Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2169
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGokhale, Shreyas
dc.contributor.authorSood, A. K.
dc.contributor.authorGanapathy, Rajesh
dc.date.accessioned2017-01-24T06:28:01Z-
dc.date.available2017-01-24T06:28:01Z-
dc.date.issued2016
dc.identifier.citationGokhale, S.; Sood, A. K.; Ganapathy, R., Deconstructing the glass transition through critical experiments on colloids. Advances in Physics 2016, 65 (4), 363-452 http://dx.doi.org/10.1080/00018732.2016.1200832en_US
dc.identifier.citationAdvances In Physicsen_US
dc.identifier.citation65en_US
dc.identifier.citation4en_US
dc.identifier.issn0001-8732
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2169-
dc.descriptionRestricted Accessen_US
dc.description.abstractThe glass transition is the most enduring grand-challenge problem in contemporary condensed matter physics. Here, we review the contribution of colloid experiments to our understanding of this problem. First, we briefly outline the success of colloidal systems in yielding microscopic insights into a wide range of condensed matter phenomena. In the context of the glass transition, we demonstrate their utility in revealing the nature of spatial and temporal dynamical heterogeneity. We then discuss the evidence from colloid experiments in favor of various theories of glass formation that has accumulated over the last two decades. In the next section, we expound on the recent paradigm shift in colloid experiments from an exploratory approach to a critical one aimed at distinguishing between predictions of competing frameworks. We demonstrate how this critical approach is aided by the discovery of novel dynamical crossovers within the range accessible to colloid experiments. We also highlight the impact of alternate routes to glass formation such as random pinning, trajectory space phase transitions and replica coupling on current and future research on the glass transition. We conclude our review by listing some key open challenges in glass physics such as the comparison of growing static length scales and the preparation of ultrastable glasses that can be addressed using colloid experiments.en_US
dc.description.uri1460-6976en_US
dc.description.urihttp://dx.doi.org/10.1080/00018732.2016.1200832en_US
dc.language.isoEnglishen_US
dc.publisherTaylor & Francis Ltden_US
dc.rights@Taylor & Francis Ltd, 2016en_US
dc.subjectPhysicsen_US
dc.subjectglass transitionen_US
dc.subjectcolloidsen_US
dc.subjectmicroscopyen_US
dc.subjectholographic optical tweezersen_US
dc.subjectrandom first-order transition theoryen_US
dc.subjectdynamical facilitationen_US
dc.subjectmode coupling theoryen_US
dc.subjectgeometric frustrationen_US
dc.subjectdynamical heterogeneityen_US
dc.subjectStokes-Einstein relationen_US
dc.subjectellipsoidsen_US
dc.subjectcrossoversen_US
dc.subjectrandom pinningen_US
dc.subjectreplica couplingen_US
dc.subjecttrajectory space phase transitionsen_US
dc.subjectultrastable glassesen_US
dc.subjectMode-Coupling Theoryen_US
dc.subjectSpatially Heterogeneous Dynamicsen_US
dc.subjectGrowing Length Scalesen_US
dc.subjectHard-Sphere Systemen_US
dc.subjectIntermediate Scattering Functionen_US
dc.subjectComputer-Generated Hologramsen_US
dc.subjectDensity Correlation-Functionen_US
dc.subjectDiffusing-Wave Spectroscopyen_US
dc.subjectLennard-Jones Mixtureen_US
dc.subjectSupercooled Liquidsen_US
dc.titleDeconstructing the glass transition through critical experiments on colloidsen_US
dc.typeReviewen_US
Appears in Collections:Research Articles (Rajesh Ganapathy)

Files in This Item:
File Description SizeFormat 
86.pdf
  Restricted Access
9.95 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.