the hardware features, the main m erit of Cray range
of machines is the variety of software available for the m achine. Be
sides a good vectorizing Fortran Compiler, Crayalso provides a library
of m athem atical subroutines for common operations such as m atrix
com putations, eigen value/vector calculation, polynominal com puta
tions etc. These subroutines have been w ritten in assembly language
and are optim ized for Cray machines. As C ray’s in ternal architec
tu re has remained invariant, the assembly language routines work for
ail models of Cray. Fortran for Cray has been enhanced to include
vector instructions (Some of these have been included in Fortran 90).

72 Supercomputers

Available High Performance Computers 73

Many application program s have been developed for Cray both by the
m anufacturer and by numerous users and software vendors. These
program s are usually w ritten in Fortran and vectorized. Cray has the
largest num ber of application programs in almost all areas of science
and engineering. This is one of the im portant considerations when
an organization buys a supercom puter.

Table 5.1. Characteristics o f Cray Supercom puters

Characteristics

Peak Speed in
Megaflops

Cycle Time
in nsecs.

Shared Main Memory
(M ax in megawords)

Num ber of Processors
Sem iconductor used

Cooling M ethod

Cray
YM P C90

16000

256
16

Silicon

Freon

Cray-2

2000

256

Silicon

Processor
immersed in

Fluon

Cray-3

16000

2.5

2048
16

Gallium
Arsenide

W ater

N E C Computers-. NEC Corporation of Japan is a large diversified
company which embarked on building supercomputers in 1984. NEC
introduced a st'riis of machines known as the SX series. The smadlest
in the series is SX l and the latest is SX3. The unique feature of the
SX series is a built-in frontend computer. The SX series machines
can work in both 32 bit and 64 bit modes. Thus the megaflop rating
for 32 bit operands is alm ost double th a t of the 64bit mode. This
feature is useful in many problems. The hardware of the machine is
superb. It is m ostly air cooled with the CPU being water cooled. The
hardw are features o fljje NEC series machines[5] is given in Table 5.2.

The Fortran Compiler and Vectorizer on NEC machines are very
good. T he operating system, however, is not upto the m ark. It is not

74 Supercomputers

Table 5.2. Characteristics o f Japanese V ector Supercom put
ers.

Characteristics

Peak speed in
Megaflops
Cycle time

in nano seconds
Main Memory

Megawords
Vector

Registers
Vector

Pipelines
Cooling Method

Operating Sytem

Fujitsu
VP-200

855

128

8192

2 load/
store

Forced
Air

v<;p
MVS/XA

N E C
SX 2
1333

32

8192

3 load /
1 loadstore

W ater

ACOS

Hitachi
S-810/20

855

14

32

10,240

8 lo ad /
4 store

Air

HAP

com patible with the UNIX operating system which is now universally
used. Further it is of an old vintage with restricted facilities. N et
working features of NEC machine with the machines of o ther vendors
is also poor. Another weakness of NEC machines is a poor application
software library. As it is a relatively new machine there are not m any
users of this machine. Consequently, very few application program s
are available from independent software vendors. Until this applica
tions bottleneck is solved these machines will not be very popular.
Besides NEC, there are two other Japanese m anufacturers of vec-
to r supercom puters. They are Fujitsu and Hitachi. They are slowly
gaining a share of the m arket. Cray, however, holds a pre-em inent
position in the high end high performance supercom puter m arket.

5.2 Vector Computer on a Chip: Intel 80860

During 1989 a new Very Large Scale In tegrated C ircuit (VLSI)
chip incorporating a m icrocom puter w ith architectural features mimic-

Available High Performance Computers 75

Table 5.3. C haracteristics o f Intel i860 m icroprocessor

Characteristics Value Characteristics Value
W ord length 64 bits Vectoi registers 16
Cycle tim e

in nsec
25 V irtual Memory 4 Gigabytes

Peak F loating
add /m ultip ly

speed
(64bit operands)

80 megaflops No.of pipeline
stages in adder/

m ultiplier

On chip memory
d a ta cache

8 Kbytes Number of
instructions

75

Instruction cache 4 Kbytes RISC
architecture

Yes

ing a supercom puter was released by Intel Corporation, one of the
leading in tegrated circuit m anufacturers in the world. The m ain fea
tures of the Intel 80860 (also known as i860) are given in the Table 5.3.

The processor has a pipelined four stage adder and a four stage
m ultiplier. The operands are stored in a fast register file in the
processor (16 registers each 64 bits long) and stream ed through the
pipelined arithm etic unit. One addition and one m ultiplication can
be perform ed independently by the two units (See Fig. 5.1). The
basic clock is 40 MHZ (one clock pulse every 25 nsec). One addi
tion operation and one m ultiplication operation are performed every
25 nsec giving a peak megaflop rating of 80 megaflops (for 64 bit
operands) provided a program can generate both these operations
sim ultaneously. This is so far the highest speed obtained using a
m icroprocessor chip a t a low cost.

So called super m inicomputers have been built around i860 proces
sor by m any m anufacturers including two companies in India: W ipro
Infotech L td ., and DCM D ata Products. The characteristics of the
W ipro Landm ark 860 machine and DCM COSMOS 860 - machine
are given in Table 5.4. They cost around R s.l5 lakhs (1991 price)
and the cost is quite competitive considering the floating point speed

76 Supercomputers

Table 5.4. C haracterisitcs o f som e i860 based com puters
made in India (1991)

Characteristics Manufacturers
W ipro

Infotech
DCM D a ta

P ro d u cts
C PU i860 Intel 80486 -1- i860“

I /O Processor
Disk; 80286 80386 (O p tiona l)

T erm inal: 80186 80186
M ajc.M ain 64 32

m em ory (M bytes)
B us , M ultibus II P ro p rie ta ry

DCM Bus
M ultip le i860

possible yes yes
O p era tin g System UNIX System V 4 UNIX System V 4

F o rtran 77 G reenhill' DCM or G reenhill
Vectorizer for Pacific S ie rra ' Pacific Sierra

F ortran VAST-2 VAST-2
N etw orking E thernet E th ern e t

“Both can work concurrently and independently
‘Company which developed Fortran for i860
‘Pacific Sierra Company developed VAST-2 vectorizer for i860

delivered by the machines.

5.3 Shared Memory Systems: Alliant &c Convex

Many m anufacturers have been designing high perform ance p a r
allel com puting systems using either a commercially available m icro
processor or special customized processors. An example of the form er
is the A lliant FX /2800 parallel computers and th a t of the la tte r is
Convex computers. These machines are often called mini supercom
puters.

A lliant F X 2800 Parallel Computer: This computer uses the i860
processor for computing. It has 28 processors (i860) arranged as 14
Super Computational E lements (SCE) for parallel processing of large

Available High Performance Computers

Result

77

^ N : Indicates a bus o f width W'.

Fig 5.1. Floating point arithm etic unit o f i860

com pute intensive tasks and 14 Super Interactive Processors (SIP) for
m ultiprocessing serial compute jobs, executing system tasks, I /O and
3D graphics processing. A single Processor Module (PM) contains
four i860 processors arranged as two supercom putational elements
and two super interactive processors. Upto seven processing m odiJes
are supported by the largest FX /2800 configuration. A separate I/O
m odule contains two super interactive processors combined with two
20 M B /sec Channel interfaces.

All the 14 processor modules share a common memory wliich can
be upto 1 GB. The main memory is connected to the Processors via a
cache which can be upto 4 MB. A block diagram of ALiant FX /2800
com puter is shown in Fig. 5.2.

An interesting feature of the architecture is the possibility of run
ning a single job using aU the 14 computing elements in parallel and
sim ultaneously running 14 other jobs, each using one computing el
em ent. T he scheduling of various jobs is managed by a proprietary
operating system which a ttem pts to optimize the use of all the re-

78 Supercomputers

Terminals

I/O
Module

Main Memory
(Max 1 GB)

Cache Memory (Max 4 MB)

s c e Is c e
I I I

I
I

sn>| sn>
I I 2

I

s c e]s c e

13 I 14
1

-----1----

SIP [s i p
13 I 14

I

Processor Module

Fig 5.2. A llia n t F X /2 8 0 0 p a ra l le l c o m p u te r

sources of the parallel computing system.

T he division of a processing module into an interactive p a rt and
a com puting pa rt is intended to provide interactive program devel
opm ent, debugging, editing and visualization facilities through the
interactive processor which is a high speed processor using an i860.
T he in teractive pa rt also executes operating system tasks such as
paging, swapping, fUe system m anagem ent, networking and I/O .

T he system also provides parallel compilers for Fortran and C. A
vectorizer is also provided to take advantage of the i860’s pipelining
capabilities.

Convex Computer Systems: This is a shared memory m ultiprocessor
m ade by Convex Com puter C orporation, USA. The salient features
of the Convex 3800 system are:

• Eight processors sharing a common main memory of up to 4G bytes
and a virtual memory of 2 Gbytes per process. The m em ory
has 8 ports which connect i t to the CPUs. Each port can carry

Available High Performance Computers 79

Fig 5.3. C onvex C3800 parallel com puter

d a ta a t a ra te of 500 M bytes/sec. In other words 64 bits d a ta
can be transferred in parallel from the main memory to the
CPU in 1.6 nsec. The ports are connected to the memory by
a crossbar switch. The cross bar allows simultaneous access of
each CPU to a different memory bank. If two CPUs try to ac
cess the same memory bank there is hardware to tem porarily
store the request and honour i t after a delay (See Fig. 5.3)
The CPU s use Gallium Arsenide semiconductor technology and
have a basic clock speed of 20 nsec. It has a Cray like instruc
tion set including vector instructions. The vector operands and
results are taken from the memory, processed, and returned
to memory (This is known as a memory to memory vector in
structions). A set of parallel processing instructions to enable

parallelising DO loops is also provided. The peak megaflop r a t
ing of the Convex C 3800 quoted by the m anufacturer is 2000
megaflops.

• Convex has an interesting new software scheduler to allocate
parallel processes and threads. A thread is a sequence of in
structions th a t represents the smallest schedulable entity. W hen
a parallel region is detected by the compiler, a thread is cre
ated. These threads are picked up by idle processors. A th read
in itiates execution with its own value of the program counter
and stack management registers. W hile leaving a parallel re
gion all processors asynchronously and independently execute
join instructions. W hen a processor executes a join i t is free to
execute o ther threads or processes of different program s. The
processor schedules itself by picking a waiting thread or process
kept in despatch queues m aintained in a set of comm unication
registers. W hen the last processor executes the join, i t executes
the subsequent scalar part of the program.

• Compiler for Fortran, C and Ada support both vectorizing and
parallelizing features.

• A variant of Unix is used as the operating system.

T he system seems to have reasonable software and is currently
quite popular. Besides C3800 which is the most powerful system in
their series. Convex computers have two other less powerful maclunes
which use the same architecture but slower technology. C3400 uses
upto 8 processors using BiCMOS technology. The m axim um memory
available is 2 Gigabytes and the peak speed is 800 megaflops. The
C3200 has upto 4 processors, uses ECL and CMOS technology, upto
2 Gigabytes of memory and a peak rating of 200 megaflops.

5.4 Message Passing Multicomputers: iPSC & PARAM

The structure and property of message passing, m ulti com puters
were discussed in section 4.5. We will consider two system s of this
type.

I n te l H y p e rc u b e : Intel Scientific Com puters has pioneered in build

80 Supercomputers

ing low cost message passing multicom puters. The individual CEs in
their early model (called iPSC) were Intel 80286 microprocessors.
The iPSC system consists of two m ajor functional elements; the cube
and the cube manager. The cube is a set of CEs connected as a hyper
cube with upto 128 CEs. Each node is an independent m icrocom puter
(80286/80287 set with 512 Kbytes local memory in early models).
Each node stores a small program (called a kernel) which manages
the messages sent and received by the node, routes messages to appro
priate destinations and supports execution of multiple processes. The
cube m anager serves as the host for the parallel computer supporting
the program m ing environm ent, com m unication/control software and
the system diagnostic facility. The responsibilities of the cube manr
ager include program compilation, program loading, in p u t/o u tp u t
and error handling.

Later version of iPSC, called iPSC2, uses 80386/80387 as the node
processor, a hardware router to route messages autom atically be
tween processors and a higher speed communication link compared
to iPSC.

The m ost recent system being built using the same basic message
passing hypercube structure is called Touchstone DELTA System.
This system incorporates 570 Intel i860 and 386 microprocessors,
along with a custom mesh routing chip developed at Caltech. It
is claimed to have a peak speed of 32000 megaflops.

C -D A C ’s P A R A M : Centre for Development of Advanced Com put
ing set up by the Government of India a t Pune, has developed a high
perform ance parallel m ulticom puter with 256 CEs. This computer is
called PARAM, an acronym for PARAllel Machine, which is also the
Sanskrit word for supreme. Each CE in PARAM is a microcom puter
called a transputer. T ransputer is manufactured by INMOS and each
CE in PARAM is a T805 transputer with 4MB main memory. This
tran sp u te r is a 32 bit processor and has a good floating point speed
of 4.3 megaflops. The transputer was designed to be a building block
of parallel com puters with built-in links to communicate with other
transpu ters. Each transpu ter has 4 communication links and can thus

Available High Performance Computers 81

82 Supercomputers

C E l

C E 2

C E 32

Control Bus

A CE 33

C E 34

C E 64

4 X 9 6

Cross Point

Switch

Disk
Ouster

I/O
Processors

Gatewaysrz Switch Manager

~ ~ T ~
Exchange

I
• * Host Computers •

I
T

Fig 5.4. A rchitecture o f th e 64CE PA R A M

be connected to 4 o ther transputers. D ata can be sent and received
via the communication link w ithout disturbing the processing unit.
Hardware support is also provided to allow the transpu ter to concur
rently execute m any processes and to communicate with neighbours.
It is thus convenient to build parallel computers with transputers.

PARAM is a message passing m ulticom puter system. T he CEs are
interconnected using a crosspoint switch. The four com m unication
ports of each CE is connected to the switch. The switch connections

can be controlled by a switch majiager. This allows the CEs to be
connected in different configurations such as a tree, a ring, a torus,
a hypercube etc. The only restriction is the lim it of 4 ports per
CE. The architecture of a 64 node mchine is shown in Fig 5.4. A
special feature of PARAM is th a t the 64 CEs can be partitioned into
a num ber of sets. Each set can be allocated to a different user who has
a host. The interconnection of the CEs within a set can be specified
by the user. Thus if 4 users are each allotted 16 nodes, one user may
use a hypercube interconnection, another a ring, th ird a tree and the
fourth user a mesh. Only one user can use a set of CEs a t a time.

The m axim um num ber of CEs which are available in PARAM
currently is 256. If all 256 CEs are needed for a program , they can
be used bu t by only one user a t a time. A maximum of 20GB disk is
now provided.

A software environm ent to program PARAM has been developed
and is called PARAS. It has tools for parallel program development
such as process allocation to CEs, process m anagement, debugging
and profiling. Percieving parallelism in a program and allocating
tasks to CEs is the user’s responsibility. A new version of PARAM
which uses an Intel i860 processor as a vector coprocessor shared by
4CEs has now been designed. It is expected to enhance the speed of
PARAM.

5.5 Data Parallel Computers: Connection Machine

In the last chapter we described the idea of d a ia parallelism. We
described the structu re of array processors. The idea of array of
processors has been generalized in the Connection Machine built by
Thinking Machines Corporation of USA. The Connection Machine,
CM 2 system has 65,536 physical processors. Each processor has 4096
bits of memory and has an Arithm etic Logic Unit which operates on
1 b it operands. Sixteen processors are integrated in to one chip and
are connected in a mesh. There are 4096 chips.

These 4096 chips are connected together, as a 12 dimensional hy
percube. Routing of messages between chips is done by a hardware

Available High Performance Computers 83

84 Supercomputers

Local Area Network

VME FDDI
Fig 5.5. The CM 5 architecture

rou ter in each chip. The basic message passing instruction is send.
Argum ents of send specify the length of the message, the message
itself and the address of the destination processor. The Connection
Machine routing hardware handles a large num ber of messages effi
ciently. CM 2 is an SIMD machine.

Model CM 2 has now been replaced by model CM 5. Model CM
5[4] has thousands of processing elements, one or more control pro
cessors and I/O units to support disks, graphics term inals and o ther
peripherals. These are connected by two networks called the control
network and the d a ta network as shown in Fig. 5.5.

A processing element of CM 5 is a general purpose 32 bit com puter
with 8 to 32 megabytes of private memory. Thus it can com pute
by itself. It can also cooperate with other processing elem ents (as
specified by the control processor) and compute in parallel. A high
perform ance arithm etic accelerator can be added to the processing
elements to give i t the capability to deliver 128 Mflops speed. The
arithm etic accelerator is connected to the processor through a 64 bit
bus and consists of 4 vector arithm etic units each w ith 8 M bytes of
J a la memory. The vector units carry out vector instructions issued

by the processing element. In fact a single CM 5 processor w ith a
vector unit is a m inisupercom puter by itself.

T he control processor consists of a high perform ance microproces
sor, memory, I /O and an interface to connect i t to the control and
d a ta networks. The m ain function of the control processor is schedul
ing user tasks on processors, allocating resources, ensuring security
etc. T he control processor runs a version of Unix operating system.
Program s are loaded on CM 5 control processor. It broadcasts blocks
of instructions to the parallel processing elements and then in itiates
execution. W hen all processors are on a single control th read , they
are kept closely synchronized. W hen the processors take different
branches, they fetch instructions independently and synchronize only
as required by the program .

To m aximize system utilization a system adm inistrator may di
vide the parallel processing elements into groups known as partitions.
Each p a rtitio n is then managed by a control processor.

The m ain advantage of CM 5 is its special structure and software
aids to perform efficiently d a ta parallel com putations a t both fine and
coarse grjiins. As i t is easy to perceive d a ta parallelism in program s
the prom ised speed of 100 Gflops on a thousand processors may be
a tta ined w ith such programs.

5.6 Performance Evaluation of Supercomputers

W hen a custom er wants to buy a supercom puter paying millions
of doUars he would like to know how the computer will perform for
his applications. M anufacturers normally quote peak megaflop ra t
ing which is based on the best possible hardware capability of the
com puter. There is a wide disparity between the average megaflop
speed obtained when applications are run and the peak value. For
instance, in some applications, the average megaflops obtained may
be 5 while the peak ra ting may be 2500! The main reason for this is
th a t algorithm s and program s, if not properly designed, can perform
very poorly on supercom puters. Small differences in code can make
a supercom puter run signficantly slower or faster. Thus it is im por

Available High Performance Computers 85

tan t to get a realistic measure of the perform ance of a supercom puter
before it is bought.

There are many m ethods of evaluating the perform ance of high
performance computers. A very good m ethod is to collect a reason
able variety of (a tleast 15 program s) from the users’ applications for
which the high peformance computer is intended to be used. The
program s m ust be the ones which take a long time on a m ainfram e to
compute. The expected execution tim e of each program on the fast
com puter should be a tleast 10 minutes.

This batch of program s, called benchmark programs, are then ex
ecuted on the specific configuration of a high perform ance com puter
one intends to buy and the execution times are recorded. T he pro
gram s are run in four different modes:

1. As it is, w ith no vectorization (parallelization) or optim ization
2. Program s vectorized (parallelized) and optim ized using the ven

dor’s autom atic vectorizer and optimizer
3. Program s further vectorized (parallelized) and optim ized m an

ually. M anufacturer’s assembly language code for some of the
standard routines such as m atrix inversion may be su b stitu ted
in the place of users’ routines. This is expected to give the least
execution time

4. Program algorithm changed and program re-w ritten keeping in
view the specific architecture of the machine on which the p ro
gram is executed. This may be particularly critical for parallel
com puters for which special programming may be required.

Even though this is a good m ethod there are m any practical prob
lems in following this method. The exact configuration required may
not be available. It is expensive as it requires both com puting and
hum an resources of the vendor. Vendors are thus reluctant to run
benchm ark program s of prospective customers unless they feel the
custom er is a very serious prospect. The entire operation of collect
ing a set of benchmarks, validating them , running them on existing
machines to get sample answers with d a ta and then converting them

86 Supercomputers

to run on a vendor’s m achine is very tim e consuming and expensive
for the prospective custom er also. Thus there have been a ttem pts to
standardize a set of commonly used application program s which are
representative of the load on supercom puters. We will describe some
of these approaches.

A popular benchm ark (also known as a kernel program as it is the
heavily used core of a program) is the LINPACK kernel. This is a
program to solve a set of 100 sim ultaneous algebraic equations. The
set of equations is dense, in o ther words, most of the coefficients of
the equations are non zero. The program is coded in Fortran and
is run in 2 modes: one with 32 bit real number precision and one
with 64 bit precision. The 64 bit precision is more relevant for su
percom puters. Executing LINPACK requires very frequent calls of
the so-called Basic Linear Algebra Subprograms (BLAS). LINPACK
execution tim e is quoted using only Fortran. Another LINPACK
tim e quoted is by replacing BLAS by optimized assembly language
program s for specific machines. LINPACK program was developed
by Jack D ongarra of Argonne National Laboratory, USA. LINPACK
program has been run for alm ost all computers sta rting with a Per
sonal Com puter to the most powerful supercomputer. The quoted
megaflop ra ting is known as LINPACK megaflop and it is around 40
for a Cray YMP single processor machine. Even though LINPACK
program is not truly representative of all scientific and engineering
problem s it is well understood and relative performance of computers
can be evaluated. Another drawback of LINPACK is its relevance to
only single processor computers.

M ore recently scientists a t the Centre for Supercomputer Research
and Development (CSRD) a t the University of Illinois, USA, have
evolved a set of benchmark programs called the PE R F E C T CLUB
benchm arks. This set of benchmarks is the result of extensive work
undertaken by CSRD to develop a set of thirteen long-running super
com puter application program representing a spectrum of scientific
applications. These benchmarks are becoming widely accepted as
stan d ard benchmarks for evaluating supercom puters. In Table 5.5

Available High Performance Computers 87

88 Supercomputers

Table 5.5. Perfect Benchmark R esults for Cray M achines

C R A Y Y M P 1 C R A Y Y M P 8

Program
Unoptimized

speed in
Mflops

Optimized
Speed in

Mflops

Unoptimized
Speed in

Mflops

Optimized
Speed in
Mflops

Fluid
Dynamics

ADM 19 62 19 91
ARC3D 140 148 291 989
FL052 109 111 329 347

OCEAN 32 124 36 275
SPEC77 36 101 36 543

Chemistry &
Physics
BDNA 84 142 121 288
MDG 17 80 17 595
QCD 13 39 13 250

TR FD 56 76 56 440
Engineering

Design
DYFESM 47 136 59 295

SPICE 6 20 6 20
Signal

Processing
MG3D 23 191 23 1094

TRACK 8 18 8 39
Harmonic mean 20 57 21 116

megaflops

we give the megaflops obtained on 13 Perfect club benchm arks for
Cray YM P. It is clear th a t there is a wide variability in megaflops
obtained. The harmonic mean value gives an estim ate of the sus
tained speed available. Observe also th a t the peak megaflop is nine
times larger than the harmonic mean of the megaflops obtained for
the 13 applications in CRAY YMP 8. Thus perform ance evaluation
of supercom puters for specific applications is very difficult w ithout
actually implementing and running the program.

Evaluating the performance of parallel computers is still more dif

ficult. Optimizing the program is highly architecture dependent. An
algorithm and a corresponding program which runs very fast on a
particu lar parallel machine may be very inefficient on another. Thus
the peak megaflop ra ting quoted by vendors would be meaningless
when one tries to run specific applications. The field is still nascent
and it will take some tim e before acceptable m ethods of perform ance
evzduation of such machines are established.

Available High Performance Computers 89

6

A pplications o f
Supercom puters
Supercom puters are indispensable tools for scientists and engineers in
their research and development. As weis pointed out in the first chap
ter, num erical experim entation using computers is now as im portan t
as hypothesis or theory formulation and experim ental verification.
Numerical experim entation, namely, sim ulation on a com puter of the
m athem atical model enhances a scientist’s ability to reason about
complex phenomenon in many ways. Simulation allows the study of
phenomenon which are difficult to study experim entally[8]. E xam
ples of such situations are sim ulating accidents in nuclear reactors,
sim ulating crashes of a m otor car or aeroplane or spread of fire in oil
wells. Simulation allows study of complex, non-linear m odels which
are difficult to solve analytically. Examples are the study of fusion
reactors, form ulating atmospheric models and modelling spread of oil
spills in oceans. Simulation is also useful to test whether a proposed
theory is correct. Examples are numerical study of drug reactions,
and synthesis of drugs. We illustrate these with examples in this
chapter. Besides their use in science and engineering which may be
thought of as traditional applications, many other applications have
now emerged which were not foreseen by supercom puter designers.
T he interesting ones are the use of supercom puters in Hollywood
to make cartoons and, by advertising agencies to make innovative
graphics based video presentations. Economists now use i t for large
economic models, security agencies use them to design secret codes
and cryptologists to break these codes. The enormous speed of su
percom puters, wider avjulability, reduction in cost and the emergence
of excellent high resolution graphics have all led to an increase in the

Applications o f Supercomputers 91

variety and novelty of supercom puter applications. In this chapter,
we will describe some interesting applications of supercom puters to
enable the reader to get an appreciation of the versatility of these
computers.

6.1 Motor Car Crash Simulation

An interesting application of supercom puters is to sim ulate the
effect of various types of accidents involving a m otor car, its driver
and passengers. The prim ary aim is to design a car body in such
a way th a t if i t collides w ith another vehicle on the side, or head
on, or crashes against a barrier the driver and the passengers in the
car will be safe. In W estern countries standeirds have been specified
for m otor car bodies to ensure safety which should be adhered to by
m anufacturers. Thus m anufacturers design their vehicles w ith care
so th a t i t is a safe vehicle to drive.

Force Vector

• Boundary

Fig 6.1. D ivision of a M otor Car body as finite elem ents

In earlier days (1970s and 80s) m anufacturers used to make m odel
cars and actually crash them against a barrier a t different speeds and
study the effect. This has many disadvantages. It is very expensive
to make a car and crash it. Thus the number of experiments carried
o u t would be lim ited by this cost. If it is found after the crash th a t

m ajor modifications are needed in the body design there will be a
long delay before the new model car is ready to be m arketed. This
delay will reduce the competitiveness of the m anufacturer and hence
his sales. Thus extensive crash tests were not fesisible.

W ith the advent of computers a n a tu ra l question to ask is “Is it
possible to model the m otor car body m athem atically in enough detail
and sim idate crashes using this m athem atical model on a com puter?” .
To ajiswer this question let us examine how to m athem atically model
the body of the car. This is done by taking the surface of the body
and dividing it in to small squares called finite elem ents, as shown in
Fig. 6.1.

T he force due to collision is modelled as force vectors on each
finite element. W ith the known geometry of the element and the
property of the m aterial of the m otor car body the stresses and re
su ltan t deform ation is computed. If the body is divided using a 100
X 100 grid, each corner has three translational and three ro tational
degrees of freedom so th a t there are roughly 6^ unknown quantities
to be computed. The basic m atrix equation to compute these is[8]:

[K] {U} = {P }

where [K\ is the stiffness m atrix generated from the known charac
teristics of the m aterial used for the body {U} is the unknown dis
placem ents to be computed and {P} is the vector of forces applied to
the grid points and generated from the type of crash to be sim ulated.

T he com putations required to generate [if] {P} and subsequently
solve for {£/} are substantial. They are around 10^ floating point
operations for each sim ulation run. The stiffness m atrix is sparse
w ith over 90% of the element values being zeros. This problem takes
too long a tim e on m ainfram e computers. I t is found th a t the tim e to
run one sim ulation on a 200 megaflop (peak speed) supercom puter is
6 hours. Inspite of this, m anufacturers find this technique more cost-
effective than testing with physical car models. The m ain advantage
is th a t sim ulation can be performed very early in the design cycle of
a m otor car. Manv body designs can be sim ulated and only the good

92 Supercomputers

ones kept for fu ther detailed design and analysis. Fewer real crash
tests on physical prototypes are needed. The body design can be
optim ized to m eet very strict safety specifications. This is one of the
applications for which car m anufacturers abroad use supercom puters
extensively.

Sim ilar ideas are used to design bodies of aircrafts and space ve
hicles. The problem s are a lo t more complex and need very large
supercom puters.

6.2 A p p lic a tio n in O il E x p lo ra tio n

Geologists carry out what are known as seismic exploratory studies
to find out whether a given region has a potential oil well. These
studies are also used to pick out a spot which is the m ost prom ising
one for digging an oil well. As digging a deep well is very expensive, it
is advisable to find ways whereby every drilling exercise is successful.
T he usual m ethod used by geologists is to dig a deep hole in the earth ,
p lant an explosive there and detonate it. W hen the bomb explodes,
shock waves travel all around and eventually arrive at various points
on the surface after a lapse of time. A number of detectors are placed
surrounding the hole and the intensity of the signals received and the
elapsed tim e between the detonation and the detection of signals are
m easured. A large num ber of such experimental results are stored on
storage devices such as m agnetic tapes. The intensity of the signals
received and elapsed time are functions of the composition of the
ground in the region surrounding the excavation. '

The question a geologist would ask is “W hat is the composition
of layers of rocks, sand, soil, water, oil etc. which will result in the
signals detected by the explosion?”. Once this composition is known
the geologist can predict the best place to dig for oil. In order to
answer this, the composition of the earth in th a t area is modelled
by m ultiple layers of m aterials with varying densities aw shown in
Fig. 6.2. The acoustic wave pjopagation in the surrounding region
when an impulse blast is applied a t the specified point is calculated.
T he governing equation is a 3D accoustic wave equation given by [11]:

Applications o f Supercomputers ®3

94 Supercomputers

Measurement Points

Fig 6.2. Model of earth for exploration

^ (J If) + ^ (J ^) = i f # +
where p(x, y, z) is density, k(x, y, z) is the bulk m odulus and s(x, y,
z, t) is the pressure. It is assumed th a t p, k and s are known and
p(x, y, z, t) is calculated.

A realistic seismic model for oil exploration requires a 6km X 6km
surface and a depth of 3km and sim ulation should sim ulate the values
of p(x, y, z ,t) for 3 seconds. The experimentally detected acoustic
waves are sampled a t 0.75 or 1 msec interval. Thus the sim ulation
should be tu n with tim e intervals of A t = 1msec and 3000 steps
are needed to sim ulate 3 seconds. The values of A i , A y , A z should
be around 5 m eters for a good finite difference approxim ation. Thus
there will be 6000 x 6000 x 3000 elements in the finite difference
m odel. W ith assumed values for p, k and s, the function p (x ,y ,z , t) ,

is com puted for the selected values of (x ,y , z , t) .

These com puted results are m atched with the experim ental values.
If they do not m atch the assumed values of p, k, and s are changed
and the calculations are repeated. As can be seen, the tria l and error
m ethod is very tedious and tim e consuming. Only a supercom puter
w ith a very large m ain memory and speed around a gigaflop can solve
these equations realistically.

A fter the calculations are complete the model nearest to the one
which gave answers p (x , y , z) close to the experimental observations
is chosen. This is used to decide the best place to explore for oil by
digging a well.

Even though the computing tim e is very large and an expensive
supercom pter is needed to solve the problem, it is much cheaper than
digging a well and finding no oil. Com puter simulation considerably
increases the probability of correct drilling and is thus used exten
sively by geologists prospecting for oil.

6.3 M ov ie -m ak ing w ith S u p erco m p u ters

One of the innovative uses of high performance computers coupled
to high resolution colour graphics term inals is in producing anim a
tion and special effects of excellent clarity and realism for the m otion
p icture industry. Hollywood has pioneered [13] in the use of super
com puters such as Cray XM P to revolutionize movie m aking, partic
ularly, those which combine humans and anim ated characters such as
in the famous movie “W ho Framed Roger R abbit” . The dream is to
even sim ulate and synthesize human characters by computers. The
m ost difficult problem wil be the creation of believable hum an figures
and hum an interaction. Currently exaggerated expressions can be
m odelled, but not subtle facial features. The personality, persona, or
psyche of a character m ust be accurately portrayed to achieve to ta l
realism .

C om puter sim ulation of a scene starts with the conception of
scenes by an a rt director. Using the script of the movie and the

Applications o f Supercomputers 95

scenes, a storyboard a rtist draws visual descriptions of the key frames.
Simultaneously a production designer isolates the objects of a scene
such as spaceships, animals, humanlike figures,trees, houses etc. Each
object is designed in great detail and an architectural plan is drafted
th a t contains complete 3D information. The surface shape of each
pa rt of an object is drawn as a set of polygons. A large num ber of
polygons are needed to describe complex objects realistically. Both
com puter storage and tim e needed for sim ulation increase rapidly as
the num ber of polygons increase. The polygons are transla ted in to
numbers using a digitizing tablet and stored in a d a ta file in the com
puter. Using this d a ta a computer program constructs 3D m odels and
displays them on a graphics term inal connected to the com puter. So
phisticated hardware and software on the graphics term inal and the
com puter allows the objects to be ro tated , enlarged and contracted.
This facility is used to make any modifications in the design. A li
brary of designed objects is normally kept in a database for fu ture
use. T he image of an object created on the graphics terminad is called
a wire-frame as it is a line drawing and looks as if a wire m esh has
been stretched over the surface of the object.

T he wireframe is then converted by softwaire to look like the
a r tis t’s conception of the original object. In doing this the tex ture of
the object, the type of lighting, colour etc., is realistically portrayed.
The com puter faithfully portrays the type of m aterial such as glass,
m etal, wood, wool etc. The surfaces are made dull or shiny, sm ooth
or rough, shadows are shown, transparency, translucency, reflection,
refraction etc., by objects are sim ulated. The a rtist, the software
consultant and the producer work closely together to ensure accu
racy and realism.

Trial anim ation is done by the technical director using the wire
fram e images. The anim ation should faithfully follow the concep
tualisation of the a rt director. The technical director specifies the
s ta rtin g and end wire frames, the actions which take place in be
tween and length of tim e for each action. A software package uses
these specifications, computes the number of interm ediate frames to

96 Supercomputers

be generated, the changes from frame to frame and autom atically cre
ates the appropria te actions. This is viewed by the technical director
and approved. If not satisfactory the specifications are changed by
the technical director and the program is re-run.

W hen the final video film is made, the software computes each
fram e using all the characteristics of the object including texture,
colour, etc ., and creates visually realistic scenes. A high perform ance
com puter is needed to create realistic interm ediate objects. The film
segments are edited and combined with live action footage and special
effects to en terta in movie fans.

T he scope of computer based anim ation systems is very broad.
Movie directors, advertising companies, and television producers have
realized the enormous potential of this medium and are investing
large am ounts on supercom puters and high resolution graphics sys
tems. These systems allow artists and directors to create new worlds
far from reality. These creations can defy gravity, turn inside-out, go
through solid walls, explode and recombine instantaneously after be
ing sha tte red to pieces. The productivity of the medium is increasing
rapidly. It is possible to produce 24 minutes of film per m onth or
288 m inutes per year which is equal to 4 fuU length feature films. In
con trast, using traditional techniques Walt Disney studio anim ators
produce, on the average, one film every two years.

6.4 W e a th e r F orecasting

A m ajo r goal in atmospheric sciences is to forecast weather over
long periods accurately. Accurate prediction of monsoons in India,
for instance, can make an enormous economic im pact. The date of
onset of the monsoon in various parts of the country and the p a tte rn
o f the m onsoon can help agriculturists to s ta rt their sowing opera
tions in tim e thereby increasing yield of crops. It was not practical
to do this three years ago due to the non availability of supercom put
ers. W ith improvements in modelling, better understanding of the
m onsoon phenomenon, better and more reliable recording of tem per
a tu re , rainfall, etc., coupled with the availability of supercom puters,

Applications o f Supercomputers 97

has now made it feasible to predict the onset and the p a tte rn of m on
soons two m onths before the actual onset of the monsoon. T he m on
soon model is quite ingeneous and uses m any empirically determ ined
param eters. The model is continuously being refined based on the dif
ference between observed monsoon and predicted monsoon. In order
to predict monsoons and also for medium range weather foreccisting
a supercom puting facility has been established by the D epartm ent of
Science and Technology, Government of India a t Delhi. T his centre
has a Cray XMP 28 supercom puter and a VAX front-end com puter.

Besides forecasting the pattern of monsoons it is also very useful
to predict the detailed weather well ahead of time. Twenty years
ago it was thought impossible to forecast weather for long periods
such as 2 weeks. Today such forecasts are routinely done by the
European Medium Range W eather Forecasting Centre w ith the help
of supercom puters. The weather is governed by physical laws which
can be modelled as a set of partial differential equations in which the
m ost im portan t variables are the wind-speed, air tem perature, w ater
content and atmosphereic pressure. These three dimensional models
can be divided into two classes - grid point or spectral depending
on the m anner in which horizontal (w ith respect to e a r th ’s surface)
fields are represented. In the grid point model fields are represented
by values on a discrete grid and derivatives are approxim ated by finite
differences. In the spectral model fields are represented by a finite
series of analytic functions such as Sines and Cosines, and derivatives
are approxim ated by differentiating each function in the series [12].
T he details of these models are described in text books on weather
modelling. Spectral m ethods are now more commonly used for bo th
num erical weather prediction and climate sim ulation in USA, C anada
and Europe as the predictions baised on this model have been closer
to the observed weather.

W hen considering operational weather forecasting one m ust al
ways keep in m ind its timeliness. The sooner the forecast is avjiilable,
the m ore useful it is. Supercomputers are essential to ensure tim e
liness as com putation of forecasts are very time consuming. Besides

98 Supercomputers

the tim e taken by the supercom puter, the elapsed tim e also includes
the tim e taken to convert raw observations to a form the computer
model can use and the tim e to send the forecasts to the user.

Besides weather forecasting, models of the atm osphere have also
been used to sim ulate the “Greenhouse Effect” . Emission of gases
such as carbon dioxide, m ethane and chloroflourocarbons by big in
dustries has sta rted intensive debates on the potential of global warm
ing which could occur due to these gases accum ulating in the a tm o
sphere. This is called the Greenhouse Effect. Scientists in m any coun
tries are using supercom puters to model the atm osphere for studying
the po ten tial im pact of emission of these gases on average daily tem
perature.

Forecasts based on sim ulation of the effect of these gases on global
w eather in the next 50 to 100 years have been computed. Various
scenarios are considered in sim ulation such as:

1. Emissions being as they are now
2. Emission increasing each year by 5%
3. Emission decreasing by 5% each year.

These com putations would be impossible to carry out w ithout a su
percom puter. Simulation results are compared with past observations
and authen ticated . The results of sim ulation of the future scenario
will give governments of various countries the proper inform ation to
assist in proposing a law to control industries to reduce the adverse
im pact of greenhouse gases.

A nother related problem is th a t of ozone depletion in the upper
atm osphere. This is due to the free chlorine in chlorofluorocarbons
and the oxygen in nitrous oxide (from m otor car exhaust gases) re
acting w ith ozone in the upper atmosphere and breaking down ozone
in to oxygen. The loss of ozone increases ultraviolet radiation leading
to skin cancer in hum ans and destruction of some cells in p lan t and
anim al life. Supercomputers are being used to study how chemical
reactions take place in the upper atmosphere, whether bo th deple
tion and creation of ozone goes on simultaneously and how ozone

Applications o f Supercomputers 09

depletion can be halted. •

6.5 M ag n etic Fusion E nergy R esearch

The Sun and the Stars seem to radiate inexhaustible energy due
to fusion reactions which are continuously m aintained in the system .
The m ajor problem scientists and engineers try to solve is to design
a reactor which simulates the conditions in the Sun. The conditions
are sim ulated by the behaviour of plasmas (hot electrons and ions)
th a t while trapped inside intense magnetic fields in te rac t w ith neu
tra l particles and sources of electromagnetic energy. One of the fields
of study is known as M agneto Hydro Dynamics (M HD) which tries
to predict the behaviour of a plasma of ions and electrons in a com
plex m agnetic field. A successful research area in plasm a physics in
recent years has been the analysis of the non-linear evolution of ideal
and resistive MHD modes. This success has been achieved by us
ing com puter programs which simulate the system in 3 dimensions.
The m odel uses non-linear partial differential equations and requires
intensive com putational effort. The non-linearity and complexity of
these equations preclude analytical solutions and thus com puter sim
ulation of these equations is essential. The results of this sim ulation
have played a key role in guiding the theorist in understanding m ag
netic island[9] development, which is essential in determ ining sets of
param eters of the system which lead to a stable plasm a in a confined
volume. Earlier experimental results which were not well understood
have been clearer after the sim ulation results obtained by using a
supercom puter nearly m atched the experimental observations.

6.6 Computational Chemistry

One of the interesting problems solved by struc tu ra l chemists is
to predict the structu re of complex molecules. Chemical bonds bind
atom s together and one looks for molecules which have some useful
properties. Electrons in a molecule have several energy sta tes th a t
can be approxim ated as a combination of basis fxmctions. The basis
functions are a set of orthogonal polynominals. W hen a set of basis
functions with appropriate coefficients are picked to meet a m inim um

100 Supercomputers

energy criterion they describe the stable arrangem ent of the atom s in
the molecule. A technique known as ab-initio m ethod computes the
energies of electron s ta tes , ignoring those above a specified energy.
W ith N basis functions, the number of interactions are of the order
of N * (N is of the order of 100). The interactions, or Gaussian in
tegrals, typically num ber in the billions and need a large high speed
disk storage device for their storage and high speed com puters for cal
culations. T he processing of these integrals usually involves repeated
m atrix multiplications[14]. Typical matrices in computa/tionzd chem
istry are sparse with less than 1% nonzero elements. Thus algorithm s
which can exploit sparsity will lead to ten thousand fold increase in
speed of com putation.

A b-initio m ethods have also been used to study chemical prop
erties of various clinically active drug molecules which are difficult
to study experimentally. These studies are extremely useful to syn
thesize new drugs. For example, cyclophosphomide, one of the most
widely used and effective anticancer and immuno-suppressive agents
acts on a wide variety of tum ours and lukemias. The local chemical
determ inants of cytotoxicity of this drug were identified by using a
supercom puter and a hierarchy of molecular com putational m ethods.
The num ber of experiments carried out were much smaller as a num
ber of unprom ising cases could be elim inated by examining the sim
ulation results[15]. Thus the to ta l tim e taken to discover life-saving
drugs is reduced considerably.

6 .7 C o n c lu s io n s

In this chapter we described some applications of supercom put
ers so th a t a reader will get a flavour of the variety of problems for
which these machines are used. Com puter technology is progressing
very fast. Every two years the speed of computers is doubled and the
price is reduced. Com puters which were considered supercom put
ers ten years ago and which cost over ten million dollars and required
stringent environm ental control and maintenance are now available as
desk top w orkstations. The emergence of massively parallel com put
ers has thrown a big challenge to traditional vector supercom puters

Applications o f Supercomputers 101

such as Cray YM P. The very definition of supercom puters is now
■ questioned and m any Com puter Scientists prefer to call them high
performance computers. T he topic of supercom puters is of po ten
tially great interest to all educated persons as it points to the leading
edge of technology and its im pact on our lives. We have a ttem p ted in
this book to give a b ird ’s eye view of this im portan t field. A t th e end
of this book a sm all bibliography of books which have m ore detail
and research articles for those who want to explore this topic fu rther
is given.

102 Supercomputers

Bibliography
[1] Lazou, C hristopher; Supercomputers and their use, Clarendon

Press, Oxford, U.K., 1986.
A book intended for those who want to know details of vector su

percomputers, such as Cray, and use them for solving their numeric

intensive problems. Fair amount of detail on the architecture of

supercomputers.

[2] Levesque, J.M . and W illiamson, J.W ; A Guidebook to Fortran
on Supercomputers, Academic Press, California, USA, 1989.
This is for persons well versed in Fortran programming who would

like to vectorize their Fortran programs for vector supercomputers.

The authors are experienced programmers with Pacific Sierra Asso

ciates which specialises in writing vectorizing Fortran Compilers for

Supercomputers.

[3] Hwang, K .,and Briggs , F.A; Computer Architecture and Parallel
Processing, McGraw Hill, N.Y., USA, 1984.
A textbook for postgraduate level students in Computer Science on

the hardware and architectural features of high performance com

puters including vector supercomputers and parallel computers. Not

recommended for a beginner.

[4] C M 5 Technical Summary, Thinking Machines C orporation Inc,
Cambridge, MA, USA, October 1991.

[5] Hwang, K., DeGroot, D.S., Parallel Processing fo r Supercomput
ers and A rtificial Intelligence, McGraw-Hill, N.Y., USA, 1989.
A collection of long articles written by experts in Computer Sci

ence on the role of parallel computers in high performance numeric

and non-numeric processing. Intended for postgraduate students in

Computer Science.

[6] R ajaram an, V., Elements o f Parallel Computing, Prentice- Hall
of India, New Delhi, India-1990.

An introductory book intended for beginners which gives an ele

mentary and self-contained presentation of parallel computing. It

explains the notion of parallelism in formulating algorithms, meth

ods of programming parallel machines and their architectural fea

tures.

[7] Levine R.D., Supercomputers, Scientific American, Vol.46, N o.l,
pp. 118-35 (1982)

A long popular article which explains why supercomputers are nec

essary and describes how they solve problems. It is somewhat old

but is a very good article for a lay scientist.

[8] Buzbee, B.L., Gaining Insight from Supercomputing, Proceed
ings IEEE, Vol.72, N o.l, pp. 19-21 (1984)
An interesting article which gives three situations in which super

computers are indispensable. This issue of IE E E Proceedings is a

special issue on "Supercomputers - Their impact on Science and

Technology". It has many interesting articles giving details on how

a supercomputer was used to solve important and difficult problems.

[9] Fuss, D., Tull, C.G., Centralised Supercomputer Support for
M agnetic Fusion Energy Research, P roc.IEEE, Vol.72, N o .l, pp.
32-41, (1984)

[10] Gloudeman, J .F , The anticipated impact o f Supercomputers on
Finite-Elem ent Analysis, Proc.IEEE, Vol.72, N o.l, pp. 80-84
(1984)

[11] Johnson, O.G., Three-Dimensional Wave Equation Computation
on Vector Computers, Proc, IEEE, Vol.72, N o .l, pp. 90-95 (1984)
Explains application of supercomputers in seismic data processing.

[12] W illiamson, D.L., and Svv'arztrauberjA., A Numerical Weather
Prediction Model - Computational Aspects on Cray -1,
P roc.IEEE, Vol.72, N o.l, pp.56-67(1984).

[13] Demos, G., Brown, M.D. and Weinberg P.A., Digital Scene S im
ulation - The Synergy o f Computer Technology and Human Cre
ativity, Proc, IEEE, Vol.67, N o.l, pp .22-31 (1984).
Describes graphics and animation and how supercomputers are used

104 Supercomputers

in these applications.

[14] Gustaffson, J.L ., Computer-Intensive Processors and M ulticom
puters, C hapter 5 in the book by Hwang and DeGroot cited as
reference 4 above.

[15] Hausheer, F .H ., and Singh, U.C., Computational Design o f Phar-
mocologic Agents fo r Cancer and A ID S therapy, Cray Channels,
Vol.12, No.2, pp. 18-21 (1990).
Cray channels is a quarterly publication of Cray Research Inc. It

is for limited circulation and contains many interesting articles on

applications of Cray supercomputers in diverse areas of Science and

Technology.

[16] Bell, G ., The Future o f High Performance Computers in Sci
ence and Engineering, Commn. ACM, Vol.32, No.9, pp .1091-
1101 (1989).
This article is by a pioneer computer designer, the designer of DEC-

PDP and VAX series machines. It is a survey of the state-of-the-

art of traditional supercomputers such as Cray and new massively

parallel computer, which have now entered the market.

[17] D ongarra, J ., M artin , J .J ., and W orlton, J ., Computer Bench
marking: Paths and Pitfalls, IEEE Spectrum , Vol., No,7, pp.
38-43(1989)
Describes various methods of comparing the performance of super

computers using benchmarks.

[18] B hatkar, V.P., etal (Editors),Arfuance</ Computing, T ata
McGraw-Hill, New Delhi, 1991.
This 796 page collection of technical reports of the work done at

CDAC, Pune and Bangalore describes in great detail the hardware

and software features of PARAM parallel computer designed by

CDAC engineers.

Bibliography 105

Index
iPSC2 81
80860 74,75
A llian t 76,77
A m dahl’s law 36
A rray Processor 50,62
A rray adder 50
Benchm ark program s 86,87
Bubbles in P ipeline 14
CM 5; 84
C om pu ta tiona l C hem istry 100
Connection M achine 83,84
Convex 30,76,78,80
Cray 17,25,27,28,29.30

65,71,72,73,74,79
Cray 2: 29,72
C ray 3; 30,72
C ray R esearch Inc 17
C ray Y M P 17,20,23,24,26,29

65,69,71,72,87,88,102
D a ta P ara lle l C om pu ters 88
D a ta para lle lism 10,49,

50,52,67,83
F o rtran 23,31,37

42,46,72,73,78,80,87
F ron tend C om pu ter 18,28
In p u t-O u tp u t System 19
In te l 74,75,80,81
LIN PA CK 87
Loop profiler 44
M IM D 62
M agnetic Fusion 100
M ain M em ory 20
M egaflops 4.9,17,35
M essage passing 65,66,80

81,82,84
M essage passing m u lticom puter

65,66,80,82
M o to r C a r C rash S im ulation 91

M ovie m aking 95
M ulticom puters 66,81
M ultiprocessor 63,64,78
NEC 27,29,73,74
N um erical ex p erim en ta tio n 5,90
P E R F E C T C lub B enchm arks 87
P ara lle l com pu ter 49,52,60,61,

62,64,65,71
P aralle lism 18
Perform ance e v aluation 88,89
P ipelined adder 15,16,17,49
P ipelined processing 11,17,19
P ro g ram Profiler 42
SIM D 50
SPM D 52,62
Scalar registers 18
Secondary m em ory 4,20,27,72
Shared m em ory 63,64,65,66,78
Subrou tine in-lin ing 45,46
Supercom puters 1,2,3,4,

9,10,14
T igh tly coupled M ultiprocessors 63
Vector chain ing 17
Vector in struc tions 37,72,79
V'ector processing 34,37,65
Vector registers 17,21,24,25
Vector supercom puters 17,31

33,37,49,67,71,74,101
V ectorization 31,34,35,36,39,

41,42,43,45.46,47,48
V irtual m em ory 27,78
W eather Forecasting 98

106

TITLES
OF

RELATED INTEREST

UNIX IN EASY STEPS
Azam, M.
Contents : A comprehensive guide to learning l^NDC. this book gradually
moves from the elemenuiry principles of the subject to the more complex con
cepts. Adopts an integrated approach in trealment of commands and concepts.
The lucidity of the text accompanied by the numerous exercises provide a theo
retical and practical knowledge of UNIX.

HARDW ARE AND SOFTW ARE O F PERSONAL COM PUTERS
Bose, Sanjay K.
Contents : Microcomputer Organization. An Introduction to the 8088 CPU.
Hardware Organization of the PC. The Video Display of the PC. The ROM-
BIOS Services. The Fundamentals of DOS. The DOS Functions of INT21H.
Disks and files under DOS. Memory Allocation, Program Loading and
Execution. Internjpt Handling Through DOS. Filters for DOS. Review
Questions.
8122403034 1991 271pp paper Rs. 75

DIGITAL SYSTEMS: FROM GATES TO M ICROPROCESSORS,
2nd Edition
Bose, Sanjay K.
Contents : Boolean Algebra and Combinatorial Circuit Design. Semiconduc
tor Memory Elements. Sequential Circuit Design. Dependency Notation.
Microprocessor Architecture and Instruction Execution. Microcomputer Or
ganization. Assembly Language Programming Using the 8085 A. Pin-Out and
Timing o f the 8085 A. Input/Output (IA3) Techniques. Analog Interfacing.
Interrupts. Single-ChipMicrocomputers. T lieln iel8086/8088 CPU. Micropro
cessor System Development Aids.
8122404324 1992 448pp paper Rs. 100

INTRODUCTION TO COM PUTER SCIENCE
G ovlndaraju, S., M. C handrasekaran , A. Abdul Haq, T . R. N arayanan.
Contents : Overview of Computers. Information Representation. Algorithm

and Flowcharting. Theoretical Models o f a Computer. An Operating System for
Personal Computer Software Packages, Programming in Basic. Information
Processing. Computer Graphics. Pascal from Basic. Artificial Intelligence.
8122404251 1992 346pp paper Rs. 70

TH E C LANGUAGE TRAINER W ITH C++
JayasrI, J.
Contents : Introduction to Computer Languages. Introduction to ‘C ’. Lexical
Elements of *C Language. Entering and Executing A ‘C ’ Program. Input/
Output i n ‘C . Operators and Expressions. Control Structures. ‘C ’ Functions.
Arrays and Strings. Pointers. Structures and Unions. ‘C Files. ‘C ’ Preproces
sors and Command Line Arguments. Graphics Features in ‘O’.

CREATIVE COMPUTIN'G USING BASIC
Kannan, N.
Contents : About Computers. Formation of Algorithms and Flowcharting.
Fundamenuls of Computers. Beginning to Compute with BASIC. Basic
Control Statements. For-Next Loop. Subscripted Variables. Functions and
Subroutines. Testing and Debugging. Aspects of Efficiency. Sorting, Searching
and Some Business Applications. Problem Solving with Computer. Structured
Basic using Microsoft Basic. File Handing. Graphics. Artificial Intelligence.
8122402566 1990 299pp paper R s .60

DESIGN O F ELECTRONIC CIRCUITS AND COM PUTER
AIDED DESIGN
Shah, M.M.
Contents : PART I : Design o f Electronic Circuits : Power Supplies. Filters.
Design of Power Supplies. Regulated Power Supplies. Series Voltage Regula
tor. Controlled Rectifiers. Amplifiers. Jfet Amplifiers. Power Amplifiers.
PART n ; Computer Aided Design of Electronic Circuits : DC Circuit Analysis.
Device Modelling. Design of Circuits.
8122404723 1993 246pp paper Rs. 70

W I L E Y E A S T E R N L I M I T E D
4835/24, A nsari Road, D aryaganj, N ew D elhi 110 002, IN D IA

Bangalore, Bombay, Calcutta, Guwahati, Hyderabad, Lucknow, Madras, Pune

S U PE R C O M PU T E R S
Of iate there has been a lot of interest in our country on Supercomputers. They
have become part of the vocabulary of all educated persons as press reports
appear regularly In newspapers about these computers and how they are being
used to solve a whole range of vei ̂interesting problems from predicting the
monsoons to synthesizing life-saving drugs. There Is thus a widespread curiosity
to know what are supercomputers, in what way they are different from other
computers and why they are considered strategic machines by the advanced
western countries which have imposed strict export controls on them. The
purpose of this educational monograph is to answer these questions and review
the current state-of-the-art of supercomputers.

This book explains what is a supercomputer and why such a machine Is needed
to solve challenging problems in science and engineering. The architecture of
supercomputers which distinguishes them from other computers is explained.
The need to vectorize programs to make effective use of supercomputers Is
brought out and some simple methods of vectorizing programs are discussed.
Ttie emergence of parallel computers as cost effective replacement for Cray type
vector supercomputers Is explained. The architecture of parallel machines and
the principles used to program them Is discussed. The book presents details of
some of the commercially available high performance computers. It concludes by
describing some Interesting applications of supercomputers.

This book is meant for students In their final year M.Sc. or B.E. courses, (with a
basic knowledge of programming in a high level language such as Fortran) who
would like to know about supercomputers. It should also interest other scientists
and engineers who would like to know about this subject.

V. Rajaraman Ph.D. (Wisconsin), Is Tatachem Professor of Computer Science
and Chairman, Supercomputer Education and Research Centre at the Indian
Institute of Science, Bangalore. He is also Honorary Professor at the Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore. Earlier, Professor
Rajaraman taught at the Indian Institute of Technology, Kanpur, from 1963 to
1982.

A pioneer In computer science education and research In India, Professor
Rajaraman was awarded the prestigious ShantI Swarup Bhatnagar Prize in 1976.
He is also the recipient of the HomI Bhabha Award for Research In Applied
Sciences, and the U.P. Government National Award for Excellence In Teaching
and Research. He is a Fellow of the Indian Academy of Sciences, the Indian
National Science Academy and the Indian National Academy of Engineers. An
author of several well established and highly successful computer books.
Professor Rajaraman has published many research papers In reputed national
and International journals.

WILEY EA STERN LIMITED
New Delhi Bangalore Bombay Calcutta Guwahatl

Hyderabad Lucknow Madras Pune

ISBN 81- 224- 0496-0

