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Synopsis 

Circadian Disruptions in Huntington’s Disease 

Modelled in Drosophila melanogaster 

The prevalence of devastating age-related diseases such as neurodegenerative diseases is rising 

with a growing elderly population worldwide, drastically affecting the quality of life in the 

affected persons and their caregivers (Wyss-Coray, 2016; Gitler et al., 2017; Lassonde, 2017; 

Bejot and Yaffe, 2019).  There is a pressing need for studies to understand these diseases better 

and to develop therapeutic strategies.  Neurodegenerative diseases (NDs) are a wide range of 

brain-related conditions where a specific set of neurons become dysfunctional or even 

degenerate.  Some of the well-known NDs include Parkinson’s disease, Alzheimer’s disease, 

Huntington’s disease, and Amyotrophic Lateral Sclerosis.  Huntington’s Disease (HD) is 

inherited and caused by a mutation in the gene coding for Huntingtin (HTT) protein.  The mutation 

is the expansion of repeats of the CAG codon in the Huntingtin gene (htt) beyond a threshold of 

35-40 CAG repeats.  The resulting mutant Huntingtin protein has expanded repeats (>35-40) of 

the amino acid Glutamine (Q), often called polyQ repeats, thus categorising HD as a polyQ 

disease.  Typical HD symptoms include motor defects such as involuntary uncoordinated jerky 

movements, cognitive defects like problems in emotion recognition and attention, and psychiatric 

difficulties such as aggression and depression, all affecting the quality and duration of life 

(Gusella and MacDonald, 2006; Bates et al., 2015).  Despite varying clinical manifestations, HD 

shares several notable features with other NDs.  These include a typical middle-aged disease onset 

that affects specific brain regions or neuronal groups despite widespread protein expression, 

progressive neuronal degeneration, accumulation of protein aggregates, motor, cognitive and 

psychological disturbances, and worsening symptoms with age.  Like several other NDs, HD 

thus takes a massive toll on patients and their caregivers (Taylor and Bramble, 1997; Happe et 

al., 2002; Mills et al., 2009).  Despite decades of research, treatments delaying HD onset or 

slowing its progression have yet to meet much success at the clinical level.  Moreover, though 

mechanisms of disrupted protein homeostasis, oxidative stress and synaptic toxicity are common 

among NDs (Dugger and Dickson, 2017; Gan et al., 2018; Ruffini et al., 2020), a clear 

understanding of HD pathogenesis, basis for differential neuronal susceptibility, the role of 
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aggregation in toxicity, and an overarching view on time-course and sequence of molecular and 

cellular events, remain elusive. 

Recently, circadian and sleep impairments in ND have been gaining attention.  Since many 

patients show circadian and sleep abnormalities before the more well-known symptoms and 

disease manifestations, these are now considered prodromal symptoms of NDs (Arnulf et al., 

2008; Soneson et al., 2010; Goodman et al., 2011; Morton et al., 2014; Lebreton et al., 2015; 

Bellosta Diago et al., 2017).  The neurons in the brain regions controlling circadian behaviour, 

such as the hypothalamus, specifically the Supra Chiasmatic Nucleus, are vulnerable targets of 

HD (Fifel and Videnovic, 2020).  Circadian dysfunctions also disrupt neuronal homeostasis and 

worsen neurological symptoms, creating a feed-forward loop (Hastings and Goedert, 2013; 

Musiek, 2015).  Moreover, improving circadian functions alleviates neurodegenerative processes, 

implying a reciprocal interaction of the two networks, providing unusual interventional 

opportunities (Hood and Amir, 2017a; Leng et al., 2019; Carter et al., 2021; Voysey et al., 2021a).  

Given the vulnerability of the circadian system to HD, circadian disruptions aggravating HD and 

their amenability to moderation, I was interested in studying the impact of HD on circadian 

rhythms, uncovering suppressors of circadian dysfunction and disease-modifying strategies, 

and improving our understanding of HD pathogenesis using Drosophila melanogaster due to its 

well-established repertoire of circadian behaviours and underlying neuronal network as 

well as genetic and molecular players. 

Drosophila melanogaster is extensively used as a model organism in studying NDs.  It offers 

several advantages such as ease of use, short generation time and life cycle, cost-effectiveness, 

and availability of genetic, molecular, and physiological tools to introduce and study the effect of 

human genes.  Drosophila, commonly called the fruit fly or the vinegar fly, also has homologs 

for 75% of the human disease genes, shares fundamental cellular and signalling pathways with 

humans, has a relatively simple nervous system and exhibits complex behaviours (Reiter et al., 

2001a; McGurk et al., 2015; Rosas-Arellano et al., 2018).  Many physiological processes and 

behaviours show circadian rhythms, which repeat every ~24 hours, even without external time 

cues.  Some examples are sleep-wake cycles, rhythms in hormonal levels and metabolites.  The 

core molecular clock comprises a transcriptional/translational feedback loop (TTFL) in flies, with 

Clock, Cycle, Period (PER), and Timeless proteins being the primary players (Tataroglu and 

Emery, 2015; Young, 2018).  The circadian neuronal circuit in the Drosophila brain consists of 
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~150 neurons, each exhibiting self-sustained rhythms in clock protein levels, also called 

molecular clock oscillations (Nitabach and Taghert, 2008; King and Sehgal, 2020).  This neuronal 

circuit controls a robust, reproducible, easily assayable, well-characterised rhythmic behaviour, 

the locomotor activity/rest rhythms (Tataroglu and Emery, 2014).  Of these neurons, ~ 8-9 pairs 

of ventrolateral neurons (LNv) express a neuropeptide, the Pigment dispersing Factor (PDF).  

There are two types of LNv- the small LNv (sLNv) and the large LNv (lLNv), with each brain 

hemisphere having 4-5 of each type.  PDF and sLNv are critical for maintaining locomotor 

activity rhythms under constant dark conditions (DD) (without external time cues or free-running 

conditions) (Renn et al., 1999; Grima et al., 2004a; Stoleru et al., 2004; Shafer and Taghert, 2009). 

A region of the human Huntingtin gene containing exon1 with expanded Q repeats (expanded 

HTT or expHTT) is targeted to the PDF expressing LNv of Drosophila to study its effect on 

circadian functions and characterise HD-induced neurodegenerative phenotypes in these flies.  

Parallelly, the neurodegenerative expHTT is used to compromise the LNv to understand their 

contribution to circadian behaviour.  Targeting the critical pacemaker neurons offers an advantage 

over the widely used pan-neuronal approach.  Such a restricted expression system makes 

assessing associated events at the neuronal and circuit level and precisely controlled functional 

output at the behavioural level possible.  Studying the effect of a neurodegenerative protein at 

multiple levels, each functionally and specifically related, aids in precise inferences and testing 

the robustness and efficacy of disease-modifying strategies at many levels. 

The thesis is structured into seven chapters.  The Material and Methods section describes each 

chapter’s experimental setup, conditions, methodology, analyses, and statistical tests.  The 

experiments combine neurogenetic, behavioural, immunocytochemical and imaging techniques 

to address most questions.  pdf>Q128 is the fly line of focus, expressing expHTT having 128 Q 

repeats (HTT-Q128) in the PDF-expressing LNv (PDF+ LNv).  pdf>Q128 (HD flies) is compared 

with all the appropriate controls: the non-expanded HTT expressing line pdf>Q0 (without Q 

repeats) and the parental controls Q128 and pdfGal.  Below is a brief outline of each chapter’s 

broad objectives, findings, and conclusions.  



vii 
Synopsis 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 
 

Chapter 1 is a detailed introduction to HD, its epidemiology, genetic basis, HTT protein 

structure, modifications and function, the role of aggregation and polyQ expansion in HD toxicity, 

and the pathogenic mechanisms underlying HD with a focus on disturbances in protein 

homeostasis, some of the prevalent therapeutic approaches to HD, basics of mammalian and 

Drosophila circadian biology, Drosophila as a model for HD, the crosstalk between the circadian 

and the neurodegenerative systems, the need to study such interactions and the objectives of this 

study. 

Chapter 2 addresses the first objective of my research: establishing and characterising the HD-

induced circadian alterations and the associated neurodegenerative phenotypes in a Drosophila 

model.  Expressing expHTT in LNv of Drosophila disrupts their circadian locomotor activity 

rhythms in DD, rendering most of the flies arrhythmic and a few rhythmic flies with weak rhythms 

of ~24h period.  At the neuronal level, pdf>Q128 flies show a PDF loss only from the sLNv soma 

while persisting in its dorsal axonal projections and the lLNv.  The molecular clock protein PER 

is also lost from sLNv and diminishes in lLNv.  The expHTT mostly appears as inclusions 

(speckled clumped appearance), in contrast to the even, cell-wide distribution or diffuse 

appearance of the un-expanded version, HTT-Q0.  In flies expressing different lengths of polyQ 

expansions of expHTT in the LNv, behavioural arrhythmia demonstrates a polyQ-length-

dependent deterioration: the longer the Q repeat, the earlier the age of arrhythmia initiation.  The 

arrhythmicity, loss of PDF and aggregation worsen as the flies age.  The Drosophila circadian 

HD model recapitulates several key HD features such as selective neuronal dysfunction, 

expHTT inclusions, circadian disruptions, progressive decline of phenotypes and a polyQ-

length-dependent worsening of symptoms.  Locomotor activity rhythms of these flies are 

unaffected under light-dark (LD) conditions.  Their sleep levels, sleep quality and lifespan are 

unaffected. 

The findings further improve our comprehension of the function of the neuropeptide PDF in the 

sLNv in maintaining activity rhythms in DD.  I also report a unique finding that PDF is present 

in the dorsal projections (DP) of sLNv, and its levels in the DP continue to oscillate under DD, 

even in the absence of PER and PDF in the cell bodies.  The oscillations in PDF levels in DP are 

also functional, as their downstream target neurons show synchronised PER oscillations.  Several 

studies report an association of arrhythmic activity with loss of oscillations in PDF levels in the 
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sLNv DP but intact sLNv molecular oscillations, strengthening the conclusion that PDF 

oscillations are critical for behavioural rhythms (Nitabach et al., 2006; Fernández et al., 2007a; 

Depetris-Chauvin et al., 2011; Gunawardhana and Hardin, 2017).  However, in this study, PDF 

oscillations are uncoupled from behavioural rhythms (Prakash et al., 2017).  Despite PDF 

oscillations in sLNv DP and synchronous PER oscillations in the downstream circadian neuronal 

subsets, the activity rhythms in DD are arrhythmic, highlighting the insufficiency of these 

oscillations in activity rhythm sustenance in the absence of PER in the sLNv.  Thus, the 

maintenance of free-running activity rhythms by sLNv is not limited to its output via oscillations 

in PDF levels. 

Chapter 3 assesses the role of the environmental factor light in modifying expHTT-induced 

circadian neurodegenerative phenotypes.  Providing circadian bolstering cyclic time cues 

during development, like high-intensity LD cycles or multiple time cues that change gradually 

(semi-natural conditions), did not alter the breakdown of activity rhythms of pdf>Q128 adults in 

DD or their entrainment to LD.  However, varying the light regimes affect the cellular phenotypes 

of pdf>Q128: the circadian-disrupting regime of the continuous presence of light or constant 

light (LL) aggravating neurodegenerative features.  At the same time, LD is intermediate 

toxic, and DD (absence of light) is relatively less toxic.  LL accelerates the loss of PDF from 

sLNv soma and promotes expHTT inclusions more than the other two regimes.  These findings 

provide strong evidence for constant light and light/dark cycles amplifying neurodegenerative 

phenotypes, suggesting light negatively impacts neurodegenerative outcomes.  They also 

highlight the significance of environmental regimens in ND progression and the need to integrate 

circadian hygiene, such as lighting conditions, in treating NDs. 

Chapter 4 looks at the role of temperature in modifying expHTT-induced circadian 

dysfunction and neurotoxicity.  It addresses the potential for environmental interventions like 

temperature, which influences circadian and neurodegenerative networks as a therapeutic avenue 

for neurodegenerative diseases.  It establishes two temperature-dependent mechanisms that target 

different life stages as regimes that impede HD circadian neurodegenerative phenotypes.  HD 

flies in both temperature regimes display a delay in the behavioural rhythm breakdown and loss 

of circadian neuropeptide PDF from the sLNv to different extents.  In both regimes, the 

temperatures experienced as adults determine early-age rhythm rescue.  The first regime, 
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development-specific temperature cycles, restores low-amplitude sLNv molecular clock 

oscillations but does not alter the expHTT inclusion load.  The rescue of early-age activity 

rhythms is inhibited by light during development.  The second regime, adult-restricted upshift 

to warm temperatures, does not restore sLNv clock oscillations but decreases expHTT inclusion 

load.  Its rescue of early-age activity rhythms has little interference from light during development 

or clock disruptions during development.  At the same time, Hsp70 plays a role in the regime’s 

rhythm execution.  This regime enhances activity consolidation over an extended duration and is 

more neuroprotective.  Hence, the findings support temperature-based environmental 

treatments as effective suppressors of circadian neurodegenerative phenotypes and 

prospective therapeutic regimens for NDs. 

Chapter 5 describes a screen of genetic modifiers of cellular toxicity in HD for their ability 

to suppress expHTT-induced circadian behavioural arrhythmia.  From a host of cellular 

neurotoxic modifier proteins of HD, two proteins of the Heat Shock Protein (Hsp) family, Hsp40 

and HSP70, emerge as promising suppressors of behavioural arrhythmicity in the initial screen.  

Co-expression of Hsp40 (a co-chaperone of the central chaperone HSP70) with expHTT in the 

LNv substantially prolongs rhythmicity, rescues PER oscillations in the sLNv of young flies and 

prevents PDF loss from sLNv soma.  It also reduces expHTT inclusion load accompanied by the 

appearance of a novel form of expHTT, oval and spot-like, present as a single spot per LNv.  The 

nature of this Spot expHTT, its localisation, and its constituents warrant investigation.  Co-

expression of expHTT with HSP70 in the LNv also rescues early-age arrhythmicity without 

recovering PDF or PER in the sLNv or modifying expHTT aggregation.  Thus, from this study, 

Hsp40 emerges as a potent mitigator of expHTT-induced circadian neurogenerative 

phenotypes in Drosophila (Prakash et al., 2022).  Hsps are well-established suppressors of 

cellular neurodegenerative features (Duncan et al., 2015a; Hipp et al., 2019a; Sinnige et al., 2020).  

However, this is the first report on the role of Hsp in suppressing circadian dysfunction 

associated with a neurodegenerative disease like HD.  This circadian rescue was at the neuronal 

and behavioural levels of the sLNv pacemaker’s core clock and its neuronal output and the 

behavioural rhythms in a relatively sustained fashion.  These results also suggest that proteostasis 

perturbations underlie circadian disruptions associated with HD.  The interaction of ND-induced 

circadian defects and proteostasis is relatively unexplored, and my study sets encouraging 

precedence. 
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Chapter 6 briefly investigates the role of Drosophila Huntingtin (dhtt) in HD circadian 

dysfunction and the protein context of the polyQ expansion in disrupting activity rhythms.  

Several specific questions were asked, and the findings are briefly stated here.  dhtt is not essential 

for free-running Drosophila activity rhythms, nor does dHtt overexpression protect pdf>Q128 

flies from becoming arrhythmic.  The effects of the cellular and protein contexts of the polyQ 

expansion on the free-running activity rhythms are examined by expressing full-length HTT, only 

the expanded polyQ peptide or the polyQ expanded MJD protein (causing the Machado Joseph 

Disease or Spinocerebellar Ataxia-3) in the LNv, and in the latter two cases, also in a larger group 

of circadian neurons.  While the full-length HTT did not affect the activity rhythms, expression 

of expanded polyQ in a broad group of circadian neurons weakens the rhythms, and that of 

expanded MJD led to arrhythmia.  These non-consistent effects of the expanded polyQ proteins 

in the circadian context and how they differ from the pathophysiology reported on targeting other 

cellular groups emphasise the critical role that protein contexts, such as flanking sequences 

and protein length, and the cellular contexts, respectively, play in mediating expanded-polyQ’s 

toxicity. 

Chapter 7 provides a summary of the salient findings of this study and the conclusions thereof.  

It also establishes an overarching model of modifiers of circadian dysfunction and neurotoxicity, 

showing various trajectories towards neuroprotection and circadian rehabilitation.  The critical 

take-home is that for mitigating HD-induced neurotoxicity at the behavioural level, Hsp40-

overexpression > adult-restricted-warm-temperatures > development-specific-

temperature-cycles > HSP70-overexpression.  This descending order of suppression of 

neurotoxicity follows the extent of cellular rescue by the intervening regimens.  Hsp40 improves 

circadian parameters at the behavioural, neuronal, and molecular levels and decreases the cellular 

inclusion load, whereas HSP70 only improves the behavioural rhythms.  At the same time, the 

temperature regimes confer intermedial rescue.  This chapter also outlines possible future 

questions that can be addressed, both immediate and long-term, and draws attention to the need 

for and scope of research in related fields. 

In summary, this study characterises a Drosophila circadian model of HD that enumerates several 

crucial characteristics.  The circadian disruptions observed here, such as arrhythmic activity/rest 

patterns and disruptions of sLNv pacemakers’ molecular clock and output function, mirror similar 
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features found in mammalian models and patients of HD.  This system also efficiently screens for 

environmental and genetic modifiers, with the potential for conducting pharmacological screens.  

A screen for different light conditions shows that lighting conditions worsen neurodegenerative 

features, emphasising the need for good circadian hygiene, particularly under compromised 

neuronal health.  The study uncovers a previously unrecognised benefit of warm temperatures 

and temperature cycles in enhancing circadian functions and neurodegenerative phenotypes in 

HD flies, two distinct underlying mechanisms of delayed neurotoxicity, and promising potential 

for incorporating passive heat therapy or body warming into ND treatments.  Established 

neuroprotectors Hsp40 and HSP70 are found to suppress circadian dysfunction, with Hsp40 

providing sustained benefits to neuronal health, circadian markers, outputs, and rhythmic 

function.  Two independent studies show the involvement of Hsps in evoking circadian 

rhythmicity, thus establishing Hsps as nodal protein targets for circadian rehabilitation and 

neuroprotection.  These results also suggest the involvement of mechanisms maintaining cellular 

proteostasis in the sustenance of circadian rhythms, particularly under disease conditions that 

challenge proteostasis.  In several instances during this study, the neuronal dysfunction is 

associated with increased inclusion load, strongly suggesting that the expHTT inclusions are 

indicators of toxicity.  It also establishes the dispensability of endogenous Drosophila Huntingtin 

for free-running circadian rhythms.  Further, the findings espouse consideration of the protein and 

cellular contexts while inferring the toxicity related to expanded polyQs. 

The various deterrents of HD-induced toxicity and their underlying physiological mechanisms 

discerned in this study broaden our understanding of the interactions between the circadian and 

the neurodegenerative axes and the effects of the external environment and cellular proteostasis 

on them.  Crucially, they illustrate that various non-mutually exclusive pathways exist for 

circadian neuroprotection.  The outcome of this study using the robust and versatile Drosophila 

melanogaster is a springboard for testing in clinically relevant models and a paradigm to explore 

new therapeutic avenues that will benefit not only our understanding of HD but also of other NDs, 

particularly in the circadian context, and inform advances to improve the quality of life in HD 

patients and carers.  



xii 
 

 

Dedication 
 

 

 

 

 

 

This thesis is dedicated to “The Evolution of Me” 

The Girl I have been,  

The Woman I have become, 

and  

The limitless potential for who I can be! 

 



xiii 
 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Acknowledgements 

An African proverb says, "It takes a village to raise a child!”.  A worldwide community has 

helped me get to the finishing line.  

First and foremost, I thank my research advisor, Prof. Sheeba Vasu, for being incredibly patient 

and supportive, for her faith in me, and for helping me troubleshoot and focus on the immediate 

next steps in the face of setbacks without dwelling.  She also has provided a safe space for me to 

find my way, even if that sometimes took a while.  I thank the late Prof. Vijay Kumar Sharma for 

his guidance and advice.  I have constantly remembered his question, “Why should we care?”  He 

also urged me to dive deep into the subject instead of wading in the shallow waters.  I took both 

these statements to heart and, at times, pushed myself so deep into the subject that getting out was 

a challenge.  Nevertheless, thank you, sir, for making me care and invest in the problem. 

I thank the Council of Scientific & Industrial Research (CSIR), India, for the research fellowship 

and the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India, 

for the intramural funding.  

I thank Prof. Amitabh Joshi for his coursework on Statistics, which has helped me with data 

analysis.  Seeing him in his elements during presentations, his articulation, keen sense of 

observation and interesting take on things has been a learning experience.  I thank Prof. TNC 

Vidya for her excellent course on Animal Behaviour involving discussions and thought 

experiments, which have helped me form a hypothesis-testing template and approach a problem 

from different angles.  I thank the late Prof. K.S. Krishnan for his input during the formative years 

of my PhD with his simple but critical questions, inquisitiveness and infectious enthusiasm 

towards research.  I thank Prof. Ravi Manjithaya for being a supportive GSAC member.  

Discussing the interface of protein homeostasis, autophagy, and HD with him helped me refine 

my research questions.  I also thank Prof. Maneesha Inamdaar and Prof. Hemalatha Balaram for 

their valuable suggestions during poster sessions.  I thank Prof. Sutirth Dey for his sound advice 

on navigating the academic landscape and Dr. María Fernanda Ceriani for clarifying specific 

findings from her lab.  I am grateful to Acharya sir, Jayashree ma’am, and Prasanna sir for their 

constant support and encouragement throughout my PhD journey. 

I thank many members of the scientific community world-over for sharing fly resources and 

reagents.  Foremost, Prof. Troy Littleton, MIT, for the HTT fly lines.  Prof. Charlotte-Helfrich 

Förster, JMU Würzburg and Prof. Todd Holmes, UC Irvine, for comments on the manuscripts.  

Profs Michael Rosbash, Brandeis University; Lawrence Marsh, UC Irvine; Paul Hardin, Texas 

A&M; Michael Nitabach, Yale University; Jeffrey C Hall, Brandeis University; Jae Park, 

Vanderbilt University; Florence Maschat, Université de Montpellier; Norbert Perrimon, Harvard 

Medical School; Nobuyuki Nukina, RIKEN, for fly lines and antibodies.  I thank Profs KS 

Narayan and MRS Rao, JNCASR Central Imaging facility, particularly Suma and Sunil Kumar, 

Vasu, Deboshree, Rohan and Simi, NCBS-CCAMP, Prof. H. Krishnamurthy and Raksha for their 

assistance with confocal microscopy.  I thank the Bloomington and Vienna Drosophila Stock 



xiv 
Acknowledgements 

 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Centres for the fly lines and PubMed and NCBI for easing my navigation through research-related 

literature. 

I am grateful to the ever-present and helpful Rajanna and Muniraju, whose impeccable work ethic 

has inspired me.  Their cheerful company with Kannada songs playing in the background made 

mundane cooking days fun!  I thank colleagues from EBL and ABL for having helped me through 

gruelling coursework and assignments and keeping me company at odd hours.  Thank you, 

Snigdho, Joy, Soundarya, Dhananjay, Kanika, Sajith, Miraj, Avani, Srikant, and Neha from EBL, 

and Hansraj and Mihir from ABL.  Keerti and Nandini have been fun friends to hang out with on 

campus.  I thank friends from TSU, EMU and MBGU - Sarada, Priyanka, Meha, Ponnu, PP, 

Rajesh, Jose, Vicky, Sankalp, Deepthi, SaiKishan, Aarati, Vijay J, and Arpit, who made my stay 

at JNC enjoyable.  

I was fortunate to have an inspiring set of mentors from CBL in Shahnaz, Pankaj bhai, Koustubh, 

and Nisha and an inquisitive set of peers in Nikhil, Vishwanath, and Anuj.  Other lab members, 

Vinodh, Pawan, Reshmi, Archana, Arghya, Poojashri, Abhilash, Manishi, Chitrang and Arijit, 

provided inputs during the Clock-club.  Intense discussions during lab meets have helped me 

formulate and refine research questions, troubleshoot and overcome roadblocks and compile a 

cohesive narrative for my work.  Thanks to Abhilash for help with statistics and MATLAB and 

Anuj and Manishi for remotely connecting me to the lab computer. 

I want to thank R & D assistants Basha for helping me at the start of HD experiments and Enakshi 

for helping with cooks and food changes.  Thanks to Revathi and Sushma for their super-efficient 

help through massive locomotor setups, dissections, sample processing, and food cooks.  I would 

not have managed those crazy dissection days without you two!  I have had the opportunity to 

work with some fantastic and very driven short-term students, particularly Sindhuja, G Priya, 

Arpit and Aishwarya Nambiar, whose enthusiasm and hard work have helped and inspired me to 

do some exciting and intense experiments that have provided excellent results.  Pawas, Aditi, 

Femi, and Danita added colour during the summers.  Joydeep, Manswini, Anjali, Goirik, and 

Pritha worked with me on some of the HD experiments, and Shambhavi and Ratna made for 

interesting late-night conversations. 

Priya has been a great mentor, initiating me into the world of fly pushing, a good friend and a 

warm and caring presence during my PhD life.  I speak for the entirety of the old BNL when I say 

that Priya kept us in line and instilled some crazy standards for cleanliness and experimental 

rigour.  It has been a pleasure to share lab space with Antara, a fine research companion whose 

booming laugh and kickass attitude kept things interesting!  Payel has been a good friend and a 

great labmate to work with, always bringing a lot of positivity and cheer to the lab.  I thank her 

for her help with food cooks, stock maintenance and through some problematic locomotor set-

ups in the dark.  Thanks to my three biggest cheerleaders, Aisha, Sheetal and Viveka, over the 

years!  Aisha has been highly supportive, always positive and pumped up.  Discussions with her 

on temperature sensation in flies and comments on the temperature chapter have been 

constructive.  Sheetal and her PJs grew on me!  Her knack for cutting into the heart of the matter 



xv 
Acknowledgements 

 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

and unique perspective has given me much research insight.  Her encouragement and support kept 

me going, especially when the going was tough.  Vinky, I have so much to say!  For now, I thank 

you from the bottom of my heart for always being one call away, no matter what.  Thank you for 

being you! 

I thank Aishwarya Iyer for discussing the Drosophila circadian clock network and generously 

sharing food vials.  I thank Rutvij for his extensive help with statistics and  MATLAB.  His 

pointed questions and discussions have raised the bar and aided me in articulation.  I have had 

intense and exciting discussions on HD with Ankit, and I thank him for his assistance with some 

of the Hsp experiments and pertinent questions on the manuscript.  I also thank other lab members, 

Roshan, Pragya, Mansi, and Surajit, for their helpful suggestions during the work presentation. 

I am thankful to the JNCASR community, the academic, administrative, accounts and purchase, 

the technical, the security, the medical, the hostel, and the housekeeping staff for their help in 

small and big ways that have made my stay and work at JNC comfortable and smooth.  

I am immensely indebted and grateful to my therapist, Shilpa, for pulling me out, holding my 

hand, sitting with me, and helping me find my wings and fly. 

I eagerly looked forward to dinner outings with Mamta, Mugdha and Dhanno, which have been 

great stressbusters filled with laughter and joy.  Chitra has been a good listener, a great friend and 

a constant companion in this journey.  KD, Renu, KC bhai, Bhavna and Ashwini have supported 

me at different points in my journey with their kind words.  Asha Vinitha have been emphatic 

supporters with their warm acceptance, gentle nudges and immense enthusiasm.  Meetings with 

Deepu are like a homecoming: welcoming, with no expectations and rejuvenating. 

I am grateful to my immediate and far-off family for their prayers and for learning not to ask 

uncomfortable questions like, “When are you finishing your PhD?”  Thanks to Attais-Attimbers, 

Chittis-Chittapas, Periammas-Periappas, Chinpatis-Chintaatas, Maamas-Maamis, Aunties-

Uncles, Akkas-Annas, Thangis-Tammas, Chechis-Chettans and the Kutti Shaitans.  I am grateful 

to my grandparents for their love and support.  My Taata, bless his soul, would be happy to know 

I have finally moved from writing Chapter 2 to finishing the thesis.  My Paati has been a great 

source of joy, warmth and unconditional love.  My parents, Appa and Amma, have been very 

patient and supportive every step of the way!  I cannot express my gratitude in words.  You gave 

me the space when I asked for it and the comfort and amenities needed to accomplish long hours 

of uninterrupted writing.  I am grateful to Amma for proofreading my thesis and the end-note 

referencing and linking.  Anu and Jom, my boat companions, I have you as you have me.  You 

will get there very soon!  Thank you, Navaneeth, my best takeaway from JNCASR, for being my 

bedrock of support every step of the way.  I thank my amazing in-laws and the whole of the 

acquired family for their unwavering faith and support.  Durga Amma and Geetechi, N’s angels, 

have become my angels, too!  I thank my second family at Mana Jardin, Roopa, Ganesh, Aunty, 

Uncle and Chinnu for their company and encouragement.  I am grateful to Ranjani Aunty, 

Soumitra Uncle, Deeda, Anu, Mahesh, Vivaan and Suniyettan for making difficult days better 

with homecooked food and great company. 



xvi 
Acknowledgements 

 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

I thank friends in Stockholm, Verena, Angelina, Sardar, Malin, Sheila, and Maria, for making my 

life comfortable in small but significant ways and trainers Lars, Helen and Jan, for motivating me 

to be physically fit and supporting me in that journey.  I am grateful to Keren, Urban and family 

for making my stay in Åkersberga extraordinarily comfortable and memorable.  I thank Silvian 

for encouraging me and helping me show up to write every day.  Srikanth, Vivek, Vipin, Akshay, 

Madhu, Daani and Croor were good friends who made weekends lively!  My special thanks to 

Sumesh for providing workspace at IITM to facilitate my thesis writing and Sriram, Pandu, 

Remya, and Ravi for making my Chennai stint fruitful.  I thank friends at Mohali and Ropar, 

Shweta, Inaya, Mohit, Aunty, Uncle, Ruchi, Kapil, Pari, Adi and Devranjan for providing me 

with a haven away from home.  I thank the housekeeping assistants who kept the wheels running: 

Jyoti, Sridevi, Bindu, Chandrakanta, Kamalesh, Fatima, Shobha, Sara, Renu, Lokesh, Rajesh and 

the late Moin.   

Workouts at Cult Fit in Bengaluru and Friskiss and Svettis in Åkersberga have been great mood 

uplifters and helped channel my frustration and redefine my relationship with health and physical 

fitness.  I am happy to have had retail therapy via Myntra, Ajio, Flipkart and Amazon!  I am 

thankful for the emotional support and comfort indulgences that have been constant background 

companions across massive data analysis and thought processes.  These include Kindle, Amazon 

Music, Spotify, Wynk Music, Youtube, Audible, Netflix, Amazon Prime, Hotstar, and TV series 

like Hercule Poirot, Midsomer Murders, Vera,  McDonald and Doyd, Miss Fisher's Murder 

Mysteries, Foyle’s War, The Inspector Lynley Mysteries, Professor T,  The Monk, The Mentalist, 

Bones, Strike, Hinterland, Shetland, Blue Bloods, Criminal UK, Miss Scarlet and the Duke, 

Elementary, The Closer, Castle, The Doctor Blake Mysteries, and  Murdoch Mysteries! 

Last but not least, I thank the two anonymous reviewers of my thesis.  I apologise in advance for 

its length.  Writing this thesis has been a journey of self-discovery, a labour of hardship and love, 

many years in the making.  It has been my only avenue to document many ideas and work through 

some turbulences.  I thank you in advance for taking the time and having the patience to go 

through this humungous piece of work.  I truly appreciate your efforts and feedback.  Furthermore, 

for anyone whom I have inadvertently missed out, my apologies.  You have my gratitude for your 

aid in achieving this feat!  



xvii 
 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

 

List of publications 

1. Prakash P, Nambiar A, Sheeba V.  “Oscillating PDF in termini of circadian 

pacemaker neurons and synchronous molecular clocks in downstream neurons are not 

sufficient for sustenance of activity rhythms in constant darkness”.  PLoS One.  2017 

May 30;12(5):e0175073. 

https://doi.org/10.1371/journal.pone.0175073 

Author Contributions - Conceptualisation: PP, VS.  Formal analysis: PP, AN.  

Funding acquisition: VS Investigation: PP, AN, VS.  Methodology: PP, VS.  Project 

administration: VS.  Resources: VS.  Supervision: VS.  Writing – original draft: PP. 

This article has been reused and forms a part of Chapter 2 under the CC BY 4.0 

license of PLoS One. 

2. Prakash P, Pradhan AK, Sheeba V.  “Hsp40 overexpression in pacemaker neurons 

delays circadian dysfunction in a Drosophila model of Huntington's disease”.  Dis 

Model Mech. 2022 Jun 1;15(6):dmm049447. 

https://doi.org/10.1242/dmm.049447 

Author Contributions - Conceptualisation: PP, VS.  Methodology: PP, VS.  

Validation: PP.  Formal analysis: PP, AKP.  Investigation: PP, AKP.  Resources: VS.  

Writing - original draft: PP.  Writing - review & editing: PP, AKP, VS.  

Visualization: PP.  Supervision: VS.  Project administration: VS.  Funding 

acquisition: VS. 

This article has been reused and forms a part of Chapter 5 under the CC-BY license 

of Dis Model Mech. 

The underline indicates the first authorship. 

https://doi.org/10.1371/journal.pone.0175073
https://doi.org/10.1242/dmm.049447


xviii 
 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Table of Contents 
DeclarationDeclaration  ........................................................................................................................................................................................  iiii  

CCertificateertificate  ..........................................................................................................................................................................................  iiiiii  

SynopsisSynopsis  ..................................................................................................................................................................................................  iviv  

DedicationDedication  ..........................................................................................................................................................................................  xiixii  

AcknowledgementsAcknowledgements  ..............................................................................................................................................................  xiiixiii  

List of publicationsList of publications  ..........................................................................................................................................................  xviixvii  

Table of ContentsTable of Contents  ..............................................................................................................................................................  xviiixviii  

List oList of Figures and Tablesf Figures and Tables  ..................................................................................................................................  xxviixxvii  

List of frequently appearing abbreviationsList of frequently appearing abbreviations  ..............................................................................  xxxiixxxii  

Glossary of circGlossary of circadian termsadian terms  ............................................................................................................................xxxvixxxvi  

 

Chapter 1Chapter 1    ..........................................................................................................................................................................................  4040  

IntroductionIntroduction  ....................................................................................................................................................................................  4040  

1.1 HUNTINGTON’S DISEASE....................................................................................................... 41 

1.1.1 HD genetics ....................................................................................................................................... 43 

1.1.2 Epidemiology .................................................................................................................................... 44 

1.1.3 Clinical features of HD ...................................................................................................................... 45 

1.1.4 Huntingtin protein ............................................................................................................................ 49 

1.1.4.1 Expression pattern .................................................................................................................... 49 

1.1.4.2 Structure and evolution of Huntingtin ...................................................................................... 50 

1.1.4.3 Post-translational modifications of Huntingtin ......................................................................... 53 

1.1.4.4 HTT partners ............................................................................................................................. 55 

1.2 HUNTINGTIN: FROM FUNCTION TO DYSFUNCTION AND NEW “TOXIC” FUNCTIONS ................................ 56 

1.2.1 Huntington’s disease: GOF or LOF .................................................................................................... 56 

1.2.2 LOF in HD: Native functions of HTT .................................................................................................. 56 

1.2.3 GOF in HD: Toxic non-native interactions of the mutant protein ..................................................... 60 

1.2.3.1 Expanded HTT conformation and aggregation.......................................................................... 60 

1.2.3.2 The toxic species in HD: small soluble oligomers vs. large insoluble aggregates ...................... 64 

1.2.3.3 How does polyQ expansion render HTT toxic? ......................................................................... 66 

1.2.3.4 Aggregates under the spotlight in this study- the expHTT “inclusions.” ................................... 67 

1.2.3.5 Pathological mechanisms underlying HD .................................................................................. 68 

  

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013629


xix 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

1.3 PROTEOSTASIS IN ND .......................................................................................................... 76 

1.3.1 Molecular chaperones in proteostasis .............................................................................................. 77 

1.3.2 Hsps in HD ......................................................................................................................................... 78 

1.3.3 Protein degradation mechanisms in HD ........................................................................................... 81 

1.4 DIFFERENTIAL VULNERABILITY IN HD ........................................................................................ 85 

1.5 PROGRESS IN HD THERAPY: FROM THE LAB TO THE CLINIC ............................................................. 87 

1.5.1 expHTT-lowering therapies ............................................................................................................... 87 

1.5.2 DNA repair modifiers ........................................................................................................................ 90 

1.5.3 Cell replacement therapy ................................................................................................................. 90 

1.5.4 expHTT-interfering therapies ............................................................................................................ 90 

1.5.5 Anti-aggregation strategies............................................................................................................... 91 

1.5.6 Therapies providing symptomatic relief ........................................................................................... 91 

1.6 CIRCADIAN RHYTHMS .......................................................................................................... 93 

1.6.1 Basics of a circadian system .............................................................................................................. 93 

1.6.2 Relevance of circadian clocks............................................................................................................ 94 

1.7 MAMMALIAN CIRCADIAN SYSTEM ........................................................................................... 96 

1.7.1 Mammalian molecular clockwork ................................................................................................ 96 

1.7.2 Mammalian central clock: The Suprachiasmatic Nucleus ............................................................ 96 

1.7.3 Peripheral oscillators .................................................................................................................... 99 

1.8 DROSOPHILA CIRCADIAN SYSTEM .......................................................................................... 100 

1.8.1 The Drosophila molecular clock ...................................................................................................... 100 

1.8.2 The Drosophila circadian neuronal circuit ...................................................................................... 102 

1.8.3 Drosophila clock entrainment ......................................................................................................... 104 

1.8.3.1 Light entrainment .................................................................................................................... 104 

1.8.3.2 Temperature entrainment ...................................................................................................... 104 

1.8.4 The Drosophila circadian neuronal network: Hierarchical or plastic with bidirectional coupling? . 106 

1.8.5 Communication of Drosophila circadian signals: Neurotransmitters and Neuropeptides.............. 107 

1.8.6 Drosophila clock output at multiple levels...................................................................................... 107 

1.9 PARALLELS BETWEEN DROSOPHILA AND MAMMALIAN CLOCKS ...................................................... 108 

1.10 DROSOPHILA AS A MODEL ORGANISM FOR NEURODEGENERATION ................................................ 109 

1.10.1 Drosophila models of HD .............................................................................................................. 110 

1.11 RELATIONSHIP BETWEEN CIRCADIAN HEALTH AND NEURODEGENERATION ....................................... 116 

1.11.1 Circadian and sleep disturbances in HD ........................................................................................ 116 

1.11.1.1 Circadian disturbances in Drosophila models of ND ............................................................. 118 



xx 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

1.11.2 Influence of circadian and sleep axes on neurodegeneration ...................................................... 121 

1.11.2.1 Clock gene mutations associated with ND ............................................................................ 123 

1.11.2.2 Circadian and sleep disruptions worsen ND.......................................................................... 123 

1.11.2.3 Cases where circadian disruptions do not appear to affect ND ............................................ 125 

1.11.2.4 Circadian reinforcement improves ND .................................................................................. 125 

1.12 A NEED TO STUDY CIRCADIAN-NEURODEGENERATIVE INTERACTIONS IN HD .................................... 128 

1.13 OBJECTIVES OF MY STUDY ................................................................................................. 129 

 

Chapter 2 Chapter 2   ......................................................................................................................................................................................  133133  

Characterisation of a Characterisation of a DrosophilaDrosophila  Circadian Model of Huntington’s Circadian Model of Huntington’s 

DiseaseDisease  ................................................................................................................................................................................................  133133  

2.1 INTRODUCTION ................................................................................................................ 134 

2.1.1 A need for a Drosophila circadian model of HD.............................................................................. 134 

2.1.2 The Drosophila circadian neuronal circuit: A HD model ................................................................. 135 

2.1.3 Circadian dysfunction in flies expressing expHTT in the LNv .......................................................... 136 

2.1.4 The role of PDF in the sLNv in sustaining activity rhythms ............................................................. 136 

2.1.5 A refined understanding of the role of PDF and sLNv in modulating activity rhythms .................. 138 

2.2 MATERIALS AND METHODS ................................................................................................. 140 

2.2.1 Fly lines ........................................................................................................................................... 140 

2.2.2 Behavioural assays .......................................................................................................................... 141 

2.2.3 Immunocytochemistry and image analysis .................................................................................... 144 

2.2.3 Lifespan assay ................................................................................................................................. 147 

2.3 RESULTS ......................................................................................................................... 148 

2.3.1 Expression of expHTT in the LNv abolishes free-running rhythms .................................................. 148 

2.3.2 expHTT expression in LNv led to selective loss of PDF from the sLNv soma, while PDF presence in 

dorsal projections is unaffected .............................................................................................................. 151 

2.3.3 Arrhythmicity in free-running rhythms shows a polyQ-length dependence ................................... 156 

2.3.4 GFP loss from sLNv soma mirrors PDF loss from sLNv soma in expHTT- expressing flies ............... 159 

2.3.5 Loss of PER from the sLNv and persistence of PDF oscillations in the sLNv dorsal projections 

accompanied by synchronous PER oscillations in the PDF- circadian neurons in HD flies in DD .............. 163 

2.3.6 Expression of expHTT in the LNv does not alter the activity rhythms or sleep of flies under LD ..... 169 

2.3.7 Prior exposure to arrhythmic conditions does not alter the ability of expHTT-expressing flies to show 

M-anticipation ........................................................................................................................................ 173 

2.3.8 Circadian molecular clock in the sLNv is not necessary for entrainment to LD ............................... 176 

2.3.9 PDF in the sLNv is not necessary for morning anticipation under LD ............................................. 179 

2.3.10 expHTT expression in the LNv does not affect the lifespan of flies ............................................... 184 

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013690
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013690


xxi 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

2.4 DISCUSSION .................................................................................................................... 186 

2.4.1 Circadian model of HD .................................................................................................................... 186 

2.4.2 Role of the sLNv in mediating free-running activity rhythms ......................................................... 191 

2.4.2.1 PDF-oscillation-independent component (POIC) .................................................................... 195 

2.4.3 Role of the sLNv in modulating activity rhythms under LD ............................................................. 197 

2.4.4 Clocks controlling PDF oscillations in the sLNv dorsal projections ................................................. 199 

 

Chapter 3 Chapter 3   ....................................................................................................................................................................................  203203  

Effects of Light Regimes on the Circadian Dysfunction and Neurotoxicity Effects of Light Regimes on the Circadian Dysfunction and Neurotoxicity 

in HD fliesin HD flies  ....................................................................................................................................................................................  203203  

3.1 INTRODUCTION ................................................................................................................ 204 

3.2 MATERIALS AND METHODS ................................................................................................. 207 

3.2.1 Fly lines ........................................................................................................................................... 207 

3.2.2 Behavioural assays .......................................................................................................................... 207 

3.2.3 Immunocytochemistry and image analysis ..................................................................................... 209 

3.3 RESULTS ......................................................................................................................... 212 

3.3.1 Multiple, complex time cues during pre-adult stages did not prevent the arrhythmic activity of 

expHTT-expressing adult flies in DD ........................................................................................................ 212 

3.3.2 Arrhythmic conditions during pre-adult stages do not alter the entrainment of activity rhythms of 

expHTT-expressing flies to LD ................................................................................................................. 216 

3.3.3 expHTT-expressing flies under different light regimes show progressive loss of PDF+ sLNv, with LL 

being the most severe and DD being the least ....................................................................................... 220 

3.3.4 expHTT-expressing flies under different light regimes show a progressive increase in inclusions, with 

LL being the most severe ........................................................................................................................ 228 

3.4 DISCUSSION .................................................................................................................... 237 

3.4.1 Effects of environmental interventions impacting circadian rhythms on HD-induced neuropathology

 ................................................................................................................................................................. 237 

3.4.2 Expanded Huntingtin inclusions and cellular dysfunction .............................................................. 242 

 

Chapter 4 Chapter 4   ....................................................................................................................................................................................  245245  

Effects of Temperature Regimes on the Circadian Dysfunction and Effects of Temperature Regimes on the Circadian Dysfunction and 

Neurotoxicity in HD fliesNeurotoxicity in HD flies  ........................................................................................................................................  245245  

4.1 INTRODUCTION ............................................................................................................... 246 

4.1.1 Temperature and Neurodegeneration ........................................................................................... 247 

4.1.2 Temperature-based interventions as HD modifiers: Specific questions ......................................... 249 

4.2 MATERIALS AND METHODS................................................................................................ 250 

4.2.1 Fly lines ........................................................................................................................................... 250 

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013720
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013720
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013735
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013735


xxii 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

4.2.2 Behavioural assays .......................................................................................................................... 254 

4.2.3 Immunocytochemistry and image analysis .................................................................................... 259 

4.3 RESULTS ........................................................................................................................ 264 

4.3.1 Provision of temperature cycles during pre-adult developmental stages postpones behavioural 

arrhythmicity and PDF loss from the sLNv of pdf>Q128 flies .................................................................. 264 

4.3.2 Light during development counters the rescue of early-age activity rhythms of pdf>Q128 adults by 

developmental temperature cycles ......................................................................................................... 274 

4.3.3 Exposure of pdf>Q128 to temperature cycles throughout development is necessary for the 

behavioural rhythmicity as adults ........................................................................................................... 278 

4.3.4 Exposure of pdf>Q128 to constant warm temperatures during development  improves LNv-PER 

without affecting the behavioural arrhythmicity of adults in DD25 ........................................................ 280 

4.3.5 The early-age rhythm rescue of pdf>Q128 by developmental temperature cycles is altered by the 

temperature experienced as adults ......................................................................................................... 285 

4.3.6 Developmental temperature cycles delay the loss of PDF from the sLNv of pdf>Q128 without 

affecting the expHTT inclusion load ........................................................................................................ 287 

4.3.7 Development-specific warm temperatures improve PER in the LNv of pdf>Q128 without altering sLNv 

PDF loss or expHTT features .................................................................................................................... 291 

4.3.8 Exposure of pdf>Q128 to constant cool temperatures restores low amplitude PER oscillations in the 

LNv without altering arrhythmic activity rhythms .................................................................................. 292 

4.3.9 Exposure of pdf>Q128 to constant warm temperatures rescues early-age behavioural arrhythmicity 

and PDF loss from the sLNv and improves activity consolidation over an extended duration ................ 300 

4.3.10 Warm temperatures improve the early-age rhythmicity of pdf>Q128 by enabling a large proportion 

of the daily activity within a limited time window. ................................................................................. 306 

4.3.11 Constant warm or cool temperatures offer better protection against loss of circadian proteins from 

the LNv of pdf>Q128 than the constant ambient temperatures of 25°C ................................................. 308 

4.3.12 pdf>Q128 show a temperature-dependent decrease in the expHTT inclusion load ..................... 310 

4.3.13 Light/dark cycles during development intensify the effects of constant temperatures on the activity 

rhythms of pdf>Q128 adults ................................................................................................................... 313 

4.3.14 Exposure of pdf>Q128 to adult-specific, but not development-restricted constant warm 

temperatures restore the early-age activity rhythms and improves sLNv PDF ....................................... 317 

4.3.15 Adult-restricted upshift to warm temperatures rescues early-age rhythms of pdf>Q128 only when 

the temperature experienced as adults is a warm 29°C .......................................................................... 327 

4.3.16 Acute exposure to warm temperatures as adults is not sufficient to rescue activity rhythms of 

pdf>Q128 ................................................................................................................................................ 330 

4.3.17 The rescue of early-age activity rhythms of pdf>Q128 by adult-restricted upshift to warm 

temperatures is not countered by cyclic light or constant light during development ............................. 332 

4.3.18 Exposure of pdf>Q128 to warm temperatures as adults is sufficient to delay arrhythmicity and 

improve activity consolidation ................................................................................................................ 336 

4.3.19 Exposure to warm temperatures rescues PDF loss from sLNv soma in young pdf>Q128 ............. 339 

4.3.20 Adult-restricted exposure of pdf>Q128 to warm temperatures dramatically reduces the expHTT 

inclusion load and is the most neuroprotective ....................................................................................... 341 



xxiii 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

4.3.21 Adult-restricted warm temperatures confer greater neuroprotection to HD flies than developmental 

temperature cycles ................................................................................................................................. 345 

4.3.22 Remarks on the expHTT forms and their plausible range of toxicity ............................................ 348 

4.3.23 Hsp70 is involved in the early-age rhythm rescue of pdf>Q128 by the adult-restricted warm 

temperatures .......................................................................................................................................... 349 

4.4 DISCUSSION .................................................................................................................... 353 

4.4.1 Mechanisms of temperature-mediated retardation of expHTT-induced circadian dysfunction and 

neurotoxicity ............................................................................................................................................ 353 

4.4.1.1 Developmental temperature cycles ............................................................................................ 353 

4.4.1.2 Constant temperatures during development and adulthood ..................................................... 355 

4.4.1.3 Change in temperature as adults (upshifts and downshifts) ....................................................... 355 

4.4.1.4 Development-specific temperature cycles vs. adult-restricted upshift to warm temperatures .. 356 

4.4.2 Temperature, Drosophila circadian neuronal network, and activity rhythms ................................ 359 

4.4.2.1 Warm temperatures and activity consolidation ...................................................................... 359 

4.4.2.2 Understanding the effects of development-specific temperature cycles on the circadian 

neuronal network of HD flies .............................................................................................................. 361 

4.4.2.3 Differential effects of light on the temperature-mediated impediment of behavioural 

arrhythmicity ....................................................................................................................................... 367 

4.4.2.3.1 In the presence of developmental light: Developmental temperature cycles vs. constant 

temperatures and temperature upshifts ................................................................................................ 367 

4.4.2.3.2 Developmental-TC (TCtoDD25) vs Developmental-LD (LDtoDD25) .......................................... 367 

4.4.3 Warm-temperature-mediated effects ............................................................................................ 369 

4.4.3.1 Benefits of heat acclimation, hormesis and passive heat therapy .......................................... 369 

4.4.3.1.1 Translational impact of temperature-based interventional studies in Drosophila ................... 372 

4.4.3.2 Effect of temperature on circadian protein expression .......................................................... 374 

4.4.3.3 Warm temperatures, Hsp70 and expHTT inclusion load ......................................................... 375 

4.4.4 Temperature-based interventions for NDs ..................................................................................... 378 

 

Chapter 5 Chapter 5   ....................................................................................................................................................................................  382382  

Impact of HeatImpact of Heat  Shock Protein Overexpression on the Circadian Shock Protein Overexpression on the Circadian 

Dysfunction and Neurotoxicity in HD fliesDysfunction and Neurotoxicity in HD flies  ....................................................................................  382382  

5.1 INTRODUCTION ................................................................................................................ 383 

5.1.1 A Screen for modifiers of expHTT-induced disruption of activity rhythms ..................................... 383 

5.1.2 Hsps: Function and Role in neurodegenerative diseases ................................................................ 384 

5.1.3 Hsps as modifiers of expHTT-induced circadian decline ................................................................. 385 

5.2 MATERIALS AND METHODS ................................................................................................. 387 

5.2.1 Fly lines ........................................................................................................................................... 387 

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013786
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013786


xxiv 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

5.2.2 Behavioural assays .......................................................................................................................... 388 

5.2.3 Immunocytochemistry and image analysis .................................................................................... 390 

5.3 RESULTS ......................................................................................................................... 395 

5.3.1 Overexpression of Hsp40 or HSP70 delays arrhythmicity in flies expressing expHTT in the LNv .... 395 

5.3.2 Co-expression of Hsp40 and HSP70 synergistically improves the consolidation of activity rhythms in 

flies expressing expHTT in the LNv .......................................................................................................... 399 

5.3.3 Hsp40 overexpression in flies expressing expHTT in the LNv rescues PDF+ sLNv soma numbers .... 400 

5.3.4 Hsp40 overexpression in pdf>Q128 flies reduces the inclusion form of expHTT in favour of a new form

 ................................................................................................................................................................ 404 

5.3.5 Hsp40 overexpression in pdf>Q128 flies reduces the number of expHTT inclusions ...................... 413 

5.3.6 Hsp40 overexpression rescues early-age sLNv PER oscillations in the expHTT-expressing flies ..... 415 

5.4 DISCUSSION .................................................................................................................... 419 

5.4.1 Hsps as modifiers of HD-induced circadian dysfunction................................................................. 419 

5.4.2 Impact of Hsp overexpression on the visible inclusions of expHTT ................................................ 422 

5.4.2.1 The spot form of expHTT......................................................................................................... 424 

5.4.4 Effects of co-expressing Hsp40 and HSP70 ..................................................................................... 428 

5.4.5 Hsp40 vs HSP70: Hsp40, a superior suppressor of HD neurotoxicity ............................................. 429 

5.4.6 A need for screening circadian-specific neurotoxic modulators .................................................... 430 

5.4.7 Hsps, circadian health and neurodegenerative diseases ................................................................ 430 

 

Chapter 6 Chapter 6   ......................................................................................................................................................................................  433433  

The Effects of The Effects of DrosophilaDrosophila  HTTHTT  and the Protein Context of the and the Protein Context of the 

Polyglutamine Repeats on the Circadian Activity RhythmsPolyglutamine Repeats on the Circadian Activity Rhythms  ................................  433433  

6.1 INTRODUCTION ................................................................................................................ 434 

6.2 MATERIALS AND METHODS ................................................................................................. 435 

6.2.1 Fly lines ........................................................................................................................................... 435 

6.2.2 Locomotor assays ........................................................................................................................... 435 

6.2.3 Immunocytochemistry and image analysis .................................................................................... 435 

6.2.4 Statistical analyses .......................................................................................................................... 436 

6.3 RATIONALE, RESULTS AND CONCLUSIONS ................................................................................ 437 

6.3.1 The effect of Drosophila Huntingtin on the circadian free-running activity rhythms and the expHTT-

induced disruption of those rhythms ...................................................................................................... 437 

6.3.1.1 Rationale ................................................................................................................................. 437 

6.3.1.2 Results and Conclusions .......................................................................................................... 438 

6.3.1.2.1 dhtt does not contribute to the sustenance of activity rhythms in DD ..................................... 438 

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013811
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013811


xxv 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

6.3.1.2.2 dhtt overexpression in the LNv does not rescue the disruption of free-running rhythms in HD flies

 ................................................................................................................................................................ 440 

6.3.2 The effect of expressing full-length HTT in the LNv pacemakers on the free-running activity rhythms

 ................................................................................................................................................................. 441 

6.3.2.1 Rationale ................................................................................................................................. 441 

6.3.2.2 Results and Conclusions .......................................................................................................... 441 

6.3.2.2.1 Expression of full-length expHTT in the LNv does not alter free-running activity rhythms ...... 441 

6.3.3 The effect of expressing GFP-tagged-HTT of varying polyQ lengths in the LNv pacemakers on the 

activity rhythms ....................................................................................................................................... 443 

6.3.3.1 Rationale ................................................................................................................................. 443 

6.3.3.2 Results and Conclusions .......................................................................................................... 444 

6.3.3.2.1 Expression of expanded Httex1-QneGFP in the LNv does not alter free-running activity rhythms

 ................................................................................................................................................................ 444 

6.3.3.2.2 Expression of expanded HTTQ152eGFP in the LNv progressively impairs the free-running activity 

rhythms ................................................................................................................................................... 446 

6.3.4 The effect of expressing expanded-polyQ-peptides in the circadian neurons on the activity rhythms

 ................................................................................................................................................................. 448 

6.3.4.1 Rationale ................................................................................................................................. 448 

6.3.4.2 Results and Conclusions .......................................................................................................... 448 

6.3.4.2.1 Expression of expanded polyQ in the PDF+ LNv did not affect free-running rhythms ............... 448 

6.3.4.2.2 Expression of expanded polyQ in the TIM+ circadian neurons leads to weakening of free-running 

rhythms ................................................................................................................................................... 448 

6.3.5 The effect of expressing expanded MJD protein in the circadian neurons on the activity rhythms

 ................................................................................................................................................................. 451 

6.3.5.1 Rationale ................................................................................................................................. 451 

6.3.5.2 Results and Conclusions .......................................................................................................... 452 

6.3.5.2.1 Expression of either MJDQ27 or MJDQ78 in the LNv renders flies behaviourally arrhythmic upon 

ageing ..................................................................................................................................................... 452 

6.3.5.2.2 Flies expressing MJDQ78 in the TIM+ circadian neurons are arrhythmic from the beginning, 

whereas those expressing MJDQ27 become arrhythmic at a later age .................................................. 453 

6.3.5.2.3 The PDF+ LNv soma numbers are unaffected in flies expressing MJD in the LNv ..................... 456 

6.4 FINAL REMARKS ............................................................................................................... 459 

6.4.1 Protein- and cellular-contexts in mediating polyQ effects on the circadian activity rhythms ........ 459 

  



xxvi 
Table of Contents 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Chapter 7 Chapter 7   ......................................................................................................................................................................................  462462  

Summary, Conclusions, and Future StudiesSummary, Conclusions, and Future Studies  ..............................................................................  462462  

7.1 SUMMARY, CONCLUSIONS, AND SIGNIFICANCE ......................................................................... 463 

7.1.1 Common themes of neurodegeneration and the associated circadian alterations ....................... 464 

7.1.2 Disease-modifying strategies .......................................................................................................... 465 

7.1.2.1 Environmental modifiers ......................................................................................................... 465 

Light ........................................................................................................................................................ 465 

Temperature ........................................................................................................................................... 468 

7.1.2.2 Genetic modifiers .................................................................................................................... 470 

Hsps ......................................................................................................................................................... 470 

7.1.3 Trajectories of circadian rhythm rescue in HD: Mechanistic insights ............................................. 471 

7.1.4 Drosophila Huntingtin, protein context of the polyQ peptide and cellular context in mediating polyQ-

induced circadian dysfunction ................................................................................................................. 474 

7.1.5 Conclusions on the Drosophila circadian neuronal network .......................................................... 474 

7.1.6 Benefits and limitations of using a Drosophila model .................................................................... 477 

7.2 SCOPE FOR FUTURE WORK ................................................................................................... 478 

7.2.1 Circadian rhythm disruptions and treatments ............................................................................... 483 

7.2.2 Time will tell: Chronotherapy in mainstream healthcare ............................................................... 486 

 

APPENDIX A: Table for Chapter 2APPENDIX A: Table for Chapter 2  ................................................................................................................  489489  

APPENDIX B: Tables for Chapter 3APPENDIX B: Tables for Chapter 3  ............................................................................................................  491491  

APPENDIX C: Tables for Chapter 4APPENDIX C: Tables for Chapter 4  ............................................................................................................  499499  

APPENDIX D: TaAPPENDIX D: Tables and Supplementary Figure for Chapter 5bles and Supplementary Figure for Chapter 5  ......................  530530  

REFERENCESREFERENCES  ............................................................................................................................................................................  538538  

  

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013847
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013863
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013864
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013865
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013866
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Thesis%20Final%20Version/Pavitra%20Prakash_S0201_PhD%20Thesis_JNCASR_EOBU_September2023.docx#_Toc148013867


xxvii 
 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

List of Figures and Tables 

Fig 1. 1 The brain areas that are primarily affected and undergo neurodegeneration in HD. .......................................... 47 

Fig 1. 2 Basal ganglia’s regulation of the motor cortex via direct and indirect pathways. ............................................... 48 

Fig 1. 3 Schematics of the HTT protein. ................................................................................................................................ 52 

Fig 1. 4 Structures of HTTexon 1 and expHTTexon1 fibril. ................................................................................................... 62 

Fig 1. 5 A schematic showing some of the neuropathological mechanisms in HD. ........................................................... 68 

Fig 1. 6 Basic module of a circadian system. ....................................................................................................................... 94 

Fig 1. 7 Organisation of the SCN. .......................................................................................................................................... 97 

Fig 1. 8 A conceptual schematic of the Drosophila molecular clock. ................................................................................ 101 

Fig 1. 9 A schematic of the Drosophila circadian neuronal network. ............................................................................... 103 

Fig 1. 10 The Drosophila GAL4-UAS system. ...................................................................................................................... 130 

 

Fig 2. 1 Flies expressing expHTT in the LNv exhibit a loss of locomotor activity/rest behavioural rhythms in constant 

darkness. .............................................................................................................................................................................. 149 

Fig 2. 2 Behaviourally rhythmic and arrhythmic pdf>Q128 flies mostly lack PDF in their sLNv soma, which is present in 

their DP. ............................................................................................................................................................................... 153 

Fig 2. 3 Rhythmic and arrhythmic pdf>Q128 flies show a similar distribution of PDF+ sLNv soma. ................................ 155 

Fig 2. 4 Expression of expHTT with an intermediate-length-polyQ leads to a delay in arrhythmicity in DD. ................. 158 

Fig 2. 5 expHTT-expressing flies show selective loss of GFP from the sLNv soma. ........................................................... 160 

Fig 2. 6 expHTT-expressing flies show a loss of Apoliner-GFP and RFP from the sLNv soma. ......................................... 162 

Fig 2. 7 Oscillations of PDF levels in the sLNv dorsal termini persist despite a loss of PDF in their soma. ...................... 166 

Fig 2. 8 expHTT-expressing flies show a loss of sLNv PER and a reduction in lLNv PER under DD. ................................. 167 

Fig 2. 9 Flies expressing expHTT in the LNv do not show altered activity rhythms under moderate-LD. ........................ 170 

Fig 2. 10 Flies expressing expHTT in the LNv do not show altered behaviour under very low-intensity-LD.................... 172 

Fig 2. 11 expHTT-expressing flies entrain to LD despite experiencing arrhythmic conditions as adults. ........................ 175 

Fig 2. 12 Flies expressing expHTT show the PDF levels oscillating in their sLNv DP under LD. ........................................ 177 

Fig 2. 13 Flies expressing expHTT show loss of PER from the sLNv and dampened oscillations of PER in the lLNv under 

LD. ........................................................................................................................................................................................ 178 

Fig 2. 14 Flies without PDF in their sLNv exhibit morning and evening anticipation. ...................................................... 181 

Fig 2. 15 expHTT-expressing flies in LL show a loss of PDF from the sLNv soma and DP. ............................................... 183 

Fig 2. 16 Mean lifespans of flies expressing expHTT in their LNvs are unaffected. .......................................................... 185 

Fig 2. 17 Model for LNv-mediated sustenance of activity rhythms in DD and modulation of temporal activity profiles 

under LD. .............................................................................................................................................................................. 194 

 

Fig 3. 1 Strong light/dark cycles or multiple gradually changing time cues during development do not alter the 

behavioural arrhythmicity of pdf>Q128 flies as adults in DD. .......................................................................................... 213 

Fig 3. 2 Irrespective of the developmental regime, pdf>Q128 flies are mostly arrhythmic with poorly consolidated activity 

as adults in DD. .................................................................................................................................................................... 214 

Fig 3. 3 The Presence of cyclic light or complex time-cues during development does not improve the activity rhythms of 

pdf>Q128 as adults in DD. .................................................................................................................................................. 215 

Fig 3. 4 pdf>Q128 flies reared in DD and LD show control-like activity rhythms as adults in LD. ................................... 217 

Fig 3. 5 pdf>Q128 reared in SN and LL show control-like activity rhythms flies as adults in LD. .................................... 218 

Fig 3. 6 pdf>Q128 flies reared under constant or arrhythmic conditions entrain to LD as adults, like those reared under 

cycling conditions. ............................................................................................................................................................... 219 



xxviii 
List of Figures and Tables 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Fig 3. 7 pdf>Q128 flies in DD have fewer PDF+ sLNv soma than controls; their PDF+ lLNv soma numbers are unaffected.

 .............................................................................................................................................................................................. 221 

Fig 3. 8 pdf>Q128 flies in LD show progressive loss of PDF+ sLNv soma. ......................................................................... 223 

Fig 3. 9 pdf>Q128 flies in LL show progressive loss of PDF from the sLNv soma and its DP............................................ 224 

Fig 3. 10 pdf>Q128 flies in LL and LD show a rapid decline in PDF+ sLNv soma numbers compared to DD. .................. 227 

Fig 3. 11 Across light regimes, LNv of pdf>Q0 exhibit only the Diff form of HTT, whereas those of pdf>Q128 

predominantly exhibit the Inc form. ................................................................................................................................... 229 

Fig 3. 12 expHTT stained LNv dominate most hemispheres of pdf>Q128 across age and light regimes. ...................... 230 

Fig 3. 13 In pdf>Q128 flies across light regimes, the relative proportion of hemispheres of inclusion-enriched LNv 

increases with age. .............................................................................................................................................................. 232 

Fig 3. 14 In young pdf>Q128, the relative proportion of hemispheres dominated by various expHTT forms in the LNv 

differs between light regimes, with inclusion-rich hemispheres dominating under LL. ................................................... 233 

Fig 3. 15 Young pdf>Q128 in LL show larger and more expHTT inclusions than those in DD and LL. ............................. 235 

 

Fig 4. 1 pdf>Q128 experiencing developmental temperature cycles show early-age behavioural rhythms as adults in 

DD25. ................................................................................................................................................................................... 266 

Fig 4. 2 Exposure of pdf>Q128 to DDTC during development restores the early-age PDF+ sLNv soma numbers of adults 

in DD25. ............................................................................................................................................................................... 268 

Fig 4. 3 The distribution of PDF+ sLNv soma numbers of pdf>Q128 diverges from that of pdf>Q0 with age under 

DDTCtoDD25. ....................................................................................................................................................................... 270 

Fig 4. 4 pdf>Q128 flies in DDTC show fewer PER+ LNv and exhibit low-amplitude PER oscillations in the sLNv, anti-phasic 

to controls. ........................................................................................................................................................................... 272 

Fig 4. 5 Under DDTCtoDD25, diffuse-expHTT-enriched-LNvs dominate hemispheres of very young pdf>Q128, whereas, 

with age, inclusion-enriched-LNv solely dominate. ........................................................................................................... 273 

Fig 4. 6 pdf>Q128 flies in LDTCtoDD25 or LLTCtoDD25 are arrhythmic as adults in DD25. ............................................ 275 

Fig 4. 7 Exposure of pdf>Q128 to LDTC or LLTC during development does not rescue behavioural arrhythmicity in adults 

under DD25. ......................................................................................................................................................................... 277 

Fig 4. 8 Exposure of pdf>Q128 to DDTC either during egg to larvae or pupae to post-eclosion does not rescue behavioural 

arrhythmicity during adulthood. ......................................................................................................................................... 279 

Fig 4. 9 pdf>Q128 exposed to chronic cool or warm temperatures during development are behaviourally arrhythmic as 

adults in DD25. .................................................................................................................................................................... 281 

Fig 4. 10 pdf>Q128 under DD29toDD25 show a decrease in PDF+ sLNv soma numbers................................................. 283 

Fig 4. 11 pdf>Q128 flies in DD29toDD25 show a loss of PER from the sLNv, but not the lLNv; exhibit low-amplitude PER 

oscillations in the lLNv. ........................................................................................................................................................ 284 

Fig 4. 12 pdf>Q128 in DDTCtoDD29 show early-age activity rhythms but not those in DDTCtoDD21. .......................... 286 

Fig 4. 13 DDTCtoDD25 slows down PDF loss from the sLNv soma of pdf>Q128, while DD29toDD25 mitigates PER loss 

from the LNv. ....................................................................................................................................................................... 288 

Fig 4. 14 pdf>Q128 in DDTCtoDD25 and DD25 are comparable in the relative proportions of hemispheres of different 

expHTT forms enriching LNv and inclusion features across age. ...................................................................................... 290 

Fig 4. 15 pdf>Q128 flies in DD23 are arrhythmic and show poor activity consolidation. ................................................ 293 

Fig 4. 16 Exposure of pdf>Q128 to DD23 delays the loss of PDF from sLNv soma. ......................................................... 295 

Fig 4. 17 The early-age frequency distribution of PDF+ sLNv soma numbers is similar between genotypes under DD23.

 .............................................................................................................................................................................................. 296 

Fig 4. 18 The few PER+ sLNv soma of pdf>Q128 in DD23 exhibit low-amplitude PER oscillations. ................................. 298 

Fig 4. 19 Hemispheres of young pdf>Q128 are dominated by diff-enriched LNvs, which also have fewer inclusions than 

older flies. ............................................................................................................................................................................. 299 

Fig 4. 20 pdf>Q128 flies in DD29 are rhythmic during the early age window and show improved activity consolidation 

across AWs........................................................................................................................................................................... 301 



xxix 
List of Figures and Tables 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Fig 4. 21 Exposure of pdf>Q128 to DD29 slows the loss of PDF from the sLNv soma. .................................................... 303 

Fig 4. 22 The distribution of PDF+ sLNv soma numbers of pdf>Q128 differs from that of pdf>Q0 only at later ages under 

DD29. ................................................................................................................................................................................... 304 

Fig 4. 23 Hemispheres of pdf>Q128 in DD29 are entirely dominated by inclusion-enriched LNv from age 3d and show 

increased inclusions with age. ............................................................................................................................................ 305 

Fig 4. 24 pdf>Q128 in warm temperatures shows improved early-age rhythmicity and activity consolidation than at 

lower temperatures. ............................................................................................................................................................ 307 

Fig 4. 25 pdf>Q128 in relatively warm or cooler temperatures show improvements in PDF+ and PER+ LNv numbers. 309 

Fig 4. 26 pdf>Q128 shows a temperature-dependent gradation in the relative proportion of hemispheres enriched with 

different expHTT forms in the lLNv and inclusion numbers, but in opposite directions. .................................................. 312 

Fig 4. 27 pdf>Q128 flies in LD29toDD29 are rhythmic during the early age window but not those in LD23toDD23. ... 314 

Fig 4. 28 Exposure of pdf>Q128 to light/dark cycles during development heightens the effects of constant warm or cool 

temperatures on its activity consolidation. ........................................................................................................................ 316 

Fig 4. 29 pdf>Q128 flies in DD29to23 are arrhythmic and show poor activity consolidation. ........................................ 318 

Fig 4. 30 pdf>Q128 flies in DD23to29 are rhythmic during the early age window with control-like activity consolidation.

 .............................................................................................................................................................................................. 319 

Fig 4. 31 pdf>Q128 under DD23toDD29 show enhancement in PDF+ sLNv soma numbers. ........................................... 321 

Fig 4. 32 The frequency distribution of PDF+ sLNv soma numbers are similar between genotypes only up to 1d under 

DD23toDD29........................................................................................................................................................................ 322 

Fig 4. 33 pdf>Q128 flies in DD23toDD29 show loss of both PER and its oscillations from the sLNv............................... 324 

Fig 4. 34 The proportion of hemispheres dominant in an expHTT form in the LNv of pdf>Q128 under DD23toDD29 

changes from diffuse-rich to inclusion-rich with age. ....................................................................................................... 326 

Fig 4. 35 pdf>Q128 exposed to temperature upshifts as adults show early-age rhythms with well-consolidated activity 

only when the adults experience warm temperatures during recording. ........................................................................ 329 

Fig 4. 36 Exposure of pdf>Q128 to short durations of warm temperatures as adults does not rescue behavioural rhythms.

 .............................................................................................................................................................................................. 331 

Fig 4. 37 pdf>Q128 flies in LD23toDD29 and LL23toDD29 are rhythmic at the early age window. ............................... 333 

Fig 4. 38 pdf>Q128 experiencing warm temperatures during recording shows early-age rhythms, irrespective of the light 

conditions during development. ......................................................................................................................................... 335 

Fig 4. 39 pdf>Q128 that experience warm temperatures as adults show early-age rhythms with well-consolidated 

activity across age. .............................................................................................................................................................. 338 

Fig 4. 40 Warm temperatures slow down PDF loss, but not PER loss, from the sLNv of pdf>Q128. .............................. 340 

Fig 4. 41 pdf>Q128 in DD23 show greater domination by hemispheres with diffuse forms enriching LNv at early ages 

and higher inclusion numbers across ages than those in DD29 and DD23toDD29. ........................................................ 343 

Fig 4. 42 pdf>Q128 in DD23toDD29 exhibit higher activity consolidation than in DDTCtoDD25. .................................. 346 

Fig 4. 43 Exposure of pdf>Q128 to DD23toDD29 retarded neurotoxicity better than exposure to DDTCtoDD25. ........ 347 

Fig 4. 44 pdf>Q128 in DD23toDD29 are arrhythmic without Hsp70. ............................................................................... 350 

Fig 4. 45 Most pdf>Q128 flies lacking Hsp70 do not show rhythmic activity and have poor activity consolidation in 

DD23toDD29........................................................................................................................................................................ 351 

Fig 4. 46 An illustration summarising the mechanisms involved in ameliorating circadian dysfunction and neurotoxicity 

in HD flies by two different temperature regimes. ............................................................................................................ 358 

 

Fig 5. 1 An illustration of the different forms of expHTT detected in LNv. ....................................................................... 393 

Fig 5. 2 pdf>Q128 flies overexpressing Hsp40 or HSP70 show early-age behavioural activity/rest rhythms. ................ 397 

Fig 5. 3 In pdf>Q128 flies, Hsp40 overexpression leads to sustained behavioural rhythms, while HSP70 overexpression 

leads to early-age rhythmicity. ........................................................................................................................................... 398 

Fig 5. 4 pdf>Q128 flies overexpressing Hsp40 retain PDF+ sLNv soma across age. ......................................................... 402 

Fig 5. 5 pdf>Q128 flies overexpressing Hsp40 have control-like PDF+ sLNv soma numbers. .......................................... 403 



xxx 
List of Figures and Tables 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Fig 5. 6 pdf>Q128 flies overexpressing Hsp40 show the presence of a novel expHTT form, the ‘Spot’. ......................... 408 

Fig 5. 7 pdf>Q128 flies overexpressing Hsp40 have fewer hemispheres with expHTT-inclusion-enriched LNv. ............. 410 

Fig 5. 8 Hemispheres dominated by expHTT inclusion enriched LNv were reduced in favour of diffuse and spot enriched 

LNv in pdf>Q128 flies overexpressing Hsp40. .................................................................................................................... 411 

Fig 5. 9 Most pdf>Q128 flies overexpressing Hsp40 possess hemispheres with expHTT spot form enriched LNv. ........ 412 

Fig 5. 10 Young pdf>Q128 flies overexpressing Hsp40 or HSP70 have reduced expHTT inclusions numbers. ............... 414 

Fig 5. 11 Young pdf>Q128 flies co-expressing Hsp40 show PER oscillations in sLNv. ...................................................... 417 

Fig 5. 12 Hsp40 is neuroprotective and delays circadian dysfunction in HD: A graphical summary. .............................. 427 

 

Fig 6. 1 dhtt mutants and flies expressing full-length expanded HTT in the LNv are rhythmic in DD25. ........................ 439 

Fig 6. 2 Flies expressing GFP-tagged expanded HTT of various polyQ lengths are rhythmic in DD25. ........................... 445 

Fig 6. 3 Expression of GFP-tagged or NLS-GFP-tagged HTTQ103 in LNv leads to progressively weak rhythms and 

arrhythmicity post-AW1 in DD25. ....................................................................................................................................... 447 

Fig 6. 4 Flies expressing expanded polyQ in a broad group of circadian neurons show weak rhythms in DD25. .......... 450 

Fig 6. 5 Expression of MJD protein in circadian neurons leads to arrhythmicity and weak rhythms in DD25. ............... 454 

Fig 6. 6 Expression of MJD protein in a broad circadian neuronal group affects rhythmicity more severely than expression 

in the LNv subgroup alone. ................................................................................................................................................. 455 

Fig 6. 7 LNv expression of MJD proteins does not affect PDF in LNv soma. ..................................................................... 458 

 

Fig 7. 1 A summary of the effect of lights on circadian cellular neurotoxicity in pdf>Q128 flies: constant light exacerbates 

toxicity, whereas the absence of light is the least toxic. ................................................................................................... 467 

Fig 7. 2 A pictorial representation of the various disease-alleviating strategies established in this study in the increasing 

order of their ability to provide circadian neuroprotection. .............................................................................................. 473 

Fig 7. 3 A refined understanding of the role of sLNv in driving free-running rhythms: oscillations in PDF levels at the sLNv 

dorsal projections are insufficient. ..................................................................................................................................... 475 

 

  



xxxi 
List of Figures and Tables 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Table 1. 1 A brief overview of PolyQ Diseases. .................................................................................................................... 42 

 

Table 2. 1 The extent of variation in PER intensity within a neuronal group in expHTT-expressing flies is not greater than 

controls. ............................................................................................................................................................................... 490 

 

Table 3. 1 Percentage of rhythmic flies in DD for all the genotypes raised in four regimes across AWs. ....................... 492 

Table 3. 2 Mean robustness of activity rhythms (±SEM) in DD for all the genotypes raised in four regimes across AWs.

 .............................................................................................................................................................................................. 493 

Table 3. 3 Mean activity rhythms periods (±SEM) in DD for all the genotypes raised in four regimes across AWs. ...... 494 

Table 3. 4 Mean daytime activity levels (±SEM) under LD for all the genotypes raised in four regimes across AWs. ... 495 

Table 3. 5 Mean nighttime activity levels (±SEM) under LD for all the genotypes raised in four regimes across AWs.. 496 

Table 3. 6 Mean morning anticipation index (±SEM) under LD for all the genotypes raised in four regimes across AWs.

 .............................................................................................................................................................................................. 497 

Table 3. 7 Mean evening anticipation index (±SEM) under LD for all the genotypes raised in four regimes across AWs.

 .............................................................................................................................................................................................. 498 

 

Table 4. 1 Temperature cycles related regimes. ................................................................................................................ 500 

Table 4. 2 Ambient constant temperature regimes. .......................................................................................................... 501 

Table 4. 3 Percentage rhythmicity in AW1 for various genotypes in DD23toDD29. ........................................................ 502 

Table 4. 4 Sample sizes for behavioural experiments. ....................................................................................................... 504 

Table 4. 5 Statistical tests used for within-regime comparisons of behaviour. ................................................................ 509 

Table 4. 6 Statistical tests used for between-regime comparisons of behaviour. ............................................................ 513 

Table 4. 7 Within-regime mean robustness (± SEM) significant differences. ............................................................................... 515 

Table 4. 8 Within-regime mean period (± SEM) significant differences. ...................................................................................... 516 

Table 4. 9 Between-regimes rhythm features in AW1 showing mean (± SEM) significant differences. ..................................... 520 

Table 4. 10 Sample sizes for immunocytochemical experiments. ..................................................................................... 522 

Table 4. 11 Regime-wise behavioural and cellular data for pdf>Q128. ........................................................................... 523 

Table 4. 12 Between-regime comparisons of activity rhythms of pdf>Q128 in AW1. ..................................................... 525 

Table 4. 13 Between-regime comparisons of behaviour and cellular phenotypes of pdf>Q128. .................................... 529 

 

Table 5. 1 A genetic screen for modifiers of arrhythmicity of expHTT-expressing flies. .................................................. 531 

Table 5. 2 The number of surviving flies for comparisons in AW2 and AW3 for the locomotor activity experiments. .. 534 

Table 5. 3 The number of hemispheres per genotype per age to quantify the cellular features. ................................... 535 

 



xxxii 
 

PHD THESIS, 2023, JNCASR, BENGALURU  Pavitra Prakash 

 

List of frequently appearing abbreviations 
Abbreviation Full Form 

 

Abbreviation Full Form 

aa Amino acid CBP 
cAMP Response Element 

(CRE) Binding Protein 

Aβ Amyloid beta CBT(s) 
Cognitive Behavioural 

Therapy(ies) 

AC(s) Anterior Cell(s) CCG(s) Clock-controlled Gene(s) 

AD Alzheimer’s Disease CCT Chaperonin-containing TCP-1 

ADP Adenosine Diphosphate CFTR 
Cystic Fibrosis Transmembrane 

Conductance Regulator 

AI Anticipation Index CHIP 
C-terminal Hsp70-interacting 

Protein, a E3 ubiquitin ligase 

ALAN Artificaial Light at Night CK1 Casein Kinase 1 

ALIS 
Aggresome-like Induced 

Structures 
CK1ẟ Casein Kinase 1 delta 

APOD Age-associated Protein Deposit clk CLOCK gene 

APP Amyloid Precursor Protein CLK CLOCK protein 

Arr Arrhythmic CLOCK 
Circadian Locomotor Output 

Cycle Kaput 

ASPS Advanced Sleep Phase Syndrome CMA 
Chaperone-Mediated 

Autophagy 

ASO(s) Antisense Oligonucleotide(s) CNN Circadian Neuronal Network 

ATP Adenosine Triphosphate CNS Central Nervous System 

ATX Ataxin CP Contralateral Projections 

a.u Arbitrary units CRD(s) Circadian Rhythm Disruption(s) 

AVP Arginine Vasopressin CSF Cerebrospinal Fluid 

AW(s) Age window(s) CIRBP(s) 
Cold-induced RNA Binding 

Protein(s) 

BACHD 

Bacterial Artificial Chromosome 

(BAC)-mediated transgenic HD 

mice model expressing full-

length human mutant HTT 

CRE 
cAMP Response Element 

Binding 

BAG Bcl-2 Associated Athanogene CRY Cryptochrome protein 

BBB Blood-brain Barrier CSP Cysteine String Protein 

BDNF 
Brain-derived Neurotrophic 

Factor 
CT Circadian Time 

BH Benjamini-Hochberg C-T C-Terminal 

  cwo 
CLOCKWORK ORANGE 

gene 

BMAL1 

Brain and Muscle ARNTL (Aryl 

hydrocarbon Receptor Nuclear 

Translocator–Like) 1 

CWO 
CLOCKWORK ORANGE 

protein 

BTR Body Temperature Rhythm cyc CYCLE gene 

CAGs 
Cytosine Adenine 

Guanine(repeats) 
CYC CYCLE protein 

cAMP 
Cyclic Adenosine 

Monophosphate 
DA Dopamine 

CASA 
Chaperone-assisted Selective 

Autophagy 
DBT Doubletime 

  



xxxiii 
List of Abbreviations 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Abbreviation Full Form 

 

Abbreviation Full Form 

DD Constant Darkness HIP Huntingtin Interacting Protein 

Df Deficiency HOP 
Hsp70/Hsp90 Organizing 

Protein 

dhtt Drosophila huntingtin gene HSE Heat Shock Elements 

dhtt Drosophila huntingtin protein HSD Honest Significant Difference 

Diff Diffuse Hsf1 Heat Shock Factor 1 

DN(s) Dorsal Neuron(s) Hsp(s) Heat Shock Protein (s) 

DN1(s) Dorsal Neuron(s) 1 HSR Heat Shock Response 

DN1a(s) Dorsal Neuron(s) 1 anterior Htt Huntingtin gene 

DN1p(s) Dorsal Neuron(s) 1 posterior HTT Huntingtin protein 

DN2(s) Dorsal Neuron(s) 2 hHTT 
Human huntingtin gene (usually 

denoted as HTT) 

DN3(s) Dorsal Neuron(s) 3 hHTT 
Human huntingtin protein 

(usually denoted as HTT) 

DNA Deoxyribonucleic acid HTTex1 HTTexon1 

DP Dorsal Projections GPi Internal Globus Pallidus 

DRPLA 
Dentatorubral-pallidoluysian 

Atrophy 
IB(s) Inclusion Body(ies) 

DSPS Delayed Sleep Phase Syndrome Inc Inclusion(s) 

E Evening INQ 
Intranuclear Quality Control 

Compartment 

E-activity Evening Activity IPOD Insoluble Protein Deposit 

E-peak Evening Peak ipRGC(s) 
Intrinsically Photosensitive 

Retinal Ganglion Cell(s) 

E-AI Evening Anticipation Index JDP J-domain Containing Proteins 

E-box Enhancer Box JHD Juvenile HD 

EGP External Globus Pallidus JUNQ 
Juxta Nuclear Quality Control 

Compartment 

ER Endoplasmic Reticulum kb kilobases 

expHTT 
expanded Huntingtin (refers to 

HTT ≥40 polyQ repeats) 
KDa Kilo Dalton 

FDR False Discovery Rate LAMP-2A 
Lysosome-associated 

Membrane Protein 2A 

GABA Gamma (γ)-Amino Butyric Acid LC3 
Microtubule-associated protein 

1A/1B-Light Chain 3 

GOF Gain-of-Function LD Light/dark cycles 

HA Heat Acclimation LL Constant Light 

HAP1 Huntingtin-Associated Protein 1 lLNv(s) 
Large Ventral-Lateral 

Neuron(s) 

HD Huntington’s Disease LLPS Liquid-liquid Phase Separation 

HDCRG 
Huntington’s Disease 

Collaborative Research Group 
LN(s) Lateral Neuron(s) 

HDAC Histone Deacetylase LNd(s) Dorsal Lateral Neuron(s) 

HEAT 

Huntingtin, Elongation factor 3, 

regulatory A subunit of 

phosphoprotein phosphatase, 

TOR1 

LNv(s) Ventral Lateral Neuron(s) 

Hip Hsc70-Interacting Protein LOF Loss-of-Function 
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Abbreviation Full Form 

 

Abbreviation Full Form 

LPN(s) Lateral Posterior Neuron(s) NMDAR(s) 

NMDA Receptor(s), a receptor 

for the excitatory 

neurotransmitter glutamate 

M Morning NS Not Significant 

M-activity Morning Activity NTA Not Available 

M-peak Morning Peak NuMA 
Nuclear Mitotic Apparatus 

protein 

M-AI Morning Anticipation Index p53 tumour suppressor protein 53 

MB Mushroom Body   

MC Motor Centres PD Parkinson’s Disease 

MHC 
Major Histocompatibility 

Complex 
pdf Pigment Dispersing Factor gene 

mHTT Mutant Huntingtin PDF 
Pigment Dispersing Factor 

peptide 

miRNA MicroRNA PDFR 
Pigment Dispersing Factor 

Receptor 

MJD Machado-Joseph Disease pdp1 Par domain protein 1 gene 

MMP Matrix Metalloproteinase PDP1 Par domain protein 1 protein 

MPP11 M-phase Phosphoprotein 11 per PERIOD gene 

MPTP 

1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine, a drug that 

causes selective destruction of 

dopaminergic neurons 

PER PERIOD protein 

MSGN(s) 
Medium Siny GABAergic 

Neuron(s) 
PEST 

Proline, Glutamic Acid, Serine, 

Threonine 

MSN(s) Medium Spiny Neuron(s) PGC1α 

Peroxisome proliferator-

activated receptor gamma 

coactivator 1-alpha, a 

transcriptional coactivator 

MTOC Microtubule Organizing Centre PI Pars Intercerebralis 

N17 
The first 17 amino acids of HTT 

protein at its N-terminal 
piRNA Piwi-interacting RNA 

N-T N-Terminal PN Proteostatic Network 

NA Not Applicable PNs Projection Neurons 

NAC 
Nascent Polypeptide-associated 

Complex 
POIC 

PDF Oscillation Independent 

Component 

NBD Nucleotide Binding Domain polyP poly Proline 

NBR1 Neighbour of BRCA1 Gene 1 polyQ(s) poly Glutamine(s) 

nd Not different PQC Protein Quality Control 

ND or NDs Neurogenerative Disease(s) PP Protein Phosphatases 

NEF(s) Nucleotide Exchange Factor(s) PRD Proline-Rich Domain 

NES Nuclear Export Signal PTM(s) 
Post-Translational 

Modification(s) 

NF-κb Nuclear Factor Kappa b Q Glutamine 

NLS Nuclear Localisation Signal QBP1 polyQ-Binding Peptide 1 

NMDA N-methyl-D-aspartate QC Quality Control 
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Abbreviation Full Form 

 

Abbreviation Full Form 

‘r’ 

The magnitude of the radial 

vector of a circular plot 

representing the extent of activity 

consolidation 

sRNA Small regulatory RNA 

R6/2 

A transgenic mice model of HD 

expressing the N-terminal 

portion (exon 1) of the mutated 

human HTT gene (145Qs) under 

human gene promoter elements 

SOD Superoxide Dismutase 

RAC 
Ribosome Associated 

Chaperones 
STN Subthalamic Nucleus 

REST/NRSF 

RE1-silencing transcription 

factor (also 

known as neuronal restrictive 

silencing factor) 

TBP TATA Binding Protein 

Rhes 
Ras homolog enriched in the 

striatum 
TC 

Thermophase/cryophase cycles 

(temperature cycles) 

Rhy Rhythmic TF(s) Transcription Factor(s) 

RNA Ribonucleic acid tim TIMELESS gene 

RNAi RNA interference TIM TIMELESS protein 

ROS Reactive Oxygen Species TNT(s)F Tunnelling Nanotube(s) 

S2 cells Schneider 2 cells TPR 
Temperature Preference 

Rhythm 

SAD Seasonal Affective Disorder TRF Time-restricted Feeding 

SBD Substrate Binding Domain TRiC 
T-complex protein-1 (TCP-1) 

Ring Complex 

SBMA 
Spinal and Bulbar Muscular 

Atrophy 
TrkB 

Tropomyosin Receptor Kinase 

B 

SCA Spinocerebellar Ataxia TTFL(s) 
Transcriptional/Translational 

Feedback Loop(s) 

SCN Suprachiasmatic Nucleus UAS Upstream Activating Sequences 

SCRD(s) 
Sleep and Circadian Rhythm 

Disruption(s) 
Ub Ubiquitin 

SD Standard Deviation UPR Unfolded Protein Response 

SDS Sodium Dodecyl Sulfate UPS Ubiquitin Proteasomal System 

SGG Shaggy VIP Vasoactive Intestinal Peptide 

SH3 Src homology region 3 vri VRILLE gene 

siRNA small interfering RNA VRI VRILLE protein 

sLNv(s) Small Vental Lateral Neuron(s) WT Wildtype 

SNc Substantia Nigra pars Compacta ZT Zeitgeber Time 

SP1 Specific Protein 1    
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Glossary of circadian terms 
Rhythms: Events that occur repeatedly in the same order at fixed intervals. 

Period: The time to complete one event cycle or between two subsequent events. 

Amplitude: The magnitude of change from the mean within a cycle between a rhythm’s peak or 

trough and its mean value. 

Biological Rhythms: Rhythms in behaviour and physiological processes in living organisms 

observed across taxa.  The rhythms can be categorised based on the time-interval between 

subsequent events into ultradian (high frequency, repeating many times in a day; e.g. heart rate, 

blinking), circatidal (~12.4h, with the tide, the activity of certain crab species), circadian (~24h, 

e.g., sleep-wake cycles), infradian (>24h) like circalunar rhythms (~28d, e.g. menstrual cycle) 

and circannual (~365d, e.g. seasonal cycles, hibernation, many reproductive cycles and bird 

migrations). 

Chronobiology: The study of biological rhythms, both endogenously and exogenously driven. 

Circadian rhythms: Latin ‘circa’= about, ‘dies or diem or dian’=a day; ‘circadian’=about a day.  

For biological rhythms to be called circadian rhythms, they must fulfil a few criteria (Pittendrigh, 

1954; Pittendrigh, 1960; Kidd et al., 2015).  The rhythms must be endogenous, i.e., internally 

generated.  They must have a periodicity of ~24h (not precisely 24h), persisting without any 

external time cues (self-sustained free-running rhythms with a period of ~24h).  The intrinsic 

period of these rhythms should not change within a range of physiological temperature values 

(temperature-compensated) or with changing nutrition status (nutrition-compensated).  These 

rhythms must synchronise to external cycles of a time cue (like light, temperature, and food 

availability) by maintaining a stable phase relationship (entrainment to external time cues). 

Free-running conditions: Absence of any perceivable external time cues or constant conditions.  

E.g. Constant darkness (DD) and constant temperatures (25 °C), Constant light (LL) and constant 

temperatures (25 °C). 

Free-running rhythms: Circadian rhythms under constant conditions.  The period thus exhibited 

is referred to as the free-running period. 

Activity rhythms: Circadian rhythms in the locomotor activity of Drosophila are made of 

periodic bouts of activity and rest, such that the time interval between the initiation (or 

completion) of two subsequent activity bouts is about 24h. 
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Circadian Time (CT): Time as defined by the period of the endogenous cycle under constant 

darkness; circadian day = time taken for one complete cycle.  For example, for day-active animals, 

CT0 is the time of activity onset, and for night-active animals, CT12 is the time of activity onset. 

Subjective day/night: Time under constant conditions (e.g.DD or LL) corresponding to the 

previously exposed zeitgeber cycle, like light/dark cycles. 

Phase: A recognisable part of the cycle identified by the specific time at which it occurs in a cycle 

(e.g. within each cycle: acrophase, the peak of the event; bathyphase, nadir or trough of the event; 

onset, the start of the event; offset, end of the event); its stage in the cycle relative to that of the 

external time. 

Zeitgeber: German for ‘time-giver’. External time cues like light, temperature, and humidity  

Entrainment: Synchronisation of circadian rhythms to zeitgebers such that  

i) There is a period matching between the synchronised rhythm and the zeitgeber cycle. 

ii) A stable phase relationship is established between the synchronised rhythm and the 

zeitgeber. 

iii) Post-removal of the zeitgeber (i.e., moving into constant conditions), the synchronised 

rhythm starts free running from the entrainment phase established with the zeitgeber. 

Masking-Acute response of an organism to an external time cue without the involvement of the 

endogenous circadian clocks. 

Zeitgeber Time (ZT): Time defined relative to a zeitgeber cycle like the light-dark cycle.  For 

example, under 12h:12h LD, ZT0 is lights-on time, ZT1 is one hour after lights-ON, ZT12 is 

light-OFF time and so on. 

LD25: Light/Dark cycle.  A 24h cycle of 12h of light and 12h of darkness at 25 °C. 

M-activity: Referring to locomotor activity around lights-ON in an LD cycle 

E-activity: Referring to locomotor activity around lights-OFF in an LD cycle 

M-peak: Phase of the peak of activity with reference to the time of lights-ON in an LD cycle. 

E-peak: Phase of the peak of activity with reference to the time of lights-off in an LD cycle 

TC: Thermophase/Cryophase cycle.  A 24-hour (h) cycle of 12h of warm and 12h of cool 

temperatures in constant darkness can be perceived as day and night, respectively.  In this study, 

a TC of 12h:12h 29°C:21°C has been used. 
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Phase-relationship: The phase/stage of an endogenous cycle relative to external time or a 

phase/stage in the Zeitgeber cycle.  Also known as the phase of entrainment, it is the difference 

between the phase of endogenous rhythm and the phase of the zeitgeber (Pittendrigh and Daan, 

1976).  E.g. The timing of activity onset relative to lights-ON: if activity onset coincides with 

lights-ON, then the onset of the rhythm is in-phase with the light cycle; if their timings do not 

coincide, then they are out-of-phase by a magnitude of the difference in their timing: if the 

difference is negative, i.e. onset phase happens before light-on, then the phase of the endogenous 

cycle is advanced concerning the zeitgeber, whereas if the difference is positive, i.e. onset phase 

occurs after light-on, then there is a phase delay. 

Photoperiod: The day length or time duration of light in an LD cycle.  Photoperiod in a 12h:12h 

LD is 12h, in a 14h:10h LD is 14h, and in a 13h:13h LD is 13h. 

Anticipatory activity: The gradual increase in activity exhibited by organisms before a time cue 

is expected to be present.  This clock-controlled anticipatory activity is often used to distinguish 

a circadian behaviour from a mere behavioural response to an external stimulus. 

Actogram: Graphical representation of the circadian activity/rest cycle over several cycles with 

time-of-day on the x-axis and each consecutive cycle/day on the y-axis.  In this study, the 

actograms are double plotted with the x-axis extending over forty-eight hours or two days. 

Periodogram: A method to identify significant frequencies or dominant periods of a time series. 

Robustness of rhythm: A measure of how consistently the rhythm maintains the most 

predominant periodicity daily (over at least seven days for activity rhythms).  It measures the 

strength or the power of the oscillator/rhythm for a periodicity, i.e. how stably it can maintain a 

specific periodicity daily against perturbations.  It is typically the value of the periodogram peak 

above the 1% significant threshold of the chi-square analysis. 

Coupling involves signalling between multiple oscillators to establish stable phase and period 

relationships. 

Damping: Decline in the amplitude of the circadian cycle. 

Chronotype: An individual’s natural inclination or preferred time of being active or asleep. 
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1.1 HUNTINGTON’S DISEASE 

Huntington’s disease is an autosomal dominantly inherited disease characterised by progressive 

uncontrolled dance-like movements termed chorea, psychiatric impairments, and cognitive 

decline (Gusella and MacDonald, 1995).  In 1872, Dr George Huntington provided the classical 

description of HD, then known as Huntington’s chorea, highlighting its hereditary nature, 

psychiatric and cognitive symptoms and typical middle-age onset (Huntington, 1872).  Before 

this, several post-mortem studies pointed out neurodegeneration in specific brain regions: areas 

of basal ganglia of which the striatum is severely affected, the thalamus and the cerebral cortex 

(Stier, 1903; Jelgersma, 1908; Rüb et al., 2015).  In 1983, DNA samples from a community of 

people living around the Lake Maracaibo region of Venezuela, a high-density area of HD gene 

carriers, helped assign the genetic basis of HD (Gusella et al., 1983).  However, it was only in 

1993 that the human Huntingtin gene (Htt or IT15) was identified (HDCRG, 1993).  The mutant 

Htt was found with a tract of expanded repeats (>35 units) of the trinucleotide Cytosine-Guanine-

Adenine (CAG) (HDCRG, 1993).  The translated mutant Huntingtin protein (HTT) has an 

expanded tract (>35) of the amino acid Glutamine (Q) in its N-terminal (Aronin et al., 1995; 

Persichetti et al., 1995; Sharp et al., 1995; Trottier et al., 1995).  HD belongs to a family of CAG 

triplet expansion or polyQ expansion diseases, where repeat expansions are found in the coding 

regions (Reiner et al., 2011; Stoyas and La Spada, 2018b).  These diseases share standard features 

such as a polyQ threshold for pathogenicity, a direct relationship of repeat number with severity, 

an inverse relationship with age-of-onset and a typical middle-age onset (Paulson, 2018; Podvin 

et al., 2019).  The progression of polyQ diseases is similar to that of other neurodegenerative 

diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), with symptoms 

getting worse over time, differential degeneration in distinct brain areas, abnormal protein 

processing, the formation of protein aggregates, cell-autonomous toxic effects, a reduction in the 

quality of life, and a shorter life span (Skovronsky et al., 2006).  Other polyQ diseases are Spinal 

and Bulbar Muscular Atrophy (SBMA or Kennedy’s disease), Dentatorubral-pallidoluysian 

atrophy (DRPLA or Haw River syndrome), and six types of spinocerebellar ataxia: SCA1, SCA2, 

SCA3 (Machado Joseph disease), SCA6, SCA7 and SCA17 (Orr and Zoghbi, 2007).  The 

proteins' functions and the polyQ tracts' position in them vary.  A summary of the polyQ family 

of diseases is provided in Table 1.1.  
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Table 1. 1 A brief overview of PolyQ Diseases. 

Disease 
Protein 

affected 

Normal 

CAG 

repeats 

Expanded 

CAG 

repeats 

Function 

Brain 

region(s) 

affected 

Main clinical 

features 

Spinal and bulbar 

muscular atrophy 

(SBMA) or 

Kennedy’s 

disease 

Androgen 

Receptor 
<34 38–70 

Hormone-

dependent 

transcription 

factor 

Anterior 

horn and 

bulbar 

neurons, 

dorsal root 

ganglion 

Motor weakness, 

bulbar symptoms, 
tremors, 

gynecomastia, 

hypogonadism 

Huntington’s 

disease (HD) 
Huntingtin 6–35 40–250 

Scaffold 

protein 

associated with 

autophagy, 

signalling, 

transport, 

transcription 

Striatum and 

cortex 

Severe movement 

abnormalities, 
chorea, dystonia, 

cognitive decline, 

psychiatric 
features 

Dentatorubral-

pallidoluysian 

atrophy 

(DRPLA) 

Atrophin-1 6–35 48–93 
Transcription 

cofactor 

Cerebellum, 

brainstem, 

cerebral 

cortex, basal 

ganglia, 

Luys’ body 

Ataxia, myoclonus 
epilepsy, chorea, 

dementia 

Spinocerebellar 

ataxia type 1 

(SCA1) 

 

Ataxin-1 6–35 >39 
Transcription 

cofactor 

Cerebellar 

Purkinje 

cells, dentate 

nucleus, 

brain stem 

Ataxia, bulbar 

symptoms, 
spasticity, 

polyneuropathy, 

cognitive 
impairment 

Spinocerebellar 

ataxia type 2 

(SCA2) 

Ataxin-2 14–31 37-270 

RNA-binding 

protein 

implicated in 

RNA 

homeostasis 

Cerebellar 

Purkinje 

cells, brain 

stem, 

frontotempor

al lobes 

Ataxia, slow 

saccades, 

decreased reflexes, 

polyneuropathy, 

parkinsonism 

Spinocerebellar 

ataxia type 3 

(SCA3) 

Ataxin-3 12–44 ~60–87 Deubiquitinase 

Cerebellar 

dentate 

neurons, 

basal 

ganglia, 

brain stem, 

spinal cord 

Ataxia, severe 
spasticity, 

polyneuropathy, 

parkinsonism, 
diplopia, dystonia 

Spinocerebellar 

ataxia type 6 

(SCA6) 

Ataxin-6 or 

CACNA1A 
≤18 20–33 

Calcium 

channel 

subunit/transcr

iption factor 

Cerebellar 

Purkinje and 

granule 

cells, dentate 

nucleus, 

inferior olive 

Ataxia, dysarthria, 
nystagmus, 

tremors 

Spinocerebellar 

ataxia type 7 

(SCA7) 

Ataxin-7 7–27 37–460 

Component of 

SAGA 

acetyltransfera

se complex, 

role in 

transcription 

Cerebellum, 

brain stem, 

macula, 

visual cortex 

Ataxia, retinal 
degeneration, 

ophthalmoplegia, 

cardiac 
involvement in 

infantile variant 

A tabulation of the family of polyQ expansion diseases caused by the expansion of CAG repeats, 

highlighting the affected protein, possible functions, brain areas, and clinical symptoms.  All the 

diseases are autosomal dominantly inherited, except for SBMA, which displays X-linked inheritance 

(Gatchel and Zoghbi, 2005; Takahashi et al., 2010; Paulson, 2018; Stoyas and La Spada, 2018b; 

Bunting et al., 2022).  
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1.1.1 HD genetics 

The human Htt gene is located on chromosome 4p16.3, spans >200kb, contains 67 exons, and the 

CAG repeats are located at its 5’end (HDCRG, 1993; Ambrose et al., 1994).  The CAG repeat is 

polymorphic with the wild-type gene carrying 10–35 CAG repeats, a mean value of ~18 repeats 

across the population (Snell et al., 1993).  The HD mutation is autosomal dominant, with a 

mutation on either allele leading to disease phenotypes.  Units of 36-39 CAG in the Htt gene are 

considered to be of reduced penetrance in the form of developing symptoms at later ages or may 

never become symptomatic, and ≥40 CAG to have full-penetrance (HDCRG, 1993; Rubinsztein 

et al., 1996; McNeil et al., 1997).  Longer stretches of CAG repeats are strongly correlated with 

an earlier age of disease onset and less strongly with an increased disease severity (Andrew et al., 

1993; Duyao et al., 1993; Snell et al., 1993; Illarioshkin et al., 1994; Brandt et al., 1996; Ravina 

et al., 2008; Rosenblatt et al., 2012).  HD onset is typically in middle age, around 35-50 years, 

with a disease duration of 15-20 years (Novak and Tabrizi, 2010; Ross and Tabrizi, 2011).  The 

most common HD alleles bear 40-50 CAGs (Finkbeiner, 2011).  The number of repeats accounts 

for about 60% of the variation in age at onset, while the remainder is determined by genetic, 

epigenetic and environmental factors (Wexler et al., 2004; Imarisio et al., 2008; Barbé and 

Finkbeiner, 2022; Jurcau, 2022).  Larger repeats (>60) lead to onset before 20 years of age, termed 

juvenile HD and occur predominantly when the disease gene is transmitted from the father (Nance 

and Myers, 2001).  However, the disease duration, i.e. the period between motor onset and death, 

does not seem to depend on the CAG repeat length (Keum et al., 2016).  According to reports, 

pneumonia, heart disease, infections, and suicide are the leading causes of death in HD patients 

(Lanska et al., 1988a; Sørensen and Fenger, 1992; Rodrigues et al., 2017; Solberg et al., 2018).  

In Htt, CAG repeats of >27 units are unstable and susceptible to gametic repeat expansion 

(MacDonald et al., 1993; Kremer et al., 1995; McMurray, 2010), leading to genetic anticipation, 

where subsequent generations are increasingly susceptible to expansion in the repeat number and 

disease severity and earlier age-of-onset, especially when paternally inherited (Duyao et al., 1993; 

Telenius et al., 1993; Trottier et al., 1994; Wheeler et al., 1999; Semaka et al., 2006).  The 
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expanded CAG repeats are somatically unstable, the repeat length progressively increasing with 

time, and the tissue-specificity of this somatic instability could be contributing to the tissue 

specificity of the disease (Telenius et al., 1994; De Rooij et al., 1995; Wheeler et al., 1999; 

Kennedy and Shelbourne, 2000; Kennedy et al., 2003; Shelbourne et al., 2007a; Gonitel et al., 

2008; Jimenez-Sanchez et al., 2017).  Most HD patients have a family history, but the sporadic 

onset of HD with no prior family history has also been reported (Myers et al., 1993; Davis et al., 

1994; Dürr et al., 1995; Almqvist et al., 2001).  These cases are typically caused by intermediate-

length alleles (27-35 CAG repeats) (ACMG/ASHG, 1998), usually on the paternal side, that are 

at risk of expanding during meiosis into a disease-causing range in the next generation (Goldberg 

et al., 1993; Semaka et al., 2006; Semaka et al., 2013).  The frequency of intermediate alleles in 

the general population ranges from 1% to 3.9% (Semaka et al., 2006) and has important 

implications for predictive genetic counselling.  Though people with intermediate alleles are 

mainly asymptomatic, one study suggests they exhibit behavioural phenotypes (Killoran et al., 

2013). 

Individuals with the HD mutation who are homozygous and heterozygous have similar ages at 

which symptoms first appear, but homozygotes advance the disease more severely than 

heterozygotes (Georgiou et al., 1999; Alonso et al., 2002; Squitieri et al., 2003; Anca et al., 2004).  

With varied clinical symptoms and occasionally different dates of onset, HD  monozygotic twins 

are discordant, providing evidence that somatic instability, prenatal or postnatal environmental 

variables, and epigenetic factors all affect the phenotypic manifestation of HD (Georgiou et al., 

1999; Anca et al., 2004; Friedman et al., 2005; Gómez-Esteban et al., 2007). 

1.1.2 Epidemiology 

The prevalence of HD is approximately 5.70 per 100,000 in North America, Europe, and Australia 

and is more significant than in Asia, which is approximately 0.40 per 100,000 (Pringsheim et al., 

2012).  The difference in HTT haplotypes explains this geographically, with the high-risk haplo-

variants A1 and A2 relatively enriched in the European cohorts.  Also, the average CAG tract 

length of healthy individuals in Europe (18.4 ± 3.7 CAG) is higher than that of Asian and African 
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populations (~16 CAG) (Squitieri et al., 1994; Warby et al., 2009).  One study from India indicates 

healthy individuals with 16.8 ± 2.08 CAG and HD patients with 41-56 CAG (Pramanik et al., 

2000).  However, a study sampling an Indian population shows normal individuals with a mean 

CAG repeat size of 18.3, symptomatic individuals with 40-50 CAG repeats, and high-risk 

haplotype A, closer to the European population (Moily et al., 2014). 

1.1.3 Clinical features of HD 

Individuals with HD can become symptomatic at any time, before which they have no obvious 

detectable symptoms, and symptoms progressively worsen with age (Kremer, 2002; Bates et al., 

2014).  Several changes in the brain are known to occur decades before disease manifestation 

(this phase is often referred to as the “prodrome” of HD).  They can be attributed to altered 

development and early neurodegeneration (Paulsen, 2010; Kerschbamer and Biagioli, 2015).  

Manifestation of HD occurs when individuals exhibit characteristic motor symptoms chorea 

(involuntary dance-like movements of extremities and facial twitches), dystonia (repetitive 

muscle contractions resulting in uncontrollable movements and abnormal fixed postures) and 

slowness in movement (bradykinesia) (Roos, 2010; Ross and Tabrizi, 2011).  Over time, posture, 

gait and balance get affected, and the inability to initiate voluntary movements (akinesia) and 

rigidity affect the ability to perform everyday tasks, disabling the individual functionally.  

Gradually, talking and swallowing becomes difficult and, at later stages, result in choking.  The 

psychiatric and cognitive impairments often precede motor decline by several years but may be 

subtle, making differential diagnosis difficult (Marder et al., 2000; Novak and Tabrizi, 2011; 

Paulson, 2018).  Psychiatric symptoms include depression, suicidal tendencies, apathy, low self-

esteem, guilt and anxiety, irritability, obsessive-compulsive behaviour and, at later stages, 

paranoia, psychosis, and hypo-sexuality (Roos, 2010; Novak and Tabrizi, 2011).  Cognitive 

impairments involve a decline in executive functions: difficulty in concentration, planning, 

organization, multi-tasking and making mental adjustments, loss of psychomotor functions, and 

learning and memory loss that can develop into dementia (Roos, 2010; Novak and Tabrizi, 2011).  

Sleep and circadian rhythm disturbances often precede motor symptoms and are detailed in a 



46 
Chapter 1 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

future section.  Metabolic and endocrine disturbances are prevalent, with weight loss being a 

prominent pre-diagnostic hallmark.  HD patients in advanced stages depend on caregivers but can 

comprehend language and recognize people.  Most HD patients die from complications 

accompanying the disease, such as aspiration pneumonia, cardiovascular diseases, choking, 

infection, or nutritional deficiencies (Lanska et al., 1988a; Lanska et al., 1988b). 

Most clinical features of Huntington’s disease can be attributed to widespread central nervous 

system degeneration and prominently in basal ganglia's striatal area (affected nuclei: caudate 

nucleus and putamen) (Fig1.1) (Cepeda et al., 2007; Reiner et al., 2011).  The basal ganglia are a 

neuronal circuit regulating voluntary movement, and its inputs are essential for the cortex to exert 

proper motor control.  The central input centre of the basal ganglia is the striatum, comprising the 

caudate nucleus and putamen.  Depending on the striatal input to the cortex, the cortex can be 

stimulated to increase motor activity or inhibited to decrease motor activity (Fig 1.2a).  

Neurodegeneration of the striatal medium spiny GABA neurons is a characteristic of HD that 

contributes to cortical over-stimulation and chorea (Fig 1.2b).  
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Fig 1. 1 The brain areas that are primarily affected and undergo neurodegeneration in HD. 

Basal Ganglia (striatum or caudate-putamen and globus pallidus) of the brain and related nuclei 

(subthalamic nucleus, substantia nigra) are viewed via a sagittal section (left) and a coronal section 

(right).  (b) Striatal area in a healthy brain (left) and an HD brain showcasing neurodegeneration 

(right).  Image sources: (Watson and Breedlove, 2012) (a, left), modified from 

https://en.wikipedia.org/wiki/Basal_ganglia#/media/File:Basal_ganglia_circuits.svg and 

https://brainmadesimple.com/basal-ganglia-structure/ (a right) and (Bates et al., 2015) (b). 

  

https://en.wikipedia.org/wiki/Basal_ganglia#/media/File:Basal_ganglia_circuits.svg
https://brainmadesimple.com/basal-ganglia-structure/
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Fig 1. 2 Basal ganglia’s regulation of the motor cortex via direct and indirect pathways. 

(a) Striatum, the input centre of the basal ganglia, receives excitatory glutaminergic (Glu) innervation 

from the cerebral cortex and specific thalamic nuclei and dopaminergic (DA) innervations from 

substantia nigra pars compacta (SNc).  90% of striatal neurons are inhibitory medium-spiny 

GABAergic neurons (MSGNs).  The output centre of the basal ganglia comprises the internal globus 

pallidus (GPi) and substantia nigra pars reticulate (SNr).  The default action of the basal ganglia output 

on the cortex is inhibitory, turning down the motor activity (GPi/SNr’s GABAergic inhibition of the 

thalamus inhibits the cortical excitation by thalamic glutamate).    
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Striatal information can reach the output centre GPi/SNr through two pathways with opposing 

outcomes.  In the direct pathway, striatal GABAergic inhibition of the GPi/SNr prevents the default 

route and eventually activates the cortex, increasing motor activity.  In the indirect pathway, striatal 

GABAergic inhibition of the external globus pallidus (GPe) prevents GPe’s GABAergic inhibition of 

the subthalamic nucleus (STN), ensuring glutaminergic activation of the GPi/SNr, promoting the 

default pathway of cortical inhibition and lowering the motor activity.  (b) In HD, the striatal 

GABAergic MSNs in the indirect pathway are more dramatically affected than those in the direct 

pathway, decreasing their inhibitory control over the motor cortex and increasing motor activity that 

correlates with chorea, which often dominates the early course of HD.  At later stages, slowness of 

movement can be attributed to the direct pathway also getting affected, leading to lowered motor 

cortex activation (Figure modified from (Kalkhoven et al., 2014)). 

Marked neuronal loss and shrinkage are also seen in deep layers of the cerebral cortex.  Other 

areas less affected include other areas of basal ganglia (globus pallidus, ventral pallidum, 

substantia nigra, subthalamic nucleus, nucleus accumbens), subcortical white matter, specific 

hypothalamic nuclei, certain areas of the hippocampus, amygdala, thalamus, parietal lobe, 

cerebellum and brain stem, with varying degrees of atrophy (shrinkage or wasting) and neuronal 

loss (Rosas et al., 2003; Walker, 2007; Reiner et al., 2011; Bates et al., 2014).  Along with 

neuronal loss and shrinkage, widespread gliosis is prominent in HD with activated microglia and 

neuroinflammation across the brain (Reiner et al., 2011; Bates et al., 2014).  Some features of 

HD, such as impaired metabolic, endocrine, and immune functions, skeletal-muscle wasting, 

weight loss, cardiac failure, testicular atrophy and osteoporosis, could be mediated by expanded 

HTT in the peripheral tissues (van der Burg et al., 2009). 

1.1.4 Huntingtin protein 

1.1.4.1 Expression pattern 

The Htt gene encodes a large 348KDa soluble Huntingtin protein made of 3144 amino acids that 

are expressed throughout the human body over the entire lifetime with the highest concentration 

in the CNS neurons and testis (Hoogeveen et al., 1993; Li et al., 1993; Strong et al., 1993; 

Landwehrmeyer et al., 1995; Sharp et al., 1995; Trottier et al., 1995; Tartari et al., 2008).  Htt 

gene transcription gives two mRNA transcripts differing in the size of their 3’ untranslated region 

as a result of differential 3’ polyadenylation, of which the larger transcript (~13.7kb) is 

predominantly found in adult and foetal brains and the smaller fragment (~10.3kb) is more widely 
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distributed (Lin et al., 1993; Romo et al., 2018).  Though rare, alternate HTT mRNA splice 

variants are also found giving rise to HTT isoforms (Hughes et al., 2014; Ruzo et al., 2015), 

uncovering potential for functional and regulatory diversity. 

Within the brain, HTT is widely expressed in both neurons and glia, with neuronal expression 

predominating; there are regional differences in expression patterns and levels, but they do not 

correspond to areas of selective vulnerability (Li et al., 1993; Strong et al., 1993; Landwehrmeyer 

et al., 1995; Sharp et al., 1995; Fusco et al., 1999).  In neurons, HTT is enriched in cell bodies, 

dendrites and axons and is also found at synapses associated with vesicular structures (DiFiglia 

et al., 1995; Gutekunst et al., 1995; Sharp et al., 1995; Trottier et al., 1995; Velier et al., 1998; 

Hoffner et al., 2002; Li et al., 2003).  Sub-cellularly, HTT is mostly cytoplasmic and is associated 

with the cytoskeleton, membranous organelle and vesicles, and plasma membrane (DiFiglia et al., 

1995; Gutekunst et al., 1995; Sharp et al., 1995; Trottier et al., 1995; Velier et al., 1998; Kegel et 

al., 2005) but also shows nuclear localisation (Hoogeveen et al., 1993; Sapp et al., 1997; Kegel et 

al., 2002).  HTT subcellular localization is dynamic, and its conformation changes depending on 

its localization (Ko et al., 2001).  The levels and pattern of HTT expression between pre-

symptomatic HD patients, symptomatic HD patients and non-HD individuals are comparable, 

suggesting that HD mutation does not lead to altered protein expression levels or patterns (Li et 

al., 1993; Aronin et al., 1995; Landwehrmeyer et al., 1995; Schilling et al., 1995)  However, 

expanded HTT accumulates as inclusions in the nucleus and cytoplasm of neurons (DiFiglia et 

al., 1997; Sapp et al., 1997; Gutekunst et al., 1998), which is detailed in a later section. 

1.1.4.2 Structure and evolution of Huntingtin 

Pictorial representations of the HTT protein are shown in Fig 1.3.  The polyQ stretch in HTT is 

preceded by 17 amino acids (aa) and followed by a proline-rich domain (~40aa, henceforth PRD) 

(HDCRG, 1993).  The first 17aa of HTT (N-terminal to the polyQ, and henceforth N17) are 

conserved among vertebrates (Tartari et al., 2008) and carry a  nuclear export signal (NES) 

(Maiuri et al., 2013; Zheng et al., 2013).  It can undergo post-translational modifications like 

acetylation, sumoylation and ubiquitination at three Lysine residues and phosphorylation at two 
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Serines and these impact the sub-cellular localisation, function, proteolytic cleavage, degradation 

and clearance of HTT and the ability of pathogenic HTT to aggregate and cause cellular toxicity 

(Steffan et al., 2004; Thompson et al., 2009; Zheng et al., 2013).  The ~40 residue Proline-Rich 

Domain (PRD) (C-terminal to the polyQ) is polymorphic in humans, poorly conserved across 

species and found only in mammals, suggesting a recent HTT evolution (Harjes and Wanker, 

2003; Tartari et al., 2008).  Through the PRD, HTT can interact with several proteins that contain 

Src homology region 3 (SH3) or tryptophan (WW) domains (Harjes and Wanker, 2003; Gao et 

al., 2006).  PRD also has roles in HTT aggregation (Dehay and Bertolotti, 2006) and turnover 

(Southwell et al., 2008).  Since the pathogenic mutation of polyQ is in exon 1, the rest of the 

protein from the other 66 exons is not well studied.  About 16 HEAT repeats (Huntingtin, 

Elongation factor 3, Regulatory, a subunit of phosphoprotein phosphatase, TOR1), a sequence of 

~40 amino acids found multiple times in a protein, are found in HTT, organised into four clusters 

along the length of HTT, are relatively conserved across species, and are thought to be necessary 

for protein-protein interactions, intracellular transport and chromosomal segregation (Andrade 

and Bork, 1995; Neuwald and Hirano, 2000; Tartari et al., 2008; Palidwor et al., 2009).  Several 

proteins that interact with HTT via the HEAT-repeat region include HTT-interacting protein 

(HIP) 1, HIP14 and HTT-associated protein (HAP) 1 (Harjes and Wanker, 2003).  HEAT repeats 

promote intra-molecular interactions and provide flexibility to adapt around 100 structurally 

distinct conformations (Seong et al., 2010; Saudou and Humbert, 2016); inter-HTT interactions 

result in self-assembly and homodimerisation.  Interspersed between HEAT repeats are 

proteolysis-susceptible PEST sequences (Proline, Glutamic Acid, Serine, Threonine-rich) (Warby 

et al., 2008).  A nuclear localisation signal (NLS) is found in the N-terminal of HTT and might 

help in its nuclear entry via facilitated diffusion (Desmond et al., 2012).  A highly conserved NES 

is also found at the C-terminal of HTT and is essential for nucleo-cytoplasmic shuttling (Xia et 

al., 2003).  The biophysical characterisation of a full-length HTT structure suggests an elongated 

superhelical solenoid with a diameter of ~200 Å (Li et al., 2006). 
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Fig 1. 3 Schematics of the HTT protein. 

A full-length HTT protein showing the various domains, including the seventeen amino acids at the 

N-terminal (N17), the polyQ or polyGln stretch, the poly proline (polyP) or the proline-rich domain 

(PRD), and the HEAT repeats.  Some of the proteolysis sites, the NLS and NES regions (top) and 

post-translational modification sites (bottom) are also shown.  (Figure Sources  Top (Déglon, 2017); 

Bottom (Zheng and Diamond, 2012)). 
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1.1.4.3 Post-translational modifications of Huntingtin 

Post-translational modifications (PTMs) of HTT play a critical role in HD pathogenesis.  Most of 

these modifications have been studied for pathogenic HTT.  They alter HTT’s intra-cellular 

localisation and transport, function, stability, degradation, ability to aggregate, toxicity and 

interactions with other proteins (Saudou and Humbert, 2016).  For example, polyQ expansion in 

HTT leads to dysregulated HTT PTMs (and that of other associated effector proteins), altering 

function (for HTT, both loss-of-function, LOF and gain-of-function, GOF) and perturbing cellular 

homeostasis (HD-induced PTM disruptions of effector proteins and its effects on cellular 

physiology are reviewed in (Lontay et al., 2020)). 

HTT undergoes phosphorylation at several Ser residues and some Tyr and Thr residues along the 

length of the protein (by kinases like Akt, ERK1, IKK, Cdk5 and Nemo-like kinase (NLK) and 

dephosphorylated by Ser/Thr phosphatases PP1 and PP2A), ubiquitination (by ubiquitin ligase 

E2-25K and E3ligases like Ube3a, Skp1-Cul1-F-box, Parkin, and CHIP (C terminal Hsp70 

interacting protein)) and sumoylation at three N-terminal Lys residues (by E3 ligase Rhes (Ras 

homolog enriched in the striatum)), palmitoylation at an N-terminal Cys residue (by palmitoyl 

transferases HIP14 and HIP14L) and acetylation at a few Lys residues towards the N-terminal 

end (cAMP Response Element Binding Protein or CBP is the acetyltransferase and histone 

deacetylase 1 or HDAC1 the deacetylase) (Ehrnhoefer et al., 2011; Schulte and Littleton, 2011; 

Saudou and Humbert, 2016; Lontay et al., 2020).  These PTMs have variable disease 

consequences: phosphorylation, acetylation, ubiquitination, and palmitoylation of expHTT are all 

generally neuroprotective, whereas SUMOylation is detrimental; phosphorylation decreases 

expHTT aggregation, and acetylation decreased fibril formation (Ehrnhoefer et al., 2011; Lontay 

et al., 2020; Schaffert and Carter, 2020; Johnson et al., 2022).  HTT phosphorylation is critical 

for BDNF vesicular transport and targets HTT to proteasomal turnover, and a decline in 

phosphorylation is linked to excitotoxicity (Colin et al., 2008; Thompson et al., 2009; Metzler et 

al., 2010; Jiang et al., 2020).  Acetylation targets HTT to autosomal degradation (Jeong et al., 

2009) and ubiquitination to degradation via proteasome and chaperone-assisted selective 

autophagy (Kalchman et al., 1996; Bjørkøy et al., 2005; Jana and Nukina, 2005).  Palmitoylation 
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is vital for its normal trafficking to Golgi and folding (Yanai et al., 2006), SUMOylation is 

associated with its nuclear entry and transcriptional disruption (Steffan et al., 2004), and 

myristoylation of wildtype (WT) HTT at Gly553 promotes autophagosome formation (Martin et 

al., 2014). 

Proteolysis of Huntingtin: HTT undergoes proteolysis at multiple sites defined by PEST domains 

(Warby et al., 2008) by multiple proteases such as caspases, calpain, cathepsins, endopeptidases 

and matrix metalloproteinase 10 (MMP 10) (Ehrnhoefer et al., 2011; Saudou and Humbert, 2016; 

van der Bent et al., 2022).  Both wild-type and expanded HTT are substrates for proteolytic 

cleavage in vitro, but expHTT is subjected to selective proteolysis by many proteases and 

preferentially cleaved (Goldberg et al., 1996; Lunkes and Mandel, 1998; Wellington et al., 1998; 

Landles et al., 2010; Kim et al., 2021a).  In HD, there is an increase in protease activity and 

proteolysis of expHTT leads to a critical pathogenic event: generation and cytoplasmic 

accumulation of toxic N-terminal (N-T) fragments containing the expanded polyQ stretch, their 

translocation into the nucleus, followed by nuclear accumulation and toxicity (Benn et al., 2005; 

Graham et al., 2006; Wang et al., 2008; Ghosh and Tabrizi, 2018a; van der Bent et al., 2022).  

HTT fragments with normal-length polyQ mainly localise at the cytoplasm without forming 

aggregates or inducing toxicity (Xu and Wu, 2015).  However, studies suggest that nuclear 

localisation is not a prerequisite for toxicity (Hackam et al., 1999; Trushina et al., 2003).  HTT 

fragments containing expanded polyQ show an inverse relation with fragment length: the shorter 

the HTTexon1 (HTTex1) fragment, the higher its aggregation propensity (level and rate), amyloid 

seeding ability, the likelihood of nuclear translocation and toxicity (Barbaro et al., 2015).  Toxic 

C-terminal non-polyQ fragments generated upon both WT and expHTT proteolysis disrupt 

dynamin-1 activity, leading to ER stress and cell death (El-Daher et al., 2015).  This finding and 

the lack of evidence for cleavage of WT HTT in healthy individuals suggests that proteolysis of 

WT HTT can lead to its loss-of-function (Saudou and Humbert, 2016; Caterino et al., 2018).  On 

the other hand, proteolysis of expHTT leads to gain-of-toxic functions like interfering with 

transcription, autophagy, and ER homeostasis (Saudou and Humbert, 2016).  The incomplete 
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splicing also generates the pathogenic N-T fragments and premature polyadenylation of 

expHTTexon1 RNA, translating to a short toxic protein (Sathasivam et al., 2013; Neueder et al., 

2017).  expHTT RNA fragments also sequester splicing components, dysregulating splicing 

mechanisms (Lin et al., 2016; Schilling et al., 2019). 

1.1.4.4 HTT partners 

Both WT and expHTT interact with a plethora of proteins (the recent count is ~3000 proteins) 

involved in diverse cellular activities, including gene expression (transcription, RNA processing, 

epigenetic regulation, translation), protein stability, activity, localisation, and interactions (PTMs, 

proteases), signal transduction, proteostasis (protein folding, proteasomal and autophagic 

degradation pathways), mitochondrial function, Ca2+ signalling and bioenergetics, cellular 

dynamics (cytoskeletal network, vesicular trafficking and endocytosis), synaptic transmission, 

metabolism, stress response and cell death (Kaltenbach et al., 2007; Culver et al., 2012; Shirasaki 

et al., 2012; Tourette et al., 2014; Yao et al., 2014; Greco et al., 2022; Podvin et al., 2022).  PolyQ 

expansion in HTT leads to alterations in protein-protein interactions involving HTT, resulting in 

various functional consequences contributing to disease physiology (Ratovitski et al., 2012; 

Wanker et al., 2019; Podvin et al., 2022).  The wide interactome of HTT is consistent with its 

scaffolding function owing to its large size, stability and the presence of protein-interaction 

domains like PRD and HEAT, serving as a hub that tethers various molecules into a large protein 

assembly to coordinate cellular processes (Saudou and Humbert, 2016).  The dynamics of HTT 

interactome are influenced by several factors, including the polyQ expansion and length, HTT 

protein length, HTT proteolysis, PTMs and fragment length, conformer type, subcellular 

localisation, cell/tissue/neuron type, brain region, and age; many of these are differently altered 

in HD contributing to cellular dysfunction (Shirasaki et al., 2012; Sap et al., 2021; Greco et al., 

2022; Kennedy et al., 2022; Seefelder et al., 2022; Xu et al., 2023).  The HTT interactome is now 

curated in a web-based platform called HTT-OMNI (HTT OMics and Network Integration) 

(Kennedy et al., 2022), and the proteomic profiling in HD models and patients is also extensively 

reviewed (Seeley and Kegel-Gleason, 2021).  
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1.2 HUNTINGTIN: FROM FUNCTION TO 

DYSFUNCTION AND NEW “TOXIC” 

FUNCTIONS 

1.2.1 Huntington’s disease: GOF or LOF  

HD is a dominantly inherited disease, and three mechanisms by which expanded polyQ affects 

HTT and causes pathogenicity have been proposed: (1) Haploinsufficiency—a single copy of WT 

gene produces insufficient protein leading to HD symptoms (2) A dominant negative effect 

leading to loss-of-function (LOF) of WT protein: the mutant HTT prevents the functioning of the 

WT protein, especially when acting as a multimer (3) Toxic gain-of-function (GOF) by mutant 

HTT.  Haploinsufficiency cannot explain the disease as a patient with only one functional Htt did 

not develop HD (Ambrose et al., 1994).  Many studies support the GOF hypothesis, but evidence 

for LOF of WT HTT contributing to HD is also gaining traction (Cattaneo et al., 2005; Bates et 

al., 2014).  Though rare, HD homozygotes exhibit disease progression that is more severe than 

heterozygotes (Squitieri et al., 2003).  Like other triplet-repeat-expansion diseases, HD is not a 

true-dominant disease, and GOF only explains some disease features (Reiner et al., 2011). 

1.2.2 LOF in HD: Native functions of HTT 

The loss of WT HTT contributing to HD is evident from the involvement of HTT in multiple 

cellular functions, as briefly discussed below (reviewed in (Schulte and Littleton, 2011; Saudou 

and Humbert, 2016; Liu and Zeitlin, 2017)).  Further, over-expression of WT HTT improves 

neuronal survival under specific stresses; in an HD background, increasing WT HTT expression 

alleviates some HD effects while decreasing the WT levels exacerbates them (Cattaneo et al., 

2005). 

Embryonic development, neurogenesis, and cell division: Developmental impairments due to 

WT HTT's LOF are critical to HD pathogenesis (Mehler et al., 2019).  Huntingtin is essential for 

embryonic development as huntingtin-knockout mice (Hdh–/–) die before gastrulation (Duyao et 

al., 1995; Nasir et al., 1995; Zeitlin et al., 1995; Dragatsis et al., 1998).  Hdh+/– heterozygote 
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mice usually develop but, as adults, show neuronal, behavioural, and cognitive deficits, 

suggesting a role for WT HTT as adults (Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 

1995).  HTT and its levels are also critical for neuronal development, where it has a region-

specific differential role (White et al., 1997; Dragatsis et al., 2000; Auerbach et al., 2001; Reiner 

et al., 2003).  Given normal development in HD, mutant HTT seems to retain WT functions during 

development (Wexler et al., 1987; Myers et al., 1989; Leavitt et al., 2001; Van Raamsdonk et al., 

2005).  HTT, associated with centrioles of dividing cells, is crucial for mitosis and, as a result, for 

neuronal differentiation and determining neural progenitor fate (Godin et al., 2010; Godin and 

Humbert, 2011).  Many studies support WT LOF during development as a significant contributor 

to HD pathology in adults and lend credence to recognising HD as a neurodevelopmental disorder 

(Arteaga-Bracho et al., 2016; Mehler et al., 2019). 

BDNF: The striatum depends on a brain-derived neurotrophic factor (BDNF) for its development, 

function and survival, and its supply is from cortical neuronal efferents (Altar et al., 1997; Baquet 

et al., 2004; Liot et al., 2013; Baydyuk and Xu, 2014).  WT HTT promotes BDNF mRNA 

transcription in cortical neurons (Zuccato et al., 2001; Zuccato et al., 2003), transport of BDNF 

vesicles along microtubules (Gauthier et al., 2004) and retrograde transport of BDNF receptor 

TrkB (tropomyosin receptor kinase B) along striatal dendrites (Cohen et al., 2011; Liot et al., 

2013). 

In ciliogenesis: HTT is important for the transport of PCM1 (pericentriolar material 1) to 

centrosomes in mediating ciliogenesis (Keryer et al., 2011; Haremaki et al., 2015). 

In axonal transport- HTT is a scaffolding protein essential for cellular trafficking (Jimenez-

Sanchez et al., 2017; Gatto et al., 2020), as discussed below. 

Vesicular and organelle trafficking: HTT helps in the microtubule-based transport of organelles 

and vesicles containing a variety of cargo in both anterograde and retrograde directions (Li et al., 

1995; Block-Galarza et al., 1997; Engelender et al., 1997; Li et al., 1999; McGuire et al., 2006; 

Caviston et al., 2007).  The cargo includes synaptic precursor, v-SNARE VAMP7 protein, BDNF, 

amyloid precursor protein (APP), GABA-receptor, TrkA and organelles, including lysosomes, 
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autophagosomes, endosomes and mitochondria (Schulte and Littleton, 2011; Saudou and 

Humbert, 2016).  HTT also scaffolds GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) onto 

vesicles, which is crucial for the local energy supply via vesicular glycolysis to transport fast-

moving vesicles within axons (Zala et al., 2013b).  HTT is also implicated in the transport of 

vesicles from ER to Golgi (Brandstaetter et al., 2014). 

Endocytosis, vesicle recycling, and endosomal trafficking: HTT is involved in clathrin-mediated 

endocytosis in association with HIP1 and HIP12 (Sittler et al., 1998; Rao et al., 2001; Waelter et 

al., 2001), vesicle recycling in association with Rab11 (Li et al., 2008b; Power et al., 2012; Elias 

et al., 2015), F-actin-based endosomal trafficking in association with HAP40 and Rab5 (Pal et al., 

2006). 

Transcription and post-transcriptional gene regulation: HTT functions as a transcription 

regulator in association with transcriptional factors like CBP and the tumour suppressor protein 

53 (p53) (Steffan et al., 2000), the nuclear factor-kB (NF-kB) (Takano and Gusella, 2002), 

activators like CA150 (Holbert et al., 2001) and repressors like REST/NRSF (Repressor element-

1 silencing transcription factor/ Neuron-restrictive silencer factor) (Zuccato et al., 2003).  It 

regulates gene expression of various cellular pathways and modulates transcription during early 

embryogenesis and of nuclear receptors (Zuccato et al., 2003; Futter et al., 2009; Seong et al., 

2010).  HTT also participates in post-transcriptional modifications like Processing body (P-body) 

formation, RNA transport, and RNA translation via its association with Argonaut 2 (Ago2) and 

RNA binding proteins (Savas et al., 2008; Culver et al., 2012). 

Synaptogenesis and synaptic plasticity: HTT is essential for developing excitatory synapses 

(McKinstry et al., 2014) and long-term-learning-related synaptic plasticity (Choi et al., 2014). 

Cell signalling: HTT interacts with proteins of signal transduction cascades (Liu et al., 1997b; 

Saudou and Humbert, 2016). 

Cell stress response and cell death: HTT is anti-apoptotic by blocking the activation of caspase-

3, caspase-8 and caspase-9 and the formation of the apoptosome (Rigamonti et al., 2000; 
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Rigamonti et al., 2001; Gervais et al., 2002), acts as a ROS sensor (DiGiovanni et al., 2016) and 

mediates cellular stress response (Munsie and Truant, 2012; Nath et al., 2015). 

Selective macroautophagy: HTT has LC3-interacting repeats (LIRs) and serves as a scaffold for 

various autophagic proteins (Ochaba et al., 2014).  It contributes to cargo recognition, loading of 

ubiquitinylated proteins into autophagosomes and initiation of selective macroautophagy via 

interactions with the cargo adaptor p62 and the autophagy initiation kinase ULK1 (Unc-51 like 

kinase-1) (Rui et al., 2015).  In association with HAP1, it facilitates autophagosome transport to 

the lysosome, thereby helping in the degradation of autophagosome content and retrograde 

transport of autophagosomes (Wong and Holzbaur, 2014).  Normal-length polyQ domain 

interacts with Beclin-1, an autophagy initiator and prevents its proteasomal degradation, 

promoting autophagy (Ashkenazi et al., 2017). 

DNA damage repair: HTT localises at sites of DNA damage in the nucleus and participates in 

base excision repair (Maiuri et al., 2017). 

Given the physiological significance of WT HTT in various cellular processes, treatments that 

reduce activity or levels of HTT need to be specific to expHTT.  Such therapies also need to 

consider unintended neurological and developmental consequences as expHTT suffices to fulfil 

the developmental roles of WT HTT (see above).  Reducing WT HTT makes CNS more sensitive 

to the neurotoxic effects of expHTT (Auerbach et al., 2001).  These studies also highlight the 

confounding physiological effects of the therapeutic elimination of Huntingtin in HD patients.  

Thus, treatment strategies should not only aim to suppress the toxic effects of expHTT but also 

improve the activity of WT HTT. 
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1.2.3 GOF in HD: Toxic non-native interactions of the 

mutant protein 

The polyQ expansion in the HTT endows it with new toxic functions often unrelated to normal 

HTT function and are critical for HD pathogenesis (Broadley and Hartl, 2009; Zuccato and 

Cattaneo, 2009; Finkbeiner, 2011).  This newly gained cytotoxicity of mutant HTT protein 

modifies both HTT function and that of its interacting partners, harming cellular health and 

integrity through its aberrant intra-protein and inter-protein interactions (homotypic and 

heterotypic) (Wanker et al., 2019).  Some structural and physiological consequences of polyQ 

expansion in HTT, the resulting aggregation and their role in the gain-of-function toxicity are 

discussed below. 

1.2.3.1 Expanded HTT conformation and aggregation 

Full-length WT HTT in complex with HAP40 was revealed via cryo-electron microscopy to be 

predominantly a folded α-helical protein.  This conformationally flexible multivalent hub is 

stabilised by binding with its interacting protein partners (Guo et al., 2018b). 

Heterogeneity in expHTT conformation and aggregation: expHTT is found in many 

conformationally distinct forms in vivo and in vitro: monomers, oligomers, proto-fibrils, and 

fibrils of full-length expHTT and a variety of truncated N-terminal (N-T) species (Wanker et al., 

2019).  The polyQ containing N-T fragment is a highly flexible and intrinsically disordered 

peptide (Kim et al., 2009; Giorgini, 2013; Baias et al., 2017).  The N-T expHTT species self-

associate, assembling into higher-order structures like spherical oligomers or amyloid fibrils in 

vitro and in vivo that are broadly referred to as aggregates (Sathasivam et al., 2010; Sahoo et al., 

2016; Wagner et al., 2018).  This complex self-association landscape of N-T expHTT involves 

distinct aggregation pathways featuring many intermediate species that can interconvert and differ 

in their neurotoxicity and lifetimes (Nekooki-Machida et al., 2009; André et al., 2013; Boatz et 

al., 2020).  The repertoire of HTTex1 species includes monomers, dimers and tetramers (Sahoo 

et al., 2016), spherical oligomers (Poirier et al., 2002), isolated nanofibrils (Sahl et al., 2016; 

Sahoo et al., 2016), clusters of mature fibrils (Scherzinger et al., 1997) and fibril-rich inclusions 
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(DiFiglia et al., 1997; Bäuerlein et al., 2017).  Structural and conformer polymorphism of the 

same primary structure is a common feature of amyloidogenic proteins (Tycko, 2015). 

Oligomers are typically small protein aggregates (1-15nm) with globular morphology; they can 

also be aggregates wide-ranging in size (small multimers (dimers, trimers to decamers) to large 

structures of >100 proteins) and shape (non-fibrillar and proto-fibrillar species) (Adegbuyiro et 

al., 2017; Hipp et al., 2019b).  The expHTT fibrils are long rod-like filamentous, amyloid-like 

structures (Boatz et al., 2020) (Fig 1.4).  expHTT fibrils derived from artificial systems comprise 

a tightly packed, rigid and dehydrated core of polyQ regions in anti-parallel β-sheet arrangement 

flanked by N-T and C-T domains (Fig 1.4b) (Sharma et al., 2005; Sivanandam et al., 2011; Hoop 

et al., 2016; Wagner et al., 2018; Boatz et al., 2020) that are themselves polymorphic (Tycko, 

2015; Caulkins et al., 2018).  In contrast, the misfolded N-T monomers and oligomers likely 

assume random coil or α-helical conformation in vivo with polyQ tracts exposed on the surface 

(Kang et al., 2017; Wagner et al., 2018; Kotler et al., 2019).  In the aggregation mechanism, in 

addition to the on-pathway wherein expHTT intermediates lead directly to fibril formation, there 

are also off-pathway expHTT aggregates like annular aggregates (ring-shaped aggregates 

made of oligomers or protofibrils) and amorphous aggregates (non-filamentous globular 

aggregates, granular in appearance, rich in β structure, lacking long-range order and larger than 

oligomers) that do not lead to fibril formation (Adegbuyiro et al., 2017).  Inclusion bodies (IBs) 

are typically large (several microns in size), insoluble, mostly spherical protein deposits of 

accumulated aggregated material (fibrils, amorphous aggregates, and other species) that are easily 

visible by light microscopy (Adegbuyiro et al., 2017; Bäuerlein et al., 2020).  IBs of expHTT 

from primary mouse neurons and HeLa cells are mostly made up of amyloid fibrils (Bäuerlein et 

al., 2017).  In contrast, those from S. cerevisiae are also amorphous (Gruber et al., 2018).  These 

distinct structural and morphological features confer distinct biochemical properties and 

interaction profiles to insoluble expHTT fibrils and IBs compared to soluble expHTT oligomers, 

monomers, and other reactive intermediate species (Wanker et al., 2019).  
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Various factors influence the nature and conformation of expHTT intermediates and aggregates, 

the kinetics and outcome of the aggregation pathway, conformer stability and toxic potential.  

These include the sample preparation method, environmental factors like pH and temperature, 

mechanical factors like shear and agitation, specific solvents and surfaces, presence of 

membranes, polyQ length and concentration, the cell models used, in vitro vs. in vivo models and 

the cellular context (intra- or extra-cellular, cell-type, subcellular localisation and 

compartmentalisation), the presence of other polyQ-containing proteins, intrinsically disordered 

proteins and seeding-competent species, and the HTT interactome (Kampinga and Bergink, 2016; 

Adegbuyiro et al., 2017; Bäuerlein et al., 2020; Boatz et al., 2020; Riguet et al., 2021). 

Fig 1. 4 Structures of HTTexon 1 and expHTTexon1 fibril. 

(a) Schematic of primary (top) and secondary structure (bottom) of HTTexon1 of WT HTT (left) and 

mutated HTT with the expanded polyQ (right) showing the N17aa, polyQ domain and proline-rich 

domain (PRD).  (b) Mutant HTT (mHTT) exon 1 HTT fibril architecture.  Amyloid fibrils are 

characterized by cross-β-sheet architecture in which anti-parallel β-sheet structures run perpendicular 

to the long fibril axis (Chiti and Dobson, 2017) and flanking HTT-NT (dark blue) and PRD domains 

(blue) overhang at the sides of the fibril.  A single monomer is highlighted in darker colours (figure 

from (Jarosińska and Rüdiger, 2021)).  
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From N-T expHTT fragments to fibrils: A nucleated growth mechanism has been proposed for 

the conversion of N-T expHTT fragments into fibrils: an initial rate-limiting step of spontaneous 

but rare and slow primary nucleation event (lag phase) followed by an exponential elongation or 

growth phase (log phase) (Arndt et al., 2015; Wagner et al., 2018; Wanker et al., 2019; Wetzel, 

2020).  Two competing events can mediate the initial nucleation.  The first is a complex two-step 

nucleation pathway involving the formation of oligomeric intermediates (dimers, tetramers and 

α-helix-rich oligomers) undergoing an energetically unfavourable conformational change to a 

stable β-sheet structure, followed by the formation of aggregation-competent nuclei de novo 

(new non-fibrillar or fibrillar oligomers).  The second is an inefficient, albeit simple classical 

nucleation pathway of formation of a thermodynamically unfavourable monomeric amyloid 

nucleus by re-arranging a soluble monomer (intramolecular transition from random coil to 

random coil to β-sheet), a concentration-dependent event.  The slow nucleation event is then 

followed by the rapid growth of the fibril nuclei by recruiting new monomers to form large, highly 

stable β-sheet-rich structures with a fibrillary morphology.  There is little clarity on the exact 

nature of expHTT conformers initiating the aggregation pathway (monomers or small oligomers) 

and those functioning as “nuclei” (monomers, small oligomers, small metastable oligomers, large 

stable oligomers).  The lag phase can be bypassed by pre-existing “nuclei”, such as fibril 

fragments and preformed fibrils bound by free monomers or multimers promoting elongation 

(Chiti and Dobson, 2017).  In addition, the elongating expHTT fibril can induce a fast secondary 

nucleation event: nucleated fibril branching, i.e., growth of new branches from the surface of 

existing fibrils and formation of highly complex fibrillary aggregates with multiple ends (Wagner 

et al., 2018).  Branched fibrils seem unique to expHTT aggregation, not observed in other 

aggregate-prone NDs. 

The polyQ domain in monomeric HTT seems conformationally disordered and compact, 

irrespective of its length (Hoffner and Djian, 2014).  It can transiently adopt different 

conformations: random coil, extended loop, α-helix (near the N-terminal domain), or a β-sheet 

(in expHTT aggregates) (Kim et al., 2009; Boatz et al., 2020; Urbanek et al., 2020).  Its 

aggregation kinetics and final morphology are influenced by its flanking sequences: the preceding 
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amphipathic α-helical N-terminal 17 amino acids (N17) promotes whereas the following C-

terminally located PRD decreases the propensity of expHTT aggregation (Bhattacharyya et al., 

2006; Thakur et al., 2009; Crick et al., 2013; Shen et al., 2016).  A simple model for expHTT 

aggregation initiated by the spontaneous homotypic interaction of multiple N17 domains resulting 

in the formation of α-helix rich oligomers that bring polyQ stretches from different fragments into 

proximity, enhancing polyQ-polyQ interactions, facilitating the coil-to-β sheet transition, 

constituting the lag phase, has been proposed (Arndt et al., 2015; Caterino et al., 2018; Wanker 

et al., 2019; Jarosińska and Rüdiger, 2021). 

1.2.3.2 The toxic species in HD: small soluble oligomers vs. large 

insoluble aggregates 

The first issue with this question is the lack of clear definitions for each category and classification 

regarding which entities fall into which category based on size, composition, or visibility.  

Secondly, this issue primarily arises from the vast spectrum of expHTT conformers.  Third, the 

various expHTT aggregate conformers in vivo are likely heterogenic or made of more than one 

conformer type and a mix of soluble and insoluble species (Sahl et al., 2012; Duim et al., 2014).  

However, suppose one were to assume that broadly, two classes of expHTT forms exist in vivo: 

the relatively more minor, soluble, oligomeric class and the more prominent, insoluble inclusions.  

Their differential contribution to HD toxicity is highly variable and under intense debate, as 

detailed below. 

Large insoluble aggregates in HD: Are they toxic or protective? There is evidence for both 

scenarios.  Given the sheer size of inclusions they physically block intracellular functions like 

axonal transport; trap proteins with glutamine-rich domains and intrinsically disordered regions 

and critical cellular proteins: components of the degradation and protein quality control systems 

(chaperones, proteins, ubiquitin and 26S proteasome components, thereby interfering with 

cellular proteostasis), neuronal proteins, RNA-binding proteins, and WT HTT (secondary LOF), 

TFs (CBP, TBP, SP1) (transcriptional deregulation); distort chromatin; interact with organelles 

and cellular membranes: interact with ER, trap ER vesicles, disrupt ER morphology and 
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dynamics, inducing ER stress, disrupt nuclear envelope, nucleocytoplasmic transport and activate 

neuronal cell cycle, permeabilize lipid vesicles and disrupt membrane lipid bilayer integrity, alter 

Ca2+ homeostasis, deregulate mitochondrial respiration and morphology; show prion-like features 

of transmitting between cells: infecting naive cells that do not express expHTT or show 

aggregation, provide neighbouring cells with aggregation-competent seeds to nucleate 

aggregation of WT HTT and other polyQ containing proteins (cross-seeding) (Chen et al., 2001; 

Nucifora et al., 2001; Suhr et al., 2001; Waelter et al., 2001; Gunawardena et al., 2003; Lee et al., 

2004; Pieri et al., 2012; Burke et al., 2013b; Costanzo et al., 2013; Liu et al., 2015a; Wear et al., 

2015; Kim et al., 2016; Li et al., 2016; Woerner et al., 2016; Bäuerlein et al., 2017; Gasset-Rosa 

et al., 2017; Hosp et al., 2017; Isas et al., 2017; Trajkovic et al., 2017; Ast et al., 2018; Drombosky 

et al., 2018; Masnata et al., 2019; Sameni et al., 2020; Wetzel, 2020; Riguet et al., 2021).  On the 

other hand, there is evidence that expHTT inclusions do not correlate with toxicity; soluble 

oligomeric species are the toxic species in HD and their sequestration into larger aggregates 

(fibrillar and amorphous) and IB formation, a protective mechanism to minimise the toxic effects 

of soluble expHTT conformers (oligomers and even monomers) by reducing their surface-to-

volume ratio and shielding reactive surfaces (Saudou et al., 1998; Gutekunst et al., 1999; 

Kuemmerle et al., 1999; Arrasate et al., 2004; Bodner et al., 2006; Diaz-Hernandez et al., 2006; 

Nagai et al., 2007; Takahashi et al., 2008; Miller et al., 2010a; Sun et al., 2015; Branco-Santos et 

al., 2017; Ramdzan et al., 2017).  Toxic effects of soluble oligomers include perturbation of 

critical cellular processes by interacting with about 800 different proteins involved in energy 

metabolism and mitochondrial function, protein and vesicle trafficking, RNA processing, 

ribosome biogenesis and transcription, dampened CREB signalling, increased ROS, induction of 

ER stress and apoptosis (Schaffar et al., 2004; Leitman et al., 2013; Kim et al., 2016; Moily et al., 

2017; Ramdzan et al., 2017).  So, even though the formation of large insoluble cellular deposits 

might start as a protective mechanism, cells with IBs enter quiescence that transiently prolongs 

survival, but, in the long run, these deposits sequester other crucial proteins, disrupting cellular 

homeostasis and cellular functionality, becoming detrimental (Ramdzan et al., 2017; Soares et al., 

2019).  One possible way around this debate is to look at the process of aggregation as an effort 
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by the cell to restore proteostasis during which various intermediate species and aggregate forms 

of expHTT are generated, and their differential toxicity is incidental, depending on the context.  

It is evident from the above studies that both the soluble and insoluble and the small oligomeric 

and the larger inclusion species are all disease-relevant, contributing to neurotoxicity, depending 

on the age, disease stage, presence of modifying factors and cellular prowess. 

1.2.3.3 How does polyQ expansion render HTT toxic? 

Polymerised polyQ adopts a β-sheet enriched structure in multimeric aggregates.  However, it is 

unclear whether the transition to β-sheet conformation happens first, followed by polyQ 

polymerization or whether oligomerization of the polyQ leads to conformational change (Hoffner 

and Djian, 2015).  There are conflicting reports about the effect of polyQ expansion on the 

secondary structure of expHTT: some studies show no significant structural differences between 

monomeric WT HTT and expHTT (Chen et al., 2001; Klein et al., 2007; Warner et al., 2017; 

Newcombe et al., 2018; Huang et al., 2021); whereas others support a polyQ-length-dependent 

change in monomeric conformation of expHTT (e.g. extended conformation to collapsed state 

and compaction or random-coil to α-helical state or formation of stable intramolecular β-hairpins 

or rich in amyloid-like structures) (Nagai et al., 2007; Walters and Murphy, 2009; Kar et al., 2011; 

Peters-Libeu et al., 2012; Kar et al., 2013; Perevozchikova et al., 2014; Monsellier et al., 2015; 

Daldin et al., 2017; Bravo-Arredondo et al., 2018).  The former group of studies suggest an 

increase in the overall size and surface area of the globular polyQ domain accompanying the 

polyQ expansion, increasing the binding sites and promoting non-native and toxic gain-of-

function interactions, ultimately triggering HTTex1 aggregation.  Despite the differences, the 

consensus from different studies is that polyQ expansion favours HTTex1 aggregation.  polyQ 

expansion can increase aggregation probability by affecting the kinetics and flux of nucleation-

growth polymerization in many ways: decreasing the size of the critical nucleus and (or) the 

protein concentration required to trigger fibril assembly, enhancing the generation of spherical 

oligomers and the rate of nucleation of the amyloid and elongation of the nuclei and fibrils 

(Bhattacharyya et al., 2006; Rossetti et al., 2008; Thakur et al., 2009; Monsellier et al., 2015; 
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Sahoo et al., 2016; Caterino et al., 2018; Drombosky et al., 2018; Pandey et al., 2018; Silva et al., 

2018).  Other effects of the elongation of the polyQ tract in HTT ex1 are increasing its β-sheet 

propensity (Kang et al., 2017; Priya and Gromiha, 2019) and polyQ compactness, thereby 

reducing polyQ’s conformational flexibility and reducing N17-PRD’s interactions (Caron et al., 

2013; Kang et al., 2017; Bravo-Arredondo et al., 2018), reducing solubility (Fiumara et al., 2010), 

altering its PTMs (Warby et al., 2005; Yanai et al., 2006), proteolytic cleavage (El-Daher et al., 

2015), and interactions with lipid membranes (Burke et al., 2013a). 

1.2.3.4 Aggregates under the spotlight in this study- the expHTT 

“inclusions.” 

In literature, a wide variety of expHTT conformers have been termed as ‘aggregates’ 

inconsistently and often ambiguously (irrespective of their solubility, order and stability, shape, 

ultrastructure- granular vs fibrillar, type of bonding, polymerisation and interactions), not 

excluding small, soluble, oligomeric aggregates, large oligomers, amorphous conformations, 

amyloids and large insoluble IBs (Finkbeiner, 2011; Adegbuyiro et al., 2017; Bäuerlein et al., 

2020), thereby creating much confusion regarding the nature of aggregates and their role in HD 

pathology.  In this study, the clumped puncta-like structures of expHTT visible via light 

microscopy are the aggregates species of focus, and they are referred to as “inclusions” (Inc).  

Moreover, the non-punctate, evenly distributed appearance of intracellular HTT is referred to as 

“diffuse” (Diff).  As suggested by Finkbeiner et al. (2011) (Finkbeiner, 2011), naming the cellular 

deposits visualized via light microscopy as inclusions is inclusive as there are no assumptions 

regarding their polymeric state (monomers, dimers, or oligomers), their ultrastructure (fibrillar or 

amorphous aggregates) or their solubility (SDS- soluble or -insoluble). 
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1.2.3.5 Pathological mechanisms underlying HD 

A diverse range of mutually non-exclusive molecular and cellular pathways underlie HD 

pathology, destabilizing the transcriptome, epigenome, proteome and metabolome.  Many of 

these interact and feed-forward onto one another, creating a complex network of 

pathophysiological events.  This section details some critical molecular, cellular, and neuronal 

impairments attributed to HD (Fig 1.5).  Given their focal importance in this study, I have 

emphasised impaired proteostasis and the role of molecular chaperones in HD in greater detail. 

Fig 1. 5 A schematic showing some of the neuropathological mechanisms in HD. 

These and several other mechanisms are discussed in the text (Figure from (Gatto et al., 2020)). 

Axonal transport, neurotransmission, and synaptic activity deficits: Neuronal and synaptic 

defects are early pathological occurrences in HD (Jimenez-Sanchez et al., 2017; Smith-Dijak et 

al., 2019).  These include deficits in basal synaptic transmission, intrinsic excitability, processes 

modulating synaptic strength, and neuronal dysfunction and death due to loss of trophic support 

and excitotoxicity.  There is transcriptional deregulation and altered synthesis, transport, release, 

activity and signalling of neurotransmitters like dopamine (DA), glutamate, acetylcholine, 

serotonin, GABA, and adenosine and their receptors and synaptic proteins like post-synaptic 
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density 95 (PSD-95), cysteine-string protein (CSP), complexin II, synapsin I, adaptor protein 2 

(AP-2) and HAP1 (Zuccato and Cattaneo, 2014; Tyebji and Hannan, 2017; Smith-Dijak et al., 

2019).  Loss of WT HTT function in mediating exocytosis and endocytosis also contributes to 

altered synaptic activity (Zuccato et al., 2010).  expHTT causes axonal transport defects in the 

transport of proteins and organelles along axons either by aggregates physically blocking axons 

(Li et al., 2001; Lee et al., 2004) or sequestering motor proteins or due to loss of WT HTT function 

(Gunawardena et al., 2003; Trushina et al., 2004).  Neurotrophins like BDNF, which promote 

neuronal survival and are essential for synaptic plasticity, are decreased in HD brains, partly due 

to loss of WT-HTT function, as previously described.  However, expHTT also contributes to 

defective BDNF signalling, altering the promotor-specificity of BDNF transcription and 

indirectly by affecting the activity of TFs, impairing HAP1 function, and reducing microtubule-

mediated BDNF vesicle delivery, causing an imbalance in levels of BDNF receptors, namely, the 

pro-survival TrkB and pro-apoptotic and pro-inflammatory p75NTR and impairing astrocytic 

BDNF release (Zuccato and Cattaneo, 2014; Tyebji and Hannan, 2017; Gatto et al., 2020; Barron 

et al., 2021).  Altered dopamine signalling contributes to motor disturbances in HD, ROS 

formation and inhibition of autophagy (Kim et al., 2021a). 

Excitotoxicity: Excitotoxicity is neuronal cell death resulting from continued stimulation and 

excessive activation of glutamate receptors due to excess extracellular glutamate (Labbadia and 

Morimoto, 2013).  Glutamate excitotoxicity in HD is observed in striatal postsynaptic neurons 

that receive glutaminergic input from the cortex and thalamus and is mediated through their 

NMDA (N-methyl-D-aspartate) receptors (NMDARs), causing calcium influx into cells (Pérez-

Navarro et al., 2006; Raymond et al., 2011; Reiner and Deng, 2018).  It leads to sustained neuronal 

membrane depolarization, Ca2+ overload, and mitochondrial energy failure, triggering apoptotic 

pathways (Arundine and Tymianski, 2003).  Factors contributing to striatal glutamate 

excitotoxicity in HD include altered glutamate release, impaired glutamate clearance from the 

synaptic cleft, downregulation of the glutamate transporter GLT1, impaired uptake of striatal 

glutamate by glial cells, increased sensitivity of NMDARs to glutamate by expHTT-induced 



70 
Chapter 1 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

tyrosine phosphorylation, increased NMDAR’s activity and stability, disrupted NMDAR 

recycling, and reduced expression of the anti-apoptotic synaptic NMDAR (Zuccato et al., 2010; 

Jurcau, 2022). 

Transcriptional dysregulation: Like WT HTT’s function as a transcriptional regulator, expHTT 

also interacts with several TFs like CREB, Sp1, NF-κB, RES, p53, the TATA-binding protein 

(TBP) and coactivators like CBP, PGC-1α, but the interactions are often non-native, altering their 

transcriptional activity, promoter accessibility and recruitment of RNA polymerase II, eventually 

leading to a transcriptional failure (Seredenina and Luthi-Carter, 2012; Valor, 2015; Xiang et al., 

2018).  Also, many of these factors get sequestered in polyQ aggregates, leading to their depletion 

and transcriptional dysregulation.  For example, expHTT inhibits CREB phosphorylation and 

acetyltransferase activity of CBP and sequesters them in aggregates, impairing cAMP-dependent 

signalling and downstream target gene expression (Steffan et al., 2001; Li et al., 2008b; Moily et 

al., 2017; Xiang et al., 2018).  Thus, expHTT affects the expression of a vast network of genes 

involved in the development, neurogenesis, synaptic transmission, cell signalling, organelle 

biogenesis, immune, inflammation and stress response, metabolism, epigenetic modifications, 

proteostasis, cell growth, proliferation, and survival (Luthi-Carter et al., 2000; Luthi-Carter et al., 

2002; Sipione et al., 2002; Choi et al., 2009; Seredenina and Luthi-Carter, 2012; Valor, 2015). 

Epigenetic imbalance: Various epigenetic alterations are observed in HD, including 

modifications to histone ubiquitylation and phosphorylation (Valor and Guiretti, 2014).  Altered 

histone acetylation is well characterized in HD.  It is mainly restricted to specific gene loci 

(Igarashi et al., 2003; Sadri-Vakili et al., 2007; McFarland et al., 2012; Valor et al., 2013; Guiretti 

et al., 2016) and HDAC inhibitors, including sirtuin1 (Sirt1), a non-classical inhibitor, improve 

HD phenotype in animal models (Steffan et al., 2001; Chuang et al., 2009; Jiang et al., 2011).  

DNA methylation patterns are altered at the promoter, proximal, and distal regulatory regions (Ng 

et al., 2013; Villar-Menéndez et al., 2013; Wang et al., 2013).  Histone methylation marks, namely 

H3K4me3, a mark of active promoters and H3K9me2 and H3K27me3, a heterochromatin mark, 

are differentially altered in the striatum of HD mice (Ryu et al., 2006; Vashishtha et al., 2013; 
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Biagioli et al., 2015).  These epigenetic changes in HD have been attributed to decreased HAT 

activity of CBP and the deregulation of histone methylation enzymes (Francelle et al., 2017). 

Deregulation of non-coding RNAs: Both short non-coding RNAs (sncRNAs) like microRNAs 

(miRNAs) and piwi-interacting RNAs (Johnson et al., 2008; Maciotta et al., 2013; Dubois et al., 

2021) and long non-coding RNAs (lncRNAs) like taurine upregulated gene 1 (TUG1) and 

maternally expressed 3 (MEG3) (Johnson, 2012; Dong and Cong, 2021), that regulate gene 

expression epigenetically, mRNA stability, splicing and translational induction, the levels and 

cellular localisation of RNA and protein pool (Salta and De Strooper, 2017), are dysregulated in 

HD. 

Mitochondrial dysfunction: Neurons have a high energy demand, depend on the mitochondrial 

oxidative phosphorylation to meet them, and require mitochondrial trafficking from cell soma to 

neuronal outgrowths, regulated by intracellular Ca2+ levels (Sheng, 2017).  Mitochondria are 

essential for regulating calcium homeostasis and the related secondary messenger signalling.  

Also, being producers of reactive oxygen species (ROS), mitochondria are sources and targets of 

oxidative stress.  expHTT disrupts mitochondrial morphology, membrane potential, permeability, 

and fission-fusion dynamics in favour of fission, calcium-buffering capacity, energy metabolism 

and trafficking and damaged mitochondrial clearance by mitophagy.  Mechanisms of expHTT-

induced alterations include altered transcription of peroxisome proliferator-activated receptor-γ 

coactivator 1α (PGC1α), a key regulator of energy metabolism and mitochondrial biogenesis and 

inhibition of mitochondrial protein import complex TIM23 (Franco-Iborra et al., 2018; Zheng et 

al., 2018; Jurcau, 2022).  The overall HD effects on the mitochondria are manifold: 1) increased 

ROS production and oxidative damage (Fão and Rego, 2021) and triggering neuroinflammation 

(Kumar and Ratan, 2016); 2) Ca2+ handling defects; 3) ATP depletion, cellular energy deficits 

and impediment of core cellular activities; all of which can trigger the sustained opening of 

mitochondrial permeability transition pore (mPTP), along with expHTT interaction with the 

mitochondrial outer membrane, leading to mitochondrial swelling, lowering of mitochondrial 

membrane potential, the release of Cytochrome c and activation of caspase-dependent and -
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independent apoptosis pathways and neuronal death (Labbadia and Morimoto, 2013; Carmo et 

al., 2018; Zheng et al., 2018; Fão and Rego, 2021; Jurcau and Jurcau, 2022). 

Oxidative stress: Neurons are particularly vulnerable to oxidative damage given their high 

metabolic rate, increased oxygen consumption and free radical generation, enrichment of fatty 

acids prone to peroxidation and transition metals that catalyse the formation of reactive species, 

lower ROS scavenging capacity and antioxidants, and poor regeneration ability (Franco-Iborra et 

al., 2018).  In HD, there is evidence for oxidative stress: oxidative damage of proteins, lipids, 

polysaccharides, and nucleic acids, mitochondrial tricarboxylic acid (TCA) cycle and electron 

transport chain (ETC) deficits and augmented NOX (nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase), a ROS generating enzyme in the plasma membrane, alterations in 

activity of antioxidant enzymes like peroxiredoxins, glutathione peroxidases, superoxide 

dismutase 2 (SOD2) and catalase and decreased levels of antioxidants like reduced glutathione 

(GSH) and peroxiredoxin 1 (Prx1), oxidation of critical metabolic enzymes like aconitase and 

ATP synthase, reducing their activity and leading to bioenergetic deficit, dysregulation of iron 

and copper homeostasis leading to their accumulation (Fox et al., 2007; Muller and Leavitt, 2014) 

and benefits from treatments with antioxidants like α-Lipoic acid, flavonoids, L-ascorbic acid and 

coenzyme Q10 (Browne and Beal, 2006; Muller and Leavitt, 2014; Franco-Iborra et al., 2018; 

Zheng et al., 2018; Paul and Snyder, 2019; Fão and Rego, 2021). 

Impairments in Ca2+ homeostasis: Ca2+ is a critical cellular secondary messenger, and its 

concentrations are crucial in the CNS for growth, differentiation, survival, gene expression, neural 

activity, neurotransmission, and synaptic plasticity.  expHTT alters cellular Ca2+ homeostasis in 

several ways (reviewed in (Giacomello et al., 2013; Kolobkova et al., 2017; Mackay et al., 2018; 

Pchitskaya et al., 2018; Ureshino et al., 2019)) causing a persistent ER Ca2+ leak by influencing 

Ca2+ efflux channels on the ER, namely, the inositol-1,4,5-triphosphate receptor (IP3R) and the 

ryanodine receptor (RyR), thus, depleting Ca2+ in ER that also enhances neuronal store-operated 

Ca2+ entry (SOCE) pathway; directly hyperactivates store-operated Ca2+ channel (SOCC) in the 

plasma membrane responsible for Ca2+ influx; enhances expression of extrasynaptic NMDAR; 
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causes transcriptional deregulation of Ca2+ handling proteins; interacts and alters association with 

calcium-binding proteins like calmodulin and calretinin.  All the above increase cytosolic Ca2+ 

concentrations, increase Ca2+ uptake by mitochondria, overloading mitochondria and collapsing 

its membrane potential (also via direct association of expHTT with mitochondria), opening 

MPTP, and activating apoptosis.  ExpHTT also activates Ca2+‐dependent caspase, calpain, and 

calcium-signalling disturbance in transcriptions and cell signalling.  However, some studies also 

show defects in the Ca2+ uptake capacity of mitochondria and, thus, lower Ca2+ in mitochondria 

(Panov et al., 2002; Brustovetsky, 2016). 

Metabolic disruptions: Energy metabolism deficits in HD are seen both in the brain and 

peripheral tissues; they include alteration of glucose homeostasis, decrease in its uptake and 

metabolism, decreases in expression of glucose transporters, increase in lactate levels, decrease 

in the ATP/ADP ratio, defects in TCA enzymes, decrease in mitochondrial number, size and 

function, repression of PGC-1α, a key regulator of energy metabolism, dysregulation of 

deacetylase SIRT1 that impairs the metabolic stress factor DAF-16/FOXO3a and progressive 

weight loss and muscle wasting, despite increased caloric intake (Mochel and Haller, 2011; 

Carmo et al., 2018; Illarioshkin et al., 2018).  In addition, there are impairments in cholesterol 

and fatty acid synthesis, urea cycle, amino acid, purine and neurotransmitter metabolism and gut-

brain homeostasis (Singh and Agrawal, 2022). 

Glial dysfunction: expHTT-induced downregulation of Kir4.1 expression results in a decreased 

membrane potential and conductance, thus altering astrocyte sensitivity to neuro mediators and 

pH, reduction of excitatory amino acid transporter 2 (EAAT), leading to impaired glutamate 

clearance by astrocytes, and oligodendroglia myelination defects (Gatto et al., 2020; Wilton and 

Stevens, 2020; Jurcau and Jurcau, 2022). 

Neuroinflammation: CNS neuroinflammation and peripheral inflammatory response have been 

documented in HD (reviewed in (Jimenez-Sanchez et al., 2017; Palpagama et al., 2019; Gatto et 

al., 2020; Gómez-Jaramillo et al., 2022; Jurcau, 2022)).  These include activation of microglia 

(the resident immune cells of the CNS) and reactive astrocytosis, leading to decreased 
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antioxidants and increased brain pro-oxidants.  There are also changes in the levels of 

proinflammatory mediators like cytokines, chemokines, c-reactive protein, and matrix 

metalloproteins (MMPs) in the cerebrospinal fluid (CSF) and plasma and BBB damage by 

inflammatory blood cells.  Many of these responses are also induced by altered interactions 

between expHTT and BDNF, expHTT-induced neuronal oxidative stress, transcriptional 

dysregulation of TFs like HSF1, myeloid lineage-determining factors, and NF-κB mediated 

inflammatory response.  Other aberrant microglial signalling pathways are the kynurenine 

pathway, the main pathway for nicotinamide adenine dinucleotide formation and the cannabinoid 

receptor pathway. 

Cell-to-cell transmission of expHTT: A newly uncovered mechanism of pathophysiology in NDs 

is a cell-to-cell transmission of pathogenic proteins like tau or α-synuclein leading to 

interneuronal spreading of misfolded proteins to various brain regions (Brettschneider et al., 2015; 

Jucker and Walker, 2018).  Several mechanisms for inter-neuronal propagation of aggregates have 

been proposed, including exosomes, exophagy, receptor-mediated endocytosis, direct penetration 

via plasma membrane, and finally, through tunnelling nanotubes (TNTs), long actin-rich 

membrane bridges directly connecting cells’ cytoplasm (Lim and Lee, 2017; Davis et al., 2018; 

Donnelly et al., 2022).  Compelling evidence supports the idea that prion-like spreading of 

expHTT is prevalent in HD (reviewed in (Donnelly et al., 2022)). A few examples are the 

unidirectional pre- to postsynaptic spread of expHTT aggregates from R6/2 cortex to wild-type 

MSNs in the striatum (Pecho-Vrieseling et al., 2014), the spread of fluorescently labelled expHTT 

aggregates from a specific set of neurons to the entire brain in Drosophila leading to non–cell-

autonomous neurodegeneration via soluble NSF attachment protein receptor (SNARE)-mediated 

fusion events (Babcock and Ganetzky, 2015), trans-synaptic transfer of expHTT aggregates in 

Drosophila olfactory system with a brief visit to glial cytoplasm and requiring the glial scavenger 

receptor Draper (Donnelly et al., 2020)  and very recently, a Rhes GTPase induced biogenesis of 

TNT-like cellular protrusions (“Rhes tunnels”) that transport Rhes-positive cargoes including 
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expHTT between neurons in culture and intact mouse brain (Sharma and Subramaniam, 2019; 

Ramírez-Jarquín et al., 2022). 

Other pathological mechanisms: These include disrupted nuclear pore complex, which is critical 

for nucleocytoplasmic transport of proteins and other molecules (Gasset-Rosa et al., 2017; Grima 

et al., 2017), disturbed purinergic signalling (Wiprich and Bonan, 2021), CAG repeat instability 

and somatic expansion, impairment of DNA repair pathways (Ghosh and Tabrizi, 2018a), 

accumulation of four homopolymeric expansion proteins (polyAla, polySer, polyLeu, and 

polyCys) synthesised via the sense and antisense repeat-associated non-ATG (RAN) translation 

(Bañez-Coronel et al., 2015) and crosstalk with other aggregate-prone proteins like α-Synuclein 

and tau isoforms (Jimenez-Sanchez et al., 2017).  
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1.3 PROTEOSTASIS IN ND 

Protein homeostasis or proteostasis refers to the optimal maintenance of the proteome to help 

organisms respond to constantly changing internal and external demands by regulating the 

concentration, shape, location and interactions of individual proteins while balancing cellular 

protein biogenesis and degradation (Balch et al., 2008; Balchin et al., 2016; Yerbury et al., 2016; 

Fernández-Fernández and Valpuesta, 2018).  Proteostasis involves mechanisms regulating protein 

synthesis, preventing aberrant protein interactions, and optimising protein folding, trafficking, 

activation, degradation, and clearance (Labbadia and Morimoto, 2015; Sweeney et al., 2017).  The 

proteostasis network (PN) comprises protein folding chaperones, Ubiquitin-proteasomal system 

(UPS), autophagy pathways, stress-response pathways such as HSR (Heat Shock Response), UPR 

(Unfolded Protein Response) in the ER and mitochondria, various associated signalling pathways, 

and compartmentalisation of misfolded proteins into specific regions of the cell (Bouchecareilh 

and Balch, 2011; Labbadia and Morimoto, 2015; Yerbury et al., 2016).  Any condition that 

overwhelms the proteostasis system can be considered stressful and involves environmental and 

physiological stressors.  Proteostasis stressors include temperature (heat-stress or hypothermia), 

UV light, osmotic changes, heavy metal pollutants, exposure to toxins, bacterial infections, 

starvation, errors in transcription, translation or PTMs (post-translational modifications), hypoxia, 

metabolic defects, oxidative stress, mutations, acute global misfolding and ageing (Akerfelt et al., 

2010; Ali et al., 2010; Kampinga and Bergink, 2016; Klaips et al., 2018; Shacham et al., 2019).  

In NDs like HD and other polyQ diseases, protein misfolding and accumulation of mutant protein 

as soluble intermediates, aggregates, and inclusion bodies significantly burden the cellular protein 

homeostasis systems.  Additionally, with advancing age, there is an overall decline in proteostasis 

machinery, including the molecular chaperone network, and this further overwhelms the cellular 

machinery (Hipp et al., 2014; Labbadia and Morimoto, 2015; Gorenberg and Chandra, 2017; 

Koyuncu et al., 2017).  The aggregates and IBs also physically trap proteasomal components and 

engage with the chaperone machinery, depleting their availability and further compounding the 

proteotoxic stress (Hipp et al., 2014; Yerbury et al., 2016; Sweeney et al., 2017; Hipp et al., 
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2019b).  The increased aggregation and decreased proteostasis capacity amplify the protein 

misfolding toxicity by feeding onto one another, leading to a mutually exacerbating self-

propagating cycle, resulting in proteostasis collapse and cell death (Hipp et al., 2014; Labbadia 

and Morimoto, 2015; Sweeney et al., 2017; Hipp et al., 2019b).  Additionally, when cells are 

under chronic stress, as in the case of ND, they go into a maladaptive stress response, wherein 

sustained HSR activation leads to a general protein folding deficiency and cells become refractive 

to additional stressors (Roth et al., 2014; Klaips et al., 2018; Hipp et al., 2019b). 

1.3.1 Molecular chaperones in proteostasis 

Molecular chaperones (Hsps or Heat shock proteins) are critical in maintaining cellular 

proteostasis (Hartl et al., 2011; Kim et al., 2013).  Many are constitutive, and some are upregulated 

under stress conditions (Ali et al., 2010).  Hsps participate in a range of housekeeping and stress-

induced protein folding, trafficking, and quality control activities (Kim et al., 2013; Smith et al., 

2015; Balchin et al., 2016; Ciechanover and Kwon, 2017; Nillegoda et al., 2018; Zarouchlioti et 

al., 2018).  Hsps provide hydrophobic cover to nascent polypeptides, prevent non-native 

interactions within the polypeptide and with other proteins, assist in their de novo folding, 

assembly and intracellular localisation, translocation of organellar and secretory proteins across 

membranes, and modulate the activation of regulatory proteins (Hartl and Hayer-Hartl, 2009; Kim 

et al., 2013; Mannini and Chiti, 2017; Nillegoda et al., 2018).  Under conditions of stress, they 

prevent aberrant aggregation of proteins, are integral to disaggregation mechanisms, unfold 

misfolded proteins, provide optimal conditions for their refolding, and target terminally misfolded 

proteins for degradation (Hartl and Hayer-Hartl, 2009; Kim et al., 2013; Radons, 2016; 

Zarouchlioti et al., 2018). 

Upon proteotoxic stress, the well-conserved heat shock response (HSR) is activated in cells by 

the activation of the constitutively expressed Hsf1 (Heat Shock Factor 1) (Akerfelt et al., 2010; 

Anckar and Sistonen, 2011; Neef et al., 2011; Labbadia and Morimoto, 2015).  Under proteotoxic 

conditions, an increase in protein misfolding promotes the dissociation of the Hsp90 complex 

from HSF1, thereby, the removal of Hsp90-mediated repression on Hsf1, leading to the 



78 
Chapter 1 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

conversion of inactive monomers of Hsf1 into DNA-binding active trimers, that upon nuclear 

translocation, bind to HSEs (heat shock elements) upstream of Hsp genes and initiate their 

transcription.  Downstream products of HSR activation, like molecular chaperones Hsp90, Hsp70 

and Hsp40, negatively regulate the HSF-1 activation pathway, thereby modulating the duration 

and intensity of the HSR per cellular needs.  HSR and UPR work to restore cellular proteostasis 

by decreasing protein synthesis and increasing the production and activation of PN components 

such as chaperones (Zarouchlioti et al., 2018; Shacham et al., 2019). 

Molecular chaperone families are named according to the molecular weight of their members.  

These include the Hsp27 (HspB or small Hsps or sHsps), Hsp40 (DnaJ or JDP), Hsp60 (HspD or 

chaperonins), Hsp70 (HspA), Hsp90 (HspC), Hsp110 (HspH) (Kampinga and Bergink, 2016; 

Reis et al., 2016).  Among the mammalian chaperones, Hsp70 and Hsp90 are the central effectors 

of proteostasis, acting in association with the Hsp40 co-chaperones as part of a multi-protein 

complex (Reis et al., 2016).  Hsp70, Hsp90 and chaperonins are involved in de novo protein 

folding and refolding through multiple ATP-dependent cycles of folding and release (Hartl and 

Hayer-Hartl, 2009; Mattoo and Goloubinoff, 2014; Brehme and Voisine, 2016b). 

1.3.2 Hsps in HD 

Hsps play a central role in the management of neurodegenerative diseases like HD.  They aid by 

modifying aggregation and exerting aggregation-independent effects such as preventing apoptosis 

and inflammatory response.  The levels of ATP-dependent Hsps and their capacity to aid 

proteostasis reduce with age, contributing to the middle-age onset of HD and other NDs (Taylor 

and Dillin, 2011; Brehme et al., 2014a; Yerbury et al., 2016; Hipp et al., 2019b; Margulis et al., 

2020).  Some of these effects and the role of Hsps in neuroprotection are discussed in Chapter 5.  

HTT is an Hsp system client and, like many other polyQ proteins, is bound by components of 

chaperone machinery such as Hsp40 and Hsp70 (Cummings et al., 1998; Chai et al., 1999; Jana, 

2000; Muchowski et al., 2000; Kim et al., 2002; Shimura et al., 2004b; Wyttenbach, 2004b; 

Dedmon et al., 2005; Muchowski and Wacker, 2005; Scior et al., 2018).  I discuss a few examples 

of the usefulness of Hsps in ameliorating HD pathogenicity below. 
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In a cellular model of HD, overexpression of Hsp40 or Hsp70 suppresses aggregation and cell 

death, with co-expression of the two being the most effective (Jana, 2000).  In another cellular 

HD model, Hsp40 overexpression inhibits HTT aggregation and independently suppresses cell 

death by inhibiting the activation of caspase-3 and caspase-9 (Zhou et al., 2001).  Overexpression 

of Hsp40 or Hsp70, or both improves many neurodegenerative phenotypes in Drosophila polyQ 

and HD models, including rescuing external eye and retinal degeneration, neurotoxicity, and cell 

death, enhancing motor performance and survival, suppressing aggregation, and increasing 

detergent-soluble polyQ (Jana, 2000; Kazemi-Esfarjani and Benzer, 2000; Ghosh and Feany, 

2004; Iijima-Ando et al., 2005; Fayazi et al., 2006b; Branco et al., 2008; Liévens et al., 2008).  

Overexpression of Hsp40 improves neurological performance, decreases mutant HTT aggregate 

load, increases its solubility, and these effects were dependent on Hsp40-ubiquitin interaction and 

cooperation with Hsp70 in the R6/2 mouse model of HD (Labbadia et al., 2012).  Overexpression 

of the Hsp40 DNAJB6 in R6/2 mice decreases aggregation, delays motor symptoms and enhances 

survival (Kakkar et al., 2016).  However, overexpression of Hsp70 in R6/2 mice has mixed 

effects.  One study shows a delay in expanded HTT aggregation without affecting disease 

phenotypes (Hay, 2004), while another shows an effect on disease progression without affecting 

aggregation (Hansson et al., 2003).  Deleting Hsp70 in the same mouse model worsens physical, 

behavioural, and neurological symptoms and increases inclusion body size without affecting 

fibrillar aggregates (Wacker et al., 2009). 

Over-expression of the co-chaperone and ubiquitin ligase CHIP (E3 ubiquitin ligase C-terminal 

Hsp70-interacting protein) promotes ubiquitination and degradation of expHTT, suppresses 

aggregation, cell death and neurotoxicity in cell culture, primary neurons, and a zebra fish HD 

model (Jana et al., 2005; Miller et al., 2005).  HD mice haplo-sufficient for CHIP have accelerated 

HD progression (Miller et al., 2005).  BAG-1 (BAG for Bcl-2 associated athanogene), a NEF 

(Nucleotide exchange factor), associates with HTT and protects against cell death in an HD 

cellular model (Jana and Nukina, 2005) and reduces mutant HTT aggregates and enhances its 

clearance via proteasome in cells and protects against photoreceptor loss in a Drosophila HD 

model (Sroka et al., 2009). 

Full-length HTT proteins, both expanded and wild-type, are Hsp90 clients, and upon Hsp90 

inhibition, mHTT is degraded by the proteasome without HSR induction (Baldo et al., 2012).  
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Other studies show that upon Hsp90 inhibition, heat shock response is initiated via HSF 

activation, and the mHTT aggregation and toxicity are ameliorated in HD cellular, fly and mouse 

models (Sittler et al., 2001; Herbst and Wanker, 2007; Fujikake et al., 2008; Labbadia et al., 

2011).  By binding to N-terminal fragments of HTT, engaging the deubiquitinase USP19 

(ubiquitin-specific protease 19) that deubiquitinates mHTT, promoting its accumulation and 

aggregation, Hsp90 prevents mHTT’s proteasomal degradation (He et al., 2017). 

TRiC, a CCT-based chaperonin complex, inhibits an amyloidogenic switch, reduces SDS-

insoluble aggregates, and rescues cellular toxicity in yeast and mammalian cells (Behrends et al., 

2006; Tam et al., 2006; Tam et al., 2009).  CCT-based chaperonins decrease expHTT aggregation 

possibly via a cap and contain a mechanism (i.e. capping expHTT fibrillar ends and encapsulating 

oligomers), thus inhibiting fibril growth and containing reactive oligomers (Shahmoradian et al., 

2013; Darrow et al., 2015).  Treating HD mice with CCT1 and CCT3 decreased expHTT levels 

by promoting proteasomal degradation, improving BDNF axonal transport, and rescuing striatal 

neuronal atrophy (Zhao et al., 2016a).  A recent study in Drosophila shows that some of the CCT’s 

neuroprotective effects could stem from its requirement in autophagosomal degradation (Pavel et 

al., 2016). 

sHSPs such as αB-crystallin (ABC) or HspB5 are down-regulated in HD mice (Zabel et al., 2002; 

Hay, 2004; Oliveira et al., 2016).  In cell culture, ROS is reduced without affecting HTT 

aggregates by overexpressing HspB1 (Hsp27) (Wyttenbach et al., 2002).  In contrast, SDS-

insoluble aggregates are reduced (Carra et al., 2008), and aggregates are cleared via 

macroautophagy in a BAG-3-dependent manner by overexpressing HspB8 (Hsp22) (Carra et al., 

2008).  In Drosophila, expanded polyQ-induced aggregation and compound eye degeneration are 

prevented by overexpressing HSPB5 (ABC) and HSPB7 (cvHSP) (Vos et al., 2010; Tue et al., 

2012), which in BACHD mice (bacterial artificial chromosome (BAC)-mediated transgenic HD), 

improves motor, cognitive and neurological features, and delays HD onset and progression non-

cell-autonomously (Oliveira et al., 2016).  In Drosophila, dHsp110 is a potent suppressor of HTT 

aggregation and neurodegeneration (Zhang et al., 2010c).  
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1.3.3 Protein degradation mechanisms in HD 

Both the UPS and autophagy pathways are involved in the clearance of expHTT: their 

downregulation promotes aggregation and toxicity, whereas their enhancement promotes expHTT 

clearance and ameliorates aggregation and toxicity (Sarkar and Rubinsztein, 2008; Li et al., 2010; 

Juenemann et al., 2013; Rai et al., 2019).  HTT is ubiquitinated (Kalchman et al., 1996; Jana et 

al., 2005; Jana and Nukina, 2005); however, the ability of UPS to degrade N-terminal fragments 

containing polyQ expansions was controversial: some studies showing UPS’s inability to degrade 

them (Holmberg et al., 2004; Venkatraman et al., 2004; Raspe et al., 2009) versus others showing 

their degradation by UPS (Michalik and Van Broeckhoven, 2004; Juenemann et al., 2013).  The 

resolution came from studies showing efficient degradation of polyQ containing N-terminal 

fragments by the UPS, provided expHTT forms are relatively unfolded, soluble, in a non-

aggregated state or as incipient aggregates that can be dissociated by the chaperone system 

(Verhoef et al., 2002; Hipp et al., 2014).  However, this pathway gets compromised throughout 

HD, accumulating insoluble Ubiquitin-containing aggregates (Sieradzan et al., 1999; Waelter et 

al., 2001; Mitra et al., 2009; Li et al., 2010).  Proteasomal saturation, age-dependent proteasomal 

decline, accumulation of larger protein aggregates, and insoluble inclusions shift the expHTT 

clearance load towards autophagic degradation (Hipp et al., 2014; Martin et al., 2015).  Later 

studies suggest the involvement of both systems in expHTT clearance depending on the expHTT 

form, solubility, length of N-terminal HTT, protein context, cellular location (lack of autophagy 

in the nucleus and presence of nuclear E3-ligase), age and disease-stage and slower clearance of 

expHTT in the axons than cell body and that of aggregated expHTT than diffuse versions (Iwata 

et al., 2005; Li et al., 2010; Juenemann et al., 2013; Tsvetkov et al., 2013; Zhao et al., 2016b). 
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Chaperones in protein degradation: The chaperone system is also responsible for determining 

whether misfolded and aggregated proteins will undergo another cycle of 

unfolding/refolding/disaggregation or be directed towards degradation on a case-by-case basis, 

often referred to as the triage decision (Esser et al., 2004; Sharma et al., 2010; Fernández-

Fernández and Valpuesta, 2018; Mogk et al., 2018).  The Hsp70 promotes ubiquitination and 

degradation of terminally misfolded proteins via its interactions with the co-chaperone CHIP (an 

E3 ubiquitin ligase).  The proteasome coupling factor BAG1 (having a ubiquitin-like domain) 

interacts with the 26S proteasome, a pathway referred to as Chaperone-assisted Proteasomal 

Degradation (CAP) (Lüders et al., 2000; Alberti et al., 2003; Kettern et al., 2010; Behl, 2011).  

CHIP targets many polyQ proteins, including HTT, for proteasomal degradation and ameliorates 

neurodegenerative phenotypes (Jana and Nukina, 2005; Miller et al., 2005; Al-Ramahi et al., 

2006; Adachi et al., 2007; Choi et al., 2007; Morishima et al., 2008; Williams et al., 2009).  A 

pathway activated upon proteotoxic stress that couples the Hsp70-Hsp110-based disaggregase 

complex with the 26S proteasome via Ubiquilin-2 (UBQLN2) that colocalises with aggregated 

HTT and facilitates its clearance has been described (Hjerpe et al., 2016). 

Impairment of ubiquitin-proteasomal system: In HD, there are contradictory reports: an impaired 

UPS (Bence et al., 2001; Jana et al., 2001; Waelter et al., 2001; Venkatraman et al., 2004; Bennett 

et al., 2005) and a functionally competent UPS (Bowman et al., 2005; Bett et al., 2006; Tydlacka 

et al., 2008; Maynard et al., 2009; Schipper-Krom et al., 2014).  This contradiction has been 

addressed by the finding that UPS impairment is transient, and its function recovers, coinciding 

with the formation of inclusion bodies (Mitra et al., 2009; Ortega et al., 2010).  Probable causes 

for impaired proteasomal activity in HD are the sequestration of UPS components in inclusions 

and the arrest of proteasome due to its interaction with aggregation-resistant forms of expHTT 

(Jimenez-Sanchez et al., 2017; Harding and Tong, 2018b).  Reduced proteasomal activity is now 

considered a secondary effect of expHTT aggregation, not a cause.  It reflects the inability of cells 

to maintain protein homeostasis: the disruption of protein-folding-homeostasis by diffuse 

misfolded expHTT and by chaperone sequestration into aggregates, resulting in a diversion of 



83 
Chapter 1 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

cellular proteins to the UPS, competing for the limited capacity of 26S and overloading the UPS 

with an excess of other misfolded and (or) ubiquitinated substrate proteins (Hipp et al., 2012a; 

Bersuker et al., 2016).  It is now suggested that proteasomes are not irreversibly sequestered in 

expHTT aggregates; they are recruited to inclusions dynamically and reversibly without affecting 

their activity (Schipper-Krom et al., 2014). 

Autophagy defects: Lysosome-mediated macroautophagy (MA) plays a critical role in aggregate 

clearance and clears both soluble and aggregated forms of expHTT (Ravikumar et al., 2002; Qin 

et al., 2003; Croce and Yamamoto, 2019).  WT HTT is an autophagy scaffold involved in cargo 

recognition, autophagy initiation and promotion (Ochaba et al., 2014; Wong and Holzbaur, 2014; 

Rui et al., 2015; Ashkenazi et al., 2017).  Defective autophagy in HD is attributed to expHTT-

mediated effects of inefficient recognition and loading of the cytosolic cargo, particularly 

organelles, into autophagosomes (Martinez-Vicente et al., 2010), inhibition of Beclin-1 regulated 

starvation-induced autophagy by either sequestering Beclin-1 in inclusions or by suppressing the 

inhibitor of Beclin-1 inactivator (Mealer et al., 2014).  The increase in autophagosomes largely 

devoid of cargo in HD is attributed to expHTT-induced defective cargo loading (Ravikumar et 

al., 2004; Martinez-Vicente et al., 2010). 

The fate of misfolded or aggregated proteins: Chaperones also target proteins to autophagic 

degradation via Chaperone-Mediated Autophagy (CMA) and Chaperone-assisted Selective 

Autophagy (CASA or BAG-3 mediated selective Macroautophagy, also known as Aggrephagy) 

(Behl, 2011; Kaushik and Cuervo, 2012; Qi and Zhang, 2014).  CMA is mediated by the 

recognition of Hsc70 ( HspA8) substrates and certain cochaperones and its association with the 

lysosomal LAMP-2A receptor (Lysosome-associated membrane protein 2A) (Behl, 2011).  CMA 

is mediated by the recognition of Hsc70 ( HspA8) substrates and certain cochaperones and its 

association with the lysosomal LAMP-2A receptor (Lysosome-associated membrane protein 2A) 

(Behl, 2011).  CASA involves the recognition of ubiquitinated moieties on aggregate-prone 

proteins and aggresomes by the ubiquitin-binding autophagic cargo receptors such as 

p62/SQSTM1 (sequestosome 1) and NBR1 (neighbour of BRCA1 gene 1), in complex with 

HSc70, HspB8 and co-chaperone BAG3 and recruitment into the LC3-II containing double-
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membraned autophagosome (Lamark and Johansen, 2012; Stürner and Behl, 2017; Jacomin and 

Nezis, 2019).  CMA and CASA are involved in the clearance of aggregate-prone expHTT (Carra 

et al., 2005; Carra et al., 2008; Fuchs et al., 2009; Thompson et al., 2009; Bauer et al., 2010; Koga 

et al., 2011; Qi et al., 2012; Qi and Zhang, 2014).  Recently unresolved or terminally aggregates, 

under certain situations, were shown to be ejected from the cell into the extracellular space via 

large membrane–surrounded vesicles called exophers in a lysosome-dependent manner in 

Caenorhabditis elegans (Melentijevic et al., 2017). 

Hsps also promote the active sequestration of aggregated proteins and that of small oligomeric 

reactive species, localising their toxicity and their conversion into larger, relatively benign 

aggregates or deposits (Behrends et al., 2006; Sontag et al., 2014; Mannini and Chiti, 2017; 

Sontag et al., 2017; Tittelmeier et al., 2020a) (discussed in Chapter 5). 

Disaggregases typically utilise ATP hydrolysis energy for unfolding and solubilising large protein 

aggregates (Mattoo and Goloubinoff, 2014; Sousa and Lafer, 2019).  The mammalian 

disaggregase machinery comprises a tri-chaperone system of Hsp70 (either HspA1/Hsp70 or 

HspA8/Hsc70, hHsc70 having superior efficiency) in association with Hsp40 (A and B classes) 

and Hsp110 (HspH1-3), a NEF (Shorter, 2011; Rampelt et al., 2012; Mattoo and Goloubinoff, 

2014; Duncan et al., 2015a; Gao et al., 2015; Nillegoda and Bukau, 2015; Nillegoda et al., 2018; 

Scior et al., 2018; Mayer and Gierasch, 2019).  Through their synergistic action, this versatile 

disaggregase is known to solubilise both disordered amorphous aggregates and ordered 

aggregates such as amyloids (Shorter, 2011; Rampelt et al., 2012; Gao et al., 2015; Mogk et al., 

2018; Nillegoda et al., 2018; Scior et al., 2018; Sousa and Lafer, 2019; Wentink et al., 2020).  

Concerning HTT, a recent study in cell culture and a C elegans model shows that the disaggregase 

comprising of HSC70 (Hsp-1), DNAJB1(DNJ-13) and Hsp110 (Apg2), in the presence of ATP, 

suppresses HTTExon1Q48 amyloid fibril formation and reverses its aggregation and nearly 

completely disaggregates the HTTExon1Q75 fibrils (Scior et al., 2018).  In Drosophila, the 

finding of a dHsp110 protein named HSC70cb (human APG-2), interacting with DnaJ-1 (human 

DNAJB1) to suppress polyQ toxicity and HD-induced eye degeneration, hints at a disaggregate-

like property (Kuo et al., 2013b).  
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1.4 DIFFERENTIAL VULNERABILITY IN HD 

Most neurodegenerative diseases exhibit differential neuronal vulnerability: a particular set of 

neurons or brain regions are more susceptible to disease-protein-mediated toxicity, dysfunction 

and cell death than others despite the widespread expression of the protein across the brain (Fu et 

al., 2018).  In HD, the striatal and, to a lesser extent, the cortical neurons, particularly medium 

spiny GABAergic striatal projection neurons (75% of primate striatal neurons), show greater 

sensitivity to expHTT-mediated toxic effects (Morigaki and Goto, 2017).  Within the striatum are 

regional and temporal differences in the extent of projection neuron loss (Rüb et al., 2015).  Even 

within the MSNs,  differential vulnerability depends on the projection targets, neurochemical 

content, and receptor.  Those in the indirect pathway are more vulnerable than those in the direct 

pathway (Han et al., 2010; Fu et al., 2018).  There is no evidence of a significantly high expression 

of WT or expanded HTT in the regions most affected (Li et al., 1993; Gutekunst et al., 1995; Ide 

et al., 1995).  However, expanded polyQ tract lengths are longer in the striatum than in the cortex 

(Kennedy et al., 2003; Shelbourne et al., 2007a).  The physiological basis for this selectivity is a 

subject of ongoing research.  It relates to the differences in intrinsic biochemistry, anatomy, and 

connectivity of the neurons, preferentially pre-disposing them to disease protein toxicity.  A 

common theme of selectively vulnerable neuronal populations across several NDs is a narrowly 

constrained and tightly controlled firing property highly dependent on calcium trafficking and 

signalling (Roselli and Caroni, 2015).  Probable mechanisms contributing to differential neuronal 

susceptibility in ND are the neuronal proteostasis machinery, i.e., chaperones, protein clearance 

pathways and their ability to care for misfolded and aggregated proteins, genetic variability in the 

disease-protein expression and the propagation property of aggregate-prone proteins (Fu et al., 

2018).  Since striatal neurons depend on cortical BDNF for their function and survival, expHTT-

induced reduction in BDNF contributes to striatal vulnerability (Zuccato and Cattaneo, 2014).  A 

few specific examples are reduction of neurotrophic inputs to striatum in the form of BDNF, 

reduction in the metabolic activator PGC-1α (PPAR gamma coactivator 1alpha) in the striatal 

MSNs and dysregulation of neuroprotective factors in striatum like the striatum-enriched guanine 
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nucleotide-binding protein Rhes; glutamate excitotoxicity via striatum-enriched NR2 subunit 

(NR2B) of NMDAR that enhances the NMDA channel permeability, alters the pro-survival 

synaptic NMDAR and pro-apoptotic extra synaptic NMDAR, and increases sensitivity of MSN 

to metabotropic and ionotropic glutamate receptor agonists; high energy demand of the MSNs to 

maintain hyperpolarized state and low levels of free radical scavenger enzymes (SOD1 and 

SOD2), rendering them more susceptible to mitochondrial dysfunction; age-dependent reduction 

in calcium-binding proteins like calbindin, thus, altering Ca2+ homeostasis; lower UPS activity 

and autophagic capacity of neurons in the striatum than the cortex, insufficient activation of Hsps 

and the HSR in the striatum, reducing the capacity of MSNs in tolerating proteostasis stressors; 

MSNs’ higher propensity for somatic expansion (Kovalenko et al., 2012) and contributions from 

proteins selectively enriched in striatal neurons like STEP (striatal-enriched protein tyrosine 

phosphatase) and PDE10A (phosphodiesterase 10A) (reviewed in (Margulis and Finkbeiner, 

2014; Morigaki and Goto, 2017; Sala et al., 2017; Fu et al., 2018; Creus-Muncunill and Ehrlich, 

2019)).  Non-cell-autonomous and circuit-based mechanisms in HD and the role of non-neuronal 

cells are now being investigated to explain the differential vulnerability in HD (Creus-Muncunill 

and Ehrlich, 2019). 
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1.5 PROGRESS IN HD THERAPY: FROM THE 

LAB TO THE CLINIC 

Genetic, small molecular, and pharmacological interventions targeting a wide variety of cellular 

pathways across various cellular and animal models with the potential for altering Huntington’s 

disease progression have been reported (reviewed in (Jimenez-Sanchez et al., 2017; Dickey and 

La Spada, 2018; Ghosh and Tabrizi, 2018a; Kim et al., 2021a; Jurcau and Jurcau, 2022)).  Large-

scale screens have uncovered many therapeutic candidates in vitro and in vivo (reviewed in 

(Calamini et al., 2013; Lenz et al., 2013; Lewis and Smith, 2016; Krench and Littleton, 2017; 

Costa and Maciel, 2022)).  In this section, I briefly discuss disease-modifying treatments under 

clinical trials, potential pre-clinical candidates interfering with expHTT aggregation and 

treatments providing symptomatic relief.  Currently, most existing treatments provide 

symptomatic relief, and no approved disease-modifying treatments exist (Tabrizi et al., 2019).  

However, research on neuroprotective therapies to prevent disease onset and halt or slow the 

disease progression is limited but promising (Palaiogeorgou et al., 2023). 

1.5.1 expHTT-lowering therapies  

One promising avenue currently undergoing clinical trials is the expHTT-lowering therapies, 

either by reducing synthesis or enhancing degradation.  These could be DNA-targeting, RNA-

targeting, or protein-targeting. 

DNA-targeted approaches: These directly target the DNA of the HTT gene by using a protein-

coding sequence encapsulated in a viral vector that transduces cells upon intracranial injection to 

produce a functional, non-native therapeutic protein (reviewed in (Wild and Tabrizi, 2017)).  

These have the potential to ameliorate all aspects of HD.  Zinc finger proteins (ZFPs)- have a Zn 

finger array that can bind specific DNA sequences and a functional domain that acts on the DNA 

to cleave or regulate gene expression (Klug, 2010).  Zinc finger transcription factors (ZFTRs) 

have been developed that suppress expHTT explicitly (Garriga-Canut et al., 2012; Zeitler et al., 

2014) and are now in the pre-clinical stages of testing (TAK-686 and ZF-KOX1) (Ferguson et al., 

2022).  Clustered, regularly interspaced short palindromic repeats (CRISPR) associated system 9 
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(Cas9) combined with a synthetic guide RNA (gRNA) generates a construct that can cut DNA 

with high precision at any chosen site and can be used for targeted genome editing.  The potential 

for CRISPR/Cas9 in HD is tantalising: shortening CAG length in expanded alleles to regular 

length, inactivating mutant allele by inserting a missense mutation or stop codon and upregulating 

the WT allele (Cox et al., 2015).  It has been successfully used in cell and animal models to 

inactivate selectively and permanently the mutant HTT (Shin et al., 2016; Yang et al., 2017).  

Further testing in large animal models is required for these strategies before clinical testing in HD 

patients. 

RNA-targeted approaches: This approach involves reducing the translation of HTT mRNA using 

antisense oligonucleotides (ASOs), RNAi agents, or small-molecule-like splicing modulators, 

and show symptomatic and molecular and neuronal improvements (reviewed in (Wild and 

Tabrizi, 2017; Tabrizi et al., 2022)).  ASOs are synthetic single-stranded DNA molecules that 

bind pre-mRNA in the nucleus, targeting them for degradation by RNase H.  Two clinical trials 

have been completed with ASOs for HD, the Ionis/Roche ASO program (HTTRX / RG6042) and 

the Wave Life Sciences program (WVE120101 and WVE-120102) (Barker et al., 2020; Tabrizi 

et al., 2022).  A third trial with WVE-003 is underway.  Both the completed trials report a lack of 

target engagement and expHTT lowering in the CSF (Kingwell, 2021).  Current ASOs, thus, 

suffer from the lack of animal models with the relevant SNPs and target engagement, off-target 

inflammatory effects, and sufficient expHTT lowering in target structures like the caudate and 

putamen nuclei.  In contrast, allele-specific ASOs targeting CAGs have off-target effects of 

binding to other RNAs with CAGs (Tabrizi et al., 2022). 

RNAi involves double-stranded RNAs like short interfering RNA (siRNA), short hairpin RNA 

(shRNA) or microRNA (miRNA) acting on mature, spliced, cytosolic mRNA, targeting them for 

degradation by the RNA-induced silencing complex (RISC).  RNAi methods show promise and 

are under development (e.g. AMT-130 miRNA is in Phase I clinical trials) but suffer from 

delivery and distribution challenges in the brain.  Work is also underway to identify small 

molecular agents that lower expHTT levels through selective modulation of mRNA splicing, are 

brain penetrant, and can be orally administered (Bhattacharyya et al., 2021).  Branaplam 
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(LMI070), a splicing modulator, decreases WT and expHTT (Keller et al., 2022), but a Phase 2 

trial was halted due to it causing nerve damage.  Another candidate under Phase 2 clinical trials 

is the PTC518. 

Protein-targeted approaches: expHTT clearance is achieved by upregulating its ubiquitination 

and proteasomal degradation or macroautophagy via genetic and pharmacological methods 

(reviewed in (Harding and Tong, 2018b; Barker et al., 2020; Jarosińska and Rüdiger, 2021; Kim 

et al., 2021a)).  The UPS can be exploited to target specific substrates for degradation via 

proteolysis targeting chimaeras (PROTACs) and has been demonstrated successfully to degrade 

expHTT in cell lines (Sakamoto et al., 2001; Tomoshige et al., 2017).  Trim-Away, an antibody-

based recognition of HTT by cytosolic antibody receptor TRIM21, is also an E3 ubiquitin ligase 

(Clift et al., 2017).  Autophagic inducers that have shown promise in cell and animal models and 

have potential for clinical trials include Felodipine, an L-type calcium channel blocker that 

induces mTOR-independent autophagy (Siddiqi et al., 2019), and autophagosome-tethering 

compounds (ATTEC).  These molecular glues interact with expHTT and LC3 (Li et al., 2019b) 

and can cross the BBB.  Induction of expHTT degradation via chaperone-mediated autophagy by 

engineering a fusion protein containing polyQ-binding peptide 1 (QBP1) and HSC70-binding 

motif and amelioration of HD symptoms has been demonstrated in mice model (Bauer et al., 

2010). 

Though adeno-associated viral (AAV) vectors are the most used delivery method, they are single-

shot vectors, not allowing for repeated administration or dosage correction.  They also elicit 

immune responses, and their tissue distribution is variable.  Some of the challenges facing HTT 

lowering therapies are allele-selective lowering to expHTT alone, delivery of disease-modifiers 

directly into the brain and to specific CNS targets, lowering toxicity, penetration and distribution 

of AAV-delivered agents into the CNS, optimising dosage, the degree of HTT lowering, the 

disease stage of intervention and the long-term effects of HTT-lowering treatments in HD patients 

(Barker et al., 2020; Tabrizi et al., 2022). 
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1.5.2 DNA repair modifiers 

Genome-wide studies on HD patients have uncovered DNA repair proteins as the primary 

modifier of HD progression, for example, Fan1.  This nuclease is protective and a component of 

a mismatch repair pathway like MSH3 that drives CAG expansion (Moss et al., 2017; Lee et al., 

2019; Iyer and Pluciennik, 2021; Wheeler, 2021).  Their potential in HD therapeutics is being 

explored.  An ASO TTX-3360 that reduces mRNA for DNA damage proteins has finished pre-

clinical trials (Wiggins and Feigin, 2021). 

1.5.3 Cell replacement therapy 

Cell therapy is the restoration of degenerated neurons using stem cells procured from normal 

developing foetal striatum or induced pluripotent stem cell-derived neuronal stem cells, 

mesenchymal stem cells, or autologous stem cells, with future potential for clinical translation 

(Björklund and Parmar, 2020; Ferguson et al., 2022).  They also improve regeneration capacity 

and provide pro-survival factors.  Clinical trials with long-term intravenous injections of stem 

cells are ongoing. 

1.5.4 expHTT-interfering therapies 

Antibody-based therapies: These either directly interact with expHTT, interrupting its 

downstream pathology or target specific proteins promoting HD pathogenesis (reviewed in 

(Ferguson et al., 2022)).  For example, an intrabody INT41 targeting the PRD, the proline-rich 

region (PRR) on the carboxyl (3′) side of the polyglutamine expansion interfering with expHTT-

mediated cellular pathogenesis (Amaro and Henderson, 2016), is under pre-clinical trials.  

ANX005, a monoclonal antibody specific to C1q, inhibiting activation of the classical 

complement cascade, is under Phase 2 clinical trials. 

Other small molecule therapies: Examples of small molecular drugs undergoing clinical trials 

are pridopidine (formerly ACR16), a sigma-1 receptor agonist increasing BDNF production and 

a dopamine stabilizer affecting striatal pathways contributing to motor deficits, Sage-718, an 

NMDA receptor antagonist, resveratrol, a naturally occurring antioxidant and P110 that improves 
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mitochondrial health ((Ferguson et al., 2022), from https://hdsa.org/hd-research/therapies-in-

pipeline/# and ClinicalTrials.gov that provide a listing of HD therapies in various stages of basic, 

pre-clinical and clinical stages). 

1.5.5 Anti-aggregation strategies 

This strategy targets the various expHTT conformers like monomers, oligomers and soluble and 

insoluble aggregates by altering the kinetics and flux of the aggregation pathway either by 

preventing the formation of a “toxic” conformer (e.g. by increasing the energy barrier of the polyQ 

transition to β-sheet) or destabilisation them and converting them into benign forms or 

stabilization of a “benign” conformer (e.g. by Hsps) or directing terminally misfolded conformers 

to degradation (see above: protein-targeted approaches) (reviewed in (Denis et al., 2019; 

Minakawa and Nagai, 2021; Chopra et al., 2022; van der Bent et al., 2022)).  Examples of 

inhibitors of polyQ and expHTT aggregation are intrabodies like C4 scFv (first single-chain Fv; 

targeting N17) and rAAV6-INT41 (targeting the PRD), peptides like QBP1 (prevents toxic β-

sheet conformation transition of the polyQ monomers), small chemical molecules like methylene 

blue, curcumin, arginine, GLYN122, trehalose, actinomycin D, Geldanamycin, cyclohexanol, a 

few of which are molecular chaperone modifiers and single-stranded oligonucleotide aptamers. 

1.5.6 Therapies providing symptomatic relief  

The commonly prescribed medications for HD offer only symptomatic relief: reduce chorea (e.g. 

tetrabenazine and deutetrabenazine that reversibly inhibits VMAT2 (Vesicular Monoamine 

Transporter 2) and deplete central monoamines like dopamine, anti-glutamatergic like 

amantadine and riluzole), improve behavioural symptoms (e.g. atypical anti-psychotic drugs 

lolanzapine and like risperidone that are monoaminergic receptor inhibitors), reduce depression 

(e.g. antidepressants that are generally serotonin reuptake inhibitors (SSRIs) like citalopram and 

fluoxetine) and stabilise mood (e.g. anticonvulsants like sodium valproate and carbamazepine that 

have myriad effects including downregulation of excitatory neurotransmitters and upregulation 

of inhibitory ones) (reviewed in (Dash and Mestre, 2020; Ferguson et al., 2022)).  However, these 

https://hdsa.org/hd-research/therapies-in-pipeline/
https://hdsa.org/hd-research/therapies-in-pipeline/
https://beta.clinicaltrials.gov/
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are replete with side effects like weight gain, sexual dysfunction, dizziness, gastrointestinal 

disturbances, depression, insomnia, and skin conditions. 

Non-pharmacological, non-invasive lifestyle adaptations in HD management include physical 

therapy, exercise and walking, balance aids for impaired balance and gait, speech therapy and 

electronic communication devices for speech impairments, diet modifications, and liquid food 

supplements for patients having eating difficulties and suffering from malnutrition, and regular 

constant psychological counselling (Ghosh and Tabrizi, 2018b; Ferguson et al., 2022).  Likewise, 

interventions to provide relief from sleep and circadian disruptions in HD are an active area 

of research.  Screening for strategies to alleviate circadian impairments associated with HD 

and understanding their mode of action using a Drosophila model of HD is at the crux of this 

study. 
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1.6 CIRCADIAN RHYTHMS 

This study focuses on circadian rhythms, their disruptions in Huntington’s Disease and 

investigating strategies to improve them.  Humans exhibit circadian rhythms, patterns of daily 

repeatability (~24h periodicity) that are generated by endogenous timekeepers, in almost every 

aspect of their physiology, behaviour and performance: rhythms in core body temperature, 

cortisol, urine volume, activity, the timing of sleep/wake, REM sleep, memory processes, 

alertness, cognition, executive functions, reaction time, mood, reward and hunger (Hastings et al., 

2007; Benca et al., 2009; Valdez et al., 2012; Broussard et al., 2017a; Logan and McClung, 2019; 

Yalçin et al., 2022). 

1.6.1 Basics of a circadian system 

A circadian system is primarily made up of three major components: (a) an input pathway to 

transmit environmental signals to the self-sustained circadian oscillator, (b) the endogenous 

circadian oscillator/ pacemaker itself, and (c) output pathways by which the circadian pacemaker 

exerts its rhythmic influence on the biochemistry, physiology, and behaviour of an organism (Fig 

1.6).  The core circadian molecular oscillators are often interlocked transcriptional/translational 

feedback loops (TTFLs) comprising positive and negative elements, wherein transcriptional 

activators initiate transcription, followed by the translation of transcriptional repressors that 

inhibit their transcription by binding to and inactivating their transcriptional activators. 
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Fig 1. 6 Basic module of a circadian system. 

The fundamental components of a circadian system are an input, a self-sustained oscillator, and an 

output.  In its simplest form, the molecular clockwork is an autoregulatory feedback loop.  An input 

could be various factors such as light, temperature, food and social interactions that act as zeitgebers, 

enabling the circadian clock to synchronize with the environmental cycles.  Output signals relay time 

information from the core clock to the rest of the organism.  Output pathways can be described at 

multiple levels: rhythmic gene expression downstream of the central oscillator, anatomic 

outputs/transmitter outputs of the pacemaker cells and organismal output in terms of temporally 

organized behaviour and physiology. 

1.6.2 Relevance of circadian clocks 

Circadian rhythms are governed by internal molecular clocks (self-sustained transcriptional/ 

translational feedback loops) that influence various physiological outputs, translating to rhythms 

in physiology and behaviour.  Circadian clocks help organisms adapt to daily cycles in 

environmental factors like light, temperature, and humidity and cycles in other external factors 

like food and mate availability and avoidance of predators and harsh conditions.  Anticipating and 

scheduling various biological processes at favourable times of the day following external changes 

increases the organism’s chances of survival and mating, thereby its fitness, thus conferring an 

external adaptive advantage of exhibiting circadian rhythmicity (Vaze et al., 2014; Schibler et al., 

2015; Nikhil and Sharma, 2017; Patke et al., 2020).  Circadian clocks help maintain internal 

synchrony, coordinating the various rhythms within the body (internal rhythms) for temporal 
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order, conferring an intrinsic advantage to organismal health.  This clock also ensures the 

temporal separation of chemically incompatible pathways and restricts the duration of potentially 

harmful pathways to only the time of requirement (Schibler et al., 2015).  Organisms with 

dysfunctional clocks show fitness disadvantages like reduced lifespan and fertility (Allemand et 

al., 1973; Schaffer et al., 1998; Beaver et al., 2002; Green et al., 2002; Kumar et al., 2005).  There 

are also several studies demonstrating the advantage of circadian resonance, i.e., when the 

endogenous period matches that of the environment (von Saint Paul and Aschoff, 1978; Klarsfeld 

and Rouyer, 1998; Ouyang et al., 1998; Woelfle et al., 2004; Dodd et al., 2005; Emerson et al., 

2008; Lone et al., 2010; Horn et al., 2019).  The critical significance of circadian clocks and 

rhythms in organismal health span becomes very evident considering the negative impact of 

situations that cause circadian clock disruptions.  Disruptions can result from clock gene 

mutations such as advanced and delayed sleep phase syndrome (ASPS and DSPS), environmental 

difficulties such as transmeridian travel (jet lag) or short days (Seasonal Affective Disorder, 

SAD), occupational difficulties such as shift work, modern lifestyles such as aberrant lighting 

conditions (light-emitting electronic devices, ALAN- artificial light at night), irregular meal 

timings, neurodegenerative diseases such as AD, PD, and HD, and ageing (Evans and Davidson, 

2013; Potter et al., 2016).  These disruptions adversely affect the health and well-being of an 

individual, increasing the risk and incidence of metabolic (e.g. obesity, diabetes), cardiovascular, 

gastrointestinal, reproductive, endocrinal, psychiatric disorders, cancer and addiction and 

impacting day-to-day functioning by impairing cognition and physical performance (Evans and 

Davidson, 2013; Logan et al., 2014; Khan et al., 2018; Patke et al., 2020; Yalçin et al., 2022; 

Verma et al., 2023). 
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1.7 MAMMALIAN CIRCADIAN SYSTEM 

1.7.1 Mammalian molecular clockwork 

The primary molecular clock comprises TTFLs (reviewed in (Reppert and Weaver, 2002; 

Mohawk et al., 2012; Mendoza-Viveros et al., 2017; Takahashi, 2017; Hastings et al., 2019), 

described in the next section for Drosophila.  The central components of the mammalian 

molecular clockwork are transcriptional activators CLOCK (circadian locomotor output cycle 

kaput), and BMAL1 (brain and muscle ARNTL 1 (aryl hydrocarbon receptor nuclear 

translocator–like), and transcriptional repressors Period (PER1, PER2 and PER3) and 

Cryptochrome (CRY1 and CRY2).  Additional feedback loops positively regulated by 

CLOCK:/BMAL1 and negatively by PER1, PER2, CRY1, and CRY2 influence circadian 

oscillations' period, phase, and amplitude.  These components include the transcriptional 

repressors retinoic acid-related orphan nuclear receptor Rev-erbα/β and E4BP4 (or Nuclear 

Factor, Interleukin 3 Regulated NFIL3) and the transcriptional activators RAR-related orphan 

receptor Rorα/β and the D-site albumin promoter binding protein Dbp. 

1.7.2 Mammalian central clock: The Suprachiasmatic Nucleus  

The site of the master circadian pacemaker in mammals is the Suprachiasmatic Nucleus (SCN), 

a bilateral cluster of 20,000 neurons on either side of the third ventricle, atop the optic chiasm, 

located in the anterior hypothalamus (reviewed in (Mohawk and Takahashi, 2011; Hastings et al., 

2018)).  Individual neurons of the SCN are each autonomous cell clocks exhibiting molecular 

clock oscillations, firing rate and gene expression rhythms, and oscillatory transcriptional 

networks (Lowrey and Takahashi, 2004; Ueda et al., 2005).  SCN neurons are distinctive in that 

they exhibit circadian rhythms in firing patterns, are the first to be synchronised by external 

light/dark cycles, have network-wide topologically organised coupling mechanisms via intra-

network interactions that allow SCN neurons to be synchronised in complete darkness, are buffers 

against genetic and environmental perturbations, and are the direct recipients of light information 

(light inducing SCN neuronal firing) (Herzog, 2007; Welsh et al., 2010; Evans, 2016).  The 

spontaneous firing rate cycle, the key SCN output driving circadian rhythmicity, is higher during 
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the day in diurnal and nocturnal mammals, encoding solar time (Bano-Otalora et al., 2021).  The 

SCN organisation is shown in Fig 1.7. 

 

Fig 1. 7 Organisation of the SCN. 

The SCN is subdivided into a dorsomedial shell and a ventrolateral core.  Shell is primarily the zone 

of Arginine vasopressin (AVP) neurons and a few calretinin-containing (CAR) neurons.  The core is 

the zone of Vasoactive intestinal polypeptide (VIP) and Gastrin releasing peptide (GRP) neurons.  

About 30% of the SCN terminals contain GABA, and glutamate is an additional SCN transmitter.  

These SCN neurons, with their respective neurotransmitters and diffusible signals, communicate 

between the different SCN regions.  They also convey circadian and external time information like 

light/dark signals to hypothalamic target structures (figure from (Hegazi et al., 2019)). 

Photoentrainment of the SCN: The SCN is thought to be the sole receiver of light information 

for photic entrainment of the entirety of the mammalian system.  It receives light information 

from the visual photoreceptors.  Also, it receives non-visual photic signals via innervation by 

melanopsin expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) that make up 

the retinohypothalamic tract (RHT) and are essential for photoentrainment and light-mediated 

phase setting of the SCN and its output rhythms (reviewed in (Welsh et al., 2010; Hughes et al., 

2014; Ashton et al., 2022)). 

Effect of temperature: In mice, the SCN itself is resistant to temperature resetting, an emergent 

property of SCN neuronal network coupling, but cells and tissues outside the SCN and the 
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peripheral clocks can be synchronized by temperature as temperature cycles or heat pulses (Brown 

et al., 2002; Buhr et al., 2010; Tamaru et al., 2011; Saini et al., 2012).  However, rat SCN is 

temperature sensitive, phase shifted by temperature and entrained by it (Ruby et al., 1999; Herzog 

and Huckfeldt, 2003).  Core body temperature shows daily clock-controlled cycling, 

synchronising peripheral clocks (Brown et al., 2002; Schibler, 2009).  Temperature effects on the 

circadian rhythms involve HSF1 and cold-induced RNA binding proteins (CIRBPs), reset 

peripheral clocks via transcriptional, post-transcriptional and translational mechanisms (Reinke 

et al., 2008; Tamaru et al., 2011; Morf et al., 2012; Liu et al., 2013; Schneider et al., 2014; Ki et 

al., 2015). 

Coupling within the SCN: Isolated SCN neurons are weaker and less reliable oscillators (Webb 

AB et al., 2008; Webb et al., 2009), and dispersed SCN neurons exhibit a range of circadian 

periods and phase heterogeneity (Welsh et al., 1995; Honma et al., 1998; Honma et al., 2004; 

Evans et al., 2011).  Coupling of SCN neurons via network interactions results in more precise, 

higher amplitude SCN neuronal rhythms that are robust against perturbations, including resetting 

by temperature and retain function even in the face of dysfunctional molecular clocks (Nakamura 

et al., 2002; Herzog et al., 2004; Liu et al., 2007; Abraham et al., 2010; Buhr et al., 2010; Ko et 

al., 2010; Evans et al., 2012).  SCN inter-cellular communication enables network-level 

synchronization of the period by establishing unique and stable phase relationships (though 

oscillators can peak at different times and can exhibit a distribution of phase relationships) that 

are coordinated as a population providing network rhythmicity which is integral to SCN 

functioning in maintaining tissue-level rhythms and strong outputs to downstream tissues (Aton 

and Herzog, 2005; Ciarleglio et al., 2009; Welsh et al., 2010; Herzog et al., 2015; Evans, 2016; 

Michel and Meijer, 2020).  VIP and its receptor VPAC2 are essential for intercellular coupling 

within the SCN (Aton and Herzog, 2005; Brown et al., 2007; Hughes et al., 2008). 

SCN neuronal outputs: The well-known SCN neuronal outputs are Arginine vasopressin (AVP), 

Gamma amino butyric acid (GABA), glutamate, Vasoactive Intestinal Peptide (VIP) and 

melatonin.  VIP and its receptor VPAC2 share molecular and functional similarities with that of 
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the Drosophila circadian output neuropeptide, the Pigment Dispersing Factor (PDF) and its 

receptor PDFR, respectively, like synchronising neuronal clocks and mediating light entrainment 

(Aton et al., 2005; Vosko et al., 2007; Frenkel and Ceriani, 2011; Talsma et al., 2012).  Another 

significant circadian output is melatonin, a precisely timed hormonal message of darkness, whose 

synthesis and release are under SCN control (Moore and Klein, 1974) and a faithful reflection of 

dawn and dusk signals from the SCN, with melatonin peaking at night (Stehle et al., 2001). 

1.7.3 Peripheral oscillators 

Besides the SCN, autonomous circadian rhythms are present in every tissue of the body; the extra-

SCN brain clocks and clocks in other parts of the body are referred to as “peripheral clocks” 

(Balsalobre et al., 1998; Yamazaki et al., 2000; Yoo et al., 2004).  In mammals, most peripheral 

oscillators are considered slave oscillators to the master clock SCN as they depend on the SCN 

for phase coordination between cells in tissue via humoral and neuronal signals (Dibner et al., 

2010; Lowrey and Takahashi, 2011; Mohawk et al., 2012).  Though the peripheral clocks show 

autonomous cell oscillations and their rhythm generation is SCN-independent, they are not 

intrinsically photosensitive and depend on the SCN for rhythm maintenance (coordination and 

synchronization) and light information (Hastings et al., 2003), but are temperature-sensitive and 

can be synchronised by temperature (Brown et al., 2002) and food (Damiola et al., 2000; Stokkan 

et al., 2001). 
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1.8 DROSOPHILA CIRCADIAN SYSTEM 

The Drosophila melanogaster circadian system is well-established and extensively studied and 

shares several genetic, organisational and functional similarities with the mammalian system (see 

1.10).  Individual rhythms in behaviour, like those in locomotion, feeding, egg-laying, courting, 

and temperature preference, as well as populational rhythms of eclosion that gate the emergence 

of adults from pupa to specified times of the day, are all displayed by the Drosophila. 

1.8.1 The Drosophila molecular clock 

The Drosophila melanogaster circadian molecular clock, in its most basic form, comprises an 

interlocked transcriptional-translational feedback loop (reviewed in (Hardin, 2006; Benito et al., 

2007; Hardin, 2011; Peschel and Helfrich-Förster, 2011; Tataroglu and Emery, 2015; Helfrich-

Förster, 2017; Patke et al., 2020)).  The core clock proteins are Period (PER), Timeless (TIM), 

CLOCK (CLK) and CYCLE (CLK) and the molecular clockwork constituting the feedback loop 

is explained in Fig 1.8.  The timing of this feedback loop determines the speed and amplitude of the 

clock and is finely regulated by posttranscriptional modifications.  These regulate clock protein 

dimerization, nuclear translocation, and degradation/stabilization that incorporate time delays into 

the loop; a ~6-8h delay between the per/tim mRNA peaks and the PER/TIM protein peaks is 

critical for the functioning of the main negative feedback loop.  per and tim mRNAs peak at late-

evening / early- or mid-night, whereas the PER TIM proteins peak late-night / pre-dawn.  For 

instance, phosphorylation of PER and TIM by the Shaggy (SGG) kinase and PER further by 

Casein kinase 2 (CK2) and Doubletime (DBT) allows the nuclear translocation of the 

PER/TIM/DBT, their binding to and inhibition of CLK/CYC dimer’s DNA binding, thereby 

repressing their transcription.  Post degradation of TIM, phosphorylation of PER by DBT leads 

to PER proteasomal degradation.  A slower dimerization of PER/TIM or downregulating kinases 

CK2 or SGG delays the nuclear entry of PER and slows down molecular rhythms, resulting in an 

extended period (Gekakis et al., 1995; Ko et al., 2010; Chiu et al., 2011; Yu et al., 2011).  
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Fig 1. 8 A conceptual schematic of the Drosophila molecular clock. 

1) The positive circadian clock regulators CLK and CYC dimerise and bind upstream per and tim 

genes to E-boxes, activating their transcription.  Translation and accumulation of the negative 

regulators PER and TIM in the cytoplasm follow.  Dimerization of PER and TIM prevents PER 

degradation, stabilizing it and allowing the complex to translocate to the nucleus; dimers bind to the 

CLC/CYC complex, dissociating them from E-boxes and inhibiting per/tim transcription and that of 

other genes with E-boxes, thus, completing one cycle.  Once PER and TIM levels go down, CLK/CYC 

can reactivate per and tim transcription and start another transcription cycle.  Kinases like DBT, SGG 

and CK2 and phosphatases like PP1 and PP2 regulate the phosphorylation states of PER and TIM, 

determining their stability, levels, and cellular localization.  2) The secondary loop is initiated again 

by CLK/CYC binding to E-boxes of vrille (vri) and par domain protein 1 epsilon (pdp1ε), activating 

their transcription.  VRI accumulates first, translocates to the nucleus, and represses clk transcription 

by binding to VRI-/PDP1-boxes on the clk promoter.  In contrast, PDP1ε accumulates later, moves 

into the nucleus four hours after VRI and activates clk transcription, thus leading to CLK oscillation 

and reinforcing the primary feedback loop.  3) In the third feedback loop, CLK-CYC via the E-box 

activates the transcription of CLOCKWORK ORANGE (CWO), which upon translation into the 

transcriptional inhibitor CWO translocates into the nucleus, competitively binds to the E-box, and 

inhibits CLK-CYC-activated transcriptions, independently reinforcing the primary negative loop of 

transcriptional inhibition by the PER/TIM/DBT complex (figure from (Mendoza-Viveros et al., 

2017)). 
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1.8.2 The Drosophila circadian neuronal circuit 

One easily measurable and robust behavioural rhythm exhibited by Drosophila is rhythms in their 

locomotor activity/rest patterns.  Under 12h light: 12h dark cycles (LD), Drosophila melanogaster 

exhibits a bimodal pattern of locomotor activity, with a morning bout close to lights-ON (M-

activity) and an evening bout close to lights-OFF (E-activity) and relative inactivity in the middle 

of the day and night (Frenkel and Ceriani, 2011).  This rhythm persists with a circadian period (~ 

24h) even under constant darkness (DD).  This timed activity/rest is evoked by a neuronal network 

in the adult fly central nervous system made of about 150 specialised clock neurons (~75 per brain 

hemisphere), often referred to as pacemakers, each characterised by the presence of self-sustained 

cell-autonomous molecular clock (Sheeba et al., 2008b).  The Drosophila circadian neuronal 

network (CNN), modulating various aspects of activity rhythms, are divided into subgroups 

grossly based on their anatomical location, as shown in Fig 1.9a. 

This study's target circadian neuronal groups are the PDF-expressing ventrolateral neurons or 

the LNvs: the small LNvs and the large LNvs (Fig 1.9b).  PDF from the LNv is a circadian output 

neuropeptide.  For the behavioural rhythmicity of flies in DD, functional clocks in PDF+ LNv, 

specifically, the sLNv and PDF, are critical (Grima et al., 2004; Stoleru et al., 2004; Renn et al., 

1999).  The roles of LNv and PDF in evoking free-running activity rhythms and in light 

entrainment are discussed in Chapter 2.  Furthermore, PER is considered the marker for functional 

molecular clocks.  This study's circadian behavioural output is the adult activity/rest rhythm 

primarily under free-running conditions of constant darkness (DD) at constant temperatures. 

  

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Chapter%202/Chapter%202%20with%20Figures_16Aug2021.docx#_ENREF_31
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Chapter%202/Chapter%202%20with%20Figures_16Aug2021.docx#_ENREF_96
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Chapter%202/Chapter%202%20with%20Figures_16Aug2021.docx#_ENREF_79
https://d.docs.live.net/951821c5cec2f2cc/Thesis/Chapter%202/Chapter%202%20with%20Figures_16Aug2021.docx#_ENREF_79
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Fig 1. 9 A schematic of the Drosophila circadian neuronal network. 

(a) The Drosophila circadian neurons are divided into subgroups based on anatomical location.  In the 

lateral protocerebrum are the Lateral Neurons (LNs): nine ventral lateral neurons (LNvs), six dorsal 

lateral neurons (LNds) and three Lateral Posterior Neurons (LPNs) in each hemisphere.  In the dorsal 

protocerebrum are the Dorsal Neurons (DNs): 2 DN1as, 15 DN1ps, 2 DN2s and 35-40 DN3s (Shafer 

et al., 2006; Hermann-Luibl and Helfrich-Forster, 2015).  Based on their size,  the LNvs are divided 

into small LNv (sLNv) and large LNv (lLNv) (Figure from (Jeong et al., 2022).  (b) Out of the LNs, 

8 LNv per hemisphere: about 4 small LNv (sLNv) and 4-5 large LNv (lLNv) express the neuropeptide 

Pigment Dispersing Factor (PDF in green) (Helfrich-Förster, 1995).  The sLNv send axonal 

projections towards the dorsal protocerebrum, and the lLNv axons run via the posterior optic tract 

(POT) to the contralateral side.  The 5th sLNv (black) does not express PDF. 

.  

https://d.docs.live.net/951821c5cec2f2cc/Thesis/Chapter%202/Chapter%202%20with%20Figures_16Aug2021.docx#_ENREF_36
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1.8.3 Drosophila clock entrainment 

Drosophila circadian clocks can be entrained by both light and temperature.  Their relative 

strengths of entrainment are context-dependent, with light being the stronger zeitgeber in many 

scenarios (Miyasako et al., 2007; Yoshii et al., 2010; Harper et al., 2016) (discussed in Chapter 

4). 

1.8.3.1 Light entrainment 

Under 12h:12h LD, PER and TIM proteins peak at midnight; light pulse at early-night delays 

their accumulation and the phase of the circadian oscillation, whereas light pulse later at night 

hastens the loss of PER and TIM, advancing the clock phase (Marrus et al., 1996).  Drosophila 

circadian clocks perceive light via different photopigments (rhodopsin family and cryptochrome) 

in photoreceptive organs (the compound eyes, ocelli, and the Hoffbauer-Buchner eyelets and 

clock neurons) (Yoshii et al., 2015; Helfrich-Förster, 2020).  Unlike mammalian CRY, 

Drosophila CRY is a blue-light cellular photoreceptor, central to light resetting of the molecular 

clock (Emery et al., 1998; Stanewsky et al., 1998; Emery et al., 2000b).  It is present in many 

clock neuronal groups (CRY- are primarily the DN1ps, DN2s, DN3s, LPNs and 3 LNds) (Benito 

et al., 2008; Yoshii et al., 2008), rendering them intrinsically photosensitive.  A light-mediated 

conformational change in CRY facilitates its binding to TIM and recruiting the E3 ubiquitin ligase 

JETLAG, facilitating TIM degradation, preventing PER-TIM dimerisation, and exposing PER to 

destabilising phosphorylation, followed by its proteasomal degradation, thus resetting the 

circadian pacemaker (Ceriani et al., 1999; Busza et al., 2004; Koh et al., 2006; Peschel et al., 

2009) (reviewed in (Foley and Emery, 2020)). 

1.8.3.2 Temperature entrainment 

After light, the temperature is the next strongest zeitgeber for fly clocks.  Entrainment of activity 

rhythms to temperature cycles requires functional molecular clocks, particularly clk and cyc 

(Yoshii et al., 2002; Yoshii et al., 2005).  Rectangular temperature cycles not only entrain the 

activity rhythms (M- and E-activity peaks exhibited) and circadian molecular clocks under DD 

but also LL that otherwise renders flies arrhythmic (Tomioka et al., 1998a; Tomioka et al., 1998b; 
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Yoshii et al., 2002; Glaser and Stanewsky, 2005; Yoshii et al., 2007; Currie et al., 2009).  Most 

clock neurons, unlike their intrinsic light-sensitivity, rely on temperature inputs from 

thermosensors in peripheral organs like the aristae on the antennae and the chordotonal organs as 

well as in other brain neurons like the Anterior Cells (ACs) (Hamada et al., 2008; Sehadova et 

al., 2009; Lee et al., 2013; Chen et al., 2015b; Roessingh et al., 2015; Das et al., 2016; Tang et 

al., 2017; Chen et al., 2018; Yadlapalli et al., 2018).  The CRY- LPNs and DNs show greater 

temperature sensitivity and are more prominent in temperature entrainment (Busza et al., 2007) 

(Yoshii et al., 2005; Miyasako et al., 2007; Yoshii et al., 2010), as discussed in Chapter 4. 
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1.8.4 The Drosophila circadian neuronal network: 

Hierarchical or plastic with bidirectional coupling? 

A simplistic dual-oscillator model elegantly explains the activity/rest rhythms of Drosophila 

under LD: two mutually coupled clocks, the M-oscillators comprising of the PDF+ LNv, 

specifically the sLNvs (and likely a few DN1ps) governing the M-activity and the E-oscillators 

made of the three CRY+ LNd and the 5th sLNv (and likely some DN1ps ) controlling the E-activity 

(Grima et al., 2004b; Stoleru et al., 2004; Rieger et al., 2006; Zhang et al., 2010c; Yoshii et al., 

2012; Chatterjee et al., 2018b).  Also, in DD, the dual-oscillator model predicts a hierarchical 

order.  The M-oscillators or the sLNvs have been considered the central pacemaker and the 

dominant oscillators governing the period of other oscillators.  However, later work challenges 

this dual-oscillator hierarchical model and supports a distributed network model comprising 

multiple oscillators coordinated via network interactions (Stoleru et al., 2005; Dissel et al., 2014; 

Guo et al., 2014; Yao and Shafer, 2014; Beckwith and Ceriani, 2015a; Delventhal et al., 2019; 

Schlichting et al., 2019d; Jaumouillé et al., 2021).  The coupling rules governing various 

pacemaker interactions and their relative roles in shaping different aspects of the rhythm changes 

are context-dependent: changing with the environmental conditions like lighting conditions, 

photoperiod, light intensity, temperature, abrupt vs gradual changes, the waveform of change, the 

complexity of multiple zeitgebers, laboratory conditions vs natural settings and genetic 

backgrounds like interrupted PDF signalling, sLNv functioning and the presence of CRY (e.g. 

refer (Yoshii et al., 2012; Beckwith and Ceriani, 2015b; Chatterjee et al., 2018b; Schlichting et 

al., 2019d)).  Thus, the organisation of the clock neuronal network is plastic with multiple 

independent neuronal oscillators, each capable of orchestrating activity bouts, but orchestrating 

the entirety of behavioural rhythms is an emergent property of the network (Yoshii et al., 2012; 

Yao and Shafer, 2014; Yao et al., 2016).  The behavioural rhythms result from bidirectional 

interaction between neuronal oscillators, network coupling, and the resulting network output.  

Such an organisation also provides space and time for fine-tuning the network responses to 

changing environments and contributes to network resilience.  Indeed, the emerging idea is to 

view the CNN as comprised of neuronal feedback loops analogous to the genetic feedback loops 

of the molecular clock (Ahmad et al., 2021).  
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1.8.5 Communication of Drosophila circadian signals: 

Neurotransmitters and Neuropeptides 

Though LNvs are the central pacemakers and PDF is considered the primary peptidergic neuronal 

clock output, eliciting rhythmic locomotor activity requires coupling and coordination of the entire 

clock network.  The coupling involves several other neuropeptides and neurotransmitters (Beckwith 

and Ceriani, 2015b).  Neuropeptides involved in communicating circadian signals are Ion Transport 

Peptide (ITP), Neuropeptide F (NPF), short NPF (sNPF),  CCHamide 1, CNMamide, FMRFamide, 

IPNamide, SIFamide, DH31, DH44, Allostatin A and C (Ast-A and Ast-C), Leucokinin, Hugin-

Pyrokinin, Drosophila Insulin-like peptides (DILPs), DTk (Drosophila Tachykinin) and buricon,  

(Ahmad et al., 2021; Nässel and Zandawala, 2022; Reinhard et al., 2022).  Neurotransmitters of 

the clock network include glycine, serotonin, glutamate, acetylcholine, GABA, dopamine and 

octapamine (Muraro et al., 2013; Hegazi et al., 2019). 

1.8.6 Drosophila clock output at multiple levels 

Circadian regulation occurs at multiple levels, giving rise to different rhythmic outputs of the circadian 

neuronal network.  Examples include rhythms in intracellular Ca2+ levels, neuronal electrical activity 

(LNv, DN1), membrane excitability, sodium and potassium ion conductance, timed neurotransmitter 

release, structural plasticity like sLNv axonal terminal remodelling (number of arbours, branching, 

volume, synaptic contacts) and sensitivity to PDF and dopamine (Cao and Nitabach, 2008; 

Fernández et al., 2008; Sheeba et al., 2008b; Gorostiza et al., 2014; Flourakis et al., 2015; Petsakou 

et al., 2015; Klose et al., 2016; Liang et al., 2016; King and Sehgal, 2020).  In addition, temporal 

information is coded through the rhythmic transcription of clock-controlled genes (CCGs) like takeout, 

lark and narrow abdomen, among others, that elicit physiological rhythms (King and Sehgal, 2020). 

The mechanisms by which time information is conveyed from the circadian circuit to the output 

centres (non-clock neurons) to mediate behavioural and physiological rhythms are now emerging.  

Three neuronal populations have been identified in the pars intercerebralis, a key output centre: Dh44 

(+) (Diuretic Hormone 44) neurons; SIFa (+) neurons; and Dilp2 (+) (Drosophila insulin-like peptide 

2) neurons, the latter only involved in rhythmic feeding and metabolism (Cavanaugh et al., 2014; 

Barber et al., 2016; King et al., 2017; Bai et al., 2018; Barber et al., 2021).  sLNv directly 

communicates with (Lk+)- neurons (that project onto regions of locomotor control) and the PI output 

centres via DN1s (Cavey et al., 2016).  
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1.9 PARALLELS BETWEEN DROSOPHILA AND 

MAMMALIAN CLOCKS 

From the discussion detailed above, one can see several parallels between the Drosophila and 

mammalian circadian systems in terms of the conservation of clock genes, molecular clockwork, 

common motifs of circadian neuronal organization, and mechanisms of temporal regulation of 

physiology and behaviour.  They share the core TTFLs, post-transcriptional and -translational 

mechanisms, their effect on clock protein stability, localization and partner associations, and 

orchestration of time delays that are integral to the feedback loop and regulation of the period, 

amplitude, and phase of circadian oscillations.  At the level of the circadian clock neuronal 

network, in both flies and mammals, they are organized into a multi-oscillatory distributed 

network, and overt rhythms are an emergent property of the oscillator coupling and interactions 

within the network, thus also providing various checkpoints for regulation in response to 

environmental signals and internal demands.  They also share similarities in the neuropeptide and 

neurotransmitters involved, exhibiting functional conservation and rhythms in electrical activity, 

neuronal plasticity, structural complexity and receptor sensitivity and their crucial role in fine-

tuning the clock network.  Light can entrain both oscillators using different underlying 

mechanisms, though only the Drosophila clock neurons (central and peripheral) are intrinsically 

photosensitive.  The Drosophila CNN can be entrained by temperature, but the SCN resists it.  

Both systems possess cell-autonomous peripheral oscillators, but mammalian peripheral clocks 

depend more on their central pacemaker SCN than those of the Drosophila.  Moreover, regarding 

the functional significance of circadian clocks across taxa, clock gene mutations and circadian 

rhythm disruptions (CRD) by genetic, experimental, or extrinsic means have fitness costs and 

detrimental consequences to health.  Thus, many open questions on the reciprocal relationship 

between circadian health and neuronal- and organismal- health, the consequences of circadian 

breakdown and interventions to alter them can be addressed in Drosophila. 
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1.10 DROSOPHILA AS A MODEL ORGANISM 

FOR NEURODEGENERATION 

Drosophila melanogaster is a well-established genetic model system to carry out a variety of 

studies.  Fundamental cellular processes are very similar between humans and flies, like 

regulating gene expression, cell cycle, cell signalling, synaptic transmission, membrane 

trafficking and cell death (Rubin et al., 2000; Ambegaokar et al., 2010; Hirth, 2010).  Also, many 

genes, gene pathways and signalling pathways are conserved between humans and flies (Adams 

et al., 2000; Rubin et al., 2000).  Adult flies (brain at ∼8 × 107 μm3) have relatively simple nervous 

systems (100,000 neurons) (compared to some 86 billion in humans), enabling study at single-

neuronal level, and yet exhibit complex behaviours such as olfaction, courtship, mating, 

locomotion, circadian behaviours, navigation, learning and memory, addiction, and 

proprioception (Bier, 2005; Simpson, 2009).  Human and D. melanogaster nervous systems are 

also structurally and physiologically similar: organisation, constituents like neurons and glia, 

neurotransmitters, and the presence of a blood-brain barrier (BBB) (Tello et al., 2022).  Flies are 

easy to grow, maintain and work with, have short generation time and lifespan, produce many 

offspring, possess minimal genetic redundancy, and fly pushing is relatively cost-effective.  

Drosophila is a powerful research system with a constantly growing and evolving repertoire of 

genetic tools to intervene and study changes at every level of biological organisation, in space 

(tissue/cell-specific) and time (at every life stage), to carry out large scale screens 

(genetic/pharmacological/environmental), study behaviour, map neural circuits and understand 

the relationship between genes, circuits, and behaviour, to carry out rigorous assays to reliably 

score various disease phenotypes including those of neurodegeneration at all organisational levels 

(e.g. neuronal inclusions, cell death assays, brain vacuolisation, neuronal morphology and 

activity, network outputs like neuropeptide release, synaptic plasticity and communication, 

behavioural assays of locomotor and cognitive performance, lifespan, ROS levels etc) (Venken 

et al., 2011; Lenz et al., 2013; Ugur et al., 2016; Martín and Alcorta, 2017; Guo et al., 2019; Luan 

et al., 2020; Schaffert and Carter, 2020; Tello et al., 2022).  Approximately 75% of human genes 

associated with diseases have a Drosophila ortholog (Reiter et al., 2001a; Bier, 2005).  All of 

these make Drosophila an excellent model to study many human diseases, including neurological 
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diseases, screen for enhancers or suppressors of disease outcomes, identify various mechanisms 

underlying disease progression, test their roles in the pathogenic process, identify potential 

therapeutic targets, and test potential environmental and pharmacologic agents of modification 

(Rezaval, 2015; Şentürk and Bellen, 2018).  The Bloomington Drosophila Stock Centre has 

curated Drosophila models for a wide-ranging human neurodegenerative disease. 

Huntington’s disease is exceptionally well suited to be modelled in Drosophila because the 

triggering event, i.e. mutation in a single gene htt involving a trinucleotide repeat expansion, has 

been identified.  Evidence that expanded polyglutamine itself drives the neurodegenerative 

process from transgenic mice and cell culture studies (Ikeda et al., 1996; Mangiarini et al., 1996; 

Ordway et al., 1997; Paulson et al., 1997) led to the development of the Drosophila models of 

HD that use various lengths of human HTT containing the polyQ tract, often the truncated hHTT 

versions (Bolus et al., 2020). 

1.10.1 Drosophila models of HD 

Drosophila HD models express different lengths of the expanded human HTT gene.  Exon 1: First 

142aa (hHTT Q75 and Q120) (Jackson et al., 1998), first 90aa (hHTTQ93) (Steffan et al., 2001), 

hHTT Q48 and Q152 (Doumanis et al., 2009), hHTT Q46, Q72 and Q103 (Zhang et al., 2010b) 

and first 88aa (hHTTQ96) (Weiss et al., 2012); longer exon fragments: first 171aa (hHTTQ138) 

(Mugat et al., 2008), first 336aa (hHTTQ128) (Kaltenbach et al., 2007; Branco et al., 2008), first 

548aa (hHTTQ128) (Lee et al., 2004) and 12-exons or first 588aa (hHTTQ138) (Weiss et al., 

2012); the entire protein coding sequence (hHTTFLQ128) (Romero et al., 2008).  The transgenes 

are typically targeted to be expressed in the compound eye, central nervous system, motor 

neurons, mushroom bodies, neuromuscular junction, or glia.  The commonly used 

neurodegenerative readouts in flies typically include external eye phenotype (ommatidial 

structure, size and pigmentation), retinal and photoreceptor degeneration (number of intact 

rhabdomeres), neuron numbers, brain vascularisation and cell death, 

neuroanatomical/morphological and neurophysiological changes, alterations in circadian 

rhythms, tests for motor abilities like climbing or flying or larval mobility, assessing cognitive 

performance via learning and memory paradigms like olfactory learning and courtship 
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conditioning, polyQ aggregation and lifespan (Green and Giorgini, 2012; McGurk et al., 2015; 

Rosas-Arellano et al., 2018).  These have helped capture different aspects of HD, as discussed 

below. 

The early Drosophila models of HD revealed striking similarities with mouse models.  In the first 

Drosophila model of HD, expression of N-terminal fragments of hHTT with 75 and 120 

glutamine residues resulted in a polyQ-length-dependent age-of-onset and severity of 

neurodegeneration in the photoreceptor neurons of the compound eye and progressive worsening 

of neurodegeneration and nuclear accumulation of expHTT inclusions with age (Jackson et al., 

1998).  Deletion of the tumour suppressor gene p53 suppressed neurodegeneration (Bae et al., 

2005).  Expression of expanded hHTTex1 Q93 in flies led to progressive neurodegeneration and 

reduced their lifespan, which improved upon pharmacological and genetic inhibition of HDAC 

(Steffan et al., 2001).  Expression of the first 548 aa of the human HTT protein, which 

encompasses the highest stretch of homology between the Drosophila and human HTT proteins 

with an expanded PolyQ tract of 128 repeats (HTT-Q128), resulted in the rough eye phenotype, 

widespread defects in membrane excitability and brain activity, lowered locomotor speed of third 

instar larvae, motor defects in flies and decreased survival (Lee et al., 2004).  expHTT aggregates 

were observed in the cytoplasm and processes of neurons, which were dependent on the time, 

cellular and protein contexts.  In the first full-length (FL) Drosophila HD model, expressing 

HTTFL-Q128 in motor neurons leads to progressive neurodegeneration, reduced lifespan, and 

impaired motor performance (Romero et al., 2008).  Expression of nuclear-targeted expHTT 

(hHTT-Q152(NLS)) in the peripheral nervous system of larvae showed neuronal dysfunction 

without cell death, where dendrite morphology, nerve activity and locomotion were altered 

(Nishimura et al., 2010).  Glial expression of expHTT is also toxic and leads to locomotor defects, 

aggregation and lifespan reduction in flies (Liévens et al., 2008; Tamura et al., 2009).  Thus, 

Drosophila models have replicated many of the pathogenic processes of HD, such as a dominant 

gain-of-function neurotoxicity, dependence of age-of-onset and severity on repeat length, decline 

in longevity, progressive neurodegeneration, visible protein aggregates and deficits in motor 

function and cognitive performance, despite gross anatomical and genomic differences between 
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humans and fruit flies (reviewed in (Chan et al., 2002; Marsh and Thompson, 2004; Xu et al., 

2015; Rosas-Arellano et al., 2018; Bolus et al., 2020). 

HD studies in Drosophila have revealed essential principles regarding the pathophysiological 

mechanisms of HD.  For example, axonal transport defects in HD were established in flies as a 

result of motor protein titration, aggregation, vesicle stalling and sequestration of other expanded 

polyglutamine proteins by the cytoplasmic aggregates (Gunawardena et al., 2003; Lee et al., 2004; 

Sinadinos et al., 2009).  Defective Histone deacetylation and transcription dysregulation 

contribute to HD, which is rescued by the overexpression of Drosophila CREB-binding protein 

(CBP) (Taylor et al., 2003b).  Post-translational modifications like SUMOylation of exon 1 

expHTT exacerbated neurodegeneration, whereas ubiquitination attenuated it (Steffan et al., 

2004).  The role of autophagy in HD has been shown using flies lacking a key apoptosis regulator, 

Dark (Drosophila Apaf-1 related killer), that neutralised polyQ pathogenesis (Sang et al., 2005).  

Using rapamycin (an inhibitor of mTOR), the roles of macroautophagy in the clearance of 

expHTT aggregates and mitochondria and reduction of apoptosis in the protection against HD 

were demonstrated in flies (Ravikumar et al., 2004; Ravikumar et al., 2006).  From an initial yeast 

screen of HTT partners, HD suppression studies in flies first revealed the involvement of the 

SNARE complex and, thus, alterations in synaptic transmission in HD pathology (Kaltenbach et 

al., 2007).  Work with the full-length HTT brought to light the mechanisms during early stages of 

HD, elevated presynaptic Ca2+  levels and increased neurotransmission and in the absence of 

nuclear accumulation of expHTT and a novel role for HTT in synaptic function (Romero et al., 

2008). 

Glial cell dysfunction in HD was demonstrated in Drosophila, where glia expression of expHTT 

decreases dEAAT1 transcription and antagonises the epidermal growth factor receptor (EGFR) 

signalling pathway at an upstream step between EGFR and ERK (EGFR-Ras-extracellular signal-

regulated kinase) activation (Lievens et al., 2005).  The ability of expHTT to activate distinct 

pathways of toxicity in the brain neurons (AKT kinase-insensitive) and retinal photoreceptors and 

glia (AKT kinase-sensitive) was shown in flies (Liévens et al., 2008).  Further, evidence that glial 

cells expressing expHTT have a developmental and a non-cell autonomous effect on neurons was 

shown in flies (Tamura et al., 2009). 
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HTT’s native functions have been evaluated by downregulating endogenous Drosophila Htt 

(Zhang et al., 2009), showing a role for HTT in fast axonal transport (Gunawardena et al., 2003).  

Loss of function of WT HTT contributing to HD has been demonstrated by exacerbations on 

reducing WT dHtt (Mugat et al., 2008; Zhang et al., 2009) or improvements in HD flies on 

overexpressing WT HTT either dHtt or hHTT548aa (Mugat et al., 2008) or P42, a 23aa long 

hHTT peptide (Arribat et al., 2013). 

Both aggregated and soluble forms of expHTT were shown to contribute to toxicity using an RFP-

tagged hHTTQ138 fly line (Weiss et al., 2012).  The Drosophila model of cardiac amyloidosis 

captures expHTT-induced cardiomyopathy (Melkani et al., 2013).  Drosophila HD models have 

helped elucidate the role of metal ions like copper in HD progression (Xiao et al., 2013).  A study 

comparing the relative toxicities of different naturally occurring HTT fragments in Drosophila 

revealed that the exon 1 fragment was highly toxic (Barbaro et al., 2015).  Transcellular spreading 

of HTT aggregates was shown in the Drosophila brain (Babcock and Ganetzky, 2015).  expHTT 

was shown to interfere with endosomal recycling, elevate BMP signalling in the nerve terminals 

of flies and trigger excessive synaptic connections (Akbergenova and Littleton, 2017).  A recent 

study implicates immune dysregulation in the blood cells of HD flies (Lin et al., 2019b). 

Fly studies have been pivotal in discovering novel pathways of neuropathology and establishing 

suppressors of HD toxicity in vivo or intact animal models with potential as treatment options.  

These include, HDAC inhibitors (Steffan et al., 2001; Pallos et al., 2008), tissue transglutaminase 

inhibition (covalently cross-linking proteins) (Karpuj et al., 2002; Bortvedt et al., 2010; 

McConoughey et al., 2010), polyQ binding protein 1 (QBP1) (a peptide inhibitor) (Nagai et al., 

2003), lithium via the Wnt/Wg pathway by inhibiting a glycogen synthase kinase-3 

(GSK3β/shaggy) (Berger et al., 2005), engineered C4 single-chain Fv (sFv) antibodies 

(intrabodies) (Wolfgang et al., 2005), combinatorial drug treatments (Agrawal et al., 2005; 

Bortvedt et al., 2010), green tea flavonoid epigallocatechin-3-gallate (a copper chelator and 

aggregation inhibitor) (Ehrnhoefer et al., 2006), the endocytic and signal transduction scaffold 

Intersectin (ITSN) (activates JNK-MAPK pathway) (Scappini et al., 2007), molecular chaperones 

and the heat shock response upregulation (Liévens et al., 2008; McLear et al., 2008; Sroka et al., 
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2009; Vos et al., 2010; Kuo et al., 2013b; Maheshwari et al., 2014; Sajjad et al., 2014), 

downregulation of hsrω (large non-coding regulatory RNAs) (Mallik and Lakhotia, 2009), glial 

enhancement of mitochondrial uncoupling proteins (UCPs) (Besson et al., 2010), Puromycin-

sensitive aminopeptidase (PSA) (a cytosolic polyQ-sequence-digesting enzyme) (Menzies et al., 

2010), neuroprotective metabolite kynurenic acid (KYNA) (a modulator of cholinergic and 

glutamatergic neurotransmission) relative to the neurotoxic metabolite 3-hydroxykynurenine (3-

HK) (Campesan et al., 2011), Meclizine, a silencer of oxidative metabolism (Gohil et al., 2011), 

methylene blue (modulator of amyloidogenic aggregation) (Sontag et al., 2012), Pcaf (a histone 

acetyltransferases and part of a DNA repair complex) (Bodai et al., 2012), Rab GTPases 

(intracellular membrane trafficking regulators): Rab5 (Ravikumar et al., 2008), Rab11 (Steinert 

et al., 2012), Rab8 (Delfino et al., 2020), the antioxidant enzymes Glutathione peroxidase (GPx) 

(Mason et al., 2013) and superoxide dismutase (Melkani et al., 2013), curcumin (a phytochemical 

with anti-oxidant, -inflammatory and -fibrilogenic properties) (Chongtham and Agrawal, 2016), 

human c-myc (a proto oncogene) (Raj and Sarkar, 2017), the deubiquitinase Usp12 (a neuronal 

autophagy inducer) (Aron et al., 2018), Glutamine Synthetase 1 (GS1) (favours autophagy) 

(Vernizzi et al., 2020), and improving mitochondrial respiration via E3 ubiquitin ligase Parkin, 

NADH-quinone oxidoreductase 1 (Ndi1) or alternative oxidase (AOX) (Campesan et al., 2023). 

Using flies, the ease and speed of carrying out large-scale suppressor and enhancer screens of 

genes, RNAis, small molecules, chemicals, pharmacological agents, and natural compounds and 

validating potential candidates to suppress expHTT toxicity have revealed HTT interacting 

partners, potential drug targets and a host of mitigators of HD.  Some of the promising reveals 

have been overexpression of the Drosophila homolog of human myeloid leukemia factor 1 

(dMLF1) (Kazemi-Esfarjani, 2002), C2-8 (a small-molecule inhibitor of aggregation)(Zhang et 

al., 2005), HTT partners which are proteins involved in synaptic transmission, cytoskeletal 

organization and biogenesis, proteolysis, and regulation of transcription or translation 

(Kaltenbach et al., 2007), rotenone and 2,4-dinitrophenol (small molecule metabolic inhibitors of 

mitochondrial and glycolytic function) (Varma et al., 2007), genes involved in heat shock 

response, UPS, TFs, RNA metabolism, signal transduction, and apoptosis (Branco et al., 2008) 

autophagy enhancers (Williams et al., 2008), genes related to nuclear transport, nucleotide 
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processes, and signalling (Doumanis et al., 2009), genes of protein biogenesis, 

cytoskeleton/protein trafficking, chaperone family, nonsense-mediated mRNA decay, and kinases 

and phosphatases (Zhang et al., 2010b), inhibition of matrix metalloproteinases (Miller et al., 

2010b), Inhibition of lkb1 (a tumour suppressor and a negatively regulating kinase of the 

mTOR/Insulin pathway) and drugs like Camptothecin and OH-Camptothecin (DNA 

Topoisomerase 1 inhibitors), and 18β-Glycyrrhetinic acid and Carbenoxolone (a mTOR inhibitor 

through PI3K/AKT) (Schulte et al., 2011), EVP4593 (a small molecule inhibitor of NF-κB 

signalling and store-operated calcium entry pathway) (Wu et al., 2011), inhibition of RRAS 

signalling (Miller et al., 2012), negative regulator of ubiquitin-like protein 1 (NUB1) that reduces 

HTT abundance (Lu et al., 2013), inhibition of glutaminyl cyclase (QPCT) (Jimenez-Sanchez et 

al., 2015), chlorzoxazone (reduces excitatory neurotransmission, anti-inflammatory) and 

deferoxamine (an iron chelating agent with antioxidant properties) (Smalley et al., 2016), 10O5, 

8F20, AN1 and AN2 (autophagosome-tethering or expHTT-LC3 linker compounds that interact 

with both LC3 and expHTT to bring about allele-selective reduction of expHTT levels) (Li et al., 

2019b) and glial depletion of dCBP (ortholog of CBP/Cp300 transcription co-activators) (Martin 

et al., 2021). 

As discussed, several underlying pathophysiological mechanisms of HD are also exhibited in 

Drosophila HD models, suggesting evolutionarily conserved disease processes (Krench and 

Littleton, 2017; Rosas-Arellano et al., 2018; Costa and Maciel, 2022).  The findings in Drosophila 

have improved our understanding of the cellular, molecular, and genetic mechanisms underlying 

disease progression.  Drosophila has also served as a powerful platform to test for disease 

modifiers and develop therapeutic strategies and drugs to delay, arrest, or, in the future, even 

reverse disease processes of human NDs.  The structural and physiological similarities between 

Drosophila and the vertebrate nervous system also confer greater translatability of therapeutic 

effects.  The strength and usefulness of Drosophila as a model to study circadian dysfunction 

associated with ND are detailed in the next section.  
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1.11 RELATIONSHIP BETWEEN CIRCADIAN 

HEALTH AND NEURODEGENERATION 

1.11.1 Circadian and sleep disturbances in HD 

Circadian and sleep impairments are common in neurodegenerative diseases.  They are prodromal 

in many NDs and are independent predictive markers for ND onset (Leng et al., 2019; Park and 

Colwell, 2019; Lananna and Musiek, 2020).  Circadian abnormalities in ND are often in the 

direction of dampening, i.e. with a reduction in the amplitude rather than a phase change (Voysey 

et al., 2021a). 

A physiological basis for sleep and circadian abnormalities in HD is the disruption of the 

hypothalamus, the seat of the SCN and sleep/wake-gating orexin neurons (Kassubek et al., 2004; 

Aziz et al., 2007; Politis et al., 2008; Petersén and Gabery, 2012).  In post-mortem HD patient 

samples, the VIP and AVP immunoreactive neurons are diminished in the SCN (van Wamelen et 

al., 2013).  In HD patients, the hypothalamic neuropeptide populations of orexin, vasopressin, and 

oxytocin are also reduced (Aziz et al., 2008; Gabery et al., 2010). 

Signs of HD-associated sleep and circadian disturbances include delayed sleep phase, increased 

latency in sleep onset, nocturnal awakenings, increased nocturnal activity, fragmented nighttime 

sleep, abnormal motor activity during nocturnal sleep, decreased slow-wave sleep, suppressed 

REM sleep, insomnia, decreased total sleep time and efficiency, early waking time, increased 

daytime sleepiness and decreased daytime activity levels, increased ratio of nighttime to daytime 

activity, elevated daily cortisol levels and delayed or suppressed melatonin peak, lowered plasma 

melatonin, as gathered from HD animal models and a few from HD patients (Morton et al., 2005; 

Alders et al., 2009; Aziz et al., 2009b; Videnovic et al., 2009; Goodman and Barker, 2010; 

Morton, 2013; Kalliolia et al., 2014; Piano et al., 2015; Hood and Amir, 2017b; Herzog-

Krzywoszanska and Krzywoszanski, 2019; Zhang et al., 2019; Voysey et al., 2021a).  Some of 

these are present years before the disease manifests, though not readily apparent to the patients 

and worsens on approaching manifest disease onset (Arnulf et al., 2008; Goodman et al., 2011; 

Lazar et al., 2015).  Thus, circadian and sleep disturbances can independently predict NDs (Hood 
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and Amir, 2017b).  In HD patients, sleep impairments correlate with depression and poor 

cognition (Aziz et al., 2010).  Poor consolidation of activity rest rhythms, disruption in sleep 

rhythm and decline in sleep quality dramatically impact the quality of life and are a significant 

reason for the admission of individuals to care homes (Pollak and Perlick, 1991; Bianchetti et al., 

1995; Barone et al., 2009). 

Rodent models of HD recapitulate most of these findings and show progressive sleep and 

circadian abnormalities with age and disease severity under free-running and LD conditions 

(Morton et al., 2005; Kantor et al., 2013).  The findings also highlight the effect of HD on nearly 

all aspects of the mammalian circadian organisation: the input, molecular oscillators, and the 

output, and it affects both central and peripheral rhythms (Fifel and Videnovic, 2020; Colwell, 

2021) as detailed below.  In R6/2 mice models, the circadian output neuropeptide VIP’s 

immunostaining, its mRNA, and the mRNA of its receptor VPAC2 are reduced in the SCN 

(Fahrenkrug et al., 2007).  Rhythms in molecular clock genes’ bmal1 and per2 mRNAs are 

impaired in the SCN, motor cortex, striatum, and peripheral tissues (Morton et al., 2005; Pallier 

et al., 2007; Maywood et al., 2010).  Behaviourally, there is a progressive breakdown of free-

running activity rhythms, an increase in daytime activity, a decline in night activity, and a 

mirroring of disrupted day/night activity patterns seen in HD patients (Morton et al., 2005; Kudo 

et al., 2011).  Sleep and electroencephalogram (EEG) disturbances are apparent at the 

presymptomatic stage of HD in these mice (Kantor et al., 2013).  However, the SCN 

electrophysiological output and rhythms in circadian gene expression in organotypic SCN slices 

assayed in vitro are not altered, suggesting that the brain circuits efferent and afferent to the SCN 

are affected without compromising the core SCN clockwork (Pallier et al., 2007). 

In contrast, other mice models of HD (BACHD and Q175) show a dampened spontaneous firing 

activity of SCN neurons, loss of rhythms in SCN resting membrane potential and a defective SCN 

neuronal output seen as an enhancement in BK currents (big-conductance Ca2+ activated K+ 

currents) (Kudo et al., 2011; Kuljis et al., 2018; Smarr et al., 2019).  Activity rhythm amplitude 

of BACHD mice declines with age, their sensitivity to the phase-shifting effects of light reduces, 

and rhythms in body temperature and heart rate are disrupted without alterations to PER2 
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expression in SCN (Kudo et al., 2011; Fisher et al., 2016).  These mice also have long-period 

activity rhythms, entraining to 12h:12h LD without visual impairments (Oakeshott et al., 2011).  

Q175 HD mice display age- and dose-dependent decline in the circadian wheel running rhythms, 

evidenced by a decrease in the power of rhythms in DD, in the precision of the daily onset of 

activity and activity levels under LD and DD, and poor sleep quality and levels (Loh et al., 2013).  

They also have dampened rhythms in heart rate and core body temperature, deficits in SCN 

neuronal output and a breakdown of phase coherence between various ultradian rhythms, a sign 

of internal desynchrony (Smarr et al., 2019). 

HD mice models also have dysfunctional ipRGC and attenuated pupillary light response, 

contributing to circadian entrainment defects (Ouk et al., 2017).  Retinal dysfunction and 

degeneration (Helmlinger, 2002; Batcha et al., 2012), downregulation in the expression of 

melanopsin and cone opsin (Ouk et al., 2016; Lin et al., 2019a), and impairment in photic 

synchronisation to phase delays (Ouk et al., 2019), contribute to defects in photic entrainment of 

HD mice. 

The circadian disturbances are not restricted to the brain; peripheral tissues like the liver have a 

loss of rhythms of key clock-controlled metabolic outputs mainly due to altered feeding patterns 

and inputs from central clocks in the SCN (Maywood et al., 2010).  There is also systemic 

circadian desynchrony as evidenced by disrupted rhythms in cortisol, melatonin, and body 

temperature (Aziz et al., 2009b; Aziz et al., 2009c; Kudo et al., 2011; Fisher et al., 2013; 

Adamczak-Ratajczak et al., 2017; Raupach et al., 2020). 

Overall evidence, therefore, is indicative of a strong SCN pathophysiology in HD.  HD circadian 

pathology is not restricted to the central clocks.  It also affects peripheral clocks and rhythms, 

disrupting circadian rhythms at the input, oscillator, and output levels under both free-running 

conditions of DD and entraining conditions of LD. 

1.11.1.1 Circadian disturbances in Drosophila models of ND 

Drosophila melanogaster models of HD recapitulate many of the HD circadian features.  

Expression of eGFP-tagged HTTQ103 in LNv decreases rhythm robustness and PDF+ sLNv 
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numbers and suppresses PER levels in LNv (Xu et al., 2019b).  Expressing HTT-ex1Q93 pan-

neuronally abolished rhythms in CYC, PER, and TIM mRNA levels (Khyati et al., 2021) and 

expressing it in the LNv neurons results in behavioural arrhythmicity and reduction in PDF 

(Mason et al., 2013; Delfino et al., 2020).  PER-driven expression of HTT-ex1Q120 leads to 

altered clock transcript rhythms (Faragó et al., 2019).  These flies also show sleep deficits, such 

as reduced and fragmented daily sleep, leading to overall hyperactivity and increased sleep-onset 

latency.  On the pan-neuronal expression of the full-length HTT, nighttime sleep is fragmented 

and reduced, activity is elevated, sleep latency is increased, daytime sleep is increased, activity is 

reduced, and longevity is diminished.  These are reversed upon the reduction of PKA signalling 

(Gonzales and Yin, 2010; Gonzales et al., 2016). 

Fly models of other neurodegenerative diseases like AD and PD also show circadian and sleep 

distress, mirroring the disease features.  AD flies are arrhythmic in DD, have difficulty re-

synchronising to phase-shifted LD, and their evening anticipation index diminishes (Chen et al., 

2014).  In flies with increased cleavage of endogenous Amyloid Precursor Protein cleavage (by 

dBACE overexpression), free-running activity rhythms are disrupted in aged flies, PER 

oscillations in LNs dampened, and their median lifespan is reduced (Blake et al., 2015).  

Expression of human Tau mutant (TauE14) in Drosophila LNv disrupts free-running rhythms, 

leading to a loss of PDF+ sLNv dorsal projections (DP) and mitochondria from the sLNv DP 

(Zhang et al., 2022).  Expression of the 0N4R isoform of tau in the TIM neurons leads to weak 

rhythms and a reduction of rhythmic flies, elevates lLNv spontaneous firing rate, increases 

activity levels and sleep latency and reduces sleep levels and quality (Buhl et al., 2019).  Flies 

expressing Aβ42 have reduced daytime and nighttime sleep, fragmentation, and abnormal sLNv 

dorsal arborisations (Tabuchi et al., 2015b; Song et al., 2017).  Drosophila Tau deficient flies 

show circadian and sleep alterations such as loss of M-anticipation in LD, increased daytime 

activity levels, decreased daytime sleep, and sleep fragmentation at night (Arnes et al., 2019).  

They also have fewer sLNv axonal crosses at ZT2 compared to the control.  Sleep patterns are 

altered in flies with knock-in of hTau without affecting circadian locomotor rhythms (Cassar et 

al., 2020).  The sLNv axonal arborisation pattern and their oscillations are modified in these flies.  
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Flies carrying the hTauV337M mutation show sleep disturbances, locomotor defects, neuronal 

degeneration and loss of daily fluctuation in sLNv projection patterns, but their rhythmicity is 

unaffected (Cassar et al., 2020). 

Drosophila mutants of mitochondrial ligase MUL1 and PARKIN that are models for PD show an 

increase in ROS levels, decrease in antioxidant SOD1, reduced survival, increase in daytime 

activity levels, changes in clock mRNA oscillations and reduction in autophagy protein ATG5 in 

the LNv (Doktór et al., 2019).  Many PINK1 mutant flies are arrhythmic or have weak rhythms, 

and their lLNv electrophysiology is altered (Julienne et al., 2017).  PD fly models also exhibit 

sleep deficits and a loss of morning anticipation as the flies age (Gajula Balija et al., 2011). 

Flies expressing expMJD in the TIM+ neurons are arrhythmic in DD and show decreased mRNA 

levels of nearly all clock genes, loss of PER protein in the heads, decreased number of PDF+ sLNv 

and reduced lifespan (Kadener et al., 2006).  GMR-driven expression of CHMP2B, associated 

with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), disrupts circadian 

rhythms in eclosion, shortens the period of activity rhythms, and reduces mRNA levels of TIM 

(Lee et al., 2019).  In a Drosophila model of Fragile X Syndrome (FXS), dfmr1 mutants have 

arrhythmic activity and weak eclosion rhythms (Dockendorff et al., 2002; Morales et al., 2002).  

While the oscillations of the molecular clock or in the PDF levels in the sLNv DP are unaffected, 

CREB oscillations are dampened, and sLNv DP arborisations are misrouted and are more 

extensive. 

Thus, like their mammalian counterparts, fly models of NDs, including HD, capture the ND-

associated molecular, physiological, and behavioural circadian and sleep defects at all levels of 

circadian organization in both DD and LD.  These reports provide a sound basis for using a fly 

circadian model to understand the circadian disturbances associated with HD, test for ways and 

means to alleviate them and investigate the relationship between the circadian and the 

neurodegenerative axes. 
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1.11.2 Influence of circadian and sleep axes on 

neurodegeneration 

There is proof for a feedforward influence of circadian and sleep disruptions on 

neurodegeneration, implicating them in the aetiology of NDs (Carter et al., 2021; Voysey et al., 

2021a).  Consequently, interactions of the circadian and neurodegenerative axes are bi-directional 

(Lananna and Musiek, 2020; Carter et al., 2021).  Circadian health is intricately linked to 

neuropathology and possibly involves pathways of neuronal proteostasis, immune and 

inflammatory responses, oxidative stress response, synaptic homeostasis, and neuronal 

metabolism (Leng et al., 2019; Lananna and Musiek, 2020; Colwell, 2021).  Circadian clocks 

affect the phase and amplitude of peak (or trough) and the period (effective duration) of most 

physiological processes at the cellular, tissue, organ, systems, and organism levels.  It is not 

surprising that circadian disturbances are often not the primary cause but rather a consequence of 

ND; their impairment in NDs adds to the pathophysiology and hastens and worsens disease 

progression. 

NDs, like HDs involving aggregation-prone proteins, suffer from disrupted cellular proteostasis.  

The proteome and physiology are under circadian regulation, allowing circadian health to mitigate 

or aggravate neurodegenerative processes (Hastings and Goedert, 2013).  These circadian 

influences could occur at protein syntheses and processing stages, such as transcription, 

translation, protein folding, PTMs, activation and protein clearance via UPS and autophagy.  A 

few examples are the daily rhythms in the expression of pro-survival or pro-death factors, 

aggregate-prone proteins, and metabolic states, thereby determining the susceptibility of certain 

daily phases to aggregation, mitochondrial dysfunction, or apoptosis (Hastings and Goedert, 

2013; Colwell, 2021).  For example, sleep helps in the clearance of misfolded proteins via the 

regulation of glymphatic flow (Nedergaard and Goldman, 2020), and sleep deprivation leads to 

amyloid-β (Aβ) accumulation (Shokri-Kojori et al., 2018).  The circadian system modulates the 

expression and levels of redox sensors and antioxidants, affecting the cell's redox state, response, 

and pre-disposition to oxidative stress (Kondratova and Kondratov, 2012; Giebultowicz, 2018; 

Lananna and Musiek, 2020).  Clock genes such as Bmal1 are suggested to regulate antioxidant 

response (Lee et al., 2013).  Among other potential links between circadian clocks and 
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neurodegeneration are the darkness hormone melatonin, a potent antioxidant enriched in the brain 

and CSF (Reiter et al., 2001b), the inflammatory response, mitochondrial function, and DNA 

damage repair (Kondratova and Kondratov, 2012; Lananna and Musiek, 2020; Carter et al., 2021; 

Wang and Li, 2021). 

Much evidence provides traction for the impingement of the circadian axis in neuropathology.  

Functional circadian clocks help manage ageing-related homeostatic challenges and offer 

neuroprotection during ageing.  Overexpression of clock genes in ageing flies or PDF in PDF+ 

LNv slows the age-related deterioration of activity rhythms (Koh et al., 2006; Umezaki et al., 

2012).  Overexpression of CRY in clock neurons of flies improves the robustness of activity 

rhythms in DD, extends their lifespan and reduces oxidative damage (Rakshit and Giebultowicz, 

2013).  Also, neuronal expression of some of the clock genes improves the survival of older flies 

and modifies resistance to stresses like hyperthermia, oxidation, starvation, and constant light 

(Solovev et al., 2019).  WT Drosophila with rhythmic locomotor activity has significantly 

extended lifespans than arrhythmic ones (Kumar et al., 2005). 

Conversely, circadian disruptions compromise neuronal health and further aggravate age-related 

symptoms.  per01 flies post-exposure to oxidative stress show a higher mortality rate, more 

significant accumulation of oxidatively damaged proteins and lipids, and compromised vertical 

climbing ability than age-matched WT flies (Krishnan et al., 2009).  Clock mutant flies the 

arrhythmic per01, or the short period (16h) perT (that experience chronic jet lag, with a daily 8-h 

delay), show reduced longevity and startle-induced locomotion with age (a measure of age-related 

locomotor impairment), with the later having a more severe effect than the former, suggesting 

that chronic jet lag is more detrimental than arrhythmicity to ageing flies (Vaccaro et al., 2016).  

Non-native light conditions (20:4) that disrupt circadian rhythms in mice impact their neuronal 

health, leading to cognitive difficulties (Karatsoreos et al., 2011).  Similarly, in hamsters, chronic 

“jet lag” disrupting circadian rhythms leads to decreased cognitive performance and neurogenesis 

in the Hippocampus (Gibson et al., 2010; Kott et al., 2012).  Epidemiological studies show an 

association between dampened circadian activity rhythms or sleep fragmentation in cognitively 

healthy people with an increased risk of developing dementia (Tranah et al., 2011; Lim et al., 
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2013).  Also, a study in HD patients shows a correlation between sleep disturbances and coexistent 

anxiety and depression (Jha et al., 2019). 

1.11.2.1 Clock gene mutations associated with ND 

There is evidence for the involvement of clock genes in protection against neuropathology.  

Circadian clock disruption via per deletion aggravates oxidative stress and decreases the lifespan 

of Drosophila (Krishnan et al., 2008; Krishnan et al., 2009).  Age-related dampening of circadian 

rhythms in flies is associated with decreased levels of Cry, the light-responsive clock regulator, 

and CRY overexpression, which improves rhythmicity (Rakshit and Giebultowicz, 2013).  Also, 

Bmal1 knockout mice develop astrogliosis independent of SCN and systemic circadian function 

(Musiek et al., 2013).  A direct link between clock genes, circadian control and the aetiology of 

neurodegenerative diseases is also present.  SNPs in Bmal1 and per1 increase the predisposition 

to PD (Chen et al., 2013; Chen et al., 2015b; Gu et al., 2015).  Further, the expression of ND 

causative genes such as presenilin-2, a-synuclein, γ-synuclein and dTau are under clock control 

(Esler and Wolfe, 2001; Panda et al., 2002; Bélanger et al., 2006; Arnes et al., 2019).  A recent 

study finds an association between human CRY1 variants and attention deficit/hyperactivity 

disorder (ADHD) (Onat et al., 2020). 

1.11.2.2 Circadian and sleep disruptions worsen ND 

Circadian disruptions negatively impact neuronal and organismal health and worsen 

neurodegenerative symptoms.  These become evident with both circadian-disrupting 

environments and in the case of clock gene mutations across animal models.  In Drosophila, 

altering the duration of light: dark cycles from 12h:12h to 10h:10h reduces mHTT-induces PDF 

loss from sLNv and mHTT aggregation, and this protection under altered LD is lost in perS 

mutants, demonstrating that the timing of LD cycles affect mHTT-induced neurodegeneration 

and involves clock genes (Xu et al., 2019b).  Rats exposed to 90 days of continuous bright light 

show a decrease in TH-positive neurons in the substantia nigra (SN) region, and a reduction of 

dopamine levels, sensitising them to PD (Romeo et al., 2013).  Mice pre-exposed to circadian 

disruption due to an extended photo phase (LD of 20h:4h) on exposure to PD-inducing MPTP 
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have exacerbated motor and cognitive deficits, dopaminergic neuronal loss and 

neuroinflammation (Lauretti et al., 2017b).  In AD fly models, alterations of sleep/wake behaviour 

via exposure to dim light at night or via mechanical or genetic sleep deprivations increase brain 

vacuole numbers, a sign of neurodegeneration (Kim et al., 2018), induces short-term memory 

defects (Seugnet et al., 2009) or increases brain Aβ burden and augments the AβArctic-induced 

increase in neuronal excitability and LNv synaptic morphology (Tabuchi et al., 2015b). 

Similarly, in AD mice, sleep deprivation increases Aβ in brain interstitial fluid and Aβ plaque 

formation, whereas enhancing sleep by blocking wakefulness-promoter Orexin’s receptor 

decreases plaque formation (Kang et al., 2009).  Chronic sleep deprivation disrupts circadian gene 

expression in the SCN and accelerates AD pathology in mice (Niu et al., 2022).  Long-term 

exposure of sub-pathological Aβ rats to LL accelerates aggregation of exogenous Aβ42 (Sharma 

and Goyal, 2020b).  Such correlations are also found in humans.  A single night of sleep 

deprivation increases the Aβ burden in the human brain (Shokri-Kojori et al., 2018), and 

symptomatic HD patients with sleep problems have more severe neuropsychiatric symptoms 

(Baker et al., 2016). 

HD mice in a Bmal1 hemizygous background and AD mice with Bmal1 knockout show 

exacerbated neurodegeneration, astrocyte activation and altered gene expression, respectively 

(Musiek et al., 2013; McKee et al., 2022).  Deletion of Bmal1 globally in the brain accelerates 

amyloid plaque accumulation, while local deletion promotes fibrillar plaque deposition (Kress et 

al., 2018).  Clock mutations in the background of a neurodegeneration-prone mutation (such as 

sniffer or swiss cheese) compromise longevity and aggravate neurodegeneration in Drosophila 

(Krishnan et al., 2012).  In contrast, in one study, clock gene mutation improves neuropathology, 

wherein expHTT expression in the LNv of ClkJrk heterozygotes enhances PDF+ sLNv numbers 

and eliminates expHTT aggregates (Xu et al., 2019a). 
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1.11.2.3 Cases where circadian disruptions do not appear to 

affect ND 

In a few cases, circadian alterations did not affect some neurodegenerative symptoms.  AD flies 

with deficient clocks (per0 background) are like those with intact clocks in their climbing ability, 

neurodegeneration, and longevity (Long et al., 2014a).  R6/2 mice treated with bright light and 

time-restricted voluntary exercise show delay in activity rhythm breakdown and improved 

synchronisation to LD but not lifespan (Cuesta et al., 2014). 

1.11.2.4 Circadian reinforcement improves ND 

Bolstering circadian rhythms via environmental, genetic, or pharmacological interventions delays 

or mitigates neurogenerative symptoms. 

Environmental: In R6/2 mice with altered oscillations of peripheral metabolic outputs, a 

scheduled feeding cycle restores behavioural rhythms and liver metabolic gene expression 

(Maywood et al., 2010).  Time-restricted feeding (TRF) in two HD mice models improves 

circadian rhythms in behaviour, sleep deficits, autonomic nervous system dysfunction, and motor 

and cognitive symptoms, alters the phase of  PER2::LUC rhythms and restores levels of striatal 

HD markers comparable to WT (Wang et al., 2018; Whittaker et al., 2018).  TRF and treatment 

with glucagon-like peptide-1 (GLP-1), a metabolic signal to the SCN on feeding, improves 

various circadian rhythms, metabolic homeostasis, cognitive performance and hypothalamic 

clock gene expression and reduces ND pathology like Aβ deposits in AD mice (Dong et al., 2022). 

Repeated phase shifts ameliorate the activity rhythms breakdown in the LD of R6/2 mice (Wood 

et al., 2013).  Blue light therapy in mice HD models (BACHD and Q175) improves activity 

rhythm defects and motor performance and alters HD markers in the striatum and cortex (Wang 

et al., 2017).  Prolonged daylight exposure (16:8 LD) also improves the survival and rhythm 

strength of R6/2 mice (Ouk et al., 2017).  Sleep Restriction Therapy (SRT), a modality of 

Cognitive Behavioural Therapy (CBT) for insomnia (CBT-I), is a behavioural intervention that 

compresses sleep opportunity to match it more closely to sleep ability, leading to enhanced sleep 

drive (Miller et al., 2014).  SRT (via compressing the dark period of LD, i.e. 14:10 LD) reverses 
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sleep impairments due to Aβ and extends lifespan in flies (Belfer et al., 2021).  Bright light therapy 

improves sleep and helps with depressive symptoms in AD and PD patients (van Wamelen et al., 

2015; Liu et al., 2020).  Flies affected by glioblastoma-induced neurodegeneration are arrhythmic 

primarily, and the few rhythmic ones have long period rhythms; exposing them to a 14h:14h LD 

cycle improves their rhythmicity, lifespan and reduces glioblastoma growth and neurotoxicity 

(Jarabo et al., 2022). 

Exercise: Environmental enrichment and physical exercise have been beneficial in alleviating 

some of the HD symptoms in HD mice and patients (Carter et al., 2000; Sullivan et al., 2001; 

Trembath et al., 2010; Wood et al., 2010; Aungier et al., 2012a; Busse et al., 2013; Khalil et al., 

2013; Skillings et al., 2014).  Aβ42-expressing flies subjected to exercise as locomotor activity 

via a rotating tube device, “swing boat”, for 30 min a day for 12 days lowers nighttime sleep 

fragmentation and improves nighttime sleep levels and median survival time (Berlandi et al., 

2017). 

Social Cues: Vehicle-treated R6/2 mice housed together have alterations in their sleep-wake cycle 

and improvements in cognitive function, suggesting that social settings aid circadian 

rehabilitation (Pallier et al., 2007).  Similarly, housing circadian disrupted HD sheep with a 

healthy sheep flock improves the HD flock's circadian behaviour, suggesting social cues' 

influence on circadian abnormalities (Maywood et al., 2010). 

Pharmacological: Treatment with either a sleep-promoting or a wake-promoting drug improves 

cognitive decline and apathy in R6/2 mice while combining the two works best (Pallier et al., 

2007; Pallier and Morton, 2009).  The sleep-promoting drug also reverses the dysregulated 

expression of mPer2 in the SCN (Pallier et al., 2007).  Improving sleep via Orexin receptor 

antagonist mitigates cognitive defects in R6/1 mice (Cabanas et al., 2019).  Melatonin, a hormone 

secreted by the pineal gland that is signalling darkness, delays HD onset, prolongs the lifespan of 

R6/2 mice, and mediates the neuroprotective effect via the MT1 receptor (Wang et al., 2011).  

Melatonin is also neuroprotective as its depletion leads to mitochondrial ROS damage and 

elevates inflammatory response, while its prescription to R6/2 mice reduces inflammation 
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(Jauhari et al., 2020).  In a Drosophila HD model, treatment with curcumin, a polyphenol 

contained in turmeric that activates BMAL1 and melatonin, restores circadian gene expression, 

activity and eclosion rhythms, and climbing ability (Khyati et al., 2021).  Treatment with a REV-

ERB (a nuclear receptor and a mammalian circadian clock component) agonist SR9009 reverses 

cognitive decline and improves synaptic function in an AD mice model (Roby et al., 2019).  In 

AD fly models, pharmacological induction of sleep reverses age-dependent cognitive 

impairments (McBride et al., 2010; Dissel et al., 2015), memory defects, synaptic deficits, and 

disrupted cAMP signalling in clock neurons (Dissel et al., 2017). 

Genetic: Enhancing sleep genetically by conditionally activating Fan-shaped Body neurons in Aβ 

expressing flies decreases Aβ burden (Tabuchi et al., 2015b).  In an Amyotrophic Lateral Sclerosis 

fly model, overexpression of shaggy (a circadian kinase and the fly homolog of glycogen synthase 

kinase 3) in the LNv neurons partially improves activity rhythms in DD (Xu et al., 2019a). 
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1.12 A NEED TO STUDY CIRCADIAN-

NEURODEGENERATIVE INTERACTIONS IN 

HD 

From the descriptions above, it is evident that there is a reciprocal relationship between circadian 

health and neurodegenerative diseases, creating a feed-forward loop where the worsening of one 

exacerbates the other while improving one enhances the other.  This avenue of circadian influence 

on neurodegenerative aspects is an emerging field.  Furthermore, there is limited data on the 

circadian influence on HD progression, especially regarding environmental influence.  Also, 

investigating the interacting pathways and molecular players involved in and affecting both the 

circadian and neurological axes has been predominantly studied in a unidirectional manner.  There 

is a pressing need to take an unbiased and integrative approach to examine these interactions 

under disease conditions to uncover the molecular players and pathways that can serve as potential 

interfacial/nodal therapeutic targets.  Such an approach also serves as a step towards integrating 

chronotherapy with the more conventional neuropathological treatments, complementing them 

and improving treatment efficacy.  Further, chronobiological therapies are relatively inexpensive, 

easy to incorporate into the everyday lifestyle and will benefit both the patients and their 

caregivers. 
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1.13 OBJECTIVES OF MY STUDY 

Given the bi-directional nature of influence and interactions between the circadian and 

neurodegeneration axes, I set out to characterize the circadian disturbances at both the behavioural 

and neuronal levels associated with expressing expanded Huntingtin (expHTT) in the PDF 

expressing LNv subset of Drosophila circadian neurons under free-running conditions (DD) and 

entraining conditions (LD) (Chapter 2).  Once the circadian neurodegenerative features were 

established, I focused on uncovering potential environmental and genetic strategies to alleviate 

HD-induced circadian behavioural impairments and the associated neuropathology.  The rationale 

for using environmental interventions is that they can directly influence the circadian system and 

also affect neurodegeneration.  They are relatively non-invasive and inexpensive and can be tested 

directly in clinically relevant mammalian and non-human primate models and adopted into 

lifestyle with a little effort.  Genetic interventions directly uncover genes that affect both the 

chronobiological and neurological aspects, provide mechanistic insights regarding pathways 

involved and their interactions and contribute towards integrating chronotherapy into 

neuromedicine. 

The tissue-specific targeting of expHTT to the LNv was achieved using the GAL4-UAS system 

(Brand and Perrimon, 1993) (Fig 1.10). 
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Fig 1. 10 The Drosophila GAL4-UAS system. 

The basis of this system is that transcriptional activation of the target gene (HTT in this example) fused 

to an upstream activating sequence (UAS) is achieved when the yeast transcriptional activator GAL4 

binds the UAS sequences.  Tissue-specificity is ensured by fusing the GAL4 gene with a tissue-specific 

promoter, the PDF-specific promoter in this study (henceforth, the driver line).  A cross between the 

parental lines (F0), namely, the pdfGal4 driver line and the UAS line carrying the HTT gene (top), 

yielded progeny (F1) that express Gal4 in the PDF+ LNv neurons, which binds to the UAS sites 

upstream of the HTT gene and activates its transcription, eventually resulting in HTT expression in 

the PDF+ LNv (bottom).  The gene of interest can be hHTT-polyQ with no Q repeats (Q0) or expanded 

repeats of 128Qs (Q128). 

First, the expHTT-expressing flies were exposed to various light regimes to test the effect of 

environmental treatments on HD phenotypes.  Of particular interest was the effect of the 

circadian-disrupting regime of constant light on HD-induced circadian dysfunction and 

neurotoxicity (Chapter 3).  The subsequent chapter investigated the impact of circadian-bolstering 

environments like temperature cycles and other temperature-based regimes that could potentially 

affect expHTT levels and serve as mild stressors on expHTT-induced circadian behavioural 

outcomes and neurotoxicity (Chapter 4).  I then screened the known cellular neurotoxic 

modulators of HD to discover those that could specifically modify the circadian behavioural 

defects of HD flies (Chapter 5).  I also looked at the circadian behaviour of Drosophila on 

expressing the full-length expanded HTT or only the expanded polyQ peptide or expanded 
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Ataxin-3 to test the effects of the protein context flanking the polyQs on the circadian disturbance 

in NDs and investigated the role of Drosophila Huntingtin (dhtt) in circadian rhythms and 

expHTT-induced loss of circadian rhythms (Chapter 6).  Throughout this study, I also try to 

decipher the role of expHTT inclusions in neurotoxicity. 

Throughout this study, two categories of inferences have been made.  The first is regarding the 

impact of expHTT on the circadian system at the behavioural and neuronal levels and ways to 

modify those effects.  The second is using the neurodegenerative expHTT to disrupt circadian 

neuronal functioning and better understand the LNv circuit contribution to rhythmic activity/rest 

behaviour and CNN communication.  The central emphasis of this study is on the former category 

to improve our understanding of the neurodegenerative processes, including circadian disruptions 

underlying HD, with conclusions regarding the latter discussed as and when they arise. 
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2.1 INTRODUCTION 

2.1.1 A need for a Drosophila circadian model of HD 

Circadian and sleep disturbances are one of the hallmarks and early symptoms of HD (Morton, 

2013; Herzog-Krzywoszanska and Krzywoszanski, 2019).  Recent studies show that 

neurodegenerative diseases like HD disrupt circadian rhythms, impact neurodegenerative 

outcomes, and hasten disease progression (Hastings and Goedert, 2013; Musiek, 2015).  

Interventions that improve circadian rhythms suppress neurogenerative symptoms, and those 

leading to circadian dysfunction worsen the symptoms (Musiek, 2015; Hood and Amir, 2017b; 

Giebultowicz, 2018; Leng et al., 2019; Voysey et al., 2021a).  I was keen on understanding such 

systemic interactions and studying HD's impact on circadian rhythms and vice-versa.  To do so, 

I chose the versatile model organism Drosophila melanogaster, which has a well-studied 

circadian neuronal network (CNN) that controls circadian rhythms in physiology and behaviour.  

Notably, circadian neurons are known targets of neurodegenerative proteins such as expanded 

Huntingtin (expHTT), as evidenced by loss of molecular clock rhythms, lowered levels of clock 

outputs, impairment of the mammalian central clock SCN and circadian and sleep disturbances 

observed in HD models (Morton et al., 2005; Maywood et al., 2010; Kudo et al., 2011; Fifel and 

Videnovic, 2020). 

Most Drosophila models of HD target a large group of neurons in the eye or the brain that are not 

specifically responsible for controlling behavioural readouts such as flying or climbing.  Many 

such behaviours are often not directly functionally associated with the neuronal groups targeted.  

Also, in many studies targeting a larger neuronal group, the disease modifiers have only been 

tested for their ability to modify the cellular toxicity of HD and their impact on disease outcomes 

at the organismal level, such as behaviour, is unknown.  The circadian neuronal circuit of the fly, 

a well-characterised group of neurons known to control a robust and reproducible behavioural 

output such as the locomotor activity rhythms, helps overcome some of these limitations.  The 

circadian model/framework provides a handle on the neuronal and circuit-function-dependent 

output levels, i.e., the behavioural levels and readouts of the core clock, neuronal and behavioural 
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outputs.  Thus, it allows for an organismal study to assess the time course and sequence of 

pathophysiological events and test the efficacy of disease-modifying strategies at multiple levels: 

the clock's neuronal function (molecular clock and neuronal output) and functionally associated 

behavioural output, which is also a consequence of the CNN interactions.  In the recent past, 

targeting the fly circadian system for neurodegenerative studies has become popular (Kadener et 

al., 2006; Sheeba et al., 2010; Chen et al., 2014; Blake et al., 2015; Means et al., 2015; Tabuchi 

et al., 2015a; Song et al., 2016; Julienne et al., 2017; Buhl et al., 2019; Farago et al., 2019; Xu et 

al., 2019a). 

2.1.2 The Drosophila circadian neuronal circuit: A HD 

model 

The circadian neuropeptide Pigment Dispersing Factor (PDF) expressed in the LNv (4 small LNv 

(sLNv) and 4-5 large LNv (lLNv)) controls rhythmic locomotor activity in DD (Helfrich-Förster, 

1995; Renn et al., 1999).  sLNv are crucial for behavioural rhythmicity in DD (Grima et al., 2004a; 

Stoleru et al., 2004).  In the Drosophila model, the expression of human Huntingtin was targeted 

to this small group (~8 pairs) of PDF+ LNv.  Readouts of circadian cellular function and locomotor 

activity/rest behavioural rhythms helped characterise the effects of expanded HTT (expHTT) 

expression in the LNv over time. 

The current approach helps in drawing two sets of inferences.  One is the effect of expHTT on 

neuronal function in general, with a spotlight on circadian neuronal function, insights into the 

time course of HD pathogenesis and its impact on circadian rhythms at both the cellular and 

behavioural levels.  The other uses expHTT as a neurodegenerative tool to perturb the LNv subset 

of the CNN to refine our understanding of LNvs’ relative contributions in modulating Drosophila 

activity rhythms.  In the current chapter, with the help of the same set of experimental results, I 

draw inferences regarding how the circadian system is perturbed in HD (see 2.1.3) and on the 

control of circadian activity rhythms by the LNvs (see 2.1.4 and 2.1.5). 
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2.1.3 Circadian dysfunction in flies expressing expHTT 

in the LNv 

The first aspect addressed is HD's circadian disruptions and other neurodegenerative features.  

The specific questions addressed are how expressing expHTT in the LNv of Drosophila affects 

behavioural activity rhythms and sleep in DD (Sections 2.3.1).  How are the neuronal circadian 

markers of the LNv, such as the neuropeptide PDF and core molecular clock protein PER, affected 

(Sections 2.3.2 and 2.3.5)?  Do the behavioural rhythms in DD show a polyQ-length-dependent 

breakdown (Section 2.3.3)?  Is there any evidence for sLNv apoptosis (Section 2.3.4)?  Does the 

expression of expHTT in the LNv alter activity rhythms and sleep in LD (Section 2.3.6)?  Do 

prior light cues influence their entraining ability (Section 2.3.7), and does expHTT expression in 

the LNv affect the fly lifespan (Section 2.3.9)? 

The key findings addressing the above questions are briefly stated here.  Upon expressing 

expHTT, namely HTT-Q128 in the LNv, flies showed an evident circadian dysfunction at both 

the neuronal and behavioural levels.  These flies exhibit disrupted free-running circadian 

locomotor activity rhythms and loss of clock output neuropeptide PDF from the sLNv soma and 

molecular clock protein PER and its oscillations in the LNv.  They also exhibited some of HD's 

critical characteristic neurodegenerative features, such as a polyQ length-dependent age-of-onset 

of arrhythmicity, expHTT inclusions in the LNv, and a selective susceptibility of sLNv to expHTT 

with loss of PDF from its soma.  At the same time, PDF in sLNv axonal arbours and lLNv were 

not affected.  However, the results for cellular dysfunction vs. cell death were inconclusive.  The 

activity rest rhythms of these flies showed entrainment to LD without disruptions in sleep levels 

or quality.  Eliminating light cues before LD exposure did not affect the entrainment of activity 

rhythms of these flies to LD.  expHTT expression in the LNv did not affect fly survivorship. 

2.1.4 The role of PDF in the sLNv in sustaining activity 

rhythms 

Functional circadian clocks in the LNv, specifically the small LNv, are necessary and sufficient 

for behavioural rhythmicity in DD (Grima et al., 2004a; Stoleru et al., 2004).  Flies lacking PDF 
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are similar to flies lacking LNv: mostly arrhythmic, and the few weakly rhythmic flies have a 

short period (Renn et al., 1999).  PDF receptor (PDFR) mutants phenocopy pdf01 and PDF acting 

via PDFR on LNv and other circadian neurons is sufficient to rescue rhythmicity (Hyun et al., 

2005; Lear et al., 2005; Mertens et al., 2005; Lear et al., 2009).  PDF in the sLNv dorsal 

projections (DP) accumulates rhythmically and is possibly secreted rhythmically (Park et al., 

2000).  In the absence of external time cues, PDF acts as a coupling signal that synchronises the 

molecular clocks among circadian neurons to bring about coherent locomotor activity rhythms 

(Park et al., 2000; Peng et al., 2003; Lin et al., 2004; Stoleru et al., 2005; Nitabach et al., 2006; 

Fernández et al., 2007b; Wu et al., 2008a; Wu et al., 2008b; Sheeba et al., 2008c).  Without PDF, 

molecular oscillations in the sLNv subgroup dampen and become asynchronous in DD.  

Furthermore, oscillations in other circadian neurons (LNd, DN1 and DN2) become decoupled 

from sLNv and run with a short period reflected as weak, short-period activity rhythms (Renn et 

al., 1999; Peng et al., 2003; Lin et al., 2004; Fernández et al., 2007b; Sheeba et al., 2008c).  

Additional studies suggest complex functions for PDF: drive molecular rhythms in some neuronal 

groups, synchronise molecular oscillations among certain circadian neuronal groups and shorten 

or lengthen periods in other neuronal groups (Stoleru et al., 2005; Yoshii et al., 2009; Yao and 

Shafer, 2014; Beckwith and Ceriani, 2015b).  Studies show that loss of behavioural rhythmicity 

occurs with disruption of PDF oscillations in sLNv DP, suggesting that PDF oscillations are 

necessary for activity rhythms in DD (Nitabach et al., 2006; Fernández et al., 2007b; Depetris-

Chauvin et al., 2011).  In the above studies, the molecular clock in the sLNv is intact, and the 

output, i.e. PDF oscillations, are affected.  However, it is unclear whether, upon disruption of the 

sLNv molecular clock, PDF oscillation in sLNv DP and its downstream synchronising functions 

are affected.  Also, it is unknown whether, in the absence of PDF in sLNv soma, oscillating PDF 

in sLNv DP can sustain rhythmic activity.  Therefore, I set out to assess the role of the sLNv 

circadian molecular clock and PDF in modulating locomotor activity rhythms in DD and ask 

whether the function of PDF is mainly via its oscillations in the sLNv DP. 

Under LD, flies without PDF or lacking PDF expressing LNv or with downregulated PDF do not 

have a morning (M) peak and have an advanced phase of the evening (E) peak (Renn et al., 1999; 
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Shafer and Taghert, 2009).  PDF downregulation in the lLNv alone did not affect activity rhythms 

under LD, showing that sLNv PDF is sufficient for M-activity (Shafer and Taghert, 2009).  

However, whether sLNv PDF is necessary for M-anticipation is unclear.  Previous studies did not 

achieve a complete PDF loss, specifically from sLNv soma and DP (Shafer and Taghert, 2009; 

Sheeba et al., 2010).  I established such a phenotype using a combination of genetic and 

environmental strategies.  There is a complete loss of PDF selectively from the sLNv (both in 

soma and DP), and this allowed me to test the necessity of sLNv PDF for M-anticipation. 

2.1.5 A refined understanding of the role of PDF and 

sLNv in modulating activity rhythms 

The study's second objective was to explore the role of LNv, especially sLNv and PDF, in driving 

activity rhythms with the help of expHTT, which disrupts the LNv function.  The critical questions 

raised are the following: (a) whether the sustenance of free-running rhythms by sLNv in DD is 

limited to its output as oscillations in PDF levels in its DP and downstream synchrony of 

molecular oscillations in the PDF- neurons (Section 2.3.5), (b) the role of the LNv molecular clock 

probed via PER oscillations in driving these rhythms (Section 2.3.5), and (c) the role of the sLNv 

PDF and PER in the entrainment of activity rhythms to LD cycles, particularly the M-anticipation 

(Sections 2.3.8 and 2.3.9). 

Expressing expHTT in the LNv enabled selective PDF loss from sLNv soma without affecting 

PDF in the lLNv.  Such flies helped assess the role of sLNv PDF and its oscillations in the dorsal 

projections in driving activity rhythms in DD.  Despite lacking PDF and PER in the sLNv soma, 

these flies showed PDF oscillations in the sLNv DP and synchronous PER oscillations in the 

downstream circadian neurons and, yet, were behaviourally arrhythmic in DD.  These results 

suggest that PDF oscillations in the sLNv DP are insufficient to sustain activity rhythms in DD.  

Results also allude to an additional component in the sLNv for the free-running activity rhythm 

sustenance: independent of the PDF oscillations in the sLNv DP and possibly dependent on the 

PDF in the sLNv soma and PER-driven molecular clock of the sLNv. 
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Under LD, flies completely lacking PDF from the sLNv exhibited M-peak with anticipation to 

lights-ON and correctly phased E-peak, showing unambiguously that sLNv PDF is not necessary 

for M-anticipation.  PDF in the lLNv is sufficient for this behaviour.  Additionally, the finding 

that activity rhythms entrain to LD with a clear M-peak even when PER is undetectable in the 

sLNv demonstrates that PER-driven clocks in the sLNv are unnecessary for the M-peak. 
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2.2 MATERIALS AND METHODS 

2.2.1 Fly lines 

Transgenic fly lines with the coding region for the first 548 amino acids of the Htt gene containing 

either non-expanded form without polyQ repeats (w;+;UAS-HTT-Q0A;+) or an expanded tract 

of 128 glutamine (Q) repeats (w;UAS-HTT-Q128C;+) were a gift from Troy Littleton, 

Massachusetts Institute of Technology (Lee et al., 2004).  Transgenic fly lines with Exon1 coding 

for 81 amino acids of the Htt gene containing either a non-expanded form with 20 Q-repeats 

(w;UAS-HTT-Q20;+) or expanded forms with intermediate Q-repeats of 50 (w;+;UAS-HTT-Q50) 

or with higher Q-repeats of 93 (w;+;UAS-HTT-Q93) was a gift from J Lawrence Marsh, UC 

Irvine. 

In a previous study that used the above fly lines, the genetic background was yw and even controls 

yw/Q0, yw/Q128 and pdfGal4/Q0 exhibit relatively poor rhythmicity - ranging from about 60 to 

70% (Sheeba et al., 2010).  For this study, the flies were backcrossed onto a w1118 background for 

over seven generations to negate the possible genetic background influences.  Males of UAS-HTT 

were crossed either with females of w1118;pdfGal4;+ to obtain flies that expressed non-expanded 

or expanded form of Huntingtin in the PDF neurons (pdf>Q0 or pdf>Q128) or with females of 

w1118;+;+ (BL 5905) to obtain UAS controls (Q0 and Q128).  pdfGal denotes the Gal4 control, 

and w1118 serves as the background control.  Similarly, the pdf>Q20, pdf>Q50 and pdf>Q93 lines 

were made.  For co-expression of HTT-Q and PDF in the LNv neurons, ywpdfGal4;UAS-PDF:+ 

were crossed with UAS-HTT-Q lines to obtain pdf>Q0,PDF and pdf>Q128,PDF.  UAS-pdf was 

a gift from Paul Hardin, Texas A& M University (Renn et al., 1999).  For co-expression of HTT-

Q and myrGFP in the LNv, w1118;+;pdfGal4 females were crossed with w;UAS-HTT;UAS-myr-

GFP males (pdf>Q0,GFP and pdf>Q128,GFP).  For co-expression of HTT-Q and Apoliner in 

the LNv, w1118;+;pdfGal4 females were crossed with w;UAS-HTT-Q;UAS-Apoliner (pdf>Q0,Apo 

and pdf>Q128,Apo).  The UAS lines were myrGFP (BL32200) and Apoliner (BL32123).  Unless 

specified otherwise, all fly lines and crosses were maintained on a standard cornmeal medium 

under 12:12h LD cycles at 25°C.  Subsequently, activity was recorded in specific light regimes 

from post-eclosion age day 3 (3d, henceforth age is denoted in this format) to capture changes 

from an early age.  
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2.2.2 Behavioural assays  

Virgin male flies (age 1-2d-old) were housed individually in glass tubes (length 6.5 cm, diameter 

7 mm), with one end having corn food (0.25 ml) and a seal of paraffin wax and the other end 

plugged with cotton.  Their activity rhythms were recorded using the TriKinetics DAM system 

(TriKinetics, Waltham, MA).  The assays were carried out at 25°C in incubators (Sanyo MIR‐154 

and Percival DR36VL).  Data were collected every 5 min in most cases; in the LL experiment, 

the data were collected every 1 min; for the dim LD and phase shift experiments, glass tubes of 

5mm diameter were used.  For the LL experiment, flies were transferred into tubes with fresh 

food at ages 9 and 23.  Raw time series data obtained during DD have been analysed with the 

CLOCKLAB software (Actimetrics, Wilmette, IL) Chi-square periodogram with a cut-off of p = 

0.01 (Pfeiffenberger et al., 2010). 

The rhythm characteristics were quantified over three 7d age windows (AWs) comprising AW1 

(age 3d-9d early window), AW2 (age 10d-16d middle window) and AW3 (age 17d-23d late 

window) to track progressive changes.  The amplitude of the periodogram over the 1% cut-off 

was used to measure the rhythm robustness.  A fly was considered rhythmic if the periodogram 

amplitude was above the cut-off, and this was further confirmed with a visual inspection of the 

actogram.  The following steps were carried out to determine the extent of daily activity 

consolidation ‘r’.  24h activity/rest time series data binned every 1h were converted into a polar 

coordinate system of a circle made of 24 points.  The 24 equidistant points around the circle 

represented the time of the day and the related activity at each of those 24 time points.  Each such 

point on the circle was resolved into their Cartesian x and y coordinates by multiplying that time's 

sine and cosine values with activity counts in that hour, thus assigning an activity level to each of 

the 1h bin time points.  A vector sum of the resolved x and y coordinates normalised by total daily 

activity provided the X and Y vectors for daily activity distribution.  The resultant of these two 

vectors is ‘r’ (radius of the unit circle).  This radial distance ‘r’ from the centre indicates the extent 

of activity consolidation.  Due to the multiplication of sine and cosine values for each time point 

with the activity at that time, a rhythmic fly with consolidated activity is expected to have a higher 
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magnitude of ‘r’.  In contrast, an arrhythmic fly with daily dispersed activity has a lower ‘r’ 

because the activity is multiplied by all the time points in a day.  Daily ‘r’ was averaged across 

flies. 

The daily activity counts were calculated by averaging 15 min binned raw data across flies over 

24h.  The mean activity profiles for LD were plotted by averaging 15min activity counts over 7d 

for an individual and then averaging across flies.  The measures for morning and evening 

anticipation, the anticipation indices (AI), were quantified by a previously reported method as the 

ratio of activity counts 3h before dark/light or light/dark transitions to the activity count 6h before 

that transition (Harrisingh et al., 2007).  Mean normalised activity profiles are plotted by 

averaging 15min binned individual fly raw activity over 5d, normalized by the individual's total 

activity, and averaged across flies.  Sleep was analysed using the PySolo software described 

previously (Gilestro and Cirelli, 2009), with data collected every minute. 

2.2.2.1 Statistical analysis 

The proportion of rhythmic to arrhythmic flies between genotypes for each AW was compared 

using an mxn Fisher’s Exact contingency test followed by multiple 2x2 Fisher’s tests.  The p-

values were corrected for False Discovery Rate (FDR, FDR set at 5%) using the Benjamin-

Hochberg procedure.  For comparison of rhythmicities of a genotype across AWs, the Cochran Q 

test followed by pairwise McNemar’s test and Bonferroni corrections were carried out.  With 

multiple independent experiments (as in Fig 2.1), a repeated-measures ANOVA was carried out 

on arcsine square-root transformed proportions of rhythmicity with genotype as the categorical 

factor, followed by post-hoc with Tukey’s HSD test.  For comparisons of genotypes or of AWs 

(or age) in terms of period, rhythm robustness, ‘r’, activity levels, anticipation indices, and sleep, 

the data sets (or transformed data sets) were analysed for ANOVA assumptions of normality and 

variance homogeneity using Shapiro-Wilk test and Levene’s test respectively.  A repeated-

measures ANOVA was carried out if these two assumptions and the assumption of sphericity 

were satisfied (using Mauchly’s Sphericity test), followed by Tukey’s HSD or Unequal N Tukey’s 
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HSD post-hoc tests, depending upon the data set.  Suppose even one of the conditions was not 

met.  Then, instead of a repeated-measures ANOVA, the data sets comparing genotypes for an 

AW (or age) were suitably transformed to test for assumptions of one-way ANOVA.  Where the 

data set was normally distributed, and their variances were found homogenous, a one-way 

ANOVA was done, followed by post-hoc testing with Tukey’s HSD or Unequal N Tukey’s HSD.  

If the datasets were normally distributed but did not satisfy the assumption of variance 

homogeneity, the Welch ANOVA followed by Games-Howell tests were carried out.  Where the 

data sets were not normally distributed despite transformations, the non-parametric Kruskal-

Wallis test followed by multiple comparisons of mean ranks (corrected for the number of 

comparisons) was carried out.  Friedman’s test, followed by pairwise Wilcoxon tests with 

Bonferroni corrections, was applied to compare a genotype between AWs.  To compare a 

genotype between ages (e.g. with r-value, daily activity and sleep levels), Friedman’s test for 

repeated measures followed by post-hoc tests with the Conover and Benjamini-Hochberg 

methods were used.  For Benjamini-Hochberg, FDR was set at 5%.  Two-way factorial ANOVA 

followed by Unequal N Tukey’s HSD was conducted to compare genotypes and regimes in an 

AW (Fig 2.14c-f).  Specifically, for between-genotype-comparisons for an AW (or an age), the 

Kruskal-Wallis test for the period (Figs 2.1e and 2.4e) and ‘r’ (Figs 2.1c and 2.4c), an ANOVA 

(Fig 2.1d) or the Welch’s ANOVA (Fig 2.4d) for rhythm robustness, a repeated measures 

ANOVA (Fig 2.1f) or the Welch’s ANOVA for activity levels (Fig 2.4f), the Welch’s ANOVA 

for daily sleep in DD (Fig 2.1g), a one-way ANOVA for daytime sleep, nighttime sleep and daily 

sleep in LD (Fig 2.9g), a one-way ANOVA for daytime activity, nighttime activity and daily 

activity levels (Figs 2.9c-d and 2.11d), a Kruskal-Wallis test for day and night activity (Fig 2.10c-

d), a one-way ANOVA for morning and evening anticipation indices (Figs 2.9e-f, 2.10e-f, 2.11e) 

and a Kruskal-Wallis test for morning anticipation index (Fig 2.11e) were carried out. 

Statistical analyses were mainly executed using STATISTICATM 7.0 (StatSoftInc, 2004) and R 

(RCoreTeam, 2013).  Welch’s ANOVA was performed using a Microsoft Excel template from 

http://www.biostathandbook.com/onewayanova.html (McDonald, 2014), McNemar’s test 

http://www.biostathandbook.com/onewayanova.html
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using SciStatCalc (SciStatCalc) and Friedman’s test followed by the Conover test for ‘r’, activity 

and sleep levels using ASTATSA (ASTATSA). 

2.2.3 Immunocytochemistry and image analysis 

A previously described immunocytochemical method was used (Sheeba et al., 2008c).  Adult fly 

brains were dissected in ice-cold 1X PBS at specified ages, fixed with 4% paraformaldehyde at 

room temperature (RT) for 30 minutes.  10% horse serum in 0.5% PBT was used as a blocking 

solution.  For co-staining with anti-HTT, samples were incubated with blocking-solution for 1h 

at RT, 6h at 4°C and primary antibody for 48h at 4°C.  For co-staining with anti-PER and anti-

PDF, samples were incubated with blocking solution for 1h at RT, overnight at 4°C and primary 

antibody for 48h at 4°C.  For single staining with anti-PDF, the samples were incubated with 

blocking solution for 1h at RT and with primary antibody for 24h at 4°C.  Incubation with 

secondary antibodies was for 24h at 4°C.  Post-immunostaining, whole brains were mounted on 

slides using 70% glycerol in 1XPBS. 

Primary antibodies used were anti-Huntingtin Mouse (1:500) (Millipore MAB2166) along with 

anti-PDF Rabbit (1:30,000) (a gift from Michael Nitabach, Yale University) and anti-GFP 

Chicken (1:1000) (Sigma-Aldrich G6539), anti-PER Rabbit (1:20,000) (a gift from Jeffrey C 

Hall, Brandeis University) with anti-PDF Mouse (1:5000) (DSHB PDF C7).  Secondary 

antibodies Alexa Fluor (Invitrogen) (1:3000) anti-rabbit488, anti-rabbit546, anti-mouse546, anti-

mouse633 and anti-chicken488 were used. 

pdf>Q128 flies were grouped into rhythmic (Rhy) or arrhythmic (Arr) categories based on the 

method described above to ascertain the status of PDF and were sampled on alternate days for 

dissection at CT2-4 following the previous LD.  Since most pdf>Q128 flies are arrhythmic, few 

rhythmic flies were available for dissection at ages 7d and 15d. 

For PDF oscillations in the sLNv DP, pdf>Q128 and Q128 flies were dissected at age 9d at CT2-

3 (CT2), CT6-7 (CT6), CT10-11 (CT10), CT14-15 (CT14), CT18-19 (CT18) and CT22-23 

(CT22) in DD (7d in DD) or ZT2-3 (ZT2) and ZT11-12 (ZT11) in LD and stained with anti-PDF 

rabbit (1:30,000).  For PER oscillations, 9d-old pdf>Q128 and pdf>Q0 were dissected at CT23-



145 
Chapter 2 

PhD Thesis, 2023, JNACSR, Bengaluru  Pavitra Prakash 

 

24 (CT23), CT5-6 (CT5), CT11-12 (CT11), CT17-18 (CT17) or ZT23-24 (ZT23), ZT5-6 (ZT5), 

ZT11-12 (ZT11), ZT17-18 (ZT17).  These samples were co-stained with anti-PDF to enable the 

identification of the LNvs.  A change in PER intensity across time points was considered a 

circadian oscillation when intensity at a time point is statistically different from its neighbouring 

time points on either side. 

For detecting PDF in the sLNv DP in flies reared in constant light (LL), a higher concentration of 

anti-PDF rabbit (1:10,000) was used to detect very low PDF levels.  In many flies expressing 

expHTT in the LNv, PDF was not detected in the sLNv soma, although it could be present at 

extremely low levels.  However, despite increasing antibody concentrations thrice the usual 

levels, PDF was not detected in the sLNv soma of most pdf>Q128 flies (section 2.3.5), suggesting 

that PDF in sLNv soma is possibly negligibly small or altogether eliminated.  In contrast to PDF 

in sLNv soma, PDF was readily detected in sLNv DP and lLNv.  A higher concentration of anti-

PER Rabbit (1:5000) was also used to detect low levels of PER in pdf>Q128. 
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2.2.3.1 Image acquisition and analysis 

The samples were viewed under a Zeiss Axio Observer Z1 epifluorescence microscope using the 

63X/oil1.4 objective.  PDF+ LNv were counted, and the presence of DP was noted.  Images were 

captured as a z-stack of 1µm interval using the 40X/oil1.3 objective, keeping the lamp intensity 

and exposure time constant across samples to quantify PDF intensity in the sLNv DP.  NIH 

imaging software ImageJ (Schneider et al., 2012) was used on maximum intensity projection 

images to quantify PDF intensity in the DP by subtracting the DP intensity from an area-matched 

background by an analyser blind to the genotype and time point.  At least three independent 

experiments per light regime with two-time points corresponding to the peak and trough were 

carried out to confirm oscillations of PDF in sLNv DP of pdf>Q128. 

For quantification of PER intensity, images were captured as described above.  The PER intensity 

for a cell at its sharpest z-plane was obtained, and the mean PER intensity of that group was 

subtracted from an equal area of average background intensity in the vicinity using image J 

(Sheeba et al., 2008c).  At ZT11, as no or negligible PER signal was observed in both genotypes, 

PER intensity was assigned a low value of 0.001.  In DD, when PER signal was not detected 

above the background on quantification, PER intensity was set to 0.001.  In DD, when an LNv 

was observed with PDF staining but no corresponding signal over the background in PER, the 

PER intensity for those LNv was assigned a value of 0.001.  The standard deviation (SD) for PER 

intensity was calculated for each hemisphere.  The mean SD across hemispheres was compared 

between genotypes for each time point to determine the extent of synchrony within a neuronal 

group (Zhang et al., 2010a).  Confocal z-stacks were captured using Zeiss LSM700, LSM 880 

and Olympus FV1000 for representative images.  To aid the visualisation of DNs, they have been 

uniformly imaged at a higher laser power and PMT gain than the LNs. 

2.2.3.2 Statistical analysis 

A two-way ANOVA was performed with genotype and age or regime and age as fixed factors for 

cell numbers.  For PDF and PER staining intensity, a two-way factorial ANOVA was carried out 

with genotype and time as the fixed factors.  Post hoc multiple comparisons were conducted using 
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Tukey’s Honest Significant Difference test at α = 0.05.  The Kolmogorov-Smirnov test was done 

for cell number distributions at α = 0.05. 

2.2.3 Lifespan assay 

Lifespan assay was carried out in flies of yw background.  Ten replicate vials containing ten 2d-

old virgin males were set up for each genotype.  The vials were placed horizontally in DD at 

25°C, and every day at nearly the same time, the vials were examined, and any dead flies were 

noted under a safe red light.  Flies were transferred into fresh food vials once every three days in 

DD.  Survivorship curves for each genotype were plotted following the flies' death.  The mean 

lifespan per vial was calculated and averaged over vials.  A one-way ANOVA with genotype as 

the fixed factor was carried out for statistical analysis of mean lifespan, followed by post hoc 

comparisons using Tukey’s Honest Significance test at α = 0.05. 

OriginPro 8 (Origin(Pro)), Sigma Plots 11.0 (SigmaPlot), and Adobe InDesign 3.0 

(AdobeIndesignCS) were used for making figures. 
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2.3 RESULTS 

2.3.1 Expression of expHTT in the LNv abolishes free-running rhythms 

A previous study showed that expression of expHTT (HTT-Q128) in the PDF expressing LNv 

(henceforth denoted as PDF+ LNv) results in the flies showing arrhythmic locomotor activity in 

constant darkness as early as 3d, with a selective loss of PDF-only from the sLNv (Sheeba et al., 

2008b; Sheeba et al., 2010).  However, in that study, the rhythmicity of control flies was low 

(Sheeba et al., 2010); therefore, I backcrossed the flies to reduce background effects.  These 

pdf>Q128 flies were arrhythmic from the first day in DD (Fig 2.1a top-centre), whereas all 

controls were rhythmic (Fig 1a), and the percentage of rhythmic pdf>Q128 flies was significantly 

lower than controls across AWs (Fig 2.1b).  Thus, in a w1118 background, despite the controls 

exhibiting close to 90-100% rhythmicity across age, HTT-Q128 expressing flies were mostly 

arrhythmic in DD with no rhythm improvement even after sufficient time, concordant with the 

previous study (Sheeba et al., 2010).  Also, arrhythmicity set in as early as age 3d, immediately 

upon placing the flies in DD (Fig 2.1a).  Together with the previous study where flies received 4d 

of LD before entry into DD (Sheeba et al., 2010), these results suggest that the duration of LD 

post-eclosion and before the DD are not critical in determining the day of arrhythmicity onset.  

To obtain a more detailed temporal resolution of change in rhythm features (daily, as opposed to 

7d AWs), I estimated ‘r’, an indicator of the consolidation of daily activity.  pdf>Q128 flies 

showed poor daily activity consolidation ‘r’ than controls for most of the time of activity 

recording, beginning at age 6d, up to 19d, (at which time, controls also started to show a reduction 

in r) (Fig 2.1c).  A small fraction of pdf>Q128 flies was weakly rhythmic, as evidenced by very 

low values for robustness, and exhibited close to 24h periods (Figs 2.1d and 2.1e).  Flies 

expressing the non-expanded form HTT-Q0 (pdf>Q0) showed robust rhythms comparable to 

pdfGal and w1118 (Fig 2.1d) with a consistently long period, which is partly reflective of the long 

period of the genetic background of its parent, the driver pdfGal4 (Fig 2.1e).  The UAS control 

Q128 showed relatively less robust rhythms than other controls in AW2, though not as poor as 

pdf>Q128 flies (Fig 2.1d).  
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Fig 2. 1 Flies expressing expHTT in the LNv exhibit a loss of locomotor activity/rest behavioural 

rhythms in constant darkness. 

(a) Representative double plotted, normalized actograms (x-axis = 48h) for pdf>Q0, pdf>Q128, Q128, 

Q0, pdfGal and w1118 depicting activity data for >21days in DD (age 3d-23d on y-axis).    
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The 21d activity data is divided into three 7d age windows (AWs), namely AW1 (3d-9d), AW2 (10d-

16d) and AW3 (17d-23d), as depicted on the left side to capture progressive changes.  The white and 

grey bars above actograms represent light and dark phases of the previous LD.  (b) The percentage of 

rhythmic flies averaged over four independent experiments is plotted across three AWs.  pdf>Q128 

has significantly poor rhythmicity compared to other genotypes (* p<0.001).  (c) Mean ‘r’ per day 

across age.  Symbols indicate statistically significant differences at p<0.05: specific colour * indicates 

a difference of that coloured genotype from the genotype nearest which the * is placed or is indicative 

of difference from all other genotypes in cases where a coloured * is placed near the same coloured 

genotype, coloured # indicates a difference of that specific-coloured genotype from all other genotypes 

except Q128, coloured ̂  indicates a difference of that specific-coloured genotype from Q0 and pdfGal, 

coloured + indicates a difference of that specific-coloured genotype from all genotypes except w1118.  

n≥25 indicates that at least 25 flies remained alive for all genotypes up to age 23d.  (d) Mean robustness 

of rhythmic flies across age.  In AW1, w1118 has significantly more robust rhythms than other genotypes 

(* p<0.05).  In AW2, Q128 has relatively less robust rhythms than other genotypes (** p<0.01).  

pdf>Q128 was not considered for statistical tests, as few were rhythmic.  nd, not different.  (e) Mean 

free-running period across AWs.  Symbols indicate statistically significant differences (* p<0.05, ** 

p<0.01 and *** p<0.001).  pdf>Q0 has a longer period than other genotypes (cyan * p<0.05) in AW1 

and AW2 and from all genotypes except pdfGal in AW3 (cyan §§§ p<0.001).  pdf>Q128 was not 

considered for statistical tests, as few were rhythmic.  (f) Mean daily activity counts across age.  (g) 

Mean daily sleep levels across ages.  Symbols indicate statistically significant differences, as described 

in (c).  Additionally, ¶ indicates difference from pdf>Q0, pdf>Q128 and Q0, £ difference from 

pdf>Q128, Q0, and Q128, and ø difference from pdf>Q0, pdf>Q128, Q0, and Q128.  Across all 

panels, coloured $ indicates a difference between AWs for that genotype ($ p<0.05, $$.p<0.01and $$$ 

p<0.001), and error bars are SEM. 

The pdfGal4 driver, in addition to driving expression in the PDF+ small and large LNv of the 

Drosophila brain, also targets four large and two small abdominal neurons in the ventral nerve 

cord (Ab-PDF) (Helfrich-Forster, 1997).  The Ab-PDF neurons do not express the molecular 

clock genes, are unaffected by PDF neurons in the Ventral nerve Cord (or abdominal PDF or Ab-

PDF neurons) do not express the molecular clock genes, are unaffected by ClkJrk and cyc01 

mutations and PDF from these neurons are not necessary for circadian activity rhythms in 

Drosophila (Park et al., 2000; Shafer and Taghert, 2009; Nassel and Winther, 2010).  However, 

PDF in the Ab-PDF neurons modulates the period of the molecular clocks in the oenocytes 

(peripheral tissues that produce pheromones) and their oenocyte’s physiological output (Krupp et 

al., 2013).  Since the circadian behaviour readout used in my study is the circadian locomotor 

activity rhythms, for which the PDF from the abdominal ganglia is dispensable, the effects of 

expressing expHTT using pdfGal4 on the activity rhythms are primarily attributed to their effect 

on the PDF+ LNvs in the fly brain. 
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Arrhythmicity and poorly consolidated activity are often associated with changes in activity levels 

per se.  Even though young pdf>Q128 flies showed relatively low activity levels, they were not 

statistically different from controls (Fig 2.1f).  Given that HD causes sleep disturbances, upon 

examination of sleep levels in these flies, young flies of pdf>Q128 had lowered daily sleep levels 

than pdfGal & w1118, but so was the case with pdf>Q0, Q0, and Q128 (Fig 2.1g).  pdf>Q128 

flies had fragmented sleep with lower bout length and higher bout number than most controls 

except Q128 (not shown), which is likely a genetic background effect.  In summary, flies 

expressing expHTT in PDF neurons have poorly consolidated activity/rest rhythms evidenced by 

arrhythmicity, while their sleep is not compromised. 

2.3.2 expHTT expression in LNv led to selective loss of PDF from the sLNv soma, 

while PDF presence in dorsal projections is unaffected 

I then asked whether the weak rhythms of rhythmic pdf>Q128 flies corresponded to having a 

significantly greater number of PDF+ sLNv than their arrhythmic counterparts.  A previous report 

suggests that a single LNv is sufficient to elicit rhythmicity in DD if the LNv terminals reach the 

superior protocerebrum (Helfrich-Förster, 1998).  Across age, pdf>Q128 flies (Rhy and Arr) had 

significantly fewer PDF+ sLNv soma (Figs 2.2a and 2.2b top).  The frequency distribution of the 

PDF+ sLNv soma showed a left skew towards 0, significantly different from the right-skewed 

distribution of pdf>Q0 across age (Fig 2.3a Fig left).  In contrast, the PDF+ lLNv soma numbers 

and distributions were comparable between genotypes (Figs 2.2a and 2.2b bottom, Fig 2.3a right).  

Consistent with reported results (Sheeba et al., 2008b; Sheeba et al., 2010), most pdf>Q128 flies 

showed loss of PDF from the sLNv soma (Fig 2.2a).  Interestingly, in pdf>Q128 flies, the number 

(Fig 2b top, blue vs red bars) and frequency distribution (Fig 2.3a) of PDF+ sLNv soma between 

rhythmic and arrhythmic individuals were not different at ages 7d and 15d.  Notably, rhythmic 

and arrhythmic pdf>Q128 flies had PDF in their sLNv DP (Fig 2.2a).  Pooling weakly rhythmic 

flies of ages 7d and 15d, about 71% of flies (10/14 brain samples) did not have detectable PDF in 

the sLNv soma.  Still, they had PDF in their DP (Fig 2.2a centre), suggesting that their residual 

rhythmicity might stem from PDF in the DP or non-sLNv mechanisms.  In a tiny proportion of 

arrhythmic flies (10/73), at least one PDF+ sLNv soma was detectable until age 15d (Figs 2.2a 

third column and 2.3a).  However, regardless of PDF absence from the sLNv soma, these 
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arrhythmic flies exhibited PDF in their sLNv DPs (Fig 2.2a third, fourth columns), revealing that 

the presence of PDF+ sLNv with intact DP does not ensure rhythmicity.  These findings show that 

for most pdf>Q128 flies, weakening or breakdown of activity rhythms is associated with PDF 

loss from sLNv soma, while PDF is present in their sLNv DPs and lLNvs. 

In both rhythmic and arrhythmic flies of pdf>Q128, the inclusion form (Inc) of expHTT was 

found in the LNv, whereas HTT in the LNv of control pdf>Q0 was completely diffuse in 

appearance (Fig 2.1a second-row). 

Since very few pdf>Q128 flies had PDF+ sLNv soma and when present, their numbers were 

significantly small, I did not quantify the PDF levels or cellular distribution in these cells.  In a 

separate experiment, at the centre of AW1 (age 5d-6d), when a sufficiently high number of flies 

would likely have at least one PDF+ sLNv, I found no difference between PDF levels in the soma 

of sLNv or lLNv between pdf>Q128 and pdf>Q0 (Fig 2.3b).  To overcome PDF depletion by 

expHTT, PDF was co-expressed with HTT-Q128 in the LNv (pdf>Q128,PDF).  However, such 

flies were arrhythmic, like pdf>Q128, and their percentage rhythmicities were significantly lower 

than controls (Figs 2.3c and 2.3d).  
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Fig 2. 2 Behaviourally rhythmic and arrhythmic pdf>Q128 flies mostly lack PDF in their sLNv 

soma, which is present in their DP.  
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Representative images of adult brains of rhythmic pdf>Q0 (age 11d), rhythmic pdf>Q128 (age 7d) 

and arrhythmic pdf>Q128 (age 11d) stained for PDF(green) and HTT (red) showing sLNv soma (→ 

arrows), lLNv soma (> arrowheads), sLNv dorsal projections (▲ triangles), lLNv contralateral 

projections (⌂ house), diffuse HTT staining (Ψ psi) and inclusions of expHTT (« double arrowheads).  

Examples of arrhythmic pdf>Q128 with one sLNv soma (third column) and no sLNv (fourth column) 

are shown.  Scale bars are 10 µm.  (b) Top: Average number of PDF+ sLNv soma per brain for rhythmic 

pdf>Q0 flies and arrhythmic pdf>Q128 flies across age and for rhythmic pdf>Q128 at ages 9d and 

15d.  Symbols indicate statistically significant differences: * (black) between pdf>Q128 and pdf>Q0 

for each age (p<0.0001), * (red) between pdf>Q128 at age 1d from both rhythmic and arrhythmic 

pdf>Q128 at other ages (p<0.001).  Bottom: Average number of PDF+ lLNv soma per brain plotted as 

in top panel.  n= 6-10 whole brains/genotype/age.  Across all panels, error bars are SEM. 
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Fig 2. 3 Rhythmic and arrhythmic pdf>Q128 flies show a similar distribution of PDF+ sLNv soma. 

(a) Frequency distribution of the proportion of brain samples with 0 or more PDF+ soma (sLNv or 

lLNv) at each age is plotted for rhythmic pdf>Q0 and rhythmic and arrhythmic pdf>Q128.  The 

distribution of pdf>Q0 is significantly different from rhythmic pdf>Q128 (blue *) and   
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 arrhythmic pdf>Q128 (red *).  * p<0.005 and *** p<0.001.  (b) Mean LNv soma numbers (top) and 

signal intensity of PDF in them (bottom) for pdf>Q128 and pdf>Q0 for 6d-old flies under LD.  * 

indicates a difference between genotypes at p<0.0001.  a.u, arbitrary units.  (c) The percentage 

rhythmicity of flies is plotted where *indicates a significant difference at p<0.0001 from the controls 

with near 100% rhythmicity.  (d) Top: Representative images of 9d-old brains of pdf>Q128 and 

pdf>Q128,PDF stained for PDF (green) and HTT (red) showing lLNv soma (> arrowheads) and 

inclusions of expHTT (« double arrowheads).  Scale bars are 10 µm.  Bottom: Mean number of PDF+ 

sLNv and lLNv soma per hemisphere for the two genotypes.  Mostly, no PDF+ sLNv soma are 

detectable in both genotypes.  Across panels, error bars are SEM. 

2.3.3 Arrhythmicity in free-running rhythms shows a polyQ-length dependence 

polyQ diseases show a polyQ-length-dependent increase in severity and a decrease in the age of 

symptom onset (Finkbeiner, 2011).  Given the extreme phenotype with HTT-Q128, using a 

different set of polyQ-HTT lines, I asked if the arrhythmicity in activity rhythms shows a polyQ-

length dependence.  An intermediate-length polyQ HTT (HTT-Q50) and a longer-length polyQ 

HTT (HTT-Q93) were the expHTT lines, for which HTT-Q20 served as the non-expanded 

control.  pdf>Q93 was arrhythmic from age 3d (Fig 2.4a top), as is also evident from the 

significantly lower percentage of flies that were rhythmic compared to controls in AW1 (Fig 2.4b) 

and their relatively poor daily activity consolidation ‘r’ (Fig 2.4c).  The few rhythmic flies in 

AW1 had low rhythm robustness that differed significantly from other controls (Fig 2.4d).  In 

AW2 and AW3, a more significant percentage of pdf>Q93 flies became rhythmic compared to 

AW1 yet had poorer rhythmicity than controls but not pdf>Q50 (Fig 2.4b), and these were weak 

rhythms compared to their relevant non-expanded controls (Fig 2.4d).  All flies with the 

intermediate expansion pdf>Q50 were rhythmic in AW1 but became progressively arrhythmic 

(Fig 2.4a top), with percentage rhythmicity falling significantly in AW3 compared to earlier AWs 

(Fig 2.4b).  In AW2 and AW3, pdf>Q50 had significantly fewer rhythmic flies than most controls 

(Fig 2.4b).  The onset of arrhythmicity occurred between ages 14d-16d (second half of AW2).  

However, this fall in rhythmicity with time did not reflect in their ‘r’, as around 13d, pdf>Q50 

was different only from pdfGal (Fig 2.4c, see plum-coloured * placed near the pdfGal curve in 

grey) and at 15d, from pdf>Q20 (Fig 2.4c, see cyan-coloured * placed near the pdf>Q50 curve in 

plum).  A noticeable lack of difference in ‘r’ for pdf>Q50 from controls could be because the r’ 

of most genotypes begins to fall around the middle age of the recording.  The robustness of 
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rhythmic pdf>Q50 flies was lower than its non-expanded and UAS controls but not the driver 

control in AW2 (Fig 2.4d).  Both pdf>Q20 and pdf>Q50 had more extended periods than other 

genotypes in AW1 and AW2 (Fig 2.4e).  pdf>Q93 had lower activity levels than most other 

genotypes in early ages (up to 7d) but not different than pdfGal, which had low activity levels for 

most of the run (Fig 2.4f).  In summary, a longer expanded polyQ led to an early and immediate 

arrhythmicity onset and reduced rhythm robustness.  In contrast, with a shorter expanded polyQ, 

arrhythmicity is delayed, and rhythm robustness is affected to a lesser degree.  These observations 

highlight a dependence of the age-of-onset of rhythm disturbance and the magnitude of rhythm 

disturbance on the polyQ-length. 

  



158 
Chapter 2 

PhD Thesis, 2023, JNACSR, Bengaluru  Pavitra Prakash 

 

Fig 2. 4 Expression of expHTT with an intermediate-length-polyQ leads to a delay in arrhythmicity 

in DD. 

(a) Representative double plotted, normalized actograms for pdf>Q20, pdf>Q50, pdf>Q93, Q20, Q50 

and Q93 w1118 depicting activity data for >21days in DD (age 3d-23d on the y-axis).  All other details   
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are like Fig 2.1a.  (b) The percentage of rhythmic flies is plotted across three AWs.  Coloured * 

indicates a significant difference between the specific-coloured genotype and all other genotypes or 

indicated genotype(s).  nd, not different.  (c) Mean ‘r’ per day across age.  Symbols indicate 

statistically significant differences at p<0.05: specific colour * between that coloured genotype from 

the genotype nearest which the * is placed or * coloured genotype from all other genotypes in cases 

where a coloured * is placed near the same coloured genotype, coloured # of that specific-coloured 

genotype from other genotypes except pdf>Q50 and Q93, coloured § of that specific-coloured 

genotype from other genotypes excepting pdf>Q20 and Q20, coloured ^ of that specific-coloured 

genotype from other genotypes excepting pdf>Q20 and Q50 and coloured + of that specific-coloured 

genotype from other genotypes excepting pdf>Q50 and Q50.  n≥21 indicates that at least 21 flies 

remained alive for all genotypes up to age 23d.  (d) Mean robustness of rhythmic flies across age.  

Coloured * indicates a significant difference between the specific-coloured genotype and all other 

genotypes or indicated genotype(s).  (e) Mean free-running period across AWs.  Coloured symbols 

indicate statistically significant differences of the specific-coloured genotype: * - from indicated 

genotypes, ¶ - from pdf>Q93, Q20, Q50 and w1118 and ø - from other genotypes excepting pdf>Q20 

and pdfGal.  (f) Mean daily activity counts across age.  Coloured symbols indicate statistically 

significant differences of the specific-coloured genotype: £ - from all genotypes excepting pdfGal, and 

ø - from other genotypes excepting pdf>Q93 and pdfGal.  Across panels, statistically significant 

differences are indicated at p<0.05 (single symbol), p<0.1(double symbol) and p<0.001 (triple 

symbol); coloured $ denotes differences between AWs for that genotype and error bars are SEM. 

2.3.4 GFP loss from sLNv soma mirrors PDF loss from sLNv soma in expHTT- 

expressing flies 

I then wanted to distinguish whether PDF loss from sLNv soma is due to the neuropeptide PDF 

loss or if the sLNv is altogether lost.  In a prior study using pdf>Q128,NacBach-CD8::GFP, 

neither PDF nor GFP were detected in sLNv (Sheeba et al., 2008b).  Here, I used the 10X-UAS 

myrGFP, a Drosophila codon-optimised, myristoylated membrane GFP, having greater signal 

strength when expressed using a basal promoter, thus enhancing GFP and enabling detection  

(Pfeiffer et al., 2012).  Using pdf>Q128;myrGFP, GFP was not detected in sLNv soma, and this 

mirrored PDF loss from sLNv soma (Fig 2.5a) in terms of mean numbers (Fig 2.5b) and frequency 

distribution at ages 0d and 9d (Fig 2.5c), suggesting compromised cell integrity.  However, PDF 

and GFP are detected in the sLNv dorsal terminals, indicating that the neurons are likely present. 
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Fig 2. 5 expHTT-expressing flies show selective loss of GFP from the sLNv soma. 

(a) Representative images of adult brains of pdf>Q0,myrGFP and pdf>Q128,myrGFP at age 0d (top) 

stained for GFP (green) and PDF (red) and at age 9d (bottom) stained for GFP (green), PDF (red) and 

HTT (blue).  Images show showing sLNv soma (→ arrows), lLNv soma (> arrowheads), diffuse HTT 

staining (Ψ psi) and inclusions of expHTT (« double arrowheads).    
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Scale bars are 10 µm.  (b) The average number of PDF+  or GFP+ LNv soma per hemisphere in 

pdf>Q128,myrGFP and pdf>Q0,myrGFP at ages 0d and 9d.  Symbols indicate statistically 

significant differences: * at p<0.001 and ** at p<0.0001.  Error bars are SEM.  (c) Frequency 

distribution of the proportion of hemispheres with 0 to 5 PDF+ or GFP+ sLNv soma at age 0d (left) 

and 9d (right).  n= 20-24 hemispheres/genotype/age.  Across all panels, error bars are SEM. 

Apoliner is a genetically encoded fluorescence-based caspase sensor.  A membrane-tagged RFP 

is linked to a nuclear-localised signal (NLS) tagged eGFP via a sensitive linker caspase activation 

(Bardet et al., 2008).  The linker comprises DIAP1 (a caspase inhibitor known as the Drosophila 

inhibitor of apoptosis protein 1), cleaving upon apoptosis induction by effector caspases, leading 

to its degradation.  Upon caspase activation, the linker is cleaved, allowing the NLS-eGFP to 

translocate to the nucleus, enabling the detection of spatially distinct fluorescence signals: RFP 

on the membrane and GFP in the nucleus (Bardet et al., 2008).  Since in pdf>Q128, PDF from 

the sLNv soma is lost, the dissection of freshly eclosed flies allows for detecting a few PDF+ 

sLNv, allowing a window to capture apoptosis induction via caspase activation.  In 

pdf>Q128,Apo at age 0d, PDF, if detected in the sLNv soma (in blue) was primarily cytoplasmic.  

For both GFP and RFP, a similar staining pattern emerged comparable to GFP and RFP in pdf>Q0 

(Fig 2.6 top and centre).  At a later age of 9d, in pdf>Q128,Apo neither PDF+ sLNv nor GFP or 

RFP stained sLNv soma were detected, while in the lLNv, RFP and GFP were present and similar 

to PDF in cellular distribution (Fig 2.6 bottom).  Using a static measurement such as GFP-RFP-

based Apoliner, when PDF was detected in sLNv soma at an early age, I do not find any evidence 

for apoptosis in the form of nuclear GFP.  At a later age, PDF and Apoliner markers were 

undetectable.  Events leading to apoptosis of sLNv soma are probably fast and transient and, 

therefore, cannot be captured through such snapshot measurements.  Thus, the results are 

inconclusive as to whether the disappearance of PDF from sLNv amounts to an apoptotic cell 

death. 
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Fig 2. 6 expHTT-expressing flies show a loss of Apoliner-GFP and RFP from the sLNv soma. 

Representative images of adult brains of pdf>Q0,Apo (top) and pdf>Q128,Apo (centre) at age 0d and 

pdf>Q128,Apo (bottom) at age 9d stained for GFP (green), RFP (red) and PDF (blue).  Images show 

sLNv soma (arrows) and lLNv soma (arrowheads).  Scale bars are 10 µm.  n= 20 

hemispheres/genotype/age.  
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2.3.5 Loss of PER from the sLNv and persistence of PDF oscillations in the sLNv 

dorsal projections accompanied by synchronous PER oscillations in the PDF- 

circadian neurons in HD flies in DD 

Flies expressing expHTT are behaviourally arrhythmic in DD, and PDF is not detectable in the 

soma of sLNv, although detectable in their DP (Fig 2.2).  Previous studies using different 

approaches have suggested that oscillations in PDF levels in the sLNv DP are crucial for 

synchronising the molecular oscillations between various circadian neuronal groups in DD (Lin 

et al., 2004; Nitabach et al., 2006; Wu et al., 2008b; Yoshii et al., 2009).  To assess whether PDF 

detected in the sLNv DP of pdf>Q128 flies oscillates, I examined the brains of 9d-old adult flies 

reared under LD and transferred into DD at age 2d.  pdf>Q128 showed oscillation in the PDF 

levels in their sLNv DP with intensity at CT2 significantly higher than CT6-CT18 (Fig 2.7a).  

PDF levels in sLNv DP of control Q128 oscillated, with intensity at CT2 significantly greater 

than CT14-CT22 (Fig 2.7a).  The PDF peak at CT2 of pdf>Q128 and Q128 were in-phase.  

However, the rise and fall of PDF levels in pdf>Q128 was earlier than Q128 (Fig 2.7a), suggesting 

a short period oscillation in PDF levels of pdf>Q128.  Across most time points, PDF levels in 

pdf>Q128 were higher than Q128, but the peak-to-trough difference was qualitatively 

comparable.  Thus, pdf>Q128 in DD exhibit a significant oscillation in PDF levels in the sLNv 

DP. 

Oscillating PDF levels in the sLNv DP are not direct measurements of rhythmic secretion.  

However, the functional consequence of such a secretion would be to synchronise molecular 

oscillations among circadian neurons.  Hence, I assessed the oscillations of PER levels in different 

circadian neuronal subsets.  In pdf>Q128, PER mainly was not detected in the sLNv soma (Figs 

2.7b left and 2.8a centre), and frequency distribution of PER+ sLNv soma showed that most 

hemispheres had no PER+ sLNv soma, which is significantly different from the distribution of 

pdf>Q0 (Fig 2.8a left).  Pooling across time points, the percentage of hemispheres having sLNv 

soma stained by neither PER nor PDF was 83.3%; by both PER and PDF, it was 7.7%; by only 

the PDF, it was 5.9%, and by only PER, it was 3.1%.  The number and distribution of PER+ sLNv 

soma resembled that of PDF+ sLNv soma (Fig 2.8a centre, right).  In controls, PER in the sLNv 
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oscillated with a trough at CT11 and a peak at CT23 (Figs 2.7b right and 2.7c top-left).  The very 

few PER+ sLNv detected in pdf>Q128 had intensities lower than that of control at CT23, CT5 

and CT17 (Figs 2.7b and 2.8d top-left).  Despite increasing antibody concentrations four-fold, 

PER+  sLNv were mainly undetectable in pdf>Q128 (Fig 2.8b).  Thus, expHTT expression in the 

LNv results in a loss of detectable PER from the sLNv soma. 

Only half of the PDF+ lLNv soma of pdf>Q128 were PER+ (Fig 2.8c).  In pdf>Q0, lLNv soma, 

PER showed dampened oscillations of very low amplitude (Figs 2.7b right and 2.7c top-centre).  

PER in the lLNv soma of pdf>Q128 did not oscillate and had significantly lower intensity than 

pdf>Q0 across time points (Figs 2.7b and 2.7c top-centre).  Thus, in pdf>Q128 flies, although 

PDF levels in the lLNv soma and the PDF+ lLNv numbers are unaffected (Fig 2.2 and 2.3b), there 

is a significant reduction of PER levels in the lLNv soma. 

Like its control, 5th sLNv of pdf>Q128 showed a trough in PER oscillations at CT11 (Figs 2.7b 

and 2.7c top-right), and its amplitude was mostly comparable and in phase with its controls.  In 

LNd of pdf>Q128, like controls, PER showed a prominent oscillation with a trough at CT11 (Figs 

2.7b and 2.7c bottom-left), and its levels were similar to pdf>Q0.  DN1s of pdf>Q0 and pdf>Q128 

showed a comparable amplitude of PER oscillations with a trough at CT11 (Figs 2.7b and 2.7c 

bottom-centre).  pdf>Q128 and pdf>Q0 showed PER oscillations in the DN2 with a trough at 

CT23 (Fig 2.7c bottom-right).  Interestingly, the trough phase of PER intensity within each 

neuronal group in pdf>Q128 were similar to their counterparts in pdf>Q0 at CT11 (Fig 2.8d).  

Strikingly, in pdf>Q128, even in the absence of PDF in the sLNv soma, the PER intensity 

oscillations in the 5th sLNv, LNd, and DN1 (hereafter referred to as the PDF
-
 neurons) were in 

phase.  PER intensity in the DN2 showed a trough at CT23 in both the genotypes, which was 

phase-advanced compared to other neuronal groups.  A previous study made a similar observation 

(Veleri et al., 2003).  Further, as a measure of within-group synchrony, for the LNd and DN1 

neuronal groups, the standard deviation of PER intensity per hemisphere was estimated.  This 

measure for pdf>Q128 was not higher than controls for most time points (Table 2.1), suggesting 

that within-group synchrony is unaffected.  This synchrony in PER level oscillations between 
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PDF
-
 neurons is indirect evidence that rhythmic PDF accumulation in the sLNv DP of pdf>Q128 

flies is functional and perhaps indicative of rhythmic PDF secretion. 

In summary, the expression of expHTT in the LNv reduces PER levels to below the detection 

limit in the sLNv.  PER being a central clock component, this amounts to disrupting the free-

running molecular clocks in the sLNv.  In the lLNv, there is a significant reduction in PER levels.  

However, since PER oscillations in the lLNv dampen in DD of even wild-type flies and are not 

essential for circadian activity rhythms in DD (Shafer et al., 2002; Grima et al., 2004a; Lin et al., 

2004), the breakdown of rhythmic activity is most likely due to an sLNv circadian dysfunction.  

The persistence of PDF oscillations in the sLNv DP and synchronous molecular oscillations in 

the PDF
-
 neurons in these arrhythmic flies suggest that these oscillations are insufficient for DD 

activity rhythms.  The continuance of oscillations in PDF levels in the sLNv DP, even in the 

absence of detectable PER in the sLNv soma, suggests that these oscillations are not dependent 

on somal PER-driven molecular clocks.  Overall, in pdf>Q128 flies, the circadian pacemaker 

function of the sLNv that maintains behavioural rhythmicity in DD is abolished.  This sLNv 

dysfunction is independent of PDF oscillations in its DP and downstream synchrony of molecular 

oscillations between other circadian neurons.  These results provide evidence for decoupling the 

oscillations in the PDF levels in the sLNv DP from the free-running behavioural activity rhythms.  

Thus, these results challenge the notion that the sLNv evokes self-sustained activity rhythms in 

DD via oscillations of PDF levels in its DP. 
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Fig 2. 7 Oscillations of PDF levels in the sLNv dorsal termini persist despite a loss of PDF in their 

soma. 

(a) Left: Representative images of 9d-old adult brains showing PDF (green) in the sLNv dorsal 

projections (DP) at six time points in DD for pdf>Q128 and Q128.  Scale bars are 10 µm.  Right: 

Quantifying the PDF intensity in the sLNv DP across time points for both the genotypes, where each 

circle represents individual hemisphere values and the horizontal line depicts the mean value.  Symbols 

indicate statistically significant differences: * (blue) of CT2 from CT6-CT18 for pdf>Q128   
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at p<0.01, # (blue) of CT22 from CT6-CT10 for pdf>Q128 at p<0.05, * (brown) of CT2 from CT14-

CT22 for Q128 at p<0.05, # (brown) of CT6-CT10 from CT14-CT18 for Q128 at p<0.05 and $ (black) 

between pdf>Q128 and Q128 at indicated time points at p<0.0001.  n≥26 hemispheres/genotype/time 

point.  (b) Representative images of 9d-old adult brains stained for PER (green) in the different 

circadian neuronal groups at four-time points in DD for pdf>Q128 and pdf>Q0.  Its co-staining with 

PDF (magenta) identifies the LNv soma.  At CT17, there is no representative image for sLNv in 

pdf>Q128.  Scale bars are 10 µm.  (c) Quantification of PER intensity across time points in the 

different circadian neuronal groups for pdf>Q128 and pdf>Q0 in DD.  Very few pdf>Q128 flies had 

detectable PDF+ and PER+ sLNv soma.  Symbols indicate statistically significant differences: * (red) 

between time points for pdf>Q128, # (blue) between time points for pdf>Q0 and $ between genotypes 

within a time point with single symbol p<0.05, double symbols p<0.01, triple symbols p<0.001and 

quadruple symbols p<0.0001.  n=16-20 hemispheres/genotype/time point.  Across all panels, error 

bars are SEM. 

Fig 2. 8 expHTT-expressing flies show a loss of sLNv PER and a reduction in lLNv PER under 

DD. 

(a) sLNv soma in 9d-old flies in DD at CT23.  Left: Frequency distribution of the proportion of 

hemispheres with 0 to 5 PER+ sLNv soma in pdf>Q128 and pdf>Q0.  *** indicate significantly   
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differing distributions at p<0.001.  Centre: Mean number of PDF+ or PER+ sLNv soma in pdf>Q128 

and pdf>Q0 in DD.  *** indicate statistically significant differences between genotypes at p<0.001: 

in magenta for PDF+ sLNv and green for PER+ sLNv.  Right: Frequency distribution of the proportion 

of hemispheres staining 0 to 5 sLNv soma that is PDF+ or PER+ for pdf>Q128 flies.  (b) Representative 

images of 9d-old brains of pdf>Q128 stained for PER (green) and PDF (magenta) illustrating a lack 

of PER from LNv even upon increasing the antibody concentration four-fold.  Scale bars are 10 µm.  

(c) For lLNv soma.  All other details are the same as above.  Left: ** indicates significantly different 

distributions at p<0.005.  Centre: *** (in black) difference in numbers of lLNv soma that are PDF+ 

and PER+ at p<0.001.  Right: *** indicates that the two distributions differ significantly at p<0.001.  

Across all panels, error bars are SEM. 

Table 2.1 The extent of variation in PER intensity within a neuronal group in expHTT-expressing 

flies is not greater than that of controls. 

 

 pdf>Q0 pdf>Q128 

 

 LNd 

CT23 102.81±28.21 132.15±16.6** 

CT5 80.6±7.44 116.91±9.26** 

CT11 34.41±8.73*** 0 

CT17 113.45±12.9 124.26±10.69 

 DN1 

CT23 79.93±7.13 99.98±9.08* 

CT5 58.85±3.04 55.97±3.77 

CT11 40.58±3.73 44.76±3.46 

CT17 56.38±5.81 57.93±3.4 

The table shows the within-neuronal group mean ± standard deviation in PER intensity for LNd and 

DN1 across time points in DD for pdf>Q128 and its control pdf>Q0.  The standard deviation within 

LNd for pdf>Q128 is significantly lower than that of control at CT23 and CT5 and higher only at 

CT11 when PER is undetectable in pdf>Q0.  The standard deviation within DN1s for pdf>Q128 is 

significantly lower than pdf>Q0 at CT23.  *p<0.05, **p<0.01, ***p<0.001. 
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2.3.6 Expression of expHTT in the LNv does not alter the activity rhythms or sleep 

of flies under LD 

Previous studies show that flies expressing expanded HTT-Q128 in the LNv neurons, though 

arrhythmic in DD, were similar to controls under 12:12h LD cycles with light phase intensity as 

high as 1000-2500 lux (Sheeba et al., 2010).  At high light intensities, acute photic inhibition or 

stimulation (Refinetti, 2015) could prevent the detection of subtle differences in activity profiles.  

So, to detect nuanced differences, flies were maintained under low-contrast-LD regimes as adults 

(moderate-LD: light phase intensity of 100 lux and dim-LD: light phase intensity of 3-8 lux).  

pdf>Q128 flies, like their controls, were rhythmic throughout the recording in both LDs 

(moderate and dim); however, this behavioural rhythmicity of pdf>Q128 did not persist in DD 

(Figs 2.9a and 2.10a top).  In both regimes, the activity profiles of pdf>Q128 were like its controls 

(Figs 2.9b and 2.10b) pdf>Q0 (left), Q128 (centre) and pdfGal (right) across AWs with 

appropriately phased morning and evening peaks and relative inactivity at mid-day (Figs 2.9b and 

2.10b).  In moderate-LD, pdf>Q128 flies exhibited activity counts and anticipation indices 

comparable to controls across age (Figs 2.9c-f).  In dim-LD, daytime and nighttime activity levels 

and E-anticipation of pdf>Q128 were similar to most controls (Figs 2.10c, 2.10d and 2.10f).  The 

M-anticipation index of pdf>Q128 was comparable to that of pdf>Q0 and Q128 in AW1 (Fig 

2.10e).  Although AW2's M-anticipation of pdf>Q128 was significantly lower than most controls, 

it was not different from its UAS control Q128 (Fig 2.10e). 
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Fig 2. 9 Flies expressing expHTT in the LNv do not show altered activity rhythms under moderate-

LD. 

(a) Representative double plotted, normalized actograms for pdf>Q128 and its controls under  LD 

(~100 lux) for 25d (age 3d-27d) followed by DD.  The grey-shaded regions represent the dark phase, 

and the unshaded regions represent the light phase of LD.  All other details are like Fig 1a.    
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(b) The activity counts per 15min are plotted against zeitgeber time for pdf>Q128 in comparison with 

either pdf>Q0 (left) or Q128 (centre) or pdfGal (right) for AW1 (top), AW2 (centre) and AW3 

(bottom).  The grey-shaded regions and black horizontal bars above represent the dark phase, and the 

unshaded region and white horizontal bars above represent the light phase of the LD.  The coloured 

numbers at the top right of each panel are the sample size for each genotype.  (c-f) Mean daytime 

activity counts per 12h (c), mean nighttime activity counts per 12h (d), morning anticipation index (e) 

and evening anticipation index (f) are plotted against AWs with *.  Across panels, error bars are SEM.  

(g) Mean daytime sleep per 12h (left), mean nighttime sleep per 12h (centre) and mean daily sleep per 

24h (right) across age for pdf>Q128, Q128 and pdfGal.  Coloured * indicates statistically significant 

differences at p<0.05: of that coloured genotype from the genotype nearest which the * is placed or * 

of that coloured genotype from all other genotypes where a coloured * is placed near the same-

coloured genotype.  Sleep levels on 9d and 23d are not plotted since flies were transferred to fresh 

tubes and disturbed on those days. 

HD patients and mice have poor sleep quality and levels, especially at night, and increased 

daytime sleep (Hood and Amir, 2017b).  Drosophila HD models also exhibit sleep deficits 

(Gonzales and Yin, 2010; Gonzales et al., 2016; Farago et al., 2019).  Upon investigating the 

effect of expressing expHTT in the LNv on the sleep in pdf>Q128 flies, both pdf>Q128 and Q128 

had significantly higher sleep levels (daytime, nighttime and daily) than pdfGal (Fig 2.9g).  

pdf>Q128 had significantly more insufficient sleep than both controls for very few ages (daytime-

22d, nighttime-3d, 5d and 7d and daily-3d) (Fig 2.9g), suggesting that lowered sleep levels of 

pdf>Q128 might be due to background effects.  Overall, the expression of expHTT on LNv did 

not impact sleep levels in LD. 

I also addressed the question of whether flies expressing expHTT in the LNv re-entrain to a phase-

shifted LD cycle.  pdf>Q128, experiencing a 9h advance in lights-ON, shifted their activity in 

phase to the new LD almost immediately, like the controls (Fig 2.10a, bottom).  Thus, loss of 

PDF from the sLNv soma did not alter the activity rhythms of flies even under low-contrast-LD 

and phase-shifted-LD.  Hence, PDF in the sLNv soma is not required to entrain activity rhythms 

or modulate the clocks' sensitivity to light.  The conclusion that the entraining ability of pdf>Q128 

flies to LD is not affected is based on their control-like M and E anticipations and phasing and 

not on the phase-of-onset of free-running rhythms following LD, given that these flies are 

arrhythmic immediately upon entry into DD (Figs 2.9a and 2.10a).  In concordance with the 

previous study (Sheeba et al., 2010), the presented results suggest that PDF in the sLNv soma is 

not critical for M-anticipation.  However, PDF in the sLNv dorsal projections could be mediating 

effects of the sLNv PDF in LD.  
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Fig 2. 10 Flies expressing expHTT in the LNv do not show altered behaviour under very low-

intensity-LD. 

(a) Representative double-plotted, normalized actograms for pdf>Q128 and its controls are plotted.  

Top: flies are in 12h:12h dim-LD (3-5 lux) for 14d (age 3d-16d), followed by which they are in DD.    
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Bottom: flies are in 8d of 12h:12h dim-LD (age 3d-10d), followed by a 9h phase-advanced-LD for 5d 

(age 11d-15d), followed by DD.  All other details are like Fig 9a.  (b) Mean activity counts per 15 

minutes for pdf>Q128 in comparison with either pdf>Q0 (left) or Q128 (centre) or pdfGal (right) for 

AW1 (top) and AW2 (bottom).  All other details are like Fig 9b.  (c-f) Mean daytime activity counts 

per 12h (c), mean nighttime activity counts per 12h (d), morning-anticipation index (e), and evening 

anticipation index (f) are plotted against AWs.  Coloured * indicates a significant difference between 

the specific-coloured genotype and all other genotypes or indicated genotype(s) and coloured # of that 

genotype from other genotypes except Q128.  nd, not different.  Across panels, statistically significant 

differences are indicated at p<0.05 (single symbol), p<0.1(double symbol), and p<0.001 (triple 

symbol), and error bars are SEM. 

2.3.7 Prior exposure to arrhythmic conditions does not alter the ability of expHTT-

expressing flies to show M-anticipation 

The ability of adult pdf>Q128 flies to show anticipation and appropriately phased M and E peaks 

even after PDF loss from the sLNv soma could be due to their history of prior exposure to 

rhythmic conditions of LD.  Flies were reared under LD, recorded as adults for 7d in DD, which 

renders them arrhythmic and then recorded in LD for 8d (light intensity about 220 lux), followed 

by DD, to rule out such rhythmic-light-history effects.  This regime is named DD-LD-DD, 

signifying the experimental conditions.  A control group of age-matched flies was simultaneously 

recorded in DD throughout the experimental duration and designated DD.  In AW1 (age 3d-9d), 

as expected, pdf>Q128 flies of both DD and DD-LD-DD were arrhythmic with significantly 

lower % rhythmicity compared to controls and were not different from each other (Figs 2.11a and 

2.11b left).  In AW2 (age 10d-16d), pdf>Q128 of DD remained arrhythmic (Figs 2.11a top and 

2.11b centre).  In AW2, pdf>Q128 flies of DD-LD-DD under light/dark cycles exhibited a profile 

similar in shape to Q128 (Fig 2.11c centre) but different from pdf>Q0 and pdfGal (Fig 2.11c left 

and right).  The difference in profiles partly reflects the daytime and daily activity levels of 

pdf>Q128 being significantly lower than pdfGal (Fig 2.11d).  The M-anticipation of both 

pdf>Q128 and Q128 were lower than other genotypes but not different from one another (Fig 

2.11e).  The E-anticipation of pdf>Q128 was lower than other genotypes (though well above AI 

of 0.5) and of Q128 lower than pdfGal (Fig 2.11e).  Given that the E-anticipation is under the 

control of E cells (LNd and PDF- 5th sLNv), which the pdfGAl4 driver does not target, the lowered 

anticipation of pdf>Q128 could be due to a combination of UAS background and environmental 
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effects.  Thus, prior exposure to arrhythmic conditions of DD leads to a difference in daily activity 

levels and E-anticipation of pdf>Q128 from its controls but not in M-anticipation.  In AW3, 

pdf>Q128 from DD and DD-LD-DD were arrhythmic in DD, whereas their controls free-ran from 

the LD phase (Figs 2.11a and 2.11b right).  In conclusion, the persistence of M-anticipation in 

pdf>Q128 flies even upon loss of PDF from the sLNv soma is not due to the initial light 

conditions. 
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Fig 2. 11 expHTT-expressing flies entrain to LD despite experiencing arrhythmic conditions as 

adults. 

(a) Representative double-plotted, normalized actograms for pdf>Q0, pdf>Q128, Q128 and pdfGal in 

two regimes.  Top: flies are in DD throughout and designated DD.  Gaps in actograms around day 20 

(indicated) are due to a technical glitch during the recordings.  All other details are like Fig 2.1a.    
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Bottom: flies in DD for 7 days (age 3d-9d), followed by LD for 8 days (age 10d-17d), followed by 

DD again for 7 days (age 18-14d) and hence designated DD-LD-DD.  All other details are similar to 

Fig 2.9a.  (b) The percentage of rhythmic flies is plotted against the regimes for AW1, AW2 and AW3.  

* indicates a significant difference of pdf>Q128 from controls at p<0.0001 in AW1 and AW2 and 

p<0.05 in AW3.  (c-d) Mean activity counts (±SEM) over 12h (daytime or nighttime) and 24h (daily) 

are plotted.  * indicates a significant difference at p<0.05.  (e-f) Mean anticipation indices for morning 

and evening transitions are plotted.  # indicates a significant difference of pdf>Q128 from all 

genotypes except Q128 at p<0.001.  + indicates a significant difference of Q128 from controls at 

p<0.001.  Coloured * indicates a significant difference between the specific-coloured genotype and all 

other genotypes or indicated genotype(s), coloured # of that genotype from other genotypes excepting 

Q128 and coloured § of that genotype from other genotypes excepting pdfGal.  Across panels, error 

bars are SEM.  Across panels, statistically significant differences are indicated at p<0.05 (single 

symbol), p<0.1(double symbol), and p<0.001 (triple symbol), and error bars are SEM. 

2.3.8 Circadian molecular clock in the sLNv is not necessary for entrainment to LD 

PDF is critical for anticipating dark-light transition (M-anticipation) (Renn et al., 1999).  A 

previous study showed that flies expressing expHTT and lacking PDF in the sLNv soma exhibit 

M-anticipation under high-intensity-LD (1000-2500 lux) (Sheeba et al., 2010).  The present study 

demonstrates that these flies show M-anticipation even under low-intensity-LD (100 lux) (Fig 

2.9).  Moreover, pdf>Q128, like its control Q128, shows prominent oscillation in the PDF levels 

in the sLNv DP: intensity at ZT2 is significantly higher than ZT11 (Fig 2.12).  The circadian 

molecular oscillations in the sLNv of pdf>Q128 flies under LD cycles were tested to understand 

their role in entrainment via PER staining.  On average, fewer PER+ sLNv somas were found in 

pdf>Q128 compared to pdf>Q0 (Figs 2.13a and 2.13b left), and their mean numbers and 

distribution closely corresponded with those of PDF+ sLNv soma of pdf>Q128 (Fig 2.13b centre 

and right).  The few PER+ sLNv somas detected in pdf>Q128 had significantly reduced intensities 

at ZT23 and ZT5 than pdf>Q0, which showed clear oscillations of PER in the sLNv (Figs 2.13a 

and 2.13d top left).  Thus, even in the presence of cyclic light cues, PER is mainly undetected in 

the sLNv soma, suggesting a pronounced impairment of the PER-driven molecular clock in the 

sLNv of expHTT-expressing flies. 

PER and PDF in the lLNv soma of pdf>Q128 were comparable in numbers and distribution to 

the lLNv PER and PDF in pdf>Q0, respectively (Fig 2.13a and 2.13c).  In these neurons, PER 

showed an apparent oscillation with a trough at ZT11 under LD (Figs 2.13a left and 2.13d top-

centre), although they were of low amplitude compared to pdf>Q0, which showed robust PER 
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oscillations (Figs 2.13a and 2.13d top centre).  In pdf>Q128, even in the absence of PDF and PER 

in the sLNv soma, PER levels oscillated in phase across neuronal groups and with controls, with 

a trough at ZT11 (Figs 2.13a and 2.13d).  Thus, despite the loss of PDF and PER from the sLNv 

soma under LD, there is a rhythmic PDF accumulation in the sLNv DP and persistence of M-

anticipation.  The photic entrainment of activity rhythms of flies lacking PER oscillations in the 

sLNv suggests that the sLNv molecular clock is not essential for this phenomenon. 

Fig 2. 12 Flies expressing expHTT show the PDF levels oscillating in their sLNv DP under LD. 

(a) Left: Representative images of adult brains showing PDF (green) in the sLNv DP at two time points 

under LD for pdf>Q128 and Q128.  Scale bars are 20 µm.  Right: The quantification of PDF intensity 

in the sLNv DP across time points where both genotypes show a diurnal oscillation.  * p<0.05, ** 

p<0.01, *** p<0.0001.  n=18-24 hemispheres/genotype/time point. 
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Fig 2. 13 Flies expressing expHTT show loss of PER from the sLNv and dampened oscillations of 

PER in the lLNv under LD. 

a) Representative images of 9d adult brains stained for PER (green) in different circadian neuronal 

groups at four time points in LD for pdf>Q128 and pdf>Q0.  PDF (magenta) is co-stained to identify 

LNv soma.  At ZT11, PER levels were deficient and not visible in most samples.    
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There are no representative images for PER in sLNv and LNd of pdf>Q128 at ZT11.  Scale bars are 

10 µm.  (b) sLNv soma in 6d-old flies in LD at ZT23.  Left: Frequency distribution of the proportion 

of hemispheres with 0 to 5 PER+ sLNv soma in pdf>Q128 and pdf>Q0.  *** indicate significantly 

differing distributions at p<0.001.  Centre: Mean number of PDF+ or PER+ sLNv soma in pdf>Q128 

and pdf>Q0 in DD.  *** indicate statistically significant differences between genotypes at p<0.001: 

in magenta for PDF+ sLNv soma and green for PER+ sLNv soma.  Right: Frequency distribution of 

the proportion of hemispheres staining 0 to 5 sLNv soma that is PDF+ or PER+ for pdf>Q128 flies.  

(c) For lLNv.  All other details are the same as above.  (d) Quantifying PER intensity across time 

points in various circadian neuronal groups for 9d-old pdf>Q128 and pdf>Q0 under LD.  All other 

details are the same as in Fig.8d. The error bars are SEM across all panels. 

2.3.9 PDF in the sLNv is not necessary for morning anticipation under LD 

The pdf>Q128 flies retain their ability to exhibit M-anticipation without PDF in the sLNv soma.  

The entrainability of pdf>Q128 could be due to the conveyance of time information from the 

sLNv to the rest of the circuit by oscillating PDF levels in its dorsal projections or a PDF-

independent light-dependent process.  Other experiments revealed that pdf>Q128 flies raised and 

maintained in constant light (LL), over time (age 23d), show a loss of PDF from the sLNv DP 

also, whereas their age-matched pdf>Q0 controls remain unaffected (Chapter 3, Fig 3.9e).  This 

regime (LL) generated flies lacking PDF in the sLNv termini and aided in determining the 

necessity of PDF cycling in projections for M-anticipation under LD.  One group of flies were in 

LL (about 200 lux) during development, and their activity was recorded as adults in LL up to 23d, 

followed by LD for 10d, followed by DD (denoted by the superscript LL-LD, Fig 2.14a top-left).  

In the control regime, flies were reared and recorded under LD for 33d followed by DD (denoted 

by the superscript LD-LD, Fig 2.14a bottom-left).  In pdf>Q128LL-LD flies, no PDF+ sLNv soma 

was detectable at age 23d and 28d, similar to pdf>Q128LD-LD (Figs 2.15a and 2.15b top-left), and 

PDF+ lLNv soma numbers were comparable between regimes (Figs 2.15a and 2.15b top-right).  

pdf>Q128LL-LD flies showed PDF presence in sLNv DP in all samples at age 9d (Figs 2.15a top-

left and 2.15b bottom-left).  However, by 23d of age, PDF in the sLNv DP was lost in ~ 80% of 

the hemispheres while still present in all pdf>Q128LD-LD flies till 28d (Figs 2.15a and 2.15b 

bottom-left).  In both regimes, PDF was present in lLNv contralateral projections across age (Figs 

2.15a and 2.15b bottom-right).  In pdf>Q128LL-LD at age 28d, the PDF was undetectable in the 

sLNv DP of most flies even after experiencing 5d of LD (Fig 2.15b bottom-left).  The behavioural 
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analysis focused on this 5d age window of 24d-28d (AW4) to address the necessity of PDF in the 

sLNv DP for M-anticipation.  In AW4, pdf>Q128LL-LD and pdf>Q128LD-LD exhibited activity 

profiles like their respective within-regime controls (Fig 2.14a right).  The LD profile of 

pdf>Q128LL-LD (where PDF is absent in the sLNv DP) was also like that of pdf>Q128LD-LD (where 

PDF is present in the sLNv DP) with similarly phased morning and evening peaks and gradual 

build-up of activity before the dark/light and light/dark transitions (Fig 2.14b left).  The morning 

and evening AIs of pdf>Q128LL-LD were not different from pdf>Q128LD-LD or Q128 and pdfGal in 

the LL-LD regime (Fig 2.14c and d).  In LL-LD, the daytime activity levels of the three genotypes 

were similar (Fig 2.14e), while the nighttime activity of pdf>Q128 was lower than its controls 

(Fig 2.14f).  In conclusion, M-anticipation does not require oscillating PDF in the sLNv DP, since 

even in the absence of PDF in sLNv DP (pdf>Q128LL-LD), flies entrain to LD as well as controls 

(Fig 2.14b-d).  As pdf>Q128LL-LD flies in LL-LD lack PDF in the sLNv (soma and DP), these 

results demonstrate that PDF in the sLNv is dispensable for M-anticipation, so long as PDF is 

present in the lLNv. 
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Fig 2. 14 Flies without PDF in their sLNv exhibit morning and evening anticipation. 
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a) Left: Representative double-plotted, normalised actograms for pdf>Q128, Q128 and pdfGal in LL-

LD (top) and LD-LD (bottom).  The horizontal unshaded bar on top in LL-LD depicts the 

developmental regime LL.  All other details are like Fig 9a.  In LL-LD and LD-LD, AW4 (age 24d-

28d) is indicated.  The gap in the actograms is due to an interruption of the recording.  Arrows at ages 

9d, 23d and 28d indicate the ages at which dissections were carried out.  Right: Mean normalized 

activity counts per 15 min comparing pdf>Q128, Q128 and pdfGal in LL-AW4 (top) and under LD-

AW4 (bottom).  All other details are similar to Fig 9b.  (b) Mean normalized activity counts per 15 

min comparing LL-LD with LD-LD for each genotype in AW4.  All other details are like Fig 9b.  (c-

f) Morning anticipation index (c), evening anticipation index (d), mean daytime activity counts per 

12h (e) and mean nighttime activity counts per 12h (f) are plotted for all three genotypes in both 

regimes.  * indicates significant difference at * at p<0.05 and ** at p<0.01.  Across all panels, error 

bars are SEM. 
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Fig 2. 15 expHTT-expressing flies in LL show a loss of PDF from the sLNv soma and DP. 

(a) Representative images of adult brains of pdf>Q128 stained for PDF (green) and HTT (red) showing 

sLNv soma (→ arrows), lLNv soma (> arrowheads), sLNv dorsal projections (▲ triangles), lLNv 

contralateral projections (⌂ house), diffuse HTT staining (Ψ psi) and inclusions of expHTT (« double 

arrowheads) for LL (age 9d top, age 23d centre) and LD (age 23d bottom).   
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Scale bars are 20 µm.  Marked rectangles in each panel set are enlarged in the next panel.  (b) Top 

left: The mean number of sLNv soma per hemisphere in both regimes across age.  At age 28d, flies in 

the LL regime post age 23d have experienced 5d of LD.  Symbols indicate statistically significant 

differences: * of LD-LD 28d from LD-LD 23d at p<0.01, # between regimes at specified age at 

p<0.001.  Top right: Mean lLNv soma per hemisphere in both regimes across age.  ** indicate 

significant differences of age 28d from earlier ages in both regimes at p<0.001.  Bottom left: 

Percentage of hemispheres with PDF in sLNv DP for both regimes across age.  Symbols indicate 

statistically significant differences: *** of 28d in LL-LD from earlier ages at p<0.0001 and ## between 

regimes at denoted ages at p<0.0001.  Bottom right: Percentage of hemispheres with PDF in lLNv CP 

is plotted for both regimes across age.  For all dissections, n=20-24 hemispheres/genotype/age/regime.  

Across panels, error bars are SEM. 

2.3.10 expHTT expression in the LNv does not affect the lifespan of flies 

The expression of neurodegenerative proteins reduces lifespan in animal models (Lu and Vogel, 

2009).  So, I asked whether expHTT expression in the 8 pairs of LNv circadian neurons affects 

the lifespan of these flies.  The survivorship curves of expanded pdf>polyQ (where Q>35) were 

comparable to their relevant controls (Fig 15a left and b left).  The mean lifespan of expHTT-

expressing flies was not lower than their appropriate controls (pdf>Q128 from pdf>Q0, Q128 

and yw; pdf>Q50 and pdf>Q93 from pdf>Q20, Q50, Q93, pdfGal and yw) (Fig 15a right and b 

right).  Thus, the expression of expHTT in the LNv circadian neurons does not affect the fly's 

lifespan. 
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Fig 2. 16 Mean lifespans of flies expressing expHTT in their LNvs are unaffected. 

(a) Left: Survivorship curves for pdf>Q128 and its controls.  Right: Mean lifespan of pdf>Q128 and 

its controls with * indicating significant differences at p<0.05.  (b) Left: Survivorship curves for 

pdf>Q93, pdf>Q50 and their relevant controls.  Right: Mean lifespan of pdf>Q93, pdf>Q50 and their 

relevant controls.  Symbols indicate significant differences: * of yw from pdf>Q50 and pdfGal at 

p<0.05 and # of Q20  from pdf>Q50, Q50 and pdfGal at p<0.05.  Across all panels, error bars are 

SEM. 
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2.4 DISCUSSION 

2.4.1 Circadian model of HD 

Flies expressing expHTT are arrhythmic in constant darkness and show associated loss of PDF 

and PER from sLNv soma.  The onset of arrhythmicity is polyQ-length-dependent, with long 

polyQ stretches like pdf>Q93 and pdf>Q128 becoming arrhythmic from an early age, evident 

immediately upon introduction in DD.  In contrast, intermediate stretches, i.e. pdf>Q50, become 

arrhythmic later.  Upon introducing flies in DD, the immediate arrhythmicity of pdf>Q128 does 

not alter when maintained for a longer duration in LD before the DD.  Expression of expHTT in 

LNv also results in inclusions of expHTT in both sLNv and lLNv, characterised in detail in 

Chapter 3.  Despite the expression of HTT-Q128 in both sLNv and lLNv, PDF is lost selectively 

only from the sLNv soma while being present in the sLNv DP and the lLNv under both DD and 

LD.  Thus, the circadian model of HD shows features characteristic of HD, such as the polyQ-

length-dependent onset of arrhythmicity, presence of HTT inclusions and selective susceptibility 

of a cell group.  The lifespan of expHTT-expressing flies is not affected, which is not surprising, 

given that few neurons (~ 16) are targeted. 

Expression of expHTT in the LNv affects sLNv soma where PDF and PER are lost, whereas sLNv 

DP seems unaffected in its structure and the persistence of oscillations in PDF levels.  Using 

immunocytochemical methods, PDF and PER were undetectable in the sLNv soma.  One could 

argue that expHTT in the sLNv soma is merely preventing the detection of these proteins using 

the said method, and the proteins may still be present.  However, even RFP that gets detected 

without antibodies is undetectable in the sLNv soma of these flies.  Another argument against 

expHTT preventing protein detection is that the sLNv DP and lLNv also show the presence of 

expHTT.  However, these regions stain for antibodies against PDF and are detectable with GFP 

and RFP.  The crucial evidence that PER and PDF reduction occurs in vivo in the sLNv soma is 

the physiological consequence of their absence, that being behavioural arrhythmicity in DD of 

pdf>Q128 flies, a clear reflection of sLNv circadian dysfunction.  The loss of membrane GFP 

from sLNv soma (Fig 5) and spillover of HTT inclusions into the vicinity of sLNv soma suggest 
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cellular stress in the sLNv soma.  However, from observations with Apoliner, I cannot conclude 

whether sLNv undergoes apoptosis.  The transition from PDF in sLNv soma to no PDF is likely 

very rapid and transient, preventing capturing any apoptotic events using snapshot 

quantifications.  Continuous live-cell monitoring might help resolve this issue.  A previous study 

describes a similar encounter with the TUNEL assay’s inability to capture apoptotic events in 

these flies (Sheeba et al., 2010).  PDF in projections of sLNv also suggests that the sLNv may be 

present, though dysfunctional.  In the absence of a functional cell body, the continued PDF 

presence in the projections of sLNv and its cycling in DP is intriguing.  Thus, with the limited set 

of markers used, any conclusion regarding cell apoptosis in the early ages is elusive.  However, 

there is clear evidence for neuronal dysfunction in young HD flies based on the loss of cellular 

clock markers from the sLNv soma and its functional consequence of behavioural arrhythmicity 

in DD.  The observation that the sLNv dorsal projections stain with PDF and GFP indicates that 

the neurons are likely present.  Moreover, a recent study from the lab on similar HD flies shows 

the presence of Hsp70-stained sLNv even in the absence of PDF staining in the sLNv (nearly 

three sLNv per hemisphere at 1d and at least one sLNv per hemisphere at 18d) up to the age of 

18d (their numbers reduced compared to 1d old flies) (Sharma et al., 2023), suggesting that the 

sLNv are present, in young flies.  As the flies age, cell death is more likely, as is also supported 

by the reduction in Hsp70-stained sLNv with age (Sharma et al., 2023). 

Expression of HTT-Q128 in the LNv leads to a loss of PER from the LNv.  Even in a mouse 

model of HD (R6/2), core clock gene expression in the Supra Chiasmatic Nucleus is attenuated 

and does not oscillate (Morton et al., 2005; Maywood et al., 2010).  In a circadian fly model of 

another polyQ disorder, the Machado Joseph Disease, loss of PER from the pacemaker neurons 

was reported (Kadener et al., 2006).  Another Drosophila model of HD expressing HTT-

Q103GFP in the LNv shows a significant reduction of PER in the LNv (Xu et al., 2019a).  Wild-

type human Huntingtin is involved in various stages of gene expression such as transcription, 

transport of mRNAs and translation (Kumar et al., 2014).  expHTT has been implicated in 

transcriptional dysregulation either by sequestering critical players of the transcriptional 

machinery, epigenetic modifications of chromatin, or directly binding to DNA (Kumar et al., 
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2014).  Loss of PER from LNv could result from HTT-Q128-induced transcriptional 

dysregulation, leading to downregulation of circadian gene expression. 

Expression of HTT-Q128 in the LNv leads to a loss of the critical circadian output neuropeptide 

PDF from sLNv soma, reflected as a significant decrease in PDF+ sLNv soma numbers.  

Vasoactive Intestinal Peptide (VIP), one of the mammalian clock outputs, shares molecular and 

functional similarities with the Drosophila PDF (Aton et al., 2005; Vosko et al., 2007; Frenkel 

and Ceriani, 2011; Talsma et al., 2012).  There is a reduction in the number of VIP 

immunoreactive neurons in the SCN of HD patients, in the mRNA levels of VIP, its receptor 

VPAC2 and VIP peptide levels in the SCN of R6/2 mice (Fahrenkrug et al., 2007; van Wamelen 

et al., 2013).  Several factors modulate PDF levels, and expHTT could potentially lower PDF 

levels by interfering with any of these modulators.  The canonical central clock protein CLOCK 

(CLK), negatively regulated by the PER/TIM complex, is a transcriptional repressor of pdf in 

adult flies (Mezan et al., 2016).  In pdf>Q128 flies, reduction in PER could acutely derepress or 

activate CLK, thereby suppressing PDF expression.  Support for this hypothesis comes from a 

recent study in which ClkJrk suppressed the loss of PDF from sLNv in pdf>Q128  flies, whereas 

ClkJrk in a per01 background did not suppress as much (Xu et al., 2019a).  Chromatin remodelling 

protein DOM-A (Drosophila SWI2/SNF2 protein DOMINO) affects PDF at the transcriptional 

level (LNv-specific DOM-A downregulation only affects sLNv PDF levels, PDF+ sLNv soma 

numbers and length of the sLNv DP) (Liu et al., 2019b) and VRI at the post-transcriptional level 

(Gunawardhana and Hardin, 2017).  PDF levels are also positively regulated by the PDF 

neuropeptide itself through activation of PDFR in the LNv via the CGNA channel (cyclic-

nucleotide-gated channel ion channel subunit A), influenced by the activity of the LNv and 

negatively controlled by transcription factor Strike or SR and by Matrix Metalloprotease 1 or 

MMP1 (only in the sLNv DP) (Depetris-Chauvin et al., 2014; Mezan et al., 2016; Herrero et al., 

2020). 

Despite the expression of HTT-Q128 in the LNv subsets, PDF is selectively lost from sLNv soma, 

while PDF in lLNv is unaffected.  Other studies report such susceptibility of the sLNv: in a 

Machado Joseph disease model (Kadener et al., 2006), in an HD model, upon the expression of 
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HTT-Q103GFP in LNv, only PDF+ sLNv numbers diminish (Xu et al., 2019a), and upon neuronal 

reduction of Drosophila enabled, an actin polymerase involved in axonal pathfinding (Rezaval et 

al., 2008).  Other reports show a specific effect on PDF levels in the sLNv, but not the lLNv, in a 

primarily circadian context.  These include a near absence of PDF mRNA and protein only in the 

sLNv of ClkJrk and cyc02 flies (Blau and Young, 1999; Park et al., 2000), the elimination of PDF 

from sLNv DP, but not from other projections or lLNv upon developmental knockdown of LAR 

phosphatase (Agrawal and Hardin, 2016) or on the expression of TauE14 in the LNv (Zhang et 

al., 2021b), PDF levels affected only in sLNv soma and DP upon vri inactivation (Gunawardhana 

and Hardin, 2017), and PDF affected only in the sLNv upon depletion of Domino-A (Liu et al., 

2019b). 

In contrast to lLNv PDF, PER levels in lLNv show a significant reduction.  PER in lLNv is barely 

detectable in DD and shows dampened oscillations under LD.  Nonetheless, PER oscillations in 

the lLNv dampen in wild-type flies in DD and are not essential for circadian activity rhythms in 

DD (Shafer et al., 2002; Grima et al., 2004a; Lin et al., 2004).  So, the circadian behavioural 

arrhythmicity reflects the sLNv dysfunction, and the sLNv are selectively susceptible to expHTT.  

The selective vulnerability of neuronal subsets is a hallmark of HD (Han et al., 2010).  The 

specific vulnerability of sLNv to HTT-Q128 could be due to several unique cellular factors, 

including its early development, size, variable gene expression pattern and enrichment of 

neurotoxic factors or (and) impoverishment of neuroprotective factors.  An explanation for only 

the loss of sLNv PDF is that it is non-amidated, whereas lLNv PDF is amidated and has a greater 

half-life (Helfrich-Förster, 2009).  Also, regarding function, lLNv seems to be relatively protected 

from HTT-Q128 as their firing pattern and frequency are unaffected (Sheeba et al., 2008b).  In 

support, sleep levels seem primarily unaltered.  A recent study from the lab shows that the LNv 

(both s and l) of controls pdf>Q0 do not stain with antibodies against Hsp70, suggesting that they 

are relatively unstressed (Sharma et al., 2023).  Further, the number of lLNv positive for Hsp70 

is fewer than that of sLNv, suggesting that the large neurons are more resistant to stress. 

Observing PDF loss only from the sLNv soma alone while being detected in DP is unique.  So 

far, in models of neurological disorders, selectivity for soma has not been reported; in many cases, 
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axonal degeneration precedes soma loss (Han et al., 2010; Lingor et al., 2012).  Even in fly 

models, expression of neurodegenerative proteins in Drosophila circadian neurons results in a 

decline of PDF signals in sLNv DP or abnormal sLNv axonal arborisation, while PDF in soma is 

unaffected (Leyssen et al., 2005; Chen et al., 2014; Okray et al., 2015; Song et al., 2016).  A 

recent study expressing phosphomimetic mutant TauE14 in the LNv also shows a contrasting 

effect on the sLNv than observed here while showing disruption of free-running activity rhythms 

(Zhang et al., 2022).  A selective abolishment of PDF only from the sLNv DP (GFP present, but 

reduced in intensity), a modest reduction of PDF levels in the sLNv soma and of GFP+ DP area 

(a marker of sLNv axonal morphology), but no effect on the number of GFP-labeled sLNv or 

lLNv soma was seen.  These were accompanied by a complete loss of mitochondria from the 

sLNv DP, with a concomitant increase in its soma, indicating that defects in the transport and 

localisation of neuropeptides and mitochondria from soma to axons can contribute to such unique 

and selective neuronal phenotypes associated with NDs.  These findings also suggest that 

neuronal groups are differentially sensitive to neurodegenerative proteins, and the differences in 

gene expression between sLNv and lLNv can underlie some of this (Kula-Eversole et al., 2010). 

A possible explanation for the detrimental effect of expHTT on the sLNv soma over axonal 

termini is the differential distribution of HTT-Q128 inclusions.  The inclusions are numerous in 

sLNv soma or the region where sLNv soma are likely to be found and fewer and far apart in the 

axons, possibly accounting for relative protection of axonal PDF from HTT-Q128 during the 

experimental timescale.  The slow diffusion of expanded proteins in the cells could also contribute 

to this differential distribution.  Also, the PDF in sLNv DP could linger around longer due to a 

sustained local translation or slower degradation/clearance rates of its mRNA. 

Upon providing light/dark cycles, the pdf>Q128 flies are rhythmic in LD and exhibit control-like 

anticipation to dark/light and light/dark transitions and M and E peak phases.  However, the 

rhythmicity in LD does not sustain on shifting them to DD, where arrhythmicity sets in 

immediately.  Therefore, distinguishing true entrainment from masking under LD in these flies is 

not straightforward.  Nevertheless, pdf>Q128 flies show control-like- circadian profiles in dim-

LD and a quick shift in activity to a phase-shifted LD.  Under LD, they also exhibit in-phase 
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molecular clock protein oscillations between circadian neuronal groups and controls.  A previous 

study showed that the anticipation of these flies is not different from controls across photoperiods 

(Potdar and Sheeba, 2012).  Collating all the above evidence, I conclude that pdf>Q128 flies 

entrain to light/dark cycles.  Unlike flies expressing Aβ42arc pan-neuronally that do not re-

synchronise to a phase-shifted LD (Chen et al., 2014) or BAC HD mice that take longer to re-

synchronise than wildtype (Kudo et al., 2011), pdf>Q128 flies showed control-like re-

entrainment.  This result suggests that the sensitivity of HD flies to phase-shifting effects of light 

is intact and further supports the conclusion that the entrainability of these flies to LD is 

unaffected. 

2.4.2 Role of the sLNv in mediating free-running activity 

rhythms 

Most weakly rhythmic and arrhythmic pdf>Q128 flies show loss of PDF from the sLNv soma 

while it is present in the sLNv DP and the lLNv, suggesting that predominantly, PDF in sLNv 

soma is critical for robust rhythms.  The presence of non-zero sLNv (at least one) with control 

levels of PDF and intact DP is not always associated with behavioural rhythmicity.  This 

observation contrasts disco mutants, where a single LNv with intact DP was sufficient for a fly to 

be rhythmic (Helfrich-Förster, 1998).  Unlike disco mutants where the sLNv, when present with 

DP, are functional like wildtype on the expression of expHTT, despite PDF presence in sLNv, 

other functional components of sLNv are likely to be compromised.  The present study thus 

reveals that cellular features of PDF distribution, overall sLNv health and functionality, rather 

than mere PDF presence, are vital in determining rhythmicity.  Also, evidence from studies 

suggests that PDF in the LNv is not entirely essential for activity rhythms, as about 50% of PDF 

mutants remain weakly rhythmic (Wulbeck et al., 2008; Shafer and Taghert, 2009; Yoshii et al., 

2009; King et al., 2017).  sLNv are glycinergic, and glycine receptors in DN1ps are essential for 

modulating the power of activity rhythms, providing an alternative to the PDF-centric rhythm 

maintenance effects of sLNv (Frenkel et al., 2017). 

Flies can be behavioural arrhythmic in DD despite maintaining oscillations in PDF levels in sLNv 

projections.  It thus challenges the central role attributed to oscillations in PDF levels in the sLNv 
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DP as the primary output of the sLNv for rhythmic free-running locomotor activity.  Prior studies 

with genetic manipulations affecting sLNv functions resulted in the loss of behavioural 

rhythmicity in DD and an associated loss or altered phasing of PDF oscillations in their DP (Renn 

et al., 1999; Nitabach et al., 2002; Nitabach et al., 2006; Fernández et al., 2007b; Wu et al., 2008a; 

Wu et al., 2008b; Depetris-Chauvin et al., 2011; Gunawardhana and Hardin, 2017).  Only the 

PDF oscillations were often affected with the sLNv molecular clock intact (Nitabach et al., 2006; 

Fernández et al., 2007b; Wu et al., 2008b; Gunawardhana and Hardin, 2017), suggesting that PDF 

is a critical sLNv output.  Thus, in DD, rhythmic PDF accumulation and perhaps secretion have 

been considered the primary functional outcome of sLNv, leading to rhythmic behaviour.  

Researchers attribute the short-period rhythms seen in pdf01, hyperactivated LNv in the absence 

of PDF or LNv-silenced flies to the short period clocks of LNd and DN due to the lack of reset 

signal in the form of rhythmic PDF (Lin et al., 2004; Wu et al., 2008b; Sheeba et al., 2008c). 

From immunocytochemical measurements, it is clear that PDF levels oscillate in the sLNv DP of 

behaviourally arrhythmic flies in DD.  However, this is not direct evidence for rhythmic PDF 

secretion.  Previous studies have shown that in the absence of PDF (Lin et al., 2004; Yoshii et al., 

2009) or PDFR (Lear et al., 2005; Zhang et al., 2010a), there is a loss of synchrony among the 

rest of the circadian neuronal circuit.  In light of these studies, the finding of synchronous PER 

oscillations in the PDF
-
clock neurons shown here provides indirect evidence for rhythmic PDF 

release from the sLNv DP and its downstream synchronising effects on the non-LNv neurons.  

Direct measurements of PDF release, as demonstrated at the larval neuromuscular junction 

(Levitan et al., 2007), may confirm this phenomenon.  Additionally, the few weakly rhythmic 

flies had a period close to 24h, indicating that oscillating PDF in sLNv DP functions by 

synchronising the PDF
-
neuronal oscillators to run with nearly 24 periods.  However, this PDF-

oscillation-dependent resetting does not seem sufficient for behavioural rhythmicity.  Despite 

rhythmically accumulating PDF in the sLNv DP and likely rhythmic secretion, synchronised 

molecular oscillations between PDF
-
 neurons, the locomotor activity remains arrhythmic in DD.  

These results suggest that sLNv function in the sustenance of activity rhythms depends not only 

on PDF oscillations in its DP but also on additional mechanisms independent of oscillating PDF.  
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Two recent studies support this hypothesis.  Unc5 expressing LNv showed a loss of sLNv DP, 

but the flies remained rhythmic in DD with an unaltered period (Fernandez et al., 2020).  CLKΔ 

expression and PER downregulation knockdown in the LNv impaired rhythms in PDF levels in 

sLNv DP but did not lead to immediate locomotor arrhythmicity in DD (Jaumouille et al., 2021).  

Another study indicates that the time-of-day-dependent effects of PDF in gating the molecular 

clock responses to PDF might not depend on rhythms in the PDF levels but rather on intracellular 

timing mechanisms (Sabado et al., 2017).  In previous studies, loss of oscillations in the PDF 

levels in the sLNv DP accompanied the breakdown of behavioural rhythms, with the sLNv 

molecular oscillations essentially remaining unaffected (Nitabach et al., 2006; Fernández et al., 

2007b; Depetris-Chauvin et al., 2011; Gunawardhana and Hardin, 2017).  In the current study, 

PDF levels oscillate in the sLNv DP, while the associated locomotor activity behaviour remains 

arrhythmic, and the molecular clock protein PER is lost from the sLNv.  In other words, PDF 

oscillations in sLNv DP are necessary, but in the absence of functional sLNv clocks, they are 

insufficient for behavioural rhythmicity.  Presented here is evidence for the first time that 

oscillating PDF in the sLNv DP and synchronous molecular clocks in PDF- neurons need not 

translate to rhythmic locomotor activity.  The prior studies' strong association of behavioural 

rhythmicity with PDF oscillations in sLNv DP led to an implicit assumption of causality without 

invoking an additional component in sLNv.  In pdf>Q128, uncoupling the PDF oscillations in the 

sLNv DP from the behavioural rhythms has opened up possibilities for other mechanisms in the 

sLNv mediating rhythmic behaviour under DD.  I refer to such mechanisms as the PDF-

oscillation-independent component (POIC).  I propose that both components of the sLNv 

function: oscillations of PDF in the DP acting as a synchronising agent of molecular oscillations 

in PDF
-
 neurons and POIC are critical for coherent and robust activity rhythms in DD (Fig 2.17 

left).  
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Fig 2. 17 Model for LNv-mediated sustenance of activity rhythms in DD and modulation of temporal 

activity profiles under LD. 

Left: (blue) Previous studies have suggested that sLNv sustains rhythmic activity in DD via rhythmic 

accumulation and likely secretion of PDF from its DP, synchronising the molecular clocks between 

the PDF
-
 circadian neuronal groups and setting their period to near 24h (Lin et al., 2004; Nitabach et 

al., 2006; Fernández et al., 2007b; Wu et al., 2008b) and the latter possibly communicating time 

information to motor centres (MC) (Cavanaugh et al., 2014; King et al., 2017).  I propose an additional 

component (magenta) to control rhythmicity by sLNv, the POIC (PDF-Oscillation-Independent 

Component), possibly involving PDF in the sLNv soma and molecular clocks in the sLNv.  Both 

inputs seem necessary (brown) for near 24h activity rhythms in DD.  Right: Previous studies have 

shown that, under LD, LNv PDF is critical for the M-peak (arrow), the M-anticipation (triangle) and 

the E-peak phasing (arrow-head), and that the sLNv PDF is sufficient (Shafer and Taghert, 2009) 

(blue).  This study shows that the lLNv PDF is also sufficient (magenta) for this behaviour.  

Communication from the LNv to the PDF
-
 neurons via PDFR can bring about this behaviour (Lear et 

al., 2009) (brown).    
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One study provides a means for direct synaptic communication of the lLNv with the LNd (Schlichting 

et al., 2016) (green).  Therefore, I propose that PDF inputs from either the sLNv or the lLNv to PDF
-
 

neurons are sufficient.  The latter communicates to MC via yet unknown mechanisms to shape the 

activity profiles under LD. 

2.4.2.1 PDF-oscillation-independent component (POIC) 

In pdf>Q128, behavioural arrhythmicity is associated with losing both PER-dependent molecular 

clocks and PDF in the sLNv soma.  Thus, both seem likely to be integral components of the POIC.  

There is some indirect evidence for the presence of POIC in the sLNv.  The sufficiency of PER 

expression in the sLNv in a per0 background rescuing behavioural arrhythmicity in DD and 

molecular oscillations in sLNv is well established (Grima et al., 2004a; Cusumano et al., 2009; 

Seluzicki et al., 2014).  Activity rhythm rescue in per0 by restoring PER oscillations in the sLNv 

happens via a direct effect of PDF through PDFR on the TIM levels in PDF-circadian neurons 

(Seluzicki et al., 2014).  However, this behavioural rhythm rescue did not involve restoring 

molecular clocks in the PDF- neurons, suggesting a role for sLNv in sustaining free-running 

activity rhythms without molecular clocks in the PDF- circadian neurons.  The rescue is dependent 

on the sLNv molecular clock and directly mediated by PDF but independent of PDF oscillations 

in the DP and synchronous molecular clocks in the PDF- neurons (Seluzicki et al., 2014).  Two 

recent studies show that near-complete knockdown of PER or TIM in the LNv using CRISPR, 

with functioning molecular clocks in the rest of the circadian neuronal circuit, did not cause 

significant loss of rhythmicity in DD or affect the period but reduced the rhythm strength 

(Delventhal et al., 2019; Schlichting et al., 2019a).  Thus, they question the necessity of circadian 

molecular oscillations in the sLNv to sustain free-running rhythms.  Other studies show that in 

the absence of PDF in the sLNv DP, PDF presence in the sLNv soma, and functional clocks in 

the sLNv cannot induce behavioural rhythmicity in DD (Agrawal and Hardin, 2016; Zhang et al., 

2021b).  Thus, it appears that the POIC alone cannot sustain rhythmicity.  Support for a 

combination of clock, circadian output, and neuronal communication from the sLNv for free-

running locomotor activity rhythms comes from recent studies.  In the absence of functional 

clocks in the non-LNv circadian neurons or activity-dependent communication between them, 
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functioning sLNv alone cannot bring out rhythmic activity behaviour (Bulthuis et al., 2019).  

Further, the maintenance of activity rhythms by the sLNv requires both the clocks in sLNv and 

neural communication to act additively (Jaumouille et al., 2021).  Thus, POIC, in the absence of 

communication with and between downstream neurons and synchronised clocks in the 

downstream neurons, would be insufficient in mediating activity rhythms. 

A parallel pathway in mediating time-of-day-dependent communication from the sLNv to its 

target neurons, independent of timed release of PDF, comes from a study that shows that the 

sensitivity of sLNv to PDF is cyclic and PDFR and a small GTPase, RalA modulate this rhythmic 

responsiveness (Klose et al., 2016).  The circadian role of sLNv is not limited to oscillating PDF.  

sLNv functional outputs occur in the form of rhythmic changes in electrical activity, structural 

plasticity (such as axonal morphology and pre-synaptic active sites) and the number of contacts 

between sLNv and their partners, all of these contributing to behavioural rhythmicity (Muraro et 

al., 2013; Depetris-Chauvin et al., 2014; Gorostiza et al., 2014; Herrero et al., 2020).  The 

oscillations in the sLNv axonal remodelling are clock-controlled, dependent on PDF from both 

sLNv and lLNv and sensitive to the amplitude of PDF oscillation in sLNv DP (Fernandez et al., 

2008; Depetris-Chauvin et al., 2014; Herrero et al., 2017; Herrero et al., 2020). 

There is also evidence for PDF-independent rhythms.  About half of the pdf01 flies retain weak 

rhythmicity (Wulbeck et al., 2008; Shafer and Taghert, 2009; Yoshii et al., 2009; King et al., 

2017) and hyper-activating LNv in a pdf01 background results in short-period free-running 

rhythms (Sheeba et al., 2008c).  sLNv are also glycinergic and glycine-responsive DN1p influence 

the power of activity rhythms (Frenkel et al., 2017). 

POIC could potentially convey information from sLNv to motor centres to drive rhythmic 

behaviour in DD (Fig 6 left).  An early hypothesis was that sLNv directly modulates pre-motor 

centres to bring about rhythmic behaviour (Lin et al., 2004).  sLNv arbours form synaptic contacts 

in a time-of-day-dependent manner with specific clusters of mushroom body and neurons of Pars 

Intercerebralis (PI), a locomotor centre shown to control rhythmic activity behaviour (Cavanaugh 

et al., 2014; Gorostiza et al., 2014; King et al., 2017).  Such time-dependent contacts could 

potentially involve POIC.  LNvs access motor centres in the ellipsoid body directly via PDF and 
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indirectly via intervening dopaminergic neurons (Liang et al., 2019).  sLNv modulates 

Leukokinin neurons, and Leukokinin neuronal communication with its receptor neurons is a 

critical output circuit for rhythmic locomotor activity in DD (Cavey et al., 2016).  sLNv can also 

indirectly communicate with motor centres via its synaptic arbours with DN1p, which in turn 

synapse with a subset of PI neurons that are critical for rhythmic behaviour in DD (Zhang et al., 

2010a; Cavanaugh et al., 2014; Seluzicki et al., 2014; King et al., 2017).  A recent study shows 

that flies without sLNv DP exhibited unaltered activity rhythms in DD, indicating long-distance 

action of PDF-dependent sLNv circadian output onto brain regions like dorsal protocerebrum or 

accessory medulla serving as sites for circadian output (Fernandez et al., 2020).  Another recent 

study showed that the mushroom body, a proposed integration centre for multiple behaviours, has 

active functional contacts from sLNv (Gorostiza et al., 2014; Pirez et al., 2019).  However, its 

role as an output centre for modulating locomotor activity rhythms is debatable (Helfrich-Förster 

et al., 2002; Mabuchi et al., 2016). 

2.4.3 Role of the sLNv in modulating activity rhythms 

under LD 

A previous report showed a reduction in M-anticipation on partial reduction of PDF (63%) only 

in sLNv soma, but control-like M-anticipation upon nearly complete removal of PDF from sLNv 

soma and DP and incomplete reduction (44%) in lLNv (Shafer and Taghert, 2009).  Further, flies 

lacking PDF from sLNv soma (Sheeba et al., 2010) or flies lacking PDF only from the sLNv DP 

(Agrawal and Hardin, 2016) still show M-anticipation to LD.  My study uses a combination of 

genetic and environmental strategies to establish a phenotype with a specific and complete loss 

of PDF from the sLNv (soma and DP).  Under such conditions, M-peak, M-anticipation, and E-

peak phases are unaffected in LD, showing that PDF from the sLNv is unnecessary for LD activity 

rhythms.  In a previous study, PDF down-regulation in both subsets resulted in altered activity 

rhythms in LD, while rhythms were unaffected upon down-regulation only in the lLNv (Shafer 

and Taghert, 2009).  Therefore, I conclude that PDF from either the sLNv or the lLNv is sufficient 

for M-peak and M-anticipation (Fig 2.17 right).  In pdf>Q128 flies, despite losing PDF from 
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sLNv, PDF from lLNv can bring about M-anticipation.  A recent study demonstrates synaptic 

connections between the lLNv and the LNd and provides a possible direct communication to 

modulate LD behaviour (Schlichting et al., 2016).  PDF from the lLNvs seems responsible for 

circadian adaptation to long photoperiods (Schlichting et al., 2019c).  My findings strongly show 

that cyclic secretion of PDF from sLNv is dispensable for LD behaviour.  This conclusion is in 

agreement with other reports that the DN1ps requires PDF for the morning activity, but the PDF 

need not be cyclic for entrainment to LD (Kula et al., 2006; Choi et al., 2012; Chatterjee et al., 

2018a).  In conclusion, PDF from the sLNv is not required for M-anticipation under LD if PDF 

is available from the lLNv. 

PDF is essential for the early development of the sLNv circuit (Gorostiza and Ceriani, 2013).  In 

the present study, loss of PDF in the sLNv soma is evident from an early age, and at a later age 

of 23d, a complete loss of sLNv PDF is evident.  Given the presence of PDF in the sLNv during 

development and at younger ages of adulthood in these flies, one cannot rule out the role played 

by sLNv PDF in establishing and maintaining circadian neuronal circuits contributing to the 

entrainment of activity rhythms to LD.  A possible scenario is that after the establishment and 

maturation of the circuits, the PDF in sLNv is dispensable for LD behaviour.  A recent study 

highlights the developmental necessity of PDF for activity rhythms in LD.  The authors show that 

the downregulation of DOM-A in the circadian neurons developmentally compromises sLNv (Liu 

et al., 2019b).  It brings down PDF+ sLNv numbers and PDF levels and shortens the sLNv DP, 

resulting in a loss of the M-anticipation (Liu et al., 2019b).  However, this study targeted a broad 

group of circadian neurons, resulting in a circuit-wide reduction of PER and TIM. 

Rescue of PER in the sLNv of per0 flies was sufficient for M-activity and anticipation in LD, 

suggesting that for M-anticipation, functional clocks in sLNv are essential (Cusumano et al., 

2009).  However, rescuing PER in PDF- neurons was also sufficient for M-anticipation (Stoleru 

et al., 2004), suggesting that PER in LNv is unnecessary for M-activity in the presence of 

functioning clocks in the PDF- neurons.  However, the authors hypothesised this rescue to occur 

via recovery of the PDF output function of LNv (Stoleru et al., 2004).  In the present study, in 

LD, flies showing loss of PER in the LNv, synchronised PER oscillations in the PDF- neurons, 
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and a complete loss of PDF from the sLNv continue to display morning anticipation.  These results 

prove that M-anticipation persistence in flies without functional LNv PER-driven clocks can 

occur without recovering the sLNv PDF output function, contrary to suggestions in the previous 

report (Stoleru et al., 2004).  In conclusion, PER-driven molecular clocks in the sLNv are 

unnecessary when functional clocks are present in the non-LNv neurons for activity rhythms in 

LD.  Two recent studies strengthen this conclusion.  Adult-restricted PER downregulation in the 

LNv, which abolishes rhythms of PER in the LNv and that of PDF levels in the sLNv DP, did not 

blunt morning anticipation, but eliminating CLK in the LNv did (Jaumouille et al., 2021).  

CRISPR-mediated near complete knockdown of PER or TIM in the LNv did not affect activity 

rhythms in LD (though PER knockdown reduced M-AI, M-AI was >1; TIM knockdown flies also 

lacked PER) (Delventhal et al., 2019).  The study suggests that clocks in either LN group (LNv 

or LNd) are sufficient for this behaviour and that circadian neurons act in a distributed network, 

compensating for the loss of the molecular clock in specific subsets (Delventhal et al., 2019). 

2.4.4 Clocks controlling PDF oscillations in the sLNv 

dorsal projections 

Intriguingly, oscillations in PDF levels persist in the sLNv DP despite the loss of PER, a critical 

molecular clock component and PDF from the sLNv soma.  Given the functional consequence of 

these oscillations, evidenced by synchronous oscillations in PER levels between PDF- neurons, 

these oscillations indicate rhythmic PDF secretion.  expHTT is known to block axonal transport 

(Lee et al., 2004).  In pdf>Q128, the oscillations in PDF levels at sLNv axonal termini suggest 

that axonal transport in these flies is not impaired, or if impaired, does not disrupt PDF oscillations 

in the sLNv. 

The oscillations in PDF levels in the sLNv DP persist in the absence of PDF in the sLNv soma 

(Fig 2.7) or upon increasing PDF levels higher than usual in the LNv (Helfrich-Förster et al., 

2000).  These observations suggest that the cyclic accumulation of PDF in sLNv terminals does 

not depend on PDF levels in the sLNv.  However, recent studies show that oscillations in PDF 

levels at the sLNv DP require PDF in the sLNv, PDFR in the LNv, the electrical activity of the 
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LNv and the responsiveness of PDFR to PDF mediated via CNGA channels (Depetris-Chauvin 

et al., 2014; Herrero et al., 2020).  In the pdf>Q128 flies, the role of electrical activity and PDFR 

in mediating oscillations of PDF levels warrants exploration.  Another possibility is that lLNv 

PDF, which is not affected by expHTT, could drive PDF oscillations in the sLNv DP; however, 

the downregulation of lLNv PDF did not affect PDF oscillations (Herrero et al., 2020). 

In per and tim null mutants, PDF mRNA shows oscillations in the soma of sLNv, but PDF peptide 

oscillations in the sLNv DP are lost, suggesting post-transcriptional clock control of PDF (Park 

and Hall, 1998; Park et al., 2000).  On the ectopic expression of PDF, rhythmic accumulation 

occurs only in projections of pacemaker sLNv but not in non-circadian neurons, providing further 

evidence for clock control of PDF rhythms (Helfrich-Förster et al., 2000).  This 

posttranscriptional circadian regulation of PDF could occur at the level of peptide processing, 

axonal transport to terminals, accumulation or secretion (Helfrich-Förster et al., 2000; Park et al., 

2000).  Another study shows that flies with downregulated PER or TIM in the LNv or expressing 

CYCDN in the LNv have PDF oscillations intact but at significantly dampened levels compared to 

controls, suggesting a role for molecular clocks in the LNv in modulating PDF level oscillations 

(Herrero et al., 2017).  In another study, the downregulation of PER in the LNv or adult-specific 

elimination of CLK in the LNv reduced PDF in the sLNv DP and abolished oscillation in its levels 

(Jaumouille et al., 2021).  In expHTT-expressing flies, PER is nearly undetectable in the sLNv 

soma, suggesting a loss of PER from the sLNv.  PER could be present below detection levels but 

at such low levels, unlikely to oscillate and likely amount to a robust PER-driven molecular clock 

loss.  Under DD, PER oscillations are lost even in the lLNv; therefore, lLNv PER is unlikely to 

contribute to PDF oscillations in sLNv DP. 

The results of continued PDF oscillations in the sLNv DP in the absence of PER in the sLNv 

soma in DD suggest that PER-independent clock mechanisms in the sLNv mediate these 

oscillations.  Other clock proteins involved in the second feedback loop, such as Vrille and PDP1, 

could oscillate, inducing PDF oscillations in the sLNv DP.  VRI (Vrille), a crucial molecular clock 

component and part of another analogous interlocked loop operating in Drosophila, is activated 

by CLK-CYC and is required for PDF expression (Gunawardhana and Hardin, 2017).  vri 
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inactivation abolishes PDF from the sLNv DP and lowers PDF levels in the sLNv soma 

(Gunawardhana and Hardin, 2017).  CLK is known to repress pdf transcription, and MMP1, a 

direct target of CLK (Kadener et al., 2007), suppresses PDF levels only in the sLNv DP (by 

cleaving PDF and inhibiting its activity) and possibly its release (Depetris-Chauvin et al., 2014).  

MMP1 levels are critical for maintaining oscillations in PDF levels at the sLNv DP (Depetris-

Chauvin et al., 2014).  However, given the loss of PER from the sLNv and possible acute CLK 

activation in the present study, the continued PDF oscillations in sLNv DP suggest subtle effects 

on the MMP1 levels that are not significant enough to disrupt PDF levels in the sLNv DP or their 

oscillations. 

Though clocks in the glia are essential for the circadian structural plasticity of the sLNv terminals 

(Damulewicz et al., 2022a), they do not mediate PDF oscillations in the sLNv DP (Herrero et al., 

2017).  An alternative to PER-driven clocks is rhythms of oxidation-reduction of peroxiredoxins 

that persist in Drosophila circadian clock mutants, albeit with an altered phase (Edgar et al., 

2012).  A recent study prompted an exploration of alternatives to conventional molecular clocks 

(Rey et al., 2018).  Drosophila Schneider 2 (S2) cells that lack canonical clock-protein-based 

transcriptional feedback loops and oscillations in secondary loop components exhibit widespread 

daily oscillations in many genes, especially metabolic transcripts (Rey et al., 2018).  The current 

work provides evidence for the independence of PDF oscillations in the sLNv DP from PER-

driven clocks in the sLNv, evoking a need to investigate alternate sources driving these 

oscillations in the critical pacemaker neurons.  Therefore, the lack of molecular clockwork is 

compensated if the M-oscillator can produce synaptic and peptidergic outputs. 

Conversely, the lack of neural transmission from the M-oscillator can be overcome if their internal 

clocks are functional.  In support of these conclusions, later studies suggest that while the clock 

in the LNv might be dispensable for rhythmicity, the LNv cell bodies are not (Schlichting et al., 

2019a).  Moreover, there is the likelihood that other pacemakers like the LNds can drive the 

rhythmicity of PDF and other sLNv outputs (Schlichting et al., 2019c), and interneuronal 

communication might compensate for the loss of molecular clocks in any given subset (Bulthuis 

et al., 2019; Ahmad et al., 2021). 
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3.1 INTRODUCTION 

Circadian and sleep disturbances are widespread in patients suffering from HD and other 

neurodegenerative diseases and are recapitulated in animal models (Morton, 2013; Fifel and 

Videnovic, 2020; Voysey et al., 2021a).  Disturbances in melatonin rhythm, nocturnal awakenings 

and daytime sleepiness in HD patients and arrhythmic circadian activity rhythms with disruptions 

of clock gene oscillations and attenuated spontaneous electrical activity in neurons of the central 

clock of mice, the Supra Chiasmatic Nucleus (SCN) have been reported (Morton et al., 2005; 

Pallier et al., 2007; Aziz et al., 2009a; Kudo et al., 2011; Hood and Amir, 2017b)  Arrhythmic 

circadian activity rhythms with molecular clock disruptions in central pacemakers LNv (Sheeba 

et al., 2008a; Prakash et al., 2017) and disturbed sleep phenotypes (Gonzales and Yin, 2010) are 

shown in Drosophila models of HD.  Thus far, most studies focus on the effect of neurological 

diseases on circadian rhythms and sleep functions (Hastings and Goedert, 2013; Musiek, 2015).  

However, an important question is whether circadian rhythms impact neurodegenerative 

outcomes, specifically, whether strengthening rhythms suppress neurodegenerative phenotypes 

or disrupting rhythms exacerbates them. 

There is substantial evidence for the essentiality of a functioning circadian clock on overall 

organismal health (Kondratova and Kondratov, 2012; Videnovic and Zee, 2015; West and 

Bechtold, 2015).  Emerging evidence suggests that circadian and sleep dysfunction might 

themselves contribute to neurodegenerative phenotypes (Leng et al., 2019; Lananna and Musiek, 

2020; Carter et al., 2021) and is bolstered by observations that such disturbances appear early 

during disease progression (Arnulf et al., 2008; Soneson et al., 2010; Goodman et al., 2011; 

Morton et al., 2014; Lebreton et al., 2015; Bellosta Diago et al., 2017) and mutations in core clock 

genes accelerate neuropathology in ND models of Drosophila and mice (Krishnan et al., 2012; 

Musiek et al., 2013).  Environmental conditions resulting in circadian rhythm disruption, such as 

chronic jet lag, light exposure at night, non-native light/dark cycles (LD) and constant light (LL), 

are also detrimental to health (Cho, 2001; Karatsoreos et al., 2011; Cho et al., 2015; Lucassen et 

al., 2016; Vaccaro et al., 2016; Lauretti et al., 2017a; Falcon et al., 2020).  Furthermore, restoring 

circadian rhythmicity by pharmacological, behavioural, or environmental interventions improves 

several symptoms in a mouse model of HD (Pallier et al., 2007; Pallier and Morton, 2009; 
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Maywood et al., 2010; Skillings et al., 2014; Ouk et al., 2017).  With an increase in exposure to 

artificial light at night, irregular sleep timings and poor circadian hygiene, minimal exposure to 

bright light during the day, shift work and jet lag, the effects of environmental light on the 

progression of NDs is a public health concern (Fonken and Nelson, 2011; Blume et al., 2019; 

Rumanova et al., 2020; Fernandez, 2022).  Hence, I asked whether environmental regimes that 

modify circadian rhythms also affect the neurodegenerative phenotypes of the previously 

described Drosophila HD model (Chapter 2) (Sheeba et al., 2008a; Prakash et al., 2017).  I 

examined environmental regimes’ impact on behavioural arrhythmicity and cellular features in 

this fly model. 

Under seminatural conditions (SN) where multiple environmental cues change gradually, specific 

clock mutant flies show activity/rest patterns like wild type (Menegazzi et al., 2012a; Vanin et 

al., 2012; De et al., 2013).  A similar observation was also made with Per2BRDM1 mice (Daan et 

al., 2011).  Therefore, SN was considered a rhythm-bolstering environment.  Under constant light 

(LL), constant CRY activation leads to constitutive degradation of TIM in clock neurons, 

disruption of the molecular clockwork and behavioural arrhythmicity in Drosophila (Konopka et 

al., 1989; Price et al., 1995; Lee et al., 1996; Marrus et al., 1996; Myers et al., 1996; Emery et al., 

2000a).  Therefore, LL was considered a clock-disrupting environment.  Flies expressing 

expanded Huntingtin (expHTT) (HTT-Q128) in their central pacemaker ventral lateral neurons 

(LNv) are behaviourally arrhythmic under constant darkness (DD) (Chapter 2) (Sheeba et al., 

2008a; Prakash et al., 2017).  I asked whether clock-enhancing environments attenuate this 

arrhythmicity.  Since the HD flies are behaviourally arrhythmic from day 1 in DD, they were 

subjected to different environmental regimes in the pre-adult stages. Their activity rhythms were 

assayed as adults in DD25.  Drosophila circadian neurons already have functional clocks during 

pre-adult stages and are light-responsive (Sehgal et al., 1992; Helfrich-Forster, 1997; Kaneko et 

al., 1997a; Helfrich-Forster et al., 2007; Vallone et al., 2007; Liu et al., 2015b).  Pre-adult light 

exposure entrains the adult circadian clock (Sehgal et al., 1992; Vallone et al., 2007), and pre-

adult light regimes can modify the circadian period of adults (Sheeba et al., 2002).  At the cellular 

level, flies expressing expHTT in the LNv lack the circadian output neuropeptide Pigment 

Dispersing Factor (PDF) and core clock protein Period (PER) in the small LNv (sLNv) soma 
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(Chapter 2) (Sheeba et al., 2008a; Prakash et al., 2017).  expHTT also forms inclusions, and their 

role in the pathophysiology is varied but is often associated with neurotoxicity (Finkbeiner, 2011; 

Margulis et al., 2013).  So, I asked whether circadian-rhythm-disrupting environments like LL 

exacerbate expHTT-induced cellular phenotypes by comparing flies under LL with those under 

LD and DD. 

The effect of various environments during pre-adult stages on adult activity rhythms in DD 

(section 3.3.1) and LD (section 3.3.2) are described.  Then, the effect of light regimes on cellular 

phenotypes of PDF in the LNv soma (section 3.3.3), expHTT forms and inclusions (section 3.3.4) 

and the relation between inclusions and PDF+ sLNv numbers (section 3.3.5) are described. 

Here is a summary of the results from the above experiments.  pdf>Q128 flies experiencing pre-

adult entraining conditions of LD or SN have arrhythmic activity from the first day of DD, like 

their counterparts under aperiodic DD or LL.  These findings show the inability of rhythm-

bolstering environments of LD or SN during development to suppress expHTT-induced adult 

behavioural arrhythmicity.  Across regimes, there is an escalation of the cellular 

neurodegenerative phenotypes in pdf>Q128 flies, i.e., loss of PDF from sLNv soma and expHTT 

inclusions with age, a characteristic of HD.  Also, increased expHTT inclusions are associated 

with the increased PDF loss from the sLNv, suggesting that inclusions are markers for 

neurotoxicity.  Notably, expHTT-expressing flies under LL have accelerated neurodegenerative 

cellular phenotypes: young flies in LL had a more significant PDF loss from sLNv soma and 

higher expHTT inclusions than DD and LD.  Older pdf>Q128 flies in LL also lost PDF from 

sLNv dorsal projections, unlike DD and LD.  Thus, the continuous presence of light aggravates 

the neurodegenerative phenotypes.  Interestingly, pdf>Q128 flies under rhythmic light also had a 

pronounced PDF loss from sLNv soma than DD.  Young pdf>Q128 flies in LD flies also showed 

a predominance of expHTT inclusions in LNv and more expHTT inclusions than in DD.  The 

absence of light, i.e. DD, seems to be the least neurotoxic, suggesting a negative effect of light on 

expHTT-induced phenotypes.  In summary, this study supports the importance of circadian 

hygiene, such as lighting conditions, in impacting neurodegenerative outcomes.  
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3.2 MATERIALS AND METHODS 

3.2.1 Fly lines 

Transgenic fly lines used are described in Chapter 2 (section 2.2.1).  All fly lines and crosses were 

maintained on a standard cornmeal medium at 25°C. 

3.2.2 Behavioural assays  

Flies were placed under four different environmental conditions through development up to 2d 

adults.  Three of the four regimes had constant temperatures of 25°C with either constant darkness 

(DD) or constant light (LL, 150lux)  or cyclic light cues with 12h: 12h Light: Darkness (LD, 

150lux).  The fourth was seminatural conditions (SN), gradually changing light, temperature, and 

humidity as strong zeitgebers.  SN in Bangalore (12.97o N, 77.59o E), India, during mid-July 2013, 

had day-light for 12h 30min and night for 11h 30min, sunrise at 6.15 am, sunset at 6.45 pm, mean 

light daytime ~190 lux, mean temp daytime 23.6 °, mean temp nighttime 21.7°C, mean humiditydaytime 

79.9%, mean humiditynighttime 85.6%, mean lightmax490lux, mean tempmax25.9°C, mean temp min 

20.8°C, mean humiditymax90.5% and humidity min 70.3%.  More details of the SN enclosure are 

previously described (Prabhakaran and Sheeba, 2013).  Subsequently, activity was recorded in 

specific light regimes (DD or LD) from post-eclosion age 3d.  As described in Chapter 2 (section 

2.2.2), behavioural assays were carried out and analysed.  For flies reared in DD, LD and LL, for 

most genotypes, ≥ 25 flies survived up to age 23d under DD recording, and ≥ 28 flies survived 

up to age 23d under LD recording.  pdfGal reared in LD and recorded in DD had n= 17 after 16d.  

SN-reared flies recorded in DD or LD, across genotypes, n ≥ 20 up to 16d, post which n ≥ 10. 

3.2.2.1 Statistical analysis 

Most pdf>Q128 flies across AWs and regimes were arrhythmic, and their rhythm robustness and 

period were not considered for statistical tests.  Each data set (untransformed or transformed) was 

tested for normality using Shapiro-Wilk’s test and variance homogeneity using Levene’s test.  

Mauchly’s sphericity test was carried out before performing a repeated measures ANOVA.  A 

one-way ANOVA followed by Unequal N HSD was used for comparing rhythm robustness 
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between genotypes across age windows (AWs) within a regime.  A repeated-measures ANOVA 

followed by Unequal N HSD was used only for SN to DD.  The rhythm robustness comparisons 

between AWs for a genotype for the other regimes used Friedman’s test, followed by the 

Wilcoxon test with a Bonferroni correction applied to the pair-wise p-values.  The data comparing 

rhythm period and activity consolidation ‘r’ was not normally distributed.  Comparing genotypes 

for an AW or age was done using the Kruskal-Wallis test of ranks, followed by multiple 

comparisons of mean ranks.  For the SN to DD regime, ‘r’ between genotypes was compared 

using Welch’s ANOVA on transformed data followed by the Games-Howell test.  Friedman’s 

test for repeated measures was used to compare period and activity consolidation ‘r’ between 

AWs or ages for a genotype.  Then Wilcoxon matched-pairs tests (or Conover Test for ‘r’) with 

Bonferroni correction (or Benjamini-Hochberg (BH) procedure to decrease the False Discovery 

Rate (FDR) for ‘r’; FDR set at 5%) on the pair-wise p-values were used.  An mxn Fisher’s Exact 

test, followed by multiple 2x2 Fisher’s Exact tests with BH procedure on all relevant comparisons, 

were used (using R) to compare the proportion of rhythmicity between genotypes for an AW for 

a regime.  Cochran Q test on the dichotomous variable rhythmicity (rhythmic and arrhythmic 

categories) was used to compare the proportion of rhythmic flies between AWs for a genotype in 

a regime, followed by multiple 2x2 McNemar’s tests on the dependent samples and BH procedure 

on all relevant comparisons.  Kruskal-Wallis tests followed by multiple comparisons of mean 

ranks were used for between-regime comparisons of ‘r’ for a genotype for each age.  A 4x2 

Fisher’s exact test, followed by multiple 2x2 tests and BH procedure, were used to compare the 

proportion of rhythmic flies between regimes for a genotype at an AW. 

A one-way ANOVA (on untransformed or transformed data) followed by Tukey’s HSD (Unequal 

N HSD for SN to LD) was used to compare daytime or nighttime activity between genotypes for 

an AW within a regime.  Only for the LD to LD regime, nighttime activity between genotypes 

was compared using Welch’s ANOVA on transformed data followed by the Games-Howell test.  

For comparing morning AI or evening AI between genotypes for an AW in a regime, the Kruskal-

Wallis test of ranks followed by multiple comparisons of mean ranks was used.  For AW 

comparisons within a genotype for a regime of daytime and nighttime activities and morning and 
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evening AIs, Friedman’s test followed by the Wilcoxon test with BH procedure was used.  The 

between-regime comparisons of the LD rhythm feature for a genotype for each AW were carried 

out using one-way ANOVA followed by Unequal N HSD.  For evening AI, Kruskal-Wallis tests 

of ranks followed by multiple comparisons of mean ranks were used.  For morning AI of Q128, 

repeated measures ANOVAs, followed by unequal N HSD tests, were used.  Other details are 

described previously in Chapter 2 (section 2.2.2.1). 

3.2.3 Immunocytochemistry and image analysis 

The fly crosses were placed in the three different regimes: DD, LD (~200 lux) or LL (~200 lux) 

and remained in the same regime as adults.  Dissections were carried out at the following ages: 

third instar larvae (L3) and adults aged 1d, 7d, 16d and 23d.  Immunocytochemistry was carried 

out as described in Chapter 2 (section 2.2.3).  Primary antibodies used were anti-Huntingtin 

Mouse (1:500) (Millipore MAB2166) along with anti-PDF Rabbit (1:30,000) (a gift from Michael 

Nitabach, Yale University).  Secondary antibodies Alexa fluors (Invitrogen) (1:3000) anti-

rabbit488 and anti-mouse546 were used. 

3.2.3.1 Image acquisition and analysis 

PDF+ LNv were counted, and the presence of DP was noted by viewing samples under a Zeiss 

Axio Observer Z1 epifluorescence microscope using the 63X/oil 1.4 objectives.  To quantify 

expHTT inclusions, images were captured as a z-stack of 1µm interval using the 40X/oil 1.3 

objectives, keeping the lamp intensity and exposure time constant across samples.  Confocal z-

stacks were captured using Zeiss LSM700, LSM 880 or Olympus FV1000 for representative 

images. 

3.2.3.1.1 Categorisation and quantification of expHTT forms 

The expHTT forms in each LNv soma were classified based on their appearance under the light 

microscope as follows: a uniform diffuse fluorescence distribution of expHTT (Diff), puncta-like 

shiny speckled focal fluorescence distribution of varying sizes were referred to as inclusions (Inc) 

and a polymorphic fluorescence distribution of diffuse expHTT with a few puncta-like inclusions 
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(Diff+Inc).  There was also PDF+ LNv soma without expHTT fluorescence (No HTT).  First, the 

number of PDF+ sLNv and lLNv soma with and without expHTT staining was noted for each 

hemisphere.  Then, among those stained for expHTT, the sLNv and lLNv soma numbers having 

different expHTT forms were noted for each hemisphere. 

Two sets of information are gathered from labelling expHTT types per LNv.  One is at the level 

of cells, namely, the proportion of sLNvs or lLNvs with different forms of expHTT within each 

hemisphere.  This comparison (intra-hemisphere) shows the within-hemisphere variation in 

expHTT distribution in LNvs.  Since our experimental replicates were at the level of hemispheres 

and not cells, the within-hemisphere diversity is only qualitative information.  The second set of 

information is at the level of hemispheres.  Depending on the most predominant expHTT form 

found in sLNv (or lLNv) within a hemisphere, each hemisphere was allotted into one of three 

categories.  The categorisation of each hemisphere (inter-hemisphere) based on the predominant 

expHTT form in the LNv (sLNv or lLNv) was as follows: predominantly diffuse distribution 

(Diff) or an equal distribution of diffused and inclusions (Diff+Inc) or predominantly inclusions 

(Inc).  This hemisphere-level categorisation is at the experimental replicates level, enabling 

qualitative statistical analysis.  Such inter-hemisphere categorisation allows comparisons between 

genotypes and ages of the relative proportions of hemispheres enriched in one form of expHTT 

in sLNv or lLNv relative to another form of expHTT. 

3.2.3.1.2 Quantification of expHTT inclusions 

The expHTT inclusion number and size were quantified using ImageJ.  Maximum intensity 

projection images were converted to 8-bit images, their backgrounds subtracted (rolling ball 

radius of 10 pixels), unsharp mask filter applied (radius of 1 pixel, mask weight of 0.7), further 

processed to sharpen the image, find edges and then an intermodes threshold was applied.  The 

area in the vicinity of the LNv was then outlined, and the analyse particles tool with size 

specification of 1 to infinity (in µ) was used to obtain measures of inclusion number and the size 

of inclusions for each hemisphere.  The area of inclusion spread is approximately a product of 

inclusion number and size.  A lower limit of 1µ was set for size to avoid false positives and 

background specks.  The proportion of different-sized HTT inclusions (grouped as 1-2µ, 2-3µ, 3-



211 
Chapter 3 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

4µ, 4-5µ, 5-6µ and >6µ) was calculated for each hemisphere and averaged across multiple 

hemispheres. 

Like how expHTT forms in the LNv were categorised at two levels of within-hemisphere and 

between-hemispheres (with each hemisphere representing the predominant expHTT form in 

LNv), the inclusion sizes were also categorised.  Within-hemisphere categorisation fell in the size 

ranges of <2µ, >2-<3µ, >3-<4µ, >4-<5µ, >5-<6µ and >6µ.  For designating each hemisphere as 

predominated by a particular size range of inclusions, the categorisation was <3µ, 3-6µ, >6µ and 

a mixed-size group (those that did not fall exclusively under the above three categories). 

3.2.3.2 Statistical analysis 

For PDF+ LNv numbers within a regime, a 2-way ANOVA with genotype and age as fixed factors 

was performed.  A two-way ANOVA with regime and age as fixed factors was performed for cell 

numbers within a genotype.  Post-hoc multiple comparisons were conducted using Tukey’s 

Honest Significant Difference test at α = 0.05.  For comparing the cell number distribution shapes 

between genotypes for a regime and between regimes for a genotype, the Kolmogorov-Smirnov 

tests were done with α = 0.05.  The proportion of hemispheres with PDF+ DP or CP were 

compared between genotypes for an age in a regime or between ages for a genotype in a regime 

or between regimes for a genotype at a specific age using mxn Fisher’s Exact tests, followed by 

pair-wise tests with BH procedure.  The inclusion number or size between regimes for an age or 

between ages for a regime was compared using one-way ANOVA on transformed data followed 

by Tukey’s HSD.  To compare the relative proportion of hemispheres predominated by different 

expHTT forms (or different sized expHTT inclusions) between genotypes for a specific age or 

between ages for a genotype, mxn Fisher’s Exact tests were used.  Following this, wherever 

necessary, multiple specific 2x2 Fisher’s Exact test sets with BH procedure on all relevant 

comparisons were applied (using R). 

Other details are described previously in Chapter 2 (2.2.2.1).  
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3.3 RESULTS 

3.3.1 Multiple, complex time cues during pre-adult stages did not prevent the 

arrhythmic activity of expHTT-expressing adult flies in DD 

Given that exposure to time cues during development affects the adult circadian activity rhythms 

(Sehgal et al., 1992; Matsumoto et al., 1997; Sheeba et al., 2002; Zhao et al., 2019a; Zhao et al., 

2019b), I asked whether exposure of pdf>Q128 flies to specific environments during development 

modifies the behavioural arrhythmicity of adult flies in DD25.  The effect of environmental 

regimes that modify the circadian rhythms on behavioural arrhythmicity of pdf>Q128 as adults 

was tested by exposing flies to either of the four regimes (DD, LD, SN or LL) during the pre-

adult stages and monitoring their activity rhythms as adults in DD.  DD-reared control flies 

pdf>Q0 and Q128, like their LD counterparts, were rhythmic (Fig 3.1 first and second rows) with 

near 100% rhythmicity (Fig 3.2a left, b left) across AWs.  DD-reared pdf>Q128 were arrhythmic 

like the LD-reared ones (Fig 3.1 first and second rows) with significantly low rhythmicity and 

poor activity consolidation ‘r’ (Fig 3.2a, b) compared to controls across age.  Despite being reared 

under SN, pdf>Q128 flies were arrhythmic from the start of DD (Fig 3.1 third-row) with lower 

rhythmicity and activity consolidation compared to controls (Fig 3.2c).  LL-reared pdf>Q128 

remained arrhythmic throughout (Figs 3.1 fourth-row and 3.2d).  pdf>Q128 across regimes had 

similarly low rhythmicity (Fig 3.3a) and activity consolidation (Fig 3.3b).  Although LD-reared 

pdf>Q128 were significantly more rhythmic than LL-reared flies, the fraction of rhythmic LD 

flies was low at ~25% (Table 3.1).  pdf>Q128 flies, when rhythmic, had weak rhythms across 

regimes, though not statistically tested (Table 3.2).  While other controls mostly had comparable 

rhythm robustness across age, LD-and LL-reared Q128 had relatively weak rhythms in AW2 and 

AW3 compared to other controls (Table 3.2).  The small fraction of rhythmic pdf>Q128 exhibited 

a periodicity of around 24h (Table 3.3).  pdf>Q0 had a more extended period than most genotypes 

across AWs under all regimes reared, partly attributed to the long period of parental pdfGal (Table 

3.3).  Thus, complex, gradually changing cyclic time cues (SN) during development do not 

mitigate behavioural arrhythmicity in adult pdf>Q128 flies.  In conclusion, complex time cues 

during development do not affect the breakdown of activity rhythms as adults in DD in expHTT-

expressing flies.  
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Fig 3. 1 Strong light/dark cycles or multiple gradually changing time cues during development do 

not alter the behavioural arrhythmicity of pdf>Q128 flies as adults in DD. 

Representative double-plotted actograms for adult flies of pdf>Q0, pdf>Q128 and Q128 showing 

activity data for 21d (age 3d-23d) in DD at 25°C.  All other details are the same as in Fig 2.1.  The 

bars above the actograms represent the regime of rearing, i.e. during development until age 2d (top-

row DD, second-row LD, third-row SN and bottom-row LL).  
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Fig 3. 2 Irrespective of the developmental regime, pdf>Q128 flies are mostly arrhythmic with poorly 

consolidated activity as adults in DD.  
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Left: The percentage of rhythmic flies in DD is plotted against three AWs for pdf>Q0, pdf>Q128 

andQ128 reared under regimes of DD (a), LD (b), SN (c) and LL (d).  Most pdf>Q128 flies are 

arrhythmic in DD at all AWs across rearing regimes.  *** indicates a significant difference from all 

controls at p<0.001.  Right: As adults in DD, ‘r’ across age for pdf>Q128 is lower than controls across 

all rearing regimes (a-d).  Numbers at the top-right indicate the number of flies that survived for 23d.  

Symbols indicate significant differences at p<0.05: red * of pdf>Q128 from both controls, red # from 

pdf>Q0 alone, and black * of Q128 from the other indicated genotypes.  Across panels, the error bars 

are SEM. 

Fig 3. 3 The Presence of cyclic light or complex time-cues during development does not improve 

the activity rhythms of pdf>Q128 as adults in DD. 

(a) The percentage of rhythmic flies in DD reared under different regimes across AWs for pdf>Q0 

and pdf>Q128 plotted against three AWs.  * (orange) is at p<0.05.  (b) Comparison of activity 

consolidation ‘r’ for pdf>Q0 and pdf>Q128 flies in DD25 reared in different regimes.  Coloured ^ 

near an error bar of a data point indicates a difference of the respective-coloured regime from the data-

point regime at p<0.05.  Across panels, error bars are SEM.  
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3.3.2 Arrhythmic conditions during pre-adult stages do not alter the entrainment of 

activity rhythms of expHTT-expressing flies to LD 

Environmental interventions during specific developmental stages affect adult circadian rhythms 

(Sehgal et al., 1992; Matsumoto et al., 1997; Sheeba et al., 2002; Zhao et al., 2019a; Zhao et al., 

2019b).  I, therefore, asked whether rendering the circadian clocks arrhythmic during 

development would impair the ability of pdf>Q128 flies to entrain to LD as adults.  The fly clock 

can be rendered arrhythmic under the rhythm-disrupting environment of LL.  Additionally, flies 

were maintained in DD, LD or SN during development to assess the effect of the developmental 

environment on the entrainability of the activity rhythms of pdf>Q128 flies to LD.  An extension 

of this study has been described as part of Chapter 2 (Figs 2.14 and 2.15).  DD-reared and LD-

reared pdf>Q128 flies showed activity profiles dissimilar from their UAS controls (Figs 3.4 a and 

b, top-panels).  Their daytime and nighttime activity counts were like at least one relevant 

background control across AWs, except for DD-reared flies in AW3 where pdf>Q128 had 

reduced daytime activity than both controls (Figs 3.4 a and b, bottom-panels, Tables 3.4 and 3.5).  

The morning and evening AIs of pdf>Q128 were also different only from pdfGal but not Q128 

across AWs (Figs 3.4 a and b bottom-panels, Tables 3.6 and 3.7), suggestive of a background 

effect.  Similarly, SN-reared and LL-reared pdf>Q128 flies had activity profiles, activity counts, 

and anticipation indices comparable to at least one of the relevant background controls across 

most AWs (Figs 3.5 a and b, Tables 3.4-3.7).  Comparing across regimes for each AW, pdf>Q128 

flies raised in different regimes, including those raised under arrhythmic LL, share similar activity 

profiles in LD, like their Q128 controls (Fig 3.6a).  Day activity levels of LD-reared Q128 were 

lower than DD-reared and LL-reared flies in AW2 and AW3 (Fig 3.6b left).  Night activity levels 

of both pdf>Q128 and Q128 flies reared in SN were lower than those reared in LD in AW2 (Fig 

3.6c).  pdf>Q128 reared in SN had a higher M-AI than in DD and LD in AW1 (Fig 3.6 d right).  

Surprisingly, LL-reared pdf>Q128 had higher M-AI than LD-reared flies in AW2 and AW3, 

while such between-regime differences were not seen with Q128 (Fig 3.6d).  Both genotypes had 

slight between-regime differences in E-AI (Fig 3.6d).  Thus, the rearing regime had modest effects 

on the circadian features of flies in LD.  Nevertheless, these might not translate to differences of 

physiological relevance, given their magnitude.  Thus, light regime during development had little 

effect on the entrainment of pdf>Q128 activity rhythms to LD as adults.  Further, the entrainment 

of flies as adults to LD does not require functional circadian mechanisms during development.  
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Fig 3. 4 pdf>Q128 flies reared in DD and LD show control-like activity rhythms as adults in LD. 

(a) Flies reared in DD and as adults in LD.  Top: The mean activity counts per 15 minutes in LD are 

plotted against zeitgeber time for pdf>Q128 and its relevant controls Q128 and pdfGal for the three 

AWs.  All other details are like Fig 2.9b.  Bottom: Mean daytime and nighttime activity levels and 

morning and evening anticipation indices plotted against AWs.  Coloured * indicates significant 

differences of that genotype from the indicated one or all others for a given AW at * p<0.05, ** p<0.01 

and *** p<0.001.  Coloured $ indicates significant differences between an AW from the indicated AW 

or all other AWs for the colour-matched genotype at $ p<0.05, $$ p<0.01 and $$$ p<0.001.  Across 

panels, error bars are SEM.  (b) Flies were reared in LD and assayed as adults in LD.  All other details 

are the same as above.  
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Fig 3. 5 pdf>Q128 reared in SN and LL show control-like activity rhythms flies as adults in LD. 

(a) Flies were reared in SN and as adults in LD.  (b) Flies were reared in LL and assayed as adults in 

LD.  All other details are similar to Fig 3.4.  
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Fig 3. 6 pdf>Q128 flies reared under constant or arrhythmic conditions entrain to LD as adults, 

like those reared under cycling conditions. 

(a) Activity profiles under LD of flies reared under different regimes across three AWs showing Q128 

(top) and pdf>Q128 (bottom).  All other details are like Fig 3.4.  Age-matched comparisons of the 

effect of the rearing regime on the mean daytime activity levels (b), mean nighttime activity levels (c), 

mean morning AIs (d) and mean evening AIs (e) across AWs are plotted for Q128 and pdf>Q128.  * 

indicates significant differences between regimes for specific ages at * p<0.05.  Across panels, error 

bars are SEM.  
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3.3.3 expHTT-expressing flies under different light regimes show progressive loss of 

PDF+ sLNv, with LL being the most severe and DD being the least 

I then asked whether external light conditions known to alter clock properties affect the extent of 

the cellular neurodegenerative phenotype of pdf>Q128 flies.  I quantified the PDF+ sLNv soma 

numbers in DD, LD, and LL.  pdf>Q0 flies in DD had close to 4 PDF+ sLNv and lLNv soma 

across age (Figs 3.7a, b and c).  pdf>Q128 flies had control-like numbers of PDF+ sLNv soma as 

larvae (Fig 3.7b top and c), which reduced significantly by 1d and remained steadily low after 

that (Figs 3.7b and c).  PDF+ lLNv soma numbers and proportion of hemispheres with PDF+ DP 

and CP were unaffected in pdf>Q128 (Figs 3.7d, e and f). 

pdf>Q128 flies in LD had control-like PDF+ sLNv soma numbers at L3, which progressively 

declined with age and compared to pdf>Q0 (Figs 3.8a-c).  PDF+ lLNv soma numbers and 

proportion of DP and CP were comparable between genotypes (Figs 3.8a,b,d-f). 

pdf>Q128 flies in LL had control-like PDF+ sLNv soma numbers at L3, which progressively 

declined with age and remained significantly lower than pdf>Q0 (Figs 3.9 a-c).  PDF+ lLNv soma 

numbers and the proportion of hemispheres with PDF+ CP were comparable between genotypes 

(Figs 3.8d and 3.8f).  However, the proportion of hemispheres with PDF+ DP in pdf>Q128 

progressively declined post 7d and was significantly lower than pdf>Q0 at ages 16d and 23d (Fig 

3.9e). 
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Fig 3. 7 pdf>Q128 flies in DD have fewer PDF+ sLNv soma than controls; their PDF+ lLNv soma 

numbers are unaffected. 
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Representative images of brain samples of 7d-old pdf>Q0 (a) and pdf>Q128 (b) at life stages of larval 

L3 and adult at ages 1d,7d,16d and 23d under DD.  The samples are stained for PDF (green) and HTT 

(red), showing sLNv soma (→ arrows), lLNv soma (> arrowheads), diffuse HTT staining (Ψ psi),  and 

inclusions of expHTT (« double arrowheads).  Scale bars are 10 µ.  (c) Mean PDF+ sLNv soma 

numbers per hemisphere across age for pdf>Q0 and pdf>Q128.  * indicates a significant difference 

between genotypes for specific ages at * p<0.0001.  Coloured $ indicates significant differences 

between a specific age from the indicated age or all other ages for the colour-matched genotype with 

$ (cyan) at p<0.001 and $ (red) at p<0.0001. + at p<0.001 indicates that the two distributions differ 

significantly.  (d) Mean PDF+ lLNv soma numbers per hemisphere across age for pdf>Q0 and 

pdf>Q128.  (e) The proportion of hemispheres showing PDF+ DP across age for pdf>Q0 and 

pdf>Q128.  (f) The proportion of hemispheres showing PDF+ CP across age for pdf>Q0 and 

pdf>Q128.  n ≥ 20 hemispheres/genotype/age.  Across panels, error bars are SEM. 
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Fig 3. 8 pdf>Q128 flies in LD show progressive loss of PDF+ sLNv soma. 

Representative images of brain samples of flies under LD stained for PDF (green) and HTT (red).  

Diffuse+inclusion expHTT is also shown (Ұ symbol).  All other details are similar to Fig 3.7.  
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Fig 3. 9 pdf>Q128 flies in LL show progressive loss of PDF from the sLNv soma and its DP. 

Representative images of brain samples of flies under LL stained for PDF (green) and HTT (red).  (e) 

The proportion of hemispheres showing PDF+DP across age for pdf>Q0 and pdf>Q128.  * indicates 

significant differences between genotypes for specific age at * p<0.001 and ** p<00001.  Coloured $ 

indicates a significant age difference from earlier ages for the colour-matched genotype at p<0.01.  All 

other details are similar to Fig 3.7.  
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Between regimes, pdf>Q0 was similar in PDF+ LNv soma numbers and proportion of 

hemispheres with PDF+ DP (Fig 3.10a top).  pdf>Q128 under all three regimes had comparable 

PDF+ sLNv soma numbers at L3 (Fig 3.10 a bottom-left).  At 1d, PDF+ sLNv soma numbers in 

LL reduced significantly compared to DD and marginally significantly (p=0.051) compared to 

LD (Fig 3.10 a bottom-left).  PDF+ sLNv soma numbers in LD declined at later ages, while DD 

numbers remained significantly higher than LD and LL (Fig 3.10a bottom-left).  In pdf>Q128, 

the PDF+ lLNv soma numbers were comparable across regimes (Fig 3.10a bottom-middle).  Thus, 

LL had the most dramatic effect on PDF+ sLNv numbers, followed by LD and DD. 

For a more refined understanding of the effect of light regimes on PDF+ LNv numbers, I compared 

the shapes of the frequency distributions of PDF+ sLNv soma numbers between regimes across 

ages.  The shapes of the distributions of PDF+ LNv soma numbers (sLNv and lLNv) for pdf>Q0 

and of PDF+ lLNv soma numbers for pdf>Q128 were comparable between regimes across age 

(Fig 3.10b first, second and fourth columns).  They all showed a left-skewed distribution, with 

most hemispheres having three to four PDF+ LNv (Fig 3.10b first, second and fourth columns).  

pdf>Q128 at L3 had a left-skewed distribution across regimes, and at 1d, it showed a relatively 

symmetric distribution (Fig 3.10b, second column).  Their distribution appeared to be more right-

skewed from 7d onwards in LD and LL; by 23d, the distribution was right-skewed, with most 

hemispheres showing only one or no PDF+ sLNv (Fig 3.10b, second-column, orange and cyan).  

On the other hand, in DD, pdf>Q128 maintained a relatively symmetric distribution across age, 

with about 70% of the hemispheres showing at least 2 (≥ 2 ≤ 4) PDF+ sLNv soma (Fig 3.10b, 

second-column, dark-grey).  The shape of the frequency distribution of PDF+ sLNv soma numbers 

in pdf>Q128 under LD and LL differed significantly from those in  DD at ages 7d, 16d and 23d 

(Fig 3.10b, second-column), as was also reflected in the mean numbers (Fig 3.10a bottom-left).  

Only LL affected the PDF in sLNv dorsal projections of pdf>Q128.  This effect is evident from 

the significantly lower proportion of hemispheres of pdf>Q128 in LL showing PDF+ DP 

compared to those in LD and DD at ages 16d and 23d (Fig 3.10a bottom-right). 

In summary, the arrhythmic regime of LL promotes expHTT-induced neurodegenerative features 

most severely, followed by LD and then DD.  Thus, the constant light environment aggravates 
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the HD neurodegenerative phenotypes of PDF loss from sLNv soma, leading to PDF loss from 

sLNv DP.  The finding that pdf>Q128 flies under LD had fewer PDF+ sLNv than those in DD 

suggests that even cyclic light affects neurodegenerative phenotypes, with the absence of light 

seeming most beneficial.  Even when presented cyclically and for a shorter duration, this negative 

effect of light confounds any conclusions on the clock-disrupting effects of constant light on the 

neurodegenerative phenotypes. 
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Fig 3. 10 pdf>Q128 flies in LL and LD show a rapid decline in PDF+ sLNv soma numbers compared 

to DD. 

(a) Mean numbers of PDF+ sLNv soma (left) and lLNv soma (middle) per hemisphere and proportion 

of hemispheres showing PDF+ DP (right) in three different light regimes are plotted over age for 

pdf>Q0 (top) and pdf>Q128 (bottom).  Symbols indicate age-matched significant differences: * (dark-

grey) of DD from other regimes at * p<0.001 and ** p<0.0001; * (blue) of LL from the indicated 

regime or other regimes at * p<0.01, ** p<0.001 and *** p<0.0001; and * (orange) at p=0.051.  + 

indicates that DD, LD and LL distributions significantly differ at p<0.001.    
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(b) Frequency distribution of the proportion of hemispheres with different numbers of PDF+ sLNv 

(left pane-sets) or lLNv soma (right-panel sets) for pdf>Q0 and pdf>Q128 comparing the three light 

regimes across various ages.  *(dark-grey) indicates significant difference of DD from LD and LL at 

* p<0.05 and ** p<0.01.  n≥20 hemispheres/genotype/age/regime.  Across panels, error bars are SEM. 

3.3.4 expHTT-expressing flies under different light regimes show a progressive 

increase in inclusions, with LL being the most severe 

Multiple forms of expHTT, including inclusions, contribute to neurodegeneration by various 

means, such as sequestering proteins essential for cellular function and physically blocking 

processes like axonal transport (Nucifora et al., 2001; Donaldson et al., 2003; Gunawardena et 

al., 2003; Lee et al., 2004; Qin et al., 2004; Schaffar et al., 2004).  Given the varying extents of 

PDF loss from sLNv soma of pdf>Q128 across the light regimes, I asked whether the light 

regimes also differentially affected the expHTT forms in the LNv.  Across regimes, pdf>Q0 

showed diffuse HTT in the LNv (Figs 3.7a, 3.8a and 3.9a), and the HTT+ sLNv (and lLNv) soma 

numbers were similar across regimes, an average of ~4 per hemisphere, except for HTT+ sLNv in 

DD at L3 (Fig 3.11a, left and middle).  While nearly every PDF+ sLNv in a hemisphere of pdf>Q0 

was also stained for HTT across age and regimes, the PDF+ sLNv in the third-instar larvae in DD 

mostly did not show HTT (Fig 3.11a, right). 

Across regimes within a hemisphere, Diff expHTT was prevalent in the sLNv of pdf>Q128 larvae 

and the lLNv of 1d-old flies, while Inc prevailed at later ages (Fig 3.11b and c).  In pdf>Q128, in 

a small proportion of hemispheres, most of the sLNv (or lLNv) soma were without HTT staining 

across nearly all ages in DD (Fig 3.12a, left, b).  In DD, at L3, 50% of the hemispheres had most 

of their PDF+ sLNv soma without HTT staining, significantly differing from LD and LL, wherein 

nearly all hemispheres had a majority sLNv with HTT (Fig 3.12b, top-left).  A small proportion 

of hemispheres with most of their sLNv soma without HTT was also prevalent in LD and LL at 

different ages; however, it is essential to note that at most of these ages, the mean number of PDF+ 

sLNv is <1 (Fig 3.12a, top-middle and -right, b, top).  For further analysis of the prevalence of 

various expHTT forms across pdf>Q128, only those hemispheres were considered where HTT 

staining was found in most sLNv (or lLNv) somas.  
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Fig 3. 11 Across light regimes, LNv of pdf>Q0 exhibit only the Diff form of HTT, whereas those of 

pdf>Q128 predominantly exhibit the Inc form. 

(a) The Mean number of diffuse-HTT+ sLNv soma (left) and lLNv soma (middle) per hemisphere for 

pdf>Q0.  * (dark grey) shows an age-matched difference of DD from other regimes at * p<0.05 and 

*** p<0.001.  $ (dark-grey) indicates significant age differences for DD at $ p<0.001 and $$$ p<0.001.  

The mean proportion of PDF+ sLNv soma that are also positive for HTT within a hemisphere for the 

three regimes across age for pdf>Q0 (right).  (b) and (c) The proportions of sLNv (top) or lLNv 

(bottom) having different expHTT forms per hemisphere (intra-hemisphere) for pdf>Q128 averaged 

across hemispheres are plotted for each light regime against age (b) or against regimes for each age 

(c).  NA, not applicable.  n ≥ 20 hemispheres/genotype/age/regime.  Across panels, error bars are SEM.  
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Fig 3. 12 expHTT stained LNv dominate most hemispheres of pdf>Q128 across age and light 

regimes. 

(a) and (b) The proportion of hemispheres of pdf>Q128 dominated by either HTT stained or unstained 

sLNv (top) or lLNv (bottom) soma for the light regimes plotted against age (a) or between regimes for 

each age (b).  * indicates significant differences between age (a) or of DD from other regimes for a 

specific age (b) at * p<0.05 and *** p<0.001.  Numbers at the bottom of the bars represent the mean 

number of PDF+ LNv detected in pdf>Q128 for a regime at an age.  NA, not applicable; nd, not 

different.  n ≥ 20 hemispheres/genotype/age/regime. 
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The relative proportions of hemispheres dominated by the different expHTT forms in sLNv (or 

lLNv) differed significantly between ages for a regime (Fig 3.13a).  In DD, most hemispheres had 

Diff expHTT in the sLNv at L3 and in the lLNv at 1d, which significantly changed to most 

hemispheres with Inc-enriched LNv at subsequent ages (Fig 3.13b, top-left, 3.13c, top-left).  A 

similar trend was seen for the sLNv in LD and LL, with the Diff form seen in DD replaced by 

Diff+Inc forms (Fig 3.13b, bottom).  lLNv in LD also showed a similar trend, with most 

hemispheres at 1d having Diff expHTT (and some with Diff+Inc) in the lLNv, while older flies 

had Inc-enriched lLNv (Fig 3.13c, middle).  In LL, even though the relative proportions of 

hemispheres at 1d with Diff-enriched lLNv to that of Inc-enriched lLNv were significantly 

different from older ages, more than half (~65%) of the hemispheres in the young 1d-old flies 

already had Inc-enriched lLNv (Fig 3.13a, bottom-right, c, top-right). 

The relative proportions of hemispheres dominating different expHTT forms in the sLNv (or 

lLNv) differed significantly between regimes at L3 for sLNv and 1d for lLNv (Fig 3.14a).  At L3, 

the proportion of hemispheres enriched with Diff-expHTT+ sLNv relative to Inc-expHTT+ sLNv 

(or Diff+Inc-expHTT+) in DD differed significantly from LD and LL (Fig 3.14b).  Notably, at 

L3, the proportion of hemispheres enriched with Inc-expHTT+ sLNv relative to Diff-expHTT+ 

sLNv (or Diff+Inc-expHTT+) in LL was significantly different from LD as well (Fig 3.14b).  At 

1d, the proportion of hemispheres enriched with Inc-expHTT+ lLNv relative to Diff-expHTT+ 

lLNv in LL differed significantly from DD and LD (Fig 3.14c).  Thus, in the relatively low 

neurotoxic regime of DD (and to some extent LD), young pdf>Q128 show a predominance of 

Diff expHTT in the LNv.  In contrast, in the circadian arrhythmic and the more neurotoxic regime 

of LL, there is a predominance of Inc expHTT in the LNv. 
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Fig 3. 13 In pdf>Q128 flies across light regimes, the relative proportion of hemispheres of 

inclusion-enriched LNv increases with age. 

(a) The proportion of hemispheres of pdf>Q128 stained with HTT dominated by different expHTT 

forms in sLNv (top) or lLNv (bottom) is plotted on the y-axis to describe the between-hemispheres 

(inter-hemisphere) distribution of predominant expHTT forms for the three light regimes against age.  

*** indicates significant changes in relative distributions of expHTT forms between ages for each 

regime for sLNv and lLNv at p<0.001.  (b) and (c) The relevant pair-wise comparisons of (a) that are 

statistically significant or (and) are biologically relevant are plotted for sLNv (b) and lLNv (c).  

Numbers at the bottom of the bars represent the mean number of PDF+ LNv detected in pdf>Q128 for 

a regime at an age.  * indicates significant relative changes in pair-wise proportions of hemispheres 

enriched in expHTT forms of that age from all other ages or indicated age (s) at * p<0.05, ** p<0.01 

and *** p<0.001.  NA, not applicable; NS, not significant; nd, not different.  n ≥ 20 

hemispheres/genotype/age/regime.  
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Fig 3. 14 In young pdf>Q128, the relative proportion of hemispheres dominated by various expHTT 

forms in the LNv differs between light regimes, with inclusion-rich hemispheres dominating under 

LL. 

(a) The proportion of hemispheres of pdf>Q128 stained with HTT dominated by different expHTT 

forms in sLNv (top) or lLNv (bottom) is plotted on the y-axis to describe the inter-hemisphere 

distribution of predominant expHTT forms against light regimes for each age.  *** indicates a 

significant difference in the relative distributions of expHTT forms between regimes at specific ages 

at p<0.001.  (b) and (c) The relevant pair-wise comparisons of (a) that are statistically significant or 

(and) are biologically relevant are plotted for sLNv (b) and lLNv (c) comparing regimes for an age.  

All other details are like 3.13b and c, with * indicating differences between regimes at an age.  
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In DD, pdf>Q128 larvae did not show expHTT inclusions, but by age 1d, inclusions appeared, 

and their mean number and size increased with age (Fig 3.15a).  In LD, expHTT inclusions were 

seen as larvae, and the mean inclusion number and size increased significantly at 7d compared to 

earlier ages and remained high at later ages of 16d and 23d (Fig 3.15a).  In LL, HTT inclusions 

were seen as larvae, their mean numbers increasing significantly by 1d (Fig 3.15a, left).  

Compared to 1d, the mean inclusion number at older ages was significantly lower in LL while 

remaining greater than in L3.  The mean inclusion size in LL did not change with age (Fig 3.15a, 

right).  At early stages as larvae and at 1d, the mean inclusion number and size were significantly 

higher in LL than in DD and LD (Fig 3.15a).  In contrast, DD showed fewer inclusions across 

ages than LD and LL.  These observations suggest that LL is favourable to inclusions, DD is less 

favourable, and LD is intermediate. 

I also quantified the distribution of various-sized expHTT inclusions.  The intra-hemisphere 

distribution of various-sized expHTT inclusions across ages for the three light regimes is shown 

(Fig 3.15b).  In the inter-hemisphere comparisons, the relative proportion of hemispheres enriched 

in various sized inclusions differed significantly across age in DD but not LD and LL (Fig 3.15c).  

Specifically, in DD, on comparing the relative proportion of hemispheres enriched with inclusions 

of <3µ to mixed sizes, 23d differed from 1d and 16d, with the early ages having predominantly 

small-sized inclusions (Fig 3.15e, left).  The relative proportions differed between regimes at 7d 

but not at other ages (Fig 3.15d).  At 7d, the relative proportion of hemispheres enriched with 

inclusions of the smaller size range of <3µ to that of mixed sizes differed between DD and LD, 

with DD having a higher proportion of small-sized Inc (Fig 3.15c). 

Overall, across regimes, the proportion of hemispheres having expHTT inclusion enriched LNv 

increases across ages, as does inclusion number and size.  Considering the PDF+ sLNv soma 

numbers, the dominance specific expHTT form in LNv, and the number and size of inclusions in 

the young pdf>Q128, DD emerges as the least neurotoxic regime, followed by LD, while LL is 

the most neurotoxic.  Thus, light worsens neurodegenerative phenotypes.  
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Fig 3. 15 Young pdf>Q128 in LL show larger and more expHTT inclusions than those in DD and 

LL. 

(a) Comparison of mean inclusion number per hemisphere (left) and mean inclusion size per 

hemisphere (right) for pdf>Q128 under the three light regimes across age.   
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* indicates significant differences between regimes for a given age: * (dark-grey) from DD, * (orange) 

from LD and * (blue) from LL at * p<0.05, ** p<0.01 and *** p<0.001.  Coloured $ represents 

differences across age for the respective coloured regime at $ p<0.05, $$ p<0.01 and $$$ p<0.0001.  

Error bars are SEM.  (b) The mean proportion of different-sized expHTT inclusions per hemisphere 

describing the within-hemisphere size distribution is plotted against age for the three light regimes.  

(c) and (d) The proportion of hemispheres dominated by different expHTT inclusion size ranges in 

LNv are plotted on the y-axis to describe the between-hemispheres distribution of expHTT inclusion 

sizes.  This proportion is plotted against age for each regime (c) or against regimes for each age (d).  

The * indicates significant changes in relative distributions of expHTT sizes between ages (c) or 

between regimes (d) at ** p<0.01.  (e) Pair-wise comparisons of (c) and (d) that were statistically 

significant are plotted, with * indicating significant relative changes in pair-wise proportions of 

hemispheres enriched with differently sized expHTT inclusions between age for DD (left) and between 

regimes at 7d (right) at p<0.05.  nd is not different.  n ≥ 20 hemispheres/genotype/age.  Error bars are 

SEM. 
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3.4 DISCUSSION 

3.4.1 Effects of environmental interventions impacting 

circadian rhythms on HD-induced neuropathology 

The case for neurodegeneration leading to circadian disturbances is apparent (Hastings and 

Goedert, 2013; Musiek, 2015).  The converse, however, that circadian dysfunction can amplify 

neurodegenerative phenotypes is still a nascent idea.  Here, I asked whether alterations to 

circadian rhythms can modify neurodegeneration in a Drosophila HD model using environmental 

conditions that alter circadian function.  Some of the neurodegenerative phenotypes of these flies 

are behavioural arrhythmicity in DD and cellular loss of PDF from sLNv soma and PER from 

LNv (Chapter 2) (Sheeba et al., 2008a; Prakash et al., 2017).  Despite exposure to a rich cyclic 

environment of SN or a strongly rhythmic environment of LD during development, pdf>Q128 

flies were behaviourally arrhythmic in DD.  These observations suggest that specific circadian-

rhythm-bolstering environments during development cannot overcome arrhythmicity as adults 

when such a strongly pathogenic version of HTT is expressed.  Also, exposure of pdf>Q128 to 

circadian rhythm disrupting the environment of LL during development (or up to age 23d 

(Chapter 2, Fig 2.14)) did not affect their ability to entrain LD.  PER, a core molecular clock 

component, and PDF, the circadian neuronal output, are affected in the sLNv, giving rise to 

arrhythmicity in these flies.  During development, cycling light or gradually cycling multiple time 

cues cannot reverse these phenotypes.  Thus, specific environmental regimes during development 

do not seem to modify activity rhythms of expHTT-expressing flies as adults in DD25 or LD25.  

Also, given that flies reared under LL during development were rhythmic in DD and entrained to 

LD as adults, this suggests that functional developmental clocks are not necessary for adult 

activity rhythms. 

Regarding cellular markers, across regimes of DD, LD and LL, there is a loss of PDF from sLNv 

soma, and this loss worsens with age in LD and LL.  In all the regimes, the proportion of 

hemispheres with LNv was dominated by inclusions; the mean inclusion number and mean 

inclusion size (except in LL) increased with age.  This progressive worsening of features is a 
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characteristic of HD, recapitulated in this Drosophila circadian HD model.  The arrhythmic clock-

disrupting regime of LL aggravated cellular neurotoxicity the most, followed by LD, while DD 

was relatively neuroprotective. 

The continuous presence of light or LL exacerbated neurotoxic phenotypes.  pdf>Q128 under LL 

had a precocious and more drastic loss of PDF from sLNv, with the dominance of hemispheres 

with expHTT inclusion-rich LNv and more numerous and more enormous inclusions very early 

on than LD or DD.  Also, most pdf>Q128 flies under LL lack PDF+ DP at later ages while present 

in LD and DD, further attributing more significant neurotoxicity to LL.  Thus, LL, which 

abolishes circadian rhythms, also hastens neurodegenerative features and aggravates them.  

However, one cannot conclude whether these LL effects solely stem from its clock-disrupting 

effects, given the detrimental effect of light per se.  These findings, nevertheless,  highlight the 

importance of lighting conditions, which can translate into good circadian hygiene in combating 

neurodegenerative symptoms.  There is evidence for LL worsening neuropathology in the 

literature.  Aβ expressing flies in LL had a shorter lifespan than LD (Chen et al., 2014).  Sub-

pathological Aβ rats in LL also showed accelerated aggregation of exogenous Aβ42 (Sharma and 

Goyal, 2020a).  Another study showed that heterozygous CLKjrk flies under LL exhibit retinal 

degeneration, while those in LD did not (Yu, 2012). 

Circadian disruption by LL is known to be detrimental to overall organismal health (Coomans et 

al., 2013; Lucassen et al., 2016; Chalfant et al., 2020; Rumanova et al., 2020; Yang et al., 2020).  

Flies in LL have shortened lifespans (Pittendrigh and Minis, 1972; Sheeba et al., 2000; Chen et 

al., 2014; Vaccaro et al., 2017).  Mice exposed chronically to LL had reduced central clock protein 

oscillations in the SCN, skeletal muscle and innate immune functions and compromised bone 

structure (Lucassen et al., 2016).  Exposure of rats to LL induced oxidative stress, cognitive 

issues, anxiety and depressive symptoms (Tapia-Osorio et al., 2013; Sharma and Goyal, 2020a).  

LL affects rhythms in melatonin and corticosterone, disrupts peripheral rhythms, predisposes the 

organism to metabolic diseases and exacerbates atherosclerosis (Chalfant et al., 2020; Rumanova 

et al., 2020).  Circadian disruption could contribute to neurodegeneration potentially by 

promoting pro-neurodegenerative processes or impeding neuroprotective processes.  For instance, 
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there is considerable circadian influence on pathways involved in neuronal proteostasis and 

metabolism, synaptic homeostasis, immune and inflammatory response, oxidative damage, 

mitochondrial function and DNA repair and maintenance (Musiek et al., 2013; Leng et al., 2019; 

Lananna and Musiek, 2020; Carter et al., 2021).  Sleep timing is under circadian control, and 

sleep is essential for clearing neurotoxic metabolites from the brain and neuronal homeostasis 

(Xie et al., 2013; Wu et al., 2019).  pdf>Q128 flies, however, do not exhibit sleep defects (Chapter 

2).  Circadian disruption by LL could also disrupt the neuroprotective functions of specific clock 

genes.  pdf>Q128 flies show loss of PER from LNv (Chapter 2) (Prakash et al., 2017) and loss of 

Drosophila Per and mice Bmal1 results in neuronal damage (Krishnan et al., 2009; Musiek et al., 

2013), suggesting a direct role for these genes in neuroprotection.  CLK is an anti-ageing factor 

as CLK mutants show accelerated age-dependent locomotor decline under LL (Vaccaro et al., 

2017).  Conversely, ClkJrk mutation suppressed expHTT-induced effects on PDF+ sLNv soma 

numbers and expHTT inclusions in a fly model (Xu et al., 2019a).  Under DD, circadian 

photoreceptor Cryptochrome (CRY) is reported to have an anti-ageing role, promoting robust 

circadian rhythms and improving lifespan (Rakshit and Giebultowicz, 2013).  Under LL, constant 

light activation of CRY and its degradation could bring down CRY levels, reducing 

neuroprotection.  A previous study has suggested that prolonged light exposure may trigger 

caspase-mediated degradative pathways dependent on PDF and its receptor PDFR (Means et al., 

2015).  Excitotoxicity significantly contributes to neuropathology (Salinska et al., 2005; Dong et 

al., 2009).  Continuous activation of the phototransduction pathway leads to retinal degeneration 

(Dolph et al., 1993).  lLNv receiving excitatory visual circuit inputs (Muraro and Ceriani, 2015; 

Schlichting et al., 2016) could be downstream targets to such prolonged retinal hyper-excitation. 

pdf>Q128 flies under light/dark cycles also had a greater extent of PDF loss from sLNv soma and 

more expHTT inclusions than those in DD across age.  At L3, Diff+Inc expHTT enriched sLNv 

hemispheres dominated LD instead of DD’s Diff-enriched sLNv.  These observations suggest that 

light might enhance the neurodegenerative phenotypes.  This negative effect of light on the 

expHTT-induced phenotypes is reflected by improved phenotype in its absence, i.e. in DD, where 

pdf>Q128 continues to have, on average, ~2 PDF+ sLNv soma for up to three weeks.  Another 
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interesting observation in DD is that at L3, most hemispheres of pdf>Q0 and nearly 50% of the 

hemispheres of pdf>Q128 had the most PDF+ sLNv without HTT staining.  The lack of HTT 

staining at L3 in both genotypes under DD suggests that lack of light might reduce the Gal4-

mediated HTT expression.  Further, with age, pdf>Q128 flies in DD, but not pdf>Q0, have a 

considerable proportion of hemispheres where HTT does not stain most of the LNv, which 

becomes significant by 23d.  So, it seems that in DD, the expHTT expression levels might be low, 

and with age, its clearance might be higher, giving rise to the absence of HTT staining in LNv.  

Reducing expHTT levels in LNv could dilute the toxicity, rendering DD neuroprotective.  

pdf>Q128 larvae with expHTT stained sLNv show the diffused form or an absence of expHTT 

inclusions, indicating that the expHTT levels are probably not high enough to form inclusions.  

The presence of light seems to compound inclusions.  Thus, in addition to LL being a regime of 

circadian dysfunction, the presence of light itself could be an additional factor contributing to 

neuropathology.  Given that Cry01 are rhythmic in LL (Emery et al., 2000a; Helfrich-Forster et 

al., 2001; Klarsfeld et al., 2004), the effect of the continuous presence of light on HD cellular 

phenotypes, independent of its clock-disrupting effects can be studied using HD flies in a Cry 

mutant background. 

Considering the robust circadian rhythms under rhythmic environments such as cyclic light, the 

LD vs DD results are challenging to explain.  Some of the adverse effects of light on the HD 

cellular phenotypes can be attributed to the spectral composition of white light used in these 

experiments, light intensity, duration and maybe even exposure time. 

There is precedence for downsides to light exposure in flies.  White light LD shortened lifespan 

and decreased climbing ability in flies than DD (Nash et al., 2019).  This decline was primarily 

due to the blue light component of white light.  The blue light caused retinal damage, brain 

vacuolisation and locomotion defects and induced stress response genes in old flies (including 

Hsps and lactate dehydrogenase), suggesting cumulative light exposure could be a stressor and 

accelerate ageing (Nash et al., 2019).  Chronic exposure of flies to blue light (430nm-500nm), 

which constitutes a significant portion of artificial illumination, resulted in changes to their energy 

metabolism, neurotransmitter levels, and age-dependent accelerated brain vacuolization, which is 
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a marker of neurodegeneration via a decline in mitochondrial respiration independent of light 

(Song et al., 2022; Yang et al., 2022).  Moreover, blue light affects the intrinsically photosensitive 

retinal ganglion cells, the human photoreceptor.  It inhibits the release of melatonin, a chemical 

the body uses to signal when it is time to go to bed, changing biological cycles (West et al., 2011). 

A study with Caenorhabditis elegans showed that worm lifespan was inversely proportional to 

the photoperiod, with DD being the most favourable.  The visible light effects on lifespan were 

photooxidative stress, an unfolded protein response and mitochondrial damage (De Magalhaes 

Filho et al., 2018).  Another study also showed that the lifespan advantage conferred by DD (over 

LD and LL) was reversed in flies defective in DNA repair and replication, suggesting that such 

repair processes are involved in slowing down cellular ageing in DD (Moskalev and Malysheva, 

2009).  The authors also showed that mutation in FOXO, a TF mediating oxidative stress, HSP70, 

a central chaperone, and dSirt2, differentially affected the mean lifespan under varying lighting 

conditions and attributed them to the damaging effects of additional lighting (Moskalev and 

Malysheva, 2010; Shostal and Moskalev, 2012).  The authors proposed that light could affect 

lifespan via two independent mechanisms involving neuroendocrine networks: a beneficial effect 

of decreasing photoperiod by stimulating a stress response and a detrimental effect of photoperiod 

by enhancing metabolism and oxidative stress.  An organism could perceive a decrease in 

photoperiod (constant dark = 0h photoperiod) as deteriorating external conditions and respond by 

inhibiting growth and reproduction and activating stress response genes.  The improved stress 

resistance slows ageing and extends lifespan (Shostal and Moskalev, 2012).  Drosophila HD flies 

in a shorter 10h:10h photoperiod had better PDF+ sLNv numbers and fewer expHTT inclusions 

than those in a 12h:12h LD (Xu et al., 2019a).  Damage by light includes oxidative damage to 

lipids and proteins, DNA damage, and retinal degeneration, leading to a decline in neuronal 

excitability and synaptic transmission (Shen and Tower, 2019).  A study shows that the blue-

light-activated CRY photocycle generates intracellular reactive oxygen species in Drosophila 

(Arthaut et al., 2017). 

In DD, sLNv is critical for activity rhythms (Grima et al., 2004a; Stoleru et al., 2004; Shafer and 

Taghert, 2009).  At age 1d, pdf>Q128 flies under DD, LD, and LL show the presence of PDF+ 
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sLNv soma, albeit reduced numbers from controls.  With age, LD and LL show a progressive loss 

of PDF+ sLNv soma to a near-complete loss, while those in DD have ~2 PDF+ sLNv for up to 3 

weeks.  Nevertheless, behaviourally, flies reared in either of the three regimes during development 

are arrhythmic as adults from the first day of DD.  Despite having non-zero PDF+ sLNv soma, 

DD-reared flies are arrhythmic, suggesting that their sLNv are likely dysfunctional.  In the 

absence of light, even though there is mitigation of early-age inclusions and later ages show some 

LNv without HTT, sLNv seems to require further re-enforcements to be functional and bring 

about behavioural rhythmicity. 

3.4.2 Expanded Huntingtin inclusions and cellular 

dysfunction 

The role of expHTT aggregation in HD pathogenicity is not clearly understood.  Some studies 

suggest a neuro-toxic role for polyQ-protein aggregates in disease pathology, with specific 

aggregates interacting and sequestering proteins essential for cellular function (McCampbell et 

al., 2000; Nucifora et al., 2001; Donaldson et al., 2003; Qin et al., 2004) or physically blocking 

axonal transport (Gunawardena et al., 2003; Lee et al., 2004) or impairing proteasomal function 

(Bence et al., 2001), thus, affecting neuronal function.  Other studies show a dissociation between 

aggregates and neurodegenerative phenotypes (Saudou et al., 1998; Gutekunst et al., 1999; Kim 

et al., 1999; Kuemmerle et al., 1999; Slow et al., 2005; Romero et al., 2008), while others show 

that certain aggregate forms sequester the toxic forms from the cellular milieu and facilitating 

their clearance, thus playing a protective role (Taylor et al., 2003a; Arrasate et al., 2004; Miller 

et al., 2010a; Miller et al., 2011).  LL shows the greatest extent of inclusion formation early on, 

accompanied by accelerated loss of PDF from sLNv soma and PDF+ sLNv DP as flies age.  

Furthermore, in DD, lack of expHTT inclusions during the developmental L3 stage, fewer 

inclusions at an early age and a significant proportion of LNv without expHTT at later ages are 

accompanied by at least ~two PDF+ sLNv soma till three weeks of age.  Though there is no clear 

evidence for apoptosis of the sLNv, there is a definite sLNv dysfunction as evidenced by loss of 

PDF and PER from sLNv soma in vivo, amounting to a physiological consequence of behavioural 
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arrhythmicity in DD.  Nevertheless, there is a close association between the extent of cellular 

dysfunction with the presence of inclusions and the inclusion load in this study.  Thus, in this 

Drosophila circadian HD model, inclusions serve as markers and potential predictors of cellular 

dysfunction. 

expHTT adopts multiple conformations and follows different trajectories of inclusion formation 

(Legleiter et al., 2009; Margulis et al., 2013; Hoffner and Djian, 2015).  The monomeric 

polypeptide goes through a multistep process to aggregation (Hatters, 2012; Hoffner and Djian, 

2014).  Studies suggest that monomeric and oligomeric intermediates contribute to pathogenicity 

and are likely more toxic than mature HTT fibrils (Sanchez et al., 2003; Ross and Poirier, 2004; 

Nagai et al., 2007; Takahashi et al., 2008; Kim et al., 2016).  Recent evidence shows that the same 

chaperone-based disaggregase machinery has vastly different outcomes when disaggregating 

amorphous aggregates vs amyloid fibrils: while the former gets solubilised, the disaggregation of 

the latter gives rise to potentially reactive seeding-competent species (Nachman et al., 2020; 

Tittelmeier et al., 2020a; Tittelmeier et al., 2020b).  Therefore, uncovering the nature of expHTT 

forms to understand the aggregation process's contribution to neuropathology will be essential. 

The current study shows that light aggravates HD-associated neurotoxicity in flies in a quality- 

and duration/dosage-dependent manner.  However, these findings also confound any circadian 

clock-disrupting effects that the LL regime might have had and make the conclusion regarding 

the effects of clock disruptions on neurotoxicity difficult.  Other avenues of circadian clock 

disruptions, like disruptive feeding regimes or clock mutants, can be used to address some of 

those questions.  Since sleep and circadian disturbances are some of the early symptoms of HD, 

which further aggravate the pathophysiology, it is essential to have therapeutic interventions for 

HD patients that are inclusive of improving their circadian health.  Identifying checkpoints of 

circadian control of critical neuropathological events such as aggregation and cellular damage 

would slow disease progression.  While developing palliative care and treatment regimens for 

patients, it is vital to consider the light environment, as highlighted in this study. 
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4.1 INTRODUCTION 

The circadian period is relatively stable over a range of physiological temperatures, i.e., the 

circadian clocks are temperature compensated (Sawyer et al., 1997; Rensing and Ruoff, 2002; 

Kidd et al., 2015).  However, environmental temperature affects the phasing of circadian clocks 

and is a potent zeitgeber for circadian rhythms across taxa (Rensing and Ruoff, 2002; Someren 

and JW, 2003; Refinetti, 2020).  In Drosophila, external temperature cycles synchronise the 

activity rhythms and molecular oscillations not only in DD but also in the arrhythmic environment 

of LL; the temperature-mediated entrainment is under clock control (Tomioka et al., 1998a; 

Yoshii et al., 2002; Glaser and Stanewsky, 2005; Yoshii et al., 2005; Currie et al., 2009).  In 

mammals, ambient temperature cycles entrain circadian rhythms, and their daily body 

temperature rhythms act as an internal synchroniser that strongly resets peripheral rhythms (Buhr 

et al., 2010; Refinetti, 2010; Farsi et al., 2020; Hart et al., 2021).  Oscillating temperatures also 

offer health benefits: improvements in lifespan in flies and worms (Economos and Lints, 1986b; 

Cardoso et al., 2002; Galbadage and Hartman, 2008), enhancement of performance and thermal 

tolerance in insects (Colinet et al., 2015; Manenti et al., 2018; Salachan and Sørensen, 2022) and 

mitigation of oxidative damage and cytotoxicity induced by Aβ in human neural cells (Chen et 

al., 2020).  Exposure to stressors in small doses like mild temperature challenges can be beneficial 

(hormesis), improving the organisms’ health, lifespan, and performance; they are also more 

effective when implemented at an early age as environmentally mediated epigenetic adaptations 

often occur at specific developmental stages (Vaiserman, 2010; Li et al., 2019a; Agathokleous 

and Calabrese, 2020; Berry and López-Martínez, 2020; Rossnerova et al., 2020).  Further, in 

Drosophila, developmental temperature affects the spontaneous activity of adults (Cavieres et al., 

2016; MacLean et al., 2017; Klepsatel and Gáliková, 2022), and cyclic temperature during 

development affects the circadian activity rhythms of adults (Malpel et al., 2004; Picot et al., 

2009).  Since expHTT induces immediate-early circadian behavioural and neuronal dysfunction 

in Drosophila adults, the first question was whether providing time cues as 

thermophase/cryophase temperature cycles during development can affect these phenotypes.  



247 
Chapter 4 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Extreme external temperatures (hypo or hyperthermia) and long-term thermal stress harm 

organismal health and exacerbate NDs (Walter and Carraretto, 2016; Bongioanni et al., 2021; 

Zammit et al., 2021).  However, mild temperature stress induces adaptive response having 

positive effects, especially on the lifespan in both poikilotherms and homeotherms, including 

humans (Holloszy and Smith, 1986; Rattan, 1998; Rattan, 2006; Le Bourg and Rattan, 2008; 

Rattan et al., 2009; Le Bourg, 2011; Calabrese, 2016; Yi et al., 2017; Brunt et al., 2018; Mane et 

al., 2018; Berry and López-Martínez, 2020).  Exposure to a low level of one stressor is often 

associated with increased tolerance to another stressor as various stresses share common 

underlying protective mechanisms (Mattson, 2008; Vaiserman, 2010; Milisav et al., 2012; 

Horowitz, 2017; Li et al., 2019a; Berry and López-Martínez, 2020; Rodgers and Gomez Isaza, 

2021).  Neurodegenerative proteins like expanded polyQ HTT tax cellular proteostasis and are 

considered stressors (Merienne et al., 2003a; Bettencourt et al., 2008; Berendzen et al., 2016).  

The question was whether exposure to another stressor, like mild thermal stress, can result in 

adaptation or improved tolerance to neurodegenerative stress.  To address these questions, I tested 

whether temperature changes could alter the course of circadian dysfunction and neurotoxicity in 

HD flies. 

4.1.1 Temperature and Neurodegeneration 

Recent studies allude to the possibility of using temperature-based therapies to treat NDs (Hunt 

et al., 2019; Sun et al., 2019; Kamash and Ding, 2021; Patrick and Johnson, 2021).  However, the 

literature on thermo-modulation of neurodegeneration and circadian dysfunction, especially using 

mild heat therapy, is scarce.  Mild heat-stress-induced HSF-1 reduced polyQ aggregation and 

extended the lifespan of C elegans in an autophagy-dependent way (Kumsta et al., 2017).  

Hypothermia improved symptoms in Drosophila models of autosomal-dominant hereditary 

spastic paraplegia (Baxter et al., 2014) and traumatic brain injury (Lateef et al., 2019).  Exposure 

of HD mice to cold accelerated HD phenotypes, while the elevation of ambient temperature to 

30C (thermoneutral range for rodents) improved their survival (Weydt et al., 2006; Chaturvedi et 

al., 2010).  In contrast, in prion-infected mice, cooling enhanced the expression of RNA-binding 
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motif protein 3, RMB3, suppressed behavioural deficits and was neuroprotective (Peretti et al., 

2015).  Sauna-like conditions of mild hyperthermia lowered tau phosphorylation in AD mice 

models (Guisle et al., 2022).  Studies in healthy middle-aged humans show that regular passive 

heating via sauna baths reduces the risk of developing dementia and AD (Laukkanen et al., 2017; 

Heinonen and Laukkanen, 2018; Knekt et al., 2020).  Thus, there is substantial evidence for the 

prophylactic effects of transient or mild hyperthermia or passive body heating for various other 

disease conditions.  Such treatments mediate clinically relevant anti-depressive effects, possibly 

by modifying mitochondrial function and immune system effects and activating brainstem 

serotonergic neurons (Berk et al., 2016; Janssen et al., 2016; Hanusch and Janssen, 2019; 

Naumann et al., 2020).  They also improve mood and quality of life in cancer and diabetic patients, 

respectively (Koltyn et al., 1992; Beever, 2010), sleep quality in elderly insomniac patients 

(Dorsey et al., 1999; Mishima et al., 2005) and women with fibromyalgia (Silva et al., 2013). 

Furthermore, thermoregulation and circadian body temperature rhythms are compromised in 

many NDs (Harper et al., 2005; Raupach et al., 2020).  HD mice exhibit deficiencies in 

thermoregulation and adaptive thermogenesis and develop hypothermia (body temperature drops 

<30°C) (Weydt et al., 2006; Chaturvedi et al., 2010) and circadian body temperature rhythms 

(Kudo et al., 2011; Fisher et al., 2013).  There are conflicting reports for AD, with some studies 

reporting that low body temperature promotes Tau phosphorylation in AD mice (Carrettiero et 

al., 2015; Tournissac et al., 2017).  Mild hyperthermia reduces it (Guisle et al., 2022), while other 

studies report that AD rats and patients exhibit hyperthermia (Klegeris et al., 2007; Motzko-

Soares et al., 2018).  Chronic warm temperatures enhance phosphorylation and toxicity in AD 

mice (Jung et al., 2022).  However, human studies on thermoregulatory defects in HD are sparse 

and largely anecdotal (Weydt et al., 2018).  A recent case study, the first in humans, describes 

hypothermia in a late-stage HD patient (Altıner et al., 2020).  In older healthy adults, lower core 

body temperature was associated with increased Tau phosphorylation, neurofibrillary tangles, and 

pathology (Blessing et al., 2022). 
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4.1.2 Temperature-based interventions as HD modifiers: 

Specific questions 

Different kinds of temperature regimes were used to investigate the effects of temperature on 

expHTT-induced circadian phenotypes.  They broadly fell under two categories: oscillating 

temperatures or temperature cycles and constant ambient temperature.  I specifically asked 

whether developmental warm/cold or thermo/cryo (TC) temperature cycles alter the expHTT-

induced arrhythmic adult activity rhythms in DD and the cellular phenotypes (4.3.1, 4.3.3-4.3.7).  

I also asked whether slightly lower (cool) or relatively higher temperatures (warm) affect 

behavioural arrhythmias and neurotoxicity in pdf>Q128 (4.3.8-4.3.12).  Under the constant 

ambient temperature regime, I tested the effects of changing temperature post-eclosion on HD 

flies by either providing an adult-restricted warm temperature (upshift) or an adult-restricted cool 

temperature (downshift) (4.3.13-4.3.16, 4.3.18-20).  Under all the categories, the effect of 

developmental light was also investigated (4.3.2, 4.3.13, 4.3.17).  I then compared the phenotypes 

of pdf>Q128 raised under developmental temperature cycles and adult-restricted warm 

temperatures (4.3.21).  I also investigated the role of Hsp70 in the adult-restricted warm-

temperature-mediated behavioural rhythmicity of pdf>Q128 (4.3.22).  The following scheme has 

been employed to describe the circadian neurodegenerative phenotypes of pdf>Q128 under the 

various regimes.  First are the within-regime comparisons, followed by the relevant between-

regime comparisons. The behavioural rhythms of activity/rest are described first, followed by 

LNv cellular phenotypes (wherever warranted) of PDF+ LNv numbers, PER+ LNv numbers, PER 

cycling (if relevant) and expHTT form and inclusion features. 

Broadly, I find that both categories of temperature regimes postpone the behavioural 

arrhythmicity and PDF loss from the sLNv of pdf>Q128, but to different extents and varying in 

the associated cellular mechanisms.  The adult-restricted upshift to warm temperatures provides 

slightly more substantial neuroprotection to the HD flies than developmental temperature cycles.  

These results prove that environmental treatments like modifying temperature (cycling and 

warming) can alleviate circadian defects associated with a neurodegenerative disease and set 

encouraging precedence for research on alternative therapeutic approaches via environmental 

modulation.  
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4.2 MATERIALS AND METHODS 

4.2.1 Fly lines 

Chapter 2 (section 2.2.1) already describes the transgenic fly lines and the genotype notations.  

The fly stocks were typically maintained under 12h:12h LD at 25°C with a relative humidity of 

70-80%.  All fly lines and crosses were maintained on a standard cornmeal medium.  The various 

experiments' light regimes and temperatures during development and adulthood are indicated in 

Tables 4.1 and 4.2.  The flies were transferred to a different temperature (as necessary) at the end 

of the second-day post-eclosion, immediately after what would be real-time lights-off.  This time 

of transfer was chosen for two reasons.  The first was for practical purposes, as collecting freshly 

eclosed flies at the same temperature as their pre-adult temperatures is more feasible without 

subjecting the pupated vials to environmental light and temperature changes.  Secondly, the 

developmental temperature (oviposition to eclosion) and acclimation temperature (pre-testing to 

testing, i.e., as adults from eclosion to testing) were matched right up till the start of the locomotor 

activity testing since both temperatures affect many phenotypic traits of adult Drosophila (Dillon 

et al., 2009).  So, essentially, in all the experiments, development-specific temperature refers 

to temperature experienced as pre-adults plus 2d as adults, and adult-restricted temperature 

refers to temperature experienced from the third day of adulthood (i.e., excluding the first 

two days after eclosion, eclosion being 0d). 
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Table 4.1 Temperature cycles related regimes. 

Regime 
Development 

Adults 

0-2d 3d onwards 

Light 
Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 

Cyclic temperature 

DDTCtoDD25 DD TC DD TC DD 25 

DDTCtoDD21 DD TC DD TC DD 21 

DDTCtoDD29 DD TC DD TC DD 29 

 

LDTCtoDD25 LD TC LD TC DD 25 

LLTCtoDD25 LL TC LL TC DD 25 

Constant temperature 

DD25toDD25 

(DD25) 
DD 25 DD 25 DD 25 

LD25toDD25 

(LDtoDD25) 
LD 25 LD 25 DD 25 

Temperature upshift 

DD21toDD25 DD 21 DD 21 DD 25 

Temperature downshift 

DD29toDD25 DD 29 DD 29 DD 25 

 

Development 

stage-specific 

TC 

Development Adults 

Egg to L3 Pupal stages 0-2d 3d onwards 

Light 
Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 

DDTC upto 

L3 
DD TC DD 25 DD 25 DD 25 

DDTC as 

Pupa-2d 
DD 25 DD TC DD TC DD 25 

DD, constant darkness. LD, 12h:12h Light:Dark cycles (light cycles). LL, constant light.  

TC, 12h:12h: 21°C:29°C Thermophase:Cryophase cycles (temperature cycles)  
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Table 4.2 Ambient constant temperature regimes. 

Regime 
Development 

Adults 

0-2d 3d onwards 

Light 
Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 

Constant optimal temperature 

DD25toDD25 

(DD25) 
DD 25 DD 25 DD 25 

LD25toDD25 

(LDtoDD25) 
LD 25 LD 25 DD 25 

Constant low temperature 

DD23toDD23 

(DD23) 
DD 23 DD 23 DD 23 

LD23toDD23 

(LDtoDD23) 
LD 23 LD 23 DD 23 

Constant high temperature 

DD29toDD29 

(DD29) 
DD 29 DD 29 DD 29 

LD29toDD29 

(LDtoDD29) 
LD 29 LD 29 DD 29 

Temperature upshift 

DD23toDD29 DD 23 DD 23 DD 29 

DD21toDD25 DD 21 DD 21 DD 25 

DD25toDD29 DD 25 DD 25 DD 29 

 

LD23toDD29 LD 23 LD 23 DD 29 

LL23toDD29 LL 23 LL 23 DD 29 

Temperature downshift 

DD29toDD23 DD 29 DD 29 DD 23 

 

  

Age-specific acute 

high temp 

exposure 

Development Adults 

Light 
Temp 

(°C) 
0-1d 

2-3d 

(48h) 
5-6d 

7-8d 

(48h) 

9d 

onwards 

Acute DD29 at 2-

3d 
DD 23 DD23 DD29 DD23 DD23 DD23 

Acute DD29at 7-

8d 
DD 23 DD23 DD23 DD23 DD29 DD23 
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For the investigation on whether the heat-inducible stress chaperones, the Hsps, are involved in 

the adult-restricted warm-temperature-mediated early-age behavioural rhythm rescue of 

pdf>Q128, the free-running activity/rest rhythms of these flies were tested in several Hsp70 

deficiency backgrounds or upon downregulation of Hsps or Hsfs in the LNvs using RNAi.  The 

various lines used for this mini screen, their source repository and the rhythmic percentages of 

the progeny resulting from the crosses are detailed in Table 4.3. 

For the Hsp70 deficiency lines, virgin females of w;pdfGal4;DfHsp70 were crossed with males 

of w;UAS-HTTQ128;DfHsp70 to obtain the progeny w;pdfGAl4/UAS-HTTQ128;DfHsp70.  

Drosophila melanogaster has six nearly identical copies of the Hsp70 gene (Gong and Golic, 

2004).  Five different Hsp70 deficiency lines with varying copies of Hsp70 deletions were used 

to achieve different levels of Hsp70 deficiency.  w;+;DfHsp70Ba with one copy deleted 

(BL8845), w;+;DfHsp70A with two copies deleted (Bl8842), w;+;DfHsp70A,Hsp70Ba with 

three copies deleted (BL8844), w;+;DfHsp70B with four copies deleted (BL8843), and 

w;+;DfHsp70A,Hsp70B with all six copies of HSP70 deleted (BL8841) (Gong and Golic, 2004; 

Gong and Golic, 2006; Bettencourt et al., 2008).  The resulting experimental lines are designated 

pdf>Q128;DfHsp70 (pdf>Q128;DfHsp70Ba, pdf>Q128,DfHsp70A and so on).  The non-

expanded HTT controls are designated pdf>Q0,DfHsp70 and the UAS controls as Q128,DfHsp70 

and Q0,DfHsp70.  The crosses were maintained in DD at 23°C, virgin male flies were collected 

under a microscope in the dark with the help of a safe red light and 2d-old virgin male flies were 

transferred into activity tubes exposed to warm temperatures of 29°C in DD from 3d.  The 

experiments with these Hsp70 deficiency lines in DD23toDD29 were carried out thrice, with at 

least one relevant set of controls in each experiment.  Since the rhythm rescue of pdf>Q128 in 

DD23toDD29 was mainly observed in AW1, the experiments were restricted to seven days (3d-

9d, AW1), except for the first experimental set run for 14d.  In the first and second sets of 

Q128;DfHsp70 lines served as controls.  In the third set, pdf>Q0;DfHsp70, Q0;DfHsp70 and 

Q128;DfHsp70 lines served as controls.  However, due to the high number of fly deaths in the 

third set, only the UAS controls, namely Q128;DfHsp70 controls, were used for statistical 

analyses.  The few flies of the pdf>Q0;DfHsp70 genotypes that were alive for 7d were mostly 
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rhythmic and did not differ from pdf>Q0 (except for pdf>Q0;DfHsp70A,70B) (Table 4.3).  This 

observation shows that the pdf-driven transgene expression in a DfHSP70 background mostly 

does not affect the free-running behavioural rhythmicity in DD23toDD29. 

Similarly, the pdf>Q128;Hsp-RNAi/Dcr and pdf>Q128;Hsf-RNAi/Dcr lines were obtained by 

crossing virgin females of w;pdfGal4;UAS-Dcr with males of w;UAS-HTTQ128;Hsp(f)-RNAi.  

For the experiments with Hsp-RNAi in DD23toDD29, two independent experiments were carried 

out.  However, in both the experimental sets, contrary to nearly all pdf>Q128 in DD23toDD29 

being rhythmic in AW1, >50% of the pdf>Q128;Dcr/+ flies (progeny of the cross 

w;pdfGal4;UAS-Dcr with w;UAS-HTTQ128;+) were arrhythmic (Table 4.3).  This increased 

arrhythmicity of the pdf>Q128 in a Dcr background might be contributing to the reduced 

rhythmicity (≤50%) of the various RNAi expressing experimental fly lines: the pdf>Q128;Hsp-

RNAi,Dcr (namely, pdf>Q128;Hsp70Aa-RNAi,Dcr, pdf>Q128;Hsp70Bb-RNAi,Dcr, 

pdf>Q128;Hdj1-RNAi,Dcr, i.e. Hsp40-RNAi) and the pdf>Q128;Hsf-RNAi;Dcr.  The only 

exception was pdf>Q128;Iap2-RNAi;Dcr flies, most of which were rhythmic.  Due to the 

confounding arrhythmicity of the background pdf>Q128;Dcr in DD23toDD29, the pdf>Q128 

flies with downregulated Hsp or Hsf in their LNv have not been considered further.  However, 

pdf>Q128;Dcr flies obtained from a different cross of w;pdfGal4;+ with w;UAS-HTTQ128;UAS-

Dcr were nearly all rhythmic in DD23toDD29 (Table 4.3).  However, since pdf>Q128;Dcr of 

this latter cross is not the appropriate background control for the pdf>Q128;Hsp(f)RNAi/Dcr 

experimental flies, these experiments have not been considered for further analyses. 

4.2.2 Behavioural assays 

For the assessment of locomotor activity/rest rhythms, 3d-old virgin flies were recorded as 

described in section 2.2.2.  The light and temperature regimes during recording from 3d adulthood 

and the various environmental regimes used in this study and their notations are indicated in 

Tables 4.1 and 4.2.  The sample sizes are given in Table 4.4. 

Most of the details of quantifying rhythm features are described in section 2.2.2.  The extent of 

activity consolidation ‘r’, which aids in tracking daily variations in activity/rest rhythms, was 
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determined using a modified version of the MATLAB method previously reported (2.2.2).  ‘r’ 

represents the extent to which activity data points are consolidated over a circadian cycle of 

activity.  The activity time series for a genotype was obtained at a resolution of 20 min bins.  This 

time series was divided into cycles of length determined by the period (T) of that genotype, 

thereby identifying each circadian cycle in the time series.  Thus, each ‘day’ used to calculate 

‘daily’ ‘r’ was obtained as a modulo T value.  On each ‘day’, activity counts were imagined as 

unit vectors for which direction represented the timepoint (t) at which the count occurred within 

the cycle.  Because counts were clustered into 20-minute intervals, the data can be represented as 

vectors with a constant angular separation of 20*2π/T radians and magnitudes corresponding to 

the activity count in each interval.  R was calculated as the magnitude of the mean of these activity 

vectors.  The rectangular coordinates of the mean vector were obtained (Zar, 2010) using X=Σ 

At.cosθt/Σ At and Y=Σ At sinθt / Σ At, where At represents activity counts at a given time point t and 

θt represents the vector angle associated with the time point.  The magnitude of this vector ‘r’ was 

calculated as√X2+Y2.  The greater the magnitude of ‘r’, the better the degree of consolidation, with 

most activity occurring over a few closely spaced time points.  The lower the magnitude of ‘r’, 

the poorer the consolidation, with activity spread over time.  Given that sometimes period changes 

were observed across age for a fly, daily cycles were identified separately for each 7d AW using 

the mean period values for the corresponding AW.  For arrhythmic flies, the cycle length was 

determined using the mean period of all surviving flies of the genotype for that AW.  The period 

of the fly in the previous AW (if any) was utilised to calculate the cycle length for a fly that passed 

away in the middle of an AW.  The daily ‘r’ was averaged across flies to obtain the mean daily 

‘r’. 

  



256 
Chapter 4 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

4.2.2.1 Criteria for inclusion of genotypes and AWs in the statistical 

analyses, figures, and tables 

Most of the differences between regimes were observed in AW1 and some in AW2.  So, unless 

otherwise demonstrated or mentioned, statistical analyses have been limited to AW1 and AW2 

for a significant amount of this work.  Across all runs, genotypes where fly numbers were <10 

have been excluded from statistical analyses (mainly due to deaths in AW3 or arrhythmicity in 

the case of pdf>Q128).  pdf>Q128 is included in the statistical analysis of period and robustness 

within- and between-regimes if ≥10 flies were rhythmic.  Such exclusions are indicated in the 

right-most column of Tables 4.5 (within-regime) and 4.6 (between-regime).  In many within-

regime, between-genotype plots for ‘r’, only the genotypes pdf>Q0, pdf>Q128, Q128, and pdfGal 

are plotted to ease visualisation.  However, all the control genotypes were run, and the relevant 

statistical comparisons were carried out.  The plots for robustness are shown for regimes where 

≥10 rhythmic pdf>Q128 are rhythmic.  Otherwise, rhythm robustness and period values for most 

other consequential runs are plotted in Tables 4.7 and 4.8, respectively, and all relevant between-

genotype statistical differences are indicated.  Statistical comparisons across AWs for a genotype 

for robustness and period are carried out only for essential regimes, indicated in the plots by the 

presence of ‘$’ symbols.  Whenever multiple runs were carried out, the statistical analyses for 

robustness, period and ‘r’ were done for a representative run with a reasonable sample size.  This 

run is represented as experiment 1 in Table 4.4. 

For many between-regime comparisons, statistical tests were carried out for AW1 and AW2 (3d-

16d of age) unless otherwise specified or indicated because, by AW2, most flies of pdf>Q128 are 

rendered arrhythmic.  In some control genotypes, <10 flies survived during AW3.  Unless unique 

differences occur due to other background genetic influences, which are then shown on a case-

by-case basis, pdf>Q128 and two of its controls (Q128 and pdf>Q0) are given for the plots of 

between-regime comparisons of activity rhythms.  Also, in most cases, pdf>Q0 mirrors pdfGal in 

most of the rhythm features and therefore, the pdfGal controls are not plotted unless they are 

significantly dissimilar from pdf>Q0.  Also, since most of the temperature-influenced rhythm 

rescue of pdf>Q128 was restricted to AW1, between-regime robustness comparisons are plotted 
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only for AW1.  For the temperature regimes that provided rhythm rescue of pdf>Q128, the 

between-regime period comparisons during AW1 for pdf>Q0, pdf>Q128 and Q128 are shown in 

Table 4.9. 

The rhythmicity of pdf>Q128 varied significantly between tests in the TCtoDD25 studies, 

particularly with the LDTCtoDD25 runs.  For each of the TCto25 runs, at least four independent 

experiments with all the controls and a fifth trial using only pdf>Q0 and pdf>Q128 were carried 

out to increase the confidence in our inferences. The 'r' of pdf>Q128 for DDTCtoDD25 also 

showed considerable variation between experiments.  r-values from three different sets of 

experiments are plotted for the between-genotype comparisons to illustrate this difference.  The 

DDTCtoDD25 experiment with the highest duration of improvement in activity consolidation of 

pdf>Q128 was used for the corresponding between-regime comparisons of ‘r’. 

4.2.2.2 Statistical analyses 

Shapiro-test Wilk's was used to check the normality of the data sets, followed by Levene's test for 

variance homogeneity and Mauchly's test for sphericity.  The data set comprised period or 

robustness values across three 7d AWs (AW1, AW2, AW3) or r-values for 21d (age 3d-23d, day 

being circadian day).  The genotypes were pdf>Q0, pdf>Q128, Q0, Q128, pdfGal and w1118.  The 

values were compared across genotypes in a particular regime across AWs (or age in circadian 

days for ‘r’) and between regimes for a genotype at an AW (or age in circadian days for ‘r’). 

Where the data (untransformed or transformed) were normal, their variances homogenous, and 

the assumption of sphericity was met, a repeated measures ANOVA with age window (AW) as 

the repeating measure, followed by Unequal N HSD was conducted for within-regime 

comparisons between age-matched genotypes.  Where the repeated measures ANOVA's 

assumptions were not met, the within-regime comparisons were conducted independently 

between genotypes for an AW (or age) and as a repeated measure between AWs (or ages) for a 

genotype.  Each AW data set was tested separately for normality and variance homogeneity for 

within-regime and between-genotype comparisons.  If the data sets were normal and their 

variances homogenous (on untransformed or transformed data), a one-way ANOVA was carried 
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out, followed by Tukey’s HSD (or Unequal N HSD).  A Welch's ANOVA and Games-Howell 

test were conducted if the data were normal, but their variances were not homogeneous despite 

transformations.  Where the data were not normal despite transformations, the Kruskal-Wallis test 

followed by multiple comparisons of mean ranks were conducted.  For within-regime comparison 

of repeated values across AWs for a genotype, Friedman’s test followed by multiple pair-wise 

Wilcoxon matched-pairs tests with Bonferroni correction were applied for period and robustness 

values. 

Another data set was the percentage of rhythmic flies in the three AWs for the six genotypes in 

each regime.  The mean percentages of rhythmic flies between genotypes (or between regimes) 

were compared using repeated measures ANOVAs with AW as the repeating factor, followed by 

Tukey's HSD (or unequal N HSD) tests, wherever at least three separate experiments per regime 

were conducted.  It is important to note that in most of these situations, the Repeated Measures 

ANOVA assumptions of normality, sphericity, and, in some cases, variance homogeneity were 

broken, increasing the likelihood of making a Type I error, mistakenly rejecting the null 

hypothesis, and consequently identifying false positives.  Since the significance level is indicated 

in all the plots of mean rhythmicity, one can minimise the chances of making Type I errors by 

using a lower p-value as the alpha value while interpreting the results.  Also, these rhythmic 

percentages were obtained from at least three independent runs that showed trends in similar 

directions.  The power of these tests is anticipated to be low, meaning that the likelihood of 

making a Type II error is likely to be high, given that replication is at the level of experiments 

and results in small sample sizes.  Thus, repeated Measures ANOVA on these data sets reduces 

the chances of falsely rejecting a null hypothesis.  If only one run was performed, the proportion 

of rhythmic to arrhythmic flies between genotypes for an AW was compared using a 6x2 Fisher's 

Exact test, followed by numerous pertinent 2x2 Fisher's Exact tests.  The false discovery rate 

(FDR) was then decreased by applying a Benjamini-Hochberg (BH) procedure to the pair-wise 

p-values (with the FDR set to 5%).  The comparisons of rhythmicity between AWs for a genotype 

were carried out using the Cochran Q test followed by pairwise McNemar’s test with Bonferroni 

correction. 
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The specific tests used for each within-regime and between-regime comparison of rhythmicity, 

‘r’, robustness, and period are given in Tables 4.5 and 4.6, respectively. 

For the experiment using Hsp70 deficiency lines in DD23toDD29, the number of rhythmic and 

arrhythmic flies in AW1 were pooled across experiments for computing the rhythmicity values 

shown in Table 4.3.  For statistical analyses of rhythmicity and r-values, the pdf>Q128,DfHsp70 

were compared with their respective UAS controls Q128;DfHsp70 and with pdf>Q128 in 

DD23toDD29 and pdf>Q128 in DD23 was used as the negative/baseline control.  The various 

pdf>Q128,DfHsp70 lines were also contrasted to determine whether the dosage of the Hsp70 gene 

impacted the rhythms.  The rhythmicity of the surviving pdf>Q0;DfHsp70 was compared with 

pdf>Q0.  The proportion of rhythmic flies was compared between genotypes using mxn Fisher’s 

Exact test, followed by multiple 2x2 Fisher’s Exact tests and BH procedure on the pair-wise p-

values.  For the plots of percentage rhythmicity and r-value, the first experimental set run for 14d 

was used.  The r-values were averaged for each fly over eight days and then averaged across flies 

to obtain the mean ‘r’.  ‘r’ was compared between genotypes using one-way ANOVA followed 

by unequal N HSD.  The robustness was compared using one-way ANOVA followed by Unequal 

N HSD. 

4.2.3 Immunocytochemistry and image analysis  

Most of the details of the dissections, immunocytochemical protocols, detection and image 

analysis methods are described in sections 2.2.3 and 3.2.3.  For staining with antibodies against 

PDF and HTT, pdf>Q0 and pdf>Q128 flies placed under various temperature regimes (DD23, 

DD29, DD23toDD29, DDTCtoDD25) were dissected at various ages.  For the DD23toDD29 

regime, flies reared in DD23 were transferred to DD29 at 3d of age.  So, flies in DD23, DD29 

and DDTCtoDD25 were dissected at L3 and ages 1d, 3d, 5d, 7d, 9d, 16d and 23d, whereas those 

in DD23toDD29 were dissected at 3d, 5d, 7d, 9d, 16d and 23d.  Flies in DDTCtoDD25 were 

compared to flies in DD25 (described in Chapter 3 as DD-reared flies) at L3 and ages 1d, 3d, 7d, 

9d, 16d and 23d.  Flies in DD29toDD25 were dissected at 7d and compared with age-matched 

flies in DD5 and DDTCtoDD25.  All age-matched dissections and immunocytochemical assays 
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were carried out simultaneously except for those in DD29toDD25, which were dissected later.  

These control flies were dissected at L3 and ages 1d, 3d, 5d, 7d, 16d, and 23d because the PDF+ 

LNv counts of pdf>Q0 do not change significantly with age.  Also, the immunostaining with anti-

PDF of 5d flies in DD25 was very faint, and the PDF+ LNv were difficult to discern from the 

background and eliminated from the analyses. 

For PER cycling, 7d-old flies maintained in different regimes were dissected at CT23 and CT11.  

The regimes were DDTCtoDD25, DD29toDD25, DD23, and DD23toDD29.  The PER+ LNv 

numbers were calculated for CT23. 

Each hemisphere was classified as either having ≥3 PDF+ LNv soma (3 to 5 sLNv or lLNv) or ≤2 

PDF+ LNv soma (0 to 2 sLNv or lLNv) to compare the proportion of hemispheres having ≥3 PDF+ 

LNv (or PER+ LNv) between genotypes for age or between ages or regimes for a genotype. 

The sample sizes for immunocytochemical studies are provided in Table 4.10. 

4.2.3.1 Statistical analyses 

4.2.3.1.1 PDF+ LNv numbers 

PDF+ LNv numbers (sLNv or lLNv) were compared between ages for a genotype using Kruskal-

Wallis tests.  PDF+ LNv numbers (sLNv or lLNv) were compared between age-matched 

genotypes pdf>Q0 and pdf>Q128 for a regime using Mann-Whitney U tests.  For between-regime 

comparisons of a genotype, depending on the number of independent samples, either a Mann-

Whitney U test or a Kruskal-Wallis test was carried out for each age.  The shape of the frequency 

distribution of PDF+ LNv numbers was compared between age-matched genotypes for a regime 

or between regimes for a genotype at each age using the Kolmogrov-Smirnov tests, followed by 

the Benjamini-Hochberg procedure.  mxn Fisher’s Exact test, followed by multiple 2x2 Fisher’s 

tests with BH procedure on pair-wise p-values, were used to compare the proportion of 

hemispheres with ≥3 PDF+ LNv (or PER+ LNv) between genotypes for a regime at an age or 

between ages or regimes for a genotype.  The categories were ≥3 PDF+ LNv soma (3 to 5 sLNv 

or lLNv) and ≤2 PDF+ LNv soma (0 to 2 sLNv or lLNv). 
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4.2.3.1.2 PER+ LNv numbers 

Mann-Whitney U tests were used to compare PER+ LNv numbers (sLNv or lLNv) between age-

matched genotypes pdf>Q0 and pdf>Q128 for a regime.  The shape of the frequency distribution 

of PDF+ LNv numbers was compared between genotypes for a regime or between regimes for a 

genotype using the Kolmogrov-Smirnov tests, followed by the Benjamini-Hochberg procedure.  

For between-regime comparison of a genotype, either a Mann-Whitney U test (For DD25 vs 

DD23 or DD23 vs DD23toDD29 or DDTCtoDD25 vs DD23toDD29) or a Kruskal-Wallis test 

(for DD25 vs DDTCtoDD25 vs DD29toDD25) was carried out.  As described above for PDF, the 

proportion of hemispheres with ≥3 PER+ LNv soma were compared between genotypes for a 

regime at an age or between ages or regimes for a genotype. 

4.2.3.1.3 PER cycling 

The data sets were assessed for normality using Shapiro-Wilk’s test, and their variance 

homogeneity was assessed using Levene’s test.  The data sets comprised of PER staining intensity 

in sLNv or lLNv at CT23 or CT11 for the genotype’s pdf>Q0  and pdf>Q128 in various regimes 

(DDTCtoDD25, DD29toDD25, DD23, and DD23toDD29).  For within-regime comparisons of 

intensity with genotype and time points as fixed factors, if the data (untransformed or 

transformed) was normal and variances homogenous, then a factorial ANOVA was carried out, 

followed by Tukey’s HSD.  If the assumptions of ANOVA were not satisfied, the within-regime 

comparisons were carried out separately between time points for a genotype and between 

genotypes for a time point.  A one-way ANOVA was carried out if the data was normal and their 

variances homogenous (on untransformed or transformed data).  If the data was normal, but their 

variances were not homogenous despite the transformation, then a Welch’s ANOVA was carried 

out.  If the data was not normal, then the Mann-Whitney U test was carried out.  For sLNv PER 

intensity under DDTCtoDD25, Mann-Whitney U tests were carried out for between-timepoint 

comparison for a genotype or between-genotype comparison.  For lLNv PER intensity under 

DDTCtoDD25, one-way ANOVA was carried out for the above comparisons.  Mann-Whitney U 

tests were carried out for the between-timepoint comparisons of PER in the lLNv of pdf>Q128 

under DDTCtoDD25 and DD23toDD29.  For DD23toDD29, for the above comparisons of PER 
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intensities in sLNv and lLNv, one-way ANOVAs on transformed datasets were carried out with 

either time points or genotypes as independent variables.  For sLNv PER intensity in DD23 and 

DD29toDD25, one-way ANOVAs on transformed datasets were carried out for between-

timepoint comparisons for a genotype.  Mann-Whitney U tests were carried out for between-

genotype comparisons of sLNv PER intensity for a time point for the two regimes.  For lLNv 

PER intensity in DD23toDD23, a two-way ANOVA was carried out, followed by Tukey’s HSD. 

PER was considered oscillating if the PER intensity in the LNv soma at CT23 significantly 

differed from CT11.  The oscillations were considered anti-phasic if the PER intensity at CT11 

was significantly higher than at CT23 for a genotype.  If the PER intensity in the LNv soma was 

significantly lower in the pdf>Q128 than pdf>Q0 at either time point, especially CT23, then the 

oscillations in pdf>Q128 were said to be of low amplitude or dampened. 

4.2.3.1.4 Inclusion numbers and size 

The data sets were assessed for normality using Shapiro-Wilk’s test and variance homogeneity 

using Levene’s test.  The data set comprised expHTT inclusion features (number and size) for 

pdf>Q128 across ages in various regimes.(DD25, DDTCtoDD25, D29toDD25, DD23, DD29 and 

DD23toDD29).  For comparisons of inclusion number and size across ages within a regime, one-

way ANOVA on transformed data, followed by Unequal N HSD, was largely used.  Only for 

inclusion size comparisons with age in DD23, a Welch’s ANOVA, followed by the Games-

Howell test, was used.  For between-regime comparisons of inclusion number (or size) across 

age, if the data (untransformed or transformed) was normal and variances homogenous, then a 

factorial ANOVA with age and regime as fixed factors was carried out, followed by Unequal N 

HSD.  If the assumptions of ANOVA were not met, then the between-regime comparisons for 

each age were carried out separately.  If the data was normal and their variances homogenous (on 

untransformed or transformed data), then a one-way ANOVA was carried out, followed by post-

hoc testing via Unequal N HSD.  If the data was normal, but their variances were not homogenous 

despite the transformation, then a Welch’s ANOVA, followed by the Games-Howell test, was 

performed.  For comparing the inclusion number or size between DDTCtoDD25 with DD25 
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across age, a two-way ANOVA, followed by an Unequal N HSD test, was carried out.  Inclusion 

numbers were compared at each age between DD25, DD23 and DD29 using one-way ANOVAs 

and Unequal N HSDs.  A Welch’s ANOVA was conducted to compare inclusion sizes between 

DD25, DD23 and DD29 or DD23, DD29 and DD23toDD29 at each age, followed by Games-

Howell tests.  A two-way ANOVA was used to compare inclusion numbers between DD23, DD29 

and DD23toDD29 across ages, followed by an Unequal N HSD test.  For comparing inclusion 

numbers and sizes between DDTCtoDD25 and DD23toDD29, a one-way ANOVA, followed by 

Unequal N HSD, was used.  A one-way ANOVA was used to compare inclusion numbers (or 

sizes) between DD25toDD25, DDTCtoDD25 and DD29toDD25 at 7d.  Since most of the sLNv 

had diffuse expHTT as larvae, the analysis for expHTT inclusion number and size have been 

carried out from 1d onwards. 

4.2.3.1.5 expHTT forms in the LNv 

By 7d of age, across all the regimes, most of the hemispheres of pdf>Q128 are dominated by 

inclusion-enriched LNv.  Hence, for between-regime comparisons of the relative proportion of 

hemispheres enriched in different expHTT forms in LNv, the figures are comparisons up to 7d 

(for sLNv) and up to 9d (for lLNv). 

As described previously (Section 3.2.3.2), mxn Fisher’s Exact tests were used, followed by 

multiple 2x2 tests and then the Benjamini-Hochberg procedure applied to the pair-wise p-value 

sets of each relative pair of expHTT forms to compare the relative proportion of pdf>Q128 

hemispheres dominated by various expHTT forms in the LNv between ages for a regime or 

between regimes for an age. 
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4.3 RESULTS 

4.3.1 Provision of temperature cycles during pre-adult developmental stages 

postpones behavioural arrhythmicity and PDF loss from the sLNv of pdf>Q128 flies 

Temperature cycles are potent zeitgebers that synchronise circadian molecular and behavioural 

rhythms and override the arrhythmicity imposed by LL (Tomioka et al., 1998a; Yoshii et al., 

2002; Glaser and Stanewsky, 2005).  Time cues provided during development are known to 

modify adult circadian rhythms (Sehgal et al., 1992; Matsumoto et al., 1997; Kaneko et al., 2000; 

Sheeba et al., 2002; Malpel et al., 2004; Zhao et al., 2019b).  Further, TCs can entrain 

developmental clocks, as evidenced by synchronised free-running activity of completely blind 

adult flies whose larvae experience TCs.  In larvae lacking PDF or the LNv, the CRY-negative 

DN2s are synchronised by TCs, and the phase of PDF+ LNv molecular oscillations follows that 

of the DN2s (Malpel et al., 2004; Picot et al., 2009).  Therefore, I asked whether providing 

temperature cycles during development helps improve free-running activity rhythms of adult 

pdf>Q128 at DD25. 

Warm/cold temperature cycles of 12h:12h::29°C:21°C were used in the studies.  Studies from the 

lab have shown that such an 8°C amplitude TC strongly synchronised activity/rest rhythms of 

D.melanogaster (Prabhakaran and Sheeba, 2014).  Further, this range of temperatures is also 

symmetric with a mean of 25°C at which most other experiments have been done; hence, this 

regime was adopted. 

Most of the pdf>Q128 flies in DDTCtoDD25 across experiments were rhythmic in AW1, and 

their mean percentage rhythmicity was comparable to controls (Fig 4.1a top-middle, b).  By AW2, 

the rhythmicity of pdf>Q128 declined significantly compared to AW1 and from their age-

matched controls, and they continued to be poorly rhythmic in AW3 (Fig 4.1b).  The activity 

consolidation ‘r’ of these flies showed considerable experiment-to-experiment variation.  Thus, 

‘r’ from three different experiments is plotted.  In the first one, even though ‘r’ of pdf>Q128 was 

comparable to Q128 up to 11d, they still were lower than pdf>Q0 and pdfGal (Fig 4.1c top).  In 

the second experiment, ‘r’ of pdf>Q128 was like controls up to 10d, which intermittently declined 
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from some controls (Fig 4.1c middle).  In the third experiment, ‘r’ of pdf>Q128 was control-like 

briefly (4d-6d), beyond which it was lower than most controls (Fig 4.1c bottom).  Since pdf>Q128 

showed early-age rhythmicity rescue in AW1 across experiments, ‘r’ from the second experiment, 

which shows improved activity consolidation in pdf>Q128 till 10d, are considered for following 

between-regime comparisons.  The rhythmic pdf>Q128 had rhythms of lower robustness than 

controls in AW1 and AW2 (Fig 4.1d), indicating a moderate rescue of rhythms.  Further, rhythmic 

pdf.Q128 in AW1 had a longer period than some controls and was longer than 24h (Fig 4.1 e).  

Considering that pdf>Q128 experienced TCs of 24h before being recorded, the >24h period 

shown by adults in DD25 indicates that the rhythm restoration is not a mere after-effect of the 

previous entraining cycles.  Overall, development-specific temperature cycles delay 

arrhythmicity in the free-running activity rhythms of flies expressing expHTT in LNv. 
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Fig 4. 1 pdf>Q128 experiencing developmental temperature cycles show early-age behavioural 

rhythms as adults in DD25. 

(a) Representative double-plotted actograms for adult flies in DDTCtoDD25 showing activity data for 

21d (age 3d-23d).  The bars at the top of the actograms represent the developmental rearing condition: 

grey bars for DD and the lavender and rust-coloured bars for the cryophase (21°C) and thermophase 

(29°C), respectively, of the 12h:12h temperature cycles.    
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All other details are the same as in Fig 2.1.  (b-e) The percentage rhythmicity (b), the extent of activity 

consolidation ‘r’ (c), the mean rhythm robustness (d) and the mean period (e) for various genotypes 

plotted against AWs (or age for ‘r’).  The three rows of r-values (c) are from three different 

experiments.  a.u, arbitrary units.  Symbols represent statistically significant differences: coloured * 

of that coloured genotype from all others or indicated ones and coloured $ between AWs for that 

coloured genotype.  For ‘r’, coloured ^ near an error bar of a data point indicates a difference between 

the respective-coloured genotype and the data-point genotype.  The number of symbols represents 

statistical significance: single p<0.05, double p<0.01 and triple p<0.001.  Error bars are SEM. 

Since there was an early age rescue of activity rhythms upon developmental exposure of 

pdf>Q128 to temperature cycles, I asked whether circadian neurodegenerative cellular features 

like PDF and PER in the LNv and expHTT form and inclusion characteristics are also affected.  

pdf>Q128 flies in DDTCtoDD25 had an average of ~3 PDF+ sLNv soma up to 5d that is nearly 

comparable to pdf>Q0 (Fig 4.2 a, b left).  Although pdf>Q128 at 1d showed statistically reduced 

numbers than controls, the mean was ~3, and there was no difference at 3d (Fig 4.2b left).  

Similarly, the shape of the frequency distributions also differed significantly between the 

genotypes at 1d but not 3d (Fig  4.3 left).  However, despite the differing distribution shapes 

between genotypes at 1d, ~77% of pdf>Q128 hemispheres still had ≥3 PDF+ sLNv soma.  The 

statistical difference seen at 1d may not be biologically significant in terms of impairing rhythmic 

function, based on comparisons between the percentage of hemispheres with ≥3 PDF+ sLNv soma 

at 1d (77%) with that of later ages of 7d (58%), 16d (25%) (p<0.001, Fisher’s Exact test) and 23d 

(0%) (p<0.001, Fisher’s Exact test), which also revealed significantly different distribution shapes 

between genotypes (Fig. 4.3a left).  This conclusion is also substantiated by the finding that 

younger pdf>Q128 flies (L3 to 5d) showed a significantly higher proportion of hemispheres 

(>75%) with ≥3 PDF+ sLNv soma than older flies (7d, 16d and 23d) (Fig 4.3b) (p<0.05, Fisher’s 

Exact test).  From 7d onwards, the PDF+ sLNv soma numbers declined significantly in pdf>Q128 

compared to pdf>Q0 (Fig 4.2b left).  The numbers at 16d- and 23d-old pdf>Q128 were 

significantly lower than most earlier ages, falling to ~1 by age 23d.  The frequency distribution 

of PDF+ sLNv soma numbers in pdf>Q128 is like that of the left-skewed pdf>Q0 at L3, 3d and 

5d (Fig 4.3a left).  With age, the shapes of the distributions change significantly between 

genotypes, with pdf>Q128 tending to a right skew, which is obvious by 23d (Fig 4.3a left).  The 

PDF+ lLNv soma numbers and the shape of their frequency distributions were comparable across 

age between pdf>Q0 and pdf>Q128 (Figs 4.2a, b right, 4.3 right).  Thus, exposure of pdf>Q128 

to temperature cycles during development postpones the loss of PDF from sLNv soma.  
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Fig 4. 2 Exposure of pdf>Q128 to DDTC during development restores the early-age PDF+ sLNv 

soma numbers of adults in DD25. 

(a) Representative images of the adult fly brains under DDTCtoDD25 stained for PDF (green) and 

HTT (magenta) in LNv at 1d, 7d and 23d for pdf>Q0 (left panel sets) and at L3, 1d, 3d, 7d, 16d and 

23d   
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for pdf>Q128 (right panel sets).  Indicated in the images are sLNv soma (→ arrows), lLNv soma (> 

arrowhead), diffuse expHTT (Ψ psi), diffuse+inclusions expHTT (Ұ straight U with stroke), and 

expHTT inclusions (« double arrowheads).  Scale bars are 10 µm.  (b) The mean number of PDF+ 

sLNv soma (left) and lLNv soma (right) across age.  Coloured symbols indicate significant differences, 

* for age-matched, inter-genotype differences and $ for differences between ages of the 

corresponding-coloured genotype at * p<0.05, ** p<0.01, *** p<0.001.  nd, not different.  Error bars 

are SEM. 
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Fig 4. 3 The distribution of PDF+ sLNv soma numbers of pdf>Q128 diverges from that of pdf>Q0 

with age under DDTCtoDD25.  
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(a) Frequency distribution of the proportion of hemispheres of pdf>Q0 and pdf>Q128 in 

DDTCtoDD25 with 0 to 5 PDF+ LNv soma numbers (sLNv - left and lLNv - right).  Coloured * 

indicates significantly different distribution shapes between age-matched genotypes at p<0.05.  NA, 

not applicable.  (b) The proportion of pdf>Q128 hemispheres having ≥3 PDF+ sLNv across age.  * 

indicates statistically different proportions between ages at p<0.05. .nd, not different. 

pdf>Q128 in DDTCtoDD25 showed significantly reduced PER+ sLNv (~1.3) and lLNv (~2.3) 

soma numbers than pdf>Q0 at 7d (Fig 4.4b).  This difference was also reflected in the shapes of 

their frequency distributions, with pdf>Q128 differing significantly from the left-skewed pdf>Q0 

and nearly 83% of pdf>Q128 hemispheres having ≤2 PER+ sLNv soma (Fig 4.4c).  sLNv soma 

of 7d pdf>Q128 showed a significant oscillation of lowered amplitude and anti-phasic to control 

pdf>Q0 oscillation (Fig 4.4d top).  There was no PER oscillation in the lLNv of both genotypes 

at 7d (Fig 4.4d bottom).   PER intensity in sLNv and lLNv of pdf>Q128 at CT23 was significantly 

lower than pdf>Q0 (Fig 4.4d).  Thus, temperature cycles during development induced low 

amplitude PER oscillation in the sLNv of pdf>Q128 without improving PER+ LNv numbers or 

PER intensity in the LNv, suggesting a functional, albeit weak LNv clock with developmental 

TCs. 

I then assessed the expHTT form in the LNv and expHTT inclusion features.  The relative 

proportions of hemispheres dominated by different expHTT forms in LNv of pdf>Q128 in 

DDTCtoDD25 changed significantly with age (Fig 4.5a top).  The proportion of hemispheres 

dominated by Diff-enriched relative to Inc-enriched sLNv was significantly higher at L3 than as 

adults (Fig 4.5a left, second-row).  Similarly, for expHTT in lLNv, 1d significantly differed from 

older ages (Fig 4.5a right, second-row).  The proportion of hemispheres dominated by Diff+Inc-

enriched relative to Inc-enriched lLNv was significantly higher at 1d than most older ages (Fig 

4.5a right, third-row).  Overall, the proportion of hemispheres predominated by Inc-enriched LNv 

increased with age and post-3d, most hemispheres had Inc-enriched LNv.  The number of expHTT 

inclusions was significantly lower at ages 1d than at older ages (Fig 4.5b top).  Unexpectedly, 3d 

had more inclusion, albeit smaller in size than most older ages (Fig 4.5b). 

A summary of HD flies' behavioural and cellular phenotypes in the different temperature 

regimes is shown in Table 4.11.  
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Fig 4. 4 pdf>Q128 flies in DDTC show fewer PER+ LNv and exhibit low-amplitude PER 

oscillations in the sLNv, anti-phasic to controls. 

(a) Representative images of 7d-old adult fly brains of pdf>Q0 (left) and pdf>Q128 (right) in 

DDTCtoDD25 stained for PER (cyan hot) and PDF (green) in LNv at CT23 (top) and CT11 

(bottom).  sLNv soma (→ arrows), lLNv soma (> arrowheads) and PDF- PER+ 5th sLNv are 

indicated.  Scale bars are 10 µm.  (b) The mean number of PER+ sLNv soma and lLNv soma at   
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CT23.  * indicates age-matched differences between genotypes.  (c) Frequency distribution of the 

proportion of hemispheres having 0 to 5 PER+ LNv soma: sLNv soma (top) and lLNv soma 

(bottom) in 7d-old flies at CT23.  * indicates significantly differing shapes of distribution between 

genotypes.  (d) For the two genotypes, the quantification of PER intensity at CT23 and CT11 in 

sLNv (top) and lLNv (bottom).  Differences between time points CT23 and CT11 are represented 

by # (cyan) for pdf>Q0 and # (red) for pdf>Q128.  Coloured * represents the difference between 

genotypes at that time point.  Statistical significance is at single-symbol p<0.05, double-symbol 

p<0.01, triple-symbol p<0.001.  Error bars are SEM. 

Fig 4. 5 Under DDTCtoDD25, diffuse-expHTT-enriched-LNvs dominate hemispheres of very 

young pdf>Q128, whereas, with age, inclusion-enriched-LNv solely dominate. 

(a) The proportion of hemispheres dominated by different expHTT forms in sLNv (left) or lLNv (right) 

is plotted against age for pdf>Q128 in DDTCtoDD25 to describe the between-hemispheres 

distribution of predominant expHTT forms.  These are plotted for all expHTT forms (top) or 

significantly different pair-wise comparisons (second, third, and bottom rows).  $ indicates significant 

changes in the relative proportions of hemispheres across age for all expHTT forms (top) or pair-wise 

expHTT forms between specific ages (second, third, bottom rows).  NA, not applicable and NS, not 

significant.  At the bottom of some bars, numbers represent the mean number of PDF+ LNv detected 

at that age.  (b) Comparison of mean inclusion number per hemisphere (top) and mean inclusion size 

per hemisphere (bottom) for pdf>Q128 in DDTCtoDD25 across age.  Significant differences between 

ages are $ p<0.05, $$ at p<0.01 and $$$ p<0.001.  nd, not different.  Error bars are SEM.  
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4.3.2 Light during development counters the rescue of early-age activity rhythms of 

pdf>Q128 adults by developmental temperature cycles 

Fly activity rhythms and in-phase molecular rhythms in clock neurons are more robust when a 

combination of light and temperature is provided than alone (Yoshii et al., 2010).  Also, coupling 

temperature cycles with light cycles improved the consolidation of activity rhythms and sleep in 

ageing flies (Luo et al., 2012).  LD cycles were provided in phase with developmental warm/cold 

temperature cycles to determine if developmental-LD+TC had a more significant effect on the 

activity rhythms of pdf>Q128 as adults in DD25 than -DDTC.  pdf>Q128 flies in LDTCtoDD25 

were arrhythmic from the beginning of the free-running conditions (Fig 4.6a top), with their 

rhythmicities and activity consolidation being significantly lower than controls across age (Fig 

4.6b, c).  Thus, the presence of LD during development with TC antagonises the TC-mediated 

rhythm restoration in young pdf>Q128 adults.  Developmental cyclic light counteracting the 

protective effect of developmental-TC to pdf>Q128 suggests that light cues during development 

are detrimental to pdf>Q128 adult rhythms. 

I then investigated whether developmental clocks are essential for the developmental-TC-

mediated rescue of activity rhythms in young pdf>Q128 by providing constant light during 

development along with the TCs to weaken the molecular clockwork.  pdf>Q128 flies in 

LLTCtoDD25 were arrhythmic (Fig 4.6a bottom) with significantly decreased rhythmicities and 

‘r’ than controls across age (Fig 4.6d, e).  Thus, functional clocks during development seem 

necessary for developmental-TC-mediated early-age rhythms rescue of pdf>Q128 adults.  

However, this conclusion is complicated by the initial discovery of arrhythmicity of pdf>Q128 

adults even under LDTCtoDD25, under which the clocks are expected to be robust and functional 

during development.  
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Fig 4. 6 pdf>Q128 flies in LDTCtoDD25 or LLTCtoDD25 are arrhythmic as adults in DD25. 

(a) Representative double-plotted actograms for adult flies in LDTCtoDD25 (top) and those in 

LLTCtoDD25 (bottom) showing activity data for 21d (age 3d-23d).  The bars at the top of the 

actograms represent the developmental rearing condition: white and grey bars for 12h:12h LD, the 

rust and lavender coloured bars for 12h:12h warm (29°C) cold (21°C) temperature cycles and white 

bars for LL.  All other details are the same as in Fig 2.1.  (b-g) Plots for mean rhythmicity (b, d) and 

activity consolidation ‘r’ (c, e) for flies in LDTCtoDD25 (b, c) and those in LLTCtoDD25 (d, e).  All 

other details are like Fig 4.1. 
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Comparing the rhythms across the various developmental-TC regimes with those under DD25, 

pdf>Q128 flies in DDTCtoDD25 had significantly more significant rhythmicity than those in the 

other regimes in AW1 (Fig 4.7a middle).  Despite a significant fall of pdf>Q128 rhythmicity in 

DDTCtoDD25 in AW2 compared to AW1, they still had higher rhythmicity than those in DD25 

at AW2.  At AW3, pdf>Q128 in DD25 had the least rhythmicity than in the other regimes.  This 

trend was also reflected in the significantly higher activity consolidation of pdf>Q128 in 

DDTCtoDD25 than other regimes at most early ages (Fig 4.7b middle).  However, pdf>Q128 

across regimes had similarly weak rhythms (Fig 4.7c).  The controls had nearly 100% 

rhythmicities across regimes and nearly comparable r-values, except those in DD25 with lower 

‘r’ than those under other regimes at a few ages (Fig 4.7 a,b).  Thus, exposure to only temperature 

cycles during development rescues early-age rhythms of pdf>Q128, but the rhythmicity is 

abolished in the presence of light during development.  This result suggests a detrimental effect 

of the presence of light during development on the temperature cycle-mediated early-age rhythm 

rescue of pdf>Q128.  Further, a complete absence of external time cues during development 

exacerbates the loss of rhythmicity of pdf>Q128, as seen with those experiencing DD25, as does 

the presence of light as a developmental time cue (LD25toDD25, see LD-reared flies in Chapter 

3).  So overall, the presence of temperature as a time cue during development, but not light, has a  

positive effect on the adult activity rhythms of HD flies. 

A summary of the between-regime comparisons of the free-running activity rhythm features 

of HD flies is shown in Table 4.12.  
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Fig 4. 7 Exposure of pdf>Q128 to LDTC or LLTC during development does not rescue behavioural 

arrhythmicity in adults under DD25. 

(a-c) The between-regime comparisons of the mean percentage rhythmicity (a), the mean activity 

consolidation ‘r’ (b), and the mean rhythm robustness in AW1(c) plotted against AWs (or age) (in a 

and b) for each genotype.  Symbols represent statistically significant differences: coloured * of that 

coloured regime from all others or indicated ones for a genotype and coloured $ of between-AW 

comparisons of a genotype for that regime.  For ‘r’, coloured ^ near an error bar of a data point 

indicates a difference of the respective-coloured regime from the data-point regime.  Regime colour 

codes: dark grey, DD25; pink, DDTCtoDD25; cyan, LDTCtoDD25; lime green, LLTCtoDD25.  The 

number of symbols represents statistical significance: single p<0.05, double p<0.01 and triple 

p<0.001.  Error bars are SEM. 
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4.3.3 Exposure of pdf>Q128 to temperature cycles throughout development is 

necessary for the behavioural rhythmicity as adults 

The next step was determining if specific development stages must be exposed to temperature 

cycles to rescue early-age rhythms in pdf>Q128, as ectotherms with distinct life stages differ in 

their microhabitats and thermal sensitivities (Kingsolver et al., 2011).  TC was either provided 

from the egg to the third instar larva (L3) stage and then placed in DD25, termed “DDTC up to 

L3”, or TC was provided from early pupal stages up to 2d post-eclosion, followed by DD25, 

termed “DDTC as Pupa-2d”.  pdf>Q128 flies in both these regimes had very low rhythmicity (Fig 

4.8a-c) and ‘r’ than their regime-matched controls (Fig 4.8d-e).  The rhythmicity of pdf>Q128 in 

these two regimes was significantly lower than those in DDTCtoDD25 at AW1 (Fig 4.8f), as was 

the case with early age ‘r’ (till 10d) (Fig 4.8g middle).  The controls were similar between regimes 

(Fig 4.8f, g).  Thus, exposing pdf>Q128 at specific developmental stages to DDTC is not 

beneficial in the rhythm rescue as adults, indicating that these flies need chronic exposure to 

temperature cycles throughout development for free-running behavioural rhythms. 
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Fig 4. 8 Exposure of pdf>Q128 to DDTC either during egg to larvae or pupae to post-eclosion does 

not rescue behavioural arrhythmicity during adulthood. 

(a) Representative double-plotted actograms for adult flies in DDTCasL3 (top) and DDTCaspupa-2d 

(bottom) showing activity data for 21d (age 3d-23d).  (b-e) Plots for rhythmicity (b, c)  
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and activity consolidation ‘r’ (d, e) for the within-regime comparisons in acute DDTCasL3 (left) and 

DDTCaspupa-2d (right).  Symbols represent statistically significant differences: coloured * of that 

coloured genotype from all others or indicated ones in an AW, and coloured $ between AWs for a 

genotype.  Coloured ^ near an error bar of a data point indicates a difference between the respective-

coloured genotype and the data-point genotype.  All other details are the same as in Fig 4.1.  (f-g) The 

between-regime comparisons of the percentage rhythmicity (f) in AW1 and AW2 and the mean 

activity consolidation ‘r’ (g) across age for each of the three genotypes.  All other details are like Fig 

4.7.  Regime colour codes: pink, DDTCtoDD25; light grey, DDTCasL3; dark cyan, DDTCaspupa-2d. 

4.3.4 Exposure of pdf>Q128 to constant warm temperatures during development  

improves LNv-PER without affecting the behavioural arrhythmicity of adults in 

DD25 

Exposure of pdf>Q128 to 12h:12h::29°C:21°C warm/cold temperature cycles in DD during 

development and then to constant ambient 25°C in DD during adulthood resulted in rhythmic 

activity rhythms in the early ages (Fig 4.1).  I asked whether the cycling aspect of temperature 

during development was necessary for this rescue or if it could be just an effect of the change in 

temperature from development to adulthood.  So, instead of developmental TCs, flies were reared 

in chronic cool (21°C) or chronic warm (29°C) temperatures and then moved to DD25 as adults.  

pdf>Q128 in both the DD21toDD25 and DD29toDD25 regimes were mostly arrhythmic (Fig 4.9a 

middle), and their percentage rhythmicities and r-values differed from their regime-matched 

controls across age (Fig 4.9b-e).  Such contrasts were also evident between regimes: pdf>Q128 

in DDTCtoDD25, which exhibited rhythmicity in AW1 and even AW2, which was much higher 

than those in DD21toDD25 and DD29toDD25 (Fig 4.9e).  The ‘r’ of young pdf>Q128 in 

DDTCtoDD25 was also higher than those in the other regimes, while controls had comparable 

between-regime rhythmicities and ‘r’ (4.9f).  Thus, the presentation of developmental temperature 

as warm/cold cycles is crucial for the early-age rhythms of pdf>Q128 as adults in DD25 rather 

than a change in the constant ambient temperatures experienced upon transitioning from 

development to adulthood. 
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Fig 4. 9 pdf>Q128 exposed to chronic cool or warm temperatures during development are 

behaviourally arrhythmic as adults in DD25. 

(a) Representative double-plotted actograms for adult flies in DD21toDD25 (top) and DD29toDD5 

(bottom) showing activity data for 21d (age 3d-23d).  (b-e) Plots for rhythmicity (b, d) and activity 

consolidation ‘r’ (c, e) for the within regime comparisons in DD21toDD25 (left) and   
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DD29toDD25 (right).  All other details are the same as in Fig 4.1.  (f-g) The between-regime 

comparisons of the percentage rhythmicity (f) in AW1 and AW2 and the mean activity consolidation 

‘r’ (g) across age for each of the three genotypes.  All other details are like Fig 4.7.  Regime colour 

codes: pink, DDTCtoDD25; lavender, DD21toDD25; orange, DD29toDD25. 

The cellular features of pdf>Q128 flies in DD29toDD25 were also examined.  pdf>Q128 in 

DD29toDD25 at 7d showed a significant reduction in the PDF+ sLNv soma numbers compared 

to pdf>Q0 (Fig 10a, b), also reflected in the different shapes of their frequency distributions (Fig 

4.10c top).  However, the distribution of pdf>Q128 was still left-skewed, with 65% of 

hemispheres showing ≥3 PDF+ sLNv soma, and both the median and mode of this dataset were 

3.  These observations suggest that DD29toDD25 may partially improve PDF expression in the 

sLNv.  The PDF+ lLNv soma numbers of pdf>Q128 at 7d were higher than pdf>Q0 (Fig 4.10a, 

b), while their distribution shapes were comparable (Fig 4.10c bottom). 

PER+ sLNv soma numbers of pdf>Q128 in DD29toDD25 at 7d were significantly lower than 

pdf>Q0, albeit pdf>Q128 having a mean of ~ 2.7 (Fig 4.11a, b).  This trend was also reflected in 

58% of pdf>Q128’s hemispheres showing ≥3 PER+ sLNv soma, despite its frequency distribution 

shape differing significantly from pdf>Q0 (Fig 4.11c top).  Interestingly, unlike the loss of PER 

from lLNv of pdf>Q128 in other regimes, pdf>Q128 in DD29toDD25 exhibited control-like 

PDF+ lLNv soma numbers and distribution shapes (Fig 4.11a, b, c bottom).  PER in lLNv soma 

of pdf>Q128 in DD29toDD25 showed a dampened oscillation; PER in the sLNv was non-

oscillatory (Fig 4.11a, d).  The PER LNv oscillations of pdf>Q128 were also anti-phasic to 

pdf>Q0.  Thus, exposure of pdf>Q128 to DD29toDD25 rescues loss of PER from lLNv, partially 

suppresses loss of PER and maybe PDF from sLNv and induces low amplitude lLNv PER 

oscillations. 
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Fig 4. 10 pdf>Q128 under DD29toDD25 show a decrease in PDF+ sLNv soma numbers. 

(a) Representative images of 7d adult fly brains under DD29toDD25 stained for PDF (green) and HTT 

(magenta) in the LNv of pdf>Q0 (left panels) and pdf>Q128 (right panels).  Indicated in the images 

are sLNv soma (→ arrows), lLNv soma (> arrowheads), diffuse expHTT (Ψ psi), diffuse+inclusions 

expHTT (Ұ), and expHTT inclusions (« double arrowheads).  Scale bars are 10 µm.  (b) The mean 

number of PDF+ sLNv soma and lLNv soma at 7d.  Coloured * indicates significant age-matched 

inter-genotype differences at * p<0.05, ** p<0.01, *** p<0.001.  (c) Frequency distribution of the 

proportion of hemispheres with 0 to 5 PDF+ LNv soma numbers (sLNv - top and lLNv - bottom) 

comparing pdf>Q0 and pdf>Q128 at 7d.  Coloured * indicates significantly different distribution 

shapes between genotypes at p<0.05.  Error bars are SEM. 
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Fig 4. 11 pdf>Q128 flies in DD29toDD25 show a loss of PER from the sLNv, but not the lLNv; 

exhibit low-amplitude PER oscillations in the lLNv. 

(a) Representative images of 7d-old adult fly brains of pdf>Q0 (left) and pdf>Q128 (right) in DD29toDD25 

stained for PER (cyan hot) and PDF (green) in LNv at CT23 (top) and CT11 (bottom).  sLNv soma (→ 

arrows), lLNv soma (> arrowheads) and PDF- PER+ 5th sLNv are indicated.  
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Scale bars are 10 µm.  (b) The mean number of PER+ sLNv soma and lLNv soma at CT23.  * indicates 

age-matched differences between genotypes.  (c) Frequency distribution of the proportion of 

hemispheres having 0 to 5 PER+ LNv soma: sLNv soma (top) and lLNv soma (bottom) in 7d-old flies 

at CT23.  * indicates significantly differing shapes of distribution between genotypes.  (d) For the two 

genotypes, the quantification of PER intensity at CT23 and CT11 in sLNv (top) and lLNv (bottom).  

Differences between time points CT23 and CT11 are represented by # (cyan) for pdf>Q0 and # (red) 

for pdf>Q128.  Coloured * represents the difference between genotypes at that time point.  Statistical 

significance is at single-symbol p<0.05, double-symbol p<0.01, and triple-symbol p<0.001.  Error 

bars are SEM. 

4.3.5 The early-age rhythm rescue of pdf>Q128 by developmental temperature 

cycles is altered by the temperature experienced as adults 

After examining the effects of developmental temperatures in the developmental-TC-mediated 

behavioural rhythm rescue of young pdf>Q128, I investigated the effect of the temperature 

experienced as adults.  Flies reared under TC two days after eclosion were either exposed to 21°C 

or 29°C in DD.  pdf>Q128 flies in DDTCtoDD21 were arrhythmic across age with poor activity 

consolidation than controls (Fig 4.12a-d).  In contrast, most of the pdf>Q128 flies in 

DDTCtoDD29 were rhythmic, like controls (Fig 4.12a bottom, e) and showed ‘r’ comparable to 

controls pdf>Q0 and pdfGal up to 8d (Fig 4.12f).  They, however, had poorer robustness than the 

said controls in AW1 (Fig 4.12g). 

Comparing the regimes, pdf>Q128 experiencing cooler temperatures of 21°C as adults had very 

low rhythmicity than those experiencing relatively warmer temperatures of 25°C and warm 

temperatures of 29°C, which had ≥80% rhythmicity in AW1 (Fig 4.12h).  This difference was 

also reflected in pdf>Q128 flies in DDTCtoDD21 having lower ‘r’ than those in DDTCtoDD25 

and DDTCtoDD29 till 8d (Fig 4.12j, middle).  Thus, post-developmental-TC, the temperature 

experienced as adults also determines the behavioural rhythmicity of pdf>Q128: relatively 

optimal or warm ambient temperatures as adults are rhythm-promoting but not cooler.  The 

rhythm robustness of pdf>Q128 in DDTCtoDD29 was more remarkable than those in 

DDTCtoDD25 (Fig 4.12i).  The rhythm robustness of controls in DDTCtoDD21 was poorer than 

those in the other two regimes (Fig 4.12i), indicating that low temperatures as adults during 

recording weaken fly activity rhythms.  Young pdf>Q0 in DDTCtoDD29 had higher ‘r’ than 

those in the other regimes, and Q128 in DDTCtoDD21 had lower ‘r’ than those in DDTCtoDD29, 

suggesting an effect of ambient temperature during recording on the extent of activity 

consolidation.  Overall, both the developmental temperature cycles and the temperature 

experienced by the flies in adulthood contribute to the early age rhythmicity of pdf>Q128 adults 

under DDTCtoDD25.  
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Fig 4. 12 pdf>Q128 in DDTCtoDD29 show early-age activity rhythms but not those in 

DDTCtoDD21. 

(a) Representative double-plotted actograms for adult flies in DDTCtoDD21 (top) and DDTCtoDD29 

(bottom) showing activity data for 21d (age 3d-23d).  (b-e) Plots for rhythmicity (b, e),   
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mean activity consolidation ‘r’ (c, f) and mean rhythm robustness (d, g) for the within-regime 

comparisons in DDTCtoDD21 (b-d) and DDTCtoDD29 (e-g).  All other details are the same as in Fig 

4.1.  (h-j) The between-regime comparisons of the percentage rhythmicity (h) in AW1 and AW2, the 

mean robustness in AW1 (i) and the mean activity consolidation ‘r’ (j) for each of the three genotypes.  

All other details are like Fig 4.7.  Regime colour codes: pink, DDTCtoDD25; light blue, DDTtoDD21; 

dark purple, DDTCtoDD29. 

4.3.6 Developmental temperature cycles delay the loss of PDF from the sLNv of 

pdf>Q128 without affecting the expHTT inclusion load 

Further, the cellular features are compared between the DDTCtoDD25 and DD25.  Even though 

the PDF+ sLNv soma numbers in DD25 and DDTCtoDD25 started similarly at L3, as young 

adults (at 1d and 3d), those in DDTCtoDD25 had noticeably greater numbers than those in DD25 

(Fig 4.13a left).  Post-3d, the numbers fell for those in DDTCtoDD25 and became comparable to 

those in DD25 up to 16d, following which, at 23d, those in DDTCtoDD25 had fewer PDF+ sLNv 

soma than those in DD25.  The PDF+ lLNv soma numbers of pdf>Q128 remain comparable 

between regimes across age (Fig 4.13a middle). The shapes of the frequency distributions of PDF+ 

sLNv soma were comparable across age, except at 3d and 23d (Fig 4.13b).  Even though the 

distribution shapes were not different between regimes at 1d, ~77% of hemispheres in 

DDTCtoDD25 had 3 to 4 PDF+ sLNv (~23% had 0-2 sLNv), which was significantly higher 

compared to the ~47% of hemispheres in DD25 (p = 0.02902, Fisher’s Exact test).  Thus, exposure 

of pdf>Q128 to temperature cycles during development improves PDF+ sLNv soma numbers in 

the very young, i.e., for enhancing PDF+ sLNv soma numbers, DDTCtoDD25>DD25. 

The mean PER+ LNv soma numbers of pdf>Q128 were similarly low under DD25 and 

DDTCtoDD25 (Fig 4.13c).  The shape of the PER+ LNv frequency distributions under 

DDTCtoDD25 was similar to those under DD25 (Fig 4.13d).  Thus, the mean PER+ LNv numbers 

and their relative distributions were similar between DDTCtoDD25 and DD25.  However, a key 

difference was that DDTCtoDD25 restored low amplitude PER oscillations in the sLNv of 

pdf>Q128 (Fig 4.4), which are absent in DD25.  These observations suggest that PER oscillations 

in the LNv of pdf>Q128 in DDTCtoDD25 are better protected than those in DD25.  Therefore, 

overall, for PER in the LNv, DDTCtoDD25>DD25.  
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Fig 4. 13 DDTCtoDD25 slows down PDF loss from the sLNv soma of pdf>Q128, while 

DD29toDD25 mitigates PER loss from the LNv. 

(a) The Mean number of PDF+ sLNv soma (left) or lLNv soma (middle) across age comparing 

pdf>Q128 maintained in the DD25 with DDTCtoDD25.  Mean PDF+ LNv soma numbers comparing 

7d pdf>Q128 in DD25, DDTCtoDD25 and DD29toDD25 (right).  (b) Frequency distribution of the 

proportion of hemispheres of pdf>Q128 with 0 to 5 PDF+ LNv soma numbers (sLNv - left and lLNv 

- right) in DD25 and DDTCtoDD25 across age.  NA, not applicable.  * indicates significantly different 

distribution shapes.  (c) The mean PER+ LNv soma numbers in 7d-old pdf>Q128 in DD23 and DD25. 

(d) Frequency distribution of the proportion of hemispheres of pdf>Q0 (top-sets) or  
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 pdf>Q128 (bottom-sets) with 0 to 5 PDF+ LNv soma numbers (sLNv - top and lLNv - bottom) in the 

three regimes.  Coloured multiple * indicates significantly different distribution shapes between 

regimes, with the first colour of the reference regime and the subsequent colours of regimes differing 

from the reference at p<0.05.  Significant differences are at * p<0.05, ** at p<0.01 and *** p<0.001.  

Error bars are SEM. 

Comparing pdf>Q128 in DDTCtoDD25 with those in DD25, the relative proportions of 

hemispheres dominated by different expHTT forms in LNv were nearly similar across age with 

domination by Diff-enriched LNv very early-on and near-exclusive domination by Inc-enriched 

LNv as the flies aged (Fig 4.14a, top, b top).  However, between-regime differences were seen 

for sLNv at 1d and lLNv at 3d.  Although most of the hemispheres in both the regimes had Inc-

enriched sLNv, at 1d, those in DDDTCtoDD25 had considerably lower proportions of Inc-

enriched sLNv relative to the Diff+Inc-enriched sLNv than those in DD25 (Fig 4.14a bottom).  

Conversely, the proportion of hemispheres dominated by Diff-enriched relative to Inc-enriched 

lLNv or Diff+Inc-enriched lLNv was significantly lower for those in DDTCtoDD25 than those 

in DD25 at 3d.  Thus, pdf>Q128 in DDTCtoDD25 differs from those in DD25 in that, in the 

former, Diff+Inc is present for a longer duration in the sLNv, and Diff expHTT decreases in 

favour of Diff+Inc and Inc expHTT in the lLNv at 3d. 

The inclusion number and size were comparable between pdf>Q128 in the two regimes across 

most ages, except those in DDTC at 3d that had significantly more inclusions than other ages and 

from those in DD25 at 3d (Fig 4.14c).  So, by and large, DDTCtoDD25 did not affect pdf>Q128’s 

expHTT forms in LNv, or inclusion features differentially from that of DD25, i.e., for effect on 

inclusion load, DDTCtoDD25=DD25.  Thus, pdf>Q128’s early-age rhythm rescue and delay in 

the PDF loss from sLNv imparted by developmental exposure to temperature cycles occur without 

altering the expHTT inclusion load. 

In summary, in terms of hindering expHTT-induced neurotoxicity like delaying arrhythmicity 

in activity rhythms and PDF loss from sLNv and moderately rescuing the LNv PER oscillations 

in the pdf>Q128 young, DDTCtoDD25>DD25.  Thus, the development-specific exposure of 

pdf>Q128 to temperature cycles slows down the circadian neurodegenerative phenotypes as 

adults, indicating that circadian bolstering environmental interventions (during development) 

mitigate circadian impairments (as adults). 

A summary of the between-regime comparisons of the behavioural and cellular phenotypes 

of HD flies is shown in Table 4.13  
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Fig 4. 14 pdf>Q128 in DDTCtoDD25 and DD25 are comparable in the relative proportions of 

hemispheres of different expHTT forms enriching LNv and inclusion features across age. 

(a) and (b) The proportion of hemispheres dominated by different expHTT forms in sLNv (a) or lLNv 

(b) is plotted for pdf>Q128 comparing DD25 and DDTCtoDD25 at various ages and with 

DD29toDD25 (at 7d).  These are plotted for all expHTT forms (top) or significantly different pair-

wise comparisons (a – bottom, b - middle and bottom).  * indicates significant changes in the relative 

proportions of hemispheres for all expHTT forms between regimes for an age (top) or pair-wise 

expHTT forms between regimes for a particular age (a – bottom, b - middle and bottom).  NS, not 

significant.  
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At the bottom of some bars, numbers represent the mean number of PDF+ LNv detected for that regime 

at that age.  (c) Comparison of mean inclusion number per hemisphere (left) and mean inclusion size 

per hemisphere (right) between DD25 and DDTCtoDD25 across age for pdf>Q128.  (d) Comparison 

of mean inclusion number and size between the three regimes for 7d-old pdf>Q128.  Coloured * 

indicates a significant age-matched difference between that regime and other regimes or indicated 

regimes, and coloured $ indicates differences between those regimes' ages.  Symbols represent 

statistical differences: single p<0.05, double p<0.01 and triple p<0.001.  nd, not different.  Error bars 

are SEM. 

4.3.7 Development-specific warm temperatures improve PER in the LNv of 

pdf>Q128 without altering sLNv PDF loss or expHTT features 

I asked whether the differential effects of development-specific-temperature-cycles versus -

constant-temperature on the activity rhythms of adult pdf>Q128 flies in DD25 also extend to the 

cellular features of the LNv.  pdf>Q128 exposed to development-specific temperature cycles were 

compared against those exposed to constant warm temperatures.  PDF+ LNv soma numbers and 

their distributions' shapes were similar to those in DD25, DDTCtoDD25 and DD29toDD25 at 7d 

(Fig 4.13a right and b fourth-row).  pdf>Q128 in DD29toDD25, despite being behaviourally 

arrhythmic, had significantly higher number of PER+ LNv soma at 7d than those in DD25 and 

DDTCtoDD25 (Fig 4.13c).  The distribution shapes of PER+ LNv also differed significantly (Fig 

4.13d).  Thus, in terms of improving PER+ LNv, DD29toDD25>DD25=DDTCtoDD25.  

However, PER oscillations were absent from the sLNv of pdf>Q128 in DD29toDD25, like those 

in DD25 (Fig 4.11d), but under DDTCtoDD25, were restored to a low amplitude (Fig 4.4d).  Thus, 

concerning promoting clock function for which PER oscillations in the sLNv is a proxy, 

DDTCtoDD25>DD29toDD25. 

At 7d, like pdf>Q128 in DD25 and DDTCtoDD25, nearly all hemispheres of pdf>Q128 in 

DD29toDD25 had Inc-enriched LNv (Fig 4.14a top, b top).  Their inclusion number and size were 

also not different between regimes at 7d (Fig 4.14d). 

Thus, mere exposure of pdf>Q128 to constant warm temperatures during development improves 

PER in the LNv but is insufficient to overcome most other expHTT-induced circadian 

neurodegenerative phenotypes.  However, a caveat to this inference is that DD29toDD25 could 

modify expHTT forms and PDF in LNv of pdf>Q128 differentially from that of DD25 at the very 

early ages, which have not been examined in this study, due to the absence of a behavioural rescue.  

Nonetheless, based on PER restoration in the LNv, DD29toDD25>DDTCtoDD25=DD25; based 

on PER oscillations in the sLNv, DDTCtoDD25>DD29toDD25=DD25; and based on delaying 
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behavioural arrhythmicity, DDTCtoDD25>DD25 and DDTCtoDD25>DD29toDD25 and PDF 

loss from sLNv, DDTCtoDD25>DD25.  Thus, the order of neuroprotection against expHTT-

induced circadian deficits is DDTCtoDD5>DD29toDD25>DD25.  In conclusion, temperature 

as an external time-giver during development in the form of cycles of warm and cold and not 

merely development-specific constant high temperature improves the adult circadian function of 

HD flies in DD25. 

4.3.8 Exposure of pdf>Q128 to constant cool temperatures restores low amplitude 

PER oscillations in the LNv without altering arrhythmic activity rhythms 

So far, I have found early-age activity rhythm improvements with development-specific 

temperature cycles.  The Gal4-UAS-based tissue-specific expression system used here for 

targeting human expHTT to the circadian pacemaker LNvs is sensitive to temperature, with 

transgene expression increasing with temperature and cooler temperatures having the opposite 

effect (Brand and Perrimon, 1993).  Exposing the flies to warm and cold temperatures would help 

achieve differential expHTT expression levels and serve as a proxy to test the dosage effects of 

expHTT.  This line of reasoning prompted me to investigate further the differential effects of 

relatively warm and cooler temperatures on activity rhythms of pdf>Q128 in DD.  When I tested 

the effect of cool temperatures, namely 19°C, 21°C and 23°C on activity rhythms of the flies used 

in this study, I found that at both 19°C and 21°C, even controls like pdfGal and w1118 exhibited 

weak rhythms of low robustness.  Thus, 23°C was chosen as the relatively cool temperature for 

further investigations.  Since 29°C is warm enough to alter the activity distribution and remain 

within the physiological range (Majercak et al., 1999; Low et al., 2008; Menegazzi et al., 2012b), 

it was chosen as the warm temperature.  A concern here is that temperature affects development 

time, with lower temperature increasing development time (~12d at 23°C).  In contrast, higher 

temperature decreases it (8-9d at 29°C).  Some of the effects seen could result from temperature 

effects on the development time. 

pdf>Q128 experienced a relatively cooler temperature of 23°C in DD during development and as 

adults were arrhythmic across AWs (Fig 4.15a,b).  They also showed poor activity consolidation 

across ages (Fig 4.15c).  Most controls were rhythmic and had significantly higher ‘r’ than 

pdf>Q128 across age, except Q128, which showed lowered activity consolidation than some 

controls (Fig 4.15c).  
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Fig 4. 15 pdf>Q128 flies in DD23 are arrhythmic and show poor activity consolidation. 

(a) Representative double-plotted actograms for adult flies in DD23 showing activity data for 21d (age 

3d-23d).  The grey bars at the top of the actograms represent the developmental rearing condition, 

which in this regime is DD23.  All other details are the same as in Fig 2.1.  (b-c) The percentage 

rhythmicity (b) and the extent of activity consolidation ‘r’ (c) are plotted against age (or AWs).  a.u is 

arbitrary units.  Symbols represent statistically significant differences: coloured * of that coloured 

genotype from all others, coloured # of that genotype from all others except Q128, coloured § from 

all others except pdfGal and coloured + from all others except w1118.  Coloured ^ near an error bar of 

a data point indicates a difference between the respective-coloured genotype and the data-point 

genotype.  The number of symbols represents statistical significance: single p<0.05, double p<0.01 

and triple p<0.001.  Error bars are SEM. 
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I then assessed the LNv cellular features and expHTT forms of HD flies in DD23.  The number 

of PDF+ sLNv soma was comparable between pdf>Q128 and pdf>Q0 up to 3d, following which 

pdf>Q128 had a significant reduction in numbers compared to control and earlier ages (Fig 4.16a, 

b left).  Even though the mean PDF+ sLNv numbers differed between genotypes at 5d, the shapes 

of their frequency distributions were left-skewed up to 9d and different between genotypes only 

from 7d onwards (Figs 4.16b left and 4.17 left).  The PDF+ lLNv soma numbers and their 

distribution shapes were comparable between genotypes across age (Figs 4.16a, b right, 4.17 

right).  Thus, exposure of pdf>Q128 to a modestly cool temperature of 23°C delays the loss of 

PDF from sLNv soma. 
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Fig 4. 16 Exposure of pdf>Q128 to DD23 delays the loss of PDF from sLNv soma. 

(a) Representative images of the adult fly brains under DD23toDD23 stained for PDF (green) and 

HTT (magenta) in LNv at 1d, 7d and 23d for pdf>Q0 (left panel-sets) and at L3, 1d, 3d, 7d, 16d and 

23d for pdf>Q128 (right panel-sets).  Indicated in the images are sLNv soma (→ arrows),   
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lLNv soma (> arrowheads), diffuse expHTT (Ψ psi), diffuse+inclusions expHTT (Ұ), and expHTT 

inclusions (« double arrowheads).  Scale bars are 10 µm.  (b) The mean number of PDF+ sLNv soma 

(left) and lLNv soma (right) across age.  Coloured symbols indicate significant differences, * for age-

matched, inter-genotype differences and $ for differences between ages of the corresponding-coloured 

genotype at * p<0.05, ** p<0.01, *** p<0.001.  nd, not different.  Error bars are SEM. 

Fig 4. 17 The early-age frequency distribution of PDF+ sLNv soma numbers is similar between 

genotypes under DD23. 

Frequency distribution of the proportion of hemispheres of pdf>Q0 and pdf>Q128 in DD23toDD23 

with 0 to 5 PDF+ LNv soma numbers (sLNv - left and lLNv - right).  Coloured * indicates significantly 

different distribution shapes between age-matched genotypes at p<0.05.  NA, not applicable.  
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PER+ sLNv soma numbers in 7d pdf>Q128 in DD23 were significantly reduced than pdf>Q0 (Fig 

4.18a top, b).  This reduction was also mimicked by the differing shapes of their distributions, 

with ~77% of the hemispheres of pdf>Q128 having fewer (0, 1 or 2) PER+ sLNv (Fig 4.18c top).  

Even though the PER+ lLNv soma numbers and their distribution shapes also differed between 

genotypes (Fig 4.18a top, b, c bottom), ~85% of the hemispheres of pdf>Q128 had ≥3 PER+ lLNv 

(Fig 4.18c bottom).  PER in both the LNv of pdf>Q128 oscillated, albeit with lower amplitude 

and in-phase than PER LNv oscillations of pdf>Q0 (Fig 4.18a, d).  Thus, exposure of pdf>Q128 

to DD23 improves PER in lLNv and restores its oscillations in the LNv of pdf>Q128. 

The proportions of hemisphere dominated by various expHTT forms in LNv changes significantly 

with age for pdf>Q128 in DD23 (Fig 4.19a top).  For both the LNv, there is a domination of 

hemispheres enriched with Diff and Diff+Inc forms at early ages, while Inc-enriched ones 

dominate completely at later ages.  There were significantly higher hemisphere proportions of 

Diff-enriched and Diff+Inc-enriched sLNv relative to Inc-enriched sLNv at early ages (L3 and 1d 

for Diff and 1d and 3d for Diff+Inc) than at later ages (Fig 4.19a left, second- and third-rows).  A 

similar trend is seen for Diff-enriched lLNv relative to Inc-enriched lLNv at ages 1d and 3d 

compared to ages 7d upwards (Fig 4.19a right, second row).  The Diff-enriched lLNv dominate 

hemispheres at ages 1d and 3d, giving way to Diff+Inc- and Inc-enriched lLNv domination at 

subsequent ages (Fig 4.19a, top-right).  The hemisphere proportion of Diff+Inc-enriched relative 

to Diff-enriched lLNv is significantly higher at 5d, 7d and 9d than 1d and 3d (Fig 4.19a right, 

bottom).  The Inc-enriched lLNv relative to Diff+Inc-enriched lLNv almost exclusively 

dominates the hemispheres at later ages of 16 and 23d (Fig 4.19a right, third-row). 

The expHTT inclusion numbers of pdf>Q128 in DD23 at 1d were significantly lower than 

subsequent ages and those at 3d compared to 5d and 7d (Fig 4.19b top).  The inclusion sizes were 

comparable across most ages (Fig 4.19b bottom). 
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Fig 4. 18 The few PER+ sLNv soma of pdf>Q128 in DD23 exhibit low-amplitude PER oscillations. 
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(a) Representative images of 7d-old adult fly brains of pdf>Q0 (left) and pdf>Q128 (right) in DD23 

stained for PER (cyan hot) and PDF (green) in LNv at CT23 (top) and CT11 (bottom).  sLNv soma 

(→ arrows), lLNv soma (> arrowheads) and PDF- PER+ 5th sLNv are indicated.  Scale bars are 10 µm.  

(b) The mean number of PER+ sLNv soma and lLNv soma at CT23.  * indicates age-matched 

differences between genotypes.  (c) Frequency distribution of the proportion of hemispheres having 0 

to 5 PER+ LNv soma: sLNv soma (top) and lLNv soma (bottom) in 7d-old flies at CT23.  * indicates 

significantly differing shapes of distribution between genotypes.  (d) For the two genotypes, the 

quantification of PER intensity at CT23 and CT11 in sLNv (top) and lLNv (bottom).  Differences 

between time points CT23 and CT11 are represented by # (cyan) for pdf>Q0 and # (red) for pdf>Q128.  

Coloured * represents the difference between genotypes at that time point.  Statistical significance is 

at single-symbol p<0.05, double-symbol p<0.01, triple-symbol p<0.001.  Error bars are SEM. 

Fig 4. 19 Hemispheres of young pdf>Q128 are dominated by diff-enriched LNvs, which also have 

fewer inclusions than older flies. 

(a) The proportion of hemispheres dominated by different expHTT forms in sLNv (left) or lLNv (right) 

is plotted against age for pdf>Q128 in DD23toDD23 to describe the between-hemispheres distribution 

of predominant expHTT forms.  These are plotted for all expHTT forms (top) or significantly different 

pair-wise comparisons (second, third, and bottom rows).  $ indicates significant changes in the relative 

proportions of hemispheres across age for all expHTT forms (top) or pair-wise expHTT forms between 

specific ages (second, third, bottom rows).  NA, not applicable; NS, not significant; nd, not different.    
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At the bottom of some bars, numbers represent the mean number of PDF+ LNv detected at that age.  

(b) Comparison of mean inclusion number per hemisphere (top) and mean inclusion size per 

hemisphere (bottom) for pdf>Q128 in DD23 across age.  Significant differences between ages are $ 

p<0.05, $$ at p<0.01 and $$$ p<0.001.  Error bars are SEM. 

4.3.9 Exposure of pdf>Q128 to constant warm temperatures rescues early-age 

behavioural arrhythmicity and PDF loss from the sLNv and improves activity 

consolidation over an extended duration 

pdf>Q128 experiencing relatively warm constant temperature of 29°C in DD during development 

and as adults were rhythmic in AW1 and comparable to all controls (Fig 4.20 a, b).  However, in 

the successive AWs, they had lower rhythmicity than controls, and their rhythmicity decline 

considerably decreased compared to AW1.  A significant improvement in the extent of activity 

consolidation of pdf>Q128 across age, like most controls (Fig 4.20 c), is also evidence for DD29-

moderated enhancement of pdf>Q128’s activity rhythms.  However, the rhythmic pdf>Q128 flies 

still had weaker rhythms than at least one relevant control across AWs (Fig 4.20 d) and near 24h 

periods like most controls (Fig 4.20 e).  Thus, exposure to warm temperatures restores early-age 

rhythmicity and improves activity consolidation over longer durations without improving rhythm 

robustness. 
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Fig 4. 20 pdf>Q128 flies in DD29 are rhythmic during the early age window and show improved 

activity consolidation across AWs.  
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(a) Representative double-plotted actograms for adult flies in DD29 showing activity data for 21d (age 

3d-23d).  All other details are the same as in Fig 4.1.  (b-c) The percentage rhythmicity (b), the extent 

of activity consolidation ‘r’ (c), the mean rhythm robustness (d) and the mean period (e) are plotted 

against AWs (or age for ‘r’).  Symbols represent statistically significant differences: coloured * of that 

coloured genotype from all others or indicated ones and coloured $ differences between AWs for that 

coloured genotype at single p<0.05, double p<0.01 and triple p<0.001.  Only in the rhythmicity plot 

(b) does the red + near the error bars of genotypes in AW2 indicate that those genotypes differ 

significantly from pdf>Q128.  Coloured ^ near an error bar of a data point indicates a difference 

between the respective-coloured genotype and the data-point genotype.  d represents that most flies 

are dead.  Since very few pdfGal and w1118 survived in AW3, these are not included in the AW3 

statistical analyses and are absent in the ‘r’ representation between 17d and 23d.  Most pdf>Q128 flies 

in AW3 were arrhythmic, and the genotype is excluded from the robustness and period statistics for 

AW3.  Error bars are SEM. 

pdf>Q128 in DD29 exhibited control-like PDF+ sLNv soma numbers at L3 and 1d, post-which 

the numbers between genotypes differed significantly (Fig 4.21a, b left).  The numbers at 16d and 

23d were significantly lower than L3 and 1d (Fig 4.21b left).  Notably, though the shapes of the 

PDF+ sLNv soma frequency distribution differed between genotypes in most older flies: 

pdf>Q128 distribution was left-skewed up to 9d with ~ ≥85% of the hemispheres having ≥ 3 

PDF+ sLNv soma (Fig 4.22 left), differing significantly from those at later ages (≥ 3 PDF+ sLNv: 

~54% at 16d and 33% at 23d, p<0.05, Fisher’s exact tests with BH procedure; distribution right-

skewed at 23d).  The PDF+ lLNv numbers and shapes of their distributions were comparable 

between genotypes at most ages (Figs 4.21a, b right, 4.22 right).  Thus, exposure of pdf>Q128 to 

DD29 restores PDF in the sLNv of the young. 

The proportion of pdf>Q128 hemispheres in DD29 dominated by an expHTT form in LNv 

changes significantly from Diff and Diff+Inc enriched to exclusively Inc enriched with age (Fig 

4.23a top).  The hemispheres have predominantly Diff-enriched LNv up to 1d, decreasing 

significantly with age with a concomitant increase in Inc-enriched LNv (Fig 4.23a middle).  The 

proportion of hemispheres with Diff+Inc-enriched relative to Inc-enriched sLNv also decreased 

at 3d compared to 1d (Fig 4.23a bottom). 

The expHTT inclusions of pdf>Q128 in DD29 at 16d and 23d were significantly higher than 1d, 

3d, and 5d (Fig 4.23b top).  The inclusion sizes did not vary with age (Fig 4.23b bottom).  
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Fig 4. 21 Exposure of pdf>Q128 to DD29 slows the loss of PDF from the sLNv soma. 

(a) Representative images of the adult fly brains under DD29toDD29 stained for PDF (green) and 

HTT (magenta) in LNv at 1d, 7d and 23d for pdf>Q0 (left panel-sets) and at L3, 1d, 3d, 7d, 16d and 

23d for pdf>Q128 (right panel-sets).  Indicated in the images are sLNv soma (→ arrows), lLNv soma 

(> arrowheads), diffuse expHTT (Ψ psi), diffuse+inclusions expHTT (Ұ), and expHTT inclusions (« 

double arrowheads).  Scale bars are 10 µm.  (b) The mean number of PDF+ sLNv soma   
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(left) and lLNv soma (right) across age.  Coloured symbols indicate significant differences, * for age-

matched, inter-genotype differences and $ for differences between ages of the corresponding-coloured 

genotype at * p<0.05, ** p<0.01, *** p<0.001.  nd, not different.  Error bars are SEM. 

Fig 4. 22 The distribution of PDF+ sLNv soma numbers of pdf>Q128 differs from that of pdf>Q0 

only at later ages under DD29.  
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Frequency distribution of the proportion of hemispheres of pdf>Q0 and pdf>Q128 in DD29toDD29 

with 0 to 5 PDF+ LNv soma numbers (sLNv - left and lLNv - right).  Coloured * indicates significantly 

different distribution shapes between age-matched genotypes at p<0.05.  NA, not applicable. 

Fig 4. 23 Hemispheres of pdf>Q128 in DD29 are entirely dominated by inclusion-enriched LNv 

from age 3d and show increased inclusions with age. 

(a) The proportion of hemispheres dominated by different expHTT forms in sLNv (left) or lLNv (right) 

is plotted against age for pdf>Q128 in DD29toDD29 to describe the between-hemispheres distribution 

of predominant expHTT forms.  These are plotted for all expHTT forms (top) or significantly different 

pair-wise comparisons (middle and bottom).  $ indicates significant changes in the relative proportions 

of hemispheres across age for all expHTT forms (top) or pair-wise expHTT forms between specific 

ages (middle and bottom).  NA, not applicable; NS, not significant.  At the bottom of some bars, 

numbers represent the mean number of PDF+ LNv detected at that age.  (b) Comparison of mean 

inclusion number per hemisphere (top) and mean inclusion size per hemisphere (bottom) for 

pdf>Q128 in DD29 across age.  Significant differences between ages are $ p<0.05, $$ at p<0.01 and 

$$$ p<0.001.  nd, not different.  Error bars are SEM. 
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4.3.10 Warm temperatures improve the early-age rhythmicity of pdf>Q128 by 

enabling a large proportion of the daily activity within a limited time window. 

The rhythm characteristics of flies in DD23, DD25, and DD29 were studied to evaluate the impact 

of constant ambient temperatures on expHTT-induced changes in activity rhythms. During AW1, 

the rhythmicity of pdf>Q128 in DD29 was noticeably higher than in DD23 and DD25 (Fig 4.24a 

middle).  However, their rhythmicity declined significantly in AW2, becoming comparable to 

those in DD23 and DD25.  The controls had comparable rhythmicities and rhythm robustness 

between regimes (Fig 4.24a, c).  pdf>Q128 in DD29 also had significantly higher activity 

consolidation than those in DD23 and DD25 across age.  The improved ‘r’ of pdf>Q128 can be 

primarily attributed to warm temperatures improving the activity consolidation across the board 

since even controls in DD29 showed more significant activity consolidation than their 

counterparts in DD23 and DD25 (Fig 4.24b).  Also, pdf>Q128 in DD23 showed even poorer 

activity consolidation than those in DD25 between 8d-17d (Fig 4.24b middle), suggesting that in 

terms of activity rhythms, the effect of temperature in mitigating expHTT-induced 

neurotoxicity is DD29>DD25>DD23.  The period of control flies in AW1 was significantly 

shorter in DD29 than in DD23 and DD25 (Fig 4.24d).  This observation suggests an under-

compensation of the free-running period to temperature changes. 
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Fig 4. 24 pdf>Q128 in warm temperatures shows improved early-age rhythmicity and activity 

consolidation than at lower temperatures. 

(a-c) The between-regime comparisons of the mean percentage rhythmicity (a), the mean activity 

consolidation ‘r’ (b), the mean rhythm robustness in AW1(c) and the mean period in AW1 (d) plotted 

against AWs (or age).  Symbols represent statistically significant differences: coloured * of that 

coloured regime from all others or indicated ones for a genotype and coloured $ for between-AW 

comparisons of a genotype for that regime.  For ‘r’, coloured ^ near an error bar of a data point 

indicates a difference of the respective-coloured regime from the data-point regime.  Regime colour 

codes: cyan, DD23; dark grey, DD25; rust, DD29.  The number of symbols represents statistical 

significance: single p<0.05, double p<0.01 and triple p<0.001.  Error bars are SEM. 
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4.3.11 Constant warm or cool temperatures offer better protection against loss of 

circadian proteins from the LNv of pdf>Q128 than the constant ambient 

temperatures of 25°C 

Next, the LNv cellular features of pdf>Q128 in the three constant temperature regimes were 

compared.  pdf>Q128 in DD25 had significantly fewer PDF+ sLNv soma than those in DD23 and 

DD29 at 1d and 3d (Fig 4.25a left).  Those in DD29 had significantly higher numbers than DD23 

at 7d and 9d.  Importantly, DD23 and DD25 differed at 1d, 3d and 23d, with fewer numbers in 

DD23 at 1d and 3d and greater at 23d.  In the shapes of the distribution of PDF+ sLNv soma 

numbers also, DD25 differed from both DD23 and DD29 at 1d and 3d (Fig 4.25b right), with 

~50% of hemispheres of pdf>Q128 in DD25 having 0-2 PDF+ sLNv, contrasting from ~10% 

significantly in DD23 and DD29 (p<0.01, Fisher’s exact tests and BH procedure).  Thus, 

neuroprotection by the rescue of PDF in sLNv soma follows the order DD29>DD23>DD25.  The 

PDF+ lLNv soma numbers and their distribution shapes are comparable across regimes (Fig 4.25a 

right, b right). 

The PER+ sLNv soma numbers of pdf>Q128 in DD23 were similar to those in DD25 (Fig 4.25c).  

However, pdf>Q128 in DD23 had higher PER+ lLNv soma numbers than in DD25.  The shapes 

of the PER+ LNv distributions did not differ between DD23 and DD25 (Fig 4.25d, bottom sets).  

Thus, for PER+ sLNv DD23=DD25, while concerning PER+ lLNv DD23>DD25.  Considering 

that PER in LNv of pdf>Q128 in DD23 oscillated (Fig 4.18), but not of those in DD25, overall, 

for PER sustenance in the LNv, DD23>DD25. 

  



309 
Chapter 4 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Fig 4. 25 pdf>Q128 in relatively warm or cooler temperatures show improvements in PDF+ and 

PER+ LNv numbers. 

(a) The mean number of PDF+ sLNv soma (left) or lLNv soma (right) across age comparing pdf>Q128 

maintained in the constant temperature regimes of DD23, DD25 and DD29.  (b) Frequency distribution 

of the proportion of hemispheres of pdf>Q128 with 0 to 5 PDF+ LNv soma numbers (sLNv - left and 

lLNv - right) in the three regimes across age.  NA, not applicable.  Coloured multiple * indicates 

significantly different distribution shapes between regimes, with the first colour of the reference 

regime and the subsequent colours of regimes differing from the reference at p<0.05.   
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(c) The mean number of PER+ LNv soma numbers in 7d-old pdf>Q128 in DD23 and DD25. (d) 

Frequency distribution of the proportion of hemispheres of pdf>Q0 (top-sets) or pdf>Q128 (bottom-

sets) with 0 to 5 PDF+ LNv soma numbers (sLNv - top and lLNv - bottom) in DD23 and DD25.  * 

indicates significantly differing distribution shapes at ** at p<0.01 and *** p<0.001.  Coloured * 

indicates a significant difference between that regime and all other regimes or indicated regimes at * 

p<0.05, ** at p<0.01 and *** p<0.001.  Error bars are SEM. 

4.3.12 pdf>Q128 show a temperature-dependent decrease in the expHTT inclusion 

load 

The expHTT forms and includes features of pdf>Q128  under the three constant temperature 

regimes were also compared.  Diff-enriched LNv dominated most hemispheres of pdf>Q128 

across regimes DD23, DD25 and DD29 at L3 (for sLNv) (Fig 4.26a top-left) and at 1d (for lLNv) 

(Fig 4.26b top-left).  The proportion of hemispheres dominating different expHTT forms in LNv 

differed significantly between regimes at 1d and 3d for sLNv and 3d and 5d for lLNv (Fig 4.26a 

top, b top). 

pdf>Q128 in DD23 and DD29 had a greater proportion of Diff-enriched sLNv relative to Inc-

enriched than those in DD25 at 1d (Fig 4.26a middle).  ~20% of the hemispheres in DD23 and 

DD29 also had Diff+Inc-enriched sLNv at 1d which was absent from those under DD25, where 

all hemispheres were dominated by Inc-rich sLNvs (Fig 4.26a bottom).  DD23 also ensured a 

longer presence of hemispheres with Diff+Inc-enriched sLNv, and their proportion relative to the 

hemispheres of Inc-enriched sLNv was different from the completely Inc-rich DD25 and DD29 

at 3d (Fig 4.26a bottom). 

In contrast to the domination by Diff and Diff+Inc expHTT forms in the sLNv of 1d pdf>Q128 

flies in DD29, the lLNv of 3d flies in DD29 were dominated by Inc (Fig 4.26a top-second panel, 

b top-second panel).  The proportion of hemispheres of Inc-enriched lLNv relative to Diff-

enriched (or Diff+Inc-enriched lLNv) in DD29 was significantly higher than those in DD23 and 

DD25 at 3d (Fig 4.26b second-column).  DD23, on the other hand, still favoured Diff-enriched 

lLNv at 3d, with its hemisphere proportions relative to hemispheres of Inc-enriched lLNv (or 

Diff+Inc-enriched lLNv) being more remarkable than those in DD25 (Fig 4.26b second-column).  

Even at 5d, the proportion of hemispheres of Inc-enriched lLNv relative to Diff-enriched lLNv 

was significantly lower in DD23 than those in DD25 and DD29, the latter being similar (Fig 4.26b 
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third-column).  The trend seen at DD23 with expHTT forms in sLNv was also seen with lLNv 

with a prolonged presence of Diff+Inc form (Fig 4.26b top), the proportion of their hemispheres 

relative to hemispheres of Inc-enriched lLNv in DD23 being significantly greater than those in 

DD29 at 5d (Fig 4.26b third row).  DD25 was placed intermediary to DD23 and DD29 with the 

proportion of hemispheres of Diff-enriched lLNv relative to Diff+Inc-enriched lLNv being 

significantly lower than DD23 at 3d (Fig 4.26b second-column bottom), and the proportion of 

hemispheres of Inc-enriched lLNv relative to Diff+Inc-enriched lLNv being significantly lower 

than DD29 at 3d and comparable at 5d (Fig 4.26b third-column third-row). 

Regarding the predomination of the three expHTT forms in the LNv (Diff vs Diff+Inc vs Inc), 

since DD25 and DD29 have slightly contrasting effects on sLNv versus lLNv at 3d, the regime 

effects on prolonging Diff form is DD23>DD25=DD29. 

The expHTT inclusion numbers were significantly higher in pdf>Q128 in DD23 than those in 

DD25 and DD29 from 5d upwards (Fig 4.26c left).  In contrast, DD29 had fewer inclusions than 

those in DD25 from 3d to 7d.  Inclusion sizes were nearly similar between regimes across ages 

(Fig 4.26c right).  Thus, regarding decreasing inclusion numbers, DD29>DD25>DD23. 

Even though Diff- and Diff+Inc-enriched LNv dominated the hemispheres of young pdf>Q128 

in DD23, the few LNv and the area near the LNv seem to have enough inclusions contributing to 

the significantly higher inclusion numbers in those under DD23 than those in other regimes.  The 

enhanced numbers persist in older flies in DD23 (Fig 4.26c left).  In contrast, despite the 

hemispheres of 3d pdf>Q128 having almost entirely Inc-rich lLNv, across most ages, these flies 

had overall fewer inclusions than those in DD23 and even compared to those in DD25 till 7d of 

age.  In summary, these observations suggest that, for reducing the expHTT inclusion load, 

DD29>DD25>DD23. 
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Fig 4. 26 pdf>Q128 shows a temperature-dependent gradation in the relative proportion of 

hemispheres enriched with different expHTT forms in the lLNv and inclusion numbers, but in 

opposite directions.  
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(a) and (b) The proportion of hemispheres dominated by different expHTT forms in sLNv (a) or lLNv 

(b) is plotted for pdf>Q128 comparing constant temperature regimes DD23, DD25 and DD295 at 

various ages.  These are plotted for all expHTT forms (top) or significantly different pair-wise 

comparisons (a - middle and bottom, b - second, third and bottom rows).  * indicates significant 

changes in the relative proportions of hemispheres for all expHTT forms between regimes for an age 

(top) or pair-wise expHTT forms between regimes for an age (a - middle and bottom, b - second, third 

and bottom rows).  NS, not significant.  At the bottom of some bars, numbers represent the mean 

number of PDF+ LNv detected for that regime at that age.  (c) Comparison of mean inclusion number 

per hemisphere (left) and mean inclusion size per hemisphere (right) between the three regimes across 

age for pdf>Q128.  Significant differences between regimes for each age are at * p<0.05, ** at p<0.01 

and *** p<0.001.  Error bars are SEM. 

4.3.13 Light/dark cycles during development intensify the effects of constant 

temperatures on the activity rhythms of pdf>Q128 adults 

I then asked whether developmental exposure to light/dark cycles affects the activity rhythms of 

pdf>Q128 flies as adults in DD under constant temperatures (cool, 23°C and warm, 29°C).  

Despite LD during development, pdf>Q128 flies experiencing cooler temperatures of 23°C were 

arrhythmic across AWs (Fig 4.27a top, b), and their activity consolidation was significantly lower 

than most controls, except Q128, which also had significantly lower ‘r’ than controls (Fig 4.27c).  

Q128  also had weaker rhythms than controls (Fig 4.27d). 

Like their DD-counterparts, pdf>Q128 in LD29toDD29 showed control-like high rhythmicity in 

AW1 (Fig 4.27a bottom, e), and their activity consolidation was also comparable to controls up 

to 7d of age (Fig 4.27f).  However, the rhythmic pdf>Q128 flies had reduced rhythm robustness 

compared to controls (Fig 4.27g).  The rhythmicity (and ‘r’) of pdf>Q128 dropped significantly 

compared to controls in later AWs (and 8d upwards). 
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Fig 4. 27 pdf>Q128 flies in LD29toDD29 are rhythmic during the early age window but not those 

in LD23toDD23. 

(a) Representative double-plotted actograms for adult flies in LD23toDD23 (top) and those in 

LD29toDD29 (bottom) showing activity data for 21d (age 3d-23d).  Placed above the actograms are   
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grey and white bars depicting light/dark cycles during development.  (b-g) Plots for mean rhythmicity 

(b, e), activity consolidation ‘r’ (c, f), and mean robustness (d, g) for flies in LD23toDD23 (b, c, d) 

and those in LD29toDD29 (e, f, g).  pdf>Q128 across AWs in LD23toDD23, pdf>Q128 at AW3 in 

LD29toDD29, and pdfGal and w1118 are not included in statistical analyses of period and robustness.  

pdfGal and w1118 in AW3 (or ages 17-23d) are not included in the statistical analysis for DD29toDD29 

due to most flies not surviving; d (in plot e) indicates that there are no surviving flies from the two 

genotypes in AW3 across experiments.  All other details are like Fig 4.1 and 4.6. 

Comparing pdf>Q128 in DD with those in LD, those in DD23 and DD29 were nearly 

indistinguishable from those in LD23toDD23 and LD29toDD29, respectively, in terms of 

rhythmicity (Fig 4.28a middle, d middle), similar to how their controls behave between regimes 

(Fig 4.28a, d).  The rhythmic pdf>Q128 flies and controls pdf>Q0 also had comparable 

robustness between regimes (for pdf>Q128, only between DD29 and LD29toDD29), while that 

of Q128 was lower in LD23toDD23 than that of those in DD23 (Fig 4.28b, d).  The activity 

consolidations of pdf>Q128 between regimes were also comparable to a large extent (Fig 4.28c 

middle, f middle).  Thus, under constant ambient temperatures, developmental LD does not affect 

the activity rhythms of pdf>Q128 differentially.  However, developmental exposure to LD for 

controls under cool temperatures resulted in poorer activity consolidation than those in darkness 

and vice-versa under warm temperatures (Fig 4.28c, f) (also the case with pdfGal).  So, on the 

one hand, developmental LD further weakened the poor activity consolidation under cooler 

temperatures of 23°C.  On the other hand, developmental LD further strengthened the high 

activity consolidation under warmer temperatures of 29°C.  These observations suggest that 

developmental light augments the effects of constant temperatures on activity consolidation, 

furthering the cool-temperature-mediated diminishment of consolidation or the warm-

temperature-mediated enhancement. 
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Fig 4. 28 Exposure of pdf>Q128 to light/dark cycles during development heightens the effects of 

constant warm or cool temperatures on its activity consolidation. 

(a-f) The between-regime comparisons of the mean percentage rhythmicity across AWs (a, d), the 

mean rhythm robustness in AW1 (b, e) and the mean activity consolidation ‘r’ across age (c, f) 

comparing DD23toDD23 with LD23toDD23 (a-c) and DD29toDD29 with LD29toDD29 (d - f).  All 

other details are like Fig 4.7 and 4.24.  Regime colour codes: cyan, DD23; blue, LD23toDD23; rust, 

DD29; brown, LD29toDD29.  
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4.3.14 Exposure of pdf>Q128 to adult-specific, but not development-restricted 

constant warm temperatures restores the early-age activity rhythms and improves 

sLNv PDF 

So far, we have seen that exposure of pdf>Q128 to constant warm temperatures rescues early-age 

behavioural rhythmicity.  Since the life stages of holometabolous insects are differentially 

sensitive to temperature, determine the degree of temperature acclimation response and affects 

the spontaneous activity levels (Kingsolver et al., 2011; MacLean et al., 2017), I investigated 

whether this rescue is dependent on the time at which flies experience warm temperatures. 

Specifically, I asked whether development-specific or adult-restricted warm temperature 

exposure is sufficient to rescue the activity rhythms of pdf>Q128. 

pdf>Q128 flies in DD29toDD23 showed arrhythmic activity/rest across AWs (Fig 4.29a), with 

rhythmicity and activity consolidation being significantly lower than most controls (Fig 4.29b, c). 

Thus, development-specific exposure of pdf>Q128 to warm temperatures does not rescue its 

arrhythmic activity rhythms as adults in DD23. 

pdf>Q128 experiencing relatively warm constant temperature of 29°C in DD only as adults were 

rhythmic in AW1, like controls (Fig 4.30a,b).  This rhythmicity was not sustained over later ages, 

where it declined significantly compared to AW1 and when compared to age-matched controls.  

For about 16d, pdf>Q128 also showed activity consolidation like most controls (Fig 4.30c).  At 

certain ages during AW2, w1118 and pdfGal showed significantly better consolidation than 

pdf>Q128 and controls Q128 and Q0.  However, the rhythmic pdf>Q128 flies in AW1 still had 

weaker rhythms than pdf>Q0 and w1118 and those in AW2 than all controls (Fig 4.30d).  Rhythmic 

pdf>Q128 flies in AW1 had >24h periods, significantly longer than Q128 and w1118 (Fig 4.30e).  

Thus, exposure to warm temperatures only as adults rescues free-running activity rhythms of 

pdf>Q128 by restoring its early-age rhythmicity and activity consolidation (over a prolonged 

duration), but not rhythm robustness.  
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Fig 4. 29 pdf>Q128 flies in DD29to23 are arrhythmic and show poor activity consolidation. 

(a) Representative double-plotted actograms for adult flies in DD23 showing activity data for 21d (age 

3d-23d).  All other details are the same as in Fig 4.1.  Symbols represent statistically significant 

differences: coloured * of that coloured genotype from all others, coloured # of that genotype from all 

others except Q128, coloured £ from other genotypes except Q0, coloured § from all others except 

pdfGal, and coloured $ between AWs for a genotype.  Coloured ^ near an error bar of a data point 

indicates a difference between the respective-coloured genotype and the data-point genotype.  The 

number of symbols represents statistical significance: single p<0.05, double p<0.01 and triple 

p<0.001.  Error bars are SEM. 
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Fig 4. 30 pdf>Q128 flies in DD23to29 are rhythmic during the early age window with control-like 

activity consolidation. 

(a) Representative double-plotted actograms for adult flies in DD29 showing activity data for 21d (age 

3d-23d).  All other details are the same as in Fig 4.1.  Symbols represent statistically significant   
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difference: coloured * of that coloured genotype from all others or indicated ones and coloured $ 

differences between AWs for that coloured genotype at single p<0.05, double p<0.01 and triple 

p<0.001.  Coloured ^ near an error bar of a data point indicates a difference between the respective-

coloured genotype and the data-point genotype.  Most pdf>Q128 flies in AW3 were arrhythmic, and 

the genotype is excluded from the robustness (d) and period (e) statistics for AW3.  Error bars are 

SEM. 

Like pdf>Q128 in DD29, those in DD23toDD29 had significantly reduced PDF+ sLNv soma 

numbers than pdf>Q0 from 3d upwards, but the mean was around three till 7d (Fig 4.31a, b left).  

The numbers at 16d and 23d were significantly diminished than earlier ages (Fig 4.31b left).  The 

between-genotype differences were also observed in the shapes of PDF+ sLNv distribution from 

3d onwards (Fig 4.32 left).  Like the pdf>Q128 in DD29 (Fig 4.22), many hemispheres of those 

in DD23toDD29 also exhibited ≥3 PDF+ sLNv up to 9d (>90% at 3d and 5d and ≥80% at 7d and 

9d) (Fig 4.32left), which was different from the 25%  hemispheres at 16d and 23d (p<0.001, 

Fisher’s exact tests and BH procedure).  The PDF+ lLNv soma numbers and their distribution 

shapes were similar between genotypes across age (Figs 4.31a, b right, 4.32 right).  Thus, adult-

restricted exposure to high temperatures, following low developmental temperatures, suppresses 

PDF loss from the sLNv soma in young flies. 
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Fig 4. 31 pdf>Q128 under DD23toDD29 show enhancement in PDF+ sLNv soma numbers. 

(a) Representative images of the adult fly brains under DD23toDD29 stained for PDF (green) and 

HTT (magenta) in LNv at 3d, 7d and 23d for pdf>Q0 (left panel-sets) and at 3d, 7d, 16d and 23d for 

pdf>Q128 (right panel-sets).  Indicated in the images are sLNv soma (→ arrows), lLNv soma (> 

arrowheads), diffuse expHTT (Ψ psi), diffuse+inclusions expHTT (Ұ), and expHTT inclusions (« 

double arrowheads).  Scale bars are 10 µm.  (b) The mean number of PDF+ sLNv soma (left) and lLNv 

soma (right) across age.  Coloured symbols indicate significant differences, * for age-matched, inter-

genotype differences and $ for differences between ages of the corresponding-coloured genotype at * 

p<0.05, ** p<0.01, *** p<0.001.  nd, not different.  Error bars are SEM.  
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Fig 4. 32 The frequency distribution of PDF+ sLNv soma numbers are similar between genotypes 

only up to 1d under DD23toDD29. 

Frequency distribution of the proportion of hemispheres of pdf>Q0 and pdf>Q128 in DD23toDD29 

with 0 to 5 PDF+ LNv soma numbers (sLNv - left and lLNv - right).  Coloured * indicates significantly 

different distribution shapes between age-matched genotypes at p<0.05.  NA, not applicable.  
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PER+ sLNv and lLNv soma numbers were significantly reduced in 7d pdf>Q128 compared to 

pdf>Q0 in DD23toDD29 (Fig 4.33a top, b).  This decline was also mimicked by the significantly 

differing shapes of the distributions between the two genotypes (Fig 4.33c).  ~42% of pdf>Q128 

hemispheres had ≥3 PER+ sLNv, while ~65% had ≥3 PER+ lLNv (Fig 4.33c).  Further, 7d 

pdf>Q128 showed no oscillation in the sLNv PER intensity, while controls showed a clear 

oscillation (Fig d top).  However, PER in the lLNv of pdf>Q128 showed a low amplitude 

oscillation (Fig d bottom).  Thus, exposure of pdf>Q128 to DD23 during development did not 

restore PER oscillations in the sLNv of young adults in DD29. 
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Fig 4. 33 pdf>Q128 flies in DD23toDD29 show loss of both PER and its oscillations from the sLNv. 

(a) Representative images of 7d-old adult fly brains of pdf>Q0 (left) and pdf>Q128 (right) in 

DD23toDD29 stained for PER (cyan hot) and PDF (green) in LNv at CT23 (top) and CT11 (bottom).  

sLNv soma (→ arrows), lLNv soma (> arrowheads) and PDF- PER+ 5th sLNv are   
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indicated.  Scale bars are 10 µm.  (b) The mean number of PER+ sLNv soma and lLNv soma at CT23.  

* indicates age-matched differences between genotypes.  (c) Frequency distribution of the proportion 

of hemispheres having 0 to 5 PER+ LNv soma: sLNv soma (top) and lLNv soma (bottom) in 7d-old 

flies at CT23.  * indicates significantly differing shapes of distribution between genotypes.  (d) For 

the two genotypes, the quantification of PER intensity at CT23 and CT11 in sLNv (top) and lLNv 

(bottom).  Differences between time points CT23 and CT11 are represented by # (cyan) for pdf>Q0 

and # (red) for pdf>Q128.  Coloured * represents the difference between genotypes at that time point.  

Statistical significance is at single-symbol p<0.05, double-symbol p<0.01, and triple-symbol p<0.001.  

Error bars are SEM. 

The proportion of hemispheres with different expHTT forms in LNv changed significantly with 

age, with a predomination of Diff- and Diff+Inc-enriched LNv at early ages and a near complete 

domination of Inc-enriched LNv at later ages (Fig 4.34a top).  Proportions of hemispheres 

dominated by Diff-enriched LNv relative to Inc-enriched LNv were significantly higher at young 

ages (L3, 1d for sLNv and 1d, 3d for lLNv) than subsequent ages where nearly all the hemispheres 

had Inc-enriched LNv (Fig 4.34a middle).  The hemisphere proportions with Diff+Inc-enriched 

LNv relative to Inc-enriched LNv also declined significantly with age (after 1d for sLNv and after 

3d for lLNv) (Fig 4.34a bottom).  Both expHTT inclusion numbers and size were generally 

comparable across age for pdf>Q128 in DD23toDD29 (Fig 4.34b). 
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Fig 4. 34 The proportion of hemispheres dominant in an expHTT form in the LNv of pdf>Q128 

under DD23toDD29 changes from diffuse-rich to inclusion-rich with age. 

(a) The proportion of hemispheres dominated by different expHTT forms in sLNv (left) or lLNv (right) 

is plotted against age for pdf>Q128 in DD23toDD29 to describe the between-hemispheres distribution 

of predominant expHTT forms.  These are plotted for all expHTT forms (top) or significantly different 

pair-wise comparisons (middle and bottom).  $ indicates significant changes in the relative proportions 

of hemispheres across age for all expHTT forms (top) or pair-wise expHTT forms between specific 

ages (middle and bottom).  NA, not applicable; nd, not different.  At the bottom of some bars, numbers 

represent the mean number of PDF+ LNv detected at that age.  (b) Comparison of mean inclusion 

number per hemisphere (top) and mean inclusion size per hemisphere (bottom) for pdf>Q128 in 

DD23toDD29 across age.  Significant differences between ages are $ p<0.05, $$ at p<0.01 and $$$ 

p<0.001.  Error bars are SEM. 
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4.3.15 Adult-restricted upshift to warm temperatures rescues early-age rhythms of 

pdf>Q128 only when the temperature experienced as adults is a warm 29°C 

I then asked whether the magnitude of the upshift and the lower- and upper limits of the 

temperature upshift influence the early-age rhythm rescue of pdf>Q128 seen under exposure to 

adult-restricted warm temperatures.  As seen earlier, exposure of pdf>Q128 to DD21toDD25 did 

not rescue activity rhythms (Fig 4.9 a-c ).  However, with the same 4°C magnitude of temperature 

difference, but with the warm temperatures upon upshift being 29°C, most of the pdf>Q128 flies 

in DD25toDD29 were rhythmic in AW1 and comparable to controls (Fig 4.35a, b).  Their 

rhythmicity declined dramatically in the subsequent AWs.  Nevertheless, this improvement in 

rhythmicity of pdf>Q128 did not translate to robustness and ‘r’, which were significantly lower 

than most controls (Fig 4.35c, d).  Thus, the early-age rhythm rescue of pdf>Q128 upon 

temperature upshift depends on the upper limit rather than the magnitude of the upshift. 

Comparing the three upshift regimes where flies were exposed to higher temperatures as adults 

relative to what they experience during development, pdf>Q128 adults experiencing an upshift 

to warm temperatures of 29°C (DD25toDD29 and DD23toDD29) showed higher rhythmicity than 

those experiencing an upshift to ambient temperatures of 25°C (DD21toDD25) in AW1 (Fig 4.35e 

middle).  In AW2, though the rhythmicity declined, there were still significantly more rhythmic 

pdf>Q128 flies in DD23toDD29 than those in DD21toDD25 or DD25toDD29 (Fig 4.35e middle).  

Rhythmic pdf>Q128 flies in DD23toDD29 also had more robust rhythms than those in 

DD25toDD29 (Fig 4.35g).  These observations suggest that the magnitude of temperature upshift 

also determines the extent of rescue: the more significant the magnitude, the greater the rhythm's 

power and the longer the rhythmicity duration.  The activity consolidation of pdf>Q128 in 

DD25toDD29 and DD23toDD29 was also significantly higher than in DD21toDD25 (Fig 4.35f 

middle).  Controls had comparable rhythmicity and nearly similar robustness between regimes 

(Fig 4.35e, g).  However, their r-values differed between regimes; flies in DD21toDD25 had 

lower ‘r’ than those in DD25toDD29 and DD23toDD29 for Q128 and pdfGal.  For pdf>Q0 and 

pdfGal flies, ‘r’ in DD25toDD29 was more significant than in DD23toDD29 at a few ages (Fig 

4.35e).  So, the improved rhythmicity of pdf>Q128 upon adult-restricted exposure to 29°C is an 
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effect of warm temperatures during recording consolidating the flies’ activity, irrespective of the 

genotype.  Despite both regimes having a 4°C temperature upshift, the rhythmicities of pdf>Q128 

in DD25toDD29 differed from those in DD21toDD25, suggesting that the flies must be exposed 

to warm temperatures as adults during recording for the temperature upshift to restore 

pdf>Q128’s activity rhythms.  As a result, the degree to which the temperature upshifts facilitate 

the rhythmicity of pdf>Q128 depends on both the magnitude and the upper bound of the upshift. 

  



329 
Chapter 4 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Fig 4. 35 pdf>Q128 exposed to temperature upshifts as adults show early-age rhythms with well-

consolidated activity only when the adults experience warm temperatures during recording. 

(a) Representative double-plotted actograms for adult flies in DD25toDD29 showing activity data for 

21d (age 3d-23d).  (b-d) Plots for rhythmicity (b), activity consolidation ‘r’ (c) and   
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mean robustness (d).  Symbols represent statistically significant differences: coloured * of that 

coloured genotype from all others or indicated ones in an AW, and coloured $ between AWs for a 

genotype.  Coloured ^ near an error bar of a data point indicates a difference between the respective-

coloured genotype and the data-point genotype.  All other details are the same as in Fig 4.1.  (e-g) The 

between-regime comparisons of the percentage rhythmicity (e) and the mean activity consolidation ‘r’ 

(f) plotted against AWs (or age) and the mean rhythm robustness at AW1 (g) for pdf>Q0, pdf>Q128 

and Q128.  An additional genotype pdfGal is shown for ‘r’ (f).  All other details are like Fig 4.7.  

Regime colour codes: light purple, DD21toDD25; dark grey, DD25toDD29; cyan, DD23to29. 

4.3.16 Acute exposure to warm temperatures as adults is not sufficient to rescue 

activity rhythms of pdf>Q128  

I wanted to know whether the duration of constant warm temperatures as adults is vital for the 

early-age rhythm rescue of pdf>Q128 seen upon adult-restricted temperature upshift.  Instead of 

the adult-restricted chronic warm temperature exposure, flies in DD23 were exposed to a short 

burst (48h) of warm temperatures termed ‘acute DD29’ either during 2d-3d or 7d-8d of age.  Most 

of these pdf>Q128 were, however, arrhythmic across AWs and regimes (Fig 4.36a- c) and had 

low ‘r’ than all controls barring Q128 (Fig 4.36d-e), which also showed lower rhythmicity and 

‘r’ than most controls across age (Fig 4.36b-e).  Consequently, pdf>Q128 and control flies that 

experienced acute DD29 did not differ from their counterparts in DD23 in rhythmicity or activity 

consolidation (Fig 4.36 f, g).  The lack of rhythm rescue upon acute exposure to warm 

temperatures as adults indicate that the rescue of early-age activity rhythms of pdf>Q128 on 

upshift to warm temperatures requires long-term or chronic exposure to warm temperatures as 

adults. 
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Fig 4. 36 Exposure of pdf>Q128 to short durations of warm temperatures as adults does not rescue 

behavioural rhythms. 

(a) Representative double-plotted actograms for adult flies in acute DD29 at 2-3d (top) and 7-8d 

(bottom) showing activity data for 21d (age 3d-23d).  (b-e) Plots for rhythmicity (b, c) and   
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activity consolidation ‘r’ (d, e) for the within-regime comparisons in acute DD29 at 2-3d (left) and 

acute DD29 at 7-8d (right).  Symbols represent statistically significant differences: coloured * of that 

coloured genotype from all others or indicated ones in an AW, and coloured $ between AWs for a 

genotype.  Coloured ^ near an error bar of a data point indicates a difference between the respective-

coloured genotype and the data-point genotype.  All other details are the same as in Fig 4.1.  (f-g) The 

between-regime comparisons of the percentage rhythmicity (f) in AW1 and AW2 and the mean 

activity consolidation ‘r’ (g) across age for each of the three genotypes.  All other details are like Fig 

4.7.  Regime colour codes: cyan, DD23; orange, acute DD29 at 2-3d; purple, acute DD29 at 7-8d. 

4.3.17 The rescue of early-age activity rhythms of pdf>Q128 by adult-restricted 

upshift to warm temperatures is not countered by cyclic light or constant light 

during development 

Considering the differential effect of light on circadian neurodegenerative features (documented 

in Chapter 3), I investigated if developmental light exposure modifies the early-age rhythm rescue 

in adult pdf>Q128 seen upon adult-restricted upshift to warm temperatures.  Flies experienced 

LD23 or LL23 during development and then DD29 as adults.  The LL23toDD29 experiment also 

tests whether developmental clocks are required for the adult-restricted warm-temperature-

mediated rescue of behavioural rhythms in the pdf>Q128 young.  pdf>Q128 in LD23toDD29 and 

LL23toDD29 were rhythmic like their within-regime controls in AW1 (Fig 4.37a, b, e).  The 

mean rhythmicity of pdf>Q128 declined in AW2 and was significantly lower than that of controls 

in both regimes (Fig 4.37b, e).  Though rhythmicity of pdf>Q128 in LD23toDD29 was control-

like, its activity consolidation was lower compared to at least one relevant control from 6d 

onwards (Fig 4.37c) and robustness less than all controls in AW1 (Fig 4.37d).  pdf>Q128 in 

LL23toDD29 showed improved activity consolidation like controls pdf>Q0  and w1118 up to 9d, 

beyond which it declined from only pdf>Q0 (Fig 4.37f).  Q128 control showed a decline in 

activity consolidation till 8d than other controls and even from pdf>Q128 up to 7d.  However, 

pdf>Q128 in LL23toDD29 also showed weaker rhythms than most controls in AW1 (Fig 4.37g). 
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Fig 4. 37 pdf>Q128 flies in LD23toDD29 and LL23toDD29 are rhythmic at the early age window. 

(a) Representative double-plotted actograms for adult flies in LD23toDD29 (top) and those in 

LL23toDD29 (bottom) showing activity data for 21d (age 3d-23d).  Placed above the actograms are   
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grey and white bars (top) and white bars (bottom) depicting the light regimes during development, 

light/dark cycles (top) and constant light (bottom), respectively.  (b-g) Plots for mean rhythmicity (b, e), 

activity consolidation ‘r’ (c, f), and mean robustness (d, g) for flies in LD23toDD29 (b, c, d) and those in 

LL23toDD29 (e, f, g).  AW3 (or ages 17-23d) are not included in the statistical analysis for LL23toDD29 

due to very few surviving flies; fly deaths by AW3 are also cause for gaps in the LL actograms (a bottom).  

All other details are like Fig 4.1. 

Comparing between regimes, the rhythmicity of pdf>Q128 in different regimes was similar across 

AWs, with most of the flies in AW1 being rhythmic in all three regimes (Fig 4.38b middle).  

However, their mean rhythmicities averaged over three experiments were significantly higher in 

DD23toDD29 than LD23toDD29 in AW2 and AW3 (Fig 4.38a middle).  Nevertheless, 

considering that only ~40% and ~27% of pdf>Q128 in DD23toDD29 were rhythmic in AW2 and 

AW3, respectively, and the margin of difference in the rhythmicities between the regimes were 

20% and 13% in the respective AWs, such statistical differences might not be of biological 

significance.  Controls pdf>Q0 and Q128 also were indistinguishable between regimes in their 

rhythmicities across AWs (Fig 4.38a, b).  The rhythm robustness of pdf>Q128 in LL23toDD29 

was lower than DD23toDD29 and LD23toDD29 in AW1; its control controls showed the opposite 

trend of having higher robustness in LL23toDD29 (Fig 4.38c).  Also, whether this slight 

difference in robustness of pdf>Q128 between regimes is of physiological consequence is 

debatable.  pdf>Q128 across age had comparable between-regime activity consolidation (Fig 

4.38d middle).  pdf>Q0 in LD23toDD29 had significantly better consolidation than its 

counterparts in other regimes at early ages (Fig 4.38d left) (pdfGal also shows a similar significant 

trend).  This higher ‘r’ of controls in LD23toDD29 can partly explain the significant difference 

of pdf>Q128’s ‘r’ from controls observed in LD23toDD29 (Fig 4.37c).  Q128 in LL23toDD29 

had poorer consolidation than other regimes (Fig 4.38d right), also reflected in the within-regime, 

between-genotype comparisons (Fig 4.37f).  Consequently, light exposure (cyclic or continuous) 

throughout development has minimal distinctive effects on the behavioural rhythmicity of 

pdf>Q128 young conferred by adult-specific warm temperatures.  Further, this restoration of 

early-age rhythms of pdf>Q128 does not seem to require functional circadian mechanisms during 

development, as evidenced by a rescue with LL23toDD29.  Unlike the absence of early-age 

rhythmicity seen with pdf>Q128 in  LDTCtoDD25, those in LD23toDD29 show a rhythm rescue, 

suggesting different underlying mechanisms mediating the early-age rhythm restoration in these 

two regimes, the former being sensitive to light and the latter being relatively less sensitive to 

light.  
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Fig 4. 38 pdf>Q128 experiencing warm temperatures during recording shows early-age rhythms, 

irrespective of the light conditions during development. 

(a-d) The between-regime comparisons of the mean percentage rhythmicity (a), percentage 

rhythmicity (b), the mean rhythm robustness (c) and the mean activity consolidation ‘r’ (d) plotted 

against AWs (or age) for pdf>Q0 (left), pdf>Q128 (middle) and Q128 (right).  The mean percentage 

rhythmicities are obtained by averaging over three experiments for DD23toDD29 and LD23toDD29 

(a).  The percentage rhythmicities of individual runs comparing the three regimes are plotted (b).  All 

other details are like Fig 4.7.  Regime colour codes: cyan, DD23toDD29; blue, LD23toDD29; yellow, 

LL23toDD29. 
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4.3.18 Exposure of pdf>Q128 to warm temperatures as adults are sufficient to delay 

arrhythmicity and improve activity consolidation 

I then compared the activity rhythms of flies in the four constant temperature regimes, constant 

cool or warm temperatures through all life stages and the temperature upshift or downshift as 

adults: constant cool (DD23), constant warm (DD29), temperature upshift as adults or adult-

restricted warm (DD23toDD29) and temperature downshift as adults or development-specific 

warm (DD29toDD23).  pdf>Q128 in both DD29 and DD23toDD29 showed significantly greater 

rhythmicity than those in DD23 and DD29toDD23 in AW1 (Fig 4.39a, middle).  In AW2, though 

the rhythmicities of pdf>Q128 in DD29 and DD23toDD29 decline compared to AW1, they still 

were higher than those in DD23, and those in DD23toDD29 were also higher than those in 

DD29toDD23.  Across AWs, the controls pdf>Q0 and Q128 in different regimes showed 

comparable rhythmicities between regimes. (Fig 4.39a).  The robustness of rhythms for all three 

genotypes differed in a certain manner between regimes: in AW1, pdf>Q128 in DD23toDD29 

had stronger rhythms than those in DD29 (Fig 4.39b middle), and controls in DD23toDD29 

exhibited more robust rhythms than those in at least one of the other regimes at AW1 and AW2 

(Fig 4.39b).  pdf>Q128 in DD23 and DD29toDD23 also showed poorer activity consolidation 

than those in DD29 and DD23toDD29 across most circadian ages (Fig 4.39c, middle).  

Interestingly, even controls in DD23, and to a lesser extent, those in DD29toDD23 showed lower 

activity consolidation than their counterparts in other regimes (Fig 4.39c top, bottom).  Such a 

temperature-dependent effect on the activity consolidation was evident with the Q128 background 

in DD23 across age, but to a lesser extent with those in DD29toDD23: from 8d to 19d (Fig 4.39c 

right).  Thus, overall, the experience of warm temperatures during development and as adults or 

only as adults improves the flies’ ability to consolidate their activity.  A point of note here is that 

though exposure to DD29 or DD23toDD29 improved ‘r’ across genotypes, this effect seems even 

more pronounced with pdf>Q128 for them to reach control-like levels of consolidation (Figs 

4.20c, 4.30c).  Another interesting finding is that the rhythmicity or ‘r’ of pdf>Q128 in DD29 did 

not differ from those in DD23toDD29, indicating that adult-restricted warm temperature exposure 

is adequate to delay pdf>Q128 behavioural arrhythmia.  Conversely, rhythm features did not 
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differ between pdf>Q128 in DD23 and those in DD29toDD23, whereas DD29 provided them 

with a significant rhythm rescue over DD29toDD23, suggesting that relatively cooler 

temperature as adults is detrimental to activity rhythms of pdf>Q128.  Further, the 

recording temperature experienced by adult pdf>Q128 flies determines rhythmicity, where 

adult-restricted warm temperatures favour rhythms, whereas adult-restricted relatively 

cooler temperatures do not.  Crucially, warm temperatures experienced by adult pdf>Q128 

flies improve their activity rhythms by increasing their ability to consolidate daily locomotor 

activity.  Since the young pdf>Q128 in DD23toDD29 had more robust rhythms than those in 

DD29, in terms of restoration of early-age activity rhythms, DD23toDD29≥DD29> 

DD29toD23=DD23. 
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Fig 4. 39 pdf>Q128 that experience warm temperatures as adults show early-age rhythms with well-

consolidated activity across age. 

(a-c) The between-regime comparisons of the mean percentage rhythmicity (a), the mean rhythm 

robustness (b), and the mean activity consolidation ‘r’ (c) plotted against AWs (or age) for pdf>Q0 

(left), pdf>Q128 (middle) and Q128 (right).  An additional genotype pdfGal is shown for ‘r’ (c).  

Symbols represent statistically significant differences: coloured * of that coloured regime from all 

others or indicated ones and coloured $ of between-AW comparisons for that regime.  For ‘r’, coloured 

^ near an error bar of a data point indicates a difference of the respective-coloured regime from the 

data-point regime.  Regime colour codes: cyan, DD23; rust, DD29, brown, DD23toDD29 and green, 

DD29toDD23.  The number of symbols represents statistical significance: single p<0.05, double 

p<0.01 and triple p<0.001.  Error bars are SEM. 
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4.3.19 Exposure to warm temperatures rescues PDF loss from sLNv soma in young 

pdf>Q128 

The circadian proteins PDF and PER in the LNv of pdf>Q128 were then compared between those 

in a regime that lacked rhythmic activity, namely, DD23 and those in regimes that provided early-

age rhythm rescue, namely, DD29 and DD23toDD29.  pdf>Q128 as larvae showed on an average 

~4 PDF+ sLNv soma when reared in either DD23 or DD29 (Fig 4.40a left).  However, their mean 

numbers and distributions at L3 differed significantly (Fig 4.40a left, 4.40b left).  PDF+ sLNv 

soma numbers of pdf>Q128 in different regimes were comparable between regimes up to 5d into 

adulthood (Fig 4.40a middle).  Beyond 5d, those in DD23 declined, becoming significantly lower 

than those in DD29 and DD23toDD29 at 7d and 9d (Fig 4.40a middle).  This decline was reflected 

in the differing distribution shapes of pdf>Q128 in the three regimes, but only at 9d (Fig 4.40b 

left).  Nevertheless, at 7d and 9d, only ~45% of the hemispheres in DD23 had ≥3 PDF+ sLNv, 

contrasting from ~85% of those in DD29 and DD23toDD29 (p<0.05 at 7d and p<0.01 at 9d, 

Fisher’s exact tests and BH procedure) significantly.  By 16d, the PDF+ sLNv numbers had 

declined in those in DD29 and DD23toDD29, like those in DD23 (Fig 4.40a middle).  pdf>Q128’s 

PDF+ lLNv soma numbers and the shape of their distributions were largely comparable between 

regimes across age (Fig 4.40a right, b right).  So, relatively warm temperatures delay the loss of 

PDF from sLNv. 

PER loss in the LNv of pdf>Q128 was similar between DD23 and DD23toDD29 (Fig 4.40c, d).  

Thus, rearing and maintaining pdf>Q128 in relatively warm temperatures or exposing them to 

high temperatures only as adults rescues early-age behavioural arrhythmicity and slows down the 

loss of PDF from the sLNv, without retarding PER loss. In terms of PDF preservation in the sLNv, 

DD29=DD23toDD29>DD23.  And, regarding the preservation of PER, DD23toDD29=DD23.  

Although pdf>Q128 in DD23 did show a dampened PER oscillation in the sLNv (Fig 4.18d top), 

and those in DD23toDD29 did not (Fig 4.33d top), this low-amplitude LNv PER oscillation in 

DD23 may not amount to be of physiological consequence to sLNv functionality as the 

behavioural rhythms of pdf>Q128 were not restored in DD23.  Thus, based on the finding that 

DD23 does not rescue early age rhythmicity of pdf>Q128 and hastens the loss of PDF from sLNv 

relative to DD29 and DD23toDD29, it seems to offer the least neuroprotection.  
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Fig 4. 40 Warm temperatures slow down PDF loss, but not PER loss, from the sLNv of pdf>Q128. 

(a) Mean PDF+ sLNv soma numbers in pdf>Q128 in DD23 and in DD29 at L3 and 1d (left).  The 

mean number of PDF+ sLNv soma (middle) or lLNv soma (right) in pdf>Q128 across age maintained 

in DD23, DD29 and DD23toDD29.  (b) Frequency distribution of the proportion of hemispheres of 

pdf>Q128 with 0 to 5 PDF+ LNv soma numbers (sLNv - left and lLNv - right) in the three regimes 

across age.  NA, not applicable.  Coloured multiple * indicates a significantly different distribution   
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shapes between regimes, with the first colour of the reference regime and the subsequent colours of 

regimes differing from the reference at p<0.05.  (c) The mean PER+ LNv soma numbers in 7d-old 

pdf>Q128 in DD23 and DD23toDD29. (d) Frequency distribution of the proportion of hemispheres 

of pdf>Q0 (top-sets) or pdf>Q128 (bottom-sets) with 0 to 5 PDF+ LNv soma numbers (sLNv - top 

and lLNv - bottom) in the two regimes.  * indicates significantly different distribution shapes.  

Significant differences are at * p<0.05, ** at p<0.01 and *** p<0.001.  Error bars are SEM. 

4.3.20 Adult-restricted exposure of pdf>Q128 to warm temperatures dramatically 

reduces the expHTT inclusion load and is the most neuroprotective 

I then asked if the expHTT forms in LNv of pdf>Q128 differed between the regimes DD23, DD29 

and DD23toDD29.  The trend of hemispheres dominated by Diff-enriched LNv at a very early 

age and near-complete domination by Inc-enriched LNv at subsequent ages was a common 

observation across regimes (Fig 4.41a top, b top).  The relative proportions of hemispheres of 

pdf>Q128 enriched with different expHTT forms in the sLNv were also similar between regimes 

across most ages, except at 3d (Fig 4.41a top).  Specifically, at 3d, while all the hemispheres in 

DD29 and DD23toDD29 had Inc-enriched sLNv, only ~43% of the hemispheres in DD23 had 

Inc-enriched sLNv, whereas the other 48% had Diff+Inc enriched sLNv (Fig 4.41a top, third-

panel).  Those in DD23 had significantly fewer hemispheres of Inc-enriched sLNv relative to 

Diff+Inc-enriched sLNv than those in DD29 and DD23toDD29 (Fig 4.1a bottom).  Thus, unlike 

the other two regimes, DD23 allowed for a more prolonged presence of hemispheres with 

Diff+Inc-enriched sLNv, thereby putting off the dominance of hemispheres with Inc-enriched 

sLNv. 

Contrary to the sLNv, the relative proportions of pdf>Q128 hemispheres enriched with different 

expHTT forms in lLNv differed significantly across most ages, except 1d (Fig 4.41b top).  

However, the pair-wise comparisons showed significant between-regime differences only at 3d 

and 5d (Fig 4.41b, second-, third-, bottom-rows).  A significantly higher proportion of pdf>Q128 

hemispheres in DD23 and DD23toDD29 were dominated by Diff-enriched lLNv relative to Inc-

enriched lLNv than those in DD29 (Fig 4.41b second-row).  Further, the proportion of pdf>Q128 

hemispheres with Inc-enriched lLNv relative to the Diff+Inc-enriched lLNv was more significant 

in DD29 than those in DD23toDD29 (Fig 4.41b, third-row, second-panel).  The above 

observations posit DD23 and DD23toDD29 as regimes that promote Diff-enriched lLNv at early 

ages when DD29 substantially promotes Inc.  However, the proportion of hemispheres of Diff-
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enriched lLNv relative to Diff+Inc-enriched lLNv was higher in DD23 than in DD23toDD29 at 

3d (Fig 4.41b bottom).  This finding suggests that DD23 favours Diff-enriched lLNv to a greater 

extent than DD23toDD29.  Also, like in the case of sLNv, hemispheres in DD23 showed an 

extended presence of Diff+Inc-enriched lLNv compared to those in DD29 and DD23toDD29 (Fig 

4.41b top).  There was a significantly higher proportion of hemispheres of Diff+Inc-enriched 

lLNv relative to the Inc-enriched lLNv in DD23 at 5d compared to those in DD29 and 

DD23toDD29 (Fig 4.41b, third-row, third-panel).  Thus, concerning expHTT forms in the LNv 

at early ages, DD23 seems to favour significantly Diff, DD29 favours Inc, while DD23toD29 

seems intermedial.  Thus, a possible ranking order for promoting domination by hemispheres of 

Inc-enriched LNv is DD29>DD23toDD29>DD23. 

Both inclusion numbers and sizes were comparable between pdf>Q128 in DD23 and those in 

DD29 at 1d (Fig 4.41c).  Intriguingly, those in DD23 showed more inclusions than those in other 

regimes across most ages.  The inclusion numbers for those in DD23 and, to a limited extent, for 

those in DD29 (3d versus subsequent ages) also increased significantly with age (Fig 4.41d left).  

For pdf>Q128 in DD23toDD29, the inclusion numbers did not change with age.  Even for aged 

flies at 23d, those in DD23toDD29 still had fewer inclusions (Fig 4.41d left).  Thus, regarding 

reducing the number of inclusions, DD23toDD29=DD29>DD23.  The inclusion sizes were 

mostly comparable between pdf>Q128 in different regimes across age; those in DD23 had more 

minor inclusions from those in other regimes only at 5d (Fig 4.41d, right). 

Based on the ability to decrease the number of inclusions, DD23toD29=DD29>DD23.  

However, based on the ability to suppress the early-age dominance by hemispheres having 

Inc-rich LNv, DD23>DD23toDD29>DD29, with DD23 largely favouring Diff forms.  However, 

pdf>Q128 in DD23 also had the most significant number of inclusions across age, suggesting that 

the few LNv that are Inc-enriched (especially at the early ages) are sufficiently dense with 

numerous Inc, and along with the inclusions found in the vicinity of the LNv, contribute to 

pdf>Q128’s enhanced inclusion numbers in DD23.  Thus, regarding diminishing the inclusion 

load, DD23toDD29>DD29>DD23.  Further, the warm-temperature-mediated suppression of 

PDF loss from the sLNv of young HD flies compared to cooler temperatures is associated with 

fewer inclusions, suggesting that sLNv functionality is inversely proportional to inclusion 

numbers.  
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Fig 4. 41 pdf>Q128 in DD23 show greater domination by hemispheres with diffuse forms enriching 

LNv at early ages and higher inclusion numbers across ages than those in DD29 and DD23toDD29.  
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(a) and (b) The proportion of hemispheres dominated by different expHTT forms in sLNv (a) or 

lLNv (b) is plotted for pdf>Q128 comparing DD23 and DD29 at various ages (L3,1d) and with 

DD23toDD29 (at 3d, 5d, 7d for sLNv and lLNv and 9d for lLNv).  These are plotted for all 

expHTT forms (top) or significantly different pair-wise comparisons (a - bottom, b - second, third 

and bottom rows).  * indicates significant changes in the relative proportions of hemispheres for 

all expHTT forms between regimes for an age (top) or pair-wise expHTT forms between regimes 

for an age (a - bottom, b - second, third and third and bottom rows).  NS, not significant.  At the 

bottom of some bars, numbers represent the mean number of PDF+ LNv detected for that regime 

at that age.  (c) Comparison of mean inclusion number and size between DD23 and DD29 for 1d-

old pdf>Q128.  (d) Comparison of mean inclusion number per hemisphere (left) and mean 

inclusion size per hemisphere (right) between DD23, DD29 and DD23toDD29 across age for 

pdf>Q128.  Coloured * indicates a significant age-matched difference between that regime and 

other regimes or indicated regime, and coloured $ indicates differences between that regime from 

indicated age(s) or all other ages.  Symbols represent statistical differences: single p<0.05, double 

p<0.01 and triple p<0.001.  Error bars are SEM. 

In summary, DD23 does not rescue early-age rhythmicity and hastens the loss of PDF from the 

sLNv, suggesting that it is the least neuroprotective.  DD29 and DD23toDD29 confer early-age 

rhythms, delay loss of PDF+ sLNv and reduce expHTT inclusions better than DD23, thus, 

supporting DD29=DD23toDD29>DD23 in neuroprotection.  Nevertheless, DD23toDD29 has a 

more significant impact than DD29 on the strength of the activity rhythms and the inclusion load 

of pdf>Q128, hence offering better suppression of neurotoxicity.  Accordingly, on the capacity 

for circadian neuroprotection, DD23toDD29>DD29>DD23.  Thus, adult-restricted warm 

temperatures are sufficient to delay most circadian neurodegenerative symptoms of pdf>Q128.  

In conclusion, temperature-based environmental interventions moderate the severity of HD-

induced circadian deficits. 
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4.3.21 Adult-restricted warm temperatures confer greater neuroprotection to HD 

flies than developmental temperature cycles 

I then compared the potency of the two differently acting temperature regimes, the 

developmental-TC and the adult-restricted warm temperature upshift, to relieve expHTT-

perpetrated pathogenicity.  Both regimes were comparable in the extent of rhythmicity restored 

in pdf>Q128 (Fig 4.42a ).  Both regimes improved the activity consolidation of pdf>Q128 

compared to its controls in the respective temperature regimes (Figs 4.7b and 4.39c).  Since warm 

temperatures enhanced activity consolidation even in control genotypes across age (Fig 4.42b), it 

is not surprising to find that pdf>Q128 in DD23toDD29 showed significantly more consolidated 

activity than those in DDTCtoDD25 up to 16d (Fig 4.42b top-middle).  Further, in AW1, rhythmic 

pdf>Q128 in DD23toDD29 had significantly more resilient rhythms than those in DDTCtoDD25 

(Fig 4.42c).  Although both regimes delayed the loss of PDF from the sLNv soma of pdf>Q128 

compared to their control regimes (Figs 4.13a and 4.40a), those in DD23toDD29 had significantly 

more PDF+ sLNv soma than those in DDTCtoDD25 at 9d (Fig 4.43a top), suggesting a more 

enduring neuroprotection under DD23toDD29.  DDTCtoDD25 did modestly restore molecular 

clock PER oscillations to the sLNv of pdf>Q128 (Fig 4.4d), whereas DD23toDD29 did not (Fig 

4.33d), suggesting that early-age rhythm rescue in the latter occurs independent of PER-driven 

sLNv clocks.  However, PER+ sLNv soma numbers in pdf>Q128 under DD23toDD29 were 

significantly higher than those under DDTCtoDD25 at 7d (Fig 4.43b).  The frequency 

distributions of PER+ sLNv or the PDF+ sLNv of pdf>Q128 in the two regimes were comparable 

across age (Fig 4.43 c and d), except at 9d, when those in DD23toDD29 had significantly more 

hemispheres with ≥3 PDF+ sLNv relative to 0-2 PDF+ sLNv soma than those in DDTCtoDD25 

(p<0.01, Fisher’s Exact test) (Fig 4.43c).  Finally, pdf>Q128 under DD23toDD29 showed a 

slightly longer presence of hemispheres dominated by Diff- or Diff+Inc-enriched LNv relative to 

Inc-enriched LNv than those under DDTCtoDD25 (Fig 4.43e, see sLNv at 1d and lLNv at 3d).  

However, pdf>Q128 in DD23toDD29 had generally similar expHTT inclusion numbers (except 

at 3d) and sizes (except at 1d and 23d) compared to those in DDTCtoDD25 (Fig 4.43f).  Thus, 

DD23toDD29 delays the appearance of inclusions in the LNv of pdf>Q128 but does not 

dramatically alter inclusion features compared to DDTCtoDD25.  Overall, DD23toDD29 confers 

slightly longer and better neuroprotection than DDTCtoDD25 in combating expHTT-induced 

cellular toxicity and circadian dysfunction.  
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Fig 4. 42 pdf>Q128 in DD23toDD29 exhibit higher activity consolidation than in DDTCtoDD25. 

(a-c) The between-regime comparisons of the mean percentage rhythmicity (a), the mean activity 

consolidation ‘r’ (b), and the mean rhythm robustness in AW1 (c) plotted against AWs (or age) (a and 

b) for each genotype.  Regime colour codes: pink, DDTCtoDD25; cyan, DD23toDD29.  All other 

details are the same as in Fig 4.7. 
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Fig 4. 43 Exposure of pdf>Q128 to DD23toDD29 retarded neurotoxicity better than exposure to 

DDTCtoDD25. 

(a) Mean number of PDF+ sLNv soma (top) or lLNv soma (bottom) across age comparing pdf>Q128 

maintained in the DDTCtoDD25 with those in DD23toDD29.  (b) Mean PER+ sLNv soma and lLNv 

soma at 7d.  (c) Frequency distribution of the proportion of hemispheres of pdf>Q128 with 0 to 5   
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PDF+ sLNv soma numbers in the two regimes across age.  (d) Frequency distribution of the proportion 

of hemispheres of pdf>Q128 with 0 to 5 PER+ LNv soma numbers in the two regimes at 7d.  (e) The 

proportion of hemispheres dominated by different expHTT forms in sLNv (top panel sets) or lLNv 

(bottom panel sets) is plotted for pdf>Q128 comparing the two regimes at various ages.  The 

significantly different pair-wise comparisons are also shown.  NS, not significant; NA, not applicable.  

(f) The mean inclusion number per hemisphere (left) and mean inclusion size per hemisphere (right) 

of pdf>Q128 under the two regimes across age.  Regime colour codes: pink, DDTCtoDD25; cyan, 

DD23toDD29.  * indicates significant age-matched difference between the regimes at * p<0.05, ** 

p<0.01 and *** p<0.001.  Error bars are SEM. 

4.3.22 Remarks on the expHTT forms and their plausible range of toxicity 

In pdf>Q128 under standard conditions of DD25, the Diff form of expHTT appears early-on (L3, 

and dominates at 1d for sLNv and till 3d for lLNv), followed by Diff+Inc and Inc forms (at 3d 

for lLNv) and then near exclusively-Inc form (1d onwards for sLNv and 5d onwards for lLNv).  

Young pdf>Q128 flies have greater PDF+ and PER+ LNv soma (particularly sLNv) compared to 

older flies, which coincides with the lower proportions of Inc-enriched LNv.  Thus, age similarly 

affects the expHTT forms and sLNv circadian proteins of pdf>Q128: inclusions and loss of 

circadian proteins from the sLNv increase with age.  In most rescue regimes, the early-age 

rhythms are restored, which in many instances also accompanied a substantial enhancement of 

PDF+ (and PER+) sLNv soma numbers and dominance of non-Inc forms at early ages, thereby 

delaying Inc dominance.  These observations allude to two inferences.  First, the early ages are 

more amenable and responsive to neuroprotective strategies than the later ages.  Furthermore, 

more importantly, in most of the rescue regimes, the circadian improvements are accompanied by 

a delay in inclusion dominance concomitant with a prolonged presence and dominance by Diff 

form (and to a limited extent Diff+inc form) and a decline in Inc numbers, indicating that apart 

from age, a reduction in the Inc expHTT contributes to abating neurotoxicity.  Thus, Diff expHTT 

seems relatively more benign than Inc expHTT, and the above findings can be approximated onto 

the following toxicity scale: Diff <Diff+Inc<Inc. 
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4.3.23 Hsp70 is involved in the early-age rhythm rescue of pdf>Q128 by the adult-

restricted warm temperatures 

Adult-restricted warm temperatures emerged as the regime that provided the strongest alleviation 

of expHTT-induced circadian neurodegenerative features.  I questioned whether the rescue of the 

early-age rescue behavioural rhythms of pdf>Q128 upon upshift to warm temperatures entails 

Hsp70 because it is upregulated under heat stress, is essential for thermotolerance, and opposes 

neurodegenerative effects of expanded polyQ proteins (Gong and Golic, 2006; Bettencourt et 

al., 2008).  Since the rhythm rescue was confined to AW1, the statistical analyses of rhythmicity 

were restricted to AW1, and the daily ‘r’ of each fly was averaged across eight days and then 

across flies to obtain an 8d mean or ‘pooled r’.  In DD23toDD29, as expected, pdf>Q128 had 

high rhythmicity (Figs 4.44 top, 4.45a top); both its rhythmicity in AW1and mean ‘pooled r’ were 

significantly higher than those in DD23 (Fig 4.45a top left and middle).  pdf>Q128 flies deficient 

in Hsp70, be it 1 copy (Hsp70Ba) or 2 copies (Hsp70A) or 3 copies (Hsp70A,70Ba) or 4 copies 

(Hsp70B) or all 6 copies (Hsp70A,70B) were arrhythmic (Fig 4.44) with a significantly lower 

rhythmicity (Fig 4.45a left) and ‘pooled r’ (Fig 4.45a middle) than pdf>Q128 in DD23toDD29 

and also from their respective background controls, the Q128DfHsp70s (except DfHsp70Ba, for 

which ‘pooled r’ of control Q128,DfHsp70Ba was comparable to that of pdf>Q128,DfHsp70Ba 

and lower than that of pdf>Q128 in DD23toDD29).  This finding suggests that Hsp70 contributes 

to the early-age rhythms of pdf>Q128 in DD23toDD29 since in the partial or complete absence 

of Hsp70, the early-age rhythm rescue of pdf>Q128 was abrogated.  Further, the observation that 

most of the control Q128,DfHsp70 genotypes were rhythmic (Fig 4.45a left) and their robustness 

in AW1 was higher than that of pdf>Q128 in DD23toDD29 (except for that of Q128;DfHsp70) 

(Fig 4.45a right), indicates that the loss of Hsp70 by itself does not overtly affect the free-running 

rhythms. 
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Fig 4. 44 pdf>Q128 in DD23toDD29 are arrhythmic without Hsp70. 

Representative double-plotted actograms for adult flies reared in DD23 and recorded in DD29 as 

adults for 21d (age 3d-23d).  Since many fly deaths were beyond 10d, many actograms show missing 

data or blanks.  All other details are the same as in Fig 4.1.  
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Fig 4. 45 Most pdf>Q128 flies lacking Hsp70 do not show rhythmic activity and have poor activity 

consolidation in DD23toDD29. 

(a) Percentage rhythmicity (left),  mean activity consolidation ‘r’ over eight days (middle) and rhythm 

robustness (right) in DD23toDD29 for pdf>Q128 with DfHsp70 arranged in the ascending order of the 

number of Hsp70 copies deleted, their respective Q128DfHsp70 controls and pdf>Q128 in DD23toDD29.  

pdf>Q128 in DD23 serves as a negative baseline control.  The statistical analyses are restricted to AW1 for 

rhythmicity and robustness.  (b) The percentage rhythmicity obtained by pooling samples across three  
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different experiments (left) and the mean ‘r’ (right) plotted against the Hsp70 copy number.  nd, not 

different, a.u, arbitrary unit.  * indicates statistically significant differences between genotypes at * p<0.05, 

** p<0.01 and *** p<0.001.  Error bars are SEM. 

pdf>Q128 in DD23 was taken as a negative control due to their near-complete lack of rhythmicity, 

and DD23 is also the appropriate temperature-regime control.  The percentage rhythmicities of 

most of the pdf>Q128,Hsp70 genotypes were similar to pdf>Q128 in DD23 (Fig 4.45a left), 

further supporting a role for Hsp70 in early age rhythmicity of pdf>Q128.  The only surprising 

exception was pdf>Q128,DfHsp70A,70B with a complete deletion of Hsp70, which showed 

higher rhythmicity than pdf>Q128 in DD23.  The ‘pooled r’ of the various pdf>Q128,DfHsp70 

genotypes, while being lower than pdf>Q128 in DD23toDD29, was still higher than pdf>Q128 

in DD23 (Fig 4.45a middle).  This observation that the Hsp70 deficient pdf>Q128 flies, which 

are poorly rhythmic in DD23toDD29 have a higher ‘pooled r’ than pdf>Q128 in DD23 (with 

intact Hsp70), again alludes to a consolidating effect of warm temperatures on the fly locomotor 

activity.  However, the persistence of this effect even in the Hsp70 deficient flies indicates that 

the synchronizing effect of warm temperatures on fly activity does not require Hsp70.  Overall, 

the involvement of heat-stress-inducible Hsp70 in the rescue of early-age behavioural rhythms of 

HD flies by adult-restricted warm temperatures suggests that Hsp70-mediated heat shock 

response (and enhancement of proteostatic mechanisms) may underly the rescue. 

Comparing the rhythm parameters against the Hsp70 copy number reveals an interesting pattern.  

pdf>Q128 with all 6 copies of the Hsp70 intact and those with complete deletion of Hsp70, both 

have better rhythmicity and ‘pooled r’ than many of their counterparts with intermediate copy 

numbers (Fig 4.45b).  pdf>Q128 having all 6 copies of Hsp70 (i.e. pdf>Q128 in DD23toDD29 

without any deficiencies) had significantly higher rhythmicity and ‘pooled r’ than its counterparts 

with Hsp70 deficiencies, regardless of the number of deletions.  pdf>Q128 lacking all 6 copies of 

Hsp70 had higher rhythmicity than those with 2, 4 and 5 copies of Hsp70 and higher ‘pooled r’ 

than those with 3 copies of Hsp70.  Thus, the free-running activity rhythm parameters show a 

somewhat J-shaped curve concerning the Hsp70 copy number.  A low copy number is mildly 

rhythm-promoting, and a high copy number is strongly rhythm-promoting, while intermediate 

copy numbers have the least positive effects.  Such a J-shaped dose-response curve with low-dose 

reduction and high-dose enhancement of effects (Cook and Calabrese, 2006) is an example of 

a hormetic curve.  However, it is most often reported in the context of adverse effects of a 

stressor/hormetic agent.  
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4.4 DISCUSSION 

4.4.1 Mechanisms of temperature-mediated retardation 

of expHTT-induced circadian dysfunction and 

neurotoxicity 
The key finding of this study that mild heating delays the neurotoxic effects of expHTT in flies 

strongly suggests that exposure to a stressor like heat may indeed improve flies’ ability to 

withstand and respond to a neurodegenerative stressor.  This study shows that temperature affects 

expHTT-induced cellular and behavioural circadian neurodegenerative properties in different 

ways and directions using combinations of environmental modulations: cycling and constant 

temperatures, developmental stage and (or) adult exposure, and developmental light presentation 

or deprivation.  These differences likely reflect the complex interplay of temperature, its nature 

of change (non-cyclic vs. cyclic, constant across development and adulthood vs. changing post-

eclosion, and the magnitude and direction of change), life stages, presence of light, physiology, 

and the specific phenotypic trait.  In the following sections, I will primarily discuss the phenotypes 

of the genotype pdf>Q128 under various environmental regimes.  So, unless otherwise specified, 

most discussion sections pertain to pdf>Q128. 

4.4.1.1 Developmental temperature cycles 

The exposure of pdf>Q128 to cycling temperatures of 12h:12h 29°C:21°C (warm/cold cycles in 

the absence of light) during development, followed by DD25 during adulthood, but not 

developmental constant warm (29°C) or constant cold (21°C) followed by DD25 as adults, 

rescues the early-age adult free-running rhythms.  This finding suggests that the developmental 

presence of temperature as an oscillating circadian signal (zeitgeber) is an essential aspect of the 

rescue.  The restoration of early-age adult activity rhythms on developmental exposure of 

pdf>Q128 to temperature cycles was accompanied by low-amplitude LNv PER oscillations with 

modest delay in loss of PDF from sLNv, suggesting a robust circadian component to the rescue.  

Furthermore, since LNv PER is known to be essential for rhythm strength (Delventhal et al., 2019; 

Schlichting et al., 2019b), under DDTCtoDD25, the restoration of early-age activity rhythms, 
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albeit of low robustness accompanied by low PER in the LNv also supports a circadian 

mechanism of rescue.  The effects of developmental TC on activity rhythms in adults were 

counteracted by constant light during development, again suggesting an underlying circadian 

rhythm.  Developmental-TC did not improve LNv PER levels or PER+ LNv numbers nor affect 

the expHTT forms in the LNv or inclusion features, suggesting that the LNv cellular health is not 

effectively revived.  With a weakly functioning sLNv, the central pacemakers of free-running 

rhythms and the early-age behavioural rhythms evoked by developmental TC suggest a circadian 

neuronal network-level reinforcement by cycling temperatures.  Thus, the developmental-TC 

mediated adult rhythm rescue seems driven by circadian mechanisms at the neuronal and circuit 

levels, depends on the temperature experienced as adults, and is opposed by light during 

development.  Additionally, temperature cycles must be present over the entire duration of 

development for early-age rhythmicity. 

The observation that the early-age adult activity rhythms of pdf>Q128 under developmental-TC 

also depend on the temperature experienced as an adult, with the experience of relatively optimal 

or warm temperatures as adults a requisite for rhythmicity, indicates that rhythmicity is also -

dependent on the temperature experienced as adults, in the direction of an upshift.  Since changing 

temperatures can activate the temperature stress response (Colinet et al., 2015; Manenti et al., 

2018), the above finding also suggests that a minimum temperature of 25 °C, which the flies 

prefer, is necessary for these cytoprotective mechanisms to work in adults. 

The developmental time under temperature cycles (12h:12 29°C:21°C) is like that under 25°C, 

i.e. 9-10d.  So, HD flies in DDTCtoDD25 (TC during development) do not exhibit differential 

developmental time.  However, the effect of such a fluctuating temperature on the Gal4-driven 

protein expression levels, cellular kinetics and Hsp expression is unknown. 
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4.4.1.2 Constant temperatures during development and adulthood 

In regimes where ambient temperatures were held constant during development and adulthood, 

pdf>Q128 phenotypes had a complex relationship with temperature: temperature had a directly 

proportional effect on improving activity rhythms and reducing inclusion load 

(DD29>DD25>DD23), a somewhat U-shaped effect on PDF preservation in the sLNv 

(DD29>DD23>DD25) and a similar trend of DD23>DD25 in LNv PER preservation.  The 

constant warm temperatures are the most neuroprotective for most of the features. 

4.4.1.3 Change in temperature as adults (upshifts and downshifts) 

Exposure of adults to warm temperatures was sufficient in slowing down circadian HD 

progression, suggesting that warm temperatures during development were unnecessary for the 

deceleration.  The adult-restricted warm temperatures were even better in diminishing the 

inclusion load and enhancing activity rhythm robustness than warm temperatures throughout 

development and adulthood, indicating that the former regime is more neuroprotective than the 

latter.  Adult exposure to pdf>Q128 to warm temperatures resulted in the restoration of early adult 

activity rhythms and a delayed loss of PDF and PER from sLNv without restoration of PER 

oscillation, i.e., restoration of circadian proteins, not PER-controlled molecular clocks.  This 

finding suggests that the activity rhythm rescue is via a per-less clock mechanism or has limited 

contribution from the LNv clocks.  Improved activity consolidation in all genotypes under warm 

temperatures, i.e., most flies restricting their activity to specific time points, suggests a time-of-

day dependent clock contribution.  The decline in expHTT inclusion load and the requirement of 

Hsp70 for the exhibition of well consolidated activity rhythms upon adult-restricted warm 

temperature exposure also suggests that this regime improves cellular proteostasis, a proxy for 

healthier neurons.  Thus, warm temperatures do not restore the individual neuronal clocks (per-

driven); however, upregulating the heat shock proteins/response could boost cellular proteostasis 

and neuronal pacemaker health, strengthening the overall network functioning and contributing 

to rhythmicity. 

The warm-temperature-mediated rhythm rescue was directional since the exposure of pdf>Q128 

to development-specific warm temperatures did not overcome adult behavioural arrhythmicity, 

indicating that warm developmental temperature is unnecessary.  These results reveal that the 
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adult-restricted temperature is critical in determining the rescue and must be sufficiently warm.  

Overall, adult-restricted warm temperatures are necessary and sufficient to mitigate the expHTT-

induced behavioural arrhythmicity.  Not only are the warm-temperature-mediated improvements 

in the locomotor activity rhythm parameters of pdf>Q128 directional (upshift), but they are also 

influenced by the upshift temperature, the duration of warm temperature exposure, and the 

magnitude of upshift: early-age rhythm rescue was only possible at warm enough adult 

temperatures of 29°C, under chronic exposure and a 6°C upshift had a more significant effect on 

activity rhythms than a 4°C upshift (DD25toDD29 vsDD23toDD29).  The requirement for the 

sufficiently high and chronic presence of warmth as adults suggests that rescue processes are not 

limited to an immediate stress response to the temperature hike but might also involve long-acting 

adaptive responses. 

4.4.1.4 Development-specific temperature cycles vs. adult-restricted upshift to warm 

temperatures 

The two critical regimes that mitigated the expHTT-indued phenotypes were the developmental 

temperature cycles (DDTCtoDD25) and adult-restricted upshift to warm temperatures 

(DD23toDD29).  Though these two regimes shared a few commonalities of delaying phenotypes 

and cellular underpinnings of the rescue, they differed in their potency and rescue mechanisms.  

In both the regimes, developmental and adult stages experienced different temperatures.  

However, on the one hand, with development-specific TC, the ambient environmental conditions 

predominantly during development and the temperature experienced as adults determined the 

activity rhythm rescue to a limited extent.  In contrast, rescue by adult-restricted warm 

temperatures was solely determined by the temperature experienced during adulthood. 

Both the regimes rescued early-age behavioural rhythms of pdf>Q128, and the rescue also 

depended on the temperature experienced as adults.  Even though for the development-specific, 

an ambient temperature of 25°C as adults were sufficient (DDTCtoDD21 vs DDTCtoDD25 and 

DDTCtoDD29, see Fig 4.12), for the upshift regime, a warm temperature of 29°C as adults were 

significant (DD21toDD25 vs DD25toDD29 and DD23toDD29, see Fig 4.35).  These contrasting 

findings indicate a divergence in the mechanism of rescue by the two regimes, the former 

manifesting effects at 25°C, which is the preferred temperature of adult Drosophila (Kaneko et 
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al., 2012; Goda and Hamada, 2019) and the mean temperature of the TC, while the latter 

manifesting effects only at 29°C, which is a mild heat stress to the flies.  Though both regimes 

improved activity consolidation and delayed the loss of PDF from the sLNv soma, the warm-

temperature-mediated effects were more pronounced and slightly prolonged.  Better preservation 

of PER+ sLNv and a reduction in the inclusion load under DD23toDD29 indicate that the regime 

is more facilitative of neuroprotective mechanisms than DDTCtoDD25.  DDTC-mediated rhythm 

rescue is accompanied by partial restoration of PER-driven sLNv clocks, whereas DD23toDD29 

rescue is independent.  Interestingly, unlike development-specific TC wherein pdf>Q128 in 

LDTCtoDD25 or LLTCtoDD25 were arrhythmic as adults, adult-restricted upshift to warm 

temperatures resulted in early-age rhythm rescue despite the presentation of LD or LL during 

development (LD23toDD29 and LL23toDD29).  This result suggests that the warm-temperature-

mediated delay in the breakdown of behavioural rhythms is mainly a temperature effect, 

essentially light-independent and does not require functional developmental clocks.  This finding 

also emphasises a significant distinction between the developmental-TC- and the warm-

temperature-mediated early-age rhythmicity of pdf>Q128: whereas the latter is relatively light-

insensitive and does not require developmental clocks, the former is light-sensitive (inhibited by 

light) and may require functioning clocks.  Thus, this study uncovers two different mechanisms 

of temperature-mediated suppression of expHTT-induced neurotoxicity and circadian 

dysfunction (Fig 4.46).  One via developmental temperature cycles that is largely clock-

dependent, sensitive to developmental light, may require functional clocks during development 

and is independent of expHTT inclusion load.  The other is via upshift to warm temperatures as 

an adult is partially clock-dependent, insensitive to developmental light, independent of 

developmental clocks, reduces the expHTT inclusion load and requires Hsp70.  The second 

mechanism mediated by warm temperatures is more potent in mitigating neurotoxicity and likely 

so because it more strongly impacts pathways of neuronal proteostasis, as evidenced by a 

pronounced effect of inclusions and the involvement of Hsp70.  In flies, the temperature has been 

shown to elicit two distinct responses on the genome-wide transcriptional profiles: a clock-

dependent circadian response and a clock-independent, temperature-driven response (Boothroyd 

et al., 2007).  
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Fig 4. 46 An illustration summarising the mechanisms involved in ameliorating circadian 

dysfunction and neurotoxicity in HD flies by two different temperature regimes. 

The pathogenic pdf>Q128 expressing expanded HTT in the circadian pacemaker LNv neurons of 

Drosophila, reared under free-running conditions of DD25 during development and maintained in 

DD25 as adults, show a loss of molecular clock protein PER oscillations in the sLNv soma, a reduction 

in the PDF+ sLNv soma numbers, presence of expHTT inclusions and a concomitant loss of 

behavioural locomotor activity/rest rhythms (top).  Two temperature-dependent mechanisms 

significantly delay these phenotypes: development-specific temperature cycles (centre) and adult-

restricted upshift to warm temperatures (bottom).  Both regimes restore early-age circadian activity 

rhythms and improve circadian output peptide PDF in the sLNv, with the latter having a more 

substantial effect.  The restoration of activity rhythms under both regimes is contingent on the 

temperature experienced during adulthood: the former requiring ≥25°C, the latter requiring warm 

temperatures of 29°C.  The former's reinstitution of early-age behavioural rhythms is sensitive to light 

(cyclic or constant) during development, wherein light opposes the rescue.  In contrast, those 

established by the latter regime are primarily unaffected by developmental light and require Hsp70.  

Developmental temperature cycles also modestly restore PER oscillations to the sLNv, whereas adult-

restricted upshift to warm temperatures does not.  The former does not affect the expHTT inclusion 

load, whereas the latter diminishes it.  Altogether, adult-restricted warm temperatures offer more 

significant relief from neurotoxicity and circadian decline to HD flies than development-restricted 

temperature cycles.  

Fig 4.46 
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4.4.2 Temperature, Drosophila circadian neuronal 

network, and activity rhythms 
External temperatures directly influence the relative allocation of circadian activity across a day: 

warm temperatures suppress daytime activity, phase advance morning activity and phase delay 

evening activity (Majercak et al., 1999; Low et al., 2008; Das et al., 2016; Iyengar et al., 2022), 

while cooler temperatures suppress morning activity and phase advance and suppresses evening 

activity (Alpert et al., 2020).  They also influence sleep levels and onset in a time-specific manner, 

which involves the DN1(p) neuronal cluster (Ishimoto et al., 2012; Guo et al., 2016; Parisky et 

al., 2016; Lamaze et al., 2018; Beckwith and French, 2019; Jin et al., 2021).  The circadian DN1ps 

directly respond to temperature: inhibited by heating and activated by cooling (Yadlapalli et al., 

2018).  Not only are the fly neuronal circuits sensitive to changes in temperature, but even 

complete temperature information is also encoded and relayed.  Two recent studies in the fly 

showed that parallel pathways convey constant warm and cold temperature information from the 

thermosensors to different clock neuronal subsets (LPN activation and DN2 inhibition, 

respectively) via parallel pathways to restructure sleep (Alpert et al., 2020; Alpert et al., 2022).  

Thus, constant ambient temperatures also affect a behaviour like sleep by directly and 

differentially impacting the circadian neuronal subgroups in a time-of-day- and absolute-

temperature-dependent manner.  Therefore, it is strongly conceivable that similar network-level 

pathways and responses exist that mediate the differential effects of constant warm and cool 

temperatures on the adult circadian activity rhythms. 

4.4.2.1 Warm temperatures and activity consolidation 

Adult flies prefer a temperature of 25°C (Sayeed and Benzer, 1996; Hamada et al., 2008; Dillon 

et al., 2009) and tend to avoid harsh environments, including warm temperatures, using 

behavioural strategies like seeking shaded microhabitats to avoid direct exposure to extreme heat 

and decreasing their daytime activity (and sleeping more) to reduce the foraging and other critical 

activities to lower the desiccation risk (Hoffmann, 2010; Ishimoto et al., 2012; Harvey et al., 

2020; Ma et al., 2021a).  Even the pattern of their circadian activity rhythms is modified to avoid 

warm temperatures: under LD29 or LD30, flies reduce their daytime activity by shifting most of 
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their activity to the dark phase by advancing their morning activity and delaying their evening 

activity (Majercak et al., 1999; Low et al., 2008; Das et al., 2016; Iyengar et al., 2022).  In LD29, 

flies sleep more during the day and less at night, and in DD29, they show an increase in sleep 

during the subjective day (Ishimoto et al., 2012; Parisky et al., 2016).  Now, my studies show an 

effect of temperature on activity consolidation with a contribution from the presence of light 

during development (the effect of light is discussed in 4.4.2.3.1).  Support for temperature 

affecting the activity consolidation comes not only from warm temperatures enhancing activity 

consolidation across genotypes but also from control flies reared and recorded at lower 

temperatures having poor activity consolidation than their counterparts in ambient or warm 

temperatures (comparing flies in DD23, DD25 and DD29).  The increase in activity consolidation 

in DD29 seen across genotypes indicates that flies are highly active during a specific time 

window, thus shrinking the duration of activity.  Time-restricted consolidation of activity might 

be yet another behavioural strategy to regulate body temperature in these ectotherms because 

locomotor activity rhythm is a thermogenic process (Block, 1994; Loli and Bicudo, 2005; 

Refinetti, 2020), which will further increase the body temperature of these ectotherms who are 

already experiencing warm temperatures of 29°C, which is 4-5°C above their preferred 

temperature.  There is evidence from Drosophila for an association between activity, metabolic 

rate and temperature sensitivity mediated by dopamine: fumin flies defective in a dopamine 

transporter are hyperactive and short on sleep, also exhibited higher metabolic rate and were 

thermophobic, preferring lower temperatures (Kume et al., 2005; Kume, 2006; Ueno et al., 2012). 

Even though high temperatures (31°C) during development reduce spontaneous activity as adults 

(activity over 12h), adult-restricted upshift to warm temperatures (19°C to 31°C) increases 

spontaneous adult activity (MacLean et al., 2017; Klepsatel and Gáliková, 2022).  However, for 

inbred and outbred Drosophila melanogaster under LD and in DD, circadian daily activity levels 

averaged over longer durations (≥3d) are not different across a range of constant temperatures 

(Prabhakaran and Sheeba, 2014; Ito and Awasaki, 2022) demonstrating that the total activity 

levels per se are unaffected over a range of constant external temperatures.  Considering this 

information, the activity levels under different temperature regimes were not quantified.  
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4.4.2.2 Understanding the effects of development-specific 

temperature cycles on the circadian neuronal network of HD 

flies 

In my experiments, exposure of Drosophila clocks to cyclic time cues mainly targeted the pre-

adult stages.  Hence, it is vital to restrict the inferences regarding zeitgeber effects to the 

developmental stages.  However, there are limited studies on the developmental clock perception 

of circadian inputs affecting adult activity rhythms, and most of them have been carried out in 

larvae.  Given that the adult circadian network has been extensively studied, the larval and adult 

stages can serve as two points of reference and using the data on the developmental timing of the 

various circadian neuronal subsets, one can make a few logical predictions about the relative roles 

of circadian neurons in light and temperature entrainment during development.  The larval 

circadian clock comprises nine clock neurons per hemisphere: the four PDF+ sLNv, the PDF-  5th 

sLNv, two DN1s and two DN2s, and light input to the larval clock is via CRY in the sLNvs and 

the DN1s and the larval visual system (Helfrich-Förster, 1997; Kaneko et al., 1997b; Kaneko and 

Hall, 2000; Klarsfeld et al., 2004; Malpel et al., 2004; Keene et al., 2011; Klarsfeld et al., 2011).  

Though the other pacemakers, including the LNds, appear at L3, they exhibit molecular clock 

oscillations only in the late pupal stages; the lLNvs develop around the mid-pupal stage (Kaneko 

et al., 1997b; Kaneko and Hall, 2000; Helfrich-Förster et al., 2007; Liu et al., 2015b).  During 

pupal development, the H-B eyelets replace the BOs (Malpel et al., 2002). 

In adult flies, the LPNs and DNs, particularly the CRY- LPNs, DN1ps and DN2s, are shown to 

be more temperature-sensitive, and they are preferentially entrained by temperature-when 

conflicting light and temperature cues are provided (Busza et al., 2007; Miyasako et al., 2007; 

Yoshii et al., 2010; Harper et al., 2016).  Additionally, DN1p clocks regulate temperature 

entrainment because, in per01 flies, PER expression in the DN1ps was sufficient to rescue 

synchronisation to TCs (Zhang et al., 2010c).  Moreover, DN1ps are modulated by ambient 

temperature cues via chordotonal organs (Chen et al., 2015a; Chen et al., 2018; Lamaze and 

Stanewsky, 2019; Roessingh et al., 2019) receive temperature inputs from the warmth-sensing 

ACs (Hamada et al., 2008; Jin et al., 2021) and are acutely inhibited on heating and excited on 
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cooling (Yadlapalli et al., 2018).  The DN1as are inhibited by absolute cold temperatures (Alpert 

et al., 2020), and the LPNs are excited by absolute warm temperatures (Alpert et al., 2022).  The 

DN2s, the DN1as and DN1ps are necessary for another independent circadian behaviour, the 

temperature preference rhythm, a time-of-day-dependent preference of optimal ambient 

temperature over a temperature gradient (Kaneko et al., 2012; Chen et al., 2022).  These studies 

posit the LPNs and the DNs, predominantly the CRY- subsets, as the temperature-sensitive clock 

neurons.  My findings demonstrate that TC during larval or pupal stages alone is insufficient for 

adult activity rhythms of pdf>Q128 and can be attributed to the emergence of different subsets of 

temperature-sensitive clock neurons at various developmental stages (Yoshii et al., 2005; 

Helfrich-Förster et al., 2007; Picot et al., 2009; Liu et al., 2015b) and it may be essential to expose 

the subsets to TC throughout each stage of their development to achieve rhythmicity as adults. 

The observation that developmental DDTC, but not LDTC or LLTC, rescues circadian 

behavioural free-running rhythms of young pdf>Q128 adults in DD25 gives rise to several 

conclusions. 

1) To a certain degree, the rhythm rescue is mediated by the clock neurons that are more sensitive 

to temperature than light (and possibly intrinsically light-insensitive, i.e., CRY-, see 5 below), 

the non-LNv circadian neuronal subsets.  Since PDF and sLNv are vital for mediating free-

running activity rhythms (Renn et al., 1999; Grima et al., 2004b; Stoleru et al., 2004; Shafer 

and Taghert, 2009), and they are required for circadian behavioural rhythmicity after exposure 

to TC (Busza et al., 2007), the relatively longer presence of PDF+ sLNv in pdf>Q128 under 

DDTCtoDD25 as compared to those in DD25 can partly explain the improved early-age 

rhythmicity.  However, by 7d, PDF+ sLNv numbers of pdf>Q128 in DDTCtoDD25 are 

comparable to those in DD25.  In contrast, behaviourally, pdf>Q128 in DDTCtoDD25 show 

control-like activity consolidation that is significantly better than those in DD25 up to 11d 

(Figs 4.1c, 4.13a, 4.7b).  As PER levels are significantly lower in the LNv of pdf>Q128 under 

DDTCtoDD25, there is a modest PER oscillation in their sLNv anti-phasic to controls and 

the entraining TC; the persistent behavioural rhythmicity also cannot be explained entirely by 
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the LNv clock functions (Fig 4.4d).  A factor contributing to the extended rhythmicity of 

pdf>Q128 under DDTCtoDD25 could be the sLNv dorsal termini, which are unaffected in 

the pdf>Q128 flies in DD (Prakash et al., 2017) and present as larvae.  These dorsal termini 

are required for entertainment to gradually ramped temperature cycles and the following free-

running rhythms (Fernandez et al., 2020).  LNv functioning under DDTCtoDD25 is likely 

limited and transient and does not fully explain the extended rhythmicity of pdf>Q128.  To 

fully explain the rhythmic activity of these flies under DDTCtoDD2, the non-PDF+LNv clock 

neurons, many of which are temperature sensitive (as explained below), are invoked.  These 

circadian neurons of pdf>Q128 have functional clocks in them, as proven by the synchronous 

clock protein PER oscillations in them (LNds and DNs) under DD (Prakash et al., 2017).  

Although a functional clock in the PDF+ LNv neurons is required for the synchronisation of 

morning activity under 25°C:16°C DDTC (Lorber et al., 2022), there is increased 

synchronisation of activity rhythms by temperature in flies with dysfunctional or ablated LNv, 

and the clocks in the non-PDF+LNv are sufficient for the synchronised activity under high-

temperature TCs (Yoshii et al., 2005; Busza et al., 2007; Zhang et al., 2010c; Gentile et al., 

2013).  Notably, the entrainment of larval LNs to temperature cycles requires DN2 clocks 

(Picot et al., 2009).  These data strongly indicate that the non-LNv clock neurons mediate 

synchronous circadian activity rhythms under TCs, even without the LNv.  Some of these 

mechanisms are established as early as the larval stages.  Further, DN1s communicate to the 

output centres that control behaviour (Cavanaugh et al., 2014; Guo et al., 2018a; Lamaze et 

al., 2018; Barber et al., 2021; Jin et al., 2021; Zhang et al., 2021a).  Thus, the DN1s can 

directly be synchronised by temperature and receive timing information from other clock 

neurons, particularly the (Zhang et al., 2021a) weakening sLNv, and integrate and 

communicate them to the locomotor regions to mediate rhythmic behaviour.  The DN1s also 

form reciprocal connections with the LNs, which can impact pacemaker function (Collins et 

al., 2012; Collins et al., 2014; Guo et al., 2016; Fujiwara et al., 2018; Díaz et al., 2019; 

Fernandez et al., 2020) and synchrony between the DN1 and LN clocks are essential for the 

synchrony of activity rhythms (Yao et al., 2016).  Thus, temperature synchronisation of the 
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DN1s can in-turn also influence the LNs and impose temporal information on the circuit.  In 

light of earlier research, the current study suggests that in conditions of compromised LNv 

function, such as in the pdf>Q128, even though developmental 29°C:21°C TCs only partially 

rescue LNv PER and PDF, they may be able to synchronise temperature-sensitive non-LNv 

circadian neurons and (or) transmit temporal information to the locomotor output networks 

that contribute to rhythmic activity in the young adults in the DD25 post-TC. 

2) The above discussion also suggests that whole-organismal interventions like temperature 

impinge on the entirety of the circadian network to bring about rhythmic behaviour.  

Environmental signals like temperature regulate organismal physiology through non-

autonomous cellular mechanisms (Vakkayil and Hoppe, 2022).  Temperature signals could 

strengthen downstream, compensatory, or alternate mechanisms to re-establish network 

functioning and improve robustness.  A recent study in-fact suggests that though the DN1s 

are not necessary for generating circadian behavioural rhythms per se, they could serve as a 

parallel, albeit redundant pathway for the control of output circuits that regulate activity/rest 

rhythms and might become relevant in specific environmental contexts (Nettnin et al., 2021). 

3) The finding that though developmental-TC improves early-age activity rhythms of pdf>Q128 

adults, the effects are not long-lasting could be because, as adults, after removal of the cycling 

temperature signals, its entraining effects on the temperature-sensitive neurons, especially the 

DN1s, likely wane.  DN1s are non-autonomous circadian oscillators that depend on 

peptidergic inputs from other lateral clock neurons, such as PDF from the sLNv, to maintain 

free-running rhythms in molecular clocks and electrical activity (Klarsfeld et al., 2004; Yoshii 

et al., 2009; Seluzicki et al., 2014; Liang et al., 2017; Lamaze and Stanewsky, 2019).  As 

adults, in the continued absence of temperature cues and gradually weakening sLNvs, the DN 

clocks might weaken in the long run and not be able to sustain rhythmic activity. 

4) The temperature-sensitive developmental clocks are functional in pdf>Q128.  This 

conclusion is consistent with our empirical observation that PER is present in the larval DN2s, 

and the larval DN2 clocks are essential for entraining larval LNs to TCs (Picot et al., 2009).  
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The findings also provide proof-of-concept evidence that the developmental clocks are 

temperature-sensitive and temperature-entrained.  Their temperature synchronisation can 

alter adult circadian rhythms, as has previously been reported for the synchronisation of free-

running adult activity rhythms in entirely blind flies (Malpel et al., 2004).  Our previous 

finding of in-sync molecular clock cycling in the DNs (Prakash et al., 2017), which are 

strongly responsive to temperature and the finding here of sustained early-age free-running 

adult activity rhythms driven by developmental-TCs, also suggest that the temperature-

sensitive clocks continue to be functional as adults.  The entrainment of adult pdf>Q128 flies 

to temperature cycles with activity levels and morning and evening AIs comparable to at least 

one background control and free running rhythms from the phase of entrainment when 

released into constant conditions (data not shown) provide further evidence for unaffected 

temperature-sensitive activity clocks in these flies. 

5) The presence of light inhibits the effectiveness of TCs during development in rescuing the 

early-age adult activity rhythms of pdf>Q128.  There are a few possible explanations for why 

developmental-TC restores adult activity rhythms in the young pdf>Q128 at DD25 but not 

developmental LD+TC.  Cooperative synchronisation by light and temperature likely requires 

temperature changes in advance of light changes as observed in nature (Boothroyd et al., 

2007).  However, my finding that exposing pdf>Q128 flies to naturally gradually changing 

time cues under semi-natural conditions during development does not overcome the 

arrhythmic behaviour of adults in DD25 (Chapter 3) refutes this explanation.  The activity 

rhythms of flies with dysfunctional or absent LNvs show more excellent responsiveness to 

temperature inputs (Busza et al., 2007).  CRY antagonises the ability of TCs to synchronise 

activity rhythms and dampens the PER oscillations in the LNds and the DNs, the temperature-

sensitive clock neurons (Miyasako et al., 2007; Yoshii et al., 2010; Zhang et al., 2010c; 

Gentile et al., 2013; Harper et al., 2016; Yadlapalli et al., 2018).  In pdf>Q128, given that 

behavioural and molecular clock entrainment to light is unaffected (Sheeba et al., 2010; 

Prakash et al., 2017), it is likely that the cyclic accumulation of CRY in the CRY+ clock 
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neurons under LD is intact.  The TC-mediated temperature input to the clock during 

development could be diminished by light input pathways through the compound eye and 

accumulating CRY, effectively making light the only significant clock input during 

development.  However, as shown previously (Chapters 2 and 3) and as will be discussed 

later, developmental light cycles are ineffective at bringing about rhythmic activity in 

pdf>Q128 adults.  Thus, in the LDTCtoDD25 regime, light, albeit cyclic, might dominate 

over temperature as the clock input, thereby interfering with the synchronising and rhythm-

promoting effects of TC during development.  In adult flies, the output of the temperature-

sensitive DN1ps and their capacity to synchronise distinct components of activity behaviour 

under different environmental conditions are both affected by light intensity (Zhang et al., 

2010c).  Such integration may even start to take place in the pre-adult stages.  Additionally, 

the ecological constraints on different developmental stages as opposed to adulthood, such as 

oviposition sites, burrowing and feeding in the larvae, and pupation height, among others, 

may shift the relative strengths of zeitgebers, their cooperation in entertainment and their 

influence on adult rhythms, necessitating careful study. 

6) Though TCs synchronise molecular and behavioural rhythms in LL (Matsumoto et al., 1998; 

Yoshii et al., 2005), in the circadian neurodegenerative context, developmental-LLTC could 

not rescue adult behavioural rhythms in DD25.  This result can be attributed to a reduction of 

PER in the LNv of pdf>Q128 because, in per01 flies, high-temperature TC (20°C / 29°C ) in 

LL was unable to synchronise activity, and this was true even when PER was restored in 

either the LNv or a subset of LNd and DNs or the DN1ps, indicating that in the absence of 

PER in some of the subsets (or in the presence of PER only in a few of the subsets), TC cannot 

synchronise activity under LL (Zhang et al., 2010c; Gentile et al., 2013). 
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4.4.2.3 Differential effects of light on the temperature-mediated 

impediment of behavioural arrhythmicity 

4.4.2.3.1 In the presence of developmental light: Developmental temperature cycles 

vs. constant temperatures and temperature upshifts 

Developmental light has differential effects on the temperature-mediated activity rhythms of 

pdf>Q128.  Cyclic or constant light during development obstructs the rhythm-improving effects 

of developmental TC.  On the contrary, they do not affect the rhythm-improving effects of adult-

restricted warm temperatures.  These opposing effects suggest different mechanisms of rescue by 

the two temperature regimes.  The light-inhibitory effect on developmental TC is probably caused 

by features of light and temperature entrainment of the Drosophila developmental circadian 

neuronal network, discussed in the previous section.  The developmental lightproof effects of 

adult-specific upshift to warm temperatures upshift on the behavioural rhythms of pdf>Q128 

suggests a light-insensitive, developmental-clock-independent mechanism.  These are likely 

warm-temperature-activated stress responses and adaptive homeostatic mechanisms that improve 

adult clock neuronal health and function.  However, one may note that under conditions of 

constant temperatures during both development and adulthood, the presence of cyclic light during 

development accentuates the effects of temperature on the activity consolidation of pdf>Q128 

adults.  The accompanying constant temperature determines the direction of the effect, whereas 

LD during development merely heightens the temperature effects, weakening the consolidation 

at 23°C and strengthening it at 29°C.  This differential sensitivity of pdf>Q128 clocks to 

developmental light under upshift and constant warm temperature regimes again allude to subtle 

differences in the underlying circadian rescue mechanisms reflecting interactions of life stages, 

the magnitude of temperature, its constancy and fluctuations, the direction of temperature change 

and the presence of light. 

4.4.2.3.2 Developmental-TC (TCtoDD25) vs Developmental-LD (LDtoDD25) 

In the neurodegeneration-driven circadian context, the findings that during development, cycling 

temperatures but not cycling light is adequate in mediating adult activity rhythms, whereas, during 

adulthood, both light and temperature are independently capable of entraining the activity 
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rhythms of pdf>Q128 suggests that the circadian neuronal network of pdf>Q128 is amenable to 

temperature entrainment during pre-adult as well as adult stages, but to light entrainment only as 

adults.  Despite light being the stronger zeitgeber for fly circadian rhythms than temperature 

(Yoshii et al., 2010; Harper et al., 2016), the result that developmental-TC but not developmental 

LD (see LDtoDD in chapter 3) restores adult activity rhythms in the pdf>Q128 young at DD25 is 

tricky to explain.  It could be a direct consequence of the light-sensitive pacemakers, the PDF+ 

LNv, targeted by expHTT.  However, this line of reasoning conflicts with the findings that in 

adult pdf>Q128, light and temperature entrainment are unaffected (Sheeba et al., 2010; Prakash 

et al., 2017) (unpublished data regarding temperature entrainment).  Nevertheless, suppose one 

restricts the interpretations to the developmental stages.  Apart from the sLNv and the two DN2s, 

the other crucial clock neurons essential for light entrainment are functional only at the later 

developmental stages. In that case, one can attempt an alternate explanation.  Circadian light 

perception and pathways of conveyance of light information to the circadian neurons emerge early 

during Drosophila development (Kaneko et al., 1997b; Kaneko et al., 2000; Malpel et al., 2004).  

Since lLNv and LNd differentiate only at mid-pupal stages (Helfrich-Förster, 1997; Helfrich-

Förster, 1998; Helfrich-Förster et al., 2007), and the molecular clock of CRY- DN2 (and those of 

CRY+ DN1s in the absence of CRY activation) are dependent on PDF for light entrainment (Picot 

et al., 2009), the critical pre-adult light-sensitive clock neurons are the CRY+ sLNvs that perceive 

light information cell autonomously via CRY and also via a direct connection to the visual system 

(Klarsfeld et al., 2011).  However, in the pdf01 larvae, the molecular oscillations in most clock 

neuronal groups are entrained and in-phase, suggesting that PDF might not be critical for larval 

light entrainment of molecular rhythms in most clock neurons (Picot et al., 2009).  In pdf>Q128, 

PDF and PER are intact in the sLNv of pdf>Q128 in the third instar larvae; their status in the 

pupal stages have not been examined.  Nevertheless, post-eclosion, the PDF and PER are affected 

in the sLNv of very young adult flies.  Thus, it is reasonable to assume that the effects of expHTT 

on the sLNv may have set in at the pre-adult stages.  Throughout development, despite the 

presence of light-sensitive 5th sLNv and DN2s, a gradual decline in the health and functioning of 

the sLNv of the pdf>Q128 can weaken the entrainment of the developmental clock network by 
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light.  However, as adults, pdf>Q128 flies have functional lLNv (Sheeba et al., 2008a; Sheeba et 

al., 2010) and PDF in the lLNv, the other functional light-sensitive CRY+ circadian neurons like 

the LNds and DN1s and a well-developed visual system, will orchestrate light entrainment of 

these flies.  On the other hand, in the case of temperature inputs, as discussed in 1-3, the 

temperature-sensitive pacemakers can mediate temperature entrainment both during development 

and adulthood, even with a weakening sLNv and reduction of PDF (larval PDF is not necessary 

for entrainment of molecular rhythms in clock neurons by temperature (Picot et al., 2009).  These 

results also emphasise that zeitgeber strength and dominance are context-dependent, as was 

shown previously (Harper et al., 2016).  A deeper understanding of the mechanisms underlying 

the failure of cyclic light during development to evoke rhythmicity in pdf>Q128 adults can be 

gained by expanding the explanation beyond the entraining effects of light.  White light, 

particularly the blue light component, may negatively affect the circadian neurodegenerative 

symptoms of pdf>Q128, as seen and discussed earlier (Chapter 3), which can contribute to the 

lack of behavioural rhythmicity under LD25toDD25 and LDTCtoDD25. 

4.4.3 Warm-temperature-mediated effects 

4.4.3.1 Benefits of heat acclimation, hormesis and passive heat 

therapy 

One of the objectives of this study was to see the effect of expHTT dosage on the HD phenotypes 

using temperature to tweak the Gal4-driven expHTT expression levels.  The premise was that 

warm temperatures speed up cellular physiology, including increasing protein production and 

aggregation, and the expectation was that pdf>Q128 in DD29 would have exaggerated 

phenotypes than those in DD25.  However, the results obtained across nearly most phenotypic 

markers are opposite.  Despite the expectation that warm temperatures will increase Gal4-

mediated expHTT expression and aggregation, the toxicity associated at 23°C and 25°C is more 

than that at 29°C.  This finding suggests that at 29°C, the speeding of cellular activities and Hsp 

activation overrides any effect of increased expHTT expression levels.  Also, the observation that 

HD flies under DD23toDD29 (23°C during development) are like those under DD29toDD29 
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(29°C during development) suggests that the differences in development time due to temperature 

differences during development do not contribute to the abrogation of HD circadian phenotypes 

of adults experiencing warm temperatures.  Furthermore, given that DD29toDD23 (29°C during 

development) does not rescue circadian behavioural rhythms of HD flies, whereas DD23toDD29 

(23°C during development) does, it suggests that it is the warm temperatures as adults that drives 

the rescue rather than the developmental temperatures. 

At first, the findings seem counterintuitive with adult-restricted or pre-adult and adult exposure 

of pdf>Q128 to warm temperatures, which can potentially increase expHTT expression, delaying 

the circadian neurodegenerative phenotypes.  In the following section, I describe some of the 

cellular mechanisms evoked by the warm temperatures that, in turn, can prove beneficial in 

combating neurotoxicity associated with expHTT.  These broadly fall under heat acclimation and 

hormesis and expound on passive heat therapy as a potential therapeutic avenue for NDs.  First 

and foremost, warm-temperature-mediated delay of circadian neurodegenerative phenotypes in 

Drosophila expressing expHTT in the pacemaker LNv suggests that any effects of increased 

expHTT transgene expression on increasing the ambient temperatures are negligible and 

outweighed by the immediate benefits arising from exposure to relatively warm temperatures, 

leading to delayed HD impairments. 

Acclimation is a form of within-lifetime phenotypic plasticity triggered by exposure to specific 

environments or stressors within the viable range of an organism (mild and long-term lasting days 

or weeks, or extreme and short-term lasting hours) that improves the organism’s ability to tolerate 

the stress, and reduces damage due to the stressor (Horowitz, 2001; Hoffmann et al., 2003; 

Bowler, 2005; Loeschcke and Sørensen, 2005; Angilletta Jr, 2009).  Thermal acclimation 

improves thermal tolerance and overall performance and plausibly enhances fitness (Angilletta 

Jr, 2009; Klepsatel and Gáliková, 2022).  Acclimation response, including thermal acclimation to 

mild heat stress, is also dose-dependent, showing hormesis: stressor at low levels is beneficial 

but detrimental at higher levels (Kristensen et al., 2003; Berry and López-Martínez, 2020).  For 

example, in Drosophila, mild thermal pre-treatment is beneficial in combating severe secondary 
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stress and improving longevity (Khazaeli et al., 1997; Kristensen et al., 2003; Sarup et al., 2014; 

Berry and López-Martínez, 2020).  In humans, heat acclimation (HA) manifests as a physiological 

adaptation in response to the elevation of core body temperature or due to exercise in hot 

conditions (Nava and Zuhl, 2020).  HA in humans serves a similar function to other animals, such 

as managing core body temperature and protecting against the ill effects of heat stress.  HA is 

often recommended to soldiers, firefighters, field workers and endurance athletes (Carter et al., 

2005; Garrett et al., 2011).  Because it boosts stress-resistance mechanisms like heat shock, anti-

oxidant and detoxification pathways, epigenetic transcriptional reorganisation, increases 

neurotrophic factors, and enhances general performance and life history traits, HA can protect 

against neurodegenerative diseases  (Mattson, 2008; Vaiserman, 2008; Calabrese et al., 2012; 

Calabrese, 2013; Sarup et al., 2014; Dattilo et al., 2015; Rix and Cutler, 2022).  Hormetic response 

promotes neuronal survival and synaptogenesis (Mattson et al., 2002).  Passive heat treatments 

improve health indicators like cardiovascular markers, metabolic regulation and glycaemic 

control (Brunt et al., 2016; Janssen et al., 2016; Kimball et al., 2018; Ely et al., 2019; Maley et 

al., 2019).  Mild heat stress is neuroprotective in a mice model of traumatic brain injury (Umscheif 

et al., 2010; Umschweif et al., 2014), stimulates autophagic pathways (Kumsta et al., 2017; 

McCormick et al., 2021; Amirkavei et al., 2022), reduces ageing related neuropathology, amyloid 

beta aggregation and improved neuronal survival in vitro (Mane et al., 2020).  In humans, ambient 

temperature also affects sleep (Haskell et al., 1981; Okamoto-Mizuno et al., 2003; Buguet, 2007; 

Togo et al., 2007; Lack et al., 2008), and moderate passive heating promotes slow sleep wave the 

following night (Horne and Reid, 1985; Bunnell et al., 1988). 

When treating ND pathology with warm temperatures, caution must be taken.  There are fitness 

and metabolic costs associated with warm temperatures, vastly investigated in ectotherms (Le 

Bourg and Rattan, 2014; McClure et al., 2014; González-Tokman et al., 2020).  Increasing the 

growing temperature of Q35 nematodes beyond 20°C led to accelerated polyQ aggregation and 

toxicity (Haldimann et al., 2011).  Lower core body temperature was associated with a longer 

lifespan in mice (Conti et al., 2006).  Long-term warm ambient temperature, which results in high 

body temperature, exacerbates cognitive dysfunction and ND pathophysiology (Noorani et al., 
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2020; Jung et al., 2022).  Thus, it will be crucial to investigate and optimise the modality, site, 

dosage/magnitude/intensity, duration, frequency, site of application, age of intervention, the 

effect of gender, and pre-existing conditions, in combination with other treatment modalities, and 

to study the short- and long-term advantages, as well as to test in clinically relevant mammalian 

models. 

A way of circumventing the thermal damage due to continuous heating is to use thermal cycles 

of warm/cold.  Studies have shown that fluctuating temperatures activate stress response and, 

within the permissive thermal range, improve performance, thermal tolerance, and lifespan and 

mitigate temperature stress in insects and worms (Economos and Lints, 1986a; Cardoso et al., 

2002; Galbadage and Hartman, 2008; Colinet et al., 2015; Gomez et al., 2016; Manenti et al., 

2018; Goh et al., 2021; Salachan and Sørensen, 2022).  Through the stimulation of pro-survival 

Akt-dependent pathways, cycling hyperthermia enhanced the anti-cancer effects of several 

medications and reduced oxidative damage and cytotoxicity brought on by hydrogen peroxide 

and Abeta in human brain cells (Chen et al., 2019; Chen et al., 2020).  Further, cyclic temperatures 

affect the circadian clocks and can orchestrate clock-dependent neuroprotective mechanisms, as 

is supported by the findings of this study.  In further support, a recent study showed that cycling 

temperature rescued the clock gene oscillatory amplitude decline upon ageing in male flies (Goh 

et al., 2021).  In the present study, adult-restricted constant warm seems better in Drosophila HD 

flies than oscillating warm; however, the trade-offs associated with warming are not addressed.  

Nevertheless, the background from other studies and the current findings strongly endorse 

exploring the middle ground of intermittently warm or fluctuating warm temperature effects on 

HD circadian neuropathology. 

4.4.3.1.1 Translational impact of temperature-based interventional studies in 

Drosophila 

Drosophila exhibit rhythms of temperature preference where flies choose or prefer relatively 

warm temperatures during the day and cooler temperatures at night (Hamada et al., 2008; Kaneko 

et al., 2012; Goda et al., 2014).  Since Drosophila are ectotherms wherein their body temperature 

matches that of the environmental temperature (Stevenson, 1985; Refinetti and Menaker, 1992; 
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Dillon et al., 2009; Garrity et al., 2010), their temperature preference rhythm (TPR) translates to 

a daily body temperature rhythm (BTR) (Goda and Hamada, 2019).  Humans and other 

homeothermic mammals display clock-controlled BTR and circadian oscillations in body 

temperature in the 1°C range, which decrease during sleep and increase during wakefulness 

(Aschoff, 1983; Duffy et al., 1998; Kräuchi, 2002).  These temperature rhythms serve as an 

internal time cue to synchronise peripheral rhythms (Brown et al., 2002; Schibler, 2009; Buhr et 

al., 2010).  The BTR in rodents and humans share many similarities with Drosophila TPR, 

including a circadian clock control and a functionally conserved underlying mechanism that is 

distinct from the control centre for locomotor activity rhythms (Duffy et al., 1998; Saper et al., 

2005; Morrison et al., 2008; Kaneko et al., 2012; Goda et al., 2014; Goda et al., 2016; Tang et al., 

2017; Goda et al., 2018; Goda and Hamada, 2019). 

Humans are homeothermic, meaning their core body temperature is kept within a specific range, 

unlike the poikilothermic Drosophila (Schlader and Vargas, 2019).  However, the core body 

temperature is influenced by external temperatures (Dewasmes et al., 1994; Dewasmes et al., 

1996; Teramoto et al., 1998; Wakamura and Tokura, 2002), and passive exposure to warm 

temperatures elicits mild hyperthermia (Patrick and Johnson, 2021).  Moreover, regularly 

challenging the thermal equilibrium via moderate thermal stress also has positive effects in 

mammals even under disease conditions like cardiovascular diseases, diabetes, and depression 

(Hooper, 1999; Kihara et al., 2002; Janssen et al., 2016; Tyler et al., 2016; Brunt and Minson, 

2021). 

Overall, though the core body temperature in humans is relatively protected against perturbations 

of external temperatures, it is affected by it and manifests physiological consequences.  Moreover, 

temperature affects cellular physiology similarly across taxa, such as eliciting stress responses 

like heat shock.  Finally, temperature rhythms synchronise circadian rhythms in both flies and 

mammals.  Thus, understanding how temperature affects neurodegeneration and circadian 

rhythms in Drosophila under the settings of circadian rhythm-disrupting illnesses has 

implications for human body thermoregulation and temperature cycles and their impact on 

physiology and pathophysiology. 
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Thus, the outcome of understanding how temperature affects neurodegeneration and circadian 

rhythms, especially in the context of circadian rhythm-disrupting diseases in Drosophila, has 

consequences for human body thermo-modulation and temperature rhythms and their effect on 

physiology and pathophysiology. 

4.4.3.2 Effect of temperature on circadian protein expression 

Temperature, constant and fluctuating, affects organisms' transcriptomic, proteomic, and 

epigenetic profiles.  These involve mechanisms such as alternative splicing, alternative promoter 

and translational start site usage, differential small RNA structural composition and abundance, 

RNA editing, and kinase activation, with effects on genes involved in circadian regulation (Liu et 

al., 1997a; Boothroyd et al., 2007; van der Linden et al., 2010; Rieder et al., 2015; Gotic et al., 

2016; Sørensen et al., 2016; Buchumenski et al., 2017; Fast et al., 2017; Preußner et al., 2017; 

Martin Anduaga et al., 2019; Haltenhof et al., 2020; Zhou et al., 2021).  This broad-spectrum 

effect of temperature on the protein expression possibly prolongs PDF and PER in the sLNv under 

warm temperatures and induces low amplitude PER oscillations under developmental TC.  The 

effect of cycling temperature on the temperature-sensitive DN1 clocks and their connection and 

communication with the LNs (Collins et al., 2012; Collins et al., 2014; Guo et al., 2016; Fujiwara 

et al., 2018; Díaz et al., 2019; Fernandez et al., 2020) can also aid in the restoration of PER 

oscillations in the of sLNv under developmental-TCs.  In Drosophila, both per and tim mRNAs 

are subject to temperature-specific alternate splicing events that, in turn, bring about circadian 

and sleep behavioural adaptations (Majercak et al., 1999; Majercak et al., 2004; Shakhmantsir et 

al., 2018; Foley et al., 2019; Martin Anduaga et al., 2019; Shakhmantsir and Sehgal, 2019).  In 

Drosophila, at a warm temperature of 29°C, genes involved in transcription, chromatin 

organisation, histone modification, protein folding, and metabolism were upregulated (Fast et al., 

2017; Martin Anduaga et al., 2019), and development-specific warm temperatures in addition also 

upregulated cell cycle and DNA repair genes (Chen et al., 2015a).  At warm temperatures, 

accessibility to chromatin and RNA secondary structures is also enhanced (Chereji et al., 2016; 

Fast et al., 2017).  
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4.4.3.3 Warm temperatures, Hsp70 and expHTT inclusion load 

Hsps: In flies, though Hsp genes show a temperature-dependent change, the change direction 

differs between studies, especially for Hsp70 (Colinet et al., 2013; Chen et al., 2015a).  A mild 

heat stress of 29°C or 30°C induces Hsp70 and Hsp70 expression in Drosophila (Wheeler et al., 

1995; Jedlicka et al., 1997; Chen et al., 2018).  High temperatures elevated mice’s core body 

temperature and cortical HSPs (Jung et al., 2022).  In a few instances, benefits from mild heat 

stress did not involve increased Hsp70 in cultured neurons (Snider and Choi, 1996; Batulan et al., 

2003).  In humans, HA increases basal intracellular Hsp70 levels (Yamada et al., 2007; Magalhães 

Fde et al., 2010; Amorim et al., 2011; Nava and Zuhl, 2020), which then suppresses the 

inflammatory response and maintains cell integrity (Chen et al., 2005; Dokladny et al., 2010; 

Bittencourt and Porto, 2017).  HSp70 activation in humans is protective against heat stress 

(Amorim et al., 2015; Zuhl et al., 2015), HSP suppression prevents the protective effect of HA 

(Kuennen et al., 2011) and individuals vulnerable to heat stress versus those resistant to it show 

differential basal HSP70 levels (Xiao et al., 2003).  Healthy human volunteers showed increased 

Hsp70 and Hsp90 mRNA levels with passive heating (Kuhlenhoelter et al., 2016).  Although 

some human research reveals the effects of both active and passive heat treatments without 

changes in HSP (Morton et al., 2007; Hom et al., 2012; Hoekstra et al., 2018), other studies 

demonstrate that heat treatments raise intracellular and extracellular Hsp70 levels (Oehler et al., 

2001; Yamada et al., 2007; McClung et al., 2008; Magalhães Fde et al., 2010; Amorim et al., 

2011; Faulkner et al., 2017; Nava and Zuhl, 2020).  The heat-shock-induced TF Hsf1 is also a 

circadian transcription factor involved in synchronising the peripheral clocks to body temperature 

rhythms (Reinke et al., 2008; Buhr et al., 2010; Saini et al., 2012; Kovács et al., 2019). 

In this study, adult-restricted upshift to warm temperatures emerged as the most neuroprotective 

regime among those tested.  This regime’s ability to mediate behavioural rhythmicity involved 

Hsp70 to a certain degree, indicating that the circadian rhythm rescue by warm temperatures likely 

involves Hsp70-mediated responses such as the heat shock response.  The degree of rhythmicity 

had a rather J-shaped relationship to the number of Hsp70 copies, with both high and low copy 
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numbers being more rhythm-promoting than intermediate copy numbers.  In this regard, the 

observation that pdf>Q128 flies lacking all 6 copies of Hsp70 had better rhythmicity than those 

lacking fewer copies is intriguing.  It suggests that in the complete absence of Hsp70, other Hsps 

or compensatory mechanisms come into play that can improve cellular health and circadian 

function.  The presence of Hsp70-independent compensatory stress response mechanisms is 

suggested by the fact that Drosophila lacking inducible Hsp70 maintain significant 

thermotolerance under mild heat shock and have upregulated expression of other inducible Hsps 

(e.g. sHsps, Hsp40) and constitutive stress-response genes (e.g. Hsc70-2, GstE1) under severe 

heat shock (Gong and Golic, 2006; Neal et al., 2006; Bettencourt et al., 2008).  Further proof for 

the possible involvement of Hsps in the warm-temperature mediated rescue is the lowered 

expHTT inclusion load.  Experiments are ongoing to determine whether the levels of Hsp70 in 

the LNv differ between the temperature regimes. 

Flies lacking varying copy numbers of Hsp70 show a dose-dependent decrease in 

thermotolerance: flies lacking fewer copies have better thermotolerance than those lacking more.  

In contrast, both have poorer thermotolerance than WT (Gong and Golic, 2006).  Similarly, the 

enhancement of eye neurodegeneration on expressing expanded MJD was roughly proportional 

to the number of deleted copies.  In my experiments, I do not observe such dose-dependent 

phenomena regarding loss of rhythmicity or activity consolidation.  One possible explanation for 

the abrogation of the positive effects of the warm temperature on the expHTT-induced 

behavioural deficits on removing even a single copy of the six Drosophila Hsp70 genes can be 

the increased sensitivity of expHTT-stressed-sLNv to cellular proteostatic demands in the face of 

warm temperatures.  The sLNv of HD flies are stressed to begin with, as evidenced by the 

detection of Hsp70-stained sLNv (more significant in number than Hsp70+ lLNv), as early as 1d 

in pdf>Q128, even at 25°C, that is wholly undetected in the LNv of controls pdf>Q0 (Sharma et 

al., 2023).  Such sLNv-stressed HD flies, on exposure to prolonged warm temperatures, are likely 

to experience heat stress, with an increased demand for proteostatic components like molecular 

chaperones, rendering these circadian neurons particularly sensitive to even the slightest of 
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proteostatic perturbations.  Under such conditions, losing even a single copy of the central 

chaperone, Hsp70, probably renders the sLNv dysfunctional and the HD flies arrhythmic. 

Inclusions: In general, under most conditions, with increases in temperature, aggregation 

kinetics, inclusion body formation, and amyloid fibrillation processes increased and facilitated 

the α-to-β transition, including that of polyQ proteins (Shehi et al., 2003; Bulone et al., 2006; 

Haldimann et al., 2011; Moronetti Mazzeo et al., 2012; Ghavami et al., 2013).  However, in my 

study, there was a decrease in inclusion numbers with an increase in temperature.  Nevertheless, 

in flies at an early age, there was a predominance of hemispheres with Diff-enriched LNv at DD23 

as opposed to Inc-enriched LNv at DD29 (Fig 4.26b, c).  The decreased inclusion number with 

temperature in this in vivo Drosophila model could be due to an induction of Hsps that are known 

to interfere with aggregation.  Under developmental temperature cycles, the inclusion load was 

not affected, suggesting that fluctuations in temperature could cancel out the effects of warm and 

cool temperatures on aggregation.  These results indicate that under in vivo conditions, the 

temperature effects on aggregation are not straightforward and confounded by other physiological 

processes that also affect aggregation.  However, there were general trends across the various 

temperature regimes concerning age: the dominance of hemispheres with Diff-enriched LNv, 

followed by Diff+Inc (or mixed Diff+Inc and Inc) at early ages and exclusively Inc-enriched at 

later ages, an increase of inclusion number, and size mostly remaining constant.  The duration of 

domination of hemispheres of Diff and Diff+Inc varied between regimes. 

The above studies also support environmental factors like temperature being disease modifiers 

and polyQ proteins being sensitive to temperature and sensitising organisms to environmental 

stresses.  In nematodes grown at temperature <20°C, temperature-sensitive mutant proteins do 

not themselves induce a phenotype, but when co-expressed with intermediate-length polyQs, the 

worms are paralysed at those temperatures (Gidalevitz et al., 2006).  Increasing the growing 

temperature of Q35 nematodes beyond 20°C led to accelerated polyQ aggregation and toxicity 

(Haldimann et al., 2011), providing evidence that environmental factors contribute to variability 

in the age-of-onset and severity of polyQ diseases. 
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4.4.4 Temperature-based interventions for NDs 

Thermal therapies can be broadly classified into two categories (Habash, 2018; Lowry et al., 2018; 

Hunt et al., 2019; Sun et al., 2019; Brunt and Minson, 2021).  They can internally generate 

metabolic heat, called active heat therapies, like exercise or modify the external environmental 

temperatures that warm or cool the body (though altering the core body temperature is not a 

requisite).  The latter category includes passive heat treatments (e.g. saunas, hot water 

immersions, warming blankets, infrared heating) and therapeutic hypothermia (e.g. cold rooms, 

cooling blankets).  Thermal therapies can be applied locally, regionally, or to the entire body and 

mimicked pharmacologically.  Habitual activity and exercise-heat stress, a common lifestyle 

intervention to improve brain health for aged members and patients of NDs, can be challenging 

to implement in clinical populations; their noncompliance to exercise or limited mobility also 

minimises their experience of physiological stressors (Hunt et al., 2019; Schulz et al., 2020).  Heat 

therapy is a feasible alternative to achieve various health benefits in people deprived of sufficient 

exposure to bright light and experiencing motor difficulties: the institutionalised healthy, elderly, 

neurodegenerative patients, and blind people.  Also, under compromised circadian conditions, 

temperature cues can serve as a masking stimulus and, if provided in alignment with natural 

cycles, can strengthen daily patterns and benefit organismal health (Gall and Shuboni-Mulligan, 

2022). 

Body warming modulates thermoregulatory mechanisms through autonomic responses like 

increasing the cardiac output, and heart rate, activating skin vasodilation and blood flow and 

promoting evaporative heat loss via sweating (Madden and Morrison, 2019; Brunt and Minson, 

2021), activating adaptive stress response pathways like the upregulation of HSPs (Faulkner et 

al., 2017; Brunt et al., 2018), and improving cellular respiration, circulating factors like irisin and 

BDNF, vascular function, muscle strength and motor skill and metabolic health (Racinais et al., 

2017; Brunt et al., 2018; Hafen et al., 2018; Kojima et al., 2018; Ely et al., 2019; Hunt et al., 2019; 

Brunt and Minson, 2021; Glazachev et al., 2021).  Given the metabolic imbalances(Wang et al., 

2014; Handley et al., 2016), decreased cerebral blood flow (Harris et al., 1999; de la Torre, 2004; 

Ma and Eidelberg, 2007; Rocha et al., 2022), and skeletal muscle atrophy (Zielonka et al., 2014) 
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are present in many NDs, including HD, heat therapy and heat acclimation offer an additional 

benefit of enhancing these faculties.  Since several of these characteristics, such as circadian and 

sleep disruptions, are already present in ND at an early stage, heat therapy may be not only 

palliative, but when incorporated at early stages, can delay symptoms, decrease the disease's 

course, and maybe even lessen the disease severity.  Heat therapy can also complement 

conventional treatments by augmenting and accelerating clinical improvements.  Thus, heat 

therapy to evoke positive adaptations and improve health span is gaining traction as a possible 

therapeutic means that can influence neurodegenerative disease outcomes (Hunt et al., 2019).  The 

results presented here further support the use of mild heat stress as a therapeutic means for 

neurodegenerative conditions and associated circadian rhythm disruptions. 

Heat therapy may offer a relatively safe, inexpensive, non-invasive, and practical way to reap 

several health benefits, including boosting HSPs and restoring proteostasis, even though research 

into how temperature modulates neurodegenerative pathways and hyperthermia as a therapeutic 

intervention for neurodegenerative conditions is still in its infancy.  The findings from this study 

illustrate thermotherapy as a potential treatment for neurodegenerative symptoms of cellular 

toxicity and circadian disruption.  Agents that promote thermogenesis and mimic mild heat 

therapy can be tested.  For instance, serotonergic neuronal stimulation and serotonin release were 

sufficient to induce HSR and reduce the misfolded protein burden in C.elegans (Tatum et al., 

2015), and topical menthol treatment mirrored hyperthermic effects of reducing tau 

phosphorylation in AD animals (Guisle et al., 2022). 

Caution must be exercised while using environmental interventions like heat treatments with ND 

patients and the elderly.  Their thermoregulatory systems and cardiovascular regulation might be 

compromised, affecting their ability to withstand these treatments (Hunt et al., 2019).  There is a 

paucity of studies looking at the direct effects of passive heating on neurodegenerative diseases.  

Most of the studies conducted focus on the therapeutic effects of exercise interventions, and not 

necessarily on body warming by exercise in mitigating symptoms of neurodegenerative diseases 

such as improvements in motor and cognitive symptoms (Loprinzi et al., 2013; Paillard et al., 

2015; Hou et al., 2017; Liu et al., 2019a; Mueller et al., 2019).  A few studies show that regular 
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passive heating via sauna baths reduces the risk of developing dementia and AD in the healthy 

middle-aged (Laukkanen et al., 2017; Heinonen and Laukkanen, 2018; Knekt et al., 2020).  In 

addition, most research findings on the effectiveness of heat therapy are associative and 

circumstantial, and the underlying mechanisms are not fully understood (Hunt et al., 2019).  Thus, 

there is a pressing need to focus future research on the modalities of heat therapy and their effects 

on NDs and circadian disruptions in NDs for effectively implementing them in treatment 

regimens.  Understanding the effects of temperature changes on neurodegenerative diseases is 

crucial and urgent, bearing in mind the rising global temperatures, increasing frequency and 

severity of heat waves, and temperature elevations posing the risk of worsening neurological 

symptoms (Bongioanni et al., 2021; Zammit et al., 2021). 
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5.1 INTRODUCTION 

5.1.1 A Screen for modifiers of expHTT-induced 

disruption of activity rhythms 

Circadian and sleep disruptions are now recognised as early symptoms of many NDs, including HD 

(Goodman et al., 2011; Morton et al., 2014; Lebreton et al., 2015; Bellosta Diago et al., 2017).  The 

mammalian clock centre suprachiasmatic nucleus (SCN) is affected in HD mice, including 

molecular clock disruptions and reduction in the Vasoactive Intestinal Peptide, a clock output 

neuropeptide (Morton et al., 2005; Maywood et al., 2010; Kudo et al., 2011; van Wamelen et al., 

2013).  Emerging evidence supports bi-directional crosstalk between the circadian and 

neurodegenerative axes, with circadian function impacting the aetiology and progression of NDs 

(Hood and Amir, 2017a; Leng et al., 2019; Carter et al., 2021; Voysey et al., 2021a).  Studies show 

that treatments imposing sleep cycles and (or) synchronising circadian rhythms also improve 

neurodegenerative phenotypes such as cognitive decline, motor performance and survival of HD 

mice (Pallier et al., 2007; Pallier and Morton, 2009; Maywood et al., 2010; Aungier et al., 2012b; 

Skillings et al., 2014; Ouk et al., 2017; Wang et al., 2017; Whittaker et al., 2018; Cabanas et al., 

2019).  These treatments include pharmacological interventions, timed light exposure, restricted 

food cycles, daily scheduled voluntary exercise, and environmental enrichment.  On the other hand, 

clock disruptions worsen ND (Krishnan et al., 2012; Lauretti et al., 2017a; Kim et al., 2018; Sharma 

and Goyal, 2020a).  Given the beneficial effects of circadian improvement on neurodegeneration, I 

aimed to uncover modifiers of expHTT-induced circadian arrhythmicity.  In the pdf>Q128 flies, I 

carried out a screen of genetic modifiers of cellular toxicity of HD for their ability to suppress 

circadian behavioural arrhythmicity.  These genes are grouped under different categories based on 

function (Table 5.1), and the expressed proteins assist in neuronal function and are modifiers of 

neurodegeneration (Steffan et al., 2001; Singaraja et al., 2002; Gunawardena et al., 2003; Shulman 

and Feany, 2003; Cozzolino et al., 2004; Sang et al., 2005; Mugat et al., 2008; Wyttenbach and 

Arrigo, 2009; Zhang et al., 2009; Singaraja et al., 2011; Turturici et al., 2011; Sutton et al., 2013; 

Karunanithi and Brown, 2015; Kampinga and Bergink, 2016; Menzies et al., 2017; Metaxakis et 
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al., 2018; Alcalà-Vida et al., 2021; Wang et al., 2021).  Co-expression of expHTT in the LNv with 

candidates from the Heat Shock Protein (Hsp) or autophagy group significantly improved flies' 

rhythmicity compared to their expHTT-only expressing counterparts (Table 5.1).  In the Hsp group, 

these included Hsp23, Hsp40 and HSP70 homologs.  A mutated form of Hsc70-4 also showed a 

highly significant rescue.  A significantly higher proportion of tim>Q128,HSP70 flies were also 

rhythmic than tim>Q128 flies.  Overexpressing autophagy genes atg5 or atg8a in pdf>Q128 also 

rescued activity rhythms in DD, which is being pursued by others in our group.  The central 

chaperone HSP70 and co-chaperone Hsp40 were chosen for further analysis. 

5.1.2 Hsps: Function and Role in neurodegenerative 

diseases 

Hsps serve diverse cellular functions both in housekeeping and stress-induced capacities.  They 

play a central role in cellular proteostasis by aiding in protein folding, preventing aberrant inter-and 

intra-protein interactions, protein trafficking, targeting of organelles, protein translocation across 

membranes, protein degradation, exocytosis, vesicular trafficking and disaggregation, among 

others (Hartl and Hayer-Hartl, 2009; Kim et al., 2013; Mannini and Chiti, 2017; Nillegoda et al., 

2018).  In several protein-aggregation diseases like the polyQ diseases, components of chaperone 

machinery such as Hsp40 and HSP70 co-localise with mutant protein aggregates (Cummings et al., 

1998; Chai et al., 1999; Jana, 2000; Muchowski et al., 2000; Kim et al., 2002; Shimura et al., 2004a; 

Wyttenbach, 2004a; Dedmon et al., 2005; Muchowski and Wacker, 2005; Scior et al., 2018).  The 

levels of many Hsps, particularly the ATP-dependent ones and the cellular proteostasis capacity, 

reduce with age, and these contribute to the middle-age onset of NDs like HD (Taylor and Dillin, 

2011; Brehme et al., 2014b; Yerbury et al., 2016; Hipp et al., 2019b; Margulis et al., 2020).  In HD, 

many essential chaperones decline with age, especially HSP70, possibly by getting trapped in 

aggregates or due to reduced gene expression or increased turnover, thereby titrating chaperones 

away from client proteins, further taxing global proteostasis (Helmlinger, 2002; Kim et al., 2002; 

Merienne et al., 2003b; Hay, 2004; Yamanaka et al., 2008; Hipp et al., 2012b; Park et al., 2013; Yu 

et al., 2014).  This phenomenon is often called the chaperone competition or depletion hypothesis 
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(Labbadia and Morimoto, 2015).  The upregulation of Hsps, thus, alleviates proteotoxic stress and 

HD symptoms.  In support of this, multiple studies across animal models of yeast, worms, flies and 

mice show that up-regulating Hsps such as HSP70 and Hsp40 suppress neurodegenerative 

phenotypes of HD in motor and cognitive performances, lifespan, neuronal degeneration, cell death 

and expHTT aggregation (Muchowski and Wacker, 2005; Duncan et al., 2015b; Pratt et al., 2015; 

Brehme and Voisine, 2016a; Reis et al., 2016; Harding and Tong, 2018a; Chaari, 2019; Soares et 

al., 2019; Davis et al., 2020).  Reduction of Hsps also aggravates neurodegenerative phenotypes in 

several NDs, including HD, in cell cultures and animal models (Tagawa et al., 2007; Wacker et al., 

2009; Hageman et al., 2010; Jiang et al., 2012; Scior et al., 2018).  In some cases, the depletion of 

chaperone levels directly results in neurodegenerative phenotypes (Elefant and Palter, 1999; Bonini, 

2002).  Mutations in chaperones and co-chaperones are also known to cause neuromyopathies and 

neurodegeneration (Bonifati et al., 2003; Magnoni et al., 2013; Shi et al., 2013; Lin and Farrer, 

2014; Vilarino-Guell et al., 2014; Ruggieri et al., 2016; Davis et al., 2020; Sarparanta et al., 2020; 

Vendredy et al., 2020).  Therefore, the emergence of Hsps as modifiers in this screen is 

unsurprising.  However, the role of Hsps in circadian rehabilitation is relatively unexplored. 

5.1.3 Hsps as modifiers of expHTT-induced circadian 

decline 

In this study, I investigated the role of Hsp40 and HSP70 as modifiers of expHTT-induced 

circadian neurodegenerative phenotypes in Drosophila.  Most flies expressing expHTT in the 

PDF+ LNv (pdf>Q128) had disrupted behavioural activity rhythms in DD, a loss of PDF from 

sLNv soma, loss of PER and its oscillations from LNv and the presence of expHTT inclusions.  

(Chapters 2 and 3) (Prakash et al., 2017).  The issues addressed in this chapter are the effects of 

Hsp40 or HSP70 overexpression in pdf>Q128 flies on the circadian free-running activity rhythms 

(5.3.1), PDF+ sLNv soma numbers (5.3.2), the forms of expHTT in LNv (5.3.3), expHTT 

inclusion features (5.3.4) and LNv PER and its oscillations (5.3.5). 

I investigated the role of Hsp40 and HSP70 as modifiers of expHTT-induced circadian 

neurodegenerative phenotypes in Drosophila.  Of the two Hsps, Hsp40 emerged as the more 
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potent modifier of expHTT-induced phenotypes.  It has postponed the loss of rhythmic 

locomotion over a substantial duration and the loss of PER and its oscillations from sLNv.  

Notably, there was a rescue of PDF loss from sLNv and a decrease in the visible expHTT inclusion 

load favouring a new feature - a spot-like form of expHTT.  HSP70 overexpression rescued 

rhythmicity and lowered expHTT inclusion numbers early, without rescuing PDF or PER in the 

sLNv or affecting inclusions as the predominant form of expHTT in the LNv.  Co-expression of 

Hsp40 and HSP70 in pdf>Q128 led to a synergistic improvement in the consolidation of activity 

rhythms.  The present study establishes a role for Hsps as suppressors of expHTT-induced 

circadian impairments in a Drosophila circadian HD model.  It also suggests that proteostasis 

disruptions contribute to the circadian disruptions associated with HD. 

  



387 
Chapter 5 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

5.2 MATERIALS AND METHODS 

5.2.1 Fly lines 

Some of the transgenic fly lines used here are described in Chapter 2 (Section 2.2.1).  For the 

genetic screen, the fly lines used are listed in Table 5.1.  The genes were either overexpressed or 

downregulated in the pdf>Q128 background (and, in a few cases, tim>Q128 background) (Table 

5.1).  A recombinant line of w;pdfGal4;+ and w;UAS-HTTQ128/+;+ was generated, denoted by 

w;pdf-Q128;+ and used for the screen.  The sample size for the screen varied between 16 to 32 

flies per genotype. 

For most of this study, the fly lines of focus were generated using the two Hsp UAS lines, namely 

w;+;UAS-DnaJ1k (Bl 30553) and w;+;UAS-HSPA1L (Bl 7054).  The human HSP70 homolog 

used in this study was HSPA1L (Bl 7454) (https://flybase.org/reports/FBgn0029163.html), as a 

recent analysis revealed that among the various chaperone families, the Hsp70 family most 

frequently provided considerable proteotoxic relief in a variety of protein misfolding diseases 

(Brehme and Voisine, 2016a).  The next potent proteotoxic suppressor was the Hsp40 family, 

among which DNAJB4 and DNAJB6 were the most potent polyQ disease modifiers (Brehme and 

Voisine, 2016a).  The dHDJ1 (DnaJ1k or CG10578 or DnaJ-1 or Dm Hsp40) (Bl 30553) used in 

this study is a Drosophila ortholog of members of the human Hsp40 Class B family with varying 

degrees of homology (DNAJB5, DNAJB4 and DNAJB1) 

(https://flybase.org/reports/FBgn0263106.html). 

The UAS-Hsp lines generated the w;pdfGal4/UAS-Q128;UAS-DnaJ1k/+ or w;pdfGal4/UAS-

Q128;HSPA1L/+ lines which would respectively overexpress Hsp40 or HSP70 in the PDF+ LNv 

neurons, also expressing HTT-Q128.  The above-generated lines are called pdf>Q128,Hsp40 and 

pdf>Q128,HSP70 throughout the text.  Their UAS control lines are Q128,Hsp40 and 

Q128,HSP70, and their driver control lines are as pdf>Hsp40 and pdf>HSP70.  Their 

corresponding Q0 lines are pdf>Q0,Hsp40 and pdf>Q0,HSP70.  All other relevant background 

controls were also used.  Due to space constraints, in some figures (Figs 5.7a, c, e, 5.8, 5.7a and 

5.10b, d and f), pdf>Q128, pdf>Q128,Hsp40 and pdf>Q128,HSP70 are abbreviated as Q128, 



388 
Chapter 5 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

H40 and H70, respectively.  Flies co-expressing both Hsp40 and HSP70 and HTT-Q128 in the 

LNv are referred to as pdf>Q128,Hsp40,HSP70 and their Q0 counterparts pdf>Q0,Hsp40,HSP70.  

Crosses were maintained under 12h:12h light: dark cycles (LD), with ~200 lux intensity of light 

phase, at 25℃.  Flies were moved to DD 25℃ after two days post-eclosion for behavioural and 

immunocytochemical assays.  All flies and crosses were maintained on a standard cornmeal 

medium. 

5.2.2 Behavioural assays 

Most of the locomotor activity setup, assay conditions and analyses performed are described in 

Chapter 2 (Sections 2.2.2 and 4.2.2).  At least three independent activity runs were carried out for 

overexpression of Hsp40 with its Q0 and UAS controls, all giving similar results.  For 

overexpression of HSP70, three independent activity runs were carried out with its Q0 controls, 

giving similar results.  At least one experiment was conducted with all possible genetic controls 

for Hsp40 and HSP70 overexpression experiments.  No statistical tests were carried out to 

determine the minimum required sample sizes.  However, as recommended (Kostadinov et al., 

2021), one full DAM2 monitor accommodating 32 flies per genotype was set up at the start of the 

experiment.  The average percentage rhythmicity across multiple runs is plotted for Hsp40 and 

HSP70 overexpression experiments.  In addition, the percentage rhythmicity, period, robustness, 

and extent of activity consolidation r-values of a representative run with all relevant controls for 

the above overexpression experiments are plotted.  For synergistic effects, a single run was carried 

out.  There were fly deaths in AW3; therefore, AW3 analyses had fewer samples.  When the fly 

numbers went below 10 (e.g., in a few instances in AW3), those genotypes were excluded from 

statistical analyses for that AW.  In cases where very few flies (n<10) were rhythmic like 

pdf>Q128 number across AWs in the HSP70 overexpression and synergistic effect experiments 

and during AW3 in Hsp40 overexpression experiment or pdf>Q128,Hsp40 during AW3 in the 

Hsp40 overexpression experiment or most of the experimental genotypes during AW3 in the 

synergistic effect experiment, those genotypes were excluded from the between-genotype 
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statistical analyses of period and rhythm robustness for that AW.  Indicated in Table 5.2 are the 

numbers of surviving flies in AW2 and AW3 across experiments. 

5.2.2.1 Statistical analysis 

Data sets were first tested for normality using Shapiro-Wilk’s test and then for variance 

homogeneity using Levene’s test.  Across experiments, the data comparing period or activity 

consolidation ‘r’ between genotypes for an AW or age did not satisfy the ANOVA assumption of 

normality despite transformations.  So was the case for rhythm robustness in the Hsp40 

overexpression experiment.  Therefore, the non-parametric Kruskal-Wallis test of ranks followed 

by multiple comparisons of mean ranks was used.  For the HSP70 overexpression experiment, 

datasets comparing rhythm robustness between genotypes for an AW were normally distributed 

post-transformation, but variances were not always homogenous.  Hence, Welch’s ANOVA was 

used, followed by the Games-Howell post-hoc test.  For the synergistic effect experiment, the 

data comparing robustness between genotypes for an AW was normally distributed, and their 

variances were homogenous.  A one-way ANOVA followed by unequal N HSD tests were carried 

out.  Friedman’s test for repeated measures was used to compare robustness, period and ‘r’ 

between AWs or ages for a genotype.  Then Wilcoxon matched-pairs tests (or Conover Test for 

‘r’) with Bonferroni correction (or Benjamini-Hochberg (BH) procedure to decrease the False 

Discovery Rate (FDR) for ‘r’; FDR set at 5%) on the pair-wise p-values were used.  A m x n 

Fisher’s Exact test and multiple 2x2 Fisher’s Exact tests with BH procedure on all relevant 

comparisons were used (using R) to compare the proportions of rhythmic flies between genotypes 

for an AW.  Cochran Q test on the dichotomous variable rhythmicity (rhythmic and arrhythmic 

categories) was used to compare the proportion of rhythmic flies between AWs for a genotype, 

followed by multiple 2x2 McNemar’s tests on the dependent samples and Bonferroni correction 

on the pair-wise p-values.  For comparing the mean rhythmicity of multiple independent runs 

between genotypes or between ages, a repeated-measures ANOVA followed by Tukey’s HSD 

was performed post-arcsine conversion of the square-root transformed data.  Other details are 

described previously in Chapter 2 (Section 2.2.2.1). 
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5.2.3 Immunocytochemistry and image analysis  

The dissections, immunocytochemistry and image analysis procedures performed are described 

in Chapter 2 (Section 2.2.3).  Briefly, the adult flies’ brain tissue was dissected at different ages, 

fixed with 4% PFA and stained with the appropriate antibodies: double staining, anti-HTT mouse 

(1:500) and anti-PDF rabbit (1:30,000) and triple staining, anti-PER rabbit (1:20,000), anti-HTT 

mouse (1:500) and anti-PDF rat (1:1000).  Anti-PDF rat was a generous gift from Jae Park, 

Vanderbilt University.  For PER oscillations, flies were dissected at CT23-24 (CT23) and CT11-

12 (CT11).  These samples were co-stained with anti-PDF to enable the identification of LNv. 

For characterising the PER+ and PDF+ LNv soma numbers, the adult flies brain dissections were 

carried out in parallel at different ages.  Since, with pdf>Q128,Hsp40, a sustained rescue for two 

AWs were seen in behaviour, dissections were carried out in 3d-, 9d-, and 16d-old flies 

corresponding to the beginning of AW1, the transition of AW1-AW2 and end of AW2, 

respectively.  With pdf>Q128,HSP70, rhythm rescue was restricted to AW1.  Hence, dissections 

were carried out at 3d and 9d, corresponding to the beginning and end of AW1, respectively.  For 

characterising HTT status in LNv, the adult fly brain dissections were carried out in parallel for 

the five genotypes (pdf>Q128, pdf>Q0,Hsp40, pdf>Q128,Hsp40, pdf>Q0,HSP70 and 

pdf>Q128,HSP70) at 3d and 9d.  Many of the Hsp-expressing flies had periods longer than 24h.  

Therefore, the mean period values of the respective genotypes were considered to calculate the 

circadian time (CT) for dissections to detect PER oscillations in the LNv.  For quantifying PER 

oscillations in DD, LD-reared flies were dissected at CT23-24 (CT23) and CT11-12 (CT11) at 

different ages: all the five genotypes at 3d and pdf>Q0,Hsp40 and pdf>Q128,Hsp40 also at 9d.  

These samples were co-stained with anti-PDF to aid in identifying LNv and anti-HTT.  The 

sample sizes were determined empirically (Table 5.3).  There was no blinding during sample 

preparation. 

5.2.3.1 Image acquisition and analysis 

The number of PDF+ and PER+ LNv and the form of expHTT in the LNv were noted on manual 

observation of the samples using a Zeiss Axio Observer Z1 epifluorescence microscope with the 
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63X/oil 1.4NA objective and without blinding.  The collected data were then cross-verified with 

images captured using a 40X/oil 1.3NA objective as a z-stack of 1µm interval.  The PDF-stained 

sLNv and lLNv were distinguished based on their anatomical location, size, and staining pattern.  

For quantification of PER intensity and expHTT inclusions, the lamp intensity and exposure time 

were kept constant across samples for an experiment.  The PER intensity was calculated from the 

obtained images as described previously in a single-anonymized manner (Sections 2.2.3.1 and 

3.2.3.1).  NIH imaging software ImageJ was used for analysis and quantification.  Confocal z-

stacks were captured using Zeiss LSM 880 for representative images, keeping the PMT gain, 

offset and laser power below saturating pixels.  In the representative images, brightness/contrast 

adjustments have been applied to the whole image to better visualise the LNv, especially the 

sLNv, as they show less intense and sparser PDF staining than the lLNv.  The inclusion 

quantifications (number and size) were described in section 3.2.3.1. 

5.2.3.1.1 Categorisation and quantification of expHTT forms 

Based on the predominant expHTT form present in the LNv, each LNv (intra-hemisphere) or each 

hemisphere (inter-hemisphere) was divided into various categories, as described in section 

3.2.3.1.1.  In addition to expHTT appearing with a uniform diffuse expHTT staining (Diff), 

appearing as puncta-like shiny specks of varying sizes named inclusions (Inc), diffuse expHTT 

with a few puncta-like inclusions (Diff+Inc) and without expHTT staining (No HTT) (Fig 5.1a, 

top-panels), with overexpression of Hsp40, a new form of expHTT was seen.  This hitherto 

unreported form of expHTT was oval with a compact appearance, henceforth referred to as 

expHTT spot or spot-like expHTT (Spot) (Fig 5.1a, second-row).  Also observed less frequently 

was an LNv with an expHTT Spot and the canonical inclusions, giving the Spot a distorted 

appearance.  Hence, such forms of expHTT were included under the Inc category.  If the spot 

appeared amidst a diffused expHTT distribution, primarily seen in lLNv of young flies, it was 

designated as Diff+Spot (Fig 5.1a, second-row).  Each hemisphere was allotted a particular 

category depending on the most predominant expHTT form found sLNv (or lLNv) (Fig 5.1b).  

The hemisphere categorisation (inter-hemisphere) based on the predominant expHTT form in 
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LNv (sLNv or lLNv) was as follows: predominantly diffuse distribution (Fig 5.1b top-left), an 

equal distribution of diffused and inclusions (Diff+Inc) (Fig 5.1b top, middle and right), 

predominantly had Diff+Spot (Fig 5.1b, second-row, left), predominantly had spots (Spot) (Fig 

5.1b, second row, middle and right), a near mix of diffuse, inclusions and spots (Diff+Spot+Inc) 

(Fig 5.1b third row, left), an equal distribution of spot and inclusions (Spot+Inc) (Fig 5.1b, third 

row, middle and right), or predominantly had inclusions (Inc) (Fig 5.1b, fourth row, middle and 

right).  Upon such a hemisphere-level categorisation, hemispheres in which sLNv or lLNv were 

without expHTT never dominated, so the NoHTT category does not exist.  The arrangement order 

used in the figures describing various expHTT forms is based on post-hoc observations regarding 

the appearance and predominance of various expHTT forms in LNv over time (Fig 5.1c).  For 

example, in most pdf>Q128 samples, sLNv shows Diff expHTT as larvae and young adults 

mostly exhibit Diff+Inc in lLNv, followed by Inc as they age.  pdf>Q128,Hsp40 flies mostly 

show Diff expHTT in the young.  With age, different combinations of Diff, Spot, and some Inc 

appear and dominate (mostly non-Inc forms), and Inc-exclusive becomes more prominent only in 

much older flies. 

5.2.3.1.2 Quantification of expHTT inclusions 

The quantification of expHTT inclusion numbers and size and the proportion of hemispheres 

enriched in different-sized inclusions were described in section 3.2.3.1.2.  However, the 

quantification method did not distinguish between expHTT Inc and Spots, resulting in Spots being 

included in the inclusion number and size quantifications. 
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Fig 5. 1 An illustration of the different forms of expHTT detected in LNv. 

Representative images of the adult fly brains stained for PDF (green) and HTT (magenta) in LNv 

soma.  sLNv soma is indicated by arrows (→) and lLNv soma by arrowheads (>).  (a) The various 

forms of expHTT detected in LNv are shown, namely, diffuse expHTT or Diff (Ψ psi),   
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diffuse+inclusions expHTT or Diff+Inc (Ұ symbol), diffuse+spot expHTT or Diff+Spot (υ upsilon), 

spot expHTT or Spot (◄ triangles) and expHTT inclusions or Inc (« double arrowheads).  The * 

represents an lLNv without expHTT (top-right panels) indicated as NoHTT.  (b)  The categorisation 

of hemispheres into seven categories is based on the most predominant form of expHTT in sLNv (or 

lLNv).  The hemispheres are categorised as Diff, Diff+Inc, Diff+Spot, Spot, Diff+Spot+Inc, Spot+Inc 

and Inc.  (c) The predominance of various expHTT forms in LNv over time, based on empirical 

observations for pdf>Q128 and pdf>Q128,Hsp40.  The order of appearance and predominance 

depicted here are for ease of reading and are not to scale are not age-matched events in time across 

pdf>Q128 and pdf>Q128,Hsp40.  Scale bars are 10 µm. 

5.2.3.2 Statistical analysis 

For comparing PDF+ or PER+ LNv numbers between genotypes or between ages, the Kruskal-

Wallis test of ranks, followed by multiple comparisons of mean ranks, was used.  The change in 

the distribution shapes of PDF+ and PER+ LNv numbers between genotypes was assessed using 

Kolmogorov-Smirnov tests with α = 0.05, followed by Bonferroni correction on pair-wise p-

values.  Multi-factor ANOVA followed by Tukey’s HSD post-hoc test was used on transformed 

data to compare inclusion numbers between genotypes or across ages.  Since the variances were 

not homogenous for inclusion size comparisons, the transformed data sets, primarily normal, were 

subjected to Welch’s ANOVAs, followed by Games-Howell post-hoc tests (McDonald, 2014).  

The data sets were either transformed (where required) to analyse the status of PER oscillations 

between the time points CT23 and CT11 for a genotype or the PER intensities at a time point 

between genotypes or directly analysed using One-Way ANOVA, followed by Tukey’s HSD 

wherever necessary.  To compare the proportion of hemispheres predominated by different 

expHTT forms (or different expHTT Inc sizes) between genotypes for age or ages for a genotype, 

m x n Fisher’s exact tests were used.  Following this, wherever necessary, multiple specific 2x2 

Fisher’s Exact test sets with BH procedure on all relevant comparisons were applied (using R).  

The proportion of hemispheres with Spot+ LNv between ages was compared using multiple 2x2 

Fisher’s exact tests followed by Bonferroni corrections.  Spot sizes between ages for sLNv or 

lLNv were analysed by one-way ANOVA (on transformed data, if required), followed by Tukey’s 

HSD tests; for Spot sizes between sLNv and lLNv, a factorial ANOVA with LNv and age as fixed 

factors was carried out on transformed data, followed by Tukey’s HSD.  Other details are 

described previously in Chapter 2 (2.2.2.1).  
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5.3 RESULTS 

5.3.1 Overexpression of Hsp40 or HSP70 delays arrhythmicity in flies expressing 

expHTT in the LNv 

Flies expressing expHTT in LNv are arrhythmic immediately upon entering DD25 (Fig 5.2 

second-row, left) (Prakash et al., 2017).  Overexpressing heat shock proteins Hsp40 or HSP70 in 

pdf>Q128 flies delayed the onset of this arrhythmicity (Fig 5.2 second-row, centre-panels).  Most 

flies co-expressing HTT-Q128 with Hsp40 were rhythmic during the early AW1 and mid-AW2, 

their mean rhythmicities being comparable to those of controls expressing HTT-Q0 and 

significantly higher than those of pdf>Q128 (Fig 5.3a).  However, the rhythmicity of 

pdf>Q128,Hsp40 declined significantly during the later age AW3 than during the earlier AWs 

and compared to their age-matched controls and was like that of pdf>Q128.  Despite a drop in 

rhythmicity compared to AW1, most pdf>Q128,Hsp40 flies remained rhythmic during AW2.  

pdf>Q128,HSP70, had significantly higher rhythmicity than pdf>Q128 in AW1 and AW2  (Fig 

5.3a).  However, it was like controls only in AW1, beyond which it declined.  Notably, in AW2, 

while about 50% of pdf>Q128,HSP70 remained rhythmic, their rhythmicity was significantly 

lower than that of pdf>Q128,Hsp40.  In AW3, like pdf>Q128,Hsp40 and pdf>Q128, 

pdf>Q128,HSP70 also had poor rhythmicity.  Whereas the rhythmicity of pdf>Q128,Hsp40 was 

like that of background controls across AW1 and AW2 (Figs 5.2a, middle-column, 5.3b, top), 

that of pdf>Q128,HSP70 was control-like only during AW1 (Figs 5.2a, third-column, 5.3c, top).  

Unlike the sharp fall in rhythmicity of pdf>Q128,HSP70 in AW2, pdf>Q128,Hsp40, despite 

having a progressive reduction in rhythmicity with age, showed a significant fall in mean 

rhythmicity only in AW3 (Fig 5.3a,b, top,c, top).  Thus, the rescue of rhythmicity by Hsp40 lasted 

longer than that by HSP70. 

In AW1, the rhythmic flies of pdf>Q128,Hsp40 had robust rhythms comparable to most controls 

and significantly higher robustness than pdf>Q128 (Fig 5.3b, second-panel).  In AW2, the 

robustness of rhythmicity of pdf>Q128,Hsp40 dropped lower than that of both parental controls 

and was comparable to that of pdf>Q128.  Overall, the overexpression of Hsp40 in pdf>Q128 

flies rescued both rhythmicity and rhythm robustness in AW1.  In AW1, the rhythmic 
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pdf>Q128,Hsp40 and pdf>Q0,Hsp40 flies had longer periods than other controls (Figs 5.2, 

second-column, 5.3b, third-panel).  The pdf>Q128,Hsp40 flies showed significantly better 

activity consolidation than pdf>Q128 flies across ages 5d-8d and 11-14d (Fig 5.3b, bottom).  

However, this improved consolidation was comparable to controls at 6-7d and 12-15d.  Thus, 

overexpression of Hsp40 in pdf>Q128 flies rescues both rhythmicity and rhythm strength at an 

early age.  Activity rhythms persist until the middle-age, postponing arrhythmicity onset by over 

two weeks.  These results indicate that Hsp40 is a potent suppressor of expHTT-induced circadian 

behavioural arrhythmicity. 

The rhythmic flies of pdf>Q128,HSP70 exhibited weaker rhythms than controls across AWs, and 

robustness in older AWs was lower than in AW1 (Fig 5.3c, second-panel).  Controls 

pdf>Q0,HSP70 and pdf>HSP70 mostly had longer periods than rhythmic pdf>Q128,HSP70 and 

Q128,HSP70 across AWs (Figs 5.2, third-column, 5.3c, third-panel).  The activity consolidation 

of pdf>Q128,HSP70 was significantly better than that of pdf>Q128 across 4d-5d and 6d-13d and 

was comparable to controls at most ages (Fig 5.3c, bottom).  Thus, the overexpression of HSP70 

in pdf>Q128 flies improves their early-age rhythmicity and activity consolidation.  In contrast to 

the rescue with Hsp40 overexpression, rhythm rescue with HSP70 overexpression at an early age 

did not extend to middle age.  Hence, HSP70 partially suppresses expHTT-induced circadian 

behavioural arrhythmicity and is less efficient than Hsp40. 
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Fig 5. 2 pdf>Q128 flies overexpressing Hsp40 or HSP70 show early-age behavioural activity/rest 

rhythms. 

Representative double-plotted actograms for flies showing activity data for 21d (age 3d-23d) in DD at 

25 oC for 16 genotypes.  As shown to the left, the 21d data has been divided into three 7d age windows 

(AWs).  The white and grey bars above the actograms represent the light and dark phases of the 

previous LD. 
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Fig 5. 3 In pdf>Q128 flies, Hsp40 overexpression leads to sustained behavioural rhythms, while 

HSP70 overexpression leads to early-age rhythmicity. 

(a) The percentage of rhythmic flies averaged over at least three independent runs plotted across age 

windows.  (b) (c) (d) For three different activity runs with the primary experimental genotype being 

pdf>Q128,Hsp40 (b), pdf>Q128,HSP70 (c) and pdf>Q128,Hsp40,HSP70 (d), comparisons across 

AWs of percentage rhythmicity (top-panel), mean rhythm robustness (second-panel), mean period 

(third-panel) and mean r-value (bottom-panel).  pdf>Q128 has not been considered for between-

genotype statistical comparisons of robustness and period across AWs in the HSP70 overexpression   
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and synergistic effect experiments (c and d, second and third panels) and during AW3 in the Hsp40 

overexpression experiment (b, second and third panels), as very few flies were rhythmic.  Also, for 

AW3, pdf>Q128,Hsp40 in the Hsp40 overexpression experiment (b, second and third panels) or most 

of the experimental genotypes in the synergistic effect experiment (d, second and third panels) are not 

considered for statistical analysis of period and robustness.  Across all panels, coloured symbols 

represent statistically significant differences: coloured * indicates age-matched differences of the 

respective-coloured genotype from all other genotypes or indicated genotype, coloured # indicates 

age-matched differences of the respective-coloured genotype from all Q0-containing controls and 

coloured $ indicates differences across age for the respective-coloured genotype.  Statistical 

significance at single-symbol p<0.05, dual-symbol p<0.01 and triple-symbol p<0.001.  nd indicates 

not different.  For the bottom-panels of r-values, red-coloured symbols indicate significant differences 

at p <0.05 of pdf>Q128 from * all other genotypes, § from all genotypes except pdf>Q128,Hsp40, ˄ 

from all genotypes except pdf>Q128,HSP70, £ from all non-expanded controls and * (orange) of 

pdf>Q128,HSP70 from all other genotypes.  Coloured + near an error bar of a data point indicates 

significant differences at p <0.05 of the respective-coloured genotype from the data-point genotype.  

Error bars are SEM. 

5.3.2 Co-expression of Hsp40 and HSP70 synergistically improves the consolidation 

of activity rhythms in flies expressing expHTT in the LNv 

Previous studies show that co-expression of Hsp40 and HSP70 has a synergistic effect of 

providing a more significant effect on neurodegenerative features than expressing Hsp40 or 

HSP70 individually (Chan et al., 2000; Jana, 2000; Kobayashi et al., 2000; Muchowski et al., 

2000; Sittler et al., 2001; Bailey et al., 2002; Bonini, 2002; Rujano et al., 2007).  Therefore, I 

asked whether overexpression of both the Hsps provides a greater rescue (e.g. sustained robust 

rhythms across AWs) than expressing each alone.  In AW1, flies expressing both Hsps in the 

presence of expHTT, i.e. pdf>Q128,Hsp40,HSP70, were mostly rhythmic, comparable to 

pdf>Q128,Hsp40, pdf>Q128,HSP70 and control pdf>Q0,Hsp40,HSP70 and significantly better 

than pdf>Q128 (Figs 5.2, second-row, 5.3d, top-panel).  However, in AW2, the percentage 

rhythmicity of pdf>Q128,Hsp40,HSP70, like that of pdf>Q128,HSP70, dropped significantly 

compared to AW1 while remaining higher than that of pdf>Q128 but lower than that of 

pdf>Q128,Hsp40 and pdf>Q0,Hsp40,HSP70 (Fig 5.3d, top-panel).  In AW3, the rhythmicity 

percentage of pdf>Q128,Hsp40,HSP70 declined further and, like for single Hsp overexpression, 

was comparable to that of pdf>Q128. 

In AW1, the rhythmic pdf>Q128,Hsp40,HSP70 flies exhibited robust rhythms comparable to 

those of control pdf>Q0,Hsp40,HSP70 and the single rescue pdf>Q128,HSP70 (Fig 5.3d second-

panel).  Its period was similar to most other genotypes across age (Figs 5.2 and 5.3d third-panel).  
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Both pdf>Q128,Hsp40,HSP70 and pdf>Q128,HSP70 had weaker rhythms than that of 

pdf>Q128,Hsp40 in AW1 and AW2 and than pdf>Q0,Hsp40,HSP70 in AW2 (Fig 5.3d second-

panel).  Interestingly, the extent of activity consolidation ‘r’ of pdf>Q128,Hsp40,HSP70 was 

significantly greater than that of pdf>Q128 and both pdf>Q128,Hsp40 and pdf>Q128,HSP70 

during most of the early age, while remaining comparable to that of pdf>Q0,Hsp40,HSP70 and 

pdf>Hsp40,HSP70 (Fig 5.3d, bottom).  Overexpression of both Hsp40 and HSP70 

(pdf>Hsp40,HSP70) leads to a higher ‘r’ and, by extension, better-consolidated activity rhythms 

than those of experimental genotypes pdf>Q128, pdf>Q128,Hsp40 and pdf>Q128,HSP70 in 

early and middle ages, and also from control Q128,Hsp40,HSP70 at early ages (Fig S1).  This 

enhanced consolidation upon expressing both the HSPs in the LNv is also reflected in the 

significantly higher ‘r’ of pdf>Q0,Hsp40,HSP70 and pdf>Q128,Hsp40,HSP70 than that of the 

other experimental genotypes.  Thus, although overexpression of both Hsp40 and HSP70 in 

pdf>Q128 did not have a synergistic effect on percentage rhythmicity per se, there was a 

synergistic improvement in early-age activity consolidation. 

5.3.3 Hsp40 overexpression in flies expressing expHTT in the LNv rescues PDF+ 

sLNv soma numbers 

I then investigated whether overexpression of Hsp40 or HSP70 in pdf>Q128 also rescues LNv 

cellular features.  As described previously (Sheeba et al., 2010; Prakash et al., 2017) and as is also 

shown here, pdf>Q128 flies had a loss of PDF from the sLNv soma from an early age, while PDF 

in lLNv soma was unaltered (Figs 5.4, top, 5.5a).  In contrast, flies overexpressing Hsp40, the 

pdf>Q128,Hsp40, showed significantly higher PDF+ sLNv soma numbers than pdf>Q128 and 

were indistinguishable from control pdf>Q0,Hsp40 across ages (Figs 5.4, middle panel-sets, 5.5a, 

left).  The shapes of the frequency distributions of PDF+ sLNv numbers for pdf>Q128,Hsp40 

across age were left-skewed, like those of controls, with most hemispheres having 4-5 sLNvs, and 

differed significantly from the right-skewed distribution of pdf>Q128 (Fig 5.5b).  In contrast, at 

3d and 9d, the PDF+ sLNv soma numbers of pdf>Q128,HSP70 were diminished, like those of 

pdf>Q128 and significantly lower than those of control pdf>Q0,HSP70 and pdf>Q128,Hsp40 

(Figs 5.4, bottom panel-sets, 5.5a, left).  Mirroring the mean PDF+ sLNv soma numbers was the 

shape of their distributions at both ages: pdf>Q128,HSP70 was like pdf>Q128 and different from 

controls (Fig 5.5c).  The PDF+ lLNv soma numbers were comparable for all the genotypes across 
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age (Figs 5.4, ‘>’, 5.5a, right).  Thus, overexpression of Hsp40, but not HSP70, completely 

rescues PDF+ sLNv numbers.  The sustained circadian rhythm rescue in pdf>Q128,Hsp40 

accompanied by the circadian output neuropeptide PDF rescue in the soma of pacemaker neurons 

sLNv suggest Hsp40 as a disease-modifier effective in restoring cellular function as well as 

associated behaviour.  Despite the persistence of circadian activity rhythms, the lack of rescue of 

PDF+ sLNv soma in pdf>Q128,HSP70 at an early age suggests an unconventional mode of 

rhythm restoration by HSP70 in the absence of somal PDF in the sLNv.  
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Fig 5. 4 pdf>Q128 flies overexpressing Hsp40 retain PDF+ sLNv soma across age. 

Representative images of adult fly brains stained for PDF (green) and HTT (magenta) in LNv at 3d, 

9d and 16d for pdf>Q128 (top panel-sets), pdf>Q0,Hsp40 (middle-left panel-sets), pdf>Q128,Hsp40 

(middle-right panel-sets), and at 3d and 9d for pdf>Q0,HSP70 (bottom-left panel-sets) and 

pdf>Q128,HSP70 (bottom-right panel-sets).  Indicated in the images are sLNv soma (→ arrows), 

lLNv soma (> arrowheads), diffuse expHTT (Ψ psi), diffuse+inclusions expHTT (Ұ), diffuse+spot 

expHTT (υ upsilon), spot expHTT (◄ triangles) and expHTT inclusions (« double arrowheads) for 

the five genotypes.  Scale bars are 10 µm.  
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Fig 5. 5 pdf>Q128 flies overexpressing Hsp40 have control-like PDF+ sLNv soma numbers. 

(a) The Mean number of PDF+ sLNv soma (left) and lLNv soma (right) across three ages.  Symbols 

indicate significant differences, * for age-matched, inter-genotype differences and $ for differences 

between ages for each genotype: * (red) of pdf>Q128 from all other genotypes except 

pdf>Q128,HSP70 and * (orange) of pdf>Q128,HSP70 from other genotypes except pdf>Q128 at * 

p<0.05, ** p<0.01, *** p<0.001.  NA is not applicable since early-age-rescue of PDF+ LNv was not   
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seen in pdf>Q128,HSP70, 16d dissections were not done.  (b) and (c) Frequency distribution of the 

proportion of hemispheres with 0 to 5 PDF+ sLNv soma numbers comparing pdf>Q128 with 

pdf>Q128,Hsp40 and pdf>Q0,Hsp40 at 3d, 9d and 16d (b) and with pdf>Q128,HSP70 and 

pdf>Q0,HSP70 at 3d and 9d (c).  Coloured multiple * indicates significantly different distribution 

shapes between genotypes, with the first colour of the reference genotype and the subsequent colours 

of genotypes differing from the reference at p<0.01.  nd, not different.  Error bars are SEM. 

5.3.4 Hsp40 overexpression in pdf>Q128 flies reduces the inclusion form of expHTT 

in favour of a new form 

Hsps are molecular chaperones that interfere with various stages of aggregation and modify the 

nature, conformation, and solubility of expHTT inclusions (Barral et al., 2004; Wyttenbach and 

Arrigo, 2009; Lotz et al., 2010; Arrasate and Finkbeiner, 2012).  I used immunocytochemistry 

and light microscopy to determine whether Hsp overexpression modifies the expHTT forms 

detected in the LNv of pdf>Q128.  As detailed in the Materials and Methods section, the expHTT 

forms in each sLNv or lLNv were categorised based on appearance.  Interestingly, pdf>Q128 

with overexpressed Hsp40 had an additional expHTT form that has not been observed in these 

flies and instances of which seem unreported in the literature.  Visually and qualitatively, this 

form of HTT-Q128 appeared as a compact oval and was excluded from the cytoplasmic PDF 

staining (Figs 5.4, middle row, right panel-sets, see ‘◄’, 5.6a, b).  I refer to this as the “Spot” 

form of expHTT.  PER at CT23 was mainly nuclear, and the compact Spot expHTT form appeared 

to overlap with nuclear PER and might be peri-nuclear (Fig 5.6a, b).  The Spot form was also 

restricted to a single structure per LNv.  Further, the spots appeared to be present throughout the 

circadian cycle, and when PER oscillations were examined, a similar number of expHTT spots 

were observed at both CT23 and CT11. 

Only the pdf>Q128,Hsp40 showed the presence of expHTT spots (Fig 5.4).  Within each 

hemisphere, Spot expHTT was present in ~75% sLNv (three of four) at 3d and ~50% sLNv (two 

of four) at 9d and 16d (Fig 5.9a, top).  At 3d and 9d, nearly every hemisphere of pdf>Q128, Hsp40 

had at least one sLNv with Spot expHTT, which decreased to ~ 75% at 16d (Fig 5.6c, left).  In 

lLNv of pdf>Q128,Hsp40, Spot expHTT was absent at 3d, detected in ~60% lLNv per hemisphere 

(two to three of four) at 9d as Diff+Spot and in ~50% lLNv at 16d as a distinct Spot (Fig 5.9a, 

bottom).  Across samples of pdf>Q128,Hsp40, most of the hemispheres showed the presence of 
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Spot in at least one lLNv (as Diff+Spot or Spot) at 9d and 16d (Fig 5.6c, left).  On average, sLNv 

of older flies had significantly bigger spots (~25 µ) than those of 3d flies (~17 µ), and in lLNv, a 

similar trend was seen, with bigger spots at 16d (~20µ) than at 9d (~12µ) (Fig 5.6c right).  The 

spots in the sLNv were larger than those in age-matched lLNv (Fig 5.6c, right). 

Comparing the within-hemisphere distribution of predominant expHTT forms in LNv, it is 

apparent that at 3d and 9d, expHTT inclusions dominated both the sLNvs and lLNvs of pdf>Q128 

and pdf>Q128,HSP70 (Fig 5.7a, b).  In contrast, in the LNv of pdf>Q128,Hsp40, expHTT Spot 

dominated at 3d and continued to be present at 9d and in lLNv, expHTT was mostly diffuse at 3d, 

giving way to Diff+Spot and Inc expHTT at 9d (Fig 5.7 a, b).  These intra-hemisphere differences 

were reflected in the inter-hemisphere comparisons (Fig 5.7a-d).  Comparing the between-

hemisphere distribution of predominant expHTT forms in LNv, it is apparent that at 3d and 9d, 

inclusions dominated in both the sLNvs and lLNvs of pdf>Q128 and pdf>Q128,HSP70 (Figs 5.4, 

5.7c, d).  In contrast, in the LNv of pdf>Q128,Hsp40, non-inclusion forms of expHTT like Diff 

and Spot dominated over exclusively-Inc (Fig 5.7c, d).  At both ages, the overall distributions of 

expHTT forms in sLNv and lLNv of pdf>Q128,Hsp40 differed significantly from those of 

pdf>Q128 and pdf>Q128,HSP70 (Fig 5.7c).  We then compared the relative proportion of 

hemispheres in various pair-wise-category combinations.  Specifically, at 3d, the proportion of 

hemispheres dominated by Inc expHTT in sLNv relative to Spot forms was significantly higher 

in pdf>Q128 and pdf>Q128,HSP70 than that in pdf>Q128,Hsp40, which mostly had hemispheres 

dominated by Spot expHTT and to a lesser extent Spot+Inc in the sLNv (Fig 5.8a, top).  At 9d, 

nearly 50% of pdf>Q128,Hsp40 hemispheres still had Spot-enriched sLNv either as Spot or 

Spot+Inc expHTT, while a similar proportion of hemispheres also had Inc-enriched sLNv (Fig 

5.8a, bottom).  It is of note that, by 9d, more than 50% of pdf>Q128 and pdf>Q128,HSP70 had 

no PDF+ sLNv, with a mean number of ~1, whereas nearly all pdf>Q128,Hsp40 had 4 PDF+ sLNv 

(Fig 5.8a - mean PDF+ LNv numbers are indicated at the bottom of ear bar). 

The proportion of hemispheres with Inc-enriched lLNv relative to other forms of expHTT was 

significantly higher in pdf>Q128 and pdf>Q128,HSP70 than pdf>Q128,Hsp40 at both 3d and 9d 

(Fig 5.8b, top-left and bottom).  pdf>Q128,Hsp40 at these ages mostly favoured hemispheres 
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dominated by non-Inc-enriched lLNv.  At 3d, most of the hemispheres of pdf>Q128,Hsp40 had 

Diff expHTT in lLNv, and by 9d, Spot expHTT appeared, giving rise to hemispheres 

predominated by mostly non-Inc expHTT forms in lLNv, namely Diff+Spot and Diff+Spot+Inc 

(Fig 5.8b).  Thus, the inclusion form of expHTT predominates over other forms in LNv across 

age in pdf>Q128 and pdf>Q128, HSP70, whereas, in pdf>Q128,Hsp40 diffuse and spot forms 

are prevalent. 

To track the progress of these distinct forms of expHTT over a more extended duration in the 

presence of Hsp40, in a separate experiment with pdf>Q128 and pdf>Q128,Hsp40, we quantified 

cellular phenotypes up to 16d.  Like the previous experimental results (Fig 5.7c, d), across age, 

the relative proportions of hemispheres with different expHTT forms in sLNv and lLNv differed 

significantly between genotypes (Fig 5.7e, f).  Most of the pdf>Q128 hemispheres had Inc-

enriched sLNv across age and Inc-enriched lLNv at 9d and 16d, while in pdf>Q128,Hsp40, Spot 

expHTT in various combinations dominated the LNv (Fig 5.7e, f).  In pdf>Q128, as the flies aged, 

there was a significant reduction in the proportion of hemispheres predominating in Diff or 

Diff+Inc expHTT in lLNv relative to those predominating in Inc expHTT (Fig 5.9b).  In 

hemispheres of pdf>Q128,Hsp40, Spot-enriched sLNv were present across age (Fig 5.9c), and 

with age, the proportion of hemispheres with predominantly Spot-enriched sLNv relative to Inc-

enriched diminished (Fig 5.9c, left).  pdf>Q128,Hsp40 showed a significant change across age in 

the proportion of hemispheres dominated by Diff-enriched lLNv relative to lLNv enriched by 

other expHTT forms (Fig 5.9d, top-row).  Post 3d, Diff expHTT steeply declined in lLNv, making 

way for Diff+Spot, Diff+Spot+Inc and Inc at 9d and Spot, Spot+Inc and Inc at 16d (Fig 5.9d, top-

row).  From 9d to 16d, the relative proportions of hemispheres of Diff+Spot- (and 

Diff+Spot+Inc)- enriched lLNv to that of Inc enriched lLNv decreased significantly (Fig 5.9d, 

middle row, first and second panels).  Concomitantly, the relative proportions of hemispheres of 

Spot- (and Spot+Inc)-enriched lLNv to that of Inc-enriched lLNv increased significantly (Fig 

5.9d, middle-row, third and fourth panels).  Thus, the overexpression of Hsp40 in pdf>Q128 flies 

decreases the expHTT inclusions in LNv and facilitates expHTT spots.  HSP70 overexpression, 

on the other hand, did not decrease expHTT inclusions in LNv. 



407 
Chapter 5 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

In summary, Hsp40 overexpression improves LNv health by reducing inclusions of expHTT in 

favour of a new form of expHTT, the “Spot”, and preserving PDF+ sLNv.  The Spot expHTT 

might be a relatively less toxic form of expHTT, given the control-like PDF+ sLNv numbers of 

pdf>Q128,Hsp40.  Also, pdf>Q128,HSP70 and pdf>Q128 were nearly indistinguishable in the 

dominance of expHTT inclusions in LNv, suggesting that mechanisms mediating the early-age 

rhythms upon HSP70 overexpression might not involve mitigation of visible inclusions. 
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Fig 5. 6 pdf>Q128 flies overexpressing Hsp40 show the presence of a novel expHTT form, the 

‘Spot’.  
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(a) and (b) Two sets of representative images of 3d adult brains of pdf>Q128,Hsp40 stained for PDF 

(green), PER (cyan hot) and expHTT (magenta) showing better resolved expHTT spots, where marked 

rectangles in each panel are enlarged in the subsequent panels below.  Indicated in the images are 

sLNv soma (→ arrows), lLNv soma (> arrow-heads), diffuse expHTT (Ψ psi), spot expHTT (◄ 

triangles), expHTT inclusions (« double arrow-heads) and the PDF-, PER+ 5th sLNv.  (c)  Across three 

ages, the proportion of hemispheres with spots in sLNv or lLNv (left) and the mean spot sizes in sLNv 

and lLNv (right) are compared.  $ depicts the difference of one age from other ages at $$$ p<0.001, 

and + indicates age-matched differences between sLNv and lLNv at p<0.0001.  NA is not applicable.  

Error bars are SEM.  Scale bars are 10 µm. 
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Fig 5. 7 pdf>Q128 flies overexpressing Hsp40 have fewer hemispheres with expHTT-inclusion-

enriched LNv. 

(a) and (b) The proportion of sLNv (top) or lLNv (bottom) having different expHTT forms in a hemisphere 

(intra-hemisphere) averaged across hemispheres are plotted against three genotypes for each age (a) or 

against two ages for each of the three genotypes (b).  (c) and (d) The proportion of hemispheres dominated 

by different expHTT forms in sLNv (top) or lLNv (bottom) is plotted on the y-axis to describe the between-

hemispheres (inter-hemisphere) distribution of predominant expHTT forms.  This proportion is plotted at 

3d and 9d against three genotypes (a) or for each genotype against ages 3d and 9d (b).  * indicates significant 

changes in relative distributions of expHTT forms between   
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genotypes (c) or between ages (d) at ** p<0.01 and *** p<0.0001.  The relevant pair-wise comparisons 

of (c) are plotted in Fig 5.8a, b.  (e) and (f) are like (c) and (d), comparing the three ages, 3d, 9d, and 

16d, for pdf>Q128 and pdf>Q128,Hsp40.  The relevant pair-wise comparisons of (d) are plotted in 

Fig 5.9a-c. 

Fig 5. 8 Hemispheres dominated by expHTT inclusion enriched LNv were reduced in favour of 

diffuse and spot enriched LNv in pdf>Q128 flies overexpressing Hsp40. 

(a) and (b) From the entire set in Fig 5.7c, various pair-wise relative hemisphere proportions enriched 

with expHTT forms in sLNv (b) and lLNv (c) that are statistically significant or (and) are biologically 

relevant are plotted against the three genotypes for 3d (top) and 9d (bottom).  At the bottom of some 

bars, numbers represent the mean number of PDF+ LNv detected for that genotype at that age.  * 

indicates significant relative changes in pair-wise proportions of hemispheres enriched in expHTT 

forms between genotypes at * p<0.05, ** p<0.01 and *** p<0.001.  NA, not applicable. 
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Fig 5. 9 Most pdf>Q128 flies overexpressing Hsp40 possess hemispheres with expHTT spot form 

enriched LNv. 

(a) The proportion of sLNv (top) or lLNv (bottom) having different expHTT forms in a hemisphere 

(intra-hemisphere) averaged across hemispheres are plotted against three ages of pdf>Q128,Hsp40 

showing the within-hemisphere distribution of expHTT forms.  (b) - (d) From the entire set in Fig 

5.7e, various pair-wise relative hemisphere proportions enriched with expHTT forms in lLNv (b and 

d) and sLNv (c) that are statistically significant or (and) are biologically relevant are plotted against 

age for the genotypes pdf>Q128 (b) and pdf>Q128,Hsp40 (c and d).  At the bottom of some bars, 

numbers represent the mean number of PDF+ LNv detected for that genotype at that age.  * indicates 

significant relative changes in pair-wise proportions of hemispheres enriched in expHTT   



413 
Chapter 5 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

forms between genotypes at * p<0.05, ** p<0.01 and *** p<0.001.  NA, not applicable; NS, not 

significant. 

5.3.5 Hsp40 overexpression in pdf>Q128 flies reduces the number of expHTT 

inclusions 

I quantified the number and size of expHTT inclusions in and around the LNv.  At both 3d and 

9d, pdf>Q128,Hsp40 had significantly fewer inclusions than that of pdf>Q128 and 

pdf>Q128,HSP70 (Fig 5.10a, left).  At 3d, pdf>Q128,HSP70 also had fewer inclusions than 

pdf>Q128, but not at 9d.  Both pdf>Q128,Hsp40 and pdf>Q128,HSP70 exhibited increased 

inclusion numbers with age.  Altogether, these results indicate that overexpression of Hsp40 or 

HSP70 in pdf>Q128 reduces expHTT inclusion numbers, with Hsp40 having lasting effects. 

The mean inclusion size of pdf>Q128,Hsp40 was higher than that of pdf>Q128 and 

pdf>Q128,HSP70 at 3d, which is likely a reflection of including the relatively large-sized 

expHTT spots among inclusions during quantification (Fig 5.10a, right).  Surprisingly, at 9d, 

pdf>Q128 had smaller inclusions than pdf>Q128,Hsp40 and pdf>Q128,HSP70.  Inclusion size 

of pdf>Q128 and pdf>Q128,HSP70 increased with age. 

Qualitatively, at 3d, pdf>Q128 and pdf>Q128,HSP70 had a relatively higher prevalence of 

smaller-sized Inc in the intra-hemisphere distribution.  At the same time, the bigger-sized Inc 

prevailed in pdf>Q128,Hsp40, likely a reflection of Spot presence (Fig 5.10b, c).  The relative 

proportions of hemispheres enriched in various-sized inclusions changed significantly between 

the three genotypes at 3d but not 9d (Fig 5.8d).  The relative proportions of hemispheres enriched 

in various-sized inclusions did not change with age for the genotypes (Fig 5.8e).  At 3d, the 

relative proportions of hemispheres enriched in <3µ-sized inclusions to those enriched in bigger-

sized inclusions (3-6µ or >6µ) changed significantly between pdf>Q128 and pdf>Q128,Hsp40, 

with the former mainly exhibiting <3µ-sized inclusions (Fig 5.8f, left and middle panels).  Such 

a prevalence of hemispheres rich in smaller-sized inclusions in pdf>Q128 is interesting. 

In summary, co-expression of expHTT with Hsp40 in the LNv decreases the proportion of 

hemispheres with inclusion-enriched LNv across age, with a concomitant increase in the 

proportion of hemispheres enriched in a hitherto unreported Spot form of expHTT in LNv and a 

decrease in the expHTT inclusion numbers.  All the above observations, taken together, will be 

henceforth referred to as a decrease in the ‘inclusion load’.  Thus, Hsp40 overexpression in 

pdf>Q128 flies reduces the inclusion load of the LNv.  
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Fig 5. 10 Young pdf>Q128 flies overexpressing Hsp40 or HSP70 have reduced expHTT inclusions 

numbers. 

(a) Comparison of mean inclusion number per hemisphere (left) and mean inclusion size per 

hemisphere (right) for three genotypes at 3d and 9d.  Coloured * indicates statistically significant age-

matched differences between genotypes: * (olive-green) from pdf>Q128,Hsp40 and * (red) from 

pdf>Q128, coloured $ represent differences across age for the respective-coloured genotype.  

Statistical significance is at single-symbol p<0.05, dual-symbol p<0.01 and triple-symbol p<0.001.  

Error bars are s.e.m.  (b) and (c) The mean proportion of expHTT inclusions of different size ranges 

in the vicinity of LNv in a hemisphere describing the within-hemisphere expHTT inclusion size 

distribution is plotted against genotypes for ages 3d and 9d (b) or against age for each genotype (c).    
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The proportion of different-sized expHTT inclusions for each hemisphere is plotted for three 

genotypes comparing across ages.  (d) and (e) The proportion of hemispheres dominated by different 

expHTT inclusion size ranges in LNv describing the between-hemispheres distribution of expHTT 

inclusion sizes are plotted against genotypes for ages 3d and 9d (d) or against age for each genotype 

(e).  The * indicates significant changes in relative distributions of expHTT sizes between genotypes 

at ** p<0.01.  From the entire set in (d), three pair-wise relative hemisphere proportions enriched with 

specified inclusion sizes that were statistically significant are plotted against the three genotypes for 

age 3d (f).  The * indicates significant relative changes in pair-wise proportions of hemispheres 

enriched with differently sized expHTT inclusions between genotypes at * p<0.05. 

5.3.6 Hsp40 overexpression rescues early-age sLNv PER oscillations in the expHTT-

expressing flies 

PER, a central clock protein, is lost from the soma of LNv in pdf>Q128 flies (Chapter 2) (Prakash 

et al., 2017), also seen here, with pdf>Q128 having significantly fewer PER+ sLNv soma at 3d 

and 9d and almost none at 16d (Figs 5.11a, left, bottom-right, b, top).  I addressed whether the 

neuroprotective effect of Hsp40 overexpression on pdf>Q128 flies extends to the loss of PER and 

its oscillations in the LNv.  pdf>Q128,Hsp40 showed the presence of PER+ sLNv and lLNv soma 

at 3d and 9d, with control-like numbers (Fig 5.11a, left panel-sets, b), and their frequency 

distributions were left-skewed like that of pdf>Q0,Hsp40 and differed from that of pdf>Q128 

(Fig 5.11c, first and second columns, top and middle rows).  However, unlike the rescue of PDF 

in sLNv soma, PER rescue in the LNv soma was not sustained up to 16d, by which time, 

pdf>Q128,Hsp40 had significantly fewer PER+ sLNv and lLNv than those of controls and was 

comparable to pdf>Q128 (Fig 5.11a, right, bottom panel-sets, b).  The shape of the frequency 

distribution of PER+ sLNv and lLNv soma numbers in pdf>Q128,Hsp40 changed from a control-

like left-skew at 9d to a pdf>Q128-like shape at 16d (Fig 5.11c, first and second columns, middle 

and bottom rows).  pdf>Q128,HSP70, did not show rescue of PER+ sLNv soma across age.  Its 

mean numbers and frequency distribution shapes were comparable to those of pdf>Q128 and 

significantly differed from those of pdf>Q0,HSP70 and pdf>Q128,Hsp40 (Fig 5.11a, right panel-

sets, b, top, c, right column, top and middle rows).  PER+ lLNv soma numbers of 

pdf>Q128,HSP70 were comparable to pdf>Q128 at 3d and 9d, control-like at 3d and significantly 

reduced at 9d (Fig 5.11b, bottom).  The shape of the PER+ lLNv soma distribution of 9d-old 
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pdf>Q128,HSP70, like that of pdf>Q128, differed from the left-skewed distribution of 

pdf>Q0,HSP70 (Fig 5.11c, bottom-right). 

Because pdf>Q128,Hsp40 showed control-like PER+ sLNv soma numbers at 3d and 9d, PER 

oscillations in LNv were assessed at these ages.  At 3d, pdf>Q128 did not show PER oscillations 

in sLNv; pdf>Q128,Hsp40 showed a significant oscillation in PER levels like pdf>Q0,Hsp40 

(Fig 5.11a, top-left panel-sets, d, top-left).  The PER intensity in sLNv of pdf>Q128 was 

significantly lower than for the other two genotypes at CT23.  However, at 9d, despite having 

control-like sLNv numbers and PER in the sLNv, PER oscillation was absent in sLNv of 

pdf>Q128,Hsp40, with intensity at CT23 being significantly diminished compared to that of 

pdfQ0Hsp40 (Fig 5.11a, bottom-left panel-sets, d, top-middle).  At 3d, PER oscillation was seen 

in lLNv of pdf>Q128, pdf>Q128,Hsp40 and pdf>Q0,Hsp40 (Fig 5.11a, top-left panel-sets, d, 

bottom-left).  At 9d, PER oscillations were absent from lLNv of both pdf>Q128,Hsp40 and 

control pdf>Q0,Hsp40 (Fig 5.11a, bottom-left panel-sets, d, bottom-middle), as is reported for 

wildtype flies (Shafer et al., 2002; Veleri et al., 2003).  PER oscillations in LNv of 

pdf>Q128,HSP70 were like pdf>Q128, with no PER oscillation in sLNv at 3d, and a significant 

oscillation in lLNv (Fig 5.11a, top-right panel-sets, d, right).  HSP70 overexpression did not 

rescue PER in the sLNv, even in young pdf>Q128 flies.  Thus, in young expHTT-expressing flies, 

Hsp40 overexpression restores both PER+ sLNv numbers and PER oscillations in the sLNv.  This 

study is the first thus far to report rescue in circadian molecular oscillations accompanying the 

restoration of behavioural rhythms observed in these flies, underscoring the effectiveness of 

Hsp40 as a potent circadian modifier in HD. 

Hsp40 overexpression in LNv of expHTT flies leads to the rescue of sLNv circadian clock output, 

molecular oscillations, and their associated behavioural rhythms in young flies.  The rescue in 

behaviour and the clock output PDF is long-lasting.  There is also a considerable reduction in the 

expHTT inclusion load.  This sustained rescue at multiple levels posits Hsp40 as a potential 

therapeutic candidate in improving circadian health under neurodegenerative conditions.  
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Fig 5. 11 Young pdf>Q128 flies co-expressing Hsp40 show PER oscillations in sLNv. 

(a) Representative images of the adult fly brains stained for PER (green) and PDF (magenta) in LNv at 

CT23 and CT11.  sLNv soma (→ arrows), lLNv soma (> arrowheads) and PDF- PER+ 5th sLNv are 

indicated.  Top panel-sets: 3d-old flies of five genotypes.  Bottom panel-sets: first three panel-sets are of 

9d-old flies of pdf>Q128, pdf>Q128,Hsp40 and pdf>Q0,Hsp40 at CT23 and CT11; fourth- and fifth panel-

sets: top of 9d-old pdf>Q128,HSP70 and pdf>Q0,HSP70 at CT23 and bottom of 16d-old   
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pdf>Q128 and pdf>Q128,Hsp40 at CT23.  Scale bars are 10 µm.  (b) At three ages, the mean number 

of PER+ sLNv soma (top) and lLNv soma (bottom) at CT23.  Symbols indicate significant differences, 

* for age-matched, inter-genotype differences and $ for differences between ages for each genotype: 

* (red) of pdf>Q128 from all other genotypes except pdf>Q128,HSP70 and * (orange) of 

pdf>Q128,HSP70 from other genotypes except pdf>Q128.  NA, not applicable; nd, not different.  (c) 

Frequency distribution of the proportion of hemispheres having 0 to 5 PER+ LNv soma: of sLNv soma 

(left) and lLNv soma (middle) in pdf>Q128,Hsp40, pdf>Q128 and pdf>Q0,Hsp40 at 3d, 9d and 16d, 

of sLNv soma at 3d (right-top) and 9d (right-middle) and lLNv soma at 9d (right-bottom) in 

pdf>Q128,HSP70, pdf>Q128 and pdf>Q0,HSP70.  Coloured multiple * indicates significantly 

different distribution shapes between genotypes, with the first colour of the reference genotype and 

the subsequent colours of genotypes differing from the reference at p<0.01.  (d) Quantification of PER 

intensity at CT23 and CT11 in sLNv (top) and lLNv (bottom) comparing pdf>Q128 with 

pdf>Q128,Hsp40 and pdf>Q0,Hsp40 at 3d (left) and 9d (middle) and comparing pdf>Q128 with 

pdf>Q128,HSP70 and pdf>Q0,HSP70 at 3d (right).  Differences between time points CT23 and CT11 

are represented by # (red) pdf>Q128, # (olive-green) pdf>Q128,Hsp40, # (pale-green) pdf>Q0,Hsp40, 

# (orange) pdf>Q128,HSP70 and # (pale-orange) pdf>Q0,HSP70.  Coloured * represents age-matched 

differences of respective-coloured genotypes from the indicated one or all others.  Statistical 

significance at single-symbol p<0.05, double-symbol p<0.01, triple-symbol p<0.001.  Error bars are 

SEM. 
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5.4 DISCUSSION 

5.4.1 Hsps as modifiers of HD-induced circadian 

dysfunction 

The role of Hsps, known modifiers of neurodegeneration, in HD-associated circadian 

disturbances is relatively unexplored.  In this study, we show that the overexpression of the co-

chaperone Hsp40 in circadian pacemaker neurons of Drosophila delays expHTT-induced 

circadian behavioural arrhythmicity over extended durations and suppresses circadian 

neurotoxicity.  Overexpression of the central chaperone HSP70 mitigates expHTT-induced 

circadian behavioural rhythm disruptions in young flies but does not rescue cellular phenotypes.  

The rescue upon Hsp40 overexpression was more robust, pronounced and sustained.  In young 

flies, Hsp40 overexpression seemed to restore the functionality of LNv, particularly the central 

pacemaker sLNv.  Evidence for sLNv functionality is the restoration of circadian proteins, the 

core-clock protein PER, its oscillations and the output neuropeptide PDF in the sLNv soma, and 

lowered expHTT inclusion load, leading to an overall improvement in the LNv-circuit associated 

behavioural rhythms.  These flies continued to be behaviourally rhythmic up to 16d but with 

lowered robustness, with the presence of PER in LNv and control-like PDF+ sLNv soma numbers 

and diminished inclusion load, but without PER oscillations.  The persistence of activity rhythms 

without PER oscillations in sLNv suggests two conclusions.  First, Hsp40-mediated rescue at the 

circadian output level seems sufficient for behavioural rhythm rescue.  Second, the PER 

oscillations in the sLNv might be dispensable for rhythm sustenance.  Two recent studies that 

support this reasoning show that PER in LNv does not seem necessary for the persistence of free-

running activity rhythms but is vital for rhythm strength (Delventhal et al., 2019; Schlichting et 

al., 2019b).  In relatively older flies, despite the presence of nearly 4 PDF+ sLNv soma (16d) and 

reduction in the inclusion load (aggregate numbers of 16d-old pdf>Q128,Hsp40 flies were 

comparable to 9d; quantification not shown), the flies were arrhythmic during AW3 (16d-23d).  

Thus, the Hsp40 neuroprotection does not seem sufficient as the flies age, contributing to a 

deterioration of LNv health.  The inadequacy of Hsp40 expression to extend protection to LNv 

over prolonged durations suggests two conclusions.  First, restoring PDF+ sLNv does not 
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guarantee sustained free-running rhythms without PER.  Our previous results show that about 

20% of 7d-old arrhythmic pdf>Q128 flies had at least 1-2 PDF+ sLNv.  Also, the PDF levels in 

the sLNv dorsal projections were oscillating and functional in synchronising downstream 

circadian neurons (Prakash et al., 2017).  The previous results and present observations of 

behavioural arrhythmicity in older flies despite PDF rescue in sLNv indicate that sLNv PDF, in 

the absence of PER, is insufficient for rhythmic activity.  Secondly, over time, neuroprotective 

benefits offered by Hsp40 can be overwhelmed upon HD progression, probably by the age-related 

burden on LNv proteostasis, rendering the cells vulnerable to expHTT toxicity.  Therefore, 

sustained rhythm rescue might require supplementing Hsps with further enhancement of 

proteostasis via proteasomal or autophagic upregulation. 

HSP70 overexpression, in contrast, showed a rescue in only early-age rhythms and activity 

consolidation, albeit of lowered robustness, a decrease in early-age inclusion number, without the 

rescue of PDF+ sLNv numbers or PER oscillations in sLNv or alterations to inclusions being the 

prevalent form of expHTT in LNv.  The rhythmic flies of pdf>Q128,HSP70 have poor rhythm 

robustness and can be attributed to the absence of PER rescue in the LNv.  However, the 

persistence of behavioural rhythms on HSP70 overexpression in the absence of PDF rescue in the 

sLNv soma is intriguing.  It suggests that the presence of PDF in sLNv is unnecessary for 

behavioural rhythm restoration.  Other studies in pdf>Q128 have reported rhythm rescue with 

only marginal PDF restoration in sLNv soma upon ATX2 or HOP down-regulation (Xu et al., 

2019a; Xu et al., 2019b).  Together with ours, these reports suggest that other mechanisms might 

drive circadian behavioural rhythms without canonical circadian cellular proteins.  Possible 

intersections of Hsp onto improving the LNv function and output in orchestrating rhythmicity are 

circadian oscillations in arborisations of the sLNv termini and secondary molecular loop 

components, non-PER driven clocks, LNv membrane properties, neuronal firing, synaptic 

strength and network-level communication (Edgar et al., 2012; Beckwith and Ceriani, 2015b; Yao 

et al., 2016; Rey et al., 2018; Bulthuis et al., 2019).  Enhancing central proteostasis players, the 

Hsps suppresses HD-induced circadian dysfunction, suggesting that mechanisms that maintain 

cellular proteostasis are compromised in the LNv, and proteostasis perturbations underly 

circadian disruptions.  
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A limitation of the methodology of expressing more than one transgene used in this study is the 

effect of the competition of multiple UAS promoters for the GAL4 factor, leading to attenuated 

expression of expHTT.  Such a situation is revealed in a study on fly lifespan where, on expressing 

two UAS promoters, the presence of one attenuates the activation of the reduced-lifespan gene, 

leading to improved lifespan (Nakayama et al., 2014).  This factor could have been addressed by 

quantifying the levels of non-expanded HTT-Q0 expressed in the controls upon expression of two 

transgenes (HTT and Hsp40 or HTT and HSP70) or three transgenes (HTT, Hsp40 and HSP70).  

Such an experiment has been done for the expression of two transgenes (HTT and Atg8a) in the 

recent paper from the lab (Sharma et al., 2023), where the authors do not find any dilution effects 

on HTT-Q0 levels upon expression of both the transgenes in the LNv compared to HTT-Q0 alone.  

They find an increase in HTT-Q0 expression upon dual transgene expression.  In addition, Sharma 

et al. show that the co-expression of HTT-Q128 with GFP (which is expected to be benign but 

could potentially result in dilution effects) in the LNv does not improve behavioural 

arrhythmicity.  Further, in the mini screen carried out in this study, even though there are several 

scenarios where an additional transgene is expressed along with HTT-Q128 in the LNv, only a 

particular set of genes involved in proteostasis gave a behavioural rescue, arguing against a 

general dilution of expHTT expression in the presence of another UAS construct.  Thus, evidence 

from both immunocytochemical and behavioural experiments show that on the expression of an 

additional UAS-transgene with UAS-HTT, competition for the GAL4 factor, if any, does not result 

in a reduction of HTT protein or non-specific alterations of the activity rhythms, suggesting that 

the rescue on co-expression of Hsp40 with HTT-Q128 is unlikely due to dilution of expHTT 

expression.  However, HTT-Q0 levels in flies co-expressing HTT-Q0 with Hsp40 or HSP70 can 

be performed for confirmation.  A similar quantification will help address competition effects on 

expHTT expression levels from expressing three transgenes.  For example, findings from such an 

experiment can likely explain the overall poor synergy in % rhythmicity and the fall of 

rhythmicity in AW2 on the co-expression of both the HSPs with expHTT. 
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Circadian disturbances in HD stem from perturbations to the circadian organisation's input, 

molecular oscillator and output components (Fifel and Videnovic, 2020; Colwell, 2021).  In the 

R6/2 HD mice, free-running activity rhythms are disrupted, and the SCN molecular oscillations 

are impaired in vivo while persisting in its organotypic slices, suggesting that the inputs to and 

outputs from the central clock are affected rather than the molecular clock itself (Morton et al., 

2005; Pallier et al., 2007).  Dysfunctional intrinsically photosensitive retinal ganglion cells, 

reduction of VIP immunostaining in the SCN, and disrupted rhythms in SCN electrophysiology, 

cortisol, melatonin, body temperature, heart rate and metabolic outputs (Smarr et al., 2019; Fifel 

and Videnovic, 2020; Colwell, 2021) provide evidence for circadian disturbances in HD mice at 

levels of clock input and output, thus also affecting molecular clockwork in vivo, resulting in 

overt behavioural and peripheral rhythm disturbances.  Although the HD flies used in this study 

had only a subset of their clock neurons targeted, they exhibited a definite circadian disturbance 

in the overt behavioural rhythms, molecular oscillations, and circadian output neuropeptide PDF, 

recapitulating central clock and output impairments seen in vivo in HD mice.  Such parallels 

between model systems suggest the possibility of finding mammalian counterparts to the Hsp40-

mediated rescue of circadian disturbances.  Whether the benefits of Hsp40 treatment extend to 

other circadian rhythms remains to be elucidated. 

5.4.2 Impact of Hsp overexpression on the visible 

inclusions of expHTT 

Hsps dilute the presence of aggregate-prone proteins by interfering with the aggregation pathway 

by delaying nucleation, fibril elongation or redirecting the pathway towards less-toxic versions, 

sequestrating intermediates into cellular compartments or organelles and targeting for degradation 

(Kampinga and Bergink, 2016; Mannini and Chiti, 2017; Hipp et al., 2019b).  The effect of Hsps 

on aggregation varies, depending on a host of factors like the definition of aggregates, their nature 

and conformation, the cellular context, the stage of aggregation, age and disease stage, 

quantification method and model system.  Indeed, with up-regulation of Hsps (Hsp40 and Hsp70) 

in HD models, there is evidence for differential effects: many show a decline in aggregation (Jana, 
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2000; Zhou et al., 2001; Hay, 2004; Guzhova et al., 2011; Labbadia et al., 2012; Popiel et al., 

2012; Maheshwari et al., 2014; Scior et al., 2018), some show no effect (Kazemi-Esfarjani and 

Benzer, 2000; Wyttenbach et al., 2000; Karpuj et al., 2002; Borrell-Pages et al., 2006; McLear et 

al., 2008), and one study shows an increase in aggregation (Wyttenbach et al., 2000). 

The present study defines the visible puncta-like clumped appearance of HTT-Q128, as detected 

under a fluorescence light microscope using immunocytochemistry, as an inclusion.  This 

definition excludes detecting many species below the resolution limit and does not distinguish 

based on solubility and other biochemical features.  Hence, the inferences are limited to particle 

size range and gross features detected via an epifluorescence scope.  However, this does not take 

away the validity of the effect of Hsp40 overexpression on expHTT inclusions and its impact on 

LNv function at the cellular and behavioural stages.  In pdf>Q128 flies, Hsp40 overexpression in 

the LNv leads to a reduction in the number of visible expHTT inclusions, a decline in the 

dominance of inclusion form of expHTT, and the appearance and dominance of expHTT spots.  

Accompanying them are improvements in LNv pacemaker function, as evidenced by the re-

establishment of circadian molecular and behavioural rhythms.  Thus, a decreased inclusion load 

and the dominance of expHTT spots could lead to enhanced functionality of the LNv.  The 

reduction of expHTT inclusions upon Hsp40 overexpression also suggests improvements in the 

cellular proteostasis capacity. 

A pictorial representation of the locomotor behaviour and the LNv cellular phenotypes comparing 

pdf>Q128 with pdf>Q128,Hsp40 is shown (Fig 5.12).  A clear pattern for expHTT forms in LNv 

with age emerges.  For the toxic pdf>Q128 and relatively less-toxic pdf>Q128,HSP70, Diff+Inc 

expHTT in lLNv at an early age gives way to exclusively Inc at later ages.  In the neuroprotective 

pdf>Q128,Hsp40, across age, Spots are present in the sLNv, dominating over Inc at 3d, whereas 

Inc dominates at later ages.  In the lLNv of pdf>Q128,Hsp40, Diff expHTT dominates at 3d, 

giving way to a combination of diffuse, spot and inclusion at 9d and then to non-diffuse expHTT 

(Spot and Spot+Inc) at 16d.  In pdf>Q128,Hsp40, the continued presence and domination of 

expHTT Spot in LNv is associated with intact PDF+ sLNv and behavioural rhythmicity of most 

of the pdf>Q128,Hsp40 flies up to 16d.  Together, these results indicate an association between 

specific expHTT forms predominating in the LNv and LNv health, namely, diffuse and spot forms 
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with healthy LNv and rhythmic activity, while inclusions with poor LNv function and 

arrhythmicity. 

HSP70 overexpression in pdf>Q128 flies rescues early-age rhythms and reduces expHTT 

inclusion numbers, but with the dominance of inclusion as the main expHTT form in the LNv, 

suggesting that HSP70-mediated improvements to LNv health are via inclusion-independent 

mechanisms.  HSP70 serves aggregation-independent neuroprotective roles like inhibiting 

apoptosis (Beere, 2004; Kennedy et al., 2014), combating inflammation (Borges et al., 2012; 

Dukay et al., 2019), reducing ROS and oxidative stress (Kalmar and Greensmith, 2009; 

Wyttenbach and Arrigo, 2009) and supporting synaptic function (Deane and Brown, 2016; 

Gorenberg and Chandra, 2017).  Studies supporting such aggregation-independent 

neuroprotection by Hsp40 and Hsp70 in HD are reported (Zhou et al., 2001; Wyttenbach, 2002; 

Borrell-Pages et al., 2006; Wacker et al., 2009).  HSP70’s versatility in enhancing neuronal health 

and function can be attributed to circadian rhythm improvements in the absence of an effect on 

inclusion load and PDF restoration in the sLNv. 

The prevalence of more minor-sized inclusions (<3µ) in young pdf>Q128 flies is interesting.  The 

arrhythmicity of most of these flies and the absence of PER and PDF in their sLNv soma suggests 

that these relatively smaller-sized inclusions might be cytotoxic. 

5.4.2.1 The spot form of expHTT 

Upon overexpression of Hsp40 in pdf>Q128 flies, a new form of expHTT with a spot-like 

appearance close to the nucleus and seemingly overlapping with the nuclear PER was observed.  

This study is the first to report a “Spot” form of expHTT.  The appearance of the Spot and a 

reduction in the inclusion load accompanying the suppression of circadian dysfunction suggests 

that a reduction of inclusions is associated with a suppression of neurotoxicity or expHTT.  Spots 

are probably benign and may even be protective or both of the above.  Upon Hsp40 

overexpression, the appearance of Spot expHTT coincides with a reduction of inclusions and an 

improved LNv function, suggesting that its formation could be another mechanism to reduce the 

cellular proteostatic burden.  We discuss the possible significance of the Spot expHTT.  In 

eukaryotes, aggregate-prone proteins are often sequestered into specialised cellular compartments 
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thought to be neuroprotective and are typically membrane-less, sometimes referred to as 

sequestrosomes or into membrane-bound membrane organelles (Sontag et al., 2014; Tan and 

Wong, 2017; Johnston and Samant, 2021).  A few examples of such spatially-sequestered quality 

control sites are the cytoplasmic Q-bodies or stress foci, cytoplasmic p62 bodies or aggresome-

like induced structures (ALIS), peri-nuclear juxta-nuclear quality control compartment (JUNQ), 

intranuclear quality control compartment (INQ), peri-nuclear aggresomes and peri-vacuolar 

insoluble protein deposit (IPOD) (Tan and Wong, 2017; Johnston and Samant, 2021).  Hsps 

participate in such compartmentalisations (Nollen et al., 2001; Specht et al., 2011; Escusa-Toret 

et al., 2013; Miller et al., 2015).  The aggresomes are mostly juxta-nuclear, membrane-free 

inclusions carrying ubiquitinated misfolded proteins formed at the microtubule organising centre 

(MTOC) (Johnston et al., 1998; Kopito, 2000; Johnston and Samant, 2021).  There is evidence 

for the colocalization of Hsp40 and Hsp70 colocalise with aggresomes (Garcia-Mata et al., 1999; 

Junn et al., 2002; Gamerdinger et al., 2011; Zhang and Qian, 2011).  A recent study shows that 

overexpression of Sis1, a yeast homolog of Hsp40 or mammalian DnaJB6, but not DnaJB1 in 

HTTQ97 expressing yeast cells modifies the morphology of aggregates into a single large diffuse 

cloud-like cytoplasmic condensate per cell, a less dense aggregated state with lowered HttQ97 

concentration that behaved like an immobile mesh (Klaips et al., 2020).  Sis1 interacted with 

soluble polyQ oligomers, promoting their coalescence into the condensate in an Hsp70-dependent 

manner.   

Another observation is that the average size of an expHTT Spot in the small LNv is significantly 

larger than in the large LNv.  `This sizeable expHTT Spot in the sLNv could reflect a more 

significant expHTT burden and toxicity in the vulnerable sLNv or a longer HTT and Hsp40 

expression duration owing to their earlier appearance than lLNv during development (Helfrich-

Förster, 1997).  The presence of three to four PDF+ sLNv in nearly every hemisphere of 

pdf>Q128,Hsp40 across age parallels with the presence of at least one sLNv per hemisphere 

having Spot expHTT (proportion of hemisphere with at least one Spot+ sLNv: 3d, 100%; 9d, ~ 

97%; 16d, ~79%).  Such co-occurrences indicate that the appearance of expHTT spots might be 

protective.  Thus, Hsp40 might modify the nature of expHTT inclusions, and the spots could 
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represent a less reactive and relatively benign form of expHTT, contributing to an enhancement 

in LNv health and function.  
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Fig 5. 12 Hsp40 is neuroprotective and delays circadian dysfunction in HD: A graphical summary. 

Top table: A pictorial representation of the effect of expressing expHTT alone and with Hsp40 in the 

LNv of Drosophila on circadian neurodegenerative phenotypes across age.  The control phenotype on 

expressing non-expanded HTT (Q0) in LNv is shown at the top.    
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The effects on the circadian behavioural activity/rest rhythms, PDF+ and PER+ sLNv soma numbers, 

PER oscillations in sLNv, and the predominant form of expHTT in sLNv and lLNv are shown across 

age.  The behavioural rhythms are represented for three 7d age windows, whereas the cellular 

phenotypes are for specific ages.  Arr stands for arrhythmic, and Rhy for rhythmic.  Bottom table: A 

summary of the key findings. Co-expressing Hsp40 with expHTT in the LNv reverses the expHTT-

induced circadian phenotypes of behavioural arrhythmicity, PDF loss from sLNv soma and loss of 

PER oscillations and PER in sLNv of young flies.  Also, the expHTT inclusions, a characteristic 

neurodegenerative phenotype, and the predominant expHTT form observed in the LNv of pdf>Q128 

flies are replaced by mainly non-inclusion forms: diffuse, spots and a combination.  The prevalence 

of non-Inc expHTT forms is also reflected as a decrease in expHTT inclusions.  In summary, Hsp40 

is an effective suppressor of HD-induced circadian disruptions. 

5.4.4 Effects of co-expressing Hsp40 and HSP70 

Many studies in polyQ models have described a synergistic effect upon co-expression of Hsp40 

and Hsp70 on the toxicity: expression of both offered better protection than either alone (Chan et 

al., 2000; Jana, 2000; Kobayashi et al., 2000; Muchowski et al., 2000; Sittler et al., 2001; Bailey 

et al., 2002; Bonini, 2002; Rujano et al., 2007).  The current study shows a synergistic 

improvement in young HD flies' circadian rhythms in daily activity consolidation but not in their 

rhythmic percentages or robustness.  The synergistic effect seems subtle, evident with a daily 

readout like ‘r’, but not with a 7d-overt-readout of rhythmicity.  Over time, there was a decline in 

rhythm robustness of pdf>Q128 flies expressing both Hsps than those expressing Hsp40 alone, 

suggesting that co-expression of multiple Hsps could become detrimental.  One study shows an 

absence of synergy or protective effect upon co-expression in a SCA7 mice model (Helmlinger 

et al., 2004).  In another study, such co-expression eliminated the survival benefit of HSP70-only 

expression, enhancing cell death (Ormsby et al., 2013).  Additionally, HSC70 antagonised the 

Hsp40 (DNAJA1) activity, and their co-expression prevented clearance of Tau in an Alzheimer’s 

disease cellular model (Abisambra et al., 2012). 

Some drawbacks of Hsp co-expression and Hsp overexpression, like their pro-carcinogenic 

effects and generation of seeding-competent nuclei, call for caution when targeting central Hsps 

for therapy (Jaattela, 1995; Nylandsted et al., 2002; Tittelmeier et al., 2020b).  Therefore, in some 

instances, researchers have proposed that targeting specific chaperones is more beneficial and 

could minimise network adaptations, improve effectiveness, and reduce side effects, rather than 

targeting the entire network or central chaperones like HSP70 and HSP90 (Mendillo et al., 2012; 
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Kakkar et al., 2016).  Further research on testing combinations of specific- and network-wide 

strategies in a conditional, time-specific manner, supplemented by other proteostasis modifying 

treatments, would help realise a safer and more practical therapeutic strategy. 

5.4.5 Hsp40 vs HSP70: Hsp40, a superior suppressor of 

HD neurotoxicity 

In our study, Hsp40 emerges as a superior suppressor of most expHTT-induced phenotypes 

examined and in terms of duration of rescue.  However, the differences in the efficiency of 

Drosophila Hsp40 and human HSP70 in mitigating expHTT toxicity in flies could arise due to 

the different species origin of the two transgenes with different temperatures of maximal 

activation and codon bias, leading to different levels of expression and activity.  Local genomic 

position effects owing to different chromosomal loci of insertion of the two UAS constructs are 

an additional factor influencing expression and rescue efficiency.  An additional experiment using 

UAS constructs of Hsp40 and Hsp70, both sourced from Drosophila and with similar 

chromosomal insertions, would have been helpful to compare and clarify the effects of the two 

Hsps on the expHTT-induced circadian neurodegenerative phenotypes. 

Nevertheless, there is substantial support for Hsp40 being a more effective HD neurotoxic 

modifier.  Among the Hsp40, HSP70 and HSP110 chaperone families, the DNAJB class of Hsp40 

emerged as the most potent protector against polyQ toxicity (Hageman et al., 2010), and in R6/2 

mice, Hsp70 suppressed HD only moderately (Hansson et al., 2003; Hay, 2004; Popiel et al., 

2012), while Hsp40 members had better success (Labbadia et al., 2012; Kakkar et al., 2016).  

Hsp40 also prevented the secretion of expanded polyQ proteins from cultured cells (Popiel et al., 

2012), thus likely preventing cell-to-cell transmission, an emerging concern in NDs.  Findings 

from the present study and other studies (Chai et al., 1999; Zhou et al., 2001; Rujano et al., 2007; 

Ormsby et al., 2013) show that Hsp40 reduces aggregation more often than HSP70.  Hsp40 is 

rate-limiting in the suppression and reversal of expHTT aggregation by disaggregases (Rujano et 

al., 2007; Scior et al., 2018), and some members can act without requiring HSP70 (Hageman et 

al., 2010; Kuo et al., 2013b; Månsson et al., 2013; Kakkar et al., 2016).  A study of genetic 
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modifiers of different NDs, including HD in different model organisms, revealed Drosophila 

DnaJ1 (and its mammalian ortholog DNAJB4) as a modifier across many NDs (Na et al., 2013).  

The significant role of the DNAJB protein family in synaptic health and neuronal proteostasis and 

their diversity in function, distribution and substrate specificity underscore their usefulness in 

directed therapy while minimising the side effects (Chuang et al., 2002; Westhoff et al., 2005; 

Gibbs et al., 2009; Kampinga and Craig, 2010; Gao et al., 2015; Nillegoda et al., 2018; Kampinga 

et al., 2019; Tittelmeier et al., 2020a). 

5.4.6 A need for screening circadian-specific neurotoxic 

modulators 

In an in vivo system, I have shown the neuroprotective role of chaperone Hsp40 in rescuing HD-

induced circadian deficits and neurotoxicity at multiple levels and across the temporal scale.  Such 

a multi-level associated functional rescue offers an edge over conventional non-associated 

cellular and behavioural rescues to make better cause-effect inferences due to reduced off-target 

effects, test the modifying treatment's robustness and versatility, and serve as proof-of-principle 

evaluations.  Also, although most candidates screened are known modulators of HD cellular 

neurotoxicity, only two groups of proteins emerged as potent suppressors of circadian disruptions, 

indicating that only a subset of the cellular pathophysiological mechanisms contributing to HD is 

involved in circadian disruptions.  These findings also uncover a gap in establishing circadian-

specific neuroprotective agents and exemplify a need for screens specifically targeting circadian 

dysfunction. 

5.4.7 Hsps, circadian health and neurodegenerative 

diseases 

There is ample evidence for clock control of the regulation of proteostasis components, including 

chaperones (Desvergne and Friguet, 2017; Ryzhikov et al., 2019; Wang et al., 2020), with both 

Hsp40 and Hsp70 isoforms, showing rhythmic gene expression across taxa (Li et al., 2017).  In 

the Drosophila LNv, mRNA transcripts of the Hsp40 isoforms, DnaJ-1 and DnaJ-H, are present, 
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and in the lLNv, DnaJ-H gene expression is cyclic (Kula-Eversole et al., 2010; Ma et al., 2021b), 

while Hsp70 transcripts cycle in the LNv (Abruzzi et al., 2017; Ma et al., 2021b).  Further, Hsp40 

gene transcripts have been classified under the experimentally identified circadian genes (Li et 

al., 2017).  The converse, i.e. proteostasis affecting molecular clock via post-translational 

modifications and autophagy, is also prevalent (Mehra et al., 2009; Stojkovic et al., 2014; Toledo 

et al., 2018; Juste et al., 2021).  However, very few studies have assessed the role of Hsps in 

circadian maintenance and its deterioration in NDs, especially in animals.  In Drosophila, the 

Hsp70/Hsp90-organizing protein (HOP) improved rhythmicity in an HD model (Xu et al., 2019a), 

Hsp70 expression overcame arrhythmicity due to Gal4-overexpression in the LNv (Rezaval et al., 

2007), Hsp90 disruptions led to the loss of activity rhythms without affecting molecular 

oscillations (Hung et al., 2009) and the Hsps were indirectly implicated in circadian behaviour 

(Benbahouche Nel et al., 2014; Means et al., 2015).  In mouse fibroblasts, Hsp90 is required for 

circadian rhythmicity, while Hsf1 and endoplasmic reticulum Hsp70 strengthen rhythms post-

stress (Tamaru et al., 2011; Schneider et al., 2014; Pickard et al., 2019).  The present findings of 

a relatively novel role for the Hsps in protecting against ND-induced circadian dysfunction and 

the above studies encourage further research on Hsps in circadian function.  Given that circadian 

and sleep disturbances occur early and are pre-manifest in HD (Soneson et al., 2010; Morton et 

al., 2014; Lazar et al., 2015; Bellosta Diago et al., 2017), treatments targeting Hsps could impact 

HD's early stages in postponing symptoms and provide a meaningful therapeutic impact.  An 

ageing population worldwide has increased the prevalence of NDs (Gitler et al., 2017; Lassonde, 

2017; Bejot and Yaffe, 2019).  Given the pivotal roles of proteostasis and circadian health in NDs, 

studying the involvement of molecular chaperones in circadian maintenance will significantly 

improve our understanding of ND progression and treatment. 

 



 

 

 

 



433 
 

 

CHAPTER 6  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The Effects of Drosophila HTT 

and the Protein Context of the 

Polyglutamine Repeats on the 

Circadian Activity Rhythms 



434 
Chapter 6 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

6.1 INTRODUCTION 

It is well documented that the cellular context in which the expanded polyglutamine tracts are 

expressed leads to the variation in the extent of its toxicity, amply demonstrated by the differential 

vulnerability of neuronal groups and brain regions and the heterogeneity in the timing and severity 

of dysfunction exhibited by various tissues affected (Ghosh and Feany, 2004; Duennwald et al., 

2006a; Shelbourne et al., 2007b; Caron et al., 2014; Sala et al., 2017; Fu et al., 2018; Creus-

Muncunill and Ehrlich, 2019).  Furthermore, we know that differences in the protein context of 

the polyQ tracts can drastically alter their pathogenicity (Morley et al., 2002; La Spada and 

Taylor, 2003; Duennwald et al., 2006b; Robertson and Bottomley, 2010; Adegbuyiro et al., 2017; 

Kuiper et al., 2017; Silva et al., 2018).  Throughout my studies, I have examined various aspects 

of the protein context of expanded polyQ tracts in the human Htt protein (6.3.2, 6.3.3, 6.3.4).  I 

also examined the importance of the native Drosophila melanogaster dhtt gene in normal 

circadian activity rhythms (6.3.1).  I also examined the effect of another distinct polyQ protein, 

Ataxin 3, where expanded glutamine tracts are associated with a neurodegenerative condition, 

Spinocerebellar ataxia 3 or SCA3, in the same neuronal circuit (6.3.5).  I collate my findings on 

these somewhat disparate questions in this last chapter of my thesis. 
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6.2 MATERIALS AND METHODS 

6.2.1 Fly lines 

The UAS fly lines w[1118]; +; P{w[+mC]=UAS-HTT.128Q.FL}f27b (BL 33808) and w[1118]; 

+; P{w[+mC]=UAS-HTT.16Q.FL}F24/CyO (BL33810) were back-crossed for 5 generations 

onto a w1118 (BL 5905) background.  For most experiments, virgin females of the driver lines 

(w;pdfGAL4;+ or w;timGal4;UAS-CD8::GFP) were crossed with males of UAS lines.  The UAS 

lines of eGFP-tagged N-terminal Htt exon 1 with and without a C-terminal NLS w;+;UAS-18 Q 

EGFP-NLS T4-2/TM6b, w;+;UAS-18 Q EGFP T3-2 U-13/TM6b, w;+;UAS-152 Q EGFP-NLS 

T6-2U-12/TM6b and w;+;UAS-152 Q EGFP T1 U-09/TM6b, are from Dr Nobuyuki Nukina, 

RIKEN Brain Science Institute, Japan (Doumanis et al., 2009).  The eGFP-tagged Httex1 UAS 

lines w;+;UAS-Httex1 QP25 EGFP, w;+;UAS-Httex1 QP46 EGFP, w;+;UAS-Httex1 QP72 

EGFP and w;+;UAS-Httex1 QP103 EGFP are from Dr Nobert Perrimon, Harvard Medical 

School, USA (Zhang et al., 2010b).  The other UAS lines used are w[*];+;P{w[+mC]=UAS-

hATXN3.tr-Q27}N18.3d (BL 8149), w[*];P{w[+mC]=UAS-hATXN3.tr-Q78}c211.2;+ (Bl 

8150), w[1118];+;P{w[+mC]=UAS-Zzzz\CAG.20Q}3 (BL 30549), w[1118];P{w[+mC]=UAS-

Zzzz\CAG.63Q}2;+ (BL 30544), w;dhttRNAi:+ (VDRC GD 14339) and w;dhttRNAi;+ (VDRC 

KK 107149).  The dhtt mutant line is w[1118];+;Mi{ET1}htt[MB03997] (BL 24665). 

6.2.2 Locomotor assays 

Most of the assay set-up and analysis details are described in Chapter 2 (Section 2.2.1).  3-4-day-

old virgin males were assayed in DD at 25 ℃.  The experiments on dhtt had 16 flies at the 

beginning of the assay, while other experiments had >25 flies.  For the MJD run, three 

independent experiments were done.  The average percentage rhythmicity across the three 

experiments and the robustness and period are plotted for a representative run. 

6.2.3 Immunocytochemistry and image analysis 

The dissections, immunocytochemistry and image analysis procedures performed are described 

in Chapter 2 (Section 2.2.3).  12d-old flies of pdf>MJDQ27 and pdf>MJDQ78 were dissected 
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and stained with ant-PDF rabbit (1:30,000), and anti-HA mouse and secondary antibodies Alexa 

fluors anti-rabbit 488 and anti-mouse 546 were used. 

6.2.4 Statistical analyses 

Those genotypes where <10 flies were rhythmic or alive were eliminated from statistical analysis 

of robustness and period.  For most comparisons between genotypes for an AW of rhythm 

robustness and period, the Kruskal-Wallis test of ranks followed by multiple comparisons of mean 

ranks were used.  For comparing rhythmicity proportion between genotypes for an AW, m x n 

Fisher’s Exact test, followed by multiple 2x2 Fisher’s Exact tests with BH procedure on all 

relevant comparisons, were used.  For a comparison of mean rhythmicity between genotypes for 

an AW in the MJD experiment, a one-way ANOVA followed by Tukey’s HSD was used.  For 

comparisons of robustness or period between AWs for a genotype, Friedman’s test for repeated 

measures was followed by multiple Wilcoxon matched-pairs tests (or Conover Test for ‘r’) with 

the Bonferroni procedure used.  For comparing the proportion of rhythmic flies between AWs for 

a genotype, the Cochran Q test, followed by multiple 2x2 McNemar’s tests on the dependent 

samples and the BH procedure on all relevant comparisons, were used.  Mann-Whitney U tests 

compared robustness and period between an AW's pdf-driven and tim-driven Q (or MJD) lines.  

For a comparison of rhythmicity between the pdf-driven and tim-driven Q (or MJD) lines for an 

AW, a 2x2 Fisher’s Exact test was used.  Mann-Whitney U tests were used to compare PDF+ or 

MJD+ LNv numbers between genotypes of pdf>MJD.  All other details are described in Chapter 

2 (Section 2.2.2.1). 
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6.3 RATIONALE, RESULTS AND 

CONCLUSIONS 

6.3.1 The effect of Drosophila Huntingtin on the 

circadian free-running activity rhythms and the 

expHTT-induced disruption of those rhythms 

6.3.1.1 Rationale 

Endogenous Drosophila Huntingtin or dhtt is a single ortholog of the human Huntingtin (hHTT) 

(Li et al., 1999).  dhtt shows five areas of high evolutionary conservation: three relatively large 

and two smaller segments.  These homologous regions, comprising about 1200 a.a. residues in 

dhtt, share around 24% identity and 49% similarity at the amino acid level with human sequences 

and may represent functional domains. The dhtt transcript is widely expressed from 

embryogenesis through all the developmental stages and in adulthood.  The dhtt protein comprises 

3583 amino acids. 

Interestingly, the Drosophila HD gene product does not contain the polyglutamine and 

polyproline tracts, nor are any consensus caspase cleavage sites found in the N-terminal.  dhtt 

contains 28 consensus HEAT repeats.  dhtt is mainly a cytoplasmic protein, unlike its human 

ortholog. 

dhtt serves several roles.  Neuronal downregulation of dhtt caused axonal transport defects 

(Gunawardena et al., 2003).  dhtt is involved in fast axonal transport (Zala et al., 2013a; Weiss 

and Littleton, 2016).  dhtt is essential for Rab11 vesicle transport within axons (Power et al., 2012) 

and crucial for neuronal development and function (Richards et al., 2011; Steinert et al., 2012).  

dhtt is required for the retrograde transport of dense-core vesicles and is a potential regulator of 

synaptic capture and neuropeptide storage (Bulgari et al., 2017).  dhtt knockout is not embryonic 

lethal, does not cause developmental defects or rough eye phenotype and is not essential for 

synapse formation and organization at NMJs (Zhang et al., 2010b).  However, dhtt-ko flies display 

an age-dependent decline in mobility and survival compared to WT flies (Zhang et al., 2010b).  
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dhtt is involved in mitotic spindle orientation, essential for mitosis (Godin et al., 2010), and 

influences chromatin organization (Dietz et al., 2015).  dhtt is crucial for selective autophagy, 

possibly as a scaffold protein (Ochaba et al., 2014; Rui et al., 2015).  dhtt represses the activity of 

the tyrosine kinase Abl, thereby maintaining the appropriate levels required for axonal growth 

(Marquilly et al., 2021).  Notably, dhtt can restore mammalian HTT spindle orientation function 

in mouse cells (Godin et al., 2010).  hHTT can rescue neuropathology caused by dhtt knockdown 

(Mugat et al., 2008) and mobility, lifespan and autophagic defects of dhtt knockout flies (Rui et 

al., 2015).  These studies illustrate the conservation of biological properties and functions of HTT 

across taxa. 

There is evidence for dhtt as a neuroprotector.  dhtt reduction in the eye leads to a progressive 

rough eye phenotype, and its tissue-specific reduction results in organelle accumulation in larval 

neurons, characteristic of axonal transport defects (Gunawardena et al., 2003).  In a Drosophila 

HD model, overexpression of the N-terminal of dhtt prevented expHTT aggregation, while dhtt 

downregulation worsened aggregation (Mugat et al., 2008).  Also, dhtt-ko exacerbated 

neurodegenerative phenotypes of HD flies (Zhang et al., 2010b) and Tau-expressing flies (Rui et 

al., 2015). 

Given the diverse cellular roles of dhtt and its neuroprotective ability, I investigated its effect on 

fly circadian rhythms per se and expHTT-induced behavioural arrhythmicity in HD flies. 

6.3.1.2 Results and Conclusions 

6.3.1.2.1 dhtt does not contribute to the sustenance of activity rhythms in DD 

I asked whether dhtt has a role to play in circadian rhythms.  The activity rhythms in DD were 

assessed for Drosophila mutants of dhtt and flies with dhtt downregulated only in circadian 

pacemaker LNv.  All the experimental flies were like control w1118 in their rhythmicity and 

robustness and had ~24h periods (Fig 6.1).  Thus, dhtt is not essential for circadian locomotor 

activity rhythms.  On the other hand, dhtt is essential for sleep as pan-neuronal downregulation 

of dhtt leads to nighttime sleep deficits and fragmentation (Gonzales and Yin, 2010). 
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Fig 6. 1 dhtt mutants and flies expressing full-length expanded HTT in the LNv are rhythmic in 

DD25. 

(a) Representative double-plotted actograms for flies showing activity data for 10d (age 3d-12d) in 

DD at 25 oC of for dhtt mutants, flies with down-regulated dhtt in LNv (pdf>dHttRNAiGD and 

pdf>dHttRNAiKK) and expressing FLHTT in LNv (pdf>HTTQ16FL and pdf>HTTQ128FL), 

compared against w1118 controls.  The white and grey bars above actograms represent light and dark 

phases of the previous LD.  (b-d) Percentage rhythmicity (b), the robustness of rhythm (c) and period 

(d) for the above genotypes.  ** is at p <0.01 and *** at p <0.001.  Across all panels, error bars are 

SEM. 
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6.3.1.2.2 dhtt overexpression in the LNv does not rescue the disruption of free-

running rhythms in HD flies 

Since dhtt is neuroprotective across animal models, I asked whether its overexpression in 

pdf>Q128 flies rescues behavioural arrhythmicity.  My studies show that co-expressing dhtt of 

different fragment lengths in the LNv could not overcome expHTT-induced rhythm impairment 

in DD (Table 5.1), suggesting that in the circadian context of flies, dhtt is not neuroprotective.  

Further, I find that dhtt is dispensable to circadian activity rhythms and is non-essential to the 

functioning of LNv. 
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6.3.2 The effect of expressing full-length HTT in the LNv 

pacemakers on the free-running activity rhythms 

6.3.2.1 Rationale 

Expression of full-length (FL) expanded HTT protein in neurons leads to increased synaptic 

transmission in the NMJ of Drosophila larvae.  Altered intracellular Ca2+ levels in neurons 

increase neurotransmitter release probability and neuronal degeneration (Romero et al., 2008).  

The full-length HTT staining is diffuse, and flies expressing FL expHTT did not show axonal 

transport defects, unlike those expressing truncated HTTs (Steffan et al., 2000; Gunawardena et 

al., 2003; Lee et al., 2011).  Expression of FL expHTT in the eye causes progressive ommatidia 

loss, neuronal expression reduces lifespan and mobility, while glial expression leads to reversed 

electroretinogram polarity (Romero et al., 2008; Burr et al., 2014; Yeh et al., 2018).  Leg-specific 

expression resulted in cell loss and affected mitochondrial distribution and numbers (Fernius et 

al., 2017).  Several regions in the HTT protein, like the caspase-6 site (586aa), cleavage which is 

required for neuronal dysfunction (Graham et al., 2006; Warby et al., 2008), NES and the glutamic 

acid, serine and proline-rich regions at the C-terminal, additional HEAT repeats and protease 

cleavage sites that get differentially cleaved in the cerebral cortex and striatum are absent from 

the long N-terminal truncated form but are intact in the FL protein. As a result, several 

characteristics of the FL HTT, such as tissue-specific proteolytic processing, various 

conformations, subcellular localisation, post-translational modifications, and interactions with 

cellular proteins via HEAT repeats, might not be captured in animal models that use truncated 

versions of hHTT.  I, therefore, wanted to assess the effect of expressing full-length hHTT in the 

LNv on circadian behavioural rhythms. 

6.3.2.2 Results and Conclusions 

6.3.2.2.1 Expression of full-length expHTT in the LNv does not alter free-running 

activity rhythms 

Flies expressing full-length expHTT (with 128Q repeats) in the LNv showed rhythmic robust 

activity rhythms like their counterparts with non-expanded full-length HTT (with 16Q repeats) 
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and controlled w1118 (Fig 6.1a, bottom, b and c).  The full-length expHTT-expressing flies had 

slightly lengthened periods than controls (Fig. 6.1d).  Thus, although the flies expressing the 

truncated version of expanded hHTT with the first 548aa in LNv show immediate behavioural 

arrhythmicity in DD, the rhythms of expanded FL hHTT expressing flies were relatively 

unaffected, suggesting weaker toxicity of the full-length protein.  These findings suggest that full-

length expHTT might be less cytotoxic in HD-associated circadian dysfunction than the truncated 

versions.  Indeed, in both in vitro and in vivo models, truncated forms of HTT are more toxic than 

full-length models: more severe and early-onset symptoms, more aggregates present both in the 

nucleus and cytoplasm and rapid aggregate formation and cell death (Slow et al., 2005; Cisbani 

and Cicchetti, 2012; Farshim and Bates, 2018; Kosior and Leavitt, 2018; Kaye et al., 2021).  These 

studies also reinforce the role of proteolytic cleavage of expHTT in HD toxicity.  Evidence 

suggests that full-length HTT predominates during the early disease stages that do not require 

nuclear accumulation of HTT in detectable amounts (Romero et al., 2008).  With disease 

progression, cleavage of HTT might tilt the balance in favour of the truncated fragments, 

especially the toxic polyQ-containing N-terminal fragment, which then shapes the course of the 

disease.  Thus, as the disease advances, the truncated versions are more prevalent than full-length, 

and the more toxic expHTT species show early discernible effects on LNv function and circadian 

behaviour.  Some studies show that murine HD models of truncated expHTT exhibit more severe 

and early-onset symptoms than full-length HD models (Slow et al., 2005; Farshim and Bates, 

2018; Kosior and Leavitt, 2018; Kaye et al., 2021).  The finding that in the circadian neurons, FL 

HTT is benign, whereas exon1 or 548aa N-terminal fragments are not, as seen previously, and 

cause circadian behavioural arrhythmicity (Chapter 2), indicates that the protein-context around 

polyQ stretch also determines neurotoxicity.  Pan-neuronal expression of the FL expHTT in 

Drosophila leads to deficits in sleep: impaired sleep initiation, fragmented and diminished sleep, 

and nighttime hyperactivity (Gonzales and Yin, 2010; Gonzales et al., 2016).  So, one could look 

at the effect of FL expHTT on circadian neurons by expressing them using a widespread circadian 

driver.  
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6.3.3 The effect of expressing GFP-tagged-HTT of 

varying polyQ lengths in the LNv pacemakers on the 

activity rhythms 

6.3.3.1 Rationale 

GFP-tagged HTT polyQ lines ease the visualisation of HTT, aggregation, and interactions.  

Therefore, I tested whether the expression of GFP-tagged expHTT in the LNv alters activity 

rhythms in DD.  Two different sets of GFP-tagged lines were tested.  The first was a gift from Dr 

Norbert Perrimon, Harvard Medical School, USA (Zhang et al., 2010b), namely UAS-Httex1-

QneGFP with different polyQ repeat lengths (Q25, Q46, Q72, and Q103).  The second was a gift 

from Dr Nobuyuki Nukina, RIKEN Brain Science Institute, Japan (Doumanis et al., 2009), 

namely N-terminal Htt exon 1 with varying Q lengths (Q18 and Q152) as fusions with EGFP 

either lacking or containing a nuclear localization signal (NLS). 

Httex1-QneGFP with expanded HTT (Q46, Q72 and Q103) was demonstrated to be toxic in 

various fly models.  For example, their expression in neurons showed a polyQ-length- and age-

dependent reduction of fly lifespan, eye degeneration, mobility issues and increased aggregation 

(Zhang et al., 2010b; Kim et al., 2017).  Q25 was diffuse, while Q103 exclusively formed 

aggregates, and Q46 and Q72 were intermediate, with Q72 showing accelerated aggregation than 

Q46 (Zhang et al., 2010b).  PolyQ-length-dependent cardiac defects were also observed in flies 

expressing expHTT using a heart-specific driver (Melkani et al., 2013).  Also, various modifiers 

of neurotoxicity show an effect on neuropathology in flies expressing GFP-tagged expHTT, such 

as aggregation (Xiao et al., 2013; Jimenez-Sanchez et al., 2015; Menzies et al., 2015; Yue et al., 

2015; Xu et al., 2019a; Xu et al., 2019b), autophagic flux (Yue et al., 2015), and circadian activity 

rhythms (Xu et al., 2019a; Xu et al., 2019b).  Expression of HTTQ103-eGFP in LNv reduced the 

number of PDF+ sLNv and decreased PER levels in the LNv while moderately weakening 

locomotor rhythms (Xu et al., 2019a; Xu et al., 2019b).  Expression of the Nhtt(Q152)EGFP 

results in a degenerative eye phenotype along with inclusions while its Q18 controls 

(Nhtt(Q18)EGFP and Nhtt(Q18)EGFPNLS) were unaffected (Doumanis et al., 2009). 
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6.3.3.2 Results and Conclusions 

6.3.3.2.1 Expression of expanded Httex1-QneGFP in the LNv does not alter free-

running activity rhythms 

Most flies expressing Httex1-QneGFP with expanded HTT (Q46, Q72 and Q103) in LNv were 

rhythmic in DD (9 days of recording), their robustness comparable to controls (except 

pdf>HTTQ46), with periods longer than most controls (Fig 6.2 a-d).  However, unlike the pdf-

driven UAS-HTTQ103-eGFP expression leading to a reduction in rhythmicity (~75%) and rhythm 

robustness than controls around 10-16d in DD (Xu et al., 2019b), in my experiments, most of the 

pdf>HTTQ103 were rhythmic (~85%) even in AW2 (age 10d-16d) and had more robust rhythms 

and a more extended period than control Q103 (Fig 6.2 e-g).  Verifying these results would be a 

logical next step, given the discrepancy between my findings from other studies. 

  



445 
Chapter 6 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Fig 6. 2 Flies expressing GFP-tagged expanded HTT of various polyQ lengths are rhythmic in 

DD25. 

(a) Representative double-plotted actograms for flies showing activity data for 9d (age 3d-11d) in DD 

at 25 oC for flies expressing GFP-tagged HTT of varying polyQ lengths in LNv and their controls.  

The significantly expanded polyQ stretch of Q103 has been recorded for 14d (age 3d-16d).  The white 

and grey bars above the actograms represent the light and dark phases of the previous LD.  
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Percentage rhythmicity (b), the robustness of rhythm (c) and period (d) for the above genotypes.  14d 

recorded pdf>HTTQ103, and Q103 are compared across AWs 1 and 2 in terms of percentage 

rhythmicity (e), rhythm robustness (f) and period (g).  Significant differences in period (d) of indicated 

genotype are as follows: # from all controls except pdfGal, + from Q25, Q46, Q72 and w1118, ^ from 

Q25, Q46 and Q72 at single-symbol at p <0.05, double-symbol at p <0.01 and triple-symbol at p 

<0.001.  Across panels, error bars are SEM. 

6.3.3.2.2 Expression of expanded HTTQ152eGFP in the LNv progressively impairs 

the free-running activity rhythms 

With the second set of GFP-tagged flies, in AW1, most flies expressing expHTT were rhythmic 

with robustness comparable to controls (Fig 6.3 a-c).  In AW2, nearly 50% of pdf>Q152eGFP 

flies and pdf>Q1252eGFPNLS were arrhythmic, but so were ~65% of Q18eGFPNLS controls, 

with rhythmic pdf>Q152eGFPNLS also having weak rhythms (Fig 6.3 b, c).  In AW3, only ~ 

40% of Q18eGFPNLS flies were rhythmic, while none of pdf>Q152eGFP or 

pdf>Q152eGFPNLS were rhythmic, and their percentage rhythmicity differed from most controls 

(Fig 6.3b).  Rhythmic pdf>Q152eGFP had a longer period than controls in AW1, while rhythmic 

pdf>Q152eGFPNLS had a longer period than controls in AW1 and AW2 (Fig 6.3d).  Thus, flies 

expressing HTTQ152eGFP in the LNv showed a progressive decline in activity rhythms with age.  

It will be crucial to verify the status of circadian proteins PDF and PER and expHTT inclusions 

in their LNv.  4d-old flies of all four experimental genotypes showed the presence of ~3-4 PDF+ 

sLNv and lLNv and GFP+ LNv with intact dorsal and contralateral sLNv projections (data not 

shown).  The pdf>Q152eGFP also showed the presence of inclusions as seen via GFP staining 

(data not shown).  Even though pdf>Q152eGFPNLS showed progressive arrhythmicity, so did 

one of its controls Q18eGFPNLS.  So, it would be prudent not to use these NLS-tagged genotypes 

in future experiments. 
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Fig 6. 3 Expression of GFP-tagged or NLS-GFP-tagged HTTQ103 in LNv leads to progressively 

weak rhythms and arrhythmicity post-AW1 in DD25. 

(a) Representative double-plotted actograms for flies showing activity data for 21d (age 3d-23d) in 

DD at 25 oC for flies expressing GFP-tagged HTT of varying polyQ lengths in LNv and their controls.  

The other details are the same as in Fig 5.2.  (b-d) Percentage rhythmicity (b), the robustness of rhythm 

(c) and period (d) for the above genotypes.  Symbols represent significant differences: * between 

indicated age-matched genotypes, $ between AWs for a genotype at * or $ at p<0.05 ** or $$ at p<0.01 

and *** or $$$ at p<0.001.  Across panels, error bars are SEM. 
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6.3.4 The effect of expressing expanded-polyQ-peptides 

in the circadian neurons on the activity rhythms 

6.3.4.1 Rationale 

Flies expressing expanded polyQ peptides alone, even without a protein context, are known to be 

neurotoxic.  In Drosophila, their tissue-specific expression (Q127, Q63) leads to the formation of 

inclusions, retinal and photoreceptor degeneration, and reduced lifespan, and many of these 

features are susceptible to modifiers (Kazemi-Esfarjani and Benzer, 2000; Marek et al., 2000; 

Kazemi-Esfarjani, 2002; Taylor et al., 2003b; Ghosh and Feany, 2004; Kim et al., 2005; Fayazi 

et al., 2006a; Burnett et al., 2008; Kuo et al., 2013a; Yadav and Tapadia, 2013; Nelson et al., 

2016).  So, I asked whether the expression of expanded polyQ peptide in the LNv disrupts 

circadian rhythms. 

6.3.4.2 Results and Conclusions 

6.3.4.2.1 Expression of expanded polyQ in the PDF+ LNv did not affect free-running 

rhythms 

Most flies expressing only the polyQ peptide of varying lengths (Q20 and Q63) in the LNv were 

rhythmic across age, like their controls (Fig 6.4a and b).  The robustness of pdf>Q63 was 

comparable to most controls across ages (Fig 6.4c).  Both pdf>Q20 and pdf>Q63 had more 

extended periods than their UAS controls but were comparable to pdfGal across age (Fig 6.4d).  

Thus, the mere expression of expanded polyQ repeats in LNv cannot induce behavioural 

arrhythmicity. 

6.3.4.2.2 Expression of expanded polyQ in the TIM+ circadian neurons leads to 

weakening of free-running rhythms 

tim>Q63 flies, like all their controls, are mostly rhythmic across ages (Fig 6.4a and e).  However, 

their rhythms are not as robust as most controls in AW1 and AW2 (Fig 6.4f).  Both tim>Q20 and 

tim>Q63 had more extended periods than their UAS controls but were comparable to pdfGal 

across age (Fig 6.4g).  Thus, widespread circadian expression of CAG-Q63 peptide does not lead 

to complete rhythm breakdown, but the robustness of rhythm is reduced.  The results suggest that, 
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unlike the expanded polyQ in the context of HD (or MJD, see next section), the mere presence of 

expanded polyQ peptide in circadian neurons is seemingly less neurotoxic.  Additionally, most 

free-running rhythm features are comparable between polyQ expression in PDF+ and TIM+ 

circadian neurons across ages (Fig 6.6a and b).  Thus, even widespread expression of polyQ63 

not dramatically impairing the free-running rhythms suggests a relatively benign effect of 

expanded Q63 in the circadian context.  Experiments with longer polyQ lengths, such as Q108 or 

Q127, could yield further insights into the importance of protein and cellular contexts on polyQ 

disease progression. 
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Fig 6. 4 Flies expressing expanded polyQ in a broad group of circadian neurons show weak rhythms 

in DD25. 

(a) Representative double-plotted actograms for flies showing activity data for 21d (age 3d-23d) in 

DD at 25 oC for flies expressing non-expanded (Q20) and expanded polyQ protein in either the pdf-

driven LNv subset or tim-driven broad circadian neuronal group and their controls.  The other details 

are the same as in Fig 5.2.  (b- d) Percentage rhythmicity (b), the robustness of rhythm (c) and period 

(d) for the pdf-driven flies and their controls.  (e-g) Percentage rhythmicity (e), the robustness of 

rhythm (f) and period (g) for the tim-driven flies and their controls.  Symbols represent significant 

differences: * between indicated age-matched genotypes, $ between AWs for a genotype at * or $ at 

p<0.05 ** or $$ at p<0.01 and *** or $$$ at p<0.001.  Across panels, error bars are SEM.  
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6.3.5 The effect of expressing expanded MJD protein in 

the circadian neurons on the activity rhythms 

6.3.5.1 Rationale 

HD is a member of the polyQ disease family characterised by expanding the CAG repeats (or 

glutamine amino acid repeats in the protein) past a certain threshold.  Middle-age onset, 

progressive worsening with age, longer Q repeats showing earlier age-of-onset and greater 

severity, repeat expansion with subsequent generations and earlier onset (genetic anticipation), a 

toxic gain-of-function by the mutant protein and the presence of expanded protein aggregates, 

and selectivity in brain regions affected are common pathological features shared by these 

diseases (Fan et al., 2014; Lieberman et al., 2019).  Spinocerebellar Ataxia Type 3 (SCA3), or 

Machado Joseph disease (SCA3/MJD), is a polyQ disease.  It is caused by abnormal expansion 

of CAG repeats (>50) in the MJD-1 gene, encoding ATXN3 protein, which contrasts with other 

polyQ diseases with a Q length threshold of <40 (Bichelmeier et al., 2007; Alves et al., 2008; 

Costa Mdo and Paulson, 2012).  The clinical hallmark of MJD is progressive ataxia, i.e. 

dysfunction of motor coordination that can affect gaze, speech, gait, balance, muscular atrophy, 

dystonia and spasticity.  Even though the Ataxin3 protein is expressed ubiquitously, there is 

selective loss of neurons in non-cortical cerebellar systems (particularly the dentate nucleus and 

pontine neurons), cranial nerve motor nuclei, substantia nigra and spinal cord.  Ataxin3 is a 

deubiquitinating enzyme participating in ubiquitin-dependent proteasomal degradation and helps 

regulate the stability or activity of many proteins implicated in proteotoxic stress response, ageing, 

and cell differentiation  (Warrick et al., 2005; Costa Mdo and Paulson, 2012).  The expanded 

ATXN3 protein triggers interconnected pathogenic cascades that cause cellular dysfunction and 

selective neuronal death (Warrick et al., 2005). 

Multiple studies in Drosophila have shown the neurodegenerative effects of expanded MJD 

protein.  In flies, tissue-specific expression of expanded truncated MJDQ78 causes retinal 

degeneration, cell loss, decrease in longevity and climbing ability, decrease in mating behaviour, 

increase in inclusions and oxidative stress, changes in autophagy, and mitochondrial and dendritic 
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defects (Warrick et al., 1998; Warrick et al., 2005; Kadener et al., 2006; Bilen and Bonini, 2007; 

Lessing and Bonini, 2008; Lee et al., 2011; Park et al., 2011; Cushman-Nick et al., 2013; Jia et 

al., 2013; Long et al., 2014b; Lin et al., 2015; Wu et al., 2018; Baumgartner et al., 2021; Nan et 

al., 2021).  In contrast to MJDQ78, there were no deficits in expressing the non-expanded 

MJDQ27, which shows diffuse staining (Warrick et al., 1998; Warrick et al., 2005; Bilen and 

Bonini, 2007; Li et al., 2008a; Lee et al., 2011; Park et al., 2011; Cushman-Nick et al., 2013; Jia 

et al., 2013; Lin et al., 2015; Zhang et al., 2016; Wu et al., 2018; Baumgartner et al., 2021; Nan 

et al., 2021). 

HD and MJD share several salient features of pathology, such as the middle age onset, progressive 

neurodegeneration, protein aggregation, reduced lifespan, and the length of the polyQ repeat 

correlating inversely with the age of disease onset and directly with disease severity (Cummings 

and Zoghbi, 2000; Takahashi et al., 2010; Bunting et al., 2021).  Sleep disorders like restless legs 

syndrome and REM sleep disorder are seen in MJD (Pedroso et al., 2016; Huebra et al., 2019).  I 

asked whether the shared pathogenicity between HD and MJD extends to circadian disturbances, 

as seen with the fly HD model. 

6.3.5.2 Results and Conclusions 

6.3.5.2.1 Expression of either MJDQ27 or MJDQ78 in the LNv renders flies 

behaviourally arrhythmic upon ageing 

In AW1, pdf>MJDQ27 and pdf>MJDQ78 are rhythmic, like other controls (Fig 6.5a and b).  In 

AW2 and AW3, the rhythmicity of both the genotypes falls to about 50%, differing significantly 

from other controls.  The rhythm robustness of pdf>MJDQ78 is lower than at least one of the 

controls across AWs and comparable to pdf>MJDQ27 (Fig 6.5c).  The period of pdf>MJDQ78 

is longer than other genotypes at AW1 (Fig 6.5d).  The arrhythmicity and weak rhythms of 

pdf>MJDQ27 are unexpected as these flies express the non-pathogenic, wild-type (WT) form of 

MJD.  These results indicate that the expression of MJD protein (both WT and expanded versions) 

is intermediate toxic, leading to loss of behavioural rhythmicity as the flies age. 
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6.3.5.2.2 Flies expressing MJDQ78 in the TIM+ circadian neurons are arrhythmic 

from the beginning, whereas those expressing MJDQ27 become arrhythmic at a 

later age 

Nearly all tim>MJDQ78 expressing flies are arrhythmic as soon as they enter DD, whereas most 

tim>MJDQ27 flies are rhythmic up to at least nine days of age and become arrhythmic from AW2 

onwards (Fig 6.5a and e).  The rhythmic pdf>MJDQ27 flies have weak and longer rhythms than 

some of the controls in AW1 (Fig 6.5f and g).  Thus, expression of the expanded and WT forms 

of MJD in circadian neurons disrupts free-running rhythms, suggesting that activity rhythms are 

sensitive to the levels of WT MJD.  In AW1, the finding that tim>MJDQ27 mainly was rhythmic, 

albeit of poor robustness, compared to the arrhythmic tim>MJDQ78, suggests that expanded MJD 

has an exaggerated effect on rhythmicity than the WT MJD. 

Comparing pdf-driven MJD expression with tim-driven MJD, the tim-driven MJD was more 

aggressive in activity rhythm breakdown.  Most tim>MJDQ27 flies were arrhythmic in AW2 and 

AW3, compared to ~50% arrhythmicity of pdf>MJDQ27 (Fig 6.6c).  Similarly, across AWs, a 

significantly more significant proportion of tim>MJDQ78 flies were arrhythmic than 

pdf>MJDQ78 (Fig 6.6d).  The more significant toxicity associated with the tim-driver is not 

surprising given the widespread neuronal expression of TIM compared to the narrow expression 

of PDF (16-18 cells). 
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Fig 6. 5 Expression of MJD protein in circadian neurons leads to arrhythmicity and weak rhythms 

in DD25. 

(a) Representative double-plotted actograms for flies showing activity data for 21d (age 3d-23d) in 

DD at 25 oC for flies expressing non-expanded (Q27) or expanded (Q78) MJD protein in either the 

pdf-diven LNv subset or tim-driven broad circadian neuronal group and their controls.  The other 

details are the same as in Fig 5.2.  (b) Mean percentage rhythmicity averaged over three independent 

experiments for the pdf-driven flies and their controls.  (c-d) The mean robustness of rhythm (c) and 

the mean period (d) for the pdf-driven flies and their controls for a representative run.  (e-g) Percentage 

rhythmicity (e), the robustness of rhythm (f) and period (g) for the tim-driven flies and their controls.  

Symbols represent significant differences: * between indicated age-matched genotypes, $ between 

AWs for a genotype at * or $ at p<0.05 ** or $$ at p<0.01 and *** or $$$ at p<0.001.  Across panels, 

error bars are SEM.  
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Fig 6. 6 Expression of MJD protein in a broad circadian neuronal group affects rhythmicity more 

severely than expression in the LNv subgroup alone. 

(a-d) Comparison of rhythmicity (left), robustness (middle) and period (right) between pdf-driven and 

tim-driven expression of Q20 (a), Q63 (b), MJDQ27 (c) and MJDQ78 (d) across AWs.  Symbols 

represent significant differences: * between indicated age-matched genotypes at * at p<0.05 ** at 

p<0.01 and *** at p<0.001.  Across panels, error bars are SEM. 
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6.3.5.2.3 The PDF+ LNv soma numbers are unaffected in flies expressing MJD in the 

LNv 

The behavioural arrhythmicity associated with MJD expression in LNv prompted me to assess 

the status of PDF in these flies.  Both pdf>MJDQ27 and pdf>MJDQ78 showed ~4 PDF+ sLNv 

and lLNv soma stained with the HA-tagged MJD at 12d (Fig 6.7).  12d falls in AW2 when ~50% 

of these flies are arrhythmic.  Thus, the arrhythmicity of pdf>MJD might not stem from their 

effect on PDF.  However, the PDF levels in these flies have not been assessed and could contribute 

to arrhythmicity. 

Only two other studies have targeted MJD-polyQ expression in circadian neurons.  In the first, 

MJDQ78 was expressed in a broad group of circadian neurons using the timGal4 driver (Kadener 

et al., 2006).  Flies were arrhythmic in DD, had disrupted LD activity profiles, and showed a loss 

of tim mRNA and PER protein in clock neurons and reduced PDF+ sLNv numbers.  Expression 

of MJDQ78 in the PDF+ LNv also disrupted free-running rhythms (Xu et al., 2019b).  Like the 

above studies, the flies expressing MJDQ78 in circadian neurons (TIM+ or PDF+) showed 

different extents of behavioural arrhythmicities in the present study.  However, the non-expanded 

MJQ27 expressing flies were also arrhythmic, like the expanded MJDQ78 expressing flies.  In 

both the previous studies targeting MJD to clock neurons, the non-expanded control genotype 

with the expression of MJDQ27 in Tim+ or PDF+ neurons is missing (without any mention of 

their adverse effects) (Kadener et al., 2006; Xu et al., 2019b). 

Hence, so far, there is no precedence for ill effects on expressing MJDQ27 in any of the 

Drosophila models using different tissue-specific expressions (Warrick et al., 1998; Warrick et 

al., 2005; Bilen and Bonini, 2007; Li et al., 2008a; Lee et al., 2011; Park et al., 2011; Cushman-

Nick et al., 2013; Jia et al., 2013; Lin et al., 2015; Zhang et al., 2016; Wu et al., 2018; Baumgartner 

et al., 2021; Nan et al., 2021).  On the contrary, the pan-glial expression of MJDQ27 alone 

extended the fly's lifespan (Yeh et al., 2018).  Additionally, MJDQ27 Ataxin-3 protein, when co-

expressed with MJDQ78, suppressed the rough eye phenotype, improved lifespan, and reduced 

inclusions and, when co-expressed with MJDQ84 in the glia, protected the Blood-Brain 

Barrier/Blood Retinal Barrier integrity, reflecting that MJDQ27 retains the normal function of 
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Ataxin-3 and is neuro and glia protective (Warrick et al., 2005; Jung et al., 2009; Vinatier et al., 

2015; Yeh et al., 2018).  Co-expression of MJDQ27 with HTTQ120 or with SCA1-Q82 or with 

Atx7Q102tr also suppressed exp-polyQ protein-induced retinal degeneration, indicating the 

neuroprotective function of Ataxin-3 protein is not specific to MJD but works broadly against 

pathogenic polyQ proteins (Warrick et al., 2005; Vinatier et al., 2015).  The ubiquitin protease 

function of Ataxin-3 was required for its neuroprotective activity (Warrick et al., 2005).  Despite 

the WT Ataxin-3 function of MJDQ27 and its neuroprotective effects, its expression in the 

circadian neurons impaired the free-running activity rhythms, suggesting that WT MJD protein 

levels are crucial for circadian function and an increase in its levels is detrimental to activity 

rhythms.  It also highlights the cell-specific effects of a WT protein and the importance of cellular 

and protein contexts in influencing neurotoxicity.  Given that PDF in LNv seems unaffected in 

pdf>MJDQ27 flies up to 12d of age, the cellular basis for arrhythmicity and weak activity rhythms 

in these flies is unclear.  However, some inclusions were seen in the LNv, which has not been 

quantified.  It will be essential to verify the effect of expressing MJD proteins in the circadian 

neurons on the cellular phenotypes, such as the status of PER, PDF levels and MJD forms, 

including inclusions, to understand and explain the observations in behavioural rhythms. 

  



458 
Chapter 6 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Fig 6. 7 LNv expression of MJD proteins does not affect PDF in LNv soma. 

(a) Representative images of a 12d adult fly brain stained for PDF (green) and HTT (red) showing 

sLNv soma (arrows), lLNv soma (arrow-heads), diffused MJD (via anti-HA) staining (Ψ psi symbol) 

and MJD inclusions (« double arrowheads).  (b) The mean number of PDF+ LNv soma (left) and MJD+ 

LNv soma (right) per hemisphere.  Error bars are SEM. 
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6.4 FINAL REMARKS  

6.4.1 Protein- and cellular-contexts in mediating polyQ 

effects on the circadian activity rhythms 

So far, expanded polyQs of varying lengths and disease contexts (HTT with the first 548aa: 

HTT548aaQ0 and HTT548aaQ128, HTT with exon1: HTTEx1Q20, HTTEx1Q50, HTTEx1Q93, HTT 

full-length: HTTQ16FL and HTTQ128FL, GFP-tagged Ex1HTT: HTTQ25, HTTQ46, HTTQ72 

and HTTQ103, eGFP-tagged Ex1HTT: HTTQ18, HTTQ18NLS, HTTQ152 and HTTQ152NLS, 

expanded polyQs: Q20 and Q63 and truncated MJD: MJDtrQ27 and MJDtrQ78) have been 

expressed in the circadian pacemaker neurons in Drosophila (Chapters 2 and 6).  Even though, as 

described earlier, the expanded versions are shown to be neurotoxic in various cellular contexts, 

targeting them to circadian neurons has variable effects on activity rhythms in DD.  Some show 

an immediate severe effect of complete loss of rhythmicity, others show a delayed loss, some 

show marginal effects of weak rhythms, and others show no alteration in the rhythm features.  

The range of effects of expanded polyQs with and without flanking sequences in the circadian 

context brings to the fore the influence of the protein and cellular contexts in mediating the 

toxicity of polyQs. 

The polyQ-length dependence for disease thresholds, penetrance, severity, and age-of-onset in 

diseases due to polyQ expansion, despite lack of sequence similarity outside the polyQ domain, 

suggests expanded polyQ as the primary driver of neurodegeneration among polyQ expansion 

diseases.  However, despite broad underlying commonality in disease manifestation and 

underlying pathophysiology (Adegbuyiro et al., 2017; Paulson et al., 2017; Stoyas and La Spada, 

2018a), each of the diseases has a relatively distinct clinical presentation, unique region-

specificity of neurodegeneration, differing disease threshold and notably very different affected 

proteins, differing in their flanking sequences, endogenous expression, native function, 

interactome and post-translational modifications (Lieberman et al., 2019; Johnson et al., 2022).  

The contribution of the context of polyQ and its flanking regions and the cellular milieu to the 

differential dynamic properties in different polyQ disease proteins is significant (Chai et al., 2002; 
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Morley et al., 2002; Duennwald et al., 2006a; Gidalevitz et al., 2006; Calamini et al., 2013; Kuiper 

et al., 2017).  These varying contexts also influence the polyQ-proteins’ biophysical and 

biochemical properties like conformation, aggregation kinetics and solubility, post-translational 

modifications, proteolysis, its interactions (both homotypic and heterotypic), stability, quality 

control mechanisms, cellular localization and thereby, its toxicity, thus, introducing heterogeneity 

to disease pathology and progression (La Spada and Taylor, 2003; Ghosh and Feany, 2004; Tam 

et al., 2009; Robertson and Bottomley, 2010; Caron et al., 2014; Adegbuyiro et al., 2017; Silva et 

al., 2018).  Thus, while interpreting results from various studies in the context of model systems, 

disease proteins, tissue-specificity, and phenotypic toxicity readouts must be considered. 
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7.1 SUMMARY, CONCLUSIONS, AND 

SIGNIFICANCE 

In this study, I have characterised a circadian model of HD in Drosophila. This discussion focuses 

on Drosophila expressing expHTT in their circadian pacemaker neurons (the PDF+ LNv) or 

pdf>Q128 flies (HD flies) unless otherwise specified. 

Statement of significance: This study describes a Drosophila model that allows researchers to 

examine HD-related neurotoxicity and circadian disruptions at the cellular and behavioural levels.  

It then investigates strategies to modify these disease outcomes and uncovers several avenues for 

delaying expHTT-induced circadian neurodegenerative phenotypes like temperature cycles, 

warm temperatures and Hsps.  Furthermore, there is evidence that expHTT inclusions serve as 

proxies for neurotoxicity and that HD-induced circadian dysfunction may be caused by disruption 

of cellular proteostasis.  It also shows that the rescue of circadian behavioural outputs under 

neurodegenerative conditions can occur via different combinations of cellular rescue.  

Mechanisms underlying neuronal function, neurodegeneration, and circadian rhythms are 

conserved between flies and mammals.  Hence, it is feasible to test the therapeutic approaches 

established here in clinically relevant mammalian systems that will help inform advances towards 

improving the life quality of HD patients and carers.  Since several NDs share symptoms of 

circadian and sleep disruptions, which are often affected before the manifestation of clinical 

symptoms, the lessons from this study are also relevant for other NDs.  They can inform targeting 

early disease stages and stall disease manifestation.  Vitally, the findings of this study support 

two-way interactions between circadian and neurodegenerative networks and bring to light the 

effects of the external environment and cellular proteostasis on the outcomes of such interactions.  

This study supports the need to investigate and establish neuroprotective interventions that are 

also chronotherapeutic and provides evidence-based arguments for integrating circadian medicine 

into neuromedicine. 
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7.1.1 Common themes of neurodegeneration and the 

associated circadian alterations 

In this fly model, several characteristics of HD, a polyQ-expansion neurodegenerative disease, 

have been recapitulated.  These include age-dependent increase in symptom severity (progressive 

decline in activity rhythms and PDF loss from LNv), differential neuronal susceptibility (sLNv 

more susceptible than lLNv), increasing severity and lower age-of-onset with increasing polyQ-

repeat-length (comparing HTTQ20, Q50, and Q93), middle-age onset (with HTTQ50), and the 

presence of inclusions of expHTT, a critical hallmark of protein-aggregation diseases.  The 

progressing worsening with age also extends to HD-associated circadian disruptions like loss of 

core clock protein PER oscillation and circadian output PDF from the soma of the sLNv circadian 

pacemakers and a reduction in the extent of activity consolidation, similar to the loss of molecular 

oscillations in SCN in vivo and circadian output VIP neurons in the SCN of HD mice (Morton et 

al., 2005; Fahrenkrug et al., 2007; Maywood et al., 2010; van Wamelen et al., 2013).  Some 

differential results include unaffected lifespan, entrainment of behavioural rhythms to LD cycles 

and sleep.  However, the former two are likely owing to the small numbers of circadian neurons 

targeted and how they affect behaviour under LD.  The latter can be attributed to the lack of 

replication of sleep studies, as sleep is very sensitive to experimental conditions, and more recent 

lab studies show a sleep disruption in HD flies in DD (Sharma et al., 2023).  Though I do not find 

evidence of cell death of the LNv, the loss of cellular markers like PDF, PER and GFP from the 

soma and associated functional loss in behavioural rhythmicity are strong evidence for neuronal 

dysfunction.  Also, in young HD flies, Hsp70+PDF- sLNv soma are observed (Sharma et al., 

2023), indicating that the sLNv is not lost and the PDF loss from sLNv soma does not amount to 

neuronal loss in the young.  The neuronal death might be slow and may be captured in much older 

flies, as indicated by the reduction of Hsp70+ sLNv soma with age (Sharma et al., 2023).  The 

presence of sLNv axonal projections detected by PDF and GFP staining in the absence of sLNv 

somal staining is puzzling and is currently under investigation in the laboratory.  This finding 

argues against an axonal die-back mechanism often observed in NDs (Benarroch, 2015; 
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Salvadores et al., 2017).  Differential susceptibility of specific neuronal groups is captured in the 

form of sLNv affected more significantly than lLNv, which presents a fertile ground to investigate 

the mechanisms underlying the greater susceptibility of the sLNvs versus the relative protection 

offered by the lLNvs.  A recent study from the lab supports the lLNv being more stress-resistant 

than the sLNv, given the fewer Hsp70-stained lLNv than sLNv (Sharma et al., 2023).  Thus, this 

circadian HD model captures several salient characteristics of HD and its associated circadian 

disturbances.  It must be noted that since a highly long polyQ stretch (128Qs) has been used in 

this study, the results presented here are more representative of a severe form of HD, like juvenile 

HD.  This feature is reflected in the development of most circadian neurodegenerative phenotypes 

described above within the first seven to nine days of eclosion or in young flies. 

7.1.2 Disease-modifying strategies 

My studies have unveiled an environmental impact in delaying HD circadian and 

neurodegenerative outcomes mediated via clock and non-clock mechanisms in modifying disease 

progression. 

7.1.2.1 Environmental modifiers 

Light 

This study shows light exacerbates neurotoxic cellular attributes, whether provided cyclically or 

continuously.  Constant light was the most cytotoxic, hastening PDF loss from LNv and inclusion 

load.  As the flies aged under constant light, it culminated in a complete loss of PDF from the 

whole of the sLNv, including its axons.  Such a worsening of neurodegeneration has not been 

previously seen with any other regime.  Following LL in neurotoxicity was LD, and DD was the 

least neurotoxic (Fig 7.1).  Given that light is amongst the most potent synchronising stimuli for 

circadian rhythms, the observation that the absence of light (DD) offers better circadian 

neuroprotection than cyclic light (LD) seems counterintuitive.  Further, the lack of proper lighting, 

like dim lighting and DD, harms mood and cognition and induces depression-like behaviour in 

rodents (LeGates et al., 2014; González, 2018; Kim et al., 2021b).  Recent studies highlight the 
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significance of developmental light on Drosophila CNS development (larval neuroblast and adult 

mushroom body size reduced in DD-reared flies) and sleep where some pathways regulating 

wakefulness were enhanced (higher activity levels, lower nighttime sleep levels, increased 

dopamine receptor Dop1R1 expression in DD-reared flies), but not circadian clocks (comparable 

free-running rhythmicity, period and phasing of M-and E-peak between LD-reared and DD-reared 

flies, but decrease in expression of pdf and pdfr in DD-reared) (González, 2018; Dapergola et al., 

2021; Damulewicz et al., 2022b).  The adverse effects of LD (discussed in Chapter 3) can be 

attributed to the toxic effects of blue light or blue-enriched white light, which have not only 

chronobiological impacts but also affect visual performance, cause retinal damage, impair 

mitochondrial function and energy metabolism, cause oxidative damage, and affect 

neurotransmitter levels (Chen et al., 2017; De Magalhaes Filho et al., 2018; Nash et al., 2019; 

Shen et al., 2019; Liu et al., 2020; Ouyang et al., 2020; Kam et al., 2021; Krittika and Yadav, 

2022; Song et al., 2022; Wong and Bahmani, 2022; Yang et al., 2022).  The finding that cycling 

and constant light had aggravating effects on neurodegenerative features lends credibility to the 

criticality of environment and circadian hygiene in managing NDs.  They also indicate that simple 

environmental changes like the extent and type of light exposure can significantly modify disease 

processes.  So, it will be imperative to optimise various qualities of light like spectral composition, 

intensity, duration, and timing of application to reap the benefits of cyclic light as a robust 

circadian-rhythm-synchronising signal while minimising the adverse effects of light on 

neurodegeneration. 
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Fig 7. 1 A summary of the effect of lights on circadian cellular neurotoxicity in pdf>Q128 flies: 

constant light exacerbates toxicity, whereas the absence of light is the least toxic.  

Fig 7.1 
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The top panel is a schematic of a hemisphere of a control Drosophila brain showing the critical 

circadian neurons.  The cellular features of sLNv soma in control flies (top), and young pdf>Q128 

flies under three light regimes (DD25, LD25, and LL25) (bottom) are depicted.  The cellular features 

studied are indicators of LNv functionality and health: oscillations in PER levels (a marker for the 

molecular clock), the status of PDF (a marker for circadian output) and expHTT inclusions (a proxy 

for the effectiveness of cellular proteostasis).  The magnitude of neurotoxicity for the cellular features 

PDF and expHTT Inc in pdf>Q128 is assigned based on comparing the three regimes.  The  ~ against 

PER represents the presence of oscillations in PER levels.  The ++++ against PDF represents the 

presence of nearly four PDF+ sLNv in controls, whereas ↓ against PDF is an overall representation of 

the loss of PDF from sLNv soma, which is primarily a decrease in the PDF+ sLNv soma numbers (or 

decrease in PDF intensity in the sLNv below detection levels) and in the case of LL also signifies the 

loss of PDF from sLNv dorsal termini, thereby, a near complete sLNv PDF loss.  The greater the 

number of ↓, the more severe (magnitude and speed - earlier) is the loss of PDF.  The +s against 

expHTT inclusion indicates the extent of inclusion load considering the number of inclusions and the 

proportion of hemispheres dominated by Inc-enriched LNv relative to other expHTT forms.  The 

approximate weightage of values shown here are representative of the overall sLNv somal status till 

7d of age (and holds till the end of assay duration (23d) for PDF and expHTT inclusion number 

comparisons of pdf>Q128 in DD against those in the other light regimes). 

Temperature 

Evidence-based studies on the impact of temperature on neurodegenerative outcomes are scarce.  

This study demonstrates that temperature-based approaches can delay the progression of HD.  It 

offers some insight into the mechanisms underlying the processes mediating temperature-based 

restoration of early-age activity rhythms, which have some features in common but also differ 

from one another.  Improvements in activity rhythm observed under both the regimes, the 

development-specific TCs and the adult-restricted warm temperatures, are contingent upon the 

temperature experienced as adults and are associated with a delay in PDF loss from the sLNv to 

varying degrees.  In contrast to the former regime, which improves only behavioural rhythmicity 

and sLNv PER oscillations without affecting expHTT inclusions, the latter improves rhythmicity, 

and activity consolidation reduces inclusion load without restoring PER oscillations.  Another 

prominent contrasting feature is the effect of light during development, which abolishes 

DDTCtoDD25-mediated early-age activity rhythm restoration but has minimal effect on the 

DD23toDD29-mediated behavioural rhythmicity.  Of the two regimes, adult-restricted warm 

temperatures were modestly better in alleviating neurotoxicity.  Hsp70 contributes to the 

behavioural rhythm improvements mediated by adult-restricted warm temperatures in a dose-
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dependent manner that seems to follow a J-shaped curve.  These findings also imply that HD flies 

experience proteostasis stress and that warm temperatures facilitate rescue by reinforcing or 

enhancing cellular proteostasis.  The involvement of Hsp in this rescue ties up neatly with Hsps 

emerging as potent suppressors of circadian neurodegenerative phenotypes in HD, discussed in 

the next section. 

Even though the SCN per se seems resistant to temperature effects, circadian rhythms and 

peripheral clocks can be phase-shifted by temperature (Brown et al., 2002; Buhr et al., 2010; 

Tamaru et al., 2011; Saini et al., 2012).  The finding that development-specific warm/cold 

temperature cycles can delay HD-induced circadian neurodegenerative phenotypes via largely 

clock-centric mechanisms is encouraging for using temperature as an entraining time cue and 

even as a masking agent, serving as an alternative to other zeitgebers like light, food, and social 

schedules.  Using fluctuating/ oscillatory temperatures also circumvents some of the ill effects of 

using chronic warm temperatures.  The finding that warm temperatures, particularly adult-

restricted warm temperatures, can delay HD circadian outcomes is proof of the potential for the 

positive effects of heat acclimation on neurodegeneration.  In other words, this study demonstrates 

the effectiveness of cross-modal hormesis in neurodegeneration: one stressor, like mild heat, can 

mitigate the effect of another stressor, like aggregation-prone protein.  These findings also make 

a case for testing and optimising heat treatments like whole-body hyperthermia and passive heat 

therapy as treatment modalities. 

Previous studies have shown the effectiveness of non-pharmacological interventions known to 

improve circadian function, like timed light therapy, time-restricted feeding, scheduled physical 

exercise and social settings, in improving circadian parameters, cognitive performance and 

metabolic functions alleviating HD symptoms in animal models (Pallier et al., 2007; Pallier and 

Morton, 2009; Maywood et al., 2010; Aungier et al., 2012b; Skillings et al., 2014; Ouk et al., 

2017; Wang et al., 2017; Whittaker et al., 2018; Cabanas et al., 2019).  Using Drosophila, this 

study underscores the potential for temperature-based intervention in mitigating HD-associated 

circadian dysfunction via at least two different approaches.  Temperature-based interventions like 

saunas and hot tubs have a long history of traditional use and have now been shown to have 
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several health benefits (Brunt and Minson, 2021; Patrick and Johnson, 2021), setting encouraging 

precedence for the findings of this study in Drosophila.  Temperature-based strategies will be 

particularly useful in the treatment of circadian rhythm disruptions (CRDs) in people with limited 

mobility, those deprived of ample bright light exposure or unable to avail themselves of the 

benefits of other complementary treatments like bright light and physical therapy: the 

institutionalised healthy, elderly, neurodegenerative patients, blind people and (or) people with 

poor light perception or decreased photosensitivity.  Also, as a therapeutic modality, heat 

(temperature-based interventions) is cheap, convenient, widely accessible, non-invasive, and 

relatively easy to incorporate as part of lifestyle (Chen et al., 2020). 

7.1.2.2 Genetic modifiers 

Hsps 

Using a screen for known cellular neurotoxic modifiers of HD, I have uncovered Hsps (Hsp40 

and Hsp70) as suppressors of HD-associated circadian behavioural arrhythmia.  Hsp40 emerged 

as the more potent mitigator of HD-induced deficits.  Upon Hsp40 overexpression in the LNv, 

the behavioural rhythm rescue was associated with the restoration of PER and its oscillations in 

the LNv of young flies and a long-lasting rescue of PDF in sLNv soma.  Significantly, there was 

a reduction in the expanded Huntingtin inclusion load, concomitant with the appearance of a 

hitherto novel expHTT form, spot-like.  Surprisingly, early-age rhythm rescue upon Hsp70 

overexpression did not see improvements in any of the LNv cellular features. 

Throughout my research, two independent studies have established a role for Hsps in circadian 

rehabilitation in the context of NDs.  The improvement of ND-induced circadian dysfunction at 

both the cellular and behavioural levels due to the involvement of a known proteostasis influencer 

with a long history of protecting against neurodegeneration highlights intersections between the 

circadian and neurodegeneration axes.  It strengthens the emerging theory of a bi-directional 

relationship between the two.  Given the importance of protein homeostasis and circadian health 

in brain and protein aggregation diseases, the involvement of molecular chaperones in circadian 

maintenance has broader therapeutic implications for several other neurodegenerative diseases 
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like Parkinson’s and Alzheimer’s.  Circadian and sleep disturbances occur early and are pre-

manifest in many NDs.  Therefore, treatments targeting HSPs could impact the early stages of the 

disease, delay symptoms and aid in therapy.  The findings on chaperones’ role in circadian 

rehabilitation pave the way for exploring the relatively uncharted area of HSP and the molecular 

clockwork interactions.  This study also reveals a need to explore and establish nodal molecules 

that affect several pathways compromised in ND and develop chronotherapeutic neuroprotective 

agents. 

7.1.3 Trajectories of circadian rhythm rescue in HD: 

Mechanistic insights 

There has been intense debate on the toxic form of expHTT conformer in HD.  In this study, the 

puncta-like appearance of expHTT in the LNv visible via fluorescence light microscopy has been 

termed “inclusions”.  No assumptions about its solubility, polymeric state, or ultrastructure have 

been made.  The uniform distribution of expHTT appearance that often mimics the PDF 

distribution is termed “diffuse”.  Furthermore, if an LNv expHTT staining appears diffuse with a 

few inclusions, the staining is said to be “Diff+Inc”.  In most experiments across various regimes 

and genetic backgrounds, a few trends were observed regarding the expHTT forms in LNv of 

pdf>Q128.  Most of these observations are limited to the first seven days post-eclosion.  First, the 

expHTT form changes from Diff to Diff+Inc to Inc as the flies age.  The lower proportions of 

Inc-enriched LNvs in young pdf>Q128 flies coincide with more PDF+ and PER+ LNv soma 

(particularly the sLNv).  In regimes (DD23toDD29, DD29toDD29) and genetic backgrounds 

(Hsp40 overexpression) that show early-age rhythm rescue (in AW1), the delay in loss of PDF 

from sLNv also coincides with a decrease in expHTT inclusion load (see exceptions below) and 

a more extended presence of Diff-enriched LNv.  However, there are certain exceptions, such as 

DDTCtoDD25 and HSP70 overexpression, where a decrease in inclusion load did not follow the 

early-age restoration of behavioural rhythms; however, the latter did not demonstrate rescue of 

PDF or PER in the sLNv.  Conversely, exacerbation of PDF loss from sLNv by clock-disrupting 

constant light LL was associated with an increased inclusion load.  So, by and large, in these flies, 
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expHTT inclusions are often predictors of LNv dysfunction and neurotoxicity.  This result 

that polyQ aggregation propensity is a reliable predictor of HD-related pathology is supported by 

a recent study (Drombosky et al., 2018).  Furthermore, in this discussion, a reduction in expHTT 

inclusion load (which in my studies is more often associated with improved LNv functionality) is 

considered a surrogate marker for improved overall cellular health and a proxy for bolstered 

cellular proteostasis (Duncan et al., 2015a). 

This study shows that a composite set of cellular mechanisms can restore circadian behavioural 

rhythms in pdf>Q128, as shown in Fig 7.2.  Restoration of LNv circadian output (PDF in sLNv 

soma), molecular clock component (PER in the LNv), molecular clock oscillations (PER 

oscillations in sLNv), and an overall improvement in cellular proteostasis (reduction in inclusion 

load), as in the case of Hsp40 overexpression, can all contribute to the recovery of early-age 

circadian activity rhythms.  However, it can also happen with the improvement of LNv clock 

output and proteostasis, but in the absence of a ticking molecular clock as in the case of adult-

specific upshift to warm temperatures (DD23toDD29).  It can also happen with improvements to 

LNv clock output and molecular clocks but without improving proteostasis, as in the case of 

development-specific temperature cycles (DDTCtoDD25).  Lastly, behavioural rhythms can 

surprisingly manifest without rescuing LNv circadian output, molecular clocks, or even likely 

effects on proteostasis evidenced by marginal effects on expHTT inclusion load (Hsp70 

overexpression).  However, it should be noted that activity rhythm rescue of pdf>Q128 by Hsp40, 

which was more pronounced and long-lasting than all the other strategies, was associated with 

the most significant improvements of underlying cellular phenotypes, showing that the extent of 

behavioural rescue depends on the degree of cellular rescue.  Ranking next were flies under 

DD23toDD29, better protected than those under DDTCtoDD25, indicating that a decrease in 

expHTT inclusion load probably benefits cellular health.  Thus, multiple pathways of varying 

potency can exist to improve circadian rhythm disruptions in neurodegeneration. 
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Fig 7. 2 A pictorial representation of the various disease-alleviating strategies established in this 

study in the increasing order of their ability to provide circadian neuroprotection. 

Depicted here are the cellular characteristics of the sLNv soma (left) and the rhythmicity status of locomotor 

activity behaviour (right) of pdf>Q128 flies under three different temperature regimes (DD25, 

DDTCtoDD25, and DD23toDD29) (environmental regimens), as well as the effects of overexpressing 

Hsp40 or HSP70 in these flies under DD25 (genetic approach).  These are arranged in the ascending order 

of the strategies’ effectiveness: in exerting neuroprotection or suppressing neurotoxicity (descending order 

of neurotoxicity) (red on the left) and in improving behavioural rhythms (green on the right).  Most of the 

details are like in Fig 7.1.  The magnitude of + against PDF is based on the mean number of PDF+ sLNv 

soma till 7d of age and its frequency distribution.  The behavioural rhythm depictions are approximately 

based on the percentage rhythmicities across multiple experiments, the extent of activity consolidation and 

rhythm robustness (for reference, WT flies will have a rhythm score of ++++++).  The early-age PER 

oscillations in the sLNv, the complete rescue of PDF in the sLNv, the reduction in inclusion load, and the 

appearance of a Spot form of expHTT and free-running rhythmic activity that was sustained for an extended 

duration were evidence of the most effective suppression of expHTT-induced circadian dysfunction and 

neurotoxicity caused by the overexpression of Hsp40.   As is evident here, although several strategies rescue 

early-age activity rhythms to varying extents, they do so by altering the underlying circadian neuronal 

features differentially in terms of which features are affected (if any) and the magnitude and duration of 

effect.  These findings suggest overlapping, albeit divergent, mechanisms of circadian rescue.  
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7.1.4 Drosophila Huntingtin, protein context of the polyQ 

peptide and cellular context in mediating polyQ-induced 

circadian dysfunction 

Other preliminary studies in this thesis have given rise to the following conclusions.  Drosophila 

Huntingtin does not mediate circadian activity rhythms or offer neuroprotection to the circadian 

neurons expressing expHTT.  Expression of full-length expanded human HTT or only expanded 

polyQ peptides in the LNv did not alter free-running rhythms, showing that the protein context 

around the polyQ and the expHTT protein length influence the extent of circadian alterations in 

HD.  The expression of either polyQ-unexpanded or -expanded MJD protein in the circadian 

neurons causes behavioural arrhythmicity to varying degrees without changing the number of 

PDF+ LNvs, indicating that cellular settings influence the toxicity of polyQ proteins. 

7.1.5 Conclusions on the Drosophila circadian neuronal 

network 

The present study also adds nuances to our understanding of the role of LNv and PDF in mediating 

activity rhythms under DD (free-running condition) and LD.  The sLNv are considered, for the 

most part, the central pacemakers mediating free-running behavioural rhythms (Renn et al., 1999; 

Grima et al., 2004a; Stoleru et al., 2004; Shafer and Taghert, 2009).  This role is orchestrated 

mainly by PDF in the sLNv.  Previous research supported the idea that the rhythm-driving effects 

of the sLNv via PDF are restricted to sLNv output in the form of oscillations in PDF levels at the 

sLNv dorsal termini (that likely reflects rhythmic PDF release) and the downstream effect of 

synchronising other pacemaker neurons to evoke a network-level rhythmic effect on the 

locomotor behaviour (Nitabach et al., 2006; Fernández et al., 2007a; Wu et al., 2008a; Wu et al., 

2008b; Depetris-Chauvin et al., 2011; Gunawardhana and Hardin, 2017).  However, later studies 

challenged this notion (Muraro et al., 2013; Depetris-Chauvin et al., 2014; Gorostiza et al., 2014).  

In this direction, the current study, using the neurodegenerative expHTT to render sLNv 

dysfunctional selectively, shows that the rhythm-evoking ability of the sLNv via PDF is disrupted 

even in the face of sustained PDF oscillations in the dorsal termini and its downstream 
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synchronising effects.  The breakdown of LNv molecular clocks and the loss of PDF from sLNv 

cell bodies are plausible explanations for why sLNv PDF oscillations are insufficient in inducing 

behavioural rhythmicity.  This study proposes a PDF-oscillation-independent component (POIC) 

in the sLNv to drive behavioural rhythms.  In support of this idea, other studies show the existence 

of many parallel and compensatory mechanisms (within and outside of the sLNv) involved in 

eliciting activity rhythms in DD (Gorostiza et al., 2014; Frenkel et al., 2017; Sabado et al., 2017; 

Bulthuis et al., 2019; Fernandez et al., 2020; Jaumouillé et al., 2021; Nettnin et al., 2021).  This 

study also furnishes evidence for the sufficiency of lLNv PDF in modulating the entrainment of 

activity rhythms to LD and M-activity and the non-requirement of PER-driven molecular clocks 

for this behaviour. 

Fig 7. 3 A refined understanding of the role of sLNv in driving free-running rhythms: oscillations 

in PDF levels at the sLNv dorsal projections are insufficient. 

A schematic of a hemisphere of the Drosophila brain showing the PDF+ LNv and the non-LNv subsets 

(the LNds, DN1s and DN2s).  Green is PDF; blue is PER, and ~ depicts oscillations in their levels 

over a circadian cycle (PER in the soma of sLNv and non-LNv subsets, PDF in sLNv dorsal 

projections).  Earlier studies concluded that sLNv’s rhythm eliciting capacity via PDF was mainly via 

cyclic accumulation and release of PDF at its termini that then synchronises the downstream non-LNv 

neurons (Control, middle).  Even after rendering sLNv dysfunctional (diminished PDF and 

abolishment of PER oscillations in the sLNv soma) using expHTT (HTT-Q128) (pdf>Q128, right), 

the PDF in the sLNv termini continues to not only accumulate rhythmically in DD but also synchronise   

Fig 7.3 
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the molecular clock oscillations between the non-LNvs.  Despite this functional transmission, the 

pdf>Q128 flies were behaviourally arrhythmic, leading to the proposal of an alternate pathway for 

communicating time information from the sLNv to motor centres via PDF: a PDF-oscillation 

independent component (POIC). 

This study also challenges the centrality of PER-driven molecular clocks in mediating free-

running behavioural rhythms as there are instances of restoration of behavioural rhythmicity in 

DD in the absence of PER oscillations in the LNv (pdf>Q128 in DD23toDD29, pdf>Q128 

overexpressing HSP70 and middle-ages of pdf>Q128 overexpressing Hsp40).  The study also 

shows that the mere presence of PDF (arrhythmic pdf>Q128) or oscillating PER in the sLNv 

(pdf>Q128 in DD23) does not guarantee behavioural rhythmicity, signifying the overall health 

and LNv functionality, not restricted to PDF and PER, in mediating activity rhythms.  Even more 

startling is the result of early-age rhythm restoration on overexpressing HSP70 in pdf>Q128 

without the rescue of LNv PDF or PER.  These findings question the centrality of canonical 

molecular clocks and PDF in the sLNv mediating free-running rhythms and suggest other 

compensatory clock mechanisms in play (see Chapter 2, Discussion).  This study’s results support 

the consensus that the circadian clock neuronal network is a distributed network of mutually 

coupled multiple oscillators.  In the face of impairment of the canonical PDF+ LNv pacemakers, 

other pacemakers compensate for driving free-running rhythms, at least for a limited duration 

(Top and Young, 2018). 

The results from the various development-specific temperature cycles suggest that an intervention 

like temperature with cell-autonomous, global, organismal effects can mediate free-running 

rhythms post-removal of the time cue by potentially impacting the entire circadian clock network.  

Depending on the temperature modality, LD during development has different effects on the 

activity rhythms in adults: under developmental temperature cycles, it opposes rhythm rescue 

(arrhythmicity under LDTCtoDD25); under constant temperature, adult-restricted temperature 

downshift and adult-restricted temperature upshift, it follows temperature effects (absence of 

rhythms in LD23toDD23, LD25toDD25, and LD29toDD23; rhythm rescue in LD29toDD29 and 



477 
Chapter 7 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

LD23toDD29).  These results raise several questions about context-dependent light and 

temperature interactions in the Drosophila circadian system. 

7.1.6 Benefits and limitations of using a Drosophila 

model 

Given that HD is monogenic, it has been reasonably straightforward to model across various 

systems.  The versatility and genetic tools in Drosophila, ease of use for genetic screens, and 

well-studied and conserved circadian system make the fly system an obvious choice to screen for 

modifiers of HD-induced circadian arrhythmia.  The fly’s short lifespan also allowed us to track 

pathological changes with age, a key feature in the study of progressive neurodegenerative 

diseases.  A significant advantage of targeting a neuronal circuit in vivo that controls an 

organismal behaviour like the activity/rest rhythms is the ability to probe and intervene at various 

levels of regulation: molecular, cellular, neuronal circuitry and behavioural.  Since the levels are 

functionally associated, better cause-effect inferences, rigorous testing of the modifying treatment 

and proof-of-principle evaluations can be made. 

Our assays were confined to a subset of critical circadian neurons, cellular markers, and circadian 

activity/rest behaviour.  Studying other circadian physiological rhythms, health markers, and the 

biochemistry of mutant HTT in the circadian context would help get a broader understanding of 

disease pathology.  There is variability in the extent of circadian disturbance in HD mice models, 

and chaperone treatments have differential effects on mice HD pathology, making the study of 

the effect of chaperones on the mammalian clockwork in neurodegeneration a worthwhile 

endeavour.  Further, since Drosophila are endotherms, while humans are poikilothermic 

mammals, a detailed study of the short-term and long-term effects of temperature-based 

interventions while minimising the side effects in mammalian models will be helpful.  

Considering the fly system’s relative simplicity and low redundancy, investigating environment-

based and chaperone interventions on HD-induced circadian dysfunction in mammalian systems 

like rodents and sheep will provide more excellent clinical traction. 
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7.2 SCOPE FOR FUTURE WORK 

This is a study of the circadian disturbances and associated neurodegenerative phenotypes due to 

the expression of expanded Huntingtin, the causative gene for Huntington’s Disease, in a subset 

of the Drosophila circadian neurons.  Many meaningful, engaging, and valuable findings have 

been made throughout this study that open much potential for further research.  These can be 

divided into those to address immediate and more proximate questions and those in the broader 

context of circadian function in neurodegenerative diseases.  The Drosophila circadian model 

described here can address several other neurodegenerative disease-relevant questions.  The 

environmental and genetic modifiers of HD-associated circadian dysfunction and neurotoxicity 

emerging from this study are translationally relevant to test in clinically relevant models and 

explore chronotherapeutics in the larger context for NDs and circadian rhythm disruptions. 

For starters, more experiments could assist in validating some of the findings from this study and 

address the mechanistic specifics.  Here are a few exciting leads to pursue to resolution.  The 

mechanisms of PER and PDF loss in sLNv by expHTT expression, the status of rhythms in sLNv 

DP arbours in the pdf>Q128 flies, the biochemical nature of expHTT inclusions, the detrimental 

effects of light per se exacerbating the cellular neurotoxic phenotypes, the effect of light duration, 

particularly continuous light, independent of its clock-disrupting effects on the HD cellular 

features, developmental light’s differential effect on the rhythm rescue with developmental 

temperature cycles, but not temperature upshift, the role of CRY in interfering with developmental 

TCs and contributing to developmental LD’s countering of rhythm rescue by TCtoDD25, the 

contribution of blue light to the detrimental effects of light (e.g.  use of filters to block or enhance 

blue light component, or genetic perturbation of pathways mediating response to blue light) (Hall 

et al., 2018; Escobedo et al., 2022; Jauregui-Lozano et al., 2022; Vandenberghe et al., 2022), test 

the role of Hsps and autophagy in the developmental-TC-mediated rhythm rescue, the mechanism 

of warm-temperature mediated activity consolidation, whether it is genuinely circadian and 

involves activity levels and (or) metabolic alterations, test the differential effect of adult-specific 

warm temperatures vs. developmental temperature cycles on Drosophila circadian network 

coupling and responses, assess the relative contributions of clock-mechanisms and 12 hours of 
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warm temperatures in the developmental TC’s rescue by using low amplitude TCs of 

cool/ambient temperature cycles, combining developmental TCs and adult-restricted warm 

temperatures to see if a longer-lasting rescue can be obtained, spot-like expHTT’s localisation, 

biochemical constituents and role in conferring cellular protection, and pathways and partners of 

Hsp40 in mediating circadian recovery like autophagy and proteasomal pathways and whether 

the circadian rescue by Hsp40 is dependent on HSP70 and whether circadian protection by Hsp40 

also extends to other circadian rhythms like feeding and metabolic rhythms.  Exploring the effects 

of light intensity, duration, frequency, and spectral composition on circadian neurodegenerative 

phenotypes, and for temperature-based interventions, the modality, site, 

dosage/magnitude/intensity, duration, frequency, and site of application, age of intervention, the 

effect of gender, and pre-existing conditions, in combination with other treatment modalities, 

while minimising the side effects will aid in their optimisation.  The other aspect is to investigate 

possible strategies to achieve an enhanced circadian rescue that is long-lasting (over time), 

stronger (in terms of intensity, e.g., rhythm robustness) and at multiple levels of organisation 

(molecular, neuronal, circuit and behavioural levels).  To do this, one may investigate 

combinatorial techniques such as Hsp40 overexpression with adult-specific temperature upshift 

or either of the two with upregulation of proteasomal or autophagic pathways.  One could also 

test the ability of pharmacological mimics of Hsps or warm temperatures in mediating circadian 

rescue, as this will have a faster translational potential.  The potential of the circadian Drosophila 

model described here to screen for pharmacological agents and small molecules that modify 

circadian dysfunction is immense and unexplored.  In neurodegenerative disorders, other 

circadian-modifying therapies such as time-restricted meals, sleep disruptions caused by 

somniferous and stimulant drugs, physical activity, various phototherapy modalities, and 

photobiomodulation can be investigated. 

This study has uncovered Hsps as a potential intermediator between the circadian and 

neurodegenerative axes.  Though other proteostasis players directly influence circadian clocks, 

the role of Hsps in circadian function is relatively unexplored.  There could also exist other 

intermediate crosstalk partners between Hsps and circadian clock components.  One could also 
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investigate other potential pathways involved in the circadian-neurodegenerative interface, like 

the redox pathway, mitochondrial function, energy metabolism, autophagy, and transcription. 

The result of the greater vulnerability of sLNv to expHTT than lLNv also provides an excellent 

system to investigate the possible reasons for differential susceptibility in HD, a pressing question 

in the field.  Studies from the lab suggest that lLNvs are more competent in tackling stressors like 

aggregate-prone proteins (Sharma et al., 2023) and that the ~7d developmental time difference 

between the sLNv and the lLNv or the developmental stage from which expHTT expression 

begins, do not contribute to their differential susceptibility to the neurotoxic effects of expHTT 

(Ganguly, 2015).  The presence of sLNv dorsal projections, despite the absence of PDF+ sLNv 

cell bodies, challenges the axonal dying back mechanism, and this disease-relevant process can 

be pursued.  Another extremely intriguing discovery is the presence of expHTT spots upon Hsp40 

overexpression in the LNv, which offers an excellent opportunity to investigate the potential 

presence and involvement of protein sequestrosomes or other such spatially sequestered quality 

control sites in Drosophila as a cellular strategy to isolate aggregate-prone proteins and decide 

their fate towards the restoration of proteostasis.  The emerging role of non-cell autonomous 

mechanisms, like glial function and cell-to-cell transmission of aggregate-prone proteins, can be 

investigated in this system to glean mechanistic insights.  Also, given that glial dysfunction is 

integral to HD (Liévens et al., 2008; Tamura et al., 2009; Besson et al., 2010; Wilton and Stevens, 

2020), and in flies, glial cells physiologically modulate circadian neuronal circuitry and behaviour 

(Ng et al., 2011; Ng et al., 2013; Jackson et al., 2015), clocks in the glia are essential for the 

circadian structural plasticity of the sLNv terminals (Herrero et al., 2017; Damulewicz et al., 

2022a) and those in the epithelial glia regulate amplitude of the circadian remodelling 

(Damulewicz et al., 2022a), it would be interesting to see the effect of glial expression of expHTT 

on the circadian behaviour. 

The findings here also raise broader issues about Drosophila circadian biology, such as how the 

pacemaker sLNv DP’s PDF level circadian oscillations are controlled in the absence of known 

central clock protein PER (e.g. local translation, non-canonical clocks and glial clocks), the 

mechanisms underlying activity rhythms in the absence of core circadian proteins (restoration of 
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activity rhythms in the absence of PER and PDF in sLNv soma upon co-expression of HSP70 

with HTT-Q128 in the LNv), how warm temperatures affect the activity consolidation of rhythms, 

and why adult-specific temperatures are critical for rhythm improvements.  They also highlight 

the necessity to assess other markers of LNv circadian health and functionality, like rhythms in 

sLNv axonal complexity, synaptic connections and other neurotransmitters and neuropeptides 

involved in this system and the circadian field.  Considering the temperature-regime-dependent 

differential effects of lighting conditions during development upon the activity rhythms as adults, 

it is crucial to investigate light and temperature interactions in varying environmental, genetic, 

and developmental-stage-specific contexts, evaluate the relative strengths of zeitgebers and 

determine how these factors affect circadian neuronal outputs and rhythmicity.  There is also 

scope for expanding the relevance of these studies to a broader range of health markers and a 

more comprehensive array of clinically relevant organismal circadian phenotypes like metabolic 

and feeding rhythms, sleep, redox cycles, and inflammatory response.  Scouting and optimising 

a few other neuronal health markers to expand the range of neurodegenerative outputs affected 

would improve the versatility of this system and answer a broader range of questions.  For 

example, this expansion would be helpful to assess the damaging effects of white light and its 

blue light component on cellular parameters like mitochondrial function, redox stress, 

bioenergetics, and inflammatory response.  The findings here also point to the potential of this 

model as a testing ground for the hormetic and cross-protective properties of various modalities 

(stressors) in disease therapeutics, whose effects extend beyond neurodegenerative progression to 

a wide range of diseases and circadian alterations therein. 

Some of the common overlapping molecular and cellular mechanisms of many NDs, including 

the polyQ family of diseases to which HD belongs, include mitochondrial dysfunction, oxidative 

stress, transcriptional dysregulation, overwhelmed proteostasis, impairments to the proteasomal 

and autophagic degradation pathways, excitotoxicity, neuroinflammation, and the presence of 

protein aggregates (Argueti-Ostrovsky et al., 2021).  These diseases also share similarities in their 

manifestation and progression: greater susceptibility of select brain regions/ neuronal subsets, 

typical middle-age onset, worsening of symptoms with age, and circadian and sleep disorders, 
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often early symptoms.  Given this convergence, the findings of this study about circadian 

dysfunction and neurotoxicity in HD are relevant in improving our understanding of circadian 

disturbances in NDs in general.  The mitigators of circadian neurodegenerative symptoms of HD 

discovered in this study, Hsp40, warm temperatures, development-restricted temperature cycles, 

and their aggravator, light, may also affect other NDs.  However, given the role of cellular and 

protein context in disease manifestation and severity in ND-induced circadian arrhythmicity (as 

seen in Chapter 6), such predictions need to be tested case by case.  The findings of this study 

will have better clinical traction if their mammalian counterparts are tested for circadian 

rehabilitation in HD models of mice, sheep, or pigs.  For example, the possibility that the finding 

of warm temperatures being beneficial to Drosophila circadian rhythms translates to improving 

sleep and circadian dysfunction upon timed exposure to warm sauna in mammals could be 

explored.  Alternatively, whether avoiding constant illumination or timed-light exposure by 

filtering out the blue light improves neurodegenerative phenotypes in mammals.  Eventually, 

testing if mammalian HSPs can improve ND-induced circadian deficits will be crucial.  The HD 

circadian model developed here replicates the in vivo impaired central clock and circadian outputs 

and behavioural arrhythmicity found in HD mice.  Such parallels between the model systems 

suggest the possibility of finding genetic counterparts and environmental interventions that could 

alter circadian disturbances in mammals, including human primates. 

This study’s scope is considerably widened by the model developed here, which offers a broad 

framework for investigating the general relationship between circadian function and 

neurodegeneration and addressing pressing problems concerning a sizable family of 

neurodegenerative diseases that share a common underlying pathology.  These could include 

proof-of-concept studies, disease modifier screens (genetic, pharmacological, environmental), 

identifying ways to improve circadian function that also improve neurodegeneration and 

candidates involved in the crosstalk between the two systems, examining the differential 

susceptibility of neurons (sLNv over lLNv), the cell-to-cell transmission of mutant proteins, an 

emerging concern in NDs, investigating combinatorial therapy, and addressing neuro-

developmental aspects of NDs, among others. 
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7.2.1 Circadian rhythm disruptions and treatments  

Several physiological, social, and environmental scenarios lead to CRDs (Eisenstein, 2013; Baron 

and Reid, 2014; Roenneberg and Merrow, 2016; Sletten et al., 2020; Vetter, 2020).  Physiological 

factors include clock gene mutations, disease conditions and ageing.  Social and occupational 

factors include transmeridian travel, shift work and meal timings.  Human circadian physiology 

is particularly sensitive to short-wavelength-enriched light from light-emitting electronic devices 

like cell phones, tablets, and laptops.  Environmental conditions can be natural, like short day 

length, or artificial, like artificial light in the evening and at night (ALAN) (especially blue light), 

continuous bright light exposure, particularly at the wrong time, and constant/untimely exposure 

to these lights (Hatori et al., 2017; Wahl et al., 2019).  The latter category of exposure to aberrant 

lighting and other rhythm-disturbing habits like irregular meal timings and sleep/wake timings 

often accompany contemporary lifestyles and are emerging as frontrunners to poor circadian 

hygiene.  Light during the day, remarkably blue light and preferably sunlight, is essential and 

improves alertness, mood, and cognitive function (Vetter et al., 2019; Wirz-Justice et al., 2021; 

Fernandez, 2022; Wong and Bahmani, 2022).  However, aberrant lighting, like ALAN, suppresses 

the production and release of the darkness hormone melatonin in humans and rodents, disrupts 

clock gene expression and affects cellular homeostasis.  Blue light reduces melanopsin expression 

in ipRGCs; chronic light exposure phase shifts circadian rhythms, increasing screen time results 

in shorter sleep duration and poor sleep efficiency; e-book reading before bedtime increases sleep 

latency (the time to fall asleep) and delays the circadian clock; the overall acute effects of 

circadian misalignment are suppressing melatonin levels at night, altered phasing of circadian 

rhythms, poor sleep levels and quality, increased daytime sleepiness, reduced alertness and 

performance, hypertension and altered inflammatory response (Blume et al., 2019; Wahl et al., 

2019; Caliandro et al., 2021; Ziólkowska et al., 2022; Verma et al., 2023).  These lifestyle habits 

leading to misalignment between internal circadian rhythms and external light/dark and feeding 

cycles not only lead to sleep and circadian rhythm disruptions (SCRDs) but are also directly and 

indirectly (via CRDs) detrimental to healthspan, increasing the risk of premature ageing, 

metabolic syndromes, auto-immunity, tumorigenesis, cancer, cognitive impairment, and 
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psychiatric illness (Xie et al., 2019; Woller and Gonze, 2021; Roenneberg et al., 2022).  Thus, 

there is a pressing need to address CRDs and implement strategies and systems to streamline 

lifestyle habits and maintain good circadian hygiene.  Further, given the pivotal role of circadian 

health in influencing ND progression and outcomes, it is prudent to integrate and implement 

circadian-maintaining regimens in treating NDs.  Suppressing circadian and sleep disruptions 

would be not only helpful to the patients by serving in a palliative capacity and in slowing down 

NDs (or at least suppressing their escalation) but also bring much-needed relief to caregivers, 

especially where restoration of circadian rhythms like sleep/wake cycles are concerned. 

Non-invasive, non-pharmacological interventions to enhance circadian hygiene include bright 

light therapy (timed exposure to bright light: full spectrum or blue-enriched), avoidance of light 

at inappropriate times, scheduled sleep/wake times and meal times, time-restricted feeding 

(restricting food intake to a small window of time) and cognitive behavioural therapies (CBT) 

like scheduled exercise, scheduled outdoor exercise that strengthens natural zeitgebers, stimulus 

control and relaxation techniques (Schroeder and Colwell, 2013; Zee et al., 2013; Ballesta et al., 

2017; Lee et al., 2021; Ruan et al., 2021; Voysey et al., 2021b).  Pharmacological interventions 

can achieve circadian realignment by entrainment/correct phasing of circadian rhythms and 

management of sleep/wake timing and efficiency.  Medications include timed low-dose melatonin 

and melatonin agonists, medications targeting CK1δ, REV-ERBs, RORs, CRY, glycogen 

synthase kinase 3 (GSK3) and Sirtuin1, and natural compounds modulating clock function 

(drugging the clock) like resveratrol, nobiletin, and curcumin, drugs that promote alertness, such 

as caffeine, modafinil, and armodafinil, as well as drugs that promote sleep, such as GABA-

modulators (benzodiazepines, Z-drugs), sedating antihistamines (diphenhydramine, 

hydroxyzine), antidepressants (amitryptiline, trazodone, mirtazapine), and orexin antagonists 

(Schroeder and Colwell, 2013; Zee et al., 2013; Chang and Kim, 2020; Lee et al., 2021; Ruan et 

al., 2021; Voysey et al., 2021b). 

Preliminary studies with chronotherapy in patients of ND have shown promising results, a few 

examples of which are provided here.  Phototherapy improved cognitive and noncognitive 

symptoms and sleep in dementia, AD and PD patients (Liu et al., 2020; Zhu et al., 2022).  In PD 
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patients, a 1h light bright light pulse before bedtime improved both motor and non-motor 

symptoms like insomnia, anxiety, and depression (Willis et al., 2012; Martino et al., 2018; Fifel 

and Videnovic, 2019).  In AD patients, too, 1h of blue-enriched light therapy in the morning 

positively affected sleep and cognition (Kim et al., 2021b).  Stimulant modafinil improved 

daytime sleepiness in HD and PD patients and cognitive function only in PD (Adler et al., 2003; 

Blackwell et al., 2008; Kim et al., 2021b).  Melatonin improves sleep quality in AD and PD 

patients (Dowling et al., 2005; Mayo et al., 2005; Sumsuzzman et al., 2021); however, it adversely 

affects mood, which can be counteracted when administered with bright-light therapy 

(Riemersma-van der Lek et al., 2008).  The use of sedative antidepressant doxepin along with 

CBT improved cognitive and sleep outcomes in a PD cohort (Rios Romenets et al., 2013).  

Physical exercise, specifically aerobic, mitigates neuropsychiatric symptoms in the elderly with 

AD (Fukushima et al., 2016; Mendonça et al., 2021).  New methods of non-invasive brain 

stimulation techniques are being developed: repetitive transcranial magnetic stimulation (rTMS), 

transcranial direct-current stimulation (TDCS) and acoustic stimulation to improve sleep (Voysey 

et al., 2021b; Shen et al., 2023).  Photobiomodulation (PBM), which uses red to infrared light 

energy from a laser or LED to control biological effects when given directly to the neurons (e.g., 

transcranial) or indirectly to distant body areas (e.g., thigh or abdomen), is another therapy 

approach being researched against NDs (Hamblin, 2016; Hong, 2019; Bathini et al., 2022; Moro 

et al., 2022). 

In this direction, the present study shows the effectiveness of temperature regimes in improving 

circadian dysfunction and neurotoxicity in an HD fly model.  These results strongly support the 

addition of temperature-based modalities to the arsenal of environmental interventions as a 

complementary strategy to mainstream healthcare in combating neurodegeneration and associated 

CRDs.  Some advantages of environment-based interventions are their relative ease of adapting 

to daily lifestyle, cost-effectiveness, minimal side-effects, relative safety, and ease of individual-

centric customisation.  Optimisation of environmental interventions to complement conventional 

therapeutics will facilitate the development of a multimodal approach to accelerate circadian 
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realignment under various pathologies.  As uncovered in this study, the potential for Hsps as 

circadian-rhythm-bolstering agents is promising for future research. 

7.2.2 Time will tell: Chronotherapy in mainstream 

healthcare 

These are exciting times for chronotherapy because of the growing interest in how circadian 

health affects the aetiology of diseases and general well-being.  However, efforts must be made 

to optimise chronotherapy and integrate it with mainstream medicine.  One has to start at the 

grassroots with a clear definition of terms in the field.  For example, circadian disruption is an 

umbrella term.  It could broadly signify a loss of rhythms, a decline in rhythm amplitude, internal 

desynchronisation between different body clocks, or circadian misalignment arising from a 

mismatch between the internal biological clock and external clocks due to personal, social, or 

professional demands (Kramer et al., 2022).  As well-highlighted in the excellent review by Céline 

Vetter (Vetter, 2020), in order for circadian research to advance as translational science, we need 

to differentiate between circadian rhythms from daily physiological and behavioural patterns 

(Broussard et al., 2017b), understand the interactions between various external and internal time 

cues that bring about organismal synchronisation, choose appropriate metrics to systematically 

monitor and address the varied facets of circadian disruption, capture the disruption at all levels 

under the varying zeitgeber landscape, carry out evidence-based classification of the CRDs, have 

comprehensive and scalable quantifications of circadian disruptions under various settings 

graduating to randomised clinical trials, carry out long-term studies with repeated assessments, 

identify predictive biomarkers of CRDs and have a consensus in the field to define a set of 

measures to study CRDs and their acute and chronic effects on healthspan. 

Further, there is a requirement for evidence-based guidelines and recommendations for pathology 

and symptom-specific circadian medicine, for which research elucidating circadian function and 

dysfunction in disease and mechanisms to circadian rescue, followed by randomised controlled 

clinical trials, are necessary (Kramer et al., 2022).  Optimising existing non-pharmacological and 

pharmacological therapies and research into novel therapeutic strategies will prove beneficial 
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against circadian dysfunction in patients with NDs.  The long-term goal is to strive for person-

centric precision circadian medicine, considering individual chronotypes. 

Chronotherapy is beneficial not only for CRDs and NDs but also in mainstream healthcare, as it 

is also essential for enhancing drug efficacy and lowering drug toxicity by figuring out the best 

time to administer the drugs (clocking the drugs), as many drugs exhibit time-of-day effects or 

toxicity (Ballesta et al., 2017; Ruben et al., 2019; Bicker et al., 2020; Lee et al., 2021; Walton et 

al., 2021).  Chronopharmacology for precision and personalised medicine is now exploring 

various treatments like treatment of neuropsychiatric, cardiovascular, and metabolic disorders, 

inflammation and auto-immune diseases, COVID-19, vaccination and chemotherapy.  Further 

bringing awareness to circadian-disrupting practices in various settings like healthcare (hospitals, 

clinics, ICUs and care homes), professional (classrooms, offices, industry), social (hotels, 

shopping centres) and domestic venues (homes) (Houser and Esposito, 2021) will help re-think 

standard lighting practices and move towards a more human-centric lighting concept (Houser and 

Esposito, 2021; Stefani and Cajochen, 2021).  In healthcare settings, for example, addressing poor 

circadian practises like irregular lighting (inadequate lighting during the day or light at night), 

medication at any time of day or night, waking up for medication and tests, nighttime noise, 

enforced continuous activity 24 hours a day, and non-optimal time of surgery and drug 

administration (Cederroth et al., 2019; Vandenberghe et al., 2022) will minimise damages from 

such avoidable practises, benefiting the patients, their families, and the healthcare system.  Given 

a world of increasing light pollution, rampant screen time, and irregular meal timings, an 

awareness of our circadian rhythms, the effects of contemporary lifestyle in disrupting rhythms 

and health spans and adapting strategies to minimise them is the need of the hour.  Similarly, 

people are losing sleep in the current climate of intense competition, social media exposure, 

screen time, school, work and other social pressures.  Hence, as a society, we must prioritise and 

encourage improved sleep and circadian hygiene in the here and now and emphasise and invest 

sufficiently in chronotherapy and sleep research. 
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Table 2. 1 The extent of variation in PER intensity within a neuronal group in expHTT-

expressing flies is not greater than controls. 

 pdf>Q0 pdf>Q128 

 

 LNd 

CT23 102.81±28.21 132.15±16.6** 

CT5 80.6±7.44 116.91±9.26** 

CT11 34.41±8.73*** 0 

CT17 113.45±12.9 124.26±10.69 

 DN1 

CT23 79.93±7.13 99.98±9.08* 

CT5 58.85±3.04 55.97±3.77 

CT11 40.58±3.73 44.76±3.46 

CT17 56.38±5.81 57.93±3.4 

The table shows the within-neuronal group mean ± standard deviation in PER intensity for LNd and 

DN1 across time points in DD for pdf>Q128 and its control pdf>Q0.  Standard deviation within LNd 

for pdf>Q128 is significantly lower than control at CT23, CT5 and higher only at CT11 when in 

pdf>Q0, PER is undetectable.  The standard deviation within DN1 for pdf>Q128 is significantly lower 

than pdf>Q0 at CT23.  *p<0.05, **p<0.01, ***p<0.001. 
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Table 3. 1 Percentage of rhythmic flies in DD for all the genotypes raised in four regimes across 

AWs. 

% Rhythmicity 

 DD-reared LD-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 96.78 93.103 89.66 93.55 93.55 100 

pdf>Q128 6.45*** 3.33*** 0* 24.24*** 6.7*** 2*** 

Q0 93.55 96.77 93.1 100 100 96.77 

Q128 96.67 96.67 93.1 96.77 90.32 90.32 

pdfGal 100 83.87 77.78 100 100 100 

w1118 100 96.55 76 100 100 100 

  

 
SN-reared LL-reared 

AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 100 100 100 100 100 100 

pdf>Q128 10*** 0*** 5.88*** 0*** 1*** 11.11*** 

Q0 100 100 100 100 100 96.77 

Q128 90.63 96.55 95 96.88 96.88 96.88 

pdfGal 100 100 100 100 100 100 

w1118 100 100 100 100 100 100 

* indicates a significant difference of pdf>Q128 from other genotypes: * at p<0.05 and *** at p<0.001.  

$ indicates a difference between AWs for a genotype at p<0.05. 

  

$ 
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Table 3. 2 Mean robustness of activity rhythms (±SEM) in DD for all the genotypes raised in 

four regimes across AWs. 

Robustness of rhythm (a.u) 

 DD-reared LD-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 210.9±10.2a 202.74±9.5ac 183.46±10.7ab 208.86±7.2b 225.92±8.9b 190.95±9.4b 

pdf>Q128 133.39±3.4 103.73 
NA 

127.58±9.8 118.63 114.37±15.8 

Q0 254.13±7.9b 240.76±10.2b 200.47±11.9a 219.57±7.6a 231.39±7.3b 191.6±9b 

Q128 190.62±8.3a 171.3±8.4ac 161.08±7.5ab 191.52±7.16b 184.24±8.5a 156.06±6a 

pdfGal 190.4±8.1a 189.41±9.5bc 178.97±12.4ab 205.24±6.8b 
226.53±8.3b 191.73±9.9a 

 

w1118 
185.01±8.9a 182.86±10.7ac 144.56±9.4b 250.44±9.3a 230.55±7.7b 172.99±8.5a 

 

 SN-reared LL-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 271.71±7.1 249±7.8 279.1±13.4 223.74±6.4a 232.44±7.4b 204.17±8.3b 

pdf>Q128 149.91±14.5 NA 111.41 NA 120.76 121.73±18.9 

Q0 289.29±8.7 261±9.5 259.8±20 248.01±10.2a 228.82±8.9a 199.27±8.6a 

Q128 205.22±9.9 183.83±8 194.99±13.1 187.08±5.6b 174.65±6.9b 143.87±5.5b 

pdfGal 238.93±8.1 224.04±8.7 250.7±13.6 184.45±6.4b 208.48±8.1b 187.61±7.2bc 

w1118 273.74±13.9 225.14±10.6 207.5±19 239.91±7.5a 216.62±7.3b 170.12±6.3ac 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05.  $ indicates significant differences of a given AW from indicated ones or all other AWs for a 

genotype at p<0.05.  pdf>Q128 was not included for statistical tests as most were arrhythmic.  NA, 

not applicable, as all flies were arrhythmic;  au, arbitrary units.  

$ 

$ $ 

$ 

$ $ $ 

$ 

$ 
$ 

$ 

$ 

$ 

$ 
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Table 3. 3 Mean activity rhythms periods (±SEM) in DD for all the genotypes raised in four 

regimes across AWs. 

Period (h) 

 DD-reared LD-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 24.64±0.1a 24.83±0.12a 24.9±0.11a 24.77±0.07a 24.71±0.07a 24.81±0.07a 

pdf>Q128 24.67±2 23.67 NA 24.24±0.4 23.67 24±0.33 

Q0 23.85±0.05bc 23.8±0.09bc 23.74±0.09bd 24.06±0.06be 23.66±0.04ce 23.47±0.07ce 

Q128 23.85±0.06bc 24.17±0.21bc 23.94±0.12bc 23.85±0.05ce 23.86±0.08bde 23.91±0.09bde 

pdfGal 24.06±0.15c 24.18±0.11c 24.35±0.12ac 24.25±0.05bd 
24.11±0.06bd 

24.41±0.11abd 

w1118 23.7±0.1b 23.6±0.1b 23.29±0.14bd 23.78±0.04c 23.4±0.05c 23.2±0.05c 

 

 SN-reared LL-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 24.27±0.05a 24.2±0.07b 24.65±0.07a 25.01±0.09a 24.98±0.07a 25.15±0.08a 

pdf>Q128 24.11±0.22 NA 23.33 NA 23.67 24.5±0.59 

Q0 23.67±0.02b 23.63±0.04a 23.67±0.1bd 23.63±0.04b 23.63±0.05b 23.69±0.07b 

Q128 23.81±0.05b 23.98±0.08b 23.95±0.11bc 23.81±0.05b 23.74±0.05bc 23.72±0.06b 

pdfGal 24.23±0.04a 23.94±0.06b 24.39±0.08ac 24.41±0.06a 24.05±0.07c 24.51±0.1a 

w1118 23.68±0.05b 23.5±0.06a 23.52±0.07bd 23.73±0.04b 23.57±0.06b 23.48±0.06b 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05.  $ indicates significant differences of a given AW from indicated ones or all other AWs for a 

genotype at p<0.05.  pdf>Q128 was not included for statistical tests as most were arrhythmic.  NA, 

not applicable, as all flies were arrhythmic.  

$ $ 

$ $ 

$ $ 

$ 
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Table 3. 4 Mean daytime activity levels (±SEM) under LD for all the genotypes raised in four 

regimes across AWs. 

Daytime activity counts 

 DD-reared LD-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 
$ 

800.5±42.9b 

$ 

557±27.8b 

 

405.36±25.3b 

$ 

696.58±42.7 

$ 

436.97±27.7 

 

341.51±25.1a 

pdf>Q128 
$ 

623.12±27.5 

$ 

362.56±23.1a 

 

229.84±21.9a 

$ 

633.45±34.8 

$ 

387.94±28.1 

 

291.41±27a 

Q0 
$ 

713.88±35.3 

$ 

505.1±22.2b 

 

412.44±19.7b 

$ 

790.93±37.5 

$ 

527.41±31.6 

 

396.62±25.7a 

Q128 
$ 

850.4±31.4 

$ 

584.8±23.3b 

 

430.25±18.9b 

$ 

730.63±29.9 

$ 

403.88±25.6 

 

207.09±25.3b 

pdfGal 
$ 

696.22±33.2 

$ 

409.22±22.3a 

 

337.29±23.5a 

$ 

857.88±60.1 

$ 

456.41±38.1 

 

314.38±32.7a 

w1118 
$ 

901.04±48.7 

$ 

578.9±33.9b 

 

444.04±26.9b 

$ 

609.87±37.3 

$ 

315.39±23 

 

239.76±22.9
a
 

 

 SN-reared LL-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 
$ 

568.51±29.1 

$ 

426.12±27.2 

 

243.01±23 

$ 

688.43±38 

$ 

424.98±28.5 

 

350.12±24.8 

pdf>Q128 
$ 

647.19±33.1 

$ 

411.74±21.5 

 

317.89±21.7 

$ 

670.98±34.1 

$ 

379.47±22.2 

 

243.7±25.4 

Q0 
$ 

810.14±46.5 

$ 

549.72±29.5 

 

335.53±19.9 

$ 

717.5±31.9 

$ 

477.28±31.1 

 

382.19±28.9 

Q128 
$ 

743.25±56.3 

$ 

475.25±49.6 

 

288.99±23.6 

$ 

806.7±35.5 

$ 

532.35±28.7 

 

362.56±24.2 

pdfGal 
$ 

709.19±38.4 

$ 

520.66±30.1 

 

379.63±23.7 

$ 

688.52±35.1 

$ 

400.4±22 

 

313.06±23.2 

w1118 
$ 

806.2±48.5 

$ 

695.91±44.3 

 

521.75±33.6 

$ 

696.33±31.7 

$ 

420.2±22.4 

 

369.9±44.8 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05.  $ indicates significant differences of a given AW from indicated ones or all other AWs for a 

genotype at p<0.05. 
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Table 3. 5 Mean nighttime activity levels (±SEM) under LD for all the genotypes raised in four 

regimes across AWs. 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05.  $ indicates significant differences of a given AW from indicated ones or all other AWs for a 

genotype at p<0.05. 

  

Nighttime activity counts 

 DD-reared LD-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 
$ 

466.09±34.4 

$ 

317.95±28.5 

 

207.28±18.3 

$ 

586.05±43.9abc 

$ 

348.53±28.8ab 

 

256.68±27.7a 

pdf>Q128 
$ 

571.42±33.1 

$ 

280.01±29.5 

 

123.74±24.8 

$ 

648.98±45.1c 

$ 

367.34±38.9ab 

 

160.15±26ab 

Q0 
$ 

656.54±37.2 

$ 

429.67±25.5 

 

284.06±19.3 

$ 

575.33±36.8abc 

$ 

376.31±30.9b 

 

260.91±28.6ac 

Q128 
$ 

650.67±33.3 

$ 

450.81±35.1 

 

254±24.5 

$ 

629.42±39.7a 

$ 

338.84±35.5ab 

 

132.24±18.7b 

pdfGal 
$ 

511.01±32.9 

$ 

290.4±25.2 

 

184.14±15.4 

$ 

458.18±32.1b 

$ 

257.71±23.6a 

 

128.58±10.5b 

w1118 
$ 

551.97±36.9 

$ 

355.43±29.4 

 

234.66±25.1 

$ 

465.09±29.7bc 

$ 

281.17±20.7ab 

 

153.2±10.44b 
 

 SN-reared LL-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0  

302.14±26.8 

 

252.21±25 

 

165.13±27.9 

$ 

648.2±22.7 

$ 

449.71±36 

 

306.46±27.2b 

pdf>Q128 $ 

443.61±36.6 

$ 

198.21±22 

 

87.84±18.2 

$ 

580.11±45.1 

$ 

261.62±36.1 

 

115.86±30.5a 

Q0  

396.41±35.9 

 

248.09±27.2 

 

124.77±18.7 

$ 

549.31±37.7 

$ 

358.79±34.4 

 

227.24±23.3b 

Q128 $ 

503.86±68.9 

$ 

226.99±30.8 

 

101.55±33 

$ 

604.6±32.9 

$ 

392.52±31.5 

 

220.53±26.7ab 

pdfGal  

320.79±26.1 

 

228.22±19.7 

 

139.13±20.9 

$ 

456.47±31.5 

$ 

241.56±20.6 

 

153.56±14.3ab 

w1118 
 

361.6±33.5 

 

285.4±32.2 

 

242.98±36.1 

$ 

431.95±24.8 

$ 

275.07±21.9 

 

198.71±23.8ab 

$ 

$ 
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Table 3. 6 Mean morning anticipation index (±SEM) under LD for all the genotypes raised in 

four regimes across AWs. 

Morning anticipation indices 

 DD-reared LD-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 
$ 

0.833±0.03bc 

 

0.887±0.03b 

 

0.939±0.01bc 

$ 

0.799±0.02c 

$ 

0.888±0.02b 

 

0.933±0.02b 

pdf>Q128 
$ 

0.61±0.02a 

 

0.680±0.02a 

$ 

0.814±0.03ac 

 

0.623±0.01a 

 

0.651±0.01a 

$ 

0.74±0.03a 

Q0 
$ 

0.803±0.02c 

 

0.917±0.02b 

 

0.963±0.01bd 

$ 

0.845±0.02bc 

$ 

0.906±0.02b 

 

0.947±0.01b 

Q128 
 

0.712±0.02a 

 

0.725±0.02a 

$ 

0.796±0.03a 

 

0.68±0.01a 

 

0.717±0.02a 

$ 

0.798±0.02ac 

pdfGal 
 

0.929±0.01b 

 

0.954±0.01b 

 

0.945±0.02bd 

 

0.876±0.02bc 

 

0.906±0.02b 

 

0.894±0.02bc 

w1118 
 

0.913±0.01b 

 

0.938±0.01b 

 

0.909±0.02bc 

 

0.913±0.02b 

 

0.944±0.01b 

 

0.879±0.02bc 
 

 SN-reared LL-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 
 

0.94±0.01b 

 

0.897±0.02bd 

 

0.972±0.02 

$ 

0.818±0.02bc 

$ 

0.888±0.02b 

 

0.932±0.02b 

pdf>Q128 
 

0.693±0.02a 

 

0.655±0.02a 

$ 

0.858±0.04 

$ 

0.659±0.01a 

$ 

0.73±0.02a 

$ 

0.847±0.03ab 

Q0 
 

0.889±0.02b 

 

0.852±0.02bc 

 

0.95±0.03 

$ 

0.831±0.02be 

 

0.91±0.01b 

 

0.922±0.023b 

Q128 
a 

0.736±0.02a 

 

0.772±0.03ac 

$ 

0.894±0.03 

$ 

0.722±0.02ac 

$ 

0.761±0.02a 

a 

0.818±0.02a 

pdfGal 
 

0.95±0.01b 

 

0.948±0.01d 

 

0.976±0.01 

$ 

0.919±0.01de 

 

0.96±0.01b 

 

0.946±0.01b 

w1118 
 

0.889±0.02b 

 

0.914±0.01bd 

 

0.953±0.02 

$ 

0.94±0.01d 

$ 

0.962±0.01b 

 

0.936±0.01b 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05.  $ indicates significant differences of a given AW from indicated ones or all other AWs for a 

genotype at p<0.05. 

  

$ 

$ 
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Table 3. 7 Mean evening anticipation index (±SEM) under LD for all the genotypes raised in 

four regimes across AWs. 

Evening anticipation indices 

 
DD-reared LD-reared 

 
AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 
$ 

0.858±0.02bc 

 

0.898±0.02cd 

 

0.935±0.01bc 

$ 

0.867±0.02ab 

 

0.945±0.01bc 

 

0.94±0.02bc 

pdf>Q128 
$ 

0.834±0.02bd 

 

0.858±0.02ad 

 

0.893±0.02bc 

$ 

0.806±0.01a 

 

0.851±0.02a 

 

0.870±0.02c 

Q0 
 

0.894±0.01cd 

 

0.939±0.01c 

 

0.968±0.01ac 

$ 

0.889±0.01bcd 

 

0.957±0.01bd 

 

0.976±0.01b 

Q128 
b 

0.808±0.01b 

a 

0.820±0.01a 

$ 

0.860±0.02b 

$ 

0.815±0.02ac 

 

0.895±0.02ac 

 

0.886±0.02ac 

pdfGal 
$ 

0.969±0.01a 

$ 

0.983±0.01b 

 

0.979±0.01a 

$ 

0.913±0.02bd 

 

0.974±0.01bd 

 

0.975±0.01b 

w1118 
$ 

0.907±0.01c 

$ 

0.953±0.01bc 

 

0.968±0.01ac 

$ 

0.944±0.01d 

 

0.991±0.01d 

 

0.981±0.01b 

 

 SN-reared LL-reared 

 AW1 AW2 AW3 AW1 AW2 AW3 

pdf>Q0 
$ 

0.925±0.02acd 

$ 

0.818±0.01bc 

 

0.978±0.01b 

$ 

0.841±0.02b 

$ 

0.91±0.02b 

 

0.941±0.01bc 

pdf>Q128 
 

0.881±0.01bd 

$ 

0.826±0.01bc 

 

0.923±0.02a 

$ 

0.797±0.01b 

 

0.861±0.02b 

 

0.878±0.03bd 

Q0 
$ 

0.86±0.02b 

$ 

0.819±0.01bc 

 

0.95±0.03ab 

$ 

0.843±0.02b 

 

0.933±0.01b 

 

0.952±0.01cd 

Q128 
$ 

0.826±0.02b 

$ 

0.777±0.02c 

 

0.927±0.02a 

 

0.843±0.02b 

 

0.848±0.02b 

 

0.864±0.02b 

pdfGal 
$ 

0.943±0.01a 

$ 

0.879±0.01a 

 

0.984±0.01b 

$ 

0.927±0.01a 

 

0.985±0.01a 

 

0.986±0.01a 

w1118 
 

0.932±0.01acd 

$ 

0.842±0.01ab 

 

0.981±0.01ab 

$ 

0.934±0.02a 

 

0.979±0.01a 

 

0.974±0.01ac 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05.  $ indicates significant differences of a given AW from indicated ones or all other AWs for a 

genotype at p<0.05. 

 

$ 
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Table 4. 1 Temperature cycles related regimes. 

Regime 

Development 
Adults 

0-2d 3d onwards 

Light 
Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 

Cyclic temperature 

DDTCtoDD25 DD TC DD TC DD 25 

DDTCtoDD21 DD TC DD TC DD 21 

DDTCtoDD29 DD TC DD TC DD 29 

 

LDTCtoDD25 LD TC LD TC DD 25 

LLTCtoDD25 LL TC LL TC DD 25 

Constant temperature 

DD25toDD25 

(DD25) 
DD 25 DD 25 DD 25 

LD25toDD25 

(LDtoDD25) 
LD 25 LD 25 DD 25 

Temperature upshift 

DD21toDD25 DD 21 DD 21 DD 25 

Temperature downshift 

DD29toDD25 DD 29 DD 29 DD 25 

 

Development 

stage-specific 

TC 

Development Adults 

Egg to L3 Pupal stages 0-2d 3d onwards 

Light 
Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 

DDTC upto 

L3 
DD TC DD 25 DD 25 DD 25 

DDTC as 

Pupa-2d 
DD 25 DD TC DD TC DD 25 

DD, constant darkness. LD, 12h:12h Light:Dark cycles (light cycles). LL, constant light.  

TC, 12h:12h: 21°C:29°C Thermophase:Cryophase cycles (temperature cycles). 
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Table 4. 2 Ambient constant temperature regimes. 

Regime 
Development 

Adults 

0-2d 3d onwards 

Light 
Temp 

(°C) 
Light 

Temp 

(°C) 
Light 

Temp 

(°C) 

Constant optimal temperature 

DD25toDD25 

(DD25) 
DD 25 DD 25 DD 25 

LD25toDD25 

(LDtoDD25) 
LD 25 LD 25 DD 25 

Constant low temperature 

DD23toDD23 

(DD23) 
DD 23 DD 23 DD 23 

LD23toDD23 

(LDtoDD23) 
LD 23 LD 23 DD 23 

Constant high temperature 

DD29toDD29 

(DD29) 
DD 29 DD 29 DD 29 

LD29toDD29 

(LDtoDD29) 
LD 29 LD 29 DD 29 

Temperature upshift 

DD23toDD29 DD 23 DD 23 DD 29 

DD21toDD25 DD 21 DD 21 DD 25 

DD25toDD29 DD 25 DD 25 DD 29 

 

LD23toDD29 LD 23 LD 23 DD 29 

LL23toDD29 LL 23 LL 23 DD 29 

Temperature downshift 

DD29toDD23 DD 29 DD 29 DD 23 

 

  

Age-specific acute 

high temp 

exposure 

Development Adults 

Light 
Temp 

(°C) 
0-1d 

2-3d 

(48h) 
5-6d 

7-8d 

(48h) 

9d 

onwards 

Acute DD29  

at 2-3d 
DD 23 DD23 DD29 DD23 DD23 DD23 

Acute DD29  

at 7-8d 
DD 23 DD23 DD23 DD23 DD29 DD23 
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Table 4. 3 Percentage rhythmicity in AW1 for various genotypes in DD23toDD29. 

Gene 
Fly line 

source 

Genotype 

% Rhythmicity (n) 

 

hHTT 
Lee et al., 

2004 

w;pdfGal/Q128;+ 

(in DD23toDD29) 

w;pdfGal/Q128;+ 

(in DD23) 

w;pdfGal/Q0;+ 

(in DD23toDD29) 
 

93.5 (92) 22.22 (90) 100 (26) 

DfHSP70 lines 

Generic genotype 
pdf>Q128; 

DfHsp70 

Q128; 

DfHsp70 

pdf>Q0; 

DfHsp70 

Q0; 

DfHsp70 

DfHsp70Ba 

(1 copy of 

Hsp70 deleted) 

BL 8845 

w;pdfGal/Q128; 

DfHsp70Ba 

w;Q128/+; 

DfHsp70Ba 

w;pdfGal/Q0; 

DfHsp70Ba 

w;Q0/+; 

DfHsp70Ba 

26.7 (75) 94.5 (44) 80 (10) 100 (16) 

DfHsp70A 

(2 copies of 

Hsp70 deleted) 

BL 8842 

w;pdfGal/Q128; 

DfHsp70A 

w;Q128/+; 

DfHsp70A 

w;pdfGal/Q0; 

DfHsp70A 

w;Q0/+; 

DfHsp70A 

28.8 (66) 93.8 (48) 81.8 (11) 100 (11) 

DfHsp70A,70Ba 

(3 copies of 

Hsp70 deleted) 

BL 8844 

w;pdfGal/Q128; 

DfHsp70A,70Ba 

w;Q128/+; 

DfHsp70A,70Ba 

w;pdfGal/Q0; 

DfHsp70A,70Ba 

w;Q0/+; 

DfHsp70A,70Ba 

29.8 (57) 85 (40) 100 (16) Very few alive 

DfHsp70B 

(4 copies of 

Hsp70 deleted) 

BL 8843 

w;pdfGal/Q128; 

DfHsp70B 

w;Q128/+; 

DfHsp70B 

w;pdfGal/Q0; 

DfHsp70B 

w;Q0/+; 

DfHsp70B 

13.5 (37) 86.4 (44) 83.3 (6) 100 (13) 

DfHsp70A,70B 

(All 6 copies of 

Hsp70 deleted) 

BL 8841 

w;pdfGal/Q128; 

DfHsp70A,70B 

w;Q128/+; 

DfHsp70A,70B 

w;pdfGal/Q0; 

DfHsp70A,70B 

w;Q0/+; 

DfHsp70A,70B 

50 (50) 87 (46) 60* (10) 100 (14) 

Various genes used in the mini screen, their Bloomington or VDRC source IDs, the fly genotypes 

where they are used and their respective percentage rhythmicities are shown.  The 

w;pdfGal4/Q128;DfHSP70 lines are compared statistically with their respective control 

w;Q128/+;DfHSP lines and w;pdfGal4/Q128;+ in DD23toDD29 and DD23, while the 

w;pdfGal4/Q0;DfHSP70 are compared with pdf>Q0 in DD23toDD29.  # indicates significant 

difference of a w;pdfGal4/Q128;DfHSP70 line from its respective w;Q128/+;DfHSP line, * of a 

w;pdfGal4/Q128;DfHSP70 line (or w;pdfGal4/Q0;DfHSP70) from pdf>Q128 in DD23toDD29 (or 

pdf>Q0 in DD23toDD29) and + from pdf>Q128 in DD23 at single symbol, p<0.05; double p<0.01; 

triple p<0.001. 
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Table 4.3 Percentage rhythmicity in AW1 for various genotypes in DD23toDD29. 

Gene 
Fly line 

source 

Genotype 

% Rhythmicity (n) 

 

hHTT 
Lee et al., 

2004 

w;pdfGal/Q128; 

Dcr/+ 

(Parental cross: 

w;pdfGal4;UAS-Dcr 

with w;UAS-

HTTQ128;+) 

w;pdfGal/Q128; 

Dcr/+ 

(Parental cross: 

w;pdfGal4;+ with 

w;UAS-HTTQ128; 

UAS-Dcr) 

w;pdfGal/Q0; 

Dcr/+ 
 

46.6 (88) 93.33 (30) 88.9 (27) 

RNAi lines 

Generic genotype 
pdf>Q128; 

RNAi/Dcr 

Q128; 

RNAi/Dcr 

pdf>Q0; 

RNAi/Dcr 

Hsp70Aa GD 41718 

w;pdfGal/Q128; 

Hsp70AaRNAi/Dcr 

w;Q128/+; 

Hsp70AaRNA/Dcri 

w;pdfGal/Q0; 

Hsp70AaRNAi/Dcr 

72.1 (43) 92.9 (14) 80 (15) 

Hsp70Bb GD 36640 

w;pdfGal/Q128; 

Hsp70BbRNAi/Dcr 

w;Q128/+; 

Hsp70BbRNAi/Dcr 

w;pdfGal/Q0; 

Hsp70BbRNAi/Dcr 

46.1 (76) 100 (29) 93.3 (15) 

Hdj1 or Hsp40 GD 31271 

w;pdfGal/Q128; 

Hdj1-RNAi/Dcr 

w;Q128/+; 

Hdj1-RNAi/Dcr 

w;pdfGal/Q0; 

Hdj1-RNAi/Dcr 

61 (41) 100 (15) 85.7 (7) 

Hsf GD 48692 

w;pdfGal/Q128; 

Hsf-RNAi/Dcr 

w;Q128/+; 

Hsf-RNAi/Dcr 

w;pdfGal/Q0; 

Hsf-RNAi/Dcr 

48.9 (45) 93.8 (16) 100 (7) 

Hsf BL 27070 

w;pdfGal/Q128; 

Hsf-RNAi/Dcr 

w;Q128/+; 

Hsf-RNAi/Dcr 

w;pdfGal/Q0; 

Hsf-RNAi/Dcr 

61.1 (54) 92.3 (13) 100 (17) 

Iap2 BL 34776 

w;pdfGal/Q128; 

Iap2-RNAi/Dcr 

w;Q128/+; 

Iap2-RNAi/Dcr 

w;pdfGal/Q0; 

Iap2-RNAi/Dcr 

93.75 (32)   
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Table 4. 4 Sample sizes for behavioural experiments. 

Regime Experiment Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

DD25toDD25 

1-PP79 

AW1 26 30 26 26 26 26 

AW2 26 27 26 26 26 23 

AW3 25 20 23 25 24 15 

2-PP34 

AW1 31 31 31 30 32 31 

AW2 29 30 31 30 31 29 

AW3 29 25 29 29 27 25 

3-PP74a 

AW1 26 29 26 26 26 26 

AW2 25 27 24 25 18 21 

AW3 19 18 16 23 13 16 

 

DDTCtoDD25 

1-PP79a 

AW1 26 30 26 25 25 26 

AW2 26 29 26 24 24 25 

AW3 26 26 23 22 19 16 

2-PP40 

AW1 32 32 32 32 32 32 

AW2 32 32 32 32 29 31 

AW3 30 32 30 30 20 16 

3-PP38 

AW1 32 32 32 32 31 32 

AW2 32 32 31 32 31 26 

AW3 24 30 27 27 30 16 

4-PP65 

AW1 25 29 26 24 24 22 

AW2 15 25 18 22 21 14 

AW3 11 18 8 12 6 3 

5-PP79b 

AW1 31 31     

AW2 29 31     

AW3 28 29     

 

DD29toDD25 

1-PP43 

AW1 24 29 26 24 25 25 

AW2 23 27 24 16 23 17 

AW3 14 24 20 14 21 3 

2-PP102.1 

AW1 27 30 24 26   

AW2 26 27 20 24   

AW3 24 23 16 24   

3-PP102.2 

AW1 26 31 24 27   

AW2 24 30 24 27   

AW3 22 29 21 23   

 

DD21toDD25 PP43 

AW1 25 30 26 24 26 25 

AW2 25 26 26 23 25 22 

AW3 18 18 24 23 20 14 
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Table 4.4 Sample sizes for behavioural experiments. 

Regime Experiment Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 
 

DDTC upto 

L3 
PP58 

AW1 26 31 26 27   

AW2 25 30 24 24   

AW3 13 28 12 18   
 

DDTC as 

Pupa-2d 
PP58 

AW1 27 29 25 26   

AW2 27 28 25 24   

AW3 21 21 25 17   
 

DDTCtoDD29 PP68 

AW1 24 29 26 26 26 25 

AW2 21 27 22 23 20 22 

AW3 17 23 22 16 8 4 
 

DDTCtoDD21 PP68 

AW1 25 29 26 25 25 26 

AW2 22 26 26 22 24 23 

AW3 18 24 23 19 14 5 
 

LDTCtoDD25 

1-PP79a 

AW1 26 30 25 26 26 26 

AW2 26 29 25 25 26 24 

AW3 25 29 25 21 24 12 

2-PP40 

AW1 32 32 31 32 32 32 

AW2 32 32 30 32 32 31 

AW3 30 25 30 31 31 28 

3-PP38 

AW1 32 32 32 31 32 31 

AW2 31 29 31 30 28 28 

AW3 31 28 31 30 23 16 

4-PP65 

AW1 26 30 24 23 24 25 

AW2 18 25 22 23 18 8 

AW3 3 9 5 9 3 2 

5-PP79b 

AW1 30 32     

AW2 30 30     

AW3 27 26     
 

LLTCtoDD25 

1-PP79a 

AW1 25 29 25 26 26 25 

AW2 25 28 25 25 26 25 

AW3 25 27 24 25 20 20 

2-PP40 

AW1 31 31 32 31 31 32 

AW2 31 31 32 31 31 32 

AW3 28 29 16 29 31 25 

3-PP38 

AW1 31 32 31 32 31 27 

AW2 30 30 30 31 29 26 

AW3 26 32 28 27 24 22 

4-PP65 

AW1 26 30 26 25 25 26 

AW2 22 29 23 22 14 10 

AW3 8 18 13 11 6 0 

5-PP79b 

AW1 31 32     

AW2 30 32     

AW3 28 32     
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Table 4.4 Sample sizes for behavioural experiments. 

Regime Experiment Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

DD23toDD23 

1-PP48 

AW1 26 29 25 25 26 25 

AW2 26 29 25 25 26 25 

AW3 26 28 23 24 24 19 

2-PP73 

AW1 26 30 26 26 26 26 

AW2 26 26 25 26 26 25 

AW3 26 23 22 25 21 17 

3-PP74a 

AW1 26 31 24 25 25 26 

AW2 25 29 22 24 25 24 

AW3 16 26 20 14 22 16 

 

DD29toDD29 

1-PP75 

AW1 28 32 25 26 27 28 

AW2 28 29 24 24 22 18 

AW3 25 19 18 23 5 1 

2-PP51 

AW1 26 28 26 25 22 25 

AW2 20 27 26 24 15 18 

AW3 16 16 15 12 8 1 

3-PP49b 

AW1 26 27 24 25 24 25 

AW2 21 18 20 16 16 16 

AW3 17 10 9 10 4 8 

 

DD29toDD23 

1-PP51 

AW1 25 29 26 24 25 25 

AW2 25 28 26 24 24 25 

AW3 22 28 25 24 19 19 

2-PP49a 

AW1 26 26 23 22 19 23 

AW2 22 20 19 16 9 9 

AW3 19 17 18 14 7 6 

3-PP49b 

 

AW1 26 28 24 26 25 26 

AW2 26 28 22 24 24 24 

AW3 24 27 22 22 17 18 

 

DD23toDD29 

1-PP76 

AW1 25 29 23 23 25 26 

AW2 25 27 23 19 25 24 

AW3 20 27 19 19 13 15 

2-PP48 

AW1 28 28 26 26 24 22 

AW2 27 26 26 26 18 17 

AW3 22 18 20 26 11 6 

3-PP77 

AW1 24 28 26 25 24 26 

AW2 18 21 26 22 22 15 

AW3 17 17 20 19 13 5 

 

DD25toDD29 1-PP51 

AW1 25 30 25 26 26 26 

AW2 25 30 24 25 25 23 

AW3 15 19 21 15 10 9 
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Table 4.4 Sample sizes for behavioural experiments. 

Regime Experiment Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

Acute DD29 at 

2-3d 
PP73 

AW1 25 28 26 25 25 26 

AW2 25 27 24 23 25 22 

AW3 25 25 22 20 21 14 

 

Acute DD29 at 

7-8d 
PP73 

AW1 26 29 26 25 25 25 

AW2 26 28 26 25 24 25 

AW3 26 27 25 25 24 19 

 

LD23toDD23 

1-PP74b 

AW1 26 29 26 26 26 26 

AW2 26 25 26 25 26 24 

AW3 26 20 24 25 26 23 

2-PP73 

AW1 26 30 26 26 25 26 

AW2 26 28 25 24 22 22 

AW3 24 19 19 21 15 13 

3-PP24 
AW1 30 31 32 32 31 32 

AW2 30 29 31 25 30 30 

 

LD29toDD29 

1-PP75b 

AW1 28 32 26 19 23 26 

AW2 28 31 25 18 18 10 

AW3 17 26 22 11 6 4 

2-PP51 

AW1 24 30 26 25 25  

AW2 22 26 26 24 10  

AW3 12 14 17 15 4  

3-PP49b 

AW1 26 29 26 23 25 22 

AW2 23 20 20 17 20 4 

AW3 16 14 14 11 10 3 

4-PP75a 

AW1 29 32     

AW2 29 29     

AW3 29 22     

 

LD23toDD29 

1-PP77 

AW1 26 29 25 24 24 26 

AW2 23 22 22 23 21 13 

AW3 18 17 22 21 16 5 

2-PP76a 

AW1 25 30 26 26 26 26 

AW2 22 20 23 25 24 24 

AW3 21 10 19 18 11 15 

3-PP23 

AW1 28 27 32 31 31 31 

AW2 24 25 29 20 25 19 

AW3 20 19 22 25 15 17 

4-PP76b 

AW1 29 28     

AW2 23 20     

AW3 21 19     

 

LL23toDD29 1-PP101 

AW1 25 31 25 26 25 28 

AW2 20 20 23 22 18 10 

AW3 16 6 16 17 6 1 
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Table 4.4 Sample sizes for behavioural experiments. 

DD23toDD29 AW1 

pdf>Q128 29 

pdf>Q128;DfHsp70Ba 32 

Q128;DfHsp70Ba 15 

pdf>Q128;DfHsp70A 31 

Q128;DfHsp70A 16 

pdf>Q128;DfHsp70A,70Ba 32 

Q128;DfHsp70A,70Ba 16 

pdf>Q128;DfHsp70B 24 

Q128;DfHsp70B 13 

pdf>Q128;DfHsp70A,70B 27 

Q128;DfHsp70A,70B 16 
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Table 4. 5 Statistical tests used for within-regime comparisons of behaviour. 

Within-regime comparisons 

Regime 
Comparison 

of 
Between geno 

Between AWs 

(or age) 

Exclusion from statistical 

analyses (<10 surviving 

rhythmic flies) 

 

DDTCtoDD25 

Rhythmicity RMA + THSD pdf>Q128 from between-

genotype analyses of 

robustness and period in 

AW3. 

r KW + MCMR  

Robustness WA +GHT FT + WT + Bon 

Period KW + MCMR FT + WT + Bon 

 

DD29toDD25 

Rhythmicity RMA + THSD pdf>Q128 from between-

genotype statistical analysis 

of robustness and period in 

AW2 and AW3 and w1118 in 

AW3. 

r KW + MCMR  

Robustness 1A + THSD  

Period KW + MCMR  

 

DD21toDD25 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon 
pdf>Q128 from between-

genotype statistical analysis 

of robustness and period in 

AW2 and AW3. 

r KW + MCMR  

Robustness 1A + THSD  

Period KW + MCMR  

 

DDTC upto 

L3 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon 
‘r’ post-16d 

r KW+MCMR  

 

DDTC as 

Pupa-2d 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon 
‘r’ post-16d 

r KW+MCMR  

 

DDTCtoDD29 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon pdf>Q128 from between-

genotype statistical analysis 

of robustness and period in 

AW2 and AW3, pdfGal and 

w1118 from AW3 (16d-23d) 

statistical analyses. 

r KW+MCMR  

Robustness 1A + THSD  

Period KW + MCMR  

 

DDTCtoDD21 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon 

pdf>Q128 from between-

genotype analyses of 

robustness and period across 

AWs. w1118 from AW3 

statistical analyses. 

r KW+MCMR  

Robustness 1A + THSD  

Period KW + MCMR  

r 1A+UNHSD  

Robustness 1A+UNHSD  
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Table Key 

RMA, Repeated Measures ANOVA 

1A, One-way ANOVA 

THSD, Tukey’s Honest Significant Test 

UNHSD, Unequal N Honest Significant Test 

KW, Kruskal Wallis Test 

MCMR, Multiple Comparisons of Mean Ranks 

MWU, Mann-Whitney U Test 

WA, Welch’s ANOVA 

GHT, Games-Howell Test 

FT, Friedman’s Test 

WT, Wilcoxon matched-pairs Test 

CT, Conover Test 

Bon, Bonferroni Correction 

BH, Benjamini-Hochberg procedure 

FET, Fisher’s Exact Test 

CQT, Cochran Q Test 

MNT, McNemar’s Test 
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Table 4.5 Statistical tests used for within-regime comparisons of behaviour. 

Regime 
Comparison 

of 
Between geno 

Between AWs 

(or age) 

Exclusion from statistical 

analyses (<10 surviving 

rhythmic flies) 

 

LDTCtoDD25 

Rhythmicity RMA + THSD 
pdf>Q128 from between-

genotype analyses of 

robustness and period in AW2 

and AW3. 

r KW + MCMR  

Robustness 1A + THSD  

Period KW + MCMR  

 

LLTCtoDD25 

Rhythmicity RMA + THSD 
pdf>Q128 from between-

genotype analyses of 

robustness and period in AW2 

and AW3. 

r KW + MCMR  

Robustness 1A + THSD  

Period KW + MCMR  

 

DD23toDD23 

Rhythmicity RMA + THSD 
pdf>Q128 from between-

genotype analyses of 

robustness and period across 

AWs. 

r KW+MCMR  

Robustness 1A + THSD FT + WT + Bon 

Period KW + MCMR FT + WT + Bon 

 

DD29toDD29 

Rhythmicity 

RMA + THSD (All genotypes for AW1 and AW2) 

 

pdf>Q128 from between-

genotype analyses of 

robustness and period in 

AW3. pdfGal and w1118 from 

AW3 statistical analyses. 

1A+UNHSD between 

pdf>Q0, Q0, Q128 for 

AW3 

FT + WT + Bon for 

pdf>Q0, Q0, Q128 

between AWs 

r KW+MCMR  

Robustness 

RMA+UNHSD for all genotypes for AW1 and 

AW2 

1A+UNHSD between 

genotypes for AW3 

FT + WT + Bon for 

pdfGal and w1118 

between AW1 and 

AW2 

Period KW + MCMR FT + WT + Bon 

 

DD29toDD23 

Rhythmicity RMA + THSD 
pdf>Q128 from between-

genotype analyses of 

robustness and period across 

AWs. 

r KW+MCMR  

Robustness 1A+UNHSD FT + WT + Bon 

Period KW + MCMR FT + WT + Bon 

 

DD23toDD29 

 

Rhythmicity RMA + THSD 
pdf>Q128 from between-

genotype analyses of 

robustness and period in 

AW3. 

r KW+MCMR  

Robustness KW + MCMR FT + WT + Bon 

Period KW + MCMR FT + WT + Bon 
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Table 4.5 Statistical tests used for within-regime comparisons of behaviour. 

Regime 
Comparison 

of 
Between geno 

Between AWs 

(or age) 

Exclusion from statistical 

analyses (<10 surviving 

rhythmic flies) 

 

DD25toDD29 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon pdf>Q128 from between-

genotype analyses of 

robustness and period in AW2 

and AW3. w1118 from AW3 

(17-23d) statistical analyses. 

r KW+MCMR  

Robustness 1A+UNHSD  

Period KW + MCMR  

 

Acute DD29 

at 2-3 d 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon 
‘r’ post-16d 

r KW+MCMR  

 

Acute DD29 

at 7-8 d 

Rhythmicity 6x2FET+2x2FET+BH CQT+MNT+Bon 
‘r’ post-16d 

r KW+MCMR  

 

LD23toDD23 

Rhythmicity RMA + THSD 
pdf>Q128 from between-

genotype analyses of 

robustness and period across 

AWs. 

r KW+MCMR  

Robustness WA+GHT  

Period KW + MCMR  

 

LD29toDD29 

Rhythmicity RMA + THSD pdfGal and w1118 from AW3 

(17-23d) statistical analyses. 

pdf>Q128 from between-

genotype analyses of 

robustness and period in 

AW3. 

r KW+MCMR  

Robustness KW+MCMR  

Period KW + MCMR  

 

LD23toDD29 

Rhythmicity RMA + THSD pdf>Q128 from between-

genotype statistical analysis 

of robustness and period in 

AW2 and AW3 and w1118 in 

AW3. 

r KW+MCMR  

Robustness 1A+UNHSD  

Period KW + MCMR  

 

LL23toDD29 

Rhythmicity 
6x2 FET+ 

2x2 FET+BH 
CQT+MNT+Bon pdf>Q128 from AW2 

analyses of period and 

robustness, AW3 (17-23d) 

from statistical analysis (for 

pdf>Q128, pdfGal and w1118) 

r KW+MCMR  

Robustness 1A+UNHSD  

Period KW + MCMR  

 

Hsp70 

Deficiency 

lines in 

DD23toDD29 

Rhythmicity 
mxn FET+ 

2x2 FET+BH 
 Analyses of rhythmicity 

restricted to AW1 and those 

of ‘r’ to 8 days in DD (age 3d-

10d) 

r 1A+UNHSD  

Robustness 1A+UNHSD  
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Table 4. 6 Statistical tests used for between-regime comparisons of behaviour. 

Between-regime comparisons 

Regimes 

compared 

Comparison 

of 

Between regimes 

for an AW 
Exclusion from statistical analyses 

DD25toDD25 

DDTCtoDD25 

LDTCtoDD25 

LLTCtoDD25 

Rhythmicity RMA + THSD 

pdf>Q128 from between-regime analyses of 

robustness and  period in AW2 and AW3 

r KW + MCMR 

Robustness 1A + UNHSD 

Period KW + MCMR 

 

DDTCtoDD25 

DD29toDD25 

DD21toDD25 

Rhythmicity 
3x2 FET+ 

2x2 FET+Bon 

 r KW + MCMR 

Robustness 1A + UNHSD 

Period KW + MCMR 

 

DDTCtoDD25 

DDTCuptoL3 

DDTC as Pupa-2d 

Rhythmicity 
3x2 FET+ 

2x2 FET+Bon  

r KW + MCMR 

 

DDTCtoDD25 

DDTCtoDD29 

DDTCtoDD21 

Rhythmicity 
3x2 FET+ 

2x2 FET+Bon/BH 

pdf>Q128 in DDTCtoDD21 from between-

regime analyses of robustness and period. 

r KW + MCMR 

Robustness 1A + UNHSD 

Period 
KW + MCMR, 

MWU for pdf>Q128 

 

DD25 

DDTCtoDD25 

LDTCtoDD25 

LLTCtoDD25 

Rhythmicity RMA + THSD 

pdf>Q128 from between-regime analyses of 

robustness and period in AW2 and AW3. 

r KW + MCMR 

Robustness 1A + UNHSD 

Period KW + MCMR 

Table key: RMA, Repeated Measures ANOVA; 1A, One-way ANOVA; THSD, Tukey’s Honest 

Significant Test; UNHSD, Unequal N Honest Significant Test; KW, Kruskal Wallis Test; MCMR, 

Multiple Comparisons of Mean Ranks; MWU, Mann-Whitney U Test; WA, Welch’s ANOVA; GHT, 

Games-Howell Test; FT, Friedman’s Test. 
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Table 4.6 Statistical tests used for between-regime comparisons of behaviour. 

Regimes 

compared 

Comparison 

of 

Between regimes 

for an AW 
Exclusion from statistical analyses 

DD23 

DD25 

DD29 

Rhythmicity RMA + THSD 

pdf>Q128 in DD23 from between-regime 

analyses of robustness and period in AW1. 

r KW + MCMR 

Robustness 1A + UNHSD 

Period 
KW + MCMR, 

MWU for pdf>Q128 
 

DD23toDD23 

LD23toDD23 

Rhythmicity RMA + THSD 

pdf>Q128 from between-regime analyses 

of robustness and period across AWs. 

r MWU 

Robustness 1A + UNHSD 

Period MWU 
 

DD29toDD29 

LD29toDD29 

Rhythmicity RMA + THSD 

pdf>Q128 from between-regime analyses 

of robustness and period in AW3. 

r MWU 

Robustness 1A + UNHSD 

Period MWU 
 

DD23 

DD29 

DD23toDD29 

DD29toDD23 

Rhythmicity RMA + THSD 

pdf>Q128 in DD23 and DD29toDD23 

excluded from between-regime statistical 

analyses. 

r KW + MCMR 

Robustness 1A + UNHSD 

Period KW + MCMR 

 

DD23toDD29 

DD21toDD25 

DD25toDD29 

Rhythmicity 
3x2 FET+ 

2x2 FET+Bon 

pdf>Q128 from between-regime analyses 

of robustness and period in AW2 and 

AW3. 

r KW + MCMR 

Robustness 

1A + UNHSD, 

For Q128 and pdfGal 

WA+GHT 

Period KW + MCMR 
 

DD23 

Acute DD29 at 2-3d 

Acute DD29 at 7-8d 

Rhythmicity 
4x2 FET+ 

2x2 FET+Bon  

r KW + MCMR 

1 

DD23toDD29 

LD23toDD29 
Rhythmicity RMA + THSD  

DD23toDD29 

LD23toDD29 

LL23toDD29 

Rhythmicity 
3x2 FET+ 

2x2 FET+ Bon 

pdf>Q128 from between-regime analyses 

of robustness and period in AW2. 
r KW + MCMR 

Robustness 1A + UNHSD 

Period KW + MCMR 
 

DDTCtoDD25 

DD23toDD29 

Rhythmicity RMA + THSD 

pdf>Q128 from between-regime analyses 

of robustness and period in AW3. 

r MWU 

Robustness 1A + UNHSD 

Period MWU 
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Table 4. 7 Within-regime mean robustness (± SEM) significant differences. 

Regime 
Expt 

code 
Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

DD29toDD25 PP43 

AW1 

258.3 

(10.2) a 

148.95 

(11.2)
 b

 

239.8 

(6.8)
 a

 

167.6 

(8.7) 
b
 

166.2 

(7.97) 
b
 

156.7 

(6.3) 
b
 

AW2 

255.2 

(15.7) 
a
 

NA 

220.03 

(12.2) 
ac

 

175.3 

(11.8) 
bc

 

169.95 

(11.3) 
b
 

135.3 

(8.3) 
b
 

AW3 

225.9 

(15.4) 
a
 

121.8 

(7.3) 

189.7 

(16.5) 
ac

 

143.6 

(9.7) 
bc

 

155.7 

(8.8) 
bc

 

88.4 

(14.8) 

ac
 

 

DD21toDD25 PP43 

AW1 

269.6 

(8.5)
 bc

 

171.3 

(10.9)
 a

 

286.6 

(10.4)
 b

 

201.73 

(9.5) 
a
 

232.3 

(9.1)
 ac

 

259.1 

(9.7)
 bc

 

AW2 
280.3 

(12.02) b 
140.1 

288.2 

(11.5) 
b
 

220.5 

(13.4) 
ac

 

261.9 

(10.8) 
bc

 

219.6 

(11.6) ac 

AW3 

252.8 

(14.7) 
a
 

NA 

222.4 

(13.9) 
ac

 

196.9 

(13.1) 
bc

 

229.2 

(11.7) 
ac

 

184.1 

(15.2) bc 

 

DD23toDD23 

 
PP48 

AW1 

239.8 

(9.1) 
a
 

149.5 

(25.96) 

223 

(7.7) 
ac

 

188.2 

(8.6) 
b
 

196.4 

(6.3) 
bc

 

200 

(8.4) 
bc

 

AW2 
226.6 

(11.4) 
bc

 

146.2 

(1.8) 

214 

(10.4) 
bc

 

169 

(8.7) 
a
 

203.3 

(6.95) 
bc

 

224.6 

(8.1) 
ac

 

AW3 

200.9 

(9.3) 
bc

 

122.2 

(4.5) 

187.3 

(11.2) 
bc

 

141 

(7.4) 
a
 

192.8 

(9.8) 
bc

 

178 

(9.5) 
ac

 

 

DD29toDD23 
PP51 

 

AW1 

185.99 

(12.7) 
a
 

91.8  

(13.4) 

136.4 

(6.6) 
b
 

101.6 

(5.1) 
c
 

116.2 

(4.5) 
bc

 

125.7 

(5.6) b 

AW2 
199.6 

(13.89) a 
95.9 

159.1 

(8.8) 
b
 

140.5 

(6.8) 

148.7 

(5.7) 

140.5 

(4.98) 
b
 

AW3 
207.3 

(16.18) a 

114.7 

(12.9) 
b
 

144.9 

(6.8) 
b
 

136.6 

(7.6) 
b
 

145.4 

(8.4) 
b
 

121.3 

(9.5) 
b
 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05. 
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Table 4. 8 Within-regime mean period (± SEM) significant differences. 

Regime 
Expt 

code 
Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

DD29toDD25 PP43 

AW1 

24.5 

(0.04) 
a
 

24.2 

(0.07) 

24.01 

(0.08) 
b
 

24.3 

(0.08) 
ab

 

24.6 

(0.07) 
a
 

23.9 

(0.07)
 b

 

AW2 

24.8 

(0.08) 
a
 

NA 
23.7 

(0.08) bd 

24.1 

(0.07) bc 

24.2 

(0.12) 
c
 

23.3 

(0.12) 
d
 

AW3 

24.9 

(0.11) 
b
 

23.5 

(0.1) 

23.5 

(0.07)
 a

 

24.2 

(0.1)
 bc

 

24.2 

(0.13)
 c

 
24 

 

DD21toDD25 PP43 

AW1 

24.7 

(0.06)
 a

 

24.9 

(0.16)
 a

 

23.7 

(0.04) 

bcd
 

24.1 

(0.06)
 b

 

24.4 

(0.06) 
ac

 

23.7 

(0.04) 
d
 

AW2 
25 

(0.05) 
c
 

24.33 
23.6 

(0.06) 
a
 

24.1 

(0.06)
 b

 

24.4 

(0.05) 
bc

 

23.6 

(0.07)
 a

 

AW3 

25 

(0.09) 
d
 

NA 

23.4 

(0.06) 
a
 

24 

(0.09)
 bc

 

24.6 

(0.1)
 bd

 

23.5 

(0.11) ac
 

 

DDTCtoDD29 PP68 

AW1 

24.2 

(0.06) d 

24.1 

(0.14) 
bd

 

23.3 

(0.04) 
a
 

23.6 

(0.07) 
bc

 

23.8 

(0.06) 

bcd
 

23.6 

(0.07) 

ac
 

AW2 
24.5 

(0.1) 
a
 

26.33 
23.5 

(0.04) 
b
 

23.6 

(0.04) 
b
 

24.2 

(0.73) 
b
 

23.6 

(0.06) 
a
 

AW3 

24.5 

(0.1) 
a
 

21.67 

23.4 

(0.08)
 b

 

23.7 

(0.06) 
b
 

23.9 

(0.21) 

23.2 

(0.1) 

 

DDTCtoDD21 PP68 

AW1 

24.1 

(0.09) 
a
 

24.4 

(0.29) 

23.6 

(0.06) 
b
 

23.7 

(0.08) 
b
 

23.97 

(0.09) 
ab

 

23.8 

(0.08) 

ab
 

AW2 

24.4 

(0.11) 
b
 

23.67 

23.7 

(0.05) 
a
 

23.9 

(0.1) 
ab

 

24.3 

(0.09) 
b
 

24.3 

(0.11) 
b
 

AW3 

24.95 

(0.18) 
a
 

NA 

23.6 

(0.06) 
b
 

23.9 

(0.15) 
b
 

24.4 

(0.13) 
b
 

24 

(0.26) 

ab
 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05. 
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Table 4.8 Within-regime mean period (± SEM) significant differences. 

Regime 
Expt 

code 
Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

LDTCtoDD25 PP79a 

AW1 

24.6 

(0.05) 
a
 

23.9 

(0.18) 
bc

 

23.8 

(0.06) 
b
 

24.5 

(0.08) 
a
 

24.4 

(0.05) 
ac

 

23.9 

(0.07) 
b
 

AW2 
24.7 

(0.06) b 

23 

(0.59) 

24.1 

(0.1) ac 

24.4 

(0.09) bc 

24.5 

(0.07) b 

23.9 

(0.07) a 

AW3 

24.7 

(0.09) 
a
 

23.7 

(0.14) 

23.9 

(0.08) 
b
 

24.2 

(0.13) 
ab

 

24.3 

(0.13) 
ab

 

23.8 

(0.14) 
b
 

 

LLTCtoDD25 PP79a 

AW1 

24.6 

(0.05) 
ac

 

24.4 

(0.17) 
c
 

23.7 

(0.05) 
b
 

24.03 

(0.07) 
bc

 

24.5 

(0.08) 
ac

 

23.95 

(0.07) 

bc
 

AW2 
24.7 

(0.07) 
a
 

23.7 

(0.16) 

23.8 

(0.06) 
b
 

24.02 

(0.08) 
b
 

24.5 

(0.06)
 a

 

23.8 

(0.07) 
b
 

AW3 

24.8 

(0.07) 
a
 

23.9 

(0.19) 

23.8 

(0.07)
 b

 

23.95 

(0.06) 
b
 

24.5 

(0.07) 
a
 

23.7 

(0.07)
 b

 

 

DD23toDD23 

 
PP48 

AW1 

24.6 

(0.09) 
a
 

24.8 

(0.29) 

23.7 

(0.05) 
b
 

23.7 

(0.05) 
b
 

24.1 

(0.7) 
b
 

23.7 

(0.5)
 b

 

AW2 

24.7 

(0.07) 
a
 

23.2 

(0.17) 

23.5 

(0.07) 
b
 

23.9 

(0.1) 
bc

 

24.2 

(0.7) 
ac

 

23.7 

(0.06) 
b
 

AW3 
24.8 

(0.09) 
a
 

23.5 

(0.83) 

23.5 

(0.08) 
b
 

23.9 

(0.09) 
bc

 

24.3 

(0.1) 
ac

 

23.6 

(0.06) 
b
 

 

DD29toDD23 
PP51 

 

AW1 

24.4 

(0.1) 
a
 

23.8 

(0.17) 

23.7 

(0.05) 
b
 

23.95 

(0.13) 

24.3 

(0.15) 
ac

 

23.8 

(0.11) 

bc
 

AW2 

24.6 

(0.12) 
b
 

23 

23.7 

(0.07) 
a
 

24.2 

(0.11)
 bc

 

24.5 

(0.12)
 b

 

23.7 

(0.11) 

ac
 

AW3 

24.7 

(0.13) 
b
 

24.7 

(0.53) 

23.7 

(0.08) 
a
 

24.4 

(0.13) bc 

24.4 

(0.16) 
b
 

23.6 

(0.19) ac 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05. 
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Table 4.8 Within-regime mean period (± SEM) significant differences. 

Regime 
Expt 

code 
Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

DD25toDD29 PP51 

AW1 

23.8 

(0.06) 
b
 

22.8 

(0.13) 
a
 

23.5 

(0.04) 
b
 

23.6 

(0.03) b 

23.7 

(0.23) b 

23.4 

(0.05) 

ab
 

AW2 

24.5 

(0.09) a 

23.3 

(0.25) 

23.6 

(0.05) bc
 

23.7 

(0.05) 
b
 

23.9 

(0.06) 
ab

 

23.2 

(0.09) 
c
 

AW3 

24.2 

(0.15)
 b

 
23.3 

23.3 

(0.08) 
a
 

23.8 

(0.1)
 b

 

23.96 

(0.19) 
b
 

23.1 

(0.17) 

 

LD23toDD23 PP74b 

AW1 

24.4 

(0.05) 
a
 

24.3 

(0.23) 

23.8 

(0.06) 
c
 

23.9 

(0.07) 
bc

 

24.2 

(0.06) 
ab

 

23.7 

(0.05) 
c
 

AW2 
24.6 

(0.05) 
a
 

23.5 

(0.134) 

23.8 

(0.05) 
b
 

23.9 

(0.07) 
b
 

24.5 

(0.06) 
a
 

23.6 

(0.05) 
b
 

AW3 

24.9 

(0.09) 
a
 

24 

(0.19) 

23.7 

(0.04) 
b
 

23.8 

(0.05) 
b
 

24.6 

(0.08)
 a

 

23.7 

(0.07) 
b
 

 

LD29toDD29 PP75b 

AW1 

23.9 

(0.06) 
a
 

22.8 

(0.2) 

23.5 

(0.04)
 b

 

23.5 

(0.04)
 b

 

23.6 

(0.07) 
ab

 

23.3 

(0.05)
 b 

AW2 
24.2 

(0.07) 
a
 

23.5 

(0.19) 

23.5 

(0.05) 
bc

 

23.7 

(0.04) 
c
 

23.7 

(0.1) 
c
 

23.7 

(0.39) 
b
 

AW3 
24.2 

(0.12) 

24.8 

(0.17) 

23.8 

(0.1) 

23.8 

(0.15) 

23.7 

(0.32) 

23.3 

(0.38) 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05. 
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Table 4.8 Within-regime mean period (± SEM) significant differences. 

Regime 
Expt 

code 
Age pdf>Q0 pdf>Q128 Q0 Q128 pdfGal w1118 

 

LD23toDD29 PP77 

AW1 

23.9 

(0.06) 
ac

 

23.1 

(0.1) 
d
 

23.5 

(0.03) 

bcd
 

23.6 

(0.03) 
bc

 

23.7 

(0.03) 
c
 

23.6 

(0.03) 

bc
 

AW2 

24.2 

(0.08) 
a
 

22.4 

(0.29)
 b

 

23.4 

(0.04) 
b
 

23.7 

(0.04)
 b

 

24.1 

(0.08) 
a
 

23.3 

(0.06) 
b
 

AW3 

24.2 

(0.09) 
b
 

23.5 

(0.22) 

23.3 

(0.04)
 a

 

23.8 

(0.06) 
b
 

23.9 

(0.11) 
b
 

23.1 

(0.12) 
b
 

 

LL23toDD29 PP101 

AW1 

23.7 

(0.03) 
a
 

22.6 

(0.18) 

23.1 

(0.33) 
b
 

23.1 

(0.4)
 b

 

23.6 

(0.04) 
a
 

23.3 

(0.05) 
b
 

AW2 
24 

(0.09)
 a

 

23.1 

(0.57) 

23.1 

(0.05) 
b
 

23.4 

(0.05) 
b
 

23.95 

(0.08) 
a
 

23.3 

(0.08) 
b
 

AW3 

24.2 

(0.1)
 a

 
NA 

23.1 

(0.1) 
b
 

23.6 

(0.15) 
b
 

23.8 

(0.21) 
23.3 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05. 
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Table 4. 9 Between-regimes rhythm features in AW1 showing mean (± SEM) significant differences. 

Rhythm 

feature 
Genotype Between-regime comparisons 

 

Period 

 DD25to 

DD25 

DDTCto 

DD25 

LDTCto 

DD25 

LLTCto 

DD25 

pdf>Q0 
24.8 

(0.13) 
a
 

24.5 

(0.06) 
b
 

24.6 

(0.05) 
ab

 

24.6 

(0.05) 
ab

 

pdf>Q128 
24.3 

(0.47) 
ab

 

24.7 

(0.1) 
a
 

23.9 

(0.18) 
b
 

24.4 

(0.17) 
ab

 

Q128 
24.1 

(0.1) 
b
 

24.1 

(0.1) 
b
 

24.5 

(0.08) 
a
 

24.03 

(0.07) 
b
 

 

Robust-

ness 

 DDTCto 

DD25 

DD29to 

DD25 

DD21to 

DD25 

 

pdf>Q0 
229.2 

(7.4) 
a
 

258.3 

(10.2)  
ab

 

269.6 

(8.5) 
b
 

pdf>Q128 146.6 

(5.2) 

148.95 

(11.2) 

171.3 

(10.9) 

Q128 188.4 

(12.1) 

167.6 

(8.7) 

201.7 

(9.5) 

 

Period 

 DDTCto 

DD25 

DD29to 

DD25 

DD21to 

DD25 

 

pdf>Q0 
24.5 

(0.06) 
a
 

24.5 

(0.04) 
a
 

24.7 

(0.06) 
b
 

pdf>Q128 
24.7 

(0.1) 
a
 

24.2 

(0.07) 
b
 

24.9 

(0.16) 
a
 

Q128 24.1 

(0.1) 

24.3 

(0.08) 

24.1 

(0.06) 

 

Period 

 DDTCto 

DD25 

DDTCto 

DD29 

DDTCto 

DD21 

 

pdf>Q0 
24.5 

(0.06)
 a

 

24.2 

(0.06) 
ab

 

24.1 

(0.09) 
b
 

pdf>Q128 
24.7 

(0.1)
 a

 

24.1 

(0.14) 
b
 

24.4 

(0.29)
 ab

 

Q128 
24.1 

(0.1)
 a

 

23.6 

(0.07) 
b
 

23.7 

(0.08) 
b
 

Different letters indicate statistically significant age-matched differences between genotypes at 

p<0.05.  
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Table 4.9 Between-regimes rhythm features in AW1 showing mean (± SEM) significant differences. 

Rhythm 

feature 
Genotype Between-regime comparisons 

 

Period 

 DD23 
LD23to 

DD23 
 DD29 

LD29to 

DD29 

pdf>Q0 24.6 (0.09) 24.4 (0.05)  23.6 (0.08) 
a
 23.9 (0.06) 

b
 

pdf>Q128 24.8 (0.3) 24.3 (0.23)  23.5 (0.15) 22.8 (0.22) 

Q128 23.7 (0.05) 
a
 24 (0.07) 

b
  23.2 (0.09) 

a
 23.5 (0.04) 

b
 

 

Period 

 DD23 DD29 
DD23to 

DD29 

DD29to 

DD23 

 

pdf>Q0 24.6 (0.09) 
b
 23.6 (0.08) 

a
 24.2 (0.16) 

b
 24.4 (0.1) 

b
 

pdf>Q128 24.8 (0.29) 23.5 (0.15) 
a
 24.6 (0.19) 

b
 23.8 (0.17) 

Q128 23.7 (0.05) 
a
 23.2 (0.09) 

b
 23.3 (0.09) 

b
 23.95 (0.13) 

a
 

 

Period 

 
DD23to 

DD29 

DD21to 

DD25 

DD25to 

DD29 

 

pdf>Q0 24.2 (0.16) 
a
 24.7 (0.06) 

b
 23.8 (0.06) 

c
 

pdf>Q128 24.86 (0.19) 
a
 24.9 (0.16) 

a
 22.8 (0.13) 

b
 

Q128 23.3 (0.09) 
a
 24.1 (0.06) 

b
 23.6 (0.03) 

c
 

 

Period 

 
DD23to 

DD29 

LD23to 

DD29 

LL23to 

DD29 

 

pdf>Q0 24.2 (0.16) 
a
 23.9 (0.06) 

ac
 23.7 (0.03)

 bc
 

pdf>Q128 24.86 (0.19)
 a

 23.1 (0.1)
 b

 22.6 (0.18) 
b
 

Q128 23.3 (0.09) 
a
 23.6 (0.02) 

b
 23.1 (0.04) 

c
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Table 4. 10 Sample sizes for immunocytochemical experiments. 

Regime Genotype L3 1d 3d 5d 7d 9d 16d 23d 

DD25 

pdf>Q0 31 19 22 
Not 

clear 
22 

Not 

done 
26 23 

pdf>Q128 30 30 26 
Not 

clear 
27 21 24 28 

DDTC 

toDD25 

pdf>Q0 31 23 27 17 24 
Not 

done 
18 28 

pdf>Q128 25 26 24 12 24 23 28 23 

DD29to 

DD25 

pdf>Q0      26   

pdf>Q128      26   

DD23 

pdf>Q0 26 19 25 21 28 
Not 

done 
26 18 

pdf>Q128 22 24 21 20 26 27 25 23 

DD29 

pdf>Q0 23 20 24 19 22 
Not 

done 
26 23 

pdf>Q128 36 22 22 15 26 16 28 18 

DD23to 

DD29 

pdf>Q0 

Same 

as 

DD23 

Same 

as 

DD23 

26 25 24 
Not 

done 
22 19 

pdf>Q128 

Same 

as 

DD23 

Same 

as 

DD23 

27 18 31 28 16 22 

 

 

  

Regime Genotype 
Age 6d 

CT23 CT11 

DD25 
pdf>Q0 17  

pdf>Q128 17  

DDTCtoDD25 
pdf>Q0 30 26 

pdf>Q128 24 31 

DD29toDD25 
pdf>Q0 29 28 

pdf>Q128 29 33 

DD23 
pdf>Q0 32 29 

pdf>Q128 24 30 

DD23toDD29 
pdf>Q0 29 26 

pdf>Q128 31 25 
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Table 4. 11 Regime-wise behavioural and cellular data for pdf>Q128. 

Regime Age 

Behav 

(% 

Rhy) 

PDF 

in 

sLNv 
(~mean) 

PER in LNv 
(~mean) 

PER 

oscillations 

in LNv 

expHTT form 

in LNv 

dominating 

the Hemis 

Change of 

Inc feature 

with age 

    sLNv lLNv sLNv lLNv sLNv lLNv 
Inc 

No. 

Inc 

Size 

 

DD25 

L3  3.7 

    

Diff NA   

1d 

Arr 

(23.7) 

2.5 Inc Diff 

Slight 

↑ 

with 

age 

↑ 

with 

age 

3d 2.4 Inc 
Diff + 

Inc 

5d NTA* Inc Inc 

7d 2.4 1.3 2.7 Nil Nil Inc Inc 

9d 2.4 

    

Inc Inc 

AW2 
Arr 

(11) 
2.2 Inc Inc   

AW3 
Arr 

(3.5) 
2.1 Inc Inc   

 

DDTC 

toDD25 

L3  3.5 

    

Diff NA   

1d 

Rhy 

(88.4) 

 

3.1 Inc Diff 

Slight 

↑ 

with 

age 
↑ 

with 

age 

3d 3.3 Inc 

Diff, 

Diff + 

Inc 

5d 3.6 Inc Inc 

7d 2.7 1.3 2.3 

Low 

amp, 

anti-

phase 

Nil Inc Inc 

9d 2.1 

    

Inc Inc  

AW2 
Arr 

(36.7) 
1.6 Inc Inc  

AW3 
Arr 

(29.7) 
1 Inc Inc  

 

DD29to

DD25 

AW1 

7d 

Arr 

(36.7) 
2.7 2.7 3.8 Nil 

Low 

amp, 

anti-

phase 

Inc Inc NTA NTA 

 AW2 
Arr 

(16.5) 
         

 AW3 
Arr 

(14.8) 

* Very faint PDF staining at 5d, therefore, the PDF+ LNv numbers not clear.  NTA, not available.  NA, 

not applicable.  Improvement/rescue is indicated by lilac shading. 
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Table 4.11 Regime-wise behavioural and cellular data for pdf>Q128. 

Regime Age 

Behav 

(% 

Rhy) 

PDF 

in 

sLNv 
(~mean) 

PER in LNv 
(~mean) 

PER 

oscillations 

in LNv 

expHTT form 

in LNv 

dominating 

the Hemis 

Change of 

Inc feature 

with age 

    sLNv lLNv sLNv lLNv sLNv lLNv 
Inc 

No. 

Inc 

Size 

 

DD23 

L3  3.4 

    

Diff NA   

1d 

Arr 

(22.1) 

3.3 
Diff, 

Diff + 

Inc 

Diff 

Slight 

↑ 

with 

age 

No 

3d 3.3 
Diff + 

Inc 
Diff 

5d 2.8 Inc 

Diff, 

Diff + 

Inc 

7d 2.2 1.7 3.4 
Low 

amp 

Low 

amp 
Inc Inc 

9d 2.2 

    

Inc Inc  

AW2 Arr (7) 1.9 Inc Inc  

AW3 
Arr 

(9.3) 
1 Inc Inc  

 

DD29 

L3  3.7 

    

Diff NA   

1d 

Rhy 

(85.2) 

3.6 
Diff, 

Diff + 

Inc 

Diff 

 

No 

3d 3.3 Inc Inc 

5d 3.2 Inc Inc 

7d 3.1 NTA NTA NTA NTA Inc Inc 

9d 3.1 

    

Inc Inc  

AW2 
Arr 

(33.7) 
2.7 Inc Inc ↑ 

with 

age AW3 
Arr 

(19) 
1.7 Inc Inc  

 

DD23to

DD29 

L3  3.4 

    

Diff NA   

1d 

Rhy 

(89.4) 

3.3 Diff Diff 

No No 

3d 3.3 Inc 

Diff, 

Diff + 

Inc 

5d 3.3 Inc Inc 

7d 3.1 2.2 2.8 Nil 
Low 

amp 
Inc Inc 

9d 3.3 

    

Inc Inc 

AW2 
Arr 

(39.6) 
1.8 Inc Inc 

AW3 
Arr 

(26.6) 
1.4 Inc Inc 

* The PDF staining at 5d was faint; therefore, the PDF+ LNv numbers could not be discerned.  NTA, 

not available.  NA, not applicable.  Improvement/rescue is indicated by lilac shading.  
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Table 4. 12 Between-regime comparisons of activity rhythms of pdf>Q128 in AW1. 

Regime

s 

compar

ed 

Behaviour in AW1 Overall 

activity 

rhythm 

improvemen

ts 

% Rhythmicity 
Rhyth

micity 

‘r’ 

improve

ments 

Robust-

ness 
Robustness 

 

DDTCtoDD25-related regimes 

DDTCto 

DD25 

 

DD25 

DDTC DD25  

DDTC> 

DD25 

DDTC> 

DD25 

Poor 

robustness 

under both 

regimes 

DDTC> 

DD25 

88.4 

147 

23.7 

138 
 

 

DDTCtoDD25 vs constant high (29°C) or low (21°C) temperatures during development to DD25 

DDTCto 

DD25 

 

DD29to 

DD25 

 

DD21toD

D25 

DDTC 
DD29to 

DD25 

DD21to 

DD25 
DDTCto 

DD25> 

DD29to 

DD25 

=DD21to 

DD25 

DDTCto 

DD25> 

DD29to 

DD25 

=DD21to 

DD25 

 

DDTCto 

DD25> 

DD29to 

DD25 

=DD21to 

DD25 

83.33 

147 

36.7 

149 

30 

171 

 

DDTCtoDD25 vs. DDTC to either DD29 or DD21 

DDTCto 

DD25 

 

DDTCto 

DD29 

 

DDTCto 

DD21 

DDTCto

DD25 

DDTCto 

DD29 

DDTCto 

DD21 
DDTCto 

DD25= 

DDTCto 

DD29> 

DDTCto 

DD21 

DDTCto 

DD25= 

DDTCto 

DD29> 

DDTCto 

DD21 

DDTCto 

DD29> 

DDTCto 

DD25 

DDTCto 

DD25= 

DDTCto 

DD29> 

DDTCto 

DD21 

83.33 

147 

86.2 

189 

10.4 

139 

 

DDTCtoDD25 vs DDTC from egg to L3 vs DDTC as pupa to 2d adults 

DDTCto 

DD25 

 

DDTC 

up to L3 

to DD25 

 

DD25 to 

DDTC 

from 

pupa to 

2d adult 

to DD25 

DDTC 

through 

dev 

DDTC 

upto L3 

DDTC as 

Pupa-2d 
DDTC> 

DDTC 

upto L3 

= DDTC 

as pupa-2d 

DDTC> 

DDTC 

upto L3 

= DDTC 

as pupa-2d 

 

DDTC> 

DDTC 

from egg 

to L3= 

DDTC as 

pupa to 2d 83.33 

147 

16 

173 

24 

130 

Rhythm rescue is indicated by lilac shading.  
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Table 4.12 Between-regime comparisons of activity rhythms of pdf>Q128 in AW1. 

Regimes 

compar

ed 

Behaviour in AW1 Overall 

activity 

rhythm 

improveme

nts 

% Rhythmicity 
Rhythmi

city 

‘r’ 

improve

ments 

Robust-

ness 
Robustness 

 

Effect of cycling light and temperature and essentiality of functional clocks during development 

(DDTCtoDD25 vs LDTCtoDD25 vs LLTCtoDD25) 

DDTCto 

DD25 

 

LDTCto 

DD25 

 

LLTCto 

DD25 

DDTC LDTC LLTC 
DDTCto 

DD25> 

LDTCto 

DD25= 

LLTCto 

DD25 

DDTCto 

DD25> 

LDTCto 

DD25= 

LLTCto 

DD25 

Poor 

robustness 

under all 

regimes 

DDTCto 

DD25> 

LDTCto 

DD25 

=LLTCto 

DD25 

88.4 

146 

37.3 

130 

26.9 

145 

 

Constant temperature regimes 

 

DD23 vs DD25 vs DD29 

DD23 

 

DD25 

 

DD29 

DD23 DD25 DD29 

DD29> 

DD23= 

DD25 

DD29> 

DD25> 

DD23 

(For controls 

pdf>Q0 and 

Q128, 

DD29> 

DD25= 

DD23) 

Poor 

robustness 

under all 

regimes 

DD29> 

DD25> 

DD23 
22.1 

149 

23.7 

138 

85.2 

141 

 

Upshift temperature regimes 

 

Different degrees of upshift 

DD23to 

DD29 

 

DD21to 

DD25 

 

DD25to 

DD29 

DD23to 

DD29 

DD21to 

DD25 

DD25to 

DD29 
DD23to 

DD29= 

DD25to 

DD29> 

DD21to 

DD25 

DD23to 

DD29= 

DD25to 

DD29> 

DD21to 

DD25 

(even for 

controls) 

DD23to 

DD29> 

DD25to 

DD29 

DD23to 

DD29> 

DD25to 

DD29> 

DD21to 

DD25 

89.7 

185 

30 

171 

86.7 

133 

Rhythm rescue is indicated by lilac shading. 
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Table 4.12 Between regime comparisons of activity rhythms of pdf>Q128 in AW1. 

Regimes 

compar

ed 

Behaviour in AW1 Overall 

activity 

rhythm 

improve

ments 

% Rhythmicity 
Rhyth

micity 

‘r’ 

improv

ements 

Robust

-ness 
Robustness 

 

DD23toDD29-related temperature regimes 

 

DD23 vs DD29 vs DD23toDD29 vs DD29toDD23 

DD23to 

DD23 

 

DD29to 

DD29 

 

DD23to 

DD29 

 

DD29to 

DD23 

DD23 DD29 
DD23to 

DD29 

DD29to 

DD23 
DD23to 

DD29= 

DD29> 

DD23= 

DD29to 

DD23 

 

DD23to 

DD29= 

DD29> 

DD29to 

DD23> 

DD23 

(Even for 

control 

Q128) 

DD23to 

DD29> 

DD29 

DD23to 

DD29> 

DD29> 

DD29to 

DD23> 

DD23 
22.1 

149 

85.2 

128 

89.4 

185 

4.8 

91 

 

Adult-restricted warm temperatures- 

Chronic exposure vs. short duration (48h of 29°C) exposure 

DD23to 

DD23 

 

DD23to 

DD29 

 

DD23to 

48hof 

DD29@3d 

toDD23 

 

DD23to 

48hof 

DD29@6d 

toDD23 

DD23to 

DD23 

DD23to 

DD29 

DD23+ 

48h29 at 

3d 

DD23+ 

48h29 at 

6d 
DD23to

DD29> 

DD23= 

DD23to4

8h29at3d

= 

DD23to4

8h29at9d 

DD23to 

DD29> 

DD23= 

DD23to 

48h29@

3d= 

DD23to 

48h29@ 

9d 

 

DD23to 

DD29> 

DD23= 

DD23to 

48h29@3d

= 

DD23to 

48h29@9d 
22.1 

149 

89.4 

185 

25 

129 

27 

146 

 

Effect of cycling light or lack of functional clocks during development on DD23toDD29 rescue 

(DD23toDD29 vs LD23toDD29 vs LL23toDD29) 

DD23to 

DD29 

 

LD23to 

DD29 

 

LL23to 

DD29 

DD23to 

DD29 

LD23to 

DD29 

LL23to 

DD29 
 

DD23to 

DD29= 

LD23to 

DD29= 

LL23to 

DD29 

DD23to 

DD29= 

LD23to 

DD29= 

LL23to 

DD29 

DD23to

DD29= 

LD23to 

DD29> 

LL23to 

DD29 

DD23to 

DD29= 

LD23to 

DD29> 

LL23to 

DD29 

89.4 

185 

94.6 

173 

83.9 

135 
 

Rhythm rescue is indicated by lilac shading.  



528 
Appendix C 

 

PhD Thesis, 2023, JNCASR, Bengaluru  Pavitra Prakash 

 

Table 4.12 Between regime comparisons of activity rhythms of pdf>Q128 in AW1. 

Regimes 

compar

ed 

Behaviour in AW1 Overall 

activity 

rhythm 

improvements 

% Rhythmicity 
Rhythmicity 

‘r’ 

improvem

ents 

Robust-

ness 
Robustness 

 

Effect of cyclic light during development: DDtoDD vs LDtoDD 

 

TCtoDD25 

DDTCto 

DD25 

 

LDTCto 

DD25 

DDTC LDTC DDTCto 

DD25> 

LDTC 

toDD25 

DDTCto 

DD25> 

LDTC 

toDD25 

DDTCto 

DD25= 

LDTCto 

DD25 

DDTCto 

DD25> 

LDTCto 

DD25 
88.4 

147 

37.3 

130 

 

Constant cool temperatures (23°C) 

DD23to 

DD23 

 

LD23to 

DD23 

DD23to 

DD23 

LD23to 

DD23 
DD23to 

DD23= 

LD23to 

DD23 

DD23to 

DD23= 

LD23to 

DD23 

 

DD23to 

DD23= 

LD23to 

DD23 
22.1 

149 

28.2 

140 

 

Constant warm temperatures (29°C) 

DD29to 

DD29 

 

LD29to 

DD29 

DD29to 

DD29 

LD29to 

DD29 
DD29to 

DD29= 

LD29to 

DD29 

DD29to 

DD29= 

LD29to 

DD29 

DD29to 

DD29= 

LD29to 

DD29 

DD29to 

DD29= 

LD29to 

DD29 
85.2 

128 

87.9 

110 

 

Temperature upshift (23°Cto29°C) 

DD23to 

DD29 

 

LD23to 

DD29 

DD23to 

DD29 

LD23to 

DD29 
DD23to 

DD29= 

LD23to 

DD29 

DD23to 

DD29= 

LD23to 

DD29 

DD23to 

DD29= 

LD23to 

DD29 

DD23to 

DD29= 

LD23to 

DD29 
89.7 

185 

94.6 

174 

 

Temperature downshift (29°Cto23°C) 

DD29to 

DD23 

 

LD29to 

DD23 

DD29to 

DD23 

LD29to 

DD23 DD29to 

DD23= 

LD29to 

DD23 

DD29to 

DD23= 

LD29to 

DD23 

 

DD29to 

DD23= 

LD29to 

DD23 
4.8 

91 

2.2 

NA 

Rhythm rescue is indicated by lilac shading.  
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Table 4. 13 Between-regime comparisons of behaviour and cellular phenotypes of pdf>Q128. 

Regi-

mes 

comp-

ared 

Behaviour in 

AW1 
PDF 

rescue 

in 

sLNv 

PER+ 

LNv 

 

PER 

oscillat

ions in 

LNv 

expHTT 

form in 

LNv 

(Diff> 

Diff+ 

Inc> 

Inc) 

↓ Inc 

No. 

↓ Inc 

load 

Circadian 

function 

and 

neuro-

protection 

Rhythmic

ity 

‘r’ 

improve

ment 

 

DDTCtoDD25-related regimes 

DD25 

 

DDTCto

DD25 

DDTC> 

DD25 

DDTC> 

DD25 

DDTC> 

DD25 

DDTC> 

DD25 

DDTC> 

DD25 

DDTC= 

DD25 

DDTC= 

DD25 

DDTC= 

DD25 

DDTC> 

DD25 

 

DD25 

 

DDTCto

DD25 

 

DD29to 

DD25 

DDTC> 

DD25= 

DD29to 

DD25 

DDTC> 

DD29to 

DD25 

DDTC> 

DD25= 

DD29to 

DD25 

DD29to 

DD25> 

DDTC= 

DD25 

DDTC> 

DD25= 

DD29to

DD25 

DDTC= 

DD25 

(=DD29 

to 

DD25, 

maybe) 

DDTC= 

DD25 

(=DD29 

to 

DD25, 

maybe) 

DDTC= 

DD25 

(=DD29 

to 

DD25, 

maybe) 

DDTC> 

DD29to 

DD25> 

DD25 

 

Constant temperature-related regimes 

DD23 

 

DD25 

 

DD29 

DD29> 

DD25= 

DD23 

DD29> 

DD25> 

DD23 

DD29> 

DD23> 

DD25 

DD23> 

DD25 

DD23> 

DD25 

DD23> 

DD23= 

DD29 

DD29> 

DD25> 

DD23 

DD29> 

DD25> 

DD23 

DD29> 

DD23> 

DD25 

 

Temperature upshift-related regimes 

DD23 

 

DD29 

 

DD23to 

29 

DD23to 

DD29= 

DD29> 

DD23 

DD23to 

DD29= 

DD29> 

DD23 

DD23to 

DD29= 

DD29> 

DD23 

DD23to 

DD29= 

DD23 

DD23> 

DD23to 

DD29 

DD23> 

DD23to 

DD29> 

DD29 

DD23to 

DD29> 

DD29 

>DD23 

DD23to 

DD29> 

DD29 

>DD23 

DD23to 

DD29> 

DD29> 

DD23 
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Table 5. 1 A genetic screen for modifiers of arrhythmicity of expHTT-expressing flies. 

Gene Description 
Modifica- 

tion 

Modifier line 

source 
Genotype (s) 

% 

Rhythmicity 

 Huntingtin  

hHTT 

Human 

huntingtin with 

548aa containing 

128 Q repeats. 

 Lee et al., 2000 

w;pdf-Q128/+;+ 54.84 

w;pdfGal4/Q128;+ 20 

w;timGal4/Q128;+ 0 

dhtt 
D.melanogaster 

huntingtin 
OE 

Zhang et al., 

2009 
w;pdf-Q128/UAS-dhtt;+ 50 

dhtt 

D.melanogaster 

huntingtin with 

82aa 

OE 
Mugat et al., 

2008 

w;pdf-Q128/+;UAS-dhtt82aa/+ 60 

w;pdfGal4/Q128;UAS-dhtt82aa/+ 6.25 

w;timGal4/Q128;UAS-dhtt82aa/+ 0 

dhtt 

D.melanogaster 

huntingtin with 

620aa 

OE 
Mugat et al., 

2008 

w;pdf-Q128/+;UAS-dhtt620aa/+ 31.25 

w;pdfGal4/Q128;UAS-dhtt620aa/+ 12.5 

w;timGal4/Q128;UAS-dhtt620aa/+ 0 

dhtt 
D.melanogaster 

huntingtin 
DR GD 36204 w;pdf-Q128/UAS-dhtt-RNAi/+;+ 62.5 

dhtt 
D.melanogaster 

huntingtin 
DR GD29532 

w;pdf-Q128/+;UAS-dhtt-RNAi/+ 53.33 

w;pdfGal4/Q128;UAS-dhtt-RNAi/+ 12.5 

w;timGal4/Q128;UAS-dhtt-RNAi/+ 6.25 

Hip14 

D.melanogaster 

Huntingtin 

interacting 

protein 

OE Bl 17109 w;pdf-Q128/+;UAS-Hip14/+ 73.33 

The genetic modifiers are grouped according to their most well-known function or protein family.  OE 

is overexpressed, and DR is down-regulated.  Each modifier genotype is compared against its 

respective circadian driver-Q128 genotype (placed at the top of the table), i.e., the recombinant 

w;pdfGal4-Q128/+ (denoted as w;pdf-Q128/+;+) or w;pdfGal4/Q128;+ or w;timGal4/Q128;+.  

Asterisks indicate significant differences from respective controls at * p<0.05, ** p<0.01, *** 

p<0.001.  
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Table 5.1 A genetic screen for modifiers of arrhythmicity of expHTT-expressing flies. 

Gene Description 
Modificatio

n 

Modifier 

line source 
Genotype (s) 

% 

Rhythmicity 

 Heat shock proteins (HSPs)  

Hsp23 D.melanogaster Hsp23 OE Bl 30541 
w;pdf-Q128/ 

UAS-Hsp23;+ 
86.67* 

Hsap/ 

JB1/ 

DnaJB1 

Human DNAJB1 (Hsp40 

homolog, sub-family B, 

member 1) 

OE Bl 53730 
w;pdf-Q128/ 

UAS-DnaJB1;+ 
93.75** 

DnaJ1k/ 

dhdJ1 

D.melanogaster DnaJ- like-1 

or Hsp40, droj1 (member of 

J/Hsp40 co-chaperone family; 

provides specificity to HSP70 

chaperones) 

OE Bl 30553 
w;pdf-Q128/+; 

UAS-DnaJ1k/+ 
93.75** 

HSPA1L/ 

HSP70/ 

HSAP 

Human heat shock 70kDa 

protein 1-like or HSP70 
OE Bl7454 

w;pdf-Q128/+; 

UAS- HSPA1L/+ 
93.75* 

w;pdfGal4/Q128; 

UAS- HSPA1L/+ 
100*** 

w;timGal4/Q128; 

UAS- HSPA1L/+ 
43.75** 

Hsc70-3 

D.melanogaster heat shock 70-

kDa protein cognate 3 or BiP 

or Hsc3 or Grp78 

OE Bl 5843 
w;pdf-Q128/+; 

UAS-Hsc70-3WT/+ 
43.75 

Hsc70-3 
Expresses Hsc70-3 with a 

disrupted ATP binding site 
DR Bl 5842 

w;pdf-Q128/+; 

UAS-HSc70-3.K97S/+ 
80 

Hsc70-4 
D.melanogaster Heat shock 

protein cognate 4 or Hsc4 or 

BAP74 or scattered 

DR Bl 7453 
w;pdf-Q128/+; 

UAS-Hsc70-4K71S/+ 
100** 

Hsf 
D.melanogaster Heat shock 

Factor or Hsf1 or Dm-Hsf 
DR Bl 27070 

w;pdf-Q128/+; 

UAS-Hsf-RNAi/+ 
58.33 

Hsf 
D.melanogaster Heat shock 

Factor or HSF1 or Dm-Hsf 
DR GD 48692 

w;pdf-Q128/ 

UAS-Hsf-RNAi/+ 
62.5 

HDJ1/ 

Hsp40 
D.melanogaster dHdj1/ Hsp40 DR GD 31271 

w;pdf-Q128/+; 

UAS-Hdj1-RNAi/+ 
60 

Hsp70Aa 
D.melanogaster Heat shock 

protein-70Aa 
DR GD 41748 

w;pdf-Q128/+; 

UAS- Hsp70Aa-RNAi/+ 
68.75 

Hsp70Bb 
D.melanogaster Heat shock 

protein-70Bb 
DR GD 36640 

w;pdf-Q128/+; 

UAS- Hsp70Bb-RNAi/+ 
75 
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Table 5.1 A genetic screen for modifiers of arrhythmicity of expHTT-expressing flies. 

Gene Description 
Modifica- 

tion 

Modifier 

line source 
Genotype (s) 

% 

Rhythmicity 

 Histone deacetylases  

Hdac3 

D.melanogaster histone 

deacetylase involved in 

chromatin silencing 

OE Bl 32248 w;pdf-Q128/UAS-Hdac3;+ 31.25 

Hdac6 

D.melanogaster cytosolic 

deacetylase functions as a 

key modulator of 

proteostasis 

OE Bl 51181 w;pdf-Q128/+;UAS-Hdac6/+ 56.25 

Hdac3 
D.melanogaster histone 

deacetylase 
DR Bl 34778 

w;pdf-Q128/+; 

UAS-Hdac3-RNAi/+ 
50 

 

 Autophagy  

atg1/ 

unc- 51/ 

DK-4 

D.melanogaster 

Autophagy-related 1; 

a protein kinase, functions 

in the regulation of 

autophagy 

OE 

Bl 51654 w;pdf-Q128/UAS-atg1;+ 60 

Bl 51655 w;pdf-Q128/+;UAS-atg1/+ 43.75 

atg5 

D.melanogaster        

Autophagy-related 5; has 

Atg8 ligase activity 

OE Bl 59848 w;pdf-Q128/+;UAS-atg5/+ 87.5 * 

atg8a/ 

LC3 

D.melanogaster 

Autophagy-related 8a; has 

roles in autophagosome 

formation, maintenance of 

neuro-muscular function 

and average lifespan 

OE 

Bl 52005 w;pdf-Q128/UAS-atg8a;+ 88.24 * 

Bl 51656 w;pdf-Q128/+;UAS-atg8a/+ 87.5 * 

 

 Apoptosis  

Iap2/   

Diap-2/ 

Diha 

D.melanogaster Death-

associated inhibitor of 

apoptosis 2; ubiquitin E3-

ligase activity 

DR Bl 34776 
w;pdf-Q128/+; 

UAS-Iap2-RNAi/+ 
62.5 

dark/ ark/ 

hac-1/  

Apaf-1 

D.melanogaster Death-

associated APAF1-related 

killer (Dark), an essential 

component of the 

apoptosome 

DR KK 104215 w;pdf-Q128/UAS-dark-RNAi;+ 35.71 
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Table 5. 2 The number of surviving flies for comparisons in AW2 and AW3 for the locomotor 

activity experiments. 

 Sample sizes  Sample sizes 

Genotype 
Exper- 

iment 
AW2 AW3 Genotype 

Exper- 

iment 
AW2 AW3 

pdf>Q0,Hsp40 

1 31 18 

pdf>Q128,Hsp40 

1 32 18 

2 30 24 2 32 31 

3 27 22 3 32 29 

4 31 31 4 32 31 

5 31 28 5 31 30 

pdf>Q0 

1 29 9 

pdf>Q128 

1 30 21 

2 31 30 2 31 31 

3 24 24 3 28 26 

4 30 30 4 31 29 

5 16 12 5 27 23 

Q0,Hsp40 

1 25 4 

Q128,Hsp40 

1 29 11 

2 30 26 2 32 31 

3 15 0 3 13 0 

pdf>Q0,HSP70 

1 28 24 

pdf>Q128,HSP70 

1 32 32 

2 29 23 2 29 26 

3 23 17 3 32 28 

Q0,HSP70 1 22 21 Q128,HSP70 1 27 25 

pdf>Hsp40 

1 32 13 pdf>HSP70 1 28 23 

2 30 29     

 

Synergistic effect experiment 

pdf>Q128,Hsp40,HSP70  22 17 pdf>Q128  27 28 

pdf>Q0,Hsp40,HSP70  26 21 pdf>Q128,Hsp40  21 21 

pdf>Hsp40,HSP70  22 19 pdf>Q128,HSP70  30 28 

Q128,Hsp40,HSP70  28 24     
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Table 5. 3 The number of hemispheres per genotype per age to quantify the cellular features. 

Number of hemispheres/genotype/time-point/age 

 CT23 CT11 

Genotype 3d 9d 16d 3 d 9d 

pdf>Q128 28 29 23 30  

pdf>Q0,Hsp40 21 26 27 27 27 

pdf>Q128,Hsp40 26 29 28 25 25 

pdf>Q0,HSP70 26 18  31  

pdf>Q128,HSP70 30 23  27  

 

expHTT inclusions 

Genotype 3d 9d 

pdf>Q128 27 20 

pdf>Q128,Hsp40 30 30 

pdf>Q128,HSP70 27 25 

Top: For PER oscillations, flies were dissected around CT23 and CT11 at different ages: all the five 

genotypes at 3d and pdf>Q0,Hsp40 and pdf>Q128,Hsp40 also at 9d (n for Fig 5.11d).  For PDF+ and 

PER+ LNv numbers, CT23 (top-left) samples were used (n for Figs 5.5 and 5.11b, c).  Bottom: For 

quantification of expHTT inclusions and expHTT forms in pdf>Q128, pdf>Q128,Hsp40 and 

pdf>Q128,HSP70 across 3d and 9d (n for Figs 5.7 a-d, 5.8, 5.10).  For comparisons of expHTT forms 

across 3d, 9d and 16d for in pdf>Q128 and pdf>Q128,Hsp40, samples at CT23 (top-left) were used 

(n for Figs 5.6c, 5.7e, f, 5.9). 
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Fig S 1 Mean r-value comparing genotypes across age for testing the synergistic effect of co-

expression on Hsp40 and HSP70 in pdf>Q128 flies. 

Data Post-16 d is omitted from between-genotype statistical tests due to few surviving flies.  The blank 

in the Q128,Hsp40,HSP70 line graph between ages 21-23 d is due to the division of the 21 d data 

based on a circadian day with a periodicity of ~27 h.  Across all panels, coloured symbols represent 

statistically significant differences: red-coloured symbols indicate significant differences at p<0.05 of 

pdf>Q128 from ‘*’ all other genotypes, ‘#’ from all genotypes except Q128,Hsp40,HSP70, ‘§’ from 

all genotypes except pdf>Q128,Hsp40, ‘˄’ from all genotypes except pdf>Q128,HSP70, and orange 

‘*’ of pdf>Q128,HSP70 from all other genotypes.  Coloured ‘+’ near the error bar of a data point 

indicates significant differences at p<0.05 of the respective-coloured genotype from the data-point 

genotype.  Error bars are SEM.  n for these analyses is shown in Table 5.2 as the synergistic effect 

experiment. 
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