Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2217
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBanik, Ananya
dc.contributor.authorVishal, Badri
dc.contributor.authorPerumal, Suresh
dc.contributor.authorDatta, Ranjan
dc.contributor.authorBiswas, Kanishka
dc.date.accessioned2017-01-24T06:36:53Z-
dc.date.available2017-01-24T06:36:53Z-
dc.date.issued2016
dc.identifier.citationBanik, A.; Vishal, B.; Perumal, S.; Datta, R.; Biswas, K., The origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy & Environmental Science 2016, 9 (6), 2011-2019 http://dx.doi.org/10.1039/c6ee00728gen_US
dc.identifier.citationEnergy & Environmental Scienceen_US
dc.identifier.citation9en_US
dc.identifier.citation6en_US
dc.identifier.issn1754-5692
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2217-
dc.descriptionRestricted Accessen_US
dc.description.abstractInorganic solids with low thermal conductivity are of great interest for thermoelectric applications. The formation of synthetic nanostructures by matrix encapsulation is one of the important strategies for thermal conductivity reduction through phonon scattering. Here, we report the reduction of lattice thermal conductivity near the theoretical minimum limit, kappa(min), in SnTe via spontaneous formation of nanodomains of the Sb-rich layered intergrowth SnmSb2nTe3n+m compounds, which are natural heterostructures. High-resolution transmission electron microscopy of Sn1-xSbxTe samples reveals the formation of endotaxial Sb rich nanoprecipitates (2-10 nm) along with super-structured intergrowth nanodomains (10-30 nm), which are the key features responsible for the significant reduction of lattice thermal conductivity in SnTe. This mechanism suggests a new avenue for the nanoscale engineering in SnTe to achieve low lattice thermal conductivities. Moreover, the presence of Sb improves the electronic transport properties by aliovalent cation doping which optimizes the hole concentration in SnTe. As a result, an enhanced thermoelectric figure of merit, zT, of similar to 1 has been achieved for the composition of Sn0.85Sb0.15Te at 800 K. The high zT sample exhibits the Vickers microhardness value of similar to 136 H-V which is double that of pristine SnTe and is significantly higher than those of the present state-of-the-art thermoelectric materials.en_US
dc.description.uri1754-5706en_US
dc.description.urihttp://dx.doi.org/10.1039/c6ee00728gen_US
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rights@Royal Society of Chemistry, 2016en_US
dc.subjectChemistryen_US
dc.subjectEnergy & Fuelsen_US
dc.subjectEngineeringen_US
dc.subjectEnvironmental Sciences & Ecologyen_US
dc.subjectHigh-Thermoelectric Performanceen_US
dc.subjectDensity-Of-Statesen_US
dc.subjectBulk Thermoelectricsen_US
dc.subjectTransport-Propertiesen_US
dc.subjectBand Convergenceen_US
dc.subjectSolid-Solutionsen_US
dc.subjectSnteen_US
dc.subjectFigureen_US
dc.subjectMeriten_US
dc.subjectAlloysen_US
dc.titleThe origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructuresen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Ranjan Datta)
Research Papers (Kaniska Biswas)

Files in This Item:
File Description SizeFormat 
27.pdf
  Restricted Access
6.83 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.