Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2196
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJeyabalan, Nallathambi
dc.contributor.authorChelliah, James P. C.
dc.date.accessioned2017-01-24T06:34:31Z-
dc.date.available2017-01-24T06:34:31Z-
dc.date.issued2016
dc.identifier.citationJeyabalan, N.; Clemente, J. P., SYNGAP1: Mind the Gap. Frontiers in Cellular Neuroscience 2016, 10, 16 http://dx.doi.org/10.3389/fncel.2016.00032en_US
dc.identifier.citationFrontiers In Cellular Neuroscienceen_US
dc.identifier.citation10en_US
dc.identifier.issn1662-5102
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2196-
dc.descriptionRestricted Accessen_US
dc.description.abstractA cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.en_US
dc.description.urihttp://dx.doi.org/10.3389/fncel.2016.00032en_US
dc.language.isoEnglishen_US
dc.publisherFrontiers Media Saen_US
dc.rights@Frontiers Media Sa, 2016en_US
dc.subjectNeurosciences & Neurologyen_US
dc.subjectSYNGAPen_US
dc.subjectsynaptic plasticityen_US
dc.subjectintellectual disabilityen_US
dc.subjectautism spectrum disordersen_US
dc.subjectlearning and memoryen_US
dc.subjectneurodevelopmental disordersen_US
dc.subjectGtpase-Activating Proteinen_US
dc.subjectAutism Spectrum Disordersen_US
dc.subjectNmda Receptor Traffickingen_US
dc.subjectLong-Term Potentiationen_US
dc.subjectFragile-X-Syndromeen_US
dc.subjectMental-Retardationen_US
dc.subjectSynaptic Plasticityen_US
dc.subjectIntellectual Disabilityen_US
dc.subjectCritical-Perioden_US
dc.subjectGlutamatergic Synapsesen_US
dc.titleSYNGAP1: Mind the Gapen_US
dc.typeReviewen_US
Appears in Collections:Research Papers (James P. Chelliah)

Files in This Item:
File Description SizeFormat 
110.pdf
  Restricted Access
915.68 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.