Please use this identifier to cite or link to this item:
https://libjncir.jncasr.ac.in/xmlui/handle/10572/2008
Title: | Membrane Active Small Molecules Show Selective Broad Spectrum Antibacterial Activity with No Detectable Resistance and Eradicate Biofilms |
Authors: | Hoque, Jiaul Konai, Mohini M. Gonuguntla, Spandhana Manjunath, Goutham B. Samaddar, Sandip Yarlagadda, Venkateswarlu Haldar, Jayanta |
Keywords: | Medicinal Chemistry Helical Antimicrobial Peptides Bacterial Biofilms Pseudomonas-Aeruginosa In-Vitro Mechanisms Lipopeptides Infections Oligomers Agents Peptidomimetics |
Issue Date: | 2015 |
Publisher: | American Chemical Society |
Citation: | Journal of Medicinal Chemistry 58 14 Hoque, J.; Konai, M. M.; Gonuguntla, S.; Manjunath, G. B.; Samaddar, S.; Yarlagadda, V.; Haldar, J., Membrane Active Small Molecules Show Selective Broad Spectrum Antibacterial Activity with No Detectable Resistance and Eradicate Biofilms. J. Med. Chem. 2015, 58 (14), 5486-5500. |
Abstract: | Treating bacterial biofilms With conventional antibiotics is limited due to ineffectiveness of the drugs and higher propensity to develop bacterial resistance. Development of new classes of antibacterial therapeutics with alternative mechanisms of action has become imperative. Herein, we report the design, synthesis, and biological evaluations of novel membrane,active small molecules featuring two positive charges, four nonpeptidic,amide groups, and variable hydro, phobic/hydrophilic (amphiphilic) character. The biocides synthesized via a facile methodology not only displayed good antibacterial activity against wild-type bacteria but also showed high activity against various drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and beta-lactam-resistant Klebsiella pneumoniae. Further, these biocides not only inhibited the formation of biofilms but also disrupted the established S. aureus and E. coli biofilms. The membrane-active biocides hindered the propensity to develop bacterial resistance. Moreover; the biocides showed negligible toxicity against mammalian cells and thus bear potential to be used as therapeutic agents. |
Description: | Restricted access |
URI: | https://libjncir.jncasr.ac.in/xmlui/10572/2008 |
ISSN: | 0022-2623 |
Appears in Collections: | Research Papers (Jayanta Haldar) |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.