Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2157
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDabade, Vivekanand
dc.contributor.authorMarath, Navaneeth K.
dc.contributor.authorSubramanian, Ganesh
dc.date.accessioned2017-01-24T06:26:13Z-
dc.date.available2017-01-24T06:26:13Z-
dc.date.issued2016
dc.identifier.citationDabade, V.; Marath, N. K.; Subramanian, G., The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. Journal of Fluid Mechanics 2016, 791, 631-703 http://dx.doi.org/10.1017/jfm.2016.14en_US
dc.identifier.citationJournal of Fluid Mechanicsen_US
dc.identifier.citation791en_US
dc.identifier.issn0022-1120
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2157-
dc.descriptionRestricted Accessen_US
dc.description.abstractIt is well known that, under inertialess conditions, the orientation vector of a torque-free neutrally buoyant spheroid in an ambient simple shear flow rotates along so-called Jeffery orbits, a one-parameter family of closed orbits on the unit sphere centred around the direction of the ambient vorticity (Jeffery, Proc. R. Soc. Lond. A, vol. 102, 1922, pp. 161-179). We characterize analytically the irreversible drift in the orientation of such torque free spheroidal particles of an arbitrary aspect ratio, across Jeffery orbits, that arises due to weak inertial effects. The analysis is valid in the limit Re. St << 1, where Re = ((gamma) over dotL(2)rho(f))/mu and St = ((gamma) over dotL(2)rho(f))IR are the Reynolds and Stokes numbers, which, respectively, measure the importance of fluid inertial forces and particle inertia in relation to viscous forces at the particle scale. Here. L is the setnimajor axis of the spheroid, rho(p) and rho(f) are the particle and fluid densities, (gamma) over dot is the ambient shear rate, and mu is the suspending fluid viscosity. A reciprocal theorem formulation is used to obtain the contributions to the drift due to particle and fluid inertia, the latter in terms of a volume integral over the entire fluid domain. The resulting drifts in orientation at O(Re) and O(St) are evaluated, as a function of the particle aspect ratio, for both prolate and oblate spheroids using a vector spheroidal harmonics formalism. It is found that particle inertia, at O(St), causes a prolate spheroid to drift towards an eventual tumbling motion in the flow-gradient plane. Oblate spheroids, on account of the O(St) drift, move in the opposite direction, approaching a steady spinning motion about the ambient\tonicity axis. The period of rotation in the spinning mode must remain unaltered to all orders in St. For the tumbling mode, the period remains unaltered at O(St). At O(St(2)), however, particle inertia speeds up the rotation of prolate spheroids. The O(Re) drift due to fluid inertia drives a prolate spheroid towards a tumbling motion in the flow-gradient plane for all initial orientations and for all aspect ratios. Interestingly, for oblate spheroids, there is a bifurcation in the orientation dynamics at a critical aspect ratio of approximately 0.14. Oblate spheroids with aspect ratios greater than this critical value drift in a direction opposite to that for prolate spheroids, and eventually approach a spinning spirnling motionabout the ambient\tonicity axis starting from any initial orientation. For smaller aspect ratios, a pair of non-trivial repelling orbits emerge from the flow-gradient plane, and divide the unit sphere into distinct basins of orientations that asymptote to the tumbling and spinning modes. With further decrease in the aspect ratio, these repellers move away from the flow-gradient plane, eventually coalescing onto an arc of the great circle in which the gradient-vorticity plane intersects the unit sphere, in the limit of a vanishing aspect ratio. Thus, sufficiently thin oblate spheroids, similar to prolate spheroids, drift towards an eventual tumbling motion irrespective of their initial orientation. The drifts at O(St) and at O(Re) are combined to obtain the drift for a neutrally buoyant spheroid. The particle inertia contribution remains much smaller than the fluid inertia contribution for most aspect ratios and density ratios of order unity. As a result, the critical aspect ratio for the bifurcation in the orientation dynamics of neutrally buoyant oblate spheroids changes only slightly from its value based only on fluid inertia. The existence of Jeffery orbits implies a rheological indeterminacy, and the dependence of the suspension shear viscosity on initial conditions. For prolate spheroids and oblate spheroids of aspect ratio greater than 0.14, inclusion of inertia resolves the indeterminacy Remarkably, the existence of the above bifurcation implies that, for a dilute suspension of oblate spheroids with aspect ratios smaller than 0.14, weak stochastic fluctuations (residual Brownian motion being analysed here as an example) play a crucial role in obtaining a shear viscosity independent of the initial orientation distribution. The inclusion of Brownian motion leads to a new smaller critical aspect ratio of approximately 0.013. For sufficiently large Re Pe(r), the peak in the steady-state orientation distribution shifts rapidly from the spinning- to the tumbling-mode location as the spheroid aspect ratio decreases below this critical value; here, Pe(r) = (gamma) over dot/D-r, with D-r being the Brownian rotary diffusivity, so that Re Pe(r) measures the relative importance of inertial drift and Brownian rotary diffusion. The shear viscosity, plotted as a function of Re Pe(r), exhibits a sharp transition from a shear-thickening to a shear-thinning behaviour, as the oblate spheroid aspect ratio decreases below 0.013. Our results are compared in detail to earlier analytical work for limiting cases involving either nearly spherical particles or slender fibres with weak inertia, and to the results of recent numerical simulations at larger values of Re and St.en_US
dc.description.uri1469-7645en_US
dc.description.urihttp://dx.doi.org/10.1017/jfm.2016.14en_US
dc.language.isoEnglishen_US
dc.publisherCambridge University Pressen_US
dc.rights@Cambridge University Press, 2016en_US
dc.subjectMechanicsen_US
dc.subjectPhysicsen_US
dc.subjectlow-Reynolds-number flowsen_US
dc.subjectrheologyen_US
dc.subjectsuspensionsen_US
dc.subjectLow-Reynolds-Numberen_US
dc.subjectSpheroidal Particlesen_US
dc.subjectReflective Flakesen_US
dc.subjectEllipsoidal Particlesen_US
dc.subjectSpherical-Particlesen_US
dc.subjectDilute Dispersionen_US
dc.subjectRigid Particlesen_US
dc.subjectFluid Inertiaen_US
dc.subjectCouette Flowsen_US
dc.subjectViscous-Fluiden_US
dc.titleThe effect of inertia on the orientation dynamics of anisotropic particles in simple shear flowen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Ganesh Subramanian)

Files in This Item:
File Description SizeFormat 
53.pdf
  Restricted Access
3 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.