Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/1894
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDhar, Joydeep
dc.contributor.authorSwathi, K.
dc.contributor.authorKarothu, Durga Prasad
dc.contributor.authorNarayan, K. S.
dc.contributor.authorPatil, Satish
dc.date.accessioned2016-10-28T05:58:42Z-
dc.date.available2016-10-28T05:58:42Z-
dc.date.issued2015
dc.identifier.citationACS Applied Materials & Interfacesen_US
dc.identifier.citation7en_US
dc.identifier.citation1en_US
dc.identifier.citationDhar, J.; Swathi, K.; Karothu, D. P.; Narayan, K. S.; Patil, S., Modulation of Electronic and Self-Assembly Properties of a Donor-Acceptor-Donor-Based Molecular Materials via Atomistic Approach. ACS Applied Materials & Interfaces 2015, 7 (1), 670-681.en_US
dc.identifier.issn1944-8244
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/1894-
dc.descriptionRestricted accessen_US
dc.description.abstractThe performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.en_US
dc.description.urihttp://dx.doi.org/10.1021/am506905ben_US
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights?American Chemical Society, 2015en_US
dc.subjectNanoscience & Nanotechnologyen_US
dc.subjectMaterials Scienceen_US
dc.subjectseleniumen_US
dc.subjectelectronic propertyen_US
dc.subjectself-assemblyen_US
dc.subjectmicrostructureen_US
dc.subjectconductivityen_US
dc.subjectField-Effect Transistorsen_US
dc.subjectHeterojunction Solar-Cellsen_US
dc.subjectConjugated Polymersen_US
dc.subjectHigh-Performanceen_US
dc.subjectCharge-Transporten_US
dc.subjectHigh Holeen_US
dc.subjectSelenopheneen_US
dc.subjectAmbipolaren_US
dc.subjectCopolymeren_US
dc.subjectSemiconductorsen_US
dc.titleModulation of Electronic and Self-Assembly Properties of a Donor-Acceptor-Donor-Based Molecular Materials via Atomistic Approachen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Narayan K. S.)

Files in This Item:
File Description SizeFormat 
29.pdf7.46 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.