Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/1929
Title: CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a
Authors: Selvi, B. Ruthrotha
Swaminathan, Amrutha
Maheshwari, Uma
Nagabhushana, Ananthamurthy
Mishra, Rakesh K.
Kundu, Tapas Kumar
Keywords: Cell Biology
Neural Stem-Cell
Arginine Methyltransferase
Differentiation
Methylation
Expression
Pluripotency
Neurogenesis
Cluster
Issue Date: 2015
Publisher: American Society for Cell Biology
Citation: Molecular Biology of the Cell
26
2
Selvi, B. R.; Swaminathan, A.; Maheshwari, U.; Nagabhushana, A.; Mishra, R. K.; Kundu, T. K., CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a. Molecular Biology of the Cell 2015, 26 (2), 316-326.
Abstract: Coactivator-associated arginine methyltransferase (CARM1/PRMT4)-mediated transcriptional coactivation and arginine methylation is known to regulate various tissue-specific differentiation events. Although CARM1 is expressed in the neural crest region in early development, coinciding with early neuronal progenitor specification, the role of CARM1 in any neuronal developmental pathways has been unexplored. Using a specific small-molecule inhibitor of CARM1-mediated H3R17 methylation in human embryonic stem cell line, we find that H3R17 methylation contributes to the maintenance of the astroglial cell population. A network of regulation was observed on the miR92a promoter by which H3R17-responsive Nanog bound to the miR92a promoter decreased upon inhibition, resulting in an abnormal gene expression program influencing the glial lineage. This was also true in zebrafish, in which, with the help of CARM1 inhibitor and CARM1 morpholinos, we show that inhibition of H3R17 methylation results in defective glial cell morphology and a sensory defect in a subpopulation. A gain-of-function strategy in which mCARM1 was introduced in the morpholino-treated embryos exhibited recovery of the sensory defect phenotype. This study thus establishes the functional cooperation between arginine methylation and microRNA expression in the neuronal developmental process, with potential implications in sensory development pathways.
Description: Restricted access
URI: https://libjncir.jncasr.ac.in/xmlui/10572/1929
ISSN: 1059-1524
Appears in Collections:Research Papers (Tapas K. Kundu)

Files in This Item:
File Description SizeFormat 
130.pdf
  Restricted Access
4.66 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.