Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/1983
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalyani, Ajay Kumar
dc.contributor.authorKhatua, Dipak Kumar
dc.contributor.authorLoukya, B.
dc.contributor.authorDatta, Ranjan
dc.contributor.authorFitch, Andy N.
dc.contributor.authorSenyshyn, Anatoliy
dc.contributor.authorRanjan, Rajeev
dc.date.accessioned2016-12-22T11:48:54Z-
dc.date.available2016-12-22T11:48:54Z-
dc.identifier.citationPhysical Review Ben_US
dc.identifier.citation91en_US
dc.identifier.citation10en_US
dc.identifier.citationKalyani, A. K.; Khatua, D. K.; Loukya, B.; Datta, R.; Fitch, A. N.; Senyshyn, A.; Ranjan, R., Metastable monoclinic and orthorhombic phases and electric field induced irreversible phase transformation at room temperature in the lead-free classical ferroelectric BaTiO3. Physical Review B 2015, 91 (10), 12.en_US
dc.identifier.issn1098-0121
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/1983-
dc.descriptionRestricted accessen_US
dc.description.abstractFor decades it has been a well-known fact that among the few ferroelectric compounds in the perovskite family, namely, BaTiO3, KNbO3, PbTiO3, and Na1/2Bi1/2TiO3, the dielectric and piezoelectric properties of BaTiO3 are considerably higher than the others in polycrystalline form at room temperature. Further, similar to ferroelectric alloys exhibiting morphotropic phase boundary, single crystals of BaTiO3 exhibit anomalously large piezoelectric response when poled away from the direction of spontaneous polarization at room temperature. These anomalous features in BaTiO3 remained unexplained so far from the structural standpoint. In this work, we have used high-resolution synchrotron x-ray powder diffraction, atomic resolution aberration-corrected transmission electron microscopy, in conjunction with a powder poling technique, to reveal that at 300 K (i) the equilibrium state of BaTiO3 is characterized by coexistence of metastable monoclinic Pm and orthorhombic (Amm2) phases along with the tetragonal phase, and (ii) strong electric field switches the polarization direction from the [001] direction towards the [101] direction. These results suggest that BaTiO3 at room temperature is within an instability regime, and that this instability is the fundamental factor responsible for the anomalous dielectric and piezoelectric properties of BaTiO3 as compared to the other homologous ferroelectric perovskite compounds at room temperature. Pure BaTiO3 at room temperature is therefore more akin to lead-based ferroelectric alloys close to the morphotropic phase boundary where polarization rotation and field induced ferroelectric-ferroelectric phase transformations play a fundamental role in influencing the dielectric and piezoelectric behavior.en_US
dc.description.uri1550-235Xen_US
dc.description.urihttp://dx.doi.org/10.1103/PhysRevB.91.104104en_US
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.rights?American Physical Society, 2015en_US
dc.subjectCondensed Matter Physicsen_US
dc.subjectGrained Barium-Titanateen_US
dc.subjectSingle-Crystalsen_US
dc.subjectDomain-Wallsen_US
dc.subjectCeramicsen_US
dc.subjectPermittivityen_US
dc.subjectFineen_US
dc.subjectPiezoelectricsen_US
dc.subjectDisplacementen_US
dc.subjectPerovskiteen_US
dc.subjectTransitionen_US
dc.titleMetastable monoclinic and orthorhombic phases and electric field induced irreversible phase transformation at room temperature in the lead-free classical ferroelectric BaTiO3en_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Ranjan Datta)

Files in This Item:
File Description SizeFormat 
98.pdf
  Restricted Access
1.52 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.