Please use this identifier to cite or link to this item:
https://libjncir.jncasr.ac.in/xmlui/handle/10572/2196
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jeyabalan, Nallathambi | |
dc.contributor.author | Chelliah, James P. C. | |
dc.date.accessioned | 2017-01-24T06:34:31Z | - |
dc.date.available | 2017-01-24T06:34:31Z | - |
dc.date.issued | 2016 | |
dc.identifier.citation | Jeyabalan, N.; Clemente, J. P., SYNGAP1: Mind the Gap. Frontiers in Cellular Neuroscience 2016, 10, 16 http://dx.doi.org/10.3389/fncel.2016.00032 | en_US |
dc.identifier.citation | Frontiers In Cellular Neuroscience | en_US |
dc.identifier.citation | 10 | en_US |
dc.identifier.issn | 1662-5102 | |
dc.identifier.uri | https://libjncir.jncasr.ac.in/xmlui/10572/2196 | - |
dc.description | Restricted Access | en_US |
dc.description.abstract | A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention. | en_US |
dc.description.uri | http://dx.doi.org/10.3389/fncel.2016.00032 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Frontiers Media Sa | en_US |
dc.rights | @Frontiers Media Sa, 2016 | en_US |
dc.subject | Neurosciences & Neurology | en_US |
dc.subject | SYNGAP | en_US |
dc.subject | synaptic plasticity | en_US |
dc.subject | intellectual disability | en_US |
dc.subject | autism spectrum disorders | en_US |
dc.subject | learning and memory | en_US |
dc.subject | neurodevelopmental disorders | en_US |
dc.subject | Gtpase-Activating Protein | en_US |
dc.subject | Autism Spectrum Disorders | en_US |
dc.subject | Nmda Receptor Trafficking | en_US |
dc.subject | Long-Term Potentiation | en_US |
dc.subject | Fragile-X-Syndrome | en_US |
dc.subject | Mental-Retardation | en_US |
dc.subject | Synaptic Plasticity | en_US |
dc.subject | Intellectual Disability | en_US |
dc.subject | Critical-Period | en_US |
dc.subject | Glutamatergic Synapses | en_US |
dc.title | SYNGAP1: Mind the Gap | en_US |
dc.type | Review | en_US |
Appears in Collections: | Research Papers (James P. Chelliah) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
110.pdf Restricted Access | 915.68 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.