Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/1982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoukya, B.
dc.contributor.authorNegi, D. S.
dc.contributor.authorDileep, K.
dc.contributor.authorPachauri, N.
dc.contributor.authorGupta, A.
dc.contributor.authorDatta, Ranjan
dc.date.accessioned2016-12-22T11:48:54Z-
dc.date.available2016-12-22T11:48:54Z-
dc.identifier.citationPhysical Review Ben_US
dc.identifier.citation91en_US
dc.identifier.citation13en_US
dc.identifier.citationLoukya, B.; Negi, D. S.; Dileep, K.; Pachauri, N.; Gupta, A.; Datta, R., Effect of Bloch wave electron propagation and momentum-resolved signal detection on the quantitative and site-specific electron magnetic chiral dichroism of magnetic spinel oxide thin films. Physical Review B 2015, 91 (13), 10.en_US
dc.identifier.issn1098-0121
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/1982-
dc.descriptionRestricted accessen_US
dc.description.abstractElectron magnetic chiral dichroism (EMCD) in a transmission electron microscope is an element-specific magnetic characterization technique and is extremely powerful for understanding magnetism of materials at the nanoscale. However, quantitative EMCD remains a challenge. In the present paper, we have highlighted and overcome major difficulties associated with the technique. For example, the experimentally observed low dichroic signal and imbalance between the L-3 and L-2 edge have been explained based on the oscillatory nature of electron propagation through the crystal thickness and specific momentum resolved signal detection, respectively. With this advancement in understanding, site-specific quantitative EMCD has been accomplished in epitaxial thin films of two important ferrimagnetic spinel oxides, NiFe2O4 (NFO) and CoFe2O4 (CFO), with varying degree of cation mixing and A site cation defects. A simple model based on phenomenological absorption has been developed for different site-specific signal contributions for the inverse spinel structure. The experimental moment values for NFO and CFO obtained using EMCD are in good agreement with first principle based theoretical calculations and the results strengthen the promise of utilizing EMCD as a routine nanoscale magnetic characterization technique.en_US
dc.description.uri1550-235Xen_US
dc.description.urihttp://dx.doi.org/10.1103/PhysRevB.91.134412en_US
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.rights?American Physical Society, 2015en_US
dc.subjectCondensed Matter Physicsen_US
dc.subjectChemical-Vapor-Depositionen_US
dc.subjectEnergy-Loss Spectroscopyen_US
dc.subjectCircular-Dichroismen_US
dc.subjectSoftware Packageen_US
dc.subjectMicroscopeen_US
dc.subjectDiffractionen_US
dc.subjectSimulationen_US
dc.subjectCobalten_US
dc.subjectSpaceen_US
dc.subjectProbeen_US
dc.titleEffect of Bloch wave electron propagation and momentum-resolved signal detection on the quantitative and site-specific electron magnetic chiral dichroism of magnetic spinel oxide thin filmsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Ranjan Datta)

Files in This Item:
File Description SizeFormat 
99.pdf
  Restricted Access
2.69 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.