Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2260
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Jianwei
dc.contributor.authorRemsing, Richard C.
dc.contributor.authorZhang, Yubo
dc.contributor.authorSun, Zhaoru
dc.contributor.authorRuzsinszky, Adrienn
dc.contributor.authorPeng, Haowei
dc.contributor.authorYang, Zenghui
dc.contributor.authorPaul, Arpita
dc.contributor.authorWaghmare, Umesh V.
dc.contributor.authorWu, Xifan
dc.contributor.authorKlein, Michael L.
dc.contributor.authorPerdew, John P.
dc.date.accessioned2017-01-24T06:50:12Z-
dc.date.available2017-01-24T06:50:12Z-
dc.date.issued2016
dc.identifier.citationSun, J. W.; Remsing, R. C.; Zhang, Y. B.; Sun, Z. R.; Ruzsinszky, A.; Peng, H. W.; Yang, Z. H.; Paul, A.; Waghmare, U.; Wu, X. F.; Klein, M. L.; Perdew, J. P., Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nature Chemistry 2016, 8 (9), 831-836 http://dx.doi.org/10.1038/nchem.2535en_US
dc.identifier.citationNature Chemistryen_US
dc.identifier.citation8en_US
dc.identifier.citation9en_US
dc.identifier.issn1755-4330
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2260-
dc.descriptionRestricted Accessen_US
dc.description.abstractOne atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.en_US
dc.description.uri1755-4349en_US
dc.description.urihttp://dx.doi.org/10.1038/NCHEM.2535en_US
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.rights@Nature Publishing Group, 2016en_US
dc.subjectChemistryen_US
dc.subjectGeneralized Gradient Approximationen_US
dc.subjectElectron Localizationen_US
dc.subjectExchangeen_US
dc.subjectTemperatureen_US
dc.subjectSiliconen_US
dc.subjectGgaen_US
dc.titleAccurate first-principles structures and energies of diversely bonded systems from an efficient density functionalen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Umesh V. Waghmare)

Files in This Item:
File Description SizeFormat 
271.pdf
  Restricted Access
1.74 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.