Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/1934
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaturbedy, Piyush
dc.contributor.authorKumar, Manoj
dc.contributor.authorSalikolimi, Krishnachary
dc.contributor.authorDas, Sadhan
dc.contributor.authorSinha, Sarmistha Halder
dc.contributor.authorChatterjee, Snehajyoti
dc.contributor.authorSuma, B. S.
dc.contributor.authorKundu, Tapas Kumar
dc.contributor.authorEswaramoorthy, M.
dc.date.accessioned2016-10-28T06:01:30Z-
dc.date.available2016-10-28T06:01:30Z-
dc.date.issued2015
dc.identifier.citationJournal of Controlled Releaseen_US
dc.identifier.citation217en_US
dc.identifier.citationChaturbedy, P.; Kumar, M.; Salikolimi, K.; Das, S.; Sinha, S. H.; Chatterjee, S.; Suma, B. S.; Kundu, T. K.; Eswaramoorthy, M., Shape-directed compartmentalized delivery of a nanoparticle-conjugated small-molecule activator of an epigenetic enzyme in the brain. J. Controlled Release 2015, 217, 151-159.en_US
dc.identifier.issn0168-3659
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/1934-
dc.descriptionRestricted accessen_US
dc.description.abstractTargeted drug delivery to specific subcellular compartments of brain cells is challenging despite their importance in the treatment of several brain-related diseases. Herein, we report on shape-directed intracellular compartmentalization of nanoparticles in brain cells and their ability to deliver therapeutic molecules to specific organelles. Iron oxide (Fe3O4) nanoparticles with different morphologies (spheres, spindles, biconcaves, and nanotubes) were synthesized and coated with a fluorescent carbon layer derived from glucose (Fe3O4@C). In vivo studies showed that the Fe3O4@C nanoparticles with biconcave geometry localized predominantly in the nuclei of the brain cells, whereas those with nanotube geometry were contained mostly in the cytoplasm. Remarkably, a small-molecule activator of histone acetyltransferases delivered into the nuclei of the brain cells using nanoparticles with biconcave geometry showed enhancement in enzymatic activity by a factor of three and resulted in specific gene expression (transcription) compared with that of the molecule delivered to the cytoplasm using nanotube geometry. (c) 2015 Elsevier B.V. All rights reserved.en_US
dc.description.uri1873-4995en_US
dc.description.urihttp://dx.doi.org/10.1016/j.jconrel.2015.08.043en_US
dc.language.isoEnglishen_US
dc.publisherElsevier Science Bven_US
dc.rights?Elsevier Science Bv, 2015en_US
dc.subjectChemistryen_US
dc.subjectPharmacology & Pharmacyen_US
dc.subjectCompartmentalized drug deliveryen_US
dc.subjectBrain targetingen_US
dc.subjectNanomedicineen_US
dc.subjectPhysicochemical propertyen_US
dc.subjectNanocompositesen_US
dc.subjectIron-Oxide Nanoparticlesen_US
dc.subjectNuclear Drug-Deliveryen_US
dc.subjectCarbon Nanospheresen_US
dc.subjectMagnetic Nanoparticlesen_US
dc.subjectCancer-Cellsen_US
dc.subjectTheranostic Applicationsen_US
dc.subjectGold Nanoparticlesen_US
dc.subjectCellular Uptakeen_US
dc.subjectGene Deliveryen_US
dc.subjectIn-Vivoen_US
dc.titleShape-directed compartmentalized delivery of a nanoparticle-conjugated small-molecule activator of an epigenetic enzyme in the brainen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (Tapas K. Kundu)

Files in This Item:
File Description SizeFormat 
237.pdf
  Restricted Access
2.25 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.